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Abstract

The highest level of confidence in the correct functionality of system software can be
gained from a pervasive formal verification approach, where the high-level language
application layer is connected to the gate-level hardware layer through a stack of se-
mantic layers coupled by simulation theorems. While such semantic stacks exist for
sequential systems, the foundational theory of semantic stacks for concurrent systems
is still incomplete. This thesis contributes to close this gap.

First we prove a general order reduction theorem establishing a model where pro-
cesses are executing blocks of steps, being only interleaved at selectable interleaving-
points. An ownership-based memory access policy is imposed to prove commutativity
properties for non-synchronizing steps, enabling the desired reordering. In contrast to
existing work, we only assume properties on the order-reduced level, thus providing a
complete abstraction.

We then apply sequential simulation theorems on top of the block schedules and
prove a general simulation theorem between two abstract concurrent systems including
the transfer of safety properties. Finally we instantiate our frameworks with a MIPS
instruction set architecture, a macro assembler (MASM) semantics, and an intermediate
language semantics for C. Applying the concurrent simulation theorem, we justify the
concurrent semantics of MASM and C against their ISA implementation.



Kurzzusammenfassung

Das größte Vertrauen in die korrekte Funtionsweise von System-Software kann mit
Hilfe durchdringender formaler Beweisverfahren erlangt werden, welche alle Abstrak-
tionsebenen eines Computersystems durch Simulationstheoreme miteinander koppeln.
Während solche Gerüste von Semantiken bereits für sequentielle Systeme entwickelt
wurden, finden sich in der entsprechenden Theorie für nebenläufige Systeme noch
Lücken, zur Schließung derer diese Arbeit beitragen soll.

Zunächst beweisen wir ein allgemeines Reduktionstheorem, das die möglichen Rei-
henfolgen, in der Prozesse Schritte machen, auf ein Modell beschränkt, in dem Blöcke
von Schritten verschiedener Prozesse nacheinander ausgeführt werden. Mittels eines
”Ownership”-basierten Speicherzugriffprotokolls beweisen wir Kommutativitätseigen-
schaften für lokale Schritte verschiedener Prozesse und ermöglichen so das Vertauschen
dieser. Da unser Theorem nur Eigenschaften des reihenfolgereduzierten Systems an-
nimmt ermöglicht es eine vollständige Abstraktion vom ursprünglichen Modell.

Auf die Blockausführung wenden wir sequentielle Simulationstheoreme an und be-
weisen ein allgemeines Simulationstheorem zwischen abstrakten nebenläufigen Sys-
temen sowie den Transfer von Sicherheitseigenschaften. Wir instanziieren das The-
orem mit einem MIPS-Instruktionssatz und Semantiken für Makroassembler und C.
Dadurch rechtfertigen wir die nebenläufige Semantik der Programmiersprachen gegen
ihre Maschinenimplementierung.
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1 Introduction

The formal verification of concurrent computer systems has come a long way from the
development of the first methodologies in the 70s. Today there are expressive program
logics and powerful verification tools allowing to prove the functional correctness of
complex concurrent algorithms and real-world system software. What many of the ver-
ification approaches have in common, is that they are arguing about programs written
in some abstract high-level language containing primitives for synchronous interaction
between processes. For such languages a formal semantics is usually easy to define
compared to real-world programming languages that system software is written in,
e.g., C mixed with assembly portions. The program logic employed for verification is
then proven sound against the semantics of the programming language, strengthening
the confidence in the correctness of programs that were verified to be correct.

However, there is a gap in this kind of reasoning. Even when considering more de-
tailed, realistic programming semantics, the fact stands that computers naturally do not
execute high-level language programs. They do not even execute assembly programs.
They execute machine code. So the question is: Why has the abstract concurrent seman-
tics employed in program verification anything to do with the semantics of the trans-
lation to machine code being executed on a multicore processor with shared memory?
In many cases it is silently assumed that the target programming language of a verifi-
cation method correctly abstracts from some real-world implementation, relying on the
correctness of compilers and assemblers used for the refinement of the program to the
hardware level. For the sequential setting indeed correctness proofs for compilers and
assemblers have been conducted, allowing to transfer verified properties of the abstract
program down to the assembly language and instruction set architecture layers. In gen-
eral, for a pervasive verification approach, one needs to built stacks of semantics where
adjacent levels of abstraction are coupled via sequential simulation theorems. One big
advantage of this apporach is that, by proving the simulation theorems, one uncovers
all the required software conditions, that make the simulation go through, justifying
the abstraction itself. Nevertheless, for the construction of concurrent semantic stacks
a complete formal theory is still missing, leaving a wide gap in the soundness proofs of
verification methods and tools for concurrent systems.

A straight-forward approach for establishing a concurrent semantics stack is to em-
ploy the simulation theorems from a sequential semantic stack in the concurrent setting.
However, this is impeded by the interleaving model of concurrency where processes take
steps one after another in an arbitrary order. Thus in general there is no sequence of
steps by a single process on which a sequential simulation theorem could be applied.
Nevertheless the order of steps by different processors should only matter for steps
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1 Introduction

that are synchronizing the process with its environment, e.g., through shared memory
accesses. In fact, it is a well-known folklore theorem that between synchronizing steps
the interleaving of local operations is irrelevant. We use this fact in order to prove an
order reduction theorem which abstracts from arbitrarily-interleaved computations of
the concurrent system and allows to reason exclusively about schedules where pro-
cesses execute blocks of steps on which sequential simulation theorems like compiler
correctness can be applied.

In a second step we then compose the sequential simulations on blocks of steps into
a system wide concurrent simulation theorem. This approach has two main hypothe-
ses. The first one is that processes are well-behaved in the sense that they do not break
the simulation relations holding for others. The second is that the simulation theorems
allow the transfer of the safety conditions that enable the application of the order reduc-
tion theorem on the lowest abstraction layer. These safety conditions require mainly the
absence of memory races between processes, enabling the commutativity of steps. We
use an explicit ownership model and define an ownership-based memory access policy
that prevents memory races.

Overall, this document provides (1) a framework to model concurrent systems with
shared memory at any level of abstraction (2) a concurrent simulation theorem to re-
late different abstraction layers (3) a general order reduction theorem for concurrent
systems that enables applying the simulation theorem (4) a complete correctness proof
of our approach – including the aforementioned theorems – in paper and pencil math-
ematics, and (5) instantiations of our framework justifying the concurrent semantics
of macro assembly and intermediate-language C programs that are implemented on a
MIPS multiprocessor.

1.1 Overview

As motivated above we want to look at asynchronous concurrent systems on different
layers of abstraction and connect these layers formally using simulation relations, or
refinement mappings respectively. This requires defining formal semantics for every
layer. In order to have a uniform representation of these semantic levels, we intro-
duce a generic framework that we call the Concurrent System with Shared Memory and
Ownership, abbreviated by the acronym Cosmos. A Cosmos model consists essentially of
a number of infinite state machines called computation units, which can be instantiated
individually, and a shared memory containing the common system resources. In addition
there are specification components representing the dynamic ownership state.

Following O’Hearn’s ownership hypothesis [O’H04], that the memory of race-free
programs can be divided into disjoint portions that are owned exclusively by the dif-
ferent computation units, we use a simple ownership model to keep track which mem-
ory addresses are owned by a particular machine in the system. Additionally some
addresses are shared by all participating machines and may only be accessed in a syn-
chronized fashion, e.g., by using interlocked atomic memory operations. We specify
ownership invariants and a memory access policy based on ownership that provably
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1.1 Overview

guarantees the absence of memory races (memory safety) if all computation units ad-
here to it. Moreover we can use ownership later on to prove commutativity of certain
steps by different units. Thus it is a cornerstone principle of our approach. We require
that safe operations preserve ownership invariants and perform only safe memory ac-
cesses wrt. the ownership model, i.e., they must obey the ownership policy. This policy
demands, e.g., that one machine does not write addresses owned by other machines or
that shared memory may only be accessed by designated synchronizing steps, so-called
IO steps, where IO stands for input/output. Every instantiation of a Cosmos model ma-
chine must specify which of its state transitions are considered IO.1 Intuitively an IO
step represents a synchronization operation, and thus a communication between the
computation units. Usually it is implemented via an access to shared memory, how-
ever different instantiations may have different ways of synchronization.

Now we can instantiate Cosmos machines describing the same system at different lev-
els of detail. For instance, we might look at a computer system were C programs are
executed concurrently on multiple processor cores. In the real world these programs
are compiled to a certain multicore instruction set architecture (ISA) which we can also
represent by a Cosmos model (possibly a reduced version under certain software con-
ditions). Each program is compiled separately and there exists a sequential simulation
relation as well as a simulation theorem that links C and ISA execution on one proces-
sor. It would be desirable to compose the sequential simulation theorems to one global
simulation theorem spanning all processors in the Cosmos model. Naturally, this would
base on the hypothesis that for every particular unit its sequential simulation relation
is preserved by executions of the overall system. However we can not prove such a
theorem for arbitrary interleavings of machine steps because a simulation relation need
not generally hold for all states of an execution on the abstract level and usually only
holds for a few steps on the concrete level where the steps are refined2. In fact we
need to assume schedules on the low level where units are executing blocks of steps
from one consistency point (a configuration that is consistent to/simulates an abstract
one) until the next one. Furthermore we cannot just combine arbitrary programs in a
concurrent fashion. There is a number of requirements on the nature of the simulation
theorems under consideration and the notion of the shared resources on both levels.
We list all the necessary assumptions including memory safety on the abstract level
and prove the global Cosmos model simulation theorem based on the correctness of the
local simulations which have to be verified individually. One important assumption is
that ownership-safe computations on the abstract level can be implemented by owner-
ship safe computations on the concrete level of the simulation theorem. This property
allows the top-down transfer of ownership-safety in a semantic stack and needs to be
proven for every sequential simulation theorem involved. The assumption of block
scheduling is justified by an order reduction theorem.

In order reduction we reduce the number of possible interleavings of different pro-

1The individual definition of IO must allow to verify the hypotheses of our order reduction theorem for
a given program, most prominently the memory safety conditions.

2The only exception to this is one-step simulations where one abstact step maps to a single concrete one.
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cessor steps. The core argument to enable reduction is that the effect of a safe concurrent
system execution does only partly rely on the scheduling of units. In fact it relies only
on the external input sequence and the schedule of IO steps. All non-IO actions can
be reordered arbitrarily as long as program order is maintained for each computation
unit. The reordering preserves the effect of the original trace because non-IO steps
only modify local information. This can be enforced by the ownership policy and is the
main lemma of the proof. Instead of non-IO operations we also speak of local steps
and we call the configuration from which an IO step origins IO point.

For the reduction theorem we assume a definition of interleaving-points (IP) that is
provided by the verification engineer for a given instantiation and we reduce arbitrary
interleavings to so-called IP block schedules, which are interleavings of blocks of steps of
the same computation unit. Each IP block starts in an interleaving-point and contains
at most one IO step. If we focus on the execution of a single unit in the computation we
see that its sequential execution is only interrupted at the interleaving-points and IP
blocks of other units are interleaved. The reduction theorem requires that all IP block
schedules are proven to obey the ownership policy ensuring the absence of memory
races. On the other hand it guarantees that the ownership policy is obeyed by arbitrary
schedules and for each of them we can find a consistent IP block schedule. Addition-
ally we prove that the reduction allows the transfer of arbitrary safety properties3 from
the order-reduced to the arbitrarily interleaved level. We do not consider liveness here.

As the interleaving-point schedules can be chosen arbitrarily4, we can actually apply
the order reduction theorem in two different scenarios. Our main target is the construc-
tion of a concurrent semantic stack, thus we need to choose the interleaving-points in
a way such that we get IP blocks on which the sequential simulation theorems can be
applied. To this end, in the simulation scenario, we choose the interleaving-points to
be the consistency points. If we consider the top level of the simulation stack where
the actual program verification is performed, a verification tool usually works more
efficiently the less interleavings of steps by other units one has to consider. Thus, in
the verification scenario we only interleave the actions of other computation units be-
fore IO steps, i.e., we choose the interleaving-points to be the starting points of IO
steps. See Fig. 1 and 2 for an illustration of reordering for the two different choices of
interleaving-points described above.

Thus we establish an abstract framework for order reduction and simulation in con-
current systems. We show its applicability by a number of instantiations. The Cosmos
model is instantiated with a simplified MIPS multiprocessor, semantics for macro as-
sembly programs (MASM), and semantics for an intermediate language of C (C-IL).
We plug these systems into our simulation theory and show how the concurrent C and
macro assembly machines can be proven to be simulated by the MIPS machine.

3Intuitively a safety property is an invariant on the execution sequence of a program, stating that some-
thing undesirable does not happen [Lam77]. Thus safety properties describe properties like the absence
of run-time errors, race-freedom, or partial correctness. More precisely, “a safety property is one that
holds for an infinite sequence if it holds for every finite prefix of it” [ALM84], hence it only restricts
finite behaviour, as opposed to liveness properties which only restrict infinite behaviour [AS85].

4There may be at most one IO step between two interleaving-points of the same unit (cf. Sect. 3.1).
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1.1 Overview

2
1

1
2

Figure 1: Illustration of reordering such that steps are only interleaved before IO steps.
Filled boxes mark IO steps, empty boxes are local steps of the correspronding
computation unit. Arrows display the permutation of steps.

arbitrary

reordered
computation

simulated
computation

interleaving 2
1

1
2

∼ ∼ ∼∼

1
2

Figure 2: Illustration of reordering such that steps are only interleaved in compiler con-
sistency points, allowing for simulation of a more abstract computation. Here
dashed lines annotated with ∼ represent the compiler consistency relation
holding in consistency points. Unit 2 has not yet reached a consistency point
by the end of the computation, therefore the step it is simulating (suggested
by dotted lines) is not yet considered on the abstract level.
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1 Introduction

The subsequent sections are structured as follows. In Chap. 2 we introduce the Cosmos
model and the ownership policy. We procede in Chap. 3 to define the order reduction
theorem and prove it. Chapter 4 contains instantiation examples of the Cosmos model
with semantics for the MIPS instruction set architecture, MASM, and C-IL. In Chap. 5
we first set up a framework to define sequential simulation theorems in a unified way.
We then list the requirements needed to combine the sequential simulations on separate
units into a concurrent one. Finally we prove the concurrent simulation theorem and
present instantiations of the framework with simulations between MIPS and MASM,
as well as MIPS and C, discharging the aforementioned requirements on the sequential
simulation theorems. We conclude this thesis by a discussion of our approach and an
outlook on future work.

1.2 Related Work

The first formal approaches for the specification and verification of sequential programs
date back to the 60s [Flo67, Hoa69]. In the subsequent decades myriads of different
tools and languages have been developed to tackle the problem in a more efficient way
and to apply techniques to more and more complex systems. The most challenging tar-
gets for formal methods may be operating systems, and recent history has seen several
attempts on the verification of sequential OS microkernels [Kle09]. The approach of the
Verisoft project [AHL+09] however comes probably closest to our vision of modelling
computer systems on various abstraction levels that are linked by simulation theorems,
thus enabling pervasive verification. There a semantics stack was developed spanning
abtraction layers from the gate level hardware description up to the user application
view. Nevertheless only a sequential, academic system was considered. The succeed-
ing Verisoft XT project aimed at transferring this approach to the real world and devel-
oped tools and methods for the formal verification of industrial concurrent operating
systems and hypervisors [CAB+09, LS09, BBBB09]. The theory presented in this report
was conceived in an effort to justify the specification and verification approach used in
the Verisoft XT project, were the automated verifier VCC [CDH+09] was employed to
prove code correctness on the concurrent C level.

The VCC tool is just another step in the long history of specification and verification
methods for concurrent systems [Lam93]. As early as 1975 Ashcroft [Ash75] and Ow-
icki/Gries [OG76] extended Floyd’s and Hoare’s methods to the concurrent case. The
approach was based on assertions that were added to programs in order to show the
preservation of global invariants. Instead of using programs to specify other programs
Lamport suggested to use state machines and mathematical formulas as a universal
specification language. His Temporal Logic of Actions (TLA) [Lam94] allows to define
safety and liveness properties of programs and algorithms in a uniform and concise
way. Systems can be composed by disjunction of TLA specifications [AL95] and speci-
fied at different levels of abstraction. In case a refinement mapping exists between two
layers it can be shown that one specification implements the other by showing an impli-
cation in TLA [AL91]. However, this simulation approach seems only to be suitable for
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the program refinement or simple simulation theorems where the concrete specification
makes steps in parallel with one (posibly stuttering) abstract step. For general simula-
tion theorems wherem concrete steps simulate n abstract ones we can not use the result
directly. We would need to merge the n abstract simulated steps into an atomic step,
however in a concurrent system this requires order reduction.

In 1978 Hoare introduced an algebraic method to model communicating sequential
processes [Hoa78]. Subsequently the language he proposed evolved into the well-
known CSP process algebra [Hoa85] and a whole community following his approach
was formed. Several other process algebras followed in the wake of CSP, most promi-
nently Milner’s π-calculus. However this methodology seems only appropriate to model
systems at a very abstract level, e.g., to specify algorithms and protocols. Modelling
complex systems by algebraic structures and their transformations is at best messy, if
not infeasible.

Another approach to concurrent system specification are I/O Automata as intro-
duced by Lynch and Tuttle [LT87]. I/O Automata are basically infinite state machines
which are characterized by actions they can perform. Internal actions are distinguished
from externally visible input and output actions that are employed for communication
between automata. Lynch uses these automata to model sequential, parallel and asyn-
chronously concurrent shared memory systems and algorithms [Lyn96]. It is possible to
compose several automata into a bigger one given certain composability requirements
on their actions. Moreover it was shown how to prove simulation theorems between
automata. However it was not treated how automata working on shared variables
should be composed (an overall automaton containing all sub-automata was assumed)
nor how simulation is maintained by composition of I/O automata. Finally the need to
list all actions of an automaton and divide them into input, output and internal ones ap-
pears to be feasible for small-scale systems and algorithms. Modelling a realistic system
like a modern multi-core instruction set architecture as an I/O automaton, in contrast,
seems to be a rather tedious task. Nevertheless we feel that using composable state
machines is the right methodology in order to obtain a formally linked semantics stack.
In this way we are inspired by the work of Lynch and Lamport. Gurevich also followed
the idea of modelling systems as Abstract State Machines (ASMs) [Gur00, BG03] and
a programming language exists to specify and execute such models [GRS05]. How-
ever the ASM approach does not support asynchronous concurrency [Gur04]. As to
the best of our knowledge there is no prominent formalism in literature general and
convenient enough to serve our purposes we define our own framework for modelling
concurrent systems using well-known concepts like automata theory and simulation
relations. Here we also draw on the experience from the Verisoft project where these
methods were applied successfully.

Concerning order reduction a multitude of related work exists. It appears that Lipton
was the first to describe how several steps of an operation could be aggregated into a
monolithic atomic action [Lip75]. Subsequently, Doeppner [Doe77], and Lamport and
Schneider [LS89] showed that order reduction allows for the transfer of arbitrary safety
properties, i.e., that if a safety property holds for all order-reduced interleavings of a
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program execution then it also holds on all arbitrary interleavings. The main prerequi-
site for the reduction is that the reduced operation contains only one access to shared
memory. The approaches described above had in common that a particular program is
examined where the sub-steps of a specific operation are reordered to form a block of
steps which is executed atomicly. To this end it was required for the non-critical steps
in the reduced operation to commute with other concurrent program steps such that
their combined effect would be preserved.

Later Cohen and Lamport generalized the reduction argument in Lamport’s Tempo-
ral Logic of Actions (TLA) [CL98], showing also the preservation of liveness properties,
which we do not treat in this report. It is possible, though non-trivial, to instantiate the
TLA order reduction theorem in a way that would give us the desired block structure
for arbitrary program executions. Thus our reduction theorem is a special case of the
ones given in [LS89] and [CL98], using an ownership policy to justify the commuta-
tivity of steps. However, since the TLA reduction theorem requires on the unreduced
level S that local steps of one process commute with steps of other processes, we can-
not apply the TLA reduction theorem directly to achieve what we need. While the
ownership policy enables us to show the commutativity of steps in a straight-forward
way, we do not assume ownership-safety on S – we only assume ownership-safety on
the order-reduced specification SR. Thus, we need to transfer ownership-safety from
SR to S explicitly. In contrast to the existing theories described above, we also do not
formalize order reduction in a way such that reordered steps are merged into single
atomic actions; the effect of order reduction is expressed in terms of program sched-
ules given by input sequences. We aim for a scheduling, where computation steps by
the same process are reordered into blocks that start in the selected interleaving-points.
We generalize the reordering to an equivalence relation between arbitrary schedules
and corresponding block schedules. The transfer of safety properties works similar to
[LS89] and [CL98].

Besides the classic theorems there is more recent work on order reduction. Several
specific approaches have been proposed to employ reduction in model checking in or-
der to tackle the problem of state explosion [FQ04, FFQ05, FG05]. In the spirit of re-
ducing the number of interleavings of concurrent programs, Brookes [Bro06] presents a
denotational semantics for high-level-language5 shared-variable concurrent programs.
In the semantics the possible computations of a program are represented by a set of
sequences of state transitions (footsteps) which are interleaved at most at synchroniza-
tion points, where resources are acquired. Sequential and concurrent program steps
are merged into joint footsteps in case there are no data races between them, thereby
pruning redundant interleavings of transitions which result in the same system state.
However the semantics does not seem to support the simulation proofs between dif-
ferent semantic layers we have in mind.6 By merging steps of different processes the

5A heap memory manager as well as synchronization primitives for acquiring and releasing resources
are assumed.

6The sequential simulation theorems we consider are formulated in a way that if the implementation on
process p makes m steps out of configuration c, there exist n steps out of the abstract configuration d
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notion of separate programs that are executed concurrently is lost, because for one foot-
step it is not visible which process(es) are executed for how many steps under what se-
quence of external inputs. Also only the parts of the state which were read and written
are recorded in the footsteps. Therefore the representative transition sequences given
by the footstep semantics are not suitable to apply the sequential simulation theorems
forming our concurrent model stack.

Also the formal verification tool VCC [CDH+09] used in the Verisoft XT project re-
lies on order reduction. Threads are verified as if they run sequentially and concurrent
actions of other threads are only interleaved before shared memory accesses. A proof
sketch justifying this kind of “coarse scheduling” in the VCC tool was presented in
[CMST09], however it was not shown how verified safety properties on coarse sched-
ules can be transferred to arbitrarily interleaved schedules. Nevertheless the ideas of a
general order reduction theorem from [CMST09] were the starting point of this work.

Applying a memory access policy in order to enforce separation between different
actors in a concurrent system is also a common approach, e.g., Concurrent Separa-
tion Logic [O’H04] induces a notion of ownership and its transfer. The shared mem-
ory is divided into fixed partitions where each partition is uniquely identified by a
resource name and accompanied by an individual resource invariant asserting the well-
formedness of the shared data. Concurrent processes can acquire and release exclusive
ownership of resources and their protected portion of shared memory by using prede-
fined synchronization primitives. For every process there is a safety policy demanding
that only owned portions of shared memory may be accessed and that the resource in-
variants must hold before a resource may be released. If all processes obey this policy,
their parallel execution can be decomposed into local computations where each process
executes without interference by other processes [Bro04]. This result facilitates the local
reasoning in separation logic about separate processes of concurrent programs where
the changes of other processes on the unowned portion of shared memory are incor-
porated in the resource-acquiring step as a non-deterministic transition that is obeying
the resource invariants.

The Verified Software Toolchain [App11] applies separation-logic-based verification
on the level of abstract program semantics of concurrent systems. Their approach is
justified by adding a model of access permissions to the verified sequential compiler
CompCert’s memory model [LABS12], however there do not seem to be any published
results yet presenting how the sequential compiler correctness translates to the concur-
rent case. Finally, it should be also noted that commutativity arguments like the ones
we use in the proof of our reduction theorem are closely related to the notion of non-
interference in information flow theory [GM82, Rus92]. Simply put, it is argued that
an action does not interfere with a certain domain if it can be pruned from a computa-
tion without changing results visible in that domain. If this is the case it can be placed
elsewhere in the computation, yielding commutativity.

such that the simulation relation is maintained, i.e., c ∼ d =⇒ c′ ∼ d′.
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1.3 Notation and Conventions

In the scope of this document we use the following notation and conventions.

Definitions and Proofs

Important Definitions in the following thesis are numbered and printed in italic font.
Shorter function and type definitions are marked by the term def that is written over
the identity symbol. We implicitly assume free variables occurring in definitions to
be universally quantified. Moreover in case a definition is a conjunction of several
statements we allow to omit the ∧ symbol between the conjuncts and instead display
them as a numbered list with lower-case Roman numerals. For example instead of

P (x)
def≡ A(x) ∧B(x) ∧ C(x)

we can write:

P (x)
def≡ (i) A(x)

(ii) B(x)

(iii) C(x)

When applying lemmas in proofs it is sometimes not immediately clear how the quan-
tified variables map to the variables in the specific scenario we are considering. In order
to clarify how a lemma is instantiated, we use the notation v := v′ denoting that every
occurrence of variable v in the lemma should be replaced by instance v′.

Set Notation

Generally, we use standard set theory, however we extend it by a few shorthand defi-
nition. The disjoint union of sets is denoted by ·∪. Let A1, . . . An, B be sets, then:

B = A1 ·∪ · · · ·∪An
def≡ B =

n⋃

i=1

Ai ∧ ∀i, j. i 6= j =⇒ Ai ∩Aj = ∅

To express that two sets are equal for some element α, i.e. that α is either contained or
not contained in both sets, we choose the following notation

A =α A
′ def≡ α ∈ A⇐⇒ α ∈ A′

If both sets are subset of some superset B, i.e., A,A′ ⊆ B, we can easily show the
property, that if A and A′ agree on all elements of B, they must be equal.

(∀α ∈ B. A =α A
′)⇐⇒ A = A′

For any non-empty set A we use the Hilbert choice operator ε to select one of its ele-
ments. In particular for singleton sets we have ε{a} = a. Finally we denote the cardi-
nality of a finite set A by #A.
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Types, Records, and Functions

Types are usually identified by blackboard bold, e.g. F in case their names consist of a
single letter. The natural numbers N = {1, 2, 3, . . .} do not contain zero. Ni ⊂ N with
i > 0 and #Ni = i defines the set of the i smallest natural numbers.

Ni = {1, . . . , i}

In contrast, we use N0 to denote the natural numbers including zero, i.e. N0
def≡ N∪{0}.

We treat record types as n-tuples where each component can have a different type.
For updating component r.x of a record r with a new value v we can use the notation
r′ = r[x := v] which implies that r′ is the update record where r′.x = v and for all other
components c 6= x we have r′.c = r.c.

In general, new types are defined using the standard mathematical notation where
“×” creates tuples and “→” creates total functions. Partial functions are identified by a
“⇀” arrow in their type signature. For functions f mapping elements from domainA to
image B, we can obtain the domain set of f by the function dom(f) = A. In particular
for partial functions dom(f) returns the set of arguments for which f is defined. For
f : A → B and a set X ⊆ A we can obtain the restriction of f to set X with the
following notation.

f |X
def≡ λx ∈ X. f(x)

We can update functions f : A→ B at entries i ∈ A with a new value v ∈ B as follows.

f [i 7→ v]
def≡ λj ∈ A.

{
v : j = i

f(j) : otherwise

The composition of partial functions f, f ′ : A ⇀ B with disjoint domains is denoted by
f ] f ′, where dom(f ] f ′) = dom(f) ·∪dom(f ′).

f ] f ′ def≡ λa ∈ dom(f) ∪ dom(f ′).

{
f(a) : a ∈ dom(f)

f ′(a) : a ∈ dom(f ′)

By adding “⊥” to the image set in order to denote undefined results, any partial func-
tion f : A ⇀ B can be turned into a total function f : A → B ∪ {⊥}, given that ⊥ /∈ B.
Instead of a /∈ dom(f) we can therefore also write f(a) = ⊥ synonymously.

Propositional Logic

Logical propositions contain conjunction ∧, disjunction ∨, negation, implication =⇒,
equivalence⇐⇒ and brackets. For negation literature knows several symbols.

/x
def≡ ∼x def≡ ¬x def≡ x

11



1 Introduction

Here we will use mostly /x and sometimes xwhere it saves brackets. The priority order
≺ of logical operators used in this document is defined below from weakest to strongest
binding.

⇐⇒ ≺ =⇒ ≺ ∨ ≺ ∧ ≺ /

Quantifiers ∀ (universal) and ∃ (existential) have the weakest binding. In order to limit
their scope we need to use surrounding parantheses.

Sequences

Moreover in this thesis we will deal excessively with computation sequences. By a ∈ A∗
we represent an arbitrarily long but finite sequence of elements with type A. We denote
the elements of the sequence by adding a subscript index starting with 1. A sequence
of length n can thus be defined by listing its elements.

a = a1a2a3 · · · an
Let ε be the empty sequence, then we introduce the length of finite sequences.

|ε| = 0 ∀A, x ∈ A, a′ ∈ A∗. |xa′| = |a′|+ 1

For manipulating sequences we define the function pop which removes the first i mem-
bers of a sequence.

pop(a, i)
def≡





a : i = 0

pop(a′, i− 1) : i > 0 ∧ ∃x ∈ A. a = xa′

ε : otherwise

Function tl yields the remainder after removing the head hd(a)
def≡ a1 of a sequence.

tl(a)
def≡ pop(a, 1)

Concatenating finite sequences is straight forward. To improve legibility we allow to
use an explicit concatenation operator ◦.

a = aε = εa ab = a1 · · · anb1 · · · bn a ◦ b def≡ ab

We can select finite subsequences of a sequence via interval notation. First of all for
a ≤ b we introduce the following integer intervals.

[a : b]
def≡ {a, a+ 1, . . . , b} [a : b)

def≡ [a : b− 1]

(a : b]
def≡ [a+ 1 : b] (a : b)

def≡ [a+ 1 : b− 1]

Now subsequences of x are easily defined recursively. Let 0 ≤ a ≤ b, then:

x[a : b]
def≡
{
xa : a = b

xax[a+ 1 : b] : otherwise
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For open intervals, e.g., x[a : b), the equivalent closed interval from above shall be used.
We overload the ∈-operator from set theory to denote that an element x ∈ A is part of a
sequence a : A∗.

x ∈ a def≡ ∃i ∈ N. ai = x

Computations

Computations are sequences of configurations from a state space S. They rely on tran-
sition functions δ : S × I → S which transform the state using inputs from domain I .
A computation s ∈ S∗ for input sequence in ∈ I∗ is obtained by applying the transition
function using the appropriate input. To denote state transitions we use the following
arrow notation for i, n ∈ N.

si −→n
δ,in si+n

def≡
{
si+1 = δ(si, ini) ∧ si+1 −→n−1

δ,in si+n : n > 0

1 : n = 0

It can be generalized for states s, s′ ∈ S omitting the index i.

s −→n
δ,in s

′ def≡ ∃a ∈ S∗. a1 −→n
δ,in an+1 ∧ s = a0 ∧ s′ = an+1

A special versions of this is s −→δ,in s
′ def≡ s −→1

δ,in s
′. For arbitrarily long computa-

tions we write:

s −→∗δ,in s′
def≡ ∃n. s −→n

δ,in s
′

If δ is a transition function without any input besides the pre-state of the transition, we
can define the same notations as above by simply omitting the input.

Context-free Grammars

We assume the reader to be familiar with the concept of context-free grammars G =
(T,N, S, P ) and the way they are producing languages L(G). Here T denotes the ter-
minal alphabet, N with N ∩ T = ∅ the non-terminals, S ∈ N the starting symbol and
P ⊆ N × (N ∪T )∗ the production system. In one place we will use a context-free gram-
mar in order to define the syntax of instruction representation for a MIPS instruction
set architecture model.

If n ∈ N is a non-terminal and a ∈ (N ∪ T )∗ a sequence of terminals and non-
terminals, we write n −→ a as a shorthand for (n, a) ∈ P . Several productions for the
same non-terminal are seperated by “|”, e.g., n −→ a | b stands for {(n, a), (n, b)} ⊂ P .
For finite sets A ( T ∗ of words over the terminal alphabet and a non-terminal n ∈ N
we allow the following shorthand when defining the production system.

n −→ A ⇐⇒ ∀a ∈ A. (n, a) ∈ P

13
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Thus, for instance, a production rule b −→ B32 means that b can be replaced by any
32-bit string. In our grammars the terminal “ ” denotes a space. However in produc-
tions we do not use the symbol, but normal spaces for legibility. Moreover we use the
notation n −→∗G w to say that terminal word w ∈ T ∗ can be derived from non-terminal
n ∈ N by a finite number of production steps wrt. grammar G.

Binary Arithmetic

When introducing our MIPS ISA instantiation of the Cosmos model we will need to
argue about arithmetics on bit strings. Bit strings are finite sequences of bits from set

B
def≡ {0, 1}

and we write down the bits from highest to lowest index. The lowest bit has index zero.

∀a ∈ Bn. a[n− 1 : 0]
def≡ an−1an−2 · · · a0

Then any bit string a ∈ Bn can be interpreted as a binary number with the following
value in N.

〈a[n− 1 : 0]〉 def≡
n−1∑

i=0

ai · 2i

Similarly we can interpret any bit string as an integer that is encoded in two’s-complement
representation. The two’s-complement value of a bit string is defined as follows.

[a[n− 1 : 0]]
def≡ −an−1 · 2n−1 + 〈a[n− 2 : 0]〉

It can be shown that in modular arithmetic 〈a〉 and [a] are congruent modulo 2n. See
Section 2.2.2 in [MP00] for more information on two’s complement numbers. For con-
version of numbers into bit strings we use the bijections

binn : [0 : 2n)→ Bn and twocn : [−2n−1 : 2n−1)→ Bn

with the following properies for all a ∈ Bn.

binn(〈a〉) = a twocn([a]) = a

As a shorthand we allow to writeXn instead of binn(X) for any natural numberX ∈ N.
We define binary addition and subtraction modulo 2n of bit strings a, b ∈ Bn.

a+n b
def≡ (binn+1(〈a〉+ 〈b〉))[n− 1 : 0] a−n b

def≡ (twocn+1([a]− [b]))[n− 1 : 0]

Note above that the representative of a binary or two’s complement number modulo
2n can be obtained by considering only its n least significand bits. Also, since binary
and two’s complement values of a bit string are congruent modulo 2n, we could have
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defined addition using two’s complement numbers and subtraction using binary repre-
sentation of the operands. However we stick to the definitions presented above which
look most natural to us.

Besides addition and subtraction we can also apply bitwise logical operations on bit
strings. Let a, b ∈ Bn, then we can extend any binary bitwise operator • : B× B→ B to
an n-bit operator •n : Bn × Bn → Bn, such that for all i < n:

(a •n b)[i] = ai • bi

In this thesis we will use • ∈ {∧,∨,⊕,∨}, where ⊕ stands for exclusive OR (XOR) and
∨ represents negated OR (NOR). We omit the subscript n where it is unambiguous.

Memory Notation

In instantiations we usually model memories m as mappings m : Ba → Bd of bit strings
with address width a to strings with data width d. If we want to specify the content of
x ≥ 1 consecutive memory cells starting at address ad we use the following notation.

mx(ad) =

{
m(ad) : x = 1

m(ad+a bina(x− 1)) ◦mx−1(ad) : otherwise

Note that the definition above as well as the remainder of this thesis uses little-endian
byte order.
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2 The Cosmos Model

In order to model multiprocessor systems later we first introduce a generic model for
machines that are concurrently accessing a shared memory. We speak of a Concurrent
system with shared memory and ownership (Cosmos). Accesses are governed by an
ownership policy guaranteeing safe memory accesses, i.e., the absence of data races
on the shared memory. The ownership model builds on previous work by Cohen and
Schirmer [CS09]. There it was used to ensure sequential consistency for a shared mem-
ory system with store buffers. Moreover it was designed to mirror the object-oriented
ownership model of the verifier VCC on the underlying semantic layers. Here we use
it to show an order reduction theorem were arbitrary interleavings of steps of differ-
ent processes are reordered into schedules of blocks of steps, where all blocks start in
desired interleaving-points. In the model presented below the computation units can
be instantiated arbitrarily. However there is a technical well-formedness condition that
we assume in the formal theory, hence any instantiations of the Cosmos model must be
proven to fulfill it.

Below we present a formulation of the Cosmos model. In the subsequent chapters we
will formulate and prove the reordering theorem, instantiate the Cosmos model with
several semantics describing a computer system on different levels of abstraction, and
introduce our simulation theory on top of the reduced schedules.

2.1 Signature and Instantiation Parameters

We define the Cosmos model by introducing a Cosmos machine which is a concurrent
system of abstract automata operating on a common memory. We call the different au-
tomata computation units, or short units. They can be instantiated by, e.g., processors,
devices, or the semantics of a higher level program. In this work, however, we assume
for simplicity that all units are instantiated with the same kind of automaton. Units are
only communicating via shared memory, however we have external input signals to
allow for the treatment of external communication and non-determinism. We maintain
information on the ownership state of individual addresses; memory is partitioned in
a flexible way into sets of locally owned addresses and shared addresses. Addresses
can be permanently marked as read-only. Allowing the Cosmos model to be instanti-
ated for the specific application scenario, we achieve a flexible order reduction theorem
which can be applied to many shared-memory concurrent systems. Below we define
the signature of a Cosmos machine which contains all instantiable types and functions.
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Definition 1 (Cosmos Machine Signature) A Cosmos machine S is given by a tuple

S = (A,V,R,nu,U , E , reads, δ, IO, IP) ∈ S

with the following components:

• A,V - set of memory addresses and set of memory values, any function m : A → V is
called a memory, any partial function m : A⇀ V is a partial memory.

• R ⊆ A - set of read-only addresses (part of the ownership state)

• nu - the number of computation units in the machine

• U - set of computation unit states

• E - set of external inputs for the units

• reads : U × (A → V) × E → 2A - the set of memory addresses read by the next step
from the given unit configuration, global memory and external input. This set is called
the reads-set.

• δ : U × (A⇀ V)× E → U × (A⇀ V) - the transition function for the units; takes unit
state, a partial memory, and external input; results in a new unit state as well as another
partial memory. As the input partial memory we will provide the shared memory being
restricted to the reads-set of the step. The output partial memory represents the updated
part of memory for the step.

• IO : U × (R → V) × E → B - denotes whether the next step of the unit is an IO
step. IO steps represent synchronized interactions with the environment (i.e, all other
computation units), hence they include (but are not limited to) all atomic accesses to
concurrently accessed data structures in memory, e.g., locks and other synchronization
mechanisms. Whether the next step of a unit is an IO step, may depend on memory but
only on the read-only portion.

• IP : U × (R → V) × E → B - specifies the desired interleaving-points for the units,
i.e., states of the computation before which we allow steps of other units to be interleaved.
Whether a unit is in an interleaving-point, may depend on memory but only on the read-
only portion.

For given Cosmos model S, we use the shorthands A,V,R, . . . to refer to S.A, S.V, S.R,
etc. As explained above every unit in the system is instantiated by the same automaton.
Conceptually this is not a crucial requirement, we could also have a mapping to differ-
ent computation unit models in the Cosmos machine, however for simplicity we do not
present the more general model here. In Chap. 4 we will give several Cosmos machine
instantiations. However to give an intuition for the intended meaning of the compo-
nents consider an instantiation with a simple 32-bit multiprocessor system running in
untranslated mode. For a byte-addressable memory, we set A = B32 and V = B8. The
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read-only set R contains the region where the machine code of the system program
resides. The unit state U contains all processor core registers and we use E to model ex-
ternal device interrupt signals. The reads-set always contains the address pointed to by
the program counter1 (or instruction pointer, respectively). Moreover in case of a load
instruction, the targeted addresses also contribute to the reads-set. The δ-function then
encodes the semantics of the underlying instruction set architecture (ISA). Depending
on the programming discipline we use, the IO steps need to be defined: E.g., if we ac-
cess shared memory only at interlocked operations (like compare-and-swap), we would
choose IO steps to be exactly those interlocked operations. Nevertheless it is impera-
tive that we define IO steps in such a way that we can later prove ownership-safety of
all possible executions (see Sect. 2.6 and 3.6).

Note that in the Cohen-Schirmer theory IO memory instructions are denoted as
volatile accesses. A volatile flag is used to denote when instructions are expected to
access the shared portion of memory. However to avoid confusion with the notion
of volatile accesses on the C level we rename the concept here. Actually there is a
close connection between volatile and IO accesses, as there are certain compiler re-
quirements for all accesses that are compiled to ISA IO operations. In fact all volatile
accesses on the C level become IO accesses on the ISA level. However the two con-
cepts are not identical. In general the notion of IO steps covers all operations which
implement a communication with other machines. In this version of the Cosmos model
machines can only communicate via shared memory, hence we could define an IO step
simply to be any access to the portion of memory that is shared between all machines
according to the ownership model (to be defined below). However, we decided not to
do so for the following reason.

As we will see later on, the ownership policy is defined in a manner such that it
is forbidden for computation units to access non-local memory outside of IO steps.
If any access to a concurrently accessed data structure would be considered IO, then
all accesses would trivially obey the ownership policy. A different notion of memory
safety for ruling out data races would be needed.

Therefore, in accordance with Cohen and Schirmer, we see the IO and IP predicates
rather as annotations representing the verifier’s view of the system, telling in which
state a unit is expected to perform a shared memory access, in case of IO, or where
a unit’s computation should be interleaved with steps of others, in case of IP . Con-
sequently we did not hard-code the definition of IO steps. However we restrict the
predicates for IO steps and interleaving-points not to depend on writable memory.
This restriction is crucial in the order reduction proof to be presented later on. It cap-
tures our intuitation that whether a unit performs an IO step in a given state should
not directly depend on the writes of other units to shared memory. For example, in an
ISA instantiation it should only depend on the machine code that is stored in read-only
memory, whether a machine performs a shared memory access. Thus by the restriction
of the IO and IP predicates we also rule out that IO steps or interleaving-points may
occur due to self-modifying code.

1The program counter determines the next instruction to be fetched from memory.
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2 The Cosmos Model

In contrast to the Cohen-Schirmer model we confined ourselves to treat the read-only
addresses as a fixed parameter of the system. In the scope of this thesis we assume that
the concurrent system we are focussing on is already initialized and after that point
the read-only addresses should be constant. This implies a restriction of ownership
transfer after the initialization phase i.e., no read-only addresses may be acquired by
machines and all released addresses must stay writable. The restriction is motivated by
the reordering proof further below. If addresses may be put in or taken out of the R
set, there needs to be a synchronization policy between the machines governing when
it is safe to acquire, release and access read-only addresses. In fact, if the set of read-
only addresses was not fixed, for the current ownership policy our step commutativity
properties in the order reduction proof would break and we would need to resort to
more complicated proof methods as seen in the Cohen-Schirmer store buffer reduction.
To keep the model and the proofs simple we do not support a dynamic read-only set
here. See Sect. 6.1 for a deeper discussion of the restrictions of the Cosmos model and its
ownership policy.

2.2 Configurations

Below we define the configurations of the Cosmos machine which consists of the ma-
chine state and the ownership state. That means that the Cosmos model contains an ex-
plicit ownership model to maintain access rights of its computation units. However the
ownership state does not influence the execution of the Cosmos machine, therefore it
can be seen as specification state, or ghost state, respectively. Details on the ownership
model are given in Sect. 2.6.

Definition 2 (Machine State) The machine state M of a Cosmos model S is a pair

M = (u,m) ∈MS

where u : {1, . . . ,nu} → U maps unit indices to their unit states and m : A → V is the state
of the memory.

Definition 3 (Ownership State) The ownership state G (ghost state) of a Cosmos machine
S is a pair

G = (O,S) ∈ GS

where O : {1, . . . ,nu} → 2A maps unit indices to the corresponding units’ sets of owned
addresses (owns-set) and S ⊆ A is the set of shared writable addresses.

Now we can define the configuration of the overall Cosmos machine.

Definition 4 (Cosmos Machine Configuration) A configuration C of Cosmos model S is
given as a pair

C = (M,G) ∈ CS
consisting of machine state M ∈MS and ownership state G ∈ GS .
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E

· · ·

S
R

O1 O2 OnuOnu−1





m : A → V

u1 u2 unu−1 unu ∈ U· · ·

Figure 3: Illustration of the Cosmos machine configuration. The machine state contains
the memory and the unit states which consume also external inputs. The own-
ership state partitions the memory address range into disjoint ownership sets,
the shared-writable and the read-only addresses. Note that owned addresses
may be shared or unshared (denoted by the intersection of the Op and S).

See Fig. 3 for an illustration of the overall model. For p ∈ {1, . . . ,nu}we use the follow-
ing shorthands:

C.up ≡ C.M.u(p) C.m ≡ C.M.m

C.Op ≡ C.G.O(p) C.S ≡ C.G.S
readsp(C, in) ≡ readsp(C.M, in) ≡ reads(C.M.u(p), C.M.m, in)

IOp(C, in) ≡ IOp(C.M, in) ≡ IO(C.M.u(p), C.M.m|R, in)

IPp(C, in) ≡ IPp(C.M, in) ≡ IP(C.M.u(p), C.M.m|R, in)

Moreover, for defining the semantics, we need to know which addresses are written in
a step of the Cosmos machine.

Definition 5 (Writes-set of a machine step) For a given Cosmos model S with configura-
tion C ∈ CS and an input in ∈ E we can determine the set of written addresses in the cor-
responding step of machine p from the result of the delta function. This so-called writes-set of
machine p is obtained with the following function.

writesp(C, in) = dom(m′) where (u′,m′) = δ(C.up, C.m|readsp(C,in), in)

Note that the writes-set only depends on the part of memory that is read in the step.
For the reads-set we need a similar property.

2.3 Restrictions on Instantiated Parameters

Not all parameters of a Cosmos model can be instantiated arbitrarily. In order to obtain
a meaningful model there is in fact one constraint on the reads-set of Cosmos model
computation units.
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2 The Cosmos Model

Definition 6 (Instantiation Restriction for reads) By the predicate instar we require that
the reads-set contains all addresses upon whose memory contents it depends. For any Cosmos
machine S let u ∈ U be a computation unit state, m,m′ ∈ (A → V) shared memories, and
in ∈ E be a suitable input for a step of the unit. If the memory contents agree on reads-set
R = S.reads(u,m, in), then also the reads-set wrt. m′ agrees with R.

instar(S) ≡ (m′|R = m|R =⇒ S.reads(u,m′, in) = R )

This property is needed for instantiations that incorporate a series of read accesses in
one unit step. There the first reads can influence which addresses are read in later
parts of the step, like in the processor instantiation example above. The reads-set must
thus include all relevant addresses to determine which addresses are read. That means
conversely that it only depends on the portion of memory that was read, however we
can not cover this property as for the δ and writes functions by providing only a partial
memory representing the read memory contents. Doing so for the reads-function would
lead to a cyclical definition.

Observe also that the property on the reads-set is crucial in order to be able to deduce
that a machine performs the same step after reordering (by exploiting that the content of
the memory region given by the reads-set is unchanged and thus also the same adresses
are read) which results in the same update to the memory region given by the writes-set.

Thus, from now on, when we mention a Cosmos model S, we always assume that
restriction instar(S) holds.

2.4 Semantics

Units of the Cosmos machine execute according to their transition functions. A schedul-
ing input decides which machine performs the next step. We assume ownership inputs
that specify changes to the ownership state. These ownership inputs are given by the
verification engineer annotating the program.

Definition 7 (Cosmos Model Transition Function) For a Cosmos machine S we define
transition function

∆ : CS × {1, . . . ,nu} × E × (2A × 2A × 2A)→ CS

which takes a configuration C, a scheduling input p, an external input in ∈ E , the set Acq of
acquired addresses, the set Loc of acquired local addresses (which should be a subset of Acq), and
the set Rel of released addresses to perform a step of unit p on its state, the common memory,
and the ownership state. First however we consider the transition on the machine and ownership
states separately.

With (u′,m′) = δp(M.u(p),M.m|reads(M.u(p),in), in) and munchanged = M.m|A\dom(m′)

we define transition function

∆t(M,p, in) ≡ (M.u[p 7→ u′],munchanged ]m′)
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on the machine state. Moreover with O′ = (G.O(p) \ Rel) ∪ Acq and S ′ = (G.S \ Loc) ∪ Rel
we define the ownership transfer function:

∆o(G, p, (Acq ,Loc,Rel)) ≡ (G.O[p 7→ O′],S ′)

Now the overall transition function for Cosmos machine configurations is defined by:

∆(C, p, in, (Acq ,Loc,Rel)) ≡ (∆t(C.M, p, in),∆o(C.G, p, (Acq ,Loc,Rel))

The scheduling parameter p determines which unit is going to perform a computation
step according to transition function δ consuming external input in, updating the writ-
ten part of memory accordingly. The ownership transfer inputs Acq , Loc, and Rel are
used to update the owned addresses of p and the set of shared-writable addresses. Ac-
quired addresses are added to the owned addresses of p and removed from the shared
addresses in case they are in the Loc set. This means that owned addresses can also
be shared, which is useful in single-writer-multiple-reader scenarios [HL09]. Released
addresses are moved from the owned addresses of p to the shared addresses. Note that
by construction a unit cannot alter the states or ownership sets of other units.

2.5 Computations and Step Sequence Notation

In automata theory one way to reason about executions of a system is the state-based
approach. There one examines sequences of machine states that where generated by
applying the transition function on the initial state wrt. a given schedule and input se-
quence. While this formalism is useful to argue about state properties and simulation
relations between states, when entering the topic of reordering this specification style
becomes quite cumbersome. One problem is that one needs a permutation function
encoding the reordering and relate the corresponding states to each other. As however
in these states are consistent only for certain machines or components one has to intro-
duce a multitude of equivalence relations capturing which particular part of the state is
consistent for to related Cosmos model configurations. In earlier versions of this work it
turned out that reordering proofs get quite messy in such a state-based formalism.

Alternatively one can focus on the execution steps rather than on the resulting sys-
tem states. This idea is also eminent in the action-based approach used in TLA and
IO-Automata [Lam94, Lyn96] and Kovalev used it to describe the reordering theorem
he assumes in his doctoral thesis [Kov13]. It turns our that in this notation the for-
mulation and proof of the reordering theorem is much more elegant than using state
relations, hence we introduce a step sequence notation for our reordering and simula-
tion theories.

The basic idea is to describe a computation not by the sequence of states it produces
but by the executed sequence σ of steps from a certain alphabet. In our case the alphabet
contains transition information and ownership transfer information defined as follows.
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2 The Cosmos Model

Definition 8 (Step Information) We define the set ΣS of step information of a Cosmos ma-
chine S where

α = (s, in, io, ip,Acq ,Loc,Rel) ∈ ΣS

describes a Cosmos machine step, containing the following transition information

• α.s ∈ {1, . . . ,nu} - the scheduling parameter

• α.in ∈ E - the external input for the step

• α.io ∈ B - marks the step as an IO operation

• α.ip ∈ B - marks the step as interleaving point of the reordered computation

for which we introduce the type:

ΘS ≡ {1, . . . ,nu} × E × B× B

Additionally, we have the following ownership transfer information for the step:

• α.Acq ⊆ A - the set of acquired addresses

• α.Loc ⊆ A - the set of acquired local addresses

• α.Rel ⊆ A - the set of released addresses

Ownership transfer information is of type:

ΩS ≡ 2A × 2A × 2A

Below we define projections, mapping step information α to transition information and owner-
ship transfer information.

α.t ≡ (α.s, α.in, α.io, α.ip) α.o ≡ (α.Acq , α.Loc, α.Rel)

Note that the step information α contains not only the necessary inputs for the Cosmos
machine step but also the redundant flags α.ip and α.io. They allow us to abstract
from the intermediate configurations in a computation and to argue only about step
sequences when we discuss reordering. Nevertheless, this convenience comes at the
price of maintaining consistency between those flags and the values of the IO and IP
predicates applied on the corresponding intermediate configurations. For t ∈ ΘS , M ∈
MS and X ∈ {IO, IP}we define shorthands X (M, t) ≡ X (M.u(t.s),M.m|R, t.in).

Definition 9 (Step Notation) The notation M
t7→ M ′ denotes that transition t ∈ ΘS is

executed from machine state M , resulting in M ′. Additionally t.io corresponds to the values of
the IO predicate and t.ip corresponds with the value of the IP predicate.

M
t7→M ′ ≡ M ′ = ∆t(M, t.s, t.in) ∧ IO(M, t) = t.io ∧ IP(M, t) = t.ip
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For steps α ∈ ΣS which include ownership transfer information we define a similar notation for
the Cosmos machine transition from configuration C into C ′.

C
α7→ C ′ ≡ C.M

α.t7→ C ′.M ∧ C ′.G = ∆o(C.G, α.s, α.o)

The definitions naturally extend to step sequences ρ ∈ Σ∗S ∪Θ∗S by induction:

X
ρ7−→ X ′ ≡ (∃X ′′, τ, α. ρ = τα ∧X τ7−→ X ′′ α7→ X ′) ∨ (ρ = ε ∧X = X ′)

We use σ ∈ Σ∗S , θ ∈ Θ∗S , and o ∈ Ω∗S to tell step sequences from transition sequences and
ownership transfer sequences. A computation of Cosmos machine S can be performed
with or without the ownership information since this is ghost, or specification state,
respectively. A pair (X, ρ) ∈ (CS × Σ∗S) ∪ (MS × Θ∗S) is then considered a Cosmos
machine computation iff the following predicate holds:

comp(X, ρ)
def≡ ∃X ′ ∈ CS ∪MS . X

ρ7−→ X ′

We extend our step projection functions to step sequences, by mapping sequences of
step information σ to transition and ownership transfer sequences.

σ.t
def≡ σ1.t · · ·σ|σ|.t σ.o

def≡ σ1.o · · ·σ|σ|.o

For converting a pair of transition sequence θ and ownership transfer sequence o into
a step sequence σ we use the construct 〈θ, o〉 which gives us a sequence σ such that
|σ| = |θ| = |o| and σ.t = θ ∧ σ.o = o. In particular then σ = 〈σ.t, σ.o〉 holds.

2.6 Ownership Policy

We use an explicit ownership model to enforce memory safety. The latter ensures that
there are no memory races between the concurrently executing Cosmos model machines.
The former allows us to distinguish between local and shared memory accesses and to
use this information to justify the reordering of local machine steps later on. Below
we state the restrictions we impose on the Cosmos model execution via the ownership
policy. Later, we show that these verification conditions are sufficient to justify the
desired order reduction where machine execution is interleaved only at the specified
interleaving-points.

Definition 10 (Ownership Memory Access Policy) Given a bit io ∈ B, a reads-set R, a
writes-set W , a set of owned addresses O, the set of shared addresses S, the set of read-only
addresses R, and the set of addresses owned by other machines O, we enforce the following
ownership memory access policy given by the predicate policyacc(io, R,W,O,S,R,O):

1. local steps (i) read only owned or read-only addresses and (ii) write only owned unshared
addresses

/io =⇒ (i) R ⊆ O ∪R
(ii) W ⊆ O \ S
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O

Acq ∩ Loc

Rel

Acq \ Loc O
S

Figure 4: Illustration of the ownership state and the allowed ownership transfer for a
given computation unit in the Cosmos model.

2. IO-steps may (i) read owned, shared and read-only addresses while they (ii) may write
owned addresses and shared addresses which are not owned by another machine.

io =⇒ (i) R ⊆ O ∪ S ∪R
(ii) W ⊆ O ∪ (S \ O)

Besides memory access restrictions there are also constraints on how machines can
modify the ownership state. See Fig. 4 for an illustration.

Definition 11 (Ownership Transfer Policy) Given a bit io ∈ B, a set of owned addresses
O, the set of shared addresses S, the set of addresses owned by other machines O, as well as the
updated sets for the owned and shared addresses O′ and S ′, we restrict ownership transfer by
the predicate policy trans(io,O,S,O, (Acq ,Loc,Rel)).

1. The ownership-state may not be changed by local steps.

/io =⇒ Acq = ∅ ∧ Loc = ∅ ∧ Rel = ∅

2. For IO-steps, the ownership-state is allowed to change as long as the step (i) acquires
only addresses which are shared unowned or already owned by the executing unit and
(ii) releases only owned addresses. Moreover (iii) the acquired local addresses must be a
subset of the acquired addresses and (iv) one may not acquire and release the same address
at a time.

io =⇒ (i) Acq ⊆ S \ O ∪ O
(ii) Rel ⊆ O
(iii) Loc ⊆ Acq

(iv) Acq ∩ Rel = ∅
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Observe that we restricted the original Cohen-Schirmer ownership model [CS09] in
that ownership may only be modified by IO operations. This is not a crucial require-
ment, however it eases the order reduction proof effort remarkably as doing so enables
splitting the proof into local commutativity arguments and the reduction of interleav-
ings itself. See Sect. 6.1 for a detailed discussion of the subject. On the Cosmos model
ownership state, we maintain the following ownership invariant.

Definition 12 (Ownership Invariant) We state an ownership invariant inv on ownership
state G ∈ GS of a Cosmos model, requiring (i) the owns-sets of different units to be mutually
disjoint and (ii) that read-only addresses may not be owned or shared-writable. Moreover (iii)
the complete address space is partitioned into the ownership sets as well as shared writable and
read-only addresses. Moreover we set inv(C) ≡ inv(C.G) for all C ∈ CS .

inv(G) ≡ (i) ∀p, q. p 6= q =⇒ G.O(p) ∩ G.O(q) = ∅
(ii) ∀p. G.O(p) ∩R = ∅ ∧ G.S ∩R = ∅
(iii) A =

⋃

p∈Nnp
G.O(p) ∪ G.S ∪R

We can show the following properties about safe ownership transfer.

Lemma 1 (Ownership Transfer Properies) Given a configuration C ∈ CS of a Cosmos
machine S where the ownership invariant holds LetC ′ = ∆(C, p, in, (Acq ,Loc,Rel)) for given
step information (in, p, io, ip,Acq ,Loc,Rel) ∈ ΣS . If the step obeys policy trans we can show
(i) that addresses are only transferred between the owned addresses of p and the shared addresses,
and (ii) that the new set of addresses owned by p is disjoint from the set of addresses owned by
all other units O ≡ ⋃q 6=pC.Oq.

