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Summary

The processing of human motion data constitutes an important strand atlesdth many appli-
cations in computer animation, sport science and medicine. Currently, thetgarious systems
for recording human motion data that employ sensorsfééidint modalities such as optical, iner-
tial and depth sensors. Each of these sensor modalities have intrinsitagk@and disadvantages
that make them suitable for capturing specific aspects of human motions @safople, the over-
all course of a motion, the shape of the human body, or the kinematic prepeftmeotions. In
this thesis, we contribute with algorithms that exploit the respective strenfithese diferent
modalities for comparing, classifying, and tracking human motion in variousasios. First, we
show how our proposed techniques can be emplogegl, for real-time motion reconstruction
using dficient cross-modal retrieval techniques. Then, we discuss a praatiphtation of iner-
tial sensors-based features to the classification of trampoline motions. uktharfcontribution,
we elaborate on estimating the human body shape from depth data with appfidatioerson-
alized motion tracking. Finally, we introduce methods to stabilize a depth trackéitenging
situations such as in presence of occlusions. Here, we exploit the a@vgilabcomplementary
inertial-based sensor information.

Zusammenfassung

Die Verarbeitung menschlicher Bewegungsdaten stellt einen wichtigencBeater Forschung
dar mit vielen Anwendungsaglichkeiten in Computer-Animation, Sportwissenschaften und Me-
dizin. Zurzeit existieren diverse Systemi@ fdie Aufnahme von menschlichen Bewegungsda-
ten, welche unterschiedliche Sensor-Modaén, wie optische Sensorenagheits- oder Tiefen-
Sensoren, einsetzen. Alle diese Sensor-Maatalit haben intrinsische Vor- und Nachteile, welche
sie be&higen, spezifische Aspekte menschlicher Bewegungen, wie zum Belspigroben Ver-
lauf von Bewegungen, die Form des menschlichémpérs oder die kinetischen Eigenschaften
von Bewegungen, einzufangen. In dieser Arbeit tragen wir mit Algorithive, welche die je-
weiligen Vorteile dieser verschiedenen Modatén ausnutzen, um menschliche Bewegungen in
unterschiedlichen Szenarien zu vergleichen, zu klassifizieren unerfalgen. Zuerst zeigen wir,
wie unsere vorgeschlagenen Techniken angewandt weiierek, um z. B. in Echtzeit Bewegun-
gen mit Hilfe von cross-modalem Suchen zu rekonstruieren. Dann diskutiar eine praktische
Anwendung von Tagheitssensor-basierten Eigenschafigndie Klassifikation von Trampolin-
bewegungen. Als einen weiteren Beitrag gehen har auf die Bestimmung der menschlichen
Korperform aus Tiefen-Daten mit Anwendung in personalisierter Bemggerfolgung ein. Zu-
letzt fuhren wir Methoden ein, um einen Tiefen-Tracker in anspruchsvoiteat®nen, wie z. B.

in Anwesenheit von Verdeckungen, zu stabilisieren. Hier nutzen wir itiybarkeit von kom-
plemenéren, TAgheits-basierten Sensor-Informationen aus.
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Chapter 1

Introduction

1.1 Motivation

Human motion data is used in many fields of research such as computer animaiibsc&ences,
and medicine. Furthermore, many practical applications suehgasiovie and game productions,
or medical rehabilitation scenarios, rely on algorithms that process huntean da

In these contexts, manyftikrent systems have been developed that record motion data of various
types and in dierent levels of expressiveness. In particular, these systems teavdésgned to fit

the specific application intended. Examples of such systems are opticahsysased on (color)
cameras, inertial systems, or systems using depth sensing devices. Adsef gistems have
intrinsic advantages and disadvantages as far as acquisition cost, @etpigxity and quality of
recorded data is concerned.

In scenarios related to computer animation, such as the production oféilihg and high quality
computer games, one typically uses marker-based opticbn capturdmocap) systems. These
systems are based on a set of calibrated cameras to track the 3D-podi86r&0 markers fixed
to the body of an actor. From the movement of these markers over time, mgpi@seatations
such as joint angles, which can easily be used to animate artificial human-tinean characters,
can be computed. While these systems provide the highest quality of motiordaitzable, they
are very expensive andfficult to set up. Also, because of the large setup overhead and costs,
capture sessions need to be well-planned in advance. Furthermorsatfeeaf (infrared) cameras
imposes constraints on the location such systems can be operated. Optikiabtrasults are
typically achieved in studios with controlled lighting conditions. As a consecgidrigh-quality
optical mocap systems can only koaded by a small number of people.

To overcome for some of the disadvantages of optical systems, othemsylsé&e emerged that
use alternative types of sensors. One example are systems using ieesiaissthat capture orien-
tations with respect to a global coordinate system. Such inertial systems cegnoe extensive

setup procedures and can be used in non-studio environments orwseleoFurthermore, iner-
tial mocap systems are less expensive and less intrusive compared to-beséd optical mocap
systems. As a conseqguence, they are available to a larger group ®auseapplicable in a wider
range of scenarios such as sports training or medical rehabilitation. tA&oare found in many

modern devices such as video game consoles or smartphones, whesertheegs an additional
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2 CHAPTER 1. INTRODUCTION

input modality. Unfortunately, inertial sensors do not provide as rich asatfe optical systems
mentioned above. Thus, about 20 inertial sensors are required tothrad&cal configuration

of the body, which renders them still too expensive to enable full-body matécking in home

application scenarios.

Another alternative for tracking human motion are systems based on sd-dal¢h cameras.
Such devices capture the scene similar to a traditional color camera byiolgsefrom one point
of view. But instead of color they provide an image, where each pixe¢loapthe distance of a
point in the scene to the camera. Research on how to obtain human motionodat@ejpth im-
ages has a long tradition. However, the price of the available sensotkeandisy characteristics
of the their provided data made them unattractive for applications intendedgi@at number of
people. This changed, when Microsoft launched their Kinect senabmidis an order of magni-
tude less expensive compared to previously available depth sensasspalied the way for the
application of full-body motion tracking to home user scenarios. Since thiemse research has
been conducted on full-body motion estimation from depth images, when mgmgroaches show
promising result. However, many challenges are yet unsolved. Firstlyelrbheded approaches
require the creation of a model of the person to track. But, obtaining saobdal is time con-
suming and requires expensive equipment such as full-body laseressar the help of an artist.
Secondly, current tracking approaches are still prone to errorstératfrom the limited informa-
tion provided by depth data. Here, one example is estimating the rotation ahdeotdy parts,
such as arm and legs, which idfttiult to deduce from depth images. Finally, occlusions, where
parts of the body are not visible to the camera renders it impossible forth tlepker to deduce
any meaningful information of that portion of the body.

1.2 Contributions and Organization

In this thesis, we address some of the challenges that arise when dealirfqumidéim motion data
originating from various sensors modalities. To better understand, whghhlenges exist and
why they are important to solve, we begin, in Chapler 2, by introducing tlee sensors modal-
ities that are used throughout this thesis. In particular, we will explain hewditferent sensor
modalities—optical, inertial, and depth—work in principle and what kind of datg tirovide.
Furthermore, we will discuss their specific advantages and disadvardaageclaborate on how
this dfects their applicability to scenarios such as motion comparison, motion classifjoaitio
motion reconstruction.

In Chaptef B, we will discuss various motion representations that origiratediferent sensor
modalities and investigate their discriminative power in the context of motion idextiificand
retrieval scenarios. As one main contribution, we introduce mid-level motipresentations that
allow for comparing motion data in a cross-modal fashion. In particular, vegvghat certain
low-dimensional feature representations derived from inertial seres@ suited for specifying
high-dimensional motion data. Our evaluation shows that features bas#iceotional informa-
tion outperform purely acceleration based features in the context of maicgaval scenarios.
This work was published in Heltegt all [2011b]. We conclude the chapter by presenting an
application of the discussed techniques in the context of human motion teatims, which was
published in Tautgest al. [2011].

In Chaptef4, we extend the methods introduced in Chapter 3 and apply threpractical mo-
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tion classification scenario. In particular, we consider the scenarioroptsine motions, where
an athlete performs a routine consisting of a sequence of jumps that belpreptfined motion
categories such as pike jumps or somersaults. As main contribution, we irgradutly auto-
mated approach for capturing, segmenting, and classifying trampolinegsaticording to these
categories. Since trampoline motions are highly dynamic and spacious, aptitah capturing
is problematic. Instead, we reverted to a small number of inertial sensarhedtto the athlete’s
body. To cope with measurement noise and performarféereinces, we introduce suitable fea-
ture and class representations that are robust to spatial and temp@tbma while capturing the
characteristics of each motion category. The experiments show that tteaappeliably classifies
trampoline jumps acrossftirent athletes even in the presence of significant style variations. This
work has been publishedlin Heltehall [2011a].

Then, in Chaptel]5, we will focus on reconstructing a three-dimensiepatsentation of human
motion in real-time from the input of a depth sensor. Previous tracking appes often required
a body model resembling the human to be tracked. Without such a persidnalizhae tracking
accuracy degrades drastically. However, obtaining such a perseshatiadel often involves ex-
pensive equipement such as full-body laser-scanners, which ighjting for home application
scenarios. For this reason, we contribute with a robust algorithm for estgre personalized
human body model from just two sequentially captured depth images that is cmreag and
runs an order of magnitude faster than the current state-of-theemeggure. Then, we employ the
estimated body model to track the pose in real-time from a stream of depth ingiggsaurack-
ing algorithm that combines local pose optimization and a stabilizing databasepodiogether,
this enables accurate pose tracking that is more accurate than previwoadpes. As a further
contribution, we evaluate and compare our algorithm to previous work omarehensive bench-
mark dataset containing more than 15 minutes of challenging motions. This tdedasgrises
calibrated marker-based motion capture data, depth data, as well asl gnailrtracking results.
This work is published in Helteat al.[2013a].

Existing monocular full body trackers, as the tracker presented in Qtfapoéten fail to capture
poses where a single camera provides fiisient data, such as non-frontal poses, and all other
poses with body part occlusions. In Chajpler 6, we present a nowvaskision approach for real-
time full body tracking that succeeds in suckfidult situations. It takes inspiration from previous
tracking solutions, and combines a generative tracker and a discrimitratiker retrieving closest
poses in a database. In contrast to previous work, both trackers edgityrom a low number
of inexpensive body-worn inertial sensors. These sensors graelchble and complementary
information when the monocular depth information alone is néficgant. We also contribute
by new algorithmic solutions to best fuse depth and inertial data in both tsackare is a new
visibility model to determine global body pose, occlusions and usable dep#spondences and
to decide what data modality to use for discriminative tracking. We also coteribith a new
inertial-based pose retrieval, and an adapted late fusion step to calculfitati®dy pose. The
main ideas of this work are published.in Helietral. [2013d].

In Chaptef¥, we conclude and give some outlook on future work.
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1.3 Publications of the Author

[Heltenet all2011b] Thomas Helten Meinard Miller, Jochen Tautges, and Hans-Peter Seidel.
Towards Cross-modal Comparison of Human Motion Data.Ptaceedings of the 33rd
Annual Symposium of the German Association for Pattern Recognition{DAT®11.

In this article, we consider the cross-maodel retrieval approach pegbém Chaptef13. In
particular, we focus on how to compare motion data that originates from bptineap
systems with motion data coming from systems that use inertial sensors.

[Heltenet all2011a] Thomas Helten Heike Brock, Meinard Niller, and Hans-Peter Seidel.
Classification of Trampoline Jumps Using Inertial Sensors.Sports Engineering\Vol-
ume 14, Issue 2, pages 155-164, 2011.

In this article, we show how trampoline motions can be classified using the teesniq
presented in_Helteat al. [2011b]. Specifically, we describe the use of real-valued motion
templates that were inspired by work ofiiNer and Rdder [2006]. This publication consists
of the main concepts introduced in Chapter 4.

[Heltenet all2013a] Thomas Helten Andreas Baak, Gaurav Bharaj, Meinardilér, Hans-
Peter Seidel, and Christian Theobalt. Personalization and Evaluation @i-#éifRe Depth-
based Full Body Tracker. IRroccedings of the third joint 3DIFDPVT Conference (3DY)
2013.

Obtaining a personalized model for a model-based tracker is a challengiolgim which is
time consuming and requires expensive specialized equipement. In this, avédi@cus on
obtaining a personalized model from only two sequentially shot depth imagésg &h un-
derlying parametric shape model and adaptive model-to-data correspas] we achieve
a shape reconstruction quality comparable to other state-of-the-art radthoid a fraction
of the runtime and without user intervention. This publication covers thealedé&as from
Chaptefb.

[Heltenet alll2013d] Thomas Helten Meinard Miller, Hans-Peter Seidel, and Christian
Theobalt. Real-time Body Tracking with One Depth Camera and Inertial enisoPro-
ceedings of the International Conference on Computer Vision (IC204)3.

Here, we show how an existing depth-based human motion tracker cateneea to better
deal with challenging tracking scenarios that originate from occlusionsthis end, we
fuse the information from the depth camera with complementary information frertidéih
sensors, see Chapiér 6.

Publications with related application scenarios which are not further detaitai thesis:

[Pons-Mollet alll2010] Gerard Pons Moll, Andreas Baakhomas Helten Meinard Miller,
Hans-Peter Seidel, Bodo Rosenhahn. Multisensor-Fusion for 3D Bdi-Bluman Motion
Capture. InProceedings of the IEEE Conference on Computer Vision and PattewgRiec
tion (CVPR) 2010.

In this publication, we show how inertial sensors can be used to stabilizexttkérty results
of an optical marker-less motion tracker. The main idea is that inertial seas®not prone
to occlusions and provide in form of orientations a complementary type ahiraftion. This
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information can only hardly be obtained from optical data such as silhouettggthat are
used by many marker-less tracking approaches.

[Baaket all2010] Andreas BaakThomas Helten Meinard Miller, Gerard Pons-Moll, Bodo
Rosenhahn, and Hans-Peter Seidel. Analyzing and evaluating maskentgion tracking
using inertial sensors. IRroceedings of the 3rd International Workshop on Human Motion.
In Conjunction with ECCYvolume 6553 of_ecture Notes of Computer Science (LNCS)
pages 137-150. Springer, September 2010.

In this article, we describe how the orientations of inertial sensors carséxt to reveal
typical tracking errors that are common to optical markers-less tracldesny of these
errors stem from occlusions or from rotational ambiguities. The destalgorithms make
use of the fact, as mentioned above, that inertial sensors are not foracelusions and
provide information that is complementary to the positional information provigiexphical
systems such as cameras.

[Tautgeset all2011] Jochen Tautges, Arno Zinke,df Kriger, Jan Baumann, Andreas Weber,
Thomas Helten Meinard Miller, Hans-Peter Seidel, and Bernd Eberhardt. Motion Re-
construction Using Sparse Accelerometer DataA@M Transactions on Graphics (TOG)
Volume 30, Issue 3, May 2011.

In this contribution, we introduce an approach to reconstruct full-badgdn motions us-
ing sparse inertial sensor input. In particular, only four 3D acceleramate used that are
attached to the hands and feet of a person. The obtained sensor dsgd is two ways.
Firstly, it serves as query in a cross-modal retrieval context to find simitdiions in a prere-
corded database containing high-quality optical motion data. Secondlerkerseadings
control an motion synthesis step that fuses the retrieved motions, seadimg®and kine-
matic constraints in a unified optimization scheme. The main ideas, are brieflygskstin
Sectior 3.b.
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Chapter 2

Sensor Modalities

In this thesis, we focus on motion capture systems based on thfeeedi sensor modalities,
optical, inertial, and depth sensors, whiclffel largely in acquisition cost, in the requirements
on the recording conditions, and in the kind of data they provide. To thiswadsummarize
in this chapter some of the fundamental properties of such systems, irdrgdueral motion
representations and fix notations used throughout this thesis. In partinubgctiori 2.1, we give
an introduction to optical sensor systems which are often used in high-qoaditie and game
productions. Then, in Sectidn 2.2, we focus on inertial sensor-bastehss, which have been
developed as a less expensive alternative to optical systems. Finallgtiars23, we elaborate
on depth sensor-based systems, which are suitable to be used in horseauseios.

2.1 Optical Sensors

The highest quality of human motion data can be obtained from mocap systemsiay optical
sensors. In particular, optical systems use a set of calibrated andregized cameras that are
facing a so-called capture volume. Inside this volume, one or more actopedmEming the
motions to be recorded. The size of the capture volume is chosen in a waydngainterior point

is always seen by multiple cameras. By using multiple views of the same objeotssixe 3D
information can be deduced by triangulation. Depending on the underlyihgitpies, optical
approaches can be classified into twfiatient kinds: marker-based and marker-less approaches.

2.1.1 Marker-based Approaches

Optical marker-based approches (Figuré 2.1 (a)), as esgdéh the passive marker-based Vicon
MX systerm or the active marker-based PhaseSpace sﬁsmmw for recording human motions
with high precision. This is achieved by tracking the positions of so-calleterathat are at-
tached to suits worn by the performing actors. The term “passive” divedaefers to the kind
of markers used. Passive markers are retro-reflective and are illigaibg light sources closely

lwww.vicon. com

“www.phasespace.com
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Figure 2.1. Typical optical motion capture approache&): Marker-less motion capture system with
actor in general apparel. The background is colored foreedsiegroungbackground segmentatioib):
Marker-based system, where the actor wears a suite withrretiecting markers attached to it. Here, no
background segmentation is required.

placed next to each camera, see also Figure 2.2 (a) and (b). In ¢pattase systems use LEDs
as markers that emit light without being illuminated externally. The idea behind osarkers is,
that they are easily detectable in the images recorded by the cameras inuahaiath automatic
manner. From synchronously recorded 2D positions of the markersysitem can then recon-
struct 3D coordinates of marker positions using triangulation technigeesalso Figuré 22 (c).
These marker positions build the foundation for computing other useful mdtitanrepresenta-
tions. The advantage of active marker-based systems over passiemsys that they can include
an encoded labeling in the emitted light. Thus individual markers can be easiliified, which
is—in practice—a non-trivial problem for passive systems.

2.1.2 Motion Data Representations

Marker positions. The simplest motion data representation obtainable from optical marker-
based systems are the global 3D-positions of the markers. In our exp&jme use a set of
aboutM = 40 markers which are attached to an actor’s suit at well-defined locabdowiing a
fixed pattern. In this thesis, we modebrker positiony the vector® := (p;,..., py), See also
Figure[2.3B (a).

Pose parameters. The captured marker positions can then be used to deduce other motion data
representations. One important example are parameters of so{iakdatic chainswhich ap-
proximate the human skeleton as a set of rigid bodies, the bones, thatrerectaxl and con-
strained in their movement by a set of joints. We now give a mathematical introduato
kinematic chains and their parametrization. In this context, we use unit gigeteffor represent-
ing rotations. Note that this is only one possible representation, alternatieléscussea. g, in

]. From now on, if we mention quaternion, we always mean unit quiate

In the following, letQ be the space of quaternions, where one quaternion can be desaibgd u
four scalar parametetg= (w, x,y, 2) € R*. Alternatively, we refer to a quaternion usig(p, a) €
R x R3, which represents a rotation around an axisy an anglep. Furthermore, letj; o g, be
the quaternion multiplication ang{v] be the rotation of a vector € R3 using the quaternion.
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Figure 2.2. (a): Typical marker-based mocap equipment consisting of canerdight source mounted
close to the camera, and a set of retro-reflecting mark@ys. The set-up mocap system consisting of
multiple cameras surrounding a capture volume. One acgiaigling inside, wearing a suit with markers
attached to it(c): The obtained 3D positions of the captured markers.

For further reading on quaternions, we refer to Shoemake [198%]B be the number of bones

in the kinematic chain, whild stands for the number of joints. We assume that for every bone
beB8=[1:B]:={1,...,B} thereis a corresponding coordinate systenrigidly attached to it.
This allows for a poinp € R to defined relative to a bone.

Now, we describe a joint connecting two rigid bodmse 8 andb, € 8 as 2-tupelj = (b1, by) €
J = B2. For each joint, the spatial relationship between two bones is describetdnsormation

Ti:=(r)eT=QxR> (2.1)

Here,q models a rotationalffset between the two bones, whilstands for a transitionalfiset.
In addition, we define the concatenation of two transformationsndT, as

T1-T2=(q1,r1) - (a2, r2) := (91 0 2, qa[r2] + ra). (2.2)

Finally, transformations can be used to transform points relative to onelraglgl b, to points
relative to the other rigid bodly,. Let F; andF;, be the coordinate systems of the two rigid bodies
b1 andb, that are connected by a joift= (by, by) with transformationT;. The transformation of

a pointv; € RR3 relative toF; to a pointv, € R relative toF is given by

Tjlvi] = (@, [va] := q[va] + 1. (2.3)

In practice, we use two parametrized versions of this transformation. fEheffie is theevolving
joint which models a joint that can rotate along an ags R°. Its transformation is described as

i) = (@j  alx> &), 1})- (2.4)

Here,y represents the angle the joint is rotated, whilés a constant translationaffeet andy;
is a constant rotationalfiset. Similarly, theprismatic jointdescribes a translation along an axis
aj € R3. Its transformation is defined as

TP00) 2= (. 1) +xay), (2.5)
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where a; represents the axis along which the joint is moved. The quantifieg, andq; are
referred to agoint properties Complex joints that can rotate about more than one axis can be
modeled using two or three consecutive revolving joints.

Now, we can define a kinematic chain&s:.= (8, .7, ), where8 = [1: B] are the bones and
g c J are the joints. Additionallybp € 8 marks one bone as so-calleabt of the kinematic
chain. This bone is considered to be fixedt. some global coordinate systefao = Fp,. Note
that the kinematic chain can be interpreted as a graph, with the bones asamobithe joints as
edges. In this thesis, all kinematic chains are trees that are directed gvipla designated root
node fp). For each joint (revolving or prismatic) a transformatibp j € J is defined. Also,
since we get one parametgy for every transformatio;, we denote a vector of all parameters

by
X =0 x0) (2.6)

Since a kinematic chain is used to approximate the human skeleton with its boneimnésdve
will refer to it askinematic skeletoor simply skeletonin the rest of this thesis. Also, since the
parameter vectgy defines the pose of the skeleton it is caligxdbe parametersr pose A skeleton

in a posey is denoted byK, .

Given a positionp € R2 within the skeleton relative to some bobes B, we can reconstruct its
global positionrelative toFgo for every given posg. Its global position is given as

%L1l :=[ [ TJ][p], (2.7)

jeg(p)

where 7 (p) represents the unique ordered list of joints that connects thelbmnéne roothy. To
model a global motion of the skeleton, the first tree joints are normally prismatis jwith their
axes parallel to the cardinal ax¥sY, andZ of the global coordinate systeRgo. The process of
obtaining global positions of points inside the skeleton—as for example jogitigrus—is called
forward kinematicsFor further reading, we refer to Murray al. [1994].

Reversely, three steps are required, to obtain pose parameterm a set ofcaptured marker
positions. Firstly, one must design a skeleton that resembles the actor mbtiea data is to be
transformed into pose parameters. This involves an accurate estimationahth@opertiesag,
ro, andq, for every joint of the skeleton. Secondly, one has to model the placerhée markers
used with relation to the bones of the skeleton. The placement of this modeigsl markers
is then considered fixed for the actual conversion process. Finallgpamization scheme is
employed to find those pose parameters that induce a pose of the skelb&r, the positions
of the virtual markers best explain the positions of the captured markdis.pfocess is called
inverse kinematicFor details, we refer to Breglet al. [2004].

Surface mesh. Another important representation that is used in this thesis, are mé$hehkich
represent the surface, g, the skin angbr cloth of a virtual character in a movie or computer game,
see Figur€ 213 (c). Mathematically, a mesh is given as graph, where its apglealled vertices.
Small groups of neighboring vertices nhow form faces. The most comnrom déa mesh is the
triangle mesh, where each face consists of exactly three vertices. Tceréite number of pa-
rameters, meshes are often parametrized usithe skeleton and joint angle concept mentioned



2.1. OPTICAL SENSORS 11

((a) Yo ] Y

- AN AN J

Figure 2.3. Different kinds of optical motion data representations for agestriking a so-called T-pose:
(a): The marker position®. (b): The kinematic chairfi(, with pose parametepgthat were obtained using
the marker position®. (c): The triangle surfac, defined byk, .

above. To this end, a process calldnningis used, which relates the position of each vertex in
the mesh to a combination of joint positions. If now the skeleton is striking a pote vertex
positions can be reconstructed from the joint positions that by itself harereeonstructed using
forward kinematics. The resulting mesh is denotedMby. For details on mesh skinning, we refer
tolJames and Twigg [2005]. The acquisition of such a surface mesh foe g@rson is a non-
trivial task and is in practice mostly done by manual modeling or by measuramgr a laser
scanner. Both processes are costly and time consuming. In Chaptecbntmbute an approach
that is easy and fast using only one inexpensive depth sensor, atiicdbin Sectioph 21 3.

In this thesis, the last two representations are also referredomdysmodelssince they mimic the
overall appearance of the human body.

2.1.3 Marker-less Approaches

In contrast, marker-less approaches deduce full-body human motiofrafatenulti-view images
without requiring the actors to wear any special garment or markers|se&iguré ZJ1 (b). This
makes such systems easier to use and less intrusive than marker-ljasediags. While eliminat-
ing some of the disadvantages of marker-based approaches, thialgevien implies challenges
in its own and is still subject to active research, eeg.Bregleret al.[2004];/Deutscher and Reid
[2005]; |Balanet al. [2007]; [Pons-Mollet all [2010,2011];. Stolket al. [2011]. The following
overview over state-of-the-art approaches was published in Hellt@lih]2013¢].

