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Abstract

There have been numerous efforts recently to digitize previously published content and

preserving born-digital content leading to the widespread growth of large text reposi-

tories. Web archives are such continuously growing text collections which contain ver-

sions of documents spanning over long time periods. Web archives present many op-

portunities for historical, cultural and political analyses. Consequently there is a grow-

ing need for tools which can efficiently access and search them.

In this work, we are interested in indexing methods for supporting text-search work-

loads over web archives like time-travel queries and phrase queries. To this end we make

the following contributions:

• Time-travel queries are keyword queries with a temporal predicate, e.g., “mpii

saarland” @ [06/2009], which return versions of documents in the past. We in-

troduce a novel index organization strategy, called index sharding, for efficiently

supporting time-travel queries without incurring additional index-size blowup.

We also propose index-maintenance approaches which scale to such continuously

growing collections.

• We develop query-optimization techniques for time-travel queries called partition
selection which maximizes recall at any given query-execution stage.

• We propose indexing methods to support phrase queries, e.g., “to be or not to be

that is the question”. We index multi-word sequences and devise novel query-

optimization methods over the indexed sequences to efficiently answer phrase

queries.

We demonstrate the superior performance of our approaches over existing methods

by extensive experimentation on real-world web archives.
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Kurzfassung

In der jüngsten Vergangenheit gab es zahlreiche Bemühungen zuvor verffentlichte In-

halte zu digitalisieren und elektronisch erstellte Inhalte zu erhalten. Dies führte zu

einem weit verbreitenden Anstieg groer Textdatenbestände. Webarchive sind eine solche

Art konstant ansteigender Textdatensammlung. Sie enthalten mehrere Versionen von

Dokumenten, welche sich über längere Zeiträume erstrecken. Darüber hinaus bieten sie

viele Möglichkeiten für historische, kulturelle und politische Analysen. Infolgedessen

gibt es einen wachsenden Bedarf an Werkzeugen, die eine effiziente Suche in Webarchi-

ven und einen effizienten Zugriff auf die Daten erlauben.

Der Fokus dieser Arbeit liegt auf Indexierungsverfahren, um die Arbeitslast von Text-

suche auf Webarchiven zu unterstützen, wie zum Beispiel time-travel queries oder phrase

queries. Zu diesem Zweck leisten wir folgende Beiträge:

• Time-travel queries sind Suchwortanfragen mit einem temporalen Prädikat. Zum

Beispiel liefert die Anfrage “mpii saarland” @ [06/2009] Versionen des Doku-

ments aus der Vergangenheit als Ergebnis. Zur effizienten Unterstützung solcher

Anfragen ohne die Indexgröe aufzublasen, stellen wir eine neue Strategie zur Or-

ganisation von Indizes dar, so genanntes index sharding. Des Weiteren schlagen wir

Wartungsverfahren für Indizes vor, die für solch konstant wachsende Datensätze

skalieren.

• Wir entwickeln Techniken zur Anfrageoptimierung von time-travel queries, nach-

stehend partition selection genannt. Diese maximieren den Recall in jeder Phase der

Anfrageverarbeitung.

• Wir stellen Indexierungsmethoden vor, die phrase queries unterstützen, z. B.

“Sein oder Nichtsein, das ist hier die Frage”. Wir indexieren Sequenzen beste-

hend aus mehreren Wörtern und entwerfen neue Optimierungsverfahren für die

indexierten Sequenzen, um phrase queries effizient zu beantworten.
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Kurzfassung

Die Performanz dieser Verfahren wird anhand von ausführlichen Experimenten auf

realen Webarchiven demonstriert.
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1
Introduction

1.1. Motivation

With the popularity and ubiquity of the Internet our digital presence and footprint has

been growing at a rapid pace. This has resulted in numerous digital curation efforts

which are believed to lead to cultural preservation [Con10]. Curation in the form of

preservation of digital information deals with archiving born-digital content like Web

archives and news archives. Web archives such as Internet Archive [http://www.arch-

ive.org] and Internet Memory [http://www.internetmemory.org] have been involved

in periodically archiving websites for over 17 years with collection sizes amounting

to several terabytes of data. Similarly, many news companies such as The New York
Times [NYT13], Wall Street Journal [WSJ13], The Times [TIM13] archive both their pub-

lished digital content as well as digitize non-digital articles. Digitization for preserva-

tion [KUL], apart from newspapers, also targets other content generated before the Web

era in form of digitized books [Coy06], a prominent example being the Million Books

Project [MBP13]. All these efforts have given rise to huge repositories of text data which

span considerable time periods. In this work we collectively refer to these collections as

web archives.

Cultural preservation is the first step, but the true potential of these collections can be

realized by enabling efficient searching and mining tasks. Web archives present many

opportunities for various kinds of historical analyses [SSU08, HER13], cultural analy-

ses [MSA+10], and analytics for computational journalism [CHT11, CLYY11]. A case in

point is data-driven journalism where the user resorts to various search tasks, visual-

ization and longitudinal analyses on large amounts of data for obtaining useful insights

in order to construct stories. As an example, The Weyeser Explorer [http://www.data-

art.net/weyeser explorer] provides visualizations of word clusters from news articles

from The Guardian [http://www.guardian.co.uk/]. In this work we are interested in

1



Chapter 1. Introduction

indexing methods for supporting various text-search workloads over web archives.

With the popularity of search engines, full-text search has evolved into a powerful

and popular way of searching text collections. However, search is no longer limited to

humans typing queries. It is increasingly being used as a “primitive” operation in pre-

processing steps in a longer pipeline for various extraction, mining and analytics tasks.

Entity extraction systems like [ACCG08, KN10] commonly employ techniques based on

keyword search as the first step. Similarly, many text mining and analytics applications

like [MTB+10, SBBW10] use text search as a filtering step to focus on a smaller and hence

more usable document collection. To realize these benefits of search over archives it

would be important to support keyword search functionality with additional temporal

predicates.

What has also evolved with the wide usage of search engines is the manner in which

users interact with it. The user behaviour relies on multiple query reformulations and

expansions to refine query intentions. A quick approximation of the query results often

serves as feedback for further reformulations. Thus, to enhance the current day user

behaviour it is important to provide functionality by which a large subset of the query

results can be determined quickly.

Along with keyword queries, phrase queries are another important query type in text

search. Although a small fraction of the queries issued to search engines are phrase

queries, a fairly large number are implicitly invoked, for instance, by means of query-

segmentation methods [HPBS12, LHZW11]. Beyond their usage in search engines, phra-

se queries increasingly serve as a building block for other applications such as (a) pla-
giarism detection [Sta11] (e.g., to identify documents that contain a highly discriminative

fragment from the suspicious document), or (b) culturomics [MSA+10](e.g., to identify

documents that contain a specific n-gram and compute a frequency time-series from

their timestamps).

1.2. Research Challenges

In this section, motivated from the scenarios presented above, we introduce the three

different workloads we address in this thesis : (A) time-travel queries, (B) approximate

queries and (C) phrase queries. We illustrate these by providing potential usecases for

each of the workloads and consider the corresponding research challenges in designing

efficient indexing and query processing methods.

(A) In spite of the progresses in preservation, search capabilities over archives have

been limited. A Naı̈ve adaptation of the indexing infrastructure used for text re-

trieval is expensive and does not capture the temporal dimension inherent to such

2



1.2. Research Challenges

archives. With this in mind, time-travel queries, which combine temporal predi-

cates with keyword queries, e.g., “fifa world cup” @ [06/2006 - 07/2006], were

proposed in [BBNW07] as an effective way of searching collections.

This combination of keyword queries with a temporal context could be an attrac-

tive construct in various analytical and comparative longitudinal analyses. Con-

sider a journalist interested in views about the recent ponzi scheme in 2008. A

keyword query “ponzi scheme” without the temporal predicates over an archive

might result in articles about various ponzi schemes spanning the entire time-line

of the archive. With the proper temporal constraints she would be able to restrict

the search to time-intervals of her interest.

To answer time-travel queries [BBNW07] propose indexes that incur an index-

size blowup, by replicating parts of the index, for better query performance. This

motivates :

RC I : How do we build index structures which eliminate wasteful replication so as to have
smaller index sizes and support time-travel queries efficiently?

Current indexing techniques are agnostic to index-access costs which can make a

considerable difference to retrieval efficiency.

RC II : Can we devise index-tuning methods which take into account index-access costs
rather than abstract cost measures ?

Web archives are usually in a state of change where content is continuously added.

The index needs to be in a fresh state and consistently reflect these changes. The

current state-of-art indexing techniques are limited to static collections and do not

consider updates. We need index-maintenance strategies which do not compro-

mise query efficiency.

RC III : Can we design indexes which can be efficiently maintained ?

(B) Web archives are often associated with redundant information due to periodic re-

crawls. Also in many application domains like news articles, the same information

is available from different documents, so missing a few of them could be accept-

able. Similarly, a subset of the true results is usually good enough for quickly

checking if content or temporal predicates of the query need to be adapted. Con-

sider a historian interested in the former US president “George Bush” in 2005.

He might go through a series of reformulations to clarify his intent from “bush”

@ [2005] to “george bush” @ [2005] to “george bush senior” @ [2005]. After

the first query, he might have results relating to the infamous bush fires in 2005

prompting him a second round of reformulation. The second round might be

3
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unsuccessful due to mentions of the son of the actual entity he is interested in,

thus necessitating a third reformulation. A quick review of the results (partially

computed thus far) in each of these rounds would allow him for a productive re-

formulation experience.

Due to the sheer size of archives, processing the temporal queries is expensive.

This hampers the user experience when a user does not necessarily require the

exact query result, but often would be satisfied with a good approximation that is

determined quickly. Hence the need for query-optimization techniques to provide

support for quick approximate results.

RC IV : Can we support query optimizations given current indexes for temporal queries
for quick approximate results ?

(C) Consider a company that is interested in the product reviews for a camera model

“canon eos 1100d” which was released in 2008 and is interested in all its men-

tions for planning for the next product release. This specific model is referred to

as “canon rebel xs”, “eos rebel t3” and “eos kiss x50” in different contexts. In or-

der to determine the documents which mention this specific model, these surface

forms can be used as phrase queries along with the year of its release. The out-

put documents can then be fed into a more elaborate extraction system for further

analysis.

Traditional indexing methods for processing phrase queries use inverted indexes

with positional information. Phrases are processed by intersecting posting lists

corresponding to the query terms and additionally checked for positional proxim-

ity. Phrase-query processing in such a setting becomes expensive for large collec-

tions because (i) one cannot employ standard retrieval techniques like stop-word
elimination common to standard keyword retrieval and (ii) additional checks for

positional adjacency.

The above problem can be addressed by indexing phrases or multi-word sequences,

but explicitly indexing all possible sequences is prohibitive. However, not all

phrases are frequently queried and not all combinations of words make valid

multi-word sequences. Promising sequences can be mined from the document

collection and from workloads. By considering their selectivities in the document

collections and frequency in the query workload, practical indexing and efficient

phrase querying solutions are possible.

RC V : How can we index multi-word sequences to improve phrase-query efficiency ?

RC VI : How can query processing efficiently answer phrase queries using indexed multi-
word sequences ?
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1.3. Contributions and Publications

We now present a synopsis of our contributions made in this work in addressing the

research questions posed above. We also mention the key publications in which these

contributions appear.

(I) Scalable and Efficient Support for Time-travel Queries : We present a novel

index organization scheme, called index sharding, that results in an almost zero

increase in index size. This practically efficient index organization method recon-

ciles the costs of random and sequential accesses, hence minimizing the cost of

reading index entries during query processing.

We also describe index maintenance strategies based on which the proposed in-

dex can be updated incrementally as new document versions are added to the

web archive. Our solution bounds the number of wasted read index entries per

posting-list and can be maintained using small in-memory buffers and append-

only operations. This work is published in:

• [ABBS11]: Avishek Anand, Srikanta Bedathur, Klaus Berberich, Ralf Schenkel.

Temporal Index Sharding for Space-Time Efficiency in Archive Search in ACM Con-

ference on Research and Development in Information Retrieval, SIGIR 2011.

• [ABBS12]: Avishek Anand, Srikanta Bedathur, Klaus Berberich, Ralf Schenkel.

Index Maintenance for Time-Travel Text Search in ACM Conference on Research

and Development in Information Retrieval, SIGIR 2012.

(II) Supporting Approximate Time-travel Queries : Building on the state-of-art in-

dex partitioning scheme proposed in [BBNW07] we present a framework for ef-

ficient approximate processing of time-travel queries and present practical algo-

rithms for the query-optimization problem. We derive a query plan for each time-

travel query ensuring that the number of results obtained at each stage of the exe-

cution is maximized. Our experiments with three diverse, large-scale text archives

reveal that our proposed approach can provide close to 80% recall even when only

about half the index is allowed to be read. This work is published in:

• [ABBS10]: Avishek Anand, Srikanta Bedathur, Klaus Berberich, Ralf Schenkel.

Efficient Temporal Keyword Queries over Versioned Text in ACM International

Conference on Information and Knowledge Management, CIKM 2010.

(III) Efficient Indexing and Phrase-Query Processing : We propose a phrase index-

ing solution and query-optimization techniques to improve the performance of
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phrase queries. Our solution augments the existing word level index by a phrase-

level index which is tunable by index size and is optimized for phrase-query per-

formance. We study how arbitrary phrase queries can be processed efficiently

on such an augmented inverted index. Moreover, we develop methods to select

multi-word sequences to be indexed so as to optimize query-processing cost tak-

ing into account characteristics of both the workload and the document collection.

Experiments on two real-world document collections demonstrate the efficiency

and effectiveness of our methods. This work is under peer review:

• Avishek Anand, Ida Mele, Srikanta Bedathur, Klaus Berberich. Efficient Phrase
Indexing and Querying, under review.

1.4. Outline

This thesis is organized in three parts, each focused on a different workload type. Before

we describe our contributions in detail, Chapter 2 introduces the required background

and necessary technical foundations on which we build.

Chapter 3 explores a novel space-time efficient index partitioning technique called

index sharding. It addresses issues surrounding index organization, tuning and mainte-

nance along with extensive experimental evaluation. Chapter 4 introduces the problem

of supporting approximate queries by proposing query-optimization techniques over

the state-of-art vertically-partitioned index. It discusses the different approaches to this

problem along with detailed experimental results. Chapter 5 deals with the last work-

load type, namely phrase queries. It introduces novel indexing and query processing

techniques for efficient phrase-query processing. We finally conclude in Chapter 6 by

revisiting the research challenges sketched before and discussing our contributions. In

addition, we give an outlook on future research directions.
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2
Foundations and Technical Background

In this chapter, we introduce the technical background necessary to understanding the

contributions presented in this thesis. We start with a brief description of web archives

and recent efforts relating to their acquisition and preservation. Next, we give an overvi-

ew of information retrieval with focus on text retrieval. In particular, we focus on the

efficiency aspects of text retrieval and describe issues concerning indexing and query

processing over large text collections. Finally, we conclude with the state-of-art tech-

niques relating to indexing archives.

2.1. Web Archiving

The Web is in a continuous state of change [ATDE09, NCO04, FMNW03]. Existing pages

are modified, new content is added, and old pages are removed resulting in a change

of state of the Web. Web archives prevent this loss by attempting to capture and pre-

serve this knowledge before it disappears. Efforts to preserve web contents have been

undertaken both by governments [WAR13, ARK13, BNF13, PAN13], non-profit orga-

nizations [IA13, IM13], and companies [HAN13]. Undoubtedly, the most popular and

large-scale effort in archiving the web has been the Internet Archive [IA13] which has an

estimated size of 500 Terabytes and is growing at 100 Terabytes a year.

Crawling in Web Archives Crawling is the most common method of acquiring con-

tent for web archives. A web crawler systematically requests and stores content from

web pages. It starts visiting pages from a seed set of pages and traverses the website

in a breadth-first or depth-first manner. The key difference from crawling strategies in

standard web search is that all files require to be fetched as opposed to only the ones

which would be later indexed. The challenges in crawling for archiving is usually in

capturing a consistent snapshot of a website at a given instance. Usually, due to po-
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Figure 2.1.: Website preserved by Internet Archive

liteness requirements, it takes a long time to crawl an entire website. In the meanwhile

many portions of the website might undergo changes and modifications which are not

captured. Figure 2.1 shows how often and when yahoo.com has been crawled and

preserved by the Internet Archive.

Denev et al. [DMSW09] propose a model for assessing the quality of the crawled data

for web archives. They define blur as a stochastic measure of the quality of capture. The

longer it takes to capture an entire website the more blur the gathered data is said to

have. Further, coherence is a deterministic quality measure which determines the accu-

racy of a snapshot, i.e., number of pages which did not change during the crawl. They

further propose effective crawling techniques which optimize for blur and coherence.

The Internet Preservation Consortium (IIPC) [IIP13] and other preservation organi-

zation are involved in establishing standards necessary for effective web preservation.

IIPC is also involved in the development of open source software, most prominently

Heritrix [HER13], for crawling for web archives. For other issues and best practices in

web archives please refer to [Mas06].

Although there has been progress in content acquisition for web archives; access

methods and search support over them have been limited. Most of the archives either

do not have an explicit search interface or provide limited search functionality based on

open-source tools like Nutch [NUT13] or Solr [SOL13].
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2.2. Data Management

In this section we look at various data management principles and techniques which

are either related or used in our work. We briefly discuss the work done in temporal

databases which also deals with managing temporal data. Next, we give a detailed

account of distinct value estimators and KMV synopsis which we require in Chapter 4

in our work on query optimization for time-travel text search.

2.2.1. Temporal Databases

Temporal databases deal with data management issues pertaining to data associated

with temporal aspects. Specifically these temporal aspects include the notion of transac-
tion and valid times. Transaction time refers to the time when a certain fact was stored in

the database. Valid time, on the other hand, refers to the time when the fact existed or

was active in the real world. As an example if we enter a fact about the great depression

of 1930’s into the database, the valid time would refer to a time-interval [1930 - 1940],

while the transaction time would be when the entry was made, for example March 2013.

Transaction times evolve linearly and are immutable to change in the past unlike valid

times where changes in the past are allowed. Research in temporal databases has pro-

posed models, query languages and indexing techniques over arbitrary data with such

temporal aspects.

We now discuss in brief about notable index structures and indexing methods for

transaction time data. Early approaches, like the Time-Split B-trees (TSBT) [LS93] and

Multi-Version B-trees (MVBT) [BGO+96], adapt B+-trees for time-evolving data. The

Time-Split B-Tree was aimed at reducing storage costs and improving query perfor-

mance over current records but did not provide good worst case guarantees. MVBT

overcame this problem and also provided the same asymptotic space and time com-

plexity as the B-tree when a single version per record is managed.

In the late nineties, the log-structured history data access method (LHAM) was proposed

by Muth et al. [MOPW00] for data with high update rates. LHAM stores its data in suc-

cessive components C0, . . . , Cm of varying sizes and access costs. The core idea is that

the most recent data is stored in the component with the least access cost C0 thereby im-

proving update performance. The older records are gradually merged into components

with high access costs Ci+1 whenever a component Ci is full. The partitioning of records

into components entails a partitioning of the entire time duration into non-overlapping

time intervals. Consequently, each componentCi is associated with a time interval. Typ-

ically the component sizes follow a geometric progression and whenever a Ci is full it

potentially triggers a series of merges via a rolling merge operation. A detailed survey of
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access methods for temporal databases can be found in [ST99].

2.2.2. Synopsis Structures

Determining number of distinct values in large collections, termed as distinct-value es-
timation or DV estimation, is an important task in query optimization, data streams and

network monitoring. While the exact count of distinct values is desired, determining

them is both computationally expensive and does not scale well. To this extent, approx-

imate methods have been proposed in the literature which efficiently estimate the result

like Bloom filters [Blo70], Hash Sketches [FNM85] and KMV Synopsis [BHR+07]. These

approaches are based on concise data-structures constructed over the input called syn-
opsis or sketches. In this section we give brief background information on the synopsis

structures, and specifically KMV synopsis, that are utilized by our algorithms.

Bloom Filters

It is a space-efficient probabilistic data structure used for answering set membership, set

containment, or set-intersection queries with a high confidence. Bloom filters are con-

cerned with sets and offer less than 10 bits per element for a 1% false positive probability.

However, they cannot be employed for arbitrary multiset operations.

Hash Sketches

These are distinct-value estimation technique was proposed in [FNM85]. They rely on

a pseudo-uniform hash function over the input to derive a sketch. These sketches allow

for various multiset operations by counting distinct elements after allowing appropri-

ately combining the sketches. Multiple intersections introduce high relative errors and

has a high computational complexity.

KMV Synopsis

Beyer et al. [BHR+07] introduced KMV synopses as effective sketches for sets that sup-

port arbitrary multiset operations including union, intersection, and differences. They

differ from hash sketches in having lower computational costs and more accurate DV

estimation. In this section we first explain the principle of DV estimation and introduce

the KMV synopsis data structure. We then explain how multiset operations like union,
intersection and set difference can be applied to them and estimated.

Consider an input multiset S with D distinct values Θ(S) = {v1, v2, . . . , vD} where

Θ(S) represents the domain. Each of these values is mapped to a random location on an

unit interval. Assuming that the points are distributed uniformly, the expected distance
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between any two neighboring points is 1/(D + 1) ≈ 1/D. The expected position of the

k-th point from the origin or the k-th smallest point, Uk, , is k/D, i.e, E[Uk] ≈ k/D.

The simplest estimator of E[Uk] is simply Uk and yields the basic estimator as introduced

in [BYJK+02]:

D̂BEk = k/Uk.

Consider a hash function h : Θ(S) 7→ 0, 1, . . . ,M which maps the input in the range

[0 − M] where M >> D. The hash function h is chosen such that mapped values

h(v1), h(v2), . . . , h(vD) resemble an independent and identically distributed sample from

the discrete uniform distribution on 0, 1, . . . ,M. Normalizing the range to a unit range,

as above, the values Ui can be expressed as Ui = h(vi)/M, vi ∈ Θ(S). The value M

regulates the number of collisions. The higher the value of M the lower the probability

of collisions.

Building on this notion of the basic estimator, KMV synopsis is defined in [BHR+07]

for a multiset S as follows. Given a hash function h, the k-smallest values of the mapping

h(vi) where vi ∈ Θ(S) constitute the KMV (k-minimum values) synopsis of S. Typically

M = O(D2) is chosen to avoid collisions and hence each of the synopsis values can be

encoded in O(logD) bits. Consequently, the number of bits required to store the KMV

synopsis is kO(logD). The KMV synopsis can be created by a single scan over S and

only storing the k smallest hashed values implemented efficiently by a priority queue.

The basic estimator is further extended to an unbiased estimator D̂k.

D̂k = (k− 1)/Uk

The cardinality estimation of the multiset operations involving two or more synopses,

like unions and intersections, can be carried out efficiently based on the above estima-

tors.

2.3. Information Retrieval

Information retrieval (IR) deals with finding information from large collections of un-

structured data to satisfy user information needs. Historically, the focus of IR has been

on investigating concepts, models and computational methods for searching large text

collections. However, the field has expanded its horizons to multimedia content [Cho10],

facts and semi-structured content [Lal12, CMS10]. In this work we focus on text collec-

tions and deal with the core problem in IR, i.e.,

We are given a document collection D associated with a vocabulary of terms V . For a given
query q ∈ V our aim is to find the documents which satisfy the user information need expressed
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by q.

2.3.1. Retrieval Models

The question above gives rise to two key aspects which account for the effectiveness of IR

systems – (1) How are documents and queries modelled ? (2) How is the relevance of a

document to a given query modelled ?

Boolean Retrieval Many retrieval models have been proposed to model documents

and queries and the similarity between them. We provide the key ideas of some of the

fundamental retrieval models. The Boolean retrieval model is the earliest and simplest

retrieval model. Queries in this retrieval model are Boolean expressions comprising

of terms v ∈ V and connected by Boolean operators (OR, AND, NOT). The notion of

relevance of a document d to a query q is binary, i.e., either d is relevant to q or not

depending on the evaluation result of the Boolean expression.

Ranked Retrieval Salton introduced the vector space model [SWY75] to rank documents

according to their perceived relevance to the query by modelling documents and the

query as a vector of features. The features are typically terms in this case and the sim-

ilarity value between a query and a document encodes the relevance of a document

given a query. The similarity between q and d is given by the cosine similarity between

the document and query vector cast in the feature space of terms.

Query Semantics There are two widely accepted query semantics – conjunctive and

disjunctive query semantics. Conjunctive query semantics require all terms to be present

in a document to qualify as a relevant result whereas disjunctive semantics allow any

occurrence of the query terms in the document. For example, under conjunctive query

semantics, the relevant documents for the keyword query “german soccer team” using

boolean retrieval should contain all the constituent terms “german”, “soccer” and “team”

to constitute as results. Although simple to implement, Boolean-retrieval models are

limiting when a large number of documents qualify as results. It is hard for the user to

evaluate all results and a notion of ranking is hence desirable.

We now come to the question of assigning feature values for vectors. To address

this there are two aspects which are considered. The more a query term occurs in a

document the more important it is. This is captured by the term frequency or tf(d, v)

of a term v for a document d, which is defined as the number of times v is present in d.

Note that in this model, documents are considered as bags of terms. However, certain

terms frequently occur throughout the corpus, for instance articles, prepositions and
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stop words. These terms, although highly frequent, might not be discriminative from

other query terms when it comes to capturing the true user intent. For example in

the query “house of fraser”, “fraser” is more discriminative than the other terms which

appear frequently in the collection. To account for this, the second aspect or document

frequency df(v) of a term v is taken into consideration. Using the value df, the inverse

document frequency is defined as

idf(v) = log
|D|
df(v)

is construed as being directly correlated with the discriminativeness of a term.

Combining both the measures we arrive at the tf-idf which has become one of the

most central weighting scheme for the vector space model. Most of the other weight-

ing schemes are often variations and refinements of tf-idf. A detailed account of these

weighting schemes can be found in Manning et al. [MRS08]. The most popular refine-

ment of the tf-idf value is the Okapi BM25 model by Robertson et al. which is known

to provide high retrieval effectiveness. Okapi BM25 takes into account the length of the

document and also the average length of documents in the entire collection to normalize

the term frequencies. Formally,

Definition 2.1 (Okapi BM25) For a document d and a query q, the relevance of d to q is
defined by Okapi BM25 as

r(q, d) =
∑
v∈q

wtf(v, d).widf(v). (2.1)

The tf-score wtf(v, d) is defined as

wtf(q, d) =
(k1 + 1) · tf(q, d)

k1 · ((1− b) + b · dl(d)avdl ) + tf(q, d)
, (2.2)

where 0 ≤ b ≤ 1 and k1 ≥ 1 are tunable parameters. The length of d is denoted as |d| and avdl
represents the average document length in the document collection.

The idf-score is defined as

widf(v) = log
N− df(v) + 0.5

df(v) + 0.5
, (2.3)

where N is the collection size and df(v) has the aforementioned semantics.

The tf component in Okapi BM25 is scaled by adjusting the parameter k1 while b

controls the effect of length normalization. Typical values for the two parameters which

have been seen to work well are k1 = 1.2 and b = 0.75.

13



Chapter 2. Foundations and Technical Background

information

(d1 , 2, <2, 15>)

(d4 , 1, <21>)

(d34 , 3, <2, 15, 23>)

(d64 , 5, <2, 15, 23, 56, 155>)

.....

retrieval

(d1 , 1, <5>)

(d14 , 3, <21, 24, 78>)

(d64 , 4, <16, 24, 67>)

(d78 , 2, <27, 56>)

.....

Lexicon

posting 
lists

Thursday, April 25, 13

Figure 2.2.: Inverted index

The success of a retrieval system not only depends on the effectiveness of the retrieval

models but also on how fast it can respond to queries. With the exponential growth of

collection sizes the challenges for scalable and efficient search have accounted for a rich

body of research over the past decade. The efficiency issues can be broadly classified

into two major areas in the retrieval phases – (i) indexing the document collection and

(ii) processing queries over the index. In the following, we introduce the common tech-

niques employed for indexing text.

2.3.2. Indexing Text

Indexing methods are required in order to efficiently perform the retrieval process. The

most popular choice to index text collections is the inverted index. It is the cornerstone

for most commercial search engines and real-world information retrieval systems. The

inverted index comprises of two components - (i) the lexicon and the (ii) collection of

posting lists comprising the inverted file. Each of them can be implemented using different

data structures and are materialized into separate files.

Lexicon The lexicon or the term dictionary contains the indexed terms and their cor-

responding statistics. These terms are typically words which are extracted and stemmed

from individual documents. Each entry in the lexicon represents a term v and it must

contain, but is not limited to, the following – (i) the string of the term v, (ii) document-
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frequency information df(v) and, (iii) pointer to the posting list of v in the postings file.

During query processing the lexicon is consulted to check for the containment of the

query terms in the collection. The look-up process results in providing further data,

if needed, for the rest of the retrieval process. There are many strategies to improve

lexicon look-up speeds. One straightforward approach, which is now common with

the growth of memory capacities, is to load the entire lexicon into memory as a hash

table. Other examples of dictionary layout include search trees and dictionary-as-a-string
proposed by Witten et. al [WMB99]. For a detailed discussion we point the reader to

Manning et al. [MRS08].

Postings File The second data structure is the postings file which contains informa-

tion about occurrence of terms in documents. Since terms are the indexed units here,

each term v is associated with a list of postings Lv, called the posting list, and each post-

ing represents a document where v is present. The postings file is a collection of posting

lists, one for each term. A posting belonging to the posting list Lv, contains the docu-

ment identifier di where v is present and information about the v’s occurrences. The

occurrence information can be binary, if v is present in the document or not, or more

expressive, like the frequency of occurrences or even positions where v was present in

the document, i.e.,

〈di, tf(v, di), < pos1, . . . , postf(v,di) >〉.

For Boolean retrieval storing only document identifiers is sufficient. In case of ranked

retrieval, which is indeed the more common scenario, a score s is stored which is usually

the tf(v, di) or tf(v, di).idf(v). If phrase or proximity queries need to be supported the

posting also stores a list of positions where the term occurs in the document (see Fig-

ure 2.2). These positions are sorted for best compression and query processing benefits

as we will see later. Posting lists are highly compressed and stored contiguously on disk

for best space and cache effectiveness. However, for dynamic collections the contigu-

ous placement might not always be desirable and we discuss later how such collections

can be indexed. Additionally these lists can be augmented with skip pointers for faster

list traversal during query processing [MZ96]. For the scope of this work we do not

consider such optimizations, since they are orthogonal to the methods proposed.

The posting list can be document-ordered or score-ordered. In document-ordering the

postings are ordered by increasing document identifiers. The benefit of such an organi-

zation is that it achieves high compression ratios. Additionally, document-ordered lists

are easier to maintain than their score ordered counterparts. On the other hand score-

ordered lists are ordered according to their scores. Score-ordered lists facilitate dynamic

pruning of lists during query processing and do not require the entire list to be read into
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memory. Several top-k algorithms have been proposed which allow for early termina-

tion by leveraging the score order during query processing [ADGK07, FLN01, BMS+06,

TWS04, YSL+12]. However, the compression factor achieved by such an ordering is not

as high as document-ordered lists and index maintainance is also expensive.