(i) C ′.Op ∪ C ′.S = C.Op ∪ C.S (ii) O ∩ C ′.Op = ∅

PROOF: By definition of ∆ we have:

C ′.Op = (C.Op \ Rel) ∪Acq C ′.S = (C.S \ Loc) ∪ Rel

For the first claim we use Loc ⊆ Acq and Acq ⊆ C.Op∪C.S from the ownership transfer
safety conditions and deduce:

C ′.Op ∪ C ′.S = (C.Op \ Rel) ∪Acq ∪ (C.S \ Loc) ∪ Rel

= ((C.Op \ Rel) ∪ Rel) ∪ (Acq ∪ (C.S \ Loc))

= C.Op ∪Acq ∪ C.S
= C.Op ∪ C.S
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2 The Cosmos Model

For the second claim we need to use the invariant about the disjointness of ownership
sets in C, in particular we have O ∩ C.Op = ∅. Then it follows:

O ∩ C ′.Op = O ∩ ((C.Op \ Rel) ∪Acq)

= (O ∩ (C.Op \ Rel)) ∪ (O ∩Acq)

= O ∩ (C.Op \ Rel)

⊆ O ∩ C.Op
= ∅

Here ownership transfer safety condition (i) provided that O ∩Acq = ∅. �

We subsume both the ownership access policy as well as the ownership transfer policy
in a single predicate.

Definition 13 (Ownership-Safety of a Step) We consider a step of a Cosmos machine S
from configuration C ∈ CS with step information α ∈ ΣS to be safe with respect to the own-
ership model (ownership-safe) when for R = readsα.s(C,α.in), W = writesα.s(C,α.in), and
O =

⋃
q 6=α.sC.Oq the following predicate is fulfilled.

safestep(C,α)
def≡ policyacc(α.io,R,W,C.Oα.s, C.S,R,O) ∧

policy trans(α.io, C.Oα.s, C.S,O, α.o)

The inductive extension of the notation for step sequences σ ∈ Σ∗S is straight forward.

Definition 14 (Ownership-Safety of a Computation) For a configuration C of a Cosmos
model S, and τ ∈ Σ∗S , α ∈ ΣS we define

safe(C, ε)
def≡ inv(C)

safe(C, τα)
def≡ safe(C, τ) ∧ ∃C ′, C ′′. C τ7−→ C ′ α7→ C ′′ ∧ safestep(C ′, α)

An important property about the ownership policy stated in the following lemma is
that ownership-safe steps preserve the ownership invariant.

Lemma 2 (Ownership-Safe Steps Preserve the Ownership Invariant) For configurations
C,C ′ ∈ CS of a Cosmos model and step sequence σ ∈ Σ∗S , we have:

safe(C, σ) ∧ C σ7−→ C ′ =⇒ inv(C ′)

PROOF: By induction on n = |σ|. For n = 0 we have σ = ε and C = C ′. By definition
safe(C, ε) collapses to inv(C) hence inv(C ′) follows directly.

In the induction step we extend σ from length n− 1 to n. We introduce the interme-
diate configuration C ′′ as follows.

C
σ[1:n)7−→ C ′

σn7→ C ′′
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Induction hypothesis yields inv(C ′). The ownership invariants can only be broken by
an unsafe modification of the ownership state in step σn. In particular we need to con-
sider the set of shared addresses C ′.S and the sets of owned addresses C ′.Op for some
machine p. Note that by construction a machine can only modify its own ownership
set, thus we have:

∀q 6= σn.s. C
′.Oq = C ′′.Oq

Moreover the modification of the ownership configuration is regulated by the policy trans

predicate which is part of the definition of safestep(C ′, σn). The sets C ′.S and C ′.Oσn.s
may not be changed by local steps, then invariants hold by induction hypothesis. For
IO steps of σn.s by Lemma 1 we obtain the following two necessary requirements for
safe ownership transfer.

(i) C ′.Oσn.s ∪ C ′.S = C ′′.Oσn.s ∪ C ′′.S (ii) O ∩ C ′′.Oσn.s = ∅

Here O ≡ ⋃q 6=σn.sC
′.Oq denotes the set of addresses owned by all other machines in

configuration C ′. As explained above O is not affected by σn. We now prove the parts
of ownership invariant inv(C ′′) one by one.

1. ∀p, q. p 6= q =⇒ O′′p ∩ O′′q = ∅ - If neither p nor q equals σn.s the claim follows
immediately from C ′.Op = C ′′.Op, C ′.Oq = C ′′.Oq, and inv(C ′). Otherwise we
assume wlog. that p = σn.s, thus by C ′.Oq = C ′′.Oq and the definition of O
we get C ′′.Oq ⊆ O. From requirement (ii) we have C ′′.Op ∩ O = ∅, thus also
C ′′.Op ∩ C ′′.Oq = ∅.

2. ∀p. C ′′.Op ∩ R = ∅ - If p 6= σn.s we have C ′′.Op = C ′.Op and by invariant
C ′.Op ∩ R = ∅, hence C ′′.Op ∩ R = ∅ holds. Otherwise, for p = σn.s, from
necessary requirement (i) we get C ′′.Oσn.s ⊆ C ′.Oσn.s ∪ C ′.S, however by owner-
ship invariant C ′.Oσn.s and C ′.S are disjoint from R. Therefore also C ′′.Oσn.s is
disjoint fromR.

3. C ′′.S ∩R = ∅ - This follows with the same argumentation as in the second part of
the case above for C ′′.S instead of C ′′.Oσn.s.

4. A =
⋃
p∈Nnp C

′′.Op ∪ C ′′.S ∪ R - The invariant says that all addresses of A are
read-only, shared-writable or owned by some machine in the system. Using O =⋃
q 6=σn.sC

′.Oq =
⋃
q 6=σn.sC

′′.Oq this notion can be reformulated as follows:

R∪ C ′′.S ∪ C ′′.Oσn.s ∪ O = A

We already haveR∪C ′.S ∪C ′.Oσn.s ∪O = A by inv(C ′). By restriction (i) on the
ownership transfer we have C ′.S ∪ C ′.Oσn.s = C ′′.S ∪ C ′′.Oσn.s and the invariant
on C ′′ stated above follows immediately. �

Thus we have proven the sanity of our safety conditions on ownership transfer. In the
next chapter we will see that the ownership access and safety policy safestep is sufficient
to prove our desired order reduction theorem.
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3 Order Reduction

The ownership model introduced for Cosmos models allows us not only to impose
safety conditions for race-free concurrent memory accesses by the units of the system.
It also allows for a reordering of unit steps in the concurrent model. In the following
sections we will provide theorems exploiting this fact in order to reduce the interleav-
ing of units and justify the assumption of block scheduling when applying of sequential
simulation theorems in a concurrent context.

We will first formally define the notion of interleaving-point (IP) schedules and state
the desired reduction theorem. However as we cannot prove it directly, we will in-
troduce useful notation and lemmas, and then prove a powerful reordering theorem.
Using it we will be able to show the order reduction theorem. We derive the coarse
scheduling theorem presented in [CMST09] as a corollary.

3.1 Interleaving-Point Schedules

We want to consider schedules consisting of interleaved blocks of execution steps,
where each block contains only steps of some unit of the Cosmos model. At the start
of each such block the executing unit is in an interleaving-point with respect to its IP
predicate. Such blocks we call interleaving-point blocks or IP blocks. Having a sched-
ule interleaving only such IP blocks is convenient for Multiprocessor ISA units when
we want to apply simulation theorems, e.g., use compiler consistency and go up to the
C and Assembly level, later on. In this case we would choose the interleaving-points to
be exactly the compiler consistency points for the unit under consideration. However
the approach also applies to the modelling of systems with devices as well as preemp-
tive threads running concurrently on the same processor. Moreover it can be used to
justify the concurrent verification approach of tools like VCC.

In [CMST09] execution is reduced1 to a coarse schedule of blocks that are interleaved
at IO points. Usually IO-operations like shared memory accesses start at a consistency
point, however this need not be the case on all levels of abstraction2. Thus we prove
a more general theorem and in Section 3.7 we will show that coarse scheduling with
interleaving at IO points can be derived as a corollary of our reduction theorem.

In what follows we will show that arbitrary schedules can be reduced to IP sched-
ules. Memory safety and other properties are preserved, meaning that if we prove

1Only the existence of a safe equivalent coarse schedule was shown but it remained open how verified
safety properties transfer from coarse to fine-grained schedules.

2Imagine a volatile variable access inC that is compiled into an expression evaluation part and a memory
access part. The former will lie between the consistency point and the IO operation.
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1
2
3

Figure 5: An example of an IP schedule. Steps are only interleaved at interleaving-
points, represented by black circles. Empty boxes are local steps and filled
boxes are IO steps of the corresponding coputation unit. Note that the last
block of a unit in the schedule need not end in an interleaving-point.

them for all interleaving-point schedules and a given start configuration, they hold for
all possible computations originating from this state. The only prerequisite is that for
any computation, between two IO-points of the same unit, this unit passes at least one
interleaving-point and that in the initial state all units are in interleaving-points.

We have already introduced the predicate IPp(C, in) which states that in configura-
tion C ∈ CS for input in ∈ E unit p ∈ Nnu in Cosmos machine S is at an interleaving-
point. Now we will define the structure of our desired interleaving-point schedule. See
Fig. 5 for an illustration.

Definition 15 (Interleaving-Point Schedule ) For ρ ∈ Σ∗S ∪Θ∗S we define the predicate

IPsched(ρ) ≡ ( ρ = ρ′αβ =⇒ IPsched(ρ′α) ∧ ((α.s = β.s) ∨ β.ip) )

that expresses whether the sequence exhibits an interleaving-point schedule.

This means an IP schedule ρ′α can be extended by adding a step β of

1. the same currently running unit α.s or

2. another unit which is currently at an interleaving-point.

Thus in the steps of the schedule are interleaved in blocks of steps by the same unit
and every block starts in an interleaving-point of its executing unit. The only excep-
tion is the first block which need not start in an interleaving-point, but this is also not
necessary here and we go with the simpler definition. Note also the following property.

Lemma 3 (Trivial IP schedules) Every empty or single step sequence fulfills the definition
of interleaving-point schedule trivially.

∀ρ. |ρ| < 2 =⇒ IPsched(ρ)

There are two useful properties of interleaving-point schedules to be shown.

Lemma 4 (IP Schedule Splitting) For any IP schedule ρ and any partition into two sequences
τ and ω we know that both parts are IP schedules as well.

∀ρ, τ, ω. IPsched(ρ) ∧ ρ = τω =⇒ IPsched(τ) ∧ IPsched(ω)
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PROOF: By induction on n = |ρ|.
Induction Start: For n = 0 we have ρ = ε. The lemma trivially holds with τ = ε and
ω = ε by Lemma 3 since |τ |, |ω| < 2.

Induction Hypothesis: The claim holds for any sequence ρ̄ of length n with a partition
into τ and ω̄, such that ρ̄ = τ ω̄.

Induction Step: For the transition from length n → n + 1 we assume a step β that is
appended to ρ̄.

ρ = ρ̄β = τ ω̄β = τω

By induction hypothesis we have IPsched(τ) and IPsched(ω̄).

1. For ω̄ = ε we have ω = β and the claim IPsched(ω) holds trivially by Lemma 3
since |ω| < 2.

2. If ω̄ is non-empty we can split it into ω̄′ and α as follows:

ρ = ρ̄β = τ ω̄β = τ ω̄′αβ = τω

Then we know (α.s = β.s) ∨ β.ip from IPsched(ρ). With this fact as well as
IPsched(ω̄), ω̄ = ω̄′α, and the definition of IPsched it follows IPsched(ω̄′αβ).
We conclude IPsched(ω). �

We also need a lemma on the concatenation of IP schedules.

Lemma 5 (IP Schedule Concatenation) For two IP schedules ρ, τ we know that their con-
catenation is an IP schedule as well if the first step of τ starts in an interleaving-point.

∀ρ, τ. IPsched(ρ) ∧ IPsched(τ) ∧ τ1.ip =⇒ IPsched(ρτ)

PROOF: By induction on n = |τ |. For ρ = ε the claim is trivial because then ρτ = τ ,
therefore assume |ρ| > 0 in the following cases.

Induction Start: For n = 0 we have ρτ = ρ and the lemma trivially holds by hypothesis.

Induction Hypothesis: The claim holds for any IP schedule τ̄ of length n which is con-
catenated to an arbitrary interleaving-point schedule ρ 6= ε.

Induction Step: n→ n+ 1 - We assume a step β such that τ = τ̄β.

1. If τ̄ = ε we know from the hypothesis and τ1 = β that β.ip holds. Hence by
definition of IPsched and hypothesis on ρ the concatenated schedule ρβ is a
interleaving-point schedule.

2. In case τ̄ is not empty we have IPsched(τ̄) by definition from IPsched(τ). More-
over we know τ̄1 = τ1, hence also τ̄1.ip. From induction hypothesis we thus get:

IPsched(ρτ̄)
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We split τ̄ into τ̄ ′ and step α with subsequent properties following from premise
IPsched(τ).

ρτ = ρτ̄β = ρτ̄ ′αβ (α.s = β.s) ∨ β.ip
We see that ρτ̄ ′ equals ρ′ in the definition of IPsched , hence ρτ̄ ′αβ is an IP sched-
ule. We conclude IPsched(ρτ). �

We need to introduce the notions of step sub-sequences and equivalent schedule re-
ordering in our step sequence notation.

Definition 16 (Step Subsequence Notation) For any step or transition information sequence
ρ ∈ Σ∗S ∪Θ∗S and unit index p we define the subsequence of steps of unit p as follows:

ρ|p ≡





ατ |p : ρ = ατ ∧ α.s = p

τ |p : ρ = ατ ∧ α.s 6= p

ε : otherwise

In the same way we introduce the IO step subsequence of ρ.

ρ|io ≡





ατ |io : ρ = ατ ∧ α.io
τ |io : ρ = ατ ∧ /α.io
ε : otherwise

Lemma 6 (Subsequence Distributivity) The subsequence operators |p and |io are distribu-
tive wrt. the concatenation of sequences.

∀ρ, τ, p. (ρτ)|p = ρ|pτ |p ∧ (ρτ)|io = ρ|ioτ |io

Both statements can be easily proven by applying the definition of |p and |io in an in-
duction on the length of ρ.
In a given instantiation of a Cosmos model interleaving-points can be defined inde-
pendently of the definition of IO operations. However in the reordering theorem we
have the requirements that between two IO-points a unit passes at least through one
interleaving-point, and that all units start computation in an interleaving-point.

Definition 17 (IOIP Condition) For any sequence ρ ∈ Σ∗S ∪ Θ∗S , predicate IOIP(ρ) de-
notes that every unit p starts in an interleaving-point and there is least one interleaving-point
between any two IO-points of p.

IOIP(ρ) ≡ ∀π, p. π = ρ|p 6= ε =⇒
π1.ip ∧ (∀τ, α, ϕ, β, ω. π = ταϕβω ∧ α.io ∧ β.io =⇒ ∃i. ϕi.ip)

Interleaving-points must be chosen by the verification engineer instantiating the model
so that they fulfill this condition. To understand the necessity of its second part, it is
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helpful to consider the dual of the statement which says that between two interleaving-
points, there is at most one IO step. This reflects the well-known principle that the
steps of a non-atomic operation in a concurrent program can be merged into an atomic
step, as long as the operation contains at most one shared variable access [OG76].

In this work the condition is essential for the reordering, as we need to preserve
the order of IO steps. If there were two IO steps of the same unit p between two
subsequent interleaving-points of p, the block of steps to be constructed for p might be
split in half by IO steps of other units which are interleaved between the two IO steps
of p. We could not merge the two halves into one contiguous block of steps of p in this
case, without changing the overall order of IO steps.

On the other hand, as there may only be one shared memory operation in each IP
block, for safe execution this implies that the content of shared memory before and after
that operation is the same as at the beginning, resp. the end of the block. This allows
us to be more flexible concerning the position of the interleaving-points, allowing the
treatment of, e.g., more efficient compilers. There we would identify the interleaving-
points with compiler consistency-points. Then the IOIP condition would imply that
IO steps do not have to start and end in consistency-points if the preceding and subse-
quent steps are local.

We will need the following two properties of the IOIP condition.

Lemma 7 (Properties of IOIP Sequences) Let τ, ω ∈ Σ∗S ∪ Θ∗S be step or transition se-
quences of Cosmos machine S, then the following properties hold.

1. Prefixes of schedules fulfilling the IOIP condition (IOIP sequences) are IOIP se-
quences as well.

IOIP(τω) =⇒ IOIP(τ)

2. The concatenation of IOIP sequences fulfills the IOIP condition.

IOIP(τ) ∧ IOIP(ω) =⇒ IOIP(τω)

The detailed proofs for these statements are quite technical and they do not give much
insight, hence we only provide the core arguments here.

PROOF SKETCH: The property that all units start in interleaving-points is trivially
preserved when steps are removed from the end of a sequence. If two IOIP sequences
τ and ω are concatenated then the result might contain steps of units which were not
stepped in τ . However these steps also start in interleaving-points by hypothesis on ω.

The second, more important part of IOIP – that there is always an interleaving-
point passed between two IO steps of the same unit – holds also on any prefix of an
IOIP sequence because we cannot remove interleaving-points without removing also
subsequent IO steps. Hence we cannot break the property by omitting steps at the end
of a sequence. When concatenating IOIP sequences there may be units that have per-
formed an IO step without reaching an interleaving-point until the end of τ . However,
any subsequent IO step of these units in ω is preceded by an interleaving-point of the
same unit, since by IOIP(ω) all units that are scheduled in ω begin execution in an
interleaving-point. �
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ρ

ρ′
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Figure 6: Example for reordering an arbitrary Cosmos machine schedule ρ into an IP
schedule ρ′ with nu = 3; empty boxes are local steps of the corresponding
units, grey boxes are IO steps; black circles are representing interleaving-
points; arrows illustrate the reordering of steps

3.2 Reordering into Interleaving-Point Schedules

One part of the order reduction theorem requires showing the existence of an equiv-
alent interleaving-point schedule for any Cosmos model computation. Based on the
subsequence notation, we state what it means that two step sequences are equivalently
reordered.

Definition 18 (Equivalent Reordering Relation) Given two step or transition information
sequences ρ, ρ′ ∈ Σ∗S ∪ Θ∗S , we consider them equivalently reordered when the IO-step subse-
quence and the step subsequences of all units are the same:

ρ =̂ ρ′ ≡ ρ|io = ρ′|io ∧ ∀p ∈ Nnu . ρ|p = ρ′|p

We also say that ρ′ is an equivalent reordering of ρ and, for any starting configuration C,
that (C, ρ′) is an equivalently reordered computation of (C, ρ). Note that =̂ is an equivalence
relation, i.e., it is reflexive, symmetric, and transitive.

Thus the interleaving of local steps between IO points can be reordered arbitrarily.
Only the order of IO points and the local order of steps for each unit must be preserved.
The first condition was not present in the theorem of [Kov13], however it is an implicit
property of the reordered schedules Kovalev considers, thus we make it explicit here.

An illustrating example of the reordering can be found in Figure 6. Every block in the
reordered step sequence ρ̂ starts in an interleaving-point marked by a filled circle. The
dark grey boxes represent IO steps, e.g., shared memory accesses, which keep their
order. Local steps of some unit p, represented by empty boxes, can be reordered across
steps of other units. Nevertheless the order in which p executes them is preserved.

We prove a first auxiliary lemma illustrating which kind of permutation of steps is
covered by the equivalent reordering relation.
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Lemma 8 Given α ∈ ΣS ∪ ΘS and a sequence τ ∈ Σ∗S ∪ Θ∗S such that τ contains no steps of
unit p = α.s and either α is a local step, or τ does not contain IO operations, i.e., τ |p = ε and
/α.io ∨ τ |io = ε, then α can be equivalently reordered across τ .

τα =̂ ατ

PROOF: By definition of relation =̂ we need to prove that the IO step subsequence as
well as the subsequences for all units of τα and ατ must be identical. We first show the
identity for the unit p using (1) τ |p = ε and (2)Lemma 6 we deduce:

(τα)|p (2)
= τ |pα|p (1)

= α|p (1)
= α|pτ |p (2)

= (ατ)|p

For any q 6= p we prove the identity using (3) α|q = ε.

∀q 6= p. (τα)|q (2)
= τ |qα|q (3)

= τ |q (3)
= α|qτ |q (2)

= (ατ)|q

For the proof of the identity of the IO step subsequence we first assume /α.io thus we
have (4) α|io = ε.

(τα)|io (2)
= τ |ioα|io (4)

= τ |io (4)
= α|ioτ |io (2)

= (ατ)|io

In case α is an IO step, we have (5) τ |io = ε.

(τα)|io (2)
= τ |ioα|io (5)

= α|io (5)
= α|ioτ |io (2)

= (ατ)|io

By definition we conclude τα =̂ ατ . �

There is a technical lemma saying basically that we can replay the equivalent reordering
of step sequences on any ownership annotation.

Lemma 9 (Reordering Ownership Annotations) Given two transition sequences θ, θ′ ∈
Θ∗S that are equivalently reordered, we can reorder any ownership annotation o′ ∈ Ω∗S for θ′

into an equivalent ownership annotation o for θ. Formally:

∀θ, θ′, o′. θ =̂ θ′ ∧ |o′| = |θ′| =⇒ ∃o. 〈θ, o〉 =̂ 〈θ′, o′〉

PROOF SKETCH: This lemma is proven by induction on |θ| = |θ′|. In the induction step
the last step of o′ is reordered in o to the same position as to where the last step of θ′ is
reordered in θ. The equivalent reordering relation =̂ is mainly depending on the tran-
sition information of a step, in particular the scheduling component s and the io flag
which determine the sub-sequences that need to be equal. The ownership anotations
are irrelevant to =̂ as long as corresponding steps have the same ownership annota-
tions. Thus the resulting step sequences are still equivalently reordered. The detailed
proof is quite technical and does not bear any further insights so we omit it here.

Now we want to show one of our main lemmas, saying that every step sequence can
be equivalently reordered into an IP schedule. However we need another property
about equivalent reorderings first.
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Lemma 10 (Equivalent Reordering of IOIP Sequences) The IOIP condition is preserved
by equivalent reordering. For sequences ρ, ρ′ ∈ Σ∗S ∪Θ∗S of Cosmos machine S, we have:

ρ =̂ ρ′ ∧ IOIP(ρ) =⇒ IOIP(ρ′)

PROOF: Intuitively the claim holds because the IOIP condition constrains the sched-
ules for all units separately and steps of the same unit are not permuted. Formally we
have by the definition of IOIP(ρ):

∀π, p. π = ρ|p 6= ε =⇒ π1.ip ∧ (∀τ, α, ϕ, β, ω. π = ταϕβω ∧ α.io ∧ β.io =⇒ ∃i. ϕi.ip)

Now for every p we have ρ′|p = ρ|p by ρ =̂ ρ′, therefore also IOIP(ρ′) holds. �

Lemma 11 (Interleaving-Point Schedule Existence) For every step or transition sequence
θ that fulfills the IO-interleaving-point condition, we can find an interleaving-point schedule
θ′ which is an equivalent reordering of θ:

IOIP(θ) =⇒ ∃θ′. θ′ =̂ θ ∧ IPsched(θ′)

PROOF: By induction on n = |θ|.
Induction Start: For n = 0 the claim becomes trivial by θ′ = θ = ε and Lemma 3.

Induction Hypothesis: The claim holds for any sequence θ̄ of length n.

Induction Step: n→ n+ 1 - Let us now consider an n+1-step sequence θ. Let θ = θ̄α for
some α ∈ ΣS . By Lemma 7.1 we have IOIP(θ̄) and by induction hypothesis on θ̄ we
can find an equivalently reordered IP schedule θ̄′ such that:

θ̄′ =̂ θ̄ IPsched(θ̄′)

With θ̄′α =̂ θ̄α, Lemma 10 yields IOIP(θ̄′α). Let p = α.s. In case θ̄′α is already an IP
schedule, i.e., θ̄′n.s = p or α.ip, we are done by setting θ′ = θ̄′α. Otherwise, if θ̄′n.s 6= p
and /α.ip, pmust have been running before, as due to the IOIP condition all machines
start in interleaving-points. In this case we divide θ̄′ into subsequences π, τ , and ω as
depicted in Fig. 7, i.e., we have θ̄′ = πτω with the following properties:

τ 6= ε τ |p = τ τ1.ip ∀γ ∈ tl(τ). /γ.ip ω 6= ε ω|p = ε

Thus τ is a block of local steps of p starting in an interleaving-point and not containing
further interleaving points, while ω contains only steps from other processors, i.e., τ is
the last preceding IP block of unit p. The IOIP condition and the fact that θ′ is an
IP block schedule guarantee that such a partition, in particular τ , exists, because if α
does not start a interleaving-point block, it must have been running before. Observe
that ω must be a non-empty sequence, otherwise θ̄α would be an IP schedule. We now
perform a case distinction on the nature of the operation to be executed by p in α as
depicted in Fig. 8.
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Figure 7: Application of the induction hypothesis in the induction step of Lemma 11.
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Figure 8: Illustration of reordering in the two cases of the induction step in the proof of
Lemma 11. Grey boxes are IO steps, white boxes are local steps, and striped
boxes represent a mixture of both. Index q stands for any unit but p. Block π
is an IP schedule containing steps of all units. Note that τ = τ̄β may contain
one IO step in case 2.
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1. α.io - The n+1-st step is an IO operation. As we have to preserve the order of
the IO steps we cannot reorder α across possible IO steps in ω, instead we move
τ to the end of the sequence before step α. Note that here we have τ |io = ε,
i.e., τ contains only local steps. This follows from the IOIP condition which
guarantees that if p has already passed an IO point in θ̄′ then it must also have
passed an interleaving-point before IO step α. As τ1 is the last interleaving-point
of p before α, τ cannot contain further IO steps. From Lemma 4 we get that π, τ
and ω are interleaving-point schedules.

IPsched(π) IPsched(τ) IPsched(ω)

Due to the IPsched property of θ̄′ and ω1.s 6= p = τ|τ |.s we have ω1.ip. Moreover
we have τ1.ip. Hence we can apply Lemma 5 twice obtaining:

IPsched(πωτ)

Adding step α preserves the interleaving-point schedule property because τ|τ |.s =
p = α.s. Consequently we set θ′ = πωτα and by definition it follows:

IPsched(θ′)

As ω|p = ε and τ |p = τ , Lemma 6 yields:

(τω)|p = τ |pω|p = τ = ω|pτ |p = (ωτ)|p
Similarly by τ |io = ε and τ |q = ε for all q 6= p we see that:

(τω)|io = ω|io = (ωτ)|io (τω)|q = ω|q = (ωτ)|q
Therefore by definition we obtain ωτ =̂ τω and since the remaining schedule is
unchanged we conclude the last claim θ′ =̂ θ.

2. /α.io - In this case τ may contain an IO step, thus we cannot reorder τ before α.
We obtain a new sequence θ′ = πταω by reordering α to the position between τ
and ω. Since ω|p = ε and /α.io we can apply Lemma 8 yielding αω =̂ ωα, hence:

θ′ =̂ θ

We divide τ into a last step β and preceding steps τ̄ , i.e., τ = τ̄β. By Lemma 4 we
have IPsched(πτ̄β) and IPsched(ω). As β.s = α.s = p we get IPsched(πτ̄βα)
from definition. Since β.s 6= ω1.s and θ̄′ is an IP block schedule we know that
ω1.ip holds. Consequently we combine τ̄βα and ω by Lemma 5 and conclude that
θ′ is a interleaving-point schedule, too. �

Thus we have proven that every step or transition sequence can be reordered into an
IP schedule preserving the IOIP condition. However we still need to show that the
reordering leads to an equivalent computation for some starting configuration. In what
follows we will prove that this is the case if a Cosmos machine obeys the ownership
policy. In particular we will show that the verification of ownership-safety and other
safety properties for all interleaving-point schedules transfers down to schedules with
arbitrary interleaving of unit steps. In order to achieve these results we need additional
definitions and prove commutativity properties for ownership-safe steps.
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3.3 Auxilliary Definitions and Lemmas

We can commute two safe steps α and β of different units if both αβ and βα result in the
same Cosmos model configurationC ′′ when executing the step sequences from an initial
state C. Formally, the commutativity property for safe steps can be stated as follows:

C
αβ7−→ C ′′ ∧ safe(C,αβ)⇐⇒ C

βα7−→ C ′′ ∧ safe(C, βα)

In order to show that the statement indeed holds we need to consider intermediate
configurations Cα and Cβ that result from executing α, resp. β, from configuration C
first. More precisely we have to show that we can execute β from Cα instead of C, or
vice versa α from Cβ instead of C, leading into the same state C ′′. This is only true if α
and β do not interfere, meaning that one action does not alter data on which the other
is depending. This is the same intuitive notion of interference as is used in semantics
for concurrent separation logic [Bro04, Bro06].

It becomes clear that we need to relate configurations such as, e.g., C and Cα, stating
for which components they are still consistent, so that we can argue that the same step
β can still be executed in both states. We define the local memory of unit p to represent
the part of memory that is read-only or unshared and owned by p. Safe local steps do
not modify shared memory resources and local memory of other units. Only the state
and local memory of the executing unit is affected and the pre and post states agree on
all other resources. On the other hand in some circumstances all we might know is that
two Cosmos model configurations agree about the state and local memory of some unit.
Then the same local step can still be executed in both states, since local steps also do not
depend on the shared unowned part of memory. We capture these relations between
states by introducing two equivalence relations on Cosmos model configurations. They
are constructed using the following basic relations denoting identity for certain Cosmos
machine components.

Definition 19 (Cosmos Model Relations) We define the following relations on Cosmos model
configurations C,D ∈ CS and a unit p ∈ Nnu to denote (i) the equality of p’s unit state and
the local memory contents, (ii) the equivalence of the ownership configurations for p, (iii) the
complete equality of the ownership state, and (iv) the equality of the extent and content of the
read-only and shared memory region in the system.

(i) C
l∼p D ≡ C.up = D.up ∧ C.m|C.Op∪R = D.m|C.Op∪R

(ii) C
o∼p D ≡ C.Op = D.Op ∧ C.Op ∩ C.S = D.Op ∩D.S

(iii) C
o∼ D ≡ ∀p ∈ Nnu . C.Op = D.Op ∧ C.S = D.S

(iv) C
s∼ D ≡ C.S = D.S ∧ C.m|C.S∪R = D.m|C.S∪R

Thus the ownership configuration of p is equivalent in systems C and D iff p owns the
same addresses and these are partitioned identically into shared and local addresses.
We quickly observe:
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Figure 9: Illustration of p / p -equivalence. Portions of the Cosmos machine configura-
tion covered by the respective relation are shaded in grey.

Lemma 12 By the definitions of o∼ and o∼p, C o∼ D implies C o∼p D for all p.

C
o∼ D =⇒ ∀p ∈ Nnu . C

o∼p D

Using this notation we define the two equivalence relations ≈p and ≈p on the set of
Cosmos model configurations taking into account the memory contents of the owner-
ship domain and the state components of a certain unit p ∈ Nnu . The portions of the
machine state covered by the two relations are depicted in Fig. 9.

Definition 20 (p / p -Equivalence) We define the equivalence relation

C ≈p D ≡ C
l∼p D ∧ C

o∼p D

which states that the Cosmos model configurations C and D have the same state, local memory
and ownership configuration for unit p (i.e., they are p-equivalent). Moreover we define the
equivalence relation

C ≈p D ≡ ∀q 6= p. C ≈q D ∧ C s∼ D ∧ C.Op = D.Op

which expresses identity with exception of the unit state and local memory of p (i.e., they are
p̄-equivalent).

The intention for these relations is that from p-equivalent configurations a unit p will
take the same local step, and from p̄-equivalent configurations any other unit than pwill
take the same local or global step, respectively. Below we prove some useful properties
for the Cosmos model equivalence relations.

Lemma 13 For any p ∈ Nnu the Cosmos model equivalence relations ≈p and ≈p fulfill the
following properties.

1. C ≈p D implies C ≈q D for all q 6= p.
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2. C ≈p D implies C o∼ D.

3. C ≈p D ∧ C ≈p D is equivalent to C = D if inv(C) holds.

PROOF:

1. The implication follows directly from the definition of ≈p.

2. From definition we have C.Op = D.Op and C
s∼ D which implies C.S = D.S .

From C ≈q D we get C o∼q D, hence C.Oq = D.Oq for all q 6= p. We conclude
C

o∼ D by definition.

3. The right-to-left implication is trivial. Vice versa from 2 we have C.S = D.S and
C.Or = D.Or for all units r ∈ Nnu . From the definitions of ≈p and ≈p we get
C ≈r D thus C.ur = D.ur and consequently C.u = D.u. Furthermore:

∀adr, r ∈ Nnu . adr ∈ C.Or ∪R ∪ C.S =⇒ C.m(adr) = D.m(adr)

According to ownership invariants every address is either read-only, or shared
writable, or owned. Hence also the memories C.m = D.m are equal and C = D.

We prove two more properties of the relations ≈p and ≈p.
Lemma 14 The relations C ≈p D and C ≈p D are equivalence relations for any p ∈ Nnu .

PROOF: The relations o∼p and s∼ are equivalence relation because they only use un-

quantified equalities in their definitions. Moreover l∼p is obviously reflexive. It is only
symmetric for configurations C and D in conjunction with C.Op = D.Op but this is

guaranteed by C o∼p D. In the same way we show the transitivity, hence C l∼p D as
well as C ≈p D are equivalence relations, too. C ≈p D is an equivalence relation be-
cause its definition is based exclusively on equalities, C ≈q D, and C

s∼ D which are
equivalence relations as shown above �

Lemma 15 For C,C ′ ∈ CS such that C ≈p C ′ and a transition α ∈ ΘS with α.s = p we have
that (C.M,α) is a Cosmos machine computation iff (C ′.M, α) is one.

comp(C.M,α) ⇐⇒ comp(C ′.M, α)

PROOF: By hypothesis C ≈p C ′ we have C.up = C ′.up and C.m|R = C ′.m|R. Since the
Cosmos model transition function ∆ can always be applied, there exists a next configu-
ration for both C and C ′. In order to show comp(C,α) = comp(C ′, α) we therefore have
to prove IOα.s(C,α.in) = IOα.s(C ′, α.in) and IPα.s(C,α.in) = IPα.s(C ′, α.in). These
statements follow directly from definition and the observations above.

IOα.s(C,α.in) = IO(C.uα.s, C.m|R, α.in)

= IO(C ′.uα.s, C ′.m|R, α.in)

= IOα.s(C ′, α.in)

IPα.s(C,α.in) = IP(C.uα.s, C.m|R, α.in)

= IP(C ′.uα.s, C ′.m|R, α.in)

= IPα.s(C ′, α.in) �
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In the remainder of this section we prove a number of lemmas on the ownership-safety
of steps in related Cosmos configurations C,D ∈ CS and how the relations introduced
above are maintained by ownership-safe unit steps.

Lemma 16 (Reads-Set Equivalence) When a safe local step γ of unit p = γ.s is taken from
p-equivalent configurations C,D ∈ CS of Cosmos machine S, then in both computations the
same set of addresses is read. The same holds for IO steps if additionally the shared portions of
memory are identical. In both cases also the same data is read from memory in C and D.

safestep(C, γ) ∧ C ≈p D ∧ (γ.io⇒ C
s∼ D) =⇒

∃R ⊆ A. R = readsp(C, γ.in) = readsp(D, γ.in) ∧ C.m|R = D.m|R

PROOF: We first assume that γ is a local step, i.e., /γ.io. By the safety of the step we
know that p obeys policyacc and thus reads only from C.Op and R. These addresses
have the same memory contents in both systems by the definition of≈p and also C and
D agree on the unit state of p. Let R = readsp(C, γ.in) then:

R ⊆ C.Op ∪R C.m|C.Op∪R = D.m|C.Op∪R C.up = D.up

Hence it follows that also C.m|R = D.m|R and from instar(S) we get

R = reads(C.up, C.m, γ.in) = reads(D.up, D.m, γ.in)

which equals our claim by definition of readsp. For IO steps R ⊆ C.Op ∪R∪C.S holds
but by hypothesis C s∼ D also the shared memory region is equal in C and D.

C.m|C.Op∪R∪C.S = D.m|C.Op∪R∪C.S

The rest of the proof is analoguous to the first case. �

Next we show that p̄-equivalence between configurations implies that the configura-
tions agree on whether they fulfill the ownership invariant or they do not.

Lemma 17 (Ownership Invariant of Equivalent Configurations) For two Cosmos model
configurations C and D ∈ CS , we have

C
o∼ D =⇒ inv(C) = inv(D)

PROOF: By definition of o∼ the ownership configurations in C andD are equivalent, i.e.:

C.S = D.S ∀p ∈ Nnu . C.Op = D.Op

Moreover both C and D are configurations of the same Cosmos model S, hence they
also agree onR and nu . Since the ownership invariants predicate inv only depends on
the components named above our claim follows directly. �

We also need an argument about the safety transfer between equivalent system states.
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Lemma 18 (Ownership-Safety in Equivalent Configurations) Given Cosmos model con-
figurations C and D as well as a step γ, the following statements hold for any p = γ.s:

1. If γ is a safe local step and D is p-equivalent to C, then γ is also a safe local step for D.

C ≈p D ∧ comp(C, γ) ∧ safestep(C, γ) ∧ /γ.io =⇒ safestep(D, γ) ∧ comp(D, γ)

2. If C and D are p̄-equivalent and γ is a step of unit γ.s 6= p which is safe in C, then γ is
also safe in D.

C ≈p D ∧ comp(C, γ) ∧ safestep(C, γ) =⇒ safestep(D, γ) ∧ comp(D, γ)

Note that we do not need to assume that the ownership invariants are holding in C or
D, however we will only apply the lemma in such cases, yielding safe(D, γ).

PROOF: In both parts of the lemma comp(C, γ) implies comp(D, γ) by Lemma 15 and
only safestep(D, γ) remains to be shown.

1. Machine p = γ.s is performing a local step C
γ7→ C ′ and C ≈p D holds. We

know that the same memory addresses and content is read by Lemma 16. Let
R = readsp(C, γ.in) then:

R = readsp(D, γ.in) C.m|R = D.m|R C.up = D.up

In addition the hypothesis yields C o∼p D. The definition of safestep contains two
parts which we will treat separately to prove safestep(D, γ).

Let O(X) =
⋃
q 6=pX.Oq for X ∈ {C,D} in:

a) policyacc(γ.io,R,writesp(C, γ.in), C.Op, C.S,R,O(C)) - since the same data
is read from memory and unit p has the same state in C and D, also the
writes-sets agree.

∃W ⊆ A. W = writesp(D, γ.in)

= writes(D.up, D.m|R, γ.in)

= writes(C.up, C.m|R, γ.in)

= writesp(C, γ.in)

Furthermore, by C
o∼p D, p’s ownership set and the shared portion of its

owned addresses are identical in C and D therefore we also have

R ⊆ C.Op ∪R = D.Op ∪R
W ⊆ C.Op \ C.S = C.Op \ (C.Op ∩ C.S)

= D.Op \ (D.Op ∩D.S) = D.Op \D.S

and policyacc(γ.io,R,W,D.Op, D.S,R,O(D), γ.in) holds by definition. Note
that the access policy for local steps does not depend on O(D) here, hence
O(D) and O(C) need not be related.
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b) policy trans(γ.io, C.Op, C.S,O(C), γ.o) - ownership transfer is only possible
for IO steps, therefore we have γ.o = (∅, ∅, ∅). As we use the same step
information γ with γ.io = 0 also for the step from D, we trivially get:

policy trans(γ.io,D.Op, D.S,O(D), γ.o)

2. Let q = γ.s 6= p be the unit executing step γ. From C ≈p D we get C ≈q D by
Lemma 13.1. Moreover we have C s∼ D, therefore Lemma 16 yields:

R = readsq(C, γ.in) = readsq(D, γ.in) C.m|R = D.m|R C.uq = D.uq

As above the same addresses are written when executing γ in C and D.

writesq(D, γ.in) = writesq(C, γ.in) = W

Since C o∼ D holds by Lemma 13.2, the ownership configuration is equal. Let
O(X) =

⋃
r 6=qX.Or, then in particular O(C) = O(D). The ownership memory

access policy only depends on the reads-set, the writes-set and the ownership
state, all of which are consistent in both configurations. Also from both states
the same kind of step wrt. γ.io is executed. Since the memory access is safe in C
it is also safe in D. Moreover the safety of the ownership transfer by γ from C
translates directly to D. Formally we have:

D.Oq = C.Oq D.S = C.S O(D) = O(C)

Consequently, the predicates

policyacc(γ.io,R,W,D.Oq, D.S,R,O(D))

as well as
policy trans(γ.io,D.Op, D.S,O(D), γ.o)

hold by hypothesis on C. �

Furthermore we can prove two lemmas concerning unit steps on equivalent configura-
tions wrt. ≈p and ≈p which are illustrated in Figures 10 and 11.

Lemma 19 (Local Steps of a Unit) Given a local step γ and Cosmos model configurations
C,C ′ ∈ CS with C γ7→ C ′ as well as D,D′ ∈ CS with D γ7→ D′, we have for p = γ.s:

C ≈p D ∧ /γ.io ∧ safe(C, γ) ∧ inv(D) =⇒

C ′ ≈p D′ ∧ C ≈p C ′ ∧D ≈p D′

PROOF: By Lemma 18.1 the step of p in D is also safe and local, i.e., safe(D, γ) holds.
Intuitively, since the step obeys ownership memory access policy in both systems and
the states are locally equivalent we see that all information accessible to the units in a
local step is equal. Therefore the same local operation is executed by p in both system
configurations C and D. Subsequently we prove the three claims one by one.
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C C ′

D D′

γ

γ

≈p

≈p

≈p

≈p

Figure 10: Illustration of Lemma 19 where p = γ.s.

1. C ′ ≈p D′ - Expanding the definitions for C ≈p D we obtain:

C.up = D.up C
o∼p D C.m|C.Op∪R = D.m|C.Op∪R

By Lemma 16 we get that the same addresses and memory contents are read.

readsp(D, γ.in) = readsp(C, γ.in) = R C.m|R = D.m|R
Therefore transition function δ yields the same result and the same addresses are
written.

δ(C.up, C.m|R, γ.in) = δ(D.up, D.m|R, γ.in) = (u′,m′)

writesp(D, γ.in) = writesp(C, γ.in) = W

By the definition of ∆ we haveC ′.up = D′.up. The ownership state is not modified
by safe local steps, i.e. C o∼ C ′ ∧ D o∼ D′, therefore we get C o∼p C ′ ∧ D o∼p D′
by Lemma 12. As we have C o∼p D from C ≈p D and since o∼p is an equivalence
relation we obtain:

C ′ o∼p C o∼p D o∼p D′ =⇒ C ′ o∼p D′

For the memories we have for all a in C.Op ∪R:

C ′.m|C.Op∪R(a) =

{
m′(a) : a ∈W
C.m|C.Op∪R : a /∈W

=

{
m′(a) : a ∈W
D.m|C.Op∪R : a /∈W

= D′.m|C.Op∪R(a)

Since C ′.Op ∪ R = C.Op ∪ R we also have C ′.m|C′.Op∪R = D′.m|C′.Op∪R and we
conclude C ′ ≈p D′.
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C C ′

D D′

γ

γ

≈p

≈p

≈p

≈p

Figure 11: Illustration of Lemma 20 for any p 6= γ.s.

2. C ≈p C ′ - Again we know that the ownership state does not change for safe
local steps, i.e., C o∼ C ′ and in particular C.Op = C ′.Op as well as C.S = C ′.S .
Furthermore step γ is safe wrt. the ownership memory access policy. We prove
the memory consistency condition first.

The ownership policy forbids local writes to shared addresses, hence C s∼ C ′

holds. Moreover it is forbidden for p to write to read-only memory or addresses
owned by other processors. Ownership invariants guarantee that the latter sets
are disjoint from the owned addresses of p. Therefore these regions of memory
are unchanged.

∀q 6= p. C.m|Oq = C ′.m|Oq C.m|R = C ′.m|R

Additionally ∀q 6= p. uq = u′q holds because other unit states cannot be altered by

steps of p, thus ∀q 6= p. C
l∼q C ′ holds by definition. By Lemma 12 and C

o∼ C ′

we have C o∼q C ′ and thus:
∀q 6= p. C ≈q C ′

Now our claim C ≈p C ′ follows from the definition of ≈p.

3. D ≈p D′ - Lemma 18.1 yields safestep(D, γ) and we get safe(D, γ) from inv(D).
The rest of the proof is completely analogous to the one above. �

When reordering steps of a unit p we also need to treat subsequent steps of units other
than p and show that their computations are not influenced by the reordering. We
have to prove among other things that the relation ≈p is preserved by these so-called
environment steps. This follows intuitively from the fact that safe computations do not
depend on the local state of other units but only on data that a unit may access safely.
The appropriate lemma on environment steps in its two parts is stated below.
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Lemma 20 (Environment Steps) Given a step γ and Cosmos model configurations C,C ′ ∈
CS with C γ7→ C ′ as well as D,D′ ∈ CS with D γ7→ D′, we have

1. The configuration resulting from safe step γ is p-equivalent to the intial one for all units
p except for γ.s:

∀p 6= γ.s. safe(C, γ) =⇒ C ≈p C ′

2. If we have ownership-safety, then p̄-equivalence is preserved by steps of any unit but p:

∀p. safe(C, γ) ∧ C ≈p D ∧ γ.s 6= p =⇒ C ′ ≈p D′

PROOF: We show the two parts separately.

1. For any p 6= γ.s = q we directly have C.up = C ′.up and (1) C.Op = C ′.Op by
construction of ∆. The step of unit q is safe, thus it also adheres to policyacc and
cannot alter data which is owned by p. We know also that read-only addresses
are never written by safe steps, therefore

C.m|Op∪R = C ′.m|Op∪R

and C
l∼p C ′ holds. The equivalence of p’s shared and owned addresses is left to

show. Using policy trans and inv(C) we get from Lemma 1 that (2) C.Oq ∪ C.S =
C ′.Oq ∪ C ′.S and (3) C.Op ∩ C ′.Oq = ∅. Intuitively this means that only p can
share or unshare the addresses it owns. Moreover the ownership invariant (4)
C.Op ∩ C.Oq = ∅ holds by definition of safe(C, γ) and inv(C), thus it follows:

C.Op ∩ C.S = ∅ ∪ (C.Op ∩ C.S)
(4)
= (C.Op ∩ C.Oq) ∪ (C.Op ∩ C.S)

= C.Op ∩ (C.Oq ∪ C.S)
(2)
= C.Op ∩ (C ′.Oq ∪ C ′.S)

= (C.Op ∩ C ′.Oq) ∪ (C.Op ∩ C ′.S)
(3)
= ∅ ∪ (C.Op ∩ C ′.S)

(1)
= C ′.Op ∩ C ′.S

Consequently we have C o∼p C ′ and by definition C ≈p C ′ which completes our
proof of the first part of the lemma.

2. From Lemma 18.2 we get the safety of the step, i.e., safestep(D, γ). By C o∼ D and
Lemma 17 we get inv(D) and thus safe(D, γ). With Lemma 2 we obtain inv(D′).
The definition of ≈p and Lemma 13 yields:

∀r 6= p. C ≈r D C
s∼ D C

o∼ D
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In particular for V ≡ A\ (C.Op \C.S) we have C.m|V = D.m|V . Using Lemma 16
we get the equivalence of reads-sets in both states and that the same data is read
by unit q = γ.s 6= p.

R = readsq(C, γ.in) = readsq(D, γ.in) C.m|R = D.m|R

Therefore by the definition of δ the same results are written, i.e., for

W = writesq(C, γ.in) = writesq(D, γ.in)

we have C ′.m|W = D′.m|W , where W ⊆ C.Oq ∪ C.S ⊂ V by the safety of the
step. Addresses from V which are not written preserve their memory contents by
definition of ∆.

C ′.m|V \W = C.m|V \W = D.m|V \W = D′.m|V \W C ′.m|W = D′.m|W

=⇒ C ′.m|A\(C.Op\C.S) = D′.m|A\(C.Op\C.S)

Since the unit state of q and the memory contents being read are equal in C and
D, transition function δ returns also the same new unit state C ′.uq = D′.uq. The
same holds for the ownership state, respectively.

C ′.S = (C.S ∪ γ.Rel) \ (γ.Acq ∩ γ.Loc) = (D.S ∪ γ.Rel) \ (γ.Acq ∩ γ.Loc) = D′.S
C ′.Oq = (C.Oq \ γ.Rel) ∪ γ.Acq = (D.Oq \ γ.Rel) ∪ γ.Acq = D′.Oq

Therefore we have C ′ o∼q D′. By Lemma 1 we have C ′.S ∪ C ′.Oq = C.S ∪ C.Oq,
hence C ′.S ∪ C ′.Oq ⊆ V and withR ⊂ V from inv(C) we get:

C ′.m|C′.S∪C′.Oq∪R = D′.m|C′.S∪C′.Oq∪R

Thus we obtain C ′ ≈q D′ as well as C ′ s∼ D′. Moreover, q cannot change the
ownership set of p by construction, thus we have:

C ′.Op = C.Op = D.Op = D′.Op

Only the r-equivalence between C ′ and D′ for all r /∈ {p, q} is missing to prove
our claim. By applying Lemma 20.1 on C and D for step γ and every r, the safety
of step γ by q guarantees that relation ≈r is preserved for all r, i.e.:

C ≈r C ′ D ≈r D′

Thus by hypothesis C ≈r D and the transitivity of ≈r (Lemma 14) we have:

∀r /∈ {p, q}. C ′ ≈r C ≈r D ≈r D′ =⇒ ∀r /∈ {p, q}. C ′ ≈r D′

Hence our claim C ′ ≈p D′ follows from the definition. �
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3.4 Commutativity of Local Steps

The reordering of execution schedules is based on commutativity properties. If step
sequences αβ and βα yield the same result then a reordering of α across β or vice versa
is justified. In what follows we will present lemmas focussing on the commutativity
of safe local steps, considering also property preservation. The proofs of these simple
lemmas will be the only place in the reordering theory where we have to use our state
relations≈p and≈p as well as the lemmas presented above. Afterwards we can abstract
from state-based reasoning and use the commutativity to argue about reordering of step
sequences exclusively.

Lemma 21 (Safe Step Commutativity) Let C,C ′ ∈ CS be Cosmos machine configura-
tions, and α, β ∈ ΣS be step information with α.s 6= β.s where at least one of the steps α
and β is a local step (/α.io ∨ /β.io), then the following statement holds:

C
αβ7−→ C ′ ∧ safe(C,αβ) ⇐⇒ C

βα7−→ C ′ ∧ safe(C, βα)

PROOF: Without loss of generality we can assume /α.io.3 We introduce two intermedi-
ate configurations Cα and Cβ and also Cαβ and Cβα denoting the final configurations
obtained by first executing the step encoded in α, or β respectively.

Cα ≡ ∆(C,α.s, α.in, α.o) Cαβ ≡ ∆(Cα, β.s, β.in, β.o)
Cβ ≡ ∆(C, β.s, β.in, β.o) Cβα ≡ ∆(Cβ, α.s, α.in, α.o)

Note that we are not using step notation here, because it is a proof obligation to show
that the reordered steps form actually a Cosmos machine computation, e.g., when re-
ordering α before β we have to prove that α can be applied on C such that the io and ip
flags in α are consistent with the value of the corresponding IO and IP predicates on
C. Now we show the “⇐” and “⇒” implications separately. Let α.s = p and β.s = q.

1. “⇐”
C

βα7−→ C ′ ∧ safe(C, βα) =⇒ C
αβ7−→ C ′ ∧ safe(C,αβ)

See Figure 12 for an illustration of the following argument. From the hypothesis

we have C
β7→ Cβ

α7→ Cβα, i.e., (C, βα) is a Cosmos machine computation and Cβ as
well asCβα are actually reachable by β, and α respectively. The final configuration
Cβα equals C ′. Moreover we have safe(C, β) and safe(Cβ, α). Thus we can apply
Lemma 20.1 and we get C ≈p Cβ (I). Because of safety we can apply Lemma 19
on the local step α from configuration C (II). With γ := α, C := Cβ , C ′ := Cβα,
D := C, and D′ := Cα in the lemma we obtain

Cα ≈p Cβα C ≈p Cα Cβ ≈p Cβα
3If α is an IO step, then /β.io holds and we simply exchange the names of the steps.
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C ′

=

≈p

Cα

Cβ

β

≈p

≈p

≈p

α

C ′′

≈p

≈p

α

β

C

II

II

II

III

III

I / III

Figure 12: Proof sketch for commuting local step α of unit p forward across a step β
of another unit. Step I applies Lemma 20.1 yielding C ≈p Cβ , in Step II we
use Lemma 18.1 for safety transfer and 19 to execute α on Cβ and C, obtain-
ing C ′ ≈p Cα, Cβ ≈p C ′ and C ≈p Cα. Lemmas 18.2 and 20.2 enable Step
III where we execute β safely on C and Cα. We get Cα ≈p C ′′ as well as
Cβ ≈p C ′′ and conclude C ′ ≈p C ′′ and C ′ ≈p C ′′ by the symmetry and tran-
sitivity of ≈p and ≈p. This directly implies C ′ = C ′′. Straight arrows indicate
∆ state transitions according to α, or β resp. Dashed arrows represent the
equivalence relations obtained by the proof steps as annotated.

and by Lemma 18.1 we know that the step is safe and valid, i.e., safe(C,α) and
C

α7→ Cα holds. We now have to perform β on C and Cα leading into Cβ and Cαβ .
With safe(C, β) and C ≈p Cα Lemmas 20.1, 20.2, and 18.2 give us:

Cα ≈p Cαβ Cβ ≈p Cαβ safe(Cα, β) Cα
β7→ Cαβ (III)

Here the variables of the lemmas were instantiated as follows: γ := β, C := C,
C ′ := Cβ , D := Cα and D′ := Cαβ .

Using the transitivity of the relations (Lemma 14) and the definition of safe we
can combine the results.

Cβα ≈p Cα ≈p Cαβ Cβα ≈p Cβ ≈p Cαβ safe(C,αβ)

Hence Cβα ≈p Cαβ and Cβα ≈p Cαβ holds and by Lemma 13.3 we have:

Cβα = Cαβ = C ′

Thus we have shown that it is possible to reorder a safe and local step of one unit
before an arbitrary preceding safe step of any other unit, so that ownership-safety
and the effect of the steps are preserved.
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2. “⇒”
C

αβ7−→ C ′ ∧ safeP (C,αβ) =⇒ C
βα7−→ C ′ ∧ safeP (C, βα)

The proof of the other direction is similar to the one above only the order in which
lemmas are applied is changed. First Lemma 19 brings us from C with α to Cα
and we obtain Cα ≈p C. Thus we can apply β in both states and get

C ≈p Cβ Cαβ ≈p Cβ safe(C, β) C
β7→ Cβ

from Lemmas 20.1, 20.2, and 18.2. The first result allows us to use Lemma 19 once
more executing α in C and Cβ . It follows:

Cα ≈p Cβα Cβ ≈p Cβα

We get the safety of the step by Lemma 18.1, therefore safe(C, βα) and C
βα7−→ Cβα.

By application of Lemma 20.1 on the step Cα
β7→ Cαβ we have Cα ≈p Cαβ and

combination with above results yields:

Cαβ ≈p Cβ ≈p Cβα Cαβ ≈p Cα ≈p Cβα
With Lemma 13.3 we again conclude Cαβ = Cβα = C ′. �

Thus we have proven the basic commutativity arguments that safe local steps can be
reordered across arbitrary safe steps by other units. Reordering across a single step can
be easily extended to reordering across arbitrarily many steps.

Lemma 22 (Step Sequence Commutativity) Let C and C ′ be Cosmos model configura-
tions and σα be a step sequence in such a way that no step of unit α.s occurs in σ, i.e. σ|α.s = ε
and either α is not an IO-step or σ does not contain an IO-step, i.e., /α.io ∨ σ|io = ε, then:

C
σα7−→ C ′ ∧ safe(C, σα) ⇐⇒ C

ασ7−→ C ′ ∧ safe(C,ασ)

PROOF: by induction on n = |σ|. For n = 0 we have σ = ε and there is nothing to
prove, since the left and right side of the claim are identical. In the induction step from
n−1→ n we let p = α.s and τ = σ[2 : n], then there exists a configuration C1 such that:

C
σ17→ C1

τα7−→ C ′ safe(C, σ1) safe(C1, τα)

Since τ |p = ε and either /α.io or τ |io = ε, we can apply induction hypothesis on com-
putation (C1, τα) reordering it into (C1, ατ). Together with safe(C, σ1) we obtain:

C
σα7−→ C ′ ∧ safe(C, σα) ⇐⇒ C

σ1ατ7−→ C ′ ∧ safe(C, σ1ατ)

Let C2 be the configuration reached by σ1α, i.e., C σ1α7−→ C2. Computation (C, σ1α) is
ownership-safe and /α.io∨/σ1.io holds by hypothesis. Hence we can apply Lemma 21,
permuting σ1 and α.

C
σ1α7−→ C2 ∧ safe(C, σ1α) ⇐⇒ C

ασ17−→ C2 ∧ safe(C,ασ1)

Appending the safe computation (C2, τ) which leads into C ′ to (C,ασ1), we show that
C

σα7−→ C ′ ∧ safe(C, σα) is equivalent to C ασ7−→ C ′ ∧ safe(C,ασ). �
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Figure 13: Illustration of reordering in the proof of Lemma 23.

3.5 Equivalent Reordering Preserves Safety

In this section we will state and prove our central reordering theorem which will allow
us to reorder arbitrary schedules to interleaving-point schedules preserving the effect
of the corresponding computation. For safe computations we have that all equivalently
reordered computations are also safe and lead into the same configuration.

Lemma 23 (Safety of Reordered Computations) Let C,C ′ ∈ CS be Cosmos model con-
figurations and let σ, σ′ ∈ Σ∗S be step sequences with C σ7−→ C ′ and σ =̂ σ′ then

safe(C, σ) =⇒ safe(C, σ′) ∧ C σ′7−→ C ′

PROOF: By induction on n = |σ|.
Induction Start: For n = 0 the claim becomes trivial by C = C ′ and σ = σ′ = ε.

Induction Hypothesis: The claim holds for all sequences σ̄, σ̄′ with length n and σ̄ = σ̄′,
leading from configuration C into C ′′.

