
Universität des Saarlandes
Fachbereich 6.2 Informatik
Lehrstuhl für Programmiersprachen und Übersetzerbau

I
Static Timing Analysis Tool

Validation in the Presence of Timing
Anomalies

Dissertation

Zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

von
Gernot Gebhard

Saarbrücken
2013

Dekan Prof. Dr. Mark Groves

Prüfungsausschuss

Vorsitzender Prof. Dr. Jan Reineke
Berichterstatter Prof. Dr. Dr. h.c. mult. Reinhard Wilhelm

Prof. Dr.-Ing. Wolfgang Kunz
Akademischer Beisitzer Dr.-Ing. Michael Feld

Tag des Kolloquiums 22.10.2013

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die
aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter
Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im
Ausland in gleicher oder ähnlicher Form in einem Verfahren zur Erlangung eines
akademischen Grades vorgelegt.

Saarbrücken, 7. November 2013

i

Zusammenfassung

Um das Zeitverhalten eines sicherheitskritischen eingebettenen Softwaresystems zu
validieren, benötigt man sichere und präzise Grenzen für die Ausführungszeiten
der einzelnen Softwaretasks im schlimmsten Falle (Worst-Case). Diese Zeitschran-
ken müssen zuverlässig sein, damit sichergestellt ist, dass jede Komponente des
Softwaresystems rechtzeitig ausgeführt wird. Zudem müssen die zuvor bestimmten
Zeitschranken so präsize wie möglich sein damit das Softwaresystem als Ganzes
(beweisbar) ausführbar ist (Schedulability). Für die Erreichung dieser beiden Ziele
stellen Zeitanomalien eine der größten Hürden dar. Fast jede moderne Prozessorar-
chitektur weist Zeitanomalien auf, die einen großen Einfluß auf die Analysierbarkeit
solcher Architekturen haben.

Eine Zeitanomalie ist ein kontraintuitives Verhalten einer Hardwarearchitektur, bei
dem ein lokal gutes Ereignis (z.B., ein Cache Hit) zu einer insgesamt längeren Aus-
führungszeit führt, das entgegengesetzte schlechte Ereignis (in diesem Fall ein Cache
Miss) aber eine global kürzere Ausführungszeit mit sich bringt. Weist eine Prozessor-
architektur ein solches Verhalten auf, darf eine Zeitanalyse für diese Architektur
nicht nur lokal schlechte Ereignisse in Betracht ziehen, um eine obere Schranke der
worst-case Ausführungszeit für einen Task zu ermitteln. Um zuverlässige Zeitga-
rantien zu bestimmen, muss eine Zeitanalyse alle möglichen Ausführungszustände
betrachten, die durch unbekannte Hardwarezustände entstehen könnten.

In dieser Arbeit untersuchen wir die Ursache von Zeitanomalien in modernen
Prozessorarchitekturen und betrachten Zeitanomalien, die auch in eher einfachen
Prozessoren vorkommen können. Desweiteren diskutieren wir den Einfluß von
Zeitanomalien auf statische Zeitanalysen für eben solche Architekturen, die dieses
nicht-lokale Zeitverhalten aufweisen. Zuletzt zeigen wir, wie mittels Trace Validie-
rung Analyseergebnisse von statischen Zeitanalysen in diesem Kontext überprüft
werden können.

iii

Abstract

The validation of the timing behavior of a safety-critical embedded software system
requires both safe and precise worst-case execution time bounds for the tasks of
that system. Such bounds need to be safe to ensure that each component of the
software system performs its job in time. Furthermore, the execution time bounds
are required to be precise to ensure the (provable) schedulability of the software
system. When trying to achieve both safe and precise bounds, timing anomalies
are one of the greatest challenges to overcome. Almost every modern hardware
architecture shows timing anomalies, which also greatly impacts the analyzability
of such architectures with respect to timing.

Intuitively spoken, a timing anomaly is a counterintuitive behavior of a hardware
architecture, where a good event (e.g., a cache hit) leads to an overall longer execution,
whereas the corresponding bad event (in this case, a cache miss) leads to a globally
shorter execution time. In the presence of such anomalies, the local worst-case is
not always a safe assumption in static timing analysis. To compute safe timing
guarantees, any (static) timing analysis has to consider all possible executions.

In this thesis we investigate the source of timing anomalies in modern architectures
and study instances of timing anomalies found in rather simple hardware archi-
tectures. Furthermore we discuss the impact of timing anomalies on static timing
analysis. Finally we provide means to validate the result of static timing analysis for
such architectures through trace validation.

v

Acknowledgments

First of all, I wish to thank Prof. Dr. Reinhard Wilhelm for giving me the opportunity
to conduct this work. We have had important and fruitful discussions that helped
me in improving this thesis a lot. Additionally, I thank Prof. Dr. Reinhard Wilhelm
and Prof. Dr. Wolfgang Kunz in advance for the survey of this work.

I am thankful for the time granted at AbsInt to implement and to evaluate the timing
anomaly instance detector and the trace validation framework during my everyday
work schedule. Special thanks go to Christian Ferdinand, Christoph Cullmann,
Florian Martin, Reinhold Heckmann, Markus Pister, Marc Schlickling, Jan Reineke,
and Heiko Falk for many helpful comments about various aspects of this thesis.
They all have had great influence on the style of this document.

Last but not least, I thank my friends, my whole family and my wife Tina for their
support, without which I would not have been able to complete this work after all.

Extra credits go to all authors of free software for their excellent work. This thesis
has been written entirely using free software.

vii

About this Document

I have written this document using Kate [17], LaTeX [19], and Rubber [36]. The
PDF features clickable cross-references that connect references to their origin. In
this fashion, the reader can easily jump to a footnote, a figure, or a citation, among
others, wherever referenced. Although both figures and tables are (intended to
be) self-explaining most of the time, I advice the reader to always parse them in
conjunction with the surrounding text to prevent any misconceptions.

ix

Contents

Eidesstattliche Versicherung i

Zusammenfassung iii

Abstract v

Acknowledgments vii

About this Document ix

1 Introduction 1
1.1 Embedded Hardware Architectures 2

1.1.1 Memory Hierarchy . 3
1.1.2 Processor Features . 6
1.1.3 Timing Anomalies . 12

1.2 Thesis Structure . 14

2 Program Analysis 15
2.1 Abstract Interpretation of Programs 15

2.1.1 Concrete Program Semantics 17
2.1.2 Abstract Program Semantics 19

3 Timing Analysis 23
3.1 Overview . 23

3.1.1 Dynamic Analysis Methods 24
3.1.2 Static Analysis Methods . 26

3.2 Architectural Analysis . 30
3.2.1 Concrete Program Simulation 31
3.2.2 Abstract Program Simulation 35
3.2.3 Prediction Graph . 39
3.2.4 Non-Determinism . 43
3.2.5 Challenges for Static Analysis 46

4 Timing Anomalies and Domino Effects 51
4.1 Formal Definition . 51
4.2 Infinite Programs . 52
4.3 Classification of Timing Anomalies 54
4.4 Classification of Architectures . 56
4.5 Examples . 56

xi

Contents

5 Trace Validation 63
5.1 Methodology . 63
5.2 Measurement Granularity . 65
5.3 Implementation . 69

6 Evaluation 73
6.1 Trace Validation . 73

6.1.1 ERC32 . 73
6.1.2 LEON2 . 79
6.1.3 M68020 . 84
6.1.4 MPC5xx . 89
6.1.5 MPC55xx . 95
6.1.6 Intel 386 . 100
6.1.7 AMD 486 . 104

6.2 Timing Anomalies . 108
6.2.1 ERC32 . 108
6.2.2 LEON2 . 108
6.2.3 M68020 . 110
6.2.4 MPC5xx . 112
6.2.5 MPC55xx . 116
6.2.6 Intel 386 . 126
6.2.7 AMD 486 . 128

7 Conclusion 131

List of Tables 133

List of Figures 135

List of Theorems 137

List of Algorithms 139

Bibliography 141

Index 145

xii

Introduction1
Embedded systems are omni-present. For example, modern cars comprise a mul-
titude of embedded systems, some of which perform safety-critical operations, as
e.g., adaptive cruise control, anti-lock braking system, or airbag control. Besides
functional correctness, failure to react within a certain time budget might result in
fatal consequences. Hence, the verification of the system’s timing behavior plays a
key role during its development. To validate the timing behavior and to guarantee
schedulability of the overall system, both safe and precise execution time bounds are
required for each system component (i.e., task). Knowing the worst-case execution
time (WCET) is of major interest.

Determining precise timing bounds is however not easily achieved because a task’s
execution time greatly depends on its inputs, its mode of operation, the initial
hardware state, and the interference with the environment. For instance, different
operating modes of a flight control unit, such as plane is on ground and plane is in air,
could lead to mutual exclusive execution paths that exhibit different timing behavior.
With a high probability, measurements will observe average-case performance and
might only by chance encounter the worst-case timing behavior or the best-case
timing behavior respectively of the program (see Figure 1.1).

Lower
Bound

Understatement

Best Observed Worst

Overestimation

Upper
Bound

P
ro

ba
bi

li
ty

of
O

cc
u

rr
en

ce

Execution Time

Figure 1.1: Execution Time Distribution of a Task: Measurements will most likely
deliver average-case execution times. The best-case or the worst-case
timing behavior is seldom observed.

1

Chapter 1 Introduction

It becomes obvious that measurement-based timing analysis approaches cannot
succeed in determining the WCET of a piece of software. This is also due to the fact
that computing an initial system state that triggers the worst-case timing behavior is
not easily achieved.

Static timing analyses attempt to estimate worst-case timing behavior without
actually executing the software on the real hardware. In general, the state space
of input data and initial states is too large to exhaustively explore all possible
executions in order to determine the exact worst-case and best-case execution times.
Instead, static timing analysis can only provide lower and upper bounds for the
whole system’s execution time, as shown in Figure 1.1.

Some abstraction of the execution platform is necessary to make a timing analysis
of the system feasible. These abstractions lose information, and thus are – in part
– responsible for the gap between WCET guarantees and observed upper bounds.
How much is lost depends on the methods used for timing analysis and on system
properties, such as the hardware architecture and the analyzability of the software.
Even despite the potential loss of precision caused by abstraction, static timing
analysis methods are well established in the industrial process [42].

In order to achieve the required performance, processors exhibit features to increase
average-case-performance. Some of these features might provoke timing anomalies.
A timing anomaly is a counterintuitive behavior of a hardware architecture, where
a good event (e.g., a cache hit) leads to an overall longer execution, whereas the
corresponding bad event (e.g., a cache miss) leads to a globally shorter execution
time. In the presence of such anomalies, the local worst-case (i.e., the bad event)
is not always a safe assumption in static timing analysis. To compute safe timing
guarantees, any static timing analysis then has to consider all possible executions.
Due to the loss of predictability, a static analysis of such architectures requires much
more effort in terms of computing power and memory consumption. Computing
tight timing bounds is a challenge.

In this thesis we investigate the source of timing anomalies in modern architectures
and study timing anomalies found in rather simple hardware architectures. Fur-
thermore we discuss the impact of timing anomalies on static timing analysis for
architectures that exhibit this kind of non-local timing behavior. Finally we provide
means to validate the result of static timing analysis through trace validation.

1.1 Embedded Hardware Architectures

Ever since the invention of the microprocessor at Intel in 1971 the computing power
has been steadily increasing in accordance with Moore’s Law [27]. However, as stated
by Mahapatra et al. [25] the rate of improvement in processor speed exceeds the rate

2

1.1 Embedded Hardware Architectures

of improvement in memory speed. Due to technological limitations memory speed
is roughly increasing at a rate of 10% per year. This rate of development is rather
slower compared to an average speed increase of central processing units (CPUs) of
about 60% per year. Hence, system designers face an increasing processor-memory
performance gap. Figure 1.2 depicts this issue in more detail.

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Pe
rf

or
m

an
ce

Year

Legend:

CPU
Memory

Figure 1.2: Processor-Memory Performance Gap: Starting with the performance found
in 1980 the gap between CPU and memory processing speed has been
ever increasing [25].

The memory architecture of an (embedded) processor is structured hierarchically
from fast but small memory to slow but large memory, as shown in Figure 1.3. The
memory hierarchy concept benefits from the principle of locality, which states that
instruction and data that are located close to each other tend to be referenced close
together in time (spatial locality), and that recently accessed memory blocks are
likely to be accessed again (temporal locality) [12].

1.1.1 Memory Hierarchy

This section discusses types of memory typically found in embedded hardware and
investigates their influence on the timing behavior.

Register File

The register file is a small set of memory cells in which the CPU stores the results of
executed operations. The compiler decides which variables are (temporarily) stored
in the registers. The register allocation significantly impacts the performance of an

3

Chapter 1 Introduction

Register
File

L1
Cache(s)

Scratch Pad
Memory

Internal
Memory

L2
Cache(s)

External
Memory

Small Capacity
Low Latency

Large Capacity
High Latency

Figure 1.3: Memory Hierarchy of an Embedded Processor: Different levels of memory
hierarchy in an embedded hardware architecture. Both capacity and
access latency increase with the distance to the register file.

application. Less spilling code will lead to a smaller code size and to less memory
accesses that load and store register contents from and to main memory.

Cache Memory

Caches are small, fast memories that transparently load and store memory blocks
from and to main memory. If the cache contains a memory block that is currently
requested by the core (cache hit) it can be served quickly. Otherwise if the cache does
not contain the requested memory block (cache miss), it then decides in accordance
with a replacement policy which of the previously cached memory blocks to evict
from the cache. Often found replacement policies in embedded architectures are
first-in-first-out (FIFO), least-recently-used (LRU), pseudo-round-robin, or pseudo-
LRU (an approximation of LRU that requires less bits in hardware implementation).
The replacement policy has a great influence on the overall predictability of the
entire system. Obviously, caches with a random replacement policy are far less
predictable than those using the LRU replacement strategy. Unfortunately, hardware
architects prefer less predictable replacement policies, as these are less costly to
implement.1

Caches vary in their configuration, which is usually measured in cache line size
(i.e., size of the memory blocks to store), number of cache sets, the associativity (i.e.,
the number of blocks to associate with one cache set), and the overall cache size.
Caches are further discerned into unified caches that store both code and data and
disjoint caches that store code and data separately. For static timing analysis the use
of unified caches usually leads to a decrease in predictability.

1The LRU replacement policy requires a rather complex update logic, which results in higher
hardware cost, power consumption, and thermal output.

4

1.1 Embedded Hardware Architectures

Modern embedded architectures already feature two levels of caches to bridge the
performance gap between internal and external memories. The use of several levels
of caches however furthermore impairs the architecture’s predictability.

Scratch Pad Memory

Scratch pad memories are fast and small memories that are tightly coupled to the
CPU core. But unlike caches, scratch pad memories are software-managed. This
means that the programmer or the compiler has to decide which memory blocks
should be put into the scratch pad. The manual decision of which data to keep in the
scratch pad memory can be beneficial in the overall context, despite the overhead
caused by the scratch pad memory update.

The TriCore TC1797 processor features a 40KB of code scratch pad memory of which
16KB are shared with the instruction cache [40]. The system developer may decide
upon the scratch pad and cache partitioning (see Table 1.1).

Internal Memory

The internal memory is often subdivided into code storage and data (e.g., amongst
others, stack) storage. The code is stored in electrically erasable programmable
read-only memory (EEPROM) or Flash memory. Most architectures provide a small
code prefetch buffer (usually up to four cache lines) to further speed up accesses to
the code storage. Program data is located in a separate static random-access memory
(SRAM) region.

In a Freescale MPC5554 processor the internal Flash memory stores up to 2MB
of code, the internal SRAM memory at most 64KB of data. For comparison, the
MPC5554 has a unified cache storing 32KB of code and data [28].

Scratch Pad Size (KB) Instruction Cache Size (KB)
24 16
32 8
36 4
38 2
40 0

Table 1.1: Partitioning of Scratch Pad and Instruction Cache in a TC1797 CPU: The user
may choose between several configurations. By default the full scratch
pad size is configured.

5

Chapter 1 Introduction

External Memory

External memory provides additional storage capacity for data (or even code if inter-
nal memory space is too small). Here dynamic random-access memory (DRAM) or
synchronous dynamic random-access memory (SDRAM) provides larger capacities
(compared to SRAM) at an acceptable cost. The dynamic design of DRAM/SDRAM
and the larger access time implies the reduced performance (and predictability) as
compared to EEPROM or SRAM.

1.1.2 Processor Features

The memories and the memory hierarchy present in an embedded hardware architec-
ture have a huge influence on the system’s (worst-case) timing behavior. Furthermore,
other performance-enhancing features are implemented to improve the processor’s
execution time behavior. As we will show throughout this thesis, the combination
of performance-enhancing features often leads to timing anomalies, which impair
the predictability of the overall system.

Pipelining

The execution of an instruction is subdivided into several execution phases, called
pipeline stages. In principle pipeline stages may operate independently from each
other as long as there are no intra-instruction dependencies. For example, the
processor may decode the current instruction, while executing the previously fetched
one. Upon a dependency between two instructions, the processor inserts stall cycles
(bubbles) until this dependency is resolved. We discern the following pipeline
stages:

Fetch The instruction is fetched from main memory or from the instruction cache
and is placed into a dedicated instruction buffer.

Decode The operation code is decoded. In this phase, the processor determines
which registers are read and written by the instruction to execute.

Execute The instruction is brought to execution. Required register contents are
read from the register file. Depending on the kind of instruction the processor
takes some time to compute the result. For instructions that access the memory
the processor computes the target address (effective address calculation).

Memory Instructions that access main memory issue their request to the memory
controller.

Write back The instruction result is finally written into the register file.

6

1.1 Embedded Hardware Architectures

Cycle 3

Fetch Execute Write Back

Cycle 2

Fetch Execute Write Back

Cycle 1

Fetch Execute Write Back

Figure 1.4: Zuse Z3 Pipeline: Simple in-order pipeline. The instruction fetch stage
overlaps with the write back stage.

Even the Zuse Z3 featured a simple in-order pipeline [35]. Figure 1.4 shows the
pipeline of the Z3, where the write back stage overlaps with the fetch stage.

We discern between structural dependencies, i.e., two instructions requesting the
same functional unit, and data dependencies. Data dependencies are further classi-
fied into the following classes:

read after write An instruction reads a register that is being written by a preceding
instruction. The processor then has to stall execution until the result of the
preceding instruction is available. This is the only true dependency between
two instructions.

write after read An instruction attempts to write to a register before it is being
read by another instruction. This dependency can only occur in out-of-order
execution pipelines, where two instructions may execute in parallel.

write after write Two instructions attempt to write to the same register. To guaran-
tee correct program semantics, the processor has to ensure that the register
content is updated in the correct order. This dependency does not exist for
in-order completion pipelines.

Read after write dependencies may cause control dependencies. Figure 1.5 shows a
simple example. The processor is waiting for the outcome of the branch and stalls
the fetch until the branch target is known. There are several approaches not to stall
the code fetch as discussed below.

The length of the processor pipeline can become an issue for static timing analysis.
The amount of data to maintain during static analysis grows linearly in the number
of pipeline stages, which is problematic in terms of memory consumption.

7

Chapter 1 Introduction

0x2000: mul r6,r8,r4

0x2004: cmp cr0,r6,42

0x2008: beq cr0,ANSWER

true false

Figure 1.5: Control Dependency: We assume an in-order five-stage pipeline. The mul
instruction resides in the execute stage and waits for completion. The
cmp compare instruction depends on the outcome of the multiplication
and is stalled in the decode stage. Finally, the fetch stage contains a
branch instruction depending on the comparison. At this point, the
processor does not know whether the true of false branch target should
be fetched next.

Forwarding

A processor can partially resolve read after write dependencies by forwarding in-
termediate results. With this technique the processor can start the execution of an
instruction even if the register result has not yet been written back. This allows a
processor to dispatch instructions completing in one cycle one after another, even if
they suffer from register dependencies.

Early-Out Execution

Early-out execution allows for a better average-case performance. The number of
cycles to compute a result may depend on the instruction operands. For instance,
the execution of a division operation can be accelerated if the denominator is 0, or if
the denominator is 1.

Varying instruction execution times pose a problem to static analysis. In the presence
of timing anomalies, it is not safe to only assume the worst execution time possible.
Depending on the input program taking into account all possibilities could render a
precise static timing analysis infeasible due to exponential memory consumption.

Prefetching

Prefetching is a mechanism to avoid stalling the fetch stage. Instead of waiting for a
branch outcome, the processor prefetches consecutive instructions and puts them
into a dedicated prefetch buffer. Prefetched instructions are not executed until the
branch outcome is available. This is not to be confused with speculative execution,
where prefetched instructions are brought to execution whereas their results are
not written to the register file (see below). Depending on the branch condition, the

8

1.1 Embedded Hardware Architectures

processor either continues executing instructions from the prefetch buffer or clears
the prefetch buffer and starts fetching from the branch target.

The prefetch buffer size is constantly increasing. The Freescale MPC555 processor
comprises a two-instruction prefetch buffer. The recent MPC7448 stores up to 12
instructions in the prefetch buffer.

A static analysis for the prefetching mechanism requires minimal effort, because
the processor behavior is always deterministic and the amount of additional data to
remember is rather limited.2 In the presence of an instruction cache, the prefetching
mechanism can lead to cache pollution and even a lower performance compared to
not prefetching (depending on the cache line fill costs). Chapter 4 shows that this
combination can lead to a timing anomaly.

Branch Prediction

Branch prediction is an extension of the simple prefetching mechanism discussed
above. In order to reduce the number of useless instruction fetches, the proces-
sor employs a heuristic to determine whether the branch target is to be fetched
next. Embedded processors either use static branch prediction or dynamic branch
prediction.

Static branch prediction discerns between forward branches and backwards branches. A
branch is a forward branch if the branch target is located in memory after the branch
instruction, i.e., address(branch instruction) < address(branch target). Otherwise
the branch is called backwards branch. Forward branches are statically predicted
not taken. Encountering a forward branch, the processor continues to fetch linearly.
The compiler generates forward branches to implement if-then-else constructs.
After fetching a backwards branch, the processor prefetches in the direction of the
branch target. Backwards branches are usually generated for loops, where it is more
likely that the control flow continues with the branch target. If supported by the
processor’s instruction set architecture, the compiler may influence the direction of
prediction (prediction bit).

Dynamic branch prediction estimates the direction of control flow by means of the
branch execution history, which is stored in the branch history table (BHT). For a
branch instruction, the BHT stores a k-bit saturating counter that indicates how
likely the branch is being taken. For instance, the Freescale MPC7448 features a
2048-entry BHT using 2 bits per entry for four levels of prediction: strongly not
taken, weakly not taken, weakly taken, and strongly taken. Upon a taken branch,
the corresponding counter is incremented, i.e., it is more likely to be taken, and
decremented vice versa. In addition to the BHT, such processors are often equipped

2For this prefetch mechanism, it suffices to remember the number of additionally prefetched
instructions, which is bounded by the size of the prefetch buffer.

9

Chapter 1 Introduction

with a branch target buffer (BTB), or branch target instruction cache (BTIC), that
stores the target instructions of recently taken branches. If a target instruction
is present in the BTIC it is directly made available to the prefetch buffer. This
can happen faster than accessing the instruction from the instruction cache. The
MPC7448 comprises a 32-set, four-way set associative BTIC that is updated using a
FIFO replacement strategy.

Static branch prediction does not pose much of a problem to static timing analysis.
Like simple prefetching, the processor’s behavior can always be determined precisely.
Dynamic branch prediction is far more complex to analyze statically. The key
problem is on the one hand the large size of the branch history table, and on the
other hand the usage of statically less predictable replacement polices that are often
prone to timing anomalies, such as FIFO. For complex processors, a precise analysis
of the BHT and the BTIC is practically infeasible due to the overly large state space.
Hence, disabling dynamic branch prediction allows static timing analyses to provide
far more precise WCET bounds. However, for the MPC5xx processor derivatives, we
have successfully implemented an analysis for their BTIC [15].3

Delay Slots

Delay slots are used to implement delayed branches. Before executing a branch
instruction the processor first executes the instructions in the associated delay slots.
This is done independently from the branch outcome, allowing the processor to
perform useful operations while executing the branch. The delay slot size differs
between hardware architectures. PowerPC and X86 architectures do not feature
delay slots. SPARC architectures, such as LEON2, or LEON3, have a single delay
slot. The SHARC digital signal processor has two delay slots. The C33 processor
features three delay slots.

Delay slots can raise problems during the decoding of the program binary. Figure 1.6
shows an example, where the compiler has put the load of a volatile variable inside
a delay slot. Due to this optimization, the decoder has to discern two separate loops
even though the executed instructions are semantically equivalent, independent of
which path through the loop is being taken.

Superscalar Architecture

A superscalar processor dispatches multiple instructions at once onto several func-
tional units (e.g., arithmetic logical units). In this fashion the processor is able to
execute more than one instruction per cycle. The number of dispatched instructions

3The MPC5xx processors do not possess a branch history table.

10

1.1 Embedded Hardware Architectures

extern vo l a t i l e bool busy ;
int worker (Job * job) {

int r e s u l t = 0 ;
while (busy) {

Task * task = job−>task ;
i f (task != NULL)

r e s u l t = performTask (task) ;
}
return r e s u l t ;

}

HEAD1:

ldw %l1,[busy]

HEAD2:

cmp %l1,0x0

be RETURN

nop

ldw %l2,[task]

cmp %l2,0x0

be HEAD2

ldw %l1,[busy]

call performTask

nop

be HEAD1

or %o0,%g0,[result]

Legend:

Outer Loop

Inner Loop

Figure 1.6: SPARC Delay Slot Optimization: The load of the volatile variable busy is
also performed in the delay slot (in italics) of the second branch instruc-
tion (i.e., task != NULL). By doing so, the compiler has transformed a
single loop into two nested loops. This optimization has been found in a
satellite control software system.

per processor cycle depends on the stream of instructions and their interdependen-
cies. This behavior complicates the abstract processor model due to the dynamic
nature of the dispatch mechanism.

For instance, the Freescale MPC755 processor is able dispatch two instructions per
cycle. However, the maximum performance of two instructions per cycle is rarely
achieved due to dependencies between adjacent instructions.

Out-of-Order Execution

To limit the effect of data and structural dependencies instruction dispatch may
be executed out-of-order. This mechanism allows for a higher utilization of the
processor’s functional units because instructions with no dependencies can be

11

Chapter 1 Introduction

executed earlier than in a strict in-order pipeline design. The functional units may
be used out of order as well. For instance, a floating point operation usually takes
longer than an integer operation. An integer addition might complete earlier than a
preceding floating point division.

Similarly to a superscalar architecture design, achieving a precise static timing
analysis is complicated due to the dynamic behavior of out-of-order execution.

Speculative Execution

Speculative execution attempts to further reduce the cost of conditional change-of-
flow instructions by executing prefetched instructions ahead of time. The results
are stored in intermediate registers and have to be discarded in case the branch
prediction speculated in the wrong direction. As long as the corresponding branch
outcome is unknown, the speculative results may not be written back to the register
file.

For example, the MPC7448 supports up to three outstanding speculative branches.
Speculative execution is also implemented in 16bit architectures, such as the Infi-
neon C166V2.

For static timing analysis, speculative execution can impair the analysis precision in
case the analysis cannot determine precisely whether speculation is applied. This
could occur directly after the execution of an instruction with varying execution
time, such as an integer multiplication (see Figure 1.5). At worst, the analysis can
gather only little information about potential instruction or data cache contents.

1.1.3 Timing Anomalies

Lundqvist and Stenström [24] have discovered the effect of timing anomalies. They
state that it does not suffice to only investigate local worst-case behavior of individual
instructions to determine a global worst-case execution time bound. In their paper
the authors provide an example of a timing anomaly, where a cache hit leads to the
worst-case timing.

Engblom and Jonsson [9] also discuss timing anomalies. They translate the notion of
timing anomaly of Lundqvist and Stenström [24] to their model considering (local)
timing of pipeline stages instead of whole instructions. Both Lundqvist and Engblom
claim that timing anomalies cannot occur in processors that only comprise in-order
resources (i.e., two instructions can only use a resource in program order).

Wenzel et al. [45] extend the work of Lundqvist and Engblom providing a necessary,
but not sufficient, condition for the occurrence of timing anomalies in superscalar
processors. Demonstrating a timing anomaly by means of an artificial hardware
model with in-order resources only, they are able to refute Lundqvist’s and Engblom’s

12

1.1 Embedded Hardware Architectures

claim. However, the presented necessary condition is limited to architectures that
have at least two functional units with different timing behavior. In this thesis we
show that even in-order architectures with a single functional unit may suffer from
timing anomalies.

Schneider [38] reveals that the instruction scheduling mechanism in the Freescale
MPC755 processor is prone to a timing anomaly. The possibility to dispatch an
instruction on two execution units with different timing behavior in conjunction
with pipeline stalls can trigger a timing anomaly. Furthermore, he was the first to
provide a real example for a domino effect [24], which is some kind of non-stabilizing
timing anomaly. Thesing [42] discusses the Motorola ColdFire 5307 that has a
rather simple in-order pipeline. He shows that the processor exhibits domino effects,
caused by the pseudo round-robin cache replacement algorithm.

Berg [3] discusses cache replacement policies and their timing anomalies. He finds
that caches using first-in first-out (FIFO), round-robin, or pseudo least-recently-
used (PLRU) cache replacement strategies suffer from timing anomalies. These
replacement strategies are commonly used in embedded hardware architectures, as
they require less update logic compared to the LRU policy, which is free of timing
anomalies.

At the time of writing there exists no method that automatically detects timing
anomalies. Every timing anomaly that has been found so far was determined
manually. Eisinger et al. [8] have provided a novel methodology to automatically
detect timing anomalies. Requiring an accurate hardware model to be available
(e.g., in VHDL), the approach attempts to synthesize an instruction sequence that
triggers a timing anomaly if such a sequence exists. Yet, the approach is not fully
automatic because hardware features potentially causing timing anomalies need to
be identified manually.

Reineke and Sen [33] discuss a related method that allows a static timing analysis to
safely discard analysis states by means of ∆ functions. A ∆ function computes the
maximal difference in timing between two system states on any input instruction
sequence. For any pair of system states, a static timing analysis can consult the cor-
responding ∆ function to determine which of the two states can be safely discarded.
This approach works quite well for simple hardware models with a very limited
instruction set architecture (ISA). However, there exists no feasible algorithm to
compute ∆ functions for real hardware architectures.

Kirner et al. [18] show that splitting up a WCET analysis into separate parallel
WCET analyses (corresponding to hardware components operating in parallel) is not
generally safe in the presence of timing anomalies. Furthermore, the authors identify
special instances of parallel timing anomalies still making a parallel decomposition
of the WCET problem feasible. These findings correspond to the classification of

13

Chapter 1 Introduction

architectures discussed in Chapter 4. Non-fully timing compositional architectures
do not allow for a safe, parallel decomposition of the WCET problem.

Reineke et al. [34] are the first to provide a formal definition of timing anomalies in
the context of worst-case execution time analysis. Chapter 6 on page 73 adopts this
definition and extends the formalism to describe domino effects.

1.2 Thesis Structure

Chapter 2 provides the basic formalism used throughout this thesis with a strong
focus on abstract interpretation. Chapter 3 discusses timing analysis in general and
briefly depicts the structure of state-of-the-art static timing analyzers. The remainder
of the chapter is concerned with the description of static pipeline analyses. We
discuss the types of imprecision that arise during pipeline analysis and correlate
them with hardware features, where possible. Finally, we formally define the
functioning of static pipeline analysis. Chapter 4 adopts the formalism introduced
in Chapter 3 to precisely define the terms timing anomaly and domino effects.
Furthermore, we discuss recently found instances and investigate their causes. We
also show how instances of timing anomalies can be semi-automatically detected
and visualized by means of static timing analysis results. Chapter 5 demonstrates
how static timing analysis results can be combined with measurements. We provide
means to verify the safety of static timing analysis. Chapter 6 evaluates the findings
made. Finally, Chapter 7 concludes the thesis.

14

Program Analysis2
Is the execution of a specific function in a program possible? Will the fuel rods
in a nuclear power plant retract fast enough to prevent a meltdown? Answering
such questions is one of the main purposes of formal verification through program
analysis. Especially in the domain of safety-critical applications, developing correct
programs is of major interest. Failure to do so might result in damage to equipment,
harm or, even worse, loss of life, or long term environmental damage. For instance,
(static) program analysis could have prevented the Ariane 5 maiden flight crash in
1996, which was caused by an arithmetic overflow during the conversion of a 64bit
floating point number into a 16bit integer value [21].

Dynamic program analyses attempt to determine program properties through (not
necessarily exhaustive) testing. The program is executed under a multitude of input
conditions. Such analysis methods cannot provide absolute guarantees as we will
later show.