Compression

The posting list accounts for the majority of the index size. Thus posting-list compres-

sion is a key problem in indexing text and has been subject to active research over the

past two decades. The obvious advantage of list compression is their savings in overall

index size. Since inverted indexes are typically stored on disk, compression can reduce

the space consumption by 75% [MRS08]. Also, due to the use of caching for query pro-

cessing, some of the frequently accessed index lists are stored in memory to increase

query performance. Since, memory is a more expensive resource than disks, a smaller

memory footprint is desirable. Finally, CPU performance has improved relatively more

than hard-disk performance in recent years. Thus the aggregate benefit of transferring

a highly compressed posting list to memory and decompressing it outperforms read-

ing it in its uncompressed form. We outline the most widely used techniques for index

compression.

Integer Compression We first talk about integer-compression techniques useful in

compressing document identifiers and positional information. Storing integers in fixed-

size bit sequences or arrays wastes space for small integers. Variable byte encoding uses

integral number of bytes to encode an integer. An example is the 7-bit encoding in which

the most-significant bit of a byte is the continuation bit and the remaining seven bits

represent the payload. The 7-bit encoding can be decoded by reading a sequence of

bytes until the continuation bit is zero. The sequence read concatenates the payloads of

each byte, disregarding the continuous bit values of each byte, to decode the integer. As

an example, n = 129 is encoded as 〈 00000001 11111111 〉 and n = 30 is 〈 00011110 〉.
Unlike variable byte encoding, which is byte aligned, we can consider directly work-

ing with bits. The simplest bit-level encoding technique unary encoding stores n− 1 one

bits followed by a zero as a delimiter to store the positive integer n. Although, it is ben-

eficial for small n it soon becomes infeasible for higher values of n. For more efficient

representations of integers Elias-γ encoding is used which splits the positive integer n

into two parts. The first part encodes 1 + blognc in unary encoding. The second part

encodes n− 2blognc using binary encoding. As an example n = 10would be encoded as

〈 1110 10 〉.
Elias-δ encoding is slightly different from Elias-γ encoding in which the first part, 1 +
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blognc, is encoded using Elias-γ encoding instead of unary encoding. Thus, n = 10

would now be encoded as 〈 110 00 10 〉.

Compressing d-gaps Let us for simplicity view a posting list as an array of document

identifiers. The obvious choice in compressing a posting list is to use one of the above

techniques to compress each document identifier did. In case of document-ordered

lists, we can exploit the ascending order of dids by encoding the difference between

consecutive did values or so called d-gaps. In this scheme, the original integer value

of only the first or minimum integer is stored. The remaining integers are represented

by their d-gap value. All integers can be reconstructed in the course of the linear scan

from begin of the list from the d-gaps. For example 〈d1, d2, d2, d4 〉 can be represented

as 〈d1 , d2 − d1 , d3 − d2 , d4 − d3 〉.
The primary advantage of storing d-gaps is that they tend to be small integers and can

be compactly represented using the techniques discussed above. The gains are signifi-

cant especially for long posting lists, corresponding to frequent terms such as articles or

preposition, where the difference between dids is very small. Apart from using d-gaps

for dids it can also be employed for positional information. A more comprehensive

survey of other compression methods for d-gaps can be found in [WMB99].

Query Processing

After having discussed retrieval models and indexing we now turn to query processing:

Given a query, q, and an inverted index how can we process queries efficiently ? Depending

on the index organization there are two major query processing techniques. We discuss

query processing techniques for document-ordered lists - Term-at-a-Time and Document-
at-a-Time.

In Term-at-a-time (TAAT), the posting list Lv for each query term v ∈ q is processed one

after the other. A set of accumulators, one for each document, is maintained which store

partial scores for the results determined thus far. In each iteration, the partial scores in

the accumulators are updated. Finally, after all the terms have been processed the scores

in the accumulators are sorted in descending order.

In order to reduce the number of operations and accumulators, numerous methods

and heuristics have been proposed. For conjunctive query semantics, the retrieval of

the posting list is scheduled in increasing order of their lengths. Since the result set is

always a subset of every posting list such a scheduling facilitates reduction in number

of accumulators initialized. Dynamic pruning strategies have also been proposed for

memory-limited conditions, a detailed account of which is presented in [BYGJ+08].

Document-at-a-Time (DAAT) processing accesses all the posting lists in parallel. In
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this strategy the final scores of result documents are not incrementally computed, as

in TAAT using accumulators, but determined on the fly. The posting lists are merged

efficiently using a priority queue of postings. A cursor is kept for each posting list Lv
corresponding to each term in the query, v ∈ q, and a min-heap of document identifiers

is maintained. In each iteration, the cursors are advanced to the minimum document

identifier, say dmin, in the heap. Next, the final score for dmin is computed and the

priority queue is populated with the minimum document identifier from the current

cursor pointers. For processing phrase queries, an additional check is done utilizing

the positional information in the postings if the occurrence of the v in dmin is a part of

the query phrase. For example, consider a query “information retrieval” on an inverted

index represented in Figure 2.2. Although document d1 contains both query terms,

“information” at positions 2, 15 and “retrieval” at position 5, but they are not present next

to each other. Hence d1 does not qualify as a result to the phrase query. On the other

hand d64 contains them one after another starting at positions 23.

Depending on the query semantics, further optimizations can be performed. For in-

stance when conjunctive query semantics are required, a max-heap instead of a min-

heap is maintained to avoid scoring of documents not containing all query terms.

Index Maintenance

The indexing methods discussed so far concern static document collections. However,

document collections change over time. New documents are inserted and old docu-

ments are either deleted or modified. These changes should appropriately be reflected

in the index to keep it in sync with the document collection. In this section, we discuss

index maintenance strategies which have been proposed to address this problem. The

index can be updated either in a batched manner or incrementally.

Batched Index Updates In batched updates, the index maintenance is carried out pe-

riodically while accumulating the changes to the document collections in the meantime.

When the index is finally updated, these changes are incorporated into building a fresh

index which is consistent with the collection. A straightforward strategy to accomplish

this is to re-build the entire index from scratch on the current state of the document col-

lection. Although easier to implement, such a strategy works well only if more than

60% of the changes involve deletions and updates [BCC10]. When insertions dominate,

which is the case in most situations, re-building the index from scratch often becomes

expensive. The other, more practical alternative is to build a partial index on the accu-

mulated updates and merge it with the existing index. This update strategy is referred

to as re-merging. Re-merging avoids the inversion of the older documents into postings
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and creates posting list by merging the posting lists, for each term, of the partial and ex-

isting index. Deletions are managed by keeping a list of documents which are no longer

present in the collection. This list is used as a filter during query processing to remove

non-existing documents from the result set.

Incremental Index Updates In many applications it is critical that the index always

reflects the current state of the collection. Batched updating of indexes is undesirable

for such requirements. Most of the literature which deals with incremental updates as-

sumes a strict incremental nature of the updates, i.e., only new documents can be added

and existing documents can never be modified or removed.

The underlying principle is to create multiple in-memory partial indexes, similar to

the partial indexes in re-merging, and allow query processing on them. The partial

indexes are of fixed sizes depending on memory limitations. Once a partial index ex-

hausts the space budget, it is materialized to disk and a new index is started. Over a

period of time and numerous updates we have multiple small disk-resident indexes.

When queries are issued, they are routed to all the partial indexes. For a query q, the

posting-list fragments for each term v ∈ q are fetched from saym partial indexes. Allm

fragments, including the in-memory index, are concatenated to form the term’s posting

list. Following this, the corresponding query processing method is invoked for comput-

ing the final result set.

Partitioning the entire index into such smaller partial indexes might be desirable for

indexing but is clearly expensive for query performance. In this scenario, the number of

random seeks for fetching the fragments are |q|.m. The query performance can be im-

proved by selectively merging these partial indexes into a smaller set of partial indexes.

Taken to the extreme, the performance is at its best when there is one consolidated index

thereby eliminating fragmented lists. In such a strategy, called immediate merge, only a

single disk-resident index is maintained apart from the in-memory partial index. Once

the in-memory index reaches the size threshold it is merged into the main index.

Many factors determine the efficiency of the merge operation like – assignment of doc-

ument identifiers, choice of compression algorithm and allowing for in-place merging.

Typically, in a dynamic collection, document identifiers are assigned incrementally, i.e.,

every new document is assigned an identifier greater than previously assigned identi-

fiers. Consequently the partial indexes always have document identifiers greater than

those indexed in the primary index. Thus the merging operation of the two posting

lists reduces to an append operation. Indexes constructed with a different document-

identifier assignment, which does not exhibit the above property, can be difficult to

maintain due to expensive de-serialization and sorting operations.

The second factor which affects merge efficiency is the choice of the compression

19



Chapter 2. Foundations and Technical Background

method. As discussed in the section earlier d-gaps are computed and compressed us-

ing integer-compression methods. If we employ compression algorithms which are in-

dependent of global parameters, like collection-wide statistics, one does not have to

de-compress the already compact posting list from the primary index. For example, the

merging of posting list of term v using 7-bit encoding of d-gaps would require us to read

Lv from the primary index and determine the last document identifier in the list. The

last document identifier, say dlast, can be identified on the fly or can be explicitly stored.

The posting list from the partial index is compressed and appended to Lv by computing

d-gaps from dlast.

In-Place Merging After the updated posting list, say L ′v is determined, the new copy

has to be written to a new location. However, in-place merge techniques have been

proposed which allow for over-allocation of space after each posting list. This allows

Lv to be updated in-place and avoids expensive relocations. There are two kinds of in-

place merge strategies. One requires the entire posting list to be contiguous, as proposed

by Lester et. al [LZW06], while the other does not [TGMS94]. Contiguity of posting

lists improves query performance but sometimes involves expensive relocations. On

the other hand, allowing for non-contiguous lists improves update performance at the

expense of query performance. To reconcile these two approaches hybrid methods have

also been proposed in [BCL06a] which take into account the posting-list length and

update characteristics for over-allocation.

We have discussed two techniques which are on the extremes of the trade-off between

index maintenance and query performance, i.e., the no-merge strategy which has no

maintenance overhead and immediate merging which has the best query performance.

There are other approaches which explore this trade-off to selectively merge partial in-

dexes to balance maintenance and query performance namely logarithmic merge, geomet-
ric merge, etc. A detailed account of these can be found in [BCC10].

2.3.3. Indexing Archives

In this section we look at text search over versioned text collection with focus on web

archives. Before we discuss the details of the index organization we outline the docu-

ment, collection and query model and formally define the time-travel retrieval task.

Document and Collection Model We adopt a discrete notion of time and assume that

a time-stamp t is a positive integer and is computed periodically, with a fixed granular-

ity, from a reference point in the past where t = 0. For instance, a widely accepted time

of origin in computer systems is the Unix Epoch – 00:00:00 UTC on 1 January 1970. The
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granularity of measurement could be milliseconds, hours, days, weeks or years.

We define the overlap of time-intervals as follows.

Definition 2.2 (Overlapping intervals) An interval I1 = [b1, e1) is said to overlap with
another interval I2 = [b2, e2), denoted as I1 I2, if the following relation holds:

I1 I2 ⇐⇒ b1 < e2 ∧ b2 < e1

and I1 does not overlap with I2, denoted as I1 I2, if the following holds:

I1 I2 ⇐⇒ b1 ≥ e2 ∨ b2 ≥ e1.

We operate on a versioned document collection D. Each document di ∈ D is as-

sociated with a sequence of its versions 〈d1i , d2i , . . .〉. Each version dki is drawn from a

vocabulary of terms V , i.e. dki ⊆ V . Furthermore, each document version dki has an

associated valid-time interval valid(dki ) = [begin(dki ) , end(d
k
i )) when dki existed in the

real world. We also make a natural assumption that versions of the same document do

not have overlapping valid-time intervals, i.e.,

∀dji, d
k
i : valid(d

j
i) valid(dki ).

A document version is active, or has not yet been superseded by a new version if

end(dji) = ∞. Note that this is similar to the notion of transaction time in temporal

databases as introduced earlier.

Query Model Berberich et al. in 2007 [BBNW07] introduced the time-travel queries

as an important query type to search archives and other time-stamped corpora. For-

mally, a time-travel query Q, as considered in this work, consists of a set of terms

keywords(Q) = {q1, . . . , qm} and a time interval denoted by interval(Q). The begin

and end of the query time-interval are represented by begin(Q) and end(Q), i.e.,

interval(Q) = [begin(Q) , end(Q)].

As an example, for a time-travel query Q = “bhopal gas tragedy” @ [11/1984 -

01/1985] – keywords(Q) = {bhopal, gas, tragedy}, begin(Q) = 11/1984 and end(Q) =

01/1985. With the model in place we can now formally define the time-travel retrieval

task.

Definition 2.3 (Time-travel Retrieval Task) Given a document collection D with versioned
documents (each document version associated with a time-interval), and a time-travel query Q,
the objective is to find all documents versions R(Q) whose valid-time interval overlaps with the
query time-interval and which contains all the query keywords.
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R(Q ) ={
dki ∈ D | ∀q ∈ keywords(Q) : q ∈ dki ∧ valid(dki ) interval(Q)

}
.

Queries for which begin(Q) = end(Q) holds, so that the query time-interval col-

lapses into a single time point, will be referred to as time-point queries.

Time-Travel Index

Berberich et al. proposed the time-travel inverted index as an adaptation of the inverted

index for efficient processing of time-travel queries. It transparently extends the stan-

dard inverted index and proposes novel compression and index partitioning schemes.

We start by looking at the extensions with respect to the postings and posting-list or-

ganization. Firstly, the posting representing a version dki is extended by addition of a

valid-time interval valid(dki ) = [begin(dki ) , end(d
k
i )), i.e.,

〈dki , [begin(dki ), end(dki )), s〉.

Secondly, it was proposed that each posting list Lv may be be partitioned along the

time dimension into a set of partitions. Each partition has an associated time-interval

span(φv,j) = [begin(φv,j) , end(φv,j)). It contains postings which are present in the

unpartitioned list Lv, φv,j ⊆ Lv, and those which represent document versions whose

valid-time interval overlaps with span(φv,j), i.e.,

φv,j =
{
dki ∈ D | valid(dki ) span(φv,j)

}
.

Further, we assume that partition-spans for a given term v are disjoint, i.e.,

∀i ∀j : span(φv,i) span(φv,j) .

For processing a time-travel query, we must first retrieve for each query term, the

set of postings which overlap with the query-time interval. Once retrieved, standard

query processing techniques discussed before can be applied on this subset of postings.

To reduce the retrieval cost, only those partitions which overlap with the query-time

interval are fetched, i.e., for a retrieved partition φv,j with respect to a time-travel query

Q the following holds

interval(Q) span(φv,j).

Following that, all partitions for the same term are merged and irrelevant postings,

whose valid-time interval do not overlap with the query-time interval, are filtered out
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Figure 2.3.: Partitioning a posting list

in the process. Note that identifying if a postings is irrelevant in a partition is only pos-

sible once the partition is retrieved. If most of the postings in a partition are irrelevant

then an entire partition must be wastefully read to determine a few relevant postings.

An approach to reduce the cost of filtering out such postings, thus improving query

performance, the granularity of partitioning can be reduced. As one extreme, called the

performance-optimal approach or Popt, partition boundaries are placed at time-points that

occur as boundaries of valid-time intervals as shown in the Figure 2.3. Such a partition-

ing eliminates irrelevant postings in a partition.

On the other hand, since each partition is associated with a time span, postings whose

valid-time intervals overlap with multiple partitions are replicated in all of them. For

instance, in Figure 2.3, the version d13 is replicated multiple times for the performance-

optimal approach. Replication of postings in multiple partitions results in an index

blowup thus making the performance-optimal approach infeasible in practice. The

other extreme case, referred to as space-optimal partitioning or Sopt, ensures that there

is no index blowup by disallowing replication of postings.

Partitioning Strategies There is a natural trade-off between query performance and

index-size blow and the above two approaches represent the two extremes of this. In

practical situations the desired partitioning strategy lies between these two strategies. To

explore this middle ground two approaches of partitioning strategies are proposed - the

performance guarantee approach and the space bound approach.

In the performance guarantee approach a bounded loss of performance over Popt is

tolerated. The reduction of performance, by the performance-guarantee approach, for a

given query is measured by the excess of postings processed over Popt. The performance

reduction is bounded by a user specified parameter γ and a partitioning is desired which

adheres to this bound for all possible queries. The objective, under such a performance

guarantee, is to minimize the overall index-size blowup.
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Figure 2.4.: Temporal coalescing

The space-bound approach is proposed for situations when storage space is at a pre-

mium and a bound is desired on the overall index size. Given a user specified index-size

bound, κ, the objective here is to minimize the reduction of performance relative to Popt.

The size bound on the entire index can be translated to a bound on the size of each post-

ing list. The size bound for partitioning posting list for each term v is given by κ.|Lv|.

The space-bound approach also allows for a query distribution determining the proba-

bility of a term given a time-point P(t). An optimization problem is formulated which

intends to partition a posting list Lv to minimize the expected query processing cost,

given κ and P(t), while adhering to a space bound κ.|Lv|. We refer to these partitioning

strategies as vertical partitioning in the rest of the thesis.

Temporal Coalescing Indexing all the versions is expensive in terms of storage costs.

However, archives are characterized by a high degree of redundancy. Often times,

changes to documents are minor resulting in a high overlap of text content between

consecutive documents versions. Temporal coalescing techniques exploits this redun-

dancy to substantially decrease the overall index size.

A naı̈ve implementation of the posting list Lv would create a posting for each docu-

ment version term pair. To exploit the redundancy between consecutive versions tempo-

ral coalescing in conjugation with the time-travel index. Temporal coalescing methods

aim to coalesce postings belonging to consecutive versions of the same documents when

the information contained between them is not significantly different. The techniques

are applied on a per-term basis. They also have different semantics for different types

of payloads, i.e., boolean, scalar or positional.

For boolean payloads of the form 〈dki , valid(dki )〉, multiple postings for consecutively

occurring versions can be replaced by a single posting. The single posting represents

that the term was present in a document for a contiguous period of time encoded in the

posting.

For scalar payloads, scores of consecutive versions with low variance can be captured
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and coalesced into a single posting. Figure 2.4 illustrates that coalescing postings with

small variation in scores results in reducing the number of postings, in this example,

from 9 to 5. The degree of relaxation allowed is specified by the user and captured

by the parameter η. This is formulated as an optimization problem. Given an input

sequence of postings of the same document, ordered by their begin times, the objective

is to generate a minimal number of coalesced postings adhering to the user specified

relaxation.
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3
Efficient Indexing and Maintenance for Time-Travel Text

Search

3.1. Motivation and Problem Statement

In this chapter we address two major indexing challenges. Firstly, given a versioned

document collection we address how to efficiently identify documents which are solu-

tions to the time-travel retrieval task. To this end we propose novel index organization

and tuning approaches. Secondly, given a dynamically growing versioned collection we

propose strategies for efficient index maintenance.

Archives are collected over a period of time and hence have an implicit temporal

dimension. Consequently, time-travel text search is important in searching archives as

it limits the search to a specified time of interest in the past. We motivate this by two

use cases. A political analyst is interested in statements made by presidential candidates

during the recent financial crisis (in 2008). Constraining the search to document versions

that existed in the year 2008 filters out versions during previous instances of such events

thus preventing dilution of content.

Consider a business analyst looking for web pages predicting and analyzing upcom-

ing releases of tablet computers. If only keyword queries are used to retrieve pages

from a web archive, irrelevant information about earlier releases of tablet computers

may corrupt the analytics results. By including a temporal constraint on the publication

or discovery time of web pages, such undesirable results can be eliminated.

Archives are dynamically increasing collections with content being added over time.

Almeida et al. [AMC07] report how Wikipedia has grown exponentially since its incep-

tion. News archives grow continuously and are progressively becoming accessible on-

line. Research and improvements in archive crawling technology [Den12, HER13] also

suggest that more content will be amassed in the future. To keep up with the dynam-

ically growing archives it is essential that our indexes have to be efficiently maintain-
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able. Naı̈ve approaches like periodically rebuilding indexes are prohibitively expensive.

Hence there is a need for strategies for index organizations which can be updated easily

while still being competitive in query performance.

3.1.1. Approach

time

doc.
id

time

doc.
id

d21

d12

d31

d41

d51

d21

d12

d31

d41

d51

Vertical
Partitioning

Index
Sharding

Friday, May 17, 13 Figure 3.1.: Vertical partitioning vs. sharding of a posting list

The state-of-art approaches to process time-travel queries, as discussed in Chapter 2,

transparently extend the inverted index with time-enriched postings. To optimize for

time-travel query processing each posting list is partitioned into a number of smaller

posting lists along the time dimension. We refer to these methods as vertical partitioning.

Partitioning in this way reduces access to postings which are irrelevant to the query.

Specifically, those postings which do not overlap with the query time-interval. In-

creasing the degree of vertical partitioning improves the query-processing performance.

However, such an index organization suffers from an index-size blowup, incurred due

to the replication of postings, due to partitioning. A careful choice of the partitioning

boundaries can help to reduce the index-size blowup [BBNW07], but in order to achieve

acceptable levels of efficiency 2 to 3 times index size increase is necessary.
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We look at a novel way of partitioning posting lists called index sharding in which we

propose to shard – or horizontally partition – each posting list along document identifiers,

instead of time (see Figure 3.1). An immediate benefit of this alternative partitioning

is almost no increase in the overall index-size (as we show later the only overhead is

to maintain a small set of location pointers in each partition). We develop a single-

pass greedy algorithm that optimally shards the posting list, minimizing the number of

postings read during query processing.

The idea is to achieve superior query performance by organizing the postings into

shards, exploiting the geometry of the associated intervals, which helps in avoiding ac-

cess to postings which are irrelevant to the query time-interval. Query processing over

a sharded index proceeds by accessing all the shards in parallel but reading only a small

portion from each of them. As a random access is at least as expensive as a sequential

read (as in disk-based and network-based index storage), breaking the posting list into

too many shards actually degrades performance, even if we optimize access to only rel-

evant postings. Thus, the practical efficiency of the index organization is achieved only

if it is sensitive to the cost ratio of random accesses to sequential accesses. We formu-

late optimization problems for tuning the parameter for query performance that takes

into account the I/O cost ratio of the storage infrastructure and propose a heuristic to

combine shards to gain practical runtime efficiency.

Based on the index sharding principle, we propose a framework which efficiently

handles additions of new document versions to the archive without sacrificing query

efficiency. We propose an algorithm which is incremental in nature thus avoiding the

expensive recomputation of shards. Further, it reconciles the relative cost of random

and sequential access for better query performance.

3.1.2. Contributions

In summary, the key contributions made in this chapter are the following.

1. A novel sharded index organization for a time-enriched inverted index that over-

comes the issue of index-size blowup.

2. An optimal greedy algorithm to shard the posting list, so that no time-travel query

reads more than the required postings, thus achieving ideal query-processing per-

formance.

3. A framework that achieves practical runtime efficiency by tuning the number of

shards that each posting list is split into, taking into account the I/O cost ratio of

the storage infrastructure. Note that the cost of such a partitioning is independent
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of the dynamics in the query workload, as it depends only on the storage system

parameters.

4. A framework to support updates and perform efficient index maintenance based

on an incremental sharding algorithm.

5. An extensive empirical evaluation on large-scale versioned document collections

using real-world keyword queries with temporal constraints at varying granular-

ities.

3.1.3. Organization

The remainder of this chapter is organized as follows: In Section 3.2, we present the data

model and index organization that we use in this chapter. Next, in Section 3.3, we de-

scribe in detail the idea of sharding the inverted index and how queries can be processed

over the sharded index. In Section 3.4 and in Section 3.5 we present the details of our

idealized sharding and a shard-merging strategy. Section 3.7 describes our incremental

sharding method for index maintenance. Section 3.8 presents the overall architecture

of our update-aware retrieval system. Details of our experimental setup and its results

are presented in Section 3.10. Finally, we discuss previous related work in Section 3.11,

before summarizing in Section 3.12.

3.2. Model and Index Organization

We adopt the document, collection, and query models from Chapter 2 and briefly recap

the notation in Table 3.1.

We call a document version dki an active version if it is the most current version of

document di and consequently has end(dki ) = ∞ where the current time or “now” is

represented as∞.

Our proposed index for time-travel queries is based on the established inverted index
as described in Chapter 2. We extend the inverted index to support time-travel queries

by modifications to the postings structure, posting-list organization, and the lexicon.

We extend the contents of each posting by additionally storing the valid-time interval,

valid(dki ) = [begin(dki ), end(d
k
i )), of the document version dki along with the identifier

di, and a payload s, i.e.,

〈dki , [begin(dki ), end(dki )], s〉.

The index organization supports different retrieval models by allowing the payloads

to be empty (for Boolean retrieval), containing a scalar value (tf in the document ver-

sion) or containing positional information (phrase-based retrieval). When no confusion
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Notation Description

D collection of documents

V vocabulary, a set of words

d
j
i ∈ D a document version, jth version of document di
valid(dji) valid-time interval

begin(dji) begin time of dji
end(dji) end time of dji
Q time-travel query

keywords(Q) set of keywords in Q

interval(Q) query time-interval of Q

I1 I2 Overlapping intervals I1 and I2
I1 I2 Non-overlapping intervals I1 and I2

Table 3.1.: Notation

arises, we simply use begin(p) and end(p) of a posting p to refer to the valid-time in-

terval boundaries of the corresponding document version.

We partition each posting list into disjoint partitions referred to as shards. The post-

ings in a shard are ordered according to their begin times. We assign the identifiers to

documents and versions in the order of their begin times. This ensures that the post-

ings are also ordered by their identifiers in a shard. Subsequently we can use standard

compression techniques, commonly used for posting-list compression, for compressing

shards.

As a result of index sharding, each term in the vocabulary may be associated with

multiple lists. These mappings have to be appropriately reflected in the lexicon. To this

end, we extend the lexicon to store pointers to all the shards for each term. Note that

since our partitions are not local to a given time interval we do not need to maintain time

intervals corresponding to each partition, unlike the lexicon of the vertically-partitioned

index.

Impact Lists For each shard we maintain an additional access structure for efficiently

determining the postings whose time intervals overlap with a query time-interval. These

are called impact lists. An impact list is an associative data structure which maintains,

for every possible begin time of a query time-interval, the position in the shard of the

earliest posting whose valid time overlaps with the query begin time. In other words,

the impact list stores pairs of query begin times (key) and offsets (values) from the shard

beginning. The overall size of each impact list can be reduced by storing only the dis-

tinct offset values rather than offsets for all possible query begin times. An example of
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Figure 3.2.: Impact list

an impact list of a shard of five postings is shown in Figure 3.2. The possible begin times

are represented as intervals and they map to the offset in the posting list for the shard

from where the postings are read sequentially. Thus, for a query interval in [t8 − t11]

we start accessing the list sequentially from the fifth posting. Although represented as

intervals, in practice it is sufficient to store the begin or end of the interval. Thus keys

admit a non-decreasing integer sequence and a straightforward binary search over the

keys efficiently gives the correct offset location. For practical granularities of query be-

gin times such as days, the impact lists for the complete index (i.e., for all shards of all

terms) can be easily kept in memory. We discuss how query processing is performed

using impact lists in the next section.

3.3. Sharding Posting Lists

Index sharding refers to partitioning or sharding a posting list Lv into disjoint partitions

or shards such that no two shards share common postings. We now formally define the

notion of a shard and posting-list sharding.

Definition 3.1 (Shard) A shard σ is a sequence of postings, σ = 〈pi〉, ordered by their begin
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times, i.e.,

begin(pi) ≤ begin(pi+1).

Definition 3.2 (Posting-List Sharding) Given a posting list Lv for a term v, posting-list
sharding partitions Lv into a set of shards Sv = {σ1, . . . , σm}, σi ⊆ Lv where

(∀i, ∀j i 6= j =⇒ σi ∩ σj = ∅) ∧

(⋃
i

σi = Lv

)
.

In what follows a sharded index refers to an index which employs posting-list shard-

ing. A sharded index thus maintains multiple shards per term and the disjoint parti-

tioning avoids replication completely (see Figure 3.1).

3.3.1. Query Processing over Sharded Index

For query processing over a sharded index, we employ the established term-at-a-time

query-processing model (described in more detail in Chapter 2). In short term-at-a-time

processing posting lists are read one after the other and scores of a document version

from different lists are merged in memory. For our sharded index, each shard of every

query term is processed in a sequence of the following open-skip-scan operations.

1. Open – Open a shard for a query term. This involves a lookup from the lexicon

for the location of beginning of the shard.

2. Skip – Given the query begin time, lookup offset position from the impact list of

the shard and perform a seek to that position. In practice we can combine the open

and skip steps into an open-skip operation to avoid an extra I/O operation.

3. Scan – Perform sequential reads from this position and terminate when it is certain

that the rest of the postings do not overlap with the query time-interval. As we

read the postings sequentially in begin-time order, we can safely terminate when

the begin time of the next posting exceeds the query end-time.

An illustration of the query-processing operation is shown in Figure 3.3. We are given

a sharding 〈d21, d12, d15 〉 and 〈d13, d14 〉. Each of the shards is associated with an impact list,

as illustrated in the figure. For simplicity we denote the offsets from the shard beginning

by the posting which is accessed first.

Consider a time-travel query with time interval [tb, te], shaded in gray, where we

have t3 < tb < t4. Firstly, by the use of impact lists we try to quickly skip to the first

overlapping posting in the shard. For instance, in the second shard, by looking up the

impact list, we start accessing the shard from the second posting onwards. This avoids
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Figure 3.3.: Open-skip and scan operations for query processing

processing of postings at the head of the shard which do not overlap with the query

time-interval. Secondly, the postings are accessed sequentially, from the seek position,

until a posting p is encountered such that begin(p) > te. In the example, we terminate

reading Shard 1 after accessing the first two postings and thus avoid reading d15.

In essence, we only access a relatively smaller number of postings of a shard.

For each query, all the participating shards can be processed in parallel. Since the con-

tents postings per shard are disjoint, merging lists is relatively inexpensive. However,

if the number of shards per term are large in number, query-processing performance

might degrade due to a large number of random seeks (open for each open-seek oper-

ation). We now at look at the different posting-list sharding strategies for optimizing

query performance.

3.4. Idealized Index Sharding

Although the begin-time order in shards avoids wasteful reading of postings, it does

not guarantee the elimination of all wasteful reads. A posting is said to be a wasted
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Figure 3.4.: Subsumption of postings

read, if it is accessed during query processing although its valid-time interval does not

overlap with the query time-interval. We introduce the concept of subsumption in shards

to explain why this occurs.