Induction Step: n → n + 1 - Let C,C ′ ∈ CS and σ, σ′ be step sequences of length n + 1

with C σ7−→ C ′ and σ =̂ σ′. Let σ = σ̄α for α ∈ ΣS and C ′′ such that

C
σ̄7−→ C ′′ α7→ C ′

Let α.s = p and π, τ be step sequences such that σ′ = πατ and (1) τ |p = ε (cf. Fig. 13).
This means that τ represents all the steps from σ across which α was reordered in the
permutation of σ into σ′. Because equivalent reordering preserves the order of steps
for each unit, we know that such a sequence τ of steps by other units than p exists.
Moreover the order of IO steps is maintained therefore either α is local or τ does not
contain any IO steps, i.e., (2) /α.io ∨ τ |io = ε.

In order to apply induction hypothesis on σ̄ and πτ we first have to show σ̄ =̂ πτ . By
Lemma 8 and the symmetry of =̂ we have ατ =̂ τα, therefore also πατ =̂ πτα. From
hypothesis we have σ̄α =̂ πατ and using the transitivity of =̂ we deduce σ̄α =̂ πτα.
The desired equivalence σ̄ =̂ πτ follows directly.
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Since (C, σ) is ownership-safe by hypothesis, also computation (C, σ̄) = (C, σ[1 : n]) is
safe. Applying the induction hypothesis on σ̄ and πτ we obtain:

C
πτ7−→ C ′′ safe(C, πτ)

By using C ′′ α7→ C ′ and safestep(C ′′, α) we get:

C
πτα7−→ C ′ safe(C, πτα)

Let C ′′′ be given such that
C

π7−→ C ′′′ τα7−→ C ′

Using C ′′′ τα7−→ C ′, (1), (2), and safe(C ′′′, τα) from safe(C, πτα), we apply Lemma 22.1,
i.e., we permute α across τ while preserving the safety and effect of the computation.

C ′′′ ατ7−→ C ′ safe(C ′′′, ατ)

With safe(C, π) as well as C π7−→ C ′′′ we have

C
πατ7−→ C ′ safe(C, πατ)

which is exactly C σ′7−→ C ′ and safe(C, σ′), hence the claim is proven. �

We have shown that ownership-safety and the effects of safe Cosmos machine compu-
tations are preserved by equivalent reordering. Before, we already proved that any
step sequence can be equivalently reordered into an interleaving-point schedule. Thus
every safe Cosmos machine computation is represented by an equivalent interleaving-
point schedule computation and the reasoning about systems in verification can be
reduced accordingly.

3.6 Reduction Theorem and Proof

In the reduction theorem the safety of all traces originating from a given starting con-
figuration C ∈ CS must be deduced from the safety of all interleaving-point schedules
starting in the same configuration. We show not only the transfer ownership-safety
but also the transfer of arbitrary verified safety properties on the concurrent system.
In general, safety properties constrain finite behaviour of a Cosmos machine and must
hold in every traversed state of a Cosmos machine computation. Thus we can represent
them as an invariant P : CS → B on the Cosmos machine configuration. We extend our
safety predicate accordingly:

safeP (C, σ)
def≡ safe(C, σ) ∧ ∀C ′. C σ7−→ C ′ =⇒ P (C ′)

Then we have the following predicates denoting the verification of properties for a
particular Cosmos model.
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Definition 21 (Verified Cosmos machine ) We define the predicate safety(C,P ) which states
that for all Cosmos machine computations starting in C we can find an ownership annotation
such that the computation is safe and preserves the given property P .

safety(C,P ) ≡ ∀θ. comp(C.M, θ) =⇒ ∃o ∈ Ω∗S . safeP (C, 〈θ, o〉)

We also define the predicate safetyIP(C,P ) which expresses the same notion of verification for
all IP schedule computations:

safetyIP(C,P ) ≡ ∀θ. IPsched(θ) ∧ comp(C.M, θ) =⇒ ∃o ∈ Ω∗S . safeP (C, 〈θ, o〉)

Additionally all IP schedules starting in C need to fulfill the IOIP condition.

IOIPIP(C) ≡ ∀θ. IPsched(θ) ∧ comp(C.M, θ) =⇒ IOIP(θ)

Thus we consider a Cosmos model ownership-safe if any transition sequence can be an-
notated with an ownership transfer sequence such that the ownership policy is obeyed.
In order to see that this verification methodology in deed excludes memory races we
distinguish shared and local addresses.

Shared addresses may only be accessed by IO operations which represent atomic
shared variable accesses that are implemented, e.g., by synchronization primitives on
the processor hardware level, or by assignments to volatile variables on the C level.
Hence the ownership policy requires all units to access shared memory locations in a
synchronized fashion.

For local steps stronger access rules are established and only owned memory maybe
modified. However there could be races on local memory due to ownership transfer.
Nevertheless ownership can not transfer directly between units and ownership transfer
is bound to IO steps. Hence ownership of some address first has to be released by the
former owner to shared memory before it can be acquired by the new owner, requiring
two IO operations in total. Therefore the ownership policy enforces synchronization
also for ownership transfer.

For the sake of an alternative explanation we define a computation to be racy, if
there exists an equivalently reordered computation resulting in a different end con-
figuration. For ownership-safe computations we know however by Lemma 23 that any
equivalently reordered computation leads into the same end configuration. Thus the
ownership-safety of all computations excludes memory races.

Using the definitions from above the interleaving-point schedule reduction theorem
can then be stated as follows.

Theorem 1 (IP Schedule Order Reduction) For a configuration C of a Cosmos machine
S where all IP schedule computations originating in C fulfill the IOIP condition, we can
deduce safety property P and ownership-safety on all possible computations from the verification
of these properties on all IP schedules.

safetyIP(C,P ) ∧ IOIPIP(C) =⇒ safety(C,P )
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3.6 Reduction Theorem and Proof

Note that we only require safety on the order-reduced Cosmos model model. In contrast
to the existing order reduction theorems of the literature, the commutativity of local
steps is not assumed to be justified on the unreduced level – instead, we exploit that we
can propagate the ownership-safety of IP schedules to all schedules of the unreduced
model in order to prove this overall theorem. To this end we need to show that ev-
ery Cosmos machine computation can be represented by an equivalently reordered IP
schedule computation.

Lemma 24 (Coverage) From safetyIP(C,P ) and IOIPIP(C) it follows that for any Cos-
mos machine computations (C.M, θ) the IOIP condition is fulfilled and any equivalently
reordered IP schedule can be executed from C.

safetyIP(C,P ) ∧ IOIPIP(C) ∧ comp(C.M, θ) =⇒
IOIP(θ) ∧ (∀θ′. θ =̂ θ′ ∧ IPsched(θ′) =⇒ comp(C.M, θ′))

PROOF: by induction on length n = |θ| of the computation. For empty schedules the
claim holds trivially.

In the induction step from n−1→ nwe assume that θ = θ̄α and by induction hypoth-
esis we have IOIP(θ̄). Using Lemma 11 we get an equivalently reordered IP schedule
θ̂ for which the IOIP condition holds by hypothesis.

θ̂ =̂ θ̄ IPsched(θ̂) IOIP(θ̂)

By hypothesis there also exists an ownership annotation ô ∈ Ω∗S such that safe(C, 〈θ̂, ô〉)
and by Lemma 9 we obtain a reordered ownership transfer sequence ō for θ̄. With
Lemma 23 we have that 〈θ̄, ō〉 is safe and leads into the same configuration as 〈θ̂, ô〉.

safe(C, 〈θ̄, ō〉) C
〈θ̂,ô〉7−→ C ′ =⇒ C

〈θ̄,ō〉7−→ C ′

Then comp(C.M, θ̄α) implies comp(C.M, θ̂α) because the same intermediate machine
state C ′.M is passed before executing α. If θ̂α is an IP schedule, then we are done be-
cause then we have IOIP(θ̂α) by hypothesis and IOIP(θ) by θ =̂ θ̂α and Lemma 10.
Otherwise we need to perform a case split. In what follows let p = α.s.

1. θ̂|p = ε ∧ /α.ip — step α is the first step of unit p but it does not start in an
interleaving-point. However it is excluded that this case can occur because of the
following argument. Since θ̂α is a computation we have also /IPp(C ′, α.in) and
by inductive application of Lemma 20.1 on the complete previous computation
(C, 〈θ̂, ô〉), that is safe, we get C ≈p C ′. By Lemma 15 we have comp(C.M,α), i.e.,
α could be executed also in the beginning of the computation. Moreover (C.M,α)
is an IP schedule computation by Lemma 3, hence hypothesis IOIPIP(C) gives
us IOIP(α) which implies α.ip, contradicting our assumption /α.ip.

2. ∃ψ, β, ω. 〈θ̂, ô〉 = ψβω∧β.s = p∧ω|p = ε— we search the preceding step β of unit
p in θ̂ (cf. Fig. 14, lower part). Let C ′′ be the resulting intermediate configuration.

C
ψβ7−→ C ′′ ω7−→ C ′
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Figure 14: Reorderings in the induction step of the proof of Lemma 24.

By inductive application of Lemma 20.1 on (C ′′, ω), we obtain C ′′ ≈p C ′, thus
also comp(C ′′, α) and comp(C,ψβα). By the definition of IP schedules we have
IPsched(ψβα), therefore by hypothesis also IOIP(ψβα) holds. From θ =̂ θ̂α we
have θ|q = θ̂|q for all units q 6= p and by ω|p = ε also θ|p = (ψβα).t|p. Then from
IOIP(θ̂) and IOIP(ψβα) we conclude IOIP(θ) because the IOIP condition
constrains the subsequences of each unit in θ separately.

To prove the second claim we again distinguish whether p has been running before or
not. In the latter case we are finished because then we have α.ip as explained above.
From definition it follows that θ̂α is an IP schedule and we also have θ =̂ θ̂α as well as
comp(C.M, θ̂α), which proves our claim.

If p was running before we assume an IP schedule θ′ = πατ with θ =̂ θ′ and the
properties π|π|.s = p, τ |p = ε, as well as /α.io ∨ τ |io = ε (cf. Fig. 14, upper part). It
remains to be proven that (C.M, πατ) is a Cosmos machine computation.

We can show θ̄ =̂ πτ as in the proof of Lemma 23. Moreover, by Lemma 4, πα and τ
are IP schedules and we have τ1.ip in case τ is non-empty, because τ starts with a step
by a different unit than p. Omitting α from πα yields IPsched(π) by another invocation
of Lemma 4. Then using Lemma 5 we get IPsched(πτ).

Applying the induction hypothesis on θ̄ =̂ πτ we obtain that (C.M, πτ) is a Cosmos
machine computation. With Lemma 9 we reorder ō into an ownership annotation oπoτ ,
such that oπ ∈ Ω

|π|
S , oτ ∈ Ω

|τ |
S , and 〈θ̄, ō〉 =̂ 〈πτ, oπoτ 〉. By Lemma 23 the computation is

safe and leads into configuration C ′.

safe(C, 〈πτ, oπoτ 〉) C
〈πτ,oπoτ 〉7−→ C ′

We redefine C ′′ to be the configuration reached by 〈π, oπ〉 from C, i.e., C
〈π,oπ〉7−→ C ′′. Then

by inductive application of Lemma 20.1 on the safe computation (C ′′, 〈τ, oτ 〉) we get
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3.6 Reduction Theorem and Proof

C ′′ ≈p C ′. Lemma 15 yields comp(πα) which is an IP schedule computation because
the last step of π and α are executed by the same unit p. Then by hypothesis there exists
a safe annotation oα for α, i.e., safe(C, 〈πα, oπoα〉) holds. Let C ′′′ be the configuration
reached by executing 〈α, oα〉 in C ′′.

In case α is a local step, by Lemma 19 we directly get C ′′ ≈p C ′′′. By construction
we have comp(C ′′, 〈τ, oτ 〉) and inductive use of Lemma 15 and Lemma 20.2 justifies the
execution of 〈τ, oτ 〉 from C ′′′. Lemma 20.2 is needed here to maintain ≈p between the
corresponding intermediate configurations. Thus we get comp(C ′′′.M, τ) in this case.

If we have α.io, then all steps in τ are local by construction. We get C ′′ ≈q C ′′′ for all
q 6= p by application of Lemma 20.1. Again we use Lemma 15 inductively to justify the
execution of 〈τ, oτ 〉 from C ′′′ but this time ≈q between the corresponding intermediate
computations is maintained by Lemma 19 for all q.

Again we get comp(C ′′′.M, τ) and with comp(C.M, πα) we deduce comp(C.M, θ′) for
θ′ = πατ , which was our last claim. �

Now we can prove the order reduction theorem.

PROOF OF THEOREM 1: Given a computation (C.M, θ), we need to show that there
exists an ownership annotation o such that (C, 〈θ, o〉) is safe. By Lemma 24 we ob-
tain an equivalent interleaving-point schedule θ′, such that θ =̂ θ′, IPsched(θ′), and
comp(C.M, θ′) holds. Then by safetyIP there exists an o′ such that 〈θ′, o′〉 is safe. Ac-
cording to Lemma 9 we can reorder o′ into some ownership transfer sequence o such
that we have 〈θ, o〉 =̂ 〈θ′, o′〉, using the same permutation of steps as in the reordering
of θ′ into θ. By the symmetry of =̂ we also have 〈θ′, o′〉 =̂ 〈θ, o〉 and using Lemma 23 as
well as safeP (C, 〈θ′, o′〉) we conclude the safety of (C, 〈θ, o〉) which results in the same
configuration C ′ where P (C ′) holds. �

This finishes our order reduction theory. We have shown that from now on we can treat
Cosmos machine computations at a granularity where unit execution is only interleaved
at interleaving-points that can be specified arbitrarily by the verification engineer. The
only additional verification conditions are, that between two IO points a unit always
passes at least one interleaving-point, each unit starts in an interleaving point, and that
for all computations with interleaving-point schedules we can find an ownership an-
notation such that the ownership policies for memory access and ownership transfer
are obeyed. We will show later how these verification conditions can be discharged in
a framework of simulation theorems between different layers of abstraction, such that
ideally properties are only proven about IP schedules of the highest level of abstraction
(cf. Section 5.4).

In order to give a first example of the generality and usability of our approach we
show that Theorem 1 allows for the justification of a specific kind of order reduction
that is often applied in the analysis of shared memory concurrent systems.
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1
2
3

Figure 15: An example of an IO-block schedule θ for three computation units. Empty
boxes are local steps, while filled boxes represent IO steps.

3.7 Coarse IO-Block Scheduling

The order reduction theorem presented in [CMST09] proposes a very coarse way of
scheduling. In the concurrent computation of a system unit steps are executed in blocks
that start with IO steps or with the first step of a unit. Thus, after some initial phase,
blocks of steps of different computation units are only interleaved at IO steps, as de-
picted in Fig. 15. We call such schedules IO-block schedules and below we define this
notion of interleaving in our step sequence formalism.

Definition 22 (IO-Block Schedule ) We define the predicate

IOsched(θ) ≡ ∀θ′ ∈ Θ∗S , α, β ∈ ΘS . θ = θ′αβ =⇒
IOsched(θ′α) ∧ (α.s = β.s ∨ β.io ∨ θ′|β.s = ε)

that expresses whether a step sequence θ exhibits an IO-block schedule.

In an IO-block schedule a block of some unit p may be executed if it starts with an IO
operation or if p was never scheduled before. The latter condition is necessary because
not every unit might start executing with an IO step.

In what follows we show that this kind of coarse scheduling is just a special case
of our reduction theorem. Apart from the requirement that units may start with an
ordinary step, the only difference between the definitions of IOsched and IPsched is
the fact that the IO predicate is used instead of IP . Hence one is tempted to just set the
IP predicate equal to the IO predicate. However we need to care about the first step of
the unit which should be an interleaving-point but may not be an IO-point. For every
Cosmos machine S we propose the following extension yielding the extended model S′.

• S′.U - the unit state u ∈ S′.U contains all components of S.U but in addition also
a boolean flag u.init ∈ B denoting that the unit has not been stepped yet. Initially
we should have u.init = 1. If a component with the name init already exists, we
choose a different, unique name for the flag.

• S′.δ - the transition function is defined as before, but the semantics of the new
component are defined by u′.init = 0 with u′ = S′.δ(u,m, in), i.e., in the first step
the flag is turned off and never enabled again.
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3.7 Coarse IO-Block Scheduling

The IP predicate can then be defined in terms of the IO predicate and the init flag.

S′.IP(u,m, in) = S′.IO(u,m, in) ∨ u.init

With this setting we see directly that the following statement holds.

Corollary 1 (Correct Instantiation for IO-Block Schedules) Given is a machine stateM ∈
MS′ of a Cosmos machine where S′ has been instantiated as outlined above. If the init flags of
all units are enabled in M , then every IP schedule computation out of M is also an IO-block
schedule computation.

∀M, θ. (∀p ∈ Nnu . M.u(p).init) ∧ comp(M, θ) ∧ IPsched(θ) =⇒ IOsched(θ)

Therefore by the verification of all IO-block schedules we also verify all interleaving-
point schedules. Since all IO steps start in interleaving-points and the first step of all
processors is an interleaving-point, the IOIP condition holds trivially on all compu-
tations. Then Theorem 1 enables property transfer from coarse IO block schedules
to schedules with arbitrary interleaving of processor steps. Thus we have shown that
coarse scheduling is justified by the IP schedule reduction theorem. All we had to do
for achieving this, was chosing the interleaving-points properly.

This finishes our chapter on order reduction. In the next chapters we shall instanti-
ate the Cosmos model on various levels of our pervasive semantic stack and introduce
sequential simulation theorems between them. Finally we will use IP schedule re-
ordering in order to apply these simulation theorems in the concurrent case, obtaining
system-wide concurrent simulation theorems.

61





4 Cosmos Model Instantiations

In this chapter we will introduce several instantiations of our Cosmos model. Any such
instantiation needs to refine the components of a Cosmos machine S ∈ S which we list
again below as a reminder.

S = (A,V,R,nu,U , E , reads, δ, IO, IP)

Moreover for every instantiation we have do discharge instantiation restriction instar(S)
on the reads-function which determines the reads-set for a step of a computation unit.
We will first present a Cosmos machine with MIPS processor units. To keep the exam-
ple concise we will use a simplified MIPS [KMP14] instruction set architecture (ISA)
without caches, address translation, store buffers, and devices.

Moreover we will be concerned with higher level language semantics, since system
software is usually not written in machine code. Therefore we will establish A. Shadrin’s
Macro Assembler (MASM) semantics [Sha12] on the MIPS platform and introduce se-
mantics for an intermediate language ofC [SS12]. For both semantics we will show that
we can instantiate the Cosmos model accordingly, obtaining models of concurrently ex-
ecuting C-IL or MASM computation units.

In addition we will examine the corresponding consistency relations which tie the
high level configurations to the MIPS ISA implementation in the sequential assembler
and compiler correctness theorems. In the subsequent chapter we will then present our
simulation theory which allows to combine the sequential correctness theorems into a
concurrent one, using the IP schedule order reduction theorem.

4.1 MIPS ISA

A natural candidate for instantiation of units in a concurrent system are processors. In
this section we present an instantiation of the Cosmos model with a simplified MIPS
instruction set architecture based on the sequential MIPS machine model documented
in [KMP14]. It is a simplified processor model since it does not contain a memory
management unit, store buffers, and caches, nor does it support communication with
devices or inter-processor interrupts. However it is possible to handle exceptions and
external interrupts.

Building on previous work of W. J. Paul, S. Schmaltz documented an extension of
the simple MIPS model with the features named above from the x86 architecture, ob-
taining a realistic model of a multi-core RISC (Reduced Instruction Set Computing)
processor, called MIPS-86 [Sch13a]. We could represent this more elaborate model as
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a Cosmos machine if we allowed for different unit instantiations1. However the aim of
this chapter is to provide concise examples for instantiating Cosmos machines on differ-
ent levels of abstractions of a concurrent system and show how to establish simulation
theorems, like concurrent compiler correctness, between them. In order to illustrate
our simulation theory clearly, we should choose examples that are small and not clut-
tered with too many technical details. Therefore we stick with the simple model from
[KMP14], adding only the interrupt mechanism and the compare-and-swap instruction
from [Sch13b].

Nevertheless M. Kovalev showed in the context of hypervisor verification how a
detailed system-programmer’s view of the x64 architecture can be reduced to a cor-
responding user programming model, where caches, store buffers, and the memory
management unit are invisible [Kov13]. Sequential compiler correctness is then ap-
plied on the reduced level of specification, assuming an order reduction theorem like
the one presented in the previous chapter. We are quite confident that such a series
of reductions can also be applied on a MIPS-86 Cosmos machine instantiation without
devices and APIC, resulting in the simplified concurrent MIPS model presented below.
However, proving this statement is beyond the scope of this thesis.

4.1.1 Instruction Set

We first introduce the syntax of the instructions of our simplified MIPS ISA. Actually
MIPS instructions are bit strings of length 32. However we abstract from the actual
binary encoding of instructions, which can be found in [KMP14], and instead use an
assembly-like representation. This will ease the integration of the instruction set into
the Macro Assembler language later on.

Definition 23 (MIPS Instruction Set) The set IMIPS contains all MIPS instructions and is
a finite language described by the context-free grammar GMIPS.

GMIPS = (TMIPS, NMIPS, SMIPS, PMIPS)

Thus we have IMIPS = L(GMIPS). We define the terminals as

TMIPS = {0, 1, } ∪ INSTRMIPS

where the set INSTRMIPS = {add, . . . , xori} contains the names of all MIPS instructions that
we want to treat below. Non-terminals are marked by angle brackets.

NMIPS = {〈Instr〉, 〈rd〉, 〈rs〉, 〈rt〉, 〈imm〉, 〈iindex 〉, 〈Itype〉, 〈Jtype〉, 〈Rtype〉,
〈aluI 〉, 〈ls〉, 〈branch0 〉, 〈branch〉, 〈aluR〉}

1We would have different units for executing steps of processors, devices and advanced programmable
interrupt controllers (APIC).
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We set the starting symbol to SMIPS = 〈Instr〉. The production system PMIPS is defined by the
following rules:

〈Instr〉 −→ 〈Itype〉 | 〈Jtype〉 | 〈Rtype〉
〈rd〉 −→ B5

〈rt〉 −→ B5

〈rs〉 −→ B5

〈imm〉 −→ B16

〈iindex 〉 −→ B26

〈Itype〉 −→ 〈aluI 〉 〈rt〉 〈rs〉 〈imm〉 | lui 〈rt〉 〈imm〉 | 〈ls〉 〈rt〉 〈rs〉 〈imm〉 |
〈branch〉 〈rs〉 〈rt〉 〈imm〉 | 〈branch0 〉 〈rs〉 〈imm〉

〈aluI 〉 −→ addi | addui | slti | sltui | andi | ori | xori

〈ls〉 −→ lw | sw
〈branch〉 −→ beq | bne

〈branch0 〉 −→ bgez | bgtz | blez | bltz

〈Jtype〉 −→ j 〈iindex 〉 | jal 〈iindex 〉
〈Rtype〉 −→ 〈aluR〉 〈rd〉 〈rs〉 〈rt〉 | jr 〈rs〉 | jalr 〈rd〉 〈rs〉 |

sysc | eret | 〈mov〉 〈rd〉 〈rt〉 | cas 〈rd〉 〈rs〉 〈rt〉
〈aluR〉 −→ add | addu | sub | subu | and | or | xor | nor | slt | sltu
〈mov〉 −→ movg2s | movs2g

Note that the grammar is unambiguous because every instruction starts with a unique
mnemonic. Moreover the mnemonic and parameter bit strings of instructions are sep-
arated by spaces that are part of the language. For readability we refrained from dis-
playing them explicitly in the rules above. Thus, for any mnemonic followed by a
certain number of parameter bit strings that are separated by spaces, there is at most
one derivation tree wrt. GMIPS.

Note also that we have introduced some redundancy in the grammar. For instance
we have the three non-terminals 〈rd〉, 〈rt〉, and 〈rs〉 which all produce a 5-digit bit
string. Also there different productions that produce the same pattern of bit string
parameters but just differ in their possible mnemonics, e.g., the productions out of
〈Itype〉 including 〈aluI 〉 and 〈ls〉. Having more non-determinals allows us to struc-
ture the instruction set definition in an intuitive way. Below, it also enables us to define
instruction-based predicates easily using pattern matching on derivations.

In the grammar we see that MIPS instructions are divided into Itype (immediate),
Jtype (jump), and Rtype (register) instructions. Register indices rd, rs, and rt are used
to identify destination, source, and target registers for a given Rtype instruction, though
not every such instruction may in fact operate on three registers, e.g. the Rtype system
call instruction sysc does not have register parameters at all. Itype instructions have at
most two register operands and in addition one immediate operand which is a 16-bit
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constant. Jtype instructions represent jumps in the control flow and have only one 26-
bit immediate operand. Below we give a short explanation of the various instructions
of our simplified MIPS ISA. A formal definition will follow in the next sections.

• ALU Instructions. These are arithmetical and logical operations on registers
and immediate constants (in case of Itype). The operations include signed and
unsigned binary addition (add, addi, addu, addui), subtraction (sub, subu), logical
AND, OR, XOR, and NOR (and, andi, or, ori, xor, xori, nor), as well as test-and-set
instructions (slt, slti, sltu, sltui), and the lui instruction which loads a 16-bit imme-
diate constant in the upper half of a 32-bit register. The indices rs, rt, and rd (in
case of Rtype) determine the operands for the computation. For example Itype in-
struction addi rt rs imm has the effect that the sign-extended immediate constant
imm is added to the content of register rs. The 32-bit result is then stored in regis-
ter rt. For Rtype instruction or rd rs rt the binary OR of the contents of registers rs
and rt is stored in register rd. Concerning the test-and-set operations the signed
or unsigned binary value of register rs is compared with either the value of rt (in
case of Rtype) or the sign-extended immediate constant (for Itype). If the first is
less than the second, rd (rt for Itype) is set to 1, otherwise it is cleared to 0.

• Branch Instructions. Branches are used to change the control-flow of a program
on the ISA level. Depending on a certain condition, program execution returns
either at the next instruction or it jumps to a location which is specified using the
16-bit immediate constant. The condition can be stated as a comparison of the
rs register content with zero, or as a test whether two registers rs and rt contain
the same data. For instance bltz rs imm branches to a location with offset imm00
to the current one if register rs contains a negative value. On the other hand
beq rs rt imm results in a similar control-flow jump, when registers rs and rt
have equal content.

• Jump Instructions. Jtype jumps are unconditional branches to an absolute ad-
dress that is computed using the 26-bit immediate address iindex . Instruction j is
the plain jump while jal (Jump and Link) additionally stores in a specific register
the memory location of the subsequent instruction in the program code.

There are also similar Rtype jump instructions which use the content of register rs
as an absolute target address for the jump. Jump and Link Register (jalr) allows
to specify register rd in which the address of the subsequent instruction will be
stored. In addition there is the sysc instruction which is used to invoke a system
call handler in an operating system.

• Memory Instructions. In a RISC architecture there are dedicated instructions for
transferring data between the processor’s registers and memory. In our simplified
MIPS ISA we have a load instructions lw rt rs imm (Load Word) and a store in-
struction sw rt rs imm (Store Word), where a word is a string of 32 bis. That means
that we do not consider instructions here that update memory at the half-word or

66



4.1 MIPS ISA

byte granularity. The effective address which is read or written by the instruction is
determined by adding the sign-extended immediate constant imm to the content
of register rs. A value loaded from memory is then stored in register rs, while for
“Store Word” instructions memory is updated with the content of rt .

In addition an atomic compare-and-swap operation can be performed using Rtype
instruction cas rd rs rt . There the memory content x at the address in register rs
is updated with the value in register rt in case x is equal to the value of rd .

• Coprocessor Instructions. These are instructions that are needed especially for
interrupt handling. Instruction eret (Exception Return) is used to return from an
interrupt handler to the interrupted program, reversing the effects of the jump
to the interrupt service routine (JISR). We use instructions movg2s and movs2g to
move data between the normal general purpose registers of the MIPS processor
and certain special purpose registers. In the simplified MIPS ISA presented here
we only treat the special purpose registers necessary for interrupt handling.

We assume a function decode : B32 → IMIPS ∪ {⊥} which transforms any 32-bit binary
instruction representation into the assembly-like instruction representation introduced
above, using the tables and definitions from [KMP14]. For invalid encodings the func-
tion returns ⊥. Moreover for convenience we define predicates to distinguish what
kind of instructions are represented by some I ∈ IMIPS.

• Itype(I)
def≡ 〈Itype〉 −→∗GMIPS

I — I is an Itype instruction.

• Jtype(I)
def≡ 〈Jtype〉 −→∗GMIPS

I — I is a Jtype instruction.

• Rtype(I)
def≡ 〈Rtype〉 −→∗GMIPS

I — I is an Rtype instruction.

• mne(I)
def≡ x such that I ∈ {x, x y} where x ∈ INSTR and y ∈ {0, 1, }∗ — returns

the mnemonic of instruction I .

• ∀x ∈ INSTR. x(I)
def≡ (mne(I) = x) — e.g., lw(I) is true iff I is a lw instruction.

• ∀x ∈ {aluI , aluR,mov , branch0}. x(I)
def≡ 〈x〉 −→∗GMIPS

mne(I) — e.g., mov(I)
means that I is a coprocessor instruction for accessing special purpose registers.

• alu(I)
def≡ aluI (I) ∨ lui(I) ∨ aluR(I) — I is an ALU instruction.

• branch(I)
def≡ branch0 (I) ∨ beq(I) ∨ bne(I) — I is a branch instruction.

• jump(I)
def≡ Jtype(I) ∨ jr(I) ∨ jalr(I) — I is a jump instruction.

• ctrl(I)
def≡ jump(I)∨branch(I)∨eret(I)∨sysc(I) — I is a control-flow instruction.

67



4 Cosmos Model Instantiations

• mem(I)
def≡ ls(I) ∨ lw(I) ∨ cas(I) — I is an instruction that accesses memory.

We define further functions to parse the instruction parameters following the mnemonic.
Below let imm , iindex , rd , rs , and rt be bit strings and x, y ∈ {0, 1, }∗ and mne ∈
INSTRMIPS. Remember that the parameters are separated by spaces, therefore we can
use pattern matching to filter out the desired parameters from a given derivation.

• immediate constant:

imm(I)
def≡





imm[15 : 0] : Itype(I) ∧ I = mne x y imm

∨ branch0 (I) ∧ I = mne x imm

iindex [25 : 0] : Jtype(I) ∧ I = mne iindex

⊥ : otherwise

• source register:

rs(I)
def≡





rs[4 : 0] : (alu(I) ∨mem(I)) ∧ I = mne x rs y ∨ I = jr rs

∨ branch(I) ∧ I = mne rs x ∨ I = jalr rd rs

⊥ : otherwise

• target register:

rt(I)
def≡





rt [4 : 0] : (Itype(I) ∧ /branch(I)) ∧ I = mne rt x

∨ (beq(I) ∨ bne(I)) ∧ I = mne rs rt imm

∨ (aluR(I) ∨ cas(I)) ∧ I = mne rd rs rt

∨ mov(I) ∧ I = mne rd rt

⊥ : otherwise

• destination register (only for Rtype instructions):

rd(I)
def≡
{

rd [4 : 0] : (aluR(I) ∨mov(I) ∨ jalr(I) ∨ cas(I)) ∧ I = mne rd x

⊥ : otherwise

4.1.2 Configuration

A simplified MIPS configuration consists of processor registers and the main memory.
This distinction is also reflected in the formal definition.

Definition 24 (MIPS Configuration) The configuration h of a sequential MIPS processor
contains a core and a memory component.

h = (c,m) ∈ HMIPS

Here m : B32 → B8 represents the byte-addressable main memory and c ∈ KMIPS represents
the processor core with the following components.
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〈i〉 name for i description
0 sr status register (contains masks to enable/disable maskable interrupts)
1 esr exception sr (saves sr in case of interrupt)
2 eca exception cause register (saves cause for interruption)
3 epc exception pc (address to return to after interrupt handling)
4 edata exception data (external interrupt identifier)
7 mode mode register (032 for system mode, 0311 for user mode)
8 emode exception mode register (saves mode in case of interrupt)

Table 4.1: MIPS Special Purpose Registers, where i ∈ B5.

• c.pc ∈ B32 — the program counter (PC)

• c.gpr : B5 → B32 — the general purpose register file (GPR) consisting of 32 registers
that are 32 bits wide and can be addressed with a 5-bit index.

• c.spr : B5 → B32 — the special purpose register file (GPR) consisting of 32 registers,
however only six of the 32 registers are used in the simplified MIPS model that are 32 bits
wide and can be addressed with a 5-bit index.

The program counter contains the memory address where is stored the binary encod-
ing of the instruction to be executed next. We use the general purpose registers to
store intermediate results of computations. One register can hold a 32-bit binary value
which can be interpreted as signed and unsigned binary numbers as well as memory
addresses. The special purpose registers can only be accessed by the mov instructions,
sysc, and eret. Here we use them only for interrupt handling. The dedicated special
purpose registers are depicted in Table 4.1. It is taken from [Sch13b] but we ommitted
the support for address translation here to keep the model simple.

4.1.3 Semantics

In this section we will define a simplified MIPS semantics by introducing a transition
function δMIPS : HMIPS×B256 → HMIPS, which performs a computation step on a given
MIPS configuration, taking into account a 256-bit external event vector (eev), resulting
in a new MIPS configuration. The transition function basically has two cases, where
in the first case the next instruction according to the program counter is executed, and
in the other case a jump to the interrupt service routine (JISR) is performed after an
interrupt was signalled via the external event vector. In what follows we introduce
additional notation in order to define δMIPS formally.
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Auxiliary Definitions and Intermediate Results

As mentioned above the instruction to be executed next in a given MIPS configuration
h is fetched from memory using the program counter h.c.pc. We use notation I(h) to
denote this next instruction.

I(h)
def≡ decode(h.m4(h.c.pc))

Since instructions are encoded as 4-byte-wide binary values, the encoding of the current
instruction is stored in memory in the four consecutive bytes starting at the program
counter. There is a software condition that memory is only accessed in a word-aligned
way, this means that memory is divided into 230 consecutive words starting at byte
address 032 and one must never cross a word boundary in a single memory access.
This can be guaranteed if the least two significand bits of an address in any memory
access are always zero. In the case of instruction fetch this means:

∀h ∈ HMIPS. h.c.pc[1 : 0] = 00

A violation of this software condition results in a misalignment interrupt. However if
the access is aligned and the fetched word encodes in deed a valid MIPS instruction
(I(h) 6= ⊥), by I(h) we obtain the assembly-like representation of the instruction to
be executed next. We only consider this case in the following defintions. Then we
can extend the predicates on instructions defined above to predicates about the the
next instruction depending on the MIPS configuration. For example predicate mem(h)
denotes that the next instruction accesses memory.

∀p : IMIPS → B, h ∈ HMIPS. p(h)
def≡ p(I(h))

The same principle applies to the shorthands defined above for accessing the various
parameters of a MIPS instruction. With rd(h), rs(h), and rt(h) we can obtain the fields
of the current instruction to address the GPR in order to load operands and store results
of instruction execution. Moreover some of the following definitions will only depend
on the current MIPS processor core configuration c and the current instruction I . We
allow such functions f(c, I) mapping to some image X to be applied on a complete
MIPS configuration h ∈ HMIPS in the obvious way.

∀f : KMIPS × IMIPS → X. f(h)
def≡ f(h.c, I(h))

The 16-bit and 26-bit immediate constants have various uses, however, since our MIPS
architecture is based on 32-bit words we need to convert the constants to 32-bit format
using sign-extension (for signed numbers) and zero-extension (for unsigned numbers).
To this end we introduce the following two functions.

sxtimmn
m(a)

def≡ an−mm−1a[m− 1 : 0] zxtimmn
m(a)

def≡ 0n−ma[m− 1 : 0]
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The n-bit sign-extension sxtimmn
m(a) of an m-bit number a[m − 1 : 0] extends the bit

string to length n by duplicating the most significand bit of a. This operation preserves
the signed two’s-complement value of a. Similarly the n-bit zero-extension zxtimmn

m(a)
preserves the unsigned binary value of a. For logical operations of Itype instructions we
use the zero-extended immediate constant, for arithmetic operations the sign-extended
version is used. In general, the extended immediate constant of the current instruction
is defined by:

xtimm(I )
def≡
{

zxtimm32
16(imm(I)) : andi(I) ∨ ori(I) ∨ xori(I)

sxtimm32
16(imm(I)) : otherwise

Note that this definition is only well-defined if /Rtype(h) holds, however we omit the
explicit case distinction here and assume the convention that every function evaluates
to ⊥ in case its definition is not applicable for a given argument.

For arithmetic, logical, test-and-set, as well as branch instructions we usually have a
left and a right operand that are used to compute the result of the computation. Gener-
ally we use the value in the GPR specified by rs as the left operand.

lop(c, I)
def≡ c.gpr(rs(I))

The right operand is either the content of register rt (in case of Rtype instructions), the
left-shifted 16-bit immediate constant (for lui instruction), or the extended immediate
constant.

rop(c, I)
def≡





c.gpr(rt(I)) : Rtype(I)

imm(I) ◦ 016 : lui(I)

xtimm(I) : otherwise

We define the result of an ALU instruction by the following function ares , which de-
pends upon left operand lop ∈ B32, right operand rop ∈ B32, and the mnemonic
mne ∈ INSTRMIPS of the instruction to be executed.

ares(rop, lop,mne)
def≡





lop +32 rop : mne ∈ {add, addi, addu, addui}
lop −32 rop : mne ∈ {sub, subu}
lop ∧ rop : mne ∈ {and, andi}
lop ∨ rop : mne ∈ {or, ori}
lop ⊕ rop : mne ∈ {xor, xori}
lop ∨ rop : mne = nor

rop : mne = lui

0311 : mne ∈ {slt, slti} ∧ [lop] < [rop]

∨ mne ∈ {sltu, sltui} ∧ 〈lop〉 < 〈rop〉
032 : otherwise
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We can then easily define the ALU computation result for a given configuration c and
MIPS instruction I .

ares(c, I)
def≡ ares(rop(c, I), lop(c, I),mne(I))

The result of an operation is stored in either register rd or rt .

rdes(I)
def≡
{

rd(I) : Rtype(I)

rt(I) : otherwise

In case of memory accesses an address computation needs to be performed. The effec-
tive address (ea) for the memory access is determined for Store Word and Load Word
instructions by adding the sign-extended immediate constant to the value stored in
register rs . For the Rtype instruction cas no immediate offset is available and only the
value in rs is used.

ea(c, I)
def≡
{
c.gpr(rs(I)) +32 xtimm(I) : Itype(I)

c.gpr(rs(I)) : otherwise

We have the software condition that effective addresses are word-aligned, i.e.:

∀h ∈ HMIPS. ea(h)[1 : 0] = 00

For branch instructions we need to evaluate a branch condition by comparing the value
in rs with the right branch operator brop, which is either 0 or the value stored in rt .

brop(c, I)
def≡
{

032 : branch0 (I)

c.gpr(rt(I)) : otherwise

The result of the evaluation is then defined as follows for left operand lop, right branch
operand brop, and instruction mnemonic mne .

btaken(lop, brop,mne)
def≡





[lop] < [brop] : mne = bltz

[lop] ≤ [brop] : mne = blez

[lop] ≥ [brop] : mne = bgez

[lop] > [brop] : mne = bgtz

lop 6= brop : mne = bne

lop = brop : otherwise

Naturally we define a corresponding predicate for a given MIPS configuration.

btaken(c, I)
def≡ btaken(lop(c, I), brop(c, I),mne(I))
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Regular Instruction Execution

With the auxiliary defintions from above we can now define the semantics of regular
instruction execution. The latter is defined by the absence of interrupts and that the
current instruction is not eret. These cases shall be treated separately.

Definition 25 (Regular Instruction Semantics) We define the transition function for regu-
lar instruction execution as a mapping δinstr : HMIPS × IMIPS → HMIPS. For a given MIPS
instruction I an old MIPS configuration h is mapped to a new configuration h′ = δinstr (h, I)
according to the following cases distinction.

• GPR — We store the results of ALU instructions and values loaded from memory. In case
of jump-and-link instructions we save the next sequential program counter. For movs2g
we load the specified SPR register value.

h′.c.gpr(r) ≡





ares(h.c, I) : alu(I) ∧ r = rdes(I)

h.m4(ea(h.c, I)) : (lw(I) ∨ cas(I)) ∧ r = rdes(I)

h.c.pc +32 432 : jr(I) ∧ r = 15 ∨ jalr(I) ∧ r = rdes(I)

h.c.spr(rd(I)) : movs2g(I) ∧ r = rt(I)

h.c.gpr(r) : otherwise

• SPR — Special purpose registers can only be updated by the movg2s instruction.

h′.c.spr(r) ≡
{
h.c.gpr(rt(I)) : movg2s(I) ∧ r = rd(I)

h.c.spr(r) : otherwise

• Memory — Only instructions Load Word and Compare-and-Swap may modify memory.
Let

swap(h, I)
def≡ cas(I) ∧ h.m4(ea(h.c, I)) = h.c.gpr(rd(I))

denote that the comparison in a cas instruction was evaluated to true, thus allowing the
atomic memory update. Using alignment of effective addresses we define for all a ∈ B30:

h′.m4(a00) =

{
h.c.gpr(rt(I)) : (sw(I) ∨ swap(h, I)) ∧ a00 = ea(h.c, I )

h.m4(a00) : otherwise

• PC — The program counter can be manipulated by branch and jump instructions. For
non-control-flow instructions it is simply incremented by 4 in each execution step.

h′.c.pc =





(h.c.pc+32 432)[31 : 28] ◦ imm(I) ◦ 00 : j(I) ∨ jal(I)

h.c.gpr(rs(I)) : jr(I) ∨ jalr(I)

h.c.pc+32 sxtimm32
18(imm(I) ◦ 00) : branch(I) ∧ btaken(h.c, I)

h.c.pc+32 432 : otherwise

Recall above that for Jtype instructions the immediate constant is 26 bits wide.

Thus we have defined semantics for the cases that are unrelated to interrupt handling.
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interrupt level shorthand int/ext type maskable description
0 reset external abort no reset signal
1 dev external repeat yes device interrupt
2 ill internal abort no illegal instruction
3 mal internal abort no misalignment
6 sysc internal continue no system call
7 ovf internal continue yes overflow

Table 4.2: MIPS Interrupt Types and Priority.

Interrupt Semantics

Instruction execution can be interrupted because of internal or external causes. For
example an internal interrupt (also called exception) might stem from a programming
error, e.g., accessing memory with misaligned effective address. External interrupts are
triggered by external signals, e.g., reset, that are collected in the 256-bit external event
vector eev that is given as an input parameter to δMIPS. Some interrupts can be masked,
meaning that they will be ignored by the MIPS processor, resuming regular instruction
Moreover interrupts have different resume types, i.e., they differ in the way execution
resumes after the interrupt is handled (after executing eret). We might either repeat the
interrupted instruction or continue with the next instruction. The latter implies that
execution of the interrupted instruction was completed before the interrupt handler
was called. In case a fatal exception occured instruction execution might simply be
aborted.

In our simplified MIPS architecture we support the five interrupts which are listed
in Table 4.2 omitting the interrupts from [Sch13b] related to address translation. We list
them below from highest to lowest priority (interrupt level).

• reset — the reset signal eev [0] is used to bring a processor in its initial state. For
computations we usually assume that reset is active in the first step and then
never again.

• dev — the device interrupt is triggered by signals from the environment of the
MIPS processor. Such signals can represent requests from devices but also timer
alarms. Modern architectures contain advance programmable interrupt controllers
(APICs) which send and deliver external interrupts, we however chose not to
give an APIC model here but simply rely on the 256-bit external event vector as
an input to our MIPS model. External device interrupts are maskable and any
interrupted instruction is repeated after handling.

• ill — if the instruction word fetched from memory according to the program
counter could not be decoded, i.e. it was in an invalid instruction format, an
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illegal instruction exception is triggered. Moreover depending on the least signif-
icand bit of the mode register in the SPR we are either in system or user mode.

user(c)
def≡ (c.spr(mode)[0] = 1)

If a program tries to access the special purpose registers while the processor is in
user mode, an illegal instruction exception is raised, too.

• mal — a misaligment exception occurs if memory is accessed using a misaligned
program counter or effective address.

• sysc — in operating systems user programs can use the system call instruction to
request certain kernel functionality. Since such interrupts are called for explicitely,
it would not make sense to mask them. Also they should not be repeated after
return from the system call handler. Therefore they have resume type continue.

• ovf — an overflow exception is caused if the result of a signed arithmetic opera-
tion excedes the range of values that can be represented by 32-bit two’s-complement
numbers. That is, the result is smaller than −231 or greater equal 231. Unsigned
operations by design do not cause overflows. Furthermore overflow interrupts
can be masked and the instruction producing the overflow is first completed be-
fore the overflow handler is called.

Below we define a 32-bit vector that records the causes of interrupts given a decoded
instruction I ∈ IMIPS ∪ {⊥}. For any predicate p : IMIPS → B we set p(⊥) ≡ 0.

ca(c, I, eev)[j] =





eev [0] : j = 0∨255
i=1 eev [i] : j = 1

I = ⊥ ∨ user(c) ∧mov(I) : j = 2

{c.pc[1 : 0], ea(c, I)[1 : 0]} * {00,⊥} : j = 3

sysc(I) : j = 6

[lop(c, I)] + [rop(c, I)] /∈ [−231 : 231) : j = 7 ∧ (add(I) ∨ addi(I))

[lop(c, I)]− [rop(c, I)] /∈ [−231 : 231) : j = 7 ∧ sub(I)

0 : otherwise

To obtain the remaining interrupts after masking we AND the maskable cause bits with
the corresponding mask bits from the status register. In our case only the device inter-
rupt and overflows can be masked.

∀j ∈ [0 : 31]. mca(c, I, eev)[j] =

{
ca(c, I, eev)[j] ∧ c.spr(sr)[j] : j ∈ {1, 7}
ca(c, I, eev)[j] : otherwise

In case of an unmasked interrupt occurring, we jump to the interrupt service routine
(JISR). This condition is denoted by the following predicate.

jisr(c, I, eev)
def≡

31∨

i=0

mca(c, I, eev)[i]
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Then the interrupt level il is determined by the active interrupt with highest priority.

il(c, I, eev)
def≡ min{i ∈ [0 : 31] | mca(c, I, eev)[i] = 1}

Therefore we have an interrupt with resume type continue if the highest priority inter-
rupt is system call or overflow. Again we allow to apply the functions defined above
for arguments (h, eev) ∈ HMIPS×B256 by replacing c with h.c and I with I(h). Now we
can define the effect of the jump to interrupt service routine transition.

Definition 26 (JISR transition) The function δjisr : HMIPS × B256 → HMIPS computes the
effect of the jump to the interrupt service routine of a MIPS processor. Let h′ = δjisr (h, eev)
then we have for the different components:

• SPR — we mask all maskable interrupts by setting the status register to zero, we save the
old status register, the masked cause and the current or next program counter according
to the resume type of the interrupt. Moreover for device interrupts we provide the binary
encoding of the lowest index of the active external event signals in eev . We switch to
system mode and save the old processor mode in the emode register.

h′.c.spr(r) =





032 : r = sr

h.c.spr(sr) : r = esr

mca(h, eev) : r = eca

h.c.pc + 432 : r = epc ∧ il(h, eev) ∈ {6, 7}
h.c.pc : r = epc ∧ il(h, eev) /∈ {6, 7}
bin32(min{i | eev [i] = 1}) : r = edata ∧ il(h, eev) = 1

032 : r = mode

h.c.spr(mode) : r = emode

h.c.spr(r) : otherwise

• PC — we jump to the interrupt service routine which by design is located at address null.

h′.c.pc = 032

• GPR — the general purpose registers are unchanged unless we have an overflow excep-
tion. In this case we have to complete the arithmetic operation first and commit the results
to the GPR before jumping to the interrupt service routine.

h′.c.gpr =

{
δinstr (h).c.gpr : il(h, eev) = 7

h.c.gpr : otherwise

Although system calls have also resume type continue we do not have to consider them
here, since they do not affect the general purpose registers.
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• Memory — Since continue-type interrupts do not occur for instructions that can update
memory and interrupts do not modify memory themselves, the memory is unchanged by
the interrupt transition.

h′.m = h.m

After the JISR transition, execution continues in the interrupt handler. Control flow can
be redirected to the point in the program where the interruption occured using the eret
instruction.

Definition 27 (Effect of eret) We define function δeret : HMIPS → HMIPS which encodes the
effect of the eret instruction as follows. With h′ = δeret(h) we have:

• PC — the program counter is restored from epc register.

h′.c.pc = h.c.spr(epc)

• SPR – we restore the saved status register and processor mode.

h′.c.spr(r) =





h.c.spr(esr) : r = sr

h.c.spr(emode) : r = mode

h.c.spr(r) : otherwise

• GPR and Memory — these components are not affected by eret.

h′.c.gpr = h.c.gpr h′.m = h.m

This finishes the definition of interrupt semantics

Overall Transition Function

We use the transition functions defined above in order to obtain the defintion of the
overall MIPS transition function δMIPS. There we make a case distinction between reg-
ular instruction execution, jump to interrupt service routine and execution of eret.

δMIPS(h, eev)
def≡





δjisr (h, eev) : jisr(h, eev)

δeret(h) : /jisr(h, eev) ∧ eret(h)

δinstr (h, I(h)) : otherwise

4.1.4 Cosmos Machine Instantiation

Now we can define an instantiation SnMIPS ∈ S which is a Cosmos machine containing n
MIPS computation units. The components of SnMIPS are defined as follows.

• SnMIPS.A = B32 and SnMIPS.V = B8 — The memory is byte-addressable and con-
tains 232 memory cells.
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• SnMIPS.R = Acode — We assume that all code to be executed lies in an area Acode ⊆
A and we set the read-only addresses to be identical with this area.

• SnMIPS.nu = n — We have n computation units.

• SnMIPS.U = KMIPS — Every computation unit is the core of a MIPS processor.

• SnMIPS.E = B256 — The 256-bit external event vector is the only input to the MIPS
cores.

• SnMIPS.reads — Depending on the executed instructions and the interrupt level
different sets of addresses are loaded from memory. For c ∈ KMIPS and I ∈ IMIPS

let F (c) denote the addresses loaded for instruction fetch. Set R(c, I) contains the
addresses read by lw and cas instructions.

F (c)
def≡ {c.pc, . . . , c.pc +32 332}

R(c, I)
def≡

{
{ea(c, I), . . . , ea(c, I) +32 332} : lw(I) ∨ cas(I)

∅ : otherwise

Now in case of regular instruction execution the reads-set is determined by F and
R, for external interrupts no addresses are loaded, and in case of other interrupts
we only fetch the interrupted instruction.

SnMIPS.reads(u,m, eev) =





F (u) ∪R(u, I(u,m)) : /jisr(u, I(u,m), eev)

∅ : il(u, I(u,m), eev) < 2

F (u) : otherwise

Recall that (u,m) ∈ HMIPS, thus we can use it as an input parameter to functions
depending on a MIPS processor configuration h ∈ HMIPS.

• SnMIPS.δ — We define the set of written addresses W (c,m, eev). A write operation
is performed if the predicate wr(c,m, eev) holds.

wr(c,m, eev)
def≡ /jisr((c,m), eev) ∧ (sw(c,m) ∨ swap((c,m), I(c,m)))

W (c,m, eev)
def≡

{
{ea(c,m), . . . , ea(c,m) +32 332} : wr(c,m, eev)

∅ : otherwise

Due to the swap predicate these functions depend on the content of memory m.
In the Cosmos machine the δ-function of the computation units gets only a partial
memory as an input, that is determined by the reads-set. However the MIPS
transition function is defined for a memory that is a total function. Nevertheless
we can transform any partial memory function m : B32 ⇀ B8 into a total one by
filling in dummy values.

dme def≡ λa ∈ B32.

{
08 : m(a) = ⊥
m(a) : otherwise
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Then with (u′,m′) = δMIPS((u, dme), eev) we can define the transition function for
MIPS computation units which returns the same new core configuration and the
updated part of memory.

SnMIPS.δ(u,m, eev) = (u′,m′|W (u,dme,eev))

In the Cosmos machine the δ function is provided a partial memory spanning ex-
actly the reads-set. If SnMIPS.reads is instantiated correctly, i.e., instar(S

n
MIPS) holds,

then the computation of δ does not depend on the inserted dummy values in dme.

• SnMIPS.IO — It is a task of the verification engineer to determine the IO steps of
a system under consideration. Thus it cannot be defined in general what are the
IO steps on the MIPS ISA level. The choice of the IO steps is depending on the
verification methodology and the program to be verified. Below we consider the
two scenarios that were already introduced in Sect. 1.1.

1. We verify a concurrent algorithm on the MIPS ISA level that was written in
MIPS assembler. All synchronization between the concurrent processors is
implemented via atomic Compare-and-Swap instructions. In this case the
IO steps are exactly the uninterrupted cas instruction executions.

SnMIPS.IO(u,m, eev) ≡ /jisr((u, dme), eev) ∧ cas(u, dme)

2. Imagine we are verifying a program that was compiled down to MIPS as-
sembler from a higher-level language like C. On the C level it is easy to de-
termine the IO steps which are, for instance, accesses to volatile variables or
calls to synchronization primitives that are implemented as external assem-
bly functions (containing for example cas). In the compilation process these
C statements and synchronization primitives are translated into assembly
code and for a well-behaved compiler every translation of an IO step should
contain exactly one shared memory access.2

Knowing the code generation and placement function of the compiler, one
can easily determine the addresses of these instructions that are supposed
to access shared memory. We collect them in a set Aio ⊆ Acode . Then the
definition of the IO steps on the ISA level is straight forward.

SnMIPS.IO(u,m, eev) ≡ /jisr((u, dme), eev) ∧ u.pc ∈ Aio

• SnMIPS.IP — Similarly the interleaving-points are chosen by the verification en-
gineer to determine the structure of the block schedules upon which verification
methods are applied. Thus a general definition is not possible and we revisit the
two examples from above.

2Without a shared memory access we cannot synchronize with the concurrently executing threads of the
program. If one IO step is compiled into two or more shared memory accesses we lose atomicity,
leading most probably to race conditions.
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1. As we verify the concurrent program on the assembly level we want to con-
sider as few interleavings of different processor steps as possible. Thus we
would aim for a coarse IO block scheduling and set the interleaving-points
equal to the starting points of IO steps and the initial states of the processors.
With an init flag as in Section 3.7 we have the following definition.

SnMIPS.IP(u,m, eev) ≡ SnMIPS.IO(u,m, eev) ∨ u.init

2. In case of compiled code on the ISA level, we want to use the order reduction
theorem to build block schedules on which the sequential compiler correct-
ness theorem can be applied. In this way we can justify a verification of
system on the C level and transfer down verified properties to the arbitrar-
ily interleaved MIPS ISA level. To this end we need to identify the compiler
consistency points on the C and ISA level, that is the locations in the C pro-
gram and the compiled code where the compiler consistency relation holds
between the C and ISA configurations during execution.

Optimizing compilers do not need to guarantee compiler consistency points
after every C statement but they may translate a sequence of C statements
in a sequence of assembler instructions that correctly implement the C code
on the ISA level. In this case the compiler consistency points are the start
(and end) points of the aformentioned sequences on the C and instruction
set architecture level.

Again, for a given program and compiler, we can determine the set of MIPS
ISA instruction addresses which start in compiler consistency points, i.e.,
the addresses of the first instruction in the compiled code for any sequence
of C statements that starts in a compiler consistency point. We name this
set Acp ⊆ Acode . Whenever the program counter of a MIPS processor points
to such an instruction, the processor is in a compiler consistency point on
the ISA level, in case the compiled code is not modified. We thus set the
interleaving-points to be the compiler consistency points on the level of the
MIPS instruction set architecture.

SnMIPS.IP(u,m, eev) ≡ u.pc ∈ Acp

Assuming IP scheduling on the ISA level we can then apply the sequen-
tial compiler correctness theorem on the IP blocks and justify the verified
view of the system where C threads are interleaved at C compiler consistency
points.3 The interleaving-point scheduling assumption can be discharged by
the IP schedule order reduction theorem, which requires in turn that all IP
schedules are ownership-safe and that all computations of Cosmos machine
SnMIPS running out of a given start configuration obey the IOIP condition.

3Using the order reduction theorem again we could reduce reasoning further to coarse IO block sched-
ules on the C level.
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In order to show that the two requirements hold we need to consider the
compiler once more. First we prove a compiler ownership transfer theorem,
stating that the compilation of sequential code preserves ownership-safety.
Thus from the verification of all IP schedules on the C level we can deduce
the ownership-safety of all IP schedules on the compiled ISA level. For
proving the IOIP condition it is sufficient to show that the compiler puts at
most one IO step between two ISA-level compiler consistency points.

For most of the components the Cosmos model instantiation is quite obvious. Besides
some technicalities about converting inputs and outputs of the δ-function, only the
choice of IO steps and interleaving-points was non-trivial, especially in the case of
compiled code running on the MIPS Cosmos machine. However by the program- and
compiler-dependent sets Acode , Aio , and Acp we were able to give precise definitions
also in the latter scenario. Observe that these definitions do not depend on the owner-
ship state, especially we did not define every access to a shared address to be automati-
cally an IO step. Thus we are able to verify that shared memory is only accessed when
it is expected by the verification engineer.

Moreover, note that we assume an invariant on computations of Cosmos machine
SnMIPS, stating that Acode has the intended meaning, namely, that we only fetch instruc-
tions from this set of addresses.

Definition 28 (Code Region Invariant) We define the invariant codeinv(H,Acode) which
states that in all system states reachable from Cosmos machine configuration H ∈ CSnMIPS

instructions are only fetched from code region Acode ⊆ B32.

∀σ,H ′. H σ7−→ H ′ =⇒ ∀p ∈ Nnu . {H ′.up.pc, . . . ,H ′.up.pc +32 332} ⊆ Acode

Since we also chose the read-only addresses set R to be equal to Acode , the ownership
policy excludes self-modifying code. Thus we can assume that the compiled code lies
in a fixed region of memory and cannot be altered. Therefore it is possible to use in-
struction addresses in order to determine IO steps and compiler consistency points.

Besides the code region invariant we also have the software conditions that forbid
misaligned memory accesses. However in the following instantiations with the macro
assembly and C-IL semantics we will demand the absence of exceptions caused by
the compiled code. Thus we implicitly require that compiled code obeys alignment
restrictions and therefore does not cause misalignment interrupts. Below we prove
instar(S

n
MIPS), finishing the instantiation of our MIPS ISA Cosmos machine.