Most marker-less approaches use some kind of underlying body modelas skeletons aug-
mented by shape primitives like cylinders (Bregi¢al. [2004]), surface meshes (Gall al.[2009];
Pons-Mollet all [2010];[Liu et al. [2011]) or probabilistic density representations attached to the
human body Stolét al. [2011]. Optimal skeletal pose parameters are often found by minimiz-
ing an error metric that assesses the similarity of the projected model to the multirmaaye
data using features. Local optimization approaches are widely used dueirtdigh eficiency,

but they are challenged by the highly multi-modal nature of the model-to-image siynflanc-
tion|Stoll et all [2011];/Liu et al. [2011]. Global pose optimization methods can overcome some
of these limitations, however at the price of needing much longer computation, ti@es. g.
Deutscheet all[2000]; Gallet al.[2009]. Some approaches aim to combine tiieiency of local
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methods with the reliability of global methods by adaptively switching between {(saihet al.
[2009]). Even though marker-less approaches succeed with a sliginghyes setup, many limi-
tations remain: computation time often precludes real-time processing, regdsdstill limited
to controlled settings, and people are expected to wear relatively tight gothtarthermore,
marker-less motion capture methods deliver merely skeletal motion parameters.

In contrast, marker-less performance capture methods go one stegr farth reconstruct de-
forming surface geometry from multi-view video in addition to skeletal motion. Somath-
ods estimate the dynamic scene geometry using variants of shape-fronetighmethods or
combinations of shape-from-silhouette and stereo,esgeStarck and Hilton|[2005, 2007a,b];
Matusiket al. [2000]. But, in such approaches, establishing space-time coherenig@&dsalt.
Template-based methods deform a shape template to match the deformahie sutfze real
scene, which implicitly establishes temporal coherence (de Aguili[2008];/Vlasicet al.[2008]),
also in scenes with ten persons. All the developments explained so far aardstihe goal of
high-quality reconstruction, even if that necessitates complex and codtiodleor setup.

2.1.4 Advantages and Disadvantages

One particular strength of optical marker-based systems is that they prmasitional motion data
of high quality. In particular, the data can be used to compute severalrotieEn representations
that are of practical use in many fields. However, requiring an arragldirated high-resolution
cameras as well as special garment equipment, such systems are cagvenieracquisition
and maintenance. This drawback is partly removed by marker-less mostgmsy but overall
the efort to setup and calibrate the system stays high. Furthermore, many ofiteobey optical
mocap systems are vulnerable to bright lighting conditions thus posing dotstra the recording
environment €. g.illumination, size of the capture volume, indoor).

2.2 Inertial Sensors

In contrast to marker-based reference systems, inertial sensorseiropoparatively weak con-
straints on the overall recording setup with regard to location, recordilugne, and illumination.

Furthermore, inertial systems are relatively inexpensive as well asteagperate and to main-
tain. Therefore, such sensors have become increasingly popularendw widely used in many
commercial products. However, inertial sensors do not provide paoaititata relative to a global
coordinate system, which renders therffidillt to use as a direct replacement for optical mocap
systems.

2.2.1 Inertial Measurement Unit

The key-component of an inertial sensor-based mocap system is tdletdinertial measurement
unit (IMU), which consists of two inertial sensor types, the accelerometetttandate-of-turn
sensor and one additional magnetic field sensor, see Higure 2.4 (a)egdl $ensor are nowadays
put together into a small box that can easily be attached to an object onpeBgdfusing the
information from all three sensor types, the IMU is able to tell its orientagjavith respect to
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Figure 2.4. Working principle of inertial sensor-based mocdp): An inertial measurement unit (IMU)
consists of an accelerometer, a rate-of-turn sensor, arajaetic field sensor. By fusing all these informa-
tion, an IMU can determine its orientation with respect tgglobal coordinate systefgs. (b): To capture
human motion data, several IMUs are attached to a pel®@nThe resulting data are the orientations of
all IMUs with respect to the common global coordinate syskea

some global coordinate systdfgs. As mentioned above, inertial sensors cannot be used to infer
meaningful positional information relative to a global coordinate system.skéms from the fact
that positions have to be deduced from measured accelerations by tiviégjchtion. Because of
the measurement noise, this induces a large drift to the derived positiattut\compensating

for that drift, the derived positions cannot be used practically. Howbyeattaching several IMUs

to the limbs of an actor’s body (Figure 2.4 (b)), one can obtain dense mmhfitformation and
deduce relative positional information about the actor’s limb configurasiea Figuré 214 (c).

The process of obtaining the orientatiqrinvolves several steps, which we will explain briefly
in the following. The three sensors included in the IMU provide three basasarements: the
acceleratiora € R3, the rate-of-turn or angular velocity € R3, and the vector of the magnetic
field u € R3. Note that the measured acceleration always contains, as one compoeaateler-
ation caused by gravity. Therefore, the measured acceleratian be thought of a superposition
a = g[m+ g] consisting of the gravityg and the actual acceleratian of the motion, see also
Figure[2.5 (a). Here, the quantitiesw, andu are given in the sensors’s local coordinate system
FLs, while mand g are given in the global coordinate syst&®s. The termg[-] represents the
transformation from the global coordinate system to the sensor’s looedioate system (see also
below).

If ||m]] is small with respect tfyg||, a can be used as approximationgfThis fact is often exploited
in many portable devices such as recent mobile phones to calculate theletiestation with
respect to the canonical direction of gravity (Lee and|Ha [2001]). ¥éethis fact, to define one
axisZ of our global coordinate systeRgs:

g~ a if [[m| =0, (2.8)
n g a

—3 = — = _—, 29
9= 111 ~ 1 (29
Z:=39 (2.10)

In order to obtain a valid global coordinate system, we need to define arstise Most IMUs
use the measurements of the magnetic field sensor to derive the canorectibditnorth” N.
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Figure 2.5. Measurement of the global coordinate systeégs. (a): The measured accelerati@nis a
superposition of the acceleration induced by gragtgnd the acceleration due to motiom (b): If m
is negligible, the measured acceleratmwean be considered a good approximation orThe direction
of gravity § defines the first axis of the global coordinate systesg. The second axisX, is defined
by the components of the magnetic field vegiathat are perpendicular 1. (c): The axisY is defined
to be perpendicular to botK andZ so that all three axes form a right handed coordinate systEne.
transformation froni s to Fgs is denoted by.

This involves calculating theffsets inclination and declination between the direction to the north
magnetic poleV andN, which depend on the position on earth, whafés measured. For further
reading on this topic we refer to Baak [2012]. In the following, we usestead ofN to define
Fes. By projectingu onto the horizontal plane defined by its normal direci@grwe obtain the
direction of theX-axis of the global coordinate systdtas. To be precise, we define

Hig e g(ﬂ’ g>’and (211)
= He (2.12)
||,UJ_g||

see also Figure 2.5 (b). Herg,-) is the inner product of two vectors. Furthermore, we define
Y := Z x X, wherex is the cross-product of two vectorsIR¥. Finally, the orientatiom is defined

as the rotation to transform a vector fréins to Fgs. As in Sectiorl 2.1]2, the transformation itself
is denoted byg[-] and represented as unit quaternion, see Figuie 2.5(c). The imgesi®n is
referred to byg.

2.2.2 Stabilization using Rate-of-Turn

The above definition ofFgs has one important flaw. It assumes thid| is small. This might be
true in some situations such as when the sensor is in rest or moves at tepsth In general,
however, this is not true. In particular, when capturing human motions wimeblves complex
muscle driven dynamics, the assumption does not hold. For this reasonetisirements from
the rate-of-turn sensor are employed to stabilize the estimatiBg£fTo be precisew represents
the angular velocity of the inertial sensor or how the local coordinate rayBte changes its
orientation with respect to the global coordinate syskemmover time, see Figufe 2.6 (a). Equally
one can say thatw represents how the global coordinate syskigchanges with respect f s,
see Figur& 216 (b). To compute the change over tdy& (Z) of the axesX, Y, Z) of the coordinate
systemFgs, one has to convert the quantityv from F s to Fgs. This can be done by using
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Figure 2.6. Prediction of howFgs changes over time using. (a): w is measured by the sensor and
describes howF s changes with respect #6ss. Here,w is defined insidé= s. (b): In contrast,—wgs
represents howgs changes with respect 1§ s. Note that here-wgs = g[-w] is defined insideFgs.
(c): The changes of the coordinate ax¥sY Z) of Fgs can now be expressed withX,(Y,Z) = (—wgs X

X, —wgs X Y, —wgs X Z)

and is mathematically expressed by
—WGSs = q[—a)]. (213)

Now, the change of the coordinate axes is defined as

X = —was X X, (2.14)
Y = —wgs X Y, and (2.15)
Z=-wesXZ (2.16)

see also Figurie 2.6 (c). For further reading, we refer to Muetal. [1994]. With (X, Y, Z) given
at a point in timet and the axeSXprev, Yprew Zprev) Of Fgs defined at some previous tinggey, one
can calculate a prediction fer g.the X-axis of Fgs with

tpred .
Xpred = Xprev+ f X dt. (217)
tprev

This holds analogously fofpreq, andZpred.

To recapitulate, one can uaeo predict the orientation #fgswith respect td-_s in situationg|m|
can not considered to be small. However, this prediction only works faral smount of time,
sincew is subject to noise and integrating over a longer time will likely result in the ptiediof
Fgs drifting away from the definition oFgs usinga andg, if ||m|| ~ O.

In practice, the computation dfgs is often realized in a predict@orrector scheme using a
Kalman filter, which was presented lin Kalman [1960]. Here, the angulacigle serves in

a predictor folFgs. As corrector, the definition dfgs usinga andu is employed. This results in a
drift-free definition of the global coordinate syst&i®s, which is—to a great extend—independent
of the individual IMU. This last fact is especially important in the contextiofman motion data
acquisition, where the measurements of several IMUs is related to each &thredetails and
further reading, we refer to Lee and|Ha [2001]; Keetml. [1998];/Luinge and Veltink/ [2005].
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2.2.3 Motion Data Representations

Besides the directly measured quantities such as the acceleaatibe angular velocity, the
magnetic fieldu, or the orientationy, inertial sensors can be used to derive many more interesting
motion data representations that are used in practice. For example, whamgphUs densely

(in general one per limb) on a person to track, the orientations of thersecemobe used to derive

a skeleton representation—including joint angles—which is similar to the onénabta using
optical sensor-based systems. This is for example used in the commelui@isprovided by the
Xsens MVN systeﬁl However, the usage of a feasible number of IMUs is constrained by their
cost. Furthermore, an estimation of the global position of the skeleton witeae&Fgs is not
possible.

2.2.4 Advantages and Disadvantages

Inertial sensors in the context of human motion data acquisition have onetanpadvantage:
they do not need visual cues and work in almost every environment. iiaiges their application
in places, where optical systems do not work reliably or where opticatsygscannot be set
up. In other words, inertial sensor-based systems can be usec: lainge recording volumes
are required or where the lighting conditions can not be controlled. Fumtirve, their reduced
acquisition and setup costs make them available to a larger number of usethese reasons,
they are often used in low-cost movie productions or in sports training siealiflowever, they
have the drawback that they only measure their orientation and not thé&iopasith respect to
some global coordinate system. For that reason, it is not possible to tellabal gosition of
a person to be captured or the relative positions of several actors imihe scene. Also, the
number of IMUs that are required for full body motion capture rendessilitimpractical to be
used in home application scenarios.

2.2.5 Virtual Sensors

Local accelerations and directional information, as provided by inegi@ars, can also be gener-
ated from positional information that comes from an optical mocap systemcdhcept is called
virtual sensor since it simulates the output of a sensor, which does not exist in realityisinon-
text, we assume that a skeleton representation is present and its pasetpasacan be obtained
using the techniques described in Seclion 2.1.2. Now, a virtual sensarsgleced to be rigidly
attached to one bone of the skeleton. Given pose paramgtense can calculate the location
and orientation of the sensor’s local coordinate systggwith respect to the global coordinate
systemFgo, which is defined by the optical marker-based tracker. Note that thelglobadinate
systemFgo is not the same as the global coordinate syskey@defined earlier in this section.
Nevertheless, since it is the same for all virtual sensors, it can be usadttdate a meaningful
orientationg. Similarly, the positionp of the sensor with respect to the global coordinate system
Fco can be computed. The global acceleratinis now obtained by double fierentiation ofp.

By adding the gravity vectog and transforming this quantity to the virtual sensor’s local coordi-
nate systenk| s usingq, one finally gets the local acceleratiar= g[ m+ g]. In the same way, also

Shttp://www.xsens.com/en/general /mvn
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(b)

Figure 2.7. (a): Intensity images obtained from a traditional RGB-camétap-left): Red channel(top-
right): Green channel(bottom-left): Blue channel.(bottom-right): Reconstructed color imageb):
Typical data obtained from a depth sensor. Red pixels arggolose to the camera. Blue pixels are points
far away from the camerdleft): Displayed from the front(right): Displayed from the side.

suitable values fow andu could be computed. In this thesis, however, we will only use virtual
sensors to obtain values foranda.

2.3 Depth Sensors

The third sensor modality covered in this thesis are so-called depth sefb@sensor modality

is related to optical sensors, described above, in the sense that thegala@amera to capture a
scene from a given point of view. However, the provided data fundéatig differs. Traditional
cameras, as used by optical mocap systems, provide a so-called intensity Heag, each pixel

of the image represents the intensity of light of a specific wavelength. lmafasstandard RGB-
camera, by combining. g.the intensities of red, green, and blue light, a colored image covering a
large portion of the color-space perceptible by humans can be recttestysee Figuile 2.7 (a).

In contrast, depth cameras provide an image, where each pixel contidistidince of a point in
the scene with respect to the camera. From such a so-called 2.5D depth poéqt, cloud can be
deduced, which gives an approximate 3D reconstruction of the scame &pth sensors are not
much larger than intensity-based cameras, they provide an attractive watain 3D geometry
from a single viewpoint. However, since the scene is only captured fr@ingle viewpoint,
only surfaces are captured that are directly visible to the camera. An éxamap bee seen in
Figure[Z.7 (b).

2.3.1 Time of Flight Approaches

Currently, among depth sensors, there exist twitetint approaches using eithténe-of-flight
(ToF) orstructured light Time-of-flight cameras measure the timethe light takes to fly the
distanceAx between a point in the scene and the camera. Since the speed af isgtinstant,
this yields

AX = C- At. (2.18)
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Figure 2.8. Working principle of a time-of-flight depth sensda): The sensor seen from the front with the
infrared light source surrounding an infrared camépd. The light source emits modulated light, which is
reflected by the scene and captured by the can{eja.The light modulation follows a sinusoidal pattern
(top) with frequencyfmog, Which is attenuated and phase shifted, when received finensdene (bottom).
From the phaseftsety, measured by four samplings A,B,C, and D per full modulatigcle, the distance
of a point in the scene can be deduced.

However, measuringt directly is not feasible, for that reason current ToF cameras use ¢hdire
techniques. Exemplarily, we will sketch the approach used by the SwigeRaamera by Mesa
Imagin&. Other ToF-based depth sensors are constructed byﬁRMoftKineti@. Some of
the images in this section are inspired by the manual for the SwissRange0@&RBddera. The
mathematical background is based on Keillal. [2009].

The main components of the SR4000 camera are same as for every othea caing the ToF

approach: a controllable infrared light source and an infrared carseeaFiguré 2]8 (a). In the
case of the SR4000, the infrared light source emits modulated light, whidteistesl by the scene
and captured by the infrared camera, see Figure 2.8 (b). This modulatiomecthought of as a
sinusoidal change in the intensity of the emitted light and could be modeled byrtbioi

S(t) := cosgt), with (2.19)
w = 27fmod: (2.20)

Here, fmogqis the modulation frequency of the light source. An example of such an itgehange
is depicted in FigurE218 (c, top). Now, the received light in each pixel@&tdnsor of the camera
is represented by the function

rt) :=b+a-coswt + ). (2.21)

Here,a < 1 represents the attenuation of the sighak some constant bias, agds the phase
offset between the emitted sigredind the received signaj see also Figuile 2.8 (c, bottom). This
phase @sety originates in the time the light took to travel from the light source into the scene
and back to the camera. As a consequeness;an be deduced by calculatigg In practice, the

4“www.mesa-imaging.ch
Swww.pmd.com
Swww.softkinetic.com
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parameters, b andy, are obtained by sampling a so-called mixing functigrdefined as

m(r) = ser (2.22)
T/2

= lim S(t) - r(t + 7) dt (2.23)
T—ooo —T/2

= S costr + ) (2.24)

at different phasefsetsr; = 7i,i € {0,...,3}. The four resulting samples are callad= m(zo),
B = m(r1), C = m(r2), andD = m(r3), see also Figurie 2.8 (c). Now, we can compute

¢ = arctan2D — B,A-C),and (2.25)
c c
AX=C-At= —p= — 0. 2.26

This procedure is conducted for each pixel in the depth image indeptiynden

Note that, using the above formulation, thifeetive measurable distan@ex of any point is
bound to the interval Lom), which is dependent on the modulation frequency of the light.
For example, if the modulation frequency is around 15 MHz, the intervabisrat [Q 10) m. All
distances outside this interval are implicitly mapped into this interval. For examptasia of
fmod = 15MHz, an object at 12 m distance would appear to be at 2 m distanceodndis In
practice, the phaseffset is determined using not only one set of samples but several, which are
drawn over time. This is required to reduce the influence of noise to the negasat. Unfor-
tunately, this also gives rise to systematic errors in situations, where theagistabhe measured
changes during the measuremanty, when parts of the scene move. In this case, some of the
measurements might stem from an object in the static background and soreerddlurements
origin from an object in the foreground. This also happens, in staticescetose to corners of
an obiject in the foreground. The resulting distance is some kind of avdrgtgveen the depth

of the background and the foreground. As consequence, thetteplepls seem to fly, detached
from geometry, in the scene. For this reason, this kind of error is callgihgfbixels”, see also
Figure[2.10 (a).

Another typical error related to ToF-based Depth sensors is that dhggtearp concave corners
look rounded and smooth in the measured depth image. This error is relatedféatithat light
does not always take the shortest path from the light source to the cafreexample is shown
in Figure[2.10 (b), where a part of the light is not directly reflected to timeeca but bounces of
the wall a second time. In this case, since the sensor averages ovexl segasurements, the
measured distance is higher than the real distance. This kind of error id ‘Galldi path error”.
For further details on ToF imaging and its applications, we refer to Dehas [2013].

2.3.2 Structured Light Approaches

The other approach to obtain depth images is by means of structured ligb¢tmo as,e. g,
employed by sensors using the design by Primgssuch as the first Microsoft Kindtor the

“www .primesense.com
Swww .microsoft.com/en-us/kinectforwindows
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Figure 2.9. Working principle of depth cameras that use the structuigitt bpproach such as the Asus
Xtion or the Microsoft Kinect.(a): Depth camera with locations of the infrared projector argittfrared
camera. The distance between projector and camera is taeline.(b): The projector projects a point
pattern into the sceng(c): From the 2D-location of a point group in the pattern, seemfthe camera
(red), relative to the 2D-location of the same point grougefs’ from the projector (gray), the distance of
the point group to the sensor can be deduced.

Asus Xtion PRO LIVE. The central components of such sensors are an infrared projectana
infrared camera that are separated from each other by a fikeet,acalled thdaseling see also
FigurdZ.9 (a). Note that the middle “eye” depicted in the figure is a standaBliRensity camera
that is not used for obtaining 3D information and which is ignored in the follgwidiscussion.

The projector is used to project a fixed point pattern into the scene, sdeigisd 2.9 (b). Depend-
ing on the distance and the baseline between the infrared camera andjéwotgprthe observed
pattern is distorted compared to the projected pattern. Tfestds called depth dependent dis-
parity. In the following, we consider the observed pattern and the prdjpetitern as two images
of the same pattern. Algorithms which infer the original depth from two suchémage called
depth-from-stereo approaches or depth-from-disparity approadthes, for every point in the
one image, the semantically same point is identified in the other image and theireretégat—
their disparity—is calculated. Finally, the distance of the point can be dddum® the disparity,

if the baseline of the cameras and their intrinsic parameters are known.

The nave approach to identify semantically similar points would be to search for @eényin the
projector image the corresponding point in the camera image. Howeveratesg of identifying
semantically same points for general images is computationally complex andpemers, when

the appearance or lightingftérs too much in both images. For this reasons, practical implemen-
tations use dferent approaches for identifying corresponding parts of the imag#ertunately,

the exact technical details how this is done are not disclosed by the cameugactardt].

The most probable approach to speed up the process of findingmamcesices would be to design
a pattern that by looking at an arbitrary group of points, the position witheaso the whole
pattern can be deduced. This could be achieved by either encodingjraes in the pattern or
by making each point group of the pattern somehow unique. Indepeafibotv exactly this is
achieved, the design needs to be robust to strong distortions of the pattepartial occlusions.
Now, independent of what actual algorithm was chosen to identify sporences, the depth is

%www.asus. com/Multimedia/Xtion_PRO_LIVE
1%primeSense Patent WO 20043036 Al
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Figure 2.10. (a): “Flying pixels” effect that occurs if an object in the foreground is moving retato a
ToF-sensor. Light for the depth measurement of one pixehtrégem from both, the foreground and the
background(b): The light for measuring the distance from one point in thaeaaight have taken not only
the shortest path but multiple, possibly longer paths. Tiglti-path” effect results. g.in sharp concave
corners observed by a ToF-sensor to appear roun@gdArtifacts of structured-light-based approaches.
(left): Cloudy appearance of the depth ddt&ght): Quantized depth values.

calculated based on the disparity of two corresponding point groups;igerd 2.9 (c).

Structured light-based approaches, in contrast to ToF approaafigsheed a single image or
measurement per time frame to obtain an depth estimate. This makes them robusioto mo
related artifacts such as flying pixels. Furthermore, multi-path-relatedgmstalso do not occur.
However, the use of point groups for estimating the distance results in cistagasures that are
not point accurate but appear cloudy, see Figure]2.10 (c, left). Alsog the 2D-locations of
the single points of the group are measured by a camera sensor with a fatitd sgsolution,
the resulting depth values are quantized, see Flguré 2.10 (c, right) ffieerfinformation on how
structured light approaches work in detail, we refer to Zheing. [2003

2.3.3 Motion Data Representations

Depth image. The most fundamental data representation that is obtained from a deptirsen
is a so-called depth imagg, which is similar to a color image but encodes in each pixel the
distance to a point in the scene. An example of a depth image is shown in Ei@be 2ft) and
Figure[2.10 (c, left).

Point Cloud. Using the intrinsic and, optionally, extrinsic parameters of the depth camega, o
can deduce a point cloud of the scene from the depth image. Note thactopieli in the depth
image maximal one poirp, € R2 in the scene can be reconstructed. This also implies that there
is no information of points that are not exposed to the camera. An exampletlvispoint cloud

is shown in Figuré& 217 (b, right) and Figure 2.10 (c, right). Here, only thetfhalf of the person
is visible in the point cloud.

Joint angles and surface mesh. Determining pose parameter or mesh representations from
depth images is an active field of research. In this thesis, we will contributdgdield tech-
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nigues and concepts that are presented in Chapter 5 and Chlapter abarated introduction
into algorithms that deduce such high-level representations of human matafrdm depth im-
ages is given in Sectidn 5.1.

2.3.4 Advantages and Disadvantages

Depth camera-based systems present an easy way to obtain rich 3D geiofoetnation from a
scene. Additionally, the 3D data enables easier foregrmactiground segmentation compared to
optical marker-less systems. Furthermore, even monocular depth deaitdgsronformation rich
enough for many full-body human motion capture approaches in contradgthsos. in general,
however, tracking from depth data is a challenging problem as depth daibject to noise and
systematic artifacts such as “flying pixels” or coarse quantization. Funtrer, monocular track-
ing approaches are susceptible to occlusion, where no information cdedoeed. Here, one
naive idea would be the use of multiple depth sensors at the same time.

But, the use of several depth sensors simultaneously bears its own gealiane these cameras,
in contrast to color cameras, interfere with each other's measurememtidnto reduce the inter-
ference of multiple Kinects (structured light approach), Maimone ands-[#912]; Butleret al.
[2012] apply vibration patterns to each camera. These vibrations hawféoe that the point
pattern projected by one Kinect looks blurred when seen fronfferdint Kinect. In contrast, the
pattern does not look blurred for the Kinect it is projected from, since dgptor is moved in the
same way its camera is.

In case of ToF-based depth sensors, interference can be avoidesing diferent modulation
frequencies for each camera. However, even when using multiple daptbras, occlusions are
difficult to prevent in many scenarios. Also, similar to optical systems, depthsaagennot be
used outside because the IR-light in the sun-light interferes with the IRdigitted by the depth
camera. Additionally, depth data, compared to color images, only reveals littieriafion about
the configuration of rotational symmetric parts of the body such as armsgsdié will address
some of these challenges in Chapfer 6.



Chapter 3

Cross-modal Comparison and
Reconstruction of Motions

The analysis and synthesis of human motion data plays an important role ins/application
fields ranging from computer animation (seey.Dontcheveet all [2003] orlLeeet all [2002]) to
sports sciences (sexg.Boissyet all [2007]) and medicine (see. g.Liu et all [2009]). For ex-
ample, in movie animations, one key objective is to create naturally looking motopresees
(Arikan et al.[2003]). Here, a standard procedure is to use prerecorded hutaroBon capture
data to animate virtual characters (g@.Chai and Hodgins [2005], Pullen and Bregler [2002],
or|Shiratori and Hodgins [2008]). In online scenarios, such as ctengames, low-dimensional
control signals are often used to generate a wide range of task-sgeghicuality motion se-
guences (see. g.Leeet all[2002] or Shiratori and Hodgihs [2008]). In medical care and rédhab
tation scenarios, motion capturing techniques are employed for monitoringtgadied for detect-
ing abnormal motion patterns (Boissyal. [2007]). In sport sciences, motion data is recorded and
analyzed in order to better understand and optimize the motions performehlétesi(Liuet al.
[2009]). In all of these application fields, the comparison of human motiqoesees is of fun-
damental importance. Here, the notion of similarity used in the comparison dbealy depend
on the respective motion representation but also on the specific applicskidiel [2007]). For
example, in a rehabilitation scenario, one may be interested in only compdeatgseparts of the
human body with previously recorded motions of the same patient in order guneghe progress
over the period of treatment (Boisstal. [2007]). This may require a rather strict notion of sim-
ilarity. In other applications such as data-driven computer animation, geetivie is to retrieve
full-body motions from a motion database allowing spatial and temporal varsaiothe com-
parison, which requires rather coarse notions of similarity éseeKovar and Gleicher [2004]
or Muller et all [2005]). Finally, the comparison of motion data obtained frotfiedlent sensor
modalities has gained in importance in applications such as data-driven coraputation (see
e. g.Slyper and Hodgins [2008], Wang and Popovic [2009], or Tautged. [2011]).