Definition 3.3 (Subsumption of Postings) For a pair of postings p and q (from the same
posting list), p subsumes q (for short p A q) if

p A q⇔ (begin(p) ≤ begin(q)) ∧ (end(p) > end(q)) .

A shard is said to exhibit subsumption if it has a pair of postings where one sub-

sumes another. Consider a shard in Figure 3.4 with five postings where d21 A d
1
2. Now,

the queries with end(d12) ≤ begin(Q) ≤ end(d21) (highlighted region in the figure) will

wastefully read d12, i.e., d12 is processed but does not contribute to the result. Such a

scenario, where there are postings like d21 which span long intervals and subsume many

postings, can arbitrarily degrade performance. Building on this example, if we further

introduce n postings which are subsumed by d12, they are in turn automatically sub-

sumed by d21. Consequently, the number of wasteful reads when the query has a begin

time end(d12) ≤ begin(Q) ≤ end(d21) will be n+ 1.

We can avoid any wasteful reads of postings if we can avoid shards with subsump-

tions of postings. In other words, we require that postings in a shard satisfy the staircase
property, defined as follows:

Definition 3.4 (Staircase Property) A shard σ is said to have the staircase property if σ has
exactly one posting or

∀p, q ∈ σ, begin(p) ≤ begin(q) ⇒ end(p) ≤ end(q) .

We let the Boolean predicate staircase(σ) denote whether σ has the staircase property.
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Figure 3.5.: Idealized sharding with staircase property

Clearly, it may be possible to shard a given posting list in many different ways so

that the staircase property is satisfied. Since query processing proceeds by open-skip

operations for all shards of a term, it is desirable to minimize the number of idealized

shards. This can be cast into an optimization problem with the input being a list of

postings Lv. The objective is to partition Lv into a feasible index sharding S so as to

minimize the overall number of shards where each shard exhibits the staircase property.

Formally, the idealized-sharding problem is defined as follows:

Definition 3.5 (Idealized-Sharding Problem)

argmin
S

|S | s.t. ∀σ ∈ S : staircase(σ) .

where S is a feasible index sharding of Lv.

3.4.1. Optimal Algorithm for Idealized Sharding

We solve the idealized-sharding problem optimally using the greedy algorithm de-

scribed in Algorithm 1. We let the last posting added to σ be denoted by last(σ). We

additionally let each shard σ be associated with an end time σ.end representing the end

time of last(σ), i.e., σ.end = end(last(σ)).

We process all postings of a list Lv in increasing begin-time order. In each iteration, we

try to add a posting Lv[i] to an existing shard if the end time of Lv[i] is greater than the

end time of the shard, i.e., end(Lv[i]) ≥ σ.end. If there are multiple shards to which Lv[i]

can be assigned, we add it to the shard with the minimum gap, i.e., end(Lv[i]) − σ.end.

If there are currently no shards to which Lv[i] can be added, we start a new shard with

Lv[i] in it.
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Algorithm 1: Idealized sharding algorithm
1: Input: Lv sorted in increasing order of begin times
2: Iv = ∅ // Idealized sharding
3:

4: for i = 1 .. |Lv| do
5: // Iterate over all postings in the posting list for v
6: if ¬∃σ ∈ Iv : σ.end ≤ end(Lv[i]) then
7: create new shard σnew
8: σnew.end = 0

9: Iv = Iv ∪ {σnew}

10: end if
11: σt = argmin

σ∈Iv

(end(Lv[i]) − σ.end)

12: σt.end = end(Lv[i]) // Update the end time of the shard
13: σt = σt ∪ {Lv[i]} // Include the current posting into the shard
14:

15: end for
16:

17: Output: Iv is the idealized sharding.

3.4.2. Proof of Optimality

We develop the proof of optimality of Algorithm 1 by first proving three lemmas about

key properties of the generated shards. Let the shards created by Algorithm 1 for a list

Lv be numbered by their order of creation starting with σ1, i.e., σ1 was created before σ2
and so on.

The first lemma states that the algorithm produces only shards that have the staircase

property.

Lemma 3.1 (Staircase Property) When Algorithm 1 terminates, every shard created by the
algorithm has the staircase property.

Proof: We show this by contradiction. Assume that there is a shard σ that does not have the
staircase property. This means that there is a pair of postings p and q in this shard such that
begin(p) ≤ begin(q), and end(p) > end(q) or q @ p. Since begin(p) ≤ begin(q), p was
added to the shard before q. But when p was added, the end time of the shard was set to end(p)
or σ.end = end(p). Thus q could not have been be added to the same shard, which contradicts
our assumption. �

Lemma 3.2 (Descending-End Times) If Algorithm 1 created a shard σi before σj, i.e. i > j,
then σi.end > σj.end.
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Proof: We prove this property by induction over increasing number of postings added.
i = 1: For the first posting e1 the property holds since there are no earlier shards.
i→ i + 1: Let there be n existing shards G = {σ1 · · ·σn}. Depending on the end time of the

i+ 1th posting, i.e., end(ei+1) we consider two cases:
If end(ei+1) is less than all the existing shard ends (end(ei+1) < σk.end , ∀σk ∈ G), then

ei+1 forms a new shard and the end of the shard is less than all the existing ends. This proves the
claim.

Due to the induction hypothesis, the end times of shards are sorted in the descending order
i.e., σ1.end > σ2.end > · · · > σn.end. If end(ei+1) is greater than any of the shards, then
by definition (line 6), it will have to be added to the shard which minimizes the difference of their
end times. It is easy to see that this shard is the earliest shard which can accommodate ei+1 since
any other shard will either violate the staircase property or have a greater difference. This proves
the claim. �

Lemma 3.3 (Temporal Subsumption of Postings) For every posting in a shard σi (i > 1)
there exists a posting in σi−1 which completely subsumes it.

Proof: When a posting p is added to shard σi it is the last added posting, i.e., last(σi) = p.
Since we process all the postings in begin-time order, all postings which have been placed into
shards before have a begin time less than begin(p). And, from the property of descending-end
times end(last(σi−1)) > end(last(σi)). Thus, at this current execution state of the algorithm
the posting last(σi−1) completely subsumes p, i.e., last(σi−1) A last(σi). �

We now introduce the notion of a stalactite set of time intervals which is essential for

the rest of the proof.

Definition 3.6 (Stalactite Set) A stalactite set Υ consists of time intervals such that,

∀p, q ∈ Υ, begin(p) ≤ begin(q)⇒ end(p) > end(q).

There may be many such stalactite sets that can be formed using postings from a given

posting list, Lv. Let us denote the stalactite set of maximum cardinality as Υmax(Lv).

Lemma 3.4 (Stalactite property) The number of shards created by Algorithm 1 for a list Lv is
equal to |Υmax(Lv)|.

Proof: We prove the lemma by contradiction. Assume that the new posting to be added enew
is not a part of |Υmax(Lv)|. We also assume that its addition creates a new shard σ|Υmax(Lv)|+1
which is more than the claimed |Υmax(Lv)| shards. Since the postings arrive in begin-time or-
der, begin(enew) is greater than any of the previously processed postings. This means that
end(enew) < end(σ|Υmax|) for it to start a new shard σ|Υmax|+1. Now Lemma 3.3 says that
there exists a posting in σ|Υmax| which subsumes e, making e a part of a larger stalactite set of
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cardinality |Υmax|+1which is contrary to initial assumption thatΥmax is the maximal stalactite
set. �

We can now prove the optimality of our algorithm for idealized sharding.

Theorem 3.1 Algorithm 1 creates an optimal sharding.

Proof: Lemma 3.1 establishes that there are no subsumptions in a shard. Since Υmax(Lv) is the
maximum size stalactite set, from Lemma 3.1, the overall number of shards are lower bounded by
|Υmax(Lv)|. However, Lemma 3.4 proves that we exactly obtain |Υmax(Lv)| shards by idealized
sharding. This proves that the optimal solution to the idealized sharding of Lv has |Υmax(Lv)|

shards thus proving the optimality of Algorithm 1. �

Further, we show that the algorithm can be implemented efficiently, by making use of

the descending-end times property of the sharding at any stage during the algorithm.

Due to this ordering of shard ends the addition step of postings to shards can be effi-

ciently implemented via a binary search over the shard ends.

3.5. Cost-Aware Merging of Shards

Depending on the distribution of valid-time intervals, the idealized sharding introduced

in the previous section might generate a large number of shards. Each shard requiring

one open-seek operation, involving a random seek. If the cost of such a random seek is

high and if the distribution of time intervals gives rise to many idealized shards, query-

processing performance can degrade. In such cases, it might actually be beneficial to

reduce the number of shards arising from idealized sharding at the cost of allowing

some wasted reads.

In this section, we present an I/O cost-aware technique to selectively merge idealized

shards allowing for a controlled amount of wasted reads while reducing the number of

random seeks. We introduce a model for merging idealized shards which limits sequen-

tial wasted reads due to merging of a set of idealized shards by taking into consideration

costs of random seeks and sequential accesses of the underlying index.

3.5.1. Model for Shard Merging

Multiple shards can be merged into a merged shard which contains all postings of the

input shards and have a begin-time order on the intervals associated with the postings

(see Figure 3.6). We denote a shard created from merging an input set of shards S as

µ(S). In our model we take as input an idealized sharding Iv of a posting list Lv. Our

intention is to reduce the overall number of shards per posting list by identifying ideal-

ized shards which can be merged according to our cost model. To this end we propose

39



Chapter 3. Efficient Indexing and Maintenance for Time-Travel Text Search

d21

d12

d31

d41

d52

d21

d12

d31

d41

d52

Idealized Shards Merged Shards

Merging

Friday, May 17, 13

Figure 3.6.: Cost-aware shard merging

to disjointly partition the input set Iv into sets or partitions of shardsMv. Merged shards

µ(S) are then created using shards from each partition S ∈Mv. The partitioning thereby

ensures that no two merged shards have postings from the same idealized shard. The

resulting merged shards, µ(S) , S ∈Mv, thus formed also are a feasible index sharding

of Lv, i.e.,

⋃
S∈Mv

µ(S) = Lv.

Merging of shards might result in subsumptions of postings which further leads to

wasted reads during query processing. However, not all query time-points lead to

wasted reads. For example, in Figure 3.4 only queries which have a begin time inter-

val [t6, t7] result in wasted reads. Secondly, an open-seek operation to a merged shard

accompanied by a few sequential wasted reads may be cheaper than two open-seek

operations to idealized shards without any wasted reads. These are two factors which

should be taken into considerations in choosing which shards to merge. An accurate

estimate of the performance of a shard can be modelled by considering the performance

over all query time-points.

Cost Model We let the cost of a random seek be Cr, and that of a sequential read be

Cs. We allow for a penalty function Ψ(S), over a set of shards S and require it to be

bounded by the parameter η. To reconcile the costs of random and sequential accesses

the parameter η is set to Cr/Cs − 1. We refer to this bounding of the penalty function as

the threshold criterion.
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Ψ(S) ≤ η

An example of such a penalty function is expected wasted reads, which is defined as the

number of wasted reads incurred during query processing, averaged over all possible

query time points. We definew(σ, t) as the set of wasted postings read for a query with

a time-point t over a shard σ. We consider a discrete notion of time and denote the time

granularity as δ. If all possible query times lie in the interval [t0, tn] the number of valid

query time-points is tn−t0
δ . Formally,

Definition 3.7 (Expected Wasted Reads) Given a merged shard µ(S) and its wasted read
distribution w(µ(S), t), the expected wasted reads incurred per query time-point is given by

Ψ(S) =
∑
t∈[t0,tn] |w(µ(S), t)|

(tn − t0)/δ
.

Under this penalty function, a set of shards can be merged when the expected wasted

sequential reads in the merged shard is less than the overhead incurred in an open-seek

operation. If costs of sequential and random accesses are the same, Cr = Cs, we obtain

η = 0 which means we resort to idealized sharding. Understandably, with Cr = Cs

the cost of accessing a new shard is the same as reading a wasted posting. Thus it is

preferable to avoid wasted reads completely in this situation and employing idealized

sharding. However, in more practical scenarios Cr > Cs. As an example, if η = 100,

then the wasted reading of less than 100 postings, that do not qualify by the temporal

constraint, on an average would be more beneficial than performing a random seek to

an additional shard. One can, in principle, use other notions of aggregation measures for

w(σ, t) and then define the penalty function accordingly. In this work we use expected

wasted reads as the penalty function.

The partitioning of idealized shards can now be formulated as an optimization prob-

lem where we have as input a set of idealized shards, the parameter η, and the penalty

function. Like the idealized-sharding problem we would want to minimize the overall

number of shards for minimizing the expensive open-skip operations. The cost-aware
shard merging problem intends to find a partitioning Mv of idealized shards Iv so as to

have minimum number of partitions subject to the threshold criterion on each partition.

Formally,

Definition 3.8 (Cost-aware Shard Merging Problem)

argmin |Mv| s.t. Ψ(S) ≤ η : ∀S ∈Mv.
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To solve this problem we first look at how we can efficiently determine the penalty

of merging a partition or set of idealized shards Iv. A partition containing at least two

idealized shards will have a non-zero penalty. To compute the overall penalty value

of a partition we need to aggregate the wasted read distribution for the combination

of shards in the partition over the entire time-period. The combinatorial nature of the

problem makes it prohibtive to pre-compute penalty values for all combinations. What

we do instead is compute penalty values of pairs of shards and show that the penalty of

any partition (≥ 2) can be computed efficiently from these pairwise penalties.

Given a partition S of m idealized shards the wasted reads at a query time-point t

is w(µ(S), t). We retain the order in which idealized shards were created, i.e., shards

created early have a lower index. We further let first(S) denote the shard which was

created first in S . For shards σi, σj, σk ∈ S and i < j < k, it holds

w(µ(i, k), t) = w(µ(j, k), t).

Thus w(µ(S), t) =
∑
σ∈S Ψ({first(S), σ}). The penalty Ψ(S) follows from this observa-

tion and Definition 3.8:

Ψ(S) =
∑
σ∈S

Ψ({first(S), σ}).

As an example, the penalty incurred due to merging idealized shards {7,10,3,12}
would be Ψ(3, 7) + Ψ(3, 10) + Ψ(3, 12). Computing wasted reads at each time point

can be efficiently implemented by interleaving computation of pairwise wasted reads

within Algorithm 2.

3.5.2. Algorithm for Shard Merging

We present a heuristic algorithm which is shown to perform well in practice in our

experimental evaluation. As inputs we expect the set of the idealized shards and η. We

retain the order in which idealized shards were created, i.e., earlier created shards have

a lower index.

The pseudo code for merging the idealized shards is presented in Algorithm 2. Every

iteration employs a two stage greedy process. The first stage is an ascending choice phase
in which it chooses all the unmerged/available idealized shards in ascending order of

their index until the threshold constraint is violated (lines 11 to 20).

The second stage is a greedy phase (lines 23 to 27) where the remaining capacity is

greedily chosen with smallest unmerged shard first (as in the standard greedy approach

to the knapsack problem).
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Algorithm 2: Cost-Aware Shard Merging
1: Input: Iv and Ψ(σi, σj)

2: Mv = ∅ // Merged shards

3:

4: for i = 1 .. |Iv| do

5: Let σi ∈ Iv \Mv be next shard in order

6: create new shard ri
7: ri = ri ∪ {σi}

8: capacity = η

9:

10: // Ascending choice phase

11: for j = i+ 1 .. |Iv| do

12: if (Ψ(σi, σj) ≤ capacity) ∧ (σj /∈Mv) then

13: capacity = capacity− Ψ(σi, σj)

14: ri = ri ∪ {σj}

15: else

16: if (σj /∈Mv) ∧ (σj /∈ ri) then

17: break

18: end if

19: end if

20: end for

21:

22: // Smallest size first

23: while capacity > 0 do

24: σmin = argmin
g∈Iv\Mv

{Ψ(σi, g)}

25: capacity = capacity− Ψ(σi, σmin)

26: ri = ri ∪ {σmin}

27: end while

28: Mv =Mv ∪ ri
29: end for

30:

31: Output: Mv is the set of merged shards.

3.6. Index Maintenance

So far, we have assumed a static document collection. These indexing techniques are

fine for collections that change infrequently or never. In such cases, occasionally re-
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building indexes is a viable solution in practice. However, for web archives, which

grow frequently and dynamically, the index needs to be updated frequently. New terms

are added to the index and shards for existing terms are modified. In this section we

describe index-maintenance strategies to deal with dynamic updates. We first discuss

our assumptions about the nature of the updates in an archive setting and the factors

relevant for indexing.

Updates in web archives are a result of periodic crawls. An update might result in

either (i) new unseen document, or (ii) report modifications to an already existing doc-

ument. Recollect that in Section 3.2 we established the document model where each

document is a sequence of versions. Modifications to an existing document, either ad-

dition or deletion of content, results in the creation of a new version in the document

version sequence. If a new document is reported, a new sequence is started for the doc-

ument with the reported version being the first. Importantly, existing versions are never

removed. This means that the index steadily grows over time with the older collection

indexed by the archive index being a subset of the current collection. We assume that

deletions in the past are rare and in our current system arbitrary deletions in the past

are not supported.

Each version is associated with a valid-time interval. Every update results in a change

in the valid-time interval of the current version of each document. Consider the state of

the archive at time tnow when it was updated. If the update reports no change in the

state of a document version d4i (document d at its fourth version) the end of the valid-

time of d4i is updated to tnow. On the contrary if a new version for d would have been

reported, the end time of d4i would have been finalized to tnow (never to be modified

again). Additionally, the fifth version d5i would have been started with a begin time as

tnow. An accurate estimate of the valid-time intervals of the versions are determined

when they are finalized, and hence they are sent to the indexing pipeline in the order of

their end times.

With these assumptions in mind we distinguish between active versions, as the most

recent and still current document versions, and archive versions, as the document ver-

sions already superseded by a more recent version of the same document. The active

version of a document turns into an archive version when the document is re-crawled

and either a new active version is found or the document was removed from the Web.

In both cases, the end time of the old version is set to the current time.

During indexing we organize postings for active versions into an active index and

the archived versions are indexed in an archive index. The active index is implemented

as an incrementally updatable inverted index [BC08, LMZ08]. Depending on the frac-

tion of time-travel queries among all queries posed to the system, posting lists in the

active index can be organized to efficiently support queries on active versions or time-
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travel queries. For the former, postings may be ordered by their document identifier

to allow for more efficient query processing, possibly together with additional struc-

tures [BCH+03, DS11, MZ96, SC07]. For the latter, postings may be ordered by the begin

boundary of their valid-time interval to support efficient filtering of recent document

versions.

The archive index on the other hand is implemented as a sharded index and is our

primary focus. Finally, from the indexing point of view it is preferable to have an up-

dating scheme which appends newly created postings at the end of the posting list. The

major benefit of an append operation is that the indexes built for the older indexes can

be used as partial solutions to build an up-to-date archive index efficiently thus avoid-

ing recomputation. Recomputation of shards with a non-append based technique (say

cost-aware shard merging) is expensive because it involves processing the entire input

(existing data along with the new updates) thus limiting its applicability to an update

aware indexing system.

To this end, we develop incremental sharding which

• is competitive in query processing by trading-off, like shard merging, wasted

reads for random-accesses,

• takes into account the end-time order of arrival of input, and

• can be maintained easily because it can be incrementally computed and results in

append-only operations to shards.

3.7. Incremental Sharding

Incremental sharding takes into account the relative costs of random and sequential ac-

cesses by a more restrictive bound on the number of subsumptions for a given shard.

It bounds the absolute number of subsumptions for a given shards. This is opposed to

shard merging where the number of subsumptions per shard is on an average limited

to a system-wide parameter. A bound on the number of subsumptions per shard trans-

lates to bounding the number of sequential wasted reads. We term this restriction as

the bounded subsumption property. A shard is said to exhibit a bounded subsumption

property if a posting in that shard does not subsume more than η postings, where η is a

system-wide constant (same as in sharding merging). Formally,

Definition 3.9 (Bounded Subsumption) A shard σ is said to satisfy the bounded subsump-
tion property with threshold η if each posting pi ∈ σ does not subsume more than η postings:

∀pi ∈ σ : | {pj ∈ σ | pj 6= pi ∧ pi A pj} | ≤ η .
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Figure 3.7.: End time order of finalizing versions

We let the Boolean predicate bounded(σ, η) denote whether the shard σ has the bounded-
subsumption property with a threhold η.

The problem of minimizing the number of random accesses with a limited number of

wasted sequential accesses can be redefined in terms of minimizing the overall number

of shards such that each shard exhibits the bounded subsumption. Formally,

Definition 3.10 (Incremental Sharding Problem) Given a set of postings Lv for a term v,
partition Lv into a feasible index sharding S = {σ1, . . . , σm},

argmin
S

|S | s.t. ∀σ ∈ S : bounded(σ, η) .

Before attempting to solve the above problem let us revisit the properties in an archive

indexing setting. Firstly, the archive setting is very specific in terms of arrival of the in-

put sequence, i.e., in the order of arrival of new versions to the archive index. Whenever

the end time of an existing version is determined, it is sent to the archive indexing sys-

tem (see Figure 3.7). Since versions are generated in end-time order, the input intervals

also follow the same order.

Secondly, we do not deal with deletions of versions since a deletion of a document

results in a posting in the archive index for that document, and existing versions are

never removed.

Finally, we would want to avoid recomputation of shards by only allowing appends

to the materialized shards. Apart from avoiding recomputation ensuring an append-

only operation also avoids expensive decompression and compression cycles. While
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merging two posting lists by employing recomputation, entire posting lists are decom-

pressed and re-ordered (according to posting-begin times) to form usable input for the

sharding algorithm. After recomputation, the new set of shards are compressed back

again for storage. The most popular compression algorithms used in posting list com-

pression are based on gap-encoding schemes which are local schemes and hence append

friendly. Hence, rather than optimally solving the problem, we look for an approach

which is based on an append-only operation to the existing shards and exploits the

end-time order of input arrival. In the following section, we introduce the incremen-
tal sharding algorithm which apart from being incremental also has an approximation

guarantee.

3.7.1. Incremental Sharding Algorithm

We present the incremental sharding algorithm which is an update aware incremental al-

gorithm with a factor (2− 2
η+2) approximation guarantee (see Algorithm 3). Apart from

having the natural benefit of being an append-only algorithm, it also exploits the end-

time arrival order of the postings by processing the postings in that order thus avoiding

expensive sort operations on the input.

The algorithm processes postings in the increasing order of end times (see line 1) and

creates or updates shards incrementally. It follows a scheme of immediate assignment

but deferred append of a posting to a shard. For each shard, we maintain a shard buffer of

size η+1 and a shard-begin time. The assignment of the posting to a shard is based on the

begin time of the shard and the shard buffer defers the actual writing or appending of

the posting of the shard to satisfy the bounded subsumption property. In other words,

the shard buffer maintains the posting until it deems it right to be appended to the end
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Algorithm 3: Incremental sharding algorithm
1: Input: (i)η, (ii)Lv sorted in increasing order of end times

2: S = ∅ // Incremental sharding

3:

4: for i = 1 .. |Lv| do

5: //Creates new shard

6: if ¬∃S ∈ S : S.begin ≤ begin(Lv[i]) then

7: create new shard σnew and buf(σnew)

8: σnew.begin = 0

9: add Lv[i] to buf(σnew)

10: S = S ∪ {σnew}

11: end if

12:

13: //Find the best candidate shard for assignment

14: σcand = {σi | σi ∈ S ∧ σi.begin ≤ begin(Lv[i])}
15: σt = argmin

g∈σcand
(begin(Lv[i]) − g.begin)

16:

17: //Update buffers and begin times of shards

18: if σt 6= σnew then

19: insert Lv[i] into buf(σt) in begin-time order

20: end if

21: if |buf(σt)| = η+ 1 then

22: //first element in the buffer finalized

23: σt = σt ∪ removefirst(buf(σt))
24: σt.begin = begin(first(buf(σt)))

25: end if

26: end for

27:

28: //Finally append the buffer postings to the shards

29: for S ∈ S do

30: S = S ∪ buf(S)
31: end for

32:

33: Output: S is the incremental sharding.

of the shard.

When a posting Lv[i] is processed, it is either assigned to an existing shard based on
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the posting and shard-begin times (see line 15), or it results in the creation of a new

shard (lines 7-10). The creation of a new shard involves setting the begin time of the

shard to zero and placing the chosen posting in its shard buffer. Until the buffer reaches

its capacity of η the begin time of the shard remains zero. The shard-begin time is first

updated when a posting is popped out of it after the buffer reaches its capacity η + 1.

When the assignment for the posting is decided, say σt, it is placed in the respective

shard buffer buf(σt) (see line 19). The incremental sharding chooses the shard whose

begin time has the least difference with the begin time of the incoming posting (see line

15).

The shard buffers determine the relative position of the postings in the shard where

it will be finally stored. The insertions into the buffer are made to preserve the begin-

time order (see line 19) which in turn ensures a begin-time order when postings are

removed from it. This is shown in Figure 3.8. Only the first posting or the posting with

the minimum begin time is removed from the buffer to limit the buffer size to η + 1

(line 23) and it is appended to the end of its corresponding shard σt. The shard buffers

also ensure that no posting in a shard subsumes more than η postings. This is done by

setting the begin time of a shard σt.begin to the first posting begin(first(buf(σt)))(or

the posting with the least begin time) of the shard buffer as in line 24. The posting with

the minimum begin time in the shard can subsume the maximum number of postings

and any posting with a begin time lesser than it is disallowed.

Note that the use ∪ in lines 23 and 30 indicates the append operation on the shard that

is logically organized as a list of postings in their begin-time order.

3.7.2. Approximation Guarantee for Incremental Sharding

Theorem 3.2 Incremental sharding is a (2− 2
η+2) approximation.

We use the following lemmas to prove the theorem. Assuming that incremental

sharding produces m shards, we first construct a worst case scenario. For notational

convenience let us assume that shards are numbered according to their creation times

in incremental sharding, i.e., σ1 was created before σ2 and so on.

Lemma 3.5 (Descending Begin Times) If incremental sharding created a shard σi+1 after
σi, then σi.begin > σi+1.begin.

Proof: We prove this property by induction over increasing number of postings pi ∈ Lv which
are added in in end-time order, i.e, end(pi+1) > end(pi) .

i = 1 : For the first posting p1 the property holds since there are no earlier shards.
i→ i + 1: Let there be n existing shards S = {σ1 · · ·σn}. Depending on the begin time of the

(i+ 1)-th posting begin(pi+1) we consider the following two cases:
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Case 1: If begin(pi+1) < σk.begin , 1 ≤ k ≤ n, then pi+1 forms a new shard σnew and
the begin of the shard σnew.begin is less than all the existing shard-begin times. This proves the
claim.

Case 2: Assuming ∃σk : begin(pi+1) ≥ σk.begin and on addition of pi+1 to σk there is a
violation of the descending begin-time order of shards, i.e., σk.begin > σk−1.begin. This means
that σk−1.begin < begin(pi+1) and pi+1 should have been assigned to σk−1 due to a smaller
difference according to the induction hypothesis of σk+1.begin > σk.begin , ∀1 ≤ k < n. �

Lemma 3.6 (Incremental Subsumption) The number of postings subsumed a posting added
to σi is at least (i− 1)(η+ 1).

Proof: Note that σi.begin refers to the time of the first posting in the buffer of shard σi or the
earliest begin time in the shard buffer buf(S).

By Lemma 3.5 we know that there is an ordering of the shard-begin times. Hence for a posting
p assigned to σi the following holds – begin(p) < σi−1.begin < · · · < σ1.begin. Since we
assume end-time arrival order of postings, it subsumes all postings in i−1 shards buffers, which
are σ1, ..., σi−1. Further the fixed buffer size of η + 1 results in making the subsumptions lower
bounded by (i− 1)(η+ 1). �

We now introduce the notion of stalactite groups, building on the notion of the Stalactite
set Υ according to the definition 3.6. Formally,

Definition 3.11 (Stalactite Groups) A shard σ is said to be exhibit stalactite grouping if we
can partition the shard into sets of postings called groups G such that for groups si, sj ∈ σ and
i < j the following holds:

q A p, ∀p ∈ si, ∀q ∈ sj.

In other words, stalactite groups (see Figure 3.9) in a shard is the organization of post-

ings into groups such that choosing one posting from each group results in a stalactite
set.

Lemma 3.7 (Stalactite Grouping) Stalactite grouping with a staircase property in each shard
is the worst case for incremental sharding.

Proof: From the previous lemma, any input resulting in m shards from incremental shard-
ing will have at least postings with η + 1, 2(η + 1), · · · , (m − 1)(η + 1) subsumptions in
σ2, σ3, · · · , σm respectively. Let us suppose that the set of subsumed postings when the first
posting added to σi be represented as sub(σi). To reduce the overall number of shards we should
strive for a configuration with a minimum number of subsumptions. This is possible when
sub(σ1) ⊆ sub(σ2) ⊆ · · · ⊆ sub(σm) and |σi| = η + 1, ∀i = 1, . . . ,m. This arrangement
forms a stalactite group (see Figure 3.9) with each of the groups having a cardinality of η+ 1.
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...

Sm

Sm-1

S1⌘ + 1

Wednesday, June 6, 12

Figure 3.9.: Stalactite groups

Additionally, each of these stalactite groups should have a staircase arrangement to allow
for the maximum capacity - η - out-of-place insertions. Any additional posting or misaligned
posting either increases subsumption or reduces capacity for out of place insertions. Any removal
of postings on the other hand result in contradiction to the original assumption that there arem
shards from incremental sharding. �

Now we can complete the proof for Theorem 3.2.

Proof: From the Lemma 3.7 we know that there arem stalactite groups with each group residing
in the shards formed from incremental sharding. It is easy to see that none of the optimal shards
will have more than 2η + 1 postings. Thus we choose an assignment where we try to minimize
the number of shards, i.e., choose as many shards with 2η + 1 postings as possible. One such
assignment is when we assign η of the η+ 1 postings of σi to σm+1−i, ∀i ≤ m

2 . The remaining
m
2 postings (a posting from each σi) can then be placed in m

2(η+1) shards. Hence for m shards
created by incremental sharding we get a minimum of m2 + m

2(η+1) shards. Notice that we can
have other arrangements which give the same number of minimum shards. The ratio

|S|

OPT
=

m
m
2 + m

2(η+1)

= 2

(
1−

1

η+ 2

)
proves that incremental sharding is a factor (2− 2

η+2) approximation algorithm. �

3.8. System Architecture

Figure 3.10 shows a high-level overview of the architecture of a search engine using our

incremental sharding method. It consists of

• the active index for all active versions of documents, consisting of an in-memory

inverted list for each term that keeps the active versions of documents,

• the archive index for all archive versions of documents, consisting of an inverted

list for each term that is organized in shards. The archive index consists of an

in-memory index IMAI and an on-disk index EMAI, both organized in shards.