PROOF: We need to show the following statement for MIPS processor core configura-
tion u ∈ KMIPS, memories m,m′ : B32 → B8, external event vector eev ∈ B256, and
reads-set R = SnMIPS.reads(u,m, eev).

m|R = m′|R =⇒ SnMIPS.reads(u,m′, eev) = R

Let R′ = SnMIPS.reads(u,m′, eev). The definitions of both R and R′ depend on the same
MIPS core configuration c, therefore processors (u,m) and (u,m′) fetch an instruction
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from the same set of addresses F (u). We need to distinguish whether addresses are
read in a step or not at all.

• R = ∅— In this case by definition of SnMIPS.reads an external interrupt prevented
the processor from fetching an instruction. We have il(u, I(u,m), eev) < 2, that is
either reset or a device interrupt was triggered by the external event vector.

– reset — The interrupt level is 0. By the definition of ca(u, I(u,m), eev)[0] we
see that eev [0] = 1 and we also know that the same external even vector is
used to determine R′. Thus we deduce by the definition of mca and ca :

mca(u, I(u,m′), eev)[0] = ca(u, I(u,m′), eev)[0] = eev [0] = 1

– dev — The interrupt level is 1. By the definition of ca(u, I(u,m), eev)[1] we
see that there exists some index i ∈ [1 : 255] such that eev [i] = 1 and also
u.spr(sr)[1] = 1, because the external interrupt was not masked. It follows:

mca(u, I(u,m′), eev)[1] = ca(u, I(u,m′), eev)[1] ∧ u.spr(sr)[1] =

255∨

i=1

eev [i] = 1

Overall we have mca(u, I(u,m′), eev)[0] ∨mca(u, I(u,m′), eev)[1] and therefore:

jisr(u, I(u,m′), eev) il(u, I(u,m′), eev) < 2

Hence by definition of SnMIPS(u,m, eev) we have R′ = ∅ = R.

• R 6= ∅ — In the remaining two cases of the definition of SnMIPS.reads we have
F (u) ⊆ R. Therefore we have m|F (u) = m′|F (u) according to hypothesis and the
same instruction is decoded by both processors because for instruction fetch they
only read from F (u) = {u.pc, . . . , u.pc +32 332}.

I(u,m) = m4(u.pc)

= m(u.pc +32 332) ◦ · · · ◦m(u.pc)

= m|F (u)(u.pc +32 332) ◦ · · · ◦m|F (u)(u.pc)

= m′|F (u)(u.pc +32 332) ◦ · · · ◦m′|F (u)(u.pc)

= m′(u.pc +32 332) ◦ · · · ◦m′(u.pc)

= m′4(u.pc)

= I(u,m′)

If we replace in the defintion of SnMIPS.reads(u,m′, eev) all occurences of I(u,m′)
with I(u,m), then we obtain exactly the definition of SnMIPS.reads(u,m, eev). In
particular we have:

R(u, I(u,m′)) = R(u, I(u,m))

jisr(u, I(u,m′), eev) = jisr(u, I(u,m), eev)

il(u, I(u,m′), eev) = il(u, I(u,m), eev)

Hence we conclude R′ = SnMIPS.reads(u,m′, eev) = SnMIPS.reads(u,m, eev) = R. �
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4.2 Macro Assembly

4.2 Macro Assembly

The Macro Assembly Semantics (MASM) was developed by Andrey Shadrin [Sha12]
in an effort to abstract from implementation details like the stack layout and calling
conventions and provide a higher level assembly language with a dynamic stack and
macros for stack operations as well as for calling of and returning from assembly func-
tions. Furthermore the work was joined with S. Schmaltz’ C-IL semantics obtaining a
semantics where C-IL and MASM are executed in an interleaved fashion via external
function calls. The latter will be presented in subsequent sections. First we will present
the semantics of MASM and a sequential compiler consistency relation with the MIPS
ISA level. Furthermore we will instantiate a MASM Cosmos machine and establish a
concurrent compiler correctness theorem describing a simulation of the MASM Cosmos
machine by the MIPS Cosmos machine.

4.2.1 MASM Syntax and Semantics

We want to stress that the MASM semantics and simulation theorem are in their entirety
extracted from [Sha12]. Nevertheless we take the freedom to restructure, modify and
extend definitions preserving their intention where it seems necessary in order to fit
them into our framework, or where it promotes brevity and clarity. In general we base
the MASM semantics on our simpified MIPS ISA model defined in the previous section.

Instructions

Macro Assembly comprises a number of macros and all ISA instructions except control-
flow instructions. Thus we exclude jumps and branches but also the sysc and eret in-
structions. The allowed ISA instructions are defined by:

InocfMIPS

def≡ {I ∈ IMIPS | /ctrl(I)}

In general we assume that MASM (and C-IL) programs are not interrupted. Semantics
for interruptible C and MASM programs will hopefully be presented in the future (cf.
Sect. 6.3.3). Formally the set of MASM instructions is denoted by the inductive type
IMASM defined below, where Names is the set of admissible MASM procedure names.

• ∀r ∈ B5. push r ∈ IMASM ∧ pop r ∈ IMASM - push and pop instructions which
transfer data between general purpose registers and the stack

• ∀r ∈ B5, i ∈ N. lparam r i ∈ IMASM ∧ sparam r i ∈ IMASM - instructions to store
procedure parameters in registers or on the stack (useful for saving register space)

• ∀P ∈ Names. call P ∈ IMASM - calling a MASM procedure P

• ret ∈ IMASM - returning from a MASM procedure

• ∀l ∈ N. goto l ∈ IMASM - jump to location l
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• ∀r ∈ B5, l ∈ N. ifnez r goto l ∈ IMASM - conditional jump to location l

• InocfMIPS ⊂ IMASM - all non-control-flow MIPS instructions

We call all MASM instructions that are not MIPS instructions MASM macros.

Programs

A MASM program πµ is modeled as a partial mapping from procedure names to proce-
dure tables. A procedure table contains information on the number of input parameters
npar , the procedure body in case it is not an external function (as denoted by the key-
word extern) as well as the callee-save registers for that procedure encoded in a list
of register indices named uses .

ProcT
def≡ (npar : N, body : I∗MASM ∪ {extern}, uses : (B5)∗)

Thus we define the type of a MASM program πµ ∈ ProgMASM formally as follows.

ProgMASM

def≡ Names ⇀ ProcT

There are certain validity conditions on MASM programs. First of all the MASM macros
in the body of a procedure must be well-formed.

Definition 29 (MASM Macro Well-formedness) For a MASM macro s at position j in the
body of a procedure p of program πµ we say that the satement is well-formed, if (i) parameter
accesses must be within the right range, (ii) (conditional) jumps via goto may not leave the
current procedure, (iii) only procedures declared in πµ may be called, and (iv) every procedure
ends with the ret macro, which must not appear elsewhere.

wfmMASM(s, j, p, πµ) ≡ (i) s ∈ {lparam r i,sparam r i} =⇒ i ≤ πµ(p).npar

(ii) s ∈ {goto l,ifnez r goto l} =⇒ l ≤ |πµ(p).body |
(iii) s = call P =⇒ πµ(P ) 6= ⊥
(iv) s = ret ⇐⇒ j = |πµ(p).body |

Now we can give the complete definition of what it needs for a MASM program to be
well-formed.

Definition 30 (MASM Program Well-formedness) A MASM program πµ is well-formed,
if (i) all of its procedures contain at least one instruction, (ii) all contained MASM macros are
well-formed, and (iii) contains a main procedure “_start” which sets up the stack. It takes no
input parameters and has an empty uses list.
wfprogMASM(πµ) ≡
∀p ∈ Names. πµ(p) 6= ⊥ =⇒

(i) |πµ(p).body| > 0
(ii) ∀j ∈ [1 : |πµ(p).body|].

πµ(p).body[j] /∈ InocfMIPS =⇒ wfmMASM(πµ(p).body[j], j, p, πµ)

(iii) πµ(_start) 6= ⊥ ∧ πµ(_start).npar = |πµ(_start).uses| = 0
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Configuration

We define the configuration of a MASM machine.

Definition 31 (MASM configuration) The state of the MASM machine cµ is a record

cµ = (c,m) ∈ CMASM

with a memory component m : B32 → B8 and a MASM core c ∈ KMASM that contains the
following sub-components.

• c.cpu : KMIPS - the state of the MIPS processor core

• c.stack : StackMASM - a stack abstraction (to be defined below)

• c.π : ProgMASM - a MASM program

• c.SBA : B32 - the stack base address, from where on the stack is stored in memory

We use shorthands sµ, πµ, and SBAµ for the respective components cµ.c.stack , cµ.c.π,
and cµ.c.SBA. By hµ ∈ HMIPS we denote a projection from MASM to ISA state which is
defined as follows.

hµ.c = cµ.c.cpu ∧ hµ.m = cµ.m

Note that πµ and SBAµ are static components of the configuration, i.e., they do not
change their values and can thus be seen as parameters for executing MASM compu-
tations. Also note that we altered the definition of MASM state compared to [Sha12].
In particular we embedded our MIPS ISA configuration in the MASM state and ex-
plicitely modeled parameters πµ and SBAµ as part of CMASM. Out of convenience hµ
still contains the program counter although it is never used in the MASM semantics.

Definition 32 (MASM Stack) The stack of a MASM configuration consists only of a no-
frame when the stack is not set up. Then we only save the current procedure’s name p and the
current location loc in its body.

frameno
MASM ≡ (p : Names, loc : N)

Otherwise the stack is modeled as a list of dynamic MASM stack frames.

frameMASM ≡ (p : Names, loc : N, pars : (B32)∗, saved : (B32)∗, lifo : (B32)∗)

Besides the procedure name and current location of the program execution we store the following
information.

• pars - contains a list of parameters passed to an instance of p.

• saved - is a buffer to store the contents of callee-save registers. Note that in MASM
semantics the callee-save registers defined in the uses list of a procedure will be saved
automatically on calling that procedure and restored when returning from that procedure.
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lifoi[l]

...

lifoi[1]

...

πµ(pi)

uses inpar i

body i

cµ.c

· · ·

· · ·

gpr [05]

spr [05]

gpr [15]

spr [15]

sµ

sµ[top]

sµ[1]

sµ[i]

loci

pi

cµ.c.cpu

...

...

...

cµ.m

cµ

SBAµ

· · ·

pc

· · · 032132

parsi[1]

pars i[n]

saved i[m]

saved i[1]

Figure 16: Illustration of the MASM configuration with a set up stack. The top of the
lifo in frame i is indexed by 1. We have l = |lifoi|, m = |uses i|, and n = npar i.
The next statement to be executed in frame i is selected according to loci from
entry pi in the procedure table. CPU component pc is not used in MASM.

• lifo - serves as the actual stack component which is used to store temporary data and
procedure input parameters in a last in, first out manner.

Thus the stack type is defined as follows.

StackMASM ≡ frameno
MASM ∪ frame∗MASM

See Fig. 16 for an illustration of the MASM confguration. Formally the MASM stack is
set up if we have at least one proper MASM frame in the stack component, which we
denote by the following predicate.

is set up(cµ)
def≡ sµ ∈ frame∗MASM ∧ |sµ| > 0

For /is set up(cµ) the stack consists only of a no-frame. In case it is set up, the top stack
frame is the last element in sµ. We abbreviate its index by top ≡ |sµ|. We speak of an

86



4.2 Macro Assembly

empty stack if it is set up with only one frame, that has an empty lifo as well as empty
buffers for saved registers and input parameters.

is empty(cµ)
def≡ is set up(cµ) ∧ top = 1 ∧ sµ[1].lifo = sµ[1].saved = sµ[1].pars = ε

We use the abbreviations given below if the stack is set up.

pi ≡ sµ[i].p loci ≡ sµ[i].loc
pars i ≡ sµ[i].pars saved i ≡ sµ[i].saved
lifoi ≡ sµ[i].lifo npar i ≡ πµ[pi].npar
body i ≡ πµ[pi].body uses i ≡ πµ[pi].uses

If the stack is not set up, p1 and loc1 denote the components sµ.p and sµ.loc and we have
top ≡ 1. Using these shorthands we define the current instruction I(cµ) to be executed
in configuration cµ.

I(cµ)
def≡ body top [loctop ]

Observe that this is short for cµ.c.π[cµ.c.s[|cµ.c.s|].p].body [cµ.c.s[|cµ.c.s|].loc], so it seems
we have found the right abbreviations to argue about MASM configurations in a suc-
cinct way.

Definition 33 (Well-formed MASM configuration) A MASM configuration cµ is well-
formed if it (i) contains a well-formed MASM program, if (ii) the current procedure information
and location counter are well-defined, and if (iii) for all stack frames exactly the specified number
of parameters and callee-save registers are stored in the corresponding components.

wf MASM(cµ) ≡ (i) wfprogMASM(πµ)

(ii) ∀i ∈ [1 : top]. πµ(pi) 6= ⊥ ∧ loci ∈ [1 : |body i|]
(iii) is set up(cµ) =⇒ ∀i ∈ [1 : top]. |pars i| = npar i ∧ |saved i| = |uses i|

Note that the last condition is necessary not only to have well-defined semantics, but
also to be able to implement the abstract stack in memory where only a limited amount
of space is reserved for storing the parameters and callee-save registers of a procedure.
Theoretically the size of the lifo is not bounded, however in the section about simulation
between MASM and ISA, we will bound the size of the lifo, and the stack respectively.

MIPS Assembler Calling Convention

The call procedure in MASM follows certain conventions that shall be described below.
First of all certain general purpose registers of the MIPS processor core have special
meaning. The details are depicted in Table 4.3. Note that this is a different setting than
in [Sha12]. We changed the register association to adapt it to the MIPS o32 calling con-
vention [The06]. In particular the stack and base pointers are now stored in registers
29 and 30. The number of registers used for input parameters is limited to four and
the return value of a procedure call is stored in register 2. We omitted the possibility of
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Alias 〈Index〉 Usage
zero 0 always contains 032

t1 1 temporary values
rv 2 procedure return value
t2 3 temporary values
i1 . . . i4 4, . . . , 7 input arguments for procedure calls
t3 . . . t14 8 . . . 15, 24 . . . 27 temporary values
sv1 . . . sv8 16 . . . 23 callee-save registers
gp 28 global memory pointer
sp 29 stack pointer
bp 30 stack frame base pointer
ra 31 return address

Table 4.3: Intended usage of the 32 general purpose registers in MASM for MIPS

64-bit return values that would be stored in two registers. Also registers 26 and 27 do
not have any special meaning in the framework of this thesis. However we introduced
the pointer to the global memory region that is stored in register 28. We explicitely state
which registers are the callee-save registers (16-23) that must be preserved across pro-
cedure calls by the programmer. Note that stack and base pointers as well as the return
address are only relevant for the implementation of the MASM semantics in MIPS ISA,
as MASM abstracts from the actual stack structure and from program-counter-based
control-flow. Later we will have software conditions that forbid MASM programs ac-
cessing these registers.

Concerning the procedure call we have four calling conventions CC.1 to CC.4. They
read as follows.

CC.1 In a procedure call up to four input parameters may be passed through the gen-
eral purpose registers i1 to i4.

CC.2 Excess parameters must be passed via the caller’s lifo. Parameters must be pushed
on the stack in reverse order such that in the end the first excess parameter, i.e.,
the fifth parameter, resides on the top of lifo. In the implementation of the stack
there is space reserved for the input parameters passed through the four registers.
Thus the size of the memory region in the implementation devoted to storing the
parameters of stack frame i is actually always equal to npar i. All excess param-
eters that were pushed on the stack when there were more than four inputs to
procedure p are consumed (popped) from the lifo by a call of p and become part
of the parameter space of the new stack frame.

CC.3 Before the return from a called procedure p all callee-save registers of p as well
as the global memory pointer gp must be restored with the contents they had
when p was entered. This must also be guaranteed for sp, bp, and ra by every
MASM implementation. Instead of adding code for the saving and restoring of
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callee-save registers to the body of p, the programmer may specify any modified
callee-save register in the uses list of p. Then the compiler takes care of saving
and restoring these registers.

CC.4 The return value from a procedure call is passed through register rv.

Within a MASM program execution the programmer-independent parts of these con-
ventions are obeyed by the Macro Assembler semantics and its implementation by con-
struction. However, they become very important as soon as we mix MASM with other
higher languages such as C and treat inter-language calls and returns. Later we will
use a similar calling convention for the implementation of C-IL programs, thus allow-
ing in principle for calling C-IL programs from MASM and vice versa. Indeed, Andrey
Shadrin established such a mixed C-IL+MASM semantics [Sha12].

Transition Function

We execute MASM programs using the transition function:

δMASM : CMASM → (CMASM ∪ {⊥})

It maps MASM configurations cµ either to the next state c′µ or to a fail-state ⊥ in case
a software condition was violated. These software conditions prevent the following
situations that we consider run-time errors:

1. A stack instruction, i.e., push, pop, lparam, and sparam, or a procedure call,
resp. return (ret), are executed while the stack is not set up.

2. The stack registers sp or bp are accessed while the stack is set up and not empty.

3. A pop instruction targets an empty lifo.

4. The return address register ra is accessed at any time.

5. The assembly code does produce an exception, i.e., an illegal instruction execu-
tion, misalignment, or overflow occurred.4

For the first three conditions we distinguish whether the stack is set up or not. In the
latter case the following predicate detects run-time errors.

viono
MASM(cµ)

def≡ /is set up(cµ) ∧ ∃P, r, i. I(cµ) ∈
{

push r,pop r,lparam r i,
sparam r i,call P,ret

}

Popping from an empty lifo is denoted as follows.

pop empty(cµ)
def≡ I(cµ) = pop r ∧ lifotop = ε

4Note that, as we excluded MIPS control flow instructions from IMASM including sysc, there cannot be
system call interrupts. Moreover the MASM semantics presented here omits treating the external event
vector of the MIPS processor. This is treated in future work.
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In general registers can be accesses by either MASM macro instructions or regular MIPS
instructions. For some set R ⊆ N32 of register indices we can define the following
predicates denoting an access to registers from R in the next step from state cµ.

acc macro(cµ, R)
def≡ ∃r, i. I(cµ) ∈





push r,pop r,
lparam r i,
sparam r i



 ∧ 〈r〉 ∈ R

acc instr(cµ, R)
def≡ I(cµ) ∈ InocfMIPS ∧ {〈rd(I(cµ))〉, 〈rs(I(cµ))〉, 〈rt(I(cµ))〉} ∩R 6= ∅

acc(cµ, R)
def≡ acc macro(cµ, R) ∨ acc instr(cµ, R)

Then the predicate viost
MASM(cµ), denoting run-time errors 2 and 3, is defined by:

viost
MASM(cµ)

def≡ is set up(cµ) ∧ (pop empty(cµ) ∨ /is empty(cµ) ∧ acc(cµ, {sp, bp}))

We define a JISR predicate for MASM in order to detect the forbidden exceptions de-
scribed above using an empty external event vector and aligned program counter5 032.

jisr(cµ)
def≡ I(cµ) ∈ InocfMIPS ∧ jisr(hµ.c[pc := 032], I(cµ), 0256)

Finally we collect all run-time errors in the predicate

vioMASM(cµ)
def≡ viono

MASM(cµ) ∨ viost
MASM(cµ) ∨ acc(cµ, {ra}) ∨ jisr(cµ)

and we let δ evaluate to ⊥whenever such a violation occurs.

vioMASM(cµ)⇐⇒ δMASM(cµ) = ⊥

In the following we assume the absence of software condition violations and a valid
program πµ. Then the MASM instructions have the following effects.

• push r — adds the value from GPR r to the front of the lifo.

• pop r — removes the first value from the lifo and saves it in GPR r.

• lparam r i — reads the i-th parameter of the current procedure into GPR r

• sparam r i — takes the value from register r and saves it in place of the i-th
parameter of the current procedure.

• call P — calls MASM procedure P .

• ret — returns from the current MASM procedure to the caller.

5Remember that we kept the program counter in the processor core for convenience. Since we are using
the MIPS predicate jisr in the definition we need to make sure the undefined pc component does not
produce a misaligment interrupt. The actual instruction to be executed is not fetched using the pc, but
taken from the MASM program.
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• goto l — jumps to location l in the current procedure.

• ifnez r goto l — jumps to location l if the value in GPR r is not equal to zero.

The effects of plain MIPS assembly instructions are unchanged and we rely on the def-
initions of our MIPS ISA model in case I(cµ) ∈ InocfMIPS, using the shorthand

h′µ ≡ δinstr (hµ, I(cµ))

to denote the next state of the processor configuration. Note that we are not using the
program counter to determine the MIPS instruction to be executed next. Instead it is
loaded from the current location in the program code. In the following we define the
MASM semantics separately for each component. This complements the definition of
[Sha12], where the semantics are specified with a focus on the different MASM opera-
tions. Let c′µ = δMASM(cµ) denote the next MASM configuration.

c′µ.m =

{
h′µ.m : I(cµ) ∈ InocfMIPS

cµ.m : otherwise

Abstracting from the stack region, the physical memory is only updated by plain as-
sembly instructions. Also special purpose registers cannot be modified by macro steps.

c′µ.c.cpu.spr =

{
h′µ.c.spr : I(cµ) ∈ InocfMIPS

hµ.c.spr : otherwise

We do not define a new value for the program counter here, because we completely
abstract from this control flow entity via the goto and ifnez macros and no MIPS
control-flow instructions are not in InocfMIPS. For all r ∈ B5 we define the next state of the
general purpose register. In case of plain assembly instructions we procede as above.
Macro instructions that can modify GPRs are

1. pop r, which pops a value from the lifo into register r,

2. lparam r i, which reads parameter i of the current procedure and stores it in
register r, and

3. ret, which returns from a procedure call, thus restoring all callee-save registers
specified in the corresponding uses list according to CC.3. Moreover we havoc
all other registers besides zero and rv with an unspecified boolean value U , thus
preventing the programmer from relying on the content of any register that is not
callee-save after a procedure call and return.

4. call P , which performs a procedure call. Similarly to the case of ret we havoc
all registers on whose values the programmer of the callee function should not
rely on after returning from the function call. This also serves to hide imple-
mentation details of the call routine since we do not disclose the values of the
temporary registers after the procedure call was executed.
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Let CS ≡ {sv1, . . . , sv8, gp} be the indices of the registers whose values must be restored
by the MASM programmer before returning from a procedure. Moreover let function
npr(P ) = min{4, πµ[P ].npar} compute the number of input parameters passed in reg-
isters to a given procedure P in the MASM program.

c′µ.c.cpu.gpr(r) =





h′µ.gpr(r) : I(cµ) ∈ InocfMIPS

lifotop [1] : I(cµ) = pop r

pars top [i] : I(cµ) = lparam r i

saved top [j] : I(cµ) = ret ∧ 〈r〉 ∈ CS ∧ uses top [j] = r

U : U ∈ B32 ∧


I(cµ) = ret ∧ 〈r〉 /∈ CS ∪ {zero, rv}
∨ ∃P. I(cµ) = call P

∧ 〈r〉 /∈ CS ∪ {zero, i1, . . . , inpr(P )}




hµ.gpr(r) : otherwise

The stack component remains to be treated. First of all we state when the number of
stack frames is modified. Only by call and ret statements it can be incremented, or
decremented respectively.

|c′µ.c.stack | =





|sµ|+ 1 : ∃P. I(cµ) = call P

|sµ| − 1 : I(cµ) = ret

1 : sµ ∈ frameno
MASM

|sµ| : otherwise

A switch between no-frames and set-up stacks can only occur when one of the stack reg-
isters sp and bp is modified. Note that for violation-free programs this is only allowed
when the stack is empty or not set up. This mechanism is useful for initialization of the
stack by the _start procedure which has no inputs and an empty uses list. The stack
is then considered to be set up iff both stack and base pointer point to the base address
of the first frame in memory which is located one word below the stack base address in
case there are no input parameters (cf. Fig. 17). We overload the is set up predicate for
MIPS configuration h, and a stack base address sba .

is set up(h, sba)
def≡ h.gpr(sp) = h.gpr(bp) = sba −32 432

Then the stack set up and destruction is modeled as follows.

c′µ.stack ∈
{

frameMASM : is set up(h′µ,SBAµ)

frameno
MASM : /is set up(h′µ,SBAµ)

This definition covers also the cases where the stack type does not change. While the
stack is set up and has type frame∗MASM registers sp and bp contain SBAµ −32 432. Sim-
ilarly, while these registers do not point to the base of the start frame the stack keeps
type frameno

MASM.
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Now we define the five stack components for the next state. We use primed versions
of the shorthands for procedure parameters and stack components in frame i when we
refer to them wrt. configuration c′µ. The definitions are made for all frames i ∈ N within
the following ranges.

sµ ∈ frameno
MASM =⇒ i = 1

∃P. I(cµ) = call P =⇒ i ∈ [1 : |sµ|+ 1]
I(cµ) = ret =⇒ i ∈ [1 : |sµ| − 1]

otherwise =⇒ i ∈ [1 : |sµ|]

We define the location and procedure in frame i of c′µ as follows.

loc′i =





1 : ∃P. I(cµ) = call P ∧ i = top + 1

l : i = top ∧ ( I(cµ) = goto l

∨ ∃r. I(cµ) = ifnez r goto l ∧ hµ.gpr(r) 6= 032 )

loci : i < top

loci + 1 : otherwise

The location is only modified in the top frame or set to one in new frames that are
created at a procedure calls. If no control-flow macro is executed the location is simply
incremented.

p′i =

{
P : I(cµ) = call P ∧ i = top + 1

pi : otherwise

We only set the procedure of a new stack frame created during a procedure call.

The next state for components pars , saved and lifo is only defined if is set up(c′µ) holds,
i.e., if the stack is set up or not being destroyed by the step. Let npar ′i = πµ(p′i).npar in:

pars′i[j] =





hµ.gpr(r) : I(cµ) = sparam r j ∧ i = top

lifotop [j − 4] : ∃P. I(cµ) = call P

∧ j ∈ (4 : npar ′i] ∧ i = top + 1

U : U ∈ B32 ∧ j ∈ Nnpar ′i
∧(

∃P. I(cµ) = call P ∧ i = top + 1

∨ /is set up(cµ) ∧ is set up(c′µ) ∧ i = 1

)

pars i[j] : otherwise

The parameters component can be updated with a register value via sparam to store
away an input parameter to the stack. Moreover it is written upon a procedure call to
pass excess parameters for which there are no more registers available and to reserve
space for the parameters passed through registers. Its values are also unspecified when
the stack is being set up. Note that compared to [Sha12] we changed the order in which
values are saved in the lifo. The head is now lifo[1] which makes the formulation of

93



4 Cosmos Model Instantiations

parameter passing easier. Using uses ′i = πµ(p′i).uses we define the next state for the
callee-save registers component.

saved ′i[j] =





hµ.gpr(uses ′i[j]) : ∃P. I(cµ) = call P ∧ i = top + 1 ∧ j ≤ |uses ′i|
U : /is set up(cµ) ∧ is set up(c′µ) ∧ U ∈ B32 ∧ i = 1

saved i[j] : otherwise

The components to store callee-save registers are only modified in the newly created
frame of a procedure call. We save the register values according to the corresponding
uses list. Upon stack setup, the content of saved is unspecified. The lifo is manipulated
in the obvious way by push and pop operations. When the stack is set up and in
a newly called frame it is empty. When we call a procedure all parameters passed
through lifo are popped.

lifo′i =





hµ.gpr(r) ◦ lifoi : ∃r. I(cµ) = push r ∧ i = top

tl(lifoi) : ∃r. I(cµ) = pop r ∧ i = top

ε : /is set up(cµ) ∧ is set up(c′µ) ∧ i = 1

∨ ∃P. I(cµ) = call P ∧ i = top + 1

pop(lifoi,npar ′i+1 − 4) : ∃P. I(cµ) = call P ∧ npar ′i+1 > 4 ∧ i = top

lifoi : otherwise

This completes the definition of MASM semantics.

4.2.2 MASM Assembler Consistency

We do not present an implementation of MASM in the scope of this thesis but just
assume a function

asm : IMASM → I∗MIPS

which represents the code generation function of the assembler. For a given MASM
statement s it returns a sequence of MIPS instructions that is supposed to implement s.
A sketch of a realisation of asm for VAMP ISA can be found in [Sha12]. Although we do
not specify a MIPS assembler here, we nevertheless want to reproduce the assembler
consistency relation for our MIPS-based MASM semantics using the same stack layout
as in [Sha12] which we define below.

Stack Layout

The implementation of the stack in memory is depicted in Fig. 17. There we can identify
the following structure of a frame. Note that the stack is growing from top to bottom.

• A MASM frame i in memory is identified by a base address base(i)32.
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base(top)32

low memory

high memory ...

...

...

...

frame 1

frame top

frame i

sp

bp

...

...

...

saved i[1]

lifoi[1]

ra(i)

pbp(i)

lifoi[|lifoi|]
saved i[|uses i|]





parameter space

}
frame header





callee-save area





temporary data

SBAµ

pars i[npar i]

pars i[1]

base(1)32

base(i)32

Figure 17: Illustration of the MASM stack layout in memory. The base address of each
frame is shown as a dashed line. Note that for some procedures the areas
reserved for parameters, callee-save registers and the lifo may have size zero.

• Below the base address we store the callee save registers. We also have space
reserved for storing callee-save registers on the lowest frame i = 1, which was
not the case in [Sha12].

• Below the saved i data the lifoi stack for temporary data and parameters is located,
growing also towards the bottom of the stack area.

• Parameters j > 4 for a call of pi are pushed on the lifo of the caller in reverse order.
Upon the call they become part of stack frame i, thus they are located above the
base address base(i). We also reserve room for up to four parameters being passed
through registers.

• Below the parameter space resides the frame header. It contains first the return
address, which specifies where instruction execution should continue when the
return statement of pi is invoked. The field of the header below the return ad-
dress is allocated at the base address base(i) of the frame. It contains a link to the
previous frame base and is thus called previous base pointer (pbp).

• Finally we keep the top stack frame base in the base pointer register bp. The stack
pointer register sp identifies the top element of lifotop .

• All addresses of stack components are word-aligned.
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The space between base addresses of frames i and i+1 contains the saved registers and
the lifo of frame i as well as the parameters and frame header for i + 1. We compute
this distance for i ∈ [1 : top) as follows.

dist(i) ≡ |uses i|+ |lifoi|+ npar i+1 + 2

Then the base address of frame i is easily defined recursively. In the base case we have
an offset from the stack base address for the parameters and return address passed to
the first function frame. Note that for convenient notation we model the base addresses
as natural numbers first. Later on a conversion of numbers x to bit strings x32 will be
unavoidable.

base(i) ≡
{
〈SBAµ〉 − 4 · npar1 − 4 : i = 1

base(i− 1)− 4 · dist(i− 1) : i ∈ (1 : top]

The return address and previous base pointer of frame i ∈ [1 : top] wrt. some ISA
configuration h that implements the MASM program are denoted by:

ra(i) ≡ h.m4((base(i) + 4)32) pbp(i) ≡ h.m4(base(i)32)

Assembler Information

To define the assembler consistency relation and a simulation theorem for MASM we
need to know more about the assembling process of a program πµ than only the stack
layout. In [Sha12] for this purpose an assembler information structure infoµ ∈ InfoT MASM

was introduced. We resemble its definition with slight technical modifications below.

• infoµ.code ∈ I∗MIPS — A list of MIPS instructions representing the assembled pro-
gram.

• infoµ.off : Names × N → N0 — A function calculating the offset in the compiled
code of the first instruction which implements a statement at the specified location
in the given procedure. Note that offset 0 refers to instruction infoµ.code[1].

• infoµ.cba ∈ B32 — the start address of the code region in memory

• infoµ.mss ∈ N — the maximal stack size as a number of words

The first two components are depending on the assembler while the latter two must be
specified by the programmer. We treat them as assembling information anyway.

Simulation Relation

We want to relate a MASM configuration cµ to an ISA state h that implements the pro-
gram πµ using infoµ. Formally we thus define a simulation relation

consisMASM(cµ, infoµ, h)
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stating the consistency between these entities. It is split in two sub-relations covering
control and data consistency. The first part talks about control-flow and is thus con-
cerned with the program counter and the return address. Let the following function
compute the start address of the compiled code for the MASM statement at position loc
in procedure p.

adr(infoµ, p, loc)
def≡ infoµ.cba +32 (4 · infoµ.off (p, loc))32

Definition 34 (MASM Control Consistency) We define MASM consistency sub-relation
consiscontrolMASM, which treats the control-flow aspects of coupling a MASM configuration cµ with
an implementing MIPS configuration h taking into account compiler information infoµ. It
states that (i) the program counter of the MIPS machine must point to the start of the compiled
code for the current statement in the MASM machine. In addition (ii) the return address of any
stack frame is pointing to the compiled code for the next statement in the previous frame.

consiscontrolMASM(cµ, infoµ, h) ≡ (i) h.pc = adr(infoµ, ptop , loctop)

(ii) is set up(cµ) =⇒
∀i ∈ (1, top]. ra(i) = adr(infoµ, pi−1, loci−1)

Data consistency is split into several parts covering registers, the memory, the code
region as well as the stack. Register consistency is straight forward except for the stack
and base pointers. For them the base pointer points to the base address of the top frame
while the stack pointer points to the top element of the lifo in the top frame in case the
stack is set up. Let stktop = (base(top)− 4 · (|uses top |+ |lifotop |))32 in:

consisbpMASM(cµ, h)
def≡ h.gpr(bp) =

{
base(top)32 : is set up(cµ)

hµ.gpr(bp) : otherwise

consisspMASM(cµ, h)
def≡ h.gpr(sp) =

{
stktop : is set up(cµ)

hµ.gpr(sp) : otherwise

Remember here that hµ is the projection of cµ to an ISA configuration. Note also that
above we do not specify the values of stack and base pointer after returning from the
lowest stack frame. Calling convention CC.3 however demands that they have the same
values as when the MASM program was started. Therefore this issue becomes an addi-
tional verification condition on the compiler, when considering a mixed programming
language semantics where different programs may call each other [Sha12].

Besides stack pointer, base pointer and return address register ra , all other registers
always we have the same contents in ISA and MASM configuration. The return address
register is used only by the implementation on the MIPS layer and may not be accessed
by the MASM programmer, hence we do not need to specify a coupling relation for it.

consisregsMASM(cµ, h)
def≡

∀r ∈ B5. (r /∈ {sp, bp, ra} =⇒ h.gpr(r) = hµ.gpr(r)) ∧ h.spr(r) = hµ.spr(r)
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Definition 35 (MASM Code Consistency) For code consistency we require that (i) the as-
sembled code in the assembler information is actually corresponding to the MASM program and
that (ii) the assembled code is converted to binary format and resides in a contiguous region in
the memory of the MIPS machine starting at the code base address. Let

ad j = (〈infoµ.cba〉+ 4 · j)32

be the memory address of instruction j of the compiled program, then we define consiscodeMASM by:

consiscodeMASM(cµ, infoµ, h)
def≡

(i) ∀p ∈ Names, l. πµ(p) 6= ⊥ ∧ l ∈ [1 : |πµ(p).body |]
=⇒ infoµ.code[infoµ.off (p, l) + 1] = asm(πµ(p).body [l])

(ii) ∀j ∈ [0 : |infoµ.code|). infoµ.code[j + 1] = decode(h.m4(ad j))

Observe that the latter property forbids self-modifying MASM programs in case infoµ
is fixed for a simulation between the MIPS and MASM machines.

Definition 36 (MASM Stack Consistency) We have consistent stacks, if for every stack frame
(i) the lifo, (ii) the saved registers, and (iii) the parameters are correctly embedded into the stack
region according to the stack layout. Moreover (iv) in every frame except the lowest one the
previous base pointer field contains the address of the base of the frame above.

consisstackMASM(cµ, h) ≡ ∀i ≤ top.

(i) ∀j ∈ N|lifoi|. h.m4((base(i)− 4 · (|uses i|+ |lifoi|+ 1) + 4j)32) = lifoi[j]

(ii) ∀j ∈ N|usesi|. h.m4((base(i)− 4j)32) = saved i[j]

(iii) ∀j ∈ Nnpar i . h.m4((base(i) + 4 + 4j)32) = pars i[j]

(iv) i > 1 =⇒ pbp(i) = base(i− 1)32

We use the shorthands CR and StR to represent the code region, or the region where the
stack is allocated respectively. Let mspµ ≡ 〈SBAµ〉−infoµ.mss+1 be the minimal integer
value of the stack pointer (which should be non-negative for meaningful applications).
Then we define:

CR ≡ [〈infoµ.cba〉 : 〈infoµ.cba〉+ 4 · |infoµ.code|) StR ≡ [mspµ : 〈SBAµ〉]

In the MASM semantics we abstract from the assembled code by πµ and from the stack
region by sµ. However when the stack is not set up we allow the stack region to be ac-
cessed in the area of the first stack frame for the _start procedure. This area SF (start
frame) contains only the frame header, since _start does not take input parameters
and has an empty uses list.

SF ≡ [〈SBAµ〉 − 4 : 〈SBAµ〉]
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Now we demand memory consistency for all addresses but the code region and the
remaining part of the stack region. This means conversely that the contents of these
regions in the MASM semantics are meaningless.

consismem
MASM(cµ, infoµ, h)

def≡
∀ad ∈ B32. 〈ad〉 /∈ CR ∪ (StR \ SF ) =⇒ h.m(ad) = hµ.m(ad)

Definition 37 (MASM Data Consistency) The data consistency relation comprises the con-
sistency between MIPS and MASM machine wrt. (i) stack pointer, (ii) base pointer, (iii) all other
registers besides ra , (iv) the code region, (v) the stack, and (vi) the memory.

consisdataMASM(cµ, infoµ, h) ≡
(i) consisbpMASM(cµ, h) (iv) consiscodeMASM(cµ, infoµ, h)

(ii) consisspMASM(cµ, h) (v) consisstackMASM(cµ, h)
(iii) consisregsMASM(cµ, h) (vi) consismem

MASM(cµ, infoµ, h)

Finally we define the overall simulation relation between MASM and MIPS as the con-
junction of control and data consistency.

consisMASM(cµ, infoµ, h)
def≡ consiscontrolMASM(cµ, infoµ, h) ∧ consisdataMASM(cµ, infoµ, h)

Simulation Theorem

As we pointed out above the stack and code region of memory is not modeled in the
MASM configuration as we abstract it to sµ, and πµ respectively. Thus any memory
access to these areas could potentially break the MASM simulation. Moreover if the
stack grows too big to fit into the stack region (stack overflow) the simulation breaks
as well. As these issues are related to the simulation by the MIPS implementation and
thus cannot be detected without knowing infoµ, they are not covered by vioMASM(cµ).

A stack overflow occurs if the top element of lifotop is stored at a location below the
address specified by the minimal stack pointer value, i.e., outside of the stack region.
Remember here that the stack is growing downwards.

stackovf (cµ, infoµ)
def≡ base(top)− 4 · (|uses top |+ |lifotop |) < mspµ

Self-modification or a direct stack accesses outside of the start frame are considered bad
memory accesses and the start frame may only be accessed when the stack is not set up.
Generally, memory can only be accessed by MIPS ISA memory instructions, since the
macros work only on the stack abstraction and registers. With ea ≡ ea(hµ.c, I(cµ)), let

W (cµ)
def≡
{
{ea, . . . , ea +32 332} : sw(I(cµ)) ∨ swap(hµ, I(cµ))

∅ : otherwise
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be the addresses written by such a MIPS instruction in the MASM program. The ad-
dresses read by MASM statements can be obtained using the MIPS reads-set function
R and we define a predicate to detect bad memory accesses.

badmemop(cµ, infoµ)
def≡ I(cµ) ∈ InocfMIPS ∧mem(I(cµ))∧

∃a ∈ R(hµ.c, I(cµ)) ∪W (cµ). 〈a〉 ∈ CR ∪ StR \ SF ∨ is set up(cµ) ∧ 〈a〉 ∈ SF

We sum up the MASM software conditions below.

Definition 38 (MASM Software Conditions) A MASM program execution can only be
simulated by a MIPS ISA implementation if all reachable configurations obey the software con-
ditions denoted by the following predicate. Given a MASM configuration cµ and assembler
information infoµ, then (i) the next step may not produce a run-time error, (ii) the stack may
not overflow nor be configured to wrap around at address 032, and (iii) the next step must not
access the stack or code region directly.

scMASM(cµ, infoµ) ≡ (i) δMASM(cµ) 6= ⊥
(ii) /stackovf (cµ, infoµ) ∧mspµ ≥ 0

(iii) /badmemop(cµ, infoµ)

Complementing the MASM software conditions we also define conditions for the MASM
program execution on the MIPS level requiring that the assembled code is well-behaved.
In particular here this means that it should not cause any interrupts. This can however
only be achieved for suitable schedules of the MIPS machine where no non-maskable ex-
ternal interrupts (i.e., reset) do occur. For a given MIPS external event vector eev ∈ B256

we define predicate

suitMASM
MIPS (eev)

def≡ eev [0] = 0

which should hold for external event vectors of an implementing MIPS schedule. The
absence of maskable external interrupts can be guaranteed by disabling all external
interrupts for p. We define a well-formedness predicate for a MIPS configuration that
allows MASM simulation without being interrupted by devices.

wf MASM
MIPS (h)

def≡ h.c.spr(sr)[dev] = 0

Moreover in the code generation, especially for the macros, one has to take care that no
misaligned or illegal code is produced. In order to maintain the aforementioned code
invariant, we also demand that instructions are only fetched frmo the code region. Then
we can demand that a MIPS computation step is well-behaved for MASM simulation
by the following predicate.

wbMASM
MIPS (h, eev)

def≡ /jisr(h.c, I(h), eev) ∧ [〈h.c.pc〉 : 〈h.c.pc〉+ 3] ⊆ CR
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Note, that wbMASM
MIPS (h, eev) implies suitMASM

MIPS (eev). In our generalized simulation theory
to be introduced in Sect. 5.2, the concepts of good behaviour of an implementation and
suitability of inputs need not be connected. Suitability here is a necessary condition on
the scheduling of external reset signals such that a simulation of MASM is possible in
the first place. On the other hand, good behaviour of the implementation is something
that the MASM simulation theorem guarantees for suitable schedules, namely that the
computation is not interrupted at all and we only fetch from the code region.

We now can state our sequential simulation theorem between MASM and MIPS. In
fact we only specify the simulation of one MASM step, which can be used for the in-
duction step in a simulation between MIPS and MASM computations.

Theorem 2 (Sequential MASM Simulation Theorem) Given a MASM starting configu-
ration cµ0 ∈ CMASM that is (i) well-formed, a MIPS configuration h0 ∈ HMIPS that is (ii)
well-formed for MASM simulation and (iii) consistent to cµ0 wrt. some infoµ ∈ InfoT MASM.If
(iv) the next step from cµ0 fulfills the MASM software conditions and leads into a well-formed
MASM state,

∀cµ0, h0, infoµ . (i) wf MASM(cµ0)

(ii) wf MASM
MIPS (h0)

(iii) consisMASM(cµ0, infoµ, h0)

(iv) scMASM(cµ0, infoµ) ∧ wf MASM(δMASM(cµ0))

then there exists an ISA computation that (i) starts in h0 and leads into a well-formed state
that is (ii) consistent with the MASM state obtained by stepping cµ once. Moreover (iii) the
implementing ISA computation is well-behaved and uses only suitable external event vectors
where reset is off.

=⇒ ∃h ∈ H∗, n ∈ N0, eev ∈ (B256)∗.
(i) h1 = h0 ∧ h1 −→n

δMIPS,eev
hn+1 ∧ wf MASM

MIPS (hn+1)

(ii) consisMASM(δMASM(cµ0), infoµ, hn+1)

(iii) ∀i ∈ Nn. wbMASM
MIPS (hi, eev i) ∧ suitMASM

MIPS (eev i)

Given the code generation function of a MASM assemler, we can prove this theorem by
a case split on the next MASM statement, arguing about the correctness of the generated
code. The theorem allows us to map any uninterrupted sequential MIPS ISA compu-
tation which is running out of a consistent configuration to a corresponding MASM
computation, because due to determinism there is only one possible computation that
the MIPS ISA can perform, namely the one which is simulating the MASM program
execution.

Hypothesis (iv) demands that the MASM configuration resulting from the simulated
step is well-formed. The well-formedness of a MASM configuration depends only on
the well-formedness of the fixed program πµ and on the size of the parameter and
callee-save components in each stack frame. Hence it should be an easy lemma to show
that the MASM semantics preserves well-formedness, however we do not present a
proof in this thesis.
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4.2.3 Concurrent MASM

Finally we want to instantiate our Cosmos model with the MASM semantics, establish-
ing a concurrent system of n MASM computation units. Therefore we define a Cosmos
machine SnMASM ∈ S below. Later on (cf. Section 5.6.1) we want to prove a simu-
lation between SnMASM and SnMIPS using the sequential simulation defined above in a
concurrent setting. Moreover while all MASM units share the same program, they are
running on different stacks with different stack base addresses but the same length. For
the instantiation we therefore need to know π ∈ ProgMASM, infoµ ∈ InfoT MASM, and
SBAr ∈ B32 for all units r ∈ Nn. For easy composition of the sequential simulation
theorems we demand that the stacks must not overlap. We (re)define functions

CR ≡ [〈infoµ.cba〉 : 〈info.cba〉+ 4 · |infoµ.code|)
StRr ≡ (〈SBAr〉 − infoµ.mss : 〈SBAr〉]
SF r ≡ [〈SBAr〉 − 4 : 〈SBAr〉]

to denote the individual regions for stack and start frame. Then the disjointness of stack
regions is easily defined by:

∀q, r ∈ Nn. q 6= r =⇒ StRr ∩ StRq = ∅

We now define the components of SnMASM one by one.

• SnMASM.A = {a ∈ B32 | 〈a〉 /∈ CR ∪ ⋃n
u=1 StRu \ SFu} and SnMASM.V = B8 — we

have the same memory for the MASM system as the MIPS system, except that
we cut out the forbidden address ranges for the MASM stack and code. Thus the
condition /badmemop demanded for MASM simulation is mostly covered by the
ownership policy since it requires that accessed addresses must lie in A. Only for
the SFu it must be checked that it is not accessed while the stack is set up.

• SnMASM.R = ∅— since we cut out the code region from memory we do not need
to make it read-only as in the MIPS instantiation. One could however think of
global constants that are shared between the computation units. In such a case
the constants’ memory locations could be included here to prevent them via the
ownership policy from write accesses.

• SnMASM.nu = n — We have n MASM computation units.

• SnMASM.U = KMASM ∪ {⊥}— each computation unit is a MASM core, containing
the CPU registers, the stack, program, and stack base address. We also include
a fail-state ⊥ to record run-time errors. Every unit r must be initially instanti-
ated with program π and stack base address SBAr. If C0 ∈ CSnMASM

is the initial
configuration of a MASM Cosmos machine then we have:

∀r ∈ Nn. C0.ur.π = π ∧ C0.ur.SBA = SBAr
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• SnMASM.E = {ε} - in MASM we do not have any external inputs, however because
many functions in the Cosmos model are define for some input, we provide a
dummy one.

• SnMASM.reads — as we abstract from instruction fetch and stack memory accesses
we only read memory via regular MIPS memory instructions. Thus we can reuse
notation from the MIPS instantiation.

SnMASM.reads(u,m, ε) = R(c.cpu, I(u,m))

Note above that a pair (u,m) ∈ SnMASM.U × (SnMASM.A → SnMASM.V) has exactly
type CMASM. Thus we can use it instead of a MASM configuration cµ.

• SnMASM.δ — naturally we employ MASM transition function δMASM in the instan-
tiation, however, like in the MIPS case, we need to fill the partial memory that is
given to the SnMASM.δ as an input with dummy values, so that we can apply δMASM

on it. Then with (u′,m′) = δMASM(u, dme) we can define the transition function
for MASM computation units which returns the same new core configuration u′

and the updated part of memory m′|W (u,dme).

SnMASM.δ(u,m, ε) = (u′,m′|W (u,dme))

If δMASM returns ⊥ or u = ⊥, then also SnMASM.δ(u,m, ε) = ⊥.

• SnMASM.IO — for concurrent MASM we assume a scenario where there are two
ways to access shared memory. One way is to use the Compare-and-Swap in-
struction of the MIPS ISA. Moreover there is a set of 32-bit global variables that
are shared between the MASM computation units. As also read and write in-
structions are atomic on the MASM level these variables can be safely accessed
by regular MIPS read and write instructions without the need to acquire owner-
ship of them first. Thus they are similar to the volatile variables of C programs.

However, in order to avoid accidental shared variable accesses which are not ex-
pected by the programmer, we make the convention that the shared global vari-
ables must be accessed using the global variables pointer which is stored in reg-
ister gp. The shared global variables are then identified by a set of word offsets
offgs ( N to the global variables pointer. For some offset o ∈ offgs for instance a
store of a value in GPR r to a shared variable would then have the form:

sw r gp (4 · o)16

Formally an access to a global shared variable by an instruction I ∈ IMASM is
denoted by the predicate:

gsv(I)
def≡ mem(I) ∧ rs(I) = gp ∧ ∃o ∈ offgs . imm(I) = (4 · o)16

103



4 Cosmos Model Instantiations

Thus we define the IO predicate as follows:

SnMASM.IO(u,m, ε) = cas(I(u, dme)) ∨ gsv(I(u, dme))

For ownership-safe programs this implies that the addresses of the global shared
variables should always be in set S (or be owned by the accessing unit). Owner-
ship of other memory regions can then be obtained by using cas instructions and
locks, or by synchronizing with the concurrent MASM computation units using
lock-free algorithms based on the global shared variables.

• SnMASM.IP — for easier verification of MASM code we could choose a coarse in-
terleaving of MASM steps, i.e., have interleaving points before all IO steps. How-
ever, later we want to show how to use the Cosmos model order reduction theorem
to allow for a simulation between SnMASM and SnMIPS. Therefore we choose the in-
terleaving points to be in all MASM configurations where the consistency relation
holds with some implementing MIPS execution. As we assume that the MASM
assembler does not optimize across several MASM statements the simulation re-
lation holds actually in every MASM configuration. Hence every MASM step is
an interleaving point.

SnMASM.IP(u,m, ε) = 1

The more interesting instantiation are the interleaving-points of SnMIPS in this case.
As we will see later (cf. Section 5.6.1) there we will have to choose the set of
interleaving-point addresses (set Acp in the MIPS Cosmos machine definition) in
such a way that it contains all addresses in the code region where the assembled
code of a MASM statement begins according to the adr function.

This finishes the definition of our concurrent MASM model. However we still need to
discharge instar(S

n
MASM) which is easy because in MASM there are no serial reads due

to fetching, thus the reads-set is independent of memory.

PROOF: We have to prove the following statement for MASM core configuration u ∈
KMASM and memories m,m′ : SnMASM.A → SnMASM.V . Let R = SnMASM.reads(u,m, ε) in:

m|R = m′|R =⇒ SnMASM.reads(u,m′, ε) = R

By definition with R′ = SnMASM.reads(u,m′, ε) we have:

R = R(u.cpu, I(u,m)) R′ = R(u.cpu, I(u,m′))

Before (cf. Section 4.2.1) we already observed from the defintion of I(cµ) for cµ = (u,m):

I(u,m) = u.π[u.s[|u.s|].p].body [u.s[|u.s|].loc]

Hence we see that the current instruction is not depending on the memorym. Therefore
we have I(u,m) = I(u,m′) and R′ = R follows trivially. �
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4.3 C Intermediate Language

The MASM language introduced in the previous section does not abstract very far
from the underlying instruction set architecture. In order to instantiate our Cosmos
model with a higher-level language, in this section we introduce semantics for a sim-
plified version of C. We present the C Intermediate Language (C-IL) that was devel-
oped by S. Schmaltz [SS12] in order to justify the C verification approach applied in the
Verisoft XT hypervisor verification project [Sch13b]. Here, for brevity, we do not give
a full definition of the C-IL semantics and omit technical details like type and expres-
sion evaluation, that can be looked up in the original research documents. Instead we
concentrate on the parts which are relevant for stating a compiler consistency relation
and a simulation theorem between a C-IL computation and a MIPS implementation.
Such a compiler consistency relation and simulation theorem was already stated by
A. Shadrin for the VAMP ISA [Sha12] and we adapt it to the MIPS architecture defined
above. Moreover we fix the architecture-dependent environment parameters of C-IL
according to our MIPS model.

In what follows we first define the syntax and semantics of C-IL, then we establish
a Compiler Consistency Relation between C-IL and a MIPS implementation. Finally
we instantiate a Cosmos machine with the C-IL semantics obtaining a concurrent C-IL
model. Applying the Cosmos order reduction theorem then allows to establish a model
of structured parallel C-IL, where C program threads are interleaved only at volatile
variable accesses.

4.3.1 C-IL Syntax and Semantics

As C-IL is an intermediate representation of C, C-IL programs are not written by a
programmer but rather obtained from a C program by parsing and translation. This
allows us to focus only on essential features of a high-level programming language and
disregard a large portion of the “syntactic sugar” found in C. In essence a C-IL program
consists of type declarations, variable declarations, and a function table. The body of
each function contains C-IL statements which comprise variable assignments (that may
make use of pointer arithmetic), label-based control-flow commands, and primitives
for function calls and returns. Before we can give a mathematical definition of C-IL
programs, we need to introduce C-IL types, values, and expressions. Moreover there
are some environment parameters for C-IL program execution.

Environment Parameters

C-IL is not defined for a certain underlying architecture, nor a given class of programs,
nor a particular compiler. Thus there are many features of the environment, e.g., the
memory type, operator semantics, composite type layout, or global variable placement,
that must be seen as a parameter to program execution. In [Sch13b] this information
is collected in the environment parameter θ ∈ paramsC-IL. Here we do not list the
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components of θ in their entirety. On the one hand we fix some of the environment
parameters for our MIPS-based version of C-IL. This means in particular, that:

• the endianness of the underlying architecture is little endian (θ.endianness = little),

• pointers consist of 4 bytes, i.e., they are bit strings of length 32 (θ.sizeptr = 4),

• we only consider one compiler intrinsic function6 for executing the MIPS Compare-
and-Swap instruction (θ.intrinsics to be defined later), and

• we only use the 32-bit primitive types and the empty type7, because our MIPS
architecture does not support memory accesses with byte or halfword granularity
(θ.TP = {i32,u32,void}).

On the other hand, as we do not present the technical details of expession evaluation, a
lot of the environment information is actually irrelevant to us. Still the dependency of
certain functions on the environment parameters will be visible by taking θ as an argu-
ment. In such cases we will give explanations on what kind of environment parameters
the functions are actually depending. Nevertheless we will not disclose all the technical
details which can be found in [Sch13b].

For defining the C-IL values and transition function however we will need to refer to
two environment parameters in θ specificly:

• a mapping θ.Fadr from the set of function names to memory addresses. This
compiler-dependent function is used to convert function pointers to bit strings
and store them in memory, which can be useful for, e.g., setting up interrupt de-
scriptor tables in MIPS-86 systems.

• a mapping θ.Rextern which returns a C-IL state transition relation for external
procedures who are declared but not implemented within the C-IL program. A
call to such a function then results in a non-deterministic transition according to
the transition relation.

A more detailed description of these components shall be given when they are used.

Types

In general C-IL is based on the following sets of names.

• V — names of variables

• TC — names of composite (struct) types

• F — names fields in composite (struct) type variables

6According to [Sch13b], compiler intrinsics are pre-defined functions whose bodies are inlined into the
program code instead of creating a new stack frame, when compiling function calls. Usually intrinsics
are external functions that are implemented in assembly language.

7The empty type void is used as a return type for functions that do not return any value.
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• Fname — names of functions

Then we allow the following types in C-IL.

Definition 39 (C-IL Types) The set T of all possible C-IL types constructed inductively ac-
cording to the case split below. For any t ∈ T one of the following conditions holds.

• t ∈ {void, i32,u32}— t is a primitive type

• ∃t′ ∈ T. t = ptr(t′) — t is a pointer to a value of type t′

• ∃t′ ∈ T, n ∈ N. t = array(t′, n) — t is an array of values with type t′

• ∃t′ ∈ T, T ∈ (T \ {void})∗. t = funptr(t′, T ) — t is a function pointer to a func-
tion which takes a list of input parameters with non-empty types according to list T and
returns a value with type t′

• ∃tC ∈ TC . t = struct tC — t is a composite type with name tC

For composite types we do not store the detailed structure but just the name of the
struct. As we will see later, the field definitions for all structs is part of the C-IL program
and can thus be looked up there during type evaluation. Moreover the environment
information θ contains a parameter to determine the offsets of struct components in
memory. However we did not formally introduce this parameter as we will not use it
explicitely in the frame of this thesis.

Besides the types listed above we also have type qualifiers which give hints to the
compiler how accesses to variables with a certain qualified type shall be compiled and
what kind of optimizations can be applied.

Definition 40 (C-IL Type Qualifiers) The set of C-IL type qualifiers is defined as follows:

Q ≡ {volatile, const}
The type qualifier volatile is used in the type declaration of a variable to denote that
this variable can change its value independent of the program, therefore we also use
the name volatile variables. In particular other processes in the system like concurrent
threads, interrupt handlers or devices can also access such variables. Consequently
the compiler has to take care when compiling accesses to volatile variables in order
to make sure that updates are actually visible to the other processes, and that read
accesses do not return stale data. In other words, the value of a volatile variable should
always be consistent with its implementation in shared memory. This implies that all
accesses to volatile variables must be implemented by atomic operations. Thus there
are limitations on the kind of optimizations the compiler can possibly apply on volatile
variable accesses.

On the other hand, variables that are declared with a const type qualifier (constant
variables) are supposed to keep their value and never be modified. Thus the compiler
can perform more aggressive optimizations on accesses to these variables.

We need to extend our type definition to qualified types because in non-primitive types
we might have different qualifiers on the different levels of nesting.
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Definition 41 (Qualified C-IL Types) The set TQ of all qualified types in C-IL is constructed
inductively as follows. For (q, t) ∈ TQ we have the following cases.

