
Saarland University

Faculty of Natural Sciences and Technology I
Department of Computer Science

PhD Thesis

Cache based Optimization of Stencil Computations

An Algorithmic Approach

submitted by

Mohammed Shaheen

submitted

November 6, 2013

Supervisor / Advisor

Prof. Dr. Christian Theobalt

Prof. Dr. Hans-Peter Seidel

Reviewers

Prof. Dr. Christian Theobalt

Prof. Dr. Hans-Peter Seidel

Dr. Robert Strzodka

Date of Colloquium:

5 November 2013

Dean:

Univ.-Prof. Dr. Mark Groves Faculty of Natural Sciences and Technology I

Department of Computer Science

Saarland University

Saarbrücken, Germany

Examination Board:

Prof. Dr. Philipp Slusallek (Chair)

Saarland University

Prof. Dr. Hans-Peter Seidel

Max Planck Institut Informatik

Prof. Dr. Christian Theobalt

Max Planck Institut Informatik

Dr. Robert Strzodka

Nvidia Corporation

Dr. James Tompkin

Max Planck Institut Informatik

Abstract

We are witnessing a fundamental paradigm shift in computer design. Memory has been

and is becoming more hierarchical. Clock frequency is no longer crucial for performance.

The on-chip core count is doubling rapidly. The quest for performance is growing. These

facts have lead to complex computer systems which bestow high demands on scientific

computing problems to achieve high performance.

Stencil computation is a frequent and important kernel that is affected by this complexity.

Its importance stems from the wide variety of scientific and engineering applications that

use it. The stencil kernel is a nearest-neighbor computation with low arithmetic intensity,

thus it usually achieves only a tiny fraction of the peak performance when executed on

modern computer systems. Fast on-chip memory modules were introduced as the hardware

approach to alleviate the problem.

There are mainly three approaches to address the problem, cache aware, cache oblivious,

and automatic loop transformation approaches. In this thesis, comprehensive cache aware

and cache oblivious algorithms to optimize stencil computations on structured rectangular

2D and 3D grids are presented. Our algorithms observe the challenges for high performance

in the previous approaches, devise solutions for them, and carefully balance the solution

building blocks against each other.

The many-core systems put the scalability of memory access at stake which has lead to

hierarchical main memory systems. This adds another locality challenge for performance.

We tailor our frameworks to meet the new performance challenge on these architectures.

Experiments are performed to evaluate the performance of our frameworks on synthetic

as well as real world problems.

Abstract

Wir erleben gerade einen fundamentalen Paradigmenwechsel im Computer Design. Spe-

icher wird immer mehr hierarchisch gegliedert. Die CPU Frequenz ist nicht mehr allein

entscheidend für die Rechenleistung. Die Zahl der Kerne auf einem Chip verdoppelt sich

in kurzen Zeitabständen. Das Verlangen nach mehr Leistung wächst dabei ungebremst.

Dies hat komplexe Computersysteme zur Folge, die mit schwierigen Problemen aus dem

Bereich des wissenschaftlichen Rechnens einhergehen um eine hohe Leistung zu erreichen.

Stencil Computation ist ein häufig eingesetzer und wichtiger Kernel, der durch diese Kom-

plexität beeinflusst ist. Seine Bedeutung rührt von dessen zahlreichen wissenschaftlichen

und ingenieurstechnischen Anwendungen. Der Stencil Kernel ist eine Nächster-Nachbar-

Berechnung von niedriger artihmetischer Intensität. Deswegen erreicht es nur einen Bruchteil

der möglichen Höchstleistung, wenn es auf modernen Computersystemen ausgeführt wird.

Es gibt im Wesentlichen drei Möglichkeiten dieses Problem anzugehen, und zwar durch

cache-bewusste, cache-unbewusste und automatische Schleifentransformationsansätze. In

dieser Doktorarbeit stellen wir vollständige cache-bewusste sowie cache-unbewusste Algo-

rihtmen zur Optimierung von Stencilberechnungen auf einem strukturierten rechteckigen

2D und 3D Gitter. Unsere Algorithmen erfüllen die Erfordernisse für eien hohe Leistung

und wiegen diese sorgfältig gegeneinander ab.

Das Problem der Skalierbarkeit von Speicherzugriffen führte zu hierarchischen Speicher-

systemen. Dies stellt eine weitere Herausforderung an die Leistung dar. Wir passen unser

Framework dahingehend an, um mit dieser Herausforderung auf solchen Architekturen

fertig zu werden. Wir führen Experimente durch, um die Leistung unseres Algorithmen

auf syntethischen wie auch realen Problemen zu evaluieren.

Summary

Multi- and many-core architectures are rapidly becoming the norm in high performance

computing. The trend towards many-core architectures exacerbates the problem because

the increasing number of on-chip parallel cores renders an exponential growth in the com-

pute capability whereas the system bandwidth increases only linearly. This shaped the

so-called memory wall problem. Small, yet fast, on-chip memories called caches were

introduced as the hardware approach to mitigate this problem.

At the core of the memory wall problem in scientific computing are iterative loops over

discrete local operators. A typical representative is a stencil computation with constant

weights or a sparse matrix vector product in case of variable weights. This computation

pattern achieves only a tiny fraction of the peak computational performance due to its

low arithmetic intensity.

In the literature, this problem has been approached from three perspectives. The first is

cache-aware whereby the cache parameters are known to the algorithm at either compile

or run time. The second is the cache-oblivious approach which, in contrast to the cache-

aware approach, does not assume any knowledge about the cache parameters. The third

looks at the problem as nested loops and uses loop transformation frameworks to optimize

them.

All approaches revolve around the idea of cache locality optimization which exploits the

fact that data is moved to the on-chip cache memories before any computation is done on

it. Once data is on-chip, these approaches devise different techniques to perform as much

computation on it as possible before it gets evicted from the cache. Cache locality can be

improved by partitioning, also called tiling, the domain on which the stencil operator is

applied into small groups called tiles. Tiles may also span the time which is the number

of iterations in iterative stencil computations. However, as each iteration depends on

the previous one, tiles must be skewed in the iteration space to form the so-called time

skewing. The granularity of execution is the tile which means that the processor does not

proceed to the next tile until it has finished executing the current tile. The advantage

of running the stencil on tiles rather than the domain as a whole is that if the tiles are

so small that they fit into the on-chip cache, the algorithm runs on data stored in the

cache whose bandwidth is faster than the main memory bandwidth. Ongoing research is

being conducted to design optimal tile parameters (shape and size) that are ideally also

executable in parallel to cope with the multi- and many-core revolution.

While different cache optimized approaches have been tried in the past, they have never

been so successful. In this thesis, we pinpoint the deficiency of the state-of-the-art ap-

proaches and envision a set of cache-aware and cache-oblivious algorithms which avoids the

deficiency. For example, on a quad-core Xeon X5482 3.2GHz system, a synthetic machine

peak benchmark reaches 40.8 GFLOPS. On a large 3D domain of 5043 double precision

floating point and 100 iterations, a hand-vectorized single-threaded naive stencil implemen-

tation achieves 1.6 GFLOPS and there is no improvement in the multi-threaded version

because the system memory bandwidth limits the performance. A state-of-art automatic

loop transformation framework Pluto [7] achieves 1.9 GFLOPS for this stencil compu-

tation with four threads. In comparison, our schemes, called cache-aware time skewing

(CATS) and cache-oblivious parallelograms in iterative stencil computations (CORALS)

perform, in average, already at 5.3 GFLOPS with a single thread. Their performance soars

to 13.0 GFLOPS with four threads. Furthermore, CORALS scores an excellent result on

2D domains by reaching 47% of the machine peak benchmark.

Efforts to improve the scalability of memory accesses in multiprocessing systems have

introduced the non-uniform memory access (NUMA) memory systems whereby memory is

physically distributed but logically shared. As such, in these architectures memory access

time depends on the memory location relative to the processor, i.e. whether the memory

location is in the local memory (memory modules directly connected to the processor)

or in the remote memory (memory modules which are connected to other processors).

The performance of our schemes, CATS and CORALS, may deteriorate depending on the

amount of remote memory data that has to be updated by a certain core. This poses

another challenge for performance on the new NUMA systems and schemes targeting

these architectures have to explicitly account for a new performance aspect called data-

to-core affinity. To this end, we have extended CATS and CORALS to meet the new

performance challenge. Our new schemes targeted at NUMA architectures which we call

nuCATS and nuCORALS attain striking absolute performance and salient scalability on

these architectures.

In summary, this thesis contributes to both cache-aware and cache oblivious-stencil compu-

tations. It has been perceived that high performance stencil computations are attainable

solely by locality optimizations. While this is partially true as locality optimization yields

the lion’s share of performance, other factors such as parallelism and data-to-core affinity

are essential for performance and their absence may adversely impact the performance

gains expected from locality optimizations. This thesis formulates the requirements to

achieve high performance stencil computations. It shows how failure to reckon with any of

these requirements leads to schemes which hardly surpass the performance of an optimized

naive scheme without any locality optimizations. We introduce two novel schemes which

cater for all requirements simultaneously and achieve outstanding performance benefits

from locality optimizations on stencil computations. We also show how to face the perfor-

mance challenge posed by the NUMA memory systems in many-core systems and devise

two new schemes that exhibit outstanding performance scaling.

Acknowledgements

This thesis would not come to be without the help and support of the following people.

I would like to express my sincere gratitude to my supervisor Prof. Dr. Hans-Peter

Seidel who gave me the great opportunity to work and do my research at the inspiring

environment of the MPI Informatik and the Computer Graphics Group.

I would like to thank my direct mentor Dr. Robert Strzodka who sparked my interest

in High Performance Computing. Robert continuously provided me with incitement and

encouragement. On the other hand, I would like to thank my direct supervisor Prof. Dr.

Christian Theobalt. Christian tirelessly provided me with all support, help, and feedback

to finish this thesis with his group. I am indebted to both of them for their advice and

guidance in my research.

I am grateful to Dr. Dawid Pajak for the long hours of fruitful discussions. Finally, I

would like to thank my parents for their continuous support, and Ola, my wife, for her

patience all the time.

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Motivation . 3

1.3 Contributions . 3

1.4 Thesis Outline . 5

1.5 List of publications . 6

2 Fundamentals 9

2.1 Memory Hierarchy . 9

2.2 Locality Principle . 10

2.3 Memory Configurations in Multiprocessing Systems 11

2.4 Stencil Computations . 12

2.5 Space-time Traversals . 14

3 Related Work 19

3.1 Cache Aware Stencil Optimization . 19

3.2 Cache Oblivious Stencil Optimization . 21

3.3 Loop nest Optimization . 22

I Iterative Stencil Computations for SMP Systems 23

4 Cache Accurate Time Skewing 25

4.1 Previous Work . 25

4.2 Contributions . 26

4.3 Cache Accurate Time Skewing (CATS) 27

4.4 Results . 35

4.5 Conclusion . 42

5 Performance Modelling 45

vi

CONTENTS vii

5.1 Hardware Setup . 45

5.2 Software Setup . 46

5.3 Naive and Time Skewed Stencil Computations 48

5.4 Varying Cache Size . 50

5.5 Performance Model . 52

5.6 Model Evaluation . 54

5.7 Conclusion . 57

6 Cache Oblivious Parallelograms 59

6.1 Previous Work . 59

6.2 The Cache Oblivious Parallelograms Algorithm 60

6.3 Results . 69

6.4 Conclusion . 74

II Iterative Stencil Computations for NUMA systems 77

7 NUMA Aware Stencil Computations 79

7.1 NUMA-aware CATS Scheme (nuCATS) 80

7.2 NUMA-aware CORALS Scheme (nuCORALS) 81

7.3 Results . 84

7.4 Conclusions . 99

III Application 101

8 Optical Flow Estimation from RGBZ Cameras 103

8.1 Optical Flow from RGBZ Images . 104

8.2 Minimisation . 108

8.3 Implementation . 109

8.4 Scene Flow Derivation . 110

8.5 Evaluation . 110

8.6 Conclusion . 113

9 Conclusion and Future Work 115

Bibliography 121

viii CONTENTS

Chapter 1

Introduction

Ever since the advent of the first general purpose electronic computer, computer technology

has witnessed a continuous evolution. This evolution has been made possible by the

advances in hardware and innovations in computer design. In 1945, the mathematician

and computer scientist John von Neumann proposed a model for computer architecture

called the stored program computer which assumes that an instruction fetch and a data

operation cannot occur simultaneously because they share a common bus. Therefore,

he proposed to use a single storage structure to hold both data and instructions. This is

referred to as the Von Neumann bottleneck and often limits the performance of the system.

Later on, Harvard Mark I proposed another architecture called Harvard architecture in

which he suggested to separate storage and signal pathways for both data and instructions.

Modern computer systems combine aspects from both architectures; on chip small, yet fast

cache memories are provided between the processor and the main memory to circumvent

the performance bottleneck of the Von Neumann architecture. These cache memories are

often separate and have separate access pathways for data and instructions, the so-called

Modified Harvard architecture. On the other hand, the Von Neumann architecture is used

for the off chip main memory access.

While clock frequencies of the processors increase, memories have not been able to keep

pace with this increase. The growing disparity of speed between the processor and the off

chip memory bandwidth is often referred to as the memory wall problem. In response,

dual-, triple- and quad-channel memory interfaces have been introduced. They alleviate

the problem temporarily but their scaling is too expensive to keep up with the exponen-

tially growing number of cores. Data intensive applications suffer from severe slow down

from this problem. In contrast to system bandwidth (off chip bandwidth), the aggregate

cache bandwidth scales naturally with the number of cores if each core has a separate

connection to its cache. Then doubling the number of cores also doubles the number of

1

2 CHAPTER 1. INTRODUCTION

connections and thus the aggregate cache bandwidth. Ideally we would like data intensive

applications to scale with the cache bandwidth rather than the system bandwidth. To this

end, data intensive applications must utilize the cache locality principle as much as they

can to break off the dependency on system bandwidth and scale with cache bandwidth.

One basic computational pattern that suffers from the slow system bandwidth and can

draw great performance benefits from the cache locality principle is stencil computations.

1.1 Problem Statement

Stencil computations are a class of kernels which update each point in a grid with a linear

or non-linear combinations of its neighbor values, for example with a weighted subset of its

neighbors. These kernels are usually applied many times (iterations) on the grid, therefore

they are called iterative stencil computations. The number of neighbouring points involved

in the update of a grid point including itself is called the stencil size. The distance between

the updated grid point and the farthest grid point in the neighbourhood involved in the

update is called the stencil order. Equation (1.1) shows a model stencil update in 3D.

The equation is characterized by low arithmetic intensity (13 floating point operations)

as the case for typical stencil computations. However; on a 5043 grid and a Xeon X5482

machine, 4 threads and 100 iterations of this stencil problem achieve less than 4% of the

computational stencil peak from registers. The reason is the memory wall problem. To

analyze how the memory wall could have such an adverse impact on the performance, we

first briefly explain how data processing happens in modern architectures.

Xt+1
i,j,k = c1 ·Xt

i−1,j,k + c2 ·Xt
i,j−1,k + c3 ·Xt

i,j,k−1 (1.1)

+c4 ·Xt
i+1,j,k + c5 ·Xt

i,j+1,k + c6 ·Xt
i,j,k+1

+c0 ·Xt
i,j,k

Instructions fetched from instruction cache are executed by the processor until an instruc-

tion operating on data stored in the main memory is reached. The processor first checks

the data cache for the data, and initiates a so-called cache miss if the needed data is not

available in the cache. It temporarily stalls waiting for the larger and slower memories

to provide the data which is then stored in the cache for the probability that it will be

needed in the future (locality principle, see Chapter 2). The processor then resumes exe-

cuting instructions. Given the discrepancy of speed between the processor and memory,

the processor has to burn many cycles waiting for the cache to be refilled with the needed

data which hurts the performance. The time needed to refill the cache with the needed

1.2. MOTIVATION 3

data is called cache miss penalty. Iterative stencil computations on huge domains that

do not fit into the cache undergo the same cache miss penalty for each iteration. For

the very first iteration data is stored in the main memory and has to be fetched to the

cache once needed. However, if the domain size is too big to fit entirely into the cache,

the cache is overwritten already from the same iteration and data from the same address

has to be fetched over and over again for each iteration which interprets the paradoxical

stencil computations performance. In this thesis, we approach this problem from an al-

gorithmic point of view, we observe the naive stencil performance on the most up-to-data

architectures, analyze the problem and propose an algorithmic solution.

1.2 Motivation

The motivation for this thesis is the importance of the stencil computation pattern. This

importance stems from the importance of the stencil kernel which is a very frequent com-

putational kernel arising in a variety of important scientific and engineering applications.

The stencil kernel constitutes a significant fraction of the execution times of these applica-

tions. Such applications comprise partial differential equation solvers, image processing,

computer vision, and simulations of climate, weather, and ocean. For example in the

image processing domain, the well-known variational methods which often boil down to a

system of equations that has to be solved numerically are a good example of stencil codes.

Although the problem has been thoroughly investigated and many approaches for allevi-

ating it have been proposed, all proposed approaches are either complicated which limits

their applicability or unsatisfactory in terms of the performance gains compared to what

the state-of-art hardware can offer.

1.3 Contributions

The idea behind all approaches for optimizing stencil computations is to group the domain

(space) and the stencil iterations together to shape the iteration space or space-time.

This iteration space is then partitioned into groups on which the stencil is applied. The

partitioning and the resulting groups of space-time are referred to as tiling and tiles,

respectively. The application of the stencil on the tiles happens in an atomic fashion, i.e.

the whole tile (space and time) is executed by one processor before it can proceed to the

next tile. In the literature, different tiling approaches are examined and they differ by tile

size, tile shape, the way stencil is executed on each tile, or other parameters which will be

explained later in this thesis. In Chapter 2, we explain how tiling is used to mitigate the

stencil problem in more detail.

4 CHAPTER 1. INTRODUCTION

In this thesis, we propose a set of high performance stencil algorithms that perform beyond

system bandwidth limitations. We approach the stencil problem from two perspectives.

The first assumes that the cache parameters are available at execution time and use them

to optimize the tile size so that the iterative stencil application incurs as few as possible

cache misses. In the literature, such algorithms are usually referred to as cache-aware

algorithms as opposed to cache-oblivious algorithms whereby no knowledge about cache

parameters is assumed. The second perspective is the cache-oblivious approach. We

present our cache-aware and cache-oblivious algorithms for stencil computations which

are targeted at symmetric multiprocessing (SMP) in the first part (Part I) of this thesis.

Symmetric multiprocessing systems (SMP) are characterized by the uniform main memory

access, i.e. memory access time does not depend on the location of memory relative to

the processor as opposed to the non-uniform memory access (NUMA) systems whereby

memory access time depends on the location of memory relative to the processor. In

the second part (Part II), an extension of the previous cache-aware and cache-oblivious

algorithms to NUMA systems is presented. An important computer vision application

which uses stencil computation at the core is presented in the third part (Part III).

In particular, we present a novel high performance variational framework for scene flow

estimation from one depth and one color cameras. In summary, our major contributions

are:

• A cache-aware framework for iterative stencil computations called CATS [58, 60].

• A cache-oblivious framework for iterative stencil computations called CORALS [59].

• A performance model which predicts the execution time of the CATS scheme based

on the number of incurred cache misses [57].

• Extensions of both CATS and CORALS (called nuCATS and nuCORALS, respec-

tively) which exhibit weak as well as strong scalability when the memory is logically

shared but physically distributed, the so called NUMA architectures [52].

• A novel variational scene flow estimation from color and depth cameras that can

benefit from the above algorithms.

The presented stencil algorithms can be applied to stencils of any order and size. Moreover,

the stencil coefficients may vary across the domain, i.e., the schemes support also a product

with a sparse banded matrix.

1.3.1 Limitations

The presented algorithms are targeted at iterative stencil computations on structured

rectangular grids. This means that high performance can be drawn from our algorithms

1.4. THESIS OUTLINE 5

when the stencil is applied multiple times on the domain. Also, our algorithms can not be

applied to stencil computations on non-structured grids or structured grids on arbitrary

domain shapes (e.g. circular domains), although they can be easily extended to suit the

latter type of domains.

1.4 Thesis Outline

The rest of this thesis is structured as follows. Chapter 2 introduces the memory hierarchy

which is regarded as the hardware approach to mitigate the memory wall problem. In this

Chapter, we also distinguish two milestones in the memory architecture which influence the

performance scalability of the memory bound algorithms in general. The first is symmetric

multiprocessing (SMP) architectures and the second is the non-uniform memory access

(NUMA) architectures. We also present the stencil problem and the previous efforts to

approach the problem. In this context, we present cache blocking, time skewing, and cache

oblivious stencil computation as the fundamental approaches to tackle the stencil problem.

The rest of this thesis is organized into the following parts.

Part I is particularly devoted to our cache-aware and cache-oblivious stencil algorithms

for symmetric multiprocessing systems (SMP). In Chapter 4, we propose a cache-aware

framework for stencil computations called cache accurate time skewing (CATS). The CATS

scheme mitigates all drawbacks of the state-of-art approaches to optimize stencil com-

putations on multidimensional domains and delivers high speedups over a recent code

transformation tool and an optimized naive approach.

In Chapter 5, we present a performance model for the naive and the CATS schemes which

uses the number of incurred cache misses to estimate the expected execution time on a

certain machine. We use the model to examine the impact of scaling system and cache

bandwidths on the naive and the CATS schemes for iterative stencil computations. We

purport that scaling the cache bandwidth is more important to squeeze performance from

time skewed iterative stencil computation algorithms.

Chapter 6 introduces our cache-oblivious parallelograms for iterative stencil computations

(CORALS) algorithm. We show how CORALS caters for data locality, parallelism, and

vectorization simultaneously in a cache-oblivious fashion. This high performance scheme

comes at the cost of an irregular work-load distribution for which we introduce a tightly

integrated load balancer to ensure a high utilization of all resources. At the time of

publishing the related paper, CORALS delivered unprecedented outstanding performance

which was not achievable with previous cache-oblivious stencil algorithms.

Part II is devoted to the variants of our cache-aware and cache-oblivious stencil algo-

6 CHAPTER 1. INTRODUCTION

rithms for non-uniform memory access (NUMA). In Chapter 7, we present nuCATS and

nuCORALS as the NUMA variants of the CATS and CORALS schemes. We examine the

scalability behavior of both CATS and CORALS on architectures with non uniform mem-

ory access (NUMA) memory systems, elicit the requirements for scalable high performance

schemes on the NUMA architectures, and design variants for both CATS and CORALS

that meet all these requirements. The presented comprehensive performance and scala-

bility comparisons against various benchmarks derived from machine characteristics and

a state-of-art code transformer and stencil compiler show the superiority of nuCATS and

nuCORALS and emphasize the importance of considering the NUMA aspect as a very

important one in any stencil code designated for scalable high performance computing.

Part III is devoted to applications. In particular we propose a novel variational framework

for computing the scene flow from an RGB image sequence and the geometric information

obtained from an active range sensor (Chapter 8).

We conclude this thesis in Chapter 9 and propose future directions for the research on this

topic.

1.5 List of publications

The work presented in this thesis has been published in the following papers:

• NUMA Aware Iterative Stencil Computations on Many-Core Systems

Mohammed Shaheen, Robert Strzodka

The 26th IEEE International Parallel & Distributed Processing Symposium (2012)

• Cache Accurate Time Skewing in Iterative Stencil Computations

Robert Strzodka, Mohammed Shaheen, Dawid Pajak, Hans-Peter Seidel

The 40th International Conference on Parallel Processing (2011)

• Impact of System and Cache Bandwidth on Stencil Computation Across

Multiple Processor Generations

Robert Strzodka, Mohammed Shaheen, Dawid Pajak

The 2nd Workshop on Applications for Multi and Many Core Processors (2011)

• Time Skewing Made Simple

Robert Strzodka, Mohammed Shaheen, Dawid Pajak

The 16th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel

Programming (PPoPP 2011)

• Cache Oblivious Parallelograms in Iterative Stencil Computations

1.5. LIST OF PUBLICATIONS 7

Robert Strzodka, Mohammed Shaheen, Dawid Pajak, Hans-Peter Seidel

The 24th ACM/SIGARCH International Conference on Supercomputing (2010)

• Overcoming Bandwidth Limitations in Visual Computing

Robert Strzodka, Mohammed Shaheen, Dawid Pajak

Visual Computing Research Conference (2009)

8 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals

From vacuum tubes to transistors, and from integrated circuits to very large scale integra-

tion (VLSI) and ultra large scale integration (ULSI), computers have witnessed notable

advances since their inception. In this chapter, we elaborate on some concepts and fea-

tures of modern computer systems which are very important to understand this thesis. In

particular we explain the hierarchical nature of computer memories nowadays. We also

define the locality principle which is crucial for performance and discuss the two mod-

ern alternatives for organizing multiprocessing systems. The last Section is dedicated for

stencil computations and the fundamental approaches to optimize their performance.

2.1 Memory Hierarchy

The memory system in nowadays machines is a hierarchy of memory modules with different

costs, capacities, and speeds. The closer a memory module to the processor, the faster,

smaller, and the more expensive it is. On the top of the hierarchy, reside the fastest

memory modules which are called the CPU registers, see Figure 2.1. Registers typically

hold the most frequently used data, e.g. loop variables. On the next level reside bigger

memory modules called the cache memories which are located on-chip and hold a subset

of the data and instructions stored in the relatively slow main memory. The cache itself

is a hierarchy with typically two or three levels. Each cache level typically holds a subset

of the data stored in the next level and is smaller in size. The main memory (RAM) is

located off chip and serves as a staging area for data stored on the slow hard disks.

For programmers, understanding how data is moved up and down the hierarchy is crucial

for writing high performance codes since well-written computer programs tend to access

data stored at a certain level of the hierarchy more often than they access the next lower

level. The idea here is to exploit the fact that data must be moved to the top of the

9

10 CHAPTER 2. FUNDAMENTALS

Level One Cache (L1)

Registers

D
ec

re
as

in
g

 S
iz

e

In
cr

ea
si

n
g

 C
o

st
 a

n
d

 S
p

ee
d

Level Two Cache (L2)

Main Memory

File Storage

Network Drivers

Figure 2.1. The Memory Hierarchy. Memory
speed and cost increase while size decreases
in the arrow direction. On chip memory is
written in blue, and off chip memory is written
in red.

Controller

CPU

CPU

CPU

M
em

o
ry

CPU

I/O

C
o
n
tro

ller

C
o
n
tro

ller

C
o
n
tro

ller
M
em

o
ry

C
o
n
tro

ller
M
em

o
ry

Memory

Memory

Memory

Memory

M
em

o
ry

Figure 2.2. Non Uniform Memory Archi-
tecture (NUMA). Each processor has its own
memory but can also access memories owned
by other processors. All processors share the
same address space.

hierarchy, typically registers and caches, before the first operation is performed on it. To

this end, the program has to be structured in such a way that allows it to perform all

required operations on the subset of data available in the cache. This relieves the processor

from stalling each time it needs any data item from that subset and does not find it in the

cache. This is called the cache locality principle and is discussed in detail in Section 2.2.

Overall, the memory hierarchy serves as a large block of memory which provides data to

the processor at the speed of the fast memory near the top of the hierarchy and at the

cost of the cheap memory near the bottom of the hierarchy.

2.2 Locality Principle

The cache memory is designed based on two concepts; the spatial and temporal locality of

data access. Spatial locality principle implies that if some data are referenced at any point

in time, it is likely that nearby data are also used in the computation. Temporal locality

implies that data referenced now are likely to be used again in the future.

The idea here is that when a processor needs data at a certain memory address, it first

checks the on chip memory, typically L1 cache, if data is not found there, a so-called

L1 cache miss occurs and data is sought in L2 cache, and again if it is not found, L2

cache miss occurs, and data is sought in the higher cache levels (typically L3) if available

before it is sought in the main memory and then higher levels of the hierarchy. Data

are then moved up on the hierarchy. Typically a block whose size equals cache line size

and contains the sought data is fetched to the cache. On one hand, fetching data in

blocks satisfies the spatial locality principle. On the other hand, keeping data in the cache

2.3. MEMORY CONFIGURATIONS IN MULTIPROCESSING SYSTEMS 11

satisfies the temporal locality principle. When data is sought and found in any cache level,

a so called cache hit happens and there is no need to search further down in the hierarchy

which adversely impacts the performance of the application. Our goal in this thesis is to

improve the performance of stencil computations by maximizing the cache hit rate and

minimizing the cache miss rate by maximizing data reuse once it is on chip (in cache).

Cache misses can be classified into

• Compulsory misses. The first access to data is always not in the cache, a compulsory

miss occurs and a block containing the sought data must be brought into the cache.

• Capacity misses. The cache size is limited so it cannot contain all the blocks needed

during execution of a program, capacity misses will occur due to blocks being evicted

and fetched again later. The goal of the work presented in this thesis is to minimize

this class of cache misses.

• Conflict misses. When two or more blocks of data frequently accessed by a program

map to the same cache line, a so called conflict miss occurs and entails the so called

cache thrashing. A lot of research is conducted to minimize this class of cache misses

on both hardware and software levels; however, this is outside the scope of this

thesis.

2.3 Memory Configurations in Multiprocessing Systems

The memory in a cluster of microprocessors can be configured in one multiprocessing

systems in two ways; non-uniform memory access (NUMA) and symmetric multiprocessing

(SMP). In NUMA architectures [48], memory is physically distributed but logically shared

meaning that each processor has its own local memory but also can access memory owned

by other processors. Symmetric multiprocessing (SMP) systems, on the other hand, use

a common bus to access a single shared main memory in the multiprocessing machine

architectures. However, when new processors are added to the machine, this bus can get

overloaded and thus becomes a performance bottleneck. Large multiprocessor systems use

NUMA to alleviate the latter problem in which processors can access their local memories

quickly compared to accessing memories owned by other processors which comes with

interprocessor communication overhead. While this can significantly improve performance

as long as data are localized, on the downside applications which need data movement

between processors can suffer from severe performance slowdowns.

Maintaining coherent caches in NUMA systems has a notable overhead. The reason is that

cache coherent non uniform memory access systems (ccNUMA) resort to interprocessor

12 CHAPTER 2. FUNDAMENTALS

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��������������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

X

Y

j

i

Figure 2.3. The 2D grid can
be used to discretize Poisson
Equation.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������������������

��������������������������������

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

c0c1

c4

c3

c2

Figure 2.4. A 2D 5-point
stencil with constant weights.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

−4

1

1

11

Figure 2.5. The 2D sten-
cil resulting from discretizing
Poisson equation.

communication between cache controllers to maintain a consistent image of the cached

memory locations among the caches.

Each processor with its local memory is called a NUMA node. Data is moved on the bus

between the clusters of NUMA nodes using scalable coherent interface (SCI) technology

which maintains a coherent cache or consistent data in the caches of the different proces-

sors [62]. Although the NUMA nature of an architecture is transparent, programmers can

effectively exploit the so called first-touch allocation [5] of operating systems to effectively

optimize their programs for this type of architectures. First touch allocation means that

a memory location is allocated in the local memory of the processor on which the process

which has touched that memory location first is running. In other words, when a process

running on processor x accesses for the first time (no other process has accessed it before)

a variable, e.g. for initialization, a page fault [62] happens since the memory has not

yet been allocated for the variable. The operating system allocated the memory on the

local memory of processor x. We show how we benefit from this feature to improve the

scalability of stencil computations in Chapter 7.

2.4 Stencil Computations

As mentioned in the Introduction (Chapter 1), stencil computations are a class of iterative

kernels which update each point in a grid with a weighted subset of its neighbours usually

multiple times, and they are referred to as iterative stencil computations.

Stencil computations are ubiquitous in scientific computing primarily because the action

of discretized local differential or integral operators can be expressed in this form. For

example, using finite differences [41] to discretize the Poisson equation ∆u = f on a 2D

2.4. STENCIL COMPUTATIONS 13

grid yields for each node (i, j) on the grid (Figure 2.3)

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j = h2fi,j (2.1)

This can be represented as a linear system of equations in the form

Au = b (2.2)

Solving large PDEs and large linear equation systems in reasonable time requires iterative

solvers, e.g. Gauss Seidel solvers [2]. Thus stencil computations are performed repeatedly

for many iterations until convergence.