• A crawler that continuously crawls the target Web sites, for example, a predefined

set of domains or the complete Web.
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Active Index
Archive Index

IMAI EMAI

Crawls

Monday, February 13, 2012

Figure 3.10.: System architecture

When the crawler encounters a new document that has been unknown so far, it adds

it to the active index; this is an inexpensive operation since the active index is in main

memory. When a document is found again, it is checked for changes (using, for example,

a fingerprinting technique such as [BGMZ97, Hen06]). If changes are detected, the active

version of that document turns into an archive version (with end time equal to the crawl

time) and is sent to the archive index, and postings for the new active version are added

to the active index.

The archived version is then added to the in-memory archive index by first creat-

ing the corresponding postings for each term, which are then added to the in-memory

archive index using the incremental technique from Section 3.7. Figure 3.7 shows an

example for this, where in a crawl at time tnow a new version d34 for document d4 is

detected. This results in firstly adding a new version d34 with a begin time tnow to the

affected terms in the active index. Secondly, the end time of d24 is finalized and the post-

ing 〈d24, [t1, tnow], score 〉 with the complete posting information is sent to the archive

indexing system. In the archive indexing system this posting is processed by placing it

in the shard buffer of term “v” and updating the IMAI from the popped posting in the

buffer as shown in Figure 3.8. As soon as the in-memory index IMAI is full, postings are

merged into the disk-based archive index EMAI, merging corresponding shards; this

essentially corresponds to incremental maintenance of standard inverted lists.

3.9. Experimental Evaluation

In this section, we describe our experimental evaluation of index sharding. We first

present our experimental setup, datasets, and workloads used. We then examine in

detail the impact of all indexing methods considered on query processing, index sizes

and index maintenance.
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Dataset Coverage Size (in GB) N V µ/σ

WIKI 2001 to 2005 ∼700 1,517,524 15,079,829 9.94 / 46.08

UKGOV 2004 to 2005 ∼400 685,678 17,297,548 25.23 / 28.38

Table 3.2.: Characteristics of datasets used

3.9.1. Setup

All experiments were conducted on Dell PowerEdge M610 servers with 2 Intel Xeon

E5530 CPUs, 48 GB of main memory, a large iSCSI-attached disk array, and Debian

GNU/Linux (SMP Kernel 2.6.29.3.1) as operating system. Experiments were conducted

using the Java Hotspot 64-Bit Server VM (build 11.2-b01).

3.9.2. Datasets Used

For our experiments we use the following two real-world datasets WIKI and UKGOV.

The characteristics of these datasets are detailed below and summarized in Table 3.2.

WIKI The English Wikipedia Revision History [WIK13], whose uncompressed raw data

amounts to 0.7 TBytes, contains the full editing history of the English Wikipedia

from January 2001 to December 2005. We indexed all versions of encyclopaedia

articles excluding versions that were marked as the result of a minor edit (e.g., the

correction of spelling errors etc.). This yielded a total of 1,517,524 documents with

15,079,829 versions having a mean (µ) of 9.94 versions per document at standard

deviation (σ) of 46.08.

UKGOV This is a subset of the European Archive [EA13], containing weekly crawls of

eleven governmental websites from the U.K. We filtered out documents not be-

longing to MIME-types text/plain and text/html to obtain a dataset that to-

tals 0.4 TBytes. This dataset includes 685,678 documents with 17,297,548 versions

(µ = 25.23 and σ = 28.38).

These two datasets represent realistic classes of time-evolving document collections.

WIKI is an explicitly versioned document collection, for which all its versions are known.

UKGOV is an archive of the evolving Web, for which, due to crawling, we have only in-

complete knowledge about its versions. The incomplete knowledge can be attributed

to inability to capture some versions in between crawls and inability to determine with

certainty the version valid-times. For ease of experimentation, we rounded timestamps

(in both datasets) to day granularity.

53



Chapter 3. Efficient Indexing and Maintenance for Time-Travel Text Search

3.9.3. Index Management

We use the following types of indexes in our experiments:

1. Sharded Index We consider idealized sharding (IS) and three variants of cost-

aware shard merging (CAS) as introduced in Section 3.5. The parameter η reflects

the I/O cost ratio. Since the Cr/Cs values of disks usually vary in the order of

100 and 1000 thus we choose the parameter for shard merging accordingly, i.e.,

η ∈ {10, 100, 1000}. The corresponding indexes are denoted as CAS-10, CAS-100

and CAS-1000. The penalty function used for shard merging is based on expected
wasted reads.

We also consider indexes created with incremental sharding (INC) as described in

Section 3.7, with the same parameter values for CAS, i.e., η ∈ {10, 100, 1000}.

2. Vertically-Partitioned Index As the first competitor, we consider the vertically-

partitioned index, referred to as VERT from now on, that are partitioned follow-

ing the space-bound approach [BBNW07]. The parameter κ denotes the space re-

striction that models the maximum blowup in the index size relative to a non-

partitioned index. For our experiments we consider four variants of the space-

bound approaches i.e., parameter values for κ ∈ {1.5, 2.0, 2.5, 3.0}. These variants

are denoted subsequently in the text as VERT-1.5, VERT-2.0, VERT-2.5 and VERT-

3.0.

3. Naı̈ve Unpartitioned Index As a second competitor, we build an unpartitioned

index with provision for impact lists over ordered begin times referred to as CAS-

inf. This serves as a proof that our techniques are effective not only because of the

impact list construction and a global begin-time order.

We also evaluate the effect of temporal coalescing [BBNW07] on index size and query

processing. To this effect we build sharded and vertically-partitioned indexes with ap-

plication of temporal coalescing using a parameter ε = 0.01. Other than that, we use the

same choice of parameters as in the experiments without temporal coalescing.

Both the vertically-partitioned indexes and the sharded indexes are stored on disk us-

ing flat files containing both the lexicon as well as the partitioned posting lists. We do

not filter out stop words, nor do we apply stemming/lemmatization when indexing the

above datasets. We assigned document identifiers in the order of the begin time of the

document versions. For compression, we employ 7-bit encoding on d-gaps and apply

temporal coalescing whenever necessary. Note that variable-byte encoding is comple-

mentary to temporal coalescing. We use scalar payloads and store the tf-scores as floating

point numbers using eight bytes.
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At runtime, the lexicon and impact lists are read completely into main memory, and

for a given query the appropriate partitions or shards are retrieved from the index flat

file on disk.

3.9.4. Query Workloads and Execution

We compiled two dataset-specific query workloads by extracting frequent queries from

the AOL query logs, which were temporarily made available during 2006. For the WIKI

dataset we extracted 300 most frequent queries which had a result click on the domain

en.wikipedia.org and similarly for UKGOV we compiled 50 queries which had re-

sult click on .gov.uk domains. Both the vertically-partitioned and sharded index struc-

tures are built for terms specific to the query workload. Using these keyword queries,

we generated a time-travel query workload with five instances each for the following

four different temporal predicate granularities: day, month, year and queries spanning

the full lifetime of the respective document collection. Hence, the workload comprised

of 6000 time-travel queries for WIKI and 1000 queries for UKGOV.

For query processing, we employed conjunctive query semantics, i.e., query results

contain documents that include all the query terms. We use wall-clock times (in millisec-

onds) to measure the query-processing performance on warm caches using only a single

core. Specifically, each query was executed five times in succession and the average of

the last four runs was taken for a more stable and accurate runtime measurement.

3.10. Experimental Results

3.10.1. Sharding vs Vertical Partitioning

In the first set of experiments, we compare the performance of CAS and VERT on dif-

ferent query granularities. Query granularity of a time-travel text query refers to the

time interval component of the query. Figures 3.11 through to 3.14 presents the query

response times, in milliseconds, for the different variants of CAS and VERT. Each chart

corresponds to the performance of CAS and VERT on a given query granularity – day

(Figure 3.11), month (Figure 3.12), year (Figure 3.13) or the full lifetime of the respective

collection (Figure 3.14). While comparing CAS against VERT, we choose CAS-1000 as a

reasonable representative for sharding since the wall-clock times for both CAS-100 and

CAS-1000 show low variance throughout all experiments.

VERT-3.0 is optimized for query performance, because of a higher degree of par-

titioning, and as expected it has the best performance among its other counterparts

(κ = {1.5, 2.0, 2.5}). In case of WIKI, we see a low difference in query processing times

between VERT-3.0 (10.63 ms) and CAS-1000 (11.86 ms) for day-granularity queries (see
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Figure 3.11.: Wall-clock times for day-granularity queries

Figures 3.11(a)). The difference is notable for month-granularity queries with CAS-1000

exhibiting a 19.5% improvement over VERT-3.0 (see Figure 3.12(a)). In UKGOV, CAS-

1000 takes 69.88 ms to process day-granularity queries which is almost a 40% improve-

ment over VERT-3.0 which takes 117.9 ms (see Figure 3.11(b)). This shows that although

VERT is optimized for short time interval queries, and only one or very few partitions

have to be accessed for processing, the number of wasted reads accessed in VERT is

substantially more those accessed by CAS.

Next, we compare performances for longer time-granularity queries, i.e., year and

full-lifetime queries. In case of WIKI, comparing VERT-1.5, which has the best runtimes

for year queries and lifetime queries, with CAS-1000 shows that the latter consistently

outperforms the former in both cases. Query-processing times improve by 22.2% (see

Figure 3.13(a)) for year-granularity queries and by 19% for full lifetime queries (see Fig-
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Figure 3.12.: Wall-clock times for month-granularity queries

ure 3.14(a)). Note that although VERT-3.0 is optimized to access fewer postings than

VERT-1.5, it performs slightly worse. This is possibly because VERT-3.0 has to access

more number of partitions than VERT-1.5 for longer time-granularity queries due to

its high degree of partitioning. In UKGOV, there is an improvement of almost 29.9%

or 279.26 ms (CAS-1000 vs VERT-1.5, see Figure 3.13(b)) for year-granularity queries.

The full-lifetime queries are faster by 931 ms or 21% (CAS-1000 vs VERT-1.5, see Fig-

ure 3.14(a) and 3.14(b)) which in absolute terms is a considerable difference. Thus, the

first insight which we draw is that sharded posting list avoid wasted reads substantially

as compared to VERT resulting in superior performance.
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Figure 3.13.: Wall-clock times for year-granularity queries

3.10.2. Effect of Coalescing

Our experimental results with temporal coalescing of postings lead to similar results

as our experiments on the original uncoalesced indexes. Independent of the partition-

ing/sharding used, the index sizes thus obtained are much smaller than with uncoa-

lesced indexes—up to an order of magnitude for UKGOV and up to a factor of 2 for

Wikipedia. Also the indexes created with sharding are always smaller than VERT (see

Figure 3.15). The wall-clock times of CAS and VERT methods with temporal coalescing

are depicted in Figures 3.11(a) through 3.14(b). It is evident that query performance im-

proves with temporal coalescing, with longer time interval queries gaining more than

those with smaller time ranges as more postings need to be read.
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Figure 3.14.: Wall-clock times for full-lifetime queries

3.10.3. Comparing Sharding Approaches

In the next set of results, we first present the improvements, in query-processing wall-

clock times, due to reductions in the number of shards by carefully allowing for wasted

reads regulated by the parameter η. Secondly, we compare the query performance of

both sharding approaches CAS and INC.

To explain the query performance of the sharding methods, we first compare the av-

erage number of shards generated by both the algorithms for the terms present in the

query workload. These results are summarized in Table 3.3. Interestingly, INC has lesser

number of shards than CAS in UKGOV in-spite of being more restrictive. This means

that the INC, with an approximation guarantee, seems to make better choices than the

heuristic approach employed by CAS. On the contrary for WIKI the number of shards
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Sharding

Dataset η INC CAS

WIKI

IS 79.75 79.75

10 33.37 32.59

100 14.42 11.78

1000 6.83 4.71

UKGOV

IS 16.75 16.75

10 11.95 14.12

100 8.05 11.67

1000 5.49 5.84

Table 3.3.: Average number of shards per term

per term created by INC is more than that of CAS. However, in both these cases the

difference between CAS and INC in the number of shards is not significant.

Effect of the Parameter η Depending on the value of the parameter η there are two

conceptual extremes in sharding. The scenario η = 0 represents idealized sharding,

denoted by IS, when wasted reads are completely avoided. Note that both CAS and

INC would give rise to IS when η = 0. The other extreme is CAS-inf which results in no

sharding of the posting list. cop

Idealized sharding is a restrictive form of sharding and for certain distributions pro-

duces a fairly high number of shards (see Table 3.3). Although query processing on IS

results in reading only the postings intersecting with the query time-interval, they suf-

fer from inefficiencies due to a large number of random seeks in accessing each shard

individually. Especially for disk with Cr >> Cs, the open-seek operation on idealized

shards might result in considerable overheads.

To put this into perspective with the actual query performance, we present the wall-

clock times in Table 3.4. In WIKI, we see a consistent improvement from IS to CAS-1000.

This is because idealized sharding admits a fairly large number of shards in this case

and thus the I/O costs are dominated by initial random seeks to access these idealized

shards. Improvements result from the reduction in the number of shards due to careful

merging of idealized shards, as presented before in Section 3.5. Although these reduc-

tions might not be significant for queries with longer time intervals, but they reduce

query processing time by a sizable fraction for small-time granularity queries – day-

granularity queries improve by 62% (see Figure 3.11(a)) and month-granularity queries
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η = 10 η = 100 η = 1000

CAS INC CAS INC CAS INC

WIKI

Day 17.64 15.81 11.57 10.65 11.86 8.70

Month 29.01 28.88 25.03 24.22 24.75 22.70

Year 131.06 132.08 127.96 125.32 127.57 123.76

Full 851.43 817.76 834.74 806.87 815.20 809.90

UKGOV

Day 55.78 50.22 53.34 44.97 49.25 43.27

Month 158.89 155.72 156.28 145.77 153.89 143.60

Year 711.63 724.56 707.84 702.69 699.81 696.87

Full 2,875.35 2,839.80 2,794.46 2,845.31 2,940.5 2,999.32

Table 3.4.: Comparison of wall-clock times between CAS and INC – in milliseconds

by 35% (see Figure 3.12(a)). A similar trend is seen in the case of INC (see Table 3.4)

where there is a 47% improvement in day-granularity queries in INC-1000 from INC-10

for WIKI. Unlike WIKI, the difference in performance between CAS and INC in UKGOV

is not considerable, which is due to the already low number of initial idealized shards.

This indicates that sharding can be applied as a self-organizing approach depending on

the distribution of initial shards.

CAS-1000, and eventually INC-1000, outperforms CAS-inf by a fairly large margin in

all query granularities except one scenario. This shows that the improvement in query

performance is not only due to begin-time order of postings in the shards but a result of

careful sharding of posting lists to avoid wasted reads. The only scenario when CAS-inf

outperforms others is when we consider queries spanning the full-lifetime of the collec-

tion. This behavior is to be expected because all postings in CAS-inf become relevant

for such kind of queries and have to be subsequently read.

Comparing CAS and INC As one can observe from the in Table 3.4, the sharded in-

dex generated using INC compares quite favourably with the CAS. This behaviour is

consistent across all the granularities of temporal predicates for all values of η. In a

small number of cases, the performance of INC is slightly better than that of CAS, and

is never worse. Although we see a less shards in some scenarios, it is counteracted more

number of wasted reads per shard for a given query. Hence, the small differences in the

number of shards between CAS and INC do not to make a considerable difference in
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Figure 3.15.: Index sizes

η = 10 η = 100 η = 1000

CAS INC CAS INC CAS INC

WIKI 76.31 78.50 76.29 77.60 76.18 77.20

UKGOV 68.31 68.50 68.28 68.47 68.18 68.46

Table 3.5.: Comparison between index sizes of CAS and INC - in gigabytes

the wall-clock times. Hence the arguments presented above comparing CAS and VERT

also apply when comparing INC and VERT.

3.10.4. Index Sizes

As expected, the size of the index files of the sharded indexes is the same as that of the

unpartitioned index. This is due to the fact that sharding partitions the postings of the

unpartitioned lists in a disjoint manner. On the contrary the postings in VERT are subject

to replication across the vertical partitions. The index sizes of the different variants of

VERT show a direct correlation with the input parameter κ as shown in Figure 3.15(a).

As discussed before, κ regulates the upper bound to the index-size blowup. The higher

the κ, the more efficient is the performance of time-travel queries at the expense of a

larger index size. Thus the vertically-partitioned index has to be carefully tuned trading

off index size and query efficiency. This is not the case with the sharded index where

the tradeoff is between number of random seeks and sequential reads, which are local

tunable parameters depending on physical characteristics of disks (where the index is

stored) irrespective of the query workload.

The difference in overall index sizes is due to the impact lists. Since each shard is as-
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sociated with an impact list, the number of shards in an index is directly correlated with

size of the impact-list file. Thus, the file which store the impact lists decrease with the

increasing η. Each impact list is stored as list of pairs of integers without compression.

From our experiments we see that the impact-list file is typically 1%-7% of the entire in-

dex. There is, however, scope for compactly representing the impact lists using integer

compression over d-gaps when the key and values are stored in integer array separately.

From our experiments, we observe that the time taken to build a sharded index is

roughly twice the time taken for the standard unpartitioned inverted index. Since

the sharded index building process can be easily parallelized, one can efficiently build

sharded indexes using a distributed processing platform (e.g., Hadoop).

3.10.5. Index Maintenance Performance

As we introduced in Section 3.8, the archive index is maintained by first collecting the

updates to a partial-archive index which is then periodically merged into the primary

archive index. A partial index is responsible for all versions which end in the time

interval between two consecutive merges. To simulate index management for archive

indexes as follows: we first created partial indexes for each month containing postings

of only those versions that have end time within that month. The index is incrementally

maintained, starting from an empty index, by merging partial indexes of each month in

sequence. We employed immediate-merging [BCC10] to create one consolidated index at

the end of every monthly merge operation, and each sharded posting list in the index

is incrementally maintained using our incremental sharding algorithm. We compared

this with CAS, which recomputes the entire sharding for the combined index every

time from scratch. In other words, all shards of a posting list in the currently merged

index are read and decompressed, the corresponding list from the partial index for the

next month is also read and decompressed, these two are combined, and finally, a new

sharding is generated using the CAS algorithm for the merged index, which is finally

written in compressed form to disk.

Figures 3.16 and 3.17 show results of our experiments on index maintenance with

WIKI and UKGOV datasets respectively. Note the log-scale used on the y-axis, which

represents the time-taken for the consolidated sharded index to be built in milliseconds.

It is evident from these charts that INC outperforms CAS by a large margin. In UK-

GOV, the improvements are nearly a factor of 4 (see Figure 3.17) while the improve-

ments in WIKI are around a factor of 10 (see Figure 3.16). This efficiency comes from

two advantages that INC enjoys over CAS: first, recomputing the sharding by CA on

the merged index takes much of the time and grows as the index size grows. Since

INC does not recompute the sharding, its performance improves significantly. Second,
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Figure 3.16.: Performance of index maintenance - WIKI
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Figure 3.17.: Performance of index maintenance – UKGOV
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it does not have to decompress, merge and shard the entire list before writing do the

disk. Instead, it has to just read two posting lists in parallel and append correspond-

ing shards (without decompressing), and write to the disk. From our experiments, we

observe that recomputation of shards accounts for an average of 55%-60% of the entire

maintenance time. Compression and decompression take upto 15% of the overall time

but since we use 7-bit encoding for compression we expect that a more involved com-

pression technique would only increase the maintenance time. It should be noted that in

our simulation we do not perform an append using in-place merge techniques. Instead

we resort to creating a new index file in each step incurring additional overheads. Thus,

the performance of INC can be further improved by carefully implementing advanced

index merging methods.

3.11. Related Work

Temporal information associated with documents has recently seen increasing attention

in information retrieval. One of the earliest known efforts in this direction is by An-

ick and Flynn [AF92] who developed a framework for versioning the complete index

for historical queries. Recently, Alonso et al. [AGBY07] give an overview of relevant

research directions. The work by Herscovici et al. [HLY07] focuses on exploiting the

redundancy commonly seen in versioned documents to compress the inverted index.

Similarly, He et al. [HYS09, HZS10] consider the problem of efficiently storing inverted

indexes on disk using compression; these are orthogonal to our work and could be com-

bined with our sharding techniques.

The closest to our work and the most relevant related work is the work on vertical

partitioning of posting lists by Berberich et. al. [BBNW07]. They consider posting-list

partitioning strategies which trade-off index size and query-processing performance.

Two approaches employed by them either bound the index size, called the space-bound
approach, or bound the worst performance called the performance-guarantee approach. Fur-

ther, they also introduced index compression techniques called temporal coalescing

aimed at supporting different query types while keeping the index compact. These

compression techniques are also relevant in our setting as shown in our experiments in

Section 3.10.2.

Research in temporal databases has taken a broader perspective beyond text docu-

ments and targeted general class of time-annotated data. Index structures tailored to

such data like the Multi-Version B-Tree [BGO+96] or LHAM [MOPW00] are related to

our work, since they also, implicitly or explicitly, rely on a temporal partitioning and

replication of data. It is therefore conceivable to apply our proposed techniques in con-
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junction with one of these index structures.

Work on index maintenance can be categorized into (a) work on maintaining inverted

indexes when faced with changes in the document collection and (b) approaches that

make search aware of temporal information associated with documents. No work, to

the best of our knowledge, has been done at the intersection of the two categories.

Given that the construction of inverted indexes is well understood and can easily be

parallelized, one existing maintenance strategy has been to rebuild the index periodi-

cally. Returning stale query results, most of the time, is an obvious disadvantage of this

approach. For a long time, though, this has been the approach taken by major search en-

gines on the Web. Only lately, Peng et al. [PD10] have addressed the issue of handling

updates in web-scale indexes. Instead of rebuilding the index, Lester et al. [LZW06]

suggest to collect updates in an in-memory index that is then merged, from time to

time to amortize costs, with a disk-resident inverted index. This merge can either be

performed in-situ, thus modifying posting lists at their current location, or by storing

entirely new posting lists. A hybrid approach that chooses between these alternatives

is described by Büttcher et al. [BC08]. Guarajada and Kumar [GK09] can be seen as an-

other extension that leverages query logs to determine terms whose posting lists man-

date eager maintenance. In a spirit similar to log-structured methods [OCGO96], Lester

et al. [LMZ08] propose to keep multiple indexes of geometrically increasing size and

merge them, when they overflow, in a rolling manner. Query results reflecting the cur-

rent state of the document collection can be obtained in these approaches by executing

queries both on in-memory and disk-resident indexes. For more detailed discussions of

inverted index maintenance we refer the reader to Chapter 2.

3.12. Summary

This chapter presents a novel method of index organization based on sharding for pro-

cessing time-travel queries efficiently. Previous approaches traded-off index size and

query performance resulting in an index-size blowup. We take an alternative approach

of index partitioning by exploiting the valid-intervals and taking into account index-

access costs. The resulting index has a small space overhead and we show by experi-

ments that the sharded indexes consistently outperform the vertically-partitioned index

in query performance. We also introduce index-maintenance strategies, based on in-

cremental sharding, which avoid expensive shard recomputations when dealing with

dynamic collections. We show through experiments that, by employing incremental

sharding, we outperform sharding based on recomputation by at least four times.
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4
Query Optimization for Approximate Processing of

Time-Travel Queries

4.1. Introduction

4.1.1. Motivation and Problem Statement

Text search is an expensive operation on web archives due to their large scale. How-

ever, many of the documents in the archive contain redundant information. In certain

scenarios, users are often satisfied with a subset of the true results that are determined

quickly. That is, missing a few results during search might not lead to substantial in-

formation loss. Particularly in search tasks which involve multiple interactive steps of

query reformulation, expansion, and refinement. Consider the following two use cases

in the context of time-travel text search.

• A sports journalist is in interested the game between the popular cricket teams,

from Mumbai and Rajasthan, and issues a query “indians vs royals” @ [6/2008].

However content from the popular baseball teams from Cleveland and Kansas,

also having the same titles, which also were in the news in the same period might

dilute the results. For an interactive and constructive search experience the analyst

should be able to quickly identify the ambiguity of the keywords used and alter

the query to “mumbai indians vs rajasthan royals” @ [6/2008]. Here a subset of the

exact results is good enough for the user to adapt “indians vs royals” to “mumbai

indians vs rajasthan royals”.

• Partial results can also help reformulating for the correct temporal predicates of

the query. Consider the utility of time-travel text search in patent retrieval. The

time-interval of a query “retina display patent” @ [1/2010 - 12/2012] can quickly

be reformulated to “retina display patent” @ [6/2012 - 6/2013] when the user

observes that the initial results cluster around the second half of the year 2012.
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In such scenarios, a subset of the results is often representative of the information

contained in the entire result set. Increasing the number of elements in this subset, or

the recall, improves the information contained therein. Also, it is imperative that the

user needs to have the ability to control the performance of the time-travel retrieval

task. To this extent, we develop query processing techniques to maximize recall, for a

time-travel query, given a user-specified bound on the performance.

4.1.2. Approach

In the previous chapters we discussed different index-organization strategies for web

archives with the focus on exact solutions to time-travel queries. We showed that hori-

zontal partitioning is an efficient index-organization strategy for exact time-travel queries.

In this chapter, we argue that, for approximate processing of time-travel queries vertical

partitioning is more suitable. This is due to the fact that vertical partitions are clustered

in the time dimension.

By identifying the time periods which have high result contribution, and in turn the

partitions which temporally overlap with it, the recall can be increased by processing

such partitions early on. In contrast, a lack of such clustering in horizontal partitioning

or sharding prevents easy identification of shards which have high result contribution.

Consequently, we operate on an index with vertically-partitioned posting lists and pro-

pose query-optimization methods to determine partial results efficiently.

A natural side effect of vertical partitioning is that postings with long valid-time in-

tervals are replicated across several temporally-adjacent partitions. This is not an issue

for time-point queries where only one partition per term is accessed during query pro-

cessing. For the more practical and general class of time-travel (text) queries where the

temporal predicate is a time interval, the straightforward query processing of [BBNW07]

quickly becomes inefficient as a consequence of this replication, as repeatedly reading

replicated postings from several partitions within the query time-interval wastes I/O

operations.

We introduce an approach called partition selection which exploits the following ob-

servation: if we can determine that a partition largely consists of postings that are repli-

cated in already processed partition(s), we can avoid processing this partition without

significantly compromising the final result quality. We aim at selecting a set of partitions
which can be processed incurring no more than a given maximal processing cost and

that yield high recall. We consider abstract cost measures for processing a query, namely

the number of partitions or the number of postings accessed during execution. A user

would specify bounds on the execution time that can be transformed into bounds on

the abstract cost by the system. Alternatively, the user can also stop the processing at
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Figure 4.1.: Processing a time-travel query “A B” @ [tb , te] using partition selection

any time when she determines that the results are already satisfying (or the query needs

to be refined); our methods support this by selecting partitions first that are likely to

contain many unseen answers.

We use the example in Figure 4.1 to illustrate the general idea of our approach. This

figure shows posting lists for two terms A and B built over documents with valid-time

intervals. On the left side of the figure, posting lists are shown, each spanning the entire

time interval. The region, shaded in gray, represents a temporal predicate that spans a

small time range over these lists. In the absence of temporal partitioning, query pro-

cessing needs to entirely scan both lists and filter out postings that do not satisfy the

temporal predicate. When the index is partitioned, however, the processing can be sped

up by reading only the relevant partitions that overlap with the temporal predicate,

represented on the right. Thus, in our example, a total of 6 partitions – A1, A2, A3 and

B1, B2, B3 – have to be processed to determine the result set of {d1, d2, d3} – marked as

red line-segments.

However, a closer inspection of Figure 4.1 reveals that the same result set can be ob-

tained by processing only 2 partitions, A2 and B2, since the replicas of postings for doc-

uments in the result set are fully available within these two partitions.

How can we make use of this observation in practice ? In order to do so, we need to

answer the following questions: (i) does a partition contribute non-redundantly towards

the final result set when it is processed ?, (ii) how much does a partition contribute to the

final result set ? (iii) is there an alternative set of partitions which can contribute these

answers at a lower access cost ? Based on answers to these questions, we can generate a

partition-access plan so that for a specified cost budget only those partitions are chosen
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for processing which maximize the number of results.

4.1.3. Contributions

We formally model these partition selection problems as optimization problems. Making

use of KMV synopses for cardinality estimation under set operations [BHR+07], we de-

velop algorithms for efficiently solving such partition-selection problems. In particular,

the contributions made in this chapter are:

1. An optimal dynamic programming based partition selection algorithm for single-

keyword queries;

2. An efficient greedy alternative for partition selection that can be applied for both

single keyword as well as multi-keyword queries;

3. A detailed experimental evaluation on three large-scale real-world text archives:

the revision history of the English Wikipedia, a Web archive, and the Annotated

New York Times archive spanning 20 years.

4.1.4. Organization

The remainder of this chapter is organized as follows: in Section 4.2, we present index

organization and query processing in our setup. In Section 4.3, we detail an optimal

algorithm and its greedy approximation for selecting the set of partitions to process

for the case of single-keyword queries. Extensions for multi-term query setting are de-

scribed in Section 4.4. Our experimental setup and results are detailed in Section 4.7

before summarizing in Section 4.9.

4.2. Index Organization and Query Processing

We adopt the document, collection and query models from the previous chapters (c.f.

Section 3.2 and Section 2.3.3). We briefly recap the notation in Table 4.1.

Index Organization We use a temporally-partitioned index as described in Chapter 2

with the following posting structure

〈dki , [begin(dki ), end(dki ))〉.

dki refers to the version identifier dki , [begin(dki ), end(d
k
i )) is its valid-time interval.

The temporally-partitioned index consists of posting lists vertically partitioned into

a set of partitions. We let partitions(v) denote the set of partitions of the posting list
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Notation Description

D collection of documents

V vocabulary as a set of words

d
j
i ∈ D the jth version of document di
valid(dji) valid-time interval

begin(dji) begin-time of dji
end(dji) end-time of dji
Q time-travel query

keywords(Q) set of keywords in Q

interval(Q) query time-interval of Q

I1 I2 Overlapping intervals I1 and I2
I1 I2 Non-overlapping intervals I1 and I2

Table 4.1.: Notation.

Lv for term v ∈ V . Each partition φv,j ∈ partitions(v) has an associated time-interval

span(φv,j) = [begin(φv,j) , end(φv,j)) and stores postings representing document ver-

sions whose valid-time intervals overlap with span(φv,j), i.e.,

φv,j =
{
dki ∈ D | v ∈ dki ∧ valid(dki ) span(φv,j)

}
.

Further, we assume that partition spans for a given term v are disjoint, i.e.,

∀i ∀j : span(φv,i) span(φv,j) .

A lexicon L stores this partitioning information as a mapping from term to the parti-

tion statistics (partition span, partition size and location).

For a pair of partitions φv,i and φv,i+k, or simply φi and φi+k, φi ∩φi+k represents the

set of postings common to both the partitions. The overlap of valid-time intervals and

partition spans gives rise to the time-continuity property as described below.