Static analyses compute program characteristics without executing the program.
Either the program source code, or the corresponding object code, or some other
representation serves as input to the analysis. Several static analysis techniques
have emerged so far. Model checking attempts to derive by means of a system model
and given specification whether the model meets the specification. With increasing
complexity of such models, the model checking approach cannot be applied to
real world applications in a beneficial way. Abstract interpretation uses an abstract
system model to simulate the system behavior on a set of abstract states. This
approach allows (static) program analysis even of sophisticated systems. A static
analysis based on abstract interpretation computes an over-approximation of the set
of possible concrete values. Contrary to dynamic program analysis, analyses based
on abstract interpretation can be designed to provide safe guarantees.

For the remainder of this document, we assume that the reader is familiar with
lattice theory [7] and with the principles of program analysis [30]. In Section 2.1 we
introduce abstract interpretation of programs with a focus only on the formalisms
required by this thesis.

2.1 Abstract Interpretation of Programs

Abstract interpretation was formalized by Patrick and Radhia Cousot [5, 6]. The
basic concept of abstract interpretation is to discard irrelevant information about the
concrete system semantics and to keep what is relevant to verify the specification.

15

Chapter 2 Program Analysis

Statement Source Code Interval Abstraction for y Sign Abstraction for y
1 if (x > 0) > >
2 y = 4; 4 {pos}
3 else > >
4 y = -4; -4 {neg}
5 x = x/y; [-4, . . ., 4] {pos,neg}

Table 2.1: Division by Zero Runtime Error Detection: Statements which (might) cause
a division by zero error are in italics. Using the interval domain to abstract
from concrete values of y, the analysis is unable to prove the absence of a
runtime error. On the contrary, using the sign abstraction, the analysis
can prove that no error occurs.

For example, to compute a (worst-case) execution time bound for an instruction
sequence it is not necessary to keep track of the register contents. An addition
instruction will (typically) compute its result after a fixed number of processor
cycles, independent of the input values.4

The chosen abstraction should be sound. This means a proof stating that the abstract
semantics satisfies the abstract specification should imply that the concrete seman-
tics also satisfies the concrete specification. Hence, testing is not a sound verification
method because it cannot be guaranteed that all possible executions are included.
Unsound abstractions lead to false negatives, i.e., a program is claimed to be correct,
although it actually does not behave according to its specification.

Furthermore, it is desirable to chose a complete abstraction. This means that if the
concrete program semantics satisfies its specification this has to be confirmable by
the abstract semantics. However, as program proofs are undecidable in general, any
kind of (static) analyzer for non-trivial program properties is inevitably incomplete.
Hence, a static analysis may emit false positives or false alarms, i.e., a violation against
the specification is detected even though it cannot occur in reality.

Table 2.1 gives an example for an incomplete abstraction. Using an interval domain
to abstract from the real values the variable y can accept, the analysis is unable
to prove that no division by zero runtime error can occur at the last program
statement.

Finding good abstractions is a key task in the design of analyses based on abstract
interpretation. Consider again the example in Table 2.1. By using the sign domain
(i.e., a value can have any combination of the properties positive, negative, or zero) the

4For instructions with early-out execution behavior this is not quite true. The analysis can achieve a
better precision by modeling the early-out mechanism.

16

2.1 Abstract Interpretation of Programs

analysis is able to prove that a division by zero cannot occur. For the last statement,
the variable y is known to be not zero. However, a sign domain based analysis does
not always outperform an interval domain based analysis. If the divisor would be
computed by an addition of a positive and a negative value, the sign domain based
analysis could not prove the absence of an error. Depending on the abstract values
of the terms of the sum, the interval domain based analysis would then still be able
to show that a division by zero cannot happen.

Abstractions cannot be arbitrarily precise for computability reasons. Hence, there is
always a trade-off between achievable analysis precision and required computational
resources. For certain systems it is even impossible to design an abstraction that
performs significantly better than a naive approach. For example, there cannot be a
better abstraction for a cache with a random replacement policy than the one that
only remembers the last accessed set. However, this issue is out of scope for this
thesis.

Section 2.1.1 formally defines the used program representation and introduces
the concrete execution behavior. Section 2.1.2 provides a formal definition of the
abstract program behavior.

2.1.1 Concrete Program Semantics

Definition 2.1 (Control-Flow Graph, Path)
A control-flow graph (CFG) is a directed graph G = (V ,vs,E), with a set of vertices
V , a unique vertex vs ∈ V , and a set of edges E ⊂ V × V . The vertex vs is the unique
control-flow start such that there exists no edge e ∈ E with e = (v,vs) for any v ∈ V .
The vertices in a CFG represent the program statements. The edges in a CFG describe all
possible control-flow transitions of a program.

A path through the CFG G is a sequence of vertices π = (v1,v2, . . . , vn) ∈ V ∗ with v1 = vs
and (vi ,vi+1) ∈ E for all 1 ≤ i < n and n ≥ 1. Each vertex in v ∈ V of the CFG G is
required to be reachable, i.e., there is a path π to v such that π = (v1, . . . , vn) ∈ V ∗ and
(vn,v) ∈ E. The path extension to v where π = (v1, . . . , vn) and (vn,v) ∈ E is written as
π ◦ v. The path π = ε is the empty path.

Definition 2.2 (Concrete Transformer)
A concrete transformer is a function f : V →D→D that computes the effect of program
statements on concrete states δ ∈ D. For any v ∈ V the function f (v) :D→D computes
the modification of concrete states due to execution of the program statement v.

Given a control-flow graph G = (V ,vs,E) and a concrete transformer f : V →D→D,
we can now formally define the semantics of a path through the CFG.

17

Chapter 2 Program Analysis

Definition 2.3 (Path Semantics)
Let G = (V ,vs,E) be a control-flow graph, and f : V →D→D be a concrete transformer.
The path semantics [[π]] :D→D is defined as:

[[π]] =
{

id if π = ε
f (vn) ◦ [[π′]] if π = π′ ◦ vn is a path

Program analyses typically compute program properties for sets of initial states
instead for a single initial state. For this purpose we first lift the concrete transformer
to sets of states. The collecting transformer fcoll : V → 2D → 2D is defined for any
v ∈ V and ∆ ∈ 2D as follows:

fcoll(v)(∆) := {f (v)(δ) | δ ∈ ∆ }

The tuple (2D,⊆,
⋃
,
⋂
,∅,D) forms a complete lattice. The partial order ⊆ arranges

elements in 2D according to their precision. A set of states a is more precise than
b, iff a ⊆ b, because a contains fewer concrete states than b. Hence, the collecting
transformer is monotone: more precise input leads to more precise output.

By means of the collecting transformer, we can now lift the path semantics to a
collecting path semantics as follows.

Definition 2.4 (Collecting Path Semantics)
Let G = (V ,vs,E) be a control-flow graph, and fcoll : V → 2D → 2D. We define the
collecting path semantics [[π]]coll : 2D→ 2D as:

[[π]]coll =
{

id if π = ε
fcoll(vn) ◦ [[π′]]coll if π = π′ ◦ vn is a path

Given a CFG representation for a program, the collecting path semantics formally
describes the transformation of a set of initial states to a set of final states that can
ever occur after the execution of the program. For certain program analyses, such as
the pipeline analysis, we also need to be able to compute intermediate properties,
such as which memory areas are potentially being accessed by a memory reference.
Hence, we define the sticky collecting semantics [[v]]coll : V → 2D that maps each
program statement to a set of possible states that can occur after that statement.

Definition 2.5 (Sticky Collecting Semantics)
Let G = (V ,vs,E) be a control-flow graph, and I ∈ 2D be the set of initial states. The
sticky collecting semantics [[v]]coll : V → 2D is then defined as:

[[v]]coll =
⋃
{ [[π]]coll(I) | π is a path tov }

18

2.1 Abstract Interpretation of Programs

Note that other program properties need different semantics. For instance, whether
a cache block is a useful cache block (i.e., it is possibly accessed again later) cannot be
expressed with sticky collecting semantics [2]. For our purposes the sticky collecting
semantics suffices for modeling the execution behavior of a processor because the
concrete hardware state at a program point depends on the execution history and
not its future.

In general, the sticky collecting semantics for a program point is not computable.
This is either caused by an infeasibly large set of initial states, or by an arbitrary
number of paths reaching that program point. The following section provides a
solution to this problem on the basis of abstraction, which allows us to compute an
over-approximation of the sticky collecting semantics.

2.1.2 Abstract Program Semantics

As Section 2.1.1 shows, we cannot compute the sticky collecting semantics in general.
Hence, we translate the problem from the sets of concrete states D to an abstract
domain D̂ with the partial order v.

Similarly to the concrete case, the partial order can be understood as more precise than.
This means that for two elements a,b ∈ D̂ the statement a v b means a denotes more
precise information than b. The abstract domain D̂ should be a complete lattice
(D̂,v,

⊔
,
�
,⊥,>) such that a least upper bound exists for subsets of D̂. For this

domain we need a monotone abstract transformer fabs : V → D̂ → D̂ that computes
the effect of program statements directly on abstract states.

Analogously to the concrete domain, we can now formally define the abstract collect-
ing path semantics as follows.

Definition 2.6 (Abstract Collecting Path Semantics)
Let G = (V ,vs,E) be a control-flow graph, and fabs : V → D̂ → D̂ be an abstract trans-
former. The abstract collecting path semantics [[π]]abs : D̂ → D̂ is defined as:

[[π]]abs =
{

id if π = ε
fabs(vn) ◦ [[π′]]abs if π = π′ ◦ vn is a path

We need to relate the abstract with the concrete domain to argue about the soundness
of abstract semantics with respect to the concrete collecting semantics. For this
purpose we require a monotone concretization function γ : D̂ → 2D mapping an
abstract state to a set of concrete states. The monotonicity of γ guarantees that the
partial order v on D̂ arranges abstract states according to their precision. So for any
a,b ∈ D̂ with a v b it holds γ(a) ⊆ γ(b). Clearly, the abstract state a is more precise
than the abstract state b because it describes fewer concrete states. On this basis we

19

Chapter 2 Program Analysis

now formally define the local consistency of the abstract transformer fabs with the
collecting transformer fcoll .

Definition 2.7 (Local Consistency)
Let G = (V ,vs,E) be a CFG, γ : D̂ → 2D be a concretization function. An abstract
transformer fabs is locally consistent with a collecting transformer fcoll , iff:

∀v ∈ V , δ̂ ∈ D̂ : fcoll(v)(γ(δ̂)) ⊆ γ(fabs(v)(δ̂))

To ensure the soundness, the abstract transformer fabs should compute an over-
approximation of the collecting semantics fcoll .

Lemma 2.1 (Soundness of Abstract Collecting Path Semantics)
The abstract collecting path semantics is a sound over-approximation of the collecting
path semantics, i.e., for all δ̂ ∈ D̂ it holds ([[π]]coll ◦γ)(δ̂) ⊆ (γ ◦ [[π]]abs)(δ̂), if fabs is locally
consistent with fcoll .

Proof. Proof by structural induction over the path π. For the empty path, the claim
is obviously true. For the induction step, we need to show that for any δ̂ ∈ D̂ it holds
([[π ◦ vn]]coll ◦γ)(δ̂) ⊆ (γ ◦ [[π ◦ vn]]abs)(δ̂).

Let δ̂ ∈ D̂ be an abstract state:

([[π ◦ vn]]coll ◦γ)(δ̂) = (fcoll(vn) ◦ [[π]]coll ◦γ)(δ̂) | Definition

⊆ (fcoll(vn) ◦γ ◦ [[π]]abs)(δ̂) | Induction hypothesis

⊆ (γ ◦ fabs(vn) ◦ [[π]]abs)(δ̂) | Local consistency

= (γ ◦ [[π ◦ vn]]abs)(δ̂) | Definition

Opposed to the concretization function, we can define a monotone abstraction
function α : 2D → D̂ that computes for a set of concrete states ∆ ∈ 2D the (best)
corresponding abstract state δ̂ ∈ D̂. The functions α and γ should be strongly
adjoint.

Definition 2.8 (Strongly Adjoint)
Let (2D,⊆) and (D̂,v) be partially ordered sets, α : 2D→ D̂ an abstraction function, and
γ : D̂ → 2D a concretization function. The functions α and γ are strongly adjoint, iff for
all ∆ ∈ 2D and δ̂ ∈ D̂:

∆ ⊆ γ(α(∆))

δ̂ = α(γ(δ̂))

20

2.1 Abstract Interpretation of Programs

The first condition is required for soundness. It implies that after abstraction and
concretization we can only lose information. This is unavoidable because the abstract
domain cannot distinguish certain concrete states due to the abstraction. The second
condition avoids that two different abstract states represent the same concrete states,
which would be undesirable.

Definition 2.9 (Abstract Sticky Collecting Semantics)
Let G = (V ,vs,E) be a control-flow graph, and Î ∈ D̂ be an initial abstract state. We define
the abstract sticky collecting semantics [[v]]abs : V → D̂ as:

[[v]]abs =
⊔{

[[π]]abs(Î) | π is a path tov
}

Theorem 2.1 (Soundness of Abstract Sticky Collecting Semantics)
The abstract sticky collecting semantics is a sound over-approximation of the sticky
collecting semantics, i.e., for all v ∈ V it holds [[v]]coll ⊆ γ([[v]]abs) if fabs is locally
consistent with fcoll and the abstract initial state Î is Î = α(I) for the set of initial states
I ∈ 2D.

Proof. Let v ∈ V be an arbitrary program statement:

[[v]]coll =
⋃
{[[π]]coll(I) | π is a path tov } | Definition

⊆
⋃
{[[π]]coll(γ(α(I))) | π is a path tov } | α,γ strongly adjoint

⊆
⋃{

γ([[π]]abs(Î)) | π is a path tov
}

| Lemma 2.1, definition

⊆ γ
(⊔{

[[π]]abs(Î) | π is a path tov
})

|Monotonicity ofγ

= γ([[v]]abs) | Definition

Figure 2.1 depicts the over-approximation of concrete program semantics by means
of abstraction. The abstract transformer may produce abstract states describing
concrete states that would not occur in reality. This loss of precision is an inherent
property of abstraction and cannot be avoided.

21

Chapter 2 Program Analysis

(2D,⊆) (D̂,v)

·
δ1

·
δ2

·
δ′1

·
δ′2

·
δ′3

fcoll

·
δ̂

·
δ̂′

fabs

α

α

γ

Figure 2.1: Abstract Interpretation Principle: Conclusions about the concrete program
behavior are drawn out of abstract states computed by the abstract
transformer. The gained information cannot be arbitrarily precise. Here
the abstract state δ̂′ over-approximates the set of concrete states that
actually can occur.

22

Timing Analysis3
Timing analysis is a major component of the verification process of a safety-critical
software system. Safe and precise best- and worst-case execution time bounds for
each of the system tasks are required to check whether the overall system is able to
perform as required.

Section 3.1 discusses dynamic and static approaches to compute worst-case execu-
tion time bounds for programs. Again we provide evidence why measurement-based
timing analysis approaches are usually unable to derive safety guarantees. Finally,
we introduce the structure of state-of-the-art static timing analyzers and briefly
discuss the used analysis techniques. Section 3.2 discusses the static architectural
analysis in more detail. We investigate the types of imprecision that arise during
the abstract simulation of the hardware state and relate them to corresponding
hardware features, where possible. We conclude this chapter by formally describing
the functioning of a static architectural analysis and provide the necessary means to
define (and detect) timing anomalies or domino effects.

3.1 Overview

Exact worst-case execution times are often impossible or very hard to determine,
even for the restricted class of safety-critical software systems. The reasons for this
situation are manifold:

• The complex software structure accounts for this problem. Many control-flow
decisions are based on input data and are thus impossible to compute statically.
Certain paths through the program might be infeasible depending on the
current state of the environment. Different modes of operation are typically
found in safety-critical software systems.

For example, a flight control system might behave differently if the plane is
on ground or in the air and may thus exhibit a different timing behavior. A
monolithic worst-case execution time analysis that does not discern between
operating modes might not be precise enough. Instead one should discern
between the modes of operation of the software [23].

• As introduced in Section 1.1 on page 2 the hardware architecture greatly
influences the execution time behavior. The number of (initial) hardware
states that lead to a different (overall) timing behavior of the processor is often
directly related to the available (average-case) performance-enhancing features.
Based on this observation, we consider the number of concrete hardware states

23

Chapter 3 Timing Analysis

leading to a different timing behavior as a metric for the complexity of the
processor.5

For example, consider a processor that is connected to a memory module with
a read buffer storing the last access. Neglecting the structure of the processor
pipeline, we can identify two states that lead to a different timing behavior:
Either the next memory access hits the read buffer, or it does not. If we now
add a cache in between the processor and the buffered memory, we observe an
additional level of complexity: The next memory access either hits the cache, it
hits the memory read buffer, or it misses both. Section 3.2 on page 30 discusses
this issue in more detail.

WCET analyzers typically only provide worst-case timing guarantees, which are safe
and precise upper bounds for the execution times of tasks. A timing analysis should
exhibit the following properties:

soundness to ensure the reliability of the derived guarantees.

precision such that given timing constraints can be proven.

efficiency to make the analysis feasible in industrial practice.

Section 3.1.1 and Section 3.1.2 discuss two existing approaches to solve the timing
analysis problem.

3.1.1 Dynamic Analysis Methods

Measurement-based WCET analyzers attempt to determine worst-case execution
time bounds by means of repetitive execution of the analyzed program under varying
conditions. This usually also requires instrumentation of the program code that
is subject to timing analysis. The (additional) execution of the instrumentation
code can lead to a non-negligible impact on the program’s timing behavior, e.g.,
due to cache pollution, or modification of hardware buffers. The required amount
of measured data drastically increases with increasing complexity of the program
control flow.

Certification standards, such as DO-178B, (only) require that the software has been
tested in accordance with the modified condition/decision coverage (MC/DC) crite-
rion. The measurements as a whole have to meet the following requirements [11]:

• Each decision accepts every possible value.

• Each condition in a decision takes on every possible outcome.

5This metric does not say how complex it is to analyze a certain hardware feature, i.e., how precisely
an analysis can predict its (timing) behavior.

24

3.1 Overview

• Each entry and exit point is invoked.

• Each condition (i.e., atomic Boolean expression) in a decision (i.e., composition
of conditions) is shown to independently affect the outcome of the decision.
Independence of a condition is shown by proving that only one condition
changes at a time.

MC/DC-based measurements are typically unable to notice every possible evolution
of hardware states that could occur during program execution. To ensure soundness,
the measurements would additionally need to observe all feasible input scenarios,
including all possible initial hardware states.

An extreme example (demonstrated in [14]) for a function with good average-case
performance and bad WCET predictability is the library function lDivMod of the
CodeWarrior V4.6 compiler for the Freescale HCS12X processor. The purpose of
this routine is to compute quotient and remainder of two 32 bit unsigned integers.
The algorithm performs an iteration computing successive approximations to the
final result. To get an impression on the number of loop iterations, we performed an
experiment in which lDivMod was applied to 108 random inputs.

Iteration Counts Occurrence Observed for
0 1 552
1 99 881 801
2 116 421
3 114

4 .. 9 13
10 .. 19 19
20 .. 39 24
40 .. 59 22
60 .. 79 13
80 .. 99 11

100 .. 135 7
156 1 lDivMod (0xffd93580, 0x107d228)

186 1 lDivMod (0xfff2c009, 0x118dcc4)

204 1 lDivMod (0xffe870e3, 0x1414167)

Table 3.1: Observed iteration counts for lDivMod: For the most inputs we observed
a single iteration of the algorithm. Very rarely we found inputs to the
algorithm causing a very high number of iterations.

Table 3.1 shows which iteration counts were observed in this experiment. The
number of iterations is 1 in more than 99.8% and 0, 1, or 2 in more than 99.999%

25

Chapter 3 Timing Analysis

of the sample inputs. On the other hand, iteration counts of more than 150 could
be observed for a few specific inputs. There seems to be no simple way to derive
the number of iterations from given inputs (other than running the algorithm). If a
dynamic worst-case execution time analysis method only observes the fast iterations,
it could possibly underestimate the overall execution time.

3.1.2 Static Analysis Methods

A static WCET analyzer determines a worst-case execution time bound of a code
snippet (program task) in several analysis phases, as shown in Figure 3.1.

Opposing to dynamic WCET analysis methods, static WCET analyses do not actually
execute the analyzed program on the real hardware. Furthermore this method does
not require any modification of the program code. However, some abstraction of
the execution platform is necessary to make a timing analysis of a complex software
system and hardware architecture feasible. It is unavoidable that the abstraction
incurs a loss of information about the hardware state.

How much information is lost depends on the methods used for timing analysis,
on system properties, such as the hardware architecture, and on the analyzability
and (static) predictability of the software. Virtually it is not possible to exactly state
the degree of overestimation because the precise worst-case execution time is not
measurable. Despite the potential loss of precision caused by abstraction, static
timing analysis methods are well established in the industrial process.

The different phases of static WCET bound computation are briefly discussed in the
following.

Decoding Phase

In this phase the tool processes the input (binary) program. The decoder identifies
the machine instructions and reconstructs the control-flow graph. Here, the user
may provide additional information that is passed to each analysis phase. Such
information could be targets of computed calls (used during the decoding phase),
the number of iterations for a specific loop (used during the loop and value analysis
phase), the hardware configuration (as required by the architectural analysis), and
flow constraints (used in the path analysis phase).

Loop and Value Analysis

The loop analysis phase tries to automatically compute upper bounds of loop it-
erations for all loops. The user may provide loop bounds if upper bounds cannot
be determined. Additionally, the user may refine automatically computed loop
bounds.

26

3.1 Overview

Timing AnalyzerInput
Executable

Decoding
Phase

Decoded
CFG

Loop/Value
Analysis

Annotated
CFG

Architectural
Analysis

Timing
Information

Path
Analysis

WCET
Bound

Legend:
Data

Phase

Figure 3.1: Phases of WCET Computation: Static timing analysis is split up into four
phases. The first analysis phase reconstructs the control-flow graph
from the input binary. The loop and value analysis derives the num-
ber of loop iterations and determines the potential targets of memory
accesses. By means of abstract program simulation the architectural anal-
ysis computes timing information. The path analysis phase determines
the worst-case execution path and an upper bound for the WCET.

The value analysis determines safe approximations of the values of processor reg-
isters and memory cells for every program point and execution context. Contents
of registers or memory cells as well as address ranges for memory accesses may be
provided by user annotations.

Loop and value analysis (and every analysis thereafter) distinguish contexts for a
program point by means of call strings [39], which indicate part of the call stack
leading to the routine containing the program point. The call string length is usually
limited to reduce the number of contexts so that an efficient analysis is feasible for
complex programs. Larger call string lengths usually lead to better value analysis
results. In this fashion the sticky collecting semantics (see Definition 2.5 on page 18)
is extended to a context-sensitive sticky collecting semantics, which is able to discern
between different execution contexts for a program statement.

For example, the call string Proc1:0x188c→ Proc3 describes a context in which
the routine Proc3 has been called from routine Proc1 at address 0x188c.

27

Chapter 3 Timing Analysis

Architectural Analysis

Processing the annotated control-flow graph, the architectural analysis simulates
the execution behavior of the input program through an abstract hardware model.
The analysis determines lower and upper bounds for the execution times of basic
blocks by performing an abstract interpretation of the program execution on the
particular architecture, taking into account its pipeline, caches, memory buses, and
attached peripheral devices [9, 42, 13].

Typically, the architectural analysis is a composition of a pipeline analysis and a
cache analysis. By means of an abstract model of the hardware architecture, the
pipeline analysis simulates the execution of each instruction. The cache analysis
provides safe approximations of the contents of the caches at each program point.
Complex architectural features are the main challenges for this analysis phase.

Since most parts of the pipeline state influence timing, current abstract models
closely resemble the concrete hardware. The more performance-enhancing features
a pipeline has, the larger is the search space. Superscalar- and out-of-order execution
increase the number of possible interleavings. The larger the buffers (e.g., fetch
buffers, retirement queues, etc.), the longer the influence of past events last. Dynamic
branch prediction, speculative execution, cache-like structures, and branch history
tables increase history dependence even more.

All these features influence execution time. To compute a precise bound on the
execution time of a basic block, the analysis needs to exclude as many timing
accidents as possible. Such accidents are data hazards, branch mis-predictions,
occupied functional units, full queues, for example.

Abstract states may lack information about the state of some processor components,
e.g., caches, queues, or predictors. Transitions of the pipeline may depend on
such missing information. This causes the abstract pipeline model to become non-
deterministic although the concrete pipeline is deterministic. When dealing with
this non-determinism, one could be tempted to design the WCET analysis such that
only the most expensive pipeline transition is chosen. However, in the presence of
timing anomalies [24, 34] this approach is unsound. Thus, in general, the analysis
has to follow all possible successor states.

Path Analysis

Using the results of the preceding loop and value analysis and the architectural
analysis phases, the path analysis phase estimates the worst-case execution path
and computes a safe estimate for the WCET. The analysis translates the control-flow
graph with the basic block timing bounds determined by the architectural analysis
and the loop (and recursion) bounds derived by the loop and value analysis phase
into an integer linear program [41]. The solution of the ILP yields the worst-case

28

3.1 Overview

 Computed Worst-Case Execution Time: 8299 cycles = 20.748 µs

main

Func2

Proc0

Proc1

Proc3 Proc6

.umul

Func1

Func3

Proc2Proc4Proc5

Proc7

Proc8malloc_x

memcpy_x strcmp_x

strcpy_x

Figure 3.2: WCET-Computation Result: The result of the computation is a WCET-
annotated call graph. Red edges depict the estimated execution path that
triggers the worst-case timing behavior. Blue edges indicate program
paths that do not contribute to the worst-case.

path and a safe approximation of the worst-case execution time. Figure 3.2 shows
an example.

However the WCET bound computation based on ILP introduces an additional
degree of overestimation. An ILP-based path analysis approach operates on the
control-flow graph level and does forget information that is available during the
architectural analysis. Such a path analysis method only uses upper bounds for the
execution time of control-flow graph nodes (typically basic blocks) to determine
a longest path through the analyzed program. Hence, any information about the
abstract simulation across control-flow graph node boundaries is lost.

Figure 3.3 provides an example. For both basic blocks the upper bound for their
execution is four cycles. Hence, solving the ILP yields eight cycles as an upper
bound for their execution. This means that the ILP has assumed an evolution of
processor states that does not occur in the abstract state space. Being aware of the
cycle-wise state evolution an alternative path analysis approach would compute six
cycles as an upper bound.

The prediction graph comprises the necessary information. Intuitively, the prediction
graph is a description of all events (e.g., a cache hit, an access to a specific memory

29

Chapter 3 Timing Analysis

module, etc.) that could occur on the actual hardware during the execution of the
input program.

In Section 3.2 we formally introduce the prediction graph as an alternative to the
ILP-based path analysis approach. Chapter 4 on page 51 defines the notions of
timing anomaly and of domino effect by means of the prediction graph.

The prediction graph can also be used to validate the correctness of an abstraction
and hence of a static (architectural) analysis, as discussed in Chapter 5 on page 63.
For example, if we can show that the prediction graph for a specific program contains
a measured sequence of events, we have evidence that the analysis works correctly
for the hardware state before the start of the measurement. If we encounter a
sequence of events that is not part of the prediction graph, the abstract hardware
model is obviously invalid. Wrong abstractions can arise from invalid hardware
specifications.

Basic Block b0 Basic Block b1

ŝ0

ŝ1

ŝ2 ŝ3 ŝ4 ŝ5

ŝ6 ŝ7 ŝ8

ŝ9

Figure 3.3: ILP Path Analysis Problem: The nodes represent abstract processor states.
The edges denote the single cycle transitions in the abstract state space
during the architectural analysis. This information is unavailable to
ILP-based path analysis methods. Their input are solely upper bounds
for the execution times of basic blocks. Hence, an ILP-based approach
computes eight cycles as an upper bound. However, any execution of the
basic blocks b0 and b1 already terminates after six cycles.

3.2 Architectural Analysis

Before we can argue about the correctness of a static architectural analysis, we
first need to define the concrete behavior of a hardware architecture. For this
purpose we require a behavioral hardware model that describes the processor’s
timing behavior on a per-action basis. This high level of granularity is required to be
able to investigate which processor feature causes a timing anomaly (see Chapter 4
on page 51). Only observing the execution behavior on the instruction level, we
would not be able to precisely identify the source of a timing anomaly. A modern

30

3.2 Architectural Analysis

processor typically executes instructions out-of-order and may thus perform several
actions at a time. For example, the processor requests the next instruction from
memory while an arithmetic instruction completes execution. Hence, we require a
specification that allows inspection of the processor-internal (parallel) processes.

Thesing [42] suggests that hardware representations on the level of a register transfer
language (RTL) provide the necessary means. The use of RTL-level descriptions,
such as VHDL [16] or Verilog [43], is beneficial because the hardware description
provides the necessary insights to inspect the processor behavior on a clock cycle
level.

VHDL or Verilog models are unfortunately hard to obtain because they are usually
considered as (highly) confidential information. Yet, for some processors, such as
the ERC32 and the LEON2 [10, 1], VHDL models have been made available to the
public.

If a specification of the processor’s behavior is unavailable, a hardware model
has to be constructed from the available processor documentation. Furthermore,
this model has to be refined in accordance with experiments on the real system.
Chapter 6 demonstrates that each processor feature has to be thoroughly tested
because the processor documentation sometimes does not match with the actual
implementation.

In this section, we do not provide in-depth details on the modeling of a whole
processor. For further reading we kindly point the interested reader to [42]. Sec-
tion 3.2.1 formally introduces concrete program simulation by means of finite state
automata. In Section 3.2.2 we describe abstract program simulation by abstraction
from a concrete hardware model. Section 3.2.3 introduces the prediction graph
based on which we are able to identify timing anomalies. Section 3.2.4 discusses the
cause of non-determinism in abstract hardware simulation. Finally, Section 3.2.5
discusses challenges for static analysis.

3.2.1 Concrete Program Simulation

The actions that take place in a processor are triggered by signals on dedicated
signal wires. For instance, the load-store unit posts a memory request on the bus by
activating the transfer-start signal. Raising the corresponding transfer-acknowledge
signal, the targeted memory module eventually answers the initial request. In
most processor designs, these signals are synchronized by a clock signal oscillating
between an active and an inactive state. In a synchronous processor design, the
processor recognizes a signal shift upon the clock state change from inactive to
active (i.e., rising clock edge) and from active to inactive (i.e., falling clock edge).
This design allows us to argue that time in a computer is a discrete resource. The

31

Chapter 3 Timing Analysis

time elapsing until a specific action takes place can then be expressed in terms
of clock cycles (or half-clock cycles depending on the referenced clock edge). The
execution of an instruction is typically synchronized with the rising clock edge.

However, there are successful attempts to implement clock-less processors using
asynchronous circuits. The functional units of the processor wait for signals that
indicate a certain kind of activity. An asynchronous processor design allows for
higher performances with a significantly lower power consumption compared to a
synchronous design [46]. To the best of our knowledge there is no (static) analysis ap-
proach available that copes with the increasing complexity caused by asynchronous
logic.6

Thus, we restrict ourselves to the analysis of synchronous processor designs. The
processor execution behavior is then modeled as the cycle-wise evolution of a finite
state automaton. This approach is feasible because the processor and the connected
memories, which are of bounded size, can only accept a finite number of states.
We assume a (correct) model is available, e.g., by a semi-automatic derivation of a
processor model from a VHDL description [37].

The execution behavior of a processor for a program is then simulated as follows:
We select an initial (hardware) state where the program, encoded as sequence of
instructions, is allocated to a dedicated place in memory. The initial state should
also describe the situation where the processor is about to start executing the input
program, i.e., the program counter is set up to the memory address of the very first
instruction of that program. Then we follow the evolution of that initial state in
accordance with the transitions in the finite automaton until the last instruction
has completed execution and is about to leave the processor pipeline. Because
each transition represents a single processor cycle, the total number of transitions
represents the number of processor cycles the program takes to execute.

Definition 3.1 (Finite State Automaton)
A finite state automaton is a pair A = (S , τ). The set S denotes the finite set of states.
The function τ : S → S computes the cycle-wise transition from one state to another.

Any state s ∈ S of the finite state automaton A comprises the program it executes. Let
G = (V ,vs,E) be a control-flow graph. If the program that corresponds to G can be
allocated to the processor memory, which is also part of the automaton, there exists a set
of states SG ⊆ S that comprise the memory image of the program that is represented by G.

To formally define the timing behavior of a processor we need to identify when an
instruction has finished execution. The instruction set architecture (ISA) describes

6Complexity is increased due to Boolean logic being inadequate to describe the behavior of asyn-
chronous circuits because signals are no longer guaranteed to have a discrete true or false state
(i.e., active or inactive) at any given time.

32

3.2 Architectural Analysis

the program semantics in a sequential way, but the processor may execute several
instructions in parallel, of which some may leave the pipeline earlier. Thesing [42]
solves this problem by means of state predicates to transcribe the parallel execution
behavior into a sequential execution. For our purposes it suffices to introduce the
execution predicate that denotes whether a state is about to execute an instruction.