Algorithm 1 Iterative stencil computations in 2D. The grid shown in Figure 2.4 has the di-
mensions XSIZE and YSIZE. The outer loop (t-loop) denotes the number of iterations needed for
convergence in case of e.g. a numerical solver. c0-c4 are the stencil weights

Iterative 2D Stencil ()
{

for(t = 0; t < T; t++) {
for(j = 0; j < YSIZE; j++) {
for(i = 0; i < ZSIZE; i++) {

A(i,j) = c0*A(i,j) + c1*A(i-1,j) + c2*A(i,j-1) + c3*A(i,j-1) + c4*A(i,j+1)
}}//x,y
}//t

}

Most often stencil computations are just a linear weighting of a small domain neigh-

borhood, See Figures 2.4 and 2.5. In this case, the stencil computation represents a

matrix vector products, with the position dependent stencil weights forming the rows of

the matrix, and the discrete values of the domain (the grid) forming the vector. The

arithmetic intensity [26] of such an operation is very low, with just one multiplication

and addition per every vector and stencil component read, cf. Algorithm 1. Even if

the stencil weights are constant and can be stored locally, there are still just two op-

erations per every memory read, whereas even latest triple channel architectures prefer

values of 8 and above, e.g. to balance computation and bandwidth on an Intel Core i7:

4(cores)·3.2(GHz)·2(SSE mad double2)/25.6GB/s = 8mad/8B there should be 8 multiply

and add (mad) operations for every double (8B). So only a non-linear stencil computations

with many operations could prevent it from being memory bound.

When the discrete vector is so small that it fits into the processor’s caches, the cache

bandwidth becomes the limiting factor (unless there are not enough parallel compute

units). However, this is not always the case since stencils in scientific computing typically

operate on data much bigger than the cache capacity.

14 CHAPTER 2. FUNDAMENTALS

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

x

t

15

30

45

60

Figure 2.6. Naive space-time traversal.
The entire domain progresses one timestep
after another. The evolution of the surfaces
separating the computed and not computed
part of the space-time is shown.

x

t

16

64

4

1

Figure 2.7. Hierarchical, cache oblivious
space-time traversal. It computes on small
tiles but the execution order groups them
into bigger and bigger structures further im-
proving the volume to surface ratio.

2.5 Space-time Traversals

This section describes the different space-time traversal algorithms. Given a discrete d-

dimensional spatial domain Ω:= {1, . . . ,W1} × . . .× {1, . . . ,Wd} with N := #Ω values we

want to apply the stencil S : {−s, . . . ,+s}d × Ω → R repeatedly to the entire domain

T -times. So our space-time domain is given by Ω × {0, . . . , T} with the initial values at

Ω × {0} and boundary values at ∂Ω × {0, . . . , T}, ∂Ω:= {0,W1 + 1} × . . . × {0,Wd + 1}.
Let us also define Ns as the number of non-zero elements in the stencil.

In the space-time Ω × {0, . . . , T}, there are TN values to be computed, and each output

values requires Ns input values, so in the worst case we will have TNNs accesses to main

memory. In this we assume a perfect cache of size Z with one word per cache line, full

associativity and optimal replacement strategy, so a cache miss (and thus an access to

main memory) occurs if and only if the required value is not present in the cache at that

time.

If we access values from timestep t− 1 to compute values at timestep t then, irrespective

of the scheme, we need to store two copies of Ω during the stencil application. Some

stencil computations like Gauss-Seidel [2], that use values from timestep t− 1 and t while

computing timestep t, can be performed in-place with just one copy of Ω, but we assume

the general case here. A consequence of capturing the entire computation state in two

copies of Ω is, that if these two copies fit into the cache, then just N cache misses will be

encountered no matter how large T is.

2.5. SPACE-TIME TRAVERSALS 15

2.5.1 Naive Stencil Computations

Given values at Ω × {t − 1} for any t ∈ {1, . . . , T}, we can compute values at the next

timestep Ω × {t} with d nested spatial loops with index xk, k ∈ {1, . . . , d} running from

1 to Wk respectively. In practice, the inner most loop x1 corresponds to the unit stride

direction, and the stride increases with every additional outer loop. Embedding all spatial

loops in an outer time loop with index t running from 1 to T , we traverse the space-time

in a naive way, progressing with the entire domain one timestep after another. Figure 2.6

visualizes this procedure.

In order to expand the computed part of the space-time without additional reads from

main memory we would need to cache the entire surface between the computed and not

computed part, i.e. the entire Ω × {t} would have to reside in cache, which is only

possible for fairly small Ω. However, partial data reuse during the spatial traversal of

Ω× {t} occurs naturally whenever lower dimensional sub-structures of Ω× {t− 1} of size

W1,W1 ·W2, . . . ,W1 · · ·Wd−1 stay in the cache after their first use, e.g. in 2D for a 3x3

stencil the line {1, . . . ,W1} × {5} × {t − 1} is needed for the computation of the three

lines {1, . . . ,W1}×{4, 5, 6}×{t}. Nevertheless, even with big caches this scheme performs

poorly because the data reuse occurs only between data of adjacent timesteps.

2.5.2 Cache Blocking

Cache blocking [21] is a cache utilization algorithm that attempts to minimize the cache

misses of a program and hence enhance the performance by increasing the use of data

already present in the cache. Cache blocking can yield a significant performance boost

on computation patterns which are characterized by the large discrepancy between the

floating point operations count and memory references needed. The basic idea here is to

apply the computation on small blocks which are contiguous in memory. A loop nest which

appears e.g. in matrix-matrix multiplication requires referencing memory locations that

are not on the unit-stride dimension causing frequent cache misses when the array sizes

exceed the cache size. Cache blocking restructures the loop nest so that the computation

proceeds on small blocks which fit in the cache. Blocking variants and optimal blocking

parameters have been a hot topic for research for many years.

Iterative stencil computations draw some benefit from cache blocking. Stencil computa-

tions are in essence a sparse matrix vector product. Cache blocking restructures compu-

tation to proceed on blocks of contiguous memory locations. However, in iterative stencil

computations, only one iteration can be applied to each block since data at the bound-

ary of each block depends on each other which limits the reuse from cache to the spatial

locality. A technique to use the temporal locality and thus increase the overall reuse is

16 CHAPTER 2. FUNDAMENTALS

called Time Skewing. In time skewing, multiple iterations can be applied to each block

by skewing the boundary of each block in time which is explained in the Section 2.5.3.

2.5.3 Time Skewing

When advancing certain blocks of the domain several stencil iterations ahead of the rest,

we need to respect data dependencies induced by the form of the stencil. So called time

skewing techniques have been described by Wolf [71], Song et al, [54] and Wonnacott [72].

Thereby, the time axis corresponds to the number of iterations the stencil is applied to the

entire spatial domain, in general this is not the same as the time parameter of the PDE

or other computational process in which the stencil is applied.

With this additional time axis we can form the space-time domain Ω× {0, . . . , T}, where

the data at Ω×{0} is given and the task is to compute a value for all remaining points in

the space-time, see Figure 2.6. The idea is to look at the entire iteration space formed by

the space and time, the space-time, and divide it into tiles that can be executed quickly

in cache. To proceed to the next step locally without access to main memory, stencil

computations require the neighbors of the previous iteration, therefore the tiles in the

space-time are skewed with respect to the time axis, see Fig. 2.7. The execution inside

the tile is very fast because these values are produced and consumed on-chip without

the need for a main memory access. Only at the tile boundaries additional data must

be brought into cache. If we know the L2 cache size in our CPU we can choose the

tile size such that the base of the tile fits into the cache. To optimize for the memory

hierarchy, we could further subdivide each tile into small tiles, whose bases fit into the L1

cache. All such parameters must be set conservatively, because any overestimation leads

to cache thrashing and a severe performance penalty. In a multi-threaded environment, it

is difficult to find the right parameters, since the available cache can be shared by different

application threads and it is not clear which portion of the cache is available to the stencil

computation at any given time. The tile dimensions form a large optimization space

which can be explored empirically [32] and systematically [35, 49], whereby it makes a big

difference if the exploration targets mainly data locality, or parallelism, or both equally.

2.5.4 Cache Oblivious Stencil Computation

A fourth approach is to use a hierarchical tiling that adapts automatically to the available

cache size, which is thus named as cache-oblivious [17]. This can be achieved by iteratively

tiling the space-time until small tiles are reached, see Figure 2.7. This hierarchical tiling

has the advantage of optimizing for the whole memory hierarchy even without explicitly

knowing its parameters (number of levels, size of each level,..etc). Despite the massive

2.5. SPACE-TIME TRAVERSALS 17

cache miss reduction induced by cache-oblivious schemes, practically translating that into

performance is fairly difficult. The programmer has to find a good tradeoff between the

overhead associated with deepening the recursion tree (cache oblivious schemes are often

implemented as a recursive algorithm) and the performance gains from running the scheme

on data stored on deeper levels (closer to the processing elements) of the memory hierarchy.

18 CHAPTER 2. FUNDAMENTALS

Chapter 3

Related Work

Naive implementations of stencil computations suffer heavily from system bandwidth lim-

itations. Most approaches to optimize stencil computations look at the problem from a

cache locality perspective and therefore propose optimization techniques that can be clas-

sified into two categories. The first assumes that the cache parameters (cache size, cache

hierarchy, and cache line size) are known beforehand, hence algorithms from this cate-

gory are often referred to as cache aware algorithms. The second category is called cache

oblivious algorithms. Although cache oblivious algorithms do not assume any knowledge

about the cache parameters, in the asymptote, they use the cache as competently as the

cache aware algorithms [19]. A more general approach, however, looks at the stencil as a

special case of a loop nest with data dependencies and proposes loop nest optimizations

accordingly. In this Chapter we review the efforts to optimize stencil computations in the

literature and underline our work within the different approaches.

3.1 Cache Aware Stencil Optimization

Cache blocking techniques have been developed to optimize for the spatial data locality.

Lam et al. [36] study the impact of blocking on the performance of a matrix multiplication

algorithm and conclude that the performance of blocked algorithms is highly dependent

on the block and problem sizes. Kamil et al. [31] present recent empirical results from

applying different blocking techniques in stencil computation algorithms. Frumkin and van

der Wijngaart [20] have tight lower and upper bounds on the number of data loads. Dursun

et al. [16] propose a multilevel parallelization framework for high order stencils based on

domain decomposition and massage passing to exchange the subdomain boundaries on

a cluster of CPUs. In [13], Datta el al. perform comprehensive stencil computations

optimization and auto-tuning with both cache-aware and cache-oblivious approaches on a

19

20 CHAPTER 3. RELATED WORK

variety of state-of-the-art architectures, including GPUs.

Although recent results show large benefits in applying these techniques on multi-core

architectures; however, no matter how efficiently we load the data into the caches, for data

exceeding the cache size, we still read every vector component at least once per timestep

from the main memory and for repeated applications of the stencil, this is far too much. To

further reduce access to main memory, we need to exploit the outer loops that repeat the

stencil computations over the same domain and make use of temporal locality. The reason

is that spatial locality optimizations performed in the aforementioned works remain by

construction bounded by the peak system bandwidth. In view of the exponentially growing

discrepancy between peak system bandwidth and peak computational performance, this

is a severe limitation for all current multi-core devices and even more so for future many-

core devices. When advancing certain parts of the domain several stencil iterations ahead

of the rest, we need to respect data dependencies induced by the form of the stencil.

So called time skewing techniques have been described by Wolf [71], Song et al, [54],

McCalpin and Wonnacott [40], and Wonnacott [72]. Thereby, the time axis corresponds

to the number of iterations that the stencil is applied to the entire spatial domain, e.g.,

this can be the explicit time steps of a PDE solver, or the iterations of an iterative solver

for linear equation systems. The general idea of time skewing is to tile the space-time

into space-time tiles that can be executed with very few cache misses and ideally also in

parallel. These requirements lead to skewed tiles in the space- time, see Chapter 2.

Common to all of the above approaches in case of a multi-dimensional domain, is a multi-

dimensional tiling strategy: the time and multiple (not necessarily all) spatial dimensions

are divided in order to form space-time tiles of approximately the same diameter in all

divided dimensions. This minimizes the surface area to volume ratio of the space-time

tiles and thus reduces cache misses. It is the best general strategy to traverse a space-time

of unknown size [30]. However, knowing the typical cache size per core and domain sizes.

In [58] and [60], we contribute an algorithm that does the exact opposite: we tile only

one spatial dimension (resulting in enormous space-time tiles) and use the relatively large

caches of nowadays cores to reduce the 2D or 3D problem to a 1D problem, where spatial

tiling is not necessary and instead a wavefront traversal can be used. The resulting large

space-time tiles can not only be traversed in a cache efficient fashion. They also allow for a

SIMD friendly computation along the non-tiled unit stride dimension. On the other hand,

while previous approaches resort to multilevel tiling to utilize the memory hierarchy, we

only tile for the last cache level and thus maintain large tiles and wavefronts. Despite

its simplicity, our scheme achieves superior results in comparison to the conventional

multidimensional and multilevel tiling schemes, see Chapter 4.

Stencil optimization efforts were not only confined to CPUs, e.g. Williams et al. [68]

and Datta et al. [14] investigate various stencil optimization techniques on the Cell BE.

3.2. CACHE OBLIVIOUS STENCIL OPTIMIZATION 21

Christen et al. [12] apply various optimization techniques to stencil computations arising

in the biomedical simulations. The latter work targets the Cell BE and GPU architectures.

Kamil et al. [33] devise a microbenchmark called Stanza Triad to evaluate the impact of

modern memory subsystem design on 3D stencil computations. In particular they evaluate

the effectiveness of the prefetching engine in cache-based systems. They also develop a

proxy for general stencil computations from which they derive a memory cost model for

quantifying the performance of cache blocking stencil computations. In Chapter 5, we

devise a performance model for naive and time skewing stencil codes based on the number

of incurred cache misses. Our performance model provides useful insights into the most

effective improvements for stencil computations on future processors.

3.2 Cache Oblivious Stencil Optimization

Schemes that are able to exploit the memory hierarchy without explicitly knowing its size

are first described in [47] and are called cache oblivious algorithms. Frigo and Strumpen [17]

introduced a cache oblivious stencil scheme that divides the iteration space recursively into

smaller and smaller space-time tiles and thus generates high temporal locality on all cache

levels without knowing its sizes. The cache misses are greatly reduced leading to the

desired reduction of system bandwidth requirements, however, the performance gains are

relatively small in comparison to this reduction. Strumpen and Frigo [56] report a 2.2x

speedup against the naive implementation of a 1D Lax-Wendroff kernel on a IBM Power5

system for periodic and constant boundary conditions after optimizing the software as-

pects of the scheme. After multifold optimizations and parameter tuning Kamil et al. [32]

achieve a 4.17x speedup on the Power5 (15 GB/s theoretical peak bandwidth), 1.62x on an

Itanium2 (6.4 GB/s) and 1.59x on an Opteron (5.2 GB/s) system for a 7-point stencil (two

distinct coefficient values) on a 2563 domain for periodic boundary conditions. However,

for constant boundary conditions the optimized cache oblivious scheme is only faster on

the Opteron achieving a 2x speedup at best. The compared naive code is optimized with

ghost cells and compiled with optimization flags.

The above optimizations of the cache oblivious scheme are all directed at single-threaded

execution. Frigo and Strumpen later analyzed multi-threaded cache oblivious algorithms [18].

One example deals with the cache misses of a 1D stencil code with parallel tile cuts. Blel-

loch et al. [6] discuss the construction of nested parallel algorithms with low cache com-

plexity in the cache oblivious model for various algorithms including sparse matrix vector

multiplication. However, these are mainly theoretical papers. In [59], we present a new

cache oblivious scheme for iterative stencil computations that delivers the high speedups

promised by the great cache miss reduction and clearly outperforms more general trans-

22 CHAPTER 3. RELATED WORK

formation tools and optimized naive code. The most impressive results of our scheme are

achieved in 2D. While a synthetic benchmark iterates over registers and performs 25.1

GFLOPS, our scheme iterates over a gigabyte large domain and performs 19.1 GFLOPS

which are about 75% of the benchmark performance. This is an exceptionally outstanding

performance as if the system bandwidth is hardly an issue.

3.3 Loop nest Optimization

A more general approach to improve the temporal locality of iterative stencil computa-

tions is to see them as a special case of perfectly or imperfectly nested loops with data

dependencies, see [53, 1, 24]. In this category, optimized and parallelized stencil kernels are

automatically generated based on hardware models. Li and Song [38] present a framework

for automatic stencil loops tiling based on memory cost analysis from which the tiling

parameters (tile size and shape) that minimize the capacity misses are derived. Rivera

and Tseng [51] develop a cost model for selecting tiling parameters and use it to find an

optimal tiling transformation for 3D Jacobi kernels. Christen et al. [11] present an auto-

tuner and a code generation framework for parallel stencil code based on domain specific

description of the stencil kernel. The user of the framework can either choose from a set of

predefined strategies or design a custom one to find optimal optimization on the machine

in use. The polyhedral model provides an abstraction for valid transformations of nested

loops. For an automatic source-to-source translation three steps are required: dependence

analysis, transformations in the polyhedral model and code generation. Bondhugula et

al. [7] present a complete system called PluTo [45] comprising all three steps. Given a

source file it generates the optimized transformed code that can be compiled instead of the

original source. Obviously, PluTo cannot successfully exploit data dependencies hidden

behind complex index or pointer arithmetic, but it performs very well when arrays are

allocated statically and data dependencies are expressed clearly. Other state-of-art tiling

schemes for nested loops are HiTLoG [27, 34] and PrimeTile [46, 25]. Harton et al. [25]

compare the performance of these tools. Recently, the Pochoir stencil compiler [63] uses

the parallel cache oblivious algorithm [18] to optimize a stencil kernel specified in a domain

specific stencil language. Although Pochoir succeeds in leveraging performance from the

cache oblivious stencil algorithm of Frigo and Strumpen, the achieved performance is still

poor and for certain problem size lies in the vicinity of a carefully optimized naive scheme.

Part I

Iterative Stencil Computations for
Symmetric Multiprocessing

Systems (SMP)

Chapter 4

Cache Accurate Time Skewing

In this Chapter, we present our cache aware time skewing scheme (CATS) for symmetric

multiprocessing (SMP) memory systems. CATS breaks the memory wall for a certain class

of iterative stencil computations. A stencil computation, even with constant weights, is a

completely memory-bound algorithm. For example, for a large 3D domain of 5003 doubles

and 100 iterations on a quad-core Xeon X5482 3.2GHz system, a hand-vectorized and

parallelized naive 7-point stencil implementation achieves only 1.4 GFLOPS because the

system memory bandwidth limits the performance. Although many efforts have been

undertaken to improve the performance of such nested loops, for large data sets they still

lag far behind the performance of a synthetic machine peak benchmark. The state-of-art

automatic locality optimizer PluTo [7] achieves 3.7 GFLOPS for the above stencil which

constitutes less than 10% of the measured computational peak benchmark on the same

machine (40.8 GFLOPS). CATS, on the other hand, achieves 13 GFLOPS which is 32%

of the peak.

4.1 Previous Work

For small discrete vectors that fit into the processor’s caches, the cache bandwidth is the

decisive factor of performance, but stencils in scientific computing typically operate on data

much bigger than the cache capacity. Substantial work has been performed to optimize

the data locality in such cases up to the point where tight lower and upper bounds on the

number of data loads can be given [20]. Recent results show large benefits in applying these

techniques on multi-core architectures [31]. But no matter how efficiently we load the data

into the caches, for data exceeding the cache size, we still read every vector component

at least once per timestep from the main memory and for repeated applications of the

stencil, this is far too much. To further reduce access to main memory, we need to exploit

25

26 CHAPTER 4. CACHE ACCURATE TIME SKEWING

the outer loops that repeat the stencil computations over the same domain and make use

of temporal locality. When advancing certain parts of the domain several stencil iterations

ahead of the rest, we need to respect data dependencies induced by the form of the stencil.

So called time skewing techniques have been described by Wolf [71], Song et al, [54] and

Wonnacott [72]. Thereby, the time axis corresponds to the number of iterations that the

stencil is applied to the entire spatial domain, e.g., this can be the explicit time steps of

a PDE solver, or the iterations of an iterative solver for linear equation systems.

With this additional time axis we can form the space-time domain Ω× {0, . . . , T}, where

the data at Ω × {0} is given and the task is to compute a value for all remaining points

in the space-time, see Figure 4.1. Now, the general idea of time skewing is to tile the

space-time into space-time tiles that can be executed with very few cache misses and

ideally also in parallel. These requirements lead to skewed tiles in the space-time, see

Figure 4.2. The tile dimensions form a large optimization space which can be explored

empirically [32, 14, 70] and systematically [35, 49, 43], whereby it makes a big difference if

the exploration targets mainly data locality, or parallelism, or both equally. A more general

approach for optimizing iterative stencil computations is to use a loop transformation and

parallelization framework [22, 34, 7, 25, 4]. We compare our results against one of them in

detail, namely PluTo [7], which is an easy-to-use fully automatic tool and a good indicator

of the performance that can be achieved immediately on these nested loops without any

further user interaction.

4.2 Contributions

In case of a multi-dimensional domain, all schemes mentioned in Section 4.1 resort to the

so called multi-dimensional tiling strategy: the time and multiple (not necessarily all)

spatial dimensions are divided in order to form space-time tiles of approximately the same

diameter in all divided dimensions, our scheme [60], in contrast, tiles only one spatial

dimension (resulting in enormous space-time tiles) and use the relatively large caches of

nowadays cores to reduce the 2D or 3D problem to a 1D problem, where spatial tiling

is not necessary and instead a wavefront traversal can be used. Multi-dimensional tiling

minimizes the surface area to volume ratio of the space-time tiles and thus reduces cache

misses. It is the best general strategy to traverse a space-time of unknown size [30].

However, knowing the typical cache size of 128KiB–4MiB per core and domain sizes (100–

1000)d, d = 2, 3, our scheme creates very large tiles which are much larger than the cache

size and not only processes them in a cache efficient, but also a SIMD friendly manner.

Another difference is the treatment of the memory hierarchy. Previous approaches use a

multi-level tiling strategy: they hierarchically subdivide the space-time tiles either explic-

4.3. CACHE ACCURATE TIME SKEWING (CATS) 27

itly or automatically with the idea that the basis of the sub-tiles will fit into a deeper cache

level (e.g. L1) and thus the sub-tile will be processed faster. However, considering the

concrete bandwidth and compute ratios, we explore the opposite direction of ignoring the

memory hierarchy and instead maximizing the wavefront size in the last cache level (L2

in our case). The idea here is that large wavefronts maximize the number of space-time

points that are processed on-chip in a highly regular fashion, while processing data from

the L2 cache is not a big limitation.

We use a vectorized kernel for the actual computation as otherwise, the data processing

could not keep up with the bandwidth of the L2 cache and the memory-bound stencil

would become unnecessarily compute-bound. In other words, the vectorization ensures

that the kernel remains memory-bound but cannot accelerate the execution beyond that.

We keep the rest of the scheme as simple as possible. We use a single form for all tiles and

choose a minimalist parallelization approach: the threads are started once at the beginning

and are persistent throughout the computation; furthermore the thread to tile assignment

is known at compile-time leading to simple synchronization. This simplicity is of high

importance since when benchmark performance is sought in applications, code simplicity

is of great benefit to the compiler and hardware. Moreover, dynamic load-balancing is

not necessary for tiles of equal size, and replacing barrier synchronization by tile-to-tile

synchronization minimizes the idle time. As a result, our scheme achieves about 40%

of the computational peak of a Xeon machine on 2D domains, whereas the state-of-art

PluTo [7] achieves only 20% of this peak on the same 2D domain. This ratio falls off to

32% on a 3D domain of size 5003; however, it is still clearly superior to the performance

of PluTo which exhibits a sharper fall off achieving only less than 10% of the peak.

4.3 Cache Accurate Time Skewing (CATS)

This section describes our new cache accurate time skewing schemes in comparison to the

naive scheme. We first describe some specific variants of CATS and then explain how they

combine to give the general CATS scheme.

On a discrete d-dimensional spatial domain Ω:= {1, . . . ,W1} × . . . × {1, . . . ,Wd} with

N := #Ω values we want to apply a stencil S : Ω×{−s, . . . ,+s}d → R of order s repeatedly

to the entire domain T -times. In case of a constant stencil, S does not depend on Ω and

has a certain number of non-zero values NS := #S, otherwise we assume that the stencil

is position dependent, S(x) : {−s, . . . ,+s}d → R, x ∈ Ω and has the same number of

non-zero values NS for every position, and N ·NS values overall.

Our space-time domain is given by Ω× {0, . . . , T} with the initial values at Ω× {0} and

28 CHAPTER 4. CACHE ACCURATE TIME SKEWING

Y

t

3

1
2

1
2
3

Figure 4.1. Naive space-time traversal in
parallel with three threads, cf. Alg. 2. Regions
of the same color are operated on in parallel,
synchronization takes place before starting a
different color region. The entire domain pro-
gresses one timestep after another in sync in
the direction of the arrows. X-dimension goes
into the page.

Y

 10

 20

 30

t
2
3

1

Figure 4.2. Cache accurate time skewing
with one skewing dimension (CATS1) in par-
allel with three threads, cf. Alg. 3. Regions
of the same color are operated on in parallel,
synchronization takes place before starting a
different color region. The fine lines show the
consecutive wavefront positions and the arrows
the traversal direction in each parallelogram.
X-dimension goes into the page.

boundary values at ∂Ω×{0, . . . , T}, ∂Ω:= {0,W1+1}×. . .×{0,Wd+1}. In the space-time

Ω × {0, . . . , T} there are TN values to be computed, and each output value requires NS

input values. So in case of a constant stencil we perform TNNS reads and TN writes; in

case of a variable stencil (banded matrix) we perform 2TNNS reads and TN writes.

If we access values from timestep t−1 to compute values at timestep t then, irrespective of

the scheme, we need to store two copies of Ω during the stencil application. Some stencil

computations like Gauss-Seidel, that use values from timestep t−1 and t while computing

timestep t, can be performed in-place with just one copy of Ω. If these one/two copies

of Ω fit into the cache, then all reads and writes will happen in the cache no matter how

large T is. The naive scheme performs much better in this case, as can be seen for the 0.5

million elements case in the Figures. 4.6 and 4.8.

4.3.1 No Skewing - NaiveSSE Scheme

The naive stencil implementation has no data reuse between different iterations. The

entire spatial domain advances one timestep after another, see Figure 4.1 and Alg. 2.

The outermost spatial loop is parallelized with multiple threads, whereby each thread

operates on one tile of the domain. The tiles are of the same size so the threads can be

synchronized with little overhead after each timestep. The innermost spatial loop (unit

stride dimension) is hand-vectorized with SSE2 intrinsics.

4.3. CACHE ACCURATE TIME SKEWING (CATS) 29

Algorithm 2 The naive scheme for iterative stencil computations in 2D. The spatial domain
is cut along the y-dimension into tiles for parallel execution and ystart(tid), yend(tid) are the tile
bounds in dependence on the thread ID tid.

naive 2D ()
{

for(t = 0; t < T; t++) {
for(y = ystart(tid); y < yend(tid); y++) { // parallelized
for(x = 0; x < WIDTH; x++) { // vectorized

apply 2D stencil at position (x,y,t);
}}//x,y
synchronize threads;
}//t

}

4.3.2 Skewing One Dimension - CATS1 Scheme

Algorithm 3 CATS1 for iterative stencil computations in 2D. The loop bounds ystart(tid),
yend(tid) represent the extent of the tile (parallelogram) along the traversal dimension y. The loop
bounds tstart(ts,y), tend(ts,y) represent the extent of the wavefront along the dimension t within
the tile, see Figure4.2.

CATS1 2D ()
{

compute height TZ from cache size (Eq. 4.1);
for(ts = 0; ts < T/TZ ; ts++) {

for(y = ystart(tid); y < yend(tid); y++) { // parallelized
if(y == ystart(tid+1)) {

wait for (tid+1) to finish its left tile border;
}
for(t = tstart(ts,y); t < tend(ts,y); t++) {

for(x = 0; x < WIDTH; x++) { // vectorized
apply 2D stencil at position (x,y-t,t);
}//x

}//t
}//y
synchronize threads;
}//ts

}

The general idea behind time skewing schemes is to compute multiple timesteps at once

in certain parts of the domain thus exploiting the temporal producer-consumer locality.

For this purpose we tile one spatial dimension. The plane formed by the chosen spatial

dimension and the time dimension is divided into space-time tiles, see Figure 4.2. The tiles

are skewed to respect the temporal data dependencies induced by the stencil. Processing

within the space-time tile has high temporal locality, while data at the tile borders, in

general, has to be reloaded from main memory. Skewed tile borders require more data

transfer than straight tile borders. The main decision is on the form of the tiles, aiming

30 CHAPTER 4. CACHE ACCURATE TIME SKEWING

for maximal temporal locality and parallel processing of tiles. We use parallelogram tiles

with split-tiling and wavefront processing (Figure 4.2).

These ideas have been described for multiple processors instead of cores already at the

onset of time skewing methods by Wonnacott [72], but even in CATS1 we use them

differently for multi-dimensional domains. In particular, we show that multi-dimensional

tiling of multi-dimensional domains is not necessary. Instead of diagonal wavefronts, we

consider axis-aligned wavefronts, and our tile placement is also different. The pipelined

temporal blocking by Wittmann et al. [70] and Wellein et al. [67] can also be seen as

a variant of space-time wavefront processing. However, they use the term ’wavefront’

completely differently, describing the parallelization along the time axis, which benefits

from shared caches between multiple threads. This type of ’wavefront’ does not exist in our

scheme, because we use a different parallelization approach that does not rely on shared

caches; instead we construct large space-time wavefronts (using Wonnacott’s space-time

notion of a wavefront) for the purpose of the data locality maximization.

In wavefront processing we sweep with a skewed space-time surface (the wavefront) through

the tile along a designated traversal dimension (see the arrows in Figure 4.2), maintaining

a certain number of the most recent wavefronts in the cache. The computation takes place

at the wavefront reusing the data from the previous wavefronts. New data must only be

fetched from main memory at the tile borders. For a stencil width of 2s+1 in the traversal

dimension, 2s wavefronts plus some temporary variables must reside in an ideal cache for

perfect data reuse, but because of limited cache associativity and cache line granularity, a

certain value CS ∈ (2s, 2s+1] is used in practice, e.g., Wonnacott [72] uses the pessimistic

CS := 3 for a 3-wide stencil, we conservatively choose CS := 2s + 0.8 after a cache miss

analysis.

The main advantage of wavefront processing is that the tiles can be much bigger than

the cache, because only CS wavefronts must reside in the cache for a perfect producer-

consumer locality within the tile. One driving idea behind our cache accurate time skewing

schemes is to radically maximize the wavefront size at the expense of any other locality

optimizations. In case of one dimensional skewing, CATS1 maximizes the wavefront size

such that CS wavefronts barely fit into the private L2 cache of one thread. Let Z be the

size of the private L2 cache and Wmax the size of the largest domain dimension, the one

to be traversed, then the size of our wavefront is TZN/Wmax and we can compute the

maximal temporal extent of our tile TZ in dependence on Z as

TZ := bZWmax/ (CSN)c . (4.1)

Wonnacott [72] considers diagonal wavefronts {(x, y, t) ∈ Tile | x + y + t = const} in

2D and concludes that their maximum size in dependence on the domain size makes it

4.3. CACHE ACCURATE TIME SKEWING (CATS) 31

impractical for large domains, so both dimensions must be tiled. The validity of this

argument depends on what large means. For typical cache and domain sizes, we argue in

the opposite direction that a wavefront traversal actually makes multi-dimensional tiling

unnecessary. The maximum size of our axis-aligned {(x, y, t) ∈ Tile | y + t = const}
wavefronts grows with the domain size in the same fashion, the growth is proportional

to N/Wmax, but in 2D this is not a big problem even for a small cache of 128KiB, e.g.,

3 · 10 · 500 · 8B = 120KB < 128KiB, which means that on a 5002 domain of doubles we

could perform TZ = 10 consecutive timesteps in cache. The next section explains that

one-dimensional tiling is sufficient even in case of larger (e.g. 100002) domains in 2D and

3D. The reasons for choosing axis-aligned over diagonal wavefronts are the much simpler

indexing and more favorable memory access pattern. Axis-aligned refers to the spatial

alignment, all wavefronts are always skewed with respect to time.

The time dimension is tiled according to TZ and Alg. 3 shows the entire CATS1 algorithm

in 2D. Figure 4.2 (TZ = 10) shows with thin lines the different positions of the wavefronts

and how they progress through the space-time tiles in the direction of the arrows. In

CATS1, the parallelization takes place along the same dimension (y-loop in Alg. 4.2)

as the wavefront traversal. All threads can start computing concurrently within their

parallelograms, there is only a data dependency at the right border of each parallelogram,

and thread tid has to wait for thread tid+1 if it reaches its right border faster than

tid+1 finished its computation there. For almost all domains the width of the tile is

much bigger than its height, so in practice the thread tid does not have to wait. This

type of dependence resolution between parallelogram tiles is called split-tiling [35]. After

completing the wavefront traversal for all tiles in [0, TZ) the threads are synchronized with

little overhead as the tiles are of equal size, and all tiles in [TZ , 2TZ) are processed in the

same fashion, cf. ts-loop in Alg. 4.2.