Lemma 4.1 (Continuity Property in Vertical Partitions) For a set of partitions belonging
to a term v, the overlaps of contents of partition φi with φi+k, ∀k ≥ 0 and 0 ≤ j ≤ k have the
following property:

φi ∩φi+k ⊆ φi ∩φi+j

Proof: Every posting p ∈ φi ∩ φi+k represents a version dtk for which begin(dtk) < end(φi)
and end(dtk) > begin(φi+k). This implies that

valid(dtk) span(φi+k)

and hence the claim holds. �
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Query Processing In this work we use conjunctive query semantics, i.e., we identify

as results documents versions that contain all query terms. We employ the Term-at-a-

Time (TAAT) approach of posting-list intersection during query processing. First, the

partitions overlapping with the query time-interval are determined by consulting the

lexicon. We refer to these partitions as affected partitions.

Definition 4.1 (Affected Partitions) For a time-travel query Q, the set of partitions of the
term qi ∈ keywords(Q) which overlap with the query-time interval interval(Q) are

a(qi, Q) =
{
φi,j | interval(Q) span(φi,j)

}
.

When it is clear from the context we use ai for a(qi, Q). The overall set of affected

partitions is A(Q) =
⋃
qi∈keywords(Q) ai. The determined ais are merged to determine a

candidate set of postings which overlap with interval(Q). Following that, these can-

didate sets are intersected employing TAAT posting-list intersection, for the final set of

results.

For approximate processing of time-travel queries we additionally go through a query-

optimization phase prior to query processing - referred to as partition selection. Partition

selection determines a subset S ⊆ A(Q) of all the affected partitions for query process-

ing. Query processing over S yields partial results. We formalize the notion of a result

set R(S, Q) given a time-travel query Q over a subset of affected partitions S ⊆ A(Q).

R(S, Q)=


{ ⋃

φj∈S φj

}
: |Q| = 1{ ⋂

1≤i≤|Q|

⋃
φi,j∈S φi,j

}
: |Q| > 1.

(4.1)

Using the notation above, the exact set of results is captured hence by R(A(Q), Q). The

case when |Q| = 1 refers to the scenario when the query contains a single keyword. In

such a case all postings accessed are relevant and are captured by the union operation

over all affected partitions. However, when |Q| > 1, only those postings which are

common to all the terms are relevant. This is captured by the intersection over unions.

As an example, we refer to Figure 4.1. For a query “A B” @ [tb, te] the document

versions, colored in red, are retrieved as results. However, for a single-term query, say

“A” @ [tb, te], all document versions index in “A” get qualify as results.

To quantify how much of the exact results are retrieved using S we use relative recall.

The relative recall for S ⊆ A(Q), RR(S, Q), is defined as the ratio of the number of

retrieved results to that of the exact results, i.e., fraction of results retrieved. Formally,

RR(S, Q)= |R(S, Q)|/|R(A(Q), Q)|. (4.2)

The intention of partition selection is to choose S in order to maximize RR(S, Q).
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Use of Partition Synopsis Partition-selection algorithms, as we discuss in detail later,

use cardinality values of set operations (unions and intersections) on partitions as prim-

itive operations. However, to determine the exact cardinalities the partitions have to be

accessed which is exactly what we want to avoid. Instead, we depend on high qual-

ity cardinality estimates under union and intersection of large sets of document iden-

tifiers. For this purpose, we utilize the recently proposed KMV synopses [BHR+07].

In a pre-computation step, we build and store the synopsis for each partition on disk

of the temporally-partitioned index, which we use during our partition-selection pro-

cess. Pointers to each partition-synopsis can be either stored in the existing lexicon or

an altogether separate lexicon can be constructed explicitly for this task.

During partition selection, the lexicon storing pointers to partition synopses is con-

sulted followed by retrieval of the synopsis of each affected partition. These highly com-

pact partition synopses are used by our selection algorithms to determine cardinalities

of set operations over partitions. In the next section, we first detail partition-selection

methods for queries with only single terms. We then generalize these approaches to

multi-term queries.

4.3. Single-Term Partition Selection

Let us consider the special case where the time-travel keyword queryQ consists of only

a single query term, i.e., keywords(Q) = {q }. Since we deal with single-term queries,

we denote φq,j as φj for ease of notation from now on.

Our objective, when selecting partitions to process the time-travel keyword query, is

to retrieve as many of the original query results as possible, while not violating a user-

specified I/O bound. Our optimization objective, to put it differently, is to maximize the

relative recall as the fraction of original query results retrieved. The user-specified I/O

bound, which constrains the space of valid solutions, can be of two types – size-based
partition selection or equi-cost partition selection.

In both selection problems we model the performance to be proportional to the in-

dex accesses. Hence a bound on the accesses simulates a bound on the response time

for a time-travel query. In case of size-based partition selection we bound the number of

postings accessed. A similar analysis is undertaken for most query-processing methods

over posting lists.

However, we also take a more coarse-grained approach in modelling the constraint

on accesses in equi-cost partition selection. Accesses to each partition results in a random

access and random I/O are substantially more expensive than sequential I/O. Also,

partitions tend to be smaller than entire posting lists. Hence the bottleneck in answer-
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ing a time-travel query in such scenarios is the number of distinct partitions that are

accessed. To this extent, in equi-cost partition selection, we model the allowable budget

to be accessed as a fixed number of affected partitions that can be accessed rather than

number of postings.

Size-Based Partition Selection The input to this optimization problem is the set of

affected partitions A(Q), and a user-specified I/O bound β where 0 < β ≤ 1. Here, β

denotes the fraction of postings of all affected partitions that we are allowed to read. The

cardinality of each partition |φj| represents the number of postings accessed on selecting

the |φj| for processing. Note that maximizing result size
∣∣⋃
φj∈S φj

∣∣ is equivalent to

maximizing relative recall since the original result size
∣∣⋃
φj∈A(Q)φj

∣∣ is constant. Thus,

we intend to determine S ⊆ A(Q) so as to maximize the result size while retaining our

I/O budget. Formally,

Definition 4.2 (Size-Based Selection for Single-Term Queries)

argmax
S⊆φ

∣∣∣∣∣∣∣
⋃
φj∈S

φj

∣∣∣∣∣∣∣ s.t.

∑
φj∈S

|φj| ≤ β ·

 ∑
φi∈A(Q)

|φi|

 .
Equi-Cost Partition Selection The inputs to this problem is the same as before – φj,

and bound β. However, we assume that all partitions are equally expensive to process

irrespective of their sizes. The constraint is now bound to a fixed number of partitions

that can be accessed β · |φ|. The objective function remains the same as before. Formally,

Definition 4.3 (Equi-Cost Selection for Single-Term Queries)

argmax
S⊆φ

∣∣∣∣∣∣∣
⋃
φj∈S

φj

∣∣∣∣∣∣∣ s.t.

|S | ≤ β · |A(Q)| .

4.3.1. Optimal Algorithm for Single-Term Partition Selection

The above problems can be solved using dynamic programming over an increasing

number of affected partitions. We first present a solution to the more general size-based
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partition selection. Our solution to equi-cost partition selection follows from this, as we

show later.

We process the affected partitions A(Q) in the order of their begin times, i.e.,

begin(φv,j) < begin(φv,j+1).

Consider a prefix sub problem which considers affected partitions {φ1, · · · , φk}, and ca-

pacity c = β · (
∑
j |φj|). Let OPT(c, k) denote the optimal set of partitions for the prefix

sub-problem with capacity c, the optimal result-set size hence is R(OPT(c, k)). The opti-

mal solution is computed by the following recurrence on the constituent sub-problems.

R ( OPT(c, k) )= max

 R ( OPT(c, k− 1) )

max
0<k ′<k

R ( OPT (c− |φk| , k
′ )

⋃
{φk} )

We now state and prove the optimality of the recurrence in Theorem 4.1.

Theorem 4.1 Given a query Q and access budget of capacity c = β · (
∑
φj∈A(Q) |φj|) the

optimal solution to the size-based selection problem is given by OPT(c, |A(Q)|).

Proof: Assume that we have optimal solutions for all sub-problems by the given recurrence,
OPT(c ′, k ′), with capacities c ′ such that 0 < c ′ < c, for the set of partitions {φi} where

0 < k ′ < k.

Now we consider computing the optimal selection set by the recurrence OPT(c, k) using OPT(c ′, k ′)’s.
Let us assume that there is a better solution OPT(c, k) such that

R(OPT(c, k)) > R(OPT(c, k)).

Case 1 – φk /∈ OPT(c, k) : From the recurrence this means

R(OPT(c, k)) > R(OPT(c, k− 1))

since R(OPT(c, k)) = R(OPT(c, k − 1)) when φk /∈ OPT(c, k). As a consequence, we have
a new optimal solution for the sub-problem for capacity c and the set of partitions {φi} where
0 < i < k, i.e, R(OPT(c, k − 1)) > R(OPT(c, k − 1)). But, this is contrary to our initial
assumption since we assumed R(OPT(c, k − 1)) is optimal for {φi} where 0 < i < k. Thus, by
contradiction our claim holds.

Case 2 – φk ∈ OPT(c, k) : The second relation in the recurrence is applicable now. Our
assumption leads to the condition R(OPT(c, k)) > max

0<k ′<k
R ( OPT (c− |φk| , k

′ )
⋃

{φk} ).
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Let us denote the index of the partition selected just before φk for OPT(c, k) to be k ′, i.e., for
k ′ = argmax OPT(c, k)\{φk}. According to our assumption we have

R(OPT(c, k)) −
∣∣φk ∩φk ′∣∣ >

(
max
0<k ′<k

R(OPT(c, k))

)
−
∣∣φk ∩φk ′∣∣

=⇒ R(OPT(c− |φk|, k
′)) > R(OPT(c, k ′)) −

∣∣φk ∩φk ′∣∣
=⇒ R(OPT(c− |φk|, k

′)) > R(OPT(c− |φk|, k
′))

This is a contradiction since OPT(c− |φk|, k
′) is optimal for all 0 < c ′ < c. Hence our claim

in the theorem holds true. �

Algorithm 4: Partition Selection - dynamic programming solution
1: cmax = bβ · (

∑
j |φj|c

2: // Dynamic programming table, n is number of affected partitions

3: DP [ 0 .. cmax ][ 0 .. n ]

4:

5: for i = 0 .. cmax do

6: DP [ i ][ 0 ] = ∅
7: end for

8:

9: for k = 1 .. n do

10: for i = 0 .. |φk|− 1 do

11: DP [ i ][ k ] = ∅ // No partitioning possible

12: end for

13: for i = |φk| .. cmax do

14: for k ′ = 0 .. k− 1 do

15: // Update if recall is better than current value

16: rk ′ = DPr [ i− |φk| ][ k
′ ] + (|φk|− (φk ∩DPlp [ i− |φk| ][ k

′ ]))

17: end for

18: k ′ = argmax rk ′

19: // Update the DP table with the best partitioning

20: DPr [ i ][ t ] = max{DPr[cj][ki − 1], rk ′}

21: DPlp [ i ][ t ] = argmax DPr [ i ][ t ]

22: end for

23: end for

24:

25: return DP[ cmax ][n ]

Algorithm 4 efficiently implements the recurrence relation presented above. Each
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4.3. Single-Term Partition Selection

of the DP table cell contains a pair of values – (i) the last partition selected, DPlp, for

the corresponding sub-problem (i.e., the selected partition with the maximum begin-

time), and (ii) the optimal recall value DPr. Since the choice of partitions cannot be

made independently, the computation of recall for a newly selected partition takes into

account only the postings that are not already included in previously selected partitions.

Using Lemma 4.1, we can efficiently compute the optimal recall for each sub-problem

since all overlaps with the preceding partitions to lp are already covered in lp.

The DP-based algorithm, outlined in Algorithm 4, has a time complexityO(n2·(
∑
j |φj|)),

where n is the number of affected partitions, and a space complexity of O(n · (
∑
j |φj|)).

The optimal partitioning can be easily computed by backtracking from the best solution

seen at DPlp[ cmax ][n ]. Observe that the complexities depends on the cardinalities of

the partitions, i.e.,
∑
j |φj|). Thus, Algorithm 4 is a pseudo-polynomial algorithm, for

size-based partition selection, which is polynomial in the value of the size bound.

Equi-cost partition selection is a special case of size-based selection and employs a

uniform cost per partition. The recurrence relation for equi-cost selection is

R ( OPT(c, k) )= max

 R ( OPT(c, k− 1) )

max
0<k ′<k

R ( OPT (c− 1 , k ′ )
⋃

{φk} )

This results in improvements in both the space and time complexity of the algorithm,

as the optimal value is independent of the sum of the sizes of the partitions read. The

time complexity of the algorithm reduces to be O(n3) and a space complexity of O(n).
Note that unlike the algorithm for size-based selection, the algorithm for equi-cost selec-

tion is a polynomial algorithm which is polynomial in the number of partitions affected.

4.3.2. Approximation Algorithm

While the selection algorithms outlined above allow for polynomial run times, they

might not be efficient enough to be applied during query processing, e.g., when the

partitions contain a large number of postings. Alternatively, we propose the use of

(1 − 1
e)-approximation algorithm called GreedySelect, developed in [KMN99] for solv-

ing budgeted maximum coverage (BMC) problem. We first show the equivalence of our

partition selection problem and the BMC problem.

Definition 4.4 (Budgeted Maximum Coverage) A collection of sets S = {S1,S2, . . . ,Sm}
with associated costs {ci} is defined over a domain of elements X = {x1, x2, . . . , xn} with associ-
ated weights {wi}. The goal is to find a collection of sets S ′ ⊆ S, such that the total cost of the
elements in S ′ does not exceed a given budget L, and the total weight of every element covered
by S ′ is maximized.
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Lemma 4.2 Partition selection is an instance of budgeted maximum coverage (BMC).

Proof: The selection problem for single terms can be cast into an instance of the BMC prob-
lem [KMN99] in the following way: The affected partitions, φjs, are the analogous to the sets

in the BMC problem with the postings in the partitions being the elements of the respective set.
For size-based partition selection, the cost for each set is its cardinality; for equi-cost selection,
the cost for each set is unity. The cost budget is exactly the I/O bound cmax. With this reduc-
tion we can use the approximation algorithm proposed by Khuller et al. [KMN99] which has a
constant factor approximation guarantee of (1− 1

e). �

Algorithm 5: GREEDYSELECT for single-term partition selection
1: input: cmax , φ

2: S = ∅
3: A = φ

4: C = 0

5:

6: repeat

7: Select φi ∈ A that maximizes Bi
ci

8: if C + ci ≤ cmax then

9: S = S ∪ φi
10: C = C + ci

11: end if

12: A = A\φq,i
13: until A = ∅
14:

15: Select a partition φt that maximizes Bt over S

16: if B(S) ≥ Bt then

17: output S
18: else

19: output {φt}

20: end if

Algorithm The greedy approximate algorithm, GREEDYSELECT is shown in Algorithm 5.

The input to GREEDYSELECT is the bound on the allowable accesses denoted as cmax and

the set of partitions φ. The solution to the selection problem is denoted as S and we re-

fer to it as the selection set. We associate every partition φi with a cost ci and a benefit Bi.

Here, ci is the cost of processing an unselected partition φj /∈ S. For size-based selection

ci is the number of postings in the partition, and for equi-cost selection ci is one. Its
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benefit, Bi, is the number of unprocessed postings in φj, i.e., |φj\ ∪s∈S s|. A maintains

the available partitions for selection and is updated after each iteration.

Each iteration of GREEDYSELECT consists of a selection step and an update step. In

the selection step, the most promising partition based on the benefit-cost ratio Bi
ci

is

chosen from A (cf. line 7). We do not select a partition if it leads to exceeding the cost

budget (cf. line 8). The update step updates A and the benefits of all the partitions in A
which are future candidates for selection (cf. line 12).

Finally, to determine the solution set we compare the overall benefit of the selection

set S, i.e. B(S) = |
⋃
φj∈S φj|, with the partition with the best overall benefit (c.f. line

16-20).

4.4. Multi-Term Partition Selection

In the case of partition selection for single-term queries, every posting read from a par-

tition qualifies as an answer, given that the time span of the partition overlaps with

the query time-interval. Unlike this simpler setting, for multi-term queries there is an

additional constraint imposed by the conjunctive semantics of query evaluation which

requires that every result document also contain all the query keywords. Mimicking the

conventional query processing (over standard posting lists), multi-term queries can be

evaluated by intersecting partitions of individual query terms. Now, the partition se-

lection aims to increase the coverage of postings that belong to this intersection space of

partitions. Formally, both the selection variants, size-based and equi-cost, for a queryQ

wherem = |keywords(Q)|, are defined as follows.

Definition 4.5 (Size-Based Selection for Multi-Term Queries)

argmax
S⊆φ

∣∣∣∣∣∣∣
⋂

1≤i≤m

⋃
φi,j∈S

φi,j

∣∣∣∣∣∣∣ s.t.

∑
φi,j∈S

|φi,j| ≤ β ·

 ∑
φi,j∈A(Q)

|φi,j|

 .
Definition 4.6 (Equi-Cost Selection for Multi-Term Queries)

argmax
S⊆φ

∣∣∣∣∣∣∣
⋂

1≤i≤m

⋃
φi,j∈S

φi,j

∣∣∣∣∣∣∣ s.t.

|S | ≤ β · |A(Q)|.
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Similar to the argumentation for single-term selection, the result size is the objective

function. Observe that the constraints for multi-term selection are preserved from the

previous problem formulations. Let us consider the objective function of both the multi-

term selection problems. The intersection space, in the objective function above, is the

intersection of the unions of the affected partitions. Using the distributive property of

the set intersection operator we can also represent the above into unions of intersections

of partitions φi,j’s.

⋂
1≤i≤m

⋃
φi,j∈S

φi,j =
⋃
φi,j∈S

⋂
1≤i≤m

φi,j

4.4.1. GREEDYSELECT for Multi-term Selection

Let each of these resulting smaller intersections, consisting of one partition each from

every term, be represented as a tuple x. These tuples x come from the Cartesian product

among affected partitions for each term a(qi, Q), i.e., for a m-term query the Cartesian-

product set X = a(q1, Q) × . . . × a(qM, Q). We formally define x, an element of this

Cartesian-product set X , as :

x = { (x1, . . . , xm) | xi ∈ a(qi, Q)}

Although this is a m-ary tuple, we treat this as a set whenever necessary. Having

turned the objective function into a disjunctive formulation, analogous to the single-

term setting, the problem formulation now intends to maximize the coverage of the

results in the intersection space. We can now use GREEDYSELECT over X , where each

element x is equivalent to a partition in single-term selection scenario.

The benefit of x, B(xi), is defined as the cardinality of the documents in the intersection

of the partitions in x which are not in the selection set S .

Bx = | R ( x \ S ) |

In other words, the benefit or contribution of x represents the number of new docu-
ments which are present in every element partition of x. The cost definition of x depends

on the sizes of the element partitions in x. As earlier, the cost of x, cx, in size-based

selection is the sum of the sizes of the partitions in x \ S, i.e.,

cx =
∑

φi,j∈x\S

|φi,j|.

Equi-cost selection on the other hand defines the cost of x as the number of participat-

ing partitions not in S.

cx = |x \ S | .
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Algorithm 6: GREEDYSELECT for multi-term partition selection
1: input: cmax , X
2: S = ∅
3: A = X
4: C = 0

5:

6: repeat

7: Select x ∈ A that maximizes Bx
cx

8: if C + cx ≤ cmax then

9: S = S ∪ {φi,j|φi,j ∈ x}

10: C = C + cx

11: end if

12: A = A\S
13: Update Bx ′ and cx ′ for x ′ ∈ A
14: until A = ∅
15:

16: Select y ∈ X that maximizes R({y})

17: if |R(S)| ≥ R({y}) then

18: output S
19: else

20: output {φt|φt ∈ y}

21: end if

The modified inputs to GREEDYSELECT is the set X , with benefit Bx and cost cx for

each of its elements x. GREEDYSELECT now proceeds conventionally by greedily choos-

ing the x with the best benefit by cost ratio Bx
cx

. Observe that the choices of elements from

X are not independent. A pair of tuples can share the same partition. Thus, selection

of a tuple x might result in reducing the cost (which is not the case in single-term se-

lection) of others which have at least one of the constituent partitions common with x.

Hence in the update step apart from updating the benefit of x, we also update its cost

cx. Owing to such a cost dependence among the tuples, the approximation guarantee of

GREEDYSELECT does not apply to multi-term selection.

Exploiting temporal overlap among partitions For a time-travel query withm terms

with p affected partitions per term, the input size is exponential in the number of terms,

i.e., |X | = pm. In case of queries with large m or p, computations in GREEDYSELECT

can become prohibitive. This is because of the update steps in each iteration where the
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Figure 4.2.: τ for the affected partitions time-travel query “q1 q2”

benefits and costs of the remaining partitions A are recomputed.

To alleviate this, we operate on a constrained set, τ⊆ X , which has a cardinality linear

in the number of participating partitions as opposed to high number of combinations

in X . This constrained set is obtained by defining a τ-join operation over the term-

partition sets φi’s. Each element t of the resulting tuple c ∈ X has the property that

there is a non-zero time-overlap between all of the constituent partitions.

c = { (c1, . . . , cm) | ∀ci ∈ a(qi, Q), cj ∈ a(qj, Q), span(ci) span(cj)}

For example, in Figure 4.2, the queries q1 and q2 have 3 partitions each. The |X | = 9

and the resulting τ has a cardinality 5 after the τ-join operation.

For a time-travel query with m terms and p partitions per term, the number of ele-

ments in τ is linear in the number of affected partitions, i.e., p ≤ |τ| ≤ m.p. The parti-

tions in τ exploits the temporal overlap across partitions of different query terms and has

a reduced input size as compared to X . The temporal partitioning induces a temporal

clustering of the postings. Hence, the results contained in the intersection of partitions

inX are already captured in the τ ⊂ X . We further show for equi-cost based partition se-

lection, GREEDYSELECT chooses elements only from τ. In other words, GREEDYSELECT

over the Cartesian set is equivalent to GREEDYSELECT over τ.

Theorem 4.2 GREEDYSELECT for equi-cost based selection on X always chooses elements
which belong to τ.

We prove this theorem by contradiction, by first choosing an element from X\τ and

showing that we can replace this element with a better candidate from τ. For the formal
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proof, we introduce the notion of selected-partition space. Let the selection set S be the

set of already selected partitions and thus the result set R(S, Q) denote the actual set

of result documents covered by the partitions in S. A time interval [tb, te] is said to be

selected if there is a partition from each term qi in S which covers it, i.e.,

∃φi,j ∈ ai, begin(φi,j) < tb ∧ te < end(φi,j).

In other words, an unselected-space refers to a range where all of the partitions have

been selected at the current state of the algorithm.

We first prove that for any x ∈ X there exists a t ∈ τwhich has at least the same result

size.

Lemma 4.3 For any x ∈ X there exists a t ∈ τ such that the following holds∣∣∣∣∣∣
⋂
φx∈x

φx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋂
φt∈t

φt

∣∣∣∣∣∣ .
Proof: Let us consider the candidate x ∈ X \ τ. Let MAXBP = argmax

φ∈x
begin(φ) denote the

partition in x that has the maximum begin-time. Also consider a t ∈ τ such that

∀φi,t ∈ t, begin(φi,t) ≤ begin(MAXBP) < end(φi,t).

Since x ∈ X\τ there exists a φi,x ∈ x such that span(φi,x) span(MAXBP). Consider a
version dki which belongs to the result set R(x, Q) (assuming R(x, Q) 6= ∅). This means that the
following holds

begin(dki ) < end(φi,x) ∧ end(dki ) > begin(MAXBP).

We further note that (φi,x ∩ MAXBP) ⊆ (φi,t ∩ MAXBP) since for all versions dki in
φi,x ∩ MAXBP,

valid(dki ) span(φi,t).

We can thus replace φi,x with φi,t for a larger result set. We can carry the same replacement
for all terms qi ∈ keywords(Q) where span(φi,x) MAXBP for a better overall result set∣∣∣∩φ∈tφ

∣∣∣. This proves our claim.
�

We now proceed with the proof of Theorem 4.2.

Proof: We prove this by induction on the number of iterations i of the GREEDYSELECT algo-
rithm.
i = 1: For the first iteration S = ∅. We argue that, given that there is enough budget for

selection the candidate selected is always from τ. We prove this by contradiction. We assume
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that the candidate x ∈ X\τ has the best Bx
cx

. According to Lemma 4.3 there exists a t ∈ τ with
Bt ≥ x. S = ∅ means that the costs are the same for all candidates ct = cx, hence, Bx

cx
≥ Bt

ct
.

i → i + 1: Choosing from τ for the first i iterations induces multiple selected regions in
the intersection space. Because of the nature of the τ-join certain time intervals are completely
covered.

Now choosing a candidate x ′ ∈ X \ τ could have a cost (where 0 ≤ cx ′ ≤ m) depending
on the number of constituent partitions already in the selection set. To prove that the choice of
the candidate is still made from τ we argue as in the proof of Lemma 4.3. Assume that there is
a better candidate x ∈ X \ τ (best benefit/cost ratio), and a non-zero cost cx. We can always
replace the partitions xi ∈ x \ S by another partition of the same term in the following ways:

Case 1 – xi /∈ S ∀xi ∈ x : In the case of x having no partitions from the selection set S, i.e.,

∀xi ∈ x : xi /∈ S

we use Lemma 4.3 to choose a better candidate from τ since there are only non-selected regions
from where a choice can be made.

Since the selected regions provide no benefit we operate only within unselected regions. We
denote the minimum time boundary in the region as left region boundary and the maximum
time boundary as the right region boundary. For cases 2 and 3, we consider candidates x with
non-zero benefit, and non-zero cost less thanm, i.e.,

∃xi, xi ∈ x ∩ S.

Case 2 – Suppose that the partition x ′i ∈ x ′ | x ′i ∈ S, only belong to the right region boundary.
We can always choose a replacement partition rj for x ′j ∈ x ′ | x ′j /∈ S, where rj and x ′j belong to
the same term, such that the new replacement candidate r ∈ τ has a better benefit than x ′. More
specifically, the replacement candidate r ∈ τ has the following selected and unselected partitions

• selected partitions: Selected partitions x ′i such that x ′i ∈ x ′ | x ′i ∈ S.

• unselected partitions: Unselected replacement partitions rj which contain the minimum
begin time of the selected partitions, tmbt = min{bx ′i |x

′
i ∈ x ′ ∧ x ′i ∈ S} , i.e.,

rj | brj ≤ tmbt < erj

The replacement candidate r has the same cost as its counterpart x ′, cost(r) = cost(x ′), and a
benefit-cost ratio Br

cr
≥ Bx ′

cx ′
. Since such a replaced candidate belongs to τ, this is contrary to our

assumption and our claim holds.
Case 3 – Similar to Case 2, if x ′ has partitions belonging to the left boundary of the region,

we can replace the unselected partitions of each term by a replacement partition which con-
tains/overlaps with the maximum end time among the partitions which belong to the selection
set in x, i.e., tmet = max{ex ′i | x

′
i ∈ x ′ ∧ x ′i ∈ S}. The new replacement candidate r belongs to

τ and has a better or equal benefit than x contrary to our assumption. �
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4.5. System Architecture

Figure 4.3 shows a hihg-level overview of the indexing system where our selection

methods can be employed. The indexing system consists of vertically-partitioned index
and the synopsis index.

• Vertically-partitioned index : The entire document collection is indexed employ-

ing the partitioning schemes described in [BBNW07].

• Synopsis Index : During index building we materialize a KMV synopsis for ev-

ery partition into a synopsis index. When a query is issued, synopses (i.e., multiple

synopsis) corresponding to the affected partitions are retrieved. In the partition

selection algorithm that follows, GREEDYSELECT for single and multi-terms, car-

dinality estimates are determined for benefit values Bi and Bx.

The query interface can be a user of a system which generates time-travel queries.

During processing queries, query optimization is performed on the synopsis index by
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invoking the selection algorithms and a plan is generated. Based on the query plan,

accesses are scheduled on the vertically-partitioned index and the results are reported.

Because of the anytime nature of the selection algorithm, the user can terminate the

search, when satisfied, giving her the maximum recall computed thus far.

4.6. Practical Issues

While the previous two sections presented the theoretical underpinnings for the partition-

selection problem, in this section, we discuss a few issues relevant to their implementa-

tion that we faced in practice and present our solutions.

4.6.1. Dealing with Partition and Query Boundary Alignment

In our descriptions of the algorithms, we assumed that if a partition overlaps with the

query time-interval, then its contribution to the final answer set is from all the postings
in the partition. In other words, we ignored the fact that even within a partition, pos-

sibly a large number of postings may not satisfy the temporal predicate if the temporal

boundaries of the partition are not completely contained within the range specified by

the temporal predicate. Note that this affects the estimates of the benefit values of the

partitions in the boundaries of the query time – thus the benefits of at most 2 partitions

per term are in error.

This error can be significantly improved if we adjust the value of benefit of a partition

to account for incomplete overlap along the time axis. A straightforward approach for

this, which we employ in our implementation, is to scale the benefits by the fraction of

temporal overlap between the query and the partition. In practice, we observed that this

simple scaling (which is similar to making an uniformity assumption during cardinality

estimates) works very well.

4.6.2. I/O Budget Underflow

Another issue that comes up when we are using only estimates of benefit provided by

partition(s) towards the final answer set is that during partition selection, we may en-

counter a situation where none of the partitions show any non-zero benefit, although in

reality they may contain some results. When faced with such a situation, the partition

selection algorithms described in Sections 4.4 and 4.3 simply terminate – even if the

specified I/O budget allows for more partitions to be read.

To avoid this undesirable behaviour, the partition-selection algorithm can be modified

to ignore the estimates of benefits when all the unselected partitions have zero estimated
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benefits. At this stage, partitions are selected in decreasing order of their size as long as

the I/O budget is not violated.

4.7. Experimental Evaluation

4.7.1. Evaluation Framework

In this section, we present and discuss the results of a detailed experimental evaluation

of our algorithms in terms of their effectiveness in achieving high relative recall with a

specified budget of index accesses.

4.7.2. Setup

All our algorithms, including the underlying time-travel inverted index framework,

were implemented using Java 1.6. All experiments were conducted on Dell PowerEdge

M610 servers with 2 Intel Xeon E5530 CPUs, 48 GB of main memory, a large iSCSI-

attached disk array, and Debian GNU/Linux (SMP Kernel 2.6.29.3.1) as operating sys-

tem. Experiments were conducted using the Java Hotspot 64-Bit Server VM (build 11.2-

b01).

4.7.3. Datasets Used

For our experiments we used three different datasets, all derived from real-world data

sources.