In Tautge<et al. [2011] a real-time animation system is described, which allows for presenting
high-quality mocap sequences that were reconstructed from motionsieéra database using
low-cost accelerometers as input devices. Here, the central contps@etross-modal matching
of continuously generated accelerometer readings against acceleratimputed from existing
mocap data. Using four 3-axis accelerometers fixed at the hands amethéhé authors report on

23
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Figure 3.1. (a): Actor wearing a suit with 41 retro-reflective markers as usgdn optical mocap system.
(b): Actress wearing a suit with 5 Xsens MTx Sensdr3: Positions of 41 markers provided by the optical
system. (d): Locations of the sensorge): Limbs’ positions and orientations defined by the positions
of markers. (f): Inertial sensors measuring the orientation of the limb they attached to(g): Limb
orientation expressed with respect to a global coordingtem.

promising reconstruction results. In the matching step, the authors use avelidelgresentation
based on accelerometer data. To enhance the descriptiveness of tlewehi@presentation and
to reduce false positives, a so-callady neighborhood grapis employed. This run-timeficient
data structure compares motions based on a time window to filter out accelérajgatories that
are not supported by motions in the database.

Contributions. In this chapter, we address the issue of cross-modal motion comparisien wh
investigating the expressiveness of various motion representations iorttextof general motion
identification and retrieval scenarios. As one main contribution, we intesadous mid-level
feature representations that facilitate cross-modal comparison of sariotion types. Here, the
main challenge consists of finding a good tradieb®tween robustness and expressiveness: on
the one hand, a mid-level representation has to be robustly deducibléHeodata outputted by
different mocap systems; on the other hand, the representation has to coatajh enformation

to found the basis for discriminating motions within a certain application task. riicpkar, we
show that certain low-dimensional orientation-based motion features ited far accurately re-
trieving high-dimensional motion data as obtained from optical motion captusga further
main contribution of this chapter, we introduce a general framework fomressing separation and
classification capability of dierent types of motion representations. These contributions have
been published in Helteet al. [2011b]. For this reason, this chapter follows closely the explana-
tions in[Heltenet all [2011b], while adding some additional information.
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Figure 3.2. lllustration of the dfferent feature valueqa): Measured acceleratioa, with respect to the
sensors local coordinate systefin): Pitchés of a sensor with respect to the plane definedbgspectively
8. (c): Roll ¢ of a sensor with respect to the plane definedlbgspectivelyg”

Organization. The remainder of the chapter is organized as follows. In Secfion 3.2,esemtr
our general framework for evaluating the discriminative power of featepresentations. Then,
Section 311, we introduce various mid-level feature representationsahdiecderived from the
different sensor modalities. Our experiments using this framework are dasanilsection 313,
where a special focus is put onto the investigation how the various fe@presentations be-
have under motion variations such as changes in the execution speeekctionS.4, extending
this evaluation, we study the performance dfelient mid-level representations in the context of
cross-modal motion retrieval. In SectibnlI3.5, we present the applicatioros$-enodel motion
comparison in the context of motion reconstruction. To this end, we givetardirction into the
approach presented by Tautgesl. [2011] and explain how their approach employs techniques
presented in this chapter. Finally, in Section 3.6 we conclude with an outlotkume work.

3.1 Features

In order to compare human motion data acrosiedint sensor modalities, one needs common
mid-level representations that can be generated from the data outputtied 8iferent sensors.
On the one hand, such mid-level representations should be robustly @dbtgirom all modali-
ties, and, on the other hand, they should contatfigent information to realize the intended ap-
plication. In the context of this chapter, our goal is to retrieve full-body nmstibpom a database.
The motion data inside the database was captured utilizing an optical, masgeet+bhacap system
with 41 markers. The the query is given in form of a motion clip captured leyifiertial sensors
si,...,Ss that are placed at the hip next to the spisg,(both lower arms (lefs,, right s3), and
both lower legs (lefty, right s5), see Figuré3]1(a)—(d). Since all information supplied by the five
inertial sensors can be simulated using the 41 marker position (as showction&22.5), we use
features close to the inertial data as common mid-level representation. Bi@(e®-(g) shows an
example of a common mid-level representation, where the direction of a limb isutedhpsing
both optical and inertial data. In the following subsections, we introdueettfferent feature
representations based on local accelerations and directional inforrbaged on local and global
coordinate systems.
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Figure 3.3. Motion sequence consisting of six arm rotations, where pleed of the arm rotations increases

with each repetition. The pitch of the left forearm is showsalculated by using, (gray) and, (black).

3.1.1 Local Acclerations

As a first simple feature representation, we directly use the local actieteras outputted by the
accelerometers. We refer to Section 2.2 for an introduction into inertiabseaad the data they
provide. Using five inertial sensor unigs, . . ., ss, this results in five local acceleratioas € R3
for se [1:5]. We then simply stack these five acceleration vectors to form a siegtew

Va=(a],...,a)"/Ca € Fa. (3.1)

Here, F, := R'® denotes the resulting feature space @ada constant used for normalization.

In our experimentsC, = 20 turned out to be a suitable value. This normalization serves to
make the distances functions as introduced in SeCiion 3.2.1 comparabketherearious features
representations. Even though itis straightforward to derive localeredi®ns from inertial as well

as from marker-based mocap data, this feature representation is nqirong/to noise but also
sensitive to motion variations as occurring when motions are performedfiigyedit actors. In
particular, accelerations crucially depend on local and gloltfdréinces in the speed a motion is
executed, as will be discussed in Secfion 3.3.

3.1.2 Directions Relative to Acceleration

We now introduce a more robust motion representation which measuretiaffiseather than
magnitudes. To this end, we define a global up-direction using the diredtibe gravity vector
g. By doing so, We are able to define a two degrees of freedom orientdttbe sensor’s local
coordinate system relative to this global up-direction. Inspired by aviati@ncall these two
parametergitch 65 androll ¢s, see Figuré3]2.

Recall from Sectioh 212 that each measured acceleration is a superpasiiag[ ms+ g] consist-
ing of a componenins that corresponds to the acceleration due to the movement of seasdra
component that corresponds to the gravity (which is independent of the respeetnsor). Here
Os: S € [1:5], are the orientations of the five inertial sensors. In other wadsccelerometer
always measures the acceleration caused by gravity, which is oveldgiytbd actual acceleration
caused by the motion. If the sensor does not mowe= 0) the measured acceleratiagis equal
to the gravity vectong[ g].

We can use this fact to calculate an approximation of the sensor’s pitclothoding the direction
of as as approximation for the global up-direction. The smaller the acceleraiias the more
accurate this approximation becomes. These approximations denofedryys, are defined as
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follows:
~ ds
as=—, 3.2
Y (3:2)
- 2
fs=1- = arccogas, (1,0,0)"), (3.3)
T
2
@s=1- = arccog4s (0.1,0)"). (3.4)
T

Here, note that if the sensor’s locélaxis is perpendicular to the global up-direction, the pitch is
determined by the rotation around thieaxis. The resulting angle can be approximated by using
an inner product between thé&axis andag approximating the up-direction, see Figlrel 3.2 (b).
Similarly, the roll can be derived from the inner product betweerytais and the upward direc-
tion, see Figure 312 (c). In our definition, the resulting pitch and roll festuvhich we also refer

to asacceleration-based directional featurese normalized to lie in the range betweehand 1.
Again, we stack these features for all five sensgys. ., S5 to form a single vector

Va = (01, %1, ... 05 @5)" € Fa, (3.5)

where7; = R0 denotes the resulting feature space. Similar features are widely used in com-
mercial products, as for example smartphones or game consoles. Ashedbee, such features

are meaningful as long as the motion’s acceleration compameig small. However, this as-
sumption does not hold for dynamic motions, which exhibit significant aczbes that in many
cases reach or even exceed the magnitude of gravity. In such casesdkured acceleratiog

may significantly deviate frong, which leads to corrupted pitch and roll values during dynamic
motions, see Figuie 3.3.

3.1.3 Directions Relative to Gravity

To address the above mentioned problem, one needs to approximate theigledal direction in

a more robust way—in particular during dynamic phases, wherie not negligible. To achieve
such an estimation, simple accelerometers do rfiiteu We therefore use an inertial measurement
unit (IMU) that outputs not only the local accelerations but also the sisnedentation with
respect to global coordinate system, see Setfion|2.2.1 and Secfidn 2 &2 thehdirectiory tan

be estimated by transforming the direction of the glabalkis by means of the sensor’s orientation
gs.- More precisely, we define

0s = 0s[(0,0,1)"], (3.6)

Os=1- 2 arccog g, (1,0,0)"), (3.7)
T

ps=1- 2 arccog s, (0,1,0)"). (3.8)
T

Now, the value®s andgs exactly define (up to measurement errors of the IMU) pitch and roll as
introduced in Section 3.1.2. The improvements in the case of highly dynamic matieriléus-
trated by Figur€ 313, which shows the valuegpaindé, over a motion sequence containing six
arm rotations between (frames 210 and 575). Here, the arm rotatiopsrémemed at increasing
speed, where the last rotation is performed almost three times faster tharstiomdi. Whiled,
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Figure 3.4. Distance function of the arm rotation motion sequence ofifé§{B.3 calculated using the

feature representatio. Indices corresponding to the six true matches are indidagehe six vertical red
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clearly shows the periodic fluctuation of the pitch during the rotatipfails to display any mean-
ingful information when the motion becomes faster. As before, we stacktttegnd roll features
for all five sensorsy, .. ., S5 to form a single vector

Vg = (01, ¢1,....05¢5)" € T, (3.9)

wherefg = R0, The components are also referred tqesvity-based directional features

The sensors we used here to determine the robust global upward dineciiade the orientation

gs with all threedegrees of freedorfDoF). But, since were are only transforming one direction
(the global upwards direction) to the sensor’s local coordinate systeractually only need two
DoF of the orientatiorys. Hence, one can also use combinations of inertial sensors which only
consist of an accelerometer and a rate gyro, see also Luinge and V2mio] [

3.2 Evaluation Framework

In this section, we introduce a framework which is used to analyze the disctiveimpemwer of a
given feature representation. A similar framework was usediiievland Ewert|[2009] for com-
paring audio representations. L@te a query motion clip and I& be a document of a database
collection. The goal is to identify every sub-sequencB @fhich is similar toQ. Figureg 3.B shows
an example were the document contains a motion sequence of roughlyotflséength captured
at 50Hz. The sequence contains six instantgs.(, Ig) of arm rotations of both arms, rotated
in forward direction, beginning at frame 210 and ending at frame 578.spked of the arm rota-
tions increases over time. This example sequence is also used in[Eigure 814aurd 3.5 (top).
Considerind 3 as query, the task is now to identify the other arm rotations within the sequence

3.2.1 Distance Function

The first step for the retrieval of those instances is the transformationeafjukryQ and the
documentD to suitable feature sequencks= (X(1),..., X(K)) with X(k) € ¥ for k € [1: K]
and (Y(1),...,Y(L)) with Y(¢) € F for ¢ € [1:L], respectively. Herer denotes the underlying
feature space. For instance, if we consider the feature representgtimme hasf = 7, = R1°.
Furthermore, we define @ost measure ¢ ¥ x ¥ — R. In the following, we simply use the
L2 distance as cost measure for the proposed feature representatinissis Tiseful since our
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features are normalized—so theis not mislead by strong outliers in the data—but other features
representations may require other suited cost measures.

In order to identify a sequencéas sub-sequence insitfewe usedynamic time warpingDTW)
to define a distance functiak by

A(f) = %are?llr}] (DTW (X, Y(a:?))). (3.10)

Here, Y(a : ¢) denotes the subsequenceYoktarting at framea and ending at framé € [1:

L]. Furthermore, DTWX, Y(a:¢)) denotes the DTW distance with respect to the cost measure
(see Miller [2007] for details). To avoid degenerations in the DTW alignment veethus modified
step size condition with step sizes 13, (1, 3), (2 1), (1, 2), and (11) (instead of the classical step
sizes (10), (0, 1), and (11)).

The interpretation ofA is as follows: a small valua(¢) for some¢ € [1 : L] indicates that
the subsequence of starting at framea, (with a, € [1 : £] denoting the minimizing index in
Equation [(3.1I0)) and ending at framies similar toX. To determine the best match betwe@n
and D, one can simply select the indéx € [1 : L] minimizing A. Then the best match is the
motion sequence corresponding to the feature subsequ¥ag)J...,Y(¢o)). The valueA({p)

is also referred to as theost of the match. To look for the second best match, we exclude a
neighborhoodaround the indexy from further consideration to avoid large overlaps with the best
match. In our case we exclude half the query length to the left and to thelygbetting the
corresponding values of the distance functiotio . To find subsequent matches, the above
procedure is repeated until a certain number of hits have been retrietreelapsts of the matches
are larger than a given threshold. Note that the retrieved matches catub&lly ranked according

to their costs.

3.2.2 Quality Measures

In the context of motion retrieval and classification, the following two privpgrof A are of
crucial importance. Firstly, the semantically correct matches (in the follovéfegned to as the
true matchepshould correspond to local minima afclose to zero thus avoiding false negatives.
Similar tolMuller and Ewert/[2009], we capture this property by defiryiaigo be the average of

A over all indices that correspond to the local minima of the true matches farea gueryX.
SecondlyA should be well above zero outside a neighborhood of the desired locahanthus
avoiding false positives. Recall from Sectlon 312.1 that we use half thy tpregth to the left and

to the right to define such a neighborhood. The region outside theséneigiods is referred to as
false alarm regionWe then defingaé to be the average a@f over all indices within the false alarm
region. For our example shown in Figurel3.4, these values are indicatsditbyle horizontal
lines. In order to separate the true matches from spurious matches, itrishelga’ should be
small Wherea$¢>F< should be large. We express these two properties within a single number by
defining the quotient™ := 43 /u¥. In view of a good separability, should be close to zero. The
quality measureX is rather soft, since unrelated regions with very latgealues may result in a
smalle*-value. We therefore introduce a stricter quality measure by considenlgdhe smallest
A-values in the false alarm region. To this end we define the quaritity which represents only
the mean of all those values afwithin the false alarm region which are smaller than the 5%
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Figure 3.5. Distance functions shown for the motion sequences coniaim rotations (EX 1, top) and

jumping jacks (EX 2, bottom) which are performed at incregsipeed. The following feature representa-
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quantile of this region. The corresponding measure is referred & as u%/ux>%, which is

stricter tham/X.

3.3 Feature Evaluation

In order to evaluate the presented feature representations, we tisedapotion sequences using
five Xsens MTx sensors. The sensors were placed on the lower aerisytbr legs and the hip

of the body (see Figufe 3.1). The relative orientations of the attachadrsanith respect to the
limbs were chosen such that the lo¥ahxis of a sensor is parallel to the bone of the corresponding
limb. As a consequence, pitch and roll of the sensor can be directly rétatied pitch and roll of
the corresponding limb.

3.3.1 Speed Dependence

In a fist experiment, we continue with our arm rotation example. Based orut@itative mea-
suresa® andgX, we now study the discrimination capability of various feature represensation
Using the same instandgof the arm rotations as quefy as in Figuré 314, all instancés ..., I
are considered as true matches. The corresponding distance furfotiailsthree feature rep-
resentation introduced in Sectibn13.1 are shown in Figure 3.5 (top). Iteaedn that only the
distance function of the feature representatigifthick black) has distinct local minima at every
location of the true matches that are indicated by the vertical red lines. Bebigénstances
(which served as query), the other distance functions only show atadoahum at the end of
instancels. This can be explained as follows. While instarigavas performed at almost the
same speed as the query instahgehe other instances were performed at consideraffiereit
speeds. The instancksandl, were performed slower and the instanbgandlg were performed
faster. Although, the DTW based distance measure is able to compengateléargth diferences
imposed by performance variations, there are other variations among thexnimstiances beside
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EX1| wf  uf K| u X
va | 0173 0161 1.0710.173 0.119 1.452
va | 0.087 0.135 0.6470.087 0.080 1.096
vy | 0.027 0.131 0.2090.027 0.056 0.489
EX2| uf ot X o X
Va | 0245 0276 0.8870.245 0.246 0.992

Va 0.109 0.237 0.459 0.109 0.202 0.538
Vg 0.038 0.158 0.238 0.038 0.134 0.282

Table 3.1.Values of the quality measures for théfdrent feature representations. The values belong to the
two experiments described in Sectfon 3.3.1.

simple length dierences. Here, the large warping costs between the query and thasdatiab
stances do not stem from temporal deformations but disagreeing fealuss. In other words,
speed variations do not only impose lengtffetiences but also varying feature values. We want
to stress that thisfiect largely depends on the used feature set.

Such behavior can be explained by recalling the way the feature repatisas have been com-
puted. The feature representatiagsandvs; make use of the locally measured sensor acceleration
as. As said before, the measured acceleratigis a superposition of the acceleration due to move-
mentms and the acceleration due to gravdy. While g is always constantys largely depends on
the execution speed of the motion. Let us consider two instances of the sdioe peyformed at
different speeds. If the motion is performed with doubled speed the accalatagdo movement
will be four times larger. As a consequence the valuasdérgely dependents on the speed of the
motion and so the feature representatispandvs do as well. In contrastg does not make use

of the measured acceleratiag and is therefor notféected by the variations of the performance
speed.

Another example illustrating thidiect is shown in Figure_3.5 (bottom), where six jumping jacks
(frames 210-510) were performed with increasing speed. Here, shedpetitionl; was taken
as query. Although all three distance function clearly exhibit local minimdl abatrue match
positions, the distance function with respect to the feature representgtitses continuously
during the performance of the jumping, resulting in very high values at teenaiching positions
compared to the regions of the distance function where no jumping jackspsgitgmed. This
is also indicated by the values of the quality measures shown in Table 3.% &Ket is the first
experiment with arm rotations and EX 2 is the second experiment with jumping.jdokcase
of EX 1 the value ofsX is 1452 when using the feature representatigrand 0489 when using
vg. In case of EX 2, while all feature representations perform better, ¢hasive improvement
stays the same. To conclude, in both cases the feature represewjatidperforms the other two
representations due to its immunity to thféeets imposed byn.

3.3.2 Discriminative Power

In the following, we want to take a closer look on how thffetient feature representations perform
for the task of discriminating éfierent motion classes. To this end, we set up a database consisting
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Figure 3.6. Motion classes used for the experiments in SedfionB.3.Sactior 3.4.

of ten motion classes with ten instances each. The motion classes used in Haséat@ shown

in Figure[3.6. The motions are performed by threfedent actors in dierent styles and speeds
and recorded using five Xsens MTx devices. The resulting databasgsttog of 100 motion
documents is denoted as RB For the evaluation of the discriminative power of the feature
representations, we use sub-sequence retrieval instead of dodomsedtretrieval. In document
based retrieval, the database consists of a set of pre-segmented mativnedds. During the
retrieval the query motion is compared to each of the motion documents in a giabakr. The
most similar motion documents are considered as the hits for a given querge Sich pre-
segmentation is unlikely to occur in practical retrieval scenarios, we aeatha performance
of the proposed feature representations in a sub-sequence resdevalrio. Here, a short query
motion is located as a sub-sequence within one large continuous datalzaseedt To this
end, we concatenate all 100 motion documents of the databaggtbBorm one single database
documenDyse. Concatenating the motions in the mentioned way leads to more confusion during
the retrieval but it better resembles a realistic scenario.

We keep the knowledge which part of the documBgde belongs to which of the original mo-
tion documents in a supplementary data structure. This knowledge is nofarsedrieval but
only for the automatic evaluation of retrieval results. Each of the previousiytioned 100 mo-
tion instances also serves as query to compute a total of 100 distance tigrfoti@very feature
representation. For each of these distance functions the valygs pf, 1°%, oX andg* are
calculated. In order to get a qualrty measure for a given feature eedon over a set of queries
we average the values pf, u¥, u XM , o andgX over all distance functions which were cal-
culated using the same feature representation. We refer to the aversitg mpeasures gsr,
ur, 12, @ andp. Table[3.2 (top) shows the results for this unimodal retrieval scenarierds
contain the values qfr, ur, ,u5/° « andp for each of the feature representatiogsva andvg. It
can bee seen that the feature representatj@n = 0.429,3 = 0.753) outperforms the other two
feature representationg (@ = 0.537,8 = 0.862) andv; (o = 0.533,8 = 0.839). Compared to the
two examples discussed in Section 3.3.1 thEedinces between the three feature representations
are not that big. But here, the retrieval scenario is more complex sineeasenotion class can be
mixed up especially if they look similar under a given feature representation.
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unimodal ‘ Ut UF a uT ,u|5:% B

Va 0.132 0.234 0.537 0.132 0.160 0.862
Vi 0.120 0.222 0.533 0.120 0.150 0.839
Vg 0.088 0.205 0.4290.088 0.125 0.753
cross-modal  ut UF @ pr o p B

Va 0.194 0.233 0.822 0.194 0.166 1.275
V3 0.160 0.211 0.752 0.160 0.151 1.093
Vg 0.129 0.206 0.618 0.129 0.135 0.963

Table 3.2. Averaged quality measures for theffdrent feature representations belongingtap): the
unimodal scenario described in Section 3.3.2, @raitom): then cross-modal scenario described in Sec-
tion[3.4.

3.4 Cross-modal Comparison

In Section 3.3.2 we evaluated the discriminative power of the feature syeti®ns in an uni-
modal scenario where both the queries and the database documentecbokimeasured inertial
motion data. In this section, we evaluate the feature representations in tiextcoha cross-
modal scenario, where the queries and the database contiredi data modalities. In par-
ticular, we want to search in a database which comprises of high-dimeh8bnmaocap using
low-dimensional inertial sensors as query input. In the following, we usattuments in the
database DRe as queries. The database we want to search in consists of motion exXoampts
the HDMO5 database described iruNér et all [2007]. This database consists of high quality mo-
tions recorded by a 12 camera Vicon optical mocap system. Here, we uS8Eha@ata containing
the marker positions to compute the virtual inertial sensors, see Sectioh Ph2$e virtual sen-
sors enable us to calculate the inertial-based feature vectors as desoribectior 3.1l for the
position-based data of a optical mocap system. Analogously to thg.dBtabase, we use ten
instances from the ten motions classes shown in Figufe 3.6. This again suma tgial of 100
motion documents denoted as BB To create a realistic retrieval scenario where we do not want
to assume a pre-segmentation of the motion data, we again concatenate miédtxcin DB3q4 to
form one large continuous database documegt.Drhe frames of this document are annotated
by the corresponding class labels, which are used as ground truth ivetliatizon below.

3.4.1 Quality Measures

To evaluate the discriminative power in a cross-modal scenario, we daltiadistance functions

on the databasedy for every query taken from DBe as well as for every feature representation.
Analogously to Sectiof 3.3.2, Takllle B.2 (bottom) shows the averaged qualigurasdor the
cross-modal scenario. Here, the feature representagim = 0.618,3 = 0.963) performs best
again. Both acceleration based feature representatips = 0.752,8 = 1.093) andv, (a =
0.822,8 = 1.272) perform considerably worse. Compared to the unimodal scereswilded in
Sectior 3.3.2 both measuresandg are worse for all feature representations. One reason for this
general degradation is the fact that the inertial data origins from tfterdint sources (virtual and
real sensors). Another reason is that actors performing the motioradnaost disjunct for both
data sources; only one actor participated in both recording sessions.
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Figure 3.7. Confusion matrice$top) and true match distribution®ottom) of the three dierent feature
representations.

3.4.2 Class Confusion

The above presented quality measures are well suited to compare thobefaifferent feature
representations in a quantitative manner. We now examine how motion classemused with
regard to a given feature representation.

As described in Sectidn 3.2.1, we obtain for each match a correspondingairft® : ¢] within
the database. Counting the ground-truth class labels for the frames vathifi[ we assign to
the underlying match the class label with the largest count. When the clas®fabenatch is
equal to the motion class of the query, we call thiswee matchotherwise afalse match As
there are ten instances of each motion class inside the database we get tehntrege matches.
Since we can assign costs to each retrieved match based on the distastmnfinwe get a
natural ranking of the retrieved matches. Considering the distribution of molasses among
the ten best matches—those with the lowest matching costs—one gets a goasiomphew the
motion classes are mixed up under a given feature representation. A comeams to visualize
this areconfusion matricgswhich are shown for the three feature representatigng andvg in
Figure[3.Y (top row). The rows of a confusion matrix represent the motamses of the query,
whereas the columns represent the motion classes of the match. Dark gmiicase a large
percentage of a motion class, whereas light colors indicate a low pereerftag example, the
matrices show that most of the motion classes are confused with the motioQitdisst column)
when using the feature representatign One reason is that most of the motion classes appear as
short sub-sequences within the relatively long instances ofWhmotion class, which are then
confused when using a local, sub-sequence retrieval. Here, a gtidmalment-based retrieval
strategy may circumvent this problem, which, however, would require ebdaijpae-segmentation.
Another reason is that the motion clads shows a lot of variance among theffdrent motion
instances even when performed by the same actor. In particular, thef iskfusion with the
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Cw EK GF Jo JJ KI PU RB RF WA 10/]

va | 029 072 080 074 087 040 058 037 032 059|057
vy | 056 067 053 100 065 045 063 040 048 081 062
Vg 1 098 Q75 069 098 092 058 050 065 083 084 0.77

Table 3.3. Averaged maximal F-Measures for every feature repredentand motion class. The last
column shows for every feature representation the avenagreatl motion classes.

motion classCW is high for short and dynamic motions classes suckIasU, RB, andRF. In
contrast, using the directional feature representatidhe confusion is reduced significantly.