Wonnacott [72] and Krishnamoorthy et al. [35] deal with multi-processor systems, so in

order to reduce the communication, they align the base of the higher parallelogram with

the top of the lower one in the split-tiling scheme. However, this causes load-balancing

problems which we avoid by placing the parallelograms simply axis-aligned on top of each

other, see Figure 4.2. Because the CPU cores have access to the same main memory,

this has no negative effect for us. Irrespective of the parallelogram placement strategy,

there is basically no data reuse at the tile borders, because the entire cache is constantly

overwritten by the traversing wavefronts.

In 2D and higher dimensions, the innermost loop in CATS1 runs across the entire unit

stride dimension (x-loop in CATS1 2D() in Alg. 4.2) so its vectorized execution ensures

that the algorithm remains memory-bound when processing data from the L2 cache. In

3D, there are two loops with fixed bounds that span the entire domain. However, these

inner loops also mean that more data resides in the wavefront, e.g., the wavefront in 3D

32 CHAPTER 4. CACHE ACCURATE TIME SKEWING

t

40

60

20

80

1
2
3

x
Figure 4.3. Cache accurate time skewing
with two skewing dimensions (CATS2) in par-
allel with three threads, cf. Alg. 4. The col-
ors show the a-priori thread to tile assignment,
but there is no global synchronization, each
diamond waits on the two below. This figure
shows the (x,t)-plane for CATS2 2D(), each of
the diamonds extends also in the y-dimension
(which goes into the page) forming a diamond
tube, see Figure 4.4.

Figure 4.4. In CATS2 2D() (Alg. 4) each
thread sweeps a diamond-shaped wavefront
through a diamond tube region of the space-
time. First all values within the current wave-
front are computed then the wavefront moves
by 1 along the y-dimension. No unnecessary
cache misses occur inside the diamond tube
although it is much bigger than the cache.

extends in three dimensions (x,y,t)∈[0,WIDTH)×[0,HEIGHT)×[0,TZ). So if WIDTH and

HEIGHT are large, the computed TZ will be smaller than one and we fall back to the naive

scheme. Apparently, multi-dimensional tiling of the domain is required in 3D after all,

but we present a different solution in the next section.

4.3.3 Skewing Two Dimensions - CATS2 Scheme

CATS1 is a special case because it uses the same spatial dimension for tiling and the

wavefront traversal. CATS2 and all higher schemes have a distinct traversal dimension

and tiling dimensions. For CATS2 one dimension is tiled, and a second is traversed with

the wavefronts. This way we reduce the wavefront size in comparison to CATS1 without

the need for multi-dimensional tiling.

CATS2 requires two distinct dimensions so it can be applied only in 2D and higher di-

mensional spatial domains. Figure 4.3 shows the (x,t)-plane with the tiling dimension x

in case of CATS2 2D() in Alg. 4. In the (x,t)-plane, the space-time tiles have the shape

of diamonds. Together with the traversal dimension (y in 2D), the diamond forms the

corresponding space-time tile, a diamond tube as depicted in Figure 4.4. The diamonds in

Figure 4.3 are the projections of the diamond tubes onto the (x,t)-plane. The processing

4.3. CACHE ACCURATE TIME SKEWING (CATS) 33

Algorithm 4 CATS2 for iterative stencil computations in 2D. The loop bounds 0, HEIGHT
represent the extent of the tile (diamond tube) along the traversal dimension y. The loop bounds
tstart(dia,y), tend(dia,y) and xstart(dia,y,t), xend(dia,y,t) represent the extent of the wavefront along
the t and x dimension within the tile (diamond tube), see Figure.4.4.

CATS2 2D ()
{

compute diamond size from cache size (Eq. 4.2);
forall(diamond dia∈diamondSet(tid)){ // parallelized

wait on the two diamonds below to finish;
for(y = 0; y < HEIGHT; y++) {

for(t = tstart(dia,y); t < tend(dia,y); t++) {
for(x = xstart(dia,y,t); x < xend(dia,y,t); x++) {

apply 2D stencil at position (x,y-t,t);//↑vectorized
}//x

}//t
}//y
}//dia

}

of a diamond tube is similar to the traversal in CATS1: a wavefront sweeps through it

along the traversal dimension.

Figure 4.4 visualizes the processing of a 2D spatial domain. Therein the diamond tube is

a 3D space-time tile, and the wavefront a skewed 2D diamond. For a 3D spatial domain,

the diamond tube is 4D and the wavefront is 3D, therefore, the problem is still reduced

to a 1D traversal. The key insight is that a wavefront traversal can be performed with a

wavefront of arbitrary dimensionality and arbitrary shape. Thus multi-dimensional tiling

is not necessary for generating temporal locality and we can process much larger space-

time tiles than usual in a cache efficient manner. This is a new idea in wavefront processing

of multi-dimensional domains.

We use diamonds in the tiling dimension because of their favorable surface area to volume

ratio (cache miss reduction), they are independent of each other when arranged side-by-

side (parallel execution), and require only one tile form to cover the plane (simplicity).

Orozco and Gao [44] give a quantitative analysis for the first property, however, they use

the diamond shape only in 1D with a traditional bottom-up processing of the tile in cache.

The second property avoids the problem of dependent tiles encountered by Liu and Li [39],

where they have to relax the numerical properties of the scheme in order to gain better

parallelization.

As in CATS1, we pursue the goal of maximizing the wavefront size without reverting to

multi-dimensional tiling. Let Z be the private L2 cache size of each thread, Wmax be the

size of the largest domain dimension which is traversed, and Wmax2 be the second largest

which is tiled. Let BZ be the width of the single-form diamond, then B2
Z/(2s) is its area,

34 CHAPTER 4. CACHE ACCURATE TIME SKEWING

and BZ can be computed as

BZ :=
⌊
(2sZWmaxWmax2/ (CSN))

1
2

⌋
. (4.2)

This value determines how many diamonds will fit side by side along the tiling dimension.

As we consider large domains, we have sufficiently many independent diamonds to occupy

multiple threads. Should this not be the case because of a small tiling dimension, then

we can swap the traversal and tiling dimensions or switch to CATS1 which will tile and

traverse the same dimension.

Orozco and Gao [44] process their diamonds in rows with a global synchronization be-

tween rows, but this is not necessary as Figure 4.3 shows. Because the computation in

each diamond depends only on the two diamonds below it, the processing can be easily

parallelized irrespective of how many diamonds reside in a row. Moreover, we do not need

a global synchronization among threads, instead every diamond simply waits on the two

diamonds below it before it starts processing, see the dia-loop in Alg. 4. The a-priori

thread to tile assignment may still lead to some idle time, but this is much smaller than

Figure 4.3 suggests at first, e.g., the thread that computes the tiny triangle at the right

border continues immediately with the third diamond in the second row because the two

green diamonds below have already finished.

In the previous section, we have seen that CATS1 runs into problems on large 3D domains.

CATS2 has no problems in 3D because the size of the wavefront inside the diamond tube

that needs to reside in the cache is now further restricted by BZ . Only on enormous 3D

or higher dimensional domains, that do not fit into a typical main memory size of 8 GiB,

we would need to switch to higher order CATS schemes that are discussed next.

4.3.4 Multiple Skewing - General CATS Scheme

By adding more tiling dimensions we can define CATS3, CATS4, etc. In these schemes

we still have one traversal dimension but multiple tiling dimensions. The additional com-

plexity in comparison to CATS2 is the more complicated form of space-time tiles, which

corresponds to more loops with variable bounds in the algorithm. But even if enormous

domain sizes force us to tile multiple dimensions in CATS3 and higher, in contrast to

classical multi-dimensional tiling approaches, we tile two dimensions less, one is reserved

for the wavefront traversal, the other for vectorization.

When tiling multiple dimensions, we can freely choose which of them should also be

parallelized. The tiled and parallelized dimensions use the diamond shape, whereas the

tiled-only dimensions may also use space dependent tiles like the parallelograms. On multi-

core processors it is sufficient to parallelize just one of the tiling dimensions. Only when

4.4. RESULTS 35

extracting hundredfold parallelism on many-core processors, we would also parallelize more

tiling dimensions.

In general, a d-dimensional domain admits the use of the CATSk scheme with k = 1, . . . , d.

The difference d − k specifies how many dimensions have not been skewed and thus how

many inner loops with fixed bounds that scheme has. All values traversed in these loops

must reside in the cache, and therefore this difference is usually 0, 1 or 2. If d − k = 0

then the cache size poses no problem at all, but the execution of the innermost loop is less

efficient because of the variable loop bounds. For common cache sizes of 128KiB–4MiB

per core and domain sizes (100–1000)d, choosing CATS(d− 1) for a d-dimensional spatial

domain is a safe choice that gives fixed loop bounds for the unit stride dimension. We

define the general CATS scheme to be this combination of the CATSk schemes. We only

deviate in two cases: for 1D problems CATS0 is equivalent to the naive scheme so CATS1

is the better choice; for very large dimension sizes, e.g., 100002 CATS1 would hold the

values from the inner loop only for very few timesteps simultaneously and then switching

to CATS2 despite the variable loop bounds is better. As a rule of thumb, we switch from

CATS(k − 1) to CATSk when the wavefront in CATS(k − 1) would extend over less than

10 timesteps.

4.4 Results

4.4.1 Experimental Setup

We compare the performance of the following schemes on iterative stencil computations:

• NaiveSSE: Our own hand-parallelized (pthreads [42]) and vectorized (SSE2) naive

stencil scheme as described in Section 4.3.1.

• PluTo [7]: Code transformed by the automatic parallelizer and locality optimizer

for multicores PluTo, version 0.4.2.

• PeakDP: The measured computational peak in double precision. We obtain this

value by performing a sequence of independent multiply-add operations in regis-

ters. PeakDP models the absolute upper bound for any computation on a machine.

The ultimate goal of optimized stencil computations is to achieve a high fraction

of this peak as no optimization of stencil codes will reach this value because of the

dependency between the stencil operations.

• CATS: Our general cache accurate time skewing scheme with the selection of in-

dividual schemes described in Section 4.3.4. The innermost loop uses a vectorized

(SSE2) kernel and parallelization uses pthreads.

36 CHAPTER 4. CACHE ACCURATE TIME SKEWING

Table 4.1. Hardware configurations of our test machines. The machines have been chosen such
that one (Opteron) has a modest ratio between measured system and cache bandwidth, while the
other (Xeon) has a high ratio. This ratio is the main source of acceleration of time skewing against
naive schemes.
The measured bandwidth numbers have been obtained with the RAMspeed benchmarking tool
and the double precision (DP) FLOPS numbers come from our own SSE benchmarks. For the
peak DP number we perform independent multiply-add operations on registers, for the stencil DP
number we run the inner stencil computation (products and accumulation) on registers. This value
is lower because of the read-after-write dependencies in the computation. All benchmarks show
results for the entire machine achieved with 4 threads.

Brand AMD Intel
Processor Opteron 2218 Xeon X5482
Code-named Santa Rosa Harpertown
Frequency 2.6 GHz 3.2 GHz
Number of sockets 2 1
Cores per socket 2 4
L1 Cache per core 64 KiB 32 KiB
L2 Cache per core 1 MiB 3 MiB

Operating system Linux 64 bit Linux 64 bit
Parallelization 4 pthreads 4 pthreads
Vectorization SSE2 SSE2
Compiler g++ 4.3.2 icpc 11.1

Measured L1 Bandwidth 79.3 GB/s 194.6 GB/s
Measured L2 Bandwidth 40.6 GB/s 64.2 GB/s
Measured Sys. Bandwidth 11.2 GB/s 6.20 GB/s
Measured Peak DP FLOPS 20.8 G 40.8 G

L2 Band./Sys. Bandwidth 3.6 10.4
Peak DP/(Sys. Band./8B) 14.9 52.6
Balanced arith. intensity for Sys.

Our hardware configuration is listed in Table 4.1. As general compiler options we use -O3

-funroll-loops and for the icpc compiler also -xHOST -no-prec-div. The NaiveSSE scheme

does not require any parameters, it only needs a scalar and a vectorized kernel that are

called from the nested loops.

For PluTo-0.4.2 we use -tile -l2tile to tile the code for the L1 and L2 cache, -multipipe to ex-

tract multiple degrees of parallelism, -parallel to parallelize the code using OpenMP, -unroll

to automatically unroll up to two loops, and -nofuse to separate all strongly-connected com-

ponents in the dependence graphs. The options -unroll -nonuse do not make a difference in

performance in our tests. In 3D, we decided to omit the option -l2tile as the transforma-

tion process was taking hours and did not provide performance gains. We use the original

examples provided with PluTo and modify them from constant to variable stencil where

necessary. It is not feasible to hand-vectorize the transformed code because of the high

number of generated loops, e.g., 142 loops for the constant 7-point stencil in 3D. However,

4.4. RESULTS 37

we ensure the best possible performance by retransforming and recompiling the examples

every time with compile-time known domain sizes and aggressive icpc auto-vectorization,

the compilation process alone takes about 15 minutes.

CATS takes as parameters the size of the last cache level (L2 for us), the order of the stencil

s, the memory size of a data type and optionally additional cache requirements, e.g., the

matrix coefficients. CATS is implemented as a library not a code generation framework.

The kernel may perform arbitrary index calculations and non-linear operations on the

data within the stencil region {−s, . . . ,+s}d and on the specified amount of additional

values like matrix coefficients. Beside the parameters, the user only provides a scalar and

a vectorized version of the kernel, the same kernels used by the optimized naive scheme.

Our test applications comprise constant and variable stencils in 2D and 3D with 0.5 to 128

million double precision elements. In 2D, we have squares ranging from 7062 to 112822

elements and in 3D, cubes from 803 to 5003. In case of constant stencils, this amounts to

a memory consumption of up to 2GiB for the two vectors, and in case of variable stencils

we use at most 32 million elements consuming 0.5GiB plus 1.75GiB for the matrix in 3D.

We use a general 5-point stencil in 2D (5 muls plus 4 adds equal 9 flops) and a 7-point

in 3D (7 muls plus 6 adds equal 13 flops). The number of iterations is either T = 100

(solid graphs in the figures), or T = 10 (dashed graphs in the figures). The last stencil

application is the FDTD 2D example (11 flops) that comes with PluTo.

All figures show the execution time in seconds against the number of elements in millions

with both axes being logarithmic. The number of elements doubles between two consecu-

tive graph points, but the doubling is not totally exact because of the square or cubic root

operations involved in computing a square or cube with a predefined number of elements.

4.4.2 Constant Stencil

In this section, we present results for constant stencils of order s = 1. Figures 4.5 and 4.6

show the execution times for 2D spatial domains and Figures 4.7 and 4.8 for 3D. From

the graphs, we can draw the following common conclusions:

• Large slowdown of the naive scheme on the Xeon when transitioning from

0.5 to 1.0 million elements.

The Xeon has 12MiB of L2 cache (cf. Table 4.1), so that two vectors of 0.5 million

elements (2 · 8B · 0.5M = 8MB) fit into the cache. The one million elements case

already requires 16MB, which exceed the cache size, so the performance of the naive

scheme suffers a large slowdown and from thereon becomes completely limited by

the available system bandwidth. The CATS scheme, on the other hand, has a more

consistent scaling and simply ignores the fact that the data does not fit into the

38 CHAPTER 4. CACHE ACCURATE TIME SKEWING

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n

 s
e

c

Data size in million elements

Constant 5-point stencil on 2D domain

NaiveSSE Opteron 2218 T = 100
PluTo Opteron 2218 T = 100
CATS Opteron 2218 T = 100

NaiveSSE Opteron 2218 T = 10
PluTo Opteron 2218 T = 10
CATS Opteron 2218 T = 10

Figure 4.5. Timings of the Opteron 2218 with
constant stencils in 2D. GFLOPS for 128 million
elements with T = 100: NaiveSSE Opteron 3.4,
PluTo Opteron 3.6, CATS Opteron 5.8 (28% of
PeakDP).

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n

 s
e

c

Data size in million elements

Constant 5-point stencil on 2D domain

NaiveSSE Xeon X5482 T = 100
PluTo Xeon X5482 T = 100
CATS Xeon X5482 T = 100

NaiveSSE Xeon X5482 T = 10
PluTo Xeon X5482 T = 10
CATS Xeon X5482 T = 10

Figure 4.6. Timings of the Xeon X5482 with
constant stencils in 2D. GFLOPS for 128 mil-
lion elements with T = 100: NaiveSSE Xeon
1.9, PluTo Xeon 8.2, CATS Xeon 16.2 (40% of
PeakDP).

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n

 s
e

c

Data size in million elements

Constant 7-point stencil on 3D domain

NaiveSSE Opteron 2218 T = 100
PluTo Opteron 2218 T = 100
CATS Opteron 2218 T = 100

NaiveSSE Opteron 2218 T = 10
PluTo Opteron 2218 T = 10
CATS Opteron 2218 T = 10

Figure 4.7. Timings of the Opteron 2218 with
constant stencils in 3D. GFLOPS for 128 million
elements with T = 100: NaiveSSE Opteron 2.4,
PluTo Opteron 1.5, CATS Opteron 6.4 (31% of
PeakDP).

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64 128

Ti
m

e
in

 s
ec

Data size in million elements

Constant 7-point stencil on 3D domain

NaiveSSE Xeon X5482 T = 100
PluTo Xeon X5482 T = 100
CATS Xeon X5482 T = 100

NaiveSSE Xeon X5482 T = 10
PluTo Xeon X5482 T = 10
CATS Xeon X5482 T = 10

Figure 4.8. Timings of the Xeon X5482 with
constant stencils in 3D. GFLOPS for 128 mil-
lion elements with T = 100: NaiveSSE Xeon 1.4,
PluTo Xeon 3.7, CATS Xeon 13 (32% of PeakDP).

cache any more. This causes the CATS graph for T = 100 iterations on the Xeon

in 2D (Figure 4.6) and 3D (Figure 4.8) to come close to the naive graph for T = 10

iterations on large problems. The PluTo scheme also scales consistently but at a

much lower level. The Opteron does not show the jump on the naive scheme because

its 4MiB of L2 cache can not accommodate two copies of the 0.5 million elements,

so it is already in the slow mode determined by the system bandwidth.

• The Opteron is faster than the Xeon on the naive scheme but slower on

PluTo and CATS.

The faster execution on the naive schemes is directly related to the higher system

bandwith on this machine as it is the limiting performance factor, see Table 4.1.

For the time skewing PluTo and CATS schemes, on the other hand, the system

bandwidth is less relevant even when the data size exceeds the cache size more than

hundredfold, as in the case of the 128 million element examples with 1GiB of data

4.4. RESULTS 39

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32

T
im

e
 i
n

 s
e

c

Data size in million elements

Double precision 5-band matrix on 2D domain

NaiveSSE Opteron 2218 T = 100
PluTo Opteron 2218 T = 100
CATS Opteron 2218 T = 100

NaiveSSE Opteron 2218 T = 10
PluTo Opteron 2218 T = 10
CATS Opteron 2218 T = 10

Figure 4.9. Timings of the Opteron 2218 with
a banded matrix in 2D. GFLOPS for 32 million
elements with T = 100: NaiveSSE Opteron 1.1,
PluTo Opteron 1.2, CATS Opteron 2.8 (13% of
PeakDP).

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32

T
im

e
 i
n

 s
e

c

Data size in million elements

Double precision 5-band matrix on 2D domain

NaiveSSE Xeon X5482 T = 100
PluTo Xeon X5482 T = 100
CATS Xeon X5482 T = 100

NaiveSSE Xeon X5482 T = 10
PluTo Xeon X5482 T = 10
CATS Xeon X5482 T = 10

Figure 4.10. Timings of the Xeon X5482 with a
banded matrix in 2D. GFLOPS for 32 million el-
ements with T = 100: NaiveSSE Xeon 0.6, PluTo
Xeon 3.1, CATS Xeon 4.9 (12% of PeakDP).

for each vector. The cache bandwidth is the decisive factor, hence the Xeon is better

and consequently shows better results despite its low system bandwidth.

For the achievable acceleration factor the ratio of cache to system bandwidth (3.6

Opteron, 10.4 Xeon, see Table 4.1) and the scheme’s ability to exploit this ratio are

important. CATS exploits this ratio well outperforming the naive scheme on the

Opteron by a factor 2 on average, and on the Xeon by at least 7.5x. PluTo does also

benefit from the ratio but to a smaller extent. It performs on average slower than

the naive scheme on the Opteron, but faster on the Xeon due to the bigger ratio on

the Xeon.

• Performance in 2D is generally better than in 3D.

This is not surprising as the surface area to volume ratio is worse in 3D but the

effect on the schemes varies substantially. The naive scheme in 3D maintains the

same performance as in 2D on smaller domains, which makes sense because the same

amount of data is transported and system bandwidth is the limiting factor. Beyond

a certain size in 3D, four 2D slices (3 input plus 1 output) of the domain do not

fit into the cache anymore so that stencil neighbors have to be brought into cache

multiple times and performance degrades. PluTo works best in 2D where it is on

par with the naive scheme on the Opteron and much faster on the Xeon. In 3D the

performance degrades by more than 2x in both cases. CATS also slows down in 3D

but only by around 20%, so the speedup over PluTo grows to more than 3.5x.

4.4.3 Banded Matrix

If the stencil is not constant but rather varies across the domain, then its application

corresponds to a banded matrix vector product. In Section 5.3 we assumed NS as the

40 CHAPTER 4. CACHE ACCURATE TIME SKEWING

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32

T
im

e
 i
n

 s
e

c

Data size in million elements

Double precision 7-band matrix on 3D domain

NaiveSSE Opteron 2218 T = 100
PluTo Opteron 2218 T = 100
CATS Opteron 2218 T = 100

NaiveSSE Opteron 2218 T = 10
PluTo Opteron 2218 T = 10
CATS Opteron 2218 T = 10

Figure 4.11. Timings of the Opteron 2218 with
a banded matrix in 3D. GFLOPS for 32 million
elements with T = 100: NaiveSSE Opteron 1.0,
PluTo Opteron 0.4, CATS Opteron 1.5 (7% of
PeakDP).

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32

T
im

e
 i
n

 s
e

c

Data size in million elements

Double precision 7-band matrix on 3D domain

NaiveSSE Xeon X5482 T = 100
PluTo Xeon X5482 T = 100

CATS Xeon X5482 T = 100

NaiveSSE Xeon X5482 T = 10
PluTo Xeon X5482 T = 10

CATS Xeon X5482 T = 10

Figure 4.12. Timings of the Xeon X5482 with a
banded matrix in 3D. GFLOPS for 32 million el-
ements with T = 100: NaiveSSE Xeon 0.4, PluTo
Xeon 0.5, CATS Xeon 2.5 (6% of PeakDP).

number of non-empty stencil elements, this corresponds to the number of bands in the

matrix. For the space-time traversal this means that not only the vector components

(domain values) must reside in the cache but also the corresponding matrix entries. We

need the matrix entries only for the current wavefront during the computation, so CS must

be replaced by CS +NS in our formulas Eq. 4.1 and Eq. 4.2 that compute the maximum

extent of the wavefront. We run performance tests with T = 10 and T = 100 iterations

shown in Figures 4.9 and 4.10 for 2D and Figures 4.11 and 4.12 for 3D. We make similar

observations to the constant stencil case.

• The Opteron is faster than the Xeon on the naive scheme but slower on PluTo

and CATS. The main reason is the same as for the constant stencil: for the naive

scheme the system bandwidth matters most while for the time skewing schemes the

cache bandwidth is more important. However, the performance ratios between the

Opteron and the Xeon for the naive scheme are now larger and for PluTo and CATS

smaller than before, because the additional matrix transfers increases the influence

of the system bandwidth speed on all schemes.

• Performance in 2D is generally better than in 3D. This effect is further enforced by

the fact that the 2D matrix has NS = 5 bands while the 3D matrix has NS = 7.

This time the naive scheme is the least affected by the transition from 2D to 3D.

Therefore, CATS’s advantage over the naive scheme drops from 2.5x to 1.5x on

the Opteron and from 8.2x to 6.2x on the Xeon. For PluTo it means that equal

performance with the naive scheme drops to worse on the Opteron and much better

performance drops to equal on the Xeon.

4.4. RESULTS 41

4.4.4 Scalability

GFLOPS of . . . 1 thread 2 threads 4 threads

CATS Opteron 1.7 3.3 6.4

CATS Xeon 5 9.6 13

The table above shows how CATS scales from one to four threads on the constant 7-point

stencil for the 128 million elements problem in 3D with T = 100 iterations. Although this

is a memory-bound problem, both the Opteron and the Xeon scale almost perfectly from

one to two threads. Supported by higher system bandwidth (11.2 GB/s) the Opteron also

scales well to four threads, while the lower system bandwidth (6.20 GB/s) of the Xeon

limits the gains from additional cores.

4.4.5 High Order Stencils

GFLOPS of . . . s = 1 s = 2 s = 3

NaiveSSE Opteron 2.4 3.1 3.1

PluTo Opteron 1.5 0.9 0.9

CATS Opteron 6.4 7.5 4.7

GFLOPS of . . . s = 1 s = 2 s = 3

NaiveSSE Xeon 1.4 1.9 1.7

PluTo Xeon 3.7 4.3 1.9

CATS Xeon 13.0 8.5 4.6

Up to now we have shown results for the most common stencils of order s = 1. Stencils

with larger orders worsen the surface area to volume ratio of the space-time tiles. Above

we compare the performance of the constant 7-point stencil of order, the 13-point stencil

of order 2, and the 19-point stencil of order 3 for the 128 million elements problem in

3D with T = 100 iterations. We see that CATS maintains a clear advantage in all cases

despite the different performance dependence of the schemes on the order s.

4.4.6 Application: FDTD Solver

The previous sections analyzed basic stencil computations on a scalar domain with con-

stant or variable weights in detail. In practice, these basic stencil computations appear

in different variations. In this section we examine one such variation that is often used

to demonstrate the efficiency of time skewing schemes, namely a 2D Finite Difference

Time Domain (FDTD) electromagnetic kernel. This kernel is basically used to solve the

discretized Maxwell’s equations numerically [61].

42 CHAPTER 4. CACHE ACCURATE TIME SKEWING

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64

T
im

e
 i
n

 s
e

c

Data size in million elements

2D FDTD

Naive Opteron 2218 T = 100
PluTo Opteron 2218 T = 100
CATS Opteron 2218 T = 100

Naive Opteron 2218 T = 10
PluTo Opteron 2218 T = 10
CATS Opteron 2218 T = 10

Figure 4.13. Timings of the Opteron 2218 for
FDTD in 2D. GFLOPS for 64 million elements
with T = 100: NaiveSSE Opteron 1.6, PluTo
Opteron 1.9, CATS Opteron 2.7 .

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64

T
im

e
 i
n

 s
e

c

Data size in million elements

2D FDTD

NaiveSSE Xeon X5482 T = 100

PluTo Xeon X5482 T = 100

CATS Xeon X5482 T = 100

Naive Xeon X5482 T = 10

PluTo Xeon X5482 T = 10

CATS Xeon X5482 T = 10

Figure 4.14. Timings of the Xeon X5482 for
FDTD in 2D. GFLOPS for 64 million elements
with T = 100: NaiveSSE Xeon 1.2, PluTo Xeon
2.0, CATS Xeon 6.4 .

For PluTo, we use the code given in the paper [7], which is also included as a software

example. For CATS we fuse the three loops in 2D FDTD manually to obtain a single

kernel. Then we write a vectorized version of this kernel and pass its pointer to the naive

scheme and CATS. Figures. 4.13 and 4.14 show the results. Because this is a vector valued

problem with 3 doubles for each point in the space-time, more data must be kept in cache

which forces the wavefronts to become smaller. Not surprisingly the results are a slowed

down version of the 2D constant stencil tests in Figures. 4.5 and 4.6. PluTo has a small

advantage over the naive implementation of around 1.2x on the Opteron and a clearer

advantage of 1.7x on the Xeon. CATS beats the naive scheme by 1.7x (1.4x vs. PluTo)

on the Opteron and 5.3x (3.2x vs. PluTo) on the Xeon.

4.5 Conclusion

We have presented CATS, a cache accurate time skewing scheme for iterative stencil

computations on multi-core processors. It is based on a novel usage of a wavefront traversal

in multi-dimensional time skewing, an unconventional departure from the complexity of

the commonly used techniques of multi-dimensional tiling and multi-level tiling. The

strategy is particularly successful on constant stencils of order 1, where the algorithm

breaks the dependence on the low system bandwidth and achieves a high fraction of

the computational peak in 2D and 3D even when operating on gigabyte large domains.

This is a significant improvement over the optimized naive scheme and the state-of-art

in automatic optimization. For large stencils and banded matrices the system bandwidth

limits the performance again but in comparison CATS maintains a clear advantage.

We expand the state-of-art by proposing a scheme that delivers high performance stencil

computations via data locality, regular memory access, and vectorization optimizations.

4.5. CONCLUSION 43

Previous schemes recourse to complex techniques such as multi-dimensional and multi-

level tiling to optimize the stencil codes on multi-dimensional domains whereas CATS

shows how to obtain better performance results without using any of these complicated

techniques.

44 CHAPTER 4. CACHE ACCURATE TIME SKEWING

Chapter 5

Performance Modelling

In this Chapter, we analyze in detail the impact of the system and cache bandwidths on

efficient stencil computations. While the naive implementation is known to be memory

bound and to scale linearly with the system bandwidth, for the time skewing methods

the situation is quite different because cache misses are reduced to such great extent that

the cache bandwidth becomes an important performance factor. For this more general

situation we develop a performance model, validate it across many processor generations

and thus determine how scaling the system and cache bandwidths influences hardware

performance [57]. These insights are useful for identifying the most performance relevant

features of future systems with respect to stencil computations.

The next section discusses our hardware and software setup for the performance and

cache analysis. Section 5.3 compares the execution times of the naive and the CATS

scheme (Chapter 4) for varying problem sizes. In Section 5.4 we vary the cache size and

explain how CATS can predict the performance on virtual machines with different cache

sizes. Based on the previous data, the performance model is developed in Section 5.5 and

Section 5.6 validates it and estimates the performance for new hardware configurations.

5.1 Hardware Setup

Table 5.1 lists the configuration of our hardware. We refer to the machines by the processor

name throughout the paper. The first two represent the older generation of single-core,

multi-CPU workstations. The last two offer four cores either in one or two sockets and

feature integrated memory controllers. The Core i7 940 is also used to simulate a Core i5

dual-core system by executing only two threads on this processor and this configuration

is labeled Core i5 Sim.

45

46 CHAPTER 5. PERFORMANCE MODELLING

Table 5.1. Hardware configurations of our machines. The first half of the table refers to the
technical specification of the CPUs. The second half presents results of synthetic benchmarks on
these machines.

Brand Intel AMD Intel AMD Intel

Processor Xeon MP Opteron 250 Core i5 Sim Opteron 2218 Core i7 940

Code-named Gallatin Troy - Santa Rosa Bloomfield

Frequency 3.06 GHz 2.4 GHz 2.93 GHz 2.6 GHz 2.93 Hz

Number of sockets 2 2 1 2 1

Cores per socket 1 1 2 2 4

L1 Cache per core 8 KiB 64 KiB 32 KiB 64 KiB 32 KiB

L2 Cache per core 512 KiB 1024 KiB 256 KiB 1024 KiB 256 KiB

L3 Cache per core 1024 KiB - 4096 KiB - 2048 KiB

Number of threads 2 2 2 4 4

Measured L1 Bandwidth 44.4 GB/s 36.4 GB/s 91.1 GB/s 79.3 GB/s 182.3 GB/s

Measured L2 Bandwidth 24.3 GB/s 21.0 GB/s 61.3 GB/s 40.6 GB/s 124.0 GB/s

Measured L3 Bandwidth 17.3 GB/s - 44.5 GB/s - 88.2 GB/s

Measured Sys. Bandwidth 3.2 GB/s 6.4 GB/s 14.4 GB/s 11.2 GB/s 17.8 GB/s

Last Level Cache/Sys. Band. 5.4 3.3 3.3 3.6 3.6

Measured Peak DP FLOPS 11.5 G 9.6 G 19.6 G 20.1 G 39.1 G

The second half of the table presents results of synthetic benchmarks. The ’number of

threads’ row shows how many threads were used during the computation. This number

is fixed on each machine. The bandwidth benchmarks have been performed with the

RAMspeed benchmarking tool with SSE reads. All x86-64 capable machines run 64-bit

Linux and the GNU C++ 4.3 compiler. On the Xeon MP machine we use 32-bit Linux

and the GNU C++ 4.2.1 compiler.

The measured system floating point performance numbers come from our own benchmarks.