WIKI The English Wikipedia revision history [WIK13], whose uncompressed raw data

amounts to 0.7 TBytes, contains the full editing history of the English Wikipedia

from January 2001 to December 2005. We indexed all versions of encyclopedia ar-

ticles excluding versions that were marked as the result of a minor edit (e.g., the

correction of spelling errors etc.). This yielded a total of 1,517,524 documents with

15,079,829 versions having a mean (µ) of 9.94 versions per document at standard

deviation (σ) of 46.08.

UKGOV This is a subset of the European Archive [EA13], containing weekly crawls of

eleven governmental websites from the U.K. We filtered out documents not be-

longing to MIME-types text/plain and text/html to obtain a dataset that to-

tals 0.4 TBytes. This dataset includes 685,678 documents with 17,297,548 versions

(µ = 25.23 and σ = 28.38).

NYT The New York Times Annotated corpus [NYT13] comprises more than 1.8 million

articles from the New York Times published between 1987 and 2007. Every article
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has an associated time-stamp which was taken as the begin time for that article.

The end time for each article was chosen to be 90 days after the begin time, giving

every document a validity time of 90 days. This is done to reflect the real world

setting where the news articles are publicly available only for a limited period

from their publication.

Note that each of these datasets represents a realistic class of time-varying text collection

typically used in temporal text analytics. Specifically, WIKI corresponds to an explic-

itly version controlled text collection, UKGOV is an archive of the evolving Web, and

NYT is an instance of archive of continually generated newspaper content. For the ease

of experimentation, we rounded the time-stamps of versions to the nearest day for all

datasets.

4.7.4. Query Workload

We compiled three dataset-specific query workloads by extracting frequent queries from

the AOL query logs, which were temporarily made available during 2006. For the

WIKI dataset we extracted 300 most frequent queries which had a result click on the

domain en.wikipedia.org and similarly for NYT and UKGOV we compiled 300

queries which had a result hit on nytimes.com and 50 queries which had result hit

on .gov.uk domains (cf. Appendix). Using these keyword queries, we generated a

time-travel query workload with 3 instances each for the following 2 different temporal

predicate granularities: 30 days and 1 year.

4.7.5. Index Management

Index UKGOV NYT WIKI

Fixed-7 11GB 13GB 13GB

Synopsis Index - 5% sample 146MB 134MB 146MB

Synopsis Index - 10% sample 291MB 258MB 290MB

Fixed-30 4.4GB 3.5GB 6.3GB

Synopsis Index - 5% sample 61MB 39MB 75MB

Synopsis Index - 10% sample 122MB 74MB 149MB

Table 4.2.: Synopsis index

Since our selection techniques operate on temporally-partitioned posting lists, we

chose the following partitioning schemes :
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• Fixed-time partitioning A simple partitioning scheme in which a partition bound-

ary is placed after a fixed time window. We present results for two time window

sizes: (i) 1 week (referred to as Fixed-7 partitioning), and (ii) 1 month (referred to

as Fixed-30 partitioning). Unless otherwise mentioned, all the results presented in

this chapter are from Fixed-7 partitioning.

• Vertical Partitioning These are index structures built using partitioning strategies

discussed in [BBNW07]). More specifically, we build index structures using the

space-bound approach with the parameters κ = 1.5, 3.0 as two representatives of

lower and higher degree of partitioning. These are represented as VERT-1.5 and

VERT-3.0 respectively.

Each of the above time-travel inverted indexes is stored on disk using flat files con-

taining both the lexicon as well as posting lists. At run time, the lexicon is read com-

pletely into memory, and for a given query the appropriate partition is retrieved from

the index flat file on disk. These posting lists are stored using variable-byte compres-

sion.

Synopsis structures The estimates from the KMV synopses [BHR+07] that we chose

to implement are naturally dependent on their size in relation to the raw data size. We

experimented with two sizes of synopses: 5% and 10% of the partition size (with mini-

mum size set to 100). Unless otherwise mentioned, we report results for 10% size of the

KMV synopsis. A synopsis index was generated during index construction time and

stored as flat files on disk. Instead of storing the list of hashed double values of the KMV

synopsis, the corresponding document identifiers (32-bit integers) were stored for bet-

ter compression (Table 4.2). The document identifiers were translated to their respective

doubles during query time for the necessary KMV intersection estimation. An addi-

tional entry in the lexicon was stored the offset in the synopsis index file corresponding

to the synopsis for each partition.

Finally, we employed a practically infeasible oracle for partition selection, which com-

putes the accurate values of set operations (intersection and union) between partitions.

Oracle computes these values by simply evaluating the query completely, without any

partition selection, and then uses them in partition selection to overcome the errors due

to estimates from the KMV synopses. In our experiments, we consider the oracle as

a competitor, where exact cardinalities are known, to compare against our synopsis-

based-selection approaches.
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4.7.6. Evaluation Methodology

We evaluate the impact of partition selection by measuring the recall obtained at differ-

ent values of the parameter β. In each experiment we measure the average recall value

obtained per query, for a certain selection method, over increasing values of β from 0 to

1 with a step size of 0.1. During averaging we exclude the measurements for two types

of queries. First, we exclude queries with term/s not in the lexicon as they contribute

to false-positives for partition selection. Since we employ conjunctive query semantics

we need to select at least one partition per-term. Thus, secondly we also ignore queries

which result in exactly one affected partition for each term.

To compare the I/O performance of different techniques, we measure the number of

postings read after applying partition selection – denoted as RWS, and the number of

postings read without applying partition selection – denoted as RWOS. The ratio RWS
RWOS ,

called Ratio-of-index read, is denoted as RIR. The ratio-of-index read captures the amount

of index accessed relative to the overall index-access cost for processing the entire query.

We also measure the wall-clock times during query processing, reported in milliseconds.

4.7.7. Performance of Partition Selection

In the first set of experiments, we examine the impact of both the selection methods

described in this chapter - size-based selection and equi-cost selection. To this end, we

execute the different query granularities on the Fixed-7 index for the given datasets, and

measure the recall values at various stages of query execution. The cost incurred at a

given stage of query execution is measured, as introduced above, by RIR. The results

presenting the recall levels achieved at different RIR values are shown in Figure 4.4

(size-based selection) and Figure 4.5 (equi-cost partition selection).

We observe that both selection algorithms achieve perfect recall already when access-

ing about 50% of the index. Since both the algorithms are incremental in nature, recall

always increases with an increase in allowable I/O budget β. Both the selection meth-

ods are able to achieve a recall of 80% by accessing less than 30% of the affected postings

for NYT. In UKGOV, a 80% recall is achieved by accessing 40% of the index. In WIKI,

the results are not as temporally clustered as in NYT and UKGOV but we still reach 80%

of recall by accessing around 60% of the affected postings.

Next, we observe that, with the exception of UKGOV, the partition-selection methods

respond better to month-granularity queries than the year-granularity queries. Month-

granularity queries have fewer affected partitions than year-granularity queries. This

suggests that there is (i) a high degree of temporal clustering of results and (ii) high

replication of postings, which the selection methods exploit. Selecting the partitions

with a high concentration of results gives the observed boost to the recall levels. The
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Figure 4.4.: Performance of size-based partition selection on Fixed-7 index
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Figure 4.5.: Performance of equi-cost partition selection on Fixed-7 index
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Figure 4.6.: Performance of size-based partition selection on VERT-3.0 index
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subsequent choice of partitions understandably adds lower improvement than the ini-

tial choices exhibiting the property of diminishing returns. When we conducted the

same experiment on the vertically-partitioned index VERT-3.0, we did not observe gains

as significant as in Fixed-7. This is because the replication of the postings is controlled

and bounded.

The final observation which we make is that both the selection methods perform

almost at par. There is no considerable difference in performance and the choices of

partitions selected, in our experiments, is almost the same. This prompts the use equi-

cost partition selection which is easier to implement and has a proven approximation

guarantee. Thus from now on, the charts and tables contain results which employed

equi-cost partition selection.

4.7.8. Query-Processing Performance

In the next set of experiments,s we examine the performance of query processing, guided

by partitioning selection, by measuring wall-clock times during query execution. Since

partition selection is typically useful when there are no caching effects, the focus was on

measuring run-times in a cold-cache setup. We start with cold caches and flush them af-

ter each query execution step. Each time-travel query from the workload was evaluated

for different β values (0.1 through to 1.0) and the average time taken (in milliseconds)

for each of these bounds are presented in Tables 4.3 and 4.4. The first column represents

the tunable parameter β, followed by the recall attained, and finally the average wall-

clock per query. We compare the results of selection based retrieval by introducing two

competitors :

• the standard unpartitioned posting list, NOPARTITION, and

• partitioned lists not supporting partition selection, NOSELECTION.

Notice that the wall-clock times reported for β = 1.0 are the times taken for NOSE-

LECTION. The reported wall-clock times include the time taken by the synopsis-based

partition selection along with the time taken for the actual query processing. The time

taken for partition selection, however, is negligible and the major fraction of the overall

reported time is spent on query processing. The wall-clock times further corroborate the

observations presented before. We observe that in case of executing time-travel queries,

NOPARTITION takes almost 3 secs for WIKI, 1 sec for NYT and as long as 12 secs for

UKGOV (see Table 4.3) irrespective of the query-time granularity. Firstly, employing

a partitioned index results in superior performance as indicated by the NOSELECTION

values in the tables. Secondly, a partitioned index allows for partition selection fur-

ther reducing wall-clock times to give recall values of almost 0.8 in only 50%-60% of
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Year Granularity Month Granularity

BOUND Recall Wall-clock times (ms) Recall Wall-clock times (ms)

WIKI
0.1 0.27 207.6 0.01 5.7
0.2 0.42 367.7 0.49 88.5
0.3 0.53 436.8 0.53 94.3
0.4 0.63 521.0 0.67 134.3
0.5 0.71 594.8 0.73 135.9
0.6 0.78 646.7 0.80 165.2
0.7 0.85 736.3 0.87 165.9
0.8 0.91 798.5 0.91 186.4
0.9 0.97 877.4 0.95 192.0

NOSELECTION 1 1.00 1,020.8 1.00 212.0
NOPARTITION 1 1.00 3,217.0 1.00 3,217.0

UKGOV
0.1 0.42 1,615.9 0.00 0.0
0.2 0.61 2,788.8 0.48 352.6
0.3 0.76 3,705.2 0.51 370.4
0.4 0.88 4,592.1 0.73 590.3
0.5 0.94 5,183.2 0.80 644.3
0.6 0.97 5,772.6 0.89 751.2
0.7 0.98 6,427.9 0.91 852.7
0.8 0.98 7,025.2 0.96 927.4
0.9 0.99 7,635.8 0.96 1,026.6

NOSELECTION 1 1.00 8,490.1 1.00 1,225.9
NOPARTITION 1 1.00 12,598.0 1.00 12,598.0

NYT
0.1 0.66 200.9 0.00 0.0
0.2 0.81 254.5 0.82 103.5
0.3 0.86 301.4 0.89 106.0
0.4 0.89 308.2 0.95 117.5
0.5 0.94 328.1 0.95 122.0
0.6 0.96 358.7 0.97 125.0
0.7 0.97 384.8 0.97 126.0
0.8 0.99 428.6 0.99 128.5
0.9 0.99 468.2 0.98 141.5

NOSELECTION 1 1.00 525.7 1.00 146.0
NOPARTITION 1 1.00 1,014.0 1.00 1,014.0

Table 4.3.: Wall-clock times for selection over Fixed-30
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Year Granularity Month Granularity

BOUND Recall Wall-clock times (ms) Recall Wall-clock times (ms)

WIKI
0.1 0.28 105.8 0.26 12.8
0.2 0.43 154.4 0.42 33.4
0.3 0.55 212.2 0.55 44.0
0.4 0.65 268.1 0.62 55.5
0.5 0.73 320.5 0.70 64.6
0.6 0.81 375.6 0.77 75.6
0.7 0.87 429.4 0.84 87.4
0.8 0.92 477.6 0.89 97.2
0.9 0.96 539.0 0.93 104.3

NOSELECTION 1.0 1.00 596.4 1.00 129.0
NOPARTITION 1.0 1.00 3,217 1.00 3,217.0

UKGOV
0.1 0.25 295.1 0.27 2.3
0.2 0.42 601.6 0.45 41.8
0.3 0.56 915.6 0.65 124.9
0.4 0.68 1260.7 0.73 172.3
0.5 0.78 1544.4 0.83 239.7
0.6 0.82 1803.1 0.87 271.1
0.7 0.87 2098.3 0.90 325.0
0.8 0.91 2265.2 0.94 358.7
0.9 0.94 2436.2 0.95 395.7

NOSELECTION 1 1.00 2720.2 1.00 572.7
NOPARTITION 1 1.00 12,598 1.00 12,598.0

NYT
0.1 0.28 26.7 0.00 0.0
0.2 0.50 53.0 0.18 1.0
0.3 0.62 50.87 0.32 3.0
0.4 0.76 54.9 0.47 11.8
0.5 0.83 60.6 0.61 21.4
0.6 0.87 65.3 0.71 19.9
0.7 0.92 72.4 0.81 24.1
0.8 0.95 81.9 0.88 26.1
0.9 0.98 83.6 0.95 27.2

NOSELECTION 1.0 1.00 90.1 1.00 44.7
NOPARTITION 1.0 1.00 1,014 1.00 1,014.0

Table 4.4.: Wall-clock times for selection over VERT-(κ = 3.0)
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time taken by NOSELECTION. Although, in smaller collections, like NYT, the absolute

improvements in wall-clock times might not be large but in larger corpora, which is

typically what web archives represent, the gains are substantial.

Additionally, the anytime nature of the selection algorithm also means that the user

can terminate the query processing at any instant she wishes and can still get the max-

imum recall at that stage of the computation. A quick preview at the results after 3/4

of a second can prove beneficial with almost 90% recall (UKGOV monthly-granularity

queries) or 85% recall (WIKI year-granularity queries). The results for space-bound in-

dexing follow a similar trend (as reported in Table 4.4).

4.7.9. Impact of using Synopses

The next set of experiments is aimed at quantifying the impact of using KMV synopses

for the estimation of benefits and the effect of different synopses size. For each dataset,

we measure the average recall obtained for each granularity of time-travel queries, us-

ing 5% and 10% synopses, and compare them with those of oracle outlined earlier. The

results of this experiments over indexes with Fixed-7 partitioning, are shown in Fig-

ure 4.7 for query-granularity of one year.

We can make the following observations from these plots: (i) The gap between a 5%

KMV synopsis and 10% synopsis is negligible, prompting our choice of using 5% KMV

synopsis. (ii) Although oracle-based estimates are, as expected, better overall, improve-

ments over using KMV synopsis estimates are not significantly large.

KMV synopsis are stored as arrays of doubles and much smaller than individual post-

ings and can also be compressed and kept in memory. We also see from our experiments

that query optimization using partition selection is a small fraction of the overall query-

processing time. Thus, with a small memory footprint, and a quick estimation capa-

bility, we perceive that the use of KMV synopsis is a reasonable choice for partition

selection. We used KMV-5% in all our experiments unless explicitly mentioned.

4.7.10. Impact of Partition Granularity

In our final experiment, we wanted to examine the effect of partition selection over

varying partitioning granularities. We experimented with two different granularities of

fixed partitioning – 7-day and 30-day time-intervals, resulting in Fixed-7 and Fixed-30

index configurations. Fixed-7 has a higher number of partitions, thus can be seen as

having smaller partition sizes in comparison to Fixed-30. Clearly, this allows efficient

processing of time-point or short duration queries. However, it deteriorates for larger

time-interval queries if partition selection is not employed. On the other hand, perfor-

mance with partition selection shown in Figure 4.8 for year-granularity queries, shows
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Figure 4.7.: Impact of using synopses
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Figure 4.8.: Effect of varying partition granularity on FIXED indexes
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Figure 4.9.: Effect of varying partitioning granularities on VERT indexes
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that even for smaller partitions sizes this issue can be effectively alleviated.

We also considered the partitions created by vertical partitioning of granularities —

VERT-1.5 and VERT-3.0. We see a similar effect as in the case of fixed partitioning,

i.e., selection is much more effective for partitioning schemes with high replication of

postings. In this case, selection over VERT-3.0 provides higher benefit consistently over

VERT-1.5 (see Figure 4.9).

4.8. Related Work

Closest to the ideas presented here is the work on time-travel text search [BBNW07] that

allows users to search only the part of a document collection that existed at a given time

point. To support this functionality efficiently, posting lists from an inverted index are

temporally partitioned either according to a given space bound or required performance

guarantee. Postings whose valid-time interval overlaps with multiple of the determined

temporal partitions are judiciously replicated and put into multiple posting lists, thus

increasing the overall size of the index.

Join-processing techniques for temporal databases [GJSS05] are a second class of re-

lated work whose focus, to the best of our knowledge, has been on producing accurate

query results opposed to the approximate results that our techniques deliver.

As data volumes grow, many queries are increasingly expensive to evaluate accu-

rately. However, an approximate but almost accurate answer that is delivered quickly

is often good enough. Approximate query processing techniques [AGP99, AGPR99]

developed by the database community aim at quickly determining an approximate an-

swer and, to this end, typically leverage data statistics (often approximated using his-

tograms), sampling, and other data synopses. In contrast to our scenario, approximate

query processing techniques target scenarios with a well-designed relational schema

that implies certain reasonable queries (e.g., based on foreign keys). When cast into

a relational schema, our scenario gives rise to millions of relations (corresponding to

terms and their corresponding partitions).

4.9. Summary

In this chapter, we present a framework for efficient approximate processing of keyword

queries over a temporally-partitioned inverted index. By using a small synopsis for

each partition we identify partitions that maximize the number of final non-redundant

results and schedule them for processing early on. Our approach aims to maximize the

recall at each stage of query execution given budget on the index-access cost.
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Our experimental evaluation shows that our proposed methods can compute more

than 80% of final results even when the I/O budget is set as low as 50% of the total size

of the partitions that satisfy the temporal predicate. We derive the following insights

from our experimental results. Firstly, the choice of the selection methods does not

seem to affect the results. Both selection methods are able to deliver a relatively high

recall by accessing a small fraction of the index. Secondly, our model for expected query

processing time depending on the access costs is vindicated as the wall-clock times seem

to be correlated with the fraction of the index accessed. Finally, selection methods are

more effective for fine-granular indexes.
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Phrase Indexing and Querying

5.1. Motivation and Problem Statement

Phrases are sequences of multiple words. Phrase queries are such multi-word sequences,

typically expressed with quotation marks (e.g., “the republic of india”). In this chapter

we deal with the problem of document retrieval for phrase queries– Given a document

collection D and a phrase query p, we intend to find all documents d ∈ D that literally

contain p. Our focus in this work is on supporting phrase queries more efficiently.

Phrase queries are supported by all modern search engines and are one of their most

popular among their advanced features. Phrases tend to be unambiguous concept mark-

ers [Sal89, CTL91, LC89] and are known to increase precision in search [DLP99]. Treat-

ing a query as a phrase yields documents which are closer to the intended concept

like “six pack”, “times square”, “hurt locker”. Even when unknown to the user, phrase

queries can still be implicitly invoked, for instance, by means of query-segmentation

methods [HPBS12, LHZW11]. Query segmentation refers to pre-retrieval algorithms

that automatically introduce phrase queries in the user’s input.

Beyond their usage in search engines, phrase queries increasingly serve as a build-

ing block for other applications such as (a) entity-oriented search and analytics [ACCG08]

(e.g., to identify documents that refer to a specific entity using one of its known labels),

(b) plagiarism detection [Sta11] (e.g., to identify documents that contain a highly discrim-

inative fragment from the suspicious document), (c) culturomics [MSA+10] (e.g., to iden-

tify documents that contain a specific n-gram and compute a frequency time-series from

their timestamps).

These applications are also relevant in the context of web archives making phrase

queries an important workload type. Search over archives can be extended to use phrase

queries by replacing the keyword component in time-travel queries with phrases. Inter-

esting applications which capture entity evolution could potentially use phrase queries
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to aid entity extraction and tracking over periods of time.

5.1.1. Approach

Traditional approaches to phrase-query processing, as outlined in Chapter 2, uses in-

verted indexes with postings containing positional information. This posting payload

captures where words occur in documents has to be maintained to support phrase

queries, which leads to indexes that are larger. Büttcher et. al. [BCC10] report a fac-

tor of about 4× for the inverted index than those required for keyword queries. Phrase

query processing, unlike keyword queries where stop words can be ignored, considers

all words in the query. It enforces conjunctive query semantics and also devotes extra

processing cycles and memory to ensure that the terms occur in the same order as in the

query. Consequently, phrase queries are substantially more expensive to process.

The problem of substring matching, which is at the core of phrase queries, has been

studied extensively by the string-processing community. However, the solutions devel-

oped (e.g., suffix arrays [MM93] and permuterm indexes [FV10]) are designed for main

memory and cannot cope with large-scale document collections such as web archives.

Solutions developed by the information-retrieval community [TS09, WZB04] build on

the inverted index, extending it to index selected multi-word sequences, so-called phrases,

in addition to single words. The intuition behind indexing phrases into such an aug-

mented index exploit the fact that word sequences are more selective than words re-

sulting in improved response times. However the selection of which phrases to index

has been addressed in a limited manner. Typically phrases having a fixed length are

selected based on heuristics (e.g., whether they contain a stopword [CP08, WZB04]) or

taking into account characteristics of either the document collection [TS09] or the work-

load [WZB04]. Indexing additional phrases leads to an increase in index size which

brings us to the topic of the natural trade-off between inde size and query performance.

All the existing approaches barring [TS09] are agnostic to the index size blowup due to

indexing extra phrases and hence do not provide size-based index tuning.

Once we construct an augmented index as described before we now turn to how

queries are processed using such an enriched vocabulary. With the addition of more

terms to the lexicon there are multiple choices as to how a phrase query can be pro-

cessed. As an example, for a query “we are the champions” can be processed by {“we
are”, “we are the”, “champions”} or {“we are”, “the champions”}. A non-optimal choice can

sometimes lead to a considerable performance degradation compared to the best choice.

In the literature this problem of phrase-query optimization, that is, selecting a set of terms

to process a given phrase query has been addressed only using greedy heuristics.

We follow the general approach of augmenting the inverted index by selected phrases,
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but our approach differs in several important aspects. Firstly, it allows for variable-length
phrases to be indexed while keeping the total index size under a user-specified size bud-

get. We tackle the problem of phrase selection, that is, deciding which phrases should

be indexed, by taking into account both the document collection and the workload. The

workload indicates how frequent a particular phrase appears in queries. The document

collection on the other hand establishes how expensive it is to index a given phrase. We

balance both the benefit of usage and storage cost of a phrase to chose a set of phrases

which maximize the expected query performance. Secondly, we take a more principled

approach to solving the query optimization problem by proposing algorithms which

produce an optimal or close-to-optimal set of terms. Note that the “time-travel” aspect

is orthogonal to the indexing methods proposed in this chapter. In principle one could

partition each posting list corresponding to a multi-word sequence for efficiently pro-

cessing time-travel queries where the keyword component is a phrase query.

5.1.2. Contributions

We make the following contributions in this chapter.

1. We introduce the augmented inverted index as a generalization of existing approaches.

2. We study the problem of phrase-query optimization, establish its NP-hardness, and

describe an exact exponential algorithm as well as an O(logn)-approximation al-

gorithm to its solution.

3. We propose two novel phrase-selection methods tunable by a user-specified space

budget that consider characteristics of both the document collection and the work-

load.

4. We carry out an extensive experimental evaluation on ClueWeb09 and a corpus from

The New York Times, as two real-world document collections, and entity labels

from the YAGO2 knowledge base, as a workload, comparing our approach against

state-of-the-art competitors and establishing its efficiency and effectiveness.

With as little as 5% additional space, our approach improves phrase-query processing

performance by a factor of more than 3× over a standard positional inverted index,

thereby considerably outperforming its competitors.

5.1.3. Organization

The rest of this chapter unfolds as follows. Section 5.2 introduces our formal model. The

augmented inverted index is described in Section 5.3. Section 5.4 deals with optimizing
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phrase queries. Selecting phrases to be indexed is the subject of Section 5.5. Section 5.7

describes our experimental evaluation. We relate our work to existing prior work in

Section 5.8 and conclude in Section 5.9.

5.2. Model and Index Organization

We introduce our formal model and the notation used throughout the rest of the chapter.

For easy reference we also recap the notation in Table 5.1.

We let V denote the vocabulary of all words. The set of all non-empty sequences of words
from this vocabulary is denoted V+. Given a word sequence s = 〈 s1, . . . , sn 〉 ∈ V+, we

let | s | = n denote its length. We use s[i] to refer to the word si at the i-th position of s,

and s[i..j] (i ≤ j) to refer to the word subsequence 〈 si, . . . , sj 〉.

Definition 5.1 (Position within a sequence) Given two word sequences r and s, we let pos(r, s)
denote the set of positions at which r occurs in s, formally

pos(r, s) = { 1 ≤ i ≤ |s| | ∀ 1 ≤ j ≤ |r| : s[i+ j− 1] = r[j] } .

For r = 〈ab 〉 and s = 〈 cabcab 〉, as a concrete example, we have pos(r, s) = { 2, 5 }.

We say that s contains r if pos(r, s) 6= ∅. To ease notation, we treat single words from V
also as word sequences when convenient. This allows us, for instance, to write pos(w, s)

to refer to the positions at which w occurs in s.

Until now we operated on versions, however the approaches discussed in this chapter

are general enough to be applied to all text collections. Thus for ease of notation we

consider a document collection D of documents d ∈ D. Each document d ∈ D is a word

sequence from V+. Since we allow for duplicate documents,D is a bag of word sequences.

We letW denote our workload. Each query q ∈ W is a word sequence from V+. Since

we allow for repeated queries,W is also a bag of word sequences.

Using our notation, we now define the standard notions of document frequency and col-
lection frequency, as common in Information Retrieval. Let S be a bag of word sequences

(e.g., the document collection or the workload), we define the document frequency of

the word sequence r, as the total number of word sequences from S that contain it, as

df(r,S) = | { s ∈ S | pos(r, s) 6= ∅ } | .

Analogously, its collection frequency, as the total number of occurrences, is defined as

cf(r,S) =
∑
s∈S

|pos(r, s) | .
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Notation Description

W workload, a bag of queries

q ∈ W a query

D collection of documents

d ∈ D a document

V vocabulary, a set of words

w ∈ V a word

V+ set of non-empty word sequences

s ∈ V+ a word sequence

L ⊆ V+ lexicon, the set of indexed word sequences

t ∈ D an indexed word sequence

S(D) size of the index for the lexicon D

Table 5.1.: Notation

5.3. Indexing Framework

Having introduced our formal model, we now describe the indexing framework within

which we operate.

We build on the inverted index as the most widely-used index structure in Information

Retrieval that forms the backbone of many real-world systems. The inverted index con-

sists of two components, namely, a lexicon L of terms and the corresponding posting lists
that record for each term information about its occurrences in the document collection.

For a detailed discussion of the inverted index and its efficient implementation we refer

to Chapter 2.

To support arbitrary phrase queries, an inverted index has to contain all words from

the vocabulary in its lexicon (i.e., V ⊆ L) and record positional information in its posting

lists. Thus, the posting (d13, 〈 3, 7 〉 ) found in the posting list for word w conveys that

the word occurs at positions 3 and 7 in document d13. More formally, using our nota-

tion, a posting ( id(d), pos(w,d) ) for wordw and document d contains the document’s

unique identifier id(d) and the positions pos(w,d) at which the word occurs.

Query-processing performance for phrase queries on such a positional inverted index
tends to be limited, in particular for phrase queries that contain frequent words (e.g.,

stopwords). Posting lists for frequent terms are long, containing many postings each of

which with many positions therein, rendering them expensive to read, decompress, and

process.

Several authors [CP08, TS09, WZB04] have proposed, as a remedy, to augment the

inverted index by adding multi-word sequences, so-called phrases, to the set of terms.
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The lexicon L of such an augmented inverted index thus consists of individual words along-

side phrases (i.e., L ⊆ V+) as terms. Phrase selection can be done, for example, taking

into account their selectivity [TS09], whether they contain a stopword [CP08, WZB04],

or based on part-of-speech tags [MRS08]. Our approaches to select phrases, which take

into account both the document collection and the workload and keep index size within

a user-specified space budget, are detailed in Section 5.5.

To process a given phrase query q, a set of terms is selected from the lexicon L, and

the corresponding posting lists are intersected to identify documents that contain the

phrase. Intersecting of posting lists can be done using term-at-a-time (TAAT) or document-
at-a-time query processing (DAAT). For the former, posting lists are read one after each

other, and bookkeeping is done to keep track of positions at which the phrase can still

occur in candidate documents. For the latter, posting lists are read in parallel and a

document, when seen in all posting lists at once, is examined for whether it contains the

phrase sought. In both cases, the cost of processing a phrase query depends on the sizes

of posting lists read and thus the set of terms selected to process the query.

5.4. Query Optimization

In this section, we describe how a phrase query q can be processed using a given aug-

mented inverted index with a concrete lexicon L. Our objective is thus to determine, at
query-processing time, a subset P ⊆ L of terms, further referred to as query plan, that can

be used to process q.

To formulate the problem, we first need to capture when a query plan P can be used

to process a phrase query q. Intuitively, each word must be covered by at least one term

from P .

Definition 5.2 (Cover of a query)

covers(P,q) = ∀ 1 ≤ i ≤ |q | : ∃ t ∈ P : ∃ j ∈ pos(q[i], t) :

∀ 1 ≤ k ≤ | t | : q[i− j+ k] = t[k]

Consider a lexicon

L = { 〈a 〉, 〈b 〉, 〈 c 〉, 〈d 〉, 〈ab 〉, 〈bc 〉, 〈 cd 〉 } .

The phrase query q = 〈abc 〉, for instance, can be processed using { 〈ab 〉, 〈bc 〉 } but not

{ 〈ab 〉, 〈 cd 〉 }.
Without the augmented index, each query term was covered by exactly one term.

With the augmented index there are more choices to process each query term. The
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choices for covering b are 〈b 〉, 〈ab 〉 and 〈bc 〉. Multiple choices for processing each

position in the query leads to combinatorial choices for covering the query. In order to

chose the best query plan we would need to quantify the cost of each query cover.

As detailed above, in Section 5.3, different ways of processing a phrase query (i.e., TAAT

vs. DAAT) exist. In the worst case, regardless of which query-processing method is em-

ployed, all posting lists have to be read in their entirety. We model the cost of a query

plan P as the total number of postings that has to be read

c(P) =
∑
t∈P

df(t, C) .

While posting sizes are not uniform (e.g., due to compression and varying numbers

of contained positions), which may suggest collection frequency as a more accurate cost

measure, we found little difference in practice and thus, for simplicity, stick to document

frequency in this work. This is in line with [MTO12], who found that aggregate posting-

list lengths is the single feature most correlated with response time for full query evalu-

ation, as required for phrase queries, which also do not permit dynamic pruning.

Prior work in [TS09, WZB04] use cost-based heuristics to determine a valid query

plan. A candidate set of sequences ρ is first determined which are both present in the

query as well as the lexicon, i.e.,

ρ = { r | r ∈ L ∧ pos(r, q) 6= φ } .