Another way of visualizing the matches retrieved for the queries of a gh@ion class is shown
in Figure 3.7 (bottom column). These matrices visualize the distribution of thelatehes among
all retrieved motions. Every row of a matrix represents one query to théakda The columns
indicate the rank of a match from least cost (at the left) to largest codtse(aight). Within one
row the color indicates whether a match for a given query (row) andengignk (column) is a
true match (white) or a false match (black). The red line separates the tereswaiith the highest
ranks from the rest of the matches. This kind of visualization gives a gopression whether a
given feature representation describes a given motion class well oFaioexample, the motion
classJo is well represented when using the feature veotgendvg, whereas the motion clag®

is only well represented using the feature vestprExamples of motion classes which are poorly
represented arRB andRF using the feature vectar,. This is due to the noise imposed by high
velocity differences—and resulting acceleratioff@tiences—among the arm rotations (see also
Sectior3.311).

3.4.3 F-measure

To further quantify the retrieval results, we use another measure frenethieval domain referred
to asmaximum F-measureLet k, k € [1 : K] be the rank of a given match, whekeis the
maximum rank (in our caské = 100). Now, for everk precision R andrecall R, are defined as
Py :=|T n My|/IMy] andRx := [T n My|/|T|. Here,M is the set of all matches up to raklandT
the set of all possible true matches (in our cdge= 10). Combining precision and recall values
for a given rankk yields the (standard) F-measufg := 2 - Py - R¢/(Pk+Rk). Now, the maximum
F-measure is defined &:= maxFy,k € [1: K]. Table[3.3 shows the maximum F-measure for
each motion class and every feature representation. The value wakteadoy averaging the
maximum F-measures over all queries of each motion class. Finally, the lastrcshows the
average of all previous values over all motion classes. The better a fgigture representation
discriminates a motion class against all other motion classes the larger is tegpoording entry
in the table. It can be seen that the feature representafimwell suited to identify instances
of motion class)0 (1.00), whereas the feature representatipperforms particularly well for the
motion classe€w (0.98), 10 (0.98), andlJ (0.92). Furthermore, the identification 6 shows a
drastic improvement under the feature representad0.98) in comparison tw, (0.29). Also,
the arm rotation®B andRF perform much better under the feature representatjof®.65 and
0.83) compared to the acceleration based feature representai(@d0 and 048) andvj (0.37
and 032). Interestingly, there are some exceptions whgrdoes not outperform the other to
feature representations, as with the motion clagseandPU. For example, in case of motion
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Figure 3.8. Overview of the motion reconstruction approach presenyethltgeset al. [2011].

classPU, vg (0.50) is worse compared tey (0.63) and everv, (0.58). Here, on the one hand,
the orientations of both arms—including roll and pitch—shows large variatioreng the actors,
While, on the other hand, all punching motion exhibit characteristic peake imdteleration data.
But, in general, againg is much better suited to identify most motion classes than the feature
representationg, andvsa.

3.5 Applications

in this section, we discuss an application of cross-modal motion retrieval.iSfenld, we take a
look on the approach presented in Tautgeal. [2011], where the authors use techniques similar
to the ones presented in this chapter to facilitate real-time full-body recotistruaf motions
from sparse inertial input. In particular, they use the sensor data phtmelerometerss.. ., s,
placed at the wrists and ankles of a person, to control the reconstructioroverview of the
employed framework can be seen in Figure 3.8.

In a preprocessing step, a database containing high-dimensional matzgpahich has been
recorded using a traditional marker-based optical mocap system, is .seAuipext step, the
authors employ a virtual sensor concept similar to the one presented inf82&ib to simulate
accelerometer readings of the four sensors mentioned above. Tioeseraiions are then used to
compute a mid-level representation, which consists of the stacked aticglsia the four sensors.
Similar to Sectio 3.111 this a featug defined by

Va:=(a],....,a;)" e R* (3.11)

Now, during the online motion reconstruction, the readings from the focelammeters serve
as input for retrieving a motion from the database that is similar to the performo¢éidn. The
retrieved motion is then used as basis for a motion synthesis step, which certit@nmaotion re-
constructed so far, the retrieved motion and the sensor readings in angrafytimization scheme.
This scheme ensures temporal coherence, similarity to the retrieved motiainaifadity of the
accelerations induced by the reconstructed motion to the sensor readings.

Remember from the previous sections that the featyreas performed worst compared to the
other features, or vg. The authors in Tautgest al. [2011] use pure accelerations as features to
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Figure 3.9. Schematic of the motion retrieval approach used by Tawggeak [2011]. (left): The sensor
readings a timé are converted into a mid-level representatign(middle): Using ak-d tree theK (here,

K = 4) most similar frames in the database are identiffgght): The indices of thos& frames are added
to the lazy neighborhood graph. The indices of consecutarads are connected by an edge (red) if their
offset is 1 or 2. The longer the sequence the higher the protyathiit the matching motion sequence
resembles the query motion.

show what kind of motion reconstruction accuracy is obtainable.

To compensate for low descriptive power of the featgrand to facilitate real-time motion recon-
struction speed, they employ two key components: an online motion retricieakttacture for
motion retrieval and a combined optimization scheme for motion synthesis.

Motion retrieval. One important dierence of the approach by Tautgegsl. [2011], compared
to the techniques explained earlier in this chapter, is the search algorithmtdyidemotion in
the database. Because of the requirements of a real-time algorithm, thacppnentioned in
Sectior 3.211 cannot be used since it is too slow when the database becaeedHarthermore,
the approach introduced in Section 312.1 requires that the complete quemgvis k This might
not be possible in on online reconstruction scenario, where the se@gbngs that serve as query
are obtained continuously.

For these reasons, the authors employfBeddnt approach, wherekad tree is used to index the
featuresy, for every frame in the database. Now every time a new sensor readivesaits fea-
ture representation is used to retrieve khelosest neighbors based on thd tree. Sincer, has
little expressiveness the retrieved frames might stem from various motianaréhaemantically
not similar to the motion to be reconstructed. Therefore, the authors useadiestiazy neighbor-
hood graphto filter out unwanted results. A similar approach has been presentedigetat al.
[2010]. Here, the central idea is that if the database contains contimuotisn segments, a con-
tinuous query stream should result in a stream of retrieved indices thafretm similar database
locations.

The lazy-neighborhood graph keeps track of a history of the retrigdides from thek-d tree.
Depending on thefset between an index at franh@and an index at timé— 1, the two indices
are connected with an edge. These possifiigets are similar to the step sizes as used in the
DTW-based retrieval strategy described in Sedtion B.2.1. A sequerompécted indices ending
at the current time defines a motion segment in the database. The authoasswwe that the
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longer the sequence the higher the probability that the motion representhis Bequence is
semantically similar to the performed motion. The longest sequences servasthesis for the
motion synthesis. For further details on the lazy neighborhood graphfesetocTautges [201.2]
and Kiugeret al. [2010].

Motion synthesis. As said before, the motion synthesis step presented in Taet@dd2011]
employs an optimization scheme that incorporates three priors. The firstgmsares that the
synthesized motion results in a pose explainable by the motions obtained in the nedttieval
step. Here, not only the spatial properties, such as the joint positiortd areerest but also the
kinematic behavior represented by the velocities and accelerations of tte jbive second prior
forces that the accelerations implied by the synthesized motion explain tHeratioms measured
by the four sensors placed at the extremities of the body. Since this priommapte direct control
of the synthesis by the sensors measurements, it is referred to as guigroFinally, the third
prior induces that the noise of the sensors does not result in an unsyalihesized motion. To
this end, it limits the possible accelerations between two consecutive frameirfher details,
we refer ta Tautges [2012].

Discussion. The presented approach by Tautgeal. [2011] shows how the concepts of cross-
modal motion retrieval can be used to facilitate real-time motion reconstructiog sigarse in-
ertial sensors as input. However, there is still room for improvement. ©ssilge direction of
further research is to include a more stable and expressive mid-levesegpation as for example

Vva Or vg instead ofv,. Also the inclusion of the information obtained by other sensors such as
optical or depth sensors might be helpful. In Chapier 6, we will presemitaon reconstruction
approach that fuses information obtained from inertial sensors withniraftion from a monocular
depth sensor.

3.6 Conclusions

The analysis of human motions using various types of motion capture haméecmajor strand
of research in areas such as sports, medicine, human computer inteeaticomputer anima-
tion. In particular, because of low cost and easy set-up, inertial-basedp systems are be-
coming more and more popular, even though these sensors provide peessive mocap data
compared to optical systems. In this chapter, we have presented a systmafitgis of various
feature representations that can be derived from customary inenisbrse As one main re-
sult, we showed that directional features relating the sensor to the direttpavity outperform
purely acceleration-based features within various retrieval scenémiparticular, it turns out that
rate-of-turn data is necessary to enhance the roll and pitch estimates esthefadynamic, fast
changing motions. As further contribution, we introduced a generatagpa measure based on
a local variant of dynamic time warping, which allows for assessing theiglisative power of
different features representations. We demonstrated how our featuzseefations can be used
within a cross-modal retrieval scenario, where inertial-based query nso#ice used to retrieve
high-quality optical mocap data.

Because of the increasing relevance of motion sensors for monitoringraedainment purposes,
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the fusion of various sensor modalities as well as cross-domain motion aretgssynthesis will
further gain in importance. We showed an example were the cross-madabason was used
in the context of motion reconstruction. In particular, sparse acceleronestgdings where used
to identify high-quality 3D human motions in a database which was recorded asimoptical
mocap system. Such a reconstruction of high-quality 3D human motions ugalgada knowl-
edge has become a major principle used in computer animation and the gamirgyinHiese,
our analysis results and methods constitute a suitable foundation for estimatipgrtbrmance
of the various motion representations. We will also use and extend tecBrpgesented in this
chapter in Chaptér 6, where we use orientations obtained from inertediseto identify motions
in a database consisting of high-dimensional optical mocap data. Theseaétmotions are then
used in a combined depthertial tracking framework to robustly estimate human pose even in
challenging scenarios such as when occlusions occur. Here, thicspdeantages of dierent
sensors modalities are combined, to obtain better results compared to usisgnsone modality
alone.
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Chapter 4

Classification of Trampoline Jumps
Using Inertial Sensors

In this chapter, we apply techniques from the previous chapters with jbetivie to automatically
classify trampoline motion sequences. This constitutes a challenging applisegioario because
of the high complexity in terms of dynamics and recording volume. In trampolimingthlete
performs a routine that consists of a sequences of trampoline jumps thaghel@redefined
motion categories such as pike jump or a somersault. The classification pritlderoonsists in
automatically segmenting an unknown trampoline routine into its individual jumpgoasidssify
these jumps according to the given motion categories. Here, further diedlanise from the fact
that there is a wide spectrum on how a jump from a specific category mayumsaperformed
by an athlete.

As introduced in Chaptél 2, there exist many ways for recording humanmssgpuences, includ-
ing optical, inertial and depth-based (mocap) systems. For recapitulagiicalanotion capture
systems, which are widely used in movie and game productions, provideislend easy to in-
terpret data. On the downside, such systems impose strong restrictiaresriog the size of the
capture volume and lighting conditions. This makes thefficdit to use in our trampolining sce-
nario. The main disadvantage of depth sensor is the limited recording voluansimgle sensor.
Using multiple depth sensors, however, would increase the sfrpand the simultaneous use of
depth sensorsis not trivial, see Secfion 2.3.4. Avoiding such restrictiemiahbased sensors have
become a low-cost alternative, which is increasingly used in entertainmenitomiog and sports
applications Boissyt all [2007];Hardinget al. [2008];/Ohgiet all [2002];|Sabatinet al. [2005].
The drawback of such systems is that the provided data—acceleratidrsgular velocities—
are dificult to handle and prone to noise. Here, additional sensor informatiobhgssused to
derive more robust global orientation data Keeiml. [1998].

Contributions. We introduce a motion classification pipeline for automatically classifying tram-
poline routines based on inertial sensor input, see Figufe 4.1 for avi@veAs one contribution,
we discuss how to transform the inertial raw data into meaningful and trébatsire represen-
tations underlying our classification scheme. As for the predefined mottegarées, we use
suitable training data to learn class representations that described thetehatics of a specific

41
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Figure 4.1. Classification pipeline used in this chapt€bhottom): Class representations are computed
for each of the motion categories in a preprocessing gtep): An unknown trampoline routine is con-
verted into a feature sequences which is then segmentesingte jump. Finally the segmented jumps are
compared to the class templates and labeled with the narhe ofidst similar class.

trampoline jump. Here, as a further contribution, we extend the concemtodédn motion tem-
plates Miller and Rdder [2006] to the real-valued case. In particular, we introduce the notion
variance templates that allow for blending out performance variations tétlhmtmnsidered in the
classification stage. In our classification pipeline, an athlete, being eaginggea small number
of inertial sensors, performs a trampolining routine. The resulting motioarstiefirst segmented
into individual jumps, which are then classified by comparing the segments witpréviously
learned class representations using a suitable similarity measure. To prq@racticability of our
approach, we have recorded trampoline motions consisting of 750 indhjidaps that comprise
13 different classes performed by fouffdrent athletes. We report on various experiments which
show that our procedure yields a high classification accuracy even prélsence of significant
style variations across theffirent athletes. This chapter closely follows Hel¢mal. [20114],
where the concepts presented here have been published.

Organization. The remainder of this chapter is organized as follows. We start by disguss
some basics on trampolining (Section|4.1) as well as what kind of sensavelatse (Section 41.2).
Then, we describe our segmentation procedure (Selction 4.3), dismisgsvfeature representa-
tions (Sectiofl 4)4), and introduce the class representations in form-ofalead motion templates
(Sectiori4.b). Subsequently, the actual classification procedure isldeband evaluated demon-
strating the practicability of our approach (Section 4.6). Finally, we closectiapter with an
outlook on future work (Sectidn 4.7).

4.1 Trampoline Motions

In this section, we describe some characteristics of trampoline motions, wdnichecexploited
for segmentation and classification tasks. Trampolining is closely related toagyicsrwhere
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Figure 4.2. Phases of a trampoline jump comprising a contact phase (@hding phase (L), a takéo
phase (T), and flight phase (F).

athletes perform a sequence of acrobatic moves. During a trampoliremparfce there are two
alternating phases. Firstly, there idlight phasein which the actual moves are performed and,
secondly, there is eontact phasé which the athlete gains momentum for lés next move, see
Figure[4.2. Furthermore, a contact phase can be separated into typhasks, sanding phase
and atakegf phase In the following, a trampolingumpis defined to be the concatenation of one
takedt phase at the beginning, one flight phase in the middle, and one landing gtithe end.

During these three phases, the athlete assumes and exedtgesntliposes and rotations, see
Figurd4.8. The first three subfigures (Figure 4.3(a)—(c)) shferdnt body poses assumed during
the contact phase of a jump. Since these poses are determined duringlthg f#rase of a jump,
they are referred to danding poses During the flight phase the athlete assumes certain body
poses (Figuré_413(d)—(f)) arat executes rotations (Figure #.3(g)—(i)) around the body’s lateral
andor longitudinal axis. A given combination of a landing pose in the tékpbase, poses and
rotations during the flight phase and a landing pose in the landing phaspiwipacompletely
characterize a given jump. In the following, all jumps which contain the saoeesee of poses
and rotations are considered to belong to the spm® class Table[4.1 shows thirteen jump
classes of low and intermediateffiiulty along with a short description. For example, the class
“tuck jump” (TJP) starts with the pose “on feetF¢) during the takefi phase, it continues with
the pose “tucked”u), and finishes with the landing pose “on feeFe]. Another example is
the jump clas$8AR, also known as Barani, consisting of the landing pose “on faat) (n the
beginning, a 360 degree somersault forwamks§) combined with a 180 degree twisI180)

and ending on the feeF¢). In trampolining, the most basic jump class is the straight jusTB)
which only consists of the pose “on feet” at the beginning and at the etttegtimp. During
competitions athletes have to perform so calieatineswhich are a sequences of jumps. Here,
a routine starts with a number of straight jumps to gain momentum. After this ptieathe
athlete has to perform a sequence of ten jumps from a set of predefinpdcjasses. Then, in
our classification scenario, the task is to segment the routine and to determiclagbes of the
performed jumps.

In total, we recorded 109 routines withflitulty scores ranging from.@ to 31 comprising a
total of 750 jumps. Out of these 109 routines, we chose 13 routines todaoutine database
PDr. From the remaining 96 routines, we manually assembled for each of the 13cjasges
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Figure 4.3. (a)—(c): Landing poses during the contact phase: on fge}, (seated e) and on the front
(Fr). (d)—(f): Different body poses during the flight phase: pikedl)(tucked u) and straddledSt).
(9)—(): Rotations around main body axes during flight phase: lateralards ¢*), lateral backwardss()
and twists around longitudinal axis¥().

16 instances—four instances for each of the four actors. The resdbitaget, containing 208
jumps, is denoted as cut datab#3g. We then partitionedc into two database®; and D¢
each containing two jumps per actor from all 13 jump classes, amounting to 4 ju

4.2 Sensors

As stated before, there are many ways to record human motion data esjngptical, inertial
or depth-based mocap systems. A general overview of current optamedp techniques can be
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ID  Description Poses and rotations during phases
Takedf Flight Landing
BAR Barani Fe T180,F360 Fe
FRF Front to feet Fr Fe
HTW Half twist Fe T180 Fe
HFR Half twist to front Fe T180,F90 Fr
PJP Pike jump Fe Pi Fe
SHA Seat half twist to feet Se T180 Fe
SST Seatto feet Se Fe
BWB Somersault backwards piked Fe Pi, B360 Fe
BWS Somersault backwards to seaFe Tu, B360 Se
BWC Somersault backwards tuckedre Tu, B360 Fe
SJP Straddle jump Fe St Fe
STR Straight jump Fe Fe
TIP Tuck jump Fe Tu Fe

Table 4.1. Low and intermediate level jumps used for classificatione Tdble shows how the jumps are
composed of the poses and rotations displayed in Figure 4.3.

found in Chapter]2.

The most widely used motion capture systems for analyzing sport motiongpacal onarker-
based systems as introduced in Sedfioh 2.1. Here, a set of calibratecsasnesed to record 2D
images of an actor wearing a suit with retro-reflective or active markessFiguré 414 (a). The
advantage of such systems is clearly their precision. However, thermdsaraome drawbacks,
as illustrated by Figure_4.4 (a). For example, the lighting during the recordimg be dim so
that the markers can be distinguished from the background. Furthertheigetup of the systems
is cumbersome as many cameras need to be carefully placed, aligned, aratezlib order to
cover the large capture volume as needed for trampoline motions, see g (ing.

For these reasons, in many sports applications, human motion is often edaasthg much
cheaper devices such as single high-speed cameras or even staordanther camcorders. Here,
the recorded video stream has to be manually annotated using specialixeateaools, from
which various motion parameters such as joint positions or joint angles avedleObviously,
the quality of the used cameras highly influences the accuracy of theatbdumtion data. For
example, if the camera has a low temporal resolution, motion blur as shown ireEgl(c) ren-
ders the correct positioning of annotations impossible. Furthermore, asiharawback of such
video based methods, the manual annotation process makes large-pesimerts with a high
data throughput infeasible.

In this chapter, we use an inertial sensor-based mocap system consisiivgn Xsens Miksen-

sor units denoted by;s...,s7. The sensors are placed inside a suit (see Figuie 4.4 (d)) together
with a wireless transmission system which sends the measured data directhntpater. For this
reason, inertial sensors do not pose any restrictions on the lightingestnts and can be used in
many locations, even outdoor. Figlrel4.4 (e) shows the placement of#resensors in our setup
fixed at the trunk, the forearms, the upper legs and the lower legs of tle¢eatRurthermore, as
indicated by Figuré 414 (f), the sensors are carefully attached in suely ¢hat their locaX-axes

are aligned parallel to the limbs while pointing away from the body’s centereheigl, inertial

Thttp://www.xsens.com
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Figure 4.4. (a):Recordings using optical systems require controllediightonditions.(b): Cumbersome
setup of an optical mocap systeift): Optical recordings ster from motion blur in case of fast motion.
(d): Actor wearing a suit containing inertial sensgig): Locations of the seven motion sensors attached to
the human body as used in this papgér. Inertial sensors are attached in direction of the body'®land
can measure the limb’s orientation.

sensors only provide acceleratioasnd angular velocitiee which are rather unintuitive quan-
tities prone to noise. By combining inertial sensors with other sensor hym [|_9_9_$]
Luinge and Veltink [2005], as done in the Xsens MTx units, it is possibleltutate full 3 degree

of freedom global orientations denoted §ysee also Sectidn 2.2.1. We now fix some further
notations used in the rest of the chapter.

A sensor data streans modeled as a sequenbe= (S1, S, ..., Sk) of sensor readingSy € S
forke[1:K]:={1,2,...,K} (w.rt. a fixed sampling rate, in our case 100 Hz). H&alenotes
the space of sensor readings &hdenotes the number of frames. Each sensor regélingnsists
of the orientations, accelerations and angular velocities measured byémessnsors:

Ski=(af.....a5. ... k. of). ke[l:K], (4.1)

wheregk € R*, & € R3, andwX € R3forallse {s,...,s;}and allk e [1 : K].

4.3 Segmentation

The first step of our proposed classification pipeline is the segmentationwflanown trampo-
line motion sequence into separate jumps. Here, we make use of the two, ghasestact phase
and the flight phase, which segment jumps in a natural way, see Figlii® 4\While the actual
jump is performed during the flight phase, the athlete gains momentum duringritectphase,
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Figure 4.5. (a): Phases of a trampoline jump comprising a contact phase (@)dang phase (L), a takéo
phase (T), and flight phase (Kh): Absolute acceleration measured by sersaoflight gray), as well as
low pass filtered acceleration (black) and threshold (red)sed for the automatic segmentation described
in Sectior 4.B.

which is always related to a large acceleration of the whole body. Thisesatien can be mea-
sured using the sensor which is located at the athlete’s trunk. As one can see in Flgute 4.5 (b),
the measurement difg, ||2 is rather noisy. For this reason, we apply a low pass filtef width
corresponding to .Q seconds to the measured accelerations to olatai L(||ag|l2). Then, we
label those framek that satisfy the heuristiek > 7 to be a contact phase frame, wheres a
suitably chosen threshold. In practice, the vatue 35nys? turned out to be reasonable. We
conducted an experiment to get a quantitative impression how well this singpleeagation algo-
rithm works. To this end, we automatically segmented the 13 routines from titieea@atabase
Dr and compared the results with the manually generated ground-truth segmentétére, we
considered a jump to be segmented correctly when the computed intervalrdnditered from
the ground-truth interval ends by a maximum of 15 frame$58). The experiment showed that,
in total, 94% of the jumps were segmented correctly. Here, the wrongly ségdhgmps were
exclusively at the very beginning or the end of the trampoline routinestenthe athletes were
still in the preparatory phase and the accelerations were comparativelyAlciwally, all of the
important jumps during the routine were segmented correctly.

4.4 Feature Representation

As for the classification step, the raw sensor input is much too noisy andsistent to yield
good motion representations. This is partly due to the noise introduced by #urements
itself. Even more problematic is the fact thaffdient performances of the same jump may reveal
significant spatial, dynamical, and tempordfeliences. In particular, there are many actor-specific
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Figure 4.6. lllustration of examples for the various feature typéa): Inclination of a limb. (b): En-
closed angle between two limbs belonging tffetient extremities(c): Enclosed angle between two limbs
belonging to the same extremiig): Angular velocity along the vertical axis of the body.

ID Type Description

Fi ¢s Inclination of lower spine
Fo ¢, Inclination of left lower leg
Fz ¢s Inclination of right lower leg
Fa o, Inclination of left forearm
Fs ¢s Inclination of right forearm

Fes 0s.s  Angle between left lower and upper leg

F7 #6s.s;  Angle between right lower and upper leg

Fs ¥s.s  Angle between left upper and right upper leg

Fo @ Absolute angular velocity around the body’s longitudinal axis

Table 4.2.Description of the used features with feature ID and type.

performance variations within a jump class. Therefore, instead of workirthe raw data itself,
we derive from the inertial data suitable feature representations thademoportant and intuitive
properties of the athlete’s body configuration while being invariant ugtidral variations such
as the actor’s facing direction. In Section]4.5, we describe how to deallogéh performance
variations by introducing suitable class representations. We now intrakrese diferentfeature
types The first feature typ@s measures the angle between axis of a sensos and the
horizontal plane. If the sensor is aligned as shown in Figure 4.4 (f), tigkeas the same as the
angle between the limb and the horizontal plane, see Figure 4.6 (a). Invaihds, the features
measures the inclination of a limb with respect to the ground plane. The skadoce typ@s /st
measures the enclosed angle between two limbs. Here, the didyedice betweeés; andys;

is the way the feature is computed. The feagugemeasures the angle between limbs belonging
to different extremities (Figurle 4.6 (b)), while the featdge measure the angle between limbs
belonging to the same extremity (Figurel4.6 (c)). Finally, the third type of feadurcaptures
the angular velocity of the sensoxsaxis. In other words, this feature type measures the velocity
a limb rotates around its longitudinal axis. The exact formulas used to computettbduced
feature types are given in the appendix of this paper.