The peak performance value (see Table 5.1) is the maximum number of independent alter-

nating multiply and add instructions executed per second on all available SSE units. This

gives us the maximum overall system performance. However, as our performance model

assumes faster computation than data fetching from the cache (the problem is cache band-

width bound in the cache), we are more interested in the application specific performance

of stencil computations. Therefore, we implement the 7-point stencil computation in reg-

isters as a series of accumulations of products and present the results as measured stencil

double precision (DP) FLOPS in Table 5.1. This value is lower than the measured peak

performance because of the dependency (read-after-write) between the instructions in the

pipeline.

5.2 Software Setup

We use two schemes for the tests with iterative stencil computations. The naive scheme

consists of perfectly nested for-loops that traverse the entire spatial domain and the outer

most loop that repeats the stencil application multiple times (NaiveSSE 3D() in Algo-

5.2. SOFTWARE SETUP 47

rithm 5). The cache accurate time skewing (CATS) scheme exploits temporal locality

between the consecutive iterations of the stencil. It also consists of nested for-loops and

allows similar parallelization and vectorization as the naive scheme, only there are more

loops and they appear in different order(CATS 3D() in Algorithm 5). Both schemes are

vectorized with SSE2 intrinsics on the inner most loop and parallelized using pthreads on

the outer most loop using the number of threads according to Table 5.1.

Algorithm 5 Cache accurate time skewing in 3D. Only few transformations are necessary to
obtain much faster parallel C++ code from the naive implementation. Function stencil SSE()
contains the stencil computation vectorized along the x-axis from 0 to WIDTH. The tile sizes are
chosen such that they fit into the last level cache, more details are given in [58].

void NaiveSSE 3D ()
{

for(int t = 0; t < T; t++) {
for(int z = 0; z < DEPTH; z++) {

for(int y = 0; y < HEIGHT; y++) {
stencil SSE(t, z, y, 0, WIDTH);

}//y
}//z
}//t

}

void CATS 3D (int threadID)
{

for(TileIt tile = tileSet[threadID].begin();
tile != tileSet[threadID].end(); ++tile) {

wait on dependencies(tile);

for(int z = 0; z < DEPTH; z++) {
for(int t = tstart(tile,z); t < tend(tile,z); t++) {
for(int y = ystart(tile,z,t); y < yend(tile,z,t); y++) {

stencil SSE(t, z-s*t, y, 0, WIDTH);
}}//t,y
}//z

}//tile
}

All our performance tests share certain properties:

• computation in double precision,

• ping-pong iterations with two vectors,

• constant general 7-point stencil in 3D (7 multiplications plus 6 additions) with

Dirichlet boundary condition,

• 3D domains ranging from 0.5 to 128 million elements, corresponding to 8MiB-2GiB

of data.

48 CHAPTER 5. PERFORMANCE MODELLING

 0.01

 0.1

 1

 10

 100

 1000

 0.5 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
tim

e
in

 s
ec

Data size in million elements

Execution time of Naive on 3D domains

Xeon MP
Opteron 250
Core i5 Sim

Opteron 2218
Core i7 940

Figure 5.1. Execution time of the naive scheme
for varying domain sizes in 3D.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.5 1 2 4 8 16 32 64 128

S
pe

ed
up

Data size in million elements

Speedup of CATS over naive on 3D domains

Xeon MP
Opteron 250
Core i5 Sim

Opteron 2218
Core i7 940

Figure 5.2. Speedup of the CATS scheme
against the naive scheme for varying domain sizes
in 3D.

We have also tested some other configurations with single precision, variable stencils

(banded matrix), in-place stencil updates, and 1D and 2D domains; however, we have

obtained qualitatively similar relations as discussed below although the quantitative re-

sults can vary significantly with the parameters. In the following, we prefer to deliver

a consistent analysis from start to end for the specified parameters rather than jumping

between different parameter configurations.

In Section 5.4, we simulate cache misses of the naive and CATS scheme. The cache miss

analysis is performed using the cachegrind profiler from the valgrind 3.2.1 tool suite. We

simulate a processor with one cache level and interpret recorded read and write misses as

the misses of the last cache level of our machines. Because cachegrind does not simulate

multi-threaded programs realistically, we record the cache misses separately for each thread

on its piece of the domain and sum up the values. This can lead to slightly higher values

because of some additional data reuse in the shared L3 cache, but Section 5.4 shows that

for CATS this is not a problem because there is hardly any additional data reuse apart

from the data explicitly accounted for reuse.

5.3 Naive and Time Skewed Stencil Computations

The naive scheme implementation progresses with the entire domain one timestep after the

other. As the domain size is usually bigger than the cache, each pass thrashes the cache

contents entirely. This makes the naive scheme depend mainly on the system bandwidth for

performance. Figure 5.1 shows the linear relation between the domain size and execution

time. The only noticeable non-linearity can be observed for the Core machines at the

transition from 0.5 to 1 million elements. This jump is caused by the large L3 cache size

when two 0.5 million vectors fit completely into the cache, but the two 1.0 million vectors

do not.

5.3. NAIVE AND TIME SKEWED STENCIL COMPUTATIONS 49

 0.01

 0.1

 1

 10

 100

 1000

 0.5 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
tim

e
in

 s
ec

Data size in million elements

Execution time of CATS on 3D domains using 1MB cache

Xeon MP
Opteron 250
Core i5 Sim

Opteron 2218
Core i7 940

Figure 5.3. Execution time of the CATS scheme
for varying domain sizes in 3D with cache size pa-
rameter 1024KiB.

 0.01

 0.1

 1

 10

 100

 1000

 0.5 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
tim

e
in

 s
ec

Data size in million elements

Execution time of CATS on 3D domains using 128KB cache

Xeon MP
Opteron 250
Core i5 Sim

Opteron 2218
Core i7 940

Figure 5.4. Execution time of the CATS scheme
for varying domain sizes in 3D with cache size pa-
rameter 128KiB.

Figure 5.2 shows the speedup of the CATS scheme over the naive implementation. For

domains with moderate size, the naive implementation benefits from the cache capacity

and reuses data elements from neighboring 2D slices. But the speedup increases in a

step when neighboring 2D slices do not fit into the cache any more. As the Core i5 Sim

machine runs with 4MiB of cache memory per thread, this increase happens only at 64

million elements, which is much later than in the case of any other platform.

The maximum speedup value is closely related to the ratio of the last cache level band-

width to the system bandwidth (see Table 5.1). Systems with larger discrepancy between

bandwidths benefit more from the increased temporal locality of the computation in CATS

and effectively generate larger speedups. An example of such a system is the Xeon MP

which has the largest ratio of bandwidths namely 5.4 (Table 5.1). Accordingly, for 32

million elements, CATS achieves a speedup of almost 5 times. For the same domain size,

the Core i7 940 with a bandwidth ratio of 3.6 accelerates by a 3.5 factor. A similar result is

observed for the Opteron 2218 machine. The smaller speedups on the last two systems are

not surprising because of their integrated memory controllers and the dual/triple channel

memory interfaces providing up to 6 times more memory bandwidth than the Xeon MP.

Figures 5.3 and 5.4 show the execution times of the CATS scheme. The algorithm requires

prior knowledge about the available cache size per thread. We use 1024KiB and 128KiB

for the cache size settings, respectively. For both configurations CATS shows consistently

faster execution time than the naive scheme. The previously noticed non-linear perfor-

mance scaling at the transition from 0.5 to 1 million elements on the Core machines is no

longer visible. The CATS scheme scales consistently with the domain size no matter if

the entire domain fits into the cache or not. Clearly, in the case of the 128KiB cache size,

CATS exploits temporal localities less efficiently compared to the 1MiB setting, resulting

in increased execution time. But the 128KiB configuration of CATS is still noticeably

faster than the naive implementation, e.g. for 32 million elements, the speedup is 2.6x on

50 CHAPTER 5. PERFORMANCE MODELLING

 1

 2

 3

 4

 5

 6

 7

 8

 64 128 256 512 1024

E
xe

cu
tio

n
tim

e
in

 s
ec

Cache size in KiB

Performance of CATS with varying cache size (8 million elements)

Xeon MP
Opteron 250

Opteron 2218
Core i5 Sim
Core i7 940

Figure 5.5. Execution time of CATS for a 2003

domain and varying cache sizes.

 20

 40

 60

 80

 100

 120

 64 128 256 512 1024

E
xe

cu
tio

n
tim

e
in

 s
ec

Cache size in KiB

Performance of CATS with varying cache size (64 million elements)

Xeon MP
Opteron 250

Opteron 2218
Core i5 Sim
Core i7 940

Figure 5.6. Execution time of CATS for a 4003

domain and varying cache sizes.

the Xeon MP compared to 4.7x for the 1MiB cache setting. On machines with smaller

cache to system memory bandwidth ratio like Core i5 or Opteron 2218, the speedup is less

impressive, but the execution times are still half that of the naive approach.

For the naive scheme the Opteron 250 is faster than Xeon MP (see Figure 5.1) by a factor

of 1.8x. As the algorithm is memory bound, the difference in performance directly relates

to the difference in the measured system bandwidths: 6.4 GB/s for the Opteron 250 vs. 3.2

GB/s for the Xeon MP (see Table 5.1). However, for the CATS scheme, cache bandwidth

is the main performance limiting factor. For the Opteron 250 and the Xeon MP, the cache

bandwidth is approximately equal and therefore the CATS scheme performs similarly on

both machines.

A comparison of the Core systems (see Figures 5.3 and 5.4) leads to similar conclusions.

Both systems are equal in terms of system bandwidth, effectively achieving the same

results for the naive approach. However, for the CATS scheme the quad-core Core i7 940

performs significantly better. The difference comes from the increased aggregated cache

bandwidth when all four cores are in use. In general, one can say that the performance

order of the machines in Figure 5.1 reflects the ranking in system bandwidth, whereby

their order in Figure 5.3 reflects the ranking in cache bandwidth.

5.4 Varying Cache Size

The previous section has shown two different plots of CATS performance depending on the

passed cache size parameter: Figure 5.3 for Z = 1024KiB and Figure 5.4 for Z = 128KiB.

In this section we want to fix the problem size to either a 2003 domain (8 million elements)

or a 4003 domain (64 million elements) and look at the performance scaling on machines

with different cache sizes. Figures 5.5 and 5.6 show the execution times for varying cache

sizes. This will be used in the next section to derive a performance model. But first

5.4. VARYING CACHE SIZE 51

 1e+07

 1e+08

 1e+09

 1e+10

 32 64 128 256 512 1024

C
ac

he
 M

is
se

s

Cache size in KiB

Naive cache misses

8 million elements
64 million elements

Figure 5.7. Cache misses of the naive scheme
for a 2003 and a 4003 domain and varying cache
sizes.

 1e+07

 1e+08

 1e+09

 1e+10

 32 64 128 256 512 1024

C
ac

he
 M

is
se

s

Cache size in KiB

CATS cache misses

(Z, Z) cache, 8 million elements
(Z,4MB) cache, 8 million elements

(Z,4MB) cache, 64 million elements
(Z, Z) cache, 64 million elements

32-way associative (Z, Z) cache, 64 million elements

Figure 5.8. Cache misses of the CATS scheme
for a 2003 and a 4003 domain and varying cache
sizes.

we need to explain why these numbers predict the performance of CATS on hardware

configurations with smaller cache sizes, although the actual machines on which we execute

have obviously a fixed hardware cache size.

The reason is an invariance property of the CATS scheme. Given a cache size parameter

Z, it will incur the same number of cache misses on a machine with Z cache, 2 ·Z or even

4 ·Z cache. It only matters if the actually available cache size is bigger than or equal to the

specified parameter. The CATS scheme optimizes the entire computation very carefully

with respect to the given cache size parameter, so even if the actual cache is bigger, there

will be hardly any additional savings on cache misses.

Figure 5.8 confirms the above reasoning. If CATS is fed with the same Z value, then

the cache misses on a machine with 4MiB cache size (CATS (Z, 4MiB)) are only insignif-

icantly lower than on a machine with Z cache (CATS (Z,Z)). Only in case of the large

4003 domain (128 million elements), we obtain a discrepancy due to the imperfect cache

associativity. Increasing the cache associativity from 8-way to 32-way recovers the almost

identical behavior.

This invariance of CATS is very useful, because the arithmetic intensity of stencil compu-

tations is very low, so their performance depends mainly on the number of cache misses

and the system and cache bandwidths of the machine. So if the cache misses do not change

when we run on a machine with much larger cache than the cache size parameter, then the

performance should not change either. Practically, by setting the cache size parameter Z

to some value, e.g. 128KiB, we obtain the execution time of a virtual machine with this

cache size Z = 128KiB, even though the actual execution takes place on a machine with

4MiB cache size. Figure 5.8 clearly shows that even such big difference of 4MiB to 128 KiB

has almost no impact on the number of incurred cache misses and thus the performance

of CATS.

52 CHAPTER 5. PERFORMANCE MODELLING

 0

 1

 2

 3

 4

 5

 6

 7

 64 128 256 512 1024

E
xe

cu
tio

n
tim

e
in

 s
ec

Cache size in KiB

Xeon MP
Opteron 250
Core i5 Sim

Opteron 2218
Core i7 940

Figure 5.9. Execution time of CATS for a 2003

domain and varying cache sizes. The points show
the measured execution time, while the lines show
our fitted performance model based on the number
of cache misses.

 0

 20

 40

 60

 80

 100

 120

 64 128 256 512 1024

E
xe

cu
tio

n
tim

e
in

 s
ec

Cache size in KiB

Xeon MP
Opteron 250
Core i5 Sim

Opteron 2218
Core i7 940

Figure 5.10. Execution time of CATS for a 4003

domain and varying cache sizes. The points show
the measured execution time, while the lines show
our fitted performance model based on the number
of cache misses.

Something similar holds trivially for the naive scheme as demonstrated in Figure 5.7. In

this case the number of cache misses is almost constant no matter how big the cache is,

because the entire domain is fetched for each iteration of the stencil, and the entire domain

is always larger than the cache size, so no data reuse between the stencil iterations can

occur. Comparing Figures 5.7 and 5.8, we see that CATS produces fewer cache misses even

for small cache sizes. For growing cache sizes, cache misses incurred by CATS decrease

rapidly, producing less than a tenth of the naive cache misses for a 1024KiB cache size.

5.5 Performance Model

In the previous section, we have explained how we can use CATS to estimate the execution

time on the same machine where we virtually vary the size of the available cache. In this

section we derive a performance model that links the number of simulated cache misses

directly to the measured execution time. The model estimates the execution time E(m)

as

E(m) := Cl · (mr(Z) +mw(Z))/bsys + (CdTNNs − Cl ·mr(Z))/bcache, (5.1)

where mr(Z) and mw(Z) are the simulated numbers of read and write cache misses for

varying cache size Z, Cl = 128B is the size of the cache line, Cd = 8B is the size of a

domain element (double precision), T is the number of iterative stencil applications, N

is the number of elements in the domain, and Ns = 7 is the number of non-zero stencil

weights. The model has two free parameters which are the system bandwidth bsys and

the cache bandwidth bcache. The parameters are estimated by a least-square-fitting of the

model to the measured execution times from Figures 5.5 and 5.6.

5.5. PERFORMANCE MODEL 53

The first addend in Eq. 5.1 contributes with the time necessary for the transfer from

main memory due to the cache misses. The second addend corresponds to the time of

all remaining transfers (there are TNNs double computations) from the cache to the

processing units. Figures 5.9 and 5.10 show the measured execution times as points and

the fitted performance models as line plots.

The model considers only a two level memory hierarchy: the system memory level where

the domain resides and a cache level in which the temporal locality is exploited. Real

machines have multiple cache levels and so the effect of the temporal locality is higher or

smaller depending on which cache level it occurs in. Thus, the model does not capture

the secondary effects of higher level caches. However, the cache bandwidth ratios on-chip

are clearly smaller than the bandwidth ratios between the last level cache and the system

bandwidth (Table 5.1) and the schemes do not use any explicit optimization for high level

caches, so that the secondary effects are less relevant.

Previous comparison of the execution time of the naive scheme in Figure 5.1 against CATS

in Figure 5.4 reveals that even on a machine with just 128KiB cache, CATS performs

clearly better. Looking at the cache misses in Figures 5.7 and 5.8, we see that at 128KiB

CATS has already a dramatic reduction of cache misses against the naive implementation.

For larger caches the difference in cache misses continues to grow at the same pace, but

Figures 5.5 and 5.6 show diminishing performance returns from the cache miss reduction

after 128KiB. Why has the cache miss reduction at first a strong impact on performance

while later this impact is much smaller? This behavior can be understood from Eq. 5.1

by computing the speedup obtained from halving the cache misses:

E(2m)

E(m)
= 1 +

Cl · ((mr +mw)/bsys −mr/bcache)

E(m)
≥ 1 +

Cl(mr +mw)Cb

E(m)
(5.2)

Cb := (1/bsys − 1/bcache) > 0 .

At first we see that the speedup depends directly on the discrepancy between the system

and cache bandwidth encoded in Cb. There is also a second effect; in the beginning when

the data traffic produced by the cache misses Cl(mr +mw) is a significant fraction of the

overall traffic CdTNNs, i.e. Cl(mr+mw)
E(m) ≈ 1, the speedup is high. But once this fraction

becomes small, i.e. Cl(mr+mw)
E(m) � 1, the speedup becomes negligible. We have a strong

scaling model similar to Amdahl’s Law: even many-fold reductions on a small fraction

of the overall execution time give only small absolute returns. This explains the bended

curves of measured execution time in Figures 5.5 and 5.6 despite the linear decrease in

cache misses from Figure 5.8. The performance model formalizes this behavior and fits the

bended curves closely to the measured execution times as shown in Figures 5.9 and 5.10

Now that we understand which parameters control the achieved speedup, we can use the

54 CHAPTER 5. PERFORMANCE MODELLING

 0

 1

 2

 3

 4

 5

 6

 7

 64 128 256 512 1024

E
xe

cu
tio

n
tim

e
in

 s
ec

Cache size in KiB

Opteron 250
Opteron 250 model

Opteron 2218
Opteron 250 2x cache & 2x sys. bandwidth

Opteron 250 4x sys. bandwidth
Opteron 250 4x cache bandwidth

Figure 5.11. Performance evaluation of the
Opteron 250 against the Opteron 2218 w.r.t the
CATS scheme.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 64 128 256 512 1024

E
xe

cu
tio

n
tim

e
in

 s
ec

Cache size in KiB

Xeon MP
Xeon MP model

Core i7 940
Xeon MP 5.1x cache & 5.6x sys. bandwidth

Xeon MP 10.7x sys. bandwidth
Xeon MP 10.7x cache bandwidth

Figure 5.12. Performance evaluation of the
Xeon MP against the Core i7 940 w.r.t the CATS
scheme.

 0

 2

 4

 6

 8

 10

 12

 64 128 256 512 1024

E
xe

cu
tio

n
tim

e
in

 s
ec

Cache size in KiB

Naive Opteron 250
Naive model

Naive Opteron 2218
Naive 2x sys. bandwidth
Naive 4x sys. bandwidth

CATS 4x cache bandwidth

Figure 5.13. Performance evaluation of the
Opteron 250 against the Opteron 2218: A com-
parison between the naive and the CATS schemes.

 0

 5

 10

 15

 20

 64 128 256 512 1024

E
xe

cu
tio

n
tim

e
in

 s
ec

Cache size in KiB

Naive Xeon MP
Naive model

Naive Core i7 940
Naive 5.6x sys. bandwidth

Naive 10.7x sys. bandwidth
CATS 10.7x cache bandwidth

Figure 5.14. Performance evaluation of the
Xeon MP against the Core i7 940: A comparison
between the naive and the CATS schemes.

performance model to estimate the impact of changes in these parameters.

5.6 Model Evaluation

With our parameter controlled performance model, we can roughly predict the effects of

increasing the system bandwidth or increasing the cache bandwidth on the execution time,

and thus evaluate the impact of these system parameters on the performance of stencil

computations. First we want to use this feature to validate the model by increasing

the parameters of our older test machines, such as to reach the execution times of the

newer machines. In a second step, we increase the parameters even further predicting the

performance of non-existent hardware.

Figure 5.11 compares the Opteron 250 with the Opteron 2218, while Figure 5.12 looks at

the Xeon MP and the Core i7 940. The points in the figure denote the actual execution

times while the lines denote the model. From Table 5.1 we compute the ratio between

the benchmarked system and cache bandwidths of Opteron 250 and Opteron 2218, we do

5.6. MODEL EVALUATION 55

the same for the Xeon MP and the Core i7 940, and use these ratios to scale our model

parameters. We model three scenarios: scaling bsys, scaling bcache, and scaling both.

If the model is accurate then the scaling with the above ratios of the system and cache

bandwidth in the models of the old machines should recover the measured execution times

of the new machines. In fact, the Opteron 250 model with doubled cache and system

bandwidth comes close to the measured performance of the Opteron 2218 in Figure 5.11

and the Xeon MP model with 5.1x cache and 5.6x system bandwidth scaling comes close to

the measured performance of the Core i7 940 in Figure 5.12. This validates our assumption

that for stencil computations the cache and system bandwidth parameters matter most and

the actual processor architecture is rather irrelevant, even though the Xeon MP design

is eight years older and completely different from the Core i7 940 design. Because of

this successful validation, we are confident to use this model also for new parameter

configurations of non-existent hardware.

On one end of the spectrum, scaling the system bandwidth of the Opteron 250 by a

factor of 4 in Figure 5.11 does not benefit the CATS scheme so much. It rather flattens

the curve making it similar to the naive performance, because such a great increase in

system bandwidth would put it on par with the cache bandwidth. On the other end of the

spectrum, a quadrupled cache bandwidth in Opteron 250, accelerates the CATS scheme

even beyond the Opteron 2218 performance on large cache sizes. This result is obtained by

only changing the cache bandwidth in the CPU, the system bandwidth would still be half

that of the Opteron 2218 system. We see that the performance of the CATS scheme reacts

very favorably to cache bandwidth scaling even if it is not accompanied by a faster system

bus. This is a very cost-efficient way of increasing the overall performance, although it

deteriorates the ratio of off-chip to on-chip bandwidth which is usually blamed for bad

performance of stencil computations. Instead, we see that performance depends strongly

on the implementation of stencil computations, worsening this ratio can actually be a good

thing to do.

The advocation of multi-channel memory buses simply comes from the fact that most

stencil computations are implemented in a naive way that depends on the system band-

width for performance. Figure 5.13 shows that doubling or quadrupling the system band-

width accelerates the naive scheme by almost the same factor. But changing the system

bandwidth so radically is a very expensive procedure. In comparison, we see that the

inexpensive quadrupled cache bandwidth on CATS still outperforms the enhanced naive

scheme by factor 1.8x if the cache size is 1024KiB.

In Figure 5.12, we perform a similar analysis for the old Xeon MP and the new Core i7 940

Intel architectures. The benchmarked system and cache bandwidth ratios between them

are 5.6x and 5.1x, respectively (see Table 5.1). We use these factors to scale the Xeon MP

56 CHAPTER 5. PERFORMANCE MODELLING

performance model. The predicted CATS performance with 5.6x system and 5.1x cache

bandwidth is in fact almost the same as the measured execution times on the Core i7 940.

Moreover, we see in Figure 5.12 that further doubling the system bandwidth but leaving

the cache bandwidth on the original value would not get us this far. On the other hand,

if we leave the very low system bandwidth of the Xeon MP intact, and increase its cache

bandwidth to twice that of the Core i7 940, we would still fall short of the Core i7 940

performance but would already beat the much more expensive system bandwidth scaling

by the same factor for the 1024KiB cache size.

The situation for the naive scheme on the Xeon MP in Figure 5.14 is very similar to the

AMD equivalent from Figure 5.13. The naive schemes benefit proportionally from the

system bandwidth scaling; however, for the 1024KiB cache size, the far more inexpensive

multiplication of cores in the Xeon MP without changes to the system bandwidth would

already deliver superior results.

The discussed relation of system parameters for CATS clearly supports the option of

increasing the cache bandwidth rather than the system bandwidth. In current systems

cache bandwidth increases automatically with the growing number of cores provided that

each core has its own locally connected cache. This scaling option comes with the overhead

of keeping a large number of caches coherent; however, CATS features big tiles and requires

data synchronization only at their boundaries if they are processed by different threads.

Therefore, this synchronization could be performed explicitly with little overhead on a

system with non-coherent caches. By further increasing the speed of the local caches,

one could quickly obtain enormous speedups in stencil computations using time skewing

schemes. One may even reduce the cache size in favor of more cache bandwidth if the

discrepancy to the system bandwidth is not too high. If the cache to system bandwidth

discrepancy becomes very high, the CATS performance curves become very steep and give

bad results for small cache sizes, see Figure 5.12.

Unfortunately, the cost-efficient strategy of deteriorating the ratio of off-chip to on-chip

bandwidth through the introduction of faster caches does not help the naive codes. So

we are in a dilemma here. Using clever schemes, we can increase the performance of

stencil computations radically by the simple scaling of the aggregate cache bandwidth,

but all naive codes would suffer in this situation and even more severely demand an in-

crease in system bandwidth. Therefore, concerning iterative stencil computations, the

bandwidth wall problem is only partially a hardware issue, more importantly we have a

software issue of ineffective implementations in many codes. The expensive scaling of the

system bandwidth through multi-channel memory interfaces could stop without deterio-

rating performance if more codes would change the way iterations of stencil computations

are implemented. Of course, not all applications can benefit from time skewing, so one

would need to know the fraction of iterative stencil computations in the application mix to

5.7. CONCLUSION 57

determine which amount of system and cache bandwidth would give the best performance

per cost ratio on average.

5.7 Conclusion

We have examined the impact of system and cache bandwidth on the naive and the cache

accurate time skewing (CATS) scheme for iterative stencil computations. The schemes

exhibit almost completely opposite behavior. While the naive scheme requires high system

bandwidth for performance, the same stencil computation can be performed with a time

skewing scheme much faster if only the cache bandwidth in the CPU is increased. The

latter option gives by far the more cost-efficient performance gains, e.g. we could execute

on the ten years old Xeon MP as fast as on a Core i7 940 if only sufficient cache bandwidth

in the Xeon MP were provided without the need for any improvement of its outdated

system bus. So the paradoxical conclusion is that for iterative stencil computations further

deteriorating the ratio of off-chip to on-chip bandwidth is the cheapest way to higher

performance. Unfortunately, the situation is more complex in practice because not all

stencil computations occur in iterations and many of them operate with varying rather

than constant coefficients which puts additional strain on the system bus. In future, we

want to extend the performance model so that it allows to predict the behavior for more

computational patterns. However, even the restricted model makes it clear that a solution

to the bandwidth wall problem should not be sought solely in system bandwidth scaling,

because it is not necessarily the limiting factor even if the data is much bigger than the

caches and has to be accessed many times.

58 CHAPTER 5. PERFORMANCE MODELLING

Chapter 6

Cache Oblivious Parallelograms in

Iterative Stencil Computations

In this Chapter, we present a novel cache oblivious scheme for iterative stencil compu-

tations on symmetric multiprocessing (SMP) memory systems, called CORALS. Despite

the tremendous cache miss rate reduction by cache oblivious stencil algorithms, previous

realizations of these approaches have shown a slight improvement against the naive scheme

whereas CORALS achieves a remarkable speedup without fine tuning for the specific char-

acteristics of each architecture. In particular, 2D CORALS achieves about 10x speedup

over an optimized naive scheme on a domain of 128 million double precision elements

running on a quad-core Xeon X5482 machine. The performance amounts to 47% of the

measured computational machine peak. CORALS also clearly outperforms more general

transformation tools.

6.1 Previous Work

Frigo and Strumpen [17] introduced a cache oblivious stencil scheme that divides the iter-

ation space recursively into smaller and smaller space-time tiles and thus generates high

temporal locality on all cache levels without knowing their sizes. The cache misses are

greatly reduced leading to the desired reduction of system bandwidth requirements, how-

ever, the performance gains are relatively small in comparison to this reduction. Strumpen

and Frigo [56] report a 2.2x speedup against the naive implementation of a 1D Lax-

Wendroff kernel on a IBM Power5 system for periodic and constant boundary conditions

after optimizing the software aspects of the scheme. After multifold optimizations and

parameter tuning Kamil et al. [32] achieve a 4.17x speedup on the Power5 (15 GB/s the-

oretical peak bandwidth), 1.62x on an Itanium2 (6.4 GB/s) and 1.59x on an Opteron (5.2

59

60 CHAPTER 6. CACHE OBLIVIOUS PARALLELOGRAMS

GB/s) system for a 7-point stencil (two distinct coefficient values) on a 2563 domain for

periodic boundary conditions. However, for constant boundary conditions the optimized

cache oblivious scheme is only faster on the Opteron achieving a 2x speedup at best. The

compared naive code is optimized with ghost cells and compiled with optimization flags.

The above optimizations of the cache oblivious scheme are all directed at single-threaded

execution. Frigo and Strumpen later analyzed multi-threaded cache oblivious algorithms [18].

One example deals with the cache misses of a 1D stencil code with parallel tile cuts. Blel-

loch et al. [6] discuss the construction of nested parallel algorithms with low cache com-

plexity in the cache oblivious model for various algorithms including sparse matrix vector

multiplication. However, these are mainly theoretical papers and we do not know of any

parallel, high performance cache oblivious implementations of stencil computations based

on these ideas.

The next section (Section 6.2) presents our new algorithm in detail. We start with the

description of our cache oblivious approach in multiple sub-sections. Section 6.3 discusses

the results in double precision on 2D and 3D domains. Constant stencils, banded matrices

and an FDTD solver are presented.

6.2 Cache Oblivious Parallelograms in Iterative Stencil Com-

putations

The scheme starts by covering the entire space-time with a single large tile to which we

assign all the available threads (Section 6.2.1). Then we run some preprocessing that gen-

erates data for the load-balancer (Section 6.2.4). The initial tile is divided recursively into

a high number of identical base tiles for which we stop the recursion. During the recur-

sion, the division tries to distribute the threads and thus assign fewer and fewer threads

to the sub-tiles (Section 6.2.2). The thread distribution is governed by the load balancer

(Section 6.2.4). On each base tile, the kernel containing the actual stencil computation is

invoked with a single thread even if more threads are still assigned to the base tile. So all

parallelization must occur through the thread distribution during the recursive division,

the kernel execution itself is single-threaded. In higher dimensional space-time this task

is easier (Section 6.2.3). The choice of the base tile and other internal parameters are

discussed in Section 6.2.5.

6.2.1 Parallelograms in 2D

As discussed in Section 6.1, the attempts to extract high absolute performance from the

original cache oblivious stencil scheme were not very successful, although cache misses

6.2. THE CACHE OBLIVIOUS PARALLELOGRAMS ALGORITHM 61

Space
time

t

x

Figure 6.1. The entire space-time covered
by a large initial parallelogram. The work-
load on the sub-parallelograms is substantially
different.

n/2 threads n threads

n/2 threadsn threads

Figure 6.2. The thread distribution for a 2D
cut of an interior parallelogram. The upper
left and lower right sub-parallelograms are in-
dependent and run in parallel.

are significantly reduced and hardware specific optimizations were applied. We think

that one of the problems lies in the irregularity of the generated space-time tiles, because

the compiler and hardware generally perform much better on regular data structures.

Therefore, a main design aspect of CORALS has been the preservation of the theoretic

asymptotic behavior of the original cache oblivious stencil scheme while utilizing only

regular execution patterns: CORALS applies the hierarchical decomposition idea to a

single-form space-time tile, namely a parallelogram. The following parallelization and

data locality strategies are a consequence of this decision.

Parallelograms have a favorable surface area to volume ratio. They have the advantage

that we can iterate over the interior points with simple nested loops where each loop

always executes the same number of runs, only the bounds are skewed with respect to the

time. This allows an efficient vectorized execution with explicit control of data alignment.

As we have only a single tile form, only one such specialized kernel must be implemented.

Moreover, parallelograms split easily into identical sub-parallelograms and also allow a

regular parallelization.

As there are only parallelograms in the scheme we start with a large parallelogram that

covers the entire space-time, see Figure 6.1. This figure shows that an exterior coverage of

the domain leads to different work-loads inside the tiles. Section 6.2.4 on load-balancing

discusses this in detail. In the following we assume that we deal with parallelograms that

lie completely inside the space-time.

Figure 6.2 shows the canonical subdivision scheme for the parallelogram. The dimensions

of the initial parallelogram are made divisible by a large power of two, such that we

can perform correspondingly many subdivisions without having to half an odd number.

Consequently, the sub-parallelograms are identical in shape. The figure also shows the

thread distribution for an interior parallelogram. The upper left and lower right sub-

62 CHAPTER 6. CACHE OBLIVIOUS PARALLELOGRAMS

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

Figure 6.3. Recursive application of the 2D
subdivision from Figure 6.2 in case of two
threads. Sub-parallelogram assigned with one
thread execute in parallel with another sub-
parallelogram.