Definition 3.2 (Execution Predicate)
Let G = (V ,vs,E) be a CFG, (S , τ) be a finite state automaton for a processor, s ∈ S a
processor state, and v ∈ V an instruction. If a state s represents a processor state where
the instruction v is currently under execution, we denote this by sB v. sB v ∧ τ(s)7 v
means that the instruction v has completed execution and is about to leave the pipeline.

To execute an instruction the processor performs a certain sequence of actions (or
micro-operations) that depends on the type of instruction. Typical actions are, e.g.,
instruction fetch, decode, dispatch to the corresponding functional unit, memory
access (if the instruction is a load-store instruction), and write-back of results. The
notion of action is not limited to pipeline stages. Other actions that could occur
during instruction execution are, e.g., cache-line fill, clock synchronization, and
others. In this fashion we can mark state transitions with action markers to identify
the starting and ending points of individual actions.

Definition 3.3 (Action Marker)
Let (S , τ) be a finite state automaton, s, s′ ∈ S states, Λ be a non-empty alphabet of actions,
and λ ∈ Λ be an action. The state transition from s to τ(s) is marked with an action
begin marker if the action λ is initiated, written (s,τ(s)) ` λ. The state transition from s′

to τ(s′) is marked with an action end marker if the action λ completes that was initiated
at state s, written (s′, τ(s′)) as λ.

Figure 3.4 provides an example showing parts of the execution of a load-store instruc-
tion. Here we observe in detail the dispatch of the instruction to the corresponding
function unit and the memory access phase.

s0 s1 s2 s3 s4 s5 s6
` disp as0 disp ` mem as2 mem

Figure 3.4: Actions during Instruction Execution: Possible sequence of actions that
occurs during execution of a load-store instruction. In state s1 the pro-
cessor is about to dispatch the instruction (disp action). The load-store
unit initiates a memory access in state s3 (mem action). After three state
transitions the result is finally available in state s6.

By means of action markers we are later able to investigate the nature of timing
anomalies. In Section 3.2.4 on page 43 we use action markers to identify local

33

Chapter 3 Timing Analysis

worst-case decisions in the abstract state space.

In contrast to Thesing, we are not interested in the execution behavior on an instruc-
tion level. In order to investigate the source of timing anomalies, we need to be able
to observe individual actions of the processor pipeline. Thus we extend the concrete
transformer (see Definition 2.2 on page 17) to the state transformer as follows.

Definition 3.4 (State Transformer)
Let G = (V ,vs,E) be a CFG, (S , τ) be a finite state automaton for a processor. A state
transformer step f Bτ : V →S →S computes the effect of instructions v ∈ V on concrete
pipeline states s ∈ S on the state transition level.

f Bτ (v)(s) :=
{
τ(s) if sB v ∧ τ(s)B v
s otherwise

Each occurrence of an instruction v ∈ V has to terminate eventually. This means that
for a state s ∈ S with sB v there exists n ∈ N such that s′ = f B

n+1

τ (v)(s) = f B
n

τ (v)(s). The
state s′ denotes the processor state in which v has finished execution and is about to leave
the pipeline. This additionally implies that each action has to terminate eventually, i.e., if
(s,τ(s)) ` λ there exists n ∈ N such that (τn(s), τn+1(s)) as λ.

A state transformer fτ : V →S →S is a concrete transformer that computes the effect of
instructions hiding the intermediate state transitions.

fτ(v)(s) := f B
n

τ (v)(s) such that n ∈ N ∧ f Bn+1

τ (v)(s) = f B
n

τ (v)(s)

The state transformer only updates the current processor state if the current instruc-
tion is still being executed. Otherwise, i.e., if the processor has just or previously
finished the current instruction, we do not modify the current state. In this fashion
we can describe the parallel execution of instructions in a sequential manner.

Example Consider a path π = (v1,v2). Assume the processor is able to execute v2
while executing v1. Additionally, let us assume that v2 completes earlier than
the first instruction. Starting from an initial state s there exists an n ∈ N such
that τn(s)B v1 ∧ τn(s)B v2 ∧ τn+1(s)7 v2. Eventually the processor will finish
the execution of v1. Hence, there ism ∈ Nwith n < m∧ τm(s)Bv1∧ τm+1(s)7 v1.
The execution time of v2 is subsumed by the execution time of v1. The state
τm(s) is the state of the processor after the execution of the path π. The number
of cycles to execute π is hence m processor cycles.

We first lift the state transformer to a state collecting transformer in order to define
the state collecting path semantics. The state collecting transformer observes all

34

3.2 Architectural Analysis

intermediate steps until an instruction v finishes execution. For v ∈ V and σ ∈ 2S

we define the state collecting transformer as follows:

fτcoll (v)(σ) := {fτ(v)(s) | s ∈ σ }

The tuple (2S ,⊆,
⋃
,
⋂
,∅,S) forms a complete lattice. The partial order ⊆ arranges

elements in 2S according to their precision. A set of processor states a is more
precise than b iff a ⊆ b because b possibly contains additional concrete processor
states. The state collecting transformer is monotone: more precise input leads to
more precise output.

The state collecting transformer allows us to define the state collecting path seman-
tics similar to the collecting path semantics (see Definition 2.4).

Definition 3.5 (State Collecting Path Semantics)
Let G = (V ,vs,E) be a CFG and fτcoll : V →S →S be a state collecting transformer. The
state collecting path semantics [[π]]τcoll : 2S → 2S is defined as:

[[π]]τcoll =
{

id if π = ε
fτcoll (vn) ◦ [[π′]]τcoll if π = π′ ◦ vn is a path

For a set of initial states the state collecting path semantics computes the set of
states the processor will attain after the execution of a given path. The instructions
on the path are processed in program order even if the processor is able to complete
some instructions out of order. The state collecting path semantics advances to the
next instruction if each state in the computed set of states represents a processor
state where the current instruction is no longer being executed.

The state collecting path semantics is not practically computable in general because
the number of initial hardware states to consider is obstructively large. The following
section solves this problem by means of abstracting from the concrete hardware
states – similarly to the abstract program semantics (see Section 2.1.2 on page 19).

3.2.2 Abstract Program Simulation

In general, we cannot compute the state collecting path semantics due to the finite
but infeasibly large number of states in the finite automaton. We thus translate the
problem from the set of concrete states S to an abstract domain Ŝ with the partial
order v.

We need to relate the abstract with the concrete domain to argue about the soundness
of abstract state semantics with respect to the concrete state semantics. For this
purpose we require a monotone state concretization function γ : Ŝ → 2S mapping

35

Chapter 3 Timing Analysis

an abstract state to a set of concrete states. The monotonicity of γ guarantees that
the partial order v on Ŝ arranges abstract states according to their precision. So for
any a,b ∈ Ŝ with a v b it holds γ(a) ⊆ γ(b). The abstract state a is more precise than
the abstract state b because it describes fewer concrete states. We require the state
concretization function γ to be both execution-deterministic and action-deterministic
to be able to determine whether an instruction is about to finish execution in an
abstract hardware state.

Definition 3.6 (Execution-Deterministic)
Let G = (V ,vs,E) be a CFG. A state concretization function γ : Ŝ → 2S is execution-
deterministic iff for any instruction v ∈ V and any abstract state ŝ ∈ Ŝ it holds that
all corresponding concrete states either do execute v, written ŝB v, or do not execute v,
written ŝ 7 v. This yields ŝB v ⇔ ∀s ∈ γ(ŝ).sB v and ŝ 7 v ⇔ ∀s ∈ γ(ŝ).s 7 v.

Definition 3.7 (Action-Deterministic)
Let G = (V ,vs,E) be a CFG and Λ be a non-empty alphabet of actions. A state concretiza-
tion function γ : Ŝ → 2S is action-deterministic iff for any states ŝ, t̂, v̂, ŵ ∈ Ŝ and any
action λ ∈Λ all corresponding concrete states are marked with the same action markers.
This yields (ŝ, t̂) ` λ ⇔ ∀s ∈ γ(ŝ), t ∈ γ(t̂).(s, t) ` λ and (v̂, ŵ) aŝ λ ⇔ ∀v ∈ γ(v̂),w ∈
γ(ŵ).∃s ∈ γ(ŝ).(v,w) as λ.

In this fashion we can determine for any abstract hardware state whether an instruc-
tion is being executed. This requirement also ensures that the abstract hardware
model keeps track of the progression of the instruction through the processor
pipeline. Otherwise the abstract state cannot deterministically decide whether
an instruction is being executed or not. Consequently, we require the abstract
state transition function to discern between abstract states that arise from disjoint
assumptions (e.g., cache hit or cache miss).

Because we partition the abstract state space by requiring γ to be execution- and
action-deterministic, we lift the state concretization function γ to γ that accepts
sets of abstract states. The function γ retains the monotonicity of γ .

We define γ : 2Ŝ → 2S , where γ(σ̂) :=
⋃
ŝ∈ σ̂

γ(ŝ) for any σ̂ ∈ 2Ŝ .

Opposed to the concretization function γ , we can define a monotone state abstraction
function α : 2S → 2Ŝ that computes for a set of concrete states σ ∈ 2S the (best)
corresponding abstract state set in 2Ŝ . For soundness reasons the functions α and γ
should be strongly adjoint (see Definition 2.8 on page 20).

Definition 3.8 (Abstract State Automaton)
An abstract state automaton is a pair Â = (Ŝ , τabs). The set Ŝ denotes the set of abstract
states. The function τabs : Ŝ → 2Ŝ computes the cycle-wise evolution of abstract states.

36

3.2 Architectural Analysis

The abstract automaton corresponds to the finite state automaton A = (S , τ), if there
exist strongly adjoint state abstraction and state concretization functions α and γ such
that γ is execution- and action-deterministic and τ and τabs are locally consistent, i.e.,
for all abstract states ŝ ∈ Ŝ it holds τ(γ(ŝ)) ⊆ γ(τabs(ŝ)). The abstract state transition
function τabs computes a safe approximation of hardware state transitions that can occur
in any concrete state transition.

We use the abstract state automaton as a basis for the abstract simulation of the
execution of a program. Due to the possible presence of timing anomalies and to
entail the full system behavior the abstract state transition may compute several
abstract successor states, i.e., |τabs(ŝ)| > 1 is possible for some ŝ ∈ Ŝ . This is called
split. Section 3.2.4 on page 43 investigates splits in more detail.

Given the abstract state automaton we can now formally define the abstract state
transformer as follows.

Definition 3.9 (Abstract State Transformer)
Let G = (V ,vs,E) be a CFG, γ an execution-deterministic state concretization func-
tion, and Â = (Ŝ , τabs) be an abstract state automaton that corresponds to a finite state
automaton.

An abstract state transformer step f Bτabs
: V → 2Ŝ → 2Ŝ computes the effect of instruc-

tions on the transition level.

f Bτabs
(v)(σ̂) :=

⋃
ŝ∈ σ̂
{ t̂ | ŝB v ∧ t̂ ∈ τabs(ŝ) ∧ t̂B v } ∪ { ŝ | ŝ 7 v ∨ ∃t̂ ∈ τabs(ŝ).t̂ 7 v }

For a given instruction v ∈ V , the abstract state transformer step eventually reaches
a fixed point. Because γ is execution-deterministic and every instruction terminates
eventually, there exists an n ∈ N such that f B

n

τabs
(v)(σ̂) = f B

n+1

τabs
(v)(σ̂). Every abstract state

t̂ ∈ f Bnτabs
(v)(σ̂) then describes a situation where v is about to leave the (abstract model of

the) processor pipeline.

An abstract state transformer fτabs
: V → 2Ŝ → 2Ŝ computes the effect of instructions

hiding the intermediate abstract state transitions.

fτabs
(v)(σ̂) := f B

n

τabs
(v)(σ̂) such that n ∈ N ∧ f Bn+1

τabs
(v)(σ̂) = f B

n

τabs
(v)(σ̂)

The abstract state transformer continues to follow abstract state transitions until
a set of abstract states is computed where each of the states is about to finish the
execution of the occurrence of the instruction v.

Before we formally define abstract state collecting path semantics, we show that the ab-
stract state transformer fτabs

is locally consistent with the state collecting transformer
fτcoll if γ is execution-deterministic and τ and τabs are locally consistent.

37

Chapter 3 Timing Analysis

Lemma 3.1 (Local Consistency of Abstract State Transformer)
An abstract state transformer fτabs

: V → 2Ŝ → 2Ŝ is locally consistent with the state
collecting transformer fτcoll : V →S →S if γ is execution-deterministic and τ and τabs
are locally consistent.

Proof. Let Â = (Ŝ , τabs) be an abstract state automaton that corresponds to the finite
state automaton A = (S , τ) and γ : Ŝ → 2S be execution-deterministic. We prove that
f Bτabs

is locally consistent with f Bτ . Let G = (V ,vs,E) be a CFG, v ∈ V be an instruction

and σ̂ ∈ 2Ŝ be a set of abstract states.⋃
ŝ∈ σ̂
{f Bτ (v)(s) | s ∈ γ(ŝ) }

=
⋃
ŝ∈ σ̂

{s | s ∈ γ(ŝ)∧ (s 7 v ∨ (sB v ∧ τ(s)7 v)) }
∪ { t | s ∈ γ(ŝ)∧ t = τ(s)∧ sB v ∧ tB v }

| Definition

⊆
⋃
ŝ∈ σ̂

{s | s ∈ γ(ŝ)∧ (ŝ 7 v ∨ (ŝB v ∧ τ(s)7 v)) }
∪ { t | s ∈ γ(ŝ)∧ t = τ(s)∧ ŝB v ∧ tB v }

| γ execution determ.

⊆
⋃
ŝ∈ σ̂

{γ(ŝ) | ŝ 7 v ∨ (ŝB v ∧∃t̂ ∈ τabs(ŝ).t̂ 7 v)) }
∪ {γ(t̂) | t̂ ∈ τabs(s)∧ ŝB v ∧ t̂B v }

| τ,τabs locally cons.

⊆ γ

⋃
ŝ∈ σ̂

{ ŝ | ŝ 7 v ∨ (ŝB v ∧∃t̂ ∈ τabs(ŝ).t̂ 7 v)) }
∪ { t̂ | t̂ ∈ τabs(s)∧ ŝB v ∧ t̂B v }

 |Monotonicy of γ

= γ
(
f Bτabs

(v)(σ̂)
)

| Definition

The local consistency between fτabs
and fτcoll follows by iterating this property.

By means of the abstract state transformer, we can then formally define the abstract
state collecting path semantics.

Definition 3.10 (Abstract State Collecting Path Semantics)
Let G = (V ,vs,E) be a CFG and fτabs

: V → 2Ŝ → 2Ŝ be an abstract state transformer. The

abstract state collecting path semantics [[π]]τabs
: 2Ŝ → 2Ŝ is defined as:

[[π]]τabs
=

{
id if π = ε
fτabs

(vn) ◦ [[π′]]τabs
if π = π′ ◦ vn is a path

The abstract state collecting path semantics computes the evolution of abstract states
during the execution of a path through a program. Considering all paths through a
program, the combined evolution of the abstract hardware states can be understood
as a graph that contains all possible hardware decisions that can occur according to

38

3.2 Architectural Analysis

the abstract state automaton. Later we use this representation to determine whether
the execution of a program exhibits a timing anomaly.

But first we argue about the soundness of the abstract state collecting path seman-
tics.

Lemma 3.2 (Soundness of Abstract State Collecting Path Semantics)
The abstract state collecting path semantics is a sound over-approximation of the state
collecting path semantics, i.e., for all σ̂ ∈ 2Ŝ it holds ([[π]]τcoll ◦γ)(σ̂) ⊆ (γ ◦ [[π]]τabs

)(σ̂) if
γ is execution-deterministic and τ and τabs are locally consistent.

Proof. Proof by structural induction over the path π. Let Â = (Ŝ , τabs) be an ab-
stract state automaton that corresponds to the finite state automaton A = (S , τ)
and γ : Ŝ → 2S be execution-deterministic. For the empty path, the claim is ob-
viously true. For the induction step, we need to show that for any σ̂ ∈ 2Ŝ it holds
([[π ◦ vn]]τcoll ◦γ)(σ̂) ⊆ (γ ◦ [[π ◦ vn]]τabs

)(σ̂).

Let σ̂ ∈ 2Ŝ be a set of abstract states:

([[π ◦ vn]]τcoll ◦γ)(σ̂) = (fτcoll (vn) ◦ [[π]]τcoll ◦γ)(σ̂) | Definition

⊆ (fτcoll (vn) ◦γ ◦ [[π]]τabs
)(σ̂) | Induction hypothesis

⊆ (γ ◦ fτabs
(vn) ◦ [[π]]τabs

)(σ̂) | Lemma 3.1

= (γ ◦ [[π ◦ vn]]τabs
)(σ̂) | Definition

3.2.3 Prediction Graph

The abstract state collecting path semantics computes a safe approximation of the
concrete execution behavior of a program. We can now combine the observed ab-
stract state transitions into a prediction graph that describes every possible execution
behavior. The prediction graph is our basis to detect instances of timing anomalies
in the abstract hardware state space. For this purpose we define the feasible abstract
successor to construct the prediction graph.

Definition 3.11 (Feasible Abstract Successor)
Let G = (V ,vs,E) be a CFG and Â = (Ŝ , τabs) an abstract state automaton, and θ ∈ 2Ŝ

be the set of initial abstract states that are about to execute the first instruction of the
control-flow graph G, i.e., ∀ŝ ∈ θ .∃t̂ ∈ Ŝ s.t. t̂ 7 vs ∧ ŝ ∈ τabs(t̂) ∧ ŝB vs.

39

Chapter 3 Timing Analysis

The abstract state t̂ is a feasible abstract successor of the abstract state ŝ, written ŝ π t̂,
iff there exists a path π = π′ ◦ v ◦π′′ and k ∈ N such that:

ŝ ∈ f B
k

τabs
(v)([[π′]]τabs

(θ)) ∧ t̂ ∈ f B
k+1

τabs
(v)([[π′]]τabs

(θ)) ∧ t̂ ∈ τabs(ŝ)

Definition 3.12 (Prediction Graph)
Let G = (V ,vs,E) be a CFG, Â = (Ŝ , τabs) an abstract state automaton, and θ ∈ 2Ŝ be the
set of initial abstract states. The corresponding prediction graph is P̂G = (Ŝ , Ê), where
Ê = { (ŝ, t̂) | ŝ π t̂ ∧π is a path through G }.

[[(v1)]]τabs
({ ŝ0 }) [[(v1,v2)]]τabs

({ ŝ0 })

ŝ0

ŝ1

ŝ2

ŝ3 ŝ4

ŝ5 ŝ6 ŝ7

Figure 3.5: Prediction Graph: Evolution of abstract hardware states for the simulation
of the instruction sequence (v1,v2). The edges denote the single cycle
transitions in the abstract state space. The gray boxes span the set of
states that execute under the same instruction. In total the program
completes after four cycles.

Figure 3.5 depicts the evolution of abstract hardware states for the execution of a
very simple program that consists of the path π = (v1,v2). The length of a longest
path through the prediction graph provides a safe upper bound for the number of
processor cycles in which the input program finishes execution. In this example,
the longest path comprises four transitions of abstract hardware states. Hence, the
program takes at worst four cycles to complete.

Depending on the control-flow graph, it is not feasible to construct the whole
prediction graph. For now we restrict ourselves to programs that comprise a finite
number of paths. Furthermore we implicitly require the abstract hardware states
to carry along the analysis context. We assume an infinite call string approach and
all loops to be virtually unrolled [26], such that every loop iteration corresponds
to a different analysis context. In this fashion we achieve that the prediction graph
is a directed-acyclic graph (DAG) because back edges cannot occur. Chapter 4 on
page 51 relaxes some restrictions to allow for arbitrary, possibly infinite programs.

We can now compute a longest path through the prediction graph. The length of that
path denotes an upper bound (in terms of processor cycles) for the longest execution

40

3.2 Architectural Analysis

of the corresponding program. To do so we first sort the prediction graph nodes in
topological order by means of depth-first search to realize the sorting. Algorithm 3.1
provides a pseudo-code implementation [44]. The output of the algorithm is a vector
of topologically sorted nodes.

Algorithm 3.1 Topological Sorting of the Prediction Graph
function TopologicalSorting

input Prediction graph P̂G = (Ŝ , Ê)
output Topologically sorted nodes T
begin

Vector T ← []
Vector Worklist← [ŝ | ŝ ∈ θ]
Set V isited← θ
whileWorklist , [] do

done← true

ŝ← Top(Worklist)
foreach (ŝ, t̂) ∈ Ê

if t̂ < V isited then
done← false

V isited← V isited ∪ { t̂ }
Append(Worklist, t̂)

end if
end foreach

if done = true then
Prepend(T , ŝ)
Pop(Worklist)

end if
end while

end
end function

Given the topological sorting of the prediction graph and the fact that the prediction
graph is a DAG, we can now compute a longest path through the graph. Note that
the longest path through the prediction graph is not uniquely determined. There
might be multiple paths through the graph with maximal but equal length.

For each node we remember the predecessor node and the maximal length of the
path to the node that has been seen so far. Initially every node is associated with
itself as predecessor and zero length. In topological order of the nodes we then
update this information stepwise. If we find a longer path from the current node
to one of its predecessors, we update the maximal path length and corresponding

41

Chapter 3 Timing Analysis

predecessor node. After having visited all nodes, we construct a longest path.

First we choose the node with the maximum associated path length. To construct the
longest path we follow the predecessors until we reach one of the initial hardware
states. Algorithm 3.2 implements this computation in pseudo-code [22]. The
algorithm returns a sequence of edges that describes a worst-case path through the
prediction graph. For the prediction graph shown in Figure 3.5, the longest path
algorithm computes the path P = [(ŝ0, ŝ2), (ŝ2, ŝ5), (ŝ5, ŝ6), (ŝ6, ŝ7)].

Algorithm 3.2 Computation of a Longest Path
function LongestPath

input Prediction graph P̂G = (Ŝ , Ê)
output Longest path P
begin

Map Cost← { ŝ→ 0 | ŝ ∈ Ŝ }
Map P redecessor← { ŝ→ ŝ | ŝ ∈ Ŝ }
Vector T ← TopologicalSorting(P̂G)
foreach ŝ ∈ T

c← Cost(ŝ)
foreach (ŝ, t̂) ∈ Ê

c′← Cost(t̂)
if c+ 1 > c′ then

Cost← Cost[t̂→ c+ 1]
P redecessor← P redecessor[t̂→ ŝ]

end if
end foreach

end foreach

P ← []
choose ŝ ∈ Ŝ where Cost(ŝ) ≥ Cost(t̂) for all t̂ ∈ Ŝ
repeat

t̂ = P redecessor(ŝ)
Prepend(P , (t̂, ŝ))
ŝ = t̂

until ŝ ∈ θ
end

end function

Reconsider the prediction graph shown in Figure 3.5. Starting with the abstract
hardware state ŝ0, the abstract state transition distinguishes between the successor
states ŝ1 and ŝ2. For example, the transition (ŝ0, ŝ1) could represent an initial cache
miss, i.e., the local worst-case (LWC), whereas the state transition (ŝ0, ŝ2) corresponds

42

3.2 Architectural Analysis

to assuming an initial cache hit (i.e., non-LWC). Because the edge (ŝ0, ŝ2) is part of
the longest path P and the opposing path P ′ = [(ŝ0, ŝ1), (ŝ1, ŝ3), (ŝ3, ŝ4)] is shorter, the
abstract simulation would reveal an instance of a timing anomaly.

To detect a timing anomaly we need to be able to identify whether an outcome
of a split in the abstract state transition corresponds to the local worst-case. For
example, if it is unknown whether a memory reference hits or misses the cache, we
naturally identify the cache miss as the local worst-case. In many such situations we
have an intuitive understanding about which decision is to be considered the local
worst-case. For some others the local worst-case is not easily identified.

3.2.4 Non-Determinism

To derive safe timing guarantees a static timing analysis has to investigate the full
(timing-relevant) behavior of the analyzed hardware architecture. In the presence of
timing anomalies or domino effects, it is locally undecidable whether the assumption
of a certain behavior will effectuate the global worst-case runtime performance.
Hence, a static timing analysis investigates each and any possible behavior if it
cannot decide which action would take place in the actual hardware.

Based on our investigation of embedded hardware architectures, we identify the
following categories to classify the non-determinism (i.e., existence of a split) in the
abstract state space:

control-flow-induced In general, embedded control-software is highly data de-
pendent. The executed path depends on the current mode of operation,
which is influenced by the input. For highly data-dependent programs, a
static analysis is generally unable to restrict control-flow paths without fur-
ther knowledge about the processed input. This kind of non-determinism is
hardware-independent and thus not to be considered to cause timing anoma-
lies.

execution-induced The analysis may not always argue about precise inputs of
arithmetical computations. Hence, the analysis might not be able to determine
whether an instruction finishes earlier due to an early-out optimization.

memory-induced We classify non-determinism as memory-induced if it is caused
by memory accesses whose target address range is not precisely known. An
unknown memory access could hit several memories with different timing
behavior. Similarly, not knowing about the precise state of a memory can also
provoke memory-induced non-determinism. For example, the access timing
of an SDRAM access strongly depends on the previous access.

43

Chapter 3 Timing Analysis

cache-induced Abstracting from buffer-like structures (e.g., caches), a static analy-
sis is not always able to identify which data is actually stored in the concrete
buffer. In this situation, the analysis has to consider both cases: a buffer hit
and a buffer miss respectively.

A prominent example is the static analysis of caches that classifies memory
references as whether they definitely miss the cache, surely hit the cache,
or whether it is unknown if they hit or miss the cache [12]. Often, timing
anomalies are observed in conjunction with caches.

clock-induced Many embedded hardware architectures feature several clock do-
mains. For example, the processor core might by clocked at a different speed
than the main memory. In the Freescale MPC5554 microprocessor, the external
memory is driven at half or quarter the system clock. Asynchronous clock
domains are also found in modern embedded processors with, e.g., a PCI
controller that uses a dedicated PCI clock running at 33 MHz.

To simulate the timing behavior of an access to a differently clocked memory
the clock jitter from the source (CPU) to the target (memory) domain needs
to be known. If the distance between the rising edge of the clock signal in
the target clock domain and the source clock domain is unknown, a static
analysis has to assume every possibility. Especially for embedded systems
with asynchronous clocks, this kind of non-determinism greatly increases the
abstract state space.

Category Local Best-Case Local Worst-Case
execution-induced fastest execution slowest execution
memory-induced fastest access timing slowest access timing
cache-induced cache hit cache miss
clock-induced shortest clock distance largest clock distance

Table 3.2: Classification of Non-Determinism: The table lists the different classes of
non-determinism that occur during abstract program simulation. For
every class we can provide a basic intuition about which decision is
considered the local best-case or the local worst-case respectively.

Table 3.2 summarizes these categories and discusses what would be considered
to be the local best-case and the local worst-case respectively. Local best-case or
local worst-case are not well defined for control-flow-induced non-determinism.
Compared with the other categories, control-flow-induced non-determinism is a
property of the analyzed program and is not related to a specific hardware feature.
The major difference is that any decision regarding control-flow is related to the

44

3.2 Architectural Analysis

program semantics. But, e.g., whether an arithmetical operation takes one or ten
cycles to complete is not (directly) related to the semantics of the program.

Nonetheless, we do have to consider this class of non-determinism because the
abstract program simulation has to take the corresponding hardware behavior into
account. Depending on the hardware architecture, the pipeline analysis has to
simulate branch prediction, or the effect of speculative execution. This naturally
depends on the possible control-flow successors.

Usually we have a good intuition which state transitions are considered to be local
worst-case. However, by means of action markers (see Definition 3.3 on page 33) we
can formally identify which state transition is considered to be the local worst-case.
We have to assume that for each state ŝ with several successor states, i.e., |τabs(ŝ)| > 1
the outgoing edges are marked with action begin markers – otherwise there would
have been no reason for the split to occur. Because γ is action-deterministic (see
Definition 3.8 on page 36: the abstract state automaton corresponds to a finite
state automaton) each path through a transition that is marked with an action
begin marker reaches a transition that is marked with the corresponding action end
marker after a finite number of transitions. Thus, we can determine local worst-case
transitions by means of a longest path search using Algorithm 3.2 on a prediction
graph that is restricted to matching pairs of action begin and end markers. For this
purpose we introduce the λ-prediction graph.

Definition 3.13 (λ-Prediction Graph)
Let Â = (Ŝ , τabs) be an abstract state automaton, ŝ ∈ Ŝ with |τabs(ŝ)| > 1 and Λ be a
non-empty alphabet of actions. If there exists a transition (ŝ, t̂) ` λ for the action λ ∈Λ
the λ-prediction graph for the state ŝ is P̂ŝ|λ = (Ŝ , Êŝ|λ), where the set of edges is defined
as follows:

Êŝ|λ :=
⋃

t̂∈τabs(ŝ).(ŝ,t̂)`λ

τŝ|λ(ŝ, t̂)

where the he function τŝ|λ(ŝ) : Ŝ → 2Ŝ×Ŝ recursively follows state transitions until the
expected action end marker is found.

τŝ|λ(t̂, û) :=


{ (t̂, û) } if (t̂, û) aŝ λ
{ (t̂, û) } ∪

⋃
v̂∈τabs(û)

τŝ|λ(û, v̂) otherwise

We can now identify which decision in the abstract state space corresponds to the
local worst-case (LWC). Figure 3.6 provides an example. The state transition (ŝ0, ŝ1)
is clearly the local wost-case transition with respect to the action λ, because it takes
two transitions longer to reach the corresponding action end marker.

45

Chapter 3 Timing Analysis

We formally define which transition is an LWC transition or a non-LWC transition
respectively as follows.

Definition 3.14 (LWC Transition)
Let Â = (Ŝ , τabs) be an abstract state automaton, Λ be a non-empty alphabet of actions,
and ŝ ∈ Ŝ with |τabs(ŝ)| > 1. A transition (ŝ, t̂) is an LWC transition if for all actions
λ ∈ Λ with (ŝ, t̂) ` λ the transition is part of a longest path through the corresponding
λ-prediction graph P̂ŝ|λ. Otherwise, if there exists an action λ ∈Λ such that (ŝ, t̂) ` λ the
state transition (ŝ, t̂) is a non-LWC transition.

ŝ0

ŝ1

ŝ2 ŝ3

ŝ4 ŝ5 ŝ6
` λ

` λ

aŝ0 λ

aŝ0 λ

Figure 3.6: λ-Prediction Graph: λ-Prediction graph for the state ŝ0. The state transi-
tion (ŝ0, ŝ1) corresponds to the local worst-case because the path to reach
the associated action end marker is longest.

3.2.5 Challenges for Static Analysis

The degree of non-determinism that is observed during abstract simulation strongly
depends on the analyzed hardware. The complexity of a static timing analysis is
directly related to the possible amount of non-determinism. Even if a hardware
feature is perfectly well analyzable in isolation (e.g., a cache using the LRU re-
placement strategy) the combination of two such features might lead to a very
costly or imprecise analysis. As a consequence, we observe an evolution of hard-
ware states that would never occur during any real execution (i.e., analysis-induced
non-determinism).

Take the Freescale MPC5554 hardware architecture as an example (see Section 6.1.5
on page 95). For the sake of simplicity we assume that the cache is updated using
the LRU cache replacement policy.7 LRU caches are perfectly well analyzable and
proven to be free of cache-related timing anomalies or domino effects [4], i.e., a
cache hit cannot effectuate a cache state where more subsequent cache misses can

7The actual hardware uses a pseudo-round robin replacement strategy with a global set counter.

46

3.2 Architectural Analysis

occur for the same access sequence. Furthermore, the processor comprises an on-
chip FLASH memory that offers a two-line read buffer to cache previously accessed
FLASH pages. The size of a FLASH page corresponds to the size of a cache line. Both
the FLASH memory read buffer and the LRU instruction cache are nicely analyzable
in isolation. But a combination of both analyses will lead to an information loss due
to the unfavorable structure of the combined analysis for the hierarchical layout of
the MPC5554 hardware architecture.

A code fetch that targets the FLASH memory can either be cached or not. In case
the requested instructions are already available in the instruction cache, the FLASH
read buffer state will not be updated. Hence, we will lose any information about
the read buffer state after a potential state join. After the state join the analysis is
unable to tell whether an access to the same memory reference hits the FLASH read
buffer. Figure 3.7 depicts this issue in detail.

(>,>)

({a}, {a})({a},>) ({a}, {a})

({a},>)

Cache Hit

Cache Miss
Buffer Hit

Cache Miss
Buffer Miss

t

t

t

Figure 3.7: Non-Determinism in Static Analysis: Evolution of abstract pipeline state
for an access to the internal FLASH memory. Each node shows a pair com-
prising an abstract cache state (left-hand side) and an abstract FLASH
read buffer state (right-hand side). Initially we have no information about
the state of both the cache and the FLASH read buffer, i.e., (>,>). After
the access is complete, the analysis knows that a is definitely contained
in the cache, but is unsure about the contents of the read buffer.