In the following, we will show how the featuress, 6st, st and s can be computed. To this
end, we assume the sensor data stream is defined as shown in Bettidred@alions inside the
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sensor data stream must be given in a suitable rotation representatiostdoce, unit quaternions
(see_Shoemake [1985]). Furthermoreq ik a rotation in a given representation, thendpf] be
the 3-dimensional vectarrotated byg. The feature®s, 0st, ¥st andws are now defined as

¢s=1- ; arccog(0,0,1)", g5 [(1,0,0)"]), (4.2)
Ot =1 ; arccog(ds[(1.0,0)"|.qt[(1.0.0)T]). (4.3)
W =1- ; arccogds|(-1,0,0)"|,a(1,0,0)" |}, and (4.4)
s = w9 (4.5)

Here, (-,-) denotes the scalar product of two vectors, whi)g i6 the x-component of a vector.
Please note that the features are normalized to vary roughly in the rafgg, @f. This fact will
be important for the class representation introduced in Section 4.5.

Based on these three feature types, we define in totalfeatares as shown in Table 4.2. Math-
ematically, a feature is a functidh: S — R. By forming a vector off features for somd > 1,
one obtains a combined featufe: S — R referred to as &ature setIn this paperF is equal
to one of the following feature sets

Frsasw := (F1, F2, F3, F4, Fs, Fg, F7,Fg, Fo)', (4.6)
Fasw = (Fs, F7, Fs, FQ)T, 4.7)
Frsy := (F1, Fo, Fa, F4, Fs, Fo)T, or (4.8)

Frsas 1= (F1. F2, Fa, F4, Fs, Fe, F7,Fg)", (4.9)

where the indexd. g.I5A3W) gives a hint on what features are included in the feature set. The part
I5 stands for the five inclination type features, F», F3, F4, Fs, A3 represents the three angular
type featuredg, F7, Fg, andW corresponds to the one angular velocity type featge This
naming convention becomes important in Section 4.6, where we discuss thddngeoof the
different feature types for the proposed classification scenario. FEiglishdws how a feature set

F = F1sasy is applied to a sensor data stre@m The result is represented byf@ature matrix
F(D) = (F(Sy),...,F(Sk)) with f rows andK columns, where in this case= andK = 132.

Each row in such a feature matrix represents one feature, while eachrcodpresents the feature
valuesF (Sk) for a framek € [1:K].

4.5 Class Representation

Based on feature matrices, we now describe a representation thaksagtaracteristic properties
of an entire motion class. To this end, we adapt the concepbtibn template@Ts), which was
previously introduced in Mller and Ryder [2006]. Here, given a cla€s= {Dj, ..., Dy} consist-

ing of N example motion®,, n € [1 : N], one first converts all motions into features matrices
Xn. Then, the idea is to compute a kind of average matrix. However, note that thetions
generally have a flierent length. Therefore, dynamic time warping is applied to temporally align
the motions and to warp all feature matrices to yield the same length. The aveedde Xc

over the warped feature matrices is then referred to as class motion templistiélldr and Rdder
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Figure 4.7. Feature representation of a jump of cl&s BAR using feature sef1sasy.

[2006], this concept is applied to boolean-valued features matrices ygdidiolean feature ma-
trices. As a consequence, regions in the class MT with the valuefomrermdicate periods in
time (horizontal axis) where certain features (vertical axis) consisteatiyrae the same values
zergone in all training motions, respectively. By contrast, regions with valuesdsn zero and
one indicate inconsistencies mainly resulting from variations in the training matioaspartly
from inappropriate alignments). This property of MTs can then be usadtdonatically mask out
the variable aspects of a motion class when being compared with an unknown chetostream.
This makes motion classification very robust even in the presence of signifierformances
differences, see Mler and Ryder [2005] for details.

We now apply the concept of motion templates to our trampoline classificationrscemnaet

C = {BAR,...,TIP} be the set of all considered jump categories ancClet C be one of the
motion classes. By using a feature $etwe convert all example motions containedGninto
feature matrices. Opposed|tailer and Ryder [2005], however, our features are real-valued, so
that we need some modifications in the MT computation. To balance out the impoitathe
various features contained F, we first normalize all features to approximately have the same
range F1,1]. As an example, Figurie_4.8(a)—(c) shows the resulting feature mabfcésee
example jumps from the clags= BAR. Then, as in_ Miller and Ryder [2006], we temporally warp
the normalized feature matrices and compute an average nXatrsee Figuré 418 (d).

Now, starting with real-valued instead of boolean-valued feature mattlee#consistencies are
not revealed as describedlinlifer and Ryder [2005]. Instead, we computevariance template

Ve, which encodes the entry-wise variance of Mievarped feature matrices, see Figurg 4.8 (e).
Here, the idea is that inconsistent regions in the real-valued feature rsdtribece larger vari-
ances than consistent regions. Now the variance template can be used tmutnasonsistencies

in Xc. In our setting, we mask out those regionsXgf, where the value ivV¢ is larger than the
75% quantile of all values o¥c. In other words, the 25% most variant values are ignored, see
Figure[4.8 (f). Here, the percentage value of 25% has been determipedreentally, yielding

a good trade-b between preserving ficient motion characteristics while suppressing unwanted
motion variations. The remaining 12 masked class templates are shown in[E@ure 4

Mathematically, we model the masking as a separatek matrix M € R™X, where a value of 0
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(a) Feature matrix 1 (d) Average template

1 30 60 90 124 1 30 60 90

(b) Feature matrix 2 (e) Variance template

1 30 60 90 119
) Masked template

1 30 60 90 116 1 30 60 90 119

Figure 4.8. Template computation(a)—(c): Feature matrices for threeftéirent jumps from the clagR.
(d): Average of aligned feature matrices (average templge). Variances of aligned feature matrices
(variance template)(f): Template, where regions with 25% highest variances are edaslt (masked
template).

means that the value is masked out. The entridd®tan be computed in the following way:

Mc(i, J) = { g-) \e/ICS(é’ J) < Q75%(VC) (410)

forie[1: flandj € [1: K]. Here,Q7s0(Vc) is the 75% quantile o¥/c. Later in this paper, we
will introduce a scenario where we seek to amplify the influence of certatarfe functions. This
can be modeled by allowing other values beside 0 and 1 inside the mask matrix.

4.6 Classification and Experiments

For the classification we locally compare an unknown jump with all class KgT®r C € C and

then label the jump according to the class MT having the smallest distance to the i
following, let Y € R™L be the feature matrix of an unknown jump to be classified, whege

the length of the jump and is the number of features. We use as distance measure a variant of
dynamic time warping (DTW) as described iriiNer and Ryder [20086]. Especially, we adjust the
local cost measurein order to be compatible with our masking. Lmatk) := Zile Mc(i, K), then
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Figure 4.9. Depiction of the masked templates for twelve out of the &aint jump classes. The template of
the missing clasBAR is shown in Figur&418 (f).

we define the masked local cost measure

f 2
ck, €)= % ; Mc(i, k) (Xc(i.K) - Y(i,0)?] . (4.11)

for m(k) # 0 andc(k, 1) = 0 for m(k) = 0, wherek € [1 : K] and¢ € [1 : L]. Now, thedistanceAc
between a class with MT Xc and maskVc and a feature matriX is defined as

Ac(Y) = %DTW Xc,Y), (4.12)

where DTW denotes the DTW-distance between the sequences of colefimsddbyXc and

Y using the local cost measuce Finally, the classification problem for an unknown jump with
feature matrixY can be solved by identifying the cla€se C which has the smallest distance
Ac(Y).
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(@) Fasw (b) Frsw

Classified as
Classified as

BAR FRF HTW HFR PJP SHA SST BWB BWS BWC SJP STR TJP BAR FRF HTW HFR PJP SHA SST BWB BWS BWC SJP STR TJP
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Figure 4.10.Confusion matrices showing the influence of théadient feature types. The learning database
is D¢, while the evaluation databaseg¥!. In all four cases the quantile mask introduced in Sedtigrngt.
used.

4.6.1 Influence of Feature Types

We first report on an experiment for investigating how the quality of thesiflaation depends on
the used feature types. To this end, we use confusion matrices, which gisalitative impression
which jump classes are classified correctly, and which jump classes diesedramong each
other. Such confusion matrices display the ratio of how many motions frouea giass (abscissa)
were classified as a certain class (ordinate), where dark entrieseept@ high percentage of
motions. If the used feature types discriminate jump classes well, this woulldl iesudark
diagonal leading from the top left of the matrix to the bottom right. In this experipvee use the
jumps from databas®y. to learn the motion templates and USg for evaluation.

Figure[4.10 shows the confusion matrices for the fotfiedent feature sets defined in Secfiod 4.4,
where the feature s€& 5,3y includes all feature types, while the feature $etsy, Frsy, andFrsas
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Figure 4.11. Classification results for routine scenario (red: manuabgation, black: automatic classifi-
cation). The class representations where learned usia@asdD,., while the classified routines are taken
from databaseg. (a): Classification result for an example routine when using tjleamasks.(b): Clas-
sification result for the same routine when using weightedk®a(c): Classification accuracy for the 13
learned jump classes usingiéirent masking techniques.

lack one of the feature types. In Figlire 4.10 (a) one can see that thesfeatr 3y, which omits

the inclination aspect, performs worst. This is expressed by the many higbevdi-diagonal
entries which are an indication for massive miss-classifications. This sihawthe feature set
Fasy is too sparse for distinguishingftérent jump categories. Figure 4110 (b) shows the results
for the feature seff1sy. Here, while most of the jumps were classified correctly, the jump classes
PJP, SJP, andTJP are mixed up among each other. This is due to the fact that these jump classes
only differ in the configuration of the legs during the flight phase. For example,tmjbmp
classeL]P andSJP the legs are straight to the front during flight. The onlffelience is that

in the jump classJP the legs are additionally straddled. If the feature set contains inclination
and angle feature types, as shown in Figurel4.10 (c), the classificatids Wetter for the jump
classe®JP, SJP, andTJP, but now other jump classes 88R andHTW get mixed up. Here, these
two jump classes only ffer in a rotation around the bodies longitudinal axis. For this reason,
the feature that measures the angular velocity is needed to captur&énerdie between the two
jump classes. Finally, Figuke 4]10 (d) shows, that the proposed featiffes gy almost perfectly
separates all jump classes from each other.
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Figure 4.12. Overall classification accuracy for the 13 learned jumpsgasising dferent masking tech-
nigues.

4.6.2 Routine Classification

As main experiment, we combine the automatic segmentation from Séction 4.3 withgbkii-cla
cation introduced above. Here, our task is to evaluate how well the opgpaline performs in a
realistic trampolining scenario. Furthermore, we discuss how the maskipgg®d in Section 4.5
affects the retrieval results. For this evaluation, we use the thirteen routomegte databas®gr

for evaluation, while the motion templates are again learned from the databasésirthermore,

we use quantile masks as defined in Equation {4.10). Flguré 4.11 (a) displelgssified rou-
tine, where the black regions represent the automatic classification reduthe red rectangles
indicate the manual ground-truth annotations. It can be seen that forxdnispée 14 out of 18
jumps were classified correctly. Here, for example, the misclassificatiore géithp SHA (frames
2200-2350) with the clasSST is due to the fact that the featuF is the only feature which

is actually able to capture theffirence between this two classes. Similarly, on can explain the
confusion betweeSTR (frames 3050-3200) ariflW. In such cases, the influence of the feature
Fg on the local cost measureis not large enough (its only one ninth compared to the features
F1,...,Fg). In order to better separate the confused jump classes from each aiberan in-
crease the influence of the featutg by replacing all ones in the quantile mask matrices of the
class representations belonging to featigevith some value larger than one (five in our case).
The dfect of such so calletveighted mask matricesan be seen in Figuie 4]11 (c), where the
previously misclassified jumpsHA andSTR are now classified correctly. The misclassifications
between the jum@JP (frames 1950-2075) witRTR and the jum@PJP (frames 2380-2500) may
be explained as follows. First note that the performance variations befwegps that belong to
the same class are often significant—even within the jumps of the same athlelevaBiations
are actually masked out by our local cost measure. Now, tfereihces between two jump classes
such asTJP andSTR or PJP andSJP are often subtle and only refer to a single motion aspect. It
may happen that such aspects are actually masked out by our maskiegevitch in turn leads

to unwanted confusion. These examples indicate the trédetween robustness on the one hand
and discrimination capability on the other hand.

In addition to this qualitative analysis, we performed a quantitative analysisasurethe clas-
sification accuracy for each jump class. We say that an automatically seghjemie has been
classified correctly if its segment boundaries lie in the neighborhood afiaotated jump (using
a tolerance of 5 sec) and if the computed class label coincides with the annotated label. In
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our experiments, we consider threééient masking strategies: binary masking (quantile mask),
weighted masking, and no masking at all. Figure .11 (c) reveals that thefickson results

are very good for most classes regardless the masking strategy usiscagé@in shows that our
proposed features are capable to capture relevant motion charactekigtien using the weighted
mask matrix the classification results are generally better than when using &g imask. Espe-
cially the jump classeSHA andSTR, as in the previous paragraph, benefit from the use of weighted
masking. A good example how masking in general improves the classificasioitsrare the jump
classe$RF, FTW, andSTR. Here the variances, within the jump classes are very high among actors
and result in misclassified jumps, whenever the masking is not used. Onrttrargahe jump
classTJP does not benefit from masking out variant regions, since, in this ttaese regions also
contain the only information that is able to discriminate this jump class from other jlanpes.

4.7 Conclusions

In this chapter, we introduced a pipeline for the automatic segmentation asdic&sn of tram-
poline routines based on inertial sensor input. Here, our motivation fiog irsertial sensors was
that such sensors deal with dynamic motions better and do not impose auastsafar as the
recording volume or lighting conditions are concerned. As our main cotiipuve discussed
suitable feature representations that are invariant to spatial variatidmelamst to measurement
noise. Based on this feature representations, we introduced reativalotion templates that
grasp the characteristics of an entire jump class. To handle significdotrpance variations, we
introduced a masking scheme based on variance templates. Furthermpresemted a weight-
ing strategy to enhance the influence of certain features. For futulewswant to apply these
techniques in an online scenario, where we assess the performancatbfete and directly give
feedback for performance improvement. A possible means of suchdeledhight be the sonifi-
cation of certain motion parameters with respect to a learned refererfoenpances.



Chapter 5

Human Shape Estimation Using Depth
Sensors

Tracking 3D human motion data constitutes an important strand of researcimaiti appli-
cations to computer animation, medicine or human-computer-interaction. Intrgears, the
introduction of inexpensive depth cameras like Time-of-Flight cameraseoMibrosoft Kinect
has boosted the research on monocular tracking since they constituterabipgheap to obtain
so-called 2.5 dimensional depth maps, see also Sdciibn 2.3. Tracking dodndepth input is
especially appealing in home consumer scenarios, where a user contagplecation only by
using his own body as an input device and where complex hardwaressaipot feasible.

While depth data facilitates background subtraction compared to pure imagd bpproaches,
tracking still remains challenging because of the high dimensionality of thegpas® and noise
in the depth data. Currently, there exist threadlent strategies to harness depth data for tracking
human motions. Discriminative approaches detect body parts or joint-pasiticectly from the
depth images. Such approaches often neglect the underlying skeletalgppf the human which
may lead to improbable joint locations and jitter in the extracted motion. Generppiveaches fit
a parametric model to the depth data using an optimization scheme. Here, thecgaduhe final
tracking result is dependent on the degree to which the body model mabehese body shape
of the person. In practice, such models are often obtained in a pregingetepe. g, using laser
scanners which are not available in home consumer scenarios. Findlhd bypproach combine
the the advantages of discriminative and generative approaches andyebd results for fast
motions in real-time scenarios.

Recently, first attempts have been made to obtain the shape of a person byafitarametric
model to a set of depth images of a strictly defined calibration pose. Hovtbeeatuntime in the
orders of one hour as well as the requirement of a fixed calibrationlpogéhe applicability in
a practical scenario.

Contributions. We contribute with algorithmic solutions that improve the performance of model-
based depth trackers, by providing a personalized shape of thedrpekson that is calculated
from only two sequentially taken depth images. In particular, we preseptvashape estima-
tion method that makes model fitting an order of magnitude faster comparedvioysep-

57
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Figure 5.1. (From left to right): Actor standing in the front of a single Kinect camera. Coloded depth
data (red is near, blue is far) as obtained from the Kinectouatically estimated body shape of the actor.
Two complex poses reliably tracked with our algorithm {l&fput depth, right: estimated pose).

proaches Weisst al. [2011] at no loss of quality. Secondly, we extend an existing tracking algo
rithm by/Baaket al.[2011] to obtain a personalized version that works with arbitrary bodpeaé.

As another contribution, we deployed an extensive dataset of 15 minfutesilrated depth and
marker-based motion capture (mocap) data which was used to evaluat@posed tracker and
which is publicly available to the research community. We also contribute with sugator met-
rics to make dferent trackers comparable on our data set. The contributions pre$erikeasi
chapter have been published in Heltral. [2013a]. This chapter closely follows that publication.
Additionally, the discussion of related work in Sectionl 5.1, was presentedlieret al.[2013c¢].

Organization. The remainder of the chapter is organized as follows. After discussiatgde
work and introducing some of the challenges current approachegSacgori 5.11), we present our
novel shape estimation method in Secfiod 5.2. Then, in Sectibn 5.3, we desaripersonalized
tracker and evaluate it with respect to previous approaches. Finallgpm@ude in Section 5.4
with a discussion of limitations and an outlook to future work.

5.1 Full-body Depth-Trackers

Depth-based tracking of full-body human motion focuses on using inekgerecording equip-
ment that is easy to setup and to use in home user applications. As a carseqiepth based
approaches have to deal with various challenges that marker-lessitragproaches do not face.
Commercial systems that make use of this kind of motion tracking can be fwgnoh the Mi-
crosoft Kinect for XBol, the SoftKinetic 11ISU Middlewat for pose and gesture recognition,
as well as the SiIverFﬁtsystem for rehabilitation support. So far, several depth-based tgackin
methods have been published that can be classified into three basic tygmesatize approaches,
discriminative approaches and hybrid approaches. Key parts of tisrséave been published
in and closely follow Helteret al. [2013c].

Thttp://www.xbox.com/Kinect
?nttp://www.softkinetic.com
Shttp://www.silverfit.nl/en.html
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5.1.1 Generative Approaches

Generative approaches use parametrized body models that are fit irdegtiedata using op-
timization schemes. In particular, the optimization process maximizes a model-to-tmiagje-
tency measure. This measure is hard to optimize due to the inherent ambiguityiadbéto-data
projection. In particular, when using monocular video cameras, this ambigetyudes ficient
and reliable inference of a usable range of 3D body poses. Depthedhteerthis ambiguity prob-
lem but it is still one of the main algorithmic challenges to make generative methodses.

A first approach for obtaining pose and surface of articulated rigidctdbjeom ToF depth images
was presented in Pekelny and Gotsman [2008]. Under the assumptionghabtiement of the
tracked object is small.r.t. the capture speed of the depth camera, the authors track individual
bones from a manually pre-labeled depth image using an iterative closes{I) approach.

In each frame, previously unlabeled depth pixels are assigned to thehmirngest explains the
unlabeled depth pixel. However, this approach was not real-time capabléng at around .8
frames per second (FPS). Another approach Kreiad! [2009] that is specialized on human mo-
tion, generates point correspondences for an ICP based optimizatiorbéith 3D and 2D input.
An example for 2D input could be a body part or feature detector wor&img@D color images.
All 3D points that could be projected onto the 2D feature point now defireyarr 3D space.
The closest point of this ray to the model is used to generate a traditionadiBDcpnstraint. The
authors report a performance of 25 fps with this method, but the agpre&mited to simple non-
occluded poses since otherwise the tracker would converge to arrea®ppose minimum from
which it cannot recover. Another early approach for real time capddgh-based motion track-
ing from monocular views was presented_in Bleiwedsal. [2009]. Here, the authors describe a
general pipeline for obtaining pose parameters of humans from a stifedeptb images that are
then used to drive the motion of a virtual characteeig.video games. To further increase the
performance of generative approaches Fritairgl. [2010] proposed porting the computational
intense local optimization to the graphics processor. However, all thggeaghes tend to fail
irrecoverably when the optimization is stuck in a local minimum. This problem alstsex
other vision-based approaches and wag. discussed in_Demirdjiaat al. [2005]. In general,
these tracking errors occur due to the ambiguous model-to-data mapping yrposes, as well
as fast scene motion. While the latter problem can be remedied by increasifigrtie rate, the
former was addressed by more elaborated formulations of the energijofunOne option was
lately presented in Ganapatttial. [2012], where the authors proposed a modified energy function
that incorporates empty space information, as well as inter-penetratistraios. A completely
different approach was shownlin ¥eall [2012]. Here, multiple depth cameras were used for
pose estimation which reduces the occlusion problem and enabled caph&inwtion of mul-
tiple person using high resolution body models. The approach is not reattipable, though.
With all these depth-based methods, real-time pose estimation is still a challeadgndrmay
drift, and with exception to Yet all [2012], the employed shape models are rather coarse which
impairs pose estimation accuracy.

5.1.2 Discriminative Approaches

Discriminative approaches focus on detecting certain features in the dafsth-such as joint
locations—and later combine these independent cues to form a bodyymsbédsis. These fea-
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Figure 5.2. Typical intermediate results of discriminative depth kiag approaches(a): Input depth
image. (b): Detected geodesic extrema positions as proposed by Plagernal. [2010]. (c): Detected
body parts as presented. in Shottdrall [2011].

ture are often learned for a pre-defined set of poses. For thismedisariminative methods are
not dependent on a numerical optimization procedure, and can inferghes without temporal
context and continuity. One algorithm for detecting human body parts in diejgitees was pre-
sented in_Plagemarat al. [2010]. Here, the authors use so-called geodesic extrema calculated
by iteratively using Dijkstra’s algorithm on a graph deduced by connedtiirdepth pixels in the
2.5D depth data into a map. The assumption here is that geodesic extremallgedign with
salient points of the human body, such as the head, the hands, or tleeéealso Figuie 5.2 (b). To
label the retrieved geodesic extrema according to the correspondigigoaddthe authors employ
local shape descriptors on normalized depth image patches centerededdesic extrema’s po-
sitions. Another body part detection approached is pursued ireZali[2010], where the authors
deduce landmark positions from the depth image and include regularizirrgniaion from pre-
vious frames. These positions are then used in a kinematic self retargetnework to estimate
the pose parameters of the person. In contrast, the approach desariBeottoret all [2011]
uses regression forest learned on simple pair-wise depth featurestpixg-wise classification
of the input depth image into body parts, see also Figure 5.2 (c). To obtaimkang regression
forest for joint classification that works under a large range of pdkesigh, the authors had to
train the classifier on approx. 500 000 synthetically generated and ladbeghtla images. For each
body part, joint positions are then inferred by applying a mean shift-basel finding approach
on the pixels assigned to that body part. Using also regression forediedg part detection,
Girshicket al. [2011] determine the joint positions by letting each depth pixel vote for the joint
positions of several joints. After excluding votes from too distant deptkelpiand applying a
density estimator on the remaining votes, even the probable positions ofsible-joints can be
estimated. Finally, Tayloet al. [2012] generate correspondences between body parts and a pose
and size parametrized human model, which they also achieve by using dafpite$eand regres-
sion forests. The parameters of this model are then found using a onepgimeization scheme,
i. e. without iteratively recomputing the established correspondences. Disativ@rapproaches
show impressive tracking results, where some discriminative methods eweeesl in detecting
joint information also in non-frontal occluded poses. However, sincgdften detect features in
every depth frame independently, discriminative approaches tend to yigidtally unstable pose
estimations results. Furthermore, for many learning-based methodgfdhe@train classifiers
can be significant.
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Figure 5.3. Overview of the hybrid depth tracker presented by Beidl. [2011]. This figure was taken by
courtesy of Andreas Baak from his thesis (Baak [2012]).

5.1.3 Hybrid Approaches

Combining the ideas of generative and discriminative approaches, hafipidaches try to har-
ness the advantages from both tracker types. On the one hand, hgbkidrs inherit the stability
and temporal coherence of pose estimation results common to generatigrgra®©n the other
hand, they show the robustness of pose inference even in partly edghages that characterizes
discriminative approaches. A first method, in the domain of 3D surfacnstaiction, was pre-
sented in_Salzmann and Urtasun [2010]. Here, the discriminative tracksedsfor initializing

the surface model, while the generative tracker enforces the obsere&mlistance constraints.
The authors also sketched, how their approach can be applied to husenggonstruction. At
the same time, the first method with specialization to human pose estimation wastgutesen
Ganapathét all [2010]. This work combines the geodesic extrema-based body padmition
presented in_Plagemamall [2010] with a generative pose optimization scheme based on ar-
ticulated ICP. Furthermore, the authors introduce a dataset comprisirgilmfated ToF depth
images and ground-truth marker positions that serves as common bendomfartkire work in
that field. The works by Baa#t al.[2011] and by Yeet al.[2011] also use a discriminative tracker
to initialize a generative pose estimation algorithm. In detail, the approachnpedsal Yeet al.
[2011] uses a database consisting of 19300 poses. For each ofpibese four synthesized
depth images were rendered fronffelient views. Using a principal axis based normalization, the
point clouds are indexed using their ¢deents in a PCA subspace. Here, the normalization of
the point cloud in combination with the rendering from fouffelient views is used to retrieve
poses from the database independent from the orientatidnthe depth camera. Note that by
storing four diferent views in the database, the index size is increased to 77 200, whilelstill o
19300 poses are contained in the database. During tracking, the irptutiood is normalized

in the same way, its PCA-cfiiients are calculated and used for retrieving a similar point cloud
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in the database. Finally, they refine the retrieved pose using the Coli#rRoint algorithm
presented in_Liaet all [2009]. This approach shows good pose estimation results on the bench-
mark dataset introduced lin Ganapathal. [2010]. However, their approach does not run in real
time—inferring the pose in one frame takes between 60s and 150s.