Candidates are then greedily chosen from R in the order of ascending df values until

the entire query is covered. In every round the best candidate which overlaps with the

uncovered regions of the query is chosen. However, such a heuristic algorithm might

not yield an optimal plan. We illustrate this with an example. Consider a lexicon Lwith

the following df values

df(〈ab 〉) = 10
L = { 〈a 〉, 〈b 〉, 〈 c 〉, 〈d 〉, 〈ab 〉, 〈bc 〉, 〈 cd 〉 } df(〈ab 〉) = 10

df(〈 cd 〉) = 60

A phrase query q = 〈abcd 〉 evaluated according to the greedy heuristic above yield the

following plan – GRD = { 〈ab 〉, 〈bc 〉, 〈 cd 〉 } – with an cost c(GRD) = 120. It is easy

to see that the optimal cover OPT of this query is OPT = { 〈ab 〉, 〈 cd 〉 } with an cost

c(OPT) = 70.

Theoretically, one can construct a worst case scenario which can lead to arbitrary

degradation of performance. As an example let there be a query q = 〈q1 · · ·qm 〉. As-

suming that only bi-grams are indexed and the distribution of df values are such that
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df(〈qiqi+1 〉) < df(〈qi+1qi+2 〉). The cost of the query plan using the greedy heuristic is∑
1≤i<m df(〈qiqi+1 〉).
We take a more principled approach and model the query-optimization as an op-

timization problem. Assembling the above definitions of coverage and cost, we now

formally define the problem of finding a cost-minimal query plan P for a phrase query

q and lexicon L as the following NP-hard optimization problem

Definition 5.3 PHRASE-QUERY OPTIMIZATION

argmin
P⊆L

c(P) s.t. covers(P,q) .

Theorem 5.1 PHRASE-QUERY OPTIMIZATION is NP-hard.

Proof: Our proof closely follows Neraud [Nér90], who establishes that deciding whether a
given set of strings is elementary is NP-complete. We show through a reduction from VERTEX

COVER that the decision variant of PHRASE-QUERY OPTIMIZATION (i.e., whether a P with
c(P) ≤ τ exists) is NP-complete, from which our claim follows.

Let G(V, E) be an undirected graph with vertices V and edges E. We assume that there are no
isolated vertices, i.e., each vertex has at least one incident edge. VERTEX COVER asks whether
there exists a subset of vertices VC ⊆ V having cardinality |VC | ≤ k, so that

∀ (u, v) ∈ E : u ∈ VC∨ v ∈ VC,

that is, for each edge one of its connected vertices is in the vertex cover.

We obtain an instance of PHRASE-QUERY OPTIMIZATION from G(V, E) as follows:

• V = V ∪ E – we introduce a word to the vocabulary for each vertex (v) and edge (uv) in
the graph;

• q =
⊎

(u,v)∈E
u uv v – we obtain the query q as a concatenation of all edge words uv brack-

eted by the words of their source (u) and target (v);

• D = {q } – the document collection contains only a single document that equals our query;

• L = V ∪
⋃

(u,v)∈E
{ 〈u uv 〉 } ∪

⋃
(u,v)∈E

{ 〈uv v 〉 } – each vertex word (v) and edge word

(uv) is indexed as well as each combination of edge and source (uuv) and edge and target
(uv v).

This can be done in polynomial time and space. Note that, by construction, ∀ t ∈ L : df(t,D) =
1 holds. We now show that G(V, E) has a vertex cover with cardinality |VC | ≤ k iff there is a
query plan P with c(P) ≤ k+ |E |.
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(⇒) Observe that VC contains at least one of u or v for each u uv v from the query, incurring
a cost of |VC | ≤ k. We can complement this to obtain a query plan P by adding exactly one
term (〈uv 〉, 〈uuv 〉, or 〈uv v 〉) for each u uv v from the query, incurring a cost of |E |. Thus,
c(P) ≤ k+ |E | holds.

(⇐) Observe thatP must cover eachu uv v from the query in one of four ways: (i) 〈u 〉〈uv 〉〈 v 〉,
(ii) 〈u 〉〈uv v 〉, (iii) 〈uuv 〉〈 v 〉 (iv) 〈uuv 〉〈uv v 〉. Whenever a u uv v from the query is
covered as 〈uuv 〉〈uv v 〉, we replace 〈uuv 〉 by 〈u 〉, thus reducing case (iv) to case (ii).
We refer to the query plan thus obtained as P ′. Note that c(P ′) ≤ c(P), since all terms
have the same cost. P ′ contains exactly one term (〈uv 〉, 〈uuv 〉, or 〈uv v 〉) for each u uv v
from the query, incurring a cost of |E |. Let VC be the set of vertices whose words are con-
tained in P ′. We can thus write c(P ′) = |VC | + |E |. VC is a vertex cover, since after
eliminating case (iv), each u uv v from the query is covered using either 〈u 〉 or 〈 v 〉. Thus,
c(P ′) = |VC |+ |E | ≤ c(P) ≤ |E |+ k⇒ |VC | ≤ k. �

5.4.1. Optimal Solution

If an optimal query plan P∗ exists, so that every term therein occurs exactly once in the

query, we can determine an optimal query plan using dynamic programming based on

the recurrence

OPT(i)=


df(q[1..i],D) : q[1..i] ∈ L

min
j<i

OPT(j) +min
k≤j+1∧

q[k..i]∈L

df(q[k..i],D)

 : otherwise

in time O(n2) and space O(n) where |q | = n. OPT(i) denotes the cost of an optimal

solution to the prefix subproblem q[1..i] – once the dynamic-programming table has

been populated, an optimal query plan can be constructed by means of backtracking. In

the first case, the prefix subproblem can be covered using a single term. In the second

case, the optimal solution combines an optimal solution to a smaller prefix subproblem,

which is the optimal substructure inherent to dynamic programming, with a single term

that covers the remaining suffix.

Theorem 5.2 If there is an optimal query plan P∗ for a phrase query q such that

∀ t ∈ P∗ : |pos(t,q) | = 1 ,

then c(P∗) = OPT(|q |), that is, an optimal solution can be determined using the recurrence
OPT.

Proof: Observe that Theorem 5.2 is a special case of Theorem 5.4 for F = ∅. We therefore only
prove the more general Theorem 5.4. �
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It entails that we can efficiently determine optimal query plans for phrase queries that

do not contain any repeated words.

Corollary 5.3 We can compute an optimal query plan for a phrase query q in polynomial time
and space, if

∀ 1 ≤ i ≤ |q | : |pos(q[i],q) | = 1 .

In practice this special case is important: We found that about 99% of phrase queries in

our workload do not contain any repeated words, as detailed in Section 5.7.

Algorithm We present the algorithm which efficiently implements the recurrence re-

lation. The input to the algorithm are the query q and the lexicon L. A set of candidate

word sequencesR is constructed such thatCand = { s ∈ L : |pos(s,q) | > 1 }. Let us de-

note the begin and of a sequence s ∈ R as begin(s) and end of the sequence as end(s).

For example, begin(q) = 0 and end(q) = |s|− 1. The cost of each sequence s is denoted

by c(s) = df(s).

We note that the sequences have a anti-monotonocity property on their costs as stated

below which we utilize to prune the candidate set of sequences.

Lemma 5.1 (Cost-anti monotonicity of sequences) For a pair of sequences r and s, it holds

|pos(r, s)| > 1 =⇒ df(r) ≥ df(s).

Proof: Every occurence of a sequence of s in the collection is also an occurence of r. �

We exploit the cost-anti monotonicity property of sequences to eliminate sequences

inRwhich are substrings of other candidate sequences. If the entire query q is indexed,

i.e, q ∈ L, then all the remaining candidates are pruned out and we can terminate

immediately.

After the pruning step it is easy to see that each there can be only one sequence which

begins from or ends at any given position 0 ≤ i < |q| in the query. We organize the

remaining sequences into a list I ordered by their increasing end positions end(s), i.e,

I = 〈 si 〉 : si ∈ Cand ∧ @sj ∈ I, pos(si, sj) > 0 ∧ end(si) ≤ end(si+1).

Dynamic programming proceeds by computing optimal solutions OPT(i) to the pre-

fix subproblems q[1...i], i.e, optimal cost of covering the first i positions of (q). Since

I is ordered ends of sequences, in every iteration we consider a new sequence s which

increases the problem size to q(1...end(s)). We compute OPT(end(s)) by trying to mini-

mize OPT(j)+c(s) for 1 < j < end(s). We also ensure that the new solution OPT(end(s))

also a cover for q(1...end(s)). Thus s) is the last sequence in the optimal solution for the

q(1...end(s)). We store these last sequences for optimal subproblems in a queueQ. Thus
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each sequence t in a queue encodes the solution to the subproblem q(1...end(t)), i.e.,

OPT(end(t)). Since each element of Q is the last sequence in their respective subprob-

lems, the future sequences considered only have to check overlaps with the sequences

in the queue to ensure that the subproblems that they represent are covered. We let

last(Q) denote the sequence at the end of the queue or the last sequence added.

We establish an invariance in plan cost, i.e., OPT(i + 1) > OPT(i) over the sequences

inQ. Thus if an incoming sequence computes with end i has OPT(i) greater than earlier

values of OPT in the queue, then those sequences are removed until the invariance is

established. After determining the optimal solution for which s is the last sequence,

and maintaining the invariance by pruning out sequences in Q, s is appended to the

end of Q.

After we have exhausted all input values from I, as a final step, we backtrack from

the last sequence representing OPT(|q|) to construct the plan with the minimum cost (c.f.

lines 18-21). Then invariance improves the efficiency of the algorithm by decreasing the

number of comparisons (i) while determining a feasible cover (line 7) and (ii) while

backtracking for the determination of the final plan.

Queries with Repetition Otherwise, when there is no optimal query plan P∗ accord-

ing to Theorem 5.2, dynamic programming can not be directly applied, since there is

no optimal substructure. Consider, as a concrete problem instance, the phrase query

q = 〈abxayb 〉 with lexicon L = { 〈a 〉, 〈b 〉, 〈 x 〉, 〈y 〉, 〈ab 〉 } and assume df(t,D) > 1

for t ∈ { 〈a 〉, 〈b 〉, 〈 x 〉, 〈y 〉 } and df(〈ab 〉,D) = 1. For this problem instance, the op-

timal solution P∗ = { 〈a 〉, 〈b 〉, 〈 x 〉, 〈y 〉 } does not contain an optimal solution to any

prefix subproblem q[1..i] (1 < i < |q |), which all contain the term 〈ab 〉.
However, as we describe next, an optimal query plan can be computed, in the general

case, using a combination of exhaustive search over sets of repeated terms and a variant

of our above recurrence.

For a phrase query q let the set of repeated terms be formally defined as

R = { t ∈ L | |pos(t,q) | > 1 } .

Let further F ⊆ R denote a subset of repeated terms. We now define a modified docu-

ment frequency that is zero for terms from F , formally

df ′(t,D) =

{
0 : t ∈ F

df(t,D) : otherwise

and denote by OPT ′ the variant of our above recurrence that uses this modified docu-

ment frequency.
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Algorithm 7: Dynamic programming solution for optimal plan for queries with

non-repeated tokens
Input: Phrase query q, lexicon L
Output: Cost optCost of optimal query plan

begin1

Cand = { s ∈ L : |pos(s,q) | > 0 };2

I = 〈 si 〉 : si ∈ Cand ∧ @sj ∈ I, pos(si, sj) > 0 ∧ end(si) ≤ end(si+1);3

Q←− 〈i1〉;4

//Q is the queue of processed sequences.5

for s ∈ I do6

imin = argmin
ik∈Q ∧ begin(ik)≤begin(s)≤begin(ik)

(end(ik) − begin(s));
7

// imin is the sequence with the minimum intersection with ij. if imin = ∅8

then

OPT(imin) = 0 ;9

OPT(end(s)) = OPT(imin) + c(s);10

// Preserving increasing score order in Q11

while OPT(end(Q.last)) > OPT(end(s)) do12

removeLastSequence(Q);13

AppendInterval(s, Q) ;14

optCost = OPT(end(Q.last));15

// Backtracking for plan construction16

inext ← Q.last ;17

while inext 6= Q.first do18

P ← P ∪ inext ;19

inext = argmin
ik∈V ∧ (inext∩ik 6=∅)

(end(ik) − begin(inext))
20

end21

Algorithm 8 considers all subsets of repeated terms and, for each of them, extends it

into a query plan for q by means of the recurrence OPT ′. The algorithm keeps track of

the best solution seen and eventually returns it. Its correctness directly follows from the

following theorem.
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Algorithm 8: Phrase-query optimization
Input: Phrase query q, lexicon L
Output: Cost optCost of optimal query plan

1 R = { t ∈ L : |pos(t,q) | > 1 }1

2 optCost =∞2

3 for F ∈ 2R do3

4 cost = c(F) + OPT ′(|q|)4

5 if cost < optCost then5

6 optCost = cost6

7 return optCost7

Theorem 5.4 Let P∗ denote an optimal query plan for the phrase query q and let

F = { t ∈ P∗ | |pos(t,q) | > 1 }

be the set of repeated terms therein, then

c(F) + OPT ′(|q |) ≤ c(P∗) .

Proof: Let P∗ denote an optimal query plan for the phrase query q and

F = { t ∈ P∗ | |pos(t,q) | > 1 }

be the set of repeated terms and F̄ = P∗ \ F be the set of non-repeated terms therein. Without
loss of generality, we assume that q ends in a non-repeated terminal term # having df(#,D) = 0
– this can always be achieved by “patching” the query. We order non-repeated terms t ∈ F̄ by
their single item in pos(t,q) to obtain the sequence 〈 t1, . . . , tm 〉 with m =

∣∣ F̄ ∣∣. We refer to
the first position covered by ti, corresponding to the single item in pos(t,q), as bi and to the last
position as ei = (bi + | ti |− 1).

We now show by induction that

OPT ′(ei) ≤
i∑
j=1

df(tj,D) = c(P∗) − c(F) .

(i = 1) We have to distinguish two cases: (i) b1 = 1, that is, q[1..e1] is covered using a single
non-repeated term – OPT’ selects this term according to its first case. (ii) b1 > 1, that is, there
is a set of repeated terms from F that covers q[1..k] for some b1 − 1 ≤ k < e1 – OPT’ can select
the same repeated terms at zero cost and combine it with t1 that covers q[b1..e1]. Thus, in both
cases, OPT ′(e1) ≤ df(t1,D).
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(i→ i+ 1) We assume OPT ′(ei) ≤
∑i
j=1 df(tj,D). Again, we have to distinguish two cases:

(i) ei ≥ bi+1 − 1, that is, the term before ti+1 is also a non-repeated term. Thus, our recurrence
considers OPT ′(ei) + df(ti+1,D) as one possible solution. (ii) e1 < bi+1 − 1, that is, there is a
gap covered by repeated terms between ti and ti+1 – OPT’ can select the same repeated terms at
zero cost and thus considers OPT ′(ei) + 0 + df(ti+1,D) as one solution. Thus, in both cases,
OPT ′(ei+1) ≤

∑i+1
j=1 df(tj,D). �

The cost of Algorithm 8 depends on the number of repeated terms |R |, which is small

in practice and can be bounded in terms of the number of positions in q occupied by a

repeated word

r = | { 0 ≤ i ≤ |q | | |pos(q[i],q) | > 1 } | .

For our above example phrase query q = 〈abxayb 〉 we obtain r = 4. Note that the

following holds |R | ≤ r·(r+1)
2 . Algorithm 8 thus has time complexity O(2

r·(r+1)
2 n2) and

space complexity O(n2) where |q | = n.

5.4.2. Approximation Guarantee

Computing an optimal query plan can be computationally expensive in the worst case,

as just shown. We observe that our query-optimization problem can be seen as an in-

stance of SET COVER [Vaz01]. This means that we can re-use well known approximation

algorithms for SET COVER which are known to be efficient. We state the SET COVER

problem and show how our query-optimization problem is its instance.

Definition 5.4 (SET COVER problem) Given a universe U of n elements, a collection of sub-
sets U , S = {S1, . . . , Sn}, and a cost function c : S =⇒ Q+, finds a minimum cost sub-
collection of S that covers all elements of U .

To this end, we convert an instance of our problem, consisting of a phrase query q

and a lexicon L with associated costs, into a SET COVER instance as follows: Let the

universe of items U = { 1, . . . , |q | } correspond to positions in the phrase query. For each

term t ∈ L, we define a subset S t ⊆ U of covered positions as

S t = { 1 ≤ i ≤ |q | | ∃ j ∈ pos(t,q) : j ≤ i < j+ | t | } .

The collection of subsets of U is then defined as

S = {S t | t ∈ L }

and we define cost(S t) = df(t,D) as a cost function.

For our concrete problem instance q = 〈abxayb 〉 andL = { 〈a 〉, 〈b 〉, 〈 x 〉, 〈y 〉, 〈ab 〉 }
from above, we obtain U = { 1, . . . , 6 } and S = { { 1, 4 } , { 2, 6 } , { 3 } , { 5 } , { 1 } } as the cor-

responding SET COVER instance.
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We can now use the greedy algorithm which is known to be aO(logn)-approximation

algorithm [Vaz01]. The greedy algorithm iteratively the most cost effective set from S
until it covers all elements. The cost-effectiveness is defined as a benefit-cost ratio where

benefit is the number of yet-uncovered elements and the cost is cost(St). This can be

implemented in O(n2) time and O(n2) space where |q | = n.

Note that, as a key difference to the greedy algorithm described in [WZB04], which

to the best of our knowledge does not give an approximation guarantee, our greedy

algorithm (APX) selects subsets (corresponding to terms from the lexicon) taking into

account the number of additional items covered and the coverage already achieved by

selected subsets. This is unlike the approach in [WZB04], referred to as GRD, where

items are also chosen greedily based solely on their costs. The number of uncovered

items is not factored in and hence they do not make a distinction if one element is un-

covered or many. As an example consider a q = 〈abcd 〉 and a lexicon L with the

following costs:

cost(〈ab 〉) = 10
L = { 〈a 〉, 〈b 〉, 〈 c 〉, 〈d 〉, 〈ab 〉, 〈bc 〉, 〈 cd 〉 } cost(〈bc 〉) = 20

cost(〈 cd 〉) = 30

GRD would in the first choose 〈ab 〉, followed by 〈bc 〉 and finally 〈 cd 〉. However,

APX after choosing 〈ab 〉 in the first round would choose 〈 cd 〉 over 〈bc 〉 which has a

better benefit-cost ratio because of larger number of uncovered positions.

5.5. Phrase Selection

Having described how phrase queries can be efficiently processed on a given aug-

mented inverted index, we now turn to the complementary problem of phrase-selection.

We identify two key ingredients on which we build upon. Firstly, we analyze the work-

load to determine the most frequently used word sequences. The frequency of usage

of a sequence is an indicator that it is an important sequence and a potential compo-

nent in many queries in the workload. But a word sequence might be frequent, in the

workload or collection or both, but might be expensive in terms of query processing

and storage. Consider the phrase “of the”, which is a frequent sequence in the work-

load but also frequent in the document collection. A high df value of the phrase means

that the corresponding posting list would be big leading high storage overhead. Since

we model our query processing cost as the sum of df values of the participating terms,

it also means that using “of the” has performance overheads as well. However, note
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that the performance using “of the” is still better than using the single terms “of” and

“the”. This brings us to the second ingredient which is the cost of using a certain word

sequence. We determine the cost of usage of the word sequence from the occurrence in

the document collection. In our methods we balance these two ingredients to select a

set of sequences to be indexed which are perceived to improve query performance.

In what follows, we introduce two phrase-selection methods that determine, at index-

build time, which phrases should be included in the lexicon, taking into account both

characteristics of the document collection and the workload.

5.5.1. Query-Optimizer-Based Phrase Selection

Our first method, coined query-optimizer-based phrase-selection (QOBS), builds on

Section 5.4 and considers how phrase queries from the workload would actually be

processed if a specific lexicon was available.

Let c(q,L) denote the cost of processing the phrase query q with lexicon L, in terms

of the number of postings that have to be read, determined using one of the query-

optimization methods from Section 5.4. We define the expected cost of processing a

phrase query from the workloadW with lexicon L as

c(W,L) = 1

|W |

∑
q∈W

c(q,L) .

Recall that W is a bag of word sequences, so that repeated phrase queries are taken

into account. The benefit of having the lexicon L instead of only single words from V ,

which serves as our baseline as described in Section 5.3, as the improvement in expected

processing cost is defined as

b(L) = c(W,V) − c(W,L) .

The space consumed by the augmented inverted index with lexicon L is captured as

s(L) =
∑
t∈L

df(t,D) ,

corresponding to the total number of postings in the index.

Our objective is to compile a lexicon that minimizes the expected processing cost for

phrase queries from the workload and results in an index whose size is within a user-

specified space budget. We model the user-specified space budget as a percentage over-

head α (0 ≤ α) over the size of our baseline augmented inverted index having lexicon

L = V . We obtain the optimization problem

Definition 5.5 QUERY-OPTIMIZER-BASED PHRASE SELECTION

argmax
V ⊆L⊆V+

b(W,L) s.t. s(L) ≤ (1+ α) · s(V) .
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Observe that our formulation implicitly encodes the trade-off between how frequent

a phrase is and how expensive it is to process. We obtain the first information from the

workload and the second from the document collection. A phrase s having low df(s,L)
and high df(s,W) is more likely to be selected. In addition, our formulation takes into

account the cost of the terms that a phrase substitutes. For two candidate phrases s and

r with df(s,L) = df(r,L), the one that substitutes more expensive terms is preferred.

Unfortunately, our optimization problem is NP-hard as we prove below.

Theorem 5.5 QUERY-OPTIMIZER-BASED PHRASE SELECTION is NP-hard.

Proof: We show this through reduction from the 0-1 or binary KNAPSACK PROBLEM which
is proven to be NP complete [LSS88]. In the binary knapsack problem, we have a set of n
items {ei} associated with integral weights {wi} and profits {pi}. We want to select items to put
in the knapsack such that the sum of the profits is maximized and the sum of weights is less than
L - which is the size of the knapsack.

We can map every instance of the binary problem into our problem by the following construc-
tion: (i) We construct a query workload with n two word queries, each query 〈aibi 〉 correspond-
ing to an item ei, where both words are different and also requiring that no two queries share a
word. (ii) We create a document collection of n documents, where each document contains the
phrase 〈aibi 〉 exactly wi times. This ensures that df(〈aibi 〉,D) = wi.

We additionally populate the rest of the document with single words ai and bi such that
df(〈ai 〉,D) + df(〈bi 〉,D) = pi +wi. This ensures that the benefit of materializing a lexicon
L = { 〈aibi 〉 } is pi. We want to maximize the benefit of materializing a lexicon L subject to the
constraint that the sum of costs is not greater than a given space budget, which maps to the same
objective function as the binary knapsack problem. �

Our objective function is non-decreasing, so that L ⊆ L ′ ⇒ b(L) ≤ b(L ′) – the overall

benefit can only improve when a phrase is added to the lexicon. However, somewhat

surprisingly, it is not submodular and thus does not have the property of diminishing

returns, which has unfortunate ramifications detailed below.

To show this, we present a counter example. Let the marginal benefit of adding the

phrase s to lexicon L be defined as

m(s,W,L) = b(W,L ∪ { s }) − b(W,L)

= c(W,L) − c(W,L ∪ { s }) .

Now consider q = 〈abcd 〉 as the only phrase query inW , two dictionaries L1 and L2

L1 = { 〈a 〉, 〈b 〉, 〈 c 〉, 〈d 〉, 〈bc 〉 } ,

L2 = { 〈a 〉, 〈b 〉, 〈 c 〉, 〈d 〉, 〈ab 〉, 〈bc 〉 } .
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Further, assume that df(t,D) = 2 for single words t ∈ { 〈a 〉, 〈b 〉, 〈 c 〉, 〈d 〉 } and

df(t,D) = 1 for phrases t ∈ { 〈ab 〉, 〈bc 〉, 〈 cd 〉 }. When using OPT from Section 5.4,

we obtain c(q,L1) = 5 and c(q,L2) = 4. When we add 〈 cd 〉 to L1 and L2, respec-

tively, we obtain c(q,L1 ∪ { 〈 cd 〉 }) = 4 (from the query plan { 〈a 〉, 〈bc 〉, 〈 cd 〉 }) and

c(q,L2 ∪ { 〈 cd 〉 }) = 2 (from the query plan { 〈ab 〉, 〈 cd 〉 }) – expressed in terms of

marginal benefits m(〈 cd 〉,W,L1) = 1 and m(〈 cd 〉,W,L2) = 2. Although L1 ⊂ L2,
the marginal benefit of adding the phrase 〈 cd 〉 to L2 is larger.

Since our objective function is not submodular, we can not leverage the result from

Nemhauser et al. [NWF78], which shows that the greedy algorithm that selects items in

descending order of their benefit-cost ratio has a (1− 1
e)-approximation guarantee.

Nevertheless, even without an approximation guarantee, we rely on this greedy al-

gorithm to compile the lexicon L. The algorithm considers as candidates all phrases

that are contained in both the workload and the document collection – no other phrase

can impact our objective function. It iteratively extends the lexicon L until the space

budget is exhausted. In every iteration, the algorithm selects the phrase that has the

largest benefit-cost ratio m(s,W,L)/df(s,D). After adding a phrase to the lexicon L,

the benefit-cost ratios of the remaining candidates have to be updated. To this end,

for each of the candidates, the algorithm performs a what-if analysis, computing query

plans for each phrase query from the workload under the assumption that the candidate

has been added to the lexicon. This is clearly prohibitive when implemented naı̈vely. It

can be made feasible in practice by keeping track of which candidates can potentially

be used to process which phrase query. One can then selectively update the benefit-cost

ratios of only those candidates that can potentially be used to process any of the phrase

query whose query plan has changed after the latest addition to the lexicon.

5.5.2. Coverage-Based Phrase Selection

While QOBS presented above is aware of the query-optimization method used and ac-

tively invokes it, our second phrase-selection method, coined coverage-based phrase-

selection (CBS), is agnostic to phrase-query optimization. It is based on a simpler prob-

lem formulation that considers how many distinct positions in phrase queries from

the workload can be covered using phrases from the lexicon and also keeps index size

within a user-specified space budget.

We first formally define the notion of coverage of a position. A word sequence s =

〈w1w2 . . . wn 〉 is a sequence of n words where the index n indicates the nth position or

nth word of the sequence. A position k is said to be covered by a phrase p, |p| > 1, if the

following holds ∃i ∈ pos(s, p)|i ≤ k ≤ i+ |p|.

Using this notion of a covered position we extend it to capture the concept of positions
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covered by a word sequence p in s denoted by poscov(p, s).

poscov(p, s) = {k ∈ Z+ | i ∈ pos(s, p), i ≤ k ≤ i+ |p| }.

As an example positions covered by 〈ab 〉 in phrase 〈abxyab 〉 is

poscov(〈abxyab 〉,V ∪ { 〈ab 〉 }) = {1, 2, 4, 5}.

To measure how much of a phrase query q can be covered using phrases from the

lexicon L we introduce the measure coverage(q,L). The value of coverage(q,L) value

ranges in [0, |q |] and conveys how many distinct positions from the phrase query can

be covered. Formally,

Definition 5.6 (Coverage)

coverage(q,L) =

∣∣∣∣∣∣
 ⋃
p∈L

poscov(p,q) | ∀pos(p,q) > 0


∣∣∣∣∣∣ .

In other words, coverage encodes the distinct positions covered by word sequences

(not single words) from the lexicon in a query. Some examples of coverage are given

below.

coverage(〈abxy 〉,V ∪ { 〈abc 〉, 〈 xy 〉 }) = 2

coverage(〈abaxaba 〉,V ∪ { 〈aba 〉, 〈ab 〉 }) = 6

coverage(〈ababac 〉,V ∪ { 〈aba 〉, 〈 xy 〉 }) = 5 .

We extend our definition of coverage to the workload as

coverage(W,L) =
∑
q∈W

coverage(q,L) .

Again,W is a bag of word sequences, so that the coverage of repeated phrase queries is

reflected.

Our objective is to compile a lexiconL that maximizes the coverage(W,L) and results

in an index whose size is within a user-specified space budget. To measure index size

and model the user-specified space budget, we use the same formalism as in QOBS. We

obtain the optimization problem

Definition 5.7 COVERAGE-BASED PHRASE SELECTION

argmax
V ⊆L⊆V+

coverage(W,L) s.t. s(L) ≤ (1+ α) · s(V) .
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This problem formulation considers the same ingredients as the problem formulation

behind QOBS. It implicitly takes into account the frequency df(s,W) of a phrase s in the

workload, using the coverage measure, and also df(s,D) reflecting how expensive the

phrase is to select. Unlike QOBS, this formulation does not take into account the costs

of the terms which are replaced by a phrase. Consider a case where two phrases 〈 xy 〉
and 〈ab 〉 have df(〈 xy 〉,W) = df(〈ab 〉,W) but

df(〈a 〉,D) + df(〈b 〉,D) > df(〈 x 〉,D) + df(〈y 〉,D).

CBS is agnostic of the fact that 〈ab 〉 is more beneficial to select. Every instance of

coverage-based selection can be mapped to an instance of the budgeted-maximum cov-
erage (BMC) problem [KMN99]. BMC takes as input a collection of sets S = { s1, . . . , sm }

with associated costs { c1, . . . , cm } defined over a domain of items { x1, . . . , xn } that have

associated weights {w1, . . . , wn }. The goal is to find a collection of sets S ′ ⊆ S that max-

imizes the total weight of items covered and whose total cost does not exceed a given

budget L. The transformation is straightforward: (i) candidate phrases are sets si with

costs df(si,D), (ii) items are distinct positions in phrase queries from the workload each

with unit weight, (iii) the budget is set as L = (1+ α) · s(V).
The greedy algorithm that selects items in descending order of their benefit-cost ratio

gives a (1 − 1
e)-approximation guarantee for BMC. The cost of a phrase s is df(s,D); its

benefit is defined as the number of yet-uncovered distinct positions that it covers

coverage(W,L ∪ { s }) − coverage(W,L) .

Since the objective function captures coverage of items in a set, it is submodular which

implies that the benefits of candidates are non-increasing. This offers opportunities for

optimization in practice which we discuss in the next section.