4

4

4

4

4

4

4

2

2 2

2

2 2

2

2 2

2

2

2

22

2

2

2

2

24

2

2 2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

Figure 6.4. Recursive application of the 2D
subdivision from Figure 6.2 in case of four
threads. Dotted lines show the additional sub-
divisions in comparison to two threads from
Figure 6.3.

parallelograms are independent of each other, so given n threads, each of them is assigned

n/2 threads and they are executed in parallel.

Frigo and Strumpen suggest a spatial trapezoid parallelization in their multi-threaded

cache oblivious 1D stencil algorithm [18] and this is also the usual choice in cache aware

time skewing schemes, but 2D parallelograms are not suitable for that. The spatio-

temporal parallelization is a simple solution to this problem.

6.2.2 Parallelism and Locality

In Figure 6.2 two of the four sub-parallelograms are executed in parallel, so in case of n = 2

threads the overall execution time would be reduced to 3
4 rather than 1

2 . However, the cache

oblivious scheme performs a recursive subdivision of the tiles, so wherever we have more

than one thread per sub-parallelogram, it is further divided in the same fashion. Figure 6.3

shows the thread distribution after three division steps in case of n = 2 threads. We see

that almost the entire domain is parallelized and only the small blocks on the diagonal

still require further division for parallelization. After a few division steps, the reduction

of the overall execution time converges quickly to 1
2 according to a geometric series.

Let us formalize the above reasoning for two threads at first considering the effects of

parallelism only. All parallelization must be made explicit through subdivision, so the

processing of an undivided parallelogram takes the same time no matter how many threads

are assigned to it. Let the initial undivided parallelogram have base width w and height

h then its execution time is wh in an appropriate time unit. After the first division, two

of the sub-parallelograms run in parallel so the overall time is 3
4wh = 1

2(wh/2 + wh),

where 1
2(wh/2) corresponds to the sub-parallelograms with one thread assigned and 1

2wh

corresponds to the two sub-parallelograms with two threads assigned, see Figure 6.2. In

6.2. THE CACHE OBLIVIOUS PARALLELOGRAMS ALGORITHM 63

the next step each of the two sub-parallelograms with two threads assigned undergoes

the same parallelization as the initial parallelogram so the 1
2wh is replaced by 3

4(1
2wh) or

equivalently wh is replaced by 3
4wh as before, giving 1

2(wh/2 + 1
2(wh/2 + wh)) overall.

The following division replaces the last wh in the same fashion and we obtain a recursive

formula for the execution time in dependence on the division depth:

execT(0) = wh

execT(1) =
1

2
(wh/2 + wh)

execT(2) =
1

2
(wh/2 +

1

2
(wh/2 + wh))

execT(a) =
1

2
(wh/2 +

1

2
(wh/2 +

1

2
(. . .)))

= wh/2

(
1

2
+ . . .+ (

1

2
)a + 2(

1

2
)a
)

= wh/2

(
1 + (

1

2
)a
)
. (6.1)

For two threads, the geometric series converges quickly to the ideal execution time reduc-

tion by 1
2 .

In cache aware time skewing schemes, flat parallelization strategies are applied [72, 35, 44].

The cache sizes are known, so it is clear when it is better to parallelize the execution of

the sub-tiles, forcing them into different caches, and when to leave them in the same cache

for better data locality and process them sequentially with a single thread. In the cache

oblivious case we do not have this information so on the one hand we must ensure that

the parallelism really speeds up the computation, as demonstrated above, and on the

other hand we must maximize the tile sizes that are processed by a single thread for best

data locality within the same cache (we assume the scalable scenario where caches are not

shared between cores). A similar reasoning as above shows that the second condition is

also fulfilled. The first division assigns already half of the domain to the local execution by

a single thread, the next division adds a half of the remaining half leading to a geometric

series again 1
2 + 1

4 + At some stage the tile bases are smaller than the cache so

the parallelization will force its sub-tiles into different caches destroying the data locality

between the sub-tiles, but this happens only in a small part of the domain that correspond

to the trailing end of the above series. In conclusion, the scheme preserves as much data

locality as possible while converging to the full parallel speedup according to a geometric

series.

The parallelization in case of more threads is not much different. Figure 6.4 shows how

the division simply continues in all parts of the domain as long as more than one thread is

assigned to a parallelogram. If we stop the recursion at a certain level then we are left with

64 CHAPTER 6. CACHE OBLIVIOUS PARALLELOGRAMS

one diagonal of small parallelograms where still four threads are assigned and multiple thin

sub-diagonals of parallelograms where still two threads are assigned. This only adds more

trailing factors in addition to the already existing (1
2)a in formula (6.1), so the properties

of the geometric convergence to the full speedup of 4x in case of four threads remains

unchanged. The geometric convergence property also holds for an arbitrary number of

threads but we can not expect perfect strong scaling with the thread count because the

more threads there are, the more divisions are necessary to arrive at the local single thread

execution of a tile. However, for weak scaling the domain would also grow, increasing the

number of divisions before we reach a fixed base parallelogram size, just as required above.

All parallelograms in Figures 6.3 and 6.4 that have been assigned a single thread are also

further divided for the cache oblivious data locality but no more parallelism needs to be

extracted in these divisions. These divisions are not included in the figures to facilitate the

reasoning about the generated parallelism. Ultimately the entire initial parallelogram is

divided into a large number of identical base parallelogram on which we stop the recursion

and call the kernel with the stencil computation.

6.2.3 Parallelograms in higher dimensions (mD)

This section explains our scheme for an arbitrary dimension m of the space-time. We

explain the differences to the 2D iteration space and refer for analogy to the previous 2D

figures.

In an m-dimensional space-time, we have m − 1 spatial dimensions formed by a tensor

product of the individual spatial dimensions. The space-time tiles in 2D are parallelograms,

in 3D parallelepipeds and in general m-parallelotopes in mD. The projection of an m-

parallelotope onto the time axis and one of the spatial axis always gives a parallelogram

as depicted in Figure 6.1. So all the spatial dimensions are skewed with respect to time

and in analogy to 2D we can create an m-parallelotope large enough to cover the entire

space-time, see Figure 6.1.

For the properties of the recursive division and the parallelization, the skewing and the

absolute sizes of the different tile dimensions play no role, so instead of an m-parallelotope

one can also think of a simple m-hypercube in the following, where all cuts are axis

aligned. Figure 6.2 shows a 2D division into 22 = 4 sub-parallograms. With a single cut

we could also make a 1D division in 2D delivering 21 = 2 identical sub-parallelograms.

The m-parallelotope allows kD cuts with k = 1, . . . ,m. A kD cut of the m-parallelotope

gives 2k identical sub-parallelotopes. The number of created sub-parallelotopes and their

following parallelization does not depend on the space-time dimension m but on the cut

dimension k. The reason for considering cuts of different dimensions is that depending on

6.2. THE CACHE OBLIVIOUS PARALLELOGRAMS ALGORITHM 65

the parameter settings we want to stop cutting one dimension at a certain tile size, e.g.

the unit stride dimension, while other dimension should still be cut. This leads to the

applications of different cuts during the recursive division of tiles.

The parallelization of the 2D cut requires 2+1 = 3 execution stages (with synchronization

in between) with the following number of independent sub-parallelograms in each stage:(
2
0

)
= 1,

(
2
1

)
= 2,

(
2
2

)
= 1, cf. Figure 6.2. Similarly, for a kD cut we have k + 1 stages

where the series of independent sub-parallelotopes in each stage is:
(
k
j

)
, j = 0, . . . , k. So

with higher dimensional cuts, it is much easier to extract parallelism from the division

scheme, e.g. a 4D cut (applicable to 3D spatial domains and higher) gives a series of 1,

4, 6, 4, 1, i.e. after finishing the first sub-parallelotope there are already four independent

sub-parallelotopes that can be executed in parallel.

In mD space-time, it is also possible to extract purely spatially independent sub-tiles. The

independence of the upper left and the lower right parallelogram in Figure 6.2 is spatio-

temporal. But if the time dimension is very small, e.g. only T = 10 iterations of the stencil

computation are required, then we do not want to cut it further, and a spatial 1D cut

would only generate two dependent tiles with no opportunity for parallelism. However, in

mD space-time with m > 2, simultaneously cutting multiple spatial dimensions produces

spatially independent sub-tiles even if the time dimension is uncut.

The better parallelization potential of higher dimensional cuts means that in the recursive

division, we can more quickly distribute threads and as such less depth is needed to reach

the local single thread execution on a tile. Figures 6.3 and 6.4 depict the recursive division

with 2D cuts. With higher dimensional cuts, the size of the tiles that still need further

division decreases faster and thus the geometric convergence (formula (6.1)) to the full

speedup is also faster.

6.2.4 Load-Balancer

The thread distribution from Figure 6.2 assumes that the parallelized execution of the

upper left and the lower right sub-parallelogram have the same work-load, so assigned

with the same number of threads, they will finish at approximately the same time without

creating idle time at the following synchronization point. Because of our exterior structure

(Figure 6.1) many parallelograms do not have the same work-loads and this results in

some idle time at the synchronization points. The CORALS scheme is fast even with

this handicap. This section describes the further performance enhancement of the load-

balancer.

The load-balancer distributes the threads to the parallelized sub-parallelogram according

to the actual work-load. To determine the work-load, we execute a preprocessing step

66 CHAPTER 6. CACHE OBLIVIOUS PARALLELOGRAMS

n/4 threads n/4 threads

n/4 threads n/4 threads

Figure 6.5. The thread distribution for a 2D
cut during the preprocessing, see Algorithm. 6.
No sub-parallelogram dependencies need to be
respected here.

01
n threads n threads

n threads n threads
10

Figure 6.6. The thread distribution for a 2D
cut during the stencil computation with the
load-balancer, see Algorithm 7. Usually we
have n01 +n10 = n and the corresponding two
sub-parallelograms execute in parallel.

Algorithm 6 The CORALS preprocessing function takes a recursive descent through
the sub-tiles. The preprocessing evenly distributes the current thread range onto the
sub-tiles without explicit synchronization (Figure 6.5).

int CORALSpreprocess(tile)
{

create divSet from tile: the set of divisible dimensions;
if(divSet is empty) {

pointsSum= countInteriorPointsOn(tile);
} else {

based on divSet divide tile into a subTileSet;
distribute tile.threadRange evenly onto sub-tiles;
pointsSum= 0;
forall(subTile ∈ subTileSet) {

if(tid ∈ subTile.threadRange) {
pointsSum+= CORALSpreprocess(subTile);

}
}
}
if(tile.threadRange == {tid}) {

assign pointsSum to global tile pointsSum;
} else {

atomicAdd of pointsSum to global tile pointsSum;
}
return pointsSum;

}

6.2. THE CACHE OBLIVIOUS PARALLELOGRAMS ALGORITHM 67

that determines the number of interior points for the entire parallelogram hierarchy. This

preprocessing uses the same recursive division only with a simpler thread distribution

scheme (Figure 6.5), because no sub-tile dependencies have to be observed here. The

interior points are counted on the base tiles and summed up recursively on the way up,

see Algorithm 6.

During the actual stencil computation (Algorithm 7), the numbers of the interior points

of the independent sub-parallelograms are put in relation to their overall sum and the

available threads are distributed according to these ratios. Currently, we use a simple

distribution model balancing pairs of independent sub-parallelograms. It has the advan-

tage that the same model can be applied for cuts of any dimension. In Figure 6.6, this

means that normally n01 + n10 = n and n01, n10 are chosen such that the ratios n01/n,

n10/n approximate the corresponding ratios of the numbers of the interior points to their

sum. If one of these ratios is very small, e.g. one of the sub-parallelograms contains only

a few interior points, then the choice n01 := n and n10 := n is better. It postpones the

parallelization to the next division level in favor of reducing the idle time at the synchro-

nization point. We make this choice if more than 20% of the available work capacity would

be wasted on waiting at the synchronization point.

Algorithm 7 The CORALS stencil computation. Both preprocessing (Algorithm 6)
and stencil functions take the same recursive descent through the sub-tiles, only the
parallelization is different. The preprocessing evenly distributes threads onto the sub-
tiles with no explicit synchronization, whereas the stencil computation distributes the
threads according to the precomputed number of interior points in each sub-tile and
respects sub-tile dependencies with explicit synchronization of the current thread
range (Figure 6.6).

CORALScompute(tile)
{

create divSet from tile: the set of divisible
dimensions;
if(divSet is empty) {

executeStencilComputationOn(tile);
} else {

based on divSet divide tile into a subTileSet;
load-balance tile.threadRange on sub-tiles;
based on divSet create syncTileSet;
forall(subTile ∈ subTileSet) {

if(tid ∈ subTile.threadRange) {
CORALScompute(subTile);

}
if(subTile ∈ syncTileSet) {

synchronize threads from tile.threadRange;
}

}
}

}

68 CHAPTER 6. CACHE OBLIVIOUS PARALLELOGRAMS

6.2.5 Internal Parameters

Our scheme has several internal parameters that are not exposed to the user and their

general setting is explained in this section. By tuning these parameters we achieve higher

performance, but since the optimized naive scheme and PluTo run with automatic param-

eter settings, tuning our parameters would be unfair. Instead we use fixed values in all

evaluations.

From the CORALS description (Section 6.2), we already know that the recursion continues

until we reach a certain base tile size. In theory, we could continue the recursion down

to individual space-time points but practically this is a bad idea, as more work would

be spent on the control logic than the actual computation. So we choose a default base

size of 8 for all dimensions other than x and t. The x-dimension size is set to a larger

value because it is the unit stride dimension where spatial data locality matters most, and

the t-dimension size is set to a larger value because it controls directly the temporal data

locality within the base tile. Both values are inherited from the multi-threaded base size

which we explain next.

The multi-threaded base size determines in the recursive division when to stop the par-

allelization of sub-tiles even though multiple threads are still assigned to the parent tile.

In Figure 6.3 we see that, in principle, the recursive parallelization on the diagonal tiles

can continue infinitely. It definitely stops at the tile base size described above but it

makes sense to stop the parallelization even earlier. Here the reason is not the overhead

of control logic but the disproportionate costs of exchanging data between the deepest

memory level (L1 cache in current architectures) of two distinct cores in comparison to

the available bandwidth on this level. In other words, once a tile fits into the deepest

memory level, a single-threaded execution is faster than the parallel execution on sub-tiles

plus the collection of the results in one core, which is necessary for further processing.

We pick a heuristic memory size value Mstop and compute the spatial multi-threaded base

size dimensions such that the corresponding data would fit therein with the x dimension

being a factor Xstrech larger than the others. The multi-threaded t-base size is set equal

to the multi-threaded x-base size and we have already explained why these two are as-

signed larger values. In 3D space-time, we have Mstop:= 32KiB, Xstrech:= 2 and in 4D

Mstop:= 128KiB, Xstrech:= 10. Not surprisingly in 4D we want to stop the parallelization

earlier because in case of a parallel execution, there are more sub-tiles that require an

expensive collection process from the deepest memory level of multiple cores.

6.3. RESULTS 69

Table 6.1. Hardware configurations of our test machines. The machines have been chosen such
that one, the Opteron, has a modest ratio between measured system and cache bandwidth, while
the other, the Xeon, has a high ratio. This ratio is the main source of acceleration of time skewing
against naive schemes.
The measured bandwidth numbers have been obtained with the RAMspeed benchmarking tool with
4 threads and SSE reads. The measured double precision (DP) FLOPS numbers come from our
own SSE benchmarks. For the peak DP number we perform independent multiply-add operations
on registers, for the stencil DP number we run the inner stencil computation (products and sums)
on registers. This value is lower because of the read-after-write dependencies in the computation.

Brand AMD Intel
Processor Opteron 2218 Xeon X5482
Code-named Santa Rosa Harpertown
Frequency 2.6 GHz 3.2 GHz
Number of sockets 2 1
Cores per socket 2 4
L1 Cache per core 64 KiB 32 KiB
L2 Cache per core 1 MiB 3 MiB

Operating system Linux 64 bit Linux 64 bit
Parallelization 4 pthreads 4 pthreads
Vectorization SSE2 SSE2
Compiler g++ 4.3.2 icpc 11.1

Measured L1 Bandwidth 79.3 GB/s 194.6 GB/s
Measured L2 Bandwidth 40.6 GB/s 64.2 GB/s
Measured Sys. Bandwidth 11.2 GB/s 6.20 GB/s
Measured Peak DP FLOPS 20.8 G 40.8 G

L2 Band./Sys. Bandwidth 3.6 10.4
Peak DP/(Sys. Band./8B) 14.9 52.6
Balanced arith. intensity for Sys.

6.3 Results

We compare the results of the following three schemes for iterative stencil computations:

• NaiveSSE: Our own parallelized (pthreads) and vectorized (SSE2) naive stencil

scheme as described in Section 4.3.1.

• PluTo [7]: Code transformed by the automatic parallelizer and locality optimizer

for multicores; PluTo, version 0.4.2. We use the original code examples and modify

them from constant to variable stencil where necessary.

• PeakDP: The measured computational peak in double precision. We obtain this

value by performing a sequence of independent multiply-add operations in regis-

ters. PeakDP models the absolute upper bound for any computation on a machine.

The ultimate goal of optimized stencil computations is to achieve a high fraction

70 CHAPTER 6. CACHE OBLIVIOUS PARALLELOGRAMS

of this peak as no optimization of stencil codes will reach this value because of the

dependency between the stencil operations.

• CORALS: Our cache oblivious parallelograms scheme with the internal parameters

described in Section 6.2.5 and pthreads parallelization. The innermost loop of the

kernel is vectorized (SSE2). Preprocessing time is included.

For all 2D and 3D domains, the codes are recompiled with compile-time known domain

sizes. For CORALS, this is rather irrelevant but the naive scheme and PluTo benefit from

this procedure. All methods use four threads.

Test applications comprise constant and variable stencils in 2D and 3D with 0.5 to 128

million double precision elements. In 2D, we have squares ranging from 7062 to 112822

elements and in 3D, cubes from 803 to 5003. In case of constant stencils, this amounts to

a memory consumption of up to 2GiB for the two vectors, and in case of variable stencils

we use at most 32 million elements consuming 0.5GiB plus 1.75GiB for the matrix in 3D.

We use a 5-point stencil in 2D and a 7-point in 3D. The number of iterations is either

T = 100 (solid graphs in the figures), or T = 10 (dashed graphs in the figures). The last

stencil application is the FDTD 2D example that comes with PluTo.

All figures show the execution time in seconds against the number of elements in millions

with both axes being logarithmic. The number of elements doubles between two consec-

utive graph points, but the doubling is not exact because of the root operations involved

in computing a square or cube with a predefined number of elements.

The hardware configuration of our two test machines is listed in Table 6.1. For pluto-

0.4.2, we experimented with different options and finally used -tile -l2tile -multipipe -parallel

-unroll -nonuse although the last two options do not make a difference in performance in our

examples. For the 3D examples, we eventually dropped -l2tile as the transformation process

was taking hours without gaining any performance in the end. The PluTo transformed

code is compiled with the additional option -fopenmp to enable OpenMP support. We try

to get the most out of the PluTo code by recompiling with compile-time known domain

sizes and the aggressive icpc compiler settings from Table 6.1 which requires about 15

minutes compilation time for every domain size.

6.3.1 Constant Stencil

Figure 6.7 shows the execution times on the Opteron 2218 for 2D spatial domains. It

is difficult to beat an optimized naive code in this setting because the balanced stencil

intensity from system memory is just 8.2 on this machine, see Table 6.1. This means it

suffices to have 8.2 double operations in the kernel for every double read from system

6.3. RESULTS 71

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64 128

T
im

e
in

 s
ec

Data size in million elements

Constant 5-point stencil on 2D domain

NaiveSSE Opteron 2218 T = 100
PluTo Opteron 2218 T = 100

CORALS Opteron 2218 T = 100

NaiveSSE Opteron 2218 T = 10
PluTo Opteron 2218 T = 10

CORALS Opteron 2218 T = 10

Figure 6.7. Timings of the Opteron 2218 with
constant stencils in 2D. GFLOPS for 128 million
elements with T = 100: NaiveSSE Opteron 3.4,
PluTo Opteron 3.6, CORALS Opteron 6.5 (31%
of PeakDP).

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64 128

T
im

e
in

 s
ec

Data size in million elements

Constant 5-point stencil on 2D domain

NaiveSSE Xeon X5482 T = 100
PluTo Xeon X5482 T = 100

CORALS Xeon X5482 T = 100

NaiveSSE Xeon X5482 T = 10
PluTo Xeon X5482 T = 10

CORALS Xeon X5482 T = 10

Figure 6.8. Timings of the Xeon X5482 with
constant stencils in 2D. GFLOPS for 128 mil-
lion elements with T = 100: NaiveSSE Xeon
1.9, PluTo Xeon 8.2, CORALS Xeon 19.1 (47%
of PeakDP).

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64 128

T
im

e
in

 s
ec

Data size in million elements

Constant 7-point stencil on 3D domain

NaiveSSE Opteron 2218 T = 100
PluTo Opteron 2218 T = 100

CORALS Opteron 2218 T = 100

NaiveSSE Opteron 2218 T = 10
PluTo Opteron 2218 T = 10

CORALS Opteron 2218 T = 10

Figure 6.9. Timings of the Opteron 2218 with
constant stencils in 3D. GFLOPS for 128 million
elements with T = 100: NaiveSSE Opteron 2.4,
PluTo Opteron 1.5, CORALS Opteron 4.8 (23%
of PeakDP).

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64 128

T
im

e
in

 s
ec

Data size in million elements

Constant 7-point stencil on 3D domain

NaiveSSE Xeon X5482 T = 100
PluTo Xeon X5482 T = 100

CORALS Xeon X5482 T = 100

NaiveSSE Xeon X5482 T = 10
PluTo Xeon X5482 T = 10

CORALS Xeon X5482 T = 10

Figure 6.10. Timings of the Xeon X5482 with
constant stencils in 3D. GFLOPS for 128 mil-
lion elements with T = 100: NaiveSSE Xeon
1.4, PluTo Xeon 3.7, CORALS Xeon 6.5 (16% of
PeakDP).

memory to avoid memory stalls. Because our kernel also needs to write out a value with

every stencil computation, the stencil intensity 8.2 doubles to 16.4. The 5-point constant

2D stencil has 9 double operations, and if the cache can hold four lines (3 input plus 1

output) of the 2D domain simultaneously, then 4 values come from the cache and only

one comes from the system memory on average. So the kernel is memory-bound by only

a small factor 16.4/9 ≈ 1.82. Even for this small factor, CORALS shows superior results

in Figure 6.7 and the advantage grows with larger domain sizes. PluTo on the other hand

becomes barely better than the naive scheme for large domain sizes and T = 100 iterations

and loses the comparison for T = 10 iterations.

In case of the 3D spatial domain on the Opteron (Figure 6.9), the naive scheme becomes

unbeatable when four slices of the domain fit into the cache, because the 7-point stencil

computation requires 13 double operations, so accounting for both reading and writing

we get: 16.4/13 ≈ 1.26, i.e. the computation and bandwidth requirements are almost

72 CHAPTER 6. CACHE OBLIVIOUS PARALLELOGRAMS

balanced in the naive scheme and the performance difference to CORALS reveals its small

control logic overhead. As soon as the four slices of the domain do not fit into the cache

of 1MiB, which occurs first for the 8million = 2003 elements domain (4 · 2002 · 8B =

1.28MB > 1MiB), CORALS wins easily against the naive scheme again. PluTo does not

perform good in 3D on the Opteron.

The 2D situation on the Xeon (Figure 6.8) is very different from the Opteron. First, we

see that the naive scheme shows an excellent performance for 0.5 million elements. In this

case two full vectors consume 0.5million · 2 · 8B = 8MB that fit completely into the 12MiB

L2 cache of the Xeon, so all processing happens in cache. For all bigger domain sizes, this

is not the case and hence the naive scheme becomes slow again.

PluTo shows much better performance on the Xeon than the Opteron. However, CORALS

is still better by more than a factor of 2. On large domains, it completes 100 iterations in

approximately the same time as the naive scheme needs for 10 iterations. The computa-

tional performance of 19.1 GFLOPS on the 128 million elements domain reaches 47% of

the peak machine performance of 40.8 GFLOPS on this kernel (cf. Table 6.1). While the

synthetic benchmark operates only on registers with no memory access, CORALS alter-

nates between two 1GiB large vectors in this test. This is an excellent performance result

for a highly memory-bound multi-dimensional kernel and demonstrates the real potential

of time skewing schemes.

The 3D results on the Xeon (Figure 6.10) show that it is more difficult to extract data

locality in 3D. PluTo beats the naive scheme by a much smaller factor than in 2D, although

the situation improves for larger domain sizes. CORALS still shows a significant advantage

over PluTo, but the absolute performance is 6.5 GFLOPS which is clearly lower than in

2D. Finally, as expected from the above discussion, the fast execution of the naive scheme

on the 0.5 million elements domain is also present here.

In summary, we observe that PluTo performs well on the Xeon where the kernel is highly

memory-bound and the icpc compiler is used, on the Opteron where the kernel is only

slightly memory bound, it loses the comparison against the naive scheme. CORALS

delivers clearly superior results overall, only where the machine characteristics favor the

naive scheme, CORALS becomes slightly inferior.

6.3.2 Banded Matrix

The situation on the Opteron for the banded matrix is similar to the constant stencil.

In 2D (Figure 6.11), PluTo loses to the naive scheme by a small margin, while CORALS

maintains a consistent advantage that, however, is significantly larger in this banded ma-

trix case, cf. Figure 6.7. In 3D on the Opteron (Figure 6.13), PluTo is much slower than

6.3. RESULTS 73

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32

T
im

e
in

 s
ec

Data size in million elements

Double precision 5-band matrix on 2D domain

NaiveSSE Opteron 2218 T = 100
PluTo Opteron 2218 T = 100

CORALS Opteron 2218 T = 100

NaiveSSE Opteron 2218 T = 10
PluTo Opteron 2218 T = 10

CORALS Opteron 2218 T = 10

Figure 6.11. Timings of the Opteron 2218 with
a banded matrix in 2D. GFLOPS for 32 million
elements with T = 100: NaiveSSE Opteron 1.1,
PluTo Opteron 1.2, CORALS Opteron 3.9 (19%
of PeakDP).

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32

T
im

e
in

 s
ec

Data size in million elements

Double precision 5-band matrix on 2D domain

NaiveSSE Xeon X5482 T = 100
PluTo Xeon X5482 T = 100

CORALS Xeon X5482 T = 100

NaiveSSE Xeon X5482 T = 10
PluTo Xeon X5482 T = 10

CORALS Xeon X5482 T = 10

Figure 6.12. Timings of the Xeon X5482 with a
banded matrix in 2D. GFLOPS for 32 million el-
ements with T = 100: NaiveSSE Xeon 0.6, PluTo
Xeon 3.1, CORALS Xeon 8.7 (21% of PeakDP).

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32

T
im

e
in

 s
ec

Data size in million elements

Double precision 7-band matrix on 3D domain

NaiveSSE Opteron 2218 T = 100
PluTo Opteron 2218 T = 100

CORALS Opteron 2218 T = 100

NaiveSSE Opteron 2218 T = 10
PluTo Opteron 2218 T = 10

CORALS Opteron 2218 T = 10

Figure 6.13. Timings of the Opteron 2218 with
a banded matrix in 3D. GFLOPS for 32 million
elements with T = 100: NaiveSSE Opteron 1.0,
PluTo Opteron 0.4, CORALS Opteron 1.0 (5% of
PeakDP).

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32

T
im

e
in

 s
ec

Data size in million elements

Double precision 7-band matrix on 3D domain

NaiveSSE Xeon X5482 T = 100
PluTo Xeon X5482 T = 100

CORALS Xeon X5482 T = 100

NaiveSSE Xeon X5482 T = 10
PluTo Xeon X5482 T = 10

CORALS Xeon X5482 T = 10

Figure 6.14. Timings of the Xeon X5482 with a
banded matrix in 3D. GFLOPS for 32 million el-
ements with T = 100: NaiveSSE Xeon 0.4, PluTo
Xeon 0.5, CORALS Xeon 1.4 (3% of PeakDP).

the naive scheme, while CORALS performs on average slightly better. This is the only

figure where CORALS shows some considerable irregularity without a consistent speedup

against the naive scheme.

On the Xeon in 2D (Figure 6.12), PluTo outperforms the naive scheme again by a large

margin, while CORALS further improves on that. The advantage for 100 iterations is

much higher than for 10 iterations, it even suffices to significantly surpass 10 iterations of

the naive scheme. In 3D (Figure 6.14), the superiority of CORALS is equally high for 10

and 100 iterations, while PluTo and the naive scheme perform similarly.

In summary, PluTo gives good results on the Xeon in 2D again, but otherwise it is worse

than the naive scheme, in particular, on the Opteron in 3D. CORALS dominates in all

cases except on the Opteron in 3D where results are still better than naive and PluTo.

74 CHAPTER 6. CACHE OBLIVIOUS PARALLELOGRAMS

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64

T
im

e
in

 s
ec

Data size in million elements

2D FDTD

NaiveSSE Opteron 2218 T = 100
PluTo Opteron 2218 T = 100

CORALS Opteron 2218 T = 100

NaiveSSE Opteron 2218 T = 10
PluTo Opteron 2218 T = 10

CORALS Opteron 2218 T = 10

Figure 6.15. Timings of the Opteron 2218 for
FDTD in 2D. GFLOPS for 64 million elements
with T = 100: NaiveSSE Opteron 1.6, PluTo
Opteron 1.9, CORALS Opteron 3.1 .

 0.01

 0.1

 1

 10

 100

 0.5 1 2 4 8 16 32 64

T
im

e
in

 s
ec

Data size in million elements

2D FDTD

NaiveSSE Xeon X5482 T = 100
PluTo Xeon X5482 T = 100

CORALS Xeon X5482 T = 100

NaiveSSE Xeon X5482 T = 10
PluTo Xeon X5482 T = 10

CORALS Xeon X5482 T = 10

Figure 6.16. Timings of the Xeon X5482 for
FDTD in 2D. GFLOPS for 64 million elements
with T = 100: NaiveSSE Xeon 1.2, PluTo Xeon
2.0, CORALS Xeon 4.4 .

6.3.3 Application: FDTD Solver

The previous sections analyzed basic stencil computations on a scalar domain with con-

stant or variable weights in detail. Here we look at a variation of these basic computations,

namely a vector valued problem with in-place updates. The 2D Finite Difference Time

Domain (FDTD) electromagnetic solver [61] is often used to demonstrate the efficiency of

time skewing schemes (see Section 4.4.6). We use the sample code from PluTo [7]. PluTo

can fuse and vectorize the loops automatically while CORALS and the naive scheme re-

quire us to explicitly fuse them and vectorize the unit stride loop manually.

Figure 6.15 and 6.16 show the results for Opteron and Xeon, respectively. On the Opteron,

the results are comparable to a slower version of the constant stencil in 2D (Figure 6.7),

with PluTo and the naive scheme performing similarly. PluTo is a bit faster for 100

iterations and the naive scheme is a bit faster for 10 iterations on average. CORALS

shows a mediocre result for one million elements but otherwise is clearly better.

On the Xeon (Figure 6.16), PluTo manages to beat the naive scheme again, but in contrast

to the constant stencil in 2D (Figure 6.8) or the banded matrix in 2D (Figure 6.12), the

speedup is much smaller. CORALS shows significantly faster execution, but the absolute

speedup over the naive scheme is also smaller in comparison to the previous 2D results on

the Xeon.

6.4 Conclusion

We have presented CORALS, a cache oblivious scheme for iterative stencil computations

that performs beyond system bandwidth limitations. Even when the kernel is hardly

memory bound on the Opteron, it improves the performance against the hand-optimized

6.4. CONCLUSION 75

naive scheme. On the Xeon where the kernel is heavily memory-bound, CORALS excels,

approaching the performance of a synthetic on-chip benchmark in 2D, thus it virtually

breaks the dependence on the slow off-chip connection. This is a highly desired feature,

in particular, for future many-core devices that will exhibit an even larger discrepancy

between the on-chip and off-chip bandwidth due to the exponential growth of CPU cores.

On 3D domains, the results are less astounding but still clearly superior to the performance

of the general parallelizer and locality optimizer PluTo. This is an expected result from a

more specialized cache oblivious algorithm, but has not been demonstrated before.

76 CHAPTER 6. CACHE OBLIVIOUS PARALLELOGRAMS

Part II

Iterative Stencil Computations for
Non Uniform Memory Access

(NUMA) Systems

Chapter 7

NUMA Aware Iterative Stencil

Computations on Many-Core

Systems

So far the NUMA (see Section 2.3) nature of today’s machines has been largely ignored in

tiling schemes despite its crucial importance for scalability and the fact that the related

problem of minimizing communication in a distributed memory system has been already

analyzed for one of the first temporal blocking schemes by Wonnacott [72]. To system-

atically devise an algorithm that delivers scalable high performance results, we include

the NUMA aspect as an equally important goal in our list of four key requirements for

efficient temporal blocking schemes on ccNUMA machines:

• spatio-temporal data locality.