In contrast, the approach showcased in Beiadl. [2011] uses a modified iterated version of Dijk-
stra’s algorithm to calculate geodesic extrema similar to the approach in Plageis2010].
The stacked positions of the first five geodesic extrema, which oftefigroveith the head, hands
and feet, serve as index into a pose database consisting of 50 000 pbsesuitability of such
an approach has been previously discussed iig#iret al. [2010], where the authors used the
stacked positions of the body’s extremities (head, hands, and feet) toantktabase containing
high dimensional motion data. As index structure the authors emplogetiteee facilitating fast
nearest neighbor searches. To be invariant to certain orientationimasiaf the person, Baak
et al. normalize the query and the database poses based on information dédncede depth
point cloud. The incorporated generative tracker is a standard I@®agh that builds correspon-
dences between preselected points from the parametrized human mogsliatisdn the depth
point cloud. In each frame, they conduct two local optimizations, one inittlimseng the pose
from the previous frame and one using the retrieved pose from the poskbage. Using a late
fusion step they decide based on a sparse Haffddar distance function which pose obtained
from the two local optimizations best describes the observed depth imagepdde is then used
as final pose hypothesis, see Figuré 5.3 for an overview of their apipr&Vhile not showing as
good results as the approach presented iety. [2011], their tracker runs much faster at around
50-60 frames per second, enabling very responsive tracking. &nhl-time approach was re-
cently proposed by Wait al. [2012]. Here, the authors use a discriminative body-part detector
similar to/Shottoret al. [2011] to augment a generative tracker. In particular, they use the pos
obtained from the discriminative tracker only for initialization at the beginnirtg®tracking and
for reinitializing the generative tracker in cases of tracking errors.detecting wrongly tracked
frames, they measure how well their body model with the current posenptees explains the
observed point cloud. Hybrid approaches, harnessing the adesnsdgoth tracking worlds, are
able to show superior performance compared too purely discriminativerargtive approaches.
However, even the current state-of-the-art hybrid trackers stilé Hiawitations, which we will
elaborate on in the following.

5.1.4 Challenges

While providing good overall tracking results, hybrid approaches sftiftesdrom the noisy char-
acter and the sparsity of the depth data and are prone to ambiguities origiinatmgcclusions.

In this section, we will focus on challenges that are related to the accof#oy used body model.
For a discussion of other challenges such as occlusions, we refeafeze.

Most trackers use an underlying model of the human body. Such modgldnastically ranging
from simple representations as graphs (Pekelny and Gotsman [20083t 2h[2010];.Shottoret al.
[2011];lGirshicket all[2011]; Tayloret al.[2012]; Salzmann and Urtasun [2010]; ¥eal.[2011]),
over articulated rigid bodies (Knoa al. [2009]; Friborget al. [2010];|Ganapathét al. [2012];
Wei et all [2012]) to complex triangle meshes driven by underlying skeletons ukingiag ap-
proaches|(Baakt al. [2011]; [Yeet all [2012]; |Ganapathét all [2010]). Here, the complexity
of the model mainly depends on the intended application. While some appscahenly in-
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Figure 5.4. (a): Body shape of a person to be trackéol.: Depth image of shapéc): Graph model(d):
Model based on articulated cylinders and sphefe$: High resolution surface model.

terested in tracking specific feature points of the body such as the posgitidhe extremities
(Plagemanret all [2010]) or joint positions/(Shottoat al. [2011]), other approaches try to cap-
ture pose parameters such as joint angles (Raak [2011];|Ganapathét all [2012];| Tayloret al.
[2012];|Ganapathét al. [2010]; Yeet all [2011];\Weiet al. [2012]), or even the complete surface
of the person including cloth wrinkles and folds (¥eal. [2012]). Another requirement for a de-
tailed surface model is the energy function used in generative or hyypaches. In particular,
ICP-based trackers benefit from an accurate surface model to bugldinggul correspondences
between the model and the point cloud during optimization. In order to circointive problem of
obtaining an accurate model of each individual person, some apg®ask a fixed body model
and scale the input data instead Baalkl. [2011]. However, this approach fails for persons with
very different body proportions.

In general, the model of the tracked person is often assumed to be dreatpteprocessing step
using manual modeling or special equipment as full-body laser scanHergever, this is time
consuming and involves expensive equipment, which renders it unfieasibome application
scenarios. To this end, most algorithms applied in these scenarios, sBbotasnet all [2011],
use a diterent approach. In a preprocessing step the authors use a largermfrbody models
of different sizes and proportions to learn a decision-forest-based clatisdfies able to label
depth pixels according to the body part they belong to. As a consequbigelassifier becomes
invariant to the size of the person and its proportions. During the actuiniy the learned
classifier can be used without obtaining an actual body model of the ttgekson. Based on the
labeled depth pixel the authors employ a heuristic to deduce the most prggiabpmsition. This
approach runs in real-time and works for many tracking applications.

However, for some augmented reality applications the reconstruction quati#tined from simple
graphical body models may not befscient enough. A popular example is virtual try-on, where
the person can wear a piece of virtual apparel that plausibly interactsthétiperson’s body
motion. Here, an accurate reconstruction of the person’s body sudameneficial in order to
ensure believable visual quality or to give good indication whether the clitlally fits. Also,
model-based trackers that use high-detailed surface models benefit,shdpe of the model
closely resembles the shape of the tracked person. Here, one caras#®etiracking results
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Figure 5.5. Shape estimation(a): Calibration poses(b): Depth input of poses(c): Initial shape.(d):
Estimated shape.

improve the better the body model matches. One possible approach wouldriferta high
resolution body model from depth data in a preprocessing step and #érisisodel for tracking,
visualization or physical simulations of objects in the augmented scene. tBeose approach
Weisset all [2011] has addressed this issue. Here, the authors fit a pose gredrametrized
model into the depth point clouds using an ICP-based approach. Thecpimids were obtained
from four sequentially captured depth images showing the person frofnaie the back and
two sides. However, the fact that the person had to reproduce the smménpall four images
and the optimization’s runtime of about one hour makes this approach natadpe in home user
scenarios.

5.2 Personalized Body Shape Estimation

In this section, we introduce a novel procedure for estimating the boghedham a single depth
camera using only two fferent calibration poses and within only a minute of fitting time, see Fig-
ure[5.5 for an overview. In addition, even if the user only roughly matthesequired calibra-
tion poses, our shape estimation algorithm achieves accurate results. oddes@rtwo innova-
tions to achieve high speed and high accuracy. Firstly, our optimizatiomschwrks purely in
the 3D domain and does not revert to 2D data representations as silhawattegours as used
in Weisset al. [2011]. However, note that the richer 3D contour is implicitly representetien
3D-domain. Using 3D cues instead of 2D cues typically results in fewer aiitibigand occlusion
problems such as an arm in front of the observed body, which wouldvistite in the observed
contour. Secondly, in our optimization scheme we use a cost function that anly based on
distances of corresponding points, but also considers normal-batadats between points and
planes. As a result, the optimization is less likely to get stuck in local minima and ¢eel s
convergence is increased significantly.

5.2.1 Shape Model

Mathematically, our shape model is given as a mesh consisting of verticdasiamgllar faces.
Let P be the number of vertices and, as explained belowp leé a vector of shape parameters.
Henceforth, we assume that the mesh is rigged with a skeleton which is byiviepose parameter



5.2. PERSONALIZED BODY SHAPE ESTIMATION 65

((a) (b)
‘ ﬂ ’ (2 ‘ ” ‘ X

MO,Xo M%\’o M‘P»X

Figure 5.6. (a): Average mesh\ o, in standard posg,. (b): Personalized mesM,,, in standard pose
Xo given a shape parameter vecgor(c): Personalized mesi, , given in a posg.

vectory using linear blend skinning, see also Secfion2.1.2. Hence, the 3D caesiofdhe mesh
depend on botp andy and can be represented as the stacked vedigy € R3P. Furthermore,
let M, ,(p) denote the 3D coordinate of thuéh vertex,p e [1: P]:=({1,2,...,P}. Finally, from
the triangulation one can derive a normal veaty, (p) € IR3 for each vertex.

Our body model is a statistical model of human pose and body shape si it 3k [@].
The statistical model is a simplified SCAPE model (Anguedball [2005]), where we omit the
terms responsible for modeling muscle bulging in order to speed up computa@rsmodel
is generated from scans 8f= 127 young male and female persohs_ttla.etﬂll [|20_0_¢]). This
certainly limits the expressiveness of the model to a certain extent. Hovesveur experiments

will show, even with a model generated from a relatively small number ofsswarachieve better
accuracy than Weisst all [ILOﬂ] where 2500 scans were used to construct the statistical model.

5.2.2 Model Construction

We follow the approach presentedLln_I:Iasiﬁaﬂ [|20_O_¢]. Here, the authors register a template
mesh withP = 6 449 vertices into a point cloud using global and local mesh deformatianen G
the S laser-scans, leMs € R3P, se [1 : S] be the stacked vertex positions of the fitted meshes.
Now, theaverage mesls defined as

S
1
Moy, = S § M, (5.1)
s=1

see also Figurie 5.6 (a). Note that to this end, all megHefave to assume the same pose which
is called thestandard posand is denoted by the indgx. Then, we compute the auto correlation
matrix

S
1
C=3 D (Ms = Moy )d(Ms— Maoy,)". (5.2)
s=1

Let g, s € [1 : S] be the eigenvectors @, sorted from most significant to least significant. A
suitable eigenvector-matrix is now defined as

Q=[D1---QR], (5.3)
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with R < S. The corresponding vectgre RR is called the shape parameter vector or skbape
parameters

Using Mo, ®, andy we obtain a family of dierent body shapes in the following way:
Moyo = Moy, + - ¢ (5.4)

InHasleret all[2009] it was shown that by using dimensionality reduction techniques;lotaéns
already a wide range of naturally looking shapes @kdéent people for a low-dimensional The
meshM,,,, is called thepersonalized mesisee also Figuiie 5.6 (b). In our experiments, we use the
R = 13 most significant Eigenvectors. The shape space that is spanneskbytttors covers the
overall body size, gender specifididirences, muscularity and other coarse features. It does not
cover fine details as facial features or wrinkles and fold or asymmetrig pagperties. However,

as the following experiments show, it still enables us to reconstruct thalbeg@pearance of a
person with a better accuracy than previous approaches that use amplerer body models.

As for the underlying skeleton, we use a model containing 51 joints similar toektall[2011].
Not all joints possess a full degree of freedom (DoF). For examplesdine is represented by sev-
eral coupled joints that are parametrized by only 3 DoFs, which resultamoath bending of the
whole spine. In our experiments, we represent the pose of a persoBIMRbFs (3 translational
and 28 rotational) encoded by the pose parameter vgctbhe skeleton was once manually fitted
to the average shape corresponding to the parameter yectdd in the posey,. To be able to
transfer the skeleton to other shapes, we represent the position gbdets a linear combination
of its surrounding vertices. Note that, using this kind of formulation, our mioae two indepen-
dent sets of parameters: Shape parametensd pose parametegs As a consequence, identical
shape parameters always induce and identical shape and the samarnaoseters always result
in the same pose. This property is important for the shape optimization priesstbed below.

5.2.3 Fitting Model to Data

Our shape estimation problem can be formalized as follows. First, we assangetpoint cloud

is given T consisting of pointsT(q) € RS for q € [1 : Q], where Q denotes the number of
points. In our setting we assume tfAais a depth image as supplied by a Kinect camera, but point
clouds from other sources could also be used. The goal is to jointly optinezehtipe and pose
parameters of our shape model to best explain the given target poidt clou

Firstly, the shape and pose parameter vectors are initializegl Byp;,; andxy = xj.:- In our
scenarios, we sef; = 0 andy;,;; to the standard pose parameggitranslated to the mean center

of the point cloudT. In order to make the shape model compatible with the target point dipud
we transform the shape model surface into a mesh point cloud. To thisverizisically consider

the 3D coordinate$(p) := M, ,(p), [1:P], of the mesh vertices. Since in our setting the target
point cloudT comes from a depth image and hence only shows one side of the actor,ove als
restrict the mesh point cloud to the points that are visible from the depth canperapective

(the rough orientation of the body is assumed to be known in the calibraticephto simplify
notation, we still index the restricted point cloud by the setP.:

We establish correspondences between the target point cloud and theomgtscloud based on
closest points. For each poikt(p), we define the corresponding poihfqp) to be the point that
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minimizes the Euclidean distance betwead(p) and the point cloud. Similarly, for each point
T(q) the pointM(pg) is defined.

Based on these correspondences, we now introduce our optimizatiemecht is well known

from the literature that one obtains faster convergence rates in rigie shgjstration based on
iterative closest points (ICP) when using point-plane constraints instgein-point constraints,

seel Chen and Medioni [1992] and references therein. Furtherrsoch, constraints are more
robust to noise from depth sensors leading to a more stable conver@amtiee other hand, point-
to-plane constraints are problematic when correspondences arafaremerefore, we design an
energy functional that incorporates both point-point as well as poimeptanstraints. First, for a

pair (p,q) € [1:P] x[1:Q] let
dpoint(P, @) = [IM(p) — T(a)ll2 (5.5)

denote the Euclidean distance between the pdit{ig) andT(q). Next, we use the normal infor-
mation supplied by the mesh to define a point-plane constraintN{et= N, ,(p), p € [1:P],
be the normal vector at the" vertex. Then, the distance between the pdifd) and the plane
defined by the normall(p) that is anchored at the poiM(p) is given by

dnorma(p’ CI) = <M(p) - T(q)’ N(p)>- (5-6)

Next, we fix a suitable threshotd(in our experiments = 15 mm) to decide which of the distances
should be considered depending on how far the two correspondints poeapart and we define

— | Gpoint(p. @), if [IM(p) = T(Qll2 > 7,
d(p.9) '_{ Ohorma(p, @),  otherwise ®.7)

Finally, in the definition of the energy functionBle, y|T) we consider all correspondences from
the mesh point cloud to the target point cloud and vice versa:

Elp.xIT):= > de(p.dp)+ > de(pg,0). (5.8)

pe[1P] ge[1Q]

To minimize Equatior[(5]8), we use a conditioned gradient descent soldesasbed in Stolét al.
[2011]. To this end, we compute the analytic partial derivativeE(gf, y|T) with respect to the
shape parametegsand the pose parametgrs

Letd,,(p,i) € R>! be the sub-matrix ob that influences th@-th vertex of M, and is multi-
plied with thei-th shape parametey in ¢. Now, we defing®, (p)[-] to be the linear blend skinning
transformation of verteyp, so that

Mo x(P) = B (D)Mo xo(P)] (5.9)
Nox(P) = B (P Ny (P)], and (5.10)
Dy (P, 1) = Oy (P Pyo(p. )], (5.11)

with p € [1: Pl andi € [1: |g]]. Note that®,(p)[-] does not apply a translationafteet to
directional vectors such &g, ,,(p) or displacement vectors suchdg, (p, i) but only to positional
vectors such as, ,,(p).
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The partial derivatives of the distance functiaigint and dnorma With respect to the-th shape
parametep; are defined as

Odpoint(P, 0)

2D 2M(P) - T @, (p. i) and (5.12)
‘”;—Jpq’ = 2AM(P) = T(@). N(P) - (@ (p.i). N(D)).

Analogously, the partial derivative with respecit@re

adpoint( P, q)

% = 2M(p) - T(q), M, (p)), and (5.13)
Ohorma -9 _ M (p) - T(c). N(p)) - (M, (p). N(p)), with
)% K
, j(p) X Myxo(P), j(p) is a revolute joint;
M =/ . and 5.14
ox(P) { () Mo xo(P)) &y, else 514
aj(p) = 2o (5.15)
llaj(pll2

Here, a;(p is the axis of the join{(p) that is influenced by the elementdy used for diferenti-
ation. However, if that joint does not directly influendd, ., ajp) is 0. For details, we refer to
Sectior 2.1.P.

Note that in contrast to numericftérentiation, analytic derivatives enable faster and more stable
convergence. We repeat the process in an ICP fashion, wheredpetwe iterations, the corre-
spondences are updated using the newly estimated parampetady. We further speed up the
overall optimization procedure by using a multi-scale approach, whereantersth only a small
number of correspondences and successively increase the nurnbeespondences until we use
one correspondence for every poinflirand for every vertex iM.

Finally, we want to note that our optimization procedure can be easily exddndmnsider sev-
eral target point clouds to be jointly optimized against. More precisely, baKitarget point
cloudsTy,..., Tk, the objective is to estimat& pose parameter vectops, ..., xg, but one
joint shape parameter vecter In the optimization, the energy functional is defined as the sum
ker1:k] E(@, xkITk), see Equatior (518). Our experiments show that using Enky 2 different
depth images (one from the front of the body and one from the bacldlisady sfficient to ob-
tain an accurate shape estimate, see Flgufe 5.5. This easy extension to muigbledent clouds

is possible because our model has independent pose and shapetparasree Sectidn 5.2.1.

5.2.4 Evaluation

To evaluate the accuracy of our proposed method and to compare it witloywenethods, we
conducted similar experiments as reported_in Wetsd. [2011]. As for the test data, we con-
sidered the body shapes of sixfdrent persons of fferent size and gender (three males, three
females), see also Figure b.7. For each person, we recorded twoinhegbs, one showing the
front and the other the back of the body, see Fidquré 5.5. Furthermsirgy & full-body laser
scanner, we generated for each person a surface point cloud wadolution of about 350 000
vertices. These scans serve as ground-truth (GT).
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Figure 5.7. Vertex-to-vertex distances given in millimeters for threale (M;—M3) and three femaleH;—
F3) subjects(top): Shown from the front an¢bottom): from the back.
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Now, lete* be the optimized shape parameter vector obtained by our algorithm whenthising
two depth images as target point clouds (the pose parameter vegtansly, are not used in the
evaluation). Furthermore, to obtain a ground-truth shape, we use theasgonithm as before,
however, this time using the laser scanner point cloud as targete$'etienote the resulting
optimized shape parameter vector. To compare the shapes resultingframaoC®T, one needs

to generate the corresponding meshes. However, to this end, one gig@seose parameters,
and simply taking the standard pose parameter vggias usually not the right choice, since the
different shape parameters may also have a substantial influence on the@gsse. Therefore,

we compensate for thigfect by taking the standard pose for the laser scan shape and by suitably
adjusting the pose parameters for the estimated shape. To this end, wepgdyaoua optimization
algorithm usingM,er , = as target point cloud and only optimize over the pose parameter vector
x leavingy = ¢* fixed. Lety* denote the result. As for the final evaluation, we then compare
the meshM,- - (representing our shape estimation result) wiber , (representing the ground
truth shape). Since vertex correspondences of these two meshewiatéltased on the same
index set [1 :P]), one can directly compute the vertex-to-vertex Euclidean distances sathe

way as Weisgt all [2011].

The vertex-to-vertex distances are indicated in Figure 5.7, which alsessthe mean, variance
and maximum over these distances. For example, for the first male Mgtathe mean aver-
age is 51 mm and the maximal distance is.14nm. Overall, the achieved accuracies (in average
10.1 mm) are good and comparable to (in averagéZ.hm) reported in Weisst all fQQli]. There

are various reasons for inaccuracies. In particular, using only fil8ahost significant Eigenvec-
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M]_ |V|2 M3 F]_ F2 F3 %)

7 51 187 91 68 114 92| 101
o 25 95 40 37 49 44| 48
max | 141 463 205 187 301 194 | 249

Table 5.1. Meany, standard deviationr, and maximum max in millimeters over all vertices. The heads
where removed from the error calculation because of theirbpresentation in the shape model.

tors in Equation[(5J4) does not allow us to capture all shape nuances miaighead to higher
errors, such as for the actdvly andF». In these cases, either similar shapes might be not spanned
by the training data of the shape model or the 13-dimensional approximatsirapé variations
might be too coarse. Furthermore, note that the depth image resolution (e/micighly 20 mm at

the used distance of@m) as well as the mesh resolution (where neighboring vertices often have
a distance of 20 mm) puts limits on the achievable accuracy. Nonethelesal] geed accuracy

is achieved with a compact model.

Besides its accuracy, our approach has two further main benefiitsieecy and robustness. It
only requires 50—60 seconds to estimate the shape parameter vectorg&nd fjose parameter
vectors) from two target depth point clouds. This is substantially faster tthen3 900 seconds
(65 minutes) reported hy Weiss all [2011]. The running times were measured usingta@n-
plementation of our algorithm executed on an Intel Xeon CPU.1® GHz. Furthermore, jointly
optimizing for shape and pose introduces a high degree of robustngsgl@ans us to use only
two different depth images to obtain accurate shape estimates. Actually, an adéitiom@mnent,
where we used four target point clouds (using two additional depth imagsgsslightly improved
the overall accuracies (from I0mm when using two poses tod8nm when using four poses).
Besides implementation issues, these substantial improvements in running tinobastdess are
the result of using a relatively small number of optimization parameters tirmyé¢o reliable 3D
correspondences, using a mofkeetive parametrization of the body model, and combining point
and plane constraints.

5.3 Personalized Depth Tracker

As discussed in Sectidn 5.1.3, the tracker presented in Baak[2011] combines a generative
with a discriminative approach. The discriminative tracker finds closestpm a database, but
that database is specific to an actor of a certain body shape. If the shdpetracked person
does not match the shape of the actor used to generate the databagegtherirposes might not
match. Also, the generative tracker employed by Beizld., uses a fixed body model that is not
adapted to the tracked person. If now a person withfferdint shape has to be tracked, the local
optimization might not find an optimal solution to fit the model into the point cloud ofiyeh
image. In particular, this becomes evident if the the person is smaller than tred nsed by the
generative tracker. Here, the tracker tries to squeeze the large muméiensmall point cloud,
which results in strong pose errors.

To overcome some of these limitations, Badikl. propose a scaling of the input point cloud along
the axes of the depth image. While this works for actors with similar body ptiopsr such an
approach fails if the proportionsftier. Here, an example are the actbisandF,, where the arms
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Figure 5.8. Average tracking error of sequences 0 to 27 of the dataseida by Ganapattet all [2010].
The sequences were tracked using the tracker proposed ap&thiet al. [2010] (blue), by|Baaket al.
[2011] (red), and our proposed trackérellow).

of F1 are longer than the ones Bf when compared to the overall body size.

In our approach we suggest afdrent strategy by recomputing the entire set of poses in the
database using the estimated personalized mesh. The database needstipuiedctonly once

for each actor, which takes around 12 minutes for 50 000 poses usomimized code. An
efficient GPU implementation would yield further speedups. Furthermore, we gpiéace the
model in the generative tracker. The resulting personalized depth treagtires even fast and
complex body poses (jumping jack, sitting down) reliably and in real-time, segdfig] and also
the accompanying video of Helten al. [2013a] for some qualitative results. In the following, we
will give some quantitative results with comparison to other approaches.

5.3.1 Evaluation on the Standford Dataset

In a first experiment, we compare our personalized tracker to previjueaches based on the
dataset and error metrics described in Ganapthl. [2010]. The results of this evaluation are
depicted in FigurE5]8. One can see that our tracker gives at least tgpeesults to the previous
approaches presented|by Ganapatfal [2010] and by Baalet al.[2011] and exceeds the results
of the previous approaches in many cases. Please note that for thigtralaarker positions of
markers attached to the actor’s body are predicted and compared taldgrotmmarker positions
obtained with an optical marker based mocap system. We think that this waplohéag the
tracking accuracy is not well suited for the specific requirements in homsuooer scenarios.
For example, in some reconstruction scenarios one is only interested imstesting the joint
positions of the user, as it is done for example in many Kinect applicationgh®ather hand,
when it comes to augmented reality scenarios, such as virtual try-on appissaone is rather
interested in tightly approximating the depth image of the user to get a well fittingagvef
simulated objects such as cloths. In order to address these two evalugimbsasve recorded a
dataset with ground truth tracking results.

5.3.2 Our Evaluation Dataset

For our evaluation, we recorded a dataset Hettieal. [2013b] using both a Microsoft Kinect as
well as a Phasespace active marker-based mocap system simultandbusiyprises various
kinds of motion performed by five actors (three maléi, M,, and M3 and two femaleF, and
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Figure 5.9. (a): Modified calibration wand with a cardboard disc around onekera (b): llluminated
marker shown in an image from the RGB-camera of the Kingjt.Cardboard disk is clearly visible in the
Kinect's depth image(d): Reconstructed marker trajectories from Kingeid) and optical mocap system
(black). (e): Estimation of the rotationalffset between both trajectories after centering at their mean

Difficulty Description

D1 Slow arm rotations, leg rotations, bending of upper body

D, Simple arm and leg motions, and grabbing

D3 Punching, kicking, fast arm motion, and jumping

D4 Sitting on the floor, rotating on the spot, and walking in circles

Table 5.2. Description of the four dficultiesD;-D, from the evaluation dataset.

F2). The body models for each actor were estimated with the method from SecBon/e
defined four groups of motions offterent dificultiesD. They range from easy to track motion
sequenceslyy), simple arm and leg motion®g), fast movements such a kicking and jumping
(D3), to very hard to track motions such as sitting down, walking in circles, otingtén place
(D4). An overview over the four diiculties is shown in Table 5.2. In total we recorded a set
of 40 sequences, 2 takes from every of the fidilties performed by each of the 5 actors. We
used half of the recorded motions to build the pose database of the tradkeh contains a
total of 50 000 poses. The other half of the sequences is used foatwaland is referred to as
evaluation datasetWe use the notatioractor><difficulty> to refer to a specific sequence from
the evaluation dataset, g. MbD4 refers to the sequence offiiculty D4 performed by actoM,.