5.5.3. Optimizations for Practical Indexing

Both the phrase selection methods outlined before use a greedy algorithm to select se-

quences which are to be indexed. The greedy algorithm, in every iteration, chooses the

most promising candidate and adds it to the lexicon. Candidates are maintained in a

priority queue and the best candidate is chosen based on the benefit-cost ratio. After

a choice has been made, the benefit values of all the remaining candidate sequences

are updated. The bottleneck of the greedy algorithm is usually the update of candidate

benefits after a phrase has been added to the lexicon. We discuss optimizations for both

selection algorithms to make them feasible in practice.
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Maintaining Dependent Queries

For QOBS, the benefit of each candidate s, given the current state of the lexicon L, is

given by c(W,L) − c(W,L ∪ { s }). Implementing this in a naı̈ve manner involves re-

computing query plans for all queries in the workload with any addition of s to the

lexicon (L ∪ { s }). This is clearly an expensive operation. However, a candidate is

not present in all queries. Only a subset of queries W ′ ⊆ W where s is present in,

{q ∈ W ′ | pos(s,q) 6= φ }, are affected. Based on this we pre-compute and store such de-

pendencies between candidates and queries. This has a couple of benefits. Firstly, as

discussed above, they avoid unnecessary recomputation of query plans. Secondly, once

the query plans forW ′ have to be recomputed, we use the dependencies to update the

benefits of only those candidates affected byW ′, i.e,{
s ∈ L \ V+ | pos(s,q) 6= φ, q ∈ W ′

}
.

This optimization is also applicable for CBS where instead of computing query plans

we compute coverage coverage(W,L) at every update step. As an additional optimiza-

tion one can dynamically prune out queries which have been completely covered.

Lazy Updates

We discussed in the previous section that CBS admits sub-modularity due to which

the benefits of candidates are non-increasing over the increasing execution states of the

algorithm. We say that a pair of candidates s and s ′ are independent if they do not have

a query in common, or,{
q | pos(s, q) 6= ∅∧ pos(s ′, q) 6= ∅

}
= ∅.

Hence the choice of s does not affect the benefit value of s ′ for the subsequent itera-

tion. Utilizing this observation we can defer updating the benefit values of candidates

until it is deemed required. Specifically, we can avoid the update step if the next best

candidate is independent to all the previously selected candidates C ⊆ L from the last

update step. Once this condition is violated all the dependent queries of candidates in C

are updated. This allows us to lazily update them, resulting in runtime improvements

by almost 50%.

Candidate Pruning

Finally for CBS, when the query plans are indeed updated, the partial contributions for

all candidate phrases associated with each query have to be determined. This is imple-

mented by maintaining associatively the query to candidate phrase mappingM(q).
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Whenever a query q is updated with the new lexicon L, the modified benefit of each

candidate s dependent on q needs to be computed. However, if sequences from L al-

ready cover the regions covered by s, choosing s would not provide no further benefit

to q. This allows to prune away candidate phrases fromM(q) when

poscov(s, q) ⊆ {poscov(s ′, q)|s ′ ∈ L}.

This allows to update fewer number of candidates in the subsequent stages of the algo-

rithm potentially leading to further improvements in efficiency.

5.6. System Architecture

Document Collection

Phrase-Query Processor

Query Interface

Term Index

 P
hr

as
e 

In
de

xi
ng

 S
ys

te
m

resultsquery

Phrase Index

termphrase

phrase 
selection

determine
candidate

terms

determine
candidate

terms

index access 
with

optimized 
plan

Query
Workload

Friday, June 28, 13
Figure 5.1.: System architecture

Figure 5.1 shows a high-level overview of the architecture of our phrase-indexing

system. It consists of two indexes – the term index and the multi-word index.

• Term Index It is the standard word-level inverted index consisting of the lexi-

con and the inverted files built over the document collection. It indexes all single
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words with their positional information.

• Phrase Index It is constructed over the document collection for a set of phrases

selected employing the phrase-selection algorithms detailed in Section 5.5.

In practice, we build the term index first and its associated lexicon. The statistics re-

quired for the phrase-selection algorithm are computed from the lexicon and the query

workload. The selection algorithms are then executed and a selection set of word-sequences

are determined which have to be indexed in the phrase index. Typically, the selected set

is small in size and fits in memory. Hence, indexing infrastructure for indexing words

can be reused employing the selection set of word sequences to filter out sequences

which do not need to be indexed.

While processing queries, both the lexicons, for term and the phrase index, are con-

sulted to determine the candidate words or word sequences presented in the query.

Query optimization is performed over the candidate terms to determine the best plan.

Finally, the respective indexes are accessed, for the terms in the optimized plan, for

fetching and intersecting the posting lists to compute results.

5.7. Experimental Evaluation

In this section, we describe our experimental evaluation. We begin with details about

our experimental setup including employed datasets, before describing our comparison

of the query-optimization methods from Section 5.4, followed by an evaluation of our

phrase-selection methods from Section 5.5 against state-of-the-art competitors.

5.7.1. Setup

All indexes were built on a local Hadoop cluster consisting of ten Dell R410 server-

class computers, each equipped with 64 GB of main memory, two Intel Xeon X5650

6-core CPUs, and four internal 2 TB SAS 7,200 rpm hard disks configured as a bunch-

of-disks. The machines are connected by 10 Gbit Ethernet, run Cloudera CDH3u0 as

a distribution of Hadoop 0.20.2, and use Oracle Java 1.6.0 26. Query optimization and

phrase-selection experiments were performed on a Dell PowerEdge M610 server with

2 Intel Xeon E5530 CPUs, 48 GB of main memory, a large iSCSI-attached disk array,

Debian GNU/Linux (SMP Kernel 2.6.29.3.1) and running Oracle Java 1.6.0 34. Wall-

clock time measurements were performed with the Java Hotspot 64-Bit Server VM using

the CMS garbage collector.
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5.7.2. Datasets Used

We use two real-world document collections for our experiments:

• ClueWeb09-B [CWC13] (CW) – ClueWeb09-B is a subset of the ClueWeb09 corpus

consisting of more than 50 million web documents in English language crawled in

2009;

• The New York Times Annotated Corpus [NYT13] (NYT) – The New York Times An-

notated Corpus, as introduced in the previous chapter, contains more than 1.8

million newspaper articles published by The New York Times between 1987 and

2007.

Both document collections were processed using Stanford CoreNLP [COR13] for tok-

enization. To make CW more handleable, we use boilerplate detection as described

in [KFN10] and available in the DefaultExtractor of boilerpipe [BOI] .

5.7.3. Query Workload

As a workload we use entity labels from the YAGO2 knowledge base [HSBW13]. In its

rdfs:label (formerly means) relation, YAGO2 collects strings that may refer to a spe-

cific entity, which are mined from anchor texts in Wikipedia. For the entity Bob Dylan,

as a concrete example, it includes among others the entity labels “bob dylan”, “bob allen

zimmerman”, and “robert allen zimmerman”. In total, the workload that we obtain con-

tains 13.4 million entity labels having an average length of 2.41 words. Interestingly,

almost 99% of them do not contain any repeated word; we observe at most eight re-

peated words for the phrase queries in our workload. We only consider those entity

labels for which all constituent words occur in the document collection at hand, leaving

us with 10.7million and 8.0million phrase queries for CW and NYT, respectively.

For our experiments on the query-optimizers effectiveness, we additionally consider

a subset of our workload which refer to artist names, albums and song titles. Some

examples of phrases in this workload are “american national anthem”, “and the green

grass grew all around” etc. The workload that we obtain has 107, 245 entity labels having

an average length of 3.4words.

5.7.4. Index Management and Competitors

We implemented our indexing framework using Hadoop. The lexicon, containing for

each term its term identifier, document frequency, and collection frequency, is stored in a

flat file and loaded into main memory at runtime. Posting lists are kept in an indexed file

(implemented using Hadoop’s MapFile) and are stored using variable-byte encoding
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in combination with d-gaps for document identifiers of consecutive postings and offsets

within each posting. We use TAAT to process phrase queries.

We compare against the following methods in our experiments – some from the liter-

ature and others conceivable baselines:

• Uni-Gram Index (UNI) indexes unigrams and does not select any phrases;

• Oracle Index (ORA) indexes unigrams and selects all phrase queries from the

workload as phrases;

• Next-Word Index [WZB04] (NEXT) indexes unigrams and selects all bigrams from

the workload that contain a stopword as phrases;

• Combined Index [WZB04] (COMB) combines NEXT and ORA. In the original

paper, the authors considered, instead of ORA, a phrase index that contains pre-

computed results of popular phrase queries. ORA thus selects a superset of the

phrases that the original approach considered. We further strengthen this com-

petitor, in comparison to its original description, by using phrases from ORA also

to process other longer phrase queries. Thus, if “united states” has been selected

by ORA, our query optimizer may use it to processing the phrase query “president

of the united states”.

• Bi-Gram Index (BI) indexes unigrams and selects all bigrams from the workload

as phrases;

• Tri-Gram Index (TRI) indexes unigrams and selects all bigrams and trigrams from

the workload as phrases;

• Out-of-Box Index [TS09] (OOBI) indexes unigrams and selects all bigrams whose

cost is above a user-specified threshold. Unlike the other competitors, OOBI is

thus also tunable. To make it comparable to our phrase-selection methods, we

adapt it, so that it ranks bigrams in descending order of their document frequency

and selects phrases from the obtained list until the user-specified space budget has

been exhausted.

We compare these approaches against our query-optimizer-based selection (QOBS)

and coverage-based selection (CBS). We use document frequency as a cost measure for

all our experiments. As mentioned earlier, one could use collection frequency instead.

In practice, though, the two measures are highly correlated and we did not observe

big differences. Also, as a one-time pre-processing performed using Hadoop and made

available to all methods, we computed document frequencies in the workload and the

document collection for all n-grams from the entire workload.
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GRD APX

l = 2 l = 4 l = 6 l = 2 l = 4 l = 6

%
NYT [0] 7,586,656 7,839,328 7,877,367 7,662,566 7,868,885 7,900,573

(0 − 20) 403,399 200,017 174,744 382,428 192,417 166,658
[20 − 40) 70,852 31,399 22,281 35,157 18, 750 12,712
[40 − 60) 19,256 9,368 5,706 12 111 220
[60 − 80) - 51 65 - - -

%
CW [0] 10,080,400 10,488,737 10,589,685 10,176,979 10,523,862 10,607,792

(0 − 20) 547,289 204,716 135,579 525,781 27,894 132,417
[20 − 40) 98,391 45,313 21,526 49,995 27,894 12,496
[40 − 60) 26,700 13,740 5,764 25 136 75
[60 − 80) - 274 226 - - -

Table 5.2.: Percentage improvement in query-processing cost by OPT over GRD and

APX

GRD APX

l = 2 l = 4 l = 6 l = 2 l = 4 l = 6

%
NYT [0] 77,130 82,058 83,708 79,459 82,703 84,031

(0 − 20) 7,705 3,686 2,747 6,656 3,654 2,667
[20 − 40) 1,735 950 379 839 594 254
[40 − 60) 387 261 117 3 6 5
[60 − 80) - 2 6 - - -

%
CW [0] 84,108 91,039 94,839 86,281 92,034 95,218

(0 − 20) 9,888 4,129 1,849 9,772 4,259 1,832
[20 − 40) 2,710 1,753 505 1,342 1,105 347
[40 − 60) 704 480 197 15 12 13
[60 − 80) - 9 20 - - -

Table 5.3.: Percentage improvement in query-processing cost by OPT over GRD and

APX – on song titles
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5.7.5. Performance of Query Optimization

Our first experiment examines the effect that the choice of query-optimization method

can have on query-processing performance. We consider three query-optimization meth-

ods for this experiment: the greedy algorithm (GRD) from [WZB04], our greedy algo-

rithm (APX) that gives an approximation guarantee, and our exponential exact algo-

rithm (OPT). GRD considers terms in increasing order of their document frequency,

thus based on their selectivity, and chooses a term if it covers any yet-uncovered por-

tion of the phrase query. Originally designed to deal with bigrams only, we extend GRD

to break ties based on term length, and thus favor the longer term, if two terms have the

same document frequency.

To compare the three query-optimization methods, we built augmented inverted in-

dexes whose dictionaries include all phrases up to a specific maximum length l ∈
{ 2, 4, 6 }. Thus, for l = 4, all phrases of length four or less are indexed. This allows us to

study the behavior of the methods as more terms to choose from become available.

First, we examine the different methods in terms of their runtime in practice. We ob-

serve an average runtime of 0.01ms for each of them, showing that there is no difference

in practice. The maximum runtime observed for OPT for any of the phrase queries from

our workload is 2.00 ms, indicating that its exponential nature rarely affects its run-

time in practice. Thus, for all further experiments we use OPT as a query-optimization

method.

Second, we compare the different methods in term of the costs of their generated

query plans. To this end, we determine for each phrase query from the workload the

percentage improvement over GRD and APX, respectively that one can achieve by us-

ing OPT. Let COPT , CGRD, and CAPX denote the cost of the query plan (in terms of to-

tal number of postings read) determined by the respective query-optimization method.

The percentage improvement is given by the values (CGRD−COPT )/(CGRD) and (CAPX−

COPT )/(CAPX) that range in [0, 1). Table 5.2 gives bucketed percentage improvements for

our two datasets and three augmented inverted indexes. Each cell reports the number

of phrase queries from the workload for which a percentage improvement in the given

range was observed.

From Table 5.2, we observe that, for the majority of phrase queries, there is no substan-

tial improvement (i.e., less than 20%) when using OPT instead one of the non-optimal

methods. Further, we see that the number of phrase queries for which an improve-

ment is achieved is generally lower for APX than for GRD, which is expected given

the former’s approximation guarantee. As can also be seen from the table, there is a

non-negligible number of phrase queries for which OPT improves by 40% or more over

GRD. For the query “we are the champions” with l = 2, as a concrete example, GRD
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picks {we are, are the, the champions } as a query plan, which is more than twice as

expensive as the query plan {we are, the champions } determined by OPT. When com-

paring percentage improvements across different augmented inverted indexes, we see

less improvement for larger values of l, which makes sense since those include longer,

more selective phrases favored by the non-optimal methods.

To examine the effect of the query optimizer of longer query lengths, we now look at

the results on experiments on song titles summarized in Table 5.3. We observe that, like

in the previous table, for majority of the queries, OPT shows no improvement over GRD

and APX. However, OPT shows non-zero improvement for around 11% of the queries in

Table 5.3, as compared to the entire workload where the improvements are for less than

6% of the queries. This means that OPT improves over the other optimizers for longer

query lengths. Consistent with the previous observation, we see that APX performs bet-

ter than GRD in majority of the scenarios. It is also interesting to note that, although the

improvements for larger values of l is lesser, the magnitude of improvement is larger as

compared to l = 2, 4. As an example, for l = 6 in CW, we see an 60%-80% improvements

over GRD when using OPT in some queries.

In summary, neither GRD nor APX falls far behind OPT in terms of the cost of its

generated query plans. APX is robust, comes with an approximation guarantee, and

is easy to implement. However, as stated above, we did not see any phrase query for

which OPT was too expensive to run, making it a viable choice in practice.

5.7.6. Effect of Phrase Selection

Our second experiment compares our phrase-selection methods against their tunable

and non-tunable competitors in terms of query-processing performance.

We use five-fold cross validation throughout this experiment. Our workload is split

into five folds, yielding five training-test configurations. Phrase selection is then per-

formed using the four training folds; query-performance measurements are performed

using the test fold. We report averages over the five training-test configurations.

For all methods, we assume that single words are present in the lexicon – UNI thus

serves as a baseline that all methods under comparison build upon. On CW the standard

positional inverted index obtained by UNI amounts to 71 GB and contains a total of

90.17 billion postings; on NYT the corresponding index amounts to 3 GB and contains a

total of 4.91 billion postings. Index sizes, in the following, are indicated in terms of their

percentage overhead over UNI – an index size of 10% thus means that the corresponding

is 1.1× larger than the baseline index.

Query-processing performance is measured both in abstract and concrete terms. As

an abstract cost measure, we use the average number of postings that is read to process a
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Figure 5.2.: Performance of tunable phrase-selection methods relative to non-tunable

competitors in terms of abstract cost measures

phrase query from the test folds. We use wall-clock times (in milliseconds) as a concrete

cost measure. These were obtained based on a sample of 25, 000 phrase queries (5, 000

per test fold), using a single core, and pre-fetching all required posting lists into main
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Figure 5.3.: Performance of tunable phrase-selection methods relative to non-tunable

competitors in terms of wall-clock times

memory.

Figure 5.3 compares the tunable phrase-selection methods (QOBS, CBS, OOBI) against

their non-tunable competitors. As a first step, we built an index for each of the non-
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Figure 5.4.: Performance of tunable phrase-selection methods

tunable competitors. The sizes of these indexes determine the values of α, which we

feed into the tunable phrase-selection methods to obtain indexes of correspond sizes, in

a second step. For the sake of comparison, we include UNI in Figure 5.3, corresponding

to α = 0, that is, no phrases are selected.
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We observe that ORA results in the smallest index, since it materializes only phrases

that occur in exactly that form as phrase queries in the workload. However, doing so,

it overfits to the training folds, resulting in query-processing performance that is only

slightly better than our baseline UNI. When given the same amount of additional space

(6% for NYT and 5% for CW), our tunable phrase-selection methods QOBS and CBS

achieve considerably better query-processing performance – an improvement by at least

a factor 3× over ORA and the baseline UNI in terms of both abstract and concrete mea-

sures. NEXT and COMB, materializing all bigrams from the training folds that contain

a stopword, result in indexes that consume 55% − 60% additional space. While they

achieve good improvements in query-processing performance over the baseline, they

are consistently outperformed by QOBS and CBS. BI and TRI, which result in indexes

that require 67% − 80% of additional space, improve query-processing performance by

at least a factor 7× over the baseline. From the tunable phrase-selection methods OOBI

and CBS perform at par, when given this much additional space. While this also holds

for QOBS on CW, it performs slightly worse than its competition on NYT. Moreover,

we see that the trends observed in abstract and concrete measures of query-processing

performance are consistent. In the rest of this section, we thus only consider abstract

cost measures.

Figure 5.4 compares our tunable phrase-selection methods QOBS and CBS against

OOBI as the only tunable competitor. For all three methods, we constructed indexes

considering values of α ranging from 5% to 80%. UNI is again included at α = 0%

for the sake of comparison. With as little as 5% additional space, QOBS and CBS im-

prove query-processing performance by at least a factor 3×. When comparing our two

methods, we observe that CBS performs slightly better than QOBS on NYT, whereas

their performance is comparable on CW. QOBS and CBS perform consistently better

than their sole competitor OOBI. When given 5% additional space, as a concrete figure,

OOBI improves over UNI by at most a factor 1.2×. What is also apparent from the fig-

ure are the diminishing returns of additional space, which are more pronounced for our

methods that already make highly effective use of the initial 5% of additional space. Fi-

nally, when given ample additional space, all tunable phrase-selection methods perform

at par.

5.8. Related Work

We now discuss the connection between our work and existing prior work, which we

categorize as follows:

Phrase Queries. Williams et al. [WZB04] put forward the combined index to support

136



5.8. Related Work

phrase queries efficiently. It assembles three levels of indexing: (i) a first-word index as

a positional inverted index, (ii) a next-word index that indexes all bigrams containing a

stopword, and (iii) a phrase index with popular phrases from a query log. Its in-memory

lexicon is kept compact by exploiting common first words between bigrams. Query

processing escalates through these indexes – first it consults the phrase index and, if

the phrase query is not found therein, processes it using bigrams and unigrams from

the other indexes. Transier and Sanders [TS09] select bigrams to index based only on

characteristics of the document collection. Selecting bigrams makes sense in settings

where phrase queries are issued by human users and tend to be short – as observed

for web search by Spink et al. [SWJS01]. We also target application-generated queries

(e.g., quotations and titles of movies or songs) and thus select variable-length phrases.

Those have previously been considered by Chang and Poon [CP08] in their common
phrase index, which builds on [WZB04], but indexes variable-length phrases common in

the workload. Our methods, in contrast, consider both the document collection and the

workload.

Proximity scoring, such as the model by Büttcher et al. [BCL06b], is similar in spirit to

phrase queries but targets ranked retrieval. Proximity of query words is an important

signal in modern web search engines. Several authors have looked into making the

computation of proximity scores more efficient. Yan et al. [YSZ+10] propose a word-pair

index and develop query-processing methods that support early termination. Broschart

and Schenkel [BS12] describe a tunable word-pair index that relies on index pruning

to keep its size manageable. Fontoura et al. [FGJV11] describe an alternative method

of indexing word pairs, which maintains them as bitmaps along with posting lists for

single words.

Caching is often used to speed up query processing and reduce the overall system

load. It can be applied at different granularities including query results, posting lists of

single words, and posting-list intersections. The first two are considered by Saraiva et

al. [SSdMZ+01] as well as Baeza Yates et al. [BYGJ+08]. Long and Suel [LS06] propose

a three-level cache that also includes posting-list intersections. Going beyond that, Oz-

can et al. [OAC+12] describe a five-level cache that additionally includes result snippets

and documents. Policies for admitting/evicting items to/from the cache have been de-

scribed, among others, by Baeza-Yates et al. [BYJPW07] as well as Gan and Suel [GS09].

Fagni et al. [FPSO06] distinguish between a static and a dynamic cache, where the for-

mer is periodically bootstrapped from query logs, and the latter is managed using a

replacement policy such as LRU. While none of the aforementioned works has specif-

ically addressed phrase queries, it is conceivable to add a layer that caches phrases as

intersections of multiple posting lists. Our phrase-selection methods could then be used

to bootstrap a (static) cache.
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5.9. Summary

In this chapter we developed efficient solution to processing phrase queries. We

studied how arbitrary phrase queries can be efficiently processed over an augmented-

inverted index of word sequences. We developed methods to select multi-word se-

quences to be indexed to optimize query-processing cost while keeping the index size

within a user-specified budget. We also proposed novel query-optimization techniques

to efficiently process phrase queries over such an augmented index.

With regard to phrase-query optimization, a first insight from our experiments is

that the non-optimal methods perform close to the optimum for a majority of phrase

queries. As a second insight, we observed that our tunable phrase-selection methods

make highly effective use of additional space, in particular when there is only little of it,

and considerably improve the processing performance of phrase queries.
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Conclusions

6.1. Summary of Results

Supporting workloads which combine text (keywords and phrases) and time are useful

in many interesting search, mining, and exploration tasks over web archives. In this

work, we have addressed three problems in indexing text to support such workloads in

web archives.

We presented a novel index-organization scheme called index sharding to process time-
travel text queries that partitions each posting list with almost zero increase in index size.

Our approach is based on avoiding access to irrelevant postings by exploiting the ge-

ometry of the valid-time intervals associated with the document versions. We proposed

an optimal algorithm to completely avoid access to irrelevant postings. We further fine

tuned the index, taking into account the index-access costs, by allowing for a few wasted

sequential accesses while gaining significantly by reducing the number of random ac-

cesses. Finally, we proposed an incremental index sharding approach that supports

efficient index maintenance for dynamic updates to the index without compromising

the query performance. We empirically established the effectiveness of our sharding

scheme with experiments over the revision history of the English Wikipedia, and an

archive of U.K. governmental web sites. Our results demonstrate the feasibility of faster

time-travel query processing with no space overhead. Moreover, we showed that main-

taining our index structure incrementally has large benefits over indexes which are re-

computed periodically.

Next, we looked at the problem of query optimization in time-travel text search. We

presented approaches for efficient approximate processing of time-travel queries over a

vertically-partitioned inverted index. By using a small synopsis for each partition we

identified partitions that maximize the result size, and schedule them for processing

early on. Our approach aims to balance the estimated gains in the result recall against
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required index-access cost. Our experiments with three diverse, large-scale text archives

– the English Wikipedia revision history, the New York Times collection and, the UK-

GOV dataset – show that our proposed approach can provide close to 80% result recall

even when only about half the index is allowed to be read.

Finally, we proposed indexing and query-optimization approaches to efficiently an-

swer phrase queries. We considered an augmented inverted index that indexes selected

variable-length multi-word sequences in addition to single words. We studied how arbi-

trary phrase queries can be processed efficiently on such an augmented inverted index.

Moreover, we developed methods to select multi-word sequences to be indexed so as to

optimize query-processing cost while keeping index size within a user-specified space

budget, taking into account characteristics of both the workload and the document col-

lection. We demonstrated experimentally the efficiency and effectiveness of our meth-

ods on two real-world corpora, i.e, the New York Times collection and the ClueWeb09

dataset.

6.2. Outlook on Future Directions

The problems addressed in this work are some of the many efficiency issues which arise

in the context of text search and mining for web archives. Hence, there are many oppor-

tunities for future research.

Exploiting Redundancy for Better Retrieval Web archives are characterized by a

lot of redundant content. Content is continuously added to such collections, but the

addition of new content does not necessarily contribute novel content. Much of the

content is either copied, enriched or recompiled from existing documents. Redundancy

in text collections, apart from wasting storage space, degrades search results. Initial

attempts have been made to remove redundancy in web archives by giving user the

flexibility to define her notion of redundancy [PAB13]. However, there are challenges in

identifying and removing redundancy from search results. Many versions of the same

document are likely to match the query because (i) either they are near duplicates or

(ii) they share the context of the query terms. Designing retrieval models and indexing

methods to counter the effect of such redundancy in search results, specifically for web

archives, is an interesting direction for future research.

Phrase Indexing for Batched Query Processing In our work, we indexed com-

monly occurring word sequences to improve query processing efficiency of a given

phrase query. However, there are scenarios when multiple phrase queries are issued

in a batch. Consider a retrieval task of finding all documents which contain mentions
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of the entity Barack Obama. Assume that we already know the different textual repre-

sentations or labels used to denote this entity, i.e., “president of U.S.A”, “president of the

united states”, “leader of the united states” and so forth. Treating each label as a phrase,

each entity is associated with a batch of phrases as above. The research challenge is to

come up with novel query processing methods, based on our current work on phrase

indexing, to efficiently process such batches of phrase queries.

Mining and Exploration of Web Archives Exploratory tasks over web archives re-

quire multiple rounds of searching and aggregation over both the text and time axes. A

promising research direction would be to identify how users interact with such collec-

tions and what features are they interested in. As an example, consider a user interested

in all entities present in the documents which are results of the time-travel query “google

io” @ [03/2013 - 06/2013]. The challenges are in improving retrieval effectiveness

and evaluation of such systems.
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Appendix

10 commandments, hurricane season, abortion, abraham lincoln, acre, adenocarcinoma,

adolf hitler, africa, agnostic, alexander great, allegory, american idol, anal, anderson

cooper, andrea lowell, andy milonakis, anus, aorta, appendix, argentina, ash wednes-

day, ask jeeves, audie murphy, beastiality, bees, beethoven, bill gates, blood tests, brazil,

buddha, buddhism, cameltoe, candy samples, chamber horrors match, characters yu gi

oh gx, charles darwin, charlie rose, charmed, cher, chris daughtry, chris penn, chris-

tianity, chuck norris jokes, cinco de mayo, cleveland steamer, clitoris, cocaine, cold

war, columbine, communism, concentration camps, crystal meth, cuba, da vinci code,

dana reeve, danzig, darfur, david blaine, deal or no deal, deaths 2006, debra lafave,

deposition, dixie chicks, dna, dominican republic, domino harvey, donnie mcclurkin,

dopamine, doxycycline, drudge report, dubai, easter, ebay, eleanor roosevelt, elmo’s

world, emancipation proclamation, emily rose, emo, encarta, england, erection, estro-

gen, existentialism, facebook, fascism, del castro, ngerprints, av , orence nightingale,

french revolution, genocide, georg fuerst, george rr martin, george washington, ger-

many, gloria vanderbilt, goggle, good friday, gospel judas

Figure A.1.: Queries used for WIKI dataset
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guns n roses, gwen stefani, hades, haiku, hanso, hanso foundation, harlem renaissance,

hawaii, he-man toys, helga sven, henry ford, hermaphrodite, hesiod, high school musi-

cal 2, hitler, hotmail, hurricane katrina, hurricane rita, football season , hurricane wilma,

hustler, hydrocodone, imperialism, incest, industrial revolution, israel, italy, jack dun-

phy, japan, joan arc, john adams, john lennon, johnny cash, julian beever, julius caesar,

june carter, june carter cash, kama sutra, karma, kelly clarkson, kkk, knights templar,

korean war, ku klux klan, lafave, lecithin, led zeppelin, lenin, lent, liger, limewire, liver,

lost, louisiana, purchase, lymph nodes, manifest destiny, marcheline bertrand, mari-

juana, martin luther, marvel scream, maslow’s hierarchy needs, matisyahu, may day,

maya angelou, mayo clinic, mccarthyism, memorial day, metaphor, mexico, mime, mis-

sissippi river, missouri compromise, monroe doctrine, moors, morphine, mortal kombat

characters, moses, mozart, mrsa, msnbc, mussolini, naruto, neil armstrong, neuropathy,

newgrounds, n, niacin, norepinephrine, nudity, opium, opus dei, oxycodone, palm sun-

day, pamela rogers, panama canal, pancreas, pandemic, penis, penthouse, peru, pete

wentz, peter tomarken, ph, phentermine, plato, playboy, playgirl, poland, polygamy,

potassium prednisone, priory sion, prohibition, protein, pus, randy jackson, randy or-

ton, rape, renaissance, roe v. wade, roman numerals, romanticism, rome, ronald reagan,

rosa parks, satire, schizophrenia, scientific method, scientologist, scientology, segrega-

tion, serotonin, sesame street, shakira, shane macgowan, silent hill, simon cowell, skull

island, snopes, sociopath, sodomy, sonny moore, spain, spanish civil war, spanish in-

quisition, spanking, spiderman 3, spleen, sportsnet new york, stadium arcadium, stalin,

statue liberty, stephanie mcmahon, sudoku, superman, symbols, syntax, tachycardia,

ten commandments, tet offensive, american dream, beatles, cold war, da vinci code,

great depression, kennedy family, last supper, neocons, ten commandments, thomas

edison, thong, tiffany fallon, timothy treadwell, trees, truman capote, truman, doctrine,

tsunami, tuberculosis, united, vagina, vatican city, venezuela, vicodin, vietnam war,

vivian, liberto, vulva, watergate, whitney houston, wiccan, winmx, winston churchill,

world war, world war ii, wwe, x-men, xiaolin showdown, yalta conference

Figure A.2.: Queries used for WIKI dataset - cont.
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action plan template, animals boarding, boys names, breast implants, british crown jew-

els, british government summary, british royal family, british royalty, citizenship cere-

mony dates, criminal record, diana princess wales, different types writing, disability,

edinburgh castle, food poisioning, free emergencey signs, international contributions

longbenton, kensington palace, kevin ramsay, king george, london metro, mergers ac-

quisitions business, mi5, migrant workers statistics, millenium development goals, min-

imum wage, national archives, parents rights, pensions, power ranger clip art, renewal

wedding vows, renne de chateau, residential home, residential home extensions, re-

tirement speeches, risk assessment, road surfaces, robert edwards fortune, royal family,

stuart kings, summary judgement, tax tables, uk immigration, uk passports, vehicle

recalls, william morris wallpaper, winchester museum, windsor castle, witness intimi-

dation, woodchurch, work-life balance surveys, world war two names, yin yang symbol

Figure A.3.: Queries used for UKGOV dataset
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