• The empty type is not qualified: (q, t) = (∅,void)

• Qualified primitive type: q ⊆ Q ∧ t ∈ {i32,u32}
• Qualified pointer type: q ⊆ Q ∧ ∃t′ ∈ TQ. t = ptr(t′)

• Qualified array type: q ⊆ Q ∧ ∃t′ ∈ TQ, n ∈ N. t = array(t′, n)

• Qualified function pointer type:

q ⊆ Q ∧ ∃t′ ∈ TQ, T ∈ (TQ \ {(∅,void)})∗. t = (q, funptr(t′, T ))

• Qualified struct type: q ⊆ Q ∧ ∃tC ∈ TC . t = (q, struct tC)

Thus qualified types are pairs of a set of qualifiers (which may be empty) and a type
which may be constructed using other qualified types. For qualified struct types, again,
the qualified component declaration will be given elsewhere. Before we can define the
C-IL values we need three more shorthands to determine the class of a type t ∈ T.

isptr(t)
def≡ ∃t′. t = ptr(t′)

isarray(t)
def≡ ∃t′, n. t = array(t′, n)

isfunptr(t)
def≡ ∃t′, T. t = funptr(t′, T )

Values

In this section we define sets of values for variables of the different C-IL types defined
above. Note that the possible values of a variable do not depend on type qualifiers. A
qualified type can be converted into an unqualified type by recursively removing the
set of qualifiers leaving only the type information. Let this be done by the following
function:

qt2t : TQ → T

Definition 42 (Primitive Values) We define the set valprim which contains all values for
variables of primitive type.

valprim ≡
⋃

b∈B32

{val(b, i32),val(b,u32)}

Primitive values consist of the constructor val and a 32 bit string as well as the type
information whether that bit string should be interpreted as a signed (two’s comple-
ment) or unsigned binary number. Note that this definition is a simplified version of
the corresponding definition in [Sch13b] since we only need to consider 32 bit values in
our MIPS-based C-IL semantics. Observe also, that we do not define a set of values for
the primitive type void because this type is used to denote that no value is returned by
a function. Consequently in C-IL we cannot evaluate values of type void.
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Definition 43 (Pointer and Array Values) The set valptr of values for pointers and arrays
is defined as follows.

valptr ≡
⋃

t∈T∧(isptr(t)∨isarray(t))

{val(a, t) | a ∈ B32}

Here we merge the values for pointers and arrays because we treat array variables as
pointers to the first element of an array. Accesses to fields of an array are then resolved
via pointer arithmetic in expression evaluation. References to components of local vari-
ables of a function are represented by the following values.

Definition 44 (Local Variable Reference Values) Let V be the set of all variable names,
then the set of values for local variable references is defined as follows.

val lref ≡
⋃

t∈T∧(isptr(t)∨isarray(t))

{lref((v, o), i, t) | v ∈ V ∧ o, i ∈ N0}

Local variables are modeled as small separate memories, i.e., lists of bytes, to allow
for pointer arithmetic on them. Therefore in order to refer to a component of a local
variable the variable name v and the component’s byte offset o are saved in the lref
value. Moreover one needs to know the type t of the referenced component and the
index of the function frame i in which the local variable is contained.

Concerning function pointers we distinguish between two kind of values. The first
kind val fptr is used for pointers to those functions of which we know the corresponding
memory address according to θ.Fadr : Fname ⇀ B32. These function pointers can be
stored in memory. For function pointers to other functions f ∈ Fname where Fadr (f) =
⊥we use symbolic values from the set val fun . Such pointers cannot be stored in memory
but only be dereferenced, resulting in a call of the referenced function.

Definition 45 (Function Pointer Values) The two sets of values val fptr and val fun for C-IL
function pointers are defined as follows.

val fptr ≡
⋃

t∈T∧isfunptr(t)

{val(a, t) | a ∈ B32}

val fun ≡ {fun(f, t) | f ∈ Fname ∧ isfunptr(t)}

Finally the set val of all C-IL values is the union of primitive, pointer, local variable
reference, and function pointer types.

val
def≡ valprim ∪ valptr ∪ val lref ∪ val fptr ∪ val fun

Note that we do not have values for structs, since we can only evaluate the components
of struct variables but not the complete struct.
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Expressions

Expressions in C-IL are used on the left and right side of variable assignments, as condi-
tions in control-flow statements, as function identifiers and input parameters, to deter-
mine the variable where to store the returned value of a function, as well as the return
value itself. A successful evaluation of an expression returns a values from val. Thus
expressions encode primitive values, pointers, local variable references and function
pointers. In C-IL expressions we can use the following unary mathematical operators
from the set O1 for arithmetic, binary, and logical negation.

O1
def≡ {−,∼, !}

The set O2 comprises all available binary mathematical operators.

O2
def≡ {+,−, ∗, /,%, <<,>>,<,>,<=, >=,==, ! =,&, |, ˆ,&&, ||}

From left to right these symbols represent addition, subtraction8, multiplication, integer
division, modulo, binary left shift, right shift, less, greater, less or equal, greater or
equal, equal, unequal, binary AND, OR, and XOR, as well as logical AND, and OR.
Other C operators, e.g., for taking the address of a variable or pointer-dereferencing,
are not considered mathematical operators. They are treated in the following definition
of the structure of C-IL expressions.

Definition 46 (C-IL Expression) The set E contains all possible C-IL expressions and is de-
fined inductively. Every e ∈ E obeys one of the following rules.

• e ∈ val — e is a constant C-IL value.

• e ∈ V — e identifies a C-IL variable by its name. In expression evaluation local variables
take precedence over global variables with the same name.

• e ∈ Fname — e identifies a C-IL function by its name. Such expressions are used both for
calling a function as well as creating function pointers.

• ∃e′ ∈ E,	 ∈ O1. e ≡ 	e′ — e is obtained by applying a unary operator on another
expression.

• ∃e′, e′′ ∈ E,⊕ ∈ O2. e ≡ (e′ ⊕ e′′) — e is obtained by combining two other expressions
with a binary operator.

• ∃c, e′, e′′ ∈ E. e ≡ (c ? e′ : e′′) — e consists of three sub-expressions that are combined
using the ternary conditional operator. If c evaluates to a value other than zero, then e
evaluates to the value of e′, otherwise the value of e′′ is returned.

• ∃e′ ∈ E, t ∈ TQ. e ≡ (t)e′ — e represents a type cast of expression e′ to qualified type t
8Note that the same symbol is used for unary and binary minus, however in the definition of expressions

they are used unambiguously.
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• ∃e′ ∈ E. e ≡ ∗(e′) — e is the value obtained from dereferencing the pointer that is
encoded by expression e′

• ∃e′ ∈ E. e ≡ &(e′) — e is the address of the sub-variable denoted by expression e′.
Sub-variables are either variables or components of variables.

• ∃e′ ∈ E, f ∈ F. e ≡ (e′).f — e represents the component with field name f of a struct-
type variable described by expression e′

• ∃t ∈ TQ. e ≡ sizeof(t) — e evaluates to the size in bytes of a variable with type t.

• ∃e′ ∈ E. e ≡ sizeof(e′) — e evaluates to the size in bytes of the type of expression e′.

Note that not all expressions that can be constructed using this scheme are meaningful.
For instance, an expression e ∈ V might reference a variable that does not exist, or
an expression e′ in e ≡ &(e′) might encode a constant instead of a sub-variable. The
well-formedness of expressions is checked during expression evaluation.

Note moreover that E does not provide a dedicated operation for accessing fields of
array variables. This is because the common notation a[i] for accessing field i of an
array variable a is just syntactic sugar for the expression ∗((a + i)). Similarly if a is a
pointer to a struct-type variable then the common shorthand a→f for accessing field f
of the referenced struct can be represented by the expression (∗(a)).f .

Programs

Before we can define the structure of C-IL programs we need to introduce the state-
ments of the C Intermediate Language.

Definition 47 (C-IL Statements) The set IC-IL contains all C-IL statements and is defined
inductively. For s ∈ IC-IL we have the following cases.

• ∃e, e′ ∈ E. s ≡ (e = e′) — s is an assignment of the value encoded by expression e′ to
the sub-variable or memory location represented by expression e.

• ∃l ∈ N. s ≡ goto l — s is a goto statement which redirects control-flow to label l in the
current function.

• ∃e ∈ E, l ∈ N. s ≡ ifnez e goto l — s is a conditional goto statement which redirects
control-flow to label l in the current function if e evaluates to a non-zero value.

• ∃e, e′ ∈ E, E ∈ E∗. s ≡ (e′ = call e(E)) — s represents a function call to the function
identified by expression e (which must evaluate to a function pointer value), passing the
input parameters according to expression list E. The value returned by the function is
assigned to the sub-variable of memory location identified by expression e′.

• ∃e ∈ E, E ∈ E∗. s ≡ call e(E) — s is a function call without return value.
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• ∃e ∈ E. s ≡ return e — s is a return statement. Executing s returns from the current
function with the return value denoted by expression e.

• s ≡ return — s is a return statement without return value. This variant is used for
functions with return type void.

Note that above we renamed the set of statements S from [Sch13b] to IC-IL in order
to avoid collision with our set S of Cosmos machine signatures. The statements listed
above make up the body of every C-IL function. All relevant information about the
particular functions of a C-IL program are stored in a function table.

Definition 48 (C-IL Function Table Entry) The function table entry fte of a C-IL function
has the following structure of type FunT .

fte = (rettype,npar , V, P ) ∈ FunT

Here the components of fte have the following meaning:

• rettype ∈ TQ — the type of the function’s return value (return type)

• npar ∈ N — the number of input parameters for the function

• V ∈ (V× TQ)∗ — a list of parameter and local variable declarations containing pairs of
variable name and type, where the first npar entries represent the input parameters

• P ∈ I∗C-IL ∪ {extern}— either the function body containing a list of C-IL statements
that will be executed upon function call, or the keyword extern which marks the function
as an external function. The effect of external functions is specified by the environment
parameter θ.Rextern.

Again, we renamed components V and P from [Sch13b] to V and P here because of
definitions with the same name in this thesis. Now a C-IL program is defined as follows.

Definition 49 (C-IL Program) A C-IL program π has type progC-IL

π = (VG, TF ,F) ∈ progC-IL

with components:

• VG ∈ (V× TQ)∗ — declaration of global variables

• TF : TC ⇀ (F× TQ)∗ — a type table for struct types, containing the type for every field
of a given struct type name

• F : Fname ⇀ FunT — the function table, containing the function table entries for all
functions of the program
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Because we have the type table π.TF for struct types t we can represent a struct with
name tC simply by the construction t = struct tC without need to save the concrete
structure of the struct in the type. This is useful to break the cyclical definitions in many
common data structures which may contain pointers to variables of their own type. For
instance in linked lists, a list item usually contains a pointer to the next list item. Instead
of having a cyclical definition like

tlist ≡ struct((v, i32) ◦ (next ,ptr(tlist)))

one can then separately define the name and structure of the list item type:

tlist ≡ struct item π.TF (item) = (v, i32) ◦ (next ,ptr(tlist))

Naturally there are a lot of well-formedness conditions on C-IL programs, for instance,
that only declared sub-variables may be used, or that goto statements may only target
labels within the bounds of the current function. We could define all these static checks
on the C-IL program separately as in the MASM model. However, in [Sch13b] most of
the possible faults in a C-IL program are captured as run-time errors during type evalu-
ation, expression evaluation, and application of the C-IL transition function. However,
there are a few conditions missing concerning control-flow statements. We introduce
the following predicate to denote that s ∈ IC-IL is a C-IL control-flow statement which
is targeting a label l ∈ N.

ctrl(s, l)
def≡ s = goto l ∨ ∃e ∈ E. s = ifnez e goto l

Now we can define the well-formedness conditions on C-IL programs that are not cov-
ered by the run-time error definitions of [Sch13b] which will be given later.

Definition 50 (C-IL Program Well-formedness) We consider a C-IL program π to be well-
formed if it obeys the conditions that (i) any control-flow instruction targets only labels within
the corresponding function and that (ii) only functions with return type void omit returning a
value.

wfprogC-IL(π)
def≡ ∀f ∈ Fname , s ∈ IC-IL. π.F(f) 6= ⊥ ∧ s ∈ π.F(f).P =⇒

(i) ctrl(s, l) =⇒ l ∈ [1 : |π.F(f).P |]
(ii) s = return =⇒ π.F(f).rettype = void

Note that according to [Sch13b] it is allowed to use a statement return e for some
expression e ∈ E to return from a function with return type void. The returned value is
simply ignored then.

Configurations

Finally we can define the configurations of the C-IL model. Basically a C-IL configura-
tion consists of a global memory and the current state of the stack. The stack models
contains all the local information that is needed for the execution of C-IL functions. For
every new function call a stack frame with the following structure is put on the stack.
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Definition 51 (C-IL Stack Frame) A C-IL stack frame s is a record

s = (ME , rds, f, loc) ∈ frameC-IL

containing the components:

• f ∈ Fname — the name of the function, to which the stack frame belongs.

• ME : V⇀ (B8)∗— the memory for local variables and parameters. The content of a local
variable or parameter is represented as a list of bytes, thus allowing for pointer arithmetic
within the variables.

• rds ∈ valptr ∪ val lref ∪ {⊥}— the return destination for function calls from f , which
contains a reference to the sub-variable where to store the return value of a called function.
If the called function has return type void we set rds to ⊥.

• loc ∈ N — the location counter, indexing the next statement in the function body of f to
be executed.

Then the definition of a C-IL configuration is straight-forward.

Definition 52 (C-IL Configuration) A C-IL configuration c is a record

c = (M, s) ∈ conf C-IL

containing the components:

• M : B32 → B8 — the global byte-adressable memory

• s ∈ frame∗C-IL — the C-IL stack, containing C-IL stack frames, where the top frame is at
the end9 of the list.

See Fig. 18 for an illustration. In most cases the execution of a step of a C-IL program
depends only on the top-most frame of the stack and the memory. The location pointer
of the stack frame points to the statement in the corresponding function’s body that
shall be executed next. Global variables are located in the global memory, moreover
there are the local variables and parameters contained in the local memory of each stack
frame. Local variables and parameters obscure global variables with the same name. By
using variable identifiers one can only access global memory and the local memory of
the top-most frame, however using local references one can also update local memories
of the lower frames in the stack. The flat byte-addressable global memory can also be
accessed by dereferencing plain memory addresses (pointer-arithmetic). Note however
that, while in fact the stack is implemented in a part of the global memory, C-IL does not
allow to access local variables or other components of the stack via pointer-arithmetic.
Location and layout of stack frames is undisclosed and in the simulation theorem we
will have software conditions prohibiting explicit memory accesses to the stack region.

9Here we differ from [Sch13b] where the top frame is the head of c.s.
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c

π.F(c.s[i].f)
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c.s[i]

c.s[top]

032

Figure 18: Illustration of the C-IL configurations and where pointers and local refer-
ences are pointing to. This figure is copied from [Sch13b] and adapted to our
setting and notation. In particular, here top ≡ |c.s|.

An important part in the execution of C-IL steps is the evaluation of types and expres-
sions, where the first is useful to define the second. However the detailed definitions
of the evaluation functions are quite technical. They can be found in Section 5.8 of
[Sch13b]. Here we only declare and use them.

Definition 53 (C-IL Type and Expression Evaluation) We introduce the C-IL type evalu-
ation function τQπ,θc which returns the type for a given C-IL expression wrt. C-IL configuration
c, program π, and environment parameters θ.

τQ
·,·
· (·) : conf C-IL × progC-IL × paramsC-IL × E⇀ TQ

Similarly, we introduce the C-IL expression evaluation function [[·]]π,θc which returns the for a
given C-IL expression.

[[·]]·,·· : conf C-IL × progC-IL × paramsC-IL × E⇀ val

Both functions are defined by structural induction on the given expression. They are
partial functions because not all expressions are well-formed and can be evaluated
properly for a given program and C-IL configuration. In such cases the type and value
of an expression e are undefined and we have τQπ,θc (e) = ⊥, and [[e]]π,θc = ⊥ respectively.

A typical case of an erroneous expression is a reference to a variable name that is not
declared. The type evaluation of a pointer dereferencing ∗(e) fails if e is not of the type
pointer or array. Similarly, the type of an address &(e) of an expression e is only defined
if e describes a sub-variable or a dereferenced pointer.
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In expression evaluation we have the same restrictions as above, i.e., referencing un-
declared variables or function names results in an undefined value. For dereferencing
a pointer there is a case distinction on the type of the pointer, thus if the type of some
expression ∗(e) is undefined so is its value. In the evaluation it is distinguished whether
the pointer points to a primitive value or to an array. In the first case one simply reads
the referenced memory address, in the latter case the array itself is returned. We can-
not reference or dereference complete struct-type variables, but only their primitive or
array fields.

The evaluation functions depend on the environment parameters for several reasons.
First the type returned by the sizeof operator is defined in θ. In expression evaluation
one has to know the offset of the fields in the memory representation of composite
variables, which is also a compiler-dependent environment parameter. For evaluating
function pointers we need to check θ.Fadr in order to determine which of the two func-
tion pointer values should be used. Moreover the effects of mathematical operators and
type casts are also compiler-dependent.

Before we can define the C-IL transition function we need to make a few more defi-
nitions. Up to now we have not defined the size of types in memory. It is computed by
a function

sizeθ : T→ N

which returns the number of bytes occupied in memory by a value of a given type. Its
definition is based on θ because the layout of struct types in memory is depending on
the compiler. However for primitive or pointer types t we have sizeθ(t) = 4, as ex-
pected. Moreover if t is an array of n elements with type t′ then sizeθ(t) = n · sizeθ(t

′).
The complete definition can be found in [Sch13b]. Using the type evaluation and type
size functions we can define the following well-formedness conditions for C-IL config-
urations similar to the ones in our MASM model.

Definition 54 (Well-formedness of C-IL Configurations) To be well-formed we require for
any configuration c ∈ conf C-IL, program π ∈ progC-IL, and environment parameter θ ∈
paramsC-IL that in every stack frame (i) the current function is defined, (ii) the sizes of local
memories correspond to the variable declarations of the corresponding functions, (iii) below the
top frame the type of the return destination agrees with the return type of the called function
in the frame above (with higher index), and (iv) the current location never leaves the function
body. Moreover (v) the program is well-formed. Given a stack s ∈ frame∗C-IL we first define:

wfsC-IL(s, π, θ) ≡ ∀i ∈ [1 : |s|].
(i) π.F(s[i].f) 6= ⊥
(ii) ∀(v, t) ∈ π.F(s[i].f).V =⇒

s[i].ME(v) 6= ⊥ ∧ |s[i].ME(v)| = sizeθ(qt2t(t))

(iii) i < |s| =⇒ τQ
π,θ
c (s[i].rds) = π.F(s[i+ 1].f).rettype

(iv) s[i].loc ∈ [1 : |π.F(s[i].f)|]

and set wf C-IL(c, π, θ) ≡ wfprogC-IL(π) ∧ wfsC-IL(c.s, π, θ) according to (v).
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Thus the well-formedness of C-IL configurations depends only on the stack but not on
the global memory. As we have introduced C-IL configurations we can also complete
the definition of the environment parameter θ.Rextern.

Definition 55 (External Procedure Transition Relations) We use the environment param-
eter θ.Rextern to define the effect of external procedures whose implementation is not given by
the C-IL programs. It has the following type

θ.Rextern : Fname ⇀ 2val
∗×conf C-IL×conf C-IL

where for an external procedure x, such that π.F(x).P = extern, the set θ.Rextern(x) con-
tains tuples ((i1, . . . , in), c, c′) with the components:

• i1, . . . , in — the input parameters to the external procedure

• c, c′ — the pre- and post state of the transition

In case an external procedure x is called with a list of input parameters from a C-IL con-
figuration c, the next configuration c′ is determined by non-deterministically choosing
a fitting transition from θ.Rextern(x).

Closely related to external procedures are the compiler intrinsic functions that are
defined by θ.intrinsics : Fname ⇀ FunT . Intrinsics are predefined functions that are
provided by the compiler to the programmer, usually to access certain system resources
that are not visible in pure C. As anounced before the only intrinsic function considered
in our scenario is cas , which is a wrapper function for the Compare-and-Swap assembly
instruction. We define θ.intrinsics(cas) = ftecas below. For all other function names
f 6= cas we have θ.intrinsics(f) = ⊥.

ftecas .rettype = (∅,void)

ftecas .npar = 4

ftecas .V = (a, (∅,ptr({volatile}, i32))) ◦ (u, (∅, i32))

◦ (v, (∅, i32)) ◦ (r, (∅,ptr(∅, i32)))

ftecas .P = extern

As most intrinsic functions cas is implemented in assembly and thus an external func-
tion. It takes 4 input arguments a,u,v, and r, where a is a pointer to the volatile mem-
ory location that shall be swapped, u is the value with which the memory location
referenced by a is compared, and v is the value to be swapped in. The content of the
memory location pointed to by a is written to the subvariable referenced by the fourth
parameter10 r. Since the intrinsics are provided by the compiler they are not part of the
program-based function table. We define the combined function table Fθπ as follows.

Fθπ
def≡ π.F ] θ.intrinsics

10Note that the cas instruction of the MIPS ISA has only three parameters. Thus in the implementation of
cas an additional write instruction is needed to update the memory location referenced by r.
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Knowing the semantics of the cas instruction of MIPS, we would also like to define the
external procedure transition relation Rextern(cas). However we first need some more
notation for updating a C-IL configuration. When writing C-IL values to the global or
some local memory, they have to be broken down into sequences of bytes. First we
need a function bits2bytes : B8n → (B8)n convert a bit string whose length is a multiple
of 8 into a byte string.

bits2bytes(x[m : 0])
def≡
{

bits2bytes(x[m : 8]) ◦ (x[7 : 0]) : m > 7

(x[m : 0]) : otherwise

Then the conversion from C-IL values to bytes is done by the following partial function.

val2bytesθ(v)
def≡
{

bits2bytes(b) : v = val(b, t)

⊥ : otherwise

Note that this definition excludes local variable references and symbolic function point-
ers. For these values the semantics does not provide a binary representation because
for local subvariables and functions f where θ.Fadr(f) = ⊥, the location in memory is
unknown. Note also that val2bytesθ depends on the environment parameter θ because
the conversion to byte strings is depending on the endianness of the underlying mem-
ory system. As our MIPS ISA uses little endian memory representations we simplified
the definition of val2bytesθ which actually contains a case distinction on θ.endianness
in [Sch13b]. We still keep the θ though, to keep the notation consistent.

Now we can introduce helper functions to write the global and local memories of a
C-IL configuration. We copy the following three definitions literally from Section 5.7.1
of [Sch13b], with the single modifcation that we fix the pointer size to 4 bytes, and adapt
the indexing of the local memories to start with 1 instead of 0.

Definition 56 (Writing Byte-Strings to Global Memory) We define the function

writeM : (B32 → B8)× B32 × (B8)∗ → (B32 → B8)

that writes a byte-string B to a global memoryM starting at address a such that

∀x ∈ B32. writeM(M,a,B)(x) =

{
M(x) 〈x〉 − 〈a〉 /∈ {0, . . . , |B| − 1}
B[〈x〉 − 〈a〉] otherwise

Definition 57 (Writing Byte-Strings to Local Memory) We define the function

writeE : (V⇀ (B8)∗)× V× N0 × B8 ⇀ (V⇀ (B8)∗)

that writes a byte-string B to variable v of a local memoryME starting at offset o such that

∀w ∈ V, i ∈ [1 : |ME(w)|].

writeE(ME ,v,o,B)(w)[i] =

{
ME(w)[i] w 6= v ∨ i /∈ {o+ 1, . . . , o+ |B|}
B[i− o] otherwise

If, however, |B| + o > |ME(v)| or v /∈ dom(ME), the function is undefined for the given
parameters.
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Definition 58 (Writing a Value to a C-IL Configuration) We define the function

write : paramsC-IL × conf C-IL × val × val ⇀ conf C-IL

that writes a given C-IL value y to a C-IL configuration c at the memory pointed to by pointer
x according to environment parameters θ as

write(θ,c,x,y)
def≡




c[M := writeM(c.M, a, val2bytesθ(y))] : x = val(a,ptr(t))

∧ y = val(b, t)

c′ : x = lref((v, o), i,ptr(t))

∧ y = val(b, t)

write(θ, c,val(a,ptr(t)), y) : x = val(a,array(t, n))

write(θ, c, lref((v, o), i,ptr(t)), y) : x = lref((v, o), i,array(t, n))

undefined : otherwise

where c′.s[i].ME = writeE(c.s[i].ME , v, o, val2bytesθ(y))] and all other parts of c′ are identi-
cal to c.

In the first case x contains a pointer to some value in global memory of type t and we are
overwriting it with the primitive or pointer value y. When x is a local variable reference,
we update the referenced variable with y in the specified local memory, starting at the
given offset. Since arrays in C are treated as pointers to the first element of the array,
any write operation to an array is transformed accordingly. Observe that write checks
for type safety, i.e., that value y and the write target specified by x have the same type.
Moreover we cannot update c using symbolic function pointers for x, because these
pointers are not associated with any resource in c.

We also provide a function incloc : conf C-IL ⇀ conf C-IL to increment the location
counter of the top stack frame. It is undefined if the stack is empty, otherwise:

incloc(c) = c[s := c.s[top 7→ (c.s[top])[loc := c.s[top].loc + 1]]]

Now we can define the transition relation θ.Rextern(cas) for the cas compiler intrinsic
function. It consists of two subrelations depending on whether the comparison in the
Compare-and-Swap instruction was successful or not. In the first case we have:

ρswapcas

def≡ {((a, u, v, r), c, c′′′) | ∃x, b ∈ B32. a = val(x,ptr(i32)) ∧ u = val(b, i32)

∧ c.M4(x) = b ∧ ∃c′, c′′ ∈ conf C-IL. c
′ = write(θ, c, a, v)

∧ c′′ = write(θ, c′, r,val(c.M4(x), i32)) ∧ c′′′ = incloc(c′′) }

The memory location pointed to by a equals the test value u, consequently it is updated
with v and its old value is stored in r. In addition the current location in the top frame
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is incremented. For the fail case when u does not equal the referenced value of a, the
memory location is not updated. The rest of the transition is identical to the case above.

ρfailcas

def≡ {((a, u, v, r), c, c′′) | ∃x, b ∈ B32. a = val(x,ptr(i32)) ∧ u = val(b, i32)

∧ c.M4(x) 6= b ∧ ∃c′, c′′ ∈ conf C-IL. c
′′ = incloc(c′)

∧ c′ = write(θ, c, r,val(c.M4(x), i32))}

Of course the overall transition relation is the disjunction of both cases.

θ.Rextern(cas) = ρswapcas ∪ ρfailcas

Before we can define the C-IL transition function there are two more helper functions
left to introduce. The first function τ : V→ T derives the type of values.

τ(x)
def≡





t : x = val(y, t)

t : x = fun(f, t)

t : x = lref((v, o), i, t)

Last we define function zero(θ, x) : paramsC-IL × V ⇀ B which checks whether a given
primitive or pointer value equals zero.

zero(θ, x)
def≡
{

(a = 08·sizeθ(t)) : x = val(a, t)

⊥ : otherwise

We finish the introduction of the C-IL semantics with the definition of the C-IL transi-
tion function in the next sub-section. It is in great portions a literal copy of Section 5.8.3
in [Sch13b]. Apart from editorial changes and adaptations to our indexing of the stack,
we only modify the C-IL input alphabet.

Transition Function

For given C-IL program π and environment parameters θ, we define a partial transition
function

δπ,θC-IL : conf C-IL × ΣC-IL ⇀ conf C-IL

where ΣC-IL is an input alphabet used to resolve non-deterministic choice occurring in
C-IL semantics. In fact, there are only two kinds of non-deterministic choice in C-IL:
the first occurs in a function call step – the values of local variables of the new stack
frame are not initialized, thus, they are chosen arbitrarily; the second is due to the
possible non-deterministic nature of external function calls – here, one of the possible
transitions specified by relation θ.Rextern is chosen. To resolve these non-deterministic
choices, our transition function gets as an input in = (Mlvar , η) ∈ ΣC-IL containing a
mappingMlvar of function names to local memory configurations, and a mapping η of
transition functions for computing the result of external function calls.

ΣC-IL ⊆ (Fname ⇀ (V⇀ (B8)∗))× (Fname ⇀ (val∗ × conf C-IL ⇀ conf C-IL))
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This setting deviates from [Sch13b] where the inputs are either a single local memory
configurationMlvar , or an updated C-IL configuration c′, or a symbolic value ⊥ to de-
note deterministic steps. However this opens up the possibility of run-time errors due
to nonsensical input sequences which do not provide the right inputs for the current
statement, e.g., a ⊥ symbol instead of the required updated configuration for exter-
nal function calls, or a local memory configuration that does not contain values for all
local variable in case of regular function calls. Also the choice of inputs depends on
previous computation results, e.g., in case of external function calls for the previous
configuration. In our model we always provide the necessary inputs to fix any deter-
ministic choice in the C-IL program execution, and we use an update function instead
of an updated configuration for handling external function calls. If we require inputs
to contain initialization values for all local variables of all functions of a given program,
and to contain only transition functions for external function calls that implement state
transitions according to θ.Rextern, then we can exclude run-time errors due to a bad
choice of inputs. The inputs for a computation can thus be chosen independently of the
C-IL configuration and we will only get undefined results due to programming errors.
Below we formalize the restriction on ΣC-IL.

Definition 59 (C-IL Input Constrains) We only consider input alphabets ΣC-IL that fulfill
the following restrictions. For any input (Mlvar , η) we demand (i) thatMlvar is defined for all
local variables of all internal functions of a given C-IL program π (variables have an unspecified
value), and (ii) η is defined for all external functions and for all arguments its result reflects the
semantics specified by θ.Rextern. For denoting that v is a local variable of function f with type
t we use shorthand lvar(v, f, t) = ∃i > Fθπ(f).npar . Fθπ(f).V [i] = (v, t) in:

ΣC-IL ≡ { (Mlvar , η) | (i) ∀f ∈ Fname . Fθπ(f).P 6= extern =⇒
∀(v, t) ∈ (V,TQ). lvar(v, f, t) =⇒ Mlvar [f ](v) ∈ B8·sizeθ(qt2t(t))

(ii) ∀f ∈ Fname . Fθπ(f).P = extern =⇒
η(f) 6= ⊥ ∧ ∀(X, c) ∈ dom(η[f ]). (X, c, η[f ](X, c)) ∈ θ.Rextern }

In defining the semantics of C-IL we will use the following shorthand notation to refer
to information about the topmost stack frame top ≡ |c.s| in a C-IL-configuration c:

• local memory of the topmost frame:ME top(c) ≡ c.s[top].ME
• return destination of the topmost frame: rds top(c) ≡ c.s[top].rds

• function name of the topmost frame: ftop(c) ≡ c.s[top].f

• location counter of the topmost frame: loctop(c) ≡ c.s[top].loc

• function body of the topmost frame: Ptop(π, c) ≡ π.F(ftop(c)).P

• next statement to be executed: stmtnext(π, c) ≡ Ptop(π, c)[loctop(c)]

Below we define functions that perform specific updates on a C-IL configuration.

121



4 Cosmos Model Instantiations

Definition 60 (Setting the Location Counter) The function

set loc : conf C-IL × N⇀ conf C-IL

defined as
set loc(c,l) ≡ c[s := (c.s)[top 7→ (c.s[top])[loc := l]]]

sets the location counter of the top-most stack frame to location l.

Definition 61 (Removing the Topmost Frame) The function

dropframe : conf C-IL ⇀ conf C-IL

which removes the top-most stack frame from a C-IL-configuration is defined as:

dropframe(c) ≡ c[s := c.s[1 : top)]

Definition 62 (Setting Return Destination) We define the function

setrds : conf C-IL × (val lref ∪ valptr ∪ {⊥}) ⇀ conf C-IL

that updates the return destination component of the top most stack frame as:

setrds(c, v) ≡ c[s := (c.s)[top 7→ (c.s[top])[rds := v]]]

Note that all of the functions defined above are only well-defined when the stack is not
empty; this is why they are declared partial functions. In practice however, executing a
C-IL program always requires a non-empty stack.

Definition 63 (C-IL Transition Function) We define the transition function

δπ,θC-IL : conf C-IL × Σ ⇀ conf C-IL

by a case distinction on the given input:

• Deterministic step, i.e., stmtnext(π, c) 6= call e(E):

δπ,θC-IL(c, in) =



incloc(c′) : stmtnext(π, c) = (e0 = e1)

set loc(c, l) : stmtnext(π, c) = goto l

set loc(c, l) : stmtnext(π, c) = ifnot e goto l ∧ zero(θ, [[e]]π,θc )

incloc(c) : stmtnext(π, c) = ifnot e goto l ∧ ¬zero(θ, [[e]]π,θc )

dropframe(c) : stmtnext(π, c) = return

dropframe(c) : stmtnext(π, c) = return e ∧ rds = ⊥
write(θ, c, rds, [[e]]π,θc ) : stmtnext(π, c) = return e ∧ rds 6= ⊥

where c′ = write(θ, c, [[&(e0)]]π,θc [[e1]]π,θc ) and rds = rds top(dropframe(c)). Note that for
return the relevant return destination resides in the caller frame. Also, in case any of the
terms used above is undefined due to run-time errors, we set δπ,θC-IL(c, in) = ⊥.
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• Function call:

δπ,θC-IL(c, in), where in.Mlvar provides initial values for all local variables of the called
function, is defined if and only if all of the following hold:

– stmtnext(π, c) = call e(E) ∨ stmtnext(π, c) = (e0 = call e(E)) — the next
statement is a function call (without or with return value),

– [[e]]π,θc = val(b, funptr(t, T )) ∧ f = θ.F−1
adr (b) ∨ [[e]]π,θc = fun(f, funptr(t, T ))

— expression e evaluates to some function f ,

– |E| = Fθπ(f).npar ∧ ∀i ∈ [1 : |E|]. Fθπ(f).V [i] = (v, t) =⇒ τQ
π,θ
c (E[i]) = t —

the types of all parameters passed match the declaration, and

– Fθπ(f).P 6= extern — the function is not declared as external in the function table.

Then, we define
δπ,θC-IL(c, in) = c′

such that
c′.s = incloc(setrds(c, rds)).s ◦ (M′E ,⊥, f, 0)

c′.M = c.M
where

rds =

{
[[&(e0)]]π,θc : stmtnext(π, c) = (e0 = call e(E))

⊥ : stmtnext(π, c) = call e(E)

and

M′E(v) =





val2bytesθ([[E[i]]]π,θc ) : ∃i. Fθπ(f).V [i] = (v, t) ∧ i < Fθπ(f).npar

in.Mlvar [f ](v) : ∃i. Fθπ(f).V [i] = (v, t) ∧ i ≥ Fθπ(f).npar

undefined : otherwise

• External procedure call:

δπ,θC-IL(c, in) is defined if and only if all of the following hold:

– stmtnext(π, c) = call e(E) — the next statement is a function call without return
value,

– [[e]]π,θc = val(b, funptr(t, T )) ∧ f = θ.F−1
adr (b) ∨ [[e]]π,θc = fun(f, funptr(t, T ))

— expression e evaluates to some function f ,

– |E| = Fθπ(f).npar ∧ ∀i ∈ [1 : |E|]. Fθπ(f).V [i] = (v, t) =⇒ τQ
π,θ
c (E[i]) = t —

the types of all parameters passed match the declaration,

– in.η[f ](([[E1]]π,θc , . . . , [[E|E|]]
π,θ
c ), c) = c′ — the external transition function for f

allows a transition under given parameters E from c to c′,

– c′.s[1 : top) = c.s[1 : top) — the external procedure call does not modify any stack
frames other than the topmost frame,
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– loctop(c′).loc = loctop(c) + 1 ∧ ftop(c′) = ftop(c) — the location counter of the
topmost frame is incremented and the function is not changed,

– Fθπ(f).P = extern — the function is declared as extern in the function table.

Note that we restrict external function calls in such a way that they cannot be invoked
with a return value. However, there is a simple way to allow an external function call
to return a result: It is always possible to pass a pointer to some subvariable to which a
return value from an external function call can be written.11

Then,
δπ,θC-IL(c, c′) = c′

4.3.2 C-IL Compiler Consistency

As in the MASM model we will not provide a compiler for C-IL but just state a compiler
consistency relation that couples a MIPS implementation with the C-IL language level.
We will later use the consistency relation to establish a simulation theorem between a C-
IL Cosmos machine and a MIPS Cosmos machine, thus justifying the notion of structured
parallel C, which is assumed by code verification tools like VCC.

The following theory was first documented by Andrey Shadrin [Sha12] building on
previous work by W. J. Paul and others [LPP05, DPS09]. We try to stick to it as far as
possible, however we take the freedom to adjust notation to fit the remainder of this
thesis where we deem it useful or necessary.

Compilation and Stack Layout

We aim for a theory that is also applicable for optimizing compilers. In non-optimizing
compilers, the compilation is a function mapping one C statement to a number of im-
plementing assembly statements.12 The compiler consistency relation between the C
and the ISA level holds before and after the execution of such an assembly block. In
particular the data consistency then guarantees that variables are correctly represented
in memory, meaning that the memory contents agree with the values of the correspond-
ing variables in the C semantics.

An optimizing compiler applies optimizing transformations on the compiled code of
a sequence of C-IL statements, typically with the aim of reducing redundancy and the
overall code execution time. Typical optimizations are, e.g., saving intermediate results
of expression evaluation to reuse them for the implementation of subsequent state-
ments, or avoiding to store frequently used data in main memory, because accesses to
registers are much faster. This means however that variables are not consistent with
their memory representations for most of the time. There are only a few points in a C
program where the consistency relation actually holds with the optimized implemen-
tation and we call these points compiler consistency points or short consistency points.

11See the definition of the cas compiler intrinsic for an example.
12This is similar to the case of the MASM assembler of the previous section.
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Note that in previous work [Sha12] consistency points were called I/O points because
optimized compiler consistency was only assumed before so-called I/O steps [DPS09]
which are identical to the IO steps in this thesis. Here we decided to disambiguate the
two concepts, allowing for more optimizations by the compiler. For C-IL we assume
that certain locations in a function are always consistency points. These consistency
points are in particular:

• at function entry

• directly before and after function calls (including external functions)

• between two consecutive volatile variable accesses

• directly before return statements

Depending on the optimizing compiler there may be more consistency points, there-
fore we cannot give an exact definition of the consistency points of a given program.
However, later we will introduce an uninstantiated function encoding the choice of
consistency-points by the compiler and formalize above restrictions on this function.

Note that these restrictions forbid certain optimizations the compiler could apply.
Sticking to [Sha12] we forbid optimizations across function calls for simplicity. The re-
quirement of having consistency points between volatile variable accesses ensures later
that the data read from or written to volatile variables is consistent with the underlying
shared memory. The constraint reminds of the IOIP condition in the Cosmos model
order reduction theorem, and indeed, we will later instantiate the IO steps of a C-IL
Cosmos machine to be the volatile variable accesses, and the interleaving-points to be
the compiler consistency points.

The C-IL compilation function now is mapping a block of C-IL statements between
consistency points to blocks of assembly instructions. However as the optimizations
depend on the program context we rather model the code generation as a function
depending on the C-IL program, the function, and the location of the consistency point
starting the block which should be compiled.

cpl : progC-IL × Fname × N⇀ I∗MIPS

This means that a C-IL function is compiled by applying the compilation function cpl
subsequently on every consistency block of the function. The compiled code for the
program contains the compiled code for every function positioned in a way so that
jumps between functions are linked correctly.

We use the stack layout for C-IL from [Sha12] and adhere to the calling conventions
CC.1 to CC.4 defined in the MASM chapter. The C-IL stack layout is depicted in Fig. 19
and is quite similar to the MASM stack layout. There are only three main differences.
First, now have a place reserved in the stack frame to save the return destination, i.e.,
the address of the subvariable to store the return value of a function call. Secondly, in
MASM the programmer of a caller function had to save and restore caller-save registers
because their values are havoced by function calls. Now it is the duty of the compiler to
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Figure 19: The C-IL stack layout.

save and restore these registers, therefore we reserve space on the stack for this purpose.
Last, the local variables need to be stored on the stack as well. Generally, the C-IL stack
layout exhibits the following properties.

• A C-IL frame i in memory is identified by a frame base address base(i)32. The
stack grows downwards starting at a given stack base address which is not identical
with the frame base address of the first frame base(1)32.

• The parameters for the function call are stored in the high end of the stack frame.
They were stored here by the caller in reverse order. According to CC.1 the first
four parameters are passed via registers i1 to i4, nevertheless we also reserve
space for them.

• Between parameter space and the base address of a frame resides the frame header.
As in MASM it contains the return address and the previous base pointer.

• The base pointer is stored in register bp and always points to the frame base ad-
dress of the topmost (lowest in memory) stack frame.

• Below the frame base address we find the region of the stack frame where the
local variables are saved.

• Below the local variables we the callee save registers are stored. In contrast to
[Sha12] this is also done on the lowest level i = 1 and we assume for simplicity
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that the C-IL compiler always stores all eight callee-save registers sv1 to sv8 in
ascending order (sv1 is at the highest memory address).

• Below that area the compiler stores temporary values in a last-in-first-out data
structure. The size of the temporary area may change dynamically during pro-
gram execution. This component is the similar of the lifo in MASM.

• The stack pointer is stored in register sp and always points on the lower end of
the temporary data region of the topmost (lowest in memory) stack frame.

• In case a function is called, the compiler first stores the contents of the caller-save
registers in the region directly below the temporary values.

• Next, the return destination (where the returned value of a function call should
be saved) is stored by the caller. Parameters for the next frame are stored below.

• Caller-save registers, register destination and the input parameters can be seen
as an extension to the lifo-like temporary value area, thus we are obeying calling
convention CC.2. As in MASM, upon a function call from frame i the parameters
become part of the next stack frame, thus they are located above the base address
base(i+ 1)32.

• All components of the stack are word-aligned.

Before we can formalize this notion of the stack structure in the compiler consistency
relation, we need some more information about the compilation process. As in the
MASM semantics we therefore introduce a C-IL compiler information data structure
infoIL ∈ InfoT C-IL, adapting the definition of Shadrin from [Sha12]. We have the fol-
lowing components for infoIL.

• infoIL.code ∈ I∗MIPS — a list of MIPS instructions representing the assembled C-IL
program

• infoIL.cp : Fname×N→ B — identifies the compiler consistency points for a given
function and program location.

• infoIL.off : Fname × N ⇀ N0 - A function calculating the offset in the compiled
code of the first instruction which implements a C-IL statement at the specified
consistency point in the given function. Note that offset 0 refers to instruction
infoIL.code[1].

• infoIL.fceo : Fname × N⇀ N0 — the offset in the compiled code of the epilogue of
a function call in a given function at a given location (see explanation below)

• infoIL.lvr : V× Fname ×N⇀ B5 — specifies, if applicable, the GPR where a given
word-sized local variable of a given function is stored in a given consistency point
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• infoIL.lvo : V×Fname×N⇀ N0 — specifies the offset of local variables (excluding
input parameters) in memory relative to the frame base for a given function and
consistency point (number of bytes)

• infoIL.csro : V×Fname ×N×B5 ⇀ N0 — specifies the offset within the caller-save
area where the specified register is saved by the caller during a function call in
the given function and consistency point (number of bytes, counting relative to
upper end with higher address)

• infoIL.sizeCrS : Fname × N ⇀ N0 — specifies the size of the caller-save region of
the stack for a given caller function and location of function call (number of bytes)

• infoIL.sizetmp : Fname × N ⇀ N0 — specifies the size of the temporary region of
the stack for a given function and consistency point (number of bytes)

• infoIL.cba : B32 — the start address of the code region in memory

• infoIL.sba : B32 — the start base address

• infoIL.mss : B32 — the maximal size in words of the stack. We define shorthand
mspIL ≡ 〈infoIL.sba〉− infoIL.mss + 1 to denote the minimal allowed value for the
stack pointer.

For most of the components it should be obvious why we need this information in
order to define the C-IL compiler consistency relation. The only exception is maybe the
function call epilogue offset fceo. Unlike in MASM, a function call is not completed after
the return statement is executed by the callee, because the caller still has to update the
return destination with the return value passed in register rv . Also the stack has to be
cleared of the return destination and caller-save registers need to be restored. The code
portion in the compiled code for a function call which is implementing these tasks,
we call the function epilogue. We need to know the start of the epilogue to define the
consistency relation for the return addresses.

Similar to the definition of MASM assembler consistency, we introduce notation for
the frame base addresses and the distances between them. First we introduce some
shorthands for the components of the i-th stack frame, implicitely depending on some
C-IL configuration cIL ∈ conf C-IL.

∀x ∈ {ME , rds, f, loc}, i ∈ [1 : |cIL.s|]. xi ≡ cIL.s[i].x
Moreover let zi ≡ π.F(fi).z for z ∈ {V,npar} denote the local variable and parameter
declaration list, as well as the number of parameters for fi. The size needed for local
variables and parameters on the stack can then be computed as follows.

sizepar (i) ≡
npar i∑

j=1

sizeθ(qt2t(Vi[j].t))

size lv (i) ≡
|Vi|∑

j=npar i+1

sizeθ(qt2t(Vi[j].t))
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Here for a variable declaration v ∈ V×TQ, the notation v.t refers to the type component.
Then we can define the distance between base address, or between the base address of
the top stack and the base pointer respectively. It is depending on cIL, π, θ and infoIL.
As we are not mixing notation of MASM and C-IL implementation, we can use the
same names for the same concepts here without ambiguity.

dist(i) ≡





size lv (i) + 32 + infoIL.sizetmp(fi, loci) : i = top

size lv (i) + 32 + infoIL.sizetmp(fi, loci)

+ infoIL.sizeCrS (fi, loci) + 4 + sizepar (fi+1) + 8
: i < top

For the top frame we only store the local variables, the eight callee-save registers and
temporary data in the area bounded by the addresses stored in base pointer and stack
pointer. Lower frames (with lower index and higher frame base address) are storing
information for the function call associated with the stack frame lying directly above
(with higher index and lower frame base address). This includes the caller-save regis-
ters, the return destination. The function input parameters and the next frame header
are belonging to the callee frame. For simplicity we do not make a case distinction
whether a function returns a value or not. We reserve the space for the return desti-
nation in both cases. Now the frame base addresses are easily defined recursively (as
natural numbers for now).

base(i) ≡
{
〈infoIL.sba〉 − sizepar (fi)− 4 : i = 1

base(i− 1)− dist(i− 1) : i > 1

Similar to the MASM implementation, the frame base address of the lowest frame (with
highest index in the stack) does not coincide with the stack base address because we
need space above the frame base to store the input parameters and the frame header.
Again we define shorthands for return address, previous base pointer, and also the
return destination, depending on some ISA configuration h ∈ HMIPS.

∀i ∈ [1 : |cIL.s|]. ra(i) ≡ h.m4((base(i) + 4)32)

∀i ∈ [1 : |cIL.s|). rds(i) ≡ h.m4((base(i) + 8 + sizepar (i))32)

∀i ∈ [1 : |cIL.s|]. pbp(i) ≡ h.m4(base(i)32)

Compiler Consistency Points

We want to restrict the function infoIL.cp such that compiler consistency points occur
at least at the required positions in the code as described above. However, to this end
we first need a predicate which detects whether a given C-IL statement s contains a
volatile variable access. This is the case if expressions in s reference variables that have
quantified type (q, t) with volatile ∈ q. Unfortunately, the type evaluation function
τQ

π,θ
c depends on a given C-IL configuration c. Nevertheless, the configuration is only

used in the type evaluation of variables, where the type is looked up either from the
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global variable declaration, or from the local variable declaration in the function table
for the function in the topmost stack frame of c. Thus the type of an expression can be
determined without a C-IL configuration if the function is known, in whose context the
expression is evaluated. Indeed we could define such a function τQ

π,θ
f in the same way

as τQπ,θc is defined in [Sch13b], by simply replacing any reference to ftop(c) by f . Then
we directly get for all e ∈ E:

τQ
π,θ
c (e) = τQ

π,θ
ftop(c)(e)

Using this modified type evaluation function we can define a predicate which detects
accesses to volatile variales in expressions that occur in the code of a C-IL function f .

Definition 64 (Expression Contains Volatile Variables) Given a C-IL expression e that is
evaluated in the context of a function f of C-IL program π wrt. environments parameters θ.
Then e contains an access to a volatile variable in case the following predicate is fulfilled.

volπ,θf (e) ≡



volatile ∈ q : e ∈ V ∧ τQπ,θf (e) = (q, t)

volπ,θf (e′) : (∃	 ∈ O1. e = 	e′) ∨ e = &(∗(e′))
∨ e = sizeof(e′) ∨ e = (t)e′

volπ,θf (e′) ∨ volπ,θf (e′′) : ∃⊕ ∈ O2. e = e′ ⊕ e′′
volπ,θf (e′) ∨ volπ,θf (e′′) ∨ volπ,θf (e′′′) : e = (e′ ? e′′ : e′′′)

volatile ∈ q ∨ volπ,θf (e′) : e = ∗(e′) ∧ τQπ,θf (e′) = (q′,ptr(q, t))

∨ e = (e′).f ′ ∧ τQπ,θf (e) = (q, t)

0 : otherwise

Note that the evaluation of constants, function names, addresses of variables, and type
casts do not require volatile variable accesses in general. For most of the other cases the
above definition meets what one would expect intuitively. Nevertheless there are two
cases worth mentioning.

First, as pointer dereferencing may involve two accesses to memory, there are also
two possibilities for a volatile access. Both the pointer as well as the referenced sub-
variable might be volatile. Considering field accesses we also have several possibilities.
On the one hand the field itself might be declared volatile. On the other hand the con-
tained struct may be volatile, or the evaluation of the reference to that containing struct
variable may involve volatile accesses, respectively.

Observe also, that due to possible pointer arithmetic, the definition only covers all
volatile variable accesses in an expression, if it is typed correctly. In case arithmetic
expressions that target volatile variables are not type-cast using the volatile quantifier,
we cannot detect these accesses statically. However we will later define the ownership
policy in a way that such accesses are treated as safety violations.
Below we can can now define a similar predicate to statically detect volatile variable
accesses in C-IL statements of a given program.

130



4.3 C Intermediate Language

Definition 65 (Statement Accesses Volatile Variables) Given a C-IL statement s that is
executed in the context of a function f of C-IL program π wrt. environments parameters θ.
Then f accesses a volatile variable in case the following predicate is fulfilled.

volπ,θf (s) ≡





volπ,θf (e) : s ∈ {ifnez e goto l, return e}
volπ,θf (e) ∨ volπ,θf (e′) : s ≡ (e = e′)∨
e′=e∨ e′∈E volπ,θf (e′) : s ≡ call e(E)∨
e′′∈{e,e′}∨ e′′∈E volπ,θf (e′′) : s ≡ (e′ = call e(E))

0 : otherwise

Note that according to this definition a C-IL statement may contain more than one
volatile variable access. Nevertheless, as updates to volatile variables must be imple-
mented as atomic operations, we will later formulate the restriction that there may be
at most one volatile variable access per C-IL statement. Also, for simplicity, we will
only consider volatile variable accesses in assignments. Now we can, however, define
the required consistency points for a given C-IL program.

Definition 66 (Required C-IL Compiler Consistency Points) Given compiler information
infoIL for a C-IL program π and environment parameter θ, the following predicate holds, iff there
are compiler consistency points (i) at the entry of every function, (ii) before and after function
calls, (iii) between any two consecutive volatile variable accesses, and (iv) before return state-
ments. Let sf,i = π.F(f).P [i], call(s) = ∃e, e′, E. s ∈ {call e(E), (e′′ = call e(E))}, and
ret(s) = ∃e. s ∈ {return, return e} in:

reqCP(π, θ, infoIL) ≡ ∀f ∈ Fname , i ∈ N. π.F(f).P 6= extern ∧ i ≤ |π.F(f).P | =⇒
(i) infoIL.cp(f, 1)

(ii) call(sf,i) =⇒ infoIL.cp(f, i) ∧ infoIL.cp(f, i+ 1)

(iii) volπ,θf (sf,i) ∧ (∃j < i. volπ,θf (sf,j)) =⇒ ∃k ∈ (j : i]. infoIL.cp(f, k)

(iv) ret(sf,i) =⇒ infoIL.cp(f, i)

In what follows we assume that a C-IL compiler obeys these rules in the selection of
consistency points for a given C-IL program.

Compiler Consistency Relation

Now we will define the compiler consistency relation that links a C-IL computation to
its implementation on the MIPS ISA level. We want to relate a C-IL configuration cIL to
an ISA state h that implements the program π using the environment parameters θ and
compiler information infoIL. Formally we thus define a simulation relation

consisC-IL(cIL, π, θ, infoIL, h)

stating the consistency between these entities. The relation is supposed to hold only
in compiler consistency points, which are identified by a function name and a location
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according to the infoIL.cp predicate. We define the following predicate which holds iff
cIL is currently in a consistency point.

cp(cIL, infoIL)
def≡ infoIL.cp(ftop(cIL), loctop(cIL))

The compiler consistency relation is split in two sub-relations covering control and data
consistency. The first part talks about control-flow and is thus concerned with the pro-
gram counter and the return address. Let the following function compute the start
address of the compiled code for the C-IL statements starting from consistency point
loc in function f .

adr(infoIL, f, loc)
def≡ infoIL.cba +32 (4 · infoIL.off (f, loc))32

Definition 67 (C-IL Control Consistency) We define control consistency sub-relation for
C-IL consiscontrolC-IL , which states that (i) the program counter of the MIPS machine must point
to the start of the compiled code for the current statement in the C-IL machine which is at a
compiler consistency point. In addition (ii) the return address of any stack frame is pointing to
the beginning of the function call epilogue for the function call statement in the previous frame
(with lower index).

consiscontrolC-IL (cIL, infoIL, h) ≡
(i) cp(cIL, infoIL) ∧ h.pc = adr(infoIL, ftop , loctop)

(ii) ∀i ∈ (1, |cIL.s|]. ra(i) = infoIL.cba +32 (4 · infoIL.fceo(fi−1, loci−1 − 1))32

According to the C-IL semantics, the current location of a caller frame already points
to the statement after the function call (which is a consistency point). To obtain the
location of the function call we therefore have to subtract 1 from that location. When
control returns to the caller frame, on the ISA level first the function call epilogue is
executed before the consistency point is reached.

Data consistency is split into several parts covering registers, the global memory,
local variables, the code region as well as the stack structure. The register consistency
relation covers only the stack and base pointers.

Definition 68 (C-IL Register Consistency) The C-IL register consistency relation demands,
that (i) the base pointer points to the base address of the top frame, while (ii) the stack pointer
points to the top-most element of the temporary values (growing downwards) in the top frame.

consisregsC-IL(cIL, π, θ, infoIL, h)
def≡ (i) h.gpr(bp) = bin32(base(top))

(ii) h.gpr(sp) = bin32(base(top)− dist(top))

In the code consistency relation we also need to couple π with the compiled code.

Definition 69 (C-IL Code Consistency) For C-IL code consistency we require that (i) the
compiler consistency points were selected by the compiler according to our requirements, (ii)the
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compiled code in the compiler information is actually corresponding to the C-IL program, and
that (iii) the compiled code is converted to binary format and resides in a contiguous region in
the memory of the MIPS machine starting at the code base address.

consiscodeC-IL(cIL, π, θ, infoIL, h)
def≡

(i) reqCP(π, θ, infoIL)

(ii) ∀f ∈ dom(π.F), l. infoIL.cp(f, l) =⇒
∀i ∈ [1 : |cpl(π, f, l)|]. infoIL.code[infoIL.off (p, l) + i] = cpl(π, f, l)[i]

(iii) ∀j ∈ [0 : |infoIL.code|).
infoIL.code[j + 1] = decode(h.m4(infoIL.cba +32 (4 · j)32))

Again, the latter property forbids self-modifying code in case infoIL is fixed for a simu-
lation between the MIPS and C-IL machines. We redefine the shorthands CR and StR
to represent the code region, or the region where the C-IL stack is allocated respectively.

CR ≡ [〈infoIL.cba〉 : 〈infoIL.cba〉+ 4 · |infoIL.code|)
StR ≡ [mspIL : 〈infoIL.sba〉]

Now we demand memory consistency for all addresses but the code region and the
stack region, because these addresses may not be accessed directly in C-IL programs.

consismem
C-IL (cIL, infoIL, h)

def≡ ∀ad ∈ B32. 〈ad〉 /∈ CR ∪ StR =⇒ h.m(ad) = cIL.M(ad)

Note that this definition includes the consistency for global variables since they are
always allocated in the global memory c.M. The allocated address for a given global
variable is determined by a global variable allocation function θ.allocgv : V ⇀ B32. We
did not introduce it in the C-IL semantics because it is only relevant for the definition
of expression evaluation, which we excluded from our presentation.

In contrast to global variables, local variables are allocated on the stack using offsets
from infoIL.lvo. Moreover top frame local variables and parameters may be kept in
registers according to the compiler information infoIL.lvr . In [Sha12] the local variable
consistency relation did not talk about the frames below the top frame (caller frames),
however, such a compiler consistency relation is not inductive in the sense that it cannot
be used in an inductive compiler correctness proof. When treating return instructions
one cannot establish the local variable consistency for the new top frame without know-
ing where the values of the local variables of that frame were stored before returning.

In fact for the local variables and parameters of caller stack frames there are three
possibilities depending on where they are expected to be stored upon return from the
called function. If they are supposed to be allocated on the stack upon function return,
then we demand that they already reside in their dedicated stack location during the
execution of the callee. If they are to be allocated in caller-save registers, we require the
caller to store them in its caller-save area during the function call. Similarly we demand
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the callee to store them in the callee-save area if we expect their value to reside in callee-
save registers after returning from the function call. Below we give a correct definition
of the C-IL local variable consistency relation.