• parallelization.

• regular memory access.

• data-to-core affinity.

In this Chapter, we build upon our previous cache-aware CATS [60] and cache-oblivious

CORALS [59] schemes that perform well on symmetric multiprocessing (SMP) mem-

ory systems but exhibit unsatisfactory scalability on machines with cache coherent non-

uniform memory architecture (ccNUMA). Adding data-to-core affinity to these schemes

is a challenge because the requirements are in conflict, e.g., parallelization conflicts with

data-to-core affinity when an idle processor could process data that has been allocated

by threads running on a different core. In case of CATS these conflicts can be resolved

79

80 CHAPTER 7. NUMA AWARE STENCIL COMPUTATIONS

more easily than for CORALS, which requires a new tiling and parallelization strategy

and becomes a significantly different scheme than the original.

7.1 NUMA-aware CATS Scheme (nuCATS)

The cache-aware CATS (cache accurate time skewing) scheme [60] divides the space-time

into large tiles, much larger than the cache. However, the tiles have a carefully chosen

cross-section that allows a cache efficient wavefront traversal of them. The processing

within the tile, i.e., the wavefront traversal, does not change in nuCATS, however, the

tiling and the scheduling of the tiles changes.

CATS assigns threads to tiles in a round robin fashion, such as to reduce synchronization

and obtain automatic load balancing, because tiles at the domain boundary are smaller

than inside the domain. However, such an assignment violates the data-to-core affinity

requirement, because a thread may be assigned a tile that resides anywhere in the domain;

nuCATS performs a domain decomposition so that each thread owns a subdomain. Then it

assigns tiles to threads based on which subdomain contains most of the tile. For simplicity

nuCATS enforces a particularly regular pattern of how tiles and subdomains match.

Formulas inherited from CATS deliver the recommended wavefront size of tiles based on

cache parameters. From this nuCATS computes the number of tiles that could fit side

by side along the dimension designated for tiling. We distinguish two cases; the first case

when the number of tiles is greater than but does not divide the number of threads, then

we reduce the wavefront size and thus the number of tiles is enlarged until it divides the

number of threads. The second case when the number of threads is greater than but does

not divide the number of tiles, then similar to the first case the wavefront size is reduced

and thus number of tiles is enlarged until it equals the number of threads. However, often

for the second case when the number of threads is huge, this could result in a wavefront

size smaller than a heuristic value computed from the cache parameters, we stop reducing

the wavefront size when it is equal to half the number of threads. The number of tiles is

then doubled by cutting the dimension of the wavefront traversal in half. This reduces

locality, however, is still better than cutting the unit-stride dimension which would also

affect the utilization of the system bandwidth. At this stage the number of tiles is equal

to or a multiple of the number of threads and each thread is assigned to one or multiple

tiles that lie within its subdomain.

7.2. NUMA-AWARE CORALS SCHEME (NUCORALS) 81

x

τ

b

t

Figure 7.1. Bidirectional tiling. Large
thread parallelograms are skewed to the
right and depicted with different colors.
Small base parallograms are skewed to the
left. Vertical lines separate special tiles of
width b. Each spatial tile is allocated and
initialized by a different thread to assure
data-to-core affinity. τ denotes the height of
thread parallelograms, it parameterizes the
trade-off between data-to-core affinity and
temporal locality. Dotted parallelograms de-
pict the next layer of thread parallelograms.

Figure 7.2. One thread parallelogram
covered by a root parallelogram (dotted).
The small base parallelograms are formed
be subdivision of the root parallelogram.
Threads must synchronize at base parallel-
ograms that intersect the thread parallelo-
gram boundary; the lower part of each in-
tersecting base parallelogram must be com-
puted first, before a different thread in a
neighboring thread parallelogram may com-
pute the upper part. The part to the left
of the dotted vertical line has been allocated
by the neighboring thread parallelogram.

7.2 NUMA-aware CORALS Scheme (nuCORALS)

The original cache-oblivious CORALS (cache oblivious parallelograms) scheme [59] creates

a regular hierarchical space-time decomposition into parallelograms, which serves both for

cache oblivious data locality and parallelization. Data-to-core affinity cannot be directly

incorporated into this decomposition, therefore, the new NUMA-aware CORALS scheme

(nuCORALS) inherits only the single-threaded treatment of data locality from its prede-

cessor and creates a second level of tiling with different parallelization and synchronization.

We describe the entire scheme in the following.

7.2.1 Bidirectional Tiling

The spatial dimensions form a tensor product and each of them relates to the time dimen-

sion in the same fashion. Therefore, to explain most aspects of nuCORALS it suffices to

discuss the relation between one spatial dimension and the time dimension in a 2D space-

time, see Figure 7.1 and 7.2. Section 7.2.4 discusses those properties that need additional

consideration in multiple dimensions.

The scheme runs in three phases:

Phase I: NUMA-aware spatial domain decomposition and data-to-core affinity

maximization

We tile the spatial dimensions such that the overall number of spatial tiles is equal to the

82 CHAPTER 7. NUMA AWARE STENCIL COMPUTATIONS

number of threads executing the scheme. In Figure 7.1, the spatial tiles are one dimensional

with width b. We use affinity routines to pin each thread to one core before it allocates and

initializes one spatial tile. As such, each spatial tile is allocated in the memory attached

to the processor running the thread (first touch strategy) and by allowing each thread to

process the spatial tile it has allocated, we ensure the data-to core affinity requirement is

satisfied.

Phase II: Parallelization

We tile the temporal dimension according to the parameter τ (see Figure 7.1) into a

certain number of temporal tiles. Section 7.2.3 discusses the selection of the parameter τ

in detail. The tensor product of the spatial tiles with the temporal tiles results in layers

of space-time slices.

To allow multiple threads to start in parallel, space-time slices are skewed to the right

with a slope equal to the stencil order, resulting in parallelograms which we refer to as

thread parallelograms. Thread parallelograms (depicted in different colors in Figure 7.1)

at the left boundary of each spatial dimension are wrapped around to support periodic

boundary conditions.

Phase III: Cache oblivious decomposition and stencil kernel computation

Each thread proceeds by covering its thread parallelogram by a single space-time parallel-

ogram, which we call root parallelogram. Root parallelograms are skewed to the left with

a slope equal to the stencil order to respect the stencil dependencies. We skew thread

parallelograms to the right and root parallelograms to the left and not vice versa, because

the alternative would require to process thread parallelograms from right to left, which

works against the prefetcher.

nuCORALS recursively subdivides the root parallelogram into intermediate parallelograms

striving to maximize their volume-to-surface area ratio. To this end, always the longest

dimension (including time) of the intermediate parallelograms is subdivided. The sub-

division is stopped when all dimensions of the current intermediate parallelograms have

reached a certain size, we call the resultant parallelograms which are not subdivided fur-

ther base parallelograms. A single-threaded kernel is then applied on the data covered by

the base parallelograms. Once all threads have finished executing the kernels on the data

covered by their thread parallelograms, they synchronize before they proceed to the next

layer of space-time slices and execute phase III repeatedly until all layers are processed.

7.2.2 Synchronization

Threads are synchronized in two places, between each pair of thread parallelograms and

at the boundary of each layer of space-time slices. For the latter, one could synchronize

7.2. NUMA-AWARE CORALS SCHEME (NUCORALS) 83

each thread parallelogram with the two thread parallelograms beneath it. Since this

synchronization does not happen very often due to the relatively small number of thread

parallelograms, we use barriers in pthreads to synchronize all threads at the boundary of

each layer of space time slices. We call this global synchronization, since all threads are

involved.

Base parallelograms that intersect the boundary of any thread parallelogram (Figure 7.2)

must be processed by multiple threads in a certain order. Therefore, synchronization is

needed between these threads. We attach a structure of synchronization flags to each

thread. Each flag represents the index of a base parallelogram within the root parallelo-

gram space. We distinguish two checks, the first is the intersection with the right boundary

of the thread parallelogram, and the second is the intersection with the left boundary. If

a base parallelogram intersects the right boundary of a thread parallelogram, then the

thread enters a spin-wait loop waiting for the flag of that base parallelogram to be set.

If a base parallelogram intersects the left boundary of a thread parallelogram, then the

thread processes all data that belongs to its thread parallelogram, i.e., the lower part of the

base parallelogram, and then sets the corresponding flag in the synchronization structure

of the adjacent thread whose right boundary intersects with this base parallelogram. We

call this local synchronization.

7.2.3 Internal Parameters

nuCORALS has several internal parameters which are hidden from the user. Tuning these

parameters can yield higher performance on some machines, however, we fix them for

easier code portability of our schemes.

As is the case for most practical implementations of cache oblivious algorithms, we stop

the recursive subdivision of the space-time domain once the tile is sufficiently small be-

cause going deeper in the recursion tree, until single space-time points are reached, would

produce more control logic overhead than the actual computation. Furthermore, tiles with

single space-time points limit the optimization opportunities for the computation inside

the tiles such as innermost loop unrolling and vectorization, see [56]. We compute the

dimensions of the base parallelogram in the same way as in CORALS [59].

The internal parameter τ is the height of a thread parallelogram, it represents a trade-off

between temporal locality and data-to-core affinity. For stencil order s = 1, the ratio

of data items processed by one thread but allocated by another to the overall number

of items computed by this particular thread is τ/2b, where b is the width of the thread

parallelogram which can be computed as the size of spatial dimension divided by the

thread count. We can obtain more temporal locality by increasing τ at the expense of less

84 CHAPTER 7. NUMA AWARE STENCIL COMPUTATIONS

data-to-core affinity, because larger τ results in bigger fractions of data being processed

by one thread but allocated by another. The same effect appears when b becomes small,

e.g., due to a high number of threads, however, we solve this problem by parallelizing

across multiple dimensions, see Section 7.2.4. Through some experiments, we have found

that setting τ = b/2 to be half the width of the thread parallelograms results in a good

trade-off between these two conflicting requirements: 75% of the overall processed data

are local.

7.2.4 Multidimensional Properties

This section explains the properties of our scheme for an arbitrary dimension m of the

space-time. We explain the differences to the 2D iteration space and refer for analogy to

the previous 2D figures.

Domain decomposition. In an m dimensional space-time and n threads, we create n

tiles by dividing all dimensions except for the unit-stride since this reduces the bandwidth

utilization [15, 33]. Each dimension is subdivided into approximately n1/(m−2) tiles where

m − 2 results from excluding the time and the unit-stride dimensions. If n1/(m−2) is not

an integer, we favor dimensions with a higher stride, e.g., for m = 4D space-time domain

and n = 4, only two dimensions are subdivided, each dimension is subdivided into 2 tiles;

for n = 8, the dimension with highest stride is subdivided into 4 tiles and the other is

subdivided into 2 tiles.

Synchronization. Synchronization is similar to the 2D case, the only difference is that

local synchronization is now needed between each adjacent pair of thread parallelograms

in each dimension. This results in more checks for intersection with the left or the right

boundaries of the thread parallelogram in each dimension. However, these checks are

cheap and hardly impact the running time of the scheme.

Internal parameters. In 2D we have τ = b/2, where b is the width of the thread

parallelograms. For higher dimensional space-time, we use the same formula only b is now

the smallest spatial dimension of the thread parallelograms. The domain decomposition

tries to tile the spatial dimensions equally so that τ becomes as large as possible without

degrading data-to-core affinity.

7.3 Results

7.3.1 Schemes

In the experiments the following schemes are compared:

7.3. RESULTS 85

• PeakDP: Measured computational peak in double precision. We obtain this value

by performing a sequence of independent multiply-add operations in registers. PeakDP

models the absolute upper bound for any computation on a machine. It is clear that

no optimization of stencil codes will reach this upper bound since stencil operations

are not independent. The goal is to achieve a high fraction of this peak.

• LL1Band0C: Last-level cache bandwidth with zero further caching. It models the

performance of a stencil code in case the domain could entirely fit into the last-

level cache, but no higher level caches are present. Accordingly, for the case of a

7-point constant stencil of order s = 1, 7 read and 1 write operations are performed

from the last-level cache for each kernel execution. For the variable stencil case

(banded-matrix), 14 reads (7 vector elements plus 7 matrix coefficients) and 1 write

operations are counted. LL1Band0C represents the achievable performance in case

of an enormous last level cache that could hold all data on-chip.

• nuCATS: Our NUMA-aware, cache-aware scheme from Section 7.1; nuCATS is par-

allelized with pthreads and the kernel is vectorized using SSE2 intrinsics to prevent

it from becoming compute-bound.

• nuCORALS: Our NUMA-aware, cache oblivious scheme from Section 7.2; nuCO-

RALS is parallelized with pthreads and the kernel is vectorized using SSE2 intrinsics

to prevent it from becoming compute-bound.

• CATS: Our original cache aware time skewing scheme [60] (Chapter 4).

• CORALS: Our original cache oblivious parallelograms scheme [59] (Chapter 6).

• Pochoir: Code compiled using Phase II compilation of the Pochoir compiler and

run-time system for implementing stencil computations on multicore processors [63].

We modify the kernel function of the 3D 7-point stencil example provided in the

examples folder of the Pochoir package to implement (7.1) and use Pochoir’s latest

version v0.5 to compile it with the -O3 -ipo -xHost flags. Other flags suggested in

the makefile either do not affect or worsen the performance.

• PLuTo code transformed by the automatic parallelizer and locality optimizer for

multicores PLuTo version 0.7.0 [7]. We have tuned the tile sizes for our machines

individually and use the transformation flags that yield the best performance. The

transformed code is compiled with intel icc compiler version 12.1.2 with the -O3 -ipo

-openmp -parallel flags and it reports successful vectorization of the loops.

• SysBandIC: System bandwidth with ideal caching.

A performance estimate derived from the measured peak system bandwidth, see

Table 7.1. It assumes a sufficiently large cache that can hold at least 2 slices of the

86 CHAPTER 7. NUMA AWARE STENCIL COMPUTATIONS

3D domain or 2 lines of the 2D domain; therefore, for the case of 7-point constant

stencil of order s = 1, 1 read and 1 write operations are performed from main

memory for each kernel execution. For the variable stencil case (banded-matrix),

8 reads (7 vector elements plus 7 matrix coefficients) and 1 write operations are

counted. SysBandIC models the absolute upper bound for the performance of a

naive implementation of stencil codes when the domain is too big to fit entirely into

the cache.

• NaiveSSE: A Naive implementation with the following optimizations employed:

parallelization using pthreads, kernel vectorization using SSE2 intrinsics, and NUMA-

aware data allocation. We expect that the NaiveSSE curve will lie between Sys-

Band0C and SysBandIC.

• SysBand0C: System bandwidth with zero-caching.

In contrast to SysBandIC, it assumes there is no cache and thus all data accesses go

to main memory. For the case of 7-point constant stencil of order s = 1, 7 read and

1 write operations are performed from main memory for each kernel execution. For

the variable stencil case (banded-matrix), 14 reads (7 vector elements plus 7 matrix

coefficients) and 1 write operations are counted. SysBand0C represents the lower

bound for the performance of an efficient naive implementation of stencil codes.

The LL1Band0C, SysBandIC, and SysBand0C schemes assume that the bandwidth is the

sole limiting factor, and all other factors (memory access latency, access to higher level

memories, computation, etc.) are hidden behind it. Due to layout restrictions we refer in

the figures to the suffix ’Band’ with only the letter ’B’.

7.3.2 Testbed

Our testbed comprises constant and variable (banded matrix) 7-point stencils with order

s = 1. Each stencil execution performs 7 multiplications and 6 additions amounting to 13

flops. A single stencil point update in 3D is described by

Xt+1
i,j,k = c1 ·Xt

i−1,j,k + c2 ·Xt
i,j−1,k + c3 ·Xt

i,j,k−1 (7.1)

+c4 ·Xt
i+1,j,k + c5 ·Xt

i,j+1,k + c6 ·Xt
i,j,k+1

+c0 ·Xt
i,j,k

where ci, for 0 ≤ i ≤ 6 are the stencil coefficients.

We show both weak and strong scalability of nuCATS, nuCORALS and the other schemes

on the two machines whose specifications are listed in Table 7.1. To prevent the early

7.3. RESULTS 87

exploitation of another socket’s system bandwidth before all cores on one socket are in

use, we use the affinity routines to pin the thread contexts to cores on one socket, before

occupying a new socket.

We demonstrate the weak scalability of nuCATS and nuCORALS on a 2003 domain per

core configuration, whereby the domain on which we compute in case of n threads is not

an agglomeration of n separate 2003 cubes, but one cube of volume n · 2003. Thus, with

growing thread number, the weak scalability is not trivial, as it becomes more and more

difficult to exploit data locality in the large data cubes. The strong scalability is presented

for 1603 and 5003 domains. In the 1603 case, the challenge is the shrinking working size for

each thread that makes the inter-core communication become a bigger relative overhead.

Not surprisingly it is therefore easier to obtain good scalability on the large 5003 domain.

We run 100 iterations with two copies of X instead of in-place updates of Gauss-Seidel

type with one one copy of X, since the two copy scenario is more general and challenging

for temporal blocking. Temporal blocking is also beneficial for fewer iterations, e.g., to

accelerate multiple smoother applications on each level of a multigrid solver, however, for

a general performance comparison of temporal blocking schemes 100 iterations are more

suitable.

All figures show the number of cores involved in executing the schemes on the x-axis.

Figure 7.4 to Figure 7.15 have two y-axes; the left one shows how many giga updates

of Xt+1 can be executed per second (Gupdates/s) per core, and the right one shows

the achieved GFLOPS per core with stencil (7.1), i.e., Gupdates/s times 13 in this case.

We show Gupdates/s since it is a more informative measure when the performance of

different stencils is compared, e.g., Gupdates/s hardly changes if we add another stencil

point to (7.1) because the problem is still memory bound, however, the GLOPS number

would change immediately. Since all graphs show results per core, a straight horizontal

line means linear scaling with the number of cores.

7.3.3 Memory Bandwidth

Figure 7.3 shows how memory and cache bandwidths scale with the number of cores. For

both machines, the cache bandwidth scales linearly with the number of cores, because

each core has its own connection to the caches.

One thread does not saturate the memory bus. For the Opteron 8222 machine, the single-

threaded memory bandwidth grows by a factor of 1.6x when 2 cores are used. The band-

width increases on average by a factor of 1.5x when one additional socket is used up to 8

sockets (number of sockets in the machine). Overall, Opteron’s single threaded bandwidth

grows by 6.5x when all 16 cores on all sockets are employed.

88 CHAPTER 7. NUMA AWARE STENCIL COMPUTATIONS

Table 7.1. Hardware configurations. The measured bandwidth numbers come from the STREAM
COPY benchmark tool running with 16 and 32 threads and SSE reads. The measured peak double
precision (DP) FLOPS come from our SSE benchmark consisting of independent multiply-add
operations on registers. LL1 denotes last-level cache, LL2 denotes last but one level cache.

Brand AMD Intel
Processor Opteron 8222 Xeon X7550
Code-named Santa Rosa Beckton
Frequency 3.0 GHz 2.0 GHz
Number of sockets 8 4
Cores per socket 2 8
L1 Cache per core 64 KiB 32 KiB
L2 Cache per core 1 MiB 256 KiB
L3 Cache per core - 2.25 MiB

Operating system Linux 64 bit Linux 64 bit
Parallelization 1..16 pthreads 1..32 pthreads
Vectorization SSE2 SSE2
Number of NUMA Nodes 8 4
Compiler g++ 4.3.2 icpc 12.1.2

Measured L1 Bandwidth 675.3 GB/s 819.1 GB/s
Measured L2 Bandwidth 185.7 GB/s 642.8 GB/s
Measured L3 Bandwidth - 588.6 GB/s
Measured Sys. Bandwidth 11.9 GB/s 63.0 GB/s
Measured Peak DP FLOPS 95.3 G 202.5 G

LL1 Band./Sys. Bandwidth 15.6 9.3
LL2 Band./LL1. Band. 3.6 1.1
Peak DP/(Sys. Band./8B) 64.1 25.7
Arith. intensity for Sys.
Peak DP/(LL1 Band./8B) 4.1 2.8
Arith. intensity for LL1

For the the Xeon X7550 machine, memory bandwidth scales almost linearly from 1 to

2 cores; from 2 to 4 cores, bandwidth grows by 1.7x. Using all 8 cores on one socket

saturates the bus since bandwidth increases by only 1.5x. Bandwidth grows by a factor

of 1.4x when another socket is used. Overall, Xeon’s single threaded bandwidth grows by

a factor of 13.7x when all cores on the four sockets are engaged.

The cache and bandwidth performance numbers displayed in Figure 7.3 are used to

define the benchmarks LL1Band0C, SysBandIC and SysBand0C based on the Roofline

model [69]. Clearly all schemes and benchmarks will achieve higher performance on the

Xeon than on the Opteron due to the higher cache and memory bandwidths. However,

the system bandwidth per core goes down significantly in both cases. So to obtain linear

scalability with a temporal blocking scheme, the scheme has to create so much temporal

locality and so few cache misses, that its scalability starts depending mostly on the linear

scalability of the cache bandwidth rather than the degrading scalability of the system

7.3. RESULTS 89

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32

G
B

/s
 p

er
 c

or
e

Number of Cores

Scaling of STREAM COPY bandwidth for 1 to 16 cores

LL1Band Xeon X7550
LL1Band Opteron 8222

SysBand Xeon X7550
SysBand Opteron 8222

Figure 7.3. Scalability of last-level cache and system bandwidths for 1 to 16 threads on Opteron
8222 machine and for 1 to 32 threads on Xeon X7550 machine.

bandwidth. We will see that nuCATS and nuCORALS cannot decouple completely from

the degrading scalability of the system bandwidth, however, in most case the scalability

is much better.

7.3.4 Scalability for Constant Stencils

From Figure 7.4 to Figure 7.9, we can draw the following common conclusions:

• NaiveSSE, SysBandIC and SysBand0C on the Xeon are faster than their

counterparts on the Opteron.

The performance of these schemes depends on the system bandwidth. With 16

threads (2 sockets), the Xeon has 38.7 GB/s system bandwidth while the Opteron

has only 11.9 GB/s, a ratio of 3.3, see Table 7.1, and in fact NaiveSSE on the Xeon

achieves a similar speedup factor of 2.7x over NaiveSSE on the Opteron.

• LL1Band0C on the Xeon is faster than on the Opteron.

The performance of this benchmark depends on the bandwidth of the last cache

level. The LL1 cache bandwidth on the Xeon is faster than on the Opteron, see

Table 7.1 and Figure 7.3.

90 CHAPTER 7. NUMA AWARE STENCIL COMPUTATIONS

• The Xeon is much faster than the Opteron on nuCORALS and nuCATS

schemes.

The performance of nuCATS and nuCORALS depends primarily on the cache band-

width. The Xeon X7550 features larger and faster caches than the Opteron 2218.

Both schemes exploit them effectively to reduce the impact of the slow accesses to

the main memory.

• The performance graph of NaiveSSE lies between SysBandIC and Sys-

Band0C on both machines.

NaiveSSE scheme performs better than SysBand0C since SysBand0C assumes that

7 vector elements are fetched from main memory for each kernel execution, whereas

in reality some of them are cached. SysBandIC on the other hand performs bet-

ter than NaiveSSE since SysBandIC assumes ideal caching wherein only 2 memory

transactions per update are necessary and additional overhead in the real execution

is not considered.

• Although LL1Band0C transfers 4x more data than SysBand0C, it shows

higher performance.

This is not an inherent property of LL1Band0C vs. SysBandIC. For the 7-point

stencil of order s = 1, SysBandIC, which assumes ideal spatial blocking, reads 1

double and writes 1 double, LL1Band0C, which assumes zero further caching, reads

7 doubles and writes 1 double. The ratio of transferred data by LL1Band0C to

transferred data by SysBandIC is 4 which is far less than the ratios of last-level

cache bandwidth to system bandwidth 15.6 and 9.3 for the Opteron and the Xeon,

respectively. However, for high order stencils, the ratio of transferred data becomes

larger and may yield that SysBandIC surpasses LL1Band0C.

• nuCATS is better on the large domains, nuCORALS is better on the

small domain.

nuCATS diverts almost all effort towards the maximal cache reuse in the last level

cache at the expense of all other optimizations. If the domain is much bigger than

the last level cache this strategy pays off as it minimizes main memory traffic which

is 15.6x or 9.3x slower than the last level cache bandwidth on the Opteron and

the Xeon, respectively. However, on smaller domains less aggressive last level cache

optimization in nuCORALS also reduces main memory traffic to a small amount,

and then its additional higher level cache optimization leads to better performance.

While the schemes show various common characteristics on the two machines used for

our experiments, it is not surprising that the schemes also exhibit different behavior on

those machines. This is simply due to the difference in the architecture and the other

7.3. RESULTS 91

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16
 0

 1

 2

 3

 4

 5

 6

 7

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Weak scalability for constant 7-point stencil on 2003 domain per core

PeakDP
LL1B0C

nuCORALS
nuCATS

SysBIC
NaiveSSE

SysB0C

Figure 7.4. Constant stencil weak scalability
for 1 to 16 threads with 2003 doubles per thread
and 100 timesteps on the Opteron 8222. GFLOPS
achieved with 16 cores, PeakDP 95.3, LL1Band0C
37.7, nuCORALS 22.4, nuCATS 26.8, SysBandIC
13.2, NaiveSSE 4.6, SysBand0C 3.3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

 6

 7

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Weak scalability for constant 7-point stencil on 2003 domain per core

PeakDP
LL1B0C

nuCORALS
nuCATS

SysBIC
NaiveSSE

SysB0C

Figure 7.5. Constant stencil weak scalabil-
ity for 1 to 32 threads with 2003 doubles per
thread and 100 timesteps on the Xeon X7550.
GFLOPS achieved with 32 cores, PeakDP 202.5,
LL1Band0C 119.6, nuCORALS 83.4, nuCATS
92.7, SysBandIC 51.2, NaiveSSE 22.9, SysBand0C
12.7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16
 0

 1

 2

 3

 4

 5

 6

 7

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Strong scalability for constant 7-point stencil on 1603 domain

PeakDP
LL1B0C

nuCORALS
nuCATS

SysBIC
NaiveSSE

SysB0C

Figure 7.6. Constant stencil strong scalability
for 1 to 16 threads on a 1603 domain of doubles
and 100 timesteps on the Opteron 8222. GFLOPS
achieved with 16 cores, PeakDP 95.3, LL1Band0C
37.7, nuCORALS 24.9, nuCATS 22.5, SysBandIC
13.2, NaiveSSE 6.9, SysBand0C 3.3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

 6

 7

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Strong scalability for constant 7-point stencil on 1603 domain

PeakDP
LL1B0C

nuCORALS
nuCATS

SysBIC
NaiveSSE

SysB0C

Figure 7.7. Constant stencil strong scalabil-
ity for 1 to 32 threads on a 1603 domain of
doubles and 100 timesteps on the Xeon X7550.
GFLOPS achieved with 32 cores, PeakDP 202.5,
LL1Band0C 119.6, nuCORALS 104.8, nuCATS
84.5, SysBandIC 51.2, NaiveSSE 44.7, SysBand0C
12.7

characteristics of the machines, see Table 7.1. In the following, we explain the platform

specific behavior of the schemes.

7.3.4.1 Opteron Results

Figures 7.4, 7.6, and 7.8 show that the performance curves of nuCATS and nuCORALS

lie between SysBandIC and LL1Band0C on the Opteron. Being faster than SysBandIC

means that both schemes transfer on average less than 2 doubles from main memory

per stencil update due to the created space-time data locality. Despite the degrading

system bandwidth both schemes show very good scalability up to 8 cores (nearly horizontal

92 CHAPTER 7. NUMA AWARE STENCIL COMPUTATIONS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16
 0

 1

 2

 3

 4

 5

 6

 7

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Strong scalability for constant 7-point stencil on 5003 domain

PeakDP
LL1B0C

nuCORALS
nuCATS

SysBIC
NaiveSSE

SysB0C

Figure 7.8. Constant stencil strong scalability
for 1 to 16 threads on a 5003 domain of doubles
and 100 timesteps on the Opteron 8222. GFLOPS
achieved with 16 cores, PeakDP 95.3, LL1Band0C
37.7, nuCORALS 22.4, nuCATS 26.8, SysBandIC
13.2, NaiveSSE 4.6, SysBand0C 3.3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

 6

 7

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Strong scalability for constant 7-point stencil on 5003 domain

PeakDP
LL1B0C

nuCORALS
nuCATS

SysBIC
NaiveSSE

SysB0C

Figure 7.9. Constant stencil strong scalabil-
ity for 1 to 32 threads on a 5003 domain of
doubles and 100 timesteps on the Xeon X7550.
GFLOPS achieved with 32 cores, PeakDP 202.5,
LL1Band0C 119.6, nuCORALS 85.9, nuCATS
107.6, SysBandIC 51.2, NaiveSSE 22.9, Sys-
Band0C 12.7

 0

 0.05

 0.1

 0.15

 0.2

 1 2 4 8 16
 0

 0.5

 1

 1.5

 2

 2.5

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Weak scalability for double precision 7-band matrix on 2003 domain per core

LL1B0C
nuCORALS

nuCATS
SysBIC

NaiveSSE
SysB0C

Figure 7.10. Banded matrix weak scalability
for 1 to 16 threads with 2003 doubles per thread
and 100 timesteps on the Opteron 8222. GFLOPS
achieved with 16 cores, PeakDP 95.3, LL1Band0C
20.1, nuCORALS 3.4, nuCATS 3.6, SysBandIC
2.9, NaiveSSE 1.7, SysBand0C 1.8

 0

 0.05

 0.1

 0.15

 0.2

 1 2 4 8 16 32
 0

 0.5

 1

 1.5

 2

 2.5

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Weak scalability for double precision 7-band matrix on 2003 domain per core

LL1B0C
nuCORALS

nuCATS
SysBIC

NaiveSSE
SysB0C

Figure 7.11. Banded matrix weak scalabil-
ity for 1 to 32 threads with 2003 doubles per
thread and 100 timesteps on the Xeon X7550.
GFLOPS achieved with 32 cores, PeakDP 202.5,
LL1Band0C 63.8, nuCORALS 33.6, nuCATS 17.7,
SysBandIC 11.3, NaiveSSE 8.9, SysBand0C 6.8

lines). When using all 16 cores of the machine, they become more affected by the system

bandwidth limit and the 8 core performance of nuCORALS and nuCATS grows only by

a factor of 1.6x and 1.7x.

Overall, Opteron’s single-core performance on nuCORALS grows by a factor of 10.4x

when using all 16 cores of the machine in Figure 7.4 (2003 per core domain), 11.1x in

Figure 7.6 (1603 domain), and 10.7x in Figure 7.8 (5003 domain). The highest fraction

of the computational peak on 16 cores is reached in Figure 7.6, namely 26%. Opteron’s

single-core performance on nuCATS grows by a factor of 11.2x when using all 16 cores

of the machine in Figure 7.4 (2003 per core domain), 9.4x in Figure 7.6 (1603 domain),

and 11.2x in Figure 7.8 (5003 domain). nuCATS achieves the highest fraction of the

computational peak (28%) using all 16 cores of the machine.