Calibration. In order to make the tracking results from the depth trackers comparable to th
ground truth data we need to calibrate the Kinect with respect to the maakedisystem. Since
the location of the Kinect camera is unknown a priori and the frame captofinge Kinect
cannot be externally synchronized, such a calibration consists of & paemporal calibration
and a spatial calibration. While the spatial calibration only needs to be dame the temporal
calibration must be done for every captured sequence. We perfortertiporal calibration by
calculating a space invariant but time varying feature for two correspgnichjectories from both
the marker-based and the Kinect recording. The tempdisgis then determined by identifying
the lag that maximizes the cross correlation of both features. In our casenéd out that the
absolute velocities of the trajectories are a robust feature for tempditaiatisn even under the
presence of tracking errors. A suitable trajectory could, for instdme¢he position of a joint or
another well defined point over a period of time.
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For spatial calibration of both the Kinect and the marker-based systengewe calibration wand
with a single active LED (see Figufe 5.9 (a)). Here, the idea is to determintajeetory of
the marker using both recording devices, and to register the trajectoriashather. While the
marker-based system provides the marker’s trajectory in a straigharfdrway, we need some
additional processing to obtain the trajectory from the Kinect. The Kineords depth and video
simultaneously, see Figure 5.9 (b) and (c), and both streams are calitektive to each other.
We can thus get the LED trajectory from the Kinect by recording in a daokn; thresholding the
intensity image to identify the pixel position of the LED, and extracting cornegipg depth infor-
mation from the depth channel. Using the intrinsic parameters of the Kinectladate the 3D
position of the marker from the 2D position and depth value. Figuie 5.9 @ysh reconstructed
marker trajectory (red) from Kinect footage. Now, we temporally align thgttories with the
method described above. The resulting trajectories are then aligned spayialtermining a
rigid transform for point correspondences (Figure 5.9 (e)).

Joint Tracking Error.  In afirst experiment, we want to evaluate how accurate the various depth-
based trackers capture the joint positions of an actor. To this end, wiehesenarker data from

the phase space system to animate a kinematic skeleton using inverse kineiatosisider the
resulting joints positions as ground truth data for the evaluation. In the folipwmassume that

the sequences of the trackers and the ground-truth data have beenaiyrgul spatially aligned
using the procedure described above.

Since all trackers use a slightlyffrent set of joints, we select for each tracker a subset of 20 joints
that are close to semantic positions in the body such as the lower back, the ofidoéeback,

the upper back, the head, the shoulders, the elbows, the wrists, the Hamnbips, the knees, the
ankles, and the feet. We now measure for every frame the distance batvegeacked joints and
the ground truth joints. Since the corresponding joints from themdint trackers do not lie at the
exact same positions.e. even in a reference pose, we need to normalize forfiset Therefore,

we calculate the average local displacement of the joint relative to thespomding ground-truth
joint, and subtract thisffset from the position of the tracked joint. Here, local displacement means
that we consider the 3D displacement vector within the local coordinate fwathe ground-truth
joint.

The average errors—over all joints and frames of one sequenceheamrious actors and se-
guences are shown in Figure 5.10. One can see that the tracker of et RDK performs worst
with an average error of 9B millimeters over all sequences. The tracker presented by Stzalk
[2011] shows an average error of.8nillimeters over all sequences, while our tracker performs
best with an error of 7.8 millimeters.

Surface Tracking Error.  In a second experiment, we assess the quality of the tracker by quan-
tifying how well the tracked mesh at each frame approximates the point cemaided by the
Kinect, referred to asurface tracking error To this end, we first calculate a so-calldidtance
mapfor every frame of a tracked sequence, by determining for evergrfouad point in the depth
image of the Kinect the distance to the closest point on the mesh. Now, thédtaigrd way to
compute a suitable surface tracking error would be to take the maximum diftanceach dis-
tance map. Unfortunately, it turns out that the maximum is very unstable dwés®in the depth
image and inaccuracies of the background subtraction. Here, a quattiéeis better suited since
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Figure 5.10. Average joint tracking error in millimeters for each seqeefrom the evaluation dataset that
were tracked by the tracker of the Kinect Siack), Baaket al. (red), and our trackefyellow).

it filters out influences of noise. We tested several quantiles and it tuutethat a 97%-quantile
is a good compromise between robustness to outliers and responsiteetnasking errors. Please
note that since the Kinect SDK does not provide a tracked mesh, wetazalaolate this error for

the tracker of the Kinect SDK.

Figure[5.11 (top) shows the surface tracking error over sequefide. The red curve represents
the error of the tracker hy Baak al.[2011] while the yellow curve is the result of our personalized
tracker. The black vertical line at 22seconds indicates a point in time where the surface tracking
error of Baaket al. is significantly higher than that of our tracker. Figlre 5.11(b)—(f) shtvat
this corresponds to a notable tracking error. In the middle, Figuré 5.1digplays the depth
image recorded by the Kinect. In the distance map, cyan colors depict sstaliaks around 0
millimeters while magenta colors represent high distance values of 25 millimetetgpafh the
right, Figure[5.111 (c) and (d) shows the distance map (left) and the trawkel of their tracker,
Figure[5.11 (e) and (f) depicts the distance map and the tracked meshtodicker. Our tracker
tracks the right arm of actd¥; correctly while it was merged with the upper body by the tracker
of Baaket al..

Table[5.3 lists the average surface tracking errors of tfferdint sequences, actors and track-
ers. Our tracker performs significantly better than the tracker of Baak [2011]. Especially
sequenceM,D4—which is one of the hardest sequences—is tracked considerably bgtter
tracker (average error of 110 mm) than by the tracker by BdaM. (average error of 153 mm)

Of course our tracker also has limitatiors g, when the actor does not face the camera (as in
sequences of fliculty D4) or when parts of the body are occluded or outside of the recording
volume of the Kinect—which occasionally happens during all sequencdsle We cannot do
anything about the later source of errors, in Chalpter 6, we will preseapproach to deal with
occlusions and the flicult to track non-frontal poses.

5.4 Conclusions

In this chapter, we presented a personalized real-time tracker of hundgrpbees from single
depth images that is more accurate than related approaches from the Etekayrto its success
is personalization. We developed a new approach to estimate the perstisaligee of an actor
based on a parametric body model, which is much faster and more accurgpedhi@mus methods.
We also presented a new real-time pose tracker that exploits this modeltanthéioally adjusts
to every actor. In conjunction, these two contributions allow us to track baletal joint loca-
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‘ D; D, D3 Da ‘ %)

M, | 61(66) 81(84) 116(139) 102 (138)90 (106)
M, | 56 (54) 77(84) 75(71) 110 (153) 80 (91)
Mz | 56 (59) 76(88) 89 (104) 93 (108) 79 (90)
Fi | 64 (74) 84(102) 115(172) 97 (129) 90 (119)
F, | 46(49) 62(66) 80(82) 105 (117) 73 (79)

Table 5.3. Averaged surface tracking errors in millimeters for eadusace of the evaluation dataset that
were tracked by our tracker. For comparison the error usiagracker proposed by Baakal.is shown in
parenthesis.
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Figure 5.11. (a): Surface tracking error in millimeters for sequered; tracked by of Baalet al. (red)
and our trackefyellow). (b)—(f): Status at 2Z seconds(b): Depth image at (red front, blue backk):
Distance map of tracker of Baai al.. (d): Tracked mesh for tracker of Ba&k al.. (e): Distance map for
our tracker(f): Tracked mesh for our tracker.

tions as well as the shape of the body more accurately than with previousdaete confirm
this through extensive evaluations against ground truth on a compieféest dataset which is
publicly available.

While our proposed approach shows significant improvements, it still fag®iine challenging
tracking situations such as when the person is not facing the camera dsibpthe body are oc-
cluded. These drawbacks are common for most depth-tracking apesand are related to the
limited information that monocular depth data provides. To this end, we will inchatditional
sensor information that stabilizes the tracking. Here, inertial sensoosrt@ean interesting choice
because there are not prone to occlusions and provide with orientationdesmentary informa-
tion that only hardly can be obtained from depth images. In Chapter 6, weuwiier discuss this
topic and present one possible solution to this issue.
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Chapter 6

Real-time Motion Tracking by Fusing
Sensor Modalities

As showed in Chaptér 5, the tracking of full-body human motion constitutes amriam strand

of research in computer vision with many applicatioesy.in computer animation, sports, HCI
or rehabilitation. Most of the trackers introduced so far can be classiftedhree families—
discriminative approaches, generative approaches, and appsaamhbining both strategies. While
discriminative trackers detect cues in the depth image and derive a posthégis from them us-
ing a retrieval strategy, generative trackers optimize for the paramdtarisumnan model to best
explain the observed depth image. Combining discriminative and generppveaahes, hybrid
trackers have shown good results for fast motions in real-time scenahiese tracked actors face
the camera more or less frontally. However, noise in the depth data, andhthigusmus repre-
sentation of human poses in depth images are still a challenge and often leackingrerrors,
even if all body parts are actually exposed to the camera. In addition, & fengs of the body are
occluded from view, tracking of the full pose is not possible. Using multigletid cameras can
partially remedy the problem (seeg.Ye et al.[2012]), but does not eradicate occlusion problems,
and is not always practical in home user scenarios. Depth data alone nsayathbe sfiicient to
capture poses accurately in such challenging scenarios.

In this chapter, we show that fusing a depth tracker with an additionabsemsdality, which
provides information complementary to the 2.5D depth video, can overconmeelimgstions. In
particular, we use the orientation data obtained from a sparse set obimgwp inertial measure-
ment devices fixed to the arms, legs, the trunk, and the head of the trasigeohplnertial sensor
units can nowadays be mass produced at low cost and can be found Bt almpanobile device.
We include this additional information as stabilizing evidence in a hybrid traitk#rcombines
generative and discriminative pose computation. Our approach enabtegnack fast and dy-
namic motions, including non-frontal poses and poses with significanbselfisions, accurately
and in real-time.

Contributions. Our method is the first to adaptively fuse inertial and depth information in a
combined generative and discriminative monocular pose estimation framewor&nable this,
we contribute with a novel visibility model for determining which parts of the bady visible

e
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to the depth camera. This model tells what data modality is reliable and can b&ousést the
pose, and enables us to more robustly infer global body orientation eebalienging poses. Our
second contribution is a generative tracker that fuses depth and irerisidepending on body
part visibility, and finds pose parameters via optimization. As a third contributterintroduce
two separate retrieval schemes for handling depth and inertial cuestfiving database poses
during discriminative tracking. The final pose is found in a late fusion st@pwuses the results
of both trackers mentioned above. We evaluate our proposed tracker extensive dataset in-
cluding calibrated depth images, inertial sensor data, as well as gratthddata obtained with
a traditional marker-based mocap system. We also show qualitatively antitgtieely that it
accurately captures poses even under stark occlusion where otfiersréail. The contributions
discussed in this chapter have been published in Heltah [2013d]. For this reason we closely
follow the explanation therein.

Organization. We start with discussing typical challenges that stem from the limited informa-
tion provided by monocular depth images in Seclion 6.1. Then, in Sdctibn 6.2fnevduce the
visibility model which provides important information to the other parts of ourkirag frame-
work. In Sectio 6.13, we describe our contributions to the generativiestraghile, in Sectiof 614,

we elaborate on the changes made to the discriminative tracker. How thmation of the difer-

ent components are fused into a final pose hypothesis is describedion®b. The evaluation of
our tracker with respect to previous approaches is described in S&diofinally, we conclude
and give an outlook in Sectign 6.7.

6.1 Expressiveness of Depth Data

In Chaptef b, we addressed one of the challenges for current dapkinty approaches that stem
from the level of accuracy of the underlying model that is used. We stdhat accurate approx-
imations of the person to track can be achieved using only two depth imaggsuashiere, we
want to discuss two additional challenges to current depth tracking aqpipes that stem from lack
of expressiveness of depth data: rotational ambiguities and occlugtonsn introduction into
state-of-the-art depth tracking approaches we refer to Sedctibn 5.1.

6.1.1 Rotational Ambiguities

Depth data contains rich information about the relative location of objectshwdnables easy
background subtraction compared to vision based approaches oritinteagies. However, depth
images reveal only little information about the surface structure and no icbymation at all.
This makes it hard to determine the correct orientation of rotational symmejectspsuch as the
body extremities. Since most depth trackers only depend on very simplisgclyimgj body mod-
els with isotropic extremities (Knoogt al. [2009]; Friborget all [2010];Ganapathet al. [2012];
Wei et all [2012]) or even graphs (Pekelny and Gotsiman [2008]; Salzmann gadui [2010];
Zhu et all[2010]; Girshicket al.[2011];[Shottoret al.[2011];lYeet al.[2011]; Tayloret all[2012])
that do not have any volume at all, they can simply ignore the aforementiooblEm. However,
these trackers also do not provide any pose information about the twist afms or the legs. In
contrast, trackers that use complex triangle meshes for defining theesofféne body (Baakt all
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Figure 6.1. Rotational ambiguities of depth daté): Input depth image(b): One typical output from a
generative pose estimation procedure. Note that the atieaflbow joint is vertical(c): Another possible
output, the axis of the elbow joint is now horizontal.

[2011];Yeet al. [2012];|Ganapathét al. [2010]) should not ignore rotational ambiguities. In par-
ticular, for these approaches the used generative tracker mightrgeneditferent results de-
pending on its initialization.

An example can be seen in Figlirel6.1. Here, the depth image shown in [Eifj(e¢ &veals only
little information on how the arm is oriented. Two possible solutions of a gemerttcker are
depicted in in Figuré 611 (b) and (c). Theference between both solutions lies in the twist of the
arm. While in Figuré 6J1 (b) the axis of the right elbow joint is oriented verticilii oriented
horizontally in Figuré 6J1 (c). In this example, the latter would semantically bedhedat pose
estimation result. At first glance this might not have huge impact on the oymetrmance
of the tracker. However, a erroneously tracked pose might servetedization for the next
frame. Lets consider the scenario that the tracked person bendsrhestarthe forearm pointing
upwards. While this is a straight-forward task for the generative traok@lized with the pose
shown in Figur€ 811 (c), a local optimization starting with the pose shown in &i@dr(b) is more
likely to get stuck in a local minimum. Unfortunately, none of the presenteddraakmploys
methods to prevent this. While pure generative trackers are likely to failéh situations and
may not be able to proceed, discriminative trackers completely avoid thishgsinacking each
frame independently and not relying on local optimization. In contrast,ithgpproaches, such
as presented in Baadt all [2011];Weiet al. [2012], detect the failure of their generative tracker
and reinitialize it using pose estimations of their discriminative tracker.

Similar challenges are also faced in other tracking fields gamarker-less motion capture. Here,
so called silhouette-based trackers that estimate the pose of the peraandtiiple, binary (fore-
ground vs. background) images,fian from the same challenge being unable to determine the
correct orientation of the extremities of the person. One approach to thckias presented in
Pons-Mollet al. [2010], where the authors included information from another sensoalityptb
correctly detect the orientation of the extremities independent from amtsglepth information.
In particular, their approach relies on orientation data obtained from faréiahsensors attached
to the lower legs, forearms and the trunk of the person. By including theurezhsrientations
into the energy function of their generative approach, tracking errorstationally symmetric
limbs could be avoided. These ideas could be directly integrated into theyeeigion of a
depth-based tracker. However, in case of tracking from monocugdh di@mages another problem
related to the lack of expressiveness is even more challenging: ocdusion
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Figure 6.2. Three typical failure cases of a current real-time trackenlgining generative and discrimina-
tive pose estimation_(Baai al. [2011]) (left: input depth image; middle: recovered posédofly model
with catastrophic pose errors; right: significantly bet&sult using our approachja): Occluded body
parts,(b): non-frontal poseqc): and both at the same time.

6.1.2 Occlusions

The third and by far greatest challenge for today’s depth trackerscatasions. Occlusions stem
from the fundamental principle how depth images (and other optical datapéained. Lightis re-
flected by some object and detected by some light sensitive sensor insaarteea. If light from
an object.e. g.a body part, cannot reach the sensor of the camera because arigéutiirobe-
tween, the object is occluded. As a consequence, one cannot obtaisaie information about
the occluded object. Present depth trackers deal with occlusions iusaviays. Some trackers
simply avoid this by requiring the tracked person to strike only poses whiebedy parts are
clearly visible to the depth camera Baetkal. [2011];|Ganapathet al. [2010];/Weiet al. [2012].
Such trackers often show undefined behavior if the requirements areatpsee Figure 6.2 for
some representative failure cases. Some discriminative trackers allowridirontal poses but
do not give any pose hypothesis for non-visible parts (&hail [2010]; |Shottoret all [2011];
Tayloret al. [2012]; IWeiet al. [2012]). In contrast, the approach presented in Girsbici.
[2011] uses a regression forest-based approach to learn the @gtativ positions for a depth
pixel based on depth values in its neighborhood. Calculating the density oneaset of votes
yields a hypothesis even for occluded joints. As most learning basedah@s, this approach
shows good results on poses close to the one used for learning anceksgee in a pure genera-
tive setting, the approach proposed in Ganapaithi. [2012] includes two additional constraints
into the energy function to produce plausible results for occluded body. pEhe first constraint
prevents body parts from entering empty spaae parts in the depth image where no foreground
pixels were detected. The second constraint prevents body partéfiempenetrating. However,
without an actual measurement it is impossible to deduce the correct pasefoded body parts.

We see two ways that could help tracking iffidult scenes. Firstly, occlusions could be reduced
by dynamically moving the cameras during the recording of the scene. @gcocclusions could
be handled by adding another input modality that does not depend oh aigsa As for the first
approach, the authorsiin ¥ al. [2012] make use of three Kinect depth cameras that are carried
by operators around a scene. At a given frame, the depth input ofrie Kiinects is then fused
into one point cloud representation of the whole scene. Using a gemetedoking approach,
the poses of the persons are tracked by fitting a rigged surface meshedrmgoitt cloud. While
this approach shows good results even for multiple persons in close tah&cuntime of the
approach is not real-time and the use of multiple Kinect cameras is not feasibtane user
scenarios. Even when using multiple depth cameras, occlusionsfacealtio prevent in many
tracking scenarios.
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Figure 6.3. Overview of the components of our proposed tracker. Thenarnadicate the data-flow between
the components: inertial dafarange), depth datgblue), visibility data(black), and pose dat@ed).

As for the second approach, the fusion offelient sensor modalities has become a successful
approach for dealing with challenging tasks. An approach combining twplamentary sensor
types for full body human tracking in large areas was presented in Ziegidr[2011]. Here,
densely placed inertial sensors, one placed on every limb of the baydpran occlusion inde-
pendent estimation of the persons body configuration using measurea gt@ntations. Since
inertial sensors cannot measure their position, this information is provigeddepth sensing
laser system mounted to a robot accompanying the tracked persontusiafiety, their approach
does not include the rich depth information for supporting the tracking gbé¢inson’s body con-
figuration. Their approach rather solves two independent sub tagdndering the local body
configuration and estimating the global position of the person.

At this point, we want to take a second look at the approach presentedsalNPall et all [2010],
which we also discussed in Section 611.1. In this approach, the main intentigingf inertial
sensors in a classical marker-less tracking framework was to praveneeus tracking that stems
from the ambiguous representation of body extremities in silhouette imagesheknateresting
side-dfect is that the inertial sensors provide information about the limb orientatieamsie sit-
uations when the limbs are not visible to the camera. While in the presentedisdéismefect

was not important because multiple cameras enabled an almost occlusiobdezgation of the
tracked person, thisfiect might be very important in monocular tracking approaches. In partic-
ular, many current depth-based trackers would benefit from additisfoamation that does not
depend on visual cues.

In the following, we take the state-of-the-art depth tracker proposetdap@fb, which is based on
the tracker presented in Baakal. [2011] as example. This tracker uses discriminative features
detected in the depth data, so-callgebdesic extrema £ to query a database containing pre-
recorded full-body poses. These poses are then used to initializeratengacker that optimizes
skeletal pose parameteysof a mesh-based human body moddl, < R3 to best explain the
3D point cloudM; € R?3 of the observed depth image In a late fusion step, the tracker
decides between two pose hypotheses: one obtained using the databases jinitialization or
one obtained that used the previously tracked poses as initialization. Tthernnaakes two
assumptions: The person to be tracked is facing the depth camera andyafpdmts are visible
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to the depth camera, which means it fails iffidult poses mentioned earlier (see Figuré 6.2 for
some examples). We overcome its limitations by modifying every step in the oridgaitam

to benefit from depth and inertial data together. In particular, we inteduwdsibility modelto
decide what data modality is best used in each pose estimation step, ango@esi&oriminative
tracker combining both data. We also empower generative tracking to tisel&i@ for reliable
pose inference, and develop a new late fusion step using both modalities:idgbed 6.8 for an
overview of our proposed tracker.

6.2 Visibility Model

Body Model Similar to Chaptell5, we use a body model comprising a surface st 6 449
vertices, whose deformation is controlled by an embedded skeleton of 62 gmid 42 degrees of
freedom via surface skinning, see also Sedfion 2.1.2. The model is ddaphe actor utilizing the
method described in Chapfér 5 using a laser scan as target point clowgvétpalso two depth
images could be used, which makes it applicable in case of a home usai@cEnghermore, let
Bai = {larm, rarm lleg, rleg, body} be a set obody partsrepresenting the left and right arm, left
and right leg and the rest of the body. Now, we define five disjoint mmg, b € 8B4 containing
all vertices fromM, belonging to body pai.

Sensors As depth camera we use a Microsoft Kinect running at 30 fps, but itid®€6.6 we
also show that our approach works with time-of-flight camera data. Asiada sensors, we use
inertial measurement uni$MUs), which are able to determine their relative orientation with re-
spect to a global coordinate system, irrespective of visibility from a cantkiids are nowadays
manufactured cheaply and compactly, and integrated into many hand-ha@dsjesuch as smart
phones and game consoles. In this chapter, we use six Xsens MTx fidshed to the trunk
(Soot), the forearms (gm, Srarm), the lower legs (&g, Sieg), and the head gsad, see Figuré 616 (a).
The sensor st gives us information about the global body orientation, while the sensoasns
and feet give cues about the configuration of the extremities. Finallyghe $ensor is important
to resolve some of the ambiguities in sparse inertial features. For instaredpdt us to dis-
criminate upright from crouched full body poses. The sensors’ iems are described as the
transformations from the sensors’ local coordinate systems to a globaicate system and are
denoted by &ot, Qlarm: Grarm: Jileg: Orleg: 8N Ghead IN OUr implementation, we use unit quaternions
for representing these transformations, as they best suit our piragessps. In this chapter, we
also use the virtual sensor concept introduced in SeCtion2.2.5. For cleeitgddy or S to the
index, e. g.qs root denotes the measured orientation of the real sensor attached to the thiiek, w
Qy.root represents the readings of the virtual sensor for a given poliete, while the exact place-
ment of the sensors relative to the bones is not so important, it needs tadidyrthe same for
corresponding real and virtual sensors. Furthermore, an orientdteosensor at timeis denoted
as (oot(t). For further reading on the used sensors we refer to Chapter 2.

Our visibility model enables us to reliably detect global body pose and thélitysdd body parts
in the depth camera. This information is then used to establish reliable candespres between
the depth image and body model during generative tracking, even uodesion. Furthermore,
it enables us to decide whether inertial or depth data are most reliabledergiieval.
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Global body position and orientation. In|Baaket al. [2011], the authors use plane fitting to
a heuristically chosen subset of depth data to compute body orientationparmlite translation
from the depth centroid. Their approach fails if the person is not roufgitiyg the camera or
body parts are occluding the torso. Inertial sensors are able to mehsirrerientation in space
independent of occlusions and lack of data in the depth channel. We $keuth@ orientation
of the sensorsqt to get a good estimate of the front directiérof the body within the global
coordinate system of the camera, even ffficlilt non-frontal poses, as shown in Figlre] 6.5 (b).
However, inertial sensors measure their orientation with respect to soive gemsor coordinate
system that in general is not identical to the global coordinate system oéthera, see also Fig-
ure[6.4. For that reason, we calculate the transformagjgsu(t) in a similar fashion as described
in|lPons-Mollet all [2010] using relative transformationsy(t) := 9s.root(to) © ds.root(t) With re-
spect to an initial orientation at timg. Here,j denotes the inverse transformation of g, while
02 o 1 expresses that transformatiopig executed after transformation.drhe transformations
0s.root(to) andags root(t) can be directly obtained from the measurement of the sensor. Thedlesire
transformation from the coordinate system of the sensor to the globalinate system of the
camera at time is NOW d root(t) = 0y .root(to) © Aq(t). Note thatg, root(to) cannot be measured.
Instead, we calculate it using virtual sensors and an initial pétsgat timetg. For this first frame,
we determine the front directiof\tg) as described in Baakt al. [2011] and then use our tracker
to computey(to). In all other frames, the front facing direction is defined as

f(t) 1= gy.rootlt) © Ay root(to)[  (to)]. (6.1)

Here, gl] means that the transformation q is applied to the vegt&igure 6.5 (b).

Body part visibility. The second important information supplied by our visibility model is
which parts of the model are visible from the depth camera. To infer bodyvjsbility, we
compute all verticesV,, ¢ M, of the body mesh that the depth camera sees in posk this
end we resort to rendering of the model and fast OpenGL visibility testimgy, Ehevisibility of

a body parb is defined as

MYy

Vp = (6.2)
IME]
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Figure 6.5. Tracking of frame at ® s of sequence from our evaluation dataset. The views are rotated
around the tracked person, whelfésetw.r.t. the depth camera is depicted at the bottom of each subfigure.
(a): Input depth data(b): Output of the visibility model. Note: the right arm is notiike. (c): Correspon-
dences used by the generative tracker. Note: no correspoesievith right arm. The pose parametrized
mesh was moved to the left for better visibilifgd): Final fused pose.

The set ofvisible body partds denoted ayis := {b e Bai: Vp > 73}. Note, that the accuracy

of B,is depends onM, resembling the actual pose assumed by the person in the depth image as
closely as possible which is not known before pose estimation. For thismeag choose the
posey = x"B, obtained by the discriminative tracker which yields better results than using th
posey(t — 1) from the previous step, (see Sectiod 6.4). To account for its posihiation from

the “real” pose and to avoid false positives in the 8gt, we introduce the thresholg > 0. In

the tested scenarios, valuesmafup to 10% have shown a good tradé&{oetween rejecting false
positives and not rejecting too many body parts, that are actually visible.