This problem is common to static analyses for architectures comprising components
where an update of one system component does not affect the state of other involved

47

Chapter 3 Timing Analysis

components under any assumption made. As long as the state of one such component
is not precisely known any information about other components is inevitably lost at
each join point. To avoid such loss of information, a static analysis would need to
enumerate all possible states, which is usually infeasible in practice.

Consider the abstract state automaton Â = (Ŝ , τabs) that provides an abstract model
for a concrete processor. For each component of the real processor, i.e., functional
units, caches, bus interconnects, etc., there exists a corresponding counterpart in the
abstract model encoded by Â. Hence, the abstract state space can be understood as
a composition of abstract component states, i.e., Ŝ = ŜC1

× · · · × ŜCn , where ŜCi is the
abstract state space for the component Ci where 1 ≤ i ≤ n and n ∈ N is the number of
processor components.

An abstract state transition does not necessarily update every abstract component
state. Which component states are affected strongly depends on the interaction
between individual hardware components [42].

To discover the above described problem in the abstract state space we first need to
identify the modified components. For this purpose we define the state transition
difference.

Definition 3.15 (State Transition Difference)
Let Â = (Ŝ , τabs) be an abstract state automaton, where Ŝ is the composition of abstract
component states, i.e., Ŝ = ŜC1

× · · · × ŜCn with n ∈ N. The state transition difference
τdiff : Ŝ × Ŝ → Bn is defined for ŝ = (ĉ1, . . . , ĉn) and t̂ = (ĉ′1, . . . , ĉ

′
n) ∈ τabs(ŝ) as follows:

τdiff (ŝ, t̂) := (b1, . . . , bn) with bi :=
{

1 if ĉi , ĉ′i
0 otherwise

By means of the state transition difference we can observe which abstract com-
ponents a state transition are affected. If for a given abstract state ŝ ∈ Ŝ all state
transitions (ŝ, t̂) with t̂ ∈ τabs(ŝ) affect the same hardware components the state tran-
sitions originating at ŝ are inclusive. Otherwise the state transitions originating at ŝ
are non-inclusive.

Definition 3.16 (Inclusive State Transition)
Let Â = (Ŝ , τabs) be an abstract state automaton, where Ŝ is the composition of abstract
component states. Let ŝ ∈ Ŝ be an abstract state. The state transitions originating at ŝ
are inclusive iff for all t̂ and û ∈ τabs(ŝ) it holds τdiff (ŝ, t̂) = τdiff (ŝ, û). Otherwise the state
transitions originating at ŝ are non-inclusive.

Non-inclusive state transitions imply information loss in the abstract state space
due to later abstract state joins. Reconsider the example in Figure 3.7. Here the
state transitions originating at the initial hardware state are non-inclusive. Due to

48

3.2 Architectural Analysis

the state join at the final hardware state the analysis loses all information about the
second hardware component (i.e., the FLASH read buffer).

This phenomenon is not uncommon to static timing analysis – especially for the
analysis of complex hardware architectures. Non-inclusive state transitions cannot
always be avoided, either due to limitations of the analysis tool chain or simply
because of the hardware architecture. The following list comprises common cases of
non-inclusive state transitions:

value analysis precision The precision of the value analysis has a major impact
on the performance of a static timing analysis. For instance, if the target of a
memory access cannot be precisely identified, the analysis has to consider all
possible memories as a potential target. If updating the memory state has an
impact on the timing behavior of subsequent memory accesses non-inclusive
state transitions cannot be avoided. The processor to memory bus clock jitter,
read buffers (see above), are just some examples.

virtual memory A related problem occurs in the static analysis of virtual memory.
Typically a translation lookaside buffer (TLB) is employed to cache the virtual
to physical address translation attributes (i.e., page table entries). Upon a TLB
miss an interrupt is triggered and the corresponding interrupt service routine
(re)loads the requested page table entry. If the state of TLB is initially un-
known the state of other (involved) hardware components remains (partially)
unknown until the TLB contents are precisely known. Naturally, this greatly
impairs the precision and resource consumption of a static timing analysis.

non-inclusive caches This phenomenon has been already discussed in Figure 3.7.
Cache-related non-inclusive state transitions are unavoidable if the assumption
of a cache hit does not affect the same system components that are updated
upon a cache miss otherwise.

For example, consider a Freescale MPC755 processor that is connected to a
DRAM controller. As long as the state of the processor’s L1 cache is unknown,
a static analysis cannot gather any information about the status of the DRAM
controller and is thus unable to predict any DRAM page hits.

This phenomenon cannot be avoided completely because either the value analysis
precision cannot be further improved, or a modification of the hardware architecture
is not possible at all, or, if possible, would incur an unacceptable degradation of
performance. However, some hardware architectures, like the Freescale MPC7448,
features inclusive L1 and L2 caches. Any modification done to the L1 cache auto-
matically implies a state update of the (outer) L2 cache. For such architectures, the
static analysis will not lose information about the L2 cache state after state joins due
to an unknown state of the L1 cache.

49

Timing Anomalies and Domino Effects4
Intuitively, a timing anomaly is a counterintuitive behavior of a hardware archi-
tecture where a local speed-up leads to a global slow-down. Various – average-
performance increasing – hardware features may exhibit this kind of non-local
execution time behavior. Caches or similar buffer-like hardware components are
often involved.

For example, a division operation may take between six and eleven processor cycles
to complete depending on the input data. Depending on the available hardware
features, the overall execution might be slower if the instruction completes earlier.
Here, the timing anomaly is caused by not having any knowledge about the divisor
or the numerator respectively. We classify the cause for this anomaly as execution-
induced according to Section 3.2.4 on page 43.

In the following we formally define the term timing anomaly in accordance with
the definition found in [34]. By means of the prediction graph as defined in Defini-
tion 3.12 on page 40 we are able to detect instances of timing anomalies that occur
during the abstract simulation of a program. Furthermore we define the notion of a
domino effect and stress its difference from bounded timing anomalies.

4.1 Formal Definition

By means of the definition of non-LWC transitions (see Definition 3.14 on page 46)
we can formally define the term timing anomaly as follows.

Definition 4.1 (Timing Anomaly)
Let Â = (Ŝ , τabs) be an abstract state automaton. The abstract hardware model exhibits
a timing anomaly if there exists a program represented by the control-flow graph G
such that a path ω through the prediction graph P̂G contains a non-LWC state transition
(ŝ, t̂) whereas all other paths ω′ through ŝ are shorter, i.e., |ω| > |ω′ |.The state ŝ is called
timing-anomalous.

Using the observations made in the abstract state space, we can infer necessary
preconditions to observe the timing-anomalous behavior on the concrete hardware.
If it is possible to effectuate initial hardware states such that the expected timing
anomaly is measurable in concrete executions of the program, we have detected
a real instance of a timing anomaly. Otherwise, the chosen abstraction has lost
necessary information to avoid this anomalous hardware behavior. Such timing
anomalies are virtual timing anomalies. The loss of such information is in general
unavoidable, as discussed in Chapter 2.

51

Chapter 4 Timing Anomalies and Domino Effects

Algorithm 4.1 Detection of Timing Anomalies
function DetectTimingAnomalies

input Prediction graph P̂G = (Ŝ , Ê)
output Timing-anomalous states S
begin

ω′← LongestPath(P̂G)
repeat

ω←ω′

S← { ŝ | ∃t̂ ∈ Ŝ . (ŝ, t̂) ∈ω ∧ (ŝ, t̂) is non-LWC }
P̂G← (Ŝ , Ê \ { (ŝ, t̂) ∈ Ê | ŝ ∈ S })
ω′← LongestPath(P̂G)

until S = ∅ ∨ |ω| , |ω′ |
end

end function

Based on the definitions and by means of the longest path algorithm (see Algo-
rithm 3.2) we can then implement an iterative search to detect instances of timing
anomalies during the abstract program simulation. Given a prediction graph, we
first compute a longest path ω through the prediction graph. Afterwards we elim-
inate all non-LWC transitions from the prediction graph that are present on that
longest path. If there are no such transitions on the computed path, we have not
found a timing anomaly instance. Otherwise, we compute a longest path ω′ through
the restricted prediction graph. If ω′ has the same length as ω, we repeat the above
steps. If not, ω describes a worst-case execution of a program that exhibits a tim-
ing anomaly in the abstract state space. If the set of timing-anomalous states is
non-empty, we have found an instance of a timing anomaly in accordance with
Definition 4.1. Algorithm 4.1 implements this algorithm in pseudo-code.

In this fashion we are able to automatically detect instances of timing anomalies
for programs with a finite number of paths. Section 6.2 on page 108 presents our
findings for seven different hardware architectures.

4.2 Infinite Programs

So far, we have restricted ourselves to finite programs, i.e., programs that only
comprise paths of finite length through the control-flow graph. A timing anomaly in
accordance with Definition 4.1 can thus only have a bounded impact on the overall
timing behavior. In general however, programs may feature infinite paths (e.g.,
unbounded loops, or similar). For such programs we can no longer argue about the
length of the longest path through the corresponding prediction graph. Thus we

52

4.2 Infinite Programs

need to reason about paths of finite length n through the CFG to cope with arbitrary
programs.

Definition 4.2 (n-Prediction Graph)
Let G = (V ,vs,E) be a CFG, Â = (Ŝ , τabs) an abstract state automaton, and θ ∈ 2Ŝ be the
set of initial abstract states.

An n-prediction graph is a prediction graph that is restricted to paths through the
control-flow graph of length n ∈ N. Symbolically: P̂G|n = (Ŝ , Ê |n), where Ê |n = { (ŝ, t̂) |
ŝ π t̂ ∧ |π| = n }.

Often the impact of a timing anomaly on the execution behavior stabilizes eventually.
This means that the difference between an execution that comprises a non-LWC
decision and any other execution is bounded by a constant. Such a timing anomaly
is called k-bounded timing anomaly, where k is the maximal difference caused by the
timing anomaly. This is formalized in Definition 4.3.

In the presence of a k-bounded timing anomaly, a static timing analysis could
always assume the local worst-case, adding the constant k to the computed WCET
bound [33]. The timing-anomalous hardware state determines the actual impact on
timing, which is not easily computable. In most cases the precision of a static timing
analysis will degrade by assuming the local worst-case and adding the constant k to
the computed WCET bound.

Definition 4.3 (k-bounded Timing Anomaly)
Let Â = (Ŝ , τabs) be an abstract state automaton. The abstract hardware model exhibits a k-
bounded timing anomaly if there exists a program G, a non-LWC transition (ŝ, t̂), and a
constant k ∈ N such that any n-prediction graph P̂G|n that contains a path ω through (ŝ, t̂)
only comprises paths ω′ through ŝ that are at most k shorter, i.e., |ω| > |ω′ | ∧ |ω|−k ≤ |ω′ |.
The abstract state ŝ is k-timing-anomalous.

Unfortunately, some hardware features cause timing anomalies whose effects on
timing are unbounded. Such timing anomalies are known as domino effects. Domino
effects are essentially different from k-bounded timing anomalies: A k-bounded
timing anomaly occurring in a loop only has a limited timing effect that eventually
stabilizes. In other words, the loop body runtime will only differ for a bounded
number of iterations and converge finally. In the presence of a domino effect, the
loop body runtime will take different values without convergence in the future.

Contrary to k-bounded timing anomalies, a non-LWC transition is not a necessary
precondition for a domino effect to occur. Furthermore we need to fix the executed
path through G after a specific instruction view v. This is necessary to avoid the
control-flow to ”cause” a domino effect. Consider an if-then-else statement where
the then part enters an unbounded loop and the else part exits the program. If

53

Chapter 4 Timing Anomalies and Domino Effects

the condition is statically unknown both possibilities have to be considered. It is
obvious that the difference between the then and the else part cannot be bounded
by any k ∈ N. Definition 4.4 provides a formal definition.

Definition 4.4 (Domino Effect)
Let Â = (Ŝ , τabs) be an abstract state automaton. Let G = (V ,vs,E) be a control-flow
graph, πpost an arbitrary sequence of instructions and v ∈ V an arbitrary instruction and
Π = {π | π = πpre ◦ v ◦πpost is a path through G }. The set Π is a collection of paths that
share the tail πpost following v. The n-prediction graph restricted to Π is then defined
as: P̂Π

G|n = (Ŝ , Ê |Πn), where Ê |Πn = { (ŝ, t̂) | ŝ π t̂ ∧ |π| = n ∧∃π′ s.t. π ◦π′ ∈Π}.

The abstract hardware model exhibits a domino effect if for any k ∈ N there is an n ∈ N
such that the difference between a longest path ω through P̂Π

G|n and any other path ω′

cannot be bounded by k, i.e., |ω| − k > |ω′ |.

Domino effects are real. Schneider [38] has demonstrated that the MPC755 pipeline
actually causes a domino effect. Furthermore, Berg [3] was able to show that,
in contrast to the LRU replacement policy, the pseudo-LRU, the FIFO, and the
round-robin replacement strategies suffer from domino effects. In Section 4.5 we
discuss a cache replacement policy where a non-LWC transition is not a necessary
precondition for a domino timing anomaly to occur. In Section 6.2.4 on page 112 we
demonstrate a domino effect that is present in the MPC565 processor.

The presence of timing anomalies impacts both performance and precision of a static
timing analysis. In general, an analysis cannot always choose the most expensive
execution, as this decision might not always lead to the global worst-case execution
time. Consequently, the number of states to consider during analysis time might
increase greatly if the absence of timing anomalies cannot be proven for an analysis
state where multiple successor states are possible.

The inability of proving the absence of timing anomalies might also lead to an
increase in the computed WCET bound. Section 4.5 discusses an anomaly present
in the LEON2 processor that can lead to an overestimation of up to 20%, which
strongly depends on the code structure of the analyzed program.

4.3 Classification of Timing Anomalies

The classification of Reineke et al. [34] categorizes timing anomalies according to
the hardware property that is responsible for the timing anomaly. Reineke discerns
three different classes of timing anomalies:

scheduling timing anomaly Most timing anomalies found in the literature belong
to this class. Depending on the execution time of a task, a faster execution

54

4.3 Classification of Timing Anomalies

might lead to a globally longer schedule. Such anomalies are well-known in the
scheduling domain and have been thoroughly studied on various scheduling
routines.

speculation timing anomaly Some timing anomalies are caused by speculative
behavior, i.e., mechanisms that attempt to predict future behavior, such as the
direction of control-flow. For example, a prefetching processor in combination
with an instruction cache may cause such a timing anomaly. After an initial
cache hit the processor might speculatively prefetch into the wrong direction
and thus delay the overall execution due to a cache miss. A speculation
anomaly is found in the LEON2 processor.

cache timing anomaly Cache timing anomalies are caused by some non-LRU cache
replacement strategies. We further discern bounded cache timing anomalies and
cache domino effects. Several cache replacement algorithms have been proven
to cause domino effects, such as FIFO or P-LRU [3].

The timing anomaly class by itself does not suffice to completely understand the
anomaly’s nature. Often an additional hardware feature is responsible for the timing
anomaly to occur. Thus we also need to consider the non-determinism present in the
abstract state space (see Section 3.2.4 on page 43). For example, a speculation timing
anomaly is mostly caused by an initial cache hit that then triggers an additional
code fetch that misses the cache. In this case, the timing anomaly is cache-induced.
However, it is also possible that an instruction with variable execution time causes
this behavior. If that is the case, we call the timing anomaly an execution-induced
speculation timing anomaly.

To understand the impact on static timing analysis, we need to know the kind of
timing anomaly, i.e., whether it is a k-bounded or an unbounded timing anomaly. As
hinted earlier, we can implement a static timing analysis for a hardware architecture
that has a k-bounded timing anomaly without considering every possibly transition
if the constant k is known. Instead we could always focus on LWC transitions and
add the constant k to the computed WCET bound per instance of the k-bounded
timing anomaly. On the other hand, a static analysis for a processor that suffers from
a domino effect always has to consider every possible transition in the abstract state
space. Otherwise, the estimated WCET bounds cannot be guaranteed to be safe.

Arguing that a timing anomaly is k-bounded is challenging. By means of the n-
prediction graph we can only collect evidence for paths of finite length through a
specific program. Computing a constant k that holds for every program is hardly
possible. Furthermore, there might be some program that shows a domino effect
under very similar conditions. Besides, a hardware feature that can trigger a domino
effect might sometimes only cause a constantly-bounded timing anomaly depending
on the execution history.

55

Chapter 4 Timing Anomalies and Domino Effects

The above definitions allow for a better understanding of this phenomenon and its
influence on static WCET analysis. The different types of timing anomalies allow for
a classification of hardware architectures.

4.4 Classification of Architectures

Depending on whether a hardware architecture suffers from k-bounded, unbounded
or no timing anomalies, the architecture belongs to one of the following classes. We
adopt the categories proposed by Wilhelm et al. [47]:

fully timing compositional architecture The architecture does not exhibit any
timing anomaly. Hence, a static timing analysis can safely follow local worst-
case paths only. An example for this class of architectures is the ARM7 pro-
cessor. On a timing accident all components of the pipeline are stalled until
the accident is resolved. This even allows for a much simpler analysis where
architecture components (e.g., cache, bus occupancy, etc.) can be analyzed
separately, i.e., a safe parallel decomposition of the WCET problem is feasible.

compositional architecture with k-bounded effects The architecture exhibits a k-
bounded timing anomaly but does not suffer from domino effects. In general, a
WCET analysis would have to consider all decisions to compute safe execution
time bounds. To trade precision with efficiency, it would be possible to safely
discard non-LWC paths by adding a constant k per (possible) occurrence
of a timing anomaly to the computed WCET bound. So far, no hardware
architecture has been formally proven to belong to this class.

non-compositional architecture A hardware architecture that belongs to this class
exhibits domino effects. The MPC755 is known to belong to this class of
architectures because its complex pipeline might cause a domino effect. For
such architectures timing analyses always have to follow all paths since any
local effect may influence the future execution arbitrarily.

4.5 Examples

Figure 4.1 gives an example of a cache-induced speculation timing anomaly caused
by the interaction between the branch prediction mechanism, the instruction cache,
and the processor’s ability to execute instructions out-of-order. In this example the
processor is currently executing a conditional change-of-flow instruction whose
condition is not yet evaluated at the moment the instruction A is about to be fetched.
Upon a cache hit for code fetch of instruction A, the processor starts to speculatively
fetch the uncached branch target B. Although the initial cache hit locally causes a

56

4.5 Examples

faster execution, the overall execution is slowed down, because the cache line fill
fetching B takes longer than resolving the branch condition.

This timing anomaly could also be caused by speculative execution. This means
that the processor starts to execute the fetched instructions, while the processor
computes the branch condition. Instead of fetching the instruction B and being
stalled due to a cache miss, the processor could speculatively execute the previously
fetched instruction B resulting in a longer stall of the processor’s pipeline.

Cache Hit: A Prefetch B - Cache Miss C

Cache Miss: A C

Branch condition evaluated

Figure 4.1: Cache-Induced Speculation Timing Anomaly: The processor executes a
conditional branch instruction whose condition is yet unresolved. As-
suming a cache hit for the initial code fetch, the processor speculatively
fetches the instruction B that is not contained in the cache. This causes
an overall longer execution time because the cache line fill operation
stalls the processor longer than it takes to resolve the branch condition.

Figure 4.2 demonstrates an execution-induced scheduling timing anomaly (e.g.,
caused by dividers with an early-out mechanism). Here, the processor features
two execution units, an arithmetical logical unit (ALU) and a floating point unit
(FPU). Depending on the input parameters, the ALU executes integer division
instructions, like a1, quicker. Completing instruction a1 earlier, the processor is
able to dispatch instruction f2 before instruction f1. This effectively causes the
processor to execute all instructions sequentially. The instruction sequence takes
longer to complete, because the processor cannot benefit from its ability to execute
instructions in parallel. On the contrary, if instruction a1 takes longer to complete,
the processor will dispatch instruction f1 earlier. This allows the processor to execute
the instructions a2 and f2 in parallel, resulting in an overall faster execution.

The variable-execution-time-triggered timing anomaly corresponds to a so-called
scheduling anomaly. In the same fashion, a task that terminates earlier could lead to
an overall longer schedule, whereas a faster schedule could be achieved if the very
same task would run to completion a bit later. Greedy schedulers are usually unable
to prevent this kind of anomaly.

57

Chapter 4 Timing Anomalies and Domino Effects

ALU:

FPU:

a1

f1 f2

a2 a3

ALU:

FPU:

a1

f2 f1

a2 a3

f1 dispatchable

Figure 4.2: Execution-Induced Scheduling Timing Anomaly: This example demon-
strates that a fast instruction execution might cause a global slow-down
of the whole instruction sequence. The instructions a1, a2, and a3 exe-
cute on the ALU. The ALU features an early-out mechanism that allows
integer divide instructions, such as a1, to complete faster under certain
circumstances. The other instructions f1 and f2 solely execute on the
FPU. Edges between instructions indicate definition-use dependencies.

LEON2 Timing Anomaly

In this section we discuss the LEON2 hardware architecture. The LEON2 was
developed at Aeroflex Gaisler as a successor of the ERC32 processor. A radiation-
hardened version of the LEON2 is available [1] which makes it suitable for the space
domain.

The LEON2 features a rather simple pipeline that comprises five stages. To speed
up execution the LEON2 comprises disjoint instruction and data caches. Figure 4.3
depicts a block diagram of the LEON2 showing the memory hierarchy.

On a first view, the LEON2 appears to be a fully timing compositional architecture.
The processor neither performs speculative fetching nor does it execute instructions
speculatively. The LEON2 does not possess any branch-prediction mechanism.
Instructions are executed and completed in-order. Each instruction has to visit
the five pipeline stages one after another. Thus, an instruction cannot overtake a
slower instruction blocking a certain pipeline stage. This prevents the possibility
of a scheduling anomaly. Upon a timing accident (i.e., a cache miss) the internal
pipeline is stalled until the accident is resolved. Both caches commonly use the LRU
replacement policy8, which is known to behave in a timing compositional manner.

8The LEON2 is synthesized from a VHDL model where different replacements algorithms can be
configured.

58

4.5 Examples

LEON2

5-Stage
Integer Unit

Instruction
Cache

Data
Cache

Memory Man-
agement Unit

Memory
Controller

I/O SDRAMPROM SRAM

Figure 4.3: Simplified Block Diagram of the LEON2 Architecture: The LEON2 core com-
prises a five stage integer unit that is connected to an instruction cache
and a data cache. The memory management unit (if present) implements
memory protection. Communication with I/O devices and memory mod-
ules is established by the memory controller, which supports FLASH,
SRAM and SDRAM memories.

It appears that none of the above described timing anomalies can occur. However, in
the following we will show that the LEON2 has a hardware feature that potentially
triggers a timing anomaly (depending on the system state).

Upon a cache miss, the processor needs to load the missing cache line from main
memory. Usually, the whole cache line is loaded and put into the cache. Until the
cache line has been filled, the processor stalls the originating memory access. To
reduce latencies, some architectures start loading the cache line at the requested
address directly forwarding the received data to the core (cache streaming).

A similar technique is available in the LEON2 architecture. Each cache line is
equipped with valid bits for each word9 inside the cache line. A cache line is either
16 or 32 byte wide and thus comprises either four or eight valid bits. Upon a data
cache miss, solely the requested word is loaded from memory and put into the
corresponding cache line. The instruction cache operates slightly differently from

9A word is four bytes on the LEON2 hardware architecture.

59

Chapter 4 Timing Anomalies and Domino Effects

the data cache. If an instruction fetch misses the code cache, the processor burst-fills
the corresponding cache line starting from the requested instruction till the end of
the line. The processor does not issue wrap-around burst fetches. Consequently,
cache lines might only be filled partially. Furthermore, the processor does not check
for existing entries upon burst-filling the cache line. A timing anomaly finally
becomes possible, as the LEON2 processor allows cache line fills to be interrupted
under certain circumstances [20].

Figure 4.4 demonstrates how the cache line fill mechanism can trigger a timing
anomaly. In this example the contents of the cache are assumed to be initially
unknown. Each cache line can hold up to eight instructions. Assuming an initial
cache miss, the core fills the whole cache line. All in all, the processor issues eight
instruction fetches. Assuming cache hits for the first two instruction fetches (basic
block A) causes a timing anomaly. The remainder of the target cache line still
remains unknown. Reaching the basic block C, a static analysis then would need to
assume a cache miss. Recall that the processor might abort a cache line fill operation.
Thus, the instructions of basic block C need not necessarily be cached, although
cache hits have been assumed for the initial accesses to the cache line. In this case,
the core will fill the upper half of the target cache line. Eventually, the program
branches to the basic block B. Again, a static analysis would need to assume a cache
miss. Because the processor does not check whether burst-fetched instructions are
already cached, the instructions in basic block C will be fetched again. Altogether
the core performs ten fetches after the initial cache hits. So, the processor performs
25% more memory accesses under the initial assumption of a hit.

Despite the simple structure of the LEON2 a timing anomaly is possible, caused by
a rather simple, average-case performance increasing hardware feature. Obviously,
the timing anomaly is a speculation timing anomaly (see Section 4.3). Fetching
subsequent instructions upon an instruction cache miss, the processor assumes a
sequential execution of the program.

The timing anomaly is k-bounded. It is easy to see that the described effect will
eventually stabilize – a positive side effect of the LRU cache replacement policy.

SIMPLE-MRU Domino Effect

This section discusses an artificial replacement policy SIMPLE-MRU by means of
which we demonstrate that a non-LWC transition is not a necessary precondition for
a domino effect to occur. Contrary to the LRU replacement strategy, SIMPLE-MRU
discards the most-recently accessed cache line upon a cache miss.

Figure 4.5 demonstrates the domino effect by means of a 2-way cache using the
SIMPLE-MRU replacement strategy. In this example, the memory locations a and b
are accessed in an alternating pattern. Starting with a cache that already contains a,

60

4.5 Examples

A: 0x00: ba 0x10

0x04: nop

B: 0x08: ret

0x0c: nop

C: 0x10: nop

0x14: nop

0x18: ba 0x08

0x1c: nop

Assembly Code:

Initial Cache Hit:

A C B C

Burst Fetch:
0x10 .. 0x1c

Burst Fetch:
0x08 .. 0x1c

Initial Cache Miss:

A C B

Burst Fetch:
0x00 .. 0x1c

Legend:

Cache Hit

Cache Miss

Basic Block

Figure 4.4: LEON2 Timing Anomaly: The example demonstrates a timing anomaly
present in the LEON2 processor caused by the instruction cache line
fill mechanism. The basic blocks A, B, and C reside in the same cache
line. The local best-case – assuming a cache hit for the instructions in
basic block A – causes the global worst-case execution of the example:
The core performs ten instructions fetches. On the contrary, only eight
instruction fetches are issued upon an initial cache miss.

61

Chapter 4 Timing Anomalies and Domino Effects

the cache set contents stabilize after two accesses. After the first two cache misses
the repeating access sequence will only produce cache hits. Starting with a cache set
that contains the addresses a and c, where a is the most-recently accessed one, each
access to the cache except for the first will lead to a cache miss. Because SIMPLE-
MRU retains older data (i.e., the memory location c in this case), an access to a will
evict b from the cache and vice versa.

a ∅
a

a ∅
b*

b a
a

a b
b

b a

zero misses
per iteration

a c
a

a c
b*

b c
a*

a c
b*

b c

two misses
per iteration

Figure 4.5: Domino Effect for SIMPLE-MRU Replacement Policy: 2-way cache using
a SIMPLE-MRU replacement policy for the repeating access sequence
(a,b)+. The left-hand side of a set depicts the most-recently accessed
element. The first row features a partially filled cache, where no misses
occur for the given sequence except for the first access. The second row
demonstrates a different initial cache state that causes all accesses except
the first to miss the cache. Each miss is marked by ∗.

62

Trace Validation5
Whether a static WCET analysis computes safe and precise bounds depends on
the abstract hardware model. In the best-case the abstract model is obtained from
a behavioral processor description, such as a VHDL model [37]. For hardware
architectures where no such model is available, the analysis designer has to rely
on processor manuals and measurements to verify the correctness of the abstract
model. Here, we propose means to automatically compare static analyses with
measurements.

5.1 Methodology

We extend the prediction graph (see Definition 3.12) such that it allows for an
automatic comparison between the prediction and the measured execution behavior.
We annotate the edges in the prediction graph with events that can be measured
on the real device while executing the program. The granularity at which the
comparison takes place depends on the debug facilities provided by the hardware.
Section 5.2 discusses the different levels of granularity.

Test
Case

Static
Analysis

Board
or VHDL

Prediction
Event Graph

Observed
Trace

Trace
Validation

Validation
Result

Legend:
Data

Tool

Hardware

Figure 5.1: Trace Validation Procedure: A test case is the starting point of the trace
validation. First we obtain the predicted execution behavior by means of
static analysis. Second we measure the execution behavior on the real
device or simulate via an VHDL model. Finally we compare prediction
and measurement.

Figure 5.1 provides a top-level view on the comparison methodology. For a test
case we perform both static WCET analysis and measurement to obtain base data
for trace validation. A graph search then determines whether the measured trace

63

Chapter 5 Trace Validation

of events is contained in the prediction graph. The trace validation is successful if
there exists a path through the prediction graph that comprises the events in exactly
the same order in which they have been observed. To describe the comparison
between measurement and prediction we require a formalism to compare concrete
(i.e., measured) and abstract (i.e., predicted) events.

We choose the set of concrete events Σ according to the measurement capabilities
of the analyzed hardware. Events that cannot be observed (e.g., state changes of
internal processor signals) are irrelevant for trace validation. Section 5.2 discusses
this in more detail.

Definition 5.1 (Concrete Trace)
Let Σ be a non-empty set of concrete events. A concrete trace ρ ∈ Σ+ is a non-empty
sequence of concrete events. The empty event ⊥ ∈ Σ signifies that no event has occurred.

Similar to program simulation we introduce the set of abstract events Σ̂ with the
partial order v. For soundness reasons we require a monotone event concretization
function γ : Σ̂ → 2Σ that maps abstract events to sets of concrete events. The
monotonicity of γ ensures that the partial order v on Σ̂ arranges events according
to their precision.

Definition 5.2 (Abstract Event Match)
Let σ ∈ Σ be a concrete event, σ̂ ∈ Σ̂ be an abstract event, and γ : Σ̂→ 2Σ be an event
concretization function. The abstract event σ̂ matches the concrete event σ , written as
σ̂ � σ , iff σ ∈ γ(σ̂). It holds σ̂ � ⊥, iff γ(σ̂) = ∅, i.e., no abstract event has occurred.

Definition 5.3 (Predicted Abstract Trace)
Let Σ̂ be a set of abstract events, P̂G = (Ŝ , Ê) be a prediction graph, and δ : Ê → Σ̂ a
function that assigns an abstract event to each transition. For a path ω = (ŝ1, . . . , ŝn)
through P̂G the predicted abstract trace is ρ̂ω := (δ(ŝ1, ŝ2), . . . ,δ(ŝn−1, ŝn)).

Example Let Σ = N∪ {⊥} be the set of concrete events and Σ̂ = N×N be the set of
abstract events. An event σ ∈ Σ represents the target of a memory accessing
instruction. We define γ(σ̂ = (n,m)) := {i | n ≤ i ≤ m}. Furthermore let σ1 =
0x220, σ2 = 0x240, σ3 = 0x300 be concrete events, and σ̂ = (0x200, 0x2ff) be
an abstract event.

It holds σ̂ � σ1 and σ̂ � σ2 but σ̂ � σ3. Hence the predicted abstract trace
ρ̂ = (σ̂ , σ̂) does not match the measured trace ρ1 = (σ1,σ3). But ρ̂ matches the
trace ρ2 = (σ1,σ2).

Definition 5.4 (Predicted Abstract Trace Match)
Let ρ̂ = (σ̂1, . . . , σ̂n) be a predicted abstract trace and ρ = (σ1, . . . ,σm) be a concrete trace.
The abstract trace ρ̂ matches the concrete trace, written as ρ̂ � ρ, iff n =m and σ̂i � σi
for all 1 ≤ i ≤ n.

64

5.2 Measurement Granularity

Given a perfect abstract hardware model and using a cycle-accurate measurement
method any concrete trace should be matched by a corresponding predicted ab-
stract trace. Otherwise, the abstract model of the analyzed processor is not sound.
However, either due to unknown hardware behavior or due to limited measurement
capabilities, a precise match between prediction and measurement is sometimes not
possible. Thus we have to allow both local under- and overestimations as described
in Definition 5.5.

Definition 5.5 (Imprecise Predicted Abstract Trace Match)
Let ˆrho = (σ̂1, . . . , σ̂n) be a predicted abstract trace and ρ = (σ1, . . . ,σm) be a concrete
trace. If ρ̂ � ρ but ρ̂ and ρ can be partitioned into pairwise matching traces such that
ρ̂ = ρ̂⊥1

◦ ρ̂1 ◦ ρ̂⊥2
◦ ρ̂2 ◦ · · · ◦ ρ̂n and ρ =⊥j1 ◦ρ1 ◦⊥j2 ◦ρ2 ◦ · · · ◦ρn where ρ̂⊥k � ⊥

ik and
ρ̂k � ρk with ik , jk ∈ N for any 1 ≤ k ≤ n, the predicted abstract trace ρ̂ underestimates ρ
if

∑n
k=1 ik <

∑n
k=1 jk, written as ρ̂ - ρ, otherwise ρ̂ overestimates ρ, written as ρ̂ % ρ.