Definition 70 (C-IL Local Variable Consistency) Compiler consistency relation consis lvC-IL
couples the values of local variables (including parameters) of stack frames with the MIPS ISA
implementation. Let

(vi,j , ti,j) ≡ Vi[j]

ri,j ≡ infoIL.lvr(vi,j , fi, loci)

lvai,j ≡ bin32(base(i)− 4 · infoIL.lvo(vi,j , fi, loci))

parai,j ≡ bin32

(
base(i) + 8 +

∑j−1

k=1
sizeθ(qt2t(ti,k))

)

crsbasei ≡ base(i)− 4 · (|Vi| − npar i)− 32− infoIL.sizetmp(fi, loci)− 4

crsai,j ≡ bin32 (csrbasei − infoIL(vi,j , fi, loci, ri,j))

csai,j ≡ bin32

(
base(i)− 4 · (|Vi+1| − npar i+1)− 4 · ε{k ∈ N8 | ri,j = svk}

)

where vi,j is the j-th local variable in frame i with type ti,j , that is allocated on the stack if ri,j is
undefined. Then it is stored at local variable address lvai,j or parameter address parai,j . In the
other case that ri,j is defined, variables of the top frame are stored in the corresponding registers.
Variables of other stack frames that are allocated in registers are stored either in the caller-save
area starting from (upper) base address crsbasei at address crsai,j , or in the callee-save area of
the callee frame at address csai,j . Formally, with CS = {sv1, . . . , sv8}:

consis lvC-IL(cIL, π, θ, infoIL, h)
def≡ ∀i ∈ Ntop , j ∈ N|Vi|.

=⇒ ME i(vi,j) =





h.c.gpr(ri,j) : ri 6= ⊥ ∧ i = top

h.m4(csai,j) : ri,j ∈ CS ∧ i < top

h.m4(crsai,j) : ri,j ∈ B5 \ CS ∧ i < top

h.msizeθ(qt2t(ti,j))(lvai,j) : ri,j = ⊥ ∧ j > npar i

h.msizeθ(qt2t(ti,j))(parai,j) : otherwise

Note above that wrt. local variable consistency, all caller frames rest in the consistency
point that is placed immediately after the function call they initiated, because of the
C-IL semantics for the location counter. In case a function is called, loc is already ad-
vanced behind the function call statement. Thus the allocation of variables for caller
frames is determined by the compiler information of the the consistency point that will
be reached after returning from the called function. This setting, together with the def-
inition of consis lvC-IL, places several restrictions on the implementation of function calls.

First, when a local variable is supposed to be allocated on the stack upon returning
from the function, it has to be stored in the right position throughout the complete
function call. This means that the compiler has to store it on the stack before jumping
to the callee function. Similarly, when variables are supposed to reside in callee-save or
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caller-save registers upon return, the compiler needs to put them into the right callee-
save register, or store them in the caller-save area, respectively, before the jump.

Moreover we restricted the optimizing compiler by demanding that it always saves
all eight callee-save registers in the callee-save area. A lazier implementation might just
keep them in the registers if they are not modified. In case of further function calls their
values would be preserved by the calling convention. Such a setting would lead to a
much more complex situation where local variables of caller frames on the bottom of
the stack may be stored in much higher stack frames or even the registers of the top
frame. In order to keep the definitions simple, we did not allow such optimizations
here. The consistency relation for the remaining stack components is stated below.

Definition 71 (CIL Stack Consistency) The C-IL stack component is implemented correctly
in memory, if in every stack frame except the lowest one (i) the previous base pointer field con-
tains the address of the base of the previous frame (with higher index), and if (ii) the return
destination points to the correct address, according to the rds component of the C-IL function
frame, in case it is defined. Let alv = bin32(base(j)− infoIL.lvo(v, fj , locj) + o) in:

consisstackC-IL (cIL, π, θ, infoIL, h) ≡ ∀i ∈ [1 : |cIL.s|).
(i) pbp(i+ 1) = base(i)

(ii) rds(i) 6= ⊥ =⇒ rds(i) =

{
a : rds(i) = val(a, t) ∈ valptr

alv : rds(i) = lref((v, o), j, t) ∈ val lref

Now we can collect all sub-relations and define the overall compiler consistency rela-
tion between C-IL and MIPS configurations.

Definition 72 (C-IL Compiler Consistency Relation) The C-IL consistency relation com-
prises the consistency between MIPS and C-IL machine wrt. (i) program counter and return
addresses, (ii) the code region, (iii) stack and base pointer registers, (iv) the global memory re-
gion, (v) the local variables and parameters, as well as (vi) return destinations and the chain of
previous base pointers.

consisC-IL(cIL, π, θ, infoIL, h) ≡
(i) consiscontrolIL (cIL, infoIL, h) (iv) consismem

IL (cIL, infoIL, h)
(ii) consisregsIL (cIL, π, θ, infoIL, h) (v) consis lvIL(cIL, π, θ, infoIL, h)
(iii) consiscodeIL (cIL, π, θ, infoIL, h) (vi) consisstackIL (cIL, π, θ, infoIL, h)

Simulation Theorem

For stating the simulation theorem between C-IL and MIPS ISA we again have to intro-
duce well-formedness conditions on the C-IL and MIPS configurations and computa-
tions. In order to enable a simulation, like in MASM, we require that C-IL programs do
not exceed the maximal stack size and do not directly access the stack or code regions
of memory. We adapt the stack overflow predicate to the C-IL case.

stackovf (cIL, π, θ, infoIL)
def≡ (base(1)− dist(1)) < mspIL
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In order to be able to detect bad memory accesses to the stack or code region we must
define the memory footprint of C-IL expressions and statements. First we introduce a
function to compute the memory region occupied by referenced global subvariables.

Definition 73 (Footprint Function for Global Subvariables) Let a ∈ B32 be an address
that a pointer variable points to and t ∈ {ptr(t′),array(t′, n)} the type of that pointer. Then
the memory footprint of the referenced subvariable is computed by the following function.

fpθ(a, t) ≡
{

[〈a〉 : 〈a〉+ sizeθ(t
′)) : /isarray(t′)

∅ : otherwise

Arrays cannot be accessed as a whole, we only read their elements using pointer arith-
metic. Therefore we define the memory footprint of array variables to be empty.

Definition 74 (Global Memory Footprint of C-IL Expressions) Function

A·,·· (·) : conf C-IL × progC-IL × paramsC-IL × E⇀ 2[0:232)

computes the set of global memory addresses that are accessed when evaluating a given C-IL
expression e wrt. some C-IL configuration c, program π, and environment parameters θ as
follows. Let sv(e) ≡ e ∈ V ∨ ∃e′ ∈ E, f ∈ F. e = (e′).f (i.e., e is a subvariable) in:

Aπ,θc (e) ≡





∅ : e ∈ val ∪ Fname ∨ ∃t ∈ TQ. e = sizeof(t)

∨ sv(e) ∧ [[&(e)]]π,θc ∈ val lref

∨ ∃e′ ∈ E. e ∈ {&(e′), sizeof(e′)} ∧ sv(e′)

fpθ(a, t) : sv(e) ∧ [[&(e)]]π,θc = val(a, t) ∈ valptr

Aπ,θc (e′) : ∃	 ∈ O1, t ∈ TQ. e ∈ {	e′, e = (t)e′, e = &(∗(e′))}
∨ e = ∗(e′) ∧ [[e′]]π,θc ∈ val lref ∨ e = sizeof(∗(e′))

Aπ,θc (x) ∪Aπ,θc (e′) : ∃e′′ ∈ E ∧ e = (x ? e′ : e′′) ∧ zero(θ, [[x]]π,θc )

Aπ,θc (x) ∪Aπ,θc (e′′) : ∃e′ ∈ E ∧ e = (x ? e′ : e′′) ∧ /zero(θ, [[x]]π,θc )

Aπ,θc (e′) ∪Aπ,θc (e′′) : ∃⊕ ∈ O2. e = e′ ⊕ e′′
Aπ,θc (e′) ∪ fpθ(a, t) : e = ∗(e′) ∧ [[e′]]π,θc = val(a, t) ∈ valptr

⊥ : otherwise

The definition is straight-forward for most of the cases. Unlike global subvariables,
C-IL values and function names are not associated with any memory address. The
same holds for local subvariables. Looking up addresses and type sizes does not touch
memory either. In order to dereference a pointer to a global memory location one must
evaluate the address to be read, but also read the memory region referenced by that
typed pointer. We need another predicate to detect whether some expression encodes
a reference to the cas intrinsic function. Let the type signature of the cas intrinsic be
denoted by tcas = funptr(void,ptr(i32) ◦ i32 ◦ i32 ◦ ptr(i32)). Then we define:

casπ,θc (e)
def≡ ∃b ∈ B32. [[e]]π,θc = val(b, tcas) ∧ θ.F−1

adr (b) = cas ∨ [[e]]π,θc = fun(cas, tcas)
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Now the memory footprint of a C-IL statement is easily defined using the expression
footprint notation.

Definition 75 (Memory Footprint of C-IL statements) We overload the definition of func-
tion Aπ,θc from above to cover also C-IL statements s ∈ IC-IL. Let AE =

⋃
e∈E A

π,θ
c (e) for

E ∈ E∗ as well as Acas = Aπ,θc (∗a) ∪Aπ,θc (u) ∪Aπ,θc (v) ∪Aπ,θc (∗r) in:

Aπ,θc (s) ≡





∅ : s = return ∨ ∃l ∈ N. s = goto l

Aπ,θc (e) : ∃l ∈ N. s = ifnez e goto l

∨ s = return e ∧ rds(top−1) ∈ val lref

Aπ,θc (e) ∪ fpθ(a, t) : s = return e ∧ rds(top−1) = val(a, t) ∈ valptr

Aπ,θc (e) ∪Aπ,θc (e′) : s = (e = e′)

Aπ,θc (e) ∪AE : s = call e(E) ∧ /casπ,θc (e)

Aπ,θc (e) ∪Acas : s = call e(a, u, v, r) ∧ casπ,θc (e)

Aπ,θc (e) ∪Aπ,θc (e′) ∪AE : s = (e′ = call e(E))

⊥ : otherwise

For most statements the footprint of the C-IL statements is only depending on the ex-
pressions they are containing. Only the return statement which returns a value writes
additional memory cells. In the special case of cas we know from its semantics that
also the memory locations referenced by inputs a and r are accessed. With the above
definition all C-IL software conditions for simulation can be summed up below.

Definition 76 (C-IL Software Conditions) A C-IL program can be implemented if all reach-
able configurations obey the software conditions denoted by the following predicate. Given a
C-IL configuration cIL, programm π, environment parameters θ, and assembler information
infoIL, then the next step according to input in ∈ ΣC-IL may (i) not produce a run-time error,
(ii) not result in a stack overflow, and (iii) not explicitely access the stack or code region. Addi-
tionally, in (ii) we demand the minimal stack pointer value to be positive, and that (iv) the code
region fits into memory and is disjoint from the stack region.

scC-IL(cIL, in, π, θ, infoIL) ≡ (i) δπ,θC-IL(cIL, in) 6= ⊥
(ii) /stackovf (cIL, π, θ, infoIL) ∧mspIL ≥ 0

(iii) Aπ,θcIL (stmtnext(π, cIL)) ∩ (CR ∪ StR) = ∅
(iv) CR ⊆ [0 : 232) ∧ CR ∩ StR = ∅

Note that these restrictions imply that accessed global variables are not allocated in the
stack or code region by the compiler. Also, by (i) the software conditions exclude com-
mon programming errors like out-of-bounds array accesses, or dereferencing dangling
pointers to local variables.

Another software condition one could think of is to limit the number of global vari-
ables so that all fit in global memory. However this is already covered here because
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of two facts. First, in C-IL semantics there is an explicit allocation function θ.allocgv
for global variables which determines their addresses in global memory. Secondly, the
absence of run-time errors ensures that every global variable that is ever accessed is
actually allocated. Thus we cannot have too many global variables in a program that is
fulfilling the software conditions stated above.

Concerning the well-formedness of MIPS configurations and well-behaving of MIPS
computations, we have the same conditions as for MASM, ensuring that no external or
internal interrupts are triggered and that instructions are fetched from the code region.

suitC-IL
MIPS(eev)

def≡ /eev [0]

wbC-IL
MIPS(h, eev)

def≡ /jisr(h.c, I(h), eev) ∧ [〈h.c.pc〉 : 〈h.c.pc〉+ 3] ⊆ CR

wf C-IL
MIPS(h)

def≡ h.spr(sr)[dev] = 0

Now we can state the sequential simulation theorem for C-IL which is mostly similar
to the MASM theorem. The main difference is that the n ISA steps do not simulate one
but many C-IL steps, because we are dealing with an optimizing compiler. Note that,
similar to the MASM simulation theorem, we only cover one simulation step which can
be used in an inductive simulation proof between C-IL and MIPS computations.

Theorem 3 (Sequential C-IL Simulation Theorem) Given an initial C-IL configuration
cIL0 ∈ conf C-IL that is (i) well-formed, a MIPS configuration h0 ∈ HMIPS that is (ii) well-
formed for C-IL simulation and (iii) consistent to cIL0 wrt. some π ∈ ProgC-IL, θ ∈ paramsC-IL,
and infoIL ∈ InfoT C-IL. If (iv) every C-IL state reachable from cIL0 is well-formed and fulfilling
the C-IL software conditions,

∀cIL0, π, θ, h0, infoIL.

(i) wf C-IL(cIL0, π, θ)

(ii) wf C-IL
MIPS(h0)

(iii) consisC-IL(cIL0, π, θ, infoIL, h0)

(iv) ∀c′IL ∈ ProgC-IL, n ∈ N0, in ∈ (ΣC-IL)n+1. cIL0 −→n
δC-IL,in

c′IL =⇒
wf C-IL(c′IL, π, θ) ∧ scC-IL(c′IL, inn+1, π, θ, infoIL)

then there exists an ISA computation that (i) starts in h0 and preserves well-formedness. More-
over (ii) there is a well-formed C-IL state c′IL obtained by taking steps from cIL. The implement-
ing ISA computation is (iii) well-behaved and (iv) leading into a state consistent with c′IL.

=⇒ ∃n ∈ N, h ∈ Hn+1
MIPS, eev ∈ (B256)n, c′IL ∈ conf C-IL,m ∈ N0, in ∈ (ΣC-IL)m.

(i) h1 = h0 ∧ h1 −→n
δMIPS,eev

hn+1 ∧ wf C-IL
MIPS(hn+1)

(ii) cIL0 −→m
δπ,θC-IL,in

c′IL ∧ wf C-IL(c′IL, π, θ)

(iii) ∀i ∈ Nn. wbC-IL
MIPS(hi, eev i)

(iv) consisC-IL(c′IL, π, θ, infoIL, hn+1)
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Note that hypothesis (iv) could not be discharged if we used the definition of C-IL from
[Sch13b], because there run-time errors can occur due to a bad choice of inputs for a
computation, as explained before.
For proving the theorem one needs to know the code generation function of a given op-
timizing C-IL compiler and prove the correctness of the generated code for statements
between consistency points. Then using code consistency one argues that only the cor-
rect generated code is executed, eventually leading into another consistency point.

Again the theorem allows us to couple uninterrupted sequential MIPS ISA computa-
tions with a corresponding C-IL computation. Any uninterrupted ISA computation of
a big enough length, that is running out of a consistency point, contains the simulating
ISA computation from the theorem as a prefix because without external inputs any ISA
computation is only depending on the initial configuration. Thus by induction on the
number of consistency points passed one can repeat this argument and find the C-IL
computation that is simulated by the original ISA computation. We will formalize this
notion for concurrently executing program threads in the next chapter. Before that we
conclude by presenting the instantiation of our Cosmos model with C-IL.

4.3.3 Concurrent C-IL

In what follows we define a Cosmos machine SnC-IL ∈ S which contains n C-IL compu-
tation units working on a shared global memory. This concurrent C-IL model will be
justified later by a simulation proof between SnC-IL and SnMIPS using the sequential sim-
ulation theorem defined above (cf. Section 5.6.2). Like in the concurrent MASM model
all C-IL units share the same program and environment parameters, but they are run-
ning on different stacks, since each unit can be in a different program state. Hence we
have disjoint stack regions in memory with different stack base addresses but the same
length. The instantiation is thus based on the parameters π ∈ ProgC-IL, θ ∈ paramsC-IL,
infopIL ∈ InfoT C-IL for p ∈ Nn. The compiler information is equal for all units except for
the stack base address.

∀q, r ∈ Nn, c. q 6= r ∧ c 6= sba =⇒ infoqIL.c = inforIL.c

Thus we can refer to a common compiler information data structure infoIL which is
consistent with all infopIL wrt. all components but sba . We redefine the shorthands for
stack and code regions below, adapting them to the C-IL setting.

CR
def≡ [〈infoIL.cba〉 : 〈infoIL.cba〉+ 4 · |infoIL.code|)

StRp
def≡ (〈infopIL.sba〉 − infoIL.mspIL : 〈infopIL.sba〉]

Then required disjointness of stack frames in memory is denoted by:

∀q, r ∈ Nn. q 6= r =⇒ StRq ∩ StRr = ∅
Before, we already noted that the software conditions on C-IL enforce that no global
variables are allocated in the stack or code memory region. However this is only guar-
anteed for global variables that are actually accessed in the program. For instantiation

139



4 Cosmos Model Instantiations

of our Cosmos model we need to make the requirement explicit. Let StR ≡ ⋃n
p=1 StRp

be the complete stack region and let

Aθgv (v, t)
def≡ [〈θ.allocgv (v)〉 : 〈θ.allocgv (v)〉+ sizeθ(qt2t(t)))

be the address range allocated for some global variable v ∈ V of qualified type t ∈ TQ.
Then we require:

∀(v, t) ∈ π.VG. Aθgv (v, t) ∩ (CR ∪ StR) = ∅
We now define the components of SnC-IL one by one.

• SnC-IL.A = {a ∈ B32 | 〈a〉 /∈ CR∪StR} and SnC-IL.V = B8 — as for MASM we obtain
the memory for the C-IL system by cutting out the forbidden address ranges for
the stack and code regions from the underlying MIPS memory.

• SnC-IL.R = {a ∈ B32 | ∃(v, (q, t)) ∈ π.VG. 〈a〉 ∈ Aθgv (v, (q, t)) ∧ const ∈ q} — as
constants are supposed to never change their values, we should forbid writing
them via the ownership policy by including them in the read-only set. This way,
ownership safety guarantees the absence of writes to constant global variables,
that cannot be detected by static checks of the compiler. For simplicity we exclude
here constant subvariables of global variables that are not constant. We could
easily cover them as well, after introducing the environment parameter which
determines the offsets of fields in composite-type variables. Nevertheless, note
that the ownership policy cannot exclude writes to local or dynamically allocated
constant variables, because on the one hand local variables are not allocated in the
global memory and the ownership policy only governs global memory accesses.
On the other hand, the set of read-only addresses is fixed in our ownership model,
thus we cannot add new constant variables toR.

• SnC-IL.nu = n — We have n C-IL computation units.

• SnC-IL.U = frame∗C-IL ∪ {⊥}— Each C-IL computation unit is either in a run-time
error state⊥, or it consists of a C-IL stack component upon which it bases its local
computations.

• SnC-IL.E = ΣC-IL — The external input alphabet for the C-IL transition function is
also suitable for the C-IL Cosmos machine

• SnC-IL.reads — We need to specify the explicit read accesses to global memory that
are associated with the next C-IL step of a given unit. We introduce the reads-set
function for C-IL statements

R·,·· (·) : conf C-IL × progC-IL × paramsC-IL × IC-IL ⇀ 2[0:232)

which defined similarly to the memory footprint of C-IL statements but excludes
write accesses. Note that the global memory is only updated by variable assign-
ments, return statements with a return value and the cas primitive. For all other
statements we can use the memory footprint function defined earlier.
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In case of a Compare-and-Swap intrinsic function call of cas(a, u, v, r), also the
memory location referenced by a is read but the target of r is only written.

For the return statements we simply exclude the memory location referenced by
the rds component of the previous stack frame to determine the corresponding
reads-set.

For assignments we need to exclude the written memory cells which are specified
in the left hand side of the assignment. However we cannot simply exclude the
left hand side expression from the computation of the reads-set, since there might
be read accesses necessary in order to evaluate it. Therefore we perform a case
distinction on e in s = (e = e′):

1. e is a plain variable identifier — Then no additional global memory cells
need to be read in order to obtain the variable’s address in memory.

2. e is dereferencing a pointer expression — Then there might be further mem-
ory reads necessary in order to evaluate the pointer expression. However
the referenced memory location is not added to the reads-set explicitely. It
still might occur in the reads-set though if it contributes to the evaluation of
the pointer expression.

3. e contains either a redundant &-∗-combination or references a field of a sub-
variable — In the first case expression evaluation simply discards the re-
dundant &-∗-combination. In the latter case one first has to evaluate the
referenced subvariable before the address of the field can be computed. In
both cases the expression evaluation step does not require memory accesses,
hence we continue to compute the reads-set recursively with the inner sub-
expression which must specify a subvariable.

UsingAcas = Aπ,θc (∗a)∪Aπ,θc (u)∪Aπ,θc (v)∪Aπ,θc (r) we define these ideas formally:

Rπ,θc (s)
def≡





Aπ,θc (e′) : ∃e ∈ V. s = (e = e′)

Aπ,θc (e′) ∪Aπ,θc (e′′) : s = (∗(e′′) = e′)

Rπ,θc ((e = e′)) : ∃f ∈ F. s ∈ {(&(∗(e)) = e′), ((e).f = e′)}
Aπ,θc (e) : s = return e

Aπ,θc (e) ∪Acas : s = call e(a, u, v, r) ∧ casπ,θc (e)

Aπ,θc (s) : otherwise

Remember that C-IL configurations cIL = (M, s) consist of a memoryM : B32 →
B8 and a stack s ∈ frame∗C-IL, thus a pair (dme, u) consisting of a completed partial
Cosmos machine memory m : A ⇀ V and a unit configuration u ∈ U represents
a proper C-IL configuration. Now the reads function of the Cosmos machine can
easily be instantiated.

SnC-IL.reads(u,m, in) = Rπ,θ(dme,u)(stmtnext(π, (dme, u)))
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• SnC-IL.δ — We simply use the C-IL transition function δπ,θC-IL in the instantiation of
the transistion function for the C-IL computation units. Again, we need to fill the
partial memory that is given to the SnC-IL.δ as an input with dummy values, so that
we can apply δπ,θC-IL on it. Moreover, we need to define the writes-set for a given
C-IL statement s because the output memory of the transition function needs to
be restricted to this set. As noted above, only assigments, cas , and certain return
statements may modify the global memory. Let X = ([[a]]π,θcIL , [[u]]π,θcIL , [[v]]π,θcIL , [[r]]

π,θ
cIL )

in the predicate

casπ,θcIL (s, a, u, v, r, ρ, in)
def≡ s = call e(a, u, v, r) ∧ casπ,θcIL (e)

∧ (X, cIL, in.η[cas](X, cIL)) ∈ ρ

which denotes that statement s is a call to the cas intrinsic function with the spec-
ified input parameters, and that the external function call has an effect according
to transition relation ρ ∈ θ.Rextern. Thus we define the writes-set for a given C-IL
statement.

W π,θ
cIL (s, in)

def≡



fpθ(a, t) : ∃e, e′ ∈ E. s = (e = e′) ∧ [[&(e)]]π,θcIL = val(a, t) ∈ valptr

∨ s = return e ∧ rds top−1 = val(a, t) ∈ valptr

fpθ(x, t) ∪ fpθ(y, t) : ∃a, u, v, r ∈ E. casπ,θcIL (s, a, u, v, r, ρswapcas , in)

∧ [[a]]π,θcIL = val(x, t) ∧ [[r]]π,θcIL = val(y, t) ∧ t = ptr(i32)

fpθ(x,ptr(i32)) : ∃a, u, v, r ∈ E. casπ,θcIL (s, a, u, v, r, ρswapcas , in)

∧ [[a]]π,θcIL = val(x,ptr(i32)) ∧ [[r]]π,θcIL ∈ val lref

fpθ(y,ptr(i32)) : ∃a, u, v, r ∈ E. casπ,θcIL (s, a, u, v, r, ρfailcas , in)

∧ [[r]]π,θcIL = val(y,ptr(i32))

∅ : otherwise

In the first case either execution is returning from a function call with a return
value that is written to the memory cells specified by the return destination of the
caller function frame, or we have an assignment to a memory location. The re-
maining cases deal with the various outcomes of a Compare-and-Swap intrinsic
function call. If the comparison was successful the targeted shared memory loca-
tion is written. Also we must distinguish whether the value read for comparison
is returned to a local or global variable. Only in the latter case the variable update
contributes to the writes-set.

Now we can define the transition function for C-IL computation units with the
following case distinction. Let W = W π,θ

(dme,u)(stmtnext(π, (dme, u)), in) in:

SnC-IL.δ(u,m, in) =

{
(M′|W , s′) : δπ,θC-IL((dme, u), in) = (M′, s′)
⊥ : c = ⊥ ∨ δπ,θC-IL((dme, u), in) = ⊥
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If c = ⊥ or δC-IL returns ⊥, so does SnC-IL.δ(u,m, in). Note that in contrast to
the C-IL semantics, we do not update the complete memory for external function
calls, because doing so would break the ownership memory access policy. Instead
we only update the relevant memory portions according to the semantics of the
particular external function, i.e., of cas in this case. This approach is sound be-
cause we have defined the external transition function input η in such a way, that
it implements the semantics specified by θ.Rextern.

• SnC-IL.IO — There are basically two kinds of IO steps in C-IL. As in MASM we
consider the use of the Compare-and-Swap mechanism as an IO step. Moreover
we include accesses to volatile subvariables. As we have seen above C-IL state-
ments may depend on a lot of variables and memory locations, therefore, in order
to avoid spurious accesses to shared memory, we restrict the way we may safely
access volatile variables in C-IL. We set up the following rules which will be en-
forced by the ownership discipline when defining the IO predicate accordingly.

– Volatile variables may only be accessed in assignment statements or by the
intrinsic function cas .

– Per assignment there may be only one access to a volatile variable.

– The right hand side of assignments with a volatile read, is either a volatile
variable identifier, or it is dereferencing a pointer expression which is either
volatile or pointing to a volatile variable.

– The left hand side of assignments with a volatile write has the same form.

Note that this excludes references to volatile variables in function calls, return
statements, and goto conditions. We do not support these cases here for simplic-
ity. Above, we already introduced the predicate volπ,θf which scans expressions
of a C-IL function f recursively for volatile variable accesses. We derive a similar
predicate for evaluating expressions in the top frame of configuration cIL.

volπ,θcIL (e)
def≡ volπ,θftop(cIL)(e)

Now we can define the IO predicate, formalizing the rules stated above. Let
no2volπ,θcIL (e′′) ≡ ∃q, q′, t. τQπ,θcIL (e′′) = (q′,ptr(q, t)) ∧ volatile /∈ q ∩ q′ in:

SnC-IL.IO(u,m, in) = 1 ⇐⇒
∃e, e′, e′′ ∈ E, E ∈ E∗.

stmtnext(π, (dme, u)) = call e(E) ∧ casπ,θ(dme,u)(e)

∨ stmtnext(π, (dme, u)) ∈ {(e = e′), (e′ = e)}
∧/volπ,θcIL (e) ∧ volπ,θcIL (e′) ∧ (e′ ∈ V ∨ (e′ = ∗(e′′)) ∧ no2vol (e′′))

Note, that any access to shared memory which does not obey the rules above
will not be considered an IO step and thus be unsafe according to the ownership
memory access policy.
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• SnC-IL.IP — Again we could choose the interleaving-points to be IO points to
allow for coarse scheduling and an easier verification of concurrent C-IL code.
However, later we want to show a simulation between the concurrent MIPS and
the concurrent C-IL model, so we have to choose consistency points as interleaving-
points such that in the Cosmos model we interleave blocks of code that are exe-
cuted by different C-IL units and each block starts in a consistency point.

SnC-IL.IP(u,m, in) = infoIL.cp(ftop(dme, u), loctop(ftop(dme, u)))

With this definition of IO steps and interleaving-points we can make sure by the
verification of ownership safety, that shared variables are only accessed at a few
designated points in the program, which are chosen by the programmer. This
allows on the one hand for the efficient verification of concurrent C-IL programs,
on the other hand it enables us to justify the concurrent C-IL model, using our
order reduction theorem.

In order to do so we would first need to determine the aforementioned set Aio
of the underlying MIPS Cosmos machine (cf. Sect. 4.1.4). Since all assignments
contain only one access to a volatile variable the compiler can ensure the same
for the compiled code. Since there is a consistency point before every assignment
that includes a volatile variable, we can determine the address of the memory
instruction implementing the access with the help of infoIL.cba , infoIL.off , and
the code compilation function. We collect all these instruction addresses in Aio.
The set Acp, which contains the addresses of all consistency points in the machine
code, can easily be defined using infoIL.cba , infoIL.off , and infoIL.cp. For a formal
description of the simulation between SnC-IL and SnMIPS see Sect. 5.6.2.

Thus we have instantiated our Cosmos machine with the C-IL semantics obtaining a
concurrent C-IL model. However we still need to discharge instar(S

n
C-IL) which de-

mands the following property of our reads function instantiation. We have to prove
that if the memories of two C-IL machines (dme, u) and (dm′e, u) agree on reads-set
R = SnC-IL.reads(u,m, in) of the first machine, then both machines are reading the same
addresses in the next step.

m|R = m′|R =⇒ SnC-IL.reads(u,m′, in) = R

In contrast to MASM, the reads-set of a C-IL step depends heavily on memory because
of expression evaluation which constitutes in fact a series of memory read accesses that
are depending on each other. Thus we can see that the statement above is a suitable cor-
rectness condition on the reads-set instantiation. If it did not hold, i.e., if both machines
would read different addresses although they have the same stack and their memories
agree on the reads-set of one machine, then this can only be explained by a dependency
of the reads-set on some memory location that is not covered by the read-set definition.
This however means that this definition is incorrect since it does not cover all memory
addresses that the next step depends upon.
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We finish the instantiation chapter by a proof of the instantiation constraint on the C-IL
reads-set. To this end we first prove several lemmas about the C-IL memory footprint
and reads-set notation.

Lemma 25 (C-IL Expression Memory Footprint Correctness) Given are a C-IL program
π, environment parameters θ and two C-IL configurations c, c′ that agree on their stack, i.e.,
c.s = c′.s, and a C-IL expression e. If the memories of both machines agree on the memory
footprint of e wrt. configuration c, then e is evaluated to the same value in both configurations.
Let A = {a ∈ B32 | 〈a〉 ∈ Aπ,θc (e)} in:

c.M|A = c′.M|A =⇒ [[e]]π,θc = [[e]]π,θc′

PROOF SKETCH: Since we have not defined expression evaluation, we cannot give a
formal proof here, however we can provide a proof sketch. The proof is conducted by
a structural induction on C-IL expressions. There we have the following base cases.

• If e is a proper C-IL value then expression evaluation returns just e again in both
configurations.

• If e is a function name, a function pointer value is returned after a function table
look-up. As in this evaluation memory is not concerned, again the same values
are computed in c and c′.

• If e = sizeof (t) for some qualified type t, similarly only a type table lookup is
necessary for the evaluation and we get the same result.

• If e is taking the address of some variable name v, i.e., e = &(v), then the following
subcases are base.

– If v is a local variable in the top frame then it is so in both configurations
since the stacks are equal in c and c′. A local reference is returned according
to the type declaration of the top function. Again memory is not concerned
here so the same value is returned.

– The same holds for global variables but in addition the address of the global
variable has to be computed using the global variable allocation function.

• If e is a variable name we first evaluate &(e) as above. If the resulting value
is a pointer to some primitive value or a storable (i.e., not symbolic) function
pointer value, then the global memory footprint Aπ,θc (e) of the variable is part of
A according to the definition of Aπ,θc . Then the same value is read from memory
when evaluating e in both configurations. This is also the case when e identifies a
local variable, because we have the same stacks in c and c′. For array variables a
pointer to the start of the array is returned independent of the state of memory.

In the induction step we assume that the claim holds for all subexpressions of e. Note
that by the recursive definition of the global memory footprint function (cf. Def. 74), the
memory footprints of these sub expressions are also contained in A and the memories
in c and c′ agree on them. We have the following cases for e:
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• For unary or binary mathematical expressions we apply the induction hypothesis
(IH) on the operands and apply the corresponding operator semantics function
in order to obtain the same result of expression evaluation in both configurations.
The same principle holds for type casts and the case e = sizeof(e′).

• If e is the ternary if-then-else operator we first argue by induction hypothesis that
the if -condition is consistently evaluated in c and c′. Consequently the same deci-
sion is made whether to evaluate the then-expression or the else-expression. Also
the footprint then contains only the addresses relevant for the chosen subexpres-
sion. Applying IH again on this subexpression yields our claim.

• In case e = ∗(e′) is dereferencing a pointer, then we know that the same pointer
value is dereferenced in c and c′ according to IH on e′. The remaining proof is
similar to the last base case.

• If e = &(∗(e′)) then the &-∗-combination is simply redundant and skipped. By IH
e′ is evaluated consistently in both configurations c and c′.

• If e = &((e′).f) is the address of a field, then we first evaluate &(e′) which results
in the same pointer value according to IH. Then we simply add the appropriate
offset from the struct type declaration, which does not depend on memory. If
e = (e′).f is identifying a field subvariable we use the same approach to get a
pointer to that field. We then dereference the pointer as above getting the same
results in both configurations because the memory footprint of the subvariable is
contained in A by definition.

• In all other cases the expression evaluation is undefined and it is so in both con-
figurations. Thus we know that the expression evaluation of any C-IL expression
is depending only on the stack and the expression’s memory footprint. �

We can use this result in proving the following lemma.

Lemma 26 (C-IL Expression Memory Footprint Agreement) Given are a C-IL program
π, environment parameters θ and two C-IL configurations c, c′ that agree on their stack, i.e.,
c.s = c′.s, and a C-IL expression e. If the memories of both machines agree on the memory
footprint of e wrt. configuration c, then the footprints of e agree in both configurations. Let
A = {a ∈ B32 | 〈a〉 ∈ Aπ,θc (e)} in:

c.M|A = c′.M|A =⇒ Aπ,θc (e) = Aπ,θc′ (e)

PROOF: Again we prove the lemma by structural induction on C-IL expressions and fill
in the definition of their memory footprints. We have the following base cases:

• e ∈ val∪F∨e = sizeof(t) — Here e has an empty footprint in both configurations.

Aπ,θc (e) = ∅ = Aπ,θc′ (e)
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• sv(e) ∧ [[&(e)]]π,θc = val(a, t) ∈ valptr — By Lemma 25 we have [[&(e)]]π,θc =

[[&(e)]]π,θc′ = val(a, t), thus we have the same footprint, independent of memory.

Aπ,θc (e) = fpθ(a, t) = Aπ,θc′ (e)

• sv(e) ∧ [[&(e)]]π,θc ∈ val lref ∨ ∃e′ ∈ E. e ∈ {&(e′), sizeof(e′)} ∧ sv(e′) — In the
first case we argue as above, but the expression identifies a local variable which
is stored on the stack and not in global memory. The evaluation of addresses and
type sizes for subvariables does not depend on memory, hence the footprint is
empty as well in both configurations according to the definition of Aπ,θc (e).

Aπ,θc (e) = ∅ = Aπ,θc′ (e)

In the induction step we assume that the claim holds for all subexpressions of e.

• ∃	 ∈ O1, t ∈ TQ. e ∈ {	e′, e = (t)e′, e = &(∗(e′))} ∨ e = ∗(e′) ∧ [[e′]]π,θc ∈ val lref ∨
e = sizeof(∗(e′)) — Lemma 25 yields [[e′]]π,θc′ ∈ val lref , hence we have the same
cases in both machines. Induction hypothesis and the definition of Aπ,θc gives us:

Aπ,θc (e) = Aπ,θc (e′) IH
= Aπ,θc′ (e′) = Aπ,θc′ (e)

• e = (x ? e′ : e′′) ∧ zero(θ, [[x]]π,θc ) — By Lemma 25 we obtain [[x]]π,θc = [[x]]π,θc′ . Then
also zero(θ, [[x]]π,θc′ ) holds. Consequently in both c and c′ we compute the footprint
for e including expression e′ and leaving out e′′. By definition and IH:

Aπ,θc (e) = Aπ,θc (x) ∪Aπ,θc (e′) IH
= Aπ,θc′ (x) ∪Aπ,θc′ (e′) = Aπ,θc′ (e)

• e = (x ? e′ : e′′) ∧ /zero(θ, [[x]]π,θc ) — This case is symmetric to the one above.

• e = e′ ⊕ e′′ — Once more we use the memory footprint definition and IH.

Aπ,θc (e) = Aπ,θc (e′) ∪Aπ,θc (e′′) IH
= Aπ,θc′ (e′) ∪Aπ,θc′ (e′′) = Aπ,θc′ (e)

• e = ∗(e′)∧ [[e′]]π,θc = val(a, t) ∈ valptr — From Lemma 25 we get [[e′]]π,θc′ = val(a, t),
consequently we are dereferencing the same pointer in c′ and we conclude:

Aπ,θc (e) = Aπ,θc (e′) ∪ fpθ(a, t)
IH
= Aπ,θc′ (e′) ∪ fpθ(a, t) = Aπ,θc′ (e)

• In the remaining faulty cases Aπ,θc (e) and Aπ,θc′ (e) are both undefined, hence we
have shown for all cases of e that the computation of a C-IL expression’s memory
footprint is only depending on the addresses contained in the footprint. �

We show the same property for memory footprints of C-IL statements.
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Lemma 27 (C-IL Statement Memory Footprint Agreement) Given are a C-IL program π,
environment parameters θ and two C-IL configurations c, c′ that agree on their stack, i.e., c.s =
c′.s, and a C-IL statement s. If the memories of both machines agree on the memory footprint of
s wrt. configuration c, then the footprints of s agree in both configurations. Let A = {a ∈ B32 |
〈a〉 ∈ Aπ,θc (e)} in:

c.M|A = c′.M|A =⇒ Aπ,θc (s) = Aπ,θc′ (s)

PROOF: by case distinction on statement s.

• s ∈ {return,goto l}— These statements have an empty footprint by definition.

Aπ,θc (s) = ∅ = Aπ,θc′ (s)

• s = return e ∧ c.s[top−1].rds = val(a, t) ∈ valptr — From Lemma 26 we get
Aπ,θc (e) = Aπ,θc′ (e) therefore:

Aπ,θc (s) = Aπ,θc (e)
L26
= Aπ,θc′ (e) = Aπ,θc′ (s)

• s = ifnez e goto l∨ s = return e∧ c.s[top−1].rds ∈ val lref — From Lemma 26 we
again get Aπ,θc (e) = Aπ,θc′ (e), then definition yields:

Aπ,θc (s) = Aπ,θc (e) ∪ fpθ(a, t)
L26
= Aπ,θc′ (e) ∪ fpθ(a, t) = Aπ,θc′ (s)

• s = (e = e) — By Lemma 26, expressions e and e′ have the same footprints in c
and c′. Using the defintion of memory footprints we conclude:

Aπ,θc (s) = Aπ,θc (e) ∪Aπ,θc (e′) L26
= Aπ,θc′ (e) ∪Aπ,θc′ (e′) = Aπ,θc′ (s)

• s = call e(E) ∧ /casπ,θc (e) — The predicate casπ,θc is defined as follows for type
signature tcas introduced earlier.

∃b ∈ B32. [[e]]π,θc = val(b, tcas) ∧ θ.F−1
adr (b) = cas ∨ [[e]]π,θc = fun(cas, tcas)

From Lemma 25 we get [[e]]π,θc = [[e]]π,θc′ . Thus we also have casπ,θc (e) = casπ,θc′ (e)

and /casπ,θc′ (e) holds. For all input parameters i ∈ E we get Aπ,θc (i) = Aπ,θc′ (i).
Hence we conclude:

Aπ,θc (s) = Aπ,θc (e) ∪
⋃

i∈E
Aπ,θc (i)

L26
= Aπ,θc′ (e) ∪

⋃

i∈E
Aπ,θc′ (i) = Aπ,θc′ (s)

The other cases for function calls are proven similarly.

• The footprints are undefined in all other cases both in c and c′, hence we have
proven our claim for all s. �
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Now we can show the required property for the reads-set of C-IL statements.

Lemma 28 (C-IL Reads-Set Agreement) Given are a C-IL program π, environment param-
eters θ and two C-IL configurations c, c′ that agree on their stack, i.e., c.s = c′.s, and a C-IL
statement s. If the memories of both machines agree on reads-set of s wrt. configuration c, the
reads-sets of s agree in both configurations. Let R = {a ∈ B32 | 〈a〉 ∈ Rπ,θc (e)} in:

c.M|R = c′.M|R =⇒ Rπ,θc (s) = Rπ,θc′ (s)

PROOF: by case distinction on s:

• s ∈ {(e′ = e), return e}— Since by definition Aπ,θc (e) ⊆ R we have c.M|
Aπ,θc (e)

=

c.M′|
Aπ,θc (e)

. Thus we can apply Lemma 26 and by the definition of Rπ,θc we have:

Rπ,θc (s) = Aπ,θc (e)
L26
= Aπ,θc′ (e) = Rπ,θc′ (s)

• s = (∗(e′′) = e′) — Again we use Lemma 26 and the definition of Rπ,θc :

Rπ,θc (s) = Aπ,θc (e′) ∪Aπ,θc (e′′) L26
= Aπ,θc′ (e′) ∪Aπ,θc′ (e′′) = Rπ,θc′ (s)

• s ∈ {(&(∗(e)) = e′), ((e).f = e′)} — We recursively apply the definition of Rπ,θc
removing all field selectors or redundant &-∗-pairs from e until we obtain an as-
signment (x = e′), where x is either a variable identifier or it is dereferencing a
pointer. Both cases where proven above.

• s = call e(a, u, v, r)∧casπ,θc (e) — As we have seen in the previous proof, the equal-
ity ofAπ,θc (e) andAπ,θc (e′) that we get from Lemma 26 implies that casπ,θc′ (e) holds.
Also the input parameters of the cas function have the same memory footprints
in both machines, therefore we conclude:

Rπ,θc (s) = Aπ,θc (e) ∪Aπ,θc (∗a) ∪Aπ,θc (u) ∪Aπ,θc (v) ∪Aπ,θc (r)
L26
= Aπ,θc′ (e) ∪Aπ,θc′ (∗a) ∪Aπ,θc′ (u) ∪Aπ,θc′ (v) ∪Aπ,θc′ (r)

= Rπ,θc′ (s)

• In all other cases we have

Rπ,θc (s) = Aπ,θc (s) = Aπ,θc′ (s) = Rπ,θc′ (s)

by definition of the reads-set and Lemma 27. �

The instantiation requirement on SnC-IL.reads then follows as a corollary.
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PROOF OF instar(S
n
C-IL): Let sπ(u,m) = (stmtnext(π, (dme, u))). For reads-set

R = Rπ,θ(dme,u)(s
π(u,m))

and partial memories m,m′ such that m|R = m′|R (hence dme|R = dm′e|R) we have by
definition and Lemma 28:

SnC-IL.reads(u,m, in) = Rπ,θ(dme,u)(s
π(u,m))

L28
= Rπ,θ(dm′e,u)(s

π(u,m))

= Rπ,θ(dm′e,u)(π.F(u[|u|].f).P [u[|u|].loc])

= Rπ,θ(dm′e,u)(s
π(u,m′)) = SnC-IL.reads(u,m′, in) �
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Based on our order reduction theory we now want to explore how to apply local simu-
lation theorems in a concurrent context. Our goal is to state and prove a global Cosmos
model simulation theorem which argues that the local simulation theorems still hold
on computation units. In particular we want the simulation relation to hold for a unit
when it reaches a consistency point. Moreover from the verification of ownership safety
on the higher level, memory safety on the lower level should follow. First we introduce
a variation of the Cosmos model semantics tailored to the formulation of such a sim-
ulation theorem. Then we introduce sequential simulation theorems in a generalized
manner. Building on the sequential theorems we then formulate and prove a concur-
rent simulation theorem between Cosmos machines, stating the necessary requirements
on the sequential simulations to be composable with each other.

In the concurrent simulation we will profit from the Cosmos model order reduction
theorem proven before. For every computation unit of the simulating Cosmos machine
we set up the interleaving-points to be consistency points wrt. the sequential simulation
relation. This enables us to conduct a simulation proof between IP schedules of Cosmos
machines, applying the sequential simulation theorem separately on each IP block. In
such a scenario, where the interleaving-points are also consistency points wrt. a given
simulation relation we speak of consistency blocks instead of IP blocks.

Now the sequential simulation theorem can be applied on any consistency block on
the simulated level in order to obtain the simulated abstract consistency block executed
by the same unit. However there is a technicality to be solved, namely that the given
concrete block may not be complete in the sense that it does not lead into another con-
sistency point. Then one has to find an extension of that incomplete block, so that the
resulting complete concrete block is simulating an abstract block. We have to formu-
late the generalized sequential simulation theorem in a way that allows for this kind of
extension. Nevertheless later we will show for the transfer of verified safety properties
that it suffices to consider schedules where each consistency block is complete.

5.1 Block Machine Semantics

Since we may assume IP schedules for safe Cosmos machine execution, semantics can
be simplified. For introducing simulation theorems on Cosmos models it is convenient
to define semantics where we consecutively execute blocks starting in interleaving-
points (IP blocks). Also for now we do not need to consider ownership, therefore
it is sufficient to model the transitions on the machine state. We call the machine imple-
menting such semantics the IP block machine or short the block machine.
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5.1.1 Definition

We define the block machine semantics for a Cosmos machine S. The block machine
executes one IP block in a single step. To this end it gets a schedule κ ∈ (Θ∗S)∗ as
a parameter which is a sequence of transition sequences representing the individual
blocks to be executed. To distinguish blocks and block schedule we will always use λ
for transition sequences and κ for block sequences. Naturally not all block sequences
are valid block machine schedules. Each block in the block machine schedule needs to
be an IP block.

Definition 77 (IP Block) A transition sequence λ ∈ Θ∗S is called an IP block of machine
p ∈ S.nu if it (i) contains only steps by that machine, (ii) is empty or starts in an interleaving-
point, and (iii) does not contain any further interleaving-points.

blk(λ, p) ≡ (i) ∀α ∈ λ. α.s = p

(ii) λ 6= ε =⇒ λ1.ip

(iii) ∀α ∈ tl(λ). /α.ip

Thus we require the IP blocks to be minimal in the sense that they contain at most one
interleaving-point. For technical reasons empty blocks are also considered IP blocks.
We define the appropriate predicate Bsched which denotes that a given a block se-
quence κ ∈ (Θ∗S)∗ is a block machine schedule.

Bsched(κ)
def≡ ∀λ ∈ κ.∃p ∈ Nnu . blk(λ, p)

Note that this implies that the flattening concatenation bκc def≡ κ1 · · ·κ|κ| of all blocks of κ
form an IP schedule.

Lemma 29 The flattening concatenation of all blocks of any block machine schedule κ ∈ (Θ∗S)∗

is an IP schedule.
Bsched(κ) =⇒ IPsched(bκc)

Instead of defining a transition function for the block machine we extend our step se-
quence notation to block sequences as follows.

Definition 78 (Step Notation for Block Sequences) Given two machine states M,M ′ ∈
MS and a block machine schedule κ ∈ (Θ∗S)∗, we denote that M ′ is reached by executing the
block machine from state M wrt. schedule κ by the following notation.

M
κ7−→M ′ ≡ M

bκc7−→M ′

Then a pair (M,κ) is a computation of the block machine, if there exists a machine
state M ′ that can be reached via schedule κ from M , i.e., M κ7−→ M ′. Furthermore we
need to introduce safety for the block machine wrt. the ownership policy and some
safety property P . Similar to safety and safetyIP defined earlier, the verification of all
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block machine computations running out of configuration C wrt. ownership and some
Cosmos machine safety property P is denoted by the following predicate.

safetyB(C,P )
def≡

∀κ ∈ (Θ∗S)∗. Bsched(κ) ∧ comp(C.M, bκc) =⇒ ∃o ∈ Ω∗S . safeP (C, 〈bκc, o〉)

5.1.2 Reduction Theorem and Proof

In order to justify the verification of systems using block machine schedules instead
of IP schedules, we need to give a reduction proof. However since the two concepts
are so closely related this is a rather easy task. First we need to show that every IP
schedule can be represented by a block machine schedule.

Lemma 30 (Block Machine Schedule Existence) For any IP schedule θ we can find a cor-
responding block schedule κ such that the flattening concatenation of κ’s blocks equals θ.

∀θ ∈ Θ∗S . IPsched(θ) =⇒ ∃κ ∈ (Θ∗)∗. Bsched(κ) ∧ bκc = θ

PROOF: by induction on n = |θ|.
Induction Start: n = 0 - No step is made in θ and we set κ = ε. Then IPsched(κ) holds
trivially since κ contains no blocks and also bκc = ε = θ.

Induction Hypothesis: For an n-step interleaving-point schedule θ̄ we can find a corre-
sponding block machine schedule κ̄ as claimed.

Induction Step: n → n + 1 - We split θ into θ̄ and α such that θ = θ̄α. By induction
hypothesis we obtain κ̄ which is a block machine schedule with bκ̄c = θ̄. With m = |κ̄|
we perform a case distinction on α.

1. α.ip ∨ θ̄|α.s = ε - Step α starts a new IP block or the first block. We introduce
λ = α is a transition sequence containing only α and fulfilling the properties
∀β ∈ λ. β.s = α.s, λ1.ip, and tl(λ) = ε. Therefore blk(λ, α.s) holds trivially and
we obtain κ by simply adding λ to κ̄ as a new block, i.e. κ = κ̄λ. We immediately
see from induction hypothesis and blk(λ, α.s) that:

∀λ′ ∈ κ.∃p ∈ Nnu . blk(λ′, p)

Thus by definition we have Bsched(κ). Moreover we have:

bκc = bκ̄λc = κ̄1 . . . κ̄mλ = bκ̄cλ = θ̄λ = θ̄α = θ

2. θ̄ 6= ε∧α.s = θ̄n.s∧/α.ip - Step α simply extends the last IP block in IP schedule
θ̄ which we denote by λ.

∃λ, τ. θ̄ = τλ ∧ blk(λ, α.s)
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The existence of such a λ is justified by induction hypothesis since in fact we have
λ = κ̄m. Thus we can construct block machine schedule κ as follows.

κ[1 : m) = κ̄[1 : m) κm = λα

Sequence λ is a well-formed IP block by induction hypothesis. In addition α is
executed by the same unit as λ and it does not add an interleaving-point to the
tail of λ. Therefore also λα is wellformed and we have Bsched(κ) by definition
and IH on κ̄. The second claim now holds with the following transformations.

bκc = bκ̄[1 : m)λαc = κ̄1 . . . κ̄m−1λα = κ̄1 . . . κ̄mα = bκ̄cα = θ̄α = θ

3. Since θ is an IP schedule, by definition the remaining case θ̄n.s 6= α.s ∧ /α.ip is
not possible. �

Now we can easily reduce the verification of IP schedules to the verification of block
machine computations. In particular we show that the verification of all block machine
computations implies the verification of all IP schedules.

Theorem 4 (Block Machine Reduction) Let C be a configuration of Cosmos machine S
and P be a Cosmos machine safety property. Then if all block machine computations running
out of C are ownership-safe and preserve P , the same holds for all IP schedules starting in C.

safetyB(C,P ) =⇒ safetyIP(C,P )

PROOF: For the sake of contradiction we assume an IP schedule θ with C.M
θ7−→ M ′

that is unsafe, i.e., there is no ownership annotation for it that is obeying the ownerhsip
policy or it breaks property P .

IPsched(θ) ∀o ∈ Ω∗S . /safeP (C, 〈θ, o〉)

By Lemma 30 shown above we know that there exists a corresponding equivalent block
machine schedule κ such that bκc = θ. This immediately gives us C.M κ7−→ M ′ by
definition of the block sequence notation. Moreover we can use bκc = θ in the above
statements obtaining

∃κ ∈ (Θ∗S)∗. BschedB(κ) ∧ (∃M ′. C.M κ7−→M ′) ∧ ∀o ∈ Ω∗S . /safep(C, 〈bκc, o〉)

which is equivalent to /safetyB(C,P ). This however contradicts our hypothesis hence
there must exist a safe ownership annotation for θ. Therefore all interleaving-point
schedules starting in C are safe. �
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5.2 Generalized Sequential Simulation Theorems

As we have seen before, computer systems can be described on several layers of ab-
stractions, e.g. on the ISA level, the levels of macro assembly and C-IL, or even higher
levels of abstraction [GHLP05]. Between different levels there are sequential simulation
theorems, as presented in the previous chapter. Such simulation theorems are proven
for sequential execution traces where no environment steps are interleaved. However
it is desirable to have the simulation relation hold also in the context of the concurrent
system. Thus we need to be able to apply sequential simulation theorems in a system
wide simulation proof between two Cosmos model instantiations Sd, Se ∈ S where the
interleaving-points are instantiated to be the consistency points wrt. the corresponding
simulation relation. Recall that we speak of consistency blocks instead of IP blocks then.

In the sequel we develop a generalized theory of sequential simulation theorems.
We consider the simulation between computations (d, σ) ∈ MSd × Θ∗Sd and (e, τ) ∈
MSe×Θ∗Sd considering only the machine state of these Cosmos machines. We also speak
of Sd as the concrete and of Se as the abstract simulation layer, where computations of Se
are simulated by Sd. For simplicity we assume that the two systems have compatible
memory types. Also both systems have the same number of computation units. Using
the shorthands xd and xe for components Sd.x and Se.x we demand:

Ad ⊇ Ae Vd = Ve nud = nue = nu

Observe that the memory address range of Sd might be larger than that of Se. This
means, that the latter may abstract from certain memory regions in the former. For
example this is useful when we abstract a stack of local memories from a stack memory
region when we consider compilation of C-IL programs as we have seen before. The
stack region is then excluded from the shared memory. As we aim for a generalized
theory about concurrent simulation theorems we first define a framework for specifying
sequential simulation theorems in a uniform way.

Definition 79 (Sequential Simulation Framework) We introduce a type R for simulation
frameworks RSd,Se which contain all the information needed to state a generalized simulation
theorem relating sequential computations of units of Cosmos machines Sd and Se.

RSd,Se = (P, sim, CPa, CPc,wfa, sc,wfc, suit ,wb) ∈ R

In particular we have the following components where Lx ≡ (Ux×(Ax → Vx)) with x ∈ {d, e}
is a shorthand for the type of a local configuration of Cosmos machine Sx containing the state
of one computation unit and shared memory:

• P — the set of simulation parameters, which is {⊥} if there are none,

• sim : Ld ×P ×Le → B — a simulation relation between local configurations of compu-
tation units of Sd and Se, depending on a simulation parameter from P ,

• CPa : Ue × P → B — a predicate to identify consistency points of the abstract Cosmos
machine Se,
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• CPc : Ud × P → B — a predicate to identify consistency points of the concrete Cosmos
machine Sd,

• wfa : Le → B — a well-formedness condition for a local configuration of the abstract
Cosmos machine Se,

• sc : MSe × ΘSe × P → B — software conditions that enable a simulation of sequential
computations of Cosmos machine Se, here defined for a given step,

• wfc : Ld → B — well-formedness condition for a local configuration of the concrete
Cosmos machine Sd, required for the simulation of sequential computations of Se,

• suit : ΘSd → B — a predicate to determine whether a given step by the concrete Cosmos
machine is suitable for simulation.

• wb : MSd × ΘSd × P → B — a predicate that restricts the simulating computations of
Sd. We say that a simulating step in a computation of Sd is well-behaved iff it fulfills
this restriction.

Most of the components have their counterparts in the simulation theorems for MASM
and C-IL defined earlier. Hence their purpose should be obvious. Since suitability and
good behaviour (i.e., being well-behaved) were somewhat indiscriminate in these ex-
amples we again want to highlight the difference between the two concepts. While
suitability is a necessary condition on the schedule of the concrete Cosmos machine for
the simulation to work, good behaviour is a property that is guaranteed for simulat-
ing computations by the simulation theorem. These properties become important in a
stack of simulation properties where they should imply the software conditions on the
abstract layer of the underlying simulation theorem. See Section 6.1 for a more detailed
discussion of the topic.

The consistency point predicates CPa and CPc are used later to define the interleaving-
points in the concurrent Cosmos machine computations. Note that they depend only
on the unit state and a simulation parameter, because in our examples for C-IL and
MASM consistency points are determined independent of the state of memory. We
could define CPa and CPc to also depend on memory, achieving a more general model,
however doing so would complicate the proof of the concurrent simulation theorem,1

hence we keep the model simple and omit the dependence on memory. Also, contrary
to interleaving-points, consistency points are independent of external inputs.

Nevertheless we hold our framework to be suitable to cover sequential simulation
theorems between a variety of systems. To get some intuition on the software condi-
tions, well-formedness conditions, and restrictions on the behaviour of simulating com-
putations that are involved in RSd,Se , we will give an example by instantiating RSd,Se
with SMASM and SMIPS. Let h = (c,m) ∈ LMIPS, l = (c,m) ∈ LMASM, and

AMASM
cp ≡ {adr(infoµ, p, loc) | p ∈ dom(π) ∧ loc ≤ |π(p).body |}

1One would need to argue that memory accesses of other units do not influence whether a given machine
is in a consistency point.
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in:

RSMIPS,SMASM
.





P = InfoT MASM

sim(h, infoµ, l) = consisMASM(h, infoµ, (l.c, dl.me))
CPa(c, infoµ) = 1

CPc(c, infoµ) = (c.pc ∈ AMASM
cp )

wfa(l) = wf MASM(l.c, dl.me)
sc(M, t, infoµ) = scMASM((M.u(t.s), dM.me), infoµ)

wfc(h) = wf MASM
MIPS (h)

suit(α) = suitMASM
MIPS (α.in)

wb(M, t, infoµ) = wbMASM
MIPS ((M.u(t.s),M.m), t.in)

In the sequential simulation of MASM computations by MIPS units, we need the as-
sembler information as a simulation parameter and we naturally choose consisMASM as
the simulation relation. All configurations on the abstract MASM level are consistency
points. On the concrete MIPS level we are in a consistency point iff the program counter
points to the beginning of the assembled code for a MASM statement in the MASM pro-
gram π. The remaining functions are simply instantiated using their counterparts from
the MASM simulation theorem. We could give a similar instantiation of RSMIPS,SC-IL

however we save this for the instantiation of the concurrent simulation theory to be
introduced in the next section.