In the rendering process alswiatual depth imagel , is created, from which we calculate the first
M = 50 geodesic extrema in the same way as for the real depth ihagge Baalet all [2011].
Finally, we denote the vertices that generated the depth points of the extriﬁma%.

6.3 Generative Pose Estimation

Similar to/Baaket all [2011], generative tracking optimizes skeletal pose parameters by minimiz-
ing the distance between corresponding points on the model and in the dépthBhaket al.

fix vV, manually, and never update it during tracking. For every poin¥jnthey find the closest
point in the depth point cloud;, and minimize the sum of distances between model and data
points by local optimization in the joint angles. Obviously, this leads to wronggespondences if

the person strikes a pose in which large parts of the body are occluded.

In our approach, we also use a local optimization scheme to find ayptisat best aligns the
model M, to the point cloudM;. In contrast to prior work, it also considers which parts of
the body are visible and can actually contribute to explaining a good alignnmetiteodepth
image. Furthermore, we define subsgtsb € By of all pose parameters ip that dfect the
corresponding point setM)‘g. We define the set ddictive pose parameteng,.; = Upes, Xb-
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Finally, the energy function is given as

d(MX,M[) = de*MI + dMI_’MX (63)
1
dyvom, = — min ||p -V 6.4
MMy MZV: min I vlz (6.4)
1
drv, om = — min ||e — V. 6.5
MM, N%ZE?%MXH Iz (6.5)

Here,E? represents the firtl = 50 geodesic extrema iy, while (V)'}" is a subset of, containing
M = 50 visible vertices, see Sectibn6.2 for details. A visualization for the resudonmgspon-
dences can be seen in Figlrel 6.5 (c). As opposed to Bealk we minimized(M,,, My) using
a gradient descent solver similar to the one used in 8tall. [2011] and employ analytic deriva-
tives.

6.4 Discriminative Pose Estimation

In hybrid tracking, discriminative tracking complements generative trackingontinuous re-
initialization of pose optimization when generative tracking converges toranemwus pose op-
timum (see also Sectidn 6.5). We present a new discriminative pose estimapiamactp that
retrieves poses from a database with 50 000 poses obtained from mafi@nses recorded using
a marker-based mocap system. It adaptively relies on depth featupssttook-up, and new in-
ertial features, depending on visibility and thus reliability of each senser tyycombination, this
enables tracking of poses with strong occlusions, and it stabilizes pisaten in front-facing
poses.

Depth-based database lookup. In order to retrieve a pos,e?B matching the one in the depth
image from the database, Baaikal. [2011] use geodesic extrema computed on the depth map as
index. In their original work, they expect that the first five geodestceaxan:l from the depth
image 7 are roughly co-located with the positions of the body extrema (head, leanttifeet).

The geodesic extrema also need to be correctly labeled. Further onsiteipdheir database are
normalizedw.r.t. to global body orientation which reduces the database size. As a cemsequ
also queries into the database need to be pose normalized. We usetBHalgeodesic extrema

for depth-based lookup, but use our more robust way for estimdfff)gor normalization, see
Sectior 6.2. Our method thus fairs better even in poses where all geoxiiesina@ are found, but

the pose is lateral to the camera.

Inertial-based database lookup. In poses where not all body extrema are visible, or where they
are too close to the torso, the geodesic extrema become unreliable forsgatadleup. In such
cases, we revert to IMU data, in particular their orientations relative todbadmate system of
the sensor,sq, see Figuré 616 (a). Similar to the depth features based on geodesic extresea
normalized orientation§y(t) := groot(t) o gu(t), b € B = {larm,rarm lleg, rleg, head are invariant

to the tracked global orientation of the person but capture the relativetatien of various parts

of the person’s body. However, using these normalized orientationstlglis index has one
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Figure 6.6. (a): Placement of the sensors on the body and normalized oli@mtat.t. Sqor. (b): Body part
directions used as inertial features for indexing the degal(c): Two poses that cannot be distinguished
using inertial featureqd): The same two poses lookftérent when using optical features.

disadvantage. This is because many orientation representations neietispelarity metrics that
are often incompatible to fast indexing structures, suck-@srees. To this end, we use a vector
d € R3 that points in the direction of the bone of a body part, see Figufe 6.6 (burlsetup, these
directions are co-aligned with the local X-axis of the sensor for all geresccept for the sensor
Shead Where it is co-aligned with the local Y-axis. The normalized directiﬁb(;(s) = Qp(t)[dp] are
then stacked to serve as inertial-based query to the database. Thedghose is denoted @%B.

Selecting depth-based or inertial-based lookup. At first sight, it may seem that inertial fea-
tures alone are slicient to look up poses from the database, because they are indepfroden
visibility issues. However, with our sparse set of six IMUs, the inertial détae are often not
discriminative enough to exactly characterize body poses. Some \fgyedit poses may induce
the same inertial readings, and are thus ambiguous, see also [Eigure 83 @urse, adding
more IMUs to the body would remedy the problem but would starkly impair usadutityis not
necessary as we show in the following. Geodesic extrema featuresrgEcearate and discrimi-
native of a pose, given that they are reliably found, which is not the foeisll extrema in dficult
non-frontal starkly occluded poses, see Fiduré 6.6 (d). Therefezentroduce two reliability
measures to assess the useability of depth-based features for retiehate the inertial features
only as fall-back modality for retrieval in case depth-based featuresotdre trusted. We use
the distanceg;(t) of the geodesic extremac [1 : 5] at framet w.r.t. the centroid of the point
cloud which roughly lies at the center of the torso. For each dietter that distance does not
change dramatically across poses in normal motion. When a geodesic axtiesmat detected
correctly, the computed distanegt) therefore typically diers significantly fron¥;. In practice,
the distances can be obtained after the first pass of the modified Dijkdgaiitam, presented
inBaaket all [2011]. This yields our first reliability measure

5
e(t) = > la(t) - &l, (6.6)
i=1

The values of; for a specific actor are computed once from a short sequence of ideggles in
which geodesic extrema were detected reliably.

A second reliability measure is thefidirence between the purely depth-based computation of
the global body pose similar to Ba&k al. and the inertial sensors measured orientations. More



6.5. FINAL POSE ESTIMATION 87

250 T T I I I I I I I I I I I I I I I I I I I I I I I I I T
| I Ganapathi ICCV10 Il Baak ICCV11 [ JOur approach [ Ye ICCV11 [ Taylor CVPR12|

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 0 avg
Sequence Number

50
IH

Figure 6.7. Evaluation on the Stanford dataset presented in Ganastzahi2010]. (red): IGanapathet al.
[2010] (blue): Baaket al. [2011] (yellow): Our tracker.(cyan): [Ye et al. [2011] (not real-time)(green):
Taylor et al.[2012].

precisely, we use the measure

AQD) 1= D 6(G0m (1), Gsp(t). (6.7)

beB

§ = cost|(-, )l measures the flerence between rotations that we represent as quaternions, where
(-,-) is the dot product treating quaternions as 4D vectors. The final redrigy®e is computed as

DB
DB ._ X]- . if E(t) <T1A A(t) < T2
X = { XgB, otherwise : (6.8)

We found experimentally that = 1.15 andr, = 4.0 are good values for all motion sequences we
tested.

6.5 Final Pose Estimation

The final pose computed by our algorithm is found in a late fusion step. Weuaning two
local pose optimizations (Sectibn b.3), one using the databaseyf8sas initialization for the
optimizer, and one using the pose from the last fra/fi®as initialization. Here, we are only opti-
mizing for those parameters that are parggf. The resulting optimized poses are cal/\e&ﬁ and
X{?g{ From those two, we select the best pose according to Equitidn (6 &e Parameters that
are not part o, are taken over fror)grgB. This way, even if body parts were occluded or unreli-
ably captured by the camera, we obtain a final result that is based ohseigar measurements,
and not only hypothesized from some form of prior.

6.6 Evaluation

The G++ implementation of our tracker runs at around 30 fps on a PC witd &GHz Intel Core
i7-2760 QM CPU. We qualitatively and quantitatively evaluate it and its commusran several
data sets and compare to related methods from the literature.

We use a pose database with 50 000 poses. 44 000 were kindly proyi@edket all[2011]. We
include 6 000 additional poses that we recorded along with the evaluatiasetaSectioh 6.6.2).
These poses show similar types of motion, but are not part of the evalgatiofihe pose database
is recomputed for each actor once to match his skeleton dimension.
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6.6.1 Evaluation on Stanford Dataset

We evaluate our tracker on the 28 sequences of the Stanford datarsgsénapathet al. [2010].
This data set was recorded with a SwissRanger SR4000 time-of-flightaameprovides ground-
truth marker positions from a Vicon motion capture system. However, the datencontain a
pose parametrized model of the recorded person nor inertial sertsonla therefore estimated
the size of the recorded person using a deformable shape model fedrofasolated depth frames
obtained from the dataset, see Waitsl. [2011] for details. Using the mesh of the fitted model,
we designed a suitable skeleton with the same topology as required by aupa@snetrized
model. We tracked the whole dataset using an IK-tracker and the progidedd-truth marker
positions as constraints. The obtained pose parameters were used tdewiripal sensor read-
ings. Note, that there are a lot of manual preprocessing steps involveaki® our tracker run on
this data set, and each step introduces errors that are not part oféhésstied trackers’ evaluation
(we copied over their error bars from the respective papers). e tnacked the dataset using
the provided depth frames as well as the virtual sensor readings withegketrand computed the
error metric as describedlin Ganapathal. [2010], Figurd 6.I7.

Discussion We used the mean errors according to the error metric described by &hiet@l.
[2010] to compare our tracker to the ones of Ganapetthi. [2010],|Baaket al. [2011], Yeet al.
[2011] which is not a real-time tracker, and Tayédral. [2012]. By mean error, our tracker per-
forms better thah Ganapatti al. [2010] and Baalet all [2011] on most sequences, and is close
to the others on all data (see comments at end). However, our trackes #sdrue advantage
on sequences with more challenging motion, 24-27, of which only 24 shotable non-frontal
poses, and periods where parts of the body are completely invisible, dtexean see that other
trackers fail, as the errors of most trackers roughly double with ré$péite mean error on other
sequences. In contrast, our tracker shows an increase of only Hifky as it continues to follow
the motion throughout the sequence. Please note the mean errors are lpesttmetric to asses
our tracker, but are the only values reported in all other papers. B$wde mean errors of our
tracker are likely biased by an overhead stemming from the preprocessimtipned above, and
mask its significant improvement on occluded poses.

6.6.2 Evaluation Dataset

For more reliable testing of the performance of our tracker, we recerded dataset (Heltest all
[2013e]) containing a substantial fraction of challenging non-frortakg and stark occlusions of
body parts. Table 6.1 gives an overview over the six sequences efvaluration dataset. While
sequencéd; contains comparably simple motions such as arm and leg rotations, the other five
sequences are challenging for depth based trackers each in its owS&gyenc®, introduces
considerable faster motions compared to Sequéncéncluding punching and kicking motions.
However the motions are performed either by the arms or by the legs. IrasgrffequencB;
contains full body motions including jumping jacks, skiing motions, and squapedially the lat-
ter ones are interesting, because they induce inertial features thithast aqual over all phases
of the motion. This stems from the fact that the arms and the lower legs do axogeltheir ori-
entation with respect to the trunk. In Sequemlxethe arms touch the body atfféirent locations
which especially challenges the geodesic extrema-based database ésoused by Baakt al.
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Scene Description #Frames

D Arm rotations, leg rotations, bending of upper body, and grabbing 1366
D> Punching, kicking, fast arm motion, and jumping 445
D3 Jumping jacks, skiing, and squats 527

D4 Arms at the hips, arms crossed, and hands behind head 930
Ds Straight walking sidewards, and skiing sidewards 930
De Circular walking, rotation on the spot, and moving arms behind the body 885

Table 6.1. Description of the six sequences from the evaluation datase

[2011]. In particular, this prevents correct geodesic extrema detdayiantroducing loops to the
shape of the person. Sequeragfirst introduces non-frontal poses including walking sidewards
and skiing motions performed lateralr.t. the depth camera. Finally, Sequerggcompletes our
evaluation dataset by introducing walking in circles, rotating on the sposeledted occlusions
of the arms.

For recording we used one Microsoft Kinect, six Xsens MTx IMUs adl a& a PhaseSpace
marker-based optical mocap system with 38 markers. The IMUs wergsttdp the head, lower
legs, the trunk, and forearms and are co-aligned with the assumed vehsars, see also Sec-
tion[2.2.5. In the following, we assume that all data are temporally aligned ari¢iriket data
and the marker-based system are spatially aligned. We recordédr@dt sequences (D. ., Dg)
with varying dfficulties including punching, kicking, rotating on the spot, sidewards andlairc
walking performed by one actor (See additional material for details). Thasston about 6 000
frames at 30 Hz. For all sequences we computed ground truth posegqiara and joint positions
using the recorded marker positions and the same kinematic skeleton thag¢ weous tracker.
For a qualitative evaluation of our tracker, also in comparison to previppiaches, we refer to
Figure[6.2 and the accompanying video.

Discussion With this data, we quantitatively compare our tracker (hDB) to the Kinect SDK,
as well as Baalkt all [2011]. We also quantitatively evaluate our tracker with only depth-based
retrieval (dDB), and only inertial retrieval (iDB). To make results ofyvéifferent trackers compa-
rable, we introduce a new error measure based on joints. Since allisadea slightly dferent

set of joints, we select for each tracker a subset of 16 joints that ase weemantic positions in
the body such as the lower back, the middle of the back, the upper badieddethe shoulders,
the elbows, the wrists, the hips, the knees, and the ankles. Furtherradie eorresponding
joints from the dfferent trackers do not lie at the exact same positions we need to normalize fo
this dfset. We do this by calculating the average local displacementdcal within the frame of

the ground truth joint) of the joint relative to the corresponding grounti+jrnint, and subtracting
this ofset from the position of the tracked joint, see also Sedtioh 5.3. The jointsefiar all
sequences are depicted in Figurd 6.9.

Figure[6.8 shows the average joint error for all tested trackers andthigovariants on all 6
sequences. On the first four sequences which are easier and shmm4frontal poses, our final
tracker (hDB) is among the best ones and, as expected, mostly compar&dmapathi's and
Baak’s methods. Importantly, it is always better than iDB and dDB. How&B outperforms all
other approaches on the last two sequeneas producing less than half the error (about 75 mm)
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Figure 6.8. Average joint tracking error in millimeters for sequencesg .D.,Dg from our evaluation
dataset, tracked with the joint tracker of the Kinect S{itack), Baaketal. (blue), and our tracker with
only depth-based DB lookup (dDR)ight blue), only inertial-based DB lookup (iDBjorange), and the
proposed combined DB lookup (hDBjellow).

of Baaket all [2011] with about 180 mm. The temporal error evolution of some reprebanta
joints in Ds and Dy are depicted in Figuie 6.1L0 (a) for Kinect SDK, Bagtlal., and our algorithm.
This clearly shows that our algorithm produces significantly lower erfoas both others on
certain spans of poses, which is masked in average error values. Fixigliye[6.1D (b) shows
the superiority of our tracker on selected time steps from that sequepnegsually comparing
each result to ground truth joint locations (see video for more resultspr glots for the other
joints and sequences can be found in the supplemental material. Here pvirechlsled errors of
our tracker, where one of the database-lookup strategies—either ptielukesed or the inertial-
based—was deactivated to show its impact on the overall performancefin@utracker also
performs consistently better than iDB and dDB illustrating the benefit of miofustrategy. This
is particularly evident in Band Dy. Sequence Pcontains squats, on which inertial-based feature
lookup is ambiguous. Pcontains motions where the arms touch the body fé¢dint locations.
Here, the database lookup based on depth features fails.

6.7 Conclusions

In this chapter, we presented a hybrid method to track human full-body pase a single depth
camera and additional inertial sensors. Our algorithm runs in real-timérecahtrast to previous
methods, captures the true body configuration evenfticdit non-frontal poses and poses with
partial and substantial visual occlusions. The core of the algorithmeawesnlutions for depth
and inertial data fusion in a combined generative and discriminative traokgarticular, we con-
tributed with a visibility model that includes depth and inertial information to prokitevledge
about what parts of the tracked person are visible in a given trackirgtisitu In particular, the
visibility model provides information about which parts of the body are visibkag¢odepth cam-
era. This information is then used in the generative part of our propesekkr to decide which
information is more reliable for the motion reconstruction, the inertial data or ¢p¢hddata.
Furthermore, the visibility information is used to decide whether inertial or defthmation is
more reliable to look up a regularizing pose during discriminative trackingh&/e demonstrated
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Figure 6.9. Joint Errors for all joints and all sequend®s, ..., Dg from the evaluation dataset. The three
columns represent the thredfdrent trackers{(left): The Kinect SDK’s joint tracker(middle): the ap-
proach presented m [@], and(right): our approach.
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Figure 6.10. (a):Joint errors for selected joints over sequenceai O} (time in seconds). Per joint there
are three error rowstop) Kinect SDK’s tracker(middle) Baaketal,, and(bottom) our approach.(b):
Three challenging example poses from sequengesD 0. Input depth data, ground-thruth joint positions
(green dots)and trackedskeleton) shown from the side. Our approafight) clearly outperforms the
Kinect SDK's trackel(left), and Baalet al’s method(middle).

the performance of our tracker qualitatively and quantitatively on a langeus of data that we
provide to the community, and showed its clear advantages over other sthteart methods.

Current limitations of our proposed tracking approach are for exampledher of inertial
sensors. While one sensor, used for estimating the global heading, espt@/ performance of
our supposed tracker significantly, its full potential is only revealed usinigertial sensors. Here,
the governing factor is the retrieval in our discriminative tracker. This is ipdiecause of the
fact that we use an index solely based on inertial data if we detect thidt dafa is not sfiicient
for pose retrieval. One idea to reduce the number of sensors would b&dduce a hybrid
retrieval approach that uses sparse inertial data in combination with degshfar retrieval. In
particular, using body part-based, detection algorithms such as pcbbpMQE_t_aﬂ [IZOQ]
could be helpful. Another limitation is that inertial data is not yet included into fhtamization
scheme directly. Here, a prior similar as proposed by Pons-8fall [2010] would improve
the performance of our trackers for parts visible to the depth camerarendonlld better tackle
tracking issues with rotational ambiguities of the extremities.




Chapter 7

Summary and Outlook

In this thesis, we have presented several techniques for processimganstructing human mo-
tion data that originates from fiierent sensor modalities. A key aspect was thiedint sensor
modalities provide dferent kinds of motion data and have specific advantages and disacdantag
For example, optical mocap systems provide motion data with the highest pnesigicdescrip-
tiveness. On the downside, they are expensi¢dit to setup and maintain, and pose constraints
on the recording location and lighting conditions. Because of these piegpaptical systems can
be dforded only by a small number of people and are mainly used in high-budyé ared game
productions. Inertial sensors, in contrast, are less expensiveoaectpnsiderably less constraints
on the recording location. In particular, such sensors are completelpendent from optical
cues, which renders them immune to occlusion-based errors and lightitegrptablems. This
makes them interesting for applications in sports science or medical honidlitatian scenarios,
which often take place in spacious and uncontrolled environments or ewside@ Furthermore,
because of their small size, inertial sensors have been employed in nomiesummer electron-
ics, such as smartphones or game consoles, as an additional input mddafitytunately, the
data they provide is not as rich as the data obtained from optical systenasldittion, if used
for full body recording of motion data, many inertial sensors must be glacethe body which
renders them impracticable for home user applications such as full bodisotof video games
or augmented reality applications. With depth sensing devices such as thesdfidinect, an
alternative sensor type has revolutionized the market. By providing realdiingeometry in-
formation in an inexpensive and easy to use manner, full-body human maiicking can now
be applied in home user environments. However, even state-of-the-droasestill sfer from
various challenges such as ambiguities implied by the low resolution and nsisihie data or
missing information in the case of occluded body parts.

In this context, we have contributed in several aspects. As a first cotibrp we systematically
analyzed the expressiveness of several mid-level representatiottsef comparison of motion
data originating from dferent sensor modalities. In a cross-modal scenario, we took a close
look on features that can be derived from both inertial sensors aihbpensors. We showed
that features based on orientation data that can be deduced from thereneasts of inertial
sensors is outperforming other representations suah gslocal accelerations. We discussed the
application of these techniques in the context of real-time full-body motiomstagction.

As a second main contribution, we showed a practical application of thdssidees in the con-
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text of automatic classification of sports motions. We considered the scerfidarampoline mo-
tions, where the athlete has to perform a sequence of predefined juimpssc€nario was espe-
cially well-suited for the utilization of inertial sensors because of the highhadyic and spacious
character of trampoline motions that can hardly be captured using opticalpnmavices such

as marker-based systems. We contributed with a set of discriminativedsdtased on inertial
sensor data and afffieient DTW-based learning procedure based on motion templates. Also, we
showed how dterent masking techniques improve the classification accuracy by enbamcin
suppressing certain parts of the motion templates. In particular, the maskiwvg &locontrolling

the sensitivity of motion templates to variations within one class.

As a third main contribution, we developed techniques to improve the perfeerareal-time
depth-based human motion trackers as used in home consumer scenaiosrodlced a novel
algorithm for estimating the shape of a person from only two sequentially et images. In
contrast to previous approaches, we used pure 3D-features amdbénation of point and plane
constraints to obtain comparable shape reconstruction results. OppgsexVitus approaches
the running time could be reduced from about one hour to about one mirhgeestimated shape
is important for many model-based depth tracker and is indispensabledorestied reality ap-
plications such as virtual try-on. To demonstrate this, we described hoastimated shape can
be included in existing model-based tracking approaches. In comparigoeMious tracking ap-
proaches, we could achieve an increased joint tracking accuraoylkasva better approximation
of the depth image.

Finally, we studied one important drawback of current state-of-thdegoth tracking approaches
that stem from the limited information provided by monocular depth data. In pkatjave took

a deeper look on how to deal with tracking errors that stem from the oonlo$ body-parts. To
tackle this problem, we proposed the usage of an additional sensor modadityvide comple-
mentary information that is not subject to occlusions. Inertial sensors tuamed out to fulfill
these requirements and provide rich information that can be utilized in $@mrgonents of
existing depth-based trackers to improve tracking results. As example wieyadphe tracker
presented by Baadt all [2011], which is a hybrid tracking approach fusing discriminative and
generative tracking concepts. We showed that both concepts canitteeeirby the data provided
by inertial sensors to increase tracking performance. Especially, iiritasituations with non-
frontal poses andr occluded body-parts, we could achieve substantial improvements oenpa
to other state-of-the-art depth trackers.

Outlook. We see several directions for further research. In general, degifinglifferent sensor
modalities is an important direction of research not only in computer animationolatics but
also in the domains of medical rehabilitation and sport sciences. For exdampfmrt sciences,
most experimental setups consist of various types of sensors sugticad marker-based systems,
inertial sensors, force plates, high-speed cameras and EMG-s¢habmeasure muscle activity.
However, in most cases these sensor modalities are considered inéethendthout fusing them
in an unified model. One first step, would be to combine modalities that provide isaatia. An
example are optical marker-based systems and high-speed camerasith#/ffilene rate of the
former is restricted to about 120 Hz, the later achieves frame rates of neord 800 Hz. Even
if high-speed cameras are only used in sparse numbers, they carsantineaoverall temporal
resolution of the traditional marker-based system. Another example wotite: hesage of inertial
sensors in combination with force plates or EMG-sensors to obtain a bettezssigm which



95

forces act on a specific part of the body. In this context, elaboratg bumtlels, such as the
OpenSirﬂ show already promising results. On the downside, their main input modality akema
positions obtained by marker-based systems.

In most situations, optical systems are chosen because of their sup®eign compared to
other systems, but their specific requirements constrain their applicability tenldlbnments.
Another drawback is that the placement of markers possibly restricts bteath the way he
or she can perform the motion to be recorded. The application descrili@daiptef ¥ was one
example, where optical systems could not be used because of the higimidgrand required
volume of trampoline motions. We showed that inertial sensors were much beitied in this
context. However, one single sensor modality might in some scenarios sofficéent to solve
the task. One example would be if one not only wants to classify trampoline juntjadsio wants
to exactly reconstruct the motion for further analysis. In this context, tke gl@vided by the
inertial sensors alone is notfiigient. In particular, the global position of the athlete could not be
reconstructed. Here, a small number of visual cues obtained fromiitytenslepth cameras may
sufice to reconstruct the motion.

In the context of personalized tracking, a further direction of reseiarthe real-time estimation
of both shape and pose at the same time. This would render the pregingcstep for obtain-
ing a personalized model not necessary anymore. Furthermore, it woahde other interesting
applications such as real-time acquisition of appearance features afamfer identification pur-
poses. To this end, a more robust finding of correspondences lretnasie| and depth data would
be necessary, as for example used by Tagt@ll [2012]. Also, after approximating the pose and
overall shape of a person, one could derive further interesting geonmgormation such as high
detailed reconstruction of the body surface or identification of time vanafdace features such as
cloth folds. Finally, an exact approximation of the surface would enabledtimation of material
or lighting parameters similar as in performance capture approaches.

A current limitation of our proposed combined defibrtial tracking approach concerns the num-
ber of inertial sensors required. While already one additional inertire@eused for estimating
the global heading, significantly improves the performance of our traitkéull potential is only
developed using six inertial sensors. One idea to reduce the numbersoirsés to introduce a
hybrid retrieval approach that uses sparse inertial data in combinatiordepth cues. In partic-
ular, using detection algorithms for body part detection such as propysgbottonet all [2011]
could be helpful. Another limitation is that inertial data is not yet included into fhtemization
scheme directly. A prior similar to the one proposed by Pons-#ldl. [2010] may improve the
performance of our tracker for parts that are visible to the depth caméraree could better tackle
tracking issues with rotational ambiguities of the extremities.

httpy/opensim.stanford.edu
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