The prediction factor is the quotient of the number of non-empty event transitions and
the number of non-empty events in a trace. The factor provides a rough indication
about the complexity of the analyzed hardware as well as of the input program.
Both the complexity of the control-flow graph and the amount of splits that occur
during abstract simulation contribute to a higher factor. Definition 5.6 provides a
formal definition.

Definition 5.6 (Prediction Factor)
Let Σ be a set of concrete events, Σ̂ be a set of abstract events, P̂G = (Ŝ , Ê) be a prediction
graph, and δ : Ê → Σ̂ a function that assigns an abstract event to each transition. The
prediction factor is defined for concrete traces ρ = (σ1, . . . ,σn) for which there exists a
predicted abstract trace ρ̂ through P̂G such that ρ̂ % ρ or ρ̂ - ρ.

κ(ρ) =
| { (ŝ, t̂) ∈ Ê | δ(ŝ, t̂)�⊥} |

| { i | σi ,⊥} |

If there exists a trace ρ′ with κ(ρ′) < 1, there exists no predicted abstract trace that either
matches or overestimates the measurement. In this case, the abstract hardware model does
not correctly model the hardware behavior.

5.2 Measurement Granularity

A high trace resolution is desirable for an in-depth comparison between measure-
ment and static WCET analysis. At which level of detail a validation can take place
strongly depends on the available debug facilities of the processor. Some hardware

65

Chapter 5 Trace Validation

architectures allow for very fine-grained measurements that capture internal proces-
sor events, such as bus transaction signals or instruction dispatch. Other hardware
only enables coarse traces. But a successful trace validation is still feasible with
low-resolution measurements, even though the reason for a mismatch cannot be
identified that easily.

We discern five different levels of granularity. We do not consider software-based in-
strumentation because the code modification does inevitably have a non-neglectable
impact on the program timing behavior. A direct comparison between a static analy-
sis of the unmodified program and measurements using the modified program is
thus not possible. Hence, we focus on hardware monitoring as suggested in [31].

end-to-end level An in-depth analysis of the program or the hardware behavior
is impossible. Any information about the program control-flow is lost. Pro-
gram end-to-end times can only be used for a rough comparison between
measurements and static analysis.

per-routine level This level of granularity allows for a better comparison between
measurements and WCET analysis. Different routine execution contexts can
be distinguished by reference to the call history. But it is not possible to gain
precise information about the control-flow inside routines. Such measurement
methods cannot provide detailed information about the processor behavior.

per-block level Measurement solutions that are able to extract the execution behav-
ior per basic block and execution context provide much more data for trace
validation. A widely spread debugging interface standard for embedded sys-
tems is IEEE-ISTO 5001-2003 Nexus [29]. Many Freescale PowerPC processors,
such as the MPC5554 embedded micro-controller, support Nexus hardware
traces.

However, due to limited resource capabilities and bandwidth10, Nexus traces
only record timestamps upon control-flow changes, e.g., due to taken condi-
tional branches. Thus precise timestamps for each and every basic block cannot
be obtained. Nonetheless it is possible to obtain the whole executed program
control-flow that was subject to measurement. Per-block level traces provide
much more insights into the processor’s execution behavior than per-routine
level measurements, but still leave enough room for guesswork.

per-instruction level Other, more advanced tracing solutions, like the Infineon
multi-core debugging solution (MCDS) for the TriCore TC1796ED, provide
cycle-exact timestamps for every executed instruction. The obtained data
allows for full reconstruction of the program control-flow as well as for the time

10Nexus-conforming trace solutions need to transfer events upon occurrence directly over to mea-
surement probes.

66

5.2 Measurement Granularity

spent for instruction execution. Figure 5.2 shows an example per-instruction
level measurement obtained by MCDS.

This level of detail is at least required to investigate the hardware behav-
ior. However, to be able to fully understand how the processor executes an
instruction a much higher resolution is necessary.

Tick Address Interpret

6 0xD4000034 CALL 0xd4000018

.. 0xD4000018 JGE d4, 0x7, 0xd4000020

7 0xD400001C ADD d15, d4, 0x7

8 0xD4000020 Prefetch: MUL d15, d4, 0x6

9 0xD400001E J 0xd4000028

.. 0xD4000028 ADD d2, d15, -0x3

10 0xD400002A RET

Figure 5.2: Example Per-Instruction Level Trace: Instruction-level trace for a small
TriCore program. Each processor tick represents the absolute number of
cycles that have elapsed until the corresponding event has been recorded.

per-action level The full insight into the processor behavior is provided by per-
action level traces. To enable this kind of measurement, the processor must
provide access to internal signals, such as bus transfer signals like transfer
start (TS), address acknowledge (AACK), or transfer acknowledge (TA). Some
embedded processors even export pipeline-internal signals like the instruction
dispatch, which allows for a very detailed view on the concrete hardware
behavior.

Similarly, many modern embedded processors (e.g., Freescale MPC7448 or
MPC5674F) offer performance counter registers that can be exploited to ob-
serve the execution behavior on a per-action level. Each of the performance
counter registers can be configured to count several events, such as the number
of dispatched or retired instructions. Depending on the processor complexity
making use of performance counter registers to produce a trace is quite chal-
lenging. To understand the insights of a processor core, the traced time period
must be chosen very carefully, and measurements need to be repeated several
times to allow for tracing different events.

Per-action level measurements can be very costly. Every signal of interest
needs to be connected to a measurement probe. The measurement hardware
(i.e., usually a logic analyzer) needs to be able to cope with the processor’s
clock frequency. Such measurement hardware is very expensive for clock
frequencies above 200 MHz. Figure 5.3 shows an excerpt of a logic analyzer
measurement.

67

Chapter 5 Trace Validation

SYSCLK

t=0 t=1 t=2 t=3 t=4 t=5

A[27:0] 0x2021168 0x202116c 0x2021170 0x2021174

D[31:0] 0x9de3bf98 0x03008098 0x84102000 0x01000000

INST

INULL

RD

OE

WE

MHOLD

CS[0]

CS[1]

CS[2]

CS[3]

ROMCS

Tick Event Type Address

1 TS Read 0x02021168

2 TS Read 0x0202116c

4 TS Read 0x02021170

5 TS Read 0x02021174

...

Figure 5.3: Example Per-Action Level Measurement: Measurement excerpt for an
ERC32 test program. The upper half of this figure shows the signals
as recorded by the logic analyzer. Signals are extracted on falling clock
edges as the dotted lines denote. The lower half of the figure depicts the
observed per-action level trace. Each trace line denotes a new code fetch
event. The transfer-acknowledge event is not part of this trace. The tick
column indicates the number of elapsed processor cycles until the event
has been recorded. In this particular example all but the third code fetch
are initiated one after another.

68

5.3 Implementation

5.3 Implementation

Based on Definition 5.4 on page 64 we can now provide an implementation of the
trace validation algorithm. The proposed algorithm computes all paths through
the prediction event graph that match or (globally) overestimate a given trace.
Furthermore, the algorithm allows for a partial validation of the prediction event
graph. A trace may only comprise events for subparts of the analyzed program. In
any case, the trace validation is successful if the algorithm is able to determine a
path through the graph that does not underestimate the input trace. In the following,
we only consider traces that begin with a non-empty event σ ,⊥.

Algorithm 5.1 provides a pseudo-code implementation. At first we search for edges
to start the trace validation with. If the corresponding event matches the first event
of the input trace, we insert a new item into the algorithm work list. A work list
item comprises the path through the prediction graph we have considered so far, the
distance between prediction and trace in terms of processor cycles, and the index of
the last matched trace element. Given the initial work list the algorithm computes
the paths that match or overestimate the input trace as follows.

First we remove the topmost work list item (π = (ŝ1, . . . , ŝm), k, i). For every outgoing
edge (ŝm, t̂) we check whether the predicted event σ̂ = δ(ŝm, t̂) matches the next trace
event σi+1. First we extend the path π to π′ = (ŝ1, . . . , ŝm, t̂). There are two possibilities
if σ̂ � σi+1. If we have matched all trace events, we add the match (π′, k) to the set
of matches. Otherwise we insert the work list item (π′, k, i + 1) to the work list. The
distance between prediction and measurement remains untouched.

If σ̂ � σi+1, there are also two possibilities. We have found an overestimation if
σ̂ � ⊥. Later we continue with the work list item (π′, k+1, i) to attempt to match σi+1.
The distance between trace and measurement increases. If σi+1 =⊥, the prediction
underestimates the measurement. The abstract event σ̂ has been predicted too early
if it eventually matches a succeeding trace event. Thus we insert the work list item
(π,k − 1, i + 1). The distance between trace and measurement decreases. If none of
the three possibilities apply, the path π cannot lead to a successful match of the
input trace and is hence discarded.

In this fashion the algorithm continues until every path through the prediction graph
has been visited that matches in accordance to the input trace. To exclude paths that
globally underestimate the measurement, we exclude all matches µ = (π,k) where
k < 0. If the final set of matches is not empty, the prediction event graph has been
successfully validated for the input trace.

Figure 5.4 visualizes the output of the trace validation algorithm. Here the prediction
graph contains a path that precisely matches the measured events (green path).

69

Chapter 5 Trace Validation

Algorithm 5.1 Validation of Prediction Event Graph against Measured Trace
function TraceValidation

input Prediction graph P̂G = (Ŝ , Ê)
Abstract event per transition δ : Ê → Σ̂

Measured trace ρ = (σ1, . . . ,σn)
output Validation result Matches
begin

Worklist← [] . Fill initial work list
foreach (ŝ, t̂) ∈ Ê

if δ(ŝ, t̂) � σ1 then
Push(Worklist, ((ŝ, t̂), 0, 1))

end if
end foreach

Matches←∅
whileWorklist , ∅ do

(π = (ŝ1, . . . , ŝm), k, i)←Pop(Worklist)
foreach (ŝm, t̂) ∈ Ê

σ̂ ← δ(ŝm, t̂)
π′← (ŝ1, . . . , ŝm, t̂)
if σ̂ � σi+1 then

if i + 1 = n then . Finished match
Matches←Matches∪ { (π′, k) }

else . Found match
Push(Worklist, (π′, k, i + 1))

end if
else if σ̂ � ⊥ then . Found local overestimation

Push(Worklist, (π′, k + 1, i))
else if σi+1 =⊥ then . Found local underestimation

Push(Worklist, (π, k − 1, i + 1))
end if

end foreach
end while

foreach µ = (π,k) ∈Matches . Forbid global underestimation
if k < 0 then

Matches←Matches\{µ }
end if

end foreach
end

end function

70

5.3 Implementation

Figure 5.4: Trace Validation Visualization: The image depicts the output of the trace
validation algorithm. The green path denotes a precise match of the
input trace. Gray regions are parts of the prediction graph that do not
match the measurement. Yellow edges denote matched events on over-
or underestimated paths. The purple edges depict the unmatched parts
of the input trace following over- or underestimated events.

71

Evaluation6
Chapter 4 and Chapter 5 have presented means to validate static worst-case execu-
tion time analysis in the presence of timing anomalies. Section 6.1 demonstrates the
trace validation of the static WCET analyzer aiT for various hardware architectures.
The validation of aiT is exemplified on custom benchmark programs and on avionics
applications. Section 6.2 investigates and visualizes found timing anomalies.

6.1 Trace Validation

6.1.1 ERC32

The ERC32 processor is a SPARC v7 compliant hardware architecture. It consists of
three modules comprising an integer unit (IU), a floating-point unit (FPU), and a
memory controller (MEC). Figure 6.1 depicts the ERC32 pipeline model that has
been derived from a behavioral VHDL model [10].

IU FPU

MEC

ERC32

Buffer [1]

Buffer [0]

Decode

Execute

Write

Queue

Access
Code

Data

Data

Access

Legend:
Unit

Stage

Figure 6.1: ERC32 Pipeline Model: The model of the ERC32 pipeline comprises three
communicating units: the integer unit (IU), the floating-point unit (FPU),
and the memory controller (MEC). The edges denote the data paths
between the units.

Hardware Description

The IU employs a four-stage instruction pipeline that permits parallel execution of
multiple instructions. According to the VHDL model there are two prefetch buffers

73

Chapter 6 Evaluation

that allow the IU to prefetch subsequent instructions while executing instructions
that occupy multiple pipeline stages.

The IU fully controls the FPU, fetches FPU instructions and performs load and
stores of floating-point data. By means of a one-entry floating-point instruction
queue, which stores the currently executed operation, the FPU can execute one
FPU instruction in parallel to the IU. If an additional floating-point instruction is
to be dispatched while a previous instruction occupies the FPU queue, the IU is
stalled until the previous instruction has finished execution. The pipeline model
only comprises the floating-point queue, because FPU instructions pass the IU and
FPU stages in parallel.

The MEC provides the interface to internal and external memory resources and is
fully controlled through the IU. The model supports all internal memories, such as
PROM, extended PROM, exchange RAM, SRAM, extended SRAM, and I/O memory
regions. Each of the memories can be configured separately with static read and
write waitstate timing. The port width of the internal PROM can be additionally
configured to 32 bit.

Measurement Setup

For our experiments the European Space Agency (ESA) kindly provided us with a
Saab Ericsson Space TSC695F Compact PCI board. The TSC695F board is a single-
chip implementation of the ERC32 processor. The processor is running at 20 MHz.
The board comprises 512 KB boot EEPROM (8 bit port width) and 8 MB SRAM (32
bit port width) with error-detection-and-correction (EDAC) protection.

The ERC32 board does not possess any debug facilities that allow us to directly
observe the internals of the processor pipeline. Fortunately, the board features six
debug connectors that provide a full pin-out of the internal memory bus. This
allows us to observe the processor behavior on a per-action level. By means of a
logic analyzer, we record the following signals (see Figure 5.3 on page 68 as an
example).

SYSCLK The system clock (SYSCLK) is generated by the ERC32 for clocking the IU
and the FPU as well as other system logic.

A[27:0] The address bus for the ERC32 is an output bus. Inside the processor, the
IU address bus is used to perform decoding, to generate select signals and to
check against the memory access protection scheme. It is also used to address
the system registers.

The upper address bits A[31:28] are not made available via the debug connec-
tors. This still allows for a successful comparison because the address bus cov-

74

6.1 Trace Validation

ers the address range where the test programs are linked to (i.e., 0x02000000
. . . 0x027fffff).

D[31:0] These signals form a 32-bit bidirectional data bus that serves as the in-
terface between the ERC32 and external memory. The data bus is not driven
by the ERC32 during system register accesses, it is only driven during the
execution of integer and floating-point load and store instructions and the
store cycle of atomic-load-store instructions on external memory.

For comparison purposes measuring the data bus signals are not essential. We
have included the data bus to cross-check the data with the operation code of
the assembly instructions.

INST The instruction fetch signal (INST) is asserted by the IU whenever a new
instruction is being fetched. It is used by the FPU to latch the instruction
currently on the internal data bus into an FPU instruction buffer.

INULL The processor asserts the integer unit nullify signal (INULL) to indicate that
the current memory access is being nullified. It is asserted at the beginning of
the cycle in which the address being nullified is active.

RD The read access signal (RD) is sent out during the address portion of an access to
specify whether the current memory access is a read (RD = 1) or a write (RD =
0) operation. RD is set low only during the address cycles of store instructions.
For atomic load-store instructions, RD is set high during the load address cycle
and set low during the two store address cycles.

OE The output enable signal (OE) is asserted during fetch or load accesses to the
main memory. It is intended to be used to control memory devices with output
enable features.

WE The write enable signal (WE) is asserted by the IU during the cycle in which the
store data is on the data bus. For a store single instruction, this is during the
second store address cycle, the second and third store address cycles of store
double instructions and the third load-store address cycle of atomic load-store
instructions.

MHOLD This signal is, among others, asserted when a Memory Hold (MHOLD) or
a Floating-point Hold (FHOLD) is internally generated. MHOLD is used to
freeze the pipeline to both the IU and FPU accessing a slow memory or during
memory exception. The IU and FPU internal outputs return to and stay at the
value they had on the rising edge of SYSCLK in the cycle in which MHOLD
was asserted. FHOLD is asserted by the FPU if a situation arises in which
the FPU cannot continue execution. The FPU checks all dependencies in the
decode stage of the instruction and asserts an FHOLD in the next cycle.

75

Chapter 6 Evaluation

ROMCS The ROM chip select output (ROMCS) is asserted whenever there is an
access to the boot ROM area.

CS[3:0] The memory chip select signals are asserted during an access to the main
memory.

Results

For each hardware feature we design a dedicated test case in assembly in order
to cover the whole functionality of the ERC32 processor. This includes tests for
all available FPU instructions. In total we have implemented 75 different tests
programs. 43 of the test programs are related to the floating-point unit.

All tests successfully pass the trace validation. Table 6.1 shows the trace validation
result for an excerpt of the test set. We observe that the ERC32 pipeline analysis is
cycle-accurate except for the floating-point tests. For each FPU instruction we have
implemented a dedicated test to measure the FPU execution behavior in isolation
on randomly generated floating-point numbers. The overestimation for these tests
is inherently high because most floating-point instructions do not complete after a
fixed number of cycles. The worst-case execution behavior is seldom observed. For
example, the fadds instruction finishes after 4 to 17 cycles. In most cases however,
the instruction completes after 4 cycles only. Unfortunately, we did not have access
to the concrete VHDL model, which would allow for a more precise static WCET
analysis.

Table 6.2 lists the number of measurement events compared to the prediction graph
size (i.e., number of nodes, number of edges, and number of predicted events). For
the FPU tests, the prediction graph size is significantly larger because these tests
execute a corresponding floating-point instruction in a loop. We have measured up
to 1000 execution instances for each FPU instruction.

76

6.1 Trace Validation

Test Measurement Prediction
(cycles) Bound (cycles) Distance (%)

annulled-load 12 12 0.00
annulled-load-nottaken 14 14 0.00
annulled-load-taken 27 27 0.00
branch 25 25 0.00
branch-dep 30 30 0.00
branch-store 16 16 0.00
call 38 38 0.00
call-dep 20 20 0.00
call-load-prom 72 72 0.00
call-load-sram 46 46 0.00
call-nop 44 44 0.00
call-store 18 18 0.00
fpu-abss 4006 4007 0.02
fpu-dtoi 3072 3465 12.79
fpu-dtos 3527 3918 11.09
fpu-fsr 300 323 7.67
fpu-movs 7806 7807 0.01
fpu-negs 4006 4007 0.02
fpu-sqrtd 9142 11133 21.78
fpu-sqrts 6353 7349 15.68
fpu-stod 2006 2405 19.89
fpu-stoi 2674 3400 27.15
load-jmpl 21 21 0.00
load-prom 127 127 0.00
load-sram 23 23 0.00
store-load-dep 249 249 0.00
store-sram-8bit 55 55 0.00
store-sram-16bit 55 55 0.00
store-sram-32bit 31 31 0.00
store-sram-64bit 27 27 0.00

Table 6.1: ERC32 Analysis Results: Trace validation results for the static WCET
analyzer aiT for ERC32. Due to the lack of precise information about the
timing behavior of FPU instructions, the analysis is not able to precisely
predict the measured behavior. At worst, we observe a difference to the
highest measured execution time of 27.15%.

77

Chapter 6 Evaluation

Test Measurement Prediction
Events Nodes Edges Events (Factor)

annulled-load 11 23 22 15 (x1.36)
annulled-load-nottaken 13 25 24 17 (x1.31)
annulled-load-taken 12 24 23 16 (x1.33)
branch 24 63 69 55 (x2.29)
branch-dep 12 34 34 24 (x2.00)
branch-store 13 26 25 17 (x1.31)
call 32 69 68 36 (x1.12)
call-dep 14 33 32 18 (x1.29)
call-load-prom 38 75 74 42 (x1.11)
call-load-sram 38 75 74 42 (x1.11)
call-nop 38 75 74 42 (x1.11)
call-store 14 32 31 18 (x1.29)
fpu-abss 3606 5218 5217 3610 (x1.00)
fpu-dtoi 1806 22403 23809 14396 (x7.97)
fpu-dtos 1806 40393 43403 27585 (x15.27)
fpu-fsr 240 1724 1840 1518 (x6.33)
fpu-movs 7206 10218 10217 7210 (x1.00)
fpu-negs 3606 5218 5217 3610 (x1.00)
fpu-sqrtd 1806 209669 224541 134862 (x74.67)
fpu-sqrts 1806 132727 142370 86919 (x48.13)
fpu-stod 1806 30201 32607 21393 (x11.85)
fpu-stoi 1806 22203 23608 14396 (x7.97)
load-jmpl 15 29 28 19 (x1.27)
load-prom 14 26 25 18 (x1.29)
load-sram 14 26 25 18 (x1.29)
store-load-dep 88 150 149 92 (x1.05)
store-sram-8bit 14 34 33 18 (x1.29)
store-sram-16bit 14 34 33 18 (x1.29)
store-sram-32bit 14 34 33 18 (x1.29)
store-sram-64bit 10 26 25 14 (x1.40)

Table 6.2: ERC32 Test Complexity: Number of measured events and correspond-
ing prediction graph size. Contrary to the non-floating-point tests, the
prediction graph size of the FPU tests is significantly larger. The large
variability of the FPU instruction timing and the code structure of these
tests contribute to the size of the prediction graph.

78

6.1 Trace Validation

6.1.2 LEON2

The LEON2 processor is a SPARC v8 compliant hardware architecture. It is a follow-
up design of the ERC32 processor. The instruction pipeline comprises an additional
execute stage that is dedicated to memory accesses only. Furthermore, the LEON2
features disjoint instruction and data caches. Figure 6.2 depicts the LEON2 pipeline
model that has been derived from a behavioral VHDL model.

IU FPU

MEC

LEON2

Fetch

Decode

Execute

Memory

Write

Queue

I-Cache

Access

Code

Data

Access

D-Cache
Data

Legend:
Unit

Stage

Figure 6.2: LEON2 Pipeline Model: The model of the LEON2 pipeline comprises five
communicating units: the integer unit (IU), the floating-point unit (FPU),
the memory controller (MEC), and the instruction and data caches. The
edges denote the data paths between the units.

Hardware Description

The integer unit employs a five-stage in-order instruction pipeline to execute multi-
ple instructions in parallel. The fetch stage (FE) requests the next instruction from
the instruction cache, or forwards its request directly to the memory controller if
the instruction cache is disabled. The decode stage (DE) decodes the instruction
and identifies the read operands either from the register file or from internal data
bypasses. Additionally, call and branch target addresses are generated in this stage.
The execute stage (EX) performs arithmetic-logic instructions and computes target
addresses for memory accessing instructions. The memory stage (ME) advances
pending requests to the data cache, or forwards the request directly to the memory
controller. The write stage (WR) updates the register file.

For the LEON2 processor there are two IEEE-754-compliant FPU implementations
available that operate on both single- and double-precision operands, and imple-

79

Chapter 6 Evaluation

ment all SPARC V8 FPU instructions. The Meiko FPU operates in serial fashion,
where floating-point instruction do not execute in parallel with IU instruction and
the processor is stopped during FPU execution. The Gaisler Research floating-point
unit (GRFPU) is interfaced with the integer unit that allows the FPU to execute
instructions in parallel to the integer pipeline. Only in case of dependencies the
LEON2 pipeline waits. The model only supports the Meiko implementation.

The MEC provides the interface to internal and external memory resources and is
fully controlled through the IU. The model supports all internal memories, such
as PROM, SRAM, SDRAM, and I/O memory regions. Each of the memories can be
configured separately with static read and write waitstate timing. The refresh of the
SDRAM is not modeled and has to be considered separately. The port width of each
memory module, except for SDRAM, can be configured to 8 bit, 16 bit or 32 bit.

Measurement Setup

For our experiments we were provided a GR-CPCI-AT697 board that runs a LEON2
core with up to 100 MHz. That particular LEON2 processor features a 4-way set-
associative 32 KB instruction cache and a 2-way set-associative 16 KB data cache.
Both caches are updated according to the LRU cache replacement policy. The board
comprises 16 MB internal PROM (32 bit port width), 1 MB internal SRAM (32 bit
port width), and a 512 MB SDRAM module (32 bit port width). Both SRAM and
SDRAM are equipped with error-detection-and-correction (EDAC) protection.

Similar to the ERC32 (see Section 6.1.1 on page 73), the LEON2 board does not
possess debug facilities to observe the integer pipeline. However, the available
LEON2 evaluation board provides a full pin-out of the internal memory bus. This
allows us to observe the processor behavior on a per-action level. By means of a logic
analyzer, we obtain an event trace by recording the following signals.

CLK The processor clock (CLK) provides the main reference for the processor.

A[27:0] The address bus carries the addresses during accesses to external memory.
When access to cache memory is performed, the address of the last external
memory access remains driven on the address bus. The upper address bits
A[31:28] are not made available.

For the measurements we only used the lower 16 bits of the address bus. This
still allows for a successful comparison due to the rather small size of the test
programs.

D[31:0] The bi-directional data bus carries the data during accesses to memory.
The processor automatically configures the bus as output and drives the lines
during write cycles. During accesses to 8-bit areas, only D[31:24] are used.
During accesses to 16-bit areas, only D[31:16] are used.

80

6.1 Trace Validation

For comparison purposes measuring the data bus signals are not essential. We
have included the data bus to cross-check the data with the operation code of
the assembly instructions.

READ The LEON2 processor asserts the read signal during read cycles on the mem-
ory bus.

WRITE The write signal provides a write strobe during write cycles on the memory
bus.

ROMS[1:0] The ROMS output signals provide the chip-select signal for the PROM
area. ROMS[0] is asserted once the lower half of the PROM area is accessed
(i.e., 0x0 . . . 0x0fffffff), whereas ROMS[1] is asserted for the upper half.

RAMS[4:0] The RAMS signals provide the chip-select signals for each RAM bank.
We use these signals to identify when an access to the internal SRAM memory
occurs.

Results

To cover the whole functionality of the LEON2 processor we have implemented
112 test cases. All tests successfully pass the trace validation. Table 6.3 shows the
trace validation results for an excerpt of the test set. The results show that LEON2
pipeline analysis is cycle-accurate, except for the FPU and the caches.

The precision of the cache analysis is tightly coupled to the structure of the code
and the hardware configuration. In general, the cache analysis has no knowledge
about the contents of the caches. Assuming unknown contents together with the
instruction cache configured to burst-fill cache lines, might cause the cache analysis
to predict pipeline states that would not occur in reality. No effort was spent to
effectuate a bad/worst-case cache filling for the execution time measurements. The
possibility of a timing anomaly (as discussed in Section 4.5 on page 56) further
contributes to this problem. For these tests, we observe a difference to the highest
measured execution time of up to 1.54%.

By mischance, there was no precise documentation about the Meiko FPU available
and thus no information about possible early-out mechanisms present (or similar
techniques to speed up the execution of FPU instructions). But contrary to the
ERC32 floating-point unit, the Meiko FPU instruction timing is less volatile. Hence,
we recognize a difference to the highest measured execution time of up to 9.21% (on
average about 4%) for the FPU instruction test cases.

Table 6.4 lists the number of measurement events compared to the prediction graph
size (i.e., number of nodes, number of edges, and number of predicted events).

81

Chapter 6 Evaluation

Test Measurement Prediction
(cycles) Bound (cycles) Distance (%)

annulled 51 51 0.00
annulled-load 81 81 0.00
branch-cached 137 137 0.00
call 156 156 0.00
call-cached 418 420 0.48
div 546 546 0.00
dry2_1 11438 11439 0.01
interlock-mul 73 73 0.00
interlock-store 179 179 0.00
fpu-add 8021 8623 7.51
fpu-cmp 12619 12786 1.32
fpu-div 8722 9525 9.21
fpu-itod 10206 10482 2.70
fpu-mul 11622 11623 0.01
fpu-sqrt 10922 10975 0.49
fpu-sub 8520 8625 1.23
icache-fill 61 62 1.64
icache-fill-hit 65 65 0.00
jumpl 83 83 0.00
load-cached 114 114 0.00
load-double-cached 431 431 0.00
load-prom 292 292 0.00
load-prom-cached 324 329 1.54
load-prom-call 373 373 0.00
load-sram 81 82 1.23
mul 256 256 0.00
store-double-single 119 119 0.00
store-single 112 112 0.00
store-sram 170 170 0.00
store-sram-rmw 289 289 0.00

Table 6.3: LEON2 Analysis Results: Trace validation results for the static WCET
analyzer aiT for LEON2. Due to the lack of precise information about the
timing behavior of FPU instructions, the analysis is not able to precisely
predict the measured behavior. At worst, we observe a difference to the
highest measured execution time of 9.21%.

82

6.1 Trace Validation

Test Measurement Prediction
Events Nodes Edges Events (Factor)

annulled 11 24 23 11 (x1.00)
annulled-load 11 24 23 11 (x1.00)
branch-cached 51 293 362 182 (x3.57)
call 31 63 62 32 (x1.03)
call-cached 153 1482 1762 943 (x6.16)
div 42 107 122 61 (x1.45)
dry2_1 1729 2887 2886 1729 (x1.00)
interlock-mul 8 36 42 14 (x1.75)
interlock-store 17 35 34 17 (x1.00)
fpu-add 1521 8971 12585 4837 (x3.18)
fpu-cmp 2129 4861 5756 2898 (x1.36)
fpu-div 1521 12671 19185 5037 (x3.31)
fpu-itod 1467 9529 14078 3118 (x2.13)
fpu-mul 2121 3071 3085 2137 (x1.01)
fpu-sqrt 821 1371 1385 837 (x1.02)
fpu-sub 1521 8971 12585 4837 (x3.18)
icache-fill 25 171 208 119 (x4.76)
icache-fill-hit 25 175 206 99 (x3.96)
jumpl 17 26 25 18 (x1.06)
load-cached 17 34 34 19 (x1.12)
load-double-cached 34 67 71 46 (x1.35)
load-prom 13 28 27 14 (x1.08)
load-prom-cached 21 122 142 76 (x3.62)
load-prom-call 38 91 90 38 (x1.00)
load-sram 13 28 27 14 (x1.08)
mul 42 107 122 61 (x1.45)
store-double-single 14 30 29 14 (x1.00)
store-single 14 30 29 14 (x1.00)
store-sram 29 47 46 30 (x1.03)
store-sram-rmw 30 59 58 30 (x1.00)

Table 6.4: LEON2 Test Complexity: Number of measured events and corresponding
prediction graph size. The prediction graph size increases with a higher
variability of the processor’s execution behavior. This especially applies
to tests related to the caches and to the floating-point unit.

83

Chapter 6 Evaluation

6.1.3 M68020

The Motorola M68020 processor was the first full 32 bit implementation of the
M68000 microprocessor family. The processor is equipped with an M68882 floating-
point co-processor that is fully IEEE-754 floating-point compatible. Figure 6.3
depicts the manually derived M68020/M68882 pipeline model.

CORE

BUS

FPU

M68020 M68882

Fetch

Decode B

Decode C

Decode D

Execute

Queue [1]

Queue [0]

Access

Execute BG

Execute FG

Decode

Code

Data

Access

Legend:
Unit

Stage

Figure 6.3: M68020 Pipeline Model: The pipeline model comprises the M68020 pro-
cessor and the M68882 floating-point co-processor. The M68020 consists
of an integer instruction pipeline (CORE) and a bus controller (BUS).
The bus controller establishes the communication between memory and
the FPU co-processor. The M68882 comprises a three stage pipeline that
allows for the concurrent execution of up to two FPU instructions in
parallel to the M68020 core.

Hardware Description

The M68020 is a 32 bit CISC processor that is fully compatible to earlier M68000
microprocessors. Other than the previously discussed architectures, the M68000
instruction set architecture uses a variable-length instruction encoding supporting
up to 16 byte wide instructions.

The processor employs a three-stage pipeline. The fetch stage holds up to 4 bytes of
code. The decode stage is subdivided into three sub-stages (B, C, and D) that process
fetched data on chunks of 2 bytes each. While executing an instruction, the decode
stages feed the corresponding functional units with operand data.

The bus controller establishes the communication between processor, memories and
other peripherals. The bus interface allows operands to be located in memory on any

84

6.1 Trace Validation

byte boundary and provides access to 8 bit, 16 bit or 32 bit port sized memories or
peripheral devices. While serving an access the bus controller allows two additional
outstanding requests.

The M68882 floating-point unit is controlled by the M68020 processor via the bus
interconnect. The processor is in full control of the FPU and steers it by means of
dedicated memory accesses. Hereby, the target address encodes the operation to
execute, e.g., a memory write access to 0x2200a passes a 16 bit operand to the FPU.
FPU instructions are either executed in foreground (FG) or in background (BG),
allowing the FPU to execute another instruction in foreground. An FPU instruction
is kept in foreground if it awaits input data from the processor. In total two FPU
instructions can be executed in parallel.