As mentioned before we need to be able to apply the sequential simulation theorem
on incomplete consistency blocks. Thus we consider a given consistency block ω ∈
Θ∗Sd as the basis for the simulating concrete computation. We have to extend ω into a
complete non-empty consistency block σ which is simulating some abstract consistency
block. Formally the extension of some transition sequence is denoted by the relation
ω Bblkp σ which is saying that σ extends ω without adding consistency points to the
block. Alternatively we can say that ω is a prefix of consistency block σ

ω Bblkp σ
def≡ ∃τ. σ = ωτ 6= ε ∧ blk(σ, p) ∧ blk(ω, p)

In order to be able to integrate the sequential simulation theorems into the concurrent
system later on, there is an additional proof obligation in the sequential simulation
below. Basically it is there to justify the IOIP condition of the underlying order reduc-
tion theorem which demands that there is at most one IO step between two subsequent
interleaving-points of the same computation unit. This property has to be preserved by
the concrete implementation of the abstract specification level. Moreover there should
be a one-to-one mapping of IO steps on the abstract level to IO steps on the concrete
level. That means that in corresponding blocks Cosmos machine Sd may only perform
an IO step when Se does and vice versa. If this would not be the case we could not
couple the ownership state of Sd and Se later, because at IO steps we allow for owner-
ship transfer. Transferring ownership on one level but not on the other then may lead
to inconsistent ownership configurations. We denote the requirements on IO points in
consistency blocks by the overloaded predicate oneIO. For a single transition sequence
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σ it demands that σ contains only one IO step. For a pair (σ, τ) it demands that they
contain the same number of IO steps but at most one.

oneIO(σ)
def≡ ∀i, j ∈ N|σ|. σi.io ∧ σj .io =⇒ i = j

oneIO(σ, τ)
def≡

{
τ |io = ε : σ|io = ε

oneIO(σ) ∧ oneIO(τ) : otherwise

Moreover we introduce the following shorthands for d ∈ MSd , e ∈ MSe , p ∈ Nnu,
par ∈ RSd,Se .P , ω ∈ ΘSd , and τ ∈ ΘSe .

P ≡ RSd,Se .P
simp(d, par , e) ≡ RSd,Se .sim((d.u(p), d.m), par , (e.u(p), e.m))

CPp(e, par) ≡ RSd,Se .CPa(e.u(p), par)

CPp(d, par) ≡ RSd,Se .CPc(d.u(p), par)

wf p(e) ≡ RSd,Se .wfa(e.u(p), e.m)

sc(e, τ, par) ≡ ∀θ, α, θ′, e′. τ = θαθ′ ∧ e θ7−→ e′ =⇒ RSd,Se .sc(e′, α, par)

wf p(d) ≡ RSd,Se .wfc(d.u(p), d.m)

suit(ω) ≡ ∀α ∈ ω. RSd,Se .suit(α)

wb(d, ω, par) ≡ ∀θ, α, θ, d′. ω = θαθ′ ∧ d θ7−→ d′ =⇒ RSd,Se .wb(d′, α, par)

Note that we overload CPp and use both for machine states of type MSd and MSe . In
the same way we have overloaded wf p. In what follows we will always use letter d to
represent concrete machine states and letter e for abstract ones.

Now the generalized sequential simulation theorem is formulated along the lines
of the MIPS-MASM and the MIPS-C-IL simulation theorems that we have seen in the
previous chapter. However there are two technical differences. First, we use the our
step notation instead of talking about sequences of machine configurations so that it
fits with our order reduction theory and we can apply it on the consistency blocks of
concrete block machine computations.

Secondly, the theorem is stated such that it allows for completing incomplete consis-
tency blocks on the concrete abstraction layer. Given a concrete machine computation
(d, ω), where the simulation relation simp holds between initial machine state d and an
abstract state e for some computation unit p and ω is an incomplete consistency block
executed by p. We need to be able to extend ω into a transition sequence σ that leads
into a consistency point, obtaining a complete consistency block for which there is a
simulated computation (e, τ) on the abstract level (cf. Fig. 20).

The ability to extend incomplete consistency into complete ones is important in the
proof of the concurrent simulation theorem where we need to find a simulated abstract
computation for a concurrent concrete block machine computation, where most of the
consistency blocks are probably incomplete. In this situation we can use the general-
ized sequential simulation theorem for completing the concrete blocks and finding the
simulated abstract consistency blocks. Formally the theorem reads as follows.

158



5.2 Generalized Sequential Simulation Theorems

d

e

simp

d′′

e′

simp

τ

σ
d′

ω

Figure 20: Illustration of the generalized sequential simulation theorem. Here σ extends
consistency block ω of unit p, i.e., ωBblkp σ, such that the computation reaches
another consistency point and simulates abstract computation (e, τ).

Theorem 5 (Generalized Sequential Simulation Theorem) Given are two starting ma-
chine states d ∈ CSd , e ∈ CSe , a simulation parameter par ∈ RSd,Se .P and a transition
sequence ω ∈ Θ∗Sd . If for any computation unit p ∈ Nnu (i) d and e are well-formed and (ii)
consistent wrt. par , (iii) ω is a possibly incomplete consistency block of unit p that is suitable for
simulation and executable from d, and (iv) all complete consistency blocks of unit p which are
starting in e are obeying the software conditions for Se and lead into well-formed configurations,

∀d, e, par , ω, p. (i) wf p(d) ∧ wf p(e)

(ii) simp(d, par , e) ∧ CPp(d, par) ∧ CPp(e, par)

(iii) blk(ω, p) ∧ suit(ω) ∧ ∃d′. d ω7−→ d′

(iv) ∀π, e′. e π7−→ e′ ∧ blk(π, p) ∧ CPp(e′, par) =⇒ sc(e, π, par) ∧ wf p(e
′)

then we can find sequences σ ∈ Θ∗Sd , τ ∈ Θ∗Se and configurations d′ ∈ CSd , e′′ ∈ CSe such
that (i) σ is a suitable schedule and a consistency block of unit p extending the given block ω, τ
is a consistency block of unit p, and σ and τ contain the same amount of IO steps but at most
one. Moreover (ii) (d, σ) is a well-behaved computation with leading into well-formed state d′′

and (iii) executing τ from e leads into well-formed configuration e′′. Finally (iv) d′′ and e′′ are
consistency points of unit p and consistent wrt. simulation parameter par :

=⇒ ∃σ, τ, d′′, e′′. (i) ω Bblkp σ ∧ suit(σ) ∧ blk(τ, p) ∧ oneIO(σ, τ)

(ii) d
σ7−→ d′′ ∧ wb(d, σ, par) ∧ wf p(d

′′)

(iii) e
τ7−→ e′′ ∧ wf p(e

′′)

(iv) simp(d
′′, par , e′′) ∧ CPp(d′′, par) ∧ CPp(e′′, par)

Note that for the simulated computation (e, τ) we only demand progress (i.e., τ 6= ε)
in case σ contains IO steps. Then τ 6= ε follows from oneIO(σ, τ). In contrast, by
ω Bblkp σ we only consider such computations (d, σ) that are progressing in every sim-
ulation step, i.e., σ 6= ε. This setting rules out trivial simulations with empty transition
sequences σ and τ in case ω = ε.
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As noted before, the formulation above does not match one to one the style of the
sequential simulation theorems for MASM and C-IL in the previous chapter. This is
mainly due to the fact that here we are using the convenient step sequence notation and
that in the previous theorems we did not consider incomplete consistency blocks as the
base of our simulation theorem. Nevertheless, if we set ω = ε, instantiate the predicates
of simulation framework adequately, and adjust the notation to the state sequence style,
we can see that these theorems are in fact special cases of the one defined above.

One might wonder how a simulation theorem like the one above is actually proven.
If we consider for instance the MASM instantiation from above, an important proof
obligation is the requirement that only code from the code region is fetched, i.e., that
only the compiled code of the MASM program is executed. Consequently (d, ω) is part
of the MIPS implementation of some MASM computation (e, τ), i.e., it is computing
the compiled program code. Since the MASM code generation function produces a
finite amount of code for each MASM instruction, we know that if the processor keeps
on executing the code without interruption, control will finally arrive in a consistency
point again. Then one just needs to argue about the correctness of the generated code
in order to prove the simulation of (e, τ).

Another notable property of our generalized sequential simulation theorem is that
we support only static simulation parameters. There are certain simulation theorems
which depend on a sequence of simulation parameters that is created “dynamically”
during the simulation. For instance, in a programming language with explicite heap,
in the simulation we would need to keep track of the heap allocation function as a sim-
ulation parameter that is changing dynamically during the execution of the program.
While including such a parameter sequence in the theorem presented above can easily
be done, presenting a use case for dynamic simulation parameters would be beyond
the scope of this thesis. Therefore we leave this extension as future work

Finally, note that the sequential simulation theorem does not restrict the ownership
state in any way. All predicates depend only on the machine state of a Cosmos machine.
However for proving our concurrent simulation theorem, we will need an assumption
on the ownership-safety of the simulated computation.

5.3 Cosmos Model Simulation

Using the sequential simulation theorems in an interleaved execution trace, we now
aim to establish a system-wide simulation between two block machine computations
(d, κ) and (e, ν). The simulating (concrete) computation (d, κ) need not be complete.
However (e, ν) is a complete block machine computation. In Section 5.5 we will reduce
reasoning to simulation between complete block machine computations.

5.3.1 Consistency Blocks and Complete Block Machine Computations

We already introduced the notions of complete and incomplete consistency blocks in-
formally. Now we want to give a formal definition. Consistency blocks start in consis-
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tency points, i.e. configurations of Sd in which the sequential simulation relation holds
wrt. some configuration of Se and vice versa. Our concurrent simulation theorem is
based on the application of our order reduction theorem on Sd where we choose the
interleaving-points to be exactly the consistency points as mentioned before. Similarly
interleaving-points and consistency points of Se are identical. These requirements on
the instantiation of Sd and Se are formalized in the following predicate.

Definition 80 (Interleaving-Points are Consistency Points) Given a sequential simulation
framework RSd,Se which relates two Cosmos machines Sd and Se and a simulation parameter
par ∈ P we define a predicate denoting that in Sd and Se the interleaving-points are set up to
be exactly the consistency points.

IPCP(RSd,Se , par) ≡ ∀d ∈MSd , α ∈ ΘSd . IPα.s(d, α.in)⇐⇒ CPα.s(d, par)

∧ ∀e ∈MSe , β ∈ ΘSe . IPβ.s(e, β.in)⇐⇒ CPβ.s(e, par)

If these properties holds we speak of consistency blocks instead of IP blocks. This is
reflected in the definition of consistency block machine schedules κ ∈ (Θ∗Sd)

∗ ∪ (Θ∗Se)
∗.

CPsched(κ, par) ≡ Bsched(κ) ∧ IPCP(RSd,Se , par)

Given a Cosmos machine state d ∈ CSd and a simulation parameter par as above we can
define the set Uc of computation units of d that are currently in consistency points wrt.
the simulation parameter par .

Uc(d, par) ≡ {p ∈ NSd.nu | CPp(d, par)}

With the above setting of interleaving-points for par thus for any computation (d, α)
with α.ip we have α.s ∈ Uc(d, par). Now a complete block machine computation is a
block machine computation where all computation units are in consistency points in
every configuration. This is encoded in the following overloaded predicate.

CPschedc(d, κ, par) ≡ CPsched(κ, par) ∧ ∀κ′, κ′′, d′.
κ = κ′κ′′ ∧ d κ′7−→ d′ =⇒ ∀p ∈ Nnu . CPp(d′, par)

CPschedc(e, ν, par) ≡ CPsched(ν, par) ∧ ∀ν ′, ν ′′, e′.
ν = ν ′ν ′′ ∧ e ν′7−→ e′ =⇒ ∀p ∈ Nnu . CPp(e′, par)

Note that we could prove the reduction of arbitrary consistency block machine sched-
ules to complete ones given that for every machine it is always possible to reach a con-
sistency point again (completability). However the completability assumption needs
to be justified by the simulation running on the machine. In addition, the consistency
points are only meaningful in connection with a simulation theorem. Thus it is use-
less to treat the reduction of incomplete blocks on a single layer of abstraction. The
safety transfer theorem for complete block schedules along with our Cosmos model
simulation theory will be presented in the subsequent sections. There the verification
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of ownership-safety and a Cosmos model safety property P for all complete block ma-
chine schedules running out of a configuration C ∈ CSd ∪ CSe is defined below with
Ω = ΩSd = ΩSe and Θ = ΘSd ∪ΘSe .

safetycB (C,P, par)
def≡ ∀κ ∈ (Θ∗)∗. CPschedc(C, κ, par) ∧ comp(C.M, bκc)

=⇒ ∃o ∈ Ω∗. safeP (C, 〈bκc, o〉)

5.3.2 Requirements on Sequential Simulation Relations

Now we define the overall simulation relation between two machine states d ∈ CSd and
e ∈ CSe . Basically we demand that the local simulation relations hold for all machines
in consistency points.

sim(d, par, e)
def≡ ∀p ∈ Uc(d, par). simp(d, par, e)

We will later on require that the simulation relation holds between the corresponding
machine states of the consistent Cosmos machine computations. This means that there
are units in the concrete computation which are at times not coupled with the compu-
tation on the abstract simulation layer. More precisely, this is the case for units which
have not reached a consistency point again at the end of the computation, i.e., their last
block in the block machine schedule is incomplete. Only for complete block machine
computations we have that units are coupled in all intermediate machine states. In
order to compose the simulations we assume a certain structure and properties of the
simulation relations which enable the composition in the first place. We introduce the
following framework for concurrent simulation between Sd and Se.

Definition 81 (Concurrent Simulation Framework) A concurrent simulation framework
for Cosmos machines Sd and Se is a pair containing the sequential simulation framework
RSd,Se as well as a shared memory and ownership invariant sinv (short: shared invariant)
that is coupling and constraining the shared memory and the ownership states of both systems.
LetMx = Ax ⇀ Vx and Ox = Nnu → 2Ax in:

sinv : (Md × 2Ad × 2Ad ×Od)× P × (Me × 2Ae × 2Ae ×Oe)→ B

We introduce a shorthand that is asserting the shared invariant on two Cosmos machine con-
figurations D and E. Let Gx(C) = (C.m|C.S∪Sx.R, C.S, Sx.R, C.G.O) in:

sinv(D, par , E) ≡ sinv(Gd(D), par , Ge(E))

Recall here that C.G.O is the mapping of units to ownership sets that is part of the
Cosmos machine ghost state. Note also that the sinv(D, par , E) depends only on the
ownership state and the portion of memory covered by the shared addresses. Thus
ownership-safe local steps are preserving the shared invariant, since by the ownership-
policy they do not modify the ownership state nor shared memory.
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simp simp

E.M

D.M d′〈σ, oσ〉
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D.G
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〈τ, oτ 〉
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Figure 21: Illustration of Assumption 1. The simulating computation 〈σ, oσ〉 must be
ownership-safe and preserve the shared invariant sinv .

The shared invariant is introduced as a common abstraction relation on the shared
memory and ownership model of Sd and Se. If Ad = Ae, then sinv should be just
an identity mapping between the corresponding components of the concrete and ab-
stract simulation levels. However, as we allow to abstract from portions of the abstract
memory, the shared invariant may be more complex.

For instance in the C-IL scenario we abstract the function frames from the stack region
in memory. While these memory regions are invisible on the abstract level, we would
like to protect them via the ownership model from modification by other threads on the
concrete level. Moreover there may be an abstraction of other shared resources between
the two simulation layers we are considering.

The shared invariant is then used to cover such resource abstraction relations and for-
mulate instantiation-specific ownership invariants on the concrete level of abstraction.
We will give examples for the shared invariant later when we instantiate the concurrent
simulation framework with MASM and C-IL. Below we formulate constraints on the
predicates and the simulation relation introduced above, needed for a successful inte-
gration of the sequential simulation theorems into a concurrent one. These assumptions
must be discharged by any instantiation of the concurrent simulation framework.

The most important assumption is stated first. On the one hand we require com-
putation units of Sd and Se to maintain sinv according to the software conditions on
computations of Se and the definition of good behaviour for computations of Sd.

Moreover we need to assume an ownership-safety transfer theorem about the simula-
tion which is essential in the construction of a pervasive concurrent model stack using
ownership-based order reduction. While we abstract from computations bottom-up,
the ownership-safety has to be verified on the top level and transfered downwards.
For each abstraction level we have to show that ownership-safety is preserved by the
implementation. These requirements are formalized as follows.
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Assumption 1 (Safety Transfer and sinv Preservation) Consider a concurrent simulation
framework (RSd,Se , sinv) and a complete consistency block computation (D.M, σ) that is im-
plementing an abstract consistency block (E.M, τ). We assume that (i) the concrete compu-
tation is well-behaved, leading into state d′ ∈ MSd , σ is a consistency block of p, and both
schedules contain the same number of IO steps but at most one. Moreover (ii) τ is also a con-
sistency block of p, the computation is safe according to ownership annotation oτ , and leads into
E′ ∈ MSe obeying the software conditions on Se. Finally (iii) the simulation relation for p and
the shared invariant holds between D.M and E.M , and the simulation relation holds also for
the resulting configurations.

∀D, d′, E,E′, σ, τ, oτ , p, par .

(i) D.M
σ7−→ d′ ∧ blk(σ, p) ∧ oneIO(σ, τ) ∧ wb(D.M, σ, par)

(ii) E
〈τ,oτ 〉7−→ E′ ∧ blk(τ, p) ∧ safe(E, 〈τ, oτ 〉) ∧ sc(E.M, τ, par)

(iii) simp(D.M, par , E.M) ∧ sinv(D, par , E) ∧ simp(d
′, par , E′.M)

Then there exists an ownership annotation oσ for σ, such that the annotated concrete computa-
tion (i) results in d′ and a ghost state G′, (ii) it is ownership-safe, and (iii) preserves sinv .

=⇒ ∃oσ ∈ Ω∗Sd ,G
′. (i) D

〈σ,oσ〉7−→ (d′,G′)
(ii) safe(D, 〈σ, oσ〉)
(iii) sinv((d′,G′), par , E′)

See Fig. 21 for an illustration. For MASM the ownership-safety transfer requirement
implies, e.g., that the code generated for macros may not access shared memory, be-
cause macros are not IO steps by definition. In case of C-IL in order to discharge the
assumption we would need to show, e.g., that volatile accesses are compiled correctly
such that the correct addresses are accessed. Additionally we would need to prove that
the memory accesses implementing stack operations are only targeting the stack region
and that ownership on the concrete level can be set up such that these memory accesses
are safe. Again we refer to Sect. 5.6 for more examples.

Note that above we do not restrict in any way the ownership transfer on Se. This
means conversely that sinv can in fact only restrict the ownership state of Sd that is
not covered by Ae. Moreover, assumption safe(E, 〈τ, oτ 〉) and the shared invariant be-
tween D and E imply inv(D). The sequential simulation relation does not cover the
ownership state but is needed for technical reasons, too. We show this as a corollary.

Corollary 2 If two ghost configurations Gd and Ge are coupled by the shared invariant and the
simulation relation for any p, then the ownership invariant is transfered from Ge to Gd.

(∃Md,Me. sinv((Md,Gd), par , (Md,Ge)) ∧ simp(Md, par ,Me)) ∧ inv(Ge) =⇒ inv(Gd)

PROOF: By σ = τ = ε the hypotheses of Assumption 1 applied for D = (Md,Gd) and
E = (Me,Ge) collapse to simp(D.M, par , E.M), sinv(D, par , E) and inv(E) which hold
by our hypothesis. Thus we have safe(D, ε) which in turn implies inv(D). �

164



5.3 Cosmos Model Simulation

Below we introduce another property which is needed to establish the sequential con-
sistency relations in a concurrent setting.

Assumption 2 (Preservation of simp) The sequential simulation relation for unit p only de-
pends on p’s local state and the memory covered by the shared invariant.

∀D,D′ ∈ CSd , E,E′ ∈ CSe , par ∈ P, p ∈ Nnu .

simp(D.M, par , E.M) ∧D ≈p D′ ∧ E ≈p E′ ∧ sinv(D′, par , E′)

=⇒ simp(D
′.M, par , E′.M)

This assumption allows us to maintain simulation during environment steps. Further-
more the well-formedness of machine states cannot be broken by safe steps of other
participants in the system if they maintaining the shared invariant.

Assumption 3 (Preservation of Well-formedness) The well-formedness predicates only de-
pend on the local state of their respective units and the memory covered by the shared invariant.
For all D,D′ ∈ CSd , E,E′ ∈ CSe , par ∈ P , and p ∈ Nnu we have:

wf p(D.M) ∧D ≈p D′ ∧ sinv(D′, par , E′) =⇒ wf p(D
′.M)

wf p(E.M) ∧ E ≈p E′ ∧ sinv(D′, par , E′) =⇒ wf p(E
′.M)

5.3.3 Simulation Theorem

With the assumptions stated above we can show a global Cosmos model simulation the-
orem, given computations on the abstract level are proven to be safe wrt. ownership
and a Cosmos machine safety property P . We claim that it is enough to verify all com-
plete block computations leaving starting state E. This is the crucial prerequesite to
enable a safe composition of computations. From a given consistency point a sequen-
tial computation of some unit p into the next consistency point must be safe. We do
not treat property transfer for other safety properties than ownership-safety for now.
However we instantiate the Cosmos machine safety property P so that it implies the
well-formedness of machine states of Se and that computations obey the software con-
ditions of the abstract simulation layer.

Since obeying the software conditions is a property of steps rather than of states, we
extend the unit states of Se with some history information, recording the occurrence of
software condition violations. Thus we use a modified Cosmos machine S′e where each
unit gets an additional boolean flag sc which is initially 1 and becomes 0 as soon as a
step violates the software conditions, i.e., for all α ∈ ΘS′e , e, e

′ ∈ MS′e , par ∈ RSd,Se .P
and p ∈ NSe.nu we have:

e
α7→ e′ =⇒ e′.u(p).sc = e.u(p).sc ∧ sc(e, α, par)

Assuming the generalized sequential simulation theorem to be proven and the simula-
tion relations and predicates to be constrained as presented above, we can now show
the desired concurrent simulation theorem.
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Theorem 6 (Cosmos Model Simulation Theorem) Given are two Cosmos machine start
configurations D ∈ CSd and E ∈ CSe as well as block machine schedule κ and concurrent sim-
ulation framework (RSd,S′e , sinv). We assume that (i) κ is a suitable consistency block schedule
without empty blocks, (ii) that κ is executable from D.M and at least one machine in D is in
a consistency point, that (iii) all complete block machine computations running out of E are
proven to obey ownership-safety and maintain Cosmos machine property P , and that (iv) P
implies that every computation unit of S′e is well-formed and does not violate software condi-
tions. Moreover (v) units of D in consistency-points are well-formed. Finally we require that
(vi) D and E are consistent wrt. simulation parameter par ∈ P and the shared invariant holds.

∀D,κ,E, par , P. (i) CPsched(κ, par) ∧ ∀λ ∈ κ. λ 6= ε ∧ suit(λ)

(ii) comp(D.M, bκc) ∧ ∃p ∈ Nnu . CPp(D.M, par)

(iii) safetycB (E,P, par)

(iv) ∀E′ ∈ CS′e , p ∈ Nnu . P (E′) =⇒ wf p(E
′.M) ∧ E′.up.sc

(v) ∀p ∈ Uc(D.M, par). wf p(D.M)

(vi) sim(D.M, par , E.M) ∧ sinv(D, par , E)

If these hypotheses hold we can show that there exists a block machine schedule ν such that (i) ν
is complete, has the same length as κ, and describes a Cosmos machine computation starting in
E.M . This computation is simulated by (D.M, κ) and for the resulting machine states M ′d and
M ′e we know that (ii) they are well-formed for all units ofM ′e and for all unitsM ′d in consistency
points, and (iii) the simulation relation. Moreover (iv) the s imulating computationand well-
behaved and each corresponding pair of consistency blocks contains the same number of IO steps
but at most one. Finally (v) for any ownership annotation oν ∈ Ω∗Se to computation (E.M, ν)
that is safe and producing a ghost state G′e, we can find a corresponding annotation oκ ∈ Ω∗Sd
for (D.M, κ) resulting (v.a) in ghost state G′d such that (v.b) the computation is ownership-safe
and (v.c) the shared invariant holds between the resulting Cosmos machine configurations.

∃ν,M ′d,M ′e. (i) CPschedc(E.M, ν, par) ∧ |ν| = |κ| ∧D.M κ7−→M ′d ∧ E.M
ν7−→M ′e

(ii) ∀p ∈ Nnu . wf p(M
′
e) ∧ ∀p ∈ Uc(M ′d, par). wf p(M

′
d)

(iii) sim(M ′d, par ,M ′e)

(iv) wb(D.M, bκc, par) ∧ ∀j ≤ |κ|. oneIO(κj , νj)

(v) ∀oν ,G′e. E
〈bνc,oν〉7−→ (M ′e,G′e) ∧ safe(E, 〈bνc, oν〉) =⇒

∃oκ,G′d. (v.a) D
〈bκc,oκ〉7−→ (M ′d,G′d)

(v.b) safe(D, 〈bκc, oκ〉)
(v.c) sinv((M ′d,G′d), par , (M ′e,G′e))

The simulation theorem is illustrated in Fig. 22. Note that we do not require that all
units start in consistency blocks, however this is implicitly guaranteed for all units run-
ning in κ by the definition of block machine schedules and the IPCP condition. If κ = ε
then hypothesis (ii) ensures that sim does not hold vacuously between D and E.
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Figure 22: The Cosmos model simulation theorem. Computation (D, 〈bκc, oκ〉) is
ownership-safe and simulates an abstract computation (E, 〈bνc, oν〉).

Furthermore, in the simulation theorem a possibly incomplete consistency block ma-
chine computation of Sd is simulating a complete consistency block machine computa-
tion by S′e. For the computation units whose final blocks are incomplete, i.e., who have
not yet reached another consistency point, the simulation relation is not holding. How-
ever in all intermediate states of the block machine computation the shared invariant
must hold. For the treatment of incomplete blocks we thus distinguish two cases.

On one hand, if the incomplete block contains only local steps we can simply omit
it and represent it by a stuttering step (i.e., an empty block) on the abstract simulation
level, because it does not affect the shared memory or ownership state.

On the other hand, if the incomplete block contains an IO step it may affect the
shared memory or ownership state and in order to maintain the shared invariant the
incomplete block must be represented properly on the abstract level. To this end we use
the sequential simulation relation completing the block and obtaining the simulated
consistency block of the abstract Cosmos machine computation. These are the core ideas
of the proof of the concurrent simulation.

Note that we need to find a safe annotation for (D.M, κ) for any given safe annotation
on the abstract level. It does not suffice to simply find one pair of safe annotations
for the simulating computations, because such a formulation is not applicable in the
inductive proof of ownership-safety transfer.

5.3.4 Auxiliary Lemmas

Before we present the proof of Theorem 6 we need to show two useful lemmas.

Lemma 31 (Safe Local Steps Preserve Shared Invariant) Given Cosmos machine config-
urations E ∈ CS′e and D,D′ ∈ CSd where D′ is reached from D by step sequence σ which
contains no IO steps, as well as a simulation parameter par . Assuming that (D,σ) is safe,
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then D and E are coupled by the shared invariants iff D′ and E are.

D
σ7−→ D′ ∧ σ|io = ε ∧ safe(D,σ) =⇒ (sinv(D, par , E)⇔ sinv(D′, par , E))

PROOF: by induction on n = |σ|. For n = 0, D = D′ holds and the equivalence is
obvious. In the induction step from n→ n+ 1 we divide σ into prefix ω and last step α:

σ = ωα D
ω7−→ D′′ α7→ D′

By induction hypothesis on ω we have:

sinv(D, par , E)⇔ sinv(D′′, par , E)

From hypothesis we know that (D′′, α) is safe, hence we can apply Lemma 19 with
C := D′′ and C ′ := D′ obtaining D′′ ≈q D′ where q = α.s. The definition of ≈q then
implies:

D′′.m|D′′.S∪Sd.R = D′.m|D′′.S∪Sd.R D′′.S = D′.S ∀p ∈ NSd.nu . D
′′.Op = D′.Op

Therefore by definition also Gd(D′′) = Gd(D
′) and we conclude:

sinv(D, par , E) ⇔ sinv(D′′, par , E)

⇔ sinv(Gd(D
′′), par , Ge(E))

⇔ sinv(Gd(D
′), par , Ge(E))

⇔ sinv(D′, par , E) �

Lemma 32 (Safe Consistency Blocks Preserve Others’ Simulation Relation) Given (i)
two consistency blocks σ and τ by some computation unit r which are (ii) running out of con-
figurationsD andE that (iii) are consistent wrt. to the sequential simulation relation for another
unit q 6= r using simulation parameter par . If (iv) σ and τ are safe wrt. given ownership anno-
tations o and o′ and if (v) the shared invariant holds for the resulting configurations D′ and E′,
then also the simulation relation for q still holds.

∀D,E, σ, o, τ, o′, r, q, par . (i) blk(σ, r) ∧ blk(τ, r) ∧ r 6= q

(ii) D
〈σ,o〉7−→ D′ ∧ E 〈τ,o

′〉7−→ E′

(iii) simq(D.M, par , E.M)

(iv) safe(D, 〈σ, o〉) ∧ safe(E, 〈τ, o′〉)
(v) sinv(D′, par , E′)

=⇒ simq(D
′.M, par , E′.M)

PROOF: Because the computations are safe, we can apply Lemma 20.1 inductively on
all steps of (D, 〈σ, o〉) and (E, 〈τ, o′〉) obtaining D ≈q D′ and E ≈q E′. Our claim then
follows from Assumption 2. Note that in all applications p is instantiated with q. �
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5.3.5 Simulation Proof

Now we can prove the concurrent simulation theorem.

PROOF OF THEOREM 6: by induction on m = |κ|. For m = 0 we set ν = ε to conclude
claim (i) with D′ = D and E′ = E. Claims (iii) and (iv) hold trivially and the second
part of (ii) follows directly from hypothesis (v). Setting o = ε as well, claim (v) collapses
to inv(D) and from hypothesis (iii) we get the safety of all complete consistency block
machine computations running out of E. Therefore also inv(E) must hold and we get
inv(D) from Corollary 2. We also get P (E) from hypothesis (iii) which implies the well-
formedness of all units in E by hypothesis (iv) on P and thus gives us the remaining
first part of claim (ii).

As our induction hypothesis (IH) we assume the claim to hold for any consistency
block machine schedule κ̄ with arbitrary but fixed length m−1. Thus there exists a
simulated complete consistency block machine computation (E.M, ν̄) such that all the
desired properties already hold. Moreover (D.M, κ̄) is safe wrt. ownership.

Taking the induction step m−1 → m we assume that we are given a block machine
computation (D.M, κ) with |κ| = m. We denote the last block by λ = κm and the
previous blocks by κ̄ = κ[1 : m), i.e., κ = κ̄λ. From the induction hypothesis we get the
m−1-step consistency block machine computation (E.M, ν̄) fulfilling the claims of the
simulation theorem.

We set up ν accordingly for the first m−1 block steps, i.e., ν[1 : m) = ν̄ and introduce
the intermediate machine states M̄d and M̄e (cf. Fig. 23). Then by induction hypothesis
the following statements holds:

(a) CPschedc(E.M, ν[1 : m), par) ∧D.M κ[1:m)7−→ M̄d ∧ E.M
ν[1:m)7−→ M̄e

(b) ∀r. wf r(M̄e) ∧ ∀r ∈ Uc(M̄d, par). wf r(M̄d)

(c) sim(M̄d, par , M̄e)

(d) wb(D.M, bκ[1 : m)c, par) ∧ ∀j < m. oneIO(κj , νj)

(e) ∀oν̄ , Ḡe. E
〈bν[1:m)c,oν̄〉7−→ (M̄e, Ḡe) ∧ safe(E, 〈bν[1 : m)c, oν̄〉) =⇒

∃oκ̄, Ḡd. (e.1) D
〈bκ[1:m)c,oκ̄〉7−→ (M̄d, Ḡd)

(e.2) safe(D, 〈bκ[1 : m)c, oκ̄〉)
(e.3) sinv((M̄d, Ḡd), par , (M̄e, Ḡe))

Thus we only need to take care of the last block λ which is non-empty by hypothesis
and being executed by unit p = λ1.s. Let d′ be the final machine state of the concrete

computation, i.e., M̄d
λ7−→ d′. Below we list the hypotheses for applying the sequential
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ḠeE.G

sim sinv

Ḡd

λ

Figure 23: The induction hypothesis in the proof of the Cosmos model simulation the-
orem. Computation (D.M, κ̄) is ownership-safe and simulates an abstract
computation (E.M, ν̄).

simulation theorem on the possibly incomplete block (M̄d, λ).

(i) wf p(M̄d) ∧ wf p(M̄e)

(ii) simp(M̄d, par , M̄e) ∧ CPp(M̄d, par) ∧ CPp(M̄e, par)

(iii) blk(λ, p) ∧ suit(λ) ∧ ∃d′. M̄d
λ7−→ d′

(iv) ∀π, e′. M̄e
π7−→ e′ ∧ blk(π, p) ∧ CPp(e′, par) =⇒ sc(M̄e, π, par) ∧ wf p(M̄e)

Numbers (i) and (ii) follow directly from IH (b) and (a) on M̄d and M̄e. Here we use
that p is in a consistency point in M̄d because κ is a consistency block machine schedule,
where all blocks, including λ, start in consistency points. This also gives us blk(λ, p) in
claim (iii). We get CPp(M̄e, par) because ν̄ is a complete consistency block schedule.

Moreover, we have suit(λ) and that (M̄d, λ) is a computation from hypothesis on κ.
The last hypothesis follows from safetycB (E,P, par) which says that P holds in all con-
sistency points reachable from E. Also by hypothesis (iv) P implies that any computa-
tion reaching such a point obeys the software conditions and leads into a well-formed
unit state. Since M̄e is reachable from E by IH, P also holds for any consistency point
reached from there via some consistency block π. Then (M̄e, π) obeys the software con-
ditions and the resulting machine state is well-formed.

Thus we can apply the sequential simulation theorem for unit p on d := M̄d, e := M̄e,
and ω := λ. We obtain complete blocks σ and τ leading into machine states d′′ and e′′

which are consistency points for unit p.

M̄d
σ7−→ d′′ M̄e

τ7−→ e′′ λBblkp σ

oneIO(σ, τ) blk(τ, p) CPp(d′′, par) CPp(e′′, par)

The simulation relation for p holds wrt. parameter par and the configurations of unit p
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in d′′ as well as e′′ are well-formed .

simp(d
′′, par , e′′) wf p(d

′′) wf p(e
′′)

Moreover the concrete computation (D̄.M, σ) is well-behaved and by hypotheses (iii)
and (iv) computation (Ē.M, τ) obeys the software conditions on computations of Se.

wb(M̄d, σ, par) sc(M̄e, τ, par)

Since ν[1 : m)τ forms a complete consistency block machine schedule, we know that
(E.M, ν[1 : m)τ) is ownership-safe by hypothesis safetyc(E,P, par) wrt. some owner-
ship annotation oν̄oτ with |oτ | = |τ |, i.e.:

safe(E, 〈bν[1 : m)τc, oν̄oτ 〉)

Therefore, with Ē = (M̄e, Ḡe) and E′′ = (e′′,G′′e ) for some ghost states Ḡe and G′′e , also
(Ē, 〈τ, oτ 〉) obeys the ownership policy and the computation is leading into E′′.

Ē
〈τ,oτ 〉7−→ E′′ safe(Ē, 〈σ, oτ 〉)

In what follows we prove claim (v) assuming oν = oν̄oτ without loss of generality. From
IH (e) we know there exists annotation oκ̄ ∈ Ω∗Sd and ghost state Ḡd such that:

D
〈bκ[1:m)c,oκ̄〉7−→ (M̄d, Ḡd) ∧ safe(D, 〈bκ[1 : m)c, oκ̄〉) ∧ sinv((M̄d, Ḡd), par , (M̄e, Ḡe))

Using Assumption 1 we deduce that there exists oσ ∈ Ω∗Sd and G′′d such that:

(M̄d, Ḡd)
〈σ,oσ〉7−→ (d′′, Ḡ′′d ) ∧ safe((M̄d, Ḡd), 〈σ, oσ〉) ∧ sinv((d′′,G′′d ), par , E′′)

This means that there exists an ownership annotation for σ such that the corresponding
computation running out of D̄ = (M̄d, Ḡd) is ownership-safe and leads into a configu-
ration D′′ = (d′′,G′′d ). Therefore the simulation relation for p holds also between D′′ and
E′′ as well as the shared invariant.

simp(D
′′.M, par , E′′.M) p ∈ Uc(D′′.M, par) sinv(D′′, par , E′′)

By definition of safe , prefix λ of 〈σ, ω〉 is also safe wrt. annotation oλ = oσ[1 : |λ|], i.e.,
safe(D̄, 〈λ, oλ〉) holds and we set oκ = oκ̄oλ. Similarly, the concrete computation (M̄d, λ)
is well-behaved. Thus claims (v.a-b) and the first term of claim (iv) are proven using IH
(d) and (e) as well as D.M κ7−→ d′ and M ′d = d′:

∃oκ,G′d. D
〈bκc,o〉7−→ (M ′d,G′d) ∧ safe(D, 〈bκc, o〉) ∧ wb(D.M, bκc, par)

Now we perform a case split on whether λ contains an IO step and whether it is com-
plete. We introduce sequence ω which extends λ forming σ, i.e., σ = λω.
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Figure 24: Case 2 in the induction step of the Cosmos model simulation proof. Here λ is
incomplete but contains an IO step of unit p. Between d′ and e′′ relation sim
holds, but simp does not.

1. ω = ε — In this case λ is already complete and we naturally include τ in ν as the
last block that is simulated by λ, i.e., ν = ν̄τ . Most claims follow directly from
previously shown statements by D′ = (M ′d,G′d) = D′′ and E′ = (M ′e,G′e) = E′′.
Only the parts of claims (i), (ii), and (iii) for other units q 6= p are missing.

We see that a unit q is in a consistency point in D′ iff it is in a consistency point
in D̄. This statement holds because the safe steps by p do not influence the lo-
cal states of other units. Formally, by inductive application of Lemma 20.1 on
the ownership-safe computation (D̄, 〈λ, oλ〉) we obtain D̄ ≈p D′. This implies
D̄ ≈q D′ by definition and thus the unit states for all units q are equal in both
configurations, i.e., D̄.M.u(q) = D′.M.u(q), and we conclude:

q ∈ Uc(D′.M, par) ⇐⇒ CPq(D′.M, par) ⇐⇒ CPc(D′.M.u(q), par)

⇐⇒ CPc(D̄.M.u(q), par) ⇐⇒ q ∈ Uc(D̄.M, par)

The same holds for units in E′ and Ē similarly. In particular we then know that
all units in E′ are in consistency points.

∀q ∈ Nnu . q ∈ Uc(M ′d, par)

Thus we can directly conclude the remaining parts of claim (i) using IH (a), blk(τ, p),
and CPp(M ′e, par).

CPsched c(E.M, ν, par) E.M
ν7−→M ′e

For all units q ∈ Uc(D̄.M, par) we now need to show that their simulation relation
is not broken by (D̄, 〈λ, oλ〉) and (Ē, 〈τ, oτ 〉). Since these computations are safe
wrt. ownership we can apply Lemma 32 which gives us:

∀q ∈ Uc(M ′d, par). simq(M
′
d, par ,M ′e)
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This is however the definition of sim(M ′d, par ,M ′e), thus claim (iii) holds.

For Claim (ii) we already have shown wf p(M
′
e). For all other units q 6= p we have

Ē ≈q E′ by inductive application of Lemma 20.1 on (Ē, 〈τ, oτ 〉) as shown for D̄
and D′ above. The well-formedness in E′ follows then from IH (b), the shared
invariant on D′ and E′, and Assumption 3. Similarly, by D ≈q D′, we have the
well-formedness for all units of D′ that are in consistency points.

∀r ∈ Nnu . wf r(M
′
e) ∀q ∈ Uc(D′.M, par). wf q(M

′
d)

Thus we have proven all claims for this case.

2. λ|io 6= ε — Consistency block λ contains already an IO operation (cf. Fig. 24). In
this case we include τ in the simulated computation (E.M, ν) even if λ is incom-
plete, because we need to maintain the invariant on shared memory and own-
ership. We set ν = ν̄τ and conclude the second part of claim (iv) using IH (d)
and oneIO(σ, τ) which implies oneIO(λ, τ) because prefixes of sequences can-
not contain more IO points than the original.

∀j ≤ m. oneIO(κj , νj)

By oneIO(σ, τ) and λ|io 6= ε we know that ω does not contain any IO step, i.e.,
ω|io = ε. With the ownership annotation oω for the suffix, i.e., oω = oσ(|λ| : |ω|],
it follows from the safety of (D̄, 〈σ, oσ〉) where (M̄d, Ḡd) that the corresponding
computation from D′ = (d′,G′d) to D′′ is ownership-safe.

D′
〈ω,oω〉7−→ D′′ safe(D′, 〈ω, oω〉)

Since we also have sinv(D′′, par , E′′) we can apply Lemma 31 to obtain:

sinv(D′, par , E′′)

This proves claim (v.c) as we set E′ = (M ′e,G′e) = E′′. From blk(λω) we know that
ω does not contain any interleaving-points. Furthermore, by CPsched(D.M, κ, par)
we have IPCP(RSd,S′e , par). Consequently p is not in a consistency point in D′.

ω 6= ε ∧ blk(λω) =⇒ /ω1.ip =⇒ /IPp(D′.M, ω.in)

=⇒ /CPp(D′.M, par) =⇒ p /∈ Uc(D′.M, par)

Therefore λ is incomplete and we do not need to show that the simulation relation
holds for p betweenD′ andE′. We show the remaining parts of claims (i), (ii), and
(iii) like in the first case.

3. λ|io = ε ∧ ω 6= ε — λ is an incomplete consistency block containing only local
steps (cf. Fig. 25). In this case we cannot include τ in the simulated computation
(E.M, ν) because it might contain IO steps that are introduced only in the exten-
sion ω. Such IO steps might modify the shared memory and ownership state,
hence we could not prove the shared invariant between D′ and E′′.
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Figure 25: Case 3 in the induction step of the Cosmos model simulation proof. Here λ is
incomplete and contains only local steps of unit p. However, ω might contain
IO steps. Note that between d′ and M̄e sim holds, but not simp.

Therefore we omit the incomplete block in the simulation and set E′ = Ē, νm = ε,
as well as oν = oν̄ . Claim (i) then follows directly from IH (a). The same holds
for the well-formedness of all units in E′. The well-formedness of units of D′ is
proven exactly the same way as in case 1. With this setting of ν and λ|io = ε we
also get oneIO(κm, νm) and with IH (d) we complete the proof of claim (iv).

∀j ≤ m. oneIO(κj , νj)

Again we use safe(D̄, 〈λ, oλ〉) to show D̄ ≈q D′ for all q 6= p. Applying Lemma 31
on D̄, D′, and Ē we obtain the shared invariant between D′ and E′ = Ē.

sinv(D′, par , E′)

Similarly Lemma 32 with τ instantiated to be an empty sequence yields the simu-
lation relation simq(D

′.M, par , E′.M) for all q 6= p that are in consistency points as
above. From ω 6= ε we know that unit p is not in a consistency point in D′, hence
we do not need to show that simulation holds for p. We obtain the final claim:

sim(D′.M, par , E′.M)

This finishes the overall Cosmos model simulation proof. �

Thus we have shown how to lift up sequential simulation theorems forming a system-
wide concurrent simulation. If the simulation theorems hold locally and fulfill As-
sumptions 1 to 3, any interleaving of consistency blocks on the implementation level
Sd will be consistent to some simulating complete block machine computation on the
abstract level Se. Moreover, in such a scenario, for every parallel program it suffices
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to show memory safety on the abstract level as it can be transfered down, guarantee-
ing the safety of all well-behaved IP schedule computations of the implementation.
Using the order reduction theorem safety can be transfered further down to arbitrarily
interleaved schedules.

5.4 Applying the Order Reduction Theorem

Our order reduction theorem allows to transfer safety from safe IP schedules to arbi-
trarily interleaved Cosmos machine schedules. Remember that this safety transfer theo-
rem has two hypotheses, namely that all IP schedule computations leaving configura-
tion D are safe and fulfil the IOIP condition, saying that all units start in interleaving-
points and that a unit always passes an interleaving-point between two IO steps. Now
it would be desirable if we could use the Cosmos model simulation theorem proven
above in order to obtain safetyIP(D,P ) and IOIPIP(D). However we cannot prove
these hypotheses of the order reduction theorem directly. Instead we can derive two
weaker properties from the simulation theorem. With θ ∈ Θ∗Sd , o ∈ Ω∗Sd , the predicates

safety(D,P, suit)
def≡ ∀θ. suit(θ) ∧ comp(D.M, θ) =⇒ ∃o. safeP (D, 〈θ, o〉)

safetyIP(D,P, suit)
def≡ ∀θ. IPsched(θ) ∧ suit(θ) ∧ comp(D.M, θ)

=⇒ ∃o. safeP (D, 〈θ, o〉)

IOIPIP(D, suit)
def≡ ∀θ. IPsched(θ) ∧ suit(θ) ∧ comp(D.M, θ) =⇒ IOIP(θ)

denote the safety and IOIP condition for all (IP) schedules that are suitable for sim-
ulation. We furthermore augment the machine states of Sd with a history variable wb
similar to the sc flag of S′e. The additional semantics for the extended machine S′d with
d, d′ ∈MS′d

, step α ∈ ΘSd , and parameter par ∈ P is given by:

d
α7→ d′ =⇒ d′.u(p).wb = d.u(p).wb ∧ wb(d, α, par)

Now we define Cosmos machine safety property for a given parameter par that denotes
good behaviour in the past (before D) for all computation units.

W : CSd → B W (D)
def≡ ∀p ∈ Nnu . D.up.wb

Finally we define a shorthand for the simulation hypotheses.

Definition 82 (Simulation Hypotheses) We define a predicate simh to denote the hypothe-
ses of the concurrent simulation theorem for a framework (RSd,S′e , sinv), start configurations
D ∈ CSd , E ∈ CS′e , and a simulation parameter par ∈ P . We demand that (i) all units D in
consistency points are well-formed for all units, (ii) at least one unit is in a consistency point and
for all units the wb flag is set to true, and (iii) consistent wrt. the simulation relation and shared
invariant. We assume to have proven the sequential simulation theorem according to RSd,S′e
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fulfilling the IPCP condition and Assumptions 1-3. Moreover (iv) memory safety is verified
for all complete block computations starting in E along with a property P that (v) implies that
computations running out of E obey the software conditions and preserve well-formedness.

simh(D,E, P, par) ≡ (i) ∀p ∈ Uc(D.M, par). wf p(D.M)

(ii) ∃p ∈ Nnu . CPp(D.M, par) ∧W (D)

(iii) sim(D.M, par , E.M) ∧ sinv(D, par , E)

(iv) safetycB (E, par , P ) ∧ IPCP(RSd,Se , par)

(v) ∀E′ ∈ CS′e , p ∈ Nnu . P (E′) =⇒ wf p(E
′.M) ∧ E′.up.sc

5.4.1 Corollaries of the Simulation Theorem

Now we can prove the following corollaries of the concurrent simulation theorem.

Corollary 3 (Simulating IP Schedules are Safe and Well-Behaved) Assuming a pair of
simulating Cosmos machine configurations D ∈ CS′d and E ∈ CS′e , if the simulation hypothe-
ses hold for concurrent simulation framework (RS′d,S′e , sinv) and some parameter par ∈ P , then
all suitable IP schedule computations running out of D are ownership-safe and well-behaved.

∀D,E, par . simh(D,E, P, par) =⇒ safetyIP(D,W, suit)

PROOF: We show that any computation (D.M, θ) with IPsched(θ) and suit(θ) is well-
behaved and safe wrt. ownership. To this end we apply Lemma 30 obtaining a block
machine schedule κ with bκc = θ. Besides the hypotheses of simh we have the follow-
ing conditions on computation (D.M, bκc) for applying the simulation theorem.

(i) CPsched(κ, par)

(ii) comp(D.M, bκc)
(iii) ∀λ ∈ κ. λ 6= ε ∧ suit(λ)

We get (i) by definition because we have IPsched(bκc) from hypothesis on θ = bκc and
IPCP(RS′d,S′e) from simh . Similarly (ii) follows from comp(D.M, θ). All steps in κ are
suitable for simulation because of suit(θ). For all λ ∈ κ we then have by definition of
the suitability of sequences:

suit(θ) =⇒ ∀α ∈ θ. suit(α) =⇒ ∀α ∈ bκc. suit(α) =⇒ ∀α ∈ λ. suit(α) =⇒ suit(λ)

Finally we can assume wlog. that κ does not contain empty blocks. If it did we can sim-
ply remove them without changing the semantics of the block machine computation.
Thus we can apply Theorem 6 and obtain:

∃o ∈ Ω∗S′d . safe(D, 〈θ, o〉) wb(D.M, θ, par) D.M
〈θ,o〉7−→ D′

Here D′ is the configuration machine state reached D by this annotated computation.
By inductive application of the semantics of the wb flag on the well-behaved computa-
tion we get W (D′). Since we chose θ arbitrarily we have proven our claim. �
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Corollary 4 (IOIP Assumption for Simulating IP Schedules) Given a Cosmos machine
simulation constrained as in the previous corollary with start configuration D, then every
IP schedule that is suitable for simulation and running out of D fulfills the IOIP condi-
tion that any consistency block contains at most one IO operation and every unit starts in an
interleaving-point.

∀D,E, par . simh(D,E, P, par) =⇒ IOIPIP(D, suit)

PROOF: For a given suitable IP schedule θ, such that comp(D.M, θ) we obtain block
machine computation (D.M, κ) with bκc as above and apply the concurrent simulation
theorem. From claim (iv) we get

∀j ≤ |κ|. oneIO(κj , νj)

where ν is the abstract block schedule that is simulated by κ. From the definition of
oneIO we get oneIO(κj) ∨ κj = ε for all j and κj = ε actually implies oneIO(κj), i.e.,
all blocks of κ contain at most one IO step. In addition by Bsched(κ) all blocks start in
an interleaving-point and contain only steps by the same unit.

∀j ≤ |κ|. oneIO(κj) ∧ ∃p ∈ Nnu . blk(κj , p)

We can rewrite the IOIP condition for transition sequence bκc as follows.

IOIP(bκc) def≡ (i) ∀σ, α, τ, β, ω, p. bκc = σατβω ∧ α.io ∧ β.io ∧ α.s = β.s = p

=⇒ ∃γ ∈ τβ. γ.ip ∧ γ.s = p

(ii) ∀τ, α, ω, p. bκc = ταω ∧ α.s = p ∧ τ |p = ε =⇒ α.ip

Condition (ii) demands that any first step of a unit in bκc starts in an interleaving-
point. For any transition α such that bκc = ταω with α.s = p and τ |p = ε we know by
induction on the number of blocks in κ that there exists a block with index j in κ such
that α is the first step of this block, i.e., α = κj [1], which implies α.ip by blk(κj , p).

To prove the first condition we assume a partitioning of bκc as stated. For the IO
steps α and β of unit p we know that there must exist blocks κi and κj with i < j
such that α ∈ κi and β ∈ κj . The steps cannot lie in the same block because we have
oneIO(κi) and oneIO(κj). By blk(κj , p) we know that κj [1].ip. Thus there exists a tran-
sition γ = κj [1] in τβ such that γ.ip. This proves IOIP(bκc) and thus IOIP(θ). �

Thus we have shown that all computations starting in configuration D with IP sched-
ules that are suitable for simulation are ownership-safe and fulfill the IOIP condition.
However, according to the order reduction theorem we actually need ownership safety
and the IOIP condition for all IP schedules running out of D. In order to bridge this
gap we will take the following measures.

1. We prove that the suitability of schedules is preserved by reordering.

2. We extend the order reduction theorem to be applicable on the subset of suitable
schedules.

This will allow us to derive the ownership-safety of arbitrary suitable schedules from
the simulation hypotheses. Now we show the necessary lemmas step by step.

177



5 Simulation in Concurrent Systems

5.4.2 Suitability and Reordering

First we prove a useful property of the suitability predicate.

Lemma 33 (Suitability is Independent from Interleaving) ForRSd,S′e , a given transition
sequence θ is suitable for simulation iff its subsequences for each unit are.

suit(θ)⇐⇒ ∀p ∈ Nnu . suit(θ|p)
PROOF: We show the two directions of implication independently. By definition:

suit(θ)⇐⇒ ∀α ∈ θ. suit(α)

Assuming for the sake of contradiction that suit(θ) holds and there is an α ∈ θ|p such
that /suit(α), then by definition of the subsequence notation α is also contained in θ,
i.e., ∃α ∈ θ. /suit(α), which contradicts our assumption suit(θ).

If suit(θ) does not hold then again there is an α ∈ θ such that /suit(α). By definition
we also have α ∈ θ|α.s and since α.s ∈ Nnu there exists a p ∈ Nnu such that /suit(θ|p)
holds with p = α.s. �

Corollary 5 (Reordering Preserves Suitability) Given are two equivalently reordered tran-
sition sequences θ and θ′. Then θ is suitable for simulation wrt. simulation framework RSd,S′e
iff θ′ is suitable as well.

θ =̂ θ′ =⇒ suit(θ)⇔ suit(θ′)

PROOF: By definition of the reordering relation we have θ|p = θ′p (1) for all p ∈ Nnu .
Then with Lemma 33 we conclude:

suit(θ)
(L33)⇔ ∀p ∈ Nnu . suit(θ|p) (1)⇔ ∀p ∈ Nnu . suit(θ′|p) (L33)⇔ suit(θ′) �

We combine this result with Lemma 10 and Lemma 11 obtaining a stronger Reordering
Lemma. Also Lemma 24 can be strengthened.

Corollary 6 (Reordering Suitable Schedules into IP Schedules) Given a transition se-
quence θ and simulation framework RSd,S′e . If θ fulfills the IOIP condition and is suitable for
simulation then we can find an equivalently reordered suitable IP schedule θ′ which also fulfills
the IOIP condition.

IOIP(θ) ∧ suit(θ) =⇒ ∃θ′. θ =̂ θ′ ∧ IPsched(θ′) ∧ IOIP(θ′) ∧ suit(θ′)

PROOF: Using Lemma 11 we obtain θ′ such that θ =̂ θ′ and IPsched(θ′). By Lemma 10
we know that θ′ fulfills the IOIP condition. Suitability follows from Corollary 5. �

Corollary 7 (Coverage for Suitable Computations) Given a computation (D.M, θ) and
simulation framework RSd,S′e such that θ is suitable for simulation. From safetyIP(D,P, suit)
and IOIPIP(D, suit) it follows that every schedule θ ∈ Θ∗Sd fulfills the IOIP condition and
there exists an equivalently reordered suitable IP schedule computation.

safetyIP(D,P, suit) ∧ IOIPIP(D, suit) ∧ comp(D.M, θ) ∧ suit(θ) =⇒
IOIP(θ) ∧ ∃θ′. θ =̂ θ′ ∧ IPsched(θ′) ∧ comp(D.M, θ′) ∧ suit(θ′)

PROOF SKETCH: We simply replay the proof of Lemma 24 using the fact that by Corol-
lary 5 all equivalently reordered schedules of θ are suitable for simulation. �
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5.4.3 Order Reduction on Suitable Schedules

Finally we can show a stronger order reduction theorem that allows to transfer safety
properties from the subset of suitable IP schedules down to suitable arbitrarily inter-
leaved schedules.

Theorem 7 (IP Schedule Order Reduction for Suitable Schedules) Given a simulation
framework RS′d,S′e and a Cosmos model configuration D ∈ CS′d for which it has been verified
that all suitable IP schedules originating in D are safe wrt. ownership and a Cosmos machine
property P . Moreover all suitable IP schedule computations running out of D obey the IOIP
condition. Then ownership safety and P hold on all computations with a schedule suitable for
simulation that starts in D.

safetyIP(D,P, suit) ∧ IOIPIP(D, suit) =⇒ safety(D,P, suit)

PROOF: Given a Cosmos machine computation (D.M, θ) with suit(θ) we obtain an
equivalent, suitable, interleaving-point schedule computation (D.M, θ′) by Corollary 7,
i.e., θ =̂ θ′, IPsched(θ′), comp(D.M, θ′), and suit(θ′) holds. Then by safetyIP there ex-
ists an o′ such that (D, 〈θ′, o′〉) is safe. We conclude ∃o. safeP (D, 〈θ, o〉) just like in the
proof of Theorem 1. �

Note that for a trivial instantiation of suit(α) ≡ 1, the new order reduction theorem
implies the old one. Furthermore we can now wrap up the ownership transfer from ab-
stract block machine schedules down to suitable arbitrarily interleaved concrete sched-
ules as a corollary.

Corollary 8 (Ownership Transfer for Simulating Block Machines) Assuming a pair of
simulating Cosmos machine configurations D ∈ CS′d and E ∈ CS′e , if the simulation hypothe-
ses hold for concurrent simulation framework (RS′d,S′e , sinv) and some parameter par ∈ P , then
all suitable computations running out of D are ownership-safe and well-behaved.

∀D,E, par . simh(D,E, P, par) =⇒ safety(D,W, suit)

PROOF: By Corollaries 3 and 4 we get:

safetyIP(D,W, suit) IOIPIP(D, suit)

Applying Theorem 7 we obtain safety(D,W, suit) �

Thus we have proven that the assumptions on the sequential simulation theorem, in
particular Assumption 1, suffice to establish the transfer of ownership-safety from the
abstract to the concrete concurrent Cosmos machine. In the next section we will con-
sider simulation between complete block machine computations and treat the transfer
of arbitrary Cosmos machine safety properties between simulation layers.
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5.5 Property Transfer and Complete Block Simulation

Above we have shown the existence of a simulation between any concrete consis-
tency block machine computation and a complete abstract block machine computation.
Moreover we have proven property transfer for memory safety. For the transfer of other
safety properties it is important to remember how the simulation proof was conducted.

The sequential simulation was proven to hold only for units that are in consistency
points in the computation of the concrete Cosmos machine. For all other units no state-
ment could be made about their states and locally owned memory regions. However
the shared invariant on shared memory and the ownership state was proven to hold in
all configurations of a simulating computation.

This has influence on the kind of properties we can transfer from the abstract down
to the concrete simulation level. We will have to distinguish between global and local
properties. Moreover safety properties proven on the abstract level do not translate
one-to-one to the concrete level because we are dealing with different Cosmos machine
instantiations. The “translation” of the verified abstract safety properties to properties
of the concrete machine is achieved via the coupling relations between configurations
of S′d and S′e, i.e., by the shared invariant for global properties, and by the sequential
simulation relation for local properties of units in consistency points.