7.3. RESULTS 93

 0

 0.05

 0.1

 0.15

 0.2

 1 2 4 8 16
 0

 0.5

 1

 1.5

 2

 2.5

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Strong scalability for double precision 7-band matrix on 1603 domain

LL1B0C
nuCORALS

nuCATS
SysBIC

NaiveSSE
SysB0C

Figure 7.12. Banded matrix strong scalability
for 1 to 16 threads on a 1603 domain of doubles
and 100 timesteps on the Opteron 8222. GFLOPS
achieved with 16 cores, PeakDP 95.3, LL1Band0C
20.1, nuCORALS 5.6, nuCATS 6.0, SysBandIC
2.9, NaiveSSE 1.7, SysBand0C 1.8

 0

 0.05

 0.1

 0.15

 0.2

 1 2 4 8 16 32
 0

 0.5

 1

 1.5

 2

 2.5

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Strong scalability for double precision 7-band matrix on 1603 domain

LL1B0C
nuCORALS

nuCATS
SysBIC

NaiveSSE
SysB0C

Figure 7.13. Banded matrix strong scalabil-
ity for 1 to 32 threads on a 1603 domain of
doubles and 100 timesteps on the Xeon X7550.
GFLOPS achieved with 32 cores, PeakDP 202.5,
LL1Band0C 63.8, nuCORALS 29.4, nuCATS 20.4,
SysBandIC 11.3, NaiveSSE 8.6, SysBand0C 6.8

 0

 0.05

 0.1

 0.15

 0.2

 1 2 4 8 16
 0

 0.5

 1

 1.5

 2

 2.5

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Strong scalability for double precision 7-band matrix on 5003 domain

LL1B0C
nuCORALS

nuCATS
SysBIC

NaiveSSE
SysB0C

Figure 7.14. Banded matrix strong scalability
for 1 to 16 threads on a 5003 domain of doubles
and 100 timesteps on the Opteron 8222. GFLOPS
achieved with 16 cores, PeakDP 95.3, LL1Band0C
20.1, nuCORALS 3.4, nuCATS 3.5, SysBandIC
2.9, NaiveSSE 1.7, SysBand0C 1.8

 0

 0.05

 0.1

 0.15

 0.2

 1 2 4 8 16 32
 0

 0.5

 1

 1.5

 2

 2.5

G
up

da
te

s/
s

pe
r

co
re

G
F

LO
P

S
 p

er
 c

or
e

Number of cores

Strong scalability for double precision 7-band matrix on 5003 domain

LL1B0C
nuCORALS

nuCATS
SysBIC

NaiveSSE
SysB0C

Figure 7.15. Banded matrix strong scalabil-
ity for 1 to 32 threads on a 5003 domain of
doubles and 100 timesteps on the Xeon X7550.
GFLOPS achieved with 32 cores, PeakDP 202.5,
LL1Band0C 63.8, nuCORALS 33.8, nuCATS 21.6,
SysBandIC 11.3, NaiveSSE 8.9, SysBand0C 6.8

7.3.4.2 Xeon Results

On the Xeon, nuCORALS not only surpasses SysBandIC, but also it beats the performance

of LL1Band0C up to 4 cores. This means that even if gigabyte large domains could fit

into the last level cache and would be processed completely on-chip, the already available

performance of nuCORALS is still superior. This is a remarkable result, as it shows that

a cache oblivious algorithm can draw so much benefit from higher level caches that it

overcompensates for the remaining slow data accesses to main memory and performs on

average better than the last level cache alone. However, for higher core counts than 4,

the sublinear scaling of the main memory bandwidth renders it more and more difficult to

beat LL1Band0C. Only on the 1603 domain nuCORALS is still better than LL1Band0C

with 8 cores. This is due to the big fraction of data cached in higher level caches and less

94 CHAPTER 7. NUMA AWARE STENCIL COMPUTATIONS

main memory traffic compared to big domains, which compensates for the increasingly

slower transfers from main memory.

nuCATS optimizes for the last level cache exclusively and in fact on the large domains it

shows very similar performance to LL1Band0C up to 16 cores, only for 32 cores it falls

off a bit. This is a big achievement, demonstrating an algorithmic decoupling from the

slow main memory bandwidth, which is already severely degrading up to 16 cores, see

Figure 7.3. At first it appears very surprising that nuCATS can even beat LL1Band0C

in some cases, as it has some overheads and does not optimize for anything else than the

last level cache. However, similar to the processing pattern of the naive scheme, there is

some natural data reuse in higher level caches.

As already discussed nuCORALS is clearly better than nuCATS on the 1603 domain,

because the small domain allows high data reuse in higher level caches and the cache-

oblivious nuCORALS automatically takes advantage of that.

Figures 7.5, 7.7, and 7.9 show that nuCORALS’s per core performance falls off from 2 to 8

cores, because more and more threads compete for the shared last level cache. Despite the

decreasing cache capacity per thread and the decreasing main memory bandwidth available

to each thread (Figure 7.3) the drop in per-core performance is moderate. When additional

sockets come into use, i.e., the transitions from 8 to 2·8 to 4·8 cores, nuCORALS maintains

a near linear scalability. When all cores on all sockets are in use, nuCORALS achieves

52% of the measured computational peak performance. Overall, the Xeon’s single-core

performance grows on average by a factor of 22.0x when nuCORALS uses all 32 cores of

the machine and by a factor of 22.7x when nuCATS uses all 32 cores of the machine.

To summarize, nuCATS and nuCORALS perform very well on both the Xeon and the

Opteron. They show a near linear scalability where the system bandwidth scales almost

linearly and still good scalability where system bandwidth scales only sublinearly.

7.3.5 Scalability for Banded Matrices

Common to all banded matrix figures is the omission of PeakDP (Section 7.3.1), because

its inclusion would severely compress all other graphs at the bottom. However, it is

important to keep in mind that PeakDP is much higher than the displayed LL1Band0C

and represents the real extent of the memory wall problem.

When the stencil coefficients are not constant, they must be stored in main memory. This

corresponds to a banded matrix vector product. In this case, to exploit temporal locality,

not only vector elements, but also the coefficients must reside in cache. Therefore, another

7 components along with each vector value must be fetched from main memory. This makes

7.3. RESULTS 95

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16

G
up

da
te

s/
s

pe
r

co
re

Number of cores

Strong scalability for stencils of different orders (s) on 1603 domain

nuCORALS for s = 1
nuCATS for s = 1

nuCORALS for s = 2
nuCATS for s = 2

nuCORALS for s = 3
nuCATS for s = 3

Figure 7.16. Strong scalability for high or-
der stencils on a 1603 domain of doubles and
100 timesteps on the Opteron 8222. GFLOPS
achieved for s = 1 nuCORALS 24.9, nuCATS 22.5.
For s = 2 nuCORALS 28.9, nuCATS 23.2. For
s = 3 nuCORALS 29.6, nuCATS 22.8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16 32

G
up

da
te

s/
s

pe
r

co
re

Number of cores

Strong scalability for stencils of different orders (s) on 1603 domain

nuCORALS for s = 1
nuCATS for s = 1

nuCORALS for s = 2
nuCATS for s = 2

nuCORALS for s = 3
nuCATS for s = 3

Figure 7.17. Strong scalability for high or-
der stencils on a 1603 domain of doubles and 100
timesteps on the Xeon X7550. GFLOPS achieved
with 32 cores for s = 1 nuCORALS 104.8, nu-
CATS 84.5. For s = 2 nuCORALS 121, nuCATS
94.2. For s = 3 nuCORALS 127, nuCATS 100.3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16

G
up

da
te

s/
s

pe
r

co
re

Number of cores

Strong scalability for stencils of different orders (s) on 5003 domain

nuCORALS for s = 1
nuCATS for s = 1

nuCORALS for s = 2
nuCATS for s = 2

nuCORALS for s = 3
nuCATS for s = 3

Figure 7.18. Strong scalability for high or-
der stencils on a 5003 domain of doubles and
100 timesteps on the Opteron 8222. GFLOPS
achieved for s = 1 nuCORALS 22.4, nuCATS 26.8.
For s = 2 nuCORALS 19.4, nuCATS 25.9. For
s = 3 nuCORALS 18.9, nuCATS 23.5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16 32

G
up

da
te

s/
s

pe
r

co
re

Number of cores

Strong scalability for stencils of different orders (s) on 5003 domain

nuCORALS for s = 1
nuCATS for s = 1

nuCORALS for s = 2
nuCATS for s = 2

nuCORALS for s = 3
nuCATS for s = 3

Figure 7.19. Strong scalability for high or-
der stencils on a 5003 domain of doubles and 100
timesteps on the Xeon X7550. GFLOPS achieved
with 32 cores for s = 1 nuCORALS 85.9, nuCATS
107.6. For s = 2 nuCORALS 105.4, nuCATS
100.9. For s = 3 nuCORALS 107.7, nuCATS 91.5

the problem even more memory-bound. When all 16 cores are used, nuCORALS’s and

nuCATS’s aggregate performances drop by a factor of 6.6x and 7.6x, respectively, on both

the 2003 per core and 5003 domains compared to the constant stencil case on the Opteron.

Xeon’s big L3 cache and relatively high system memory bandwidth (Table 7.1) are able

to mitigate the problem to some extent and therefore, its aggregate performance drops by

a factor of only 3x for nuCORALS and 5x for nuCATS.

On the Opteron, the additional data transfers create a large gap between nuCORALS

and nuCATS on the one side and LL1Band0C on the other side. Both schemes maintain

a clear advantage over SysBandIC, however, the additional main memory traffic makes

them also inherit its sublinear scalability. The single-threaded performance of nuCORALS

and nuCATS accelerates by around 6x on the 1603 (Figure 7.12) and 5003 (Figure 7.14)

96 CHAPTER 7. NUMA AWARE STENCIL COMPUTATIONS

domains and around 5x on the 2003 per core problem (Figure 7.10), when all 16 cores

are engaged in the computation. The latter is particularly difficult to accelerate because

the dependence on the system bus grows super-linearly (linear in volume plus more tile

boundaries in large volume), while system bandwidth per thread decreases.

On the Xeon, the additional transfer of matrix coefficients prevents nuCORALS from

surpassing the performance of LL1Band0C as in the constant stencil case. Benefiting

from the large shared last-level cache, the single-threaded performance of nuCORALS and

nuCATS is much closer to LL1Band0C than on the Opteron. However, it falls off rapidly

when more cores are engaged in the computation, because the advantage of the shared

cache disappears when it has to be divided among all cores on the same socket (There

is almost no data reuse between tiles of different threads). The corresponding reduction

in per-core performance is particularly strong for nuCATS and the 4 to 8 core transition,

because the available last-level cache capacity per thread is halved and system bandwidth

scales particularly poorly for this transition, see Figure 7.3. Although the reduction from

4 to 8 cores is disproportionally large, on average nuCATS’s performance correlates with

SysBandIC. nuCORALS suffers a similar reduction in per-core performance on the 1603

domain (Figures 7.13), however, maintains per-core performance on the bigger domains

in Figures 7.13 and 7.15. The cache oblivious nature of the algorithm with the automatic

exploitation of the entire cache hierarchy is of great help in these cases.

So nuCORALS is the clear winner against nuCATS for the banded matrix multiplication.

It maintains more than 50% parallel efficiency on all domains, achieving speedups of 18.7x

on the 2003 per core domain, 16.3x on the 1603 domain, and 22.5x on the 5003 domain

with 32 threads. nuCATS’s per core performance is 9.3x higher than its single-threaded

performance on the 2003 per core domain, 11.3x on the 1603 domain, and 14.4x on the

5003 domain.

7.3.6 Scalability for High Order Stencils

Skewing thread and root parallelograms with a slope equal to the stencil order s makes

it more challenging to achieve high performance and scalable results. We have more

control overhead from additional boundary intersections and synchronizations, the tiles’

surface to volume ratios increase and more surface layers must be kept on-chip, and a

larger fraction of data is processed by one thread but owned by another in case of a fixed

thread parallelogram height (τ in Figure 7.1). The last effect can be alleviated by setting

τ = b/(2 · s), which recovers the previous compromise between data-to-core affinity and

temporal blocking.

Figures 7.16 to 7.19 show the scalability of nuCORALS for stencil orders s = 1, s = 2, and

7.3. RESULTS 97

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

G
u

p
d

a
te

s
/s

 p
e

r
c
o

re

G
F

L
O

P
S

 p
e

r
c
o

re

Number of cores

Weak scalability for constant 7-point stencil on 200
3
 domain per core

nuCORALS
nuCATS

CATS
CORALS

NaiveSSE

Figure 7.20. Constant stencil weak scalability
for 1 to 32 threads with 2003 doubles per thread
and 100 timesteps on the Xeon X7550. GFLOPS
achieved with 32 cores, nuCORALS 83.4, nuCATS
92.7, CATS 52, CORALS 16.7, NaiveSSE 22.9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

G
u

p
d

a
te

s
/s

 p
e

r
c
o

re

G
F

L
O

P
S

 p
e

r
c
o

re

Number of cores

Weak scalability for constant 7-point stencil on 200
3
 domain per core

nuCORALS
nuCATS

Pochoir
PLuTo

NaiveSSE

Figure 7.21. Constant stencil weak scalability
for 1 to 32 threads with 2003 doubles per thread
and 100 timesteps on the Xeon X7550. GFLOPS
achieved with 32 cores, nuCORALS 83.4, nuCATS
92.7, Pochoir 29.9, PLuTo 21.3, NaiveSSE 22.9

s = 3. Our model problem has 25 flops for s = 2 (13 multiplications and 12 additions),

and 37 flops for s = 3 (19 multiplications and 18 additions). The scalability behavior of

nuCORALS and nuCATS for s = 2 and 3 is not much different compared to the s = 1 case

discussed above. The absolute performance clearly decreases, however, as a very positive

result we observe that the decrease from s = 1 to s = 2 is less than 2x, and from s = 1

to s = 3 less than 3x, although the convex hull of the stencil required for spatial locality

on-chip grows cubically.

7.3.7 Performance Comparison

This section highlights the importance of data-to-core affinity by comparing the perfor-

mance of nuCORALS and nuCATS with CATS (Chapter 4) and CORALS (Chapter 6).

We also compare against other recent temporal blocking schemes from literature: PLuTo

0.7.0 [7] and Pochoir 0.5 [63]. All schemes but nuCORALS, nuCATS, and NaiveSSE do

not explicitly pay attention to this requirement; therefore, we anticipate that they will

exhibit worse scalability beyond one NUMA node.

Figures 7.20, 7.24, and 7.22 show that the performances of CORALS and CATS are on

par with their NUMA-aware counterparts using one core since each scheme is similar to

its NUMA-aware counterpart. However, when up to 8 cores (one socket) are engaged

in the computation, the graphs of CORALS vs. nuCORALS and CATS vs. nuCATS

already drift apart, although both are still running on the same NUMA node. The per-

thread local data allocation in nuCATS and nuCORALS helps also the efficient utilization

of multi-channel memory buses. The difference between CATS and nuCATS is smaller

than between CORALS and nuCORALS, because nuCORALS underwent more signifi-

cant changes including a second level tiling for more coarse-granular parallelization and

98 CHAPTER 7. NUMA AWARE STENCIL COMPUTATIONS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

G
u

p
d

a
te

s
/s

 p
e

r
c
o

re

G
F

L
O

P
S

 p
e

r
c
o

re

Number of cores

Strong scalability for constant 7-point stencil on 160
3
 domain

nuCORALS
nuCATS

CATS
CORALS

NaiveSSE

Figure 7.22. Constant stencil strong scalability
for 1 to 32 threads on a 1603 domain of doubles
and 100 timesteps on the Xeon X7550. GFLOPS
achieved with 32 cores, nuCORALS 104.8, nu-
CATS 84.5, CATS 40.3, CORALS 7.2, NaiveSSE
44.7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

G
u

p
d

a
te

s
/s

 p
e

r
c
o

re

G
F

L
O

P
S

 p
e

r
c
o

re

Number of cores

Strong scalability for constant 7-point stencil on 160
3
 domain

nuCORALS
nuCATS

Pochoir
PLuTo

NaiveSSE

Figure 7.23. Constant stencil strong scalability
for 1 to 32 threads on a 1603 domain of doubles
and 100 timesteps on the Xeon X7550. GFLOPS
achieved with 32 cores, nuCORALS 104.8, nu-
CATS 84.5, Pochoir 16.9, PLuTo 13, NaiveSSE
44.7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

G
u

p
d

a
te

s
/s

 p
e

r
c
o

re

G
F

L
O

P
S

 p
e

r
c
o

re

Number of cores

Strong scalability for constant 7-point stencil on 500
3
 domain

nuCORALS
nuCATS

CATS
CORALS

NaiveSSE

Figure 7.24. Constant stencil strong scalabil-
ity for 1 to 32 threads on a 5003 domain of dou-
bles and 100 timesteps on the Opteron X7550.
GFLOPS achieved with 32 cores, nuCORALS
85.9, nuCATS 107.6, CATS 42.9, CORALS 15.3,
NaiveSSE 22.9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

G
u

p
d

a
te

s
/s

 p
e

r
c
o

re

G
F

L
O

P
S

 p
e

r
c
o

re

Number of cores

Strong scalability for constant 7-point stencil on 160
3
 domain

nuCORALS
nuCATS

Pochoir
PLuTo

NaiveSSE

Figure 7.25. Constant stencil strong scalabil-
ity for 1 to 32 threads on a 5003 domain of dou-
bles and 100 timesteps on the Opteron X7550.
GFLOPS achieved with 32 cores, nuCORALS
85.9, nuCATS 107.6, Pochoir 27.3, PLuTo 22.1,
NaiveSSE 22.9

synchronization.

The NUMA importance is underlined when more than 8 cores are engaged in the compu-

tation. All non-NUMA-aware schemes suffer a big slowdown in the per-core metric as the

computation goes beyond one NUMA node; nuCATS and nuCORALS on the other hand

maintain a high, rather stable per-core performance level. Pochoir is quite stable up to 8

cores and then drops off sharply, while PLuTo’s per-core performance degrades gradually

with the number of cores.

Figures 7.22 and 7.25 report strong scaling on a rather small domain and shows particularly

dramatic performance degradation on all schemes that do not observe the data-to-core

affinity. For 32 cores the naive scheme is clearly faster (more than 2.5x) than all non-

NUMA-aware temporal blocking schemes apart from CATS, which is only slightly worse;

7.4. CONCLUSIONS 99

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

G
u

p
d

a
te

s
/s

 p
e

r
c
o

re

G
F

L
O

P
S

 p
e

r
c
o

re

Number of cores

Strong scalability for constant 7-point stencil on 500
3
 domain

CATS
CORALS

Figure 7.26. Constant stencil strong scalabil-
ity for 1 to 32 threads on a 5003 domain of dou-
bles and 100 timesteps on the Opteron X7550.
GFLOPS achieved with 32 cores, nuCORALS
85.9, nuCATS 107.6, CATS 42.9, CORALS 15.3,
Pochoir 27.3, PLuTo 22.1, NaiveSSE 22.9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

G
u

p
d

a
te

s
/s

 p
e

r
c
o

re

G
F

L
O

P
S

 p
e

r
c
o

re

Number of cores

Strong scalability for constant 7-point stencil on 160
3
 domain

CATS
CORALS

Figure 7.27. Constant stencil strong scalability
for 1 to 32 threads on a 1603 domain of doubles
and 100 timesteps on the Xeon X7550. GFLOPS
achieved with 32 cores, nuCORALS 104.8, nu-
CATS 84.5, CATS 40.3, CORALS 7.2, Pochoir
16.9, PLuTo 13, NaiveSSE 44.7

nuCATS and nuCORALS maintain a clear advantage of around 2x over the naive scheme.

The overall performance of nuCATS and nuCORALS grows favorably when more sockets

are engaged, while NUMA ignorance can even lead to a drop in the overall performance:

for Pochoir from 16 to 32 cores on all domains, for CORALS from 8 to 16 to 32 cores on

the 1603 domain and from 16 to 32 cores on the 5003 domain. The drop in the overall

performance of the NaiveSSE scheme occurs already for 8 cores, because the partitioned

caches offer less opportunity for data reuse. But since it observes the data-to-core affinity

requirement, it scales linearly beyond one NUMA node.

In summary, we see that data-to-core affinity is critical for maintaining performance be-

yond one NUMA node and also helps on a single socket with a multi-channel bus. Igno-

rance of the NUMA aspect in today’s memory systems can even lead to the situation that

a naive scheme which observes this aspect outperforms more sophisticated schemes that

ignore it.

7.4 Conclusions

Spatio-temporal locality, parallelism, regular memory access and data-to-core affinity are

all key requirements to achieve high performance on iterative stencil computations. We

have shown that a systematic treatment of these requirements brings forth schemes that

deliver high absolute performance and overall good scalability on many-core systems.

Analysis of our previous schemes CATS and CORALS, and other temporal blocking al-

gorithms that do not take data-to-core affinity into account demonstrates a huge per-core

slowdown when scaling beyond one NUMA node; sometimes this even results in a drop

100 CHAPTER 7. NUMA AWARE STENCIL COMPUTATIONS

of overall performance. Our new schemes nuCORALS and nuCATS on the other hand

continue to benefit from additional cores even in the case of strong scaling on a small

domain.

Part III

Application

Chapter 8

Optical Flow Estimation from

RGBZ Cameras

Stencil Computations are at the core of many scientific and engineering applications. In

this Chapter, we introduce a potential application from the computer vision field, in par-

ticular, the scene flow which is mainly a correspondence problem. We use the variational

framework to cast the problem as an optimization problem of an energy functional. The

minimizer is the solution for the discretized Euler-Lagrange equations which often boils

down to an equation system which can be solved numerically by an iterative solver, e.g.

Gauss Seidel. The iterative numerical solvers are good examples for stencil computa-

tions which can use CATS (Chapter 4), CORALS (Chapter 6), nuCATS and nuCORALS

(Chapter 7) to optimize their execution times. However, the adaptation of these schemes

for our scene flow algorithm is left as a future work.

Scene flow is the 3D motion field of objects in the scene, as opposed to the optical flow

which is the projection of the 3D motion field onto the image plane. Scene flow is of high

importance for many computer vision tasks such as vehicle navigation [66] and motion

capture [64]. Most existing approaches for computing scene flow either use 2D image

data [65] or known 3D scene information [23] as input. Image based scene flow estimation

approaches often solve for the depth and the 2D optical flow simultaneously using a stereo

setup [29, 66, 64]. In contrast to such methods as well as traditional optical flow approaches

that only require colour information, direct 3D scene flow estimation requires knowledge

about the depth beforehand [23, 37]. Our approach lies at the boundary of these two

categories: It requires the depth information to be available beforehand and uses it in

an image based approach to solve for the optical flow from which the scene flow can be

easily derived. We assume that a depth map of the scene is available from a time-of-flight

camera which is temporally synchronised and spatially calibrated with respect to a colour

103

104 CHAPTER 8. OPTICAL FLOW ESTIMATION FROM RGBZ CAMERAS

camera.

In this Chapter, we propose novel constancy assumptions that can be imposed on the depth

map and use them in a global energy functional to solve for the optical flow. To this end,

we extend a highly accurate variational optical flow method by incorporating information

from the depth sensor. This additional information will lead to a more accurate optical

flow than by using colour information alone and will at the same time render the estimation

process more stable in regions where depth discontinuities and motion discontinuities

coincide. Comparisons to a variational optical flow method that does not use depth

information shows the favourable performance of our method at object boundaries and

motion discontinuities and thus highlights the advantage of combining depth and colour

information in a variational framework. The 3D motion of objects in the scene, i.e. the

scene flow, can easily be inferred since the corresponding 3D point of each pixel is known

through its depth value.

In summary, our contributions are: (i) The introduction of a framework for combining

depth and colour cues in a global variational approach for computing optical flow. (ii)

We couple this to a study of suitable invariants derived from the depth map and their

combination with colour constancy assumptions. These two contributions will be the topic

of Section 8.1 of this paper, where we will also discuss minimisation and implementation

details. An experimental evaluation of our ideas on real-world and synthetic data will be

presented in Section 8.5.

8.1 Optical Flow from RGBZ Images

Our objective is to retrieve the motion of 3D objects in the scene by estimating the optical

flow between two consecutive frames of an RGBZ camera, i.e. a combination of a colour

and a depth camera. This is possible, since knowing the 2D motion field between two

RGBZ images is equivalent to knowing the 3D motion field: The latter can be easily

inferred as the change of 3D coordinates that are known in all pixels through their depth

value.

8.1.1 Setup and Notation

The setup for our method consists of an RGB colour camera and a depth camera, which

are assumed to be synchronised and calibrated with respect to each other. We denote by

f1, f2 and f3 the red, green and blue output channels of the colour camera and by f4 the

output of the depth camera. Because the relative pose and orientation of both cameras

is known, the colour and the depth image can be registered into each other. This means

8.1. OPTICAL FLOW FROM RGBZ IMAGES 105

that all channels fi, for i ∈ {1, 2, 3, 4}, can be expressed on a common image domain

Ω ⊂ R2 and that (f1, f2, f3, f4) can be regarded as the output of a single RGBZ camera.

Since we are dealing with dynamic scenes, each channel is regarded as a scalar-valued

image sequence fi(x, y, t) : Ω × [0,∞) → R, with ~x = (x, y)> a position in Ω and t the

time variable. The optical flow between two consecutive RGBZ images will be denoted

by ~w = (u, v, 1)>. To remove high frequency noise in the input data and to guarantee

well-posedness of the optical flow method, fi is convolved with a small Gaussian kernel of

σ ≈ 1.

8.1.2 A Variational Model for Optical Flow from RGBZ Images

To estimate the optical flow ~w between two consecutive RGBZ images, we minimise the

energy

E(~w) =

∫
Ω

(
ED(~w) + αES(~w)

)
d~x , (8.1)

where ED is the data term that imposes constancy on certain image features and ES is

the smoothness term that imposes regularity on the motion field. The smoothness weight

α > 0 serves as a regularization parameter that controls the relative influence of both

terms. In the following we will detail on the design of both terms.

8.1.3 The Data Term

To establish correspondences between successive frames, we make use of two successful

concepts from variational optical flow literature. First of all, we assume that the intensity

value of a scene point does not change over time. As a result, the brightness of the

corresponding image points stays constant along the projected motion path. This gives

rise to the classical brightness constancy assumption [28]. For real-world image sequences,

this assumption often does not hold, especially in case of illumination changes. To account

for additive illumination changes in the scene, we additionally assume that the brightness

gradient does not change along the optical flow trajectory [8]. For a single image channel

f , both constancy assumptions combined would lead to a data term of the form

ED(~w) = Ψ
(
|f(~x+ ~w)− f(~x)|2 + γ

∣∣∣~∇2f(~x+ ~w)− ~∇2f(~x)
∣∣∣2) , (8.2)

where γ is a positive weight that steers the influence of the gradient constancy assumption

and ~∇2 = (∂x, ∂y)> stands for the spatial gradient operator. The function Ψ(s2) is a

convex sub-quadratic penalizer that provides robustness against outliers arising from e.g.

106 CHAPTER 8. OPTICAL FLOW ESTIMATION FROM RGBZ CAMERAS

noise and occlusions. We choose it to be the regularized L1-norm

Ψ(s2) =
√
s2 + ε2 with ε > 0 . (8.3)

Integrating Colour and Depth Information In our application, we do not have one,

but four image channels. To integrate the colour information into our method, we consider

a multi-channel variant of the above data term. To this end, the three colour channels are

coupled by summing up their singular contributions to both constancy assumptions.

The depth information, however, can not be integrated in such a straightforward way:

(i) Imposing constancy on the depth channel will most certainly fail because the depth of

a scene point can change over time due to object or camera motion. Although not totally

invariant under motion, edges in the depth channel, on the other hand, provide a better

cue such that assuming constancy of the depth gradient makes more sense as a matching

term. We make the first contribution of this paper by proposing the following data term

for combined depth and colour channels:

EDA(~w) = Ψ
(3∑

i=1

|fi(~x+ ~w)− fi(~x)|2 + γ

3∑
i=1

∣∣∣~∇2fi(~x+ ~w)− ~∇2fi(~x)
∣∣∣2

+ β
∣∣∣~∇2f4(~x+ ~w)− ~∇2f4(~x)

∣∣∣2) . (8.4)

(ii) A second observation is that the depth and the colour channels do not share the

same information. Except in those regions where depth and intensity edges coincide, they

are generally not correlated. This is why their contributions should be weighted and

penalized separately. A separate penalization of constancy assumptions of different image

channels has been shown to be advantageous if one assumption produces an outlier [9, 73].

Incorporating this idea leads to an energy of the form

EDB(~w) = Ψ
(3∑

i=1

|fi(~x+ ~w)− fi(~x)|2 + γ

3∑
i=1

∣∣∣~∇2fi(~x+ ~w)− ~∇2fi(~x)
∣∣∣2)

+ β Ψ
(∣∣∣~∇2f4(~x+ ~w)− ~∇2f4(~x)

∣∣∣2) . (8.5)

An Improved Invariant on the Depth Channel The depth gradient constancy

might be an inappropriate assumption under general 3D motion, since it is bound to a 2D

projected image. It is therefore better to use an invariant that is encoded in 3D space,

but can still be computed from the 2D depth image. If we assume that the objects in the

8.1. OPTICAL FLOW FROM RGBZ IMAGES 107

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���������
���������
���������
���������
���������

���������
���������
���������
���������
����������

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�������������������������������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
������������������

���������
���������
���������
���������

���������
���������
���������
���������
���������

������������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
������������������
���������
���������
���������
���������

���������
���������
���������
���������
���������

(a)

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

�������������������������
�
�
�
�
�

�
�
�
�
�
�

��������������������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������������������

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������������������������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�
�
�
�
�
�
�

�
�
�
�
�
�
��

�
�
�
�
�

�
�
�
�
�
�

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

��������������������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�

v
i

vj

a

a

1

2

(b)

Figure 8.1. (a) The 3D mesh topology obtained by triangulation of a depth image. A vertex
(red) and its neighbours (black). (b) The laplacian of the vertex ~vi is computed using the cotangent
of the angles a1 and a2 opposite the edge (vi, vj).

scene do not change shape too much, the Laplacian coordinates [55] of the associated 3D

mesh are a good choice.

The Laplacian coordinates of a vertex ~vi in a 3D triangular mesh are computed as

~δi = (δxi , δ
y
i , δ

z
i) =

1

|Ωi|
∑

j∈N(i)

1

2
(cotαij + cotβij) (~vi − ~vj) , (8.6)

where N(i) is the set of immediate neighbours of ~vi, |Ωi| is the size of the Voronoi cell

of ~vi and αij and βij denote the angles opposite to the edge (~vi, ~vj). This is illustrated

in Fig. 8.1(b), where αij and βij correspond to a1 and a2, respectively. In practice, we

obtain a 3D mesh of the scene by backprojecting each pixel using its known depth value

and the known camera parameters and triangulating the 3D points based on the image grid

connectivity as shown in Fig. 8.1(a). As a result, we can compute a Laplacian coordinate
~δ(~x) in each image point ~x.

Since the mesh Laplacian implicitly encodes both local surface orientation and curvature

in 3D, it is not rotationally invariant and therefore it only makes sense to assume constancy

on its magnitude. We make a second contribution in this paper by proposing a data term

that combines colour constancy with Laplacian magnitude constancy as in

EDC(~w) = Ψ
(3∑

i=1

|fi(~x+ ~w)− fi(~x)|2 + γ1

3∑
i=1

∣∣∣~∇2fi(~x+ ~w)− ~∇2fi(~x)
∣∣∣2

+ |F (~x+ ~w)− F (~x)|2 + γ2

∣∣∣~∇2F (~x+ ~w)− ~∇2F (~x)
∣∣∣2) , (8.7)

where the Laplacian magnitude channel is defined as F (~x) := ‖~δ(~x)‖. Note that as opposed

to the depth channel f4, both constancy of the value and the gradient are imposed on the

Laplacian magnitude channel F for increased robustness. As for the data term (8.5), we

can also apply a separate penalization of both colour and Laplacian magnitude assump-

108 CHAPTER 8. OPTICAL FLOW ESTIMATION FROM RGBZ CAMERAS

tions:

EDD(~w) = Ψ
(
|f(~x+ ~w)− f(~x)|2 + γ1

∣∣∣~∇2f(~x+ ~w)− ~∇2f(~x)
∣∣∣2)

+ β Ψ
(
|F (~x+ ~w)− F (~x)|2 + γ2

∣∣∣~∇2F (~x+ ~w)− ~∇2F (~x)
∣∣∣2) . (8.8)

The methods using the above data terms will further be denoted as methods A, B, C and

D.

8.1.4 Smoothness Term.

To penalize deviations from piece-wise smoothness and to preserve semantically important

edges in the flow field, we choose the following regularizer

ES(~w) = Ψ
(
|~∇2 ~w|2

)
= Ψ

(
|~∇2u|2 + |~∇2v|2

)
, (8.9)

where Ψ is the same sub-quadratic penalizer as in Eq. (8.3). The smoothness term fills

in information in regions where the data term does not provide a unique solution and is

therefore important in obtaining dense scene flow results.

8.2 Minimisation

A minimiser ~w of the energy (8.1) has to be a solution of the associated Euler-Lagrange

equations with homogeneous Neumann boundary conditions. At first, we assume that the

displacements are small and that both the brightness and the gradient constancy assump-

tions can be approximated sufficiently well by their first order Taylor expansions. Making

use of the motion tensor notation [10, 73], the squared linearised brightness difference

in (8.4) can be written in a more compact form as

|f(~x+ ~w)− f(~x)|2 ≈ |fxu+ fyv + ft|2 =
∣∣∣~∇>3 f ~w∣∣∣2 = ~w>J ~w , (8.10)

with ~∇3 = (∂x, ∂y, ∂t)
> and J := ~∇3f ~∇>3 f a 3 × 3 tensor. In the same way, the two

linearised gradient component differences in (8.2) give rise to the two 3× 3 tensors Jx :=
~∇3fx ~∇>3 fx and Jy := ~∇3fy ~∇>3 fy. If we now denote by Ji, Jx,i and Jy,i the respective

tensors for a specific image channel fi, we can write the data term (8.4) as

EDA(~w) = Ψ
(
~w>Jm ~w

)
, (8.11)

8.3. IMPLEMENTATION 109

with the 3× 3 motion tensor JmA

JmA =

3∑
i=1

Ji + γ

3∑
i=1

(Jx,i + Jy,i) + β (Jx,4 + Jy,4) , (8.12)

which combines all constancy assumptions and channel information in the data term (8.4).