The M68882 floating-point unit is rather slow. Many instructions take hundreds of
processor cycles to complete execution. In addition the execution time variance of
FPU instructions is rather high and strongly depends on the operands. For example,
a floating-point addition may take 51 to 78 cycles to complete.

Measurement Setup

For our experiments we used an M68020/M68882 evaluation board that is clocked
at 20 MHz. The pin-out of the board provides full access to the internal memory bus.
This allows for an in-depth view on the communication of the M68020 processor
between the M68882 co-processor and the connected peripherals. Debug access to
the processor pipeline is not available. By means of a logic analyzer, we record the
following signals.

CLK The clock signal (CLK) is the clock input to the M68020.

A[31:0] The signals provide the address for the current bus cycle. The communica-
tion with the M68882 co-processor can also be observed.

D[31:0] The bi-directional data bus provides the general-purpose data path be-
tween the processor and the connected peripherals. The data bus transfers up
to 32 bits of data per bus cycle. The control commands for the M68882 FPU
are also transmitted over the data bus.

DSACK0, DSACK1 These input signals indicate the completion of a requested data
transfer operation. In addition, they indicate the size of the external bus port
at the completion of each cycle.

SIZ0, SIZ1 The signals indicate the number of bytes remaining to be transferred for
the current bus cycle. The signals A1, A0, DSACK0, DSACK1, SIZ0, and SIZ1
define the number of bits on the data bus.

85

Chapter 6 Evaluation

ECS The output signal ECS denotes the beginning of a bus cycle of any type. We
interpret ECS as a transfer-start signal.

R/W The read-write signal determines the bus access type.

AS The address strobe signal (AS) indicates that a valid address is latched on the
address bus.

Results

We obtained the results from a trace validation of a real-word avionics application
running on an M68020/M68882 processor. For our experiments we had access to
two different implementations of the application, one of which uses the M68882
co-processor and the other one uses an external processor for floating-point compu-
tation. The whole application follows a triple modular redundant design. By means
of a shared bus the application instances match their (intermediate) results against
each other (voting system).

Both implementations of the application successfully pass the trace validation. In
total over 1.5 million lines of trace comprising about 1.3 million bus events were
automatically successfully compared against the M68020/M68882 pipeline model.
Table 6.5 depicts an excerpt of the trace validation results for both implementations
of the avionics application. The tasks of the two implementations cannot be directly
related to each other because the difference in their implementation is too huge.
Due to NDA agreements we must not provide the real task names.

The application under investigation is highly data-dependent. As expected the
difference between the observed execution time and the predicted worst-case exe-
cution time bound for the avionicfpu tasks is much higher than for the tasks using
an external processor for FPU computation. On average we observe a difference of
20.36%. This is caused by the high variance in the execution behavior of the M68882
FPU. Unfortunately the static worst-case analysis has no insights in the internal
functioning of this FPU. For the non-M68882 FPU task set, we observe a difference
of 6.06% on average, which is acceptable for data-dependent software.

Table 6.6 shows the prediction graph size for each of the selected tasks. The static
WCET analysis may always assume the worst execution time for each FPU instruction
because the M68882 co-processor stalls if both FPU execution stages are occupied.
Hence, we do not observe a major difference of the prediction graph complexity
between the two implementations.

86

6.1 Trace Validation

Test Measurement Prediction
(cycles) Bound (cycles) Distance (%)

avionic1 522 549 5.17
avionic2 1326 1415 6.71
avionic3 2061 2217 7.57
avionic4 358 374 4.47
avionic5 1369 1451 5.99
avionic6 10117 10681 5.57
avionic7 10768 11420 6.05
avionic8 10128 10688 5.53
avionic9 1507 1592 5.64
avionic10 7677 8333 8.55
avionic11 3816 3989 4.53
avionic12 1859 1923 3.44
avionic13 6421 6610 2.94
avionic14 8351 9115 9.15
avionic15 1060 1162 9.62
avionicfpu1

10179 12067 18.55
avionicfpu2

8593 10809 25.79
avionicfpu3

8068 9988 23.80
avionicfpu4

548 650 18.61
avionicfpu5

8540 10205 19.50
avionicfpu6

2230 2830 26.91
avionicfpu7

4495 5332 18.62
avionicfpu8

4195 5119 22.03
avionicfpu9

2943 3330 13.15
avionicfpu10

10710 12801 19.52
avionicfpu11

3195 3785 18.47
avionicfpu12

430 504 17.21
avionicfpu13

3994 4709 17.90
avionicfpu14

3693 4405 19.28
avionicfpu15

2971 3748 26.15

Table 6.5: M68020 Analysis Results: Trace validation for an avionics application
running on an M68020/M68882 processor. The variance in FPU execution
timing causes a higher difference between measurement and prediction.
For the avionicf pu we recognize at worst a difference of 26.91%.

87

Chapter 6 Evaluation

Test Measurement Prediction
Events Nodes Edges Events (Factor)

avionic1 88 100 99 88 (x1.00)
avionic2 526 5583 5756 4420 (x8.40)
avionic3 817 7109 7448 5600 (x6.85)
avionic4 172 472 486 377 (x2.19)
avionic5 543 4776 4931 3616 (x6.66)
avionic6 3760 20549 21586 14944 (x3.97)
avionic7 4078 11182 11762 8385 (x2.06)
avionic8 3762 20556 21593 14950 (x3.93)
avionic9 594 3629 3733 2821 (x4.75)
avionic10 2674 21956 22938 16517 (x6.24)
avionic11 1324 3113 3252 2245 (x1.70)
avionic12 676 1595 1679 1116 (x1.65)
avionic13 2422 6738 6838 5429 (x2.24)
avionic14 2846 21949 22931 16511 (x5.80)
avionic15 286 558 569 427 (x1.49)
avionicfpu1

2710 28593 29691 19427 (x7.17)
avionicfpu2

1764 4569 4625 3873 (x2.20)
avionicfpu3

1592 5741 5839 4519 (x2.84)
avionicfpu4

118 157 157 132 (x1.12)
avionicfpu5

2110 17844 18433 12424 (x5.58)
avionicfpu6

546 2120 2175 1589 (x2.91)
avionicfpu7

1028 2401 2445 1979 (x1.93)
avionicfpu8

848 1205 1215 1032 (x1.22)
avionicfpu9

900 2588 2655 2050 (x2.28)
avionicfpu10

2634 15797 16338 11185 (x4.25)
avionicfpu11

870 2379 2448 1875 (x2.16)
avionicfpu12

168 472 486 377 (x2.24)
avionicfpu13

930 2658 2716 2211 (x2.38)
avionicfpu14

810 1643 1661 1383 (x1.71)
avionicfpu15

732 2717 2790 1941 (x2.65)

Table 6.6: M68020 Analysis Complexity: Number of measured events compared to
the events predicted by the static WCET analyzer. There is no significant
difference between the two implementations of the avionic software, as
the analysis assumes the worst execution time for each FPU instruction.

88

6.1 Trace Validation

6.1.4 MPC5xx

The Freescale MPC5xx family of processors consist of 32 bit PowerPC embedded
microprocessors that are used for automotive applications, such as engine control
systems.

BPU PFQ

ALU IMD FPU LSU

HQ

MPC5xx

Fetch Queue [3]

Queue [0]

Execute Execute [1]

Execute [0]

Execute Access [1]

Access [0]

Write [5]

Write [0]

Code

Data

Legend:
Unit

Stage

Figure 6.4: MPC5xx Pipeline Model: Processor model of the MPC5xx hardware archi-
tecture. The processor internal memories are not depicted. The branch
processing unit (BPU) fetches instructions putting them into the instruc-
tion prefetch queue (PFQ). The PFQ dispatches a single instruction onto
the corresponding functional unit, i.e., the arithmetic-logic unit (ALU),
the integer multiplication and division unit (IMD), the floating-point
unit (FPU), or the load-store unit (LSU). The history queue (HQ) records
the update of the processor-internal registers in program order.

Hardware Description

The MPC5xx is a single-issue, out-of-order architecture that follows a Harvard ar-
chitecture design. It has on-chip pipelined instruction and data buses that may
address internal memory modules concurrently. The processor includes five inde-
pendent execution units that may execute out-of-order. The branch processing unit
(BPU) allows for a high instruction throughput by means of static branch prediction.

89

Chapter 6 Evaluation

Up to four instructions may be prefetched into the prefetch queue (PFQ). The 32
bit arithmetic-logic unit (ALU) performs all kinds of integer operations except for
multiplication and division, which are executed by a dedicated integer multiplier
divider unit (IMD). The fully IEEE 754-compliant floating-point unit (FPU) is able
to compute both single- and double-precision operations. Figure 6.4 depicts the
manually designed pipeline model.

The MPC5xx processor family features a moderate amount of internal memory. Up
to 1 MB of FLASH memory are available for code and data storage. The internal
SRAM provides up to 36 KB for stack or scratch pad usage. A dedicated instruction-
to-data bus module allows for code accesses on data bus and vice versa. An external
bus interface shared between code and data bus connects up to 4 GB of external
memory. The MPC5xx supports 8 bit, 16 bit and 32 bit external memories. To speed
up program execution the processor may burst-fetch instructions from memory if
the target memory supports burst operations.

Newer derivatives of the processor family (i.e., all MPC56x processors) feature a
so-called branch-target buffer (BTB). The branch-target buffer is actually a small
branch-target instruction cache (BTIC) using the FIFO replacement policy. The BTB
may store up to four branch-target instructions for eight different branch targets.
Analysis support for the BTB has been recently added to the static WCET analyzer
aiT for MPC5xx [15].

Measurement Setup

For our experiments we used an MPC565 evaluation board running at a clock
frequency of 20 MHz. The processor features 1 MB internal FLASH memory, 32 KB
internal SRAM, and 2 MB external SRAM with 32 bit port width.

Unlike the previously discussed processors, the MPC565 does not provide a full
pin-out of the internal memory bus. Solely the external memory bus can be fully
accessed by means of a logic analyzer. However, the evaluation board grants access
to the instruction queue status pins VF[2:0]. The status pins denote the type of the
last fetched instruction and indicate how many instructions have been flushed from
the prefetch queue. This information allows for an in-depth view in the dispatch
behavior of the processor. In this fashion we can achieve a per-action level trace
validation by recording the following processor signals.

CLKOUT This output line is the external bus clock frequency, which can be config-
ured to one-half of the internal system clock.

ADDR[23:0] Specifies the physical address of external bus transactions. The address
is driven onto the bus and kept valid until a transfer acknowledge is received.

90

6.1 Trace Validation

BURST Burst indicator that indicates whether the current transaction is a burst
transaction or not.

BDIP Indicates that a burst access is ongoing.

TS The transfer start (TS) signal indicates the start of a bus cycle that transfers data
to/from a slave device.

TA The transfer acknowledge (TA) signal indicates that the slave device addressed
in the current transaction has accepted the data transferred by the master
(write) or has driven the data bus with valid data (read). The slave device
negates the TA signal after the end of the transaction.

OE The output enable (OE) signal that is asserted when a read access to an external
slave is initiated.

CS[3:0] These output signals enable peripheral or memory devices at programmed
addresses if defined appropriately in the memory controller.

TSIZ[1:0] Indicates the size of the requested data transfer in the current bus cycle.

RD/WR Indicates the direction of the data transfer for a transaction. A logic one
indicates a read from a slave device, a logic zero indicates a write to a slave
device.

WE[3:0] This output line is asserted when a write access to an external slave con-
trolled by the memory controller is initiated by the chip. An active WE[n] bit
indicates that the n-th byte of the data bus contains valid data to be stored.

VF[2:0] Visible instruction queue flush status. The VF signals indicate the type
of the last fetched instruction (e.g., direct or indirect branch) and report the
number of instructions flushed from the instruction queue in the internal core.

Results

We successfully performed a trace validation for an avionics application running on
an MPC565 processor. Similar to the avionics application presented in Section 6.1.3,
the application is implemented in a triple modular redundant fashion. By means
of a shared bus the application instances match their (intermediate) results against
each other.

The application successfully passes the trace validation. In total over 3.8 million
lines of trace comprising about 370000 Nexus events (see Section 5.2) were auto-
matically compared against the aiT MPC5xx pipeline model. Table 6.7 depicts an
excerpt of the trace validation results. Due to NDA agreements we must not provide
the real task names.

91

Chapter 6 Evaluation

Even though the avionics application is data-dependent and thus most program
paths cannot be excluded, the static WCET analysis performs quite well. The only
additional sources for imprecision are the variable execution time of the integer
division instruction and the variable latency for accesses on the shared bus. Hence
we observe a difference between measurement and prediction of at most 10.63%
and of 4.25% on average.

Table 6.8 shows the prediction graph size for each of the selected tasks. We can
observe that the prediction graph complexity is not directly correlated to the distance
between measurement and predicted bound. A prominent example is the task
avionic5 where the prediction graph comprises 10 times more events than observed
whereas the difference between worst-case prediction and measurement amounts to
about 3% only. The program control-flow allows for several paths, each of which is
more or less equally long in terms of execution time.

92

6.1 Trace Validation

Test Measurement Prediction
(cycles) Bound (cycles) Distance (%)

avionic1 10198 10800 5.90
avionic2 1473 1518 3.05
avionic3 1098 1198 9.11
avionic4 151 161 6.62
avionic5 4894 5040 2.98
avionic6 274 287 4.74
avionic7 1305 1358 4.06
avionic8 146 155 6.16
avionic9 3248 3333 2.62
avionic10 112 119 6.25
avionic11 1473 1517 2.99
avionic12 218 219 0.46
avionic13 207 209 0.97
avionic14 980 1021 4.18
avionic15 1473 1517 2.99
avionic16 10108 11182 10.63
avionic17 1282 1359 6.01
avionic18 1988 1996 0.40
avionic19 5471 5597 2.30
avionic20 241 254 5.39
avionic21 756 803 6.22
avionic22 274 289 5.47
avionic23 5084 5167 1.63
avionic24 986 1020 3.45
avionic25 1478 1518 2.71
avionic26 1288 1359 5.51
avionic27 5762 5942 3.12
avionic28 756 805 6.48
avionic29 274 288 5.11
avionic30 5090 5168 1.53

Table 6.7: MPC5xx Analysis Results: Trace validation for an avionics application
running on an MPC565 processor. The difference between measured and
predicted execution time is rather small. At worst we record a difference
of 10.63%, on average of about 4.25%.

93

Chapter 6 Evaluation

Test Measurement Prediction
Events Nodes Edges Events (Factor)

avionic1 334 20930 21293 886 (x2.65)
avionic2 69 6683 7302 349 (x5.70)
avionic3 58 2390 2477 227 (x4.05)
avionic4 18 640 701 83 (x4.61)
avionic5 252 28898 30766 2617 (x10.38)
avionic6 27 984 1051 107 (x3.69)
avionic7 84 6591 6986 661 (x7.87)
avionic8 11 907 948 104 (x9.45)
avionic9 142 11466 11899 803 (x5.65)
avionic10 13 779 864 102 (x7.84)
avionic11 69 4769 5143 405 (x5.87)
avionic12 21 283 306 42 (x2.00)
avionic13 7 1447 1478 64 (x9.14)
avionic14 80 1649 1780 198 (x2.48)
avionic15 69 4729 5101 401 (x5.81)
avionic16 498 67656 75829 4420 (x8.88)
avionic17 85 1189 1224 110 (x1.29)
avionic18 99 1653 1718 182 (x1.83)
avionic19 300 18499 19458 1783 (x5.94)
avionic20 24 1397 1506 142 (x5.92)
avionic21 38 3185 3372 262 (x6.89)
avionic22 28 301 318 38 (x1.36)
avionic23 223 3441 3622 376 (x1.69)
avionic24 80 1128 1232 151 (x1.86)
avionic25 69 4681 5047 397 (x5.75)
avionic26 85 1099 1136 102 (x1.20)
avionic27 319 11681 12262 1028 (x3.22)
avionic28 38 3713 3964 338 (x8.89)
avionic29 28 1243 1296 144 (x5.15)
avionic30 222 4625 4838 490 (x2.21)

Table 6.8: MPC5xx Analysis Complexity: From the prediction graph complexity we
cannot directly conclude the distance between measurement and predic-
tion. The task avionic5 offers multiple program paths, each of which is
more or less equally expensive. Hence the observed difference between
measured execution time and predicted bound is rather small (2.98%).

94

6.1 Trace Validation

6.1.5 MPC55xx

The MPC55xx processor family is a follow-up design of the MPC5xx hardware archi-
tecture. Like the MPC5xx processors, the MPC55xx CPUs are designed for automo-
tive applications. Several MPC55xx derivatives are available, each of which based
on the e200 processor core. Figure 6.5 depicts the manually designed MPC55xx
(e200z6) processor model used for static WCET analysis.

Fetch UnitDecode Unit

Execution Units

Store Buffer

MPC55xx (e200z6)

Queue [6]

Queue [0]

Fetch [1]

Fetch [0]

Execute [2]

Execute [1]

Execute [0]

SFPU SPE BU

VFPU ALU LSU

Write Buffer [7]

Buffer [0]

U-Cache

Code

Access

Read

Write

Legend:
Unit

Stage

Figure 6.5: MPC55xx Pipeline Model: Processor model of an MPC55xx hardware ar-
chitecture with e200z6 core. The unified cache delivers new instructions
to the fetch unit, which can store up to two prefetched instructions. The
fetch unit passes prefetched instructions to the decode unit that is able
to hold seven instructions. The load-store unit (LSU) may defer write
accesses to an eight-entry store buffer to reduce pipeline stalls.

Hardware Description

The MPC55xx is a single-issue, out-of-order von Neumann architecture.11 Up to
two instructions can be prefetched by the fetch unit before they are placed into

11Some MPC55xx derivatives are Harvard architectures, as e.g., the MPC5533.

95

Chapter 6 Evaluation

the seven-entry decode unit. The decode unit may issue one instruction per cycle
if no register dependencies between the current and unfinished instructions exist.
Dispatched instructions can be allocated to six different execution units of which
at most three can operate in parallel. The branch unit (BU) determines the branch
target and informs the fetch unit if the program counter is to be adjusted. The
arithmetic-logic unit (ALU) executes all kinds of integer operations. The scalar
floating-point unit (SFPU) performs single-precision FPU computations. The vector
floating-point unit (VFPU) provides SIMD floating-point computations on pairs of
single-precision floats. The signal processing engine (SPE) provides SIMD integer
arithmetic. The load-store unit (LSU) implements the memory interface. By means
of an eight-entry store buffer the LSU can defer write accesses to reduce pipeline
stalls.

MPC55xx processors feature an 32 KB unified (instruction and data) 8-way set-
associative cache. Some derivatives even have a smaller unified cache with fewer
lines per set. Entries are replaced using a pseudo-round-robin replacement algo-
rithm using a set-global counter to determine the next line to be evicted. Both
write-back and write-through cache write modes are supported. Unfortunately, the
employed replacement policy makes a precise static analysis of the cache contents
impossible.

The MPC55xx offers a large amount of internal memory that is connected via an
internal crossbar with the processor core. Up to 3 MB of internal FLASH memory are
available for code and data storage. The FLASH memory uses a FIFO-managed read
buffer that stores up to two cache lines to speed up access times. The internal SRAM
provides up to 192 KB for stack or scratch pad usage. An external bus interface
(EBI) additionally adds up to 512 MB of external memory. The EBI supports 16 bit
and 32 bit port sized external memories.

Measurement Setup

For our experiments we used an MPC5566 evaluation board running at a clock
frequency of up to 132 MHz. The processor features 2 MB internal FLASH memory,
64 KB internal SRAM, and 2 MB external SRAM with 32 bit port width.

The MPC5566 does not provide a full pin-out of the internal memory bus. Solely
the external memory bus can be fully accessed by means of a logic analyzer. But the
external bus is driven at half (or quarter) the processor clock speed. Hence, observing
the external memory bus allows only for rather coarse conclusion about the pipeline
behavior. By means of a logic analyzer we record the following signals.

CLKOUT This output line is the external bus clock frequency, which runs at half the
processor clock speed. During our measurements the internal clock frequency
was set up to 25 MHz. The external bus clock frequency was hence 12.5 MHz.

96

6.1 Trace Validation

ADDR[23:0] Specifies the physical address of external bus transactions. The address
is driven onto the bus and kept valid until a transfer acknowledge is received.
The upper 8 bit of the 32 bit address are not made available.

TS The transfer start (TS) signal indicates the start of an external bus cycle that
transfers data to/from a slave device.

CS[3:0] These output signals enable peripheral or memory devices at programmed
addresses if defined appropriately in the memory controller.

TSIZ[1:0] Indicates the size of the requested data transfer in the current bus cycle.

RD/WR Indicates whether an external bus transfer is a read or write operation.

BDIP Indicates that an EBI burst transfer is in progress. A burst access can only be
triggered by a cache miss. Accesses to uncached memory cannot provoke a
burst operation.

WE[3:0] The write-enable bits specify which data pins contain valid data for an
external bus transfer. An active WE[n] bit indicates that the n-th byte of the
data bus contains valid data to be stored.

TA The transfer acknowledge (TA) signal is asserted by the EBI owner to acknowl-
edge that the slave has completed the current transfer.

Results

In total we have designed 225 test cases to investigate the pipeline behavior of the
MPC55xx architecture. All tests successfully pass the trace validation. Table 6.9
shows an excerpt of the validation results for the MPC5566 test programs. On
average we observe a gap between measurement and prediction of about 1.02% only.
The worst difference to observe is 5.19% for the test branch-predict. This is caused
by the variable execution time of the integer division instruction divw, which may
complete between 6 and 16 processor cycles. The pipeline analysis is unable to
statically determine when this instruction finishes. An interesting observation is
that enabling the store buffer can lead to a worse performance for some programs.
With enabled store buffer the processor takes 60 cycles longer to execute the same
input program (see store-buffer-enabled and store-buffer-disabled).

Table 6.10 compares the number of measured events with the prediction graph size.
We observe that the complexity is increasing for test cases related to the cache. This
is expected due to the bad analyzability of the cache replacement policy, which
prevents the static analysis to ever determine precise cache contents. The analysis
complexity further increases if a memory access might hit the cache line that is cur-
rently being filled. In this case the state space of the analysis increases significantly
which has a huge impact on the prediction graph (see streaming-cache).

97

Chapter 6 Evaluation

Test Measurement Prediction
(cycles) Bound (cycles) Distance (%)

alu-stall 530 530 0.00
branch 1560 1578 1.15
branch-predict 2314 2434 5.19
branch-spill 862 862 0.00
call 458 478 4.37
load-code-cache-hit1 172 172 0.00
load-code-cache-hit2 118 122 3.39
load-code-cache-miss 124 126 1.61
load-flash 4300 4308 0.19
load-multiple-stall 410 415 1.22
load-sram 1792 1798 0.33
load-store 366 366 0.00
load-store-cache1 362 362 0.00
load-store-cache2 268 272 1.49
load-store-cache3 260 264 1.54
loop1 9718 9920 2.08
loop2 9738 9938 2.05
loop3 9274 9274 0.00
store-buffer-enabled 1102 1102 0.00
store-buffer-disabled 1042 1042 0.00
store-load 366 366 0.00
store-load-cache 162 162 0.00
store-store 366 366 0.00
streaming-cache 208 211 1.44
vle-alu 62 62 0.00
vle-alu-mul 126 128 1.59
vle-branch 264 268 1.52
vle-branch-spill 860 860 0.00
vle-load 98 98 0.00
vle-load-multiple 306 308 0.65
vle-load-store 236 238 0.85

Table 6.9: MPC55xx Analysis Results: Trace validation results for aiT for MPC55xx.
Especially due to the bad analyzability of the unified cache the analysis is
unable to precisely predict the measured execution behavior. At worst, we
recognize a difference to the highest measured execution time of 5.19%.

98

6.1 Trace Validation

Test Measurement Prediction
Events Nodes Edges Events (Factor)

alu-stall 204 246 246 216 (x1.06)
branch 596 964 975 784 (x1.32)
branch-predict 876 2636 2927 1861 (x2.12)
branch-spill 336 362 362 348 (x1.04)
call 160 248 251 172 (x1.07)
load-code-cache-hit1 66 702 871 445 (x6.74)
load-code-cache-hit2 50 308 350 197 (x3.94)
load-code-cache-miss 52 391 455 263 (x5.06)
load-flash 1010 1357 1358 1022 (x1.01)
load-multiple-stall 152 1003 1071 949 (x6.24)
load-sram 650 912 913 662 (x1.02)
load-store 136 165 165 148 (x1.09)
load-store-cache1 134 1472 1862 1082 (x8.07)
load-store-cache2 99 356 427 275 (x2.78)
load-store-cache3 97 315 355 234 (x2.41)
loop1 3444 4673 4673 3456 (x1.00)
loop2 3452 4682 4682 3464 (x1.00)
loop3 3227 4551 4551 3239 (x1.00)
store-buffer-enabled 388 505 505 396 (x1.02)
store-buffer-disabled 388 489 489 400 (x1.03)
store-load 136 165 165 148 (x1.09)
store-load-cache 64 642 806 453 (x7.08)
store-store 136 165 165 148 (x1.09)
streaming-cache 84 5406 6843 3931 (x46.80)
vle-alu 24 265 319 138 (x5.75)
vle-alu-mul 47 400 491 234 (x4.98)
vle-branch 103 236 268 175 (x1.70)
vle-branch-spill 335 551 596 451 (x1.35)
vle-load 37 101 109 69 (x1.86)
vle-load-multiple 117 551 568 504 (x4.31)
vle-load-store 83 138 140 123 (x1.48)

Table 6.10: MPC55xx Analysis Complexity: Number of measured events and corre-
sponding prediction graph size. The prediction graph size increases with
a higher variability of the processor’s execution behavior. This mostly
applies to tests related to the unified cache.

99

Chapter 6 Evaluation

6.1.6 Intel 386

The Intel 386 was the first 32 bit x86 microprocessor that was employed in many
workstations after its release. Nowadays embedded versions of the original Intel 386
design are used in aerospace technology. Figure 6.6 depicts the manually designed
processor model used for static WCET analysis.

PUDU

ALU BU

Intel 386

16 ByteDecode [2]

Decode [1]

Decode [0]

Execute Access

Code

Data Access

Legend:
Unit

Stage

Figure 6.6: Intel 386 Pipeline Model: Processor model for the Intel 386 hardware
architecture. The prefetch unit (PU) stores up to 16 bytes of raw code
and transfers decoded instruction segments into the decode unit (DU).
Up to three instructions can take place in the DU before the prefetching
is stalled. The arithmetic-logic unit (ALU) executes one instruction after
another and initiates memory accesses. The bus unit (BU) provides a 32
bit interface to main memory.

Hardware Description

The Intel 386 is a single-issue, in-order von Neumann hardware architecture. Up
to 16 bytes of raw code can be prefetched into the prefetch unit (PU) before the
decoded instruction segments are placed into a three-entry decode unit (DU). The
arithmetic-logic unit (ALU) can execute one instruction at a time. Floating-point
instructions are not supported (FPU support requires a math co-processor, such as
the Intel 80387).

Via dynamic bus sizing the processor is able to directly communicate with 16 bit
or 32 bit memories. The flat memory model of the Intel 386 allows a continuous
addressing of the 32 bit address space. Earlier x86 processors supported only very
small linearly addressable memory regions.

100

6.1 Trace Validation

Measurement Setup

The Intel 386 allows for a trace validation on a per-action level. For comparison with
the pipeline model we record a bus trace by means of the following signals.

CLK2 CLK2 provides the fundamental timing for the Intel 386. It is internally
divided by two to generate the internal processor clock used for instruction
execution. The processor is clocked at a frequency of 16 MHz.

ADDR[31:2] The address bus provides physical memory addresses or I/O port
addresses. The bus unit implicitly splits up a misaligned access into separate
aligned accesses.

ADS The address status signal (ADS) indicates that a valid address is being latched
at the address bus.

NA The next address request signal (NA) is asserted to request address pipelining.
It indicates that the processor is able to accept new data on the data bus.

BS16 The bus size signal (BS16) allows the processor to directly access 16 bit or 32
bit data buses.

TA The transfer-acknowledge signal (TA) denotes that the current bus cycle is
complete.

Results

For the trace validation we have had access to measurements from an avionics
application executed on an Intel 386 embedded processor. The system is clocked
at 16 MHz and comprises 2 MB of on-board PROM and 256 KB internal SRAM
memory.

The application successfully passes the trace validation. In total over 21000 bus
events were recorded and automatically compared with the aiT Intel 386 pipeline
model. Table 6.11 depicts an excerpt of the trace validation. On average we observe
a difference between measured and prediction execution time of about 1.36%. Ta-
ble 6.12 displays the size of the prediction graph compared to measured events. Here,
the prediction graph complexity is mainly influenced by the program control-flow.

101

Chapter 6 Evaluation

Test Measurement Prediction
(cycles) Bound (cycles) Distance (%)

avionic1 1114 1121 0.63
avionic2 1553 1579 1.67
avionic3 444 448 0.90
avionic4 406 406 0.00
avionic5 2919 3059 4.80
avionic6 3487 3509 0.63
avionic7 981 997 1.63
avionic8 367 376 2.45
avionic9 1065 1065 0.00
avionic10 769 769 0.00
avionic11 515 526 2.14
avionic12 641 654 2.03
avionic13 449 453 0.89
avionic14 490 490 0.00
avionic15 293 302 3.07
avionic16 4098 4154 1.37
avionic17 1057 1069 1.14
avionic18 854 854 0.00
avionic19 222 222 0.00
avionic20 383 386 0.78
avionic21 168 176 4.76
avionic22 665 670 0.75
avionic23 464 466 0.43
avionic24 830 840 1.20
avionic25 1531 1531 0.00
avionic26 960 971 1.15
avionic27 1444 1474 2.08
avionic28 1019 1026 0.69
avionic29 1111 1133 1.98
avionic30 1111 1151 3.60

Table 6.11: Intel 386 Analysis Results: Trace validation for an avionics application
running on an Intel 386 processor. The difference between measured
and predicted execution time is rather small. We observe a difference of
4.8% at worst and of 1.36% on average.

102

6.1 Trace Validation

Test Measurement Prediction
Events Nodes Edges Events (Factor)

avionic1 244 1808 1952 389 (x1.59)
avionic2 358 4447 5010 1520 (x4.25)
avionic3 136 3238 3751 1379 (x10.14)
avionic4 114 1289 1447 537 (x4.71)
avionic5 524 13209 15113 3085 (x5.89)
avionic6 852 6350 7127 2134 (x2.50)
avionic7 260 1273 1334 561 (x2.16)
avionic8 96 1382 1559 627 (x6.53)
avionic9 250 2409 2675 921 (x3.68)
avionic10 182 2179 2414 770 (x4.23)
avionic11 126 3526 4042 1125 (x8.93)
avionic12 162 2234 2462 772 (x4.77)
avionic13 128 1300 1398 594 (x4.64)
avionic14 152 947 1049 450 (x2.96)
avionic15 82 1327 1504 613 (x7.48)
avionic16 900 9377 10344 3291 (x3.66)
avionic17 242 2895 3228 1072 (x4.43)
avionic18 196 2262 2502 789 (x4.03)
avionic19 46 342 366 112 (x2.43)
avionic20 54 565 620 138 (x2.56)
avionic21 64 238 257 131 (x2.05)
avionic22 210 1787 1957 817 (x3.89)
avionic23 136 1394 1522 636 (x4.68)
avionic24 198 2153 2347 794 (x4.01)
avionic25 344 2465 2687 603 (x1.75)
avionic26 218 1770 1885 482 (x2.21)
avionic27 340 2016 2169 382 (x1.12)
avionic28 262 900 911 293 (x1.12)
avionic29 250 1992 2159 362 (x1.45)
avionic30 204 4682 5422 1104 (x5.41)

Table 6.12: Intel 386 Analysis Complexity: Number of measured events and corre-
sponding prediction graph size. The prediction graph size increases
with a higher variability of the processor’s execution behavior. Here the
program control-flow contributes the most to the prediction graph size.

103

Chapter 6 Evaluation

6.1.7 AMD 486

The AMD 486 processor is an 80486 derivative, which is a successor of the 80386
hardware architecture. A higher performance is achieved by adding a unified
instruction and data cache and an integrated floating-point unit to the processor.
Figure 6.7 depicts the manually designed processor model used for static WCET
analysis.

PUDU

ALU

FPU BU

AMD 486

32 ByteDecode D2

Decode D1

Execute

Execute

U-Cache

Access

Code

Data

Access

Legend:
Unit

Stage

Figure 6.7: AMD 486 Pipeline Model: Processor model for the AMD 486 hardware
architecture. The prefetch unit (PU) stores up to 32 bytes of raw code
and transfers decoded instruction segments into the decode unit (DU).
The arithmetic-logic unit (ALU) and the floating-point unit (FPU) can
operate in parallel. The bus unit (BU) provides a 32 bit interface to main
memory.

Hardware Description

The AMD 486 is a single-issue, out-of-order von Neumann hardware architec-
ture. The prefetch unit (PU) transfers the raw instruction stream from the on-chip
cache or from main memory via the bus unit (BU). Up to 32 bytes of code can be
prefetched. The decode unit (DU) decodes the code stream in two stages D1 and
D2 into microcode that is executed on either the arithmetic-logic unit (ALU) or the
floating-point unit (FPU). Parallelism between the ALU and the FPU exists but is
limited because both units share the memory interface.

104

6.1 Trace Validation

Measurement Setup

As the Intel 386, the AMD 486 allows for a trace validation on a per-action level. For
comparison with the pipeline mode we record a bus trace by means of the following
signals.

CLK The CLK input provides the basic microprocessor timing signal. An additional
multiplier value is used to generate the internal operating frequency for AMD
486 processor.

ADDR[31:2] The address bus provides physical memory or I/O port addresses.

ADS The address status signal (ADS) indicates that a valid address is being latched
at the address bus.

BS8/BS16 The bus size signals (BS8, BS16) allow the processor to directly access 8
bit, 16 bit or 32 bit data buses.

W/R The write/read output signal indicates the current access type.

RDY The non-burst ready signal (RDY) indicates that the current bus cycle is com-
plete and valid data is present on the data bus.

BRDY The burst ready signal (BRDY) behaves similar to RDY during a burst fetch
bus operation.

Results

For the trace validation we had access to measurements from an avionics application
executed on an AMD 486 DX4 processor clocked at 96 MHz. The DX4 has a 4-way
set-associative 16 KB unified cache that uses the write-through cache write policy.
Cache entries are replaced via a pseudo-least-recently-used (PLRU) replacement
strategy. In addition to the cache, the processor memories comprise about 4 MB
on-board PROM and 512 KB SRAM.

The application successfully passes the trace validation. Around 30000 bus events
are available for an automatic validation of the aiT AMD 486 processor pipeline
model. Table 6.13 depicts an excerpt of the trace validation. Compared to the Intel
386, the static analysis for the AMD 486 performs a bit worse. This is caused by
the unified cache and the variable execution time of floating-point instructions. On
average we observe a difference of about 3.74%.

Table 6.14 displays the size of the prediction graph compared to measured events. As
expected the complexity of the prediction graph is generally higher than for the Intel
386 WCET analysis. The main reason for this behavior is the statically unpredictable
timing behavior of the FPU. For example, a floating-point sine operation may take
between 67 and 395 processor cycles, depending on the operand values.

105

Chapter 6 Evaluation

Test Measurement Prediction
(cycles) Bound (cycles) Distance (%)

avionic1 1509 1580 4.71
avionic2 5454 5685 4.24
avionic3 5505 5872 6.67
avionic4 6654 6904 3.76
avionic5 2277 2343 2.90
avionic6 4866 4891 0.51
avionic7 7413 7452 0.53
avionic8 1911 1956 2.35
avionic9 1305 1341 2.76
avionic10 1287 1390 8.00
avionic11 2334 2517 7.84
avionic12 2487 2688 8.08
avionic13 1911 1965 2.83
avionic14 1023 1053 2.93
avionic15 2817 2898 2.88
avionic16 2634 2718 3.19
avionic17 2610 2700 3.45
avionic18 3537 3627 2.54
avionic19 3513 3618 2.99
avionic20 1998 2094 4.80
avionic21 1980 2070 4.55
avionic22 1950 1989 2.00
avionic23 1380 1434 3.91
avionic24 2886 2976 3.12
avionic25 1365 1374 0.66
avionic26 1194 1243 4.10
avionic27 1818 1879 3.36
avionic28 1566 1644 4.98
avionic29 1815 1879 3.53
avionic30 2220 2317 4.37

Table 6.13: AMD 486 Analysis Results: Trace validation for an avionics application
running on an AMD 486 processor. The observed difference between
measurements and prediction is caused by the variable execution time
of floating-point instructions. At worst we record a difference of 8.08%,
on average of 3.74%.

106

6.1 Trace Validation

Test Measurement Prediction
Events Nodes Edges Events (Factor)

avionic1 375 3632 4563 3214 (x8.57)
avionic2 1287 13356 15740 13354 (x10.38)
avionic3 1326 17810 21101 17539 (x13.23)
avionic4 1624 12999 14919 13067 (x8.05)
avionic5 577 3157 3523 3411 (x5.91)
avionic6 969 9994 11102 9257 (x9.55)
avionic7 1225 12963 14821 9872 (x8.06)
avionic8 498 2265 2382 2635 (x5.29)
avionic9 357 659 685 763 (x2.14)
avionic10 217 676 791 374 (x1.72)
avionic11 524 1548 1595 1342 (x2.56)
avionic12 563 1607 1658 1396 (x2.48)
avionic13 417 2051 2213 2209 (x5.30)
avionic14 251 1270 1336 1394 (x5.55)
avionic15 709 2118 2236 2332 (x3.29)
avionic16 673 2118 2236 2332 (x3.47)
avionic17 675 2118 2236 2332 (x3.45)
avionic18 896 2951 3138 3217 (x3.59)
avionic19 888 2665 2811 2893 (x3.26)
avionic20 546 1195 1246 1313 (x2.40)
avionic21 545 1195 1246 1313 (x2.41)
avionic22 506 1476 1552 1604 (x3.17)
avionic23 378 737 765 797 (x2.11)
avionic24 780 1706 1774 1895 (x2.43)
avionic25 373 970 1018 1063 (x2.85)
avionic26 227 1101 1181 772 (x3.40)
avionic27 405 1588 1689 1785 (x4.41)
avionic28 327 783 811 886 (x2.71)
avionic29 405 1587 1688 1785 (x4.41)
avionic30 460 2054 2165 1950 (x4.24)

Table 6.14: AMD 486 Analysis Complexity: Number of measured events and corre-
sponding prediction graph size. The variable execution time of floating-
point instructions together with the data-dependent control flow impact
the complexity of the prediction graph.

107

Chapter 6 Evaluation

6.2 Timing Anomalies

By means of the automatic timing anomaly detection method introduced in Chap-
ter 4 we examined the presence of timing anomalies for the hardware architectures
subject to trace validation in Section 6.1. We carefully investigated each found
instance of timing anomalies and attempted to identify their cause. Due to the
inevitable loss of information caused by abstract interpretation, the static analysis
might trigger an execution behavior that cannot occur in reality. Section 6.2.5 dis-
cusses one such virtual timing anomaly (see Definition 4.1 on page 51) that is caused
by the meet-operator for abstract cache states.

6.2.1 ERC32

For the SPARC v7 ERC32 hardware architecture, we automatically processed over
1000 programs. None of the test programs provided evidence for the presence of a
timing anomaly.

This result is not unexpected. Due to the lack of an instruction or data cache, cache-
related timing anomalies simply cannot occur in the ERC32 hardware architecture.
Furthermore, we did not expect to observe any kind of speculation anomaly because
the processor is always stalled upon a resource conflict. Even though one floating-
point instruction can be executed in parallel to non-FPU instructions, the pipeline
progression immediately stops if another FPU instruction is about to be dispatched
that conflicts with the currently executed one. No other activity other than waiting
for the conflict to resolve takes place in the ERC32 processor in that situation. Due
to this behavior, we also did not expect for scheduling anomalies to occur. The
ERC32 processor is thus considered to be a fully timing compositional hardware
architecture.

6.2.2 LEON2

The SPARC v8 LEON2 processor suffers from a timing anomaly that is related to the
implementation of the instruction cache and the cache line fill mechanism. Each
cache line comprises a valid bit per word, which allows for partially filled cache
lines. Upon a cache miss the processor initiates a burst code-fetch operation to fill
the cache line starting from the requested instruction word until the last instruction
in the cache line. The processor does not perform wrap-around (or cyclic) burst
fetches. Hence, cache lines are not always filled completely. For example, if the
initial code request hits the second word of a cache line, the processor will fill up the
cache line starting from the second word to the last word of that cache line. In this
case the first instruction word will not be fetched and placed into the cache line. In
addition to this code fetch behavior, the cache line fill operation can be interrupted.

108

6.2 Timing Anomalies

0x2000 ba 0x2010

0x2004 nop

0x2008 ret

0x200c nop

0x2010 nop

0x2014 nop

0x2018 ba 0x2008

0x201c nop

Figure 6.8: Code Snippet triggering LEON2 Timing Anomaly: Minimal code snippet
that reveals a timing anomaly. The cache line filling mechanism allows
for partially filled cache lines. An initial cache hit for the first instruction
at 0x2000 leads to additional instruction fetches that would otherwise
not occur.

After assuming an initial cache hit the valid bits of the remaining instructions in the
corresponding cache line can thus accept any value. Due to this hardware mode of
behavior we can observe a speculation timing anomaly.

The code sequence in Figure 6.8 triggers this timing anomaly as depicted in Fig-
ure 4.4 on page 61. Unfortunately, we were not able to force the abortion of a
cache line fill operation and could thus not measure this behavior in the real device.
In principle this would require triggering an interrupt at the right time, which is
infeasible in practice.

In addition to this anomaly, we are also able to show the presence of another
speculation timing anomaly that is related to the processor’s ability to serve code
fetch requests while a cache line fill operation is going on (i.e., hit under fill). The
occurrence of this timing anomaly also depends on partially filled cache lines, but
does not require the cache line fill operation to be aborted to trigger this anomaly.

An initial cache miss to 0x2000 causes the memory controller to fill the whole cache
line. One after another the controller fetches the instructions from main memory
and fast-forwards them to the integer pipeline. Independent of the state of valid bits
of the subsequent words inside the cache line, the memory controller will refetch the

109

Chapter 6 Evaluation

whole cache line. The processor pipeline is unaware of the cache line fill operation,
and issues the next code request after receiving the first instruction. Since we cannot
be sure about the status of the valid bits, the new code request might hit or miss
the cache. For a timing anomaly now to occur, the memory access timing plays an
important role. Here we choose an access latency of zero wait states.

If the next code request would hit the cache, i.e., the corresponding valid bit is
already true, it might happen that the requested word is just arriving from main
memory. In that case the memory controller is unable to instantly serve the code
fetch request because it first needs to update the cache line. One cycle after the
cache line update, the memory controller delivers the requested instruction to
the processor. But if the next code request would not hit the cache, the memory
controller would be able to deliver the corresponding instruction in the very same
cycle it arrives from main memory. Figure 6.9 depicts the automatically detected
instance of this anomaly.

The above timing anomalies are both k-bounded timing anomalies. Their timing
impact is limited by the size of a cache line, i.e., the number of valid bits per line.
After visiting the whole cache line, the processor state eventually stabilizes because
the processor pipeline stalls until the cache line fill operation is complete.

In total we automatically processed over 1000 programs in search for other timing
anomalies than the ones discussed above. The set of programs comprises rather
simple benchmark programs as well as real-world applications from the space
domain. We could not find any other timing anomaly instance except for the
speculation anomalies caused by the implementation of the instruction cache. As
the LEON2 processor pipeline is quite similar to the ERC32 instruction pipeline,
this observation was expected. Except for the instruction cache there is no other
hardware component that could trigger a timing anomaly. Upon resource conflicts
the processor stalls and waits until the conflict is being resolved. In accordance to
our findings, the LEON2 is classified as compositional architecture with k-bounded
effects.

6.2.3 M68020

We automatically processed about 2000 programs to investigate whether the M68020
processor suffers from timing anomalies. The test bench comprises benchmark
programs and a few avionics applications.

None of the applications subject to investigation revealed a timing anomaly. This
observation does not come unexpected due to the rather simple structure of the
M68020/M68882 processor. Like the ERC32 (see Section 6.2.1), the processor always
stalls upon a resource dependency (e.g., if waiting for memory, etc.). Even though

110

6.2 Timing Anomalies

Figure 6.9: LEON2 Hit-Under-Fill Speculation Anomaly: Excerpt of the prediction
graph for the analysis of the code snippet shown in Figure 6.8. On the
worst-case path (green edges) there are two cache hit states that cause
an additional 2-cycle penalty (hit under fill). The red edges denote the
execution where only local worst-case behavior is being considered.

111

Chapter 6 Evaluation

the M68882 floating-point co-processor is able to execute up to two FPU instructions
in parallel, a faster execution of an FPU instruction does not induce some kind of
penalty that would not occur otherwise. Either an FPU instruction is fully executed
in parallel to subsequent instructions or the M68020 is stalled until the resource
conflict is being resolved. Due to this behavior timing anomalies are unexpected.
Hence, the M68020 processor is considered as fully timing compositional hardware
architecture.

6.2.4 MPC5xx

We had over 1200 different test programs at our disposal to discover possible
instances of timing anomalies in the MPC5xx hardware architecture. The set of
test cases comprises simple benchmark programs, some automotive as well as
some avionics applications. No analysis result of the available programs provided
evidence about the presence of timing anomalies in the MPC5xx processor.

Despite the rather complex pipeline structure – as compared to ERC32, LEON2,
or M68020 – we actually did not expect any timing anomalies. Keeping track of
the outcome of up to six instructions, the processor is able to execute instructions
out-of-order. The execution units present in the MPC5xx hardware architecture are
dedicated to a certain kind of operation. As the execution units cannot take over the
computation of other execution units, scheduling timing anomalies cannot occur in
the MPC5xx processor pipeline. Domino effects like the one of MPC755 instruction
scheduling mechanism [38] are thus not possible. Even though the processor em-
ploys programmable static branch prediction, speculation timing anomalies cannot
occur due to the lack of an instruction cache.

However, all MPC56x processor derivatives (i.e., all MPC5xx processors except the
MPC555) feature a branch target instruction cache (BTIC). The BTIC replaces entries
in a first-in first-out (FIFO) manner, which is known to cause domino effects [3]
in general. As we will demonstrate in the following, it is possible to construct a
program that suffers from a domino effect caused by the FIFO replacement policy.
For the domino effect to occur a non-LWC decision, such as a BTIC hit, is not a
necessary precondition.

The PowerPC ISA comprises the following branch instructions: Branch b, conditional
branch bc, and register indirect branches blr, bctr, with conditional versions bclr,
bcctr. Unconditional branches and backward conditional branches are predicted
taken, all others are predicted not-taken. For conditional branches this behavior
can be reversed by changing a dedicated bit in the opcode. Branch prediction only
takes place if the branch condition is still unevaluated and the target address is
already known. For register indirect branches the target address is known if no
other instruction to be executed before the branch writes to the respective register.

112

6.2 Timing Anomalies

A: 0x400 li r7,0x1

0x404 nop

0x408 nop

0x40c nop

0x410 b 0x420

B: 0x420 nop

0x424 nop

0x428 nop

0x42c nop

0x430 b 0x440 <C>

C: 0x440 nop

0x444 nop

0x448 nop

0x44c nop

0x450 b 0x460 <D>

D: 0x460 nop

0x464 nop

0x468 nop

0x46c nop

0x470 b 0x480 <E>

E: 0x480 nop

0x484 nop

0x488 nop

0x48c nop

0x490 b 0x4a0 <F>

F: 0x4a0 nop

0x4a4 nop

0x4a8 nop

0x4ac nop

0x4b0 b 0x4c0 <G>

G: 0x4c0 nop

0x4c4 nop

0x4c8 nop

0x4cc nop

0x4d0 b 0x4e0 <H>

H: 0x4e0 cmp cr0,r6,r7

0x4e4 li r6,0x1

0x4e8 nop

0x4ec nop

0x4f0 beq 0x500 <I>

0x4f4 nop

0x4f8 nop

0x4fc nop

I: 0x500 addi r8,r8,0x1

0x504 cmp cr0,r8,r9

0x508 nop

0x50c nop

0x510 blt 0x400 <A>

Figure 6.10: Code Snippet exhibiting MPC56x Domino Effect: Example program that
suffers from a domino effect. Depending on the initial value of register
r6, the branch target buffer will provide nine hits per two loop iterations
(e.g., r6 = 0), or only misses (e.g., r6 = 1).

113

Chapter 6 Evaluation

The BTIC can store up to four subsequent instructions for up to eight branch targets.
It is fully-associative, which means that information for a branch may be stored in
any of the eight lines. If the BTIC is full, lines are replaced in accordance with the
FIFO replacement strategy. On a change of flow (COF), the BTIC is queried. If the
BTIC contains information for this branch (i.e., the fetch request is a BTIC hit), the
subsequent cached instructions are fetched out of the BTIC with a latency of one
cycle each. If the BTIC does not contain information for this branch (a BTIC miss),
the line whose contents are to be replaced next is freshly allocated. This line is then
filled with the instructions that will be fetched next, e.g., from external memory
with a latency between 2 and 60 cycles each (depending on the memory type). This
filling process will be detailed later. The number of cached instructions in a valid
line may vary from two to four. Caching starts with the instruction at the branch
target and ends after four instructions or when another COF occurs. If only one
instruction would be cached, the whole line is marked as invalid. In this case the
FIFO counter is incremented nonetheless, i.e., the line is not immediately reused
upon the next BTIC miss.

Figure 6.10 depicts a small program (i.e., a loop construct) that exhibits a domino
effect caused by the FIFO replacement strategy. Dashed edges denote non-COF
control-flow transitions. Non-dashed edges between the basic blocks represent COF
transitions that cause an update of the BTIC. The loop repeats as long as the content
of register r8 is less than the value of register r9. Initially we assume r8 to be zero
and r9 to be an arbitrary natural number n ∈ N with n > 1. The first loop round
is necessary to setup the initial BTIC state that depends on the initial contents of
register r6. Starting from the second loop round every branch in the loop will be
taken until the last loop iteration.

We start with an empty BTIC and assume the value of r6 to be initially one. Like in
the second loop iteration, every branch inside the loop will be taken. In this case the
BTIC is unable to produce any hit, because there are nine change-of-flow transitions
per loop round but only eight branch target instruction cache entries. After each
loop iteration the BTIC will contain the last eight branch targets [A,I,H,G,F,E,D,C].
The rightmost element denotes the entry that is to be replaced next.

Now assume r6 to be zero prior to the execution of the loop. Then the comparison
of the registers r6 and r7 causes the branch at instruction 0x4f0 not to be taken.
As there is no non-successor change-of-flow to 0x500 the BTIC will not cache the
first four instructions of the basic block I. After the first loop iteration the BTIC
then contains the branch targets [A,H,G,F,E,D,C,B]. In the second loop iteration
the control-flow transitions to all basic blocks except I will cause BTIC hits. As
Table 6.15 shows the BTIC provides nine hits per two loop iterations starting from
the second loop round. This effect never stabilizes which proves the presence of a
domino effect caused by the replacement policy of the BTIC.

114

6.2 Timing Anomalies

r6 = 1 r6 = 0

Round BTIC Contents Misses BTIC Contents Misses
0 [] 0 [] 0
1 [A,I,H,G,F,E,D,C] 9 [A,H,G,F,E,D,C,B] 8

2A [B,A,I,H,G,F,E,D] 1 [A,H,G,F,E,D,C,B] 0
2B [C,B,A,I,H,G,F,E] 1 [A,H,G,F,E,D,C,B] 0
2C [D,C,B,A,I,H,G,F] 1 [A,H,G,F,E,D,C,B] 0
2D [E,D,C,B,A,I,H,G] 1 [A,H,G,F,E,D,C,B] 0
2E [F,E,D,C,B,A,I,H] 1 [A,H,G,F,E,D,C,B] 0
2F [G,F,E,D,C,B,A,I] 1 [A,H,G,F,E,D,C,B] 0
2G [H,G,F,E,D,C,B,A] 1 [A,H,G,F,E,D,C,B] 0
2H [I,H,G,F,E,D,C,B] 1 [I,A,H,G,F,E,D,C] 1
2I [A,I,H,G,F,E,D,C] 1 [I,A,H,G,F,E,D,C] 0
3 [A,I,H,G,F,E,D,C] 9 [A,H,G,F,E,D,C,B] 8
4 [A,I,H,G,F,E,D,C] 9 [I,A,H,G,F,E,D,C] 1
5 [A,I,H,G,F,E,D,C] 9 [A,H,G,F,E,D,C,B] 8

Table 6.15: MPC56x BTIC Domino Effect: Before the execution of the loop (see Fig-
ure 6.10) we start with an initially empty branch target instruction cache.
The initial contents of register r6 effectuate different BTIC contents after
the first loop round. During the second loop round the execution of the
basic blocks (i.e., 2A, 2B, etc.) either provoke BTIC misses only or just a
single BTIC miss. The impact on timing depending on the initial state of
register r6 never stabilizes, proving the presence of a domino effect in
the MPC56x hardware architecture.

In the above example the domino effect is effectively triggered by the unknown
contents of register r6. Similarly, we could have assumed r6 to accept the value
1 and different initial contents of the branch target instruction cache to observe
the same anomalous (timing) behavior. However, it is not safe to assume an empty
BTIC or a BTIC that is filled with irrelevant data to achieve the worst-case behavior.
Reineke [32] provides an example, where a non-empty initial cache state leads to
a worse cache hit-miss ratio compared to an empty initial cache state if using the
FIFO replacement strategy.

Due to these finding the MPC5xx hardware architecture has to be classified as non-
compositional hardware architecture in general. However, the MPC555 processor
and the MPC56x processor derivatives with disabled BTIC can be categorized as
fully timing compositional. Neither the analysis of benchmark programs nor of
industry-level software provided evidence for the presence of timing anomalies.

115

Chapter 6 Evaluation

6.2.5 MPC55xx

To investigate the presence of timing anomalies in the MPC55xx hardware archi-
tecture (using the e200z6 processor core), we automatically processed over 2000
different test programs. The test suite comprises a variety of tests, such as simple
benchmark programs, handcrafted measurement tests, cryptographic algorithms,
automotive as well as avionics applications. Our observations are sobering. De-
pending on the configuration of the hardware, the MPC55xx processor offers many
occasions for timing anomalies and even domino effects.

All of the observed anomalies are speculation timing anomalies caused by the
prefetch mechanism or cache timing anomalies due to the cache replacement policies.
We figure that scheduling anomalies cannot occur, due to the in-order execution
pipeline of the MPC55xx architecture. Every instruction can only be allocated to a
dedicated execution unit. If that execution unit is currently in use, the dispatch of
the corresponding instruction is halted until the execution unit is available.

In the following we discuss three instances of speculation timing anomalies that
have been detected automatically. Not all the timing-anomalous hardware behavior
we observed by abstract program simulation can also happen in the real hardware.
This is caused by the abstraction from the concrete hardware state and the abstract
state join operator which induces an inevitable loss of information. Concluding this
section we provide an example where we can observe some hardware behavior in
the abstract domain that would never occur in reality.

ALU-triggered Timing Anomaly

Figure 6.11 depicts a small example program that exhibits a speculation anomaly
that is caused by the processor’s prefetch mechanism. The basic idea is that an
initial code fetch causes a successive cache miss that evicts cached data that is used
later on. In our example, an initial cache hit for the code fetch request to the first
instruction of func1 at 0x3f60 exactly triggers this behavior. While receiving two
instructions per clock cycle from the cache, the processor triggers a prefetch of the
adjacent cache line at 0x3f8012 before the branch unit is able to decide about the
control-flow change at the call instruction bl 0x3f40 <func2>. In case the prefetch
of 0x3f80 misses the cache, the cache might evict data at address 0x5f80 from the
cache that is accessed in func2. Evicting that data causes an additional cache line
fill operation. This additional line fill would not occur if the initial code request
would have missed the cache. In that case, the branch unit would be able to change
control flow earlier and thus prevent the unnecessary cache line fill.

12Cache lines of the MPC55xx hardware architecture are 32 bytes wide.

116

6.2 Timing Anomalies

func1: 0x3f60 mfspr r0, lr

0x3f64 mulli r7, r2, +4

0x3f68 mulli r4, r2, +4

0x3f6c stw r0, +20(r1)

0x3f70 bl 0x3f40 <func2>

func2: 0x3f40 mtspr lr, r0

0x3f44 lwz r6, 0x5f80(r13)

0x3f48 nop

0x3f4c blr

Figure 6.11: MPC55xx ALU-triggered Timing Anomaly: An initial cache hit to 0x3f60

triggers a prefetch of the unused successor cache line at 0x3f80. The
branch unit is unable to redirect control flow because the instruction
pipeline is busy executing the mulli instructions. The cache miss can
evict a previously cached variable that is accessed in the function func2.

To experimentally verify this timing anomaly, we executed the example program
on an MPC5554 evaluation board. The program code is executed from an external
SRAM. The memory access timing is configured to zero cycle wait states. Cache line
fill operations are split up into four-beat burst requests. Prior to the execution of
the routine func1 we ensure that the data at address 0x5f80 is already present in
the cache. For the first measurement we pre-load the cache line starting at address
0x3f60 into the cache to provoke an initial cache hit. For the second experiment we
ensure that this cache line is not cached initially.

Table 6.16 shows the measured bus events. TS denotes a transfer-start event, TA
denotes a transfer-acknowledge event. The trace lines marked red indicate events
that contribute to the global worst-case timing behavior following a non-LWC
decision. Trace lines marked blue denote events that arise from an LWC behavior.

If the cache line at 0x3f60 is in the cache, the processor commences to prefetch
the instructions at 0x3f80 before changing control-flow to func2. This cache miss
then causes the eviction of the later accessed data at 0x5f80 from the unified cache.
Missing the cache initially does not evict that data from the cache. Even though the
processor takes longer to call func2 (after 6 cycles instead of 3 cycles – the cache

117

Chapter 6 Evaluation

Initial Cache Hit Initial Cache Miss
Event Address Cycles Event Address Cycles

TS 0x3f80 3 TS 0x3f60 3
TA 0x3f80 1 TA 0x3f60 1
TA 0x3f84 1 TA 0x3f64 1
TA 0x3f88 1 TA 0x3f68 1
TA 0x3f8c 1 TA 0x3f6c 1
TS 0x3f90 1 TS 0x3f70 1
TA 0x3f90 1 TA 0x3f70 1
TA 0x3f94 1 TA 0x3f74 1
TA 0x3f98 1 TA 0x3f78 1
TA 0x3f9c 1 TA 0x3f7c 1
TS 0x3f40 3 TS 0x3f40 6
TA 0x3f40 1 TA 0x3f40 1
TA 0x3f44 1 TA 0x3f44 1
TA 0x3f48 1 TA 0x3f48 1
TA 0x3f4c 1 TA 0x3f4c 1
TS 0x3f50 1 TS 0x3f50 1
TA 0x3f50 1 TA 0x3f50 1
TA 0x3f54 1 TA 0x3f54 1
TA 0x3f58 1 TA 0x3f58 1
TA 0x3f5c 1 TA 0x3f5c 1
TS 0x5f80 2
TA 0x5f80 1
TA 0x5f84 1
TA 0x5f88 1
TA 0x5f8c 1
TS 0x5f90 1
TA 0x5f90 1
TA 0x5f94 1
TA 0x5f98 1
TA 0x5f9c 1

Total 35 27

Table 6.16: MPC55xx Measurement for ALU-triggered Anomaly: If the first code fetch
of the example program Figure 6.11 hits the cache, an additional cache
line is prefetched while executing the mulli instructions. This cache
miss evicts a previously cached variable that is accessed in func2.

118

6.2 Timing Anomalies

line fill operation partially subsumes the execution time of the call instruction), it
thus does not require to reload the entire cache line. Hence, the local worst-case
assumption, i.e., the first cache line is not resident in the unified cache, does not
lead to the global worst-case execution behavior. Assuming an initial cache hit, the
processor takes 35 cycles to execute the program. Otherwise, the program completes
after 27 cycles.

LSU-triggered Timing Anomaly

Figure 6.12 depicts a small program where we could observe a similar execution
behavior. Depending on whether the memory access of the lwz instruction at address
0x4f4 hits the cache, the processor performs a superfluous code prefetch that slows
down the overall execution of the program. A special hardware configuration is
required to trigger this speculation anomaly.

func: 0x4e0 nop

0x4e4 nop

0x4e8 nop

0x4ec nop

0x4f0 nop

0x4f4 lwz r7, 0x4000(r13)

0x4fc nop

0x500 nop

0x504 stw r2, 0x5004(r13)

0x508 stw r3, 0x5008(r13)

0x50c stw r4, 0x500c(r13)

0x510 lwz r4, 0x5fe0(r13)

0x514 blr

Figure 6.12: MPC55xx LSU-triggered Timing Anomaly: This example program ex-
ecutes slower if the first data access (i.e., lwz instruction at address
0x4f4) hits the unified cache. In this case, the processor will initiate a
code prefetch that causes an additional cache line fill delaying the last
two data accesses of the program.

To observe the discussed speculation timing anomaly we configure an MPC5554
evaluation board such that only code fetches can trigger cache line fill operations.

119

Chapter 6 Evaluation

Cache Hit Cache Miss
Event Address Cycles Event Address Cycles

TS 0x0500 3 TS 0x0500 3
TA 0x0500 1 TA 0x0500 1
TA 0x0504 1 TA 0x0504 1
TA 0x0508 1 TA 0x0508 1
TA 0x050c 1 TA 0x050c 1
TS 0x0510 1 TS 0x0510 1
TA 0x0510 1 TA 0x0510 1
TA 0x0514 1 TA 0x0514 1
TA 0x0518 1 TA 0x0518 1
TA 0x051c 1 TA 0x051c 1

TS 0x4000 2
TA 0x4000 1

TS 0x5004 4 TS 0x5004 4
TA 0x5004 1 TA 0x5004 1
TS 0x5008 2 TS 0x5008 2
TA 0x5008 1 TA 0x5008 1
TS 0x0520 2
TA 0x0520 1
TA 0x0524 1
TA 0x0528 1
TA 0x052c 1
TS 0x0530 1
TA 0x0530 1
TA 0x0534 1
TA 0x0538 1
TA 0x053c 1
TS 0x500c 2 TS 0x500c 2
TA 0x500c 1 TA 0x500c 1
TS 0x5fe0 2 TS 0x5fe0 2
TA 0x5fe0 1 TA 0x5fe0 1

Total 37 29

Table 6.17: MPC55xx Measurement for LSU-triggered Anomaly: Measured events that
prove the presence of a speculation anomaly in the MPC5554 proces-
sor. If the first load access hits the cache, the processor prefetches an
additional cache line that delays pending memory accesses.

120

6.2 Timing Anomalies

For this purpose we modify the L1 cache control and status register 0 (L1CSR0) to
disable every way of the unified cache for data miss fills.

As before, the program code is executed from an external SRAM module. The
external memory access timing is configured to zero cycle wait states. Cache line fill
operations targeting the external memory are split up into four-beat burst requests.
The remainder of the hardware configuration is left unmodified.

Again we perform two experiments. For the first one, we ensure that the first data
access to 0x4000 is going to hit the cache. For the second one, we enforce every
data access to miss the cache. Due to the cache configuration, the processor does
then only perform single-beat accesses to load the requested data from external
memory.

Table 6.17 displays the measured bus events for both experiments. Due to space
limitations the table only shows the observed events starting with the cache line fill
operation that loads the remainder of routine func. If the first data access hits the
cache, the prefetch queue is emptied faster, because the load access does not block
the execution. To prevent the processor from waiting for incoming instructions, the
fetch unit initiates subsequent code prefetches that cause an additional cache line
fill (i.e., starting at address 0x520). This delays the last two memory accesses by the
number of processor cycles it takes to perform the cache line operation. Executing
the remainder of the routine func completes after 37 cycles.

Otherwise, if the first data access misses the cache, the processor stops the prefetch
in favor of the pending store accesses. The remainder of the routine func then
finishes after 29 cycles. Hence assuming the lwz instruction to miss the unified
cache does not affect the worst-case execution behavior.

FLASH Prefetch Timing Anomaly

We also found a scheduling timing anomaly that is related to the prefetch mechanism
of the internal FLASH memory module. Similar to the unified cache, the FLASH
memory is organized into pages of 32 bytes each.13 To speed up execution, the
FLASH memory controller comprises a two-page prefetch buffer. The controller can
be furthermore configured to prefetch the neighboring page if the last doubleword
is being accessed.

Figure 6.13 depicts a minimal program that triggers a timing anomaly depending
on the state of the FLASH controller. For this example we disable the cache and
configure the FLASH to prefetch the neighboring page if the last doubleword of
the previous one is accessed. The number of FLASH read wait states is configured
to seven processor cycles. Furthermore we disable the store buffer, to prevent

13A cache line is of the same size.

121

Chapter 6 Evaluation

func: 0x22b8 mfspr r0, lr

0x22bc stwu r1, -16(r1)

0x22c0 stw r0, +20(r1)

0x22c4 lwz r3, +4(r4)

0x22c8 addi r3, r3, +2

0x22cc mtspr lr, r0

0x22d0 addi r1, r1, +16

0x22d4 blr

Figure 6.13: MPC55xx FLASH Prefetch Timing Anomaly: The internal FLASH mem-
ory prefetch mechanism causes a timing anomaly. If the FLASH page
starting at 0x22c0 has been prefetched earlier, the SRAM store accesses
will be executed in a back to back manner, which induces a two-cycle
access penalty.

stores from being deferred. The remainder of the hardware configuration is left
unmodified.