This notion of simulated Cosmos machine properties is formalized below. We finish the
section by proving transfer of Cosmos machine safety properties for complete and in-
complete block machine schedules.

5.5.1 Simulated Cosmos machine Properties

As explained above we cannot transfer a verified Cosmos machine property P from
the abstract to the concrete simulation level. Naturally P is formulated in terms of
S′e and we cannot apply it to configurations of S′d. However we can translate P into a
simulated Cosmos machine property Q̂which holds forD ∈ CS′d iff P holds in a completely
consistent state E ∈ CS′e . Here we follow the approach of Cohen and Lamport for
property transfer [CL98]. Nevertheless we cannot translate arbitrary properties. First,
they must be divisible in global and local sub-properties.

Definition 83 (Divisible Cosmos machine Safety Property) We say that P is a divisible
Cosmos machine safety property on the abstract machine S′e iff it has the following structure

∀E ∈ CS′e . P (E) ≡ Pg(E) ∧ ∀p. Pl(E, p)

where Pg is a global property which depends only on shared resources and the ownership model
and Pl constitutes local properties for each unit of the system. Consequently they are constrained
as shown below for any E,E′ ∈ CS′e .

E
s∼ E′ ∧ E o∼ E′ =⇒ Pg(E) = Pg(E

′)

∀p. E ≈p E′ =⇒ Pl(E, p) = Pl(E
′, p)
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The distinction of global and local properties is motivated by the simulation proof.
Global properties are only restricting the shared memory and ownership state, the part
of the configuration that is covered by the shared invariant which is holding at all
times between simulating computations. Conversely, local properties depend on the
local configuration of a single unit, which are only coupled with the implementation at
consistency points. Thus we can translate global properties in all intermediate config-
urations using the shared invariant and translate local properties in consistency-points
using the simulation relation.

Arbitrary safety properties that couple shared memory with local data, or couple the
local data of several units, can in general not be translated because the involved com-
putation units might never be in consistency-points at the same time. Technically we
forbid safety properties that are stated as a disjunction of global and local properties.
However this is not a crucial restriction and we could without problems allow prop-
erties of the form Pg(C) ∨ Pl(C) if needed. The notion of the property translation is
formalized as follows.

Definition 84 (Simulated Cosmos machine Property) Let P be a divisible Cosmos ma-
chine safety property on CS′e and (RS′d,S′e , sinv) be a concurrent simulation framework between
machines S′e and S′d. Then for a given simulation parameter par ∈ P the simulated Cosmos
machine property Q̂[P, par ] : CS′d → B can be derived by solving the following formula, which
states for any configuration E ∈ CS′e being completely consistent with D ∈ CS′d that Q̂[P, par ]
holds in D iff P holds in E.

∀D,E. sinv(D, par , E) ∧ ∀p. simp(D.M, par,E.M) =⇒ (Q̂[P, par ](D) = P (E))

Note that Q̂[P, par ] may be undefined for certain properties P .2 Moreover, as Q̂[P, par ] should
be a divisible Cosmos machine property, we must be able to split it into global part Q̂[P, par ]g
and local parts Q̂[P, par ]l such that:

Q̂[P, par ](D) = Q̂[P, par ]g(D) ∧ ∀p. Q̂[P, par ]l(D, p)

Consequently the following constraints must hold for Q̂[P, par ].

∀D,E. Pg(E) ∧ sinv(D, par , E) =⇒ Q̂[P, par ]g(D)

∀D,E, p. Pl(E, p) ∧ simp(D.M, par , E.M) =⇒ Q̂[P, par ]l(D, p)

While it is desireable to have local properties hold for all units, we have seen that for
configurations in incomplete consistency block machine computations there are units
for which the sequential simulation and thus local simulated properties do not hold.
Therefore we have to relax the definition of simulated properties and introduce incom-
pletely simulated Cosmos machine properties.

2This can be the case when P argues about components of S′e that are not coupled with the concrete level
S′d via the simulation relation and shared invariant. Typically ghost state components fall into this
category if they do not have counterparts in the ghost state of the implementation.
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Definition 85 (Incompletely Simulated Cosmos Machine Property) For a given Cosmos
machine property P , concurrent simulation framework (RS′d,S′e , sinv), simulation parameter
par ∈ P , and configurations D ∈ CS′d , E ∈ CS′e we define an incompletely simulated Cosmos
machine property Q[P, par ] : Cd → B below.

Q[P, par ](D) ≡ Q̂[P, par ]g(D) ∧ ∀p ∈ Uc(D.M, par). Q̂[P, par ]l(D, p)

Its definition uses the global and local parts of the simulated Cosmos machine property
Q̂[P, par ]. The global part should hold for all configurations in a block schedule D and
the local properies only if the corresponding machine is in a consistency point.

5.5.2 Property Transfer

Finally we prove the transfer of safety properties from the abstract simulation level
down to arbitrary consistency block schedules on the concrete level.

Theorem 8 (Simulated Safety Property Transfer) Given are a concurrent simulation frame-
work consistent (RS′d,S′e , sinv) with par ∈ P and start configurations D ∈ CS′d , E ∈ CS′e such
that the simulation hypotheses are fulfilled. In particular if we have verified ownership-safety
and a Cosmos machine property P for all complete block machine computations starting in E
and P translates into the incompletely simulated Cosmos machine property Q[P, par ], then
any suitable Cosmos machine schedule leaving D is safe wrt. ownership, Q[P, par ] holds for
all reachable configurations, and all implementing computations are well-behaved.

simh(D,E, P, par) =⇒ safety(D,Q[P, par ] ∧W, suit)

PROOF: We assume any IP schedule computation (D.M, θ) where θ is suitable for sim-

ulation and D.M
θ7−→ M ′ for some final machine state M ′. By Lemma 30 we obtain

block machine schedule κ such that bκc = θ. Since the hypotheses of Theorem 6 are
fulfilled we can apply it to (D.M, κ) and we get that there exists an ownership an-
notation o, abstract annotated schedule 〈bνc, o′〉 and final configurations D′, E′ such
that (D, 〈θ, o〉) is a Cosmos machine computation leading also into machine state M ′,
(D.M, θ) is well-behaved, and (E.M, ν) is a complete consistency block machine com-
pution. Moreover the shared invariant as well as the sequential simulation relation for
units in consistency points holds between D′ and E′.

safe(D, 〈θ, o〉) wb(D.M, θ) D
〈θ,o〉7−→ D′ D′.M = M ′

CPsched c(E, ν, par) E
〈bνc,o′〉7−→ E′

sinv(D′, par , E′) ∀p ∈ Uc(D′, par). simp(M
′, par , E′.M)

Now by hypothesis safetycB (E,P, par) we have P (E′) and thus by definition also the
simulated property Q[P, par ](D′) holds. As (D.M, θ) is well-behaved we also have
W (D′) using the semantics of the wb flag. Since θ was choosen arbitrarily, we deduce
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the following statement.

∀θ ∈ Θ∗S′d
. IPsched(θ) ∧ suit(θ) ∧ comp(D.M, θ) =⇒

∃o ∈ Ω∗S′d
. safeQ[P,par ]∧W (D, 〈θ, o〉)

This is however the definition of safetyIP(D,Q[P, par ]∧W, suit) and Corollary 4 yields
IOIPIP(D, suit). By Theorem 7 we conclude safety(D,Q[P, par ] ∧W, suit). �

Thus the incompletely simulated Cosmos machine property for any P is maintained on
the concrete level by the concurrent simulation. We can easily show that the simulated
properties hold completely on complete consistency block machine computations. This
is usefull for constructing pervasive concurrent model stacks where the safety of com-
plete block machine computations is needed on the concrete level, which becomes the
abstract level of the underlying simulation layer.

Corollary 9 (Complete Simulated Property Transfer) Given are a concurrent simulation
framework consistent (RS′d,S′e , sinv) with par ∈ P and start configurationsD ∈ CS′d ,E ∈ CS′e
such that the simulation hypotheses are fulfilled and a Cosmos machine property P is verified
for all complete consistency block machines of S′e. Then, if Q̂[P, par ] exists, it holds for all
complete consistency block machine computations of machine S′d.

simh(D,E, P, par) =⇒ safetycB (D, Q̂[P, par ] ∧W, suit)

PROOF: Given a block machine computation (D.M, κ) that is complete and leading into
computation M ′ where all units are in consistency points , i.e.:

CPsched c(D.M, κ, par) D.M
κ7−→M ′ ∀p ∈ Nnu . CPp(M ′, par)

By definition we have Bsched(κ) and by Lemma 29 bκc is an IP schedule and the
computation (D.M, bκc) leads also into M ′ by definition of the step sequence notation
for block machine schedules.

IPsched(bκc) D.M
bκc7−→M ′

Nevertheless by Theorem 8 we know that all Cosmos machine computations running
out of D are safe wrt. ownership and property Q[P, par ] ∧W . Therefore we have:

∃o,D′. safe(D, 〈bκc, o〉) ∧D 〈bκc,o〉7−→ D′ ∧D′.M = M ′ ∧Q[P, par ](D′) ∧W (D′)

In particular the definition of Q[P, par ] gives us:

Q̂[P, par ]g(D
′) ∀p ∈ Uc(M ′, par). Q̂[P, par ]l(D

′, p)

Since all machines in M ′ are in consistency points we immediately get Q̂[P, par ](D′)
by definition and safeQ̂[P,par ]∧W (D, 〈bκc, o〉) follows. Our claim holds by definition of
safetycB because we have chosen block machine schedule κ arbitrarily. �
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This finishes our simulation theory. We have shown how to conduct simulation and
transfer properties between abstract and concrete Cosmos models. However in order
the illustrate the usability of our framework for reordering and simulation we will re-
turn to our Cosmos model instantiations below and establish the concurrent simulation
theorems between MIPS and C-IL, or MASM respectively.

5.6 Instantiations

In the previous chapters we have introduced the Cosmos machines SnMASM and SnC-IL
which where instantiated according to the MASM and C-IL semantics presented ear-
lier. We also defined sequential consistency relations and correctness theorems for the
assembling or compilation of MASM and C-IL resulting in programs running on the
MIPS ISA level. In the remainder of this chapter we will revisit the sequential correct-
ness theorems and instantiate our concurrent simulation framework accordingly. Thus
we will justify the concurrent MASM and C-IL semantics by sketching a simulation be-
tween SnMIPS and SnMASM, as well as SnMIPS and SnC-IL. Note that for both simulations we
set parameter Acode of the MIPS machine equal to {a ∈ A | 〈a〉 ∈ CR}.

5.6.1 Concurrent MASM Assembler Consistency

Before we instantiate the concurrent simulation theorem let us revisit the MASM Cosmos
machine SnMASM and the sequential MASM assembler correctness theorem presented in
Section 4.2.2.

Sequential Simulation Framework

We have already given a definition of the sequential MIPS-MASM simulation frame-
work RSnMIPS,S

n
MASM

before. We reproduce it below.

RSnMIPS,S
n
MASM

.





P = InfoT MASM

sim(h, infoµ, l) = consisMASM((l.c, dl.me), infoµ, h)

CPa(c, infoµ) = 1

CPc(c, infoµ) = (c.pc ∈ AMASM
cp )

wfa(l) = wf MASM(l.c, dl.me)
sc(M, t, infoµ) = scMASM((M.u(t.s), dM.me), infoµ)

wfc(h) = wf MASM
MIPS (h)

suit(α) = suitMASM
MIPS (α.in)

wb(M, t, infoµ) = wbMASM
MIPS ((M.u(t.s),M.m), t.in)

Here AMASM
cp represents the instruction addresses of all consistency-points on the MIPS

level and was defined as follows.

AMASM
cp ≡ {adr(infoµ, p, loc) | p ∈ dom(π) ∧ loc ≤ |π(p).body |}
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Note that this setting of the consistency points implies IPCP(RSnMIPS,S
n
MASM

, infoµ). The
definition of IO steps on the MIPS level was given as follows.

SnMIPS.IO(u,m, eev) ≡ /jisr((u, dme), eev) ∧ u.pc ∈ Aio

Here set Aio denotes the set of addresses of instructions that perform IO operations.
Note that such a definition assumes that instructions are only fetched from the code
region that is fixed by MASM code consistency (see codeinv ). Considering IO steps
in MASM, such steps can either be Compare-and-Swap instructions or memory opera-
tions that target global shared variables using to the global variables pointer as source
register and offsets from the set off gs . Depending on MASM program π we define a
predicate to detect whether statement j of procedure p is an IO instruction.

io(π, p, j)
def≡ cas(π(p).body [j]) ∨ gsv(π(p).body [j])

Then Aio is defined as follows.

Aio
def≡ {adr(infoµ, p, loc) | p ∈ dom(π), loc ≤ |π(p).body |. io(π, p, loc)}

If we take the generalized sequential simulation theorem literally then we need to prove
the following statement for the Cosmos machines SnMIPS and SnMASM. Let Mh ∈ MSnMIPS

and Mµ ∈MSnMASM
in:

∀Mh,Mµ, infoµ, ω, p.

(i) wf MASM
MIPS (Mh.up,Mh.m) ∧ wf MASM(Mµ.up, dMµ.me)

(ii) consisMASM((Mµ.up, dMµ.me), infoµ, (Mh.up,Mh.m)) ∧Mh.up.pc ∈ AMASM
cp

(iii) blk(ω, p) ∧ ∀α ∈ ω. suitMASM
MIPS (α.in) ∧ ∃M ′′h . Mh

ω7−→M ′′h
(iv) ∀πα,M ′′µ ,M ′′′µ . Mµ

π7−→M ′′µ
α7→M ′′′µ ∧ blk(πα, p)

=⇒ scMASM((M ′′µ .up, dM ′′µ .me), infoµ) ∧ wf MASM(M ′′′µ .up, dM ′′′µ .me)
=⇒ ∃σ, τ,M ′h,M ′µ.

(i) ω Bblkp σ ∧ blk(τ, p) ∧ oneIO(σ, τ)

(ii) Mh
σ7−→M ′h ∧ wf MIPS(M ′h.up,M

′
h.m) ∧

∀θαθ′,M ′′h . σ = θαθ′ ∧Mh
θ7−→M ′′h =⇒ wbMASM

MIPS ((M ′′h .up,M
′′
h .m), α.in)

(iii) Mµ
τ7−→M ′µ ∧ wf p(M

′
µ.up,M

′
µ.p.m)

(iv) consisMASM((M ′µ.up, dM ′µ.me), infoµ, (M
′
h.up,M

′
h.m)) ∧M ′h.up.pc ∈ AMASM

cp

However in this formulation the Cosmos model formalism and our step notation seem
to obstruct hypotheses and claims of the theorem. In order to illustrate the actual se-
quential simulation that we have to prove for MASM, we fill in the definitions from the
MASM consistency section and restate the theorem focussing on the local configuration
of unit p. Deriving the theorem above from the one given below is merely a technicality.
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Theorem 9 (Sequential MIPS-MASM Simulation Theorem) Given a MASM starting con-
figuration cµ0 ∈ CMASM that is (i) well-formed, a MIPS configuration h0 ∈ HMIPS that has
external device interrupts disabled and is (ii) consistent to cµ0 wrt. some infoµ ∈ InfoT MASM.,
and an external event vector sequence eev ∈ (B256)∗, that (iii) contains no active reset signals.
If (iv) every computation running out of cµ0 leads into a well-formed state, that does not pro-
duce runtime-errors or stack overflows, and from where the next step does not access the stack
or code memory regions,

∀cµ0, h0, eev , infoµ . (i) wf MASM(cµ0) ∧ h0.c.spr [dev] = 0

(ii) consisMASM(cµ0, infoµ, h0) ∧ h0.c.pc ∈ AMASM
cp

(iii) ∀v ∈ B256.v ∈ eev =⇒ v[0] = 0

(iv) ∀c′µ ∈ CMASM. cµ0 −→∗δMASM
c′µ =⇒

wf MASM(c′µ) ∧ δ(c′µ) 6= ⊥
∧ /stackovf (c′µ, infoµ) ∧mspµ ≥ 0

∧ /badmemop(cµ, infoµ)

then there exists an ISA computation with n steps that (i) is starting in h0 and is computing
according to external event vector sequence eev extended with another input sequence eev ′. The
computation leads into a state where device interrupts are disabled and that is (ii) consistent
with the MASM state obtained by stepping cµ0 once. Moreover (iii) that next MASM state
is well-formed and (iv) the implementing ISA computation does not produce any interrupts
nor is it fetching from addresses outside the code region. Finally (v)+(vi) the implementing
computation contains exactly the same number of IO instructions as the implemented step of
the MASM machine and at most one such operation.

=⇒ ∃n ∈ N0, h ∈ Hn+1, eev ′ ∈ (B256)n−|eev |.
(i) h1 = h0 ∧ h1 −→n

δMIPS,eev◦eev ′ hn+1 ∧ hn+1.c.spr [dev ] = 0

(ii) consisMASM(δMASM(cµ0), infoµ, hn+1) ∧ hn+1.c.pc ∈ AMASM
cp

(iii) wf MASM(δMASM(cµ0))

(iv) ∀i ∈ Nn. /jisr(hi.c, I(hi), eevi) ∧ [〈hi.c.pc〉 : 〈hi.c.pc〉+ 3] ⊆ CR

(v) (∃i ∈ Nn. hi.c.pc ∈ Aio)⇐⇒ cas(I(cµ)) ∨ gsv(I(cµ))

(vi) ∀i, j ∈ Nn. hi.c.pc ∈ Aio ∧ hj .c.pc ∈ Aio =⇒ i = j

After proving this theorem we can easily establish the former statement by constructing
the simulating sequence σ using eev◦eev ′ for the inputs. The io flag in σ and τ is only set
for steps that are performing IO operations according to the program counter and Aio .
Since both computations agree on whether they contain an IO step and there is at most
one such step, we have oneIO(σ, τ). Similarly, the ip flag is set only for the first step
in σ and τ . The start configurations for σ and τ are in consistency points and lacking
control consistency there cannot be further consistency points in the implementation of
the single MASM step. Then with the IPCP condition we know that h0 and cµ0 are
also in interleaving-points and σ, τ are consistency blocks.
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Shared Invariant and Concurrent Simulation Assumptions

For establishing a concurrent simulation between MIPS and MASM we first of all need
to define invariant on shared memory and the ownership state. In general we demand
that the shared memory as well as the ownership configuration is identical. Neverthe-
less we need to take into account that for MASM the code and stack region is excluded
from the memory address range. On the ISA level the stack region dedicated to unit
p is always owned by p. By construction the code region lies in the set of read-only
addresses and the read-only set is empty for SnMASM.

Definition 86 (Shared Invariant for Concurrent MIPS-MASM Simulation) Given mem-
ories mh, mµ, read-only sets Rh, Rµ, sets of shared addresses Sh and Sµ, as well as ownership
mappings Oh and Oµ, we define the shared invariant for concurrent simulation of SnMASM by
SnMIPS wrt. assembler information infoµ as follows. We demand (i) that memory contents are
equal for all but the stack and code regions, that (ii) the shared addresses are equal, and (iii) that
all units own the same addresses on the MIPS level as on the MASM level plus the individual
stack region.

sinvMASM
MIPS ((mh,Sh,Rh,Oh), infoµ, (mµ,Sµ,Rµ,Oµ)) ≡

(i) mh|SnMASM.A = mµ

(ii) Sh = Sµ
(iii) ∀p ∈ Nnu . Oh(p) = Oµ(p) ∪ StRp

Thus we have the concurrent simulation framework (RSnMIPS,S
n
MASM

, sinvMASM
MIPS ) for which

we need to prove the remaining Assumptions 1 to 3. However without knowing the
code generation function asm for MASM statements, we cannot prove Assumption 1
which demands that ownership-safe simulation steps preserve the shared invariant and
that ownership-safety can be transferred from the MASM to the MIPS implementation.
While we will treat the safety transfer in a separate section, here we can at least give a
proof sketch for the preservation of the shared invariant.

PROOF SKETCH FOR PRESERVATION OF sinvMIPS
MASM: We consider a consistency block

computation of SnMASM, Cµ
τ7−→ C ′µ that is being simulated by a MIPS computation

H
σ7−→ H ′. First of all we assume that the safety of (Cµ, τ) can be transfered to (H,σ)

and that the same ownership transfer takes place in both sequences, i.e., σ|io .o = τ |io .o.
This means that we do not transfer any ownership of the stack or code region because
it is invisible in MASM.

By the shared invariant on H and Cµ, the shared and owned addresses agree be-
fore the (in both cases identical) ownership transfer, therefore they also agree after-
wards, giving us claims (ii) and (iii) of the shared invariant. By memory consistency
consismem

MASM from the MASM assembler consistency relation we deduce claim (i). �

With the individual stack regions being owned by the corresponding units, the proofs
of the remaining assumptions are straight-forward.
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PROOF OF ASSUMPTION 2: We need to prove the following statement for configurations
H,H ′ ∈ CSnMIPS

and Cµ, C ′µ ∈ CSnMASM
and some unit p ∈ Nnu .

consisMASM((Cµ.up, Cµ.m), infoµ, (H.up, H.m))

∧ H ≈p H ′ ∧ Cµ ≈p C ′µ ∧ sinvMASM
MIPS (G(H ′), infoµ, G(C ′µ))

=⇒ consisMASM((H ′.up, H ′.m), infoµ, (C
′
µ.up, C

′
µ.m))

By H ≈p H ′ we have that the owned and read-only portions of memory on the MIPS
level agree between H and H ′.

∀a ∈ H ′.Op ∪ SnMIPS.R. H ′.m(a) = H.m(a)

By the shared invariant we know that the code and stack region for p is contained in
this set of addresses, therefore:

∀a ∈ StRp ∪ CR. H ′.m(a) = H.m(a)

Examining the definition of consisMASM we see that all sub-relations but memory con-
sistency depend only on those regions of memory. Thus from the consistency relation
holding for H and Cµ we obtain all consistency sub-relations besides memory consis-
tency. However the latter is implied by the shared invariant on H ′ and C ′µ:

∀a ∈ SnMASM.A. H ′.m(a) = C ′µ.m(a)

Therefore we conclude that the MASM consistency relation holds for H ′ and C ′µ. �

PROOF OF ASSUMPTION 3: We need to prove the following statement for configurations
H,H ′ ∈ CSnMIPS

and Cµ, C ′µ ∈ CSnMASM
and some unit p ∈ Nnu .

wf MIPS(H.up, H.m) ∧H ≈p H ′ =⇒ wf MIPS(H ′.up, H ′.m)

wf MASM(Cµ.up, Cµ.m) ∧ Cµ ≈p C ′µ =⇒ wf MASM(Cµ.up, C
′
µ.m)

We can omit the shared invariant here because the well-formedness of MASM configu-
rations only depends on the program and the stack. Similarly the well-formedness of
MIPS configurations only depends on a unit’s status register in the SPR file. Therefore
well-formedness follows directly from Cµ.up = C ′µ.up and H.up = H ′.up. �

Proving Safety Transfer

To discharge Assumption 1 we need to prove that any MIPS computation that is im-
plementing an ownership-safe MASM computation, can also annotated to be safe. The
proof of this kind of safety transfer is split into two parts, as we can handle the safety
of ownership transfer and the safety of memory accesses separately.

PROOF OF SAFE OWNERSHIP TRANSFER IN ASSUMPTION 1: For a given safe MASM
computation (Cµ, 〈τ, o′〉) that is simulated by (H.M, σ), where σ is a consistency block
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of some unit p, we need to find an ownership annotation o so that (D, 〈σ, o〉) is safe.
Moreover we need to preserve the shared invariant on the ownership state.

If σ contains only local steps, i.e., σ|io = ε, then we also do not transfer ownership on
the MIPS level, setting o accordingly, i.e., we do not acquire or release addresses:

∀x ∈ o. x = (∅, ∅, ∅)

Note that such an annotation fulfills the ownership transfer policy and preserves claims
(ii) and (iii) of the shared invariant. In the other case, i.e., σ|io 6= ε, we know by
oneIO(σ, τ) that both sequences contain exactly one IO step. We denote their posi-
tions by the following indices.

∃i ∈ N|τ |. τi.io ∃j ∈ N|σ|. σj .io

Consequently, we set oj = τi.o and for all k 6= j we have ok = (∅, ∅, ∅). Thus we
simply copy the ownership annotation to the corresponing IO step on the MIPS level.
We do not introduce addition ownership transfer on the code or the stack region and
the original ownership transfer annotations cannot affect the addresses lying outside of
SnMASM.A by construction.

Thus also in this case the shared invariant claims (ii) and (iii) are maintained trivially.
Moreover if the ownership transfer was safe on the MASM level, it is also safe for the
extended but consistent ownership state of the MIPS machine. �

Note that in the proof above we have not used the fact that on the MASM level all
consistency blocks contain only one step as all MASM configurations are consistency
points. However this way we can reuse the proof also for the C-IL instantiation. For
proving that the MIPS implementation obeys the memory access policy, we would need
to know the code generation function of the MASM assembler. However since the
shared addresses agree on both simulation layers and we assume that only memory
instructions can perform IO operations, the safety transfer property boils down to a
few basic verification conditions on the macro assembler and further arguments in the
safety transfer proof.

• All code is placed in the code region and and we do not have self-modifying code,
therefore only instructions generated by the macro assembler are executed.

• Plain assembly instructions are translated one-to-one, and we have consistency
before and afterwards. Therefore the same addresses are accessed by memory
instructions, wrt. to the same ownership state, and safety of memory accesses is
preserved.

• This holds especially for IO steps, because only assembly instructions may per-
form IO operations by definition. The implementation of macros does not con-
tain any IO steps by the oneIO condition on simulating consistency blocks.

• Memory instructions in the translations of macros may only access the stack re-
gion, which is always owned by the executing unit, thus they are also safe.
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Thus we conclude the MASM section. We have presented semantics for a macro as-
sembly language and introduced its assembler consistency relation. Furthermore we
fit it into our frameworks for concurrent systems and simulation. Using the MASM as-
sembler consistency relation we can thus transfer ownership-safety and other verified
properties down to the ISA level.

5.6.2 Concurrent C-IL Compiler Consistency

As in the MASM instantiation of our concurrent simulation framework we will first
consider the sequential case.

Sequential Simulation Framework

We define the sequential simulation framework RSnMIPS,S
n
C-IL

for h = (cpu,m) ∈ LSnMIPS

and l ∈ (s,M) ∈ LSnMASM
as follows.

RSnMIPS,S
n
C-IL

.





P = InfoT C-IL

sim(h, infoIL, c) = consisC-IL((c.M, c.s), π, θ, infoµ, h)

CPa(s, infoIL) = infoIL.cp(s[|s|].f, s[|s|].loc)

CPc(cpu, infoIL) = (cpu.pc ∈ AC-IL
cp )

wfa(c) = wf C-IL((c.M, c.s), π, θ)

sc(M, t, infoIL) = scC-IL((M.m,M.u(t.s)), t.in, π, θ, infoµ)

wfc(h) = wf C-IL
MIPS(h)

suit(α) = suitC-IL
MIPS(α.in)

wb(M, t, infoIL) = wbC-IL
MIPS((M.m,M.u(t.s)), t.in)

Here AC-IL
cp represents the instruction addresses of all consistency-points on the MIPS

level and was defined as follows.

AC-IL
cp ≡ {adr(infoIL, f, loc) | f ∈ dom(Fθπ) ∧ loc ≤ |Fθπ.P | ∧ infoIL.cp(f, loc)}

Note that this setting of the consistency points coincides with the setting of interleaving-
points on both levels. Thus it implies IPCP(RSnMIPS,S

n
MASM

, infoµ). For the definition of
IO steps on the MIPS level we again have to define the setAio . Basically we need to col-
lect all addresses of memory instructions which implement volatile variable updates.
However without the code generation function we do not know where the implement-
ing memory instruction is placed in the code memory region. To this end we introduce
the uninstantiated function volma which returns the instruction address for a volatile
memory access at a given location loc of a C-IL function f in program π.

volma : ProgC-IL × paramsC-IL × InfoT C-IL × Fname × N⇀ B32

To compute the function we naturally also need to know the code base address from
the compiler information and information on compiler instrinsics from environment

190



5.6 Instantiations

paramter θ. We assume that volma is defined for program locations where we expect
volatile variable accesses and for external functions in case they are supposed to update
the shared memory.3 Then Aio is defined as follows.

Aio
def≡ {volma(π, θ, infoµ, f, loc) | f ∈ dom(π.Fθπ), loc ≤ |π.Fθπ(f).P |} \ {⊥}

Similar to the MASM instantiation the formulation of the sequential simulation theorem
for C-IL in its generalized form is useful for proving the concurrent simulation theorem
but not well-suited for getting a grasp of the hypotheses and claims of the MIPS-C-IL
simulation. Therefore we reformulate it as follows.

Theorem 10 (Sequential MIPS–C-IL Simulation Theorem) Given a C-IL starting con-
figuration cIL0 ∈ CC-IL that is (i) well-formed, a MIPS configuration h0 ∈ HMIPS that has
external device interrupts disabled and is (ii) consistent to cIL0 wrt. some program π, environ-
ment parameters θ and compiler information infoµ, while both configurations are in consistency
points. Moreover we have an external event vector sequence eev ∈ (B256)∗, that (iii) contains
no enabled reset signals. Moreover we demand (iv) that every computation running out of cIL0

leads into a well-formed state, that does not produce runtime-errors or stack overflows, and from
where the next step does not access the stack or code memory regions. Also (v) the code region
fits into memory in the is disjoint from the stack region.

∀cIL0, π, θ, infoµ, h0, eev . (i) wf C-IL(cIL0, π, θ) ∧ h0.c.spr [dev] = 0

(ii) consisC-IL(cIL0, π, θ, infoµ, h0)

∧ h0.c.pc ∈ AC-IL
cp ∧ cp(cIL0, infoIL)

(iii) ∀v ∈ B256.v ∈ eev =⇒ v[0] = 0

(iv) ∀c′IL ∈ CC-IL, in ∈ Σ∗C-IL. cIL0 −→∗δπ,θC-IL,in
c′IL =⇒

wf C-IL(c′IL, π, θ) ∧ ∀in ′.δ(c′IL, in ′) 6= ⊥
∧ /stackovf (c′µ, π, θ, infoIL) ∧mspIL ≥ 0

∧ Aπ,θ
c′IL

(stmtnext(π, c
′
IL)) ∩ (CR ∪ StR) = ∅

(v) CR ⊆ [0 : 232) ∧ CR ∩ StR = ∅

If these hypotheses hold then there exists an ISA computation consisting of n steps, that (i) starts
in h0 and is computing according to external event vector sequence eev extended with another
external event vector eev ′. The computation leads into a state where device interrupts. Simi-
larly (ii) there exists a C-IL computation ofm steps running out of cIL0 according to some input
sequence in . The computation leads into a well-formed C-IL state. Both resulting configura-
tions are (iii) consistency points and the C-IL compiler consistency relation holds between them.
Apart from that (iv) the implementing ISA computation does not produce any interrupts nor is
it fetching from addresses outside the code region. The implementing computation contains (v)

3In case of external function cas , volma returns for location loc = 1 the address of the cas instruction
implementing the shared memory access. Note that there must exist only one such instruction.
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IO instructions iff the implemented steps of the C-IL machine contains an IO step and there is
(vi) at most one such operation. Let IO(cIL, in) = SnC-IL.IO(cIL.s, cIL.M|SnC-IL.A, in) in:

=⇒ ∃n ∈ N0, h ∈ Hn+1, eev ′ ∈ (B256)n−|eev |,m ∈ N0, cIL ∈ Cn+1
MASM, in ∈ (ΣC-IL)m.

(i) h1 = h0 ∧ h1 −→n
δMIPS,eev◦eev ′ hn+1 ∧ hn+1.c.spr [dev ] = 0

(ii) cIL1 = cIL0 ∧ cIL1 −→m
δπ,θC-IL,in

cILm+1 ∧ wf MASM(cµm+1)

(iii) consisC-IL(cILm+1, π, θ, infoIL, hn+1)

∧ hn+1.c.pc ∈ AC-IL
cp ∧ cp(cILm+1, infoIL)

(iv) ∀i ∈ Nn. /jisr(hi.c, I(hi), eevi) ∧ [〈hi.c.pc〉 : 〈hi.c.pc〉+ 3] ⊆ CR

(v) (∃i ∈ Nn. hi.c.pc ∈ Aio) ⇐⇒ (∃k ∈ Nm. IO(cILk, ink))

(vi) ∀i, j ∈ Nn. hi.c.pc ∈ Aio ∧ hj .c.pc ∈ Aio =⇒ i = j

Deriving the generalized sequential simulation theorem from this formulization works
similar to the MASM case.

Shared Invariant and Concurrent Simulation Assumptions

The shared invariant on ownership and shared memory for the concurrent MIPS–C-IL
simulation is similar to that of the MIPS-MASM simulation. There is only a difference
concerning the read-only addresses, as these are not empty in C-IL. Nevertheless they
are also extended by the code region CR on the MIPS level. Thus we have the following
shared invariant.

Definition 87 (Shared Invariant for Concurrent MIPS–C-IL Simulation) Given memo-
ries mh, mIL, read-only setsRh,RIL, sets of shared addresses Sh and SIL, as well as ownership
mappings Oh and OIL, we define the shared invariant for concurrent simulation of SnC-IL by
SnMIPS wrt. assembler information infoIL as follows. We demand (i) that memory contents are
equal for all but the stack and code regions, that (ii) the shared addresses are equal, that (iii) the
read-only addresses on the MIPS level contain all read-only addresses from C-IL plus the code
region, and (iv) that all units own the same addresses on the MIPS level as on the MASM level
plus the individual stack region.

sinvC-IL
MIPS((mh,Sh,Rh,Oh), infoIL, (mIL,SIL,RIL,OIL)) ≡

(i) mh|SnC-IL.A = mIL

(ii) Sh = SIL
(iii) Rh = RIL ∪ CR
(vi) ∀p ∈ Nnu . Oh(p) = OIL(p) ∪ StRp

Thus we obtain concurrent simulation framework (RSnMIPS,S
n
C-IL

, sinvC-IL
MIPS) for which As-

sumptions 1-3 are to be proven. Again, as we do not know the C-IL compilation func-
tion, the part of Assumption 1 demanding that the compilation preserves safety wrt. the
memory access ownership policy cannot be discharged here. Below we show the part
stating that simulating computations preserve the shared invariant. The preservation
of ownership transfer safety is proven in the following paragraph.

192



5.6 Instantiations

PRESERVATION OF sinvMASM
MIPS : Since claims (i), (ii), and (iv) are identical to the claims

of sinvMIPS
MIPS their preservation is shown exactly like in the MASM case. Claim (iii) is

preserved by simulating computations because SnMIPS.R and SnC-IL.R (which are used
as the arguments for inputsRh andRIL) as well as CR are constant. �

Also Assumptions 2 and 3 are proven just like for the concurrent MIPS-MASM simula-
tion shown above.

Proving Safety Transfer

It remains to prove that for the MIPS simulation of an ownership-safe C-IL computa-
tion we can also find a safe ownership annotation. Since ownership state is extended
identically going from C-IL to MIPS as in the MIPS-MASM simulation, also the proof
of safe ownership transfer in Assumption 1 is the same.

Concerning memory access safety many of the arguments from MIPS-MASM case
also apply to the MIPS–C-IL scenario. Then, using the following facts, we can justify
that compiled safe code does not break the memory access policy.

• The compiled code is placed in the code region, which is the only target of in-
struction fetch for well-behaved code. Moreover we do not have self-modifying
code, therefore only instructions generated by the C-IL compiler are executed.

• For any implementation of a C-IL statement only the stack and the memory foot-
prints of the involved expressions may be read or written. Note that this does not
follow from compiler consistency for intermediate computation steps.

• Local variables are allocated in the stack region which is owned by the executing
computation unit. Therefore if local variable accesses are compiled, so that they
access only the stack, the operation is ownership-safe.

• Since there is at most one IO step per consistency block where ownership can
change, the ownership state for the IO step and all previous local steps is the
same and by the shared invariant consistent with the ownership state on the C-
IL level before the IO step. Similarly all successor steps of the IO operation are
computed with the same ownership state that is consistent by the shared invariant
with the ownership state after the IO step on the C-IL level.

• As the same shared memory addresses are accessed wrt. the same ownership
state, the ownership-safety of memory access can be transferred.

This finishes our instantiation of the concurrent simulation framework between MIPS
and C-IL as well as the chapter on concurrent simulation.
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In the preceding chapters we have laid out a foundational theory for the construction
of pervasive semantic stacks in the formal verification of concurrent computer systems.
We started out by proving a general order reduction theorem which allows to reason
about concurrent systems considering only a selected subsets of computation schedules
where blocks of steps by the same process are interleaved with blocks of other processes
at certain interleaving-points. These points may be chosen freely by the verification engi-
neer, as long it is guaranteed that there is always at least one interleaving-point between
steps by the same process that interact with the environment.

The order reduction was proven for concurrent systems that obey a simple owner-
ship discipline governing shared memory accesses. Following O’Hearn’s ownership
hypothesis [O’H04], memory is divided into disjoint chunks that are owned by the
different processes and in principle a process may only access memory that it owns.
In addition there is the shared-writable memory that may be accessed concurrently in
predefined synchronization points (IO steps) using synchronization primitives that ac-
cess memory atomically. In order to enable more sophisticated synchronization mech-
anisms, it is allowed to share owned data, that can then be read by other processes in
IO steps. Moreover the ownership state is not stable but may be modified by acquiring
and releasing addresses in synchronization points (ownership transfer).

We have shown that ownership-safe steps which obey the ownership policy for mem-
ory access and ownership transfer can be reordered across other safe steps, if at least one
of them is not an IO step. This allowed us to give an ownership based proof of the folk
theorem that between synchronization points the interleaving of local steps is arbitrary
[Bro06]. Using this fact it was quite easy to show that each ownership-safe computa-
tion can be reordered into the desired interleaving-point schedule. However for the
order reduction to be sound we needed to explicitly transfer the ownership-safety of
interleaving-point schedules to arbitrarily interleaved computations the system. Doing
so enabled us to represent all computations by the set of interleaving-point schedules
and, as opposed to existing order reduction theories [CL98], the order reduction the-
orem only states hypotheses on the order-reduced system. Since the order reduction
argument was made for the operational semantics of a generic shared-memory concur-
rent computer system (the Cosmos model), and the interleaving-points may be chosen
with a great flexibility, there are many possible applications of the theorem.

First we showed that the common simplification of coarse scheduling, assumed by
concurrent verification tools like VCC, can be justified by setting the interleaving-points
to occur before every IO step. Even more importantly, the order reduction theorem
enables to establish pervasive stacks of concurrent program semantics where adjacent
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levels are connected formally via simulation theorems. Each level is represented by an
individual instantiation of the Cosmos model and the interleaving-points are chosen to
occur at points where the sequential simulation relation holds for a given process on the
concrete level wrt. some configuration of the same process on the abstract level (consis-
tency points). Applying the order reduction theorem allowed us to assume blocks of
steps by the same process starting in consistency points. We proved an overall Cosmos
model simulation theorem where we applied sequential simulation theorems on these
blocks establishing a system-wide simulation between two concurrent Cosmos machine
computations. In order to do so we defined generalized formalism for sequential simu-
lation theorems and stated verification conditions that enable the concurrent composi-
tion of these sequential theorems. Most prominently for every simulation layer one has
to prove an ownership-safety transfer theorem, which requires that ownership-safe ab-
stract computations have ownership-safe implementations on the concrete level. This
argument is necessary to transfer the ownership-safety down from the top-level se-
mantics to the lowest level of the semantic stack and apply the order reduction. We
demonstrated the applicability of our simulation framework by instantiating it with
two concurrent simulations, namely one between a concurrent MIPS instruction set
architecture and a concurrent macro assembly semantics, as well as one between con-
current MIPS ISA and a concurrent semantics for an intermediate language of C.

Due to its generality and flexibility, we believe the presented Cosmos model model
order reduction and simulation theory to be a useful tool in the formal specification and
verification of concurrent systems. In the following section we discuss the presented
development in more detail, highlighting limitations and possible extensions of the
approach. We conclude this thesis by a presentation of future application scenarios.

6.1 Discussion

The presented models and theories are formulated to be as general as possible, span-
ning a wide range of possible instantiations. However there are some restrictions and
limitations of the Cosmos model. Some of them are just for simplicity of the presen-
tation, others are necessary for the reordering proofs. An obvious limitation of our
model is that we can only have one type of computation units in the Cosmos machine.
However we can easily extend the Cosmos machine definition to contain individual pa-
rameters U , E , reads , δ, IO, and IP for each computation unit. As this does not affect
the ownership model, the reduction proof will conceptually be unchanged. This allows
us to apply the order reduction theorem on even more levels of our model stack for
pervasive hypervisor verification. See Sect. 6.3 for examples.

For every Cosmos machine instantiation that we consider, the constraint instar on the
definition of the reads-function must pe proven. The constraint can be seen as a correct-
ness condition for the reads-function, requiring that it collects all memory addresses
that may be read in order to determine the reads-set for the next step of a computation
unit. As we have seen in the case of the C-IL semantics, proving this correctness con-
dition may become quite tedious. To overcome the issue, a different constraint for the
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reads-set was suggested by W. J. Paul. Since the definition of the reads-set only becomes
difficult for systems with serial reads, it should be possible to define the reads-set by
iterative application of a series of incremental reads-functions, where the first function
depends only on the unit state and all following functions depend only on the mem-
ory content that was read previously. In case of MIPS ISA, we would only need two
incremental reads-functions that are applied sequentially, i.e., one function for instruc-
tion fetch and another optional function for load instructions. In case of MASM we
would only have the reads-function for loads, depending on the MASM program and
the current program location. For C-IL we would have incremental reads-functions for
expression evaluation and we would need to determine the order of their application
on sub-expressions for the current C-IL statement. If the reads-function of a Cosmos ma-
chine instantiation can be defined using this scheme, then we could drop the require-
ment to prove instar, as it is implied by any such definition. However, formalizing and
proving this argument is still to be done.

Besides that, another peculiarity of the Cosmos model is that we have required the
read-only setR to be fixed, restricting the ownership model from [CS09]. This was nec-
essary in order to keep our reordering proof modular. In fact if the read-only addresses
could change dynamically, we could not prove Lemma 21, our basic commutativity
lemma that allows permuting safe local steps with others. Imagine we wanted to re-
order a safe local step α before an IO step β that writes and simultaneously releases
an address a into the read-only memory. If α is reading a after the release by β, the
memory access is perfectly safe according to the ownership-based memory access pol-
icy. However, we cannot execute α before β, where a is not yet in the read-only set. Not
only would the memory access of α become unsafe, the read access would also have a
different result, thus exhibiting a memory race. This does not mean that programs with
a dynamic read-only memory are always racy. It just means that we need to conduct
a different, more complicated proof to handle such programs. We would need to re-
sort to a monolithic simulation proof like the one in [CS09] and prove the safety of the
reordered computation αβ by assuming the safety of all IP schedules, not only of βα.
We could use this fact to show by contradiction that a situation cannot occur where a
is read after a release to the read-only addresses without previous synchronization. In
fact Lemma 24 was proven in this style.

In multiprocessor systems the read-only set commonly contains the code region, such
that all processors may read from the same code pages without need for synchroniza-
tion. If we demand the code region to be part of the read-only addresses, then the
restriction that the read-only addresses are fixed implies that we may not have self-
modifying code. Conversely this means that locations in the code that might be mod-
ified may not be marked as read-only. If there is self-modifying code that is not con-
currently accessed, then it can simply be owned by the modifying processor. Shared
self-modifying code seems to us like a rather obscure phenomenon that should occur
only in few places. However we can easily model it by treating fetching from these
memory locations, as well as updating them, as IO steps, ignoring the fact that be-
tween modifications they could be treated as read-only memory. In other words, if there
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is shared self-modifying code in a system, the verification engineer better be very clear
about where it is lying, and mark accesses to these instructions accordingly.

Besides explicit modification of the program code in memory, there may be self-
modifying code in systems with address translation, due to the swapping of shared
code pages. This does not seem as such an exotic scenario after all, although it is quite
a ‘scary’ topic. Assuming processors in a multicore system are fetching code from a
shared read-only portion of memory via address translation, then it is advisable to
make sure that the entire code is allocated in physical memory. Should this not be
the case then page faults can occur whenever there is a fetch from a code page that
is not present in physical memory. The fetching processor in this case will enter its
page fault handler and load the missing page from a swap memory, e.g. a hard disk.
Nevertheless before doing so it should inform other processors that it handles the page
fault, to avoid races for page fault handling as well as potential concurrent page fault
handling for the code page it is swapping out. The communication with the other pro-
cessors may be established via inter-processor interrupts (IPI1), halting the execution
of the environment, or via dedicated data structures in shared memory. Thus the code
page swapping can be performed in a sequential manner. In case of the IPI solution,
where only a single processor is active, a different Cosmos model instantiation can be
considered where there is only one processor and the code region is writable. Waking
up the other processors, reestablishing the previous model, is then similar to the initial-
ization phase where we would switch from a single core to a multicore Cosmos model.
For the case where the other processors are not halted, we do not have a proper solu-
tion yet. However, one promising idea is to use an extended ownership model where
virtual and physical addresses are treated separately. Obviously, further research on
this topic is necessary.

Another restriction that is due to the reordering proof is the limitation of the IO and
IP predicates to depend only on memory content m|R. Of course, when reordering a
local step α before some IO step β this should not turn α into an IO step. It should
stay local. However if the IO predicate can depend on the shared memory and if α is
unsafe, exactly the phenomenon described above can occur. Imagine a MIPS Cosmos
machine where we define the IO predicate to cover all executions of cas instructions
and step α to fetch a non-cas instruction from a shared memory location a. Naturally,
for a local step this is unsafe. If however the previous step β was overwriting a cas
instruction at a with that non-cas instruction, reordering α before β would not only
make it fetch a cas instruction and thus make it an IO instruction. The shared memory
access would also become safe, thus breaking the coverage of all computations of the
Cosmos machine by the safe IP schedules (Lemma 24). Since read-only addresses can
not be overwritten by safe steps β, the scenario cannot occur in our model. Moreover

1IPIs represent a direct communication between the processors circumventing shared memory. We can
model these message channels between processors as special addresses in shared memory, however
there are technicalities to be solved, e.g., the processors may not check the channels in shared memory
for incoming signals in every step, else all processor steps would need to be considered IO steps to be
ownership-safe. Thus instantiation of the Cosmos model with IPIs belongs to future work.
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it makes sense to limit the IO and IP predicates in this way, because they belong to
the specification state reflecting the verification engineer’s view of the system. This
view in particular contains the knowledge where in a program IO operations are to
be expected, and this expectation should not change dynymically with the program
execution. Instead the IO and IP predicates should primarily depend on the program
code that is executed on the Cosmos machine. However in case of processors the code is
not stored in the unit state but in memory, therefore the predicates need to be depending
on memory. Restricting this dependency on the read-only memories is perfectly fine as
long as there is no self-modifying code. If, however, there exists selfmodifying code
leading to the generation of IO steps, we can nonetheless hard-code fetching from the
volatile memory location as an IO step using the program counter. Anyway, such cases
seem rather clinical to us, so we will not further elaborate on them.

However there is another difference between our ownership model and the Cohen-
Schirmer model from [CS09] connected with the the IO steps. In the Cohen-Schirmer
model ownership may change not only at IO steps but at any time in the program
by inserting ghost instructions that may acquire and release addresses. On the first
sight it may not be clear why such an ownership model excludes memory races. If one
was free to add ownership transfers to any place in a given computation it is surely
possible to make the computation obey the ownership policy, by simply releasing and
acquiring the accessed addresses. However this overlooks the fact that [CS09] uses a
different formalization of safety than we do. In their verification approach, instead of
finding annotations for computations, one rather has to add annotations to the program
code. In a program step these annotations are evaluated resulting in the generation of
ghost instructions that modify the ownership state. As it needs to be proven for all
interleavings of (annotated) program steps that the ownership policy is obeyed, also
this approach with more flexible ownership transfer guarantees memory safety. In our
formalism there is no explicit notion of a program that could be annotated (though in-
stantiations might have). To keep the model small and the reordering proof simple, we
decided to settle for a more conservative ownership policy, where ownership may only
change at IO points, and a verification apporach where a computations, rather than
a program, needs to be annotated with ownership transfer information. Nevertheless,
for instantiations that have the concept of a program being executed, this information
might stem from annotations that are added to the program code. Apart from these
considerations it was shown for the [CS09] model, that the more flexible notion of own-
ership is equivalent to a more conservative model where addresses are only released
in IO steps, proving that addresses can be released earlier as long as all interleavings
are safe. There is a strong conjecture that a similar property can be shown for address
acquisition, i.e., proving that addresses can be acquired later. In the proof for releases
the ownership transfer is simply mapped to the next IO step. Similarly, an acquisition
of an address would need to be associated with the previous IO step. In any case it
seems like the more flexible ownership transfer is merely syntactic sugar for the verifi-
cation process, allowing for no additional behaviour in case of programs that are safe
for all interleavings. Nevertheless more investigation is necessary, in order to ascertain
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this statement for both verification approaches.
Moreover, our definition of safety may still be too strict for a number of instanti-

ations, because it demands that all IP schedule computations of a system are safe.
We already weakened the hypothesis with the introduction of the suitability predicate,
however this only allows to exclude certain input sequences. As soon as we want to
exclude certain computations from a simulation, we need a stronger notion of suit-
ability that talks also about parts of the system state. For instance in case of the C-IL
semantics we needed to modify the input formalism in order to guarantee that there
are no run-time errors due to faulty input sequences, allowing to prove the safety of all
computations. If we had a more expressive suitability predicate, and prove a stronger
order reduction theorem accordingly, we could in this case only demand the safety of
all computations that are free of run-time errors. However, we would need to prove
the Coverage Lemma for the stronger suitability predicate, showing that every suitable
computation can be represented by an IP schedule computation, preserving suitability.
This is in general not possible for every kind of suitability predicate because such prop-
erties can be broken by reordering for unsafe steps, i.e., an unsafe suitable step might
turn into an unsafe unsuitable step and thus not be covered by the safety of all suitable
IP schedules. Therefore we need to find restrictions on the suitability predicates, say-
ing on which parts of the machine state they may depend. For example, if we consider
a scenario where the suitability of local steps only depends on the local configuration
of the executing unit and the suitability of IO steps may additionally depend on the
shared-writable memory, then suitability is maintained when steps are being reordered
across ownership-safe computations. Nevertheless there are suitability predicates that
are less conservative. For instance, in a system with separate interrupt handler and in-
terruptable program threads there is a constraint that the interruptable program should
not be running while it is interrupted. Only the handler is supposed to be scheduled
in this case. However, a predicate that is restricting the set of suitable computations
accordingly would need to talk about the states of two computation units at the same
time (the interrupted program and the handler), thus not fitting in the conservative
scheme outlined above. Hence there is still work left to be done in this area.

Similarly, in the simulation theory, it would be desirable to have a suitability predi-
cate not only on the concrete simulation layer but also on the abstract level. This would
facilitate easier instantiations as explained above for the example of C-IL. Furthermore
it would allow for the construction of concurrent semantic stacks where the predicate
of good behaviour on the concrete layer of an upper simulation level implies the suit-
ability of computations on the abstract layer of the adjacent simulation level below.

Finally, in this thesis we have only described the transfer of safety properties. For
the transfer of liveness properties a similar development is needed, using the results
of Cohen and Lamport [CL98]. In their work a main difficulty for transferring liveness
properties seems to lie in the fact that they are merging blocks of steps into single atomic
actions. As we do not do so, we expect that the actual property transfer will become
easier. However, we did not prove the order reduction for infinite computations, hence
further proofs using coinduction are needed.
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6.2 Application

The theory presented in this thesis is supposed to be applied in the pervasive formal
verification of concurrent computer systems. For instance, it can be used to prove the
correctness of multi-core hypervisors as outlined in [CPS13]. Basically, the order re-
duction and concurrent simulation theorems are useful whenever one wants to transfer
verified properties from an abstract to a concrete semantic layer. Below we want to
summarize the steps, the verification engineer needs to carry out in order to verify a
safety property P on concurrent specification A and transfer it down to refined specifi-
cation (or implementation) B.

• First one needs to define operational semantics for layers A and B. Also a simu-
lation relation consis between configuration A and B needs to be stated. It should
provide a meaningful translation to property P on level B.

• Next one has to instantiate Cosmos models SA and SB with the semantics of spec-
ification layer A, and B respectively. The IO steps have to cover all desired in-
teraction between processes on level A. The interleaving-points are determined
by the consistency points wrt. consis of implementation B. Then the definitions
of IO steps of B and interleaving-points of A should follow naturally. Neverthe-
less in choosing the IO steps and interleaving-points one needs to be careful in
order to make sure that IOIP condition can be fulfilled by the program under
verification. Moreover one has to prove restriction instar for SA and SB .

• The generalized sequential simulation theorem has to be instantiated for simula-
tion of A by B using consis . After that the theorem has to be proven. In case a
compiler is used to translateA-programs intoB-programs, one needs to show the
correctness of the code generation here. Also here the verification engineer needs
to show that between two consistency points there is at most one IO step.

• In order to apply the concurrent simulation theorem, one needs to find the shared
invariant which couples the shared memory and ownership models between A
andB. Naturally, it is useful here to have an idea about how ownership on shared
data structures should transfer on level A. Then the refinement of the ownership
model to level B is usually easy.

• Having found the shared invariant and suitable ownership models for A and B
one has to prove Assumptions 1, 2, and 3. Discharging the latter two assumptions
is typically an easy exercise. However the difficultly of the proof of Assumptions
1 depends on the complexity of the shared invariant and the ownership model.

• Now one needs to find an automated verification tool that (provably) verifies
ownership-safety on the abstract level A. We believe that VCC [CDH+09] is such
a tool, though this proposition has not been proven yet (cf. 6.3). If the verification
tool assumes a different granularity of interleaving processes than the consistency

201



6 Conclusion

points of SA, one can apply the order reduction theorem to argue that the verified
safety properties hold for all computations of SA (and thus also for complete con-
sistency block computations).

• Finally the verification engineer proves ownership-safety and the desired safety
property P on level A using the automated verification tool. If P translates to
predicate Q[P, par ] on the concrete Cosmos machine SB , then we can apply Theo-
rem 8 to conclude that Q[P, par ] holds on all computations of B.

6.3 Future Work

Besides the improvements of the theory described above there are many tasks remain-
ing where our theorems come into play. First, the formalization of the presented the-
ory in a computer-aided verification tool seems highly desirable. Doing so not only
strengthens our confidence in the correctness of the overall theory; it also enables oth-
ers to use the order reduction theorem in a formal verification context. For instance,
the Verified Software Toolchain project [App11] aims at a pervasive formal verifica-
tion verification methodology building on LeRoy’s verified compiler CompCert [Ler09,
LABS12]. Since apparently their sequential compiler correctness theorem has not been
applied yet in the concurrent case, it would be worthwile to examine applying our con-
current simulation theory in their framework.

Moreover the core part of soundness proofs of separation logics is usually the jus-
tification of the parallel decomposition of a concurrent computation into several local
computations, where actions of other processes are represented by non-deterministic
transitions on the shared resources that occur only in synchronization points. Using
our order reduction theorem the soundness proof of this parallel decomposition can be
greatly simplified by considering only schedules where other processes are interleaved
in synchronization points. Deriving the local computations from the concurrent one
for every process is then an easy task. One simply needs to merge subsequent blocks
of other steps into a single transition. The same technique may be used to justify the
verification approach of tools like VCC. Below we give several further examples for
application scenarios of the order reduction and simulation theory.

6.3.1 Device Step Reordering

For a multi-core architecture with devices accessed by memory-mapped I/O, we plan
to apply the Cosmos model order reduction theorem to reorder device steps to only
occur at compiler consistency points of the compiled C+MASM code. This allows us
to argue about correctness of device drivers by lifting device models to the C+MASM
level, obtaining a semantics of C+MASM with devices. This technique has already been
applied in the Verisoft project’s device driver verification effort [HIP05], however, the
reordering was only shown for single-core processors. For extending it to the multi-core
case the Cosmos model order reduction theorem seems to be very suitable.
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6.3.2 Store Buffer Reduction

Processor models tend to contain store buffers which are first-in-first-out (FIFO) queues
that buffer memory write requests. Subsequent reads are served from the local store
buffer, if possible – otherwise, memory is accessed.

The ownership model used in the Cosmos model model is largely the same as used in
the store-buffer reduction theorem of [CS09]. The proof for this theorem is quite com-
plex and contains two implicit reordering theorems, where processor and store buffer
steps are reordered with each other and with local steps of other cores. We plan to use
the Cosmos model order reduction theorem to achieve a simpler proof by using the sim-
plified Cosmos ownership model and decomposes the intricate monolithic simulation
proof from [CS09] into several smaller, more obvious arguments.

6.3.3 Interrupt Handler Reordering

Interrupts can occur at any point of machine code execution. In order to maintain the
concurrent compiler simulation described above, it is useful to reorder interrupts to oc-
cur only at compiler consistency points. One first would have to prove a simulation be-
tween a Cosmos model of interruptible multi-core ISA units and a Cosmos model of non-
interruptible multi-core ISA and dedicated interrupt handler units. Via order reduction
one justifies a model where interrupt handlers are only started in compiler consistency
points, allowing the application of the compiler correctness theorem. For verification
purposes, interrupt handlers can then be treated just like concurrent C+MASM threads
of the system. However there is the aforementioned restriction that the interrupted
thread may not be scheduled while the interrupt handler thread is active. Thus in this
case one needs a strengthened order reduction theorem that provides safety transfer for
suitable subsets of computations.

Moreover there are some technical problems arising when the interrupt handler is
using the same stack as the interrupted program. If both entities are modeled as sepa-
rate computation units, the stack pointer has to be communicated to the handler, which
implies that every modification of the stack pointer by the interruptable program must
be considered an IO step. This however leads to problems fulfilling the IOIP condi-
tion of the underlying order reduction. One can avoid the problem by abstracting from
the exact value of the stack pointer, using that the interrupt handler uses only a fixed
amount of space on the stack and the specification of the handler should not depend
on the actual value of the stack pointer it receives. However this argument would need
another simulation proof.

Alternatively, one could use the order reduction theorem first and prove a simpler
local reordering theorem for the interrupt signals to occur only in consistency points,
using software conditions on the handler and the interrupted program. After the ap-
plication of compiler consistency on these computations splitting the interrupt handler
and interrupted program into separate C threads for verification should be easy.
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