
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Rational Cryptography: Novel Constructions,

Automated Verification and Unified Definitions

Oana-Mădălina Ciobotaru

Dissertation
zur Erlangung des Grades

des Doktors der Naturwissenschaften (Dr. rer. nat.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

December 2012
Saarbrücken

Thesis for obtaining the title of Doctor of Natural Sciences of the Faculties of Natural
Sciences and Technology of Saarland University.

Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften
der Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes.

Reporters / Berichterstatter:
Prof. Dr. Michael Backes (Saarland University and MPI-SWS)
Dr. Matteo Maffei (Saarland University)

Examination Board / Prüfungausschuss:
Prof. Dr. Raimund Seidel
Prof. Dr. Michael Backes
Dr. Matteo Maffei
Dr. Dario Fiore

Dean / Dekan:
Prof. Dr. Mark Groves

Date of Colloquium / Tag des Kolloquiums:
March 26, 2013. / 26. März, 2013.

Version from May 20, 2013. / Textfassung von 20. Mai, 2013.
Copyright c© 2012-2013 Oana-Mădălina Ciobotaru. All rights reserved.

ii

Statement

I hereby swear in lieu of an oath that I have independently prepared this thesis and
without using other aids than those stated. The data and concepts taken over from
other sources or taken over indirectly are indicated citing the source. The thesis was not
submitted so far either in Germany or in another country in the same or a similar form
in a procedure for obtaining an academic title.

Oana-Mădălina Ciobotaru
Saarbrücken, December 2012

iii

iv

Acknowledgements

I consider myself very fortunate for being able to work with two distinguished academic
advisors: Michael Backes and Matteo Maffei. During my graduate studies, they have
taught me many invaluable things for which I am profoundly grateful. With patience and
support, Michael inspired me to always improve and to give my best while pursuing my
research. He gave me lots of trust and freedom to find and choose my path for research,
which built my own confidence and ultimately allowed me to succeed. Matteo shared
with me, very kindly and patiently, many subtle research insights related to my work.
With great positive energy and enthusiasm, he taught me how to pursue my research
effectively, while never loosing attention to important details.

I am grateful to Dominique Unruh, for his guidance in the beginning of my graduate
studies. His kindness and cheerfulness, his striking dedication to clarity of thought and
his tactful ability to share it with the others, have inspired me and shaped my first view
on research. I am indebted for his patience and for many wonderful in-depth research
topics he shared with me.

For creating a great working environment and a relaxed and friendly atmosphere, I
would like to thank my colleagues and friends at Saarland University: Fabian Bendun,
Matthias Berg, Markus Dürmuth, Fabienne Eigner, Dario Fiore, Martin Gagné, Sebastian
Gerling, Christian Hammer, Cătălin Hriţcu, Aniket Kate, Boris Köpf, Stefan Lorenz,
Joachim Lutz, Sebastian Meiser, Esfandiar Mohammadi, Kim Pecina, Manuel Reinert,
Raphael Reischuk, Philipp von Styp-Rekowsky, Dominique Schröder, Malte Skoruppa
and Milivoj Simeonovski. It was a pleasure and a privilege to be part of such a group.

For patiently proofreading various drafts of my research, I am grateful to Fabian,
Matthias, Fabienne, Sebastian Meiser, Esfandiar, Kim, Manuel and Dominique. I am
particularly thankful to Fabienne, Kim and Manuel for their invaluable patience and
witty support which helped me “tame” ProVerif. For many wonderful conversations, on
many research topics and beyond, for always being a good listener and a good and true
friend, I would like to thank Esfandiar. I am grateful to Aniket for his patience, his
kindness and thoughtfulness in providing many invaluable advices and for pedagogically
sharing his knowledge on many research topics. To Sebastian Gerling, I am grateful
for being a wonderful friend, colleague and office mate. His contagious good mood, his
kindness, his continuous perseverance and optimism never cease to inspire and motivate
me to be a better person. A special thank you is due to Bettina Balthasar for all her
help, kindness and promptness with any administrative or logistic matter, many times

v

on a very short notice.
Finally, I would like to thank my parents and my sister for always believing in me.

Their endless love and support were essential for all my achievements. This thesis is
dedicated to them.

Saarbrücken, 20 December 2012 Oana Ciobotaru

vi

Abstract

Rational cryptography has recently emerged as a very promising field of research by
combining notions and techniques from cryptography and game theory, because it offers
an alternative to the rather inflexible traditional cryptographic model. In contrast to the
classical view of cryptography where protocol participants are considered either honest
or arbitrarily malicious, rational cryptography models participants as rational players
that try to maximize their benefit and thus deviate from the protocol only if they gain
an advantage by doing so.

The main research goals for rational cryptography are the design of more efficient
protocols when players adhere to a rational model, the design and implementation of
automated proofs for rational security notions and the study of the intrinsic connections
between game theoretic and cryptographic notions. In this thesis, we address all these
issues.

First we present the mathematical model and the design for a new rational file sharing
protocol which we call RatFish. Next, we develop a general method for automated
verification for rational cryptographic protocols and we show how to apply our technique
in order to automatically derive the rational security property for RatFish. Finally, we
study the intrinsic connections between game theory and cryptography by defining a new
game theoretic notion, which we call game universal implementation, and by showing its
equivalence with the notion of weak stand-alone security.

vii

viii

Zusammenfassung

Rationale Kryptographie ist kürzlich als ein vielversprechender Bereich der Forschung
durch die Kombination von Begriffen und Techniken aus der Kryptographie und der
Spieltheorie entstanden, weil es eine Alternative zu dem eher unflexiblen traditionellen
kryptographischen Modell bietet. Im Gegensatz zur klassischen Ansicht der Kryptogra-
phie, nach der Protokollteilnehmer entweder als ehrlich oder willkürlich bösartig angesehen
werden, modelliert rationale Kryptografie die Protokollteilnehmern als rationale Akteure,
die versuchen ihren Vorteil zu maximieren und damit nur vom Protokoll abweichen, wenn
sie dadurch einen Vorteil erlangen.

Die wichtigsten Forschungsziele rationaler Kryptographie sind: das Design effizienterer
Protokolle, wenn die Spieler ein rationale Modell folgen, das Design und die Implemen-
tierung von automatisierten Beweisen rationaler Sicherheitsbegriffe und die Untersuchung
der intrinsischen Verbindungen zwischen spieltheoretischen und kryptographischen Be-
griffen. In dieser Arbeit beschäftigen wir uns mit all diesen Fragen.

Zunächst präsentieren wir das mathematische Modell und das Design für RatFish, ein
neues rationales Filesharing-Protokoll. Dann entwickeln wir eine allgemeine Methode zur
automatischen Verifikation rationaler kryptographischer Protokolle und wir zeigen, wie
man unsere Technik nutzen kann, um die rationale Sicherheitseigenschaft von RatFish
automatisch abzuleiten. Abschließend, untersuchen wir die intrinsische Verbindungen
zwischen Spieltheorie und Kryptographie durch die Definition von game universal imple-
mentation, einem neuen spieltheoretischen Begriff, und wir zeigen die Äquivalenz von
game universal implementation und weak stand-alone security.

ix

x

Contents

1 Introduction 1

2 Rational File Sharing with RatFish 4

2.1 Introduction . 4

2.1.1 Contributions . 5

2.1.2 Related Work . 5

2.1.3 Outline . 7

2.2 A Bird’s Eye View on How to Rationalize P2P 7

2.3 A Game-theoretic Model for File Sharing 8

2.3.1 A Game-theoretic Model for File Sharing Protocols 9

2.4 The RatFish Protocol . 11

2.4.1 The Protocol of the Tracker . 11

2.4.2 The Protocol of the Seeder . 15

2.4.3 The Protocol of the Leecher . 15

2.5 Equilibrium Proof . 19

2.5.1 Underlying Assumptions . 19

2.5.2 Proving the Nash Equilibrium . 20

2.6 Implementation and Performance Evaluation 28

2.6.1 Implementation . 29

2.6.2 Experimental Setup . 29

2.6.3 Performance Evaluations . 29

2.7 Conclusion . 30

3 Automated Verification for RatFish 31

3.1 Introduction . 31

3.1.1 Contributions . 32

3.1.2 Related Work . 32

3.1.3 Outline . 36

3.2 Applied Pi Calculus (Review) . 36

3.3 Rational Cryptography in the Applied Pi Calculus 38

3.4 Rational Exchange for File Sharing Protocols 41

3.4.1 RatFish Protocol . 41

3.4.2 Protocol Model in the Applied Pi Calculus 44

xi

xii CONTENTS

3.4.3 Automated Verification of Nash Equilibrium 46
3.5 Conclusion . 47

4 Bridging Security and Game Theory 49
4.1 Introduction . 49

4.1.1 Contribution . 49
4.1.2 Background and Related Work . 50
4.1.3 Organization . 52

4.2 Review of Security Notions . 52
4.2.1 Universal Composability . 53
4.2.2 Weak Security under 1- bounded Concurrent General Composition 58