Depending on the code executed prior to the function func the FLASH prefetch
buffers might not contain the page that is currently accessed (i.e., starting from
0x22a0), but its neighboring page (i.e., starting from 0x22c0). After fetching the first
two instructions from the internal FLASH memory, the decode queue is quickly filled
up because the successor FLASH page is already prefetched. The processor then
stops the code prefetch in favor of the pending data accesses, which are then executed
in a back to back manner. Due to this processor state, the two store instructions
(i.e., stwu and stw) access the internal SRAM one ofter another. Executing a 32bit
store access right after another 32bit store access has completed incurs a two-cycle
penalty (see MPC5554 reference manual Table 15-2 [28]). In total, the program
snippet terminates after 62 cycles.

The SRAM penalty does not apply in case the FLASH prefetch buffers neither
contains the first FLASH page nor its successor. Even though the instruction fetches
then take longer to complete, the overall execution is not additionally delayed. The
two store accesses are not issued consecutively, because the first store will already
have left the instruction pipeline after the second one is put into the decode queue.
Hence, the SRAM access penalty does not apply and the routine executes after 60
cycles.

122

6.2 Timing Anomalies

Figure 6.14: Visualization of MPC55xx FLASH Prefetch Timing Anomaly: Considering
only local worst-case decisions (red path) does not contribute to the
global worst-case execution behavior (green path).

123

Chapter 6 Evaluation

Figure 6.14 depicts the obtained prediction graph from the abstract program simu-
lation. The green path denotes the worst-case execution path on which a non-LWC
decision takes place. Only considering the local worst-case avoids the second store to
the internal SRAM to wait, which hence does not contribute to the global worst-case
behavior.

Figure 6.15: MPC55xx Virtual Timing Anomaly: The left prediction graph shows
a possible timing anomaly, where the initial FLASH read buffer hit
leads to the worst-case execution behavior. Forbidding state joins, the
pipeline analysis produces the prediction graph on the right-hand side.
In that graph the supposed timing anomaly is revealed as false positive.

Virtual Timing Anomaly

Not every instance of a timing anomaly we could automatically detect is necessarily
a genuine one. By nature, abstract interpretation introduces a loss of information
as discussed throughout Chapter 2. This causes the pipeline analysis to assume a
hardware behavior that would not occur during any execution on the real device.

124

6.2 Timing Anomalies

For example the abstract state join operator or the widening operator can cause such
an information loss.

Figure 6.15 exemplifies this issue by means of two prediction graphs. As indicated
by the red path, the left prediction graph exhibits a timing anomaly that is caused by
an initial FLASH read buffer hit. The program is estimated to execute in 103 cycles.
However, if we disallow any cache and buffer state joins during the pipeline analysis
as shown in the right prediction graph, the timing anomaly instance cannot be
established. The estimated worst-case execution is determined to take 102 processor
cycles. In effect, the state join (see left prediction graph) causes the pipeline analysis
to assume an execution behavior that actually would not occur in reality. In this
particular case, the analysis has lost information about the precise contents of the
internal FLASH read buffers. As a consequence, the pipeline analysis will then later
split, because it is unable to decide whether a later access to the FLASH memory
hits or misses the FLASH read buffers.

Clearly, the occurrence of virtual timing anomalies cannot be entirely avoided. State
joins are necessary to enable a static WCET analysis of complex programs (and
hardware architectures). Even though this causes a loss of worst-case performance,
we found that the impact of virtual timing anomalies on the WCET estimation is
rather minimal for the MPC55xx hardware architecture.

Domino Effects

Similarly to the MPC56x processor derivatives, the MPC55xx (e200z6 core) hard-
ware architecture is equipped with an eight-entry branch target buffer (BTB). But
contrary to the MPC56x implementation, the BTB only stores the branch target and
additionally a two-bit history counter. The counter is incremented if the branch
was taken and decremented otherwise. In this fashion the BTB entry indicates how
likely the branch is to be taken. Depending on the value of the history counter
the MPC55xx core speculatively prefetches in either taken or non-taken direction.
Entries of the branch target buffer are updated according to the FIFO principle. It is
possible to construct a program similar to Figure 6.10 that exploits a domino effect
due to the FIFO replacement policy.

The replacement policy of the unified cache also opens the possibility for domino
effects. Cache lines are replaced by means of a pseudo-round-robin replacement
algorithm. A global replacement counter indicates the cache line to be replaced
next. In principle the round-robin replacement strategy behaves like the FIFO
replacement policy. If we only consider a single cache set, the global replacement
counter causes a FIFO update behavior. Hence, we can easily construct a program
that exploits a domino effect due to the behavior of the replacement policy.

125

Chapter 6 Evaluation

Summary

The above findings indicate that the MPC55xx (e200z6) is a hardware architecture
that offers many possibilities for timing anomalies to occur. Unfortunately, it is
hardly possible to locally decide about whether the pipeline analysis has to consider
a non-LWC decision in order to compute a safe WCET bound. The future behavior of
the executed program decides about the global impact of a timing anomaly instance.
It might as well be that the slower execution of a routine caused by prefetching a
piece of code that is not needed immediately turns out to be beneficial in the long
run due to pre-caching instructions that are later begin executed.

We furthermore state that the MPC55xx hardware offers (at least) two disjoint
hardware features that exhibit domino effects. In either case the FIFO replacement
strategy causes this kind of anomalous execution behavior.

On the bottom line, we classify the MPC55xx architecture as non-compositional
hardware architecture. Nonetheless the hardware can be configured to avoid the
occurrence of domino effects after all by disabling the BTB and locking all except
one cache way. Disabling the BTB and locking all cache ways except

6.2.6 Intel 386

We automatically processed about 1500 test programs to investigate the existence
of timing anomalies in the Intel 386 hardware architecture. The available tests
comprise rather simple benchmark programs and several tasks from an avionics
application. In fact we could find some instances of timing anomalies. However, a
closer look reveals that all the timing anomalies we have detected are in fact virtual.
At some point the pipeline analysis is unsure about the processor state, such as the
stalling of code fetches for example, and follows both possibilities.

Figure 6.16 depicts one instance of these virtual timing anomalies. In the depicted
prediction graph the pipeline analysis is unsure whether the code fetch is stalled
due to the fill level of the decode queue. This behavior strongly depends on the
micro-code for the corresponding fetched instruction. Depending on the size of the
micro-code the processor stalls the prefetch to prevent a micro-code buffer overflow.
Precise information about the instruction micro-code is unfortunately not available,
which is why the pipeline analysis is designed to investigate both a stalled and an
ongoing prefetch. Note that this analysis behavior is only a documentation problem.
By means of precise information about the micro-code handling, this analysis would
not assume hardware behavior that does not occur in reality. The prediction graph
reveals that assuming the code fetch to stall in this special situation (see red path)
would not contribute to the global worst-case behavior (see green path). Assuming
the prefetch to continue in the first place causes the pipeline to again decide whether

126

6.2 Timing Anomalies

Figure 6.16: I386 Virtual Timing Anomaly: The pipeline analysis is unsure about
whether the code fetch is stalled. Depending on the fill level of the
decode queue, the processor stalls to prevent an internal micro-code
buffer overflow. Information about the decoding behavior of the micro-
code is not publicly available. Thus, the analysis has to assume both
possibilities, which provokes a virtual timing anomaly in this case.

127

Chapter 6 Evaluation

the code fetch is stalled. The local worst-case decision will then effectuate the
globally worst execution behavior.

This kind of timing anomaly cannot occur in reality because the instruction decoding
is deterministic and the micro-code for the instructions are fixed. Starting from the
same initial hardware state, it is not possible to effectuate a filling of the decode
queue for the sequence of instructions where it is unclear whether the prefetch stalls
for whatever reason. The sole unknown that causes this decision during the static
pipeline analysis is the behavior of the processor-internal micro-code, for which
there is no official documentation available.

In total we observed instances of these virtual timing anomalies for about 23% of
the available test programs. Their impact on the precision of the analysis is however
strictly limited as the trace validation results show (see Table 6.11 on page 102). We
could not find any evidence for the occurrence of real timing anomalies. Because of
the rather simple structure of the Intel 386 hardware architecture (see Figure 6.6 on
page 100) this is not unexpected. The processor does not perform any kind of branch
prediction. Without any exception, the Intel 386 predicts all branches as not taken.
This avoids the occurrence of speculation anomalies. We can also safely exclude the
presence of scheduling anomalies because instructions are always executed in order.
The processor does not feature any cache and is thus unable to provoke any kind of
cache timing anomaly. Based on this investigation we classify the Intel 386 as a fully
timing compositional hardware architecture.

6.2.7 AMD 486

For the exploration of AMD 486 timing anomalies, we only had about 300 different
test programs at hand. The majority of the available tests comprise avionics appli-
cations. Prior to the investigation we did not expect scheduling timing anomalies
to occur. As Figure 6.7 shows, the AMD 486 features two disjoint execution units –
the ALU for integer arithmetic and the FPU for floating-point computation. Even
though a (limited) form of execution parallelism exists, the executions units cannot
impact the timing behavior of each other such that a timing anomaly would occur.
A faster execution in one unit is unable to cause a slower execution in the other unit.
Our observations confirm this assumption.

During the investigation, we could identify an instance of a speculation anomaly
that is caused by a data access that may hit the on-chip unified cache. Figure 6.17
depicts a code snippet by means of which we could observe a timing anomaly. Before
the CPU is able to change the control-flow to the branch target 0x1730, the processor
first has to perform the memory accessing instruction at 0x1709 and the successive
instructions. If the data access hits the cache, the processor decides to prefetch the
cache line starting at address 0x1720. Unable to abort the prefetch, the execution of

128

6.2 Timing Anomalies

func: 0x1700 aad.b ax, 0xa

0x1702 aad.b ax, 0xa

0x1704 aad.b ax, 0xa

0x1706 aad.b ax, 0xa

0x1708 cdq edx:eax, eax

0x1709 mov.d eax, ds:[ecx]

0x170b aad.b ax, 0xa

0x170d cdq edx:eax, eax

0x170e cdq edx:eax, eax

0x170f xchg.d eax, eax

0x1710 jmpn.d 0x1730

Figure 6.17: AMD 486 Speculation Timing Anomaly: The unified cache can cause a
timing anomaly. If the memory access at 0x1709 hits the cache, the
processor will perform an additional prefetch of the cache line start-
ing at 0x1720. This prefetch lengthens the overall execution and the
processor has to wait longer before redirecting the control-flow to the
branch target.

the branch instruction at 0x1710 is additionally delayed. In total the code snippet
executes in 162 cycles. But if the data access would miss the cache, the processor is
able to execute the remaining instructions and decide early about the control-flow
while performing the cache line fill operation. In this case, the program executes in
144 cycles only. Table 6.18 depicts the measured bus events and hence proves the
existence of this speculation timing anomaly.

In addition to the above finding, the AMD 486 processor suffers from a cache timing
anomaly. The unified on-chip cache uses a PLRU cache replacement policy that is
known to trigger domino effects [3]. Similar to the PLRU implementation of the
Freescale MPC755 cache, the AMD 486 uses a Tree-PLRU algorithm that uses a
binary search tree to determine the element to be replaced next. Hence, it is possible
to construct a program that exhibits a domino effect.

Due to these observations the AMD 486 is classified as non-compositional hardware
architecture. However, as the cache allows for cache locking, e.g., of frequently used
code and data, it is possible to avoid the PLRU domino effect. This allows for a
classification as compositional architecture.

129

Chapter 6 Evaluation

Cache Hit Cache Miss
Event Address Cycles Event Address Cycles

TS 0x1700 9 TS 0x1700 9
TS 0x1704 9 TS 0x1704 9
TS 0x1708 9 TS 0x1708 9
TS 0x170c 9 TS 0x170c 9
TS 0x1710 9 TS 0x1710 9
TS 0x1714 9 TS 0x1714 9
TS 0x1718 9 TS 0x1718 9
TS 0x171c 9 TS 0x171c 9

TS 0x1760 9
TS 0x1764 9

TS 0x1720 27 TS 0x1768 9
TS 0x1724 9 TS 0x176c 9
TS 0x1728 9 TS 0x1790 9
TS 0x172c 9 TS 0x1794 9
TS 0x1790 9 TS 0x1798 9
TS 0x1794 9 TS 0x179c 9
TS 0x1798 9
TS 0x179c 9

Total 162 144

Table 6.18: AMD 486 Measurement for Speculation Anomaly: Measured transfer start
events for the code snippet depicted in Figure 6.17. The processor
prefetches far beyond the border of the executed basic block. If the data
access hits the cache, the processor prefetches the unused cache line
starting at 0x1720. This delays the execution of the branch instruction
and the program executes in 162 processor cycles. Otherwise if the data
access to 0x1760 misses the cache, the code snippet executes in only 144
processor cycles.

130

Conclusion7
Determining safe and precise bounds on the worst-case execution time of safety-
critical software for modern architectures is a major challenge. It is important to
better understand the nature of timing anomalies and domino effects and their
counter-intuitive behavior.

Our new semi-automatic method that is able to detect potential timing anomalies
using an abstract interpretation based over-approximation of all possible hardware
behaviors during execution of a program. From the results a test program can be
built that show the timing effect of an anomaly on real processors.

With the new method we have found and measured yet unknown timing anomalies
of the MPC55xx and AMD 486 hardware architectures. We have applied our new
method to seven hardware architectures and provided a corresponding classifica-
tion.

Timing models are typically handwritten in an error-prone and tedious process. We
have also presented an automatic method to validate timing models of processors.
Our new trace validation method automatically compares the behavior of an abstract
hardware model against real execution traces and efficiently reveals issues with the
model.

With a set of traces it is possible to established a necessary level of confidence in the
correctness of the model as required by current safety standards like DO-178B. Our
trace validation methodology has been successfully employed to validate various
timing models of the industrial-strength worst-case execution time analyzer aiT.

131

List of Tables

1.1 Partitioning of Scratch Pad and Instruction Cache in a TC1797 CPU 5

2.1 Division by Zero Runtime Error Detection 16

3.1 Observed iteration counts for lDivMod 25
3.2 Classification of Non-Determinism 44

6.1 ERC32 Analysis Results . 77
6.2 ERC32 Test Complexity . 78
6.3 LEON2 Analysis Results . 82
6.4 LEON2 Test Complexity . 83
6.5 M68020 Analysis Results . 87
6.6 M68020 Analysis Complexity . 88
6.7 MPC5xx Analysis Results . 93
6.8 MPC5xx Analysis Complexity . 94
6.9 MPC55xx Analysis Results . 98
6.10 MPC55xx Analysis Complexity . 99
6.11 Intel 386 Analysis Results . 102
6.12 Intel 386 Analysis Complexity . 103
6.13 AMD 486 Analysis Results . 106
6.14 AMD 486 Analysis Complexity . 107
6.15 MPC56x BTIC Domino Effect . 115
6.16 MPC55xx Measurement for ALU-triggered Anomaly 118
6.17 MPC55xx Measurement for LSU-triggered Anomaly 120
6.18 AMD 486 Measurement for Speculation Anomaly 130

133

List of Figures

1.1 Execution Time Distribution of a Task 1
1.2 Processor-Memory Performance Gap 3
1.3 Memory Hierarchy of an Embedded Processor 4
1.4 Zuse Z3 Pipeline . 7
1.5 Control Dependency . 8
1.6 SPARC Delay Slot Optimization . 11

2.1 Abstract Interpretation Principle 22

3.1 Phases of WCET Computation . 27
3.2 WCET-Computation Result . 29
3.3 ILP Path Analysis Problem . 30
3.4 Actions during Instruction Execution 33
3.5 Prediction Graph . 40
3.6 λ-Prediction Graph . 46
3.7 Non-Determinism in Static Analysis 47

4.1 Cache-Induced Speculation Timing Anomaly 57
4.2 Execution-Induced Scheduling Timing Anomaly 58
4.3 Simplified Block Diagram of the LEON2 Architecture 59
4.4 LEON2 Timing Anomaly . 61
4.5 Domino Effect for SIMPLE-MRU Replacement Policy 62

5.1 Trace Validation Procedure . 63
5.2 Example Per-Instruction Level Trace 67
5.3 Example Per-Action Level Measurement 68
5.4 Trace Validation Visualization . 71

6.1 ERC32 Pipeline Model . 73
6.2 LEON2 Pipeline Model . 79
6.3 M68020 Pipeline Model . 84
6.4 MPC5xx Pipeline Model . 89
6.5 MPC55xx Pipeline Model . 95
6.6 Intel 386 Pipeline Model . 100
6.7 AMD 486 Pipeline Model . 104
6.8 Code Snippet triggering LEON2 Timing Anomaly 109
6.9 LEON2 Hit-Under-Fill Speculation Anomaly 111
6.10 Code Snippet exhibiting MPC56x Domino Effect 113
6.11 MPC55xx ALU-triggered Timing Anomaly 117

135

List of Figures

6.12 MPC55xx LSU-triggered Timing Anomaly 119
6.13 MPC55xx FLASH Prefetch Timing Anomaly 122
6.14 Visualization of MPC55xx FLASH Prefetch Timing Anomaly . . . 123
6.15 MPC55xx Virtual Timing Anomaly 124
6.16 I386 Virtual Timing Anomaly . 127
6.17 AMD 486 Speculation Timing Anomaly 129

136

List of Theorems

2.1 Definition (Control-Flow Graph, Path) 17
2.2 Definition (Concrete Transformer) 17
2.3 Definition (Path Semantics) . 18
2.4 Definition (Collecting Path Semantics) 18
2.5 Definition (Sticky Collecting Semantics) 18
2.6 Definition (Abstract Collecting Path Semantics) 19
2.7 Definition (Local Consistency) . 20
2.1 Lemma (Soundness of Abstract Collecting Path Semantics) 20
2.8 Definition (Strongly Adjoint) . 20
2.9 Definition (Abstract Sticky Collecting Semantics) 21
2.1 Theorem (Soundness of Abstract Sticky Collecting Semantics) . . . 21

3.1 Definition (Finite State Automaton) 32
3.2 Definition (Execution Predicate) . 33
3.3 Definition (Action Marker) . 33
3.4 Definition (State Transformer) . 34
3.5 Definition (State Collecting Path Semantics) 35
3.6 Definition (Execution-Deterministic) 36
3.7 Definition (Action-Deterministic) 36
3.8 Definition (Abstract State Automaton) 36
3.9 Definition (Abstract State Transformer) 37
3.1 Lemma (Local Consistency of Abstract State Transformer) 38
3.10 Definition (Abstract State Collecting Path Semantics) 38
3.2 Lemma (Soundness of Abstract State Collecting Path Semantics) . 39
3.11 Definition (Feasible Abstract Successor) 39
3.12 Definition (Prediction Graph) . 40
3.13 Definition (λ-Prediction Graph) . 45
3.14 Definition (LWC Transition) . 46
3.15 Definition (State Transition Difference) 48
3.16 Definition (Inclusive State Transition) 48

4.1 Definition (Timing Anomaly) . 51
4.2 Definition (n-Prediction Graph) . 53
4.3 Definition (k-bounded Timing Anomaly) 53
4.4 Definition (Domino Effect) . 54

5.1 Definition (Concrete Trace) . 64
5.2 Definition (Abstract Event Match) 64
5.3 Definition (Predicted Abstract Trace) 64

137

List of Theorems

5.4 Definition (Predicted Abstract Trace Match) 64
5.5 Definition (Imprecise Predicted Abstract Trace Match) 65
5.6 Definition (Prediction Factor) . 65

138

List of Algorithms

3.1 Topological Sorting of the Prediction Graph 41
3.2 Computation of a Longest Path . 42

4.1 Detection of Timing Anomalies . 52

5.1 Validation of Prediction Event Graph against Measured Trace . . . 70

139

Bibliography

[1] AEROFLEX GAISLER. http://www.gaisler.com.

[2] ALTMEYER, S., DAVIS, R. I., AND MAIZA, C. Cache related pre-emption aware
response time analysis for fixed priority pre-emptive systems. In Proceedings of
the 32nd IEEE Real-Time Systems Symposium (RTSS’11) (December 2011), R. I.
Davis and N. Fisher, Eds., pp. 261–271.

[3] BERG, C. PLRU cache domino effects. In 6th Intl. Workshop on Worst-
Case Execution Time (WCET) Analysis, Dresden (July 2006), F. Mueller, Ed.,
no. 06902 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI).

[4] CASSEZ, F., HANSEN, R. R., AND OLESEN, M. C. What is a Timing Anomaly?
In 12th International Workshop on Worst-Case Execution Time Analysis (Dagstuhl,
Germany, 2012), T. Vardanega, Ed., vol. 23 of OpenAccess Series in Informatics
(OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 1–12.

[5] COUSOT, P., AND COUSOT, R. Static determination of dynamic properties of
programs. In Proceedings of the second international Symposium on programming
(1976), Dunod, Paris, France, pp. 106–130.

[6] COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages (New York, NY, USA, 1977), ACM, pp. 238–252.

[7] DAVEY, B. A., AND PRIESTLEY, H. A. Introduction to Lattices and Order, 2nd ed.
Cambridge University Press, May 2002.

[8] EISINGER, J., POLIAN, I., BECKER, B., THESING, S., WILHELM, R., AND
METZNER, A. Automatic identification of timing anomalies for cycle-accurate
worst-case execution time analysis. In DDECS ’06: Proceedings of the 2006 IEEE
Design and Diagnostics of Electronic Circuits and systems (Washington, DC, USA,
2006), IEEE Computer Society, pp. 13–18.

[9] ENGBLOM, J., AND JONSSON, B. Processor pipelines and their properties for
static WCET analysis. In EMSOFT ’02: Proceedings of the Second International
Conference on Embedded Software (London, UK, 2002), Springer-Verlag, pp. 334–
348.

[10] ERC32 chipset documentation. http://microelectronics.esa.int/erc32/.

141

http://www.gaisler.com
http://microelectronics.esa.int/erc32/

Bibliography

[11] FEDERAL AVIATION ADMINISTRATION. What is a “decision” in application
of modified condition/decision coverage (MC/DC) and decision coverage (DC)?
Position paper CAST-10, U.S. Department of Transportation, Washington, DC
20591, June 2002.

[12] FERDINAND, C. Cache Behaviour Prediction for Real-Time Systems. PhD thesis,
Universität des Saarlandes, 1997.

[13] FERDINAND, C., AND WILHELM, R. Efficient and precise cache behavior
prediction for real-time systems. Real-Time Systems 17, 2-3 (1999), 131–181.

[14] GEBHARD, G., CULLMANN, C., AND HECKMANN, R. Software Structure
and WCET Predictability. In Bringing Theory to Practice: Predictability and
Performance in Embedded Systems (Dagstuhl, Germany, 2011), P. Lucas, L. Thiele,
B. Triquet, T. Ungerer, and R. Wilhelm, Eds., vol. 18 of OpenAccess Series
in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 1–10.

[15] GRUND, D., REINEKE, J., AND GEBHARD, G. Branch target buffers: WCET
analysis framework and timing predictability. In 15th International Conference
on Embedded and Real-Time Computing Systems and Applications, RTCSA 2009
(August 2009).

[16] INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERS. VHDL lan-
guage reference manual. IEEE Standard P1076 2000/D3, New York, 2000.

[17] The Kate Editor. http://www.kate-editor.org.

[18] KIRNER, R., KADLEC, A., AND PUSCHNER, P. Precise worst-case execution
time analysis for processors with timing anomalies. In Proceedings of the 21st
Euromicro Conference on Real-Time Systems (Dublin, Ireland, July 2009), IEEE,
pp. 119–128.

[19] LaTeX - A Document Preparation System. http://www.latex-project.org.

[20] LEON2 processor user’s manual. http://www.arl.wustl.edu/.../leon2-1_0_23-
xst.pdf.

[21] LIONS, J.-L., LÜBECK, L., FAUQUEMBERGUE, J.-L., KAHN, G., KUBBAT, W.,
LEVEDAG, S., MAZZINI, L., MERLE, D., AND O’HALLORAN, C. Ariane 5
flight 501 failure. Ariane 501 inquiry board report, ESA, Paris, Juli 1996.

[22] Longest path problem. http://en.wikipedia.org/wiki/Longest_path_problem.

[23] LUCAS, P., PARSHIN, O., AND WILHELM, R. Operating mode specific WCET
analysis. In Proceedings of JRWRTC (October 2009), C. Seidner, Ed.

142

http://www.kate-editor.org
http://www.latex-project.org
http://www.arl.wustl.edu/~lockwood/class/cse465-s05/papers/leon2-1_0_23-xst.pdf
http://www.arl.wustl.edu/~lockwood/class/cse465-s05/papers/leon2-1_0_23-xst.pdf
http://en.wikipedia.org/wiki/Longest_path_problem

Bibliography

[24] LUNDQVIST, T., AND STENSTRÖM, P. Timing anomalies in dynamically
scheduled microprocessors. In Real-Time Systems Symposium (RTSS) (December
1999).

[25] MAHAPATRA, N. R., AND VENKATRAO, B. The processor-memory bottleneck:
Problems and solutions. Crossroads - Computer architecture Crossroads Homepage
archive 5, 3es (Spring 1999).

[26] MARTIN, F., ALT, M., WILHELM, R., AND FERDINAND, C. Analysis of
loops. In Compiler Construction, K. Koskimies, Ed., vol. 1383 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1998, pp. 80–94.
10.1007/BFb0026424.

[27] MOORE, G. Cramming more components onto integrated circuits. Eletronics
19, 3 (April 1965), 114–117.

[28] MPC5553 and MPC5554 microcontroller reference manual.
http://freescale.com/files/.../MPC5553_MPC5554_RM.pdf.

[29] The Nexus 5001 Forum Standard for a Global Embedded Processor Debug
Interface, 2003.

[30] NIELSON, F., NIELSON, H. R., AND HANKIN, C. Principles of Program Analysis,
2nd ed. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[31] PETTERS, S. M. Comparison of trace generation methods for measurement
based WCET analysis. In 3rd International Workshop on Worst Case Execution
Time Analysis (Porto, Portugal, July 2003), pp. 75–78.

[32] REINEKE, J. Caches in WCET Analysis. PhD thesis, Universität des Saarlandes,
November 2008.

[33] REINEKE, J., AND SEN, R. Sound and efficient wcet analysis in the presence of
timing anomalies. In 9th Intl. Workshop on Worst-Case Execution Time (WCET)
Analysis (Dagstuhl, Germany, 2009), N. Holsti, Ed., Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany.

[34] REINEKE, J., WACHTER, B., THESING, S., WILHELM, R., POLIAN, I.,
EISINGER, J., AND BECKER, B. A definition and classification of timing
anomalies. In Workshop on Worst-Case Execution-Time Analysis (WCET) (July
2006).

[35] ROJAS, R. Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE
Annals of the History of Computing 19, 2 (April 1997), 5–16.

[36] Rubber - A Wrapper for LaTeX and Friends. http://launchpad.net/rubber.

143

http://freescale.com/files/32bit/doc/ref_manual/MPC5553_MPC5554_RM.pdf
http://launchpad.net/rubber

Bibliography

[37] SCHLICKLING, M., AND PISTER, M. Semi-automatic derivation of tim-
ing models for WCET analysis. In LCTES ’10: Proceedings of the ACM SIG-
PLAN/SIGBED 2010 conference on Languages, compilers, and tools for embedded
systems (April 2010), ACM, pp. 67–76.

[38] SCHNEIDER, J. Combined Schedulability and WCET Analysis for Real-Time
Operating Systems. PhD thesis, Saarland University, 2003.

[39] SHARIR, M., AND PNUELI, A. Two Approaches to Interprocedural Data Flow
Analysis. In Program Flow Analysis: Theory and Applications, S. S. Muchnick
and N. D. Jones, Eds. Prentice-Hall, 1981, ch. 7.

[40] TC1797 microcontroller reference manual. http://www.infineon.com.

[41] THEILING, H. Ilp-based interprocedural path analysis. In EMSOFT (2002),
A. L. Sangiovanni-Vincentelli and J. Sifakis, Eds., vol. 2491 of Lecture Notes in
Computer Science, Springer, pp. 349–363.

[42] THESING, S. Safe and Precise WCET Determinations by Abstract Interpretation of
Pipeline Models. PhD thesis, Saarland University, 2004.

[43] THOMAS, D., AND MOORBY, P. The Verilog Hardware Description Language.
Kluwer Academic Publishers, Boston, Massechusetts, 1991.

[44] Topological sorting. http://en.wikipedia.org/wiki/Topological_sorting.

[45] WENZEL, I., KIRNER, R., PUSCHNER, P., AND RIEDER, B. Principles of tim-
ing anomalies in superscalar processors. In Proceedings of the Fifth International
Conference on Quality Software (Washington, DC, USA, 2005), QSIC ’05, IEEE
Computer Society, pp. 295–306.

[46] WERNER, T., AND AKELLA, V. Asynchronous processor survey. IEEE Com-
puter 30, 11 (1997), 67–76.

[47] WILHELM, R., GRUND, D., REINEKE, J., SCHLICKLING, M., PISTER, M.,
AND FERDINAND, C. Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems. IEEE Transactions on CAD of
Integrated Circuits and Systems 28, 7 (July 2009), 966–978.

144

http://www.infineon.com
http://en.wikipedia.org/wiki/Topological_sorting

Index

Symbols
λ-prediction graph 45
k-bounded timing anomaly 53
k-timing-anomalous state 53
n-prediction graph 53

A
abstract collecting path semantics . 19
abstract interpretation 15
abstract program simulation.31
abstract state automaton 36
abstract state collecting path semantics

37, 38
abstract state transformer 37
abstract state transformer step.37
abstract sticky collecting semantics21
abstract transformer.19
abstraction function 20
action-deterministic 36
AMD 486 . 104
asynchronous processor 32

B
branch prediction 9

C
cache timing anomaly 55
collecting path semantics 18
collecting transformer 18
compositional . 56
concrete program simulation 31
concrete transformer 17
concretization function 19
control dependency 7
control-flow graph 17

D
delay slot. .10
domino effect 13, 53, 54, 115, 125

dynamic branch prediction 9

E
early-out execution 8
ERC32 . 73
execution predicate 33
execution-deterministic 36

F
feasible abstract successor 39
FIFO . 13, 55, 112
finite state automaton 32
forwarding . 8
fully timing compositional 56

I
inclusive state transition 48
Intel 386 . 100

L
LEON2. .79
local best-case . 44
local consistency 20
local worst-case2, 12, 33, 43–46, 53, 56
LWC transition . 46

M
M68020 . 84
measurement granularity.65
memory hierarchy 3
model checking 15
MPC55xx . 95
MPC5xx . 89

N
non-compositional 56
non-determinism.43
non-inclusive state transition 48
non-LWC transition 46

145

Index

O
out-of-order execution.11
overestimation . 69

P
P-LRU . 13, 55
path semantics . 18
pipeline stages . 6
prediction graph 29, 39, 40
prefetch mechanism 8
processor complexity 24

S
scheduling timing anomaly 54
speculation timing anomaly . . 55, 109,

116, 119, 128
speculative execution 12
split . 37
state abstraction function 36
state collecting path semantics . 34, 35
state collecting transformer 34
state concretization function 35
state transformer 34
state transformer step 34
state transition difference 48
static branch prediction 9
sticky collecting semantics 18
superscalar processor 10
synchronous processor 31

T
timing anomaly.12, 51, 110, 116, 119,

121, 128
timing-anomalous state 51, 53

U
underestimation 69

V
virtual memory 49
virtual timing anomaly . . 51, 124, 128

146

	Eidesstattliche Versicherung
	Zusammenfassung
	Abstract
	Acknowledgments
	About this Document
	Introduction
	Embedded Hardware Architectures
	Memory Hierarchy
	Processor Features
	Timing Anomalies

	Thesis Structure

	Program Analysis
	Abstract Interpretation of Programs
	Concrete Program Semantics
	Abstract Program Semantics

	Timing Analysis
	Overview
	Dynamic Analysis Methods
	Static Analysis Methods

	Architectural Analysis
	Concrete Program Simulation
	Abstract Program Simulation
	Prediction Graph
	Non-Determinism
	Challenges for Static Analysis

	Timing Anomalies and Domino Effects
	Formal Definition
	Infinite Programs
	Classification of Timing Anomalies
	Classification of Architectures
	Examples

	Trace Validation
	Methodology
	Measurement Granularity
	Implementation

	Evaluation
	Trace Validation
	ERC32
	LEON2
	M68020
	MPC5xx
	MPC55xx
	Intel 386
	AMD 486

	Timing Anomalies
	ERC32
	LEON2
	M68020
	MPC5xx
	MPC55xx
	Intel 386
	AMD 486

	Conclusion
	List of Tables
	List of Figures
	List of Algorithms
	Bibliography
	Index