Similarly, one can obtain a compact form for the other data terms. Due to space limitation;

however, we only show the compact form for the data term (8.8)

EDD(~w) = Ψ
(
~w>Jm ~w

)
+ Ψ

(
~w>Jl ~w

)
, (8.13)

with the 3× 3 motion tensors JmD and JlD

JmD =

3∑
i=1

Jmi + γ1

3∑
i=1

(
Jmx,i + Jmy,i

)
, (8.14)

JlD =
3∑

i=1

Jli + γ2

3∑
i=1

(
Jlx,i + Jly,i

)
, (8.15)

Using this compact notation, the final Euler-Lagrange equations for the u and the v-

component of the optical flow of the data term (8.4) can be written as

0 = Ψ′
(
~w>Jm ~w

)
(Jm11u+ Jm12v + Jm13)− α div

(
Ψ′
(
|~∇2 ~w|2

)
∇u
)

, (8.16)

0 = Ψ′
(
~w>Jm ~w

)
(Jm12u+ Jm22v + Jm23)− α div

(
Ψ′
(
|~∇2 ~w|2

)
∇v
)

, (8.17)

where Jmij stands for the i, j-th entry of the motion tensor JmA for the data term (8.4).

When the data term (8.8) is used, JmD is used instead of JmA and the following term is

added to Equations (8.16) and (8.17)

Ψ′
(
~w>Jl ~w

)
(Jl11u+ Jl12v + Jl13) , (8.18)

8.3 Implementation

The solution of the Euler-Lagrange equations boils down to solving a nonlinear equation

system. To remove the nonlinearity due to the sub-quadratic penalization, a fixed point

iteration is applied in which the arguments of Ψ′(s2) are fixed using the current estimate

of the optical flow. The resulting linear system of equations is then solved by successive

over-relaxation (SOR) solver which can use our schemes to speed up its computation;

however, we leave this as a future work as mentioned before.

110 CHAPTER 8. OPTICAL FLOW ESTIMATION FROM RGBZ CAMERAS

To account for large displacements, we apply our solution in a coarse-to-fine multiscale

warping framework [8]. To obtain a coarse representation of the problem, we downsample

the input images by a factor η ∈ [0.5, 1.0). At each warping level, we split the flow field

into an already computed solution from coarser levels and an unknown flow increment.

As the increments are small, they can be computed by the presented linearised approach.

At the next finer level, the already computed solution serves as initialisation, which is

achieved by performing a motion compensation of the second frame by the current flow,

known as warping.

8.4 Scene Flow Derivation

Until now we have only estimated the optical flow between two consecutive RGBZ images.

To derive the scene flow, we add the optical flow vector of each pixel to the corresponding

coordinate in the first RGBZ image and perform a bilinear interpolation between the four

points in the second image. Scene flow is then computed as the difference between the

interpolated 3D coordinate in the second depth map and the 3D coordinates in the first

depth map. We have experienced, however, that this procedure can result in erroneous

flow vectors at object boundaries due to the interpolation of background and foreground

motion. To deal with this problem, we apply a vector median filter in the boundary

region as a post-processing step to remove the noisy flow vectors that result from the

interpolation.

8.5 Evaluation

(a) (b) (c) (d)

Figure 8.2. Kitchen sequence: frame (a) 1 and (b) 16. Terrain sequence: frame (c) 1 and (d) 2.

In a first set of experiments, we evaluate our algorithm on two synthetic sequences that

we have rendered ourselves in OpenGL. The first sequence shows a kitchen scene where

objects move around freely, while the second sequence simulates a camera moving over a

rough terrain. Two frames of each sequence are shown in Fig. 8.2. Both sequences have

a resolution of 800 × 600. The Kitchen sequence is 27 frames long and features small,

8.5. EVALUATION 111

localised displacements, while the Terrain sequence contains 7 frames and exhibits large

overall rotating motion. For each frame, we generated the ground truth depth map, as

well as the ground truth optical flow and scene flow with respect to the next frame. Both

synthetic sequences will be made public for research purposes.

In Tab. 8.1 we show a comparison between the baseline method of Brox et al. [8] and

the variants of our method with the different data terms proposed in Section 8.1.3. We

report the average angular error (AAE) for both the 2D optical flow [3] and the 3D scene

flow. The 3D average angular error for scene flow can be defined as an extension of the

2D AAE [66]

AAE3D = arccos
(uc1ue1 + uc2ue2 + uc3ue3 + 1)√(
uc2

1 + uc2
2 + uc2

3

) (
ue2

1 + ue2
2 + ue2

3

) , (8.19)

where (uc1, uc2, uc3) and (ue1, ue2, ue3) denote ground truth and the estimate scene flow.

The values reported in the table are the average AAE taken over all frames of the re-

spective sequence and the standard deviation. From the table it is clear that the idea

of incorporating depth information in optical flow leads to an improvement of both the

estimated 2D and 3D motion. Moreover, the methods C and D, which assume constancy

on the mesh Laplacian, achieve the best results on both sequences. This illustrates that a

careful design of motion invariants in the 3D domain can lead to an improvement of the

optical flow.

We also apply our algorithm on two real-world sequences that have been provided by the

authors of [50]. These sequences have been recoded by a Point Grey Flea2 camera and a

Swiss Ranger 4000 time-of-flight camera, which have been calibrated with respect to each

other. For our purpose, the depth images are upsampled from a resolution of 176 × 144

to the resolution of the colour images using the method described in [50].

An example of two frames of the first sequence is shown in Fig. 8.3. Here, a hand is

moving up against a static untextured background. The figure also shows the motion

estimated with the method of Brox et al. and the best result that we obtained with our

method, which corresponds to method D. While the base-line method clearly oversmooths

depth discontinuities, the combined depth and colour method achieves visually sharper

results. Unlike for the synthetic sequences, best results were obtained with method D,

which incorporates Laplacian magnitude constancy and seperate penalization. The second

row of Fig. 8.3 shows 3D scene flow results corresponding to the two optical flow results.

Here we can see that our method achieves a better estimate of the motion in the background

and a sharper motion boundary.

For the second sequence in Figure 8.4, the improvement using the method D is demon-

strated best in the top left corner of the flow field. Method D shows no flow here because

112 CHAPTER 8. OPTICAL FLOW ESTIMATION FROM RGBZ CAMERAS

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.3. Hand sequence: frame (a) 1 and (a) 2. Optical flow results using (c) Brox et al. [8]
and (d) combined depth and colour method D. Color intensity encodes absolute flow magnitude.
Scene flow results using (e) Brox et al. and (g) method D. Color intensity encodes relative flow
magnitude. Any color difference between the two results is due to a difference in the estimated
scene flow range. Zoom in (f) and (h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.4. Fruit sequence: frame (a) 1 and (b) 2. Optical flow results using (c) Brox et al.
and (d) combined depth and colour method D. Scene flow results using (e) Brox et al. and (g)
method D. Zoom in (f) and (h). Note how the background is again estimated better.

it is part of the static background, whereas the base-line method oversmooths. Figure 8.4

also shows the 3D scene flow. As in the case of the previous sequence and the synthetic

8.6. CONCLUSION 113

Table 8.1. A comparison of different scene flow methods on synthetic Terrain sequence (left table)
and Kitchen sequence (right table). AAE stands for average angular error. 2D denotes the optical
flow error and 3D denotes the scene flow error. Methods A, B, C, and D represent our method with
the different data terms (8.4), (8.5), (8.7), and (8.8), respectively.

Method AAE2D σ2D AAE3D σ3D

Brox et al. 3.87 0.68 1.20 0.09

Method A 3.84 0.55 1.19 0.11

Method B 3.74 0.42 1.08 0.09

Method C 3.24 0.23 0.76 0.12

Method D 3.33 0.32 0.78 0.15

Method AAE2D σ2D AAE3D σ3D

Brox et al. 4.42 1.3 0.37 0.13

Method A 4.44 1.33 0.37 0.12

Method B 4.41 1.6 0.36 0.11

Method C 3.32 0.89 0.34 0.12

Method D 3.35 0.80 0.35 0.12

sequences, these results show that including the mesh Laplacian gives the best overall

results.

8.6 Conclusion

We have presented a variational framework for optical flow estimation which combines

depth information with the traditional colour brightness and gradient constancy assump-

tion. To this end we have proposed four different choices for imposing constancy on depth

data: First we proposed a gradient constancy constraint on the depth channel, which could

be either penalized jointly with the colour constancy or separately. Secondly, we proposed

to impose constancy on the magnitude of the mesh Laplacian, which is invariant under 3D

rigid motion. Experimental results on synthetic and real-world RGBZ image sequences

have confirmed that a careful design of motion invariants in the 3D domain leads to better

optical flow estimates. We have also shown that including depth information can generally

avoid oversmoothing at depth continuities.

114 CHAPTER 8. OPTICAL FLOW ESTIMATION FROM RGBZ CAMERAS

Chapter 9

Conclusion and Future Work

The exponential growth of cores on CPUs leads to exacerbating the memory wall problem

where limited off-chip bandwidth capabilities severely restrict the performance of stencil

computations. The main motivation of the work presented in this thesis is to lay out the

requirements to achieve high performance stencil computations on modern architectures

and to design stencil algorithms that comply with these requirements. In particular, we

overcome this problem by computational schemes that scale mainly with the aggregate

cache bandwidth rather than the system bandwidth. While at first this seems impossible

for gigabyte large domains that can never fit into caches, our cache accurate time skewing

schemes (CATS) and cache oblivious parallelograms (CORALS) presented in Chapter 4

and Chapter 6, respectively, do deliver this type of strong scalability for certain stencil

computations. The challenge here is that the requirements are often conflicting which

renders it cumbersome to devise such algorithms that reckon with all requirements simul-

taneously.

Clearly, an algorithm operating repeatedly on gigabyte large domains cannot become

totally independent of the system bandwidth as the data must be read multiple times

from system memory. But for certain iterative stencil computations, CATS and CORALS

scale very favorably with the increased cache bandwidth and is applicable to both constant

and variable stencil problems, i.e. iterative applications of sparse banded matrices are

supported. Furthermore, CATS can be applied to stencils of any size and order as long

as the problem in hand is bandwidth bound. On the other hand, CORALS demonstrates

extraordinary performance especially on the Xeon architecture, it particularly approaches

the performance of a synthetic on-chip benchmark for certain stencil computations in 2D,

and thus virtually breaks the dependence on the slow off-chip connection. This is a highly

desired feature, specifically, for the many-core architectures that exhibit an even larger

discrepancy between the on-chip and off-chip bandwidth due to the exponential growth

115

116 CHAPTER 9. CONCLUSION AND FUTURE WORK

of CPU cores. On 3D domains, the performance of CORALS is less astounding but still

clearly superior to the performance of the general parallelizer and locality optimizer PluTo

and the heavily optimized naive scheme. This is an expected result from a more specialized

cache oblivious algorithm, but has not been demonstrated before. Stencil computations

may involve additional data from other vectors, so typical iterative linear equation solvers

like Jacobi or Gauss-Seidel solver can be accelerated using CATS and CORALS.

In order to study the sensitivity of iterative stencil computations to system and cache

bandwidths, we develop a performance model for both the CATS and the naive schemes

in Chapter 5. The schemes exhibit almost entirely opposite behavior. While the naive

scheme demands high system bandwidth for performance, the same stencil computation

can be performed with a time skewing scheme much faster if only the cache bandwidth in

the CPU is increased. The latter option gives by far the more cost-efficient performance

gains, e.g. we could execute on the ten years old Xeon MP as fast as on a Core i7 940 if

only sufficient cache bandwidth in the Xeon MP were provided without the need for any

improvement of its outdated system bus. The paradoxical conclusion is that for iterative

stencil computations further deteriorating the ratio of off-chip to on-chip bandwidth is

the cheapest way to higher performance. Unfortunately, the situation is more complex in

practice because not all stencil computations occur in iterations and many of them operate

with varying rather than constant coefficients which puts additional strain on the system

bus. Although the performance model is restricted to iterative stencil computations, it is

clear that a solution to the bandwidth wall problem should not be sought solely in scaling

the system bandwidth, because it is not necessarily the limiting factor even if the data is

much bigger than the caches and has to be accessed many times.

Many-core architectures are quickly becoming the mainstream in computing. These ar-

chitectures are often equipped with non uniform memory access (NUMA) to improve the

memory access scalability. Although this new technology has been introduced to improve

the memory access scalability in the older symmetric multiprocessing (SMP) systems, ig-

noring the fact that memory access time depends on the memory location relative to the

processor can deteriorate the absolute performance and the performance scalability of par-

allel programs. In other words, the latter technology puts a new challenge on applications

to achieve high performance on the NUMA architectures. This challenge can be faced

by ensuring the data-to-core affinity. In Chapter 7, we show that CATS and CORALS

hardly scale beyond one socket on two many-core architectures. Further, we show how

the algorithmic building blocks of CORALS and CATS can be systematically adapted to

cope with this essential evolution and to reckon with the data-to-core affinity performance

requirements. Results show that nuCATS and nuCORALS, in contrast to CATS and

CORALS, demonstrate weak as well as strong scalability on two 16- and 32-core NUMA

machines.

117

Comparing the performance of the cache-aware nuCATS against the cache-oblivious nu-

CORALS in Chapter 7, we have observed that the latter scheme performs better on smaller

domains, for which a higher fraction of data reuse occurs in higher level caches, and the

former is better on large domains, on which the reduction of the problem-dimension by the

wavefront traversal creates far fewer cache misses. Moreover, nuCORALS automatically

exploits deep cache hierarchies like those on the Xeon, while nuCATS relies mainly on

the performance of the last cache level and therefore nuCATS wins the comparison on a

machine which has a shallow cache hierarchy.

In summary, spatio-temporal data locality, parallelism, regular memory access and data-

to-core affinity are all key requirements to achieve high performance on iterative stencil

computations. We show that a systematic treatment of these requirements brings forth

schemes that deliver high absolute performance and overall excellent scalability on many-

core systems. Analysis of our previous schemes CATS and CORALS, and other temporal

blocking algorithms that do not take data-to-core affinity into account demonstrates a huge

per-core slowdown when scaling beyond one NUMA node; sometimes this even results in

a drop of overall performance. Our new schemes nuCORALS and nuCATS on the other

hand continue to benefit from additional cores even in the case of strong scaling on a small

domain.

Diverse areas can benefit from our schemes such as the iterative algorithms in image de-

noising, segmentation, and registration, optical flow estimation, and physical simulations.

As a candidate application, we present a novel variational framework for optical flow

estimation which combines depth information with the traditional color brightness and

gradient constancy assumption in Chapter 8. We have shown four different choices for im-

posing constancy on depth data: First we have proposed a gradient constancy constraint

on the depth channel, which could be either jointly penalised with the colour constancy

or separately. Secondly, we have proposed to impose constancy on the magnitude of the

mesh Laplacian, which is invariant under 3D rigid motion. Experimental results on syn-

thetic and real-world RGBZ image sequences demonstrate that a careful design of motion

invariants in the 3D domain leads to better optical flow estimates. We have also shown

that including depth information can generally avoid oversmoothing at depth continuities.

Our work advances the state of the art in several directions. In cache aware stencil

computations, CATS proposes a novel usage of a wavefront traversal in multi-dimensional

time skewing, an unconventional departure from the complexity of the commonly used

techniques of multi-dimensional tiling and multi-level tiling. Apart from its simplicity,

this novel strategy is particularly successful on stencils of order one, where the algorithm

breaks the dependence on the low system bandwidth and achieves at least 50% of the

stencil peak benchmark performance in 2D and 3D even when operating on gigabyte large

domains. This is a significant improvement over a heavily optimized naive scheme and

118 CHAPTER 9. CONCLUSION AND FUTURE WORK

the state-of-art in automatic optimization. For large stencils and banded matrices the

system bandwidth limits the performance again but in comparison CATS maintains a

clear advantage.

In cache oblivious stencil computations, CORALS shows how to translate the enormous

reduction of cache misses which characterizes cache oblivious schemes into performance.

In particular, CORALS uses a tiling structure that caters for the regularity of memory

accesses alongside the data locality, and parallelism. Using parallelograms only as the

base locality elements in CORALS yields this regularity in memory accesses. The last

property helps to avoid adding control logic at the base element level which could exceed

the overhead of the actual computation itself. On the other hand, this enables the compiler

to use SIMD instructions for the computation. Despite its importance, the regularity of

memory accesses has been overlooked in the previous cache oblivious stencil computation

and thus makes CORALS the first to achieve the realization of performance from the huge

reduction of the cache miss rate.

Further on, we lay out the essential aspects that must be considered in any stencil im-

plementation to achieve high performance on ccNUMA architectures. While previous

approaches consider only a subset of these measures, nuCATS and nuCORALS show how

to devise successful schemes that cater for all these conflicting measures simultaneously.

The high absolute performance and its scalability beyond one NUMA node on many core

architectures were not possible with previous approaches.

Our variational optical flow framework enables a high accurate optical flow estimates which

are smooth, yet sharp at depth discontinuities. The latter is a highly desirable feature

for many image processing and computer vision tasks. This is relatively tedious with

previous approaches because in order to obtain sharp estimates at depth discontinuities,

it is required to reduce the weight on the smoothness term which could result in lowering

the overall smoothness of the optical flow estimates not only at depth discontinuities, but

also inside object boundaries.

Future work for any stencil computation scheme will always be to make it faster and appli-

cable to a larger class of stencil computation problems, e.g. those involving unstructured

grids. However, there are various more specific directions that could be researched.

The domain decomposition in the nuCATS and nuCORALS schemes can result in unbal-

anced load between the subdomains when the schemes are run with non-power of 2 number

of threads. A future work would be to modify it to take into account balancing the work

in all subdomains. This work-subdomain balance can be realized as a preprocessing step

using a load balancing structure similar to the one used in CORALS. This not only en-

ables running nuCATS and nuCORALS with any number of threads, but also makes the

schemes applicable to a wider class of domains, e.g. circular domains. On the other hand,

119

nuCATS and nuCORALS can easily be adapted for distributed systems wherein there

is no single shared address space. In this case, areas to which thread access has to be

synchronized in nuCORALS have to be explicitly transfered over the network between

the computing nodes in the cluster. The applicability of nuCATS and nuCORALS can

be expanded if they are enclosed in a compiler or automatic transformation tool such as

Pochoir [63] and PluTo [7].

120 CHAPTER 9. CONCLUSION AND FUTURE WORK

Bibliography

[1] N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-nested loop nests. In In Proc. of

SC 2000, page 31, 2000.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. V. D. Vorst. Templates for the solution of linear systems:

Building blocks for iterative methods, 1994.

[3] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical flow techniques.

12(1):43–77, Feb. 1994.

[4] M. M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanujam, and P. Sadayappan.

Parametrized tiling revisited. In Proc. of the International Symposium on Code Generation

and Optimization (CGO’10), 2010.

[5] L. N. Bhuyan, H. Wang, and R. Iyer. Impact of cc-numa memory management policies on

the application performance of multistage switching networks. IEEE Trans. Parallel Distrib.

Syst., 11(3):230–246, Mar. 2000.

[6] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-oblivious algorithms.

Technical report, Carnegie Mellon University, 2009.

[7] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic

polyhedral parallelizer and locality optimizer. SIGPLAN Not., 43(6):101–113, 2008.

[8] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optic flow estimation based

on a theory for warping. In T. Pajdla and J. Matas, editors, Computer Vision – ECCV 2004,

volume 3024 of Lecture Notes in Computer Science, pages 25–36. Springer, Berlin, 2004.

[9] A. Bruhn and J. Weickert. Towards ultimate motion estimation: Combining highest accuracy

with real-time performance. In Proc. Tenth International Conference on Computer Vision,

volume 1, pages 749–755, Beijing, China, June 2005. IEEE Computer Society Press.

[10] A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr. A multigrid platform for real-time

motion computation with discontinuity-preserving variational methods. International Journal

of Computer Vision, 70(3):257–277, Dec. 2006.

[11] M. Christen, O. Schenk, and H. Burkhart. Patus: A code generation and autotuning frame-

work for parallel iterative stencil computations on modern microarchitectures. In Proceedings

of the 2011 IEEE International Parallel & Distributed Processing Symposium, IPDPS ’11,

pages 676–687, Washington, DC, USA, 2011. IEEE Computer Society.

121

122 BIBLIOGRAPHY

[12] M. Christen, O. Schenk, E. Neufeld, P. Messmer, and H. Burkhart. Parallel data-locality

aware stencil computations on modern micro-architectures. In IPDPS, pages 1–10, 2009.

[13] K. Datta. Auto-tuning stencil codes for cache-based multicore platforms, 2009.

[14] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Optimization and perfor-

mance modeling of stencil computations on modern microprocessors. SIAM Review, 51(1):129–

159.

[15] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf,

and K. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art multicore

architectures. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing,

pages 1–12. IEEE Press, 2008.

[16] H. Dursun, K.-I. Nomura, L. Peng, R. Seymour, W. Wang, R. K. Kalia, A. Nakano, and

P. Vashishta. A multilevel parallelization framework for high-order stencil computations. In

Proceedings of the 15th International Euro-Par Conference on Parallel Processing, Euro-Par

’09, pages 642–653, Berlin, Heidelberg, 2009. Springer-Verlag.

[17] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In Proceedings of the 19th

annual international conference on Supercomputing, ICS ’05, pages 361–366, New York, NY,

USA, 2005. ACM.

[18] M. Frigo and V. Strumpen. The cache complexity of multithreaded cache oblivious algo-

rithms. In SPAA ’06: Proceedings of the eighteenth annual ACM symposium on Parallelism

in algorithms and architectures, pages 271–280, New York, NY, USA, 2006. ACM.

[19] M. Frigo and V. Strumpen. The memory behavior of cache oblivious stencil computations. J.

Supercomput., 39(2):93–112, 2007.

[20] M. A. Frumkin and R. F. Van der Wijngaart. Tight bounds on cache use for stencil operations

on rectangular grids. Journal of ACM, 49(3):434–453, 2002.

[21] R. P. Garg and I. Sharapov. Techniques for Optimizing Applications: High Performance

Computing. Prentice Hall Professional Technical Reference, 2002.

[22] M. Griebl. Automatic parallelization of loop programs for distributed memory architectures.

University of Passau, June 2004. Habilitation thesis.

[23] S. Hadfield and R. Bowden. Kinecting the dots: Particle based scene flow from depth sen-

sors. In D. N. Metaxas, L. Quan, A. Sanfeliu, and L. Van Gool, editors, Proc. Thirteenth

International Conference on Computer Vision, pages 2290–2295, Barcelona, Nov. 2011. IEEE

Computer Society Press.

[24] M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, and M. M. Khan. Loop transformation recipes

for code generation and auto-tuning.

[25] A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy, B. Norris, J. Ra-

manujam, and P. Sadayappan. Parametric multi-level tiling of imperfectly nested loops. In

Proceedings of the 23rd International Conference on Supercomputing, pages 147–157, 2009.

[26] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. The Morgan

Kaufmann Series in Computer Architecture and Design. Elsevier Science, 2011.

BIBLIOGRAPHY 123

[27] HiTLoG: Hierarchical tiled loop generator. http://www.cs.colostate.edu/MMAlpha/tiling/.

[28] B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence, 17:185–203, 1981.

[29] F. Huguet and F. Devernay. A variational method for scene flow estimation from stereo

sequences. In Proc. Eleventh International Conference on Computer Vision, Rio de Janeiro,

Oct. 2007. IEEE Computer Society Press.

[30] H. Jia-Wei and H. T. Kung. I/o complexity: The red-blue pebble game. In STOC ’81:

Proceedings of the thirteenth annual ACM symposium on Theory of computing, pages 326–

333. ACM, 1981.

[31] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning framework for parallel

multicore stencil computations. In International Parallel & Distributed Processing Symposium

(IPDPS), 2010.

[32] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Implicit and explicit

optimizations for stencil computations. In MSPC ’06: Proceedings of the 2006 workshop on

Memory system performance and correctness, pages 51–60. ACM, 2006.

[33] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick. Impact of modern memory sub-

systems on cache optimizations for stencil computations. In MEMORY SYSTEM PERFOR-

MANCE, pages 36–43. ACM, 2005.

[34] D. Kim, L. Renganarayanan, D. Rostron, S. V. Rajopadhye, and M. M. Strout. Multi-level

tiling: M for the price of one. In Proceedings of the ACM/IEEE Conference on Supercomputing,

page 51, 2007.

[35] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and P. Sa-

dayappan. Effective automatic parallelization of stencil computations. SIGPLAN Not.,

42(6):235–244, 2007.

[36] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations of

blocked algorithms. In In Proceedings of the Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 63–74, 1991.

[37] A. Letouzey, B. Petit, and E. Boyer. Scene flow from depth and color images. In Proc. 22nd

British Machine Vision Conference, Dundee, England, Sept. 2011. British Machine Vision

Association.

[38] Z. Li and Y. Song. Automatic tiling of iterative stencil loops. ACM TRANSACTIONS ON

PROGRAMMING LANGUAGE SYSTEMS, 26:2004, 2004.

[39] L. Liu and Z. Li. Improving parallelism and locality with asynchronous algorithms. In Pro-

ceedings ACM symposium on Principles and practice of parallel programming, PPoPP ’10,

pages 213–222, 2010.

[40] J. Mccalpin and D. Wonnacott. Time skewing: A value-based approach to optimizing for mem-

ory locality. Technical report, In http://www.haverford.edu/cmsc/davew/cache-opt/cache-

opt.html, 1999.

[41] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential Equations: An

Introduction. Cambridge University Press, New York, NY, USA, 2005.

124 BIBLIOGRAPHY

[42] F. Mueller. Pthreads library interface, 1994.

[43] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-D blocking optimization for

stencil computations on modern CPUs and GPUs. In Proceedings of the 2010 ACM/IEEE In-

ternational Conference for High Performance Computing, Networking, Storage and Analysis,

SC ’10, pages 1–13, 2010.

[44] D. Orozco and G. Gao. Mapping the FDTD application to many-core chip architectures.

Technical report, University of Delaware, Mar. 2009.

[45] PluTo: A polyhedral automatic parallelizer and locality optimizer for multicores. http://-

sourceforge.net/projects/pluto-compiler/.

[46] PrimeTile: A parametric multi-level tiler for imperfect loop nests. http://-

primetile.sourceforge.net.

[47] H. Prokop. Cache-oblivious algorithms, 1999.

[48] R. Rao, J. Wenck, D. Franklin, R. Amirtharajah, and V. Akella. Segmented bitline cache:

Exploiting non-uniform memory access patterns. In HiPC, pages 123–134, 2006.

[49] L. Renganarayana, M. Harthikote-Matha, R. Dewri, and S. Rajopadhye. Towards optimal

multi-level tiling for stencil computations. In Proceedings of International Parallel and Dis-

tributed Processing Symposium. IEEE Computer Society, 2007.

[50] C. Richardt, C. Stoll, N. A. Dodgson, H.-P. Seidel, and C. Theobalt. Coherent spatiotemporal

filtering, upsampling and rendering of RGBZ videos. In Proceedings of Eurographics, 2012.

To Appear.

[51] G. Rivera and C.-W. Tseng. Tiling optimizations for 3d scientific computations, 2000.

[52] M. Shaheen and R. Strzodka. Numa aware iterative stencil computations on many-core sys-

tems. In IPDPS, pages 461–473, 2012.

[53] Y. Song and Z. Li. A compiler framework for tiling imperfectly-nested loops. In In Proceedings

of the Twelfth International Workshop on Languages and Compilers for Parallel Computing,

pages 185–200. Springer-Verlag, 1999.

[54] Y. Song and Z. Li. New tiling techniques to improve cache temporal locality. In Proceedings

of ACM SIGPLAN Conference on Programming Language Design and Implementation, 1999.

[55] O. Sorkine. Differential representations for mesh processing. Computer Graphics Forum,

25(4):789–807, 2006.

[56] V. Strumpen and M. Frigo. Software engineering aspects of cache oblivious stencil computa-

tions. Technical report, IBM Research, 2006.

[57] R. Strzodka and M. Shaheen. Impact of system and cache bandwidth on stencil computations

across multiple processor generations, 2011.

[58] R. Strzodka, M. Shaheen, and D. Pajak. Time skewing made simple. In Proceedings ACM

symposium on principles and practice of parallel programming, PPoPP ’11, Feb. 2011.

BIBLIOGRAPHY 125

[59] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel. Cache oblivious parallelograms in itera-

tive stencil computations. In ICS ’10: Proceedings of the 24th ACM International Conference

on Supercomputing, pages 49–59. ACM, 2010.

[60] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel. Cache accurate time skewing in iterative

stencil computations. In Proceedings of the International Conference on Parallel Processing

(ICPP), Sept. 2011.

[61] A. Taflove and S. C. Hagness. Computational electrodynamics: the finite-difference time-

domain method. Artech House, Norwood, 3rd edition, 2005.

[62] A. S. Tanenbaum and J. R. Goodman. Structured Computer Organization. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 4th edition, 1998.

[63] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson. The pochoir

stencil compiler. In SPAA, pages 117–128. ACM, 2011.

[64] L. Valgaerts, A. Bruhn, H. Zimmer, J. Weickert, C. Stoll, and C. Theobalt. Joint estimation

of motion, structure and geometry from stereo sequences. In K. Daniilidis, P. Maragos, and

N. Paragios, editors, Computer Vision – ECCV 2010, volume 6314, pages 568–581. Springer,

Berlin, 2010.

[65] S. Vedula, S. Baker, P. Rander, R. T. Collins, and T. Kanade. Three-dimensional scene flow.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3):475–480, Mar. 2005.

[66] A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke, and D. Cremers. Efficient dense scene

flow from sparse or dense stereo data. In D. Forsyth, P. Torr, and A. Zisserman, editors,

Computer Vision – ECCV 2008, volume 5302, pages 739–751. Springer, Berlin, 2008.

[67] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske. Efficient temporal blocking

for stencil computations by multicore-aware wavefront parallelization. In Proc. IEEE Inter-

national Computer Software and Applications Conference (COMPSAC’09), 2009.

[68] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. Scientific computing

kernels on the cell processor. Int. J. Parallel Program., 35(3):263–298, June 2007.

[69] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful visual performance

model for . . ., 2009.

[70] M. Wittmann, G. Hager, and G. Wellein. Multicore-aware parallel temporal blocking of

stencil codes for shared and distributed memory. In Proc. Workshop on Large-Scale Parallel

Processing (LSPP’10) at IPDPS’10, 2010.

[71] M. Wolf. More iteration space tiling. In Proceedings of Supercomputing ’89, 1989.

[72] D. Wonnacott. Using time skewing to eliminate idle time due to memory bandwidth and

network limitations. In Proceedings of International Parallel and Distributed Processing Sym-

posium, 2000.

[73] H. Zimmer, A. Bruhn, and J. Weickert. Optic flow in harmony. International Journal of

Computer Vision, 93(3):368–388, Apr. 2011.

126 BIBLIOGRAPHY

	Introduction
	Problem Statement
	Motivation
	Contributions
	Thesis Outline
	List of publications

	Fundamentals
	Memory Hierarchy
	Locality Principle
	Memory Configurations in Multiprocessing Systems
	Stencil Computations
	Space-time Traversals

	Related Work
	Cache Aware Stencil Optimization
	Cache Oblivious Stencil Optimization
	Loop nest Optimization
	I Iterative Stencil Computations for SMP Systems
	Cache Accurate Time Skewing
	Previous Work
	Contributions
	Cache Accurate Time Skewing (CATS)
	Results
	Conclusion

	Performance Modelling
	Hardware Setup
	Software Setup
	Naive and Time Skewed Stencil Computations
	Varying Cache Size
	Performance Model
	Model Evaluation
	Conclusion

	Cache Oblivious Parallelograms
	Previous Work
	The Cache Oblivious Parallelograms Algorithm
	Results
	Conclusion
	II Iterative Stencil Computations for NUMA systems
	NUMA Aware Stencil Computations
	NUMA-aware CATS Scheme (nuCATS)
	NUMA-aware CORALS Scheme (nuCORALS)
	Results
	Conclusions
	III Application
	Optical Flow Estimation from RGBZ Cameras
	Optical Flow from RGBZ Images
	Minimisation
	Implementation
	Scene Flow Derivation
	Evaluation
	Conclusion

	Conclusion and Future Work
	Bibliography