4.3 Game-theoretic Definitions . 61
4.4 Specialized Simulator UC Variants . 62

4.4.1 On 1-bit Specialized Simulator UC 62
4.4.2 Separation Result . 64
4.4.3 Discussion . 70

4.5 Equivalence of Security Notions . 70
4.5.1 Relation Between 1-bit Specialized Simulator UC and Game Uni-

versal Implementation . 81
4.6 Conclusion . 87

5 Concluding Remarks 89

Appendix A Complete Listings 107

CONTENTS xiii

xiv CONTENTS

Chapter 1

Introduction

Protocol security is important to have, however it is neither easy to define, nor to
implement. Traditionally, cryptographic protocols are designed to achieve security
properties in a “black and white” adversarial model, in which parties are either honest as
they unconditionally follow the protocol, or they are compromised and as a consequence
they may arbitrarily misbehave in order to break the security of the protocol. Even
though the use of this classical adversarial model provides strong security guarantees,
it may also lead to protocols that are extremely complicated, or very inefficient, and in
some cases, even impossible to design.

Rational cryptography has recently emerged as a promising field of research by
combining notions and techniques from cryptography and game theory because it offers
an alternative to the rather inflexible traditional cryptographic model. In contrast to
the classical view of cryptography where protocol participants are considered either
honest or arbitrarily malicious, rational cryptography models participants as rational
players that try to maximize their benefit and thus deviate from the protocol only if
they gain an advantage by doing so. In the context of game theory, a protocol that gives
rational participants no incentives for deviation constitutes an equilibrium. Rational
cryptography is centered around such adapted computational equilibria concepts [60]
and uses cryptographic notions and techniques as tools for building secure protocols with
respect to rational participants.

An initial research focus for rational cryptography has been on defining [30, 33, 74]
computational models for polynomially bounded rational participants, which are also
called rational players. Later, the research focus has shifted towards designing protocols
that rational participants have no incentive to deviate from, i.e., the protocols should fulfill
some game theoretic notion of equilibrium. So far, most of these rational protocols fall
into the category of rational secret sharing and rational secure multi-party computation
[2, 39, 37, 48, 53, 63].

Currently, there are three research goals for rational cryptography: the design of more
efficient protocols for the above rational model [8, 39], the design and implementation
of automated proofs for rational security notions [9] and the study of the intrinsic
connections between game theoretic and cryptographic notions [29, 55]. In this thesis,

1

2 CHAPTER 1. INTRODUCTION

we address all these issues.

First, we apply the rational model to file sharing, a popular P2P application. Existing
file sharing applications, such as BitTorrent, provide remarkable efficiency and scalability,
as well as adaptability to dynamic situations. However, none of them is secure against
attacks from rational users, i.e., users that deviate from the protocol if doing so increases
their benefits. We propose a rigorous model of rational seeders and leechers and we
design and implement RatFish [8], a rational file sharing protocol. The distinctive feature
of RatFish, however, is not only that it discourages the use of several selfish strategies,
but that it comes with a formal proof that deviating from the recommended protocol is
irrational for both seeders and leechers. In order to do this, we first characterize rational
behaviors of leechers and seeders in file sharing protocols. We cast this intuition into a
rigorous mathematical model, and we formally prove that our protocol is secure against
deviations of rational parties, by showing that RatFish constitutes a Nash equilibrium.

Second, we provide a general technique for modeling rational cryptographic protocols
in the applied pi calculus [9]. We further illustrate our approach by modeling a simplified
version of the RatFish rational file sharing protocol [8] within the new framework and
by providing its corresponding automatic proof of Nash equilibrium using ProVerif. To
the best of our knowledge, this is the first time such an approach has been taken for
general modeling of rationality and utilities and also for automatically verifying rational
cryptographic protocols together with their associated game-theoretic properties. Our
approach is both efficient and easy to implement.

Third, we investigate the intrinsic connection between game theory and cryptography
[29]: More precisely, we study the equivalence relations between security notions and
game theoretic notions. The first research result [55] regarding such equivalence relations
has been centered around the ”power of costly computation”. Intuitively, the meaning of
costly computation is that rational players interested in running a protocol may have an
incentive to deviate from it if the cost of computation (e.g., number of steps needed to be
performed or the size of memory used) is higher than a threshold they have decided upon.
The main result of this study [55] is an equivalence relation between a very weak security
notion, namely weak precise secure computation and a newly defined game theoretic
notion, which was called strong universal implementation. However, it was left as an
open question how to obtain further equivalence relations for stronger security notions.

In this thesis, we solve this open question by discarding the cost of computation.
First, we define the notion of game universal implementation which we show is equivalent
to weak stand-alone security. Thus, we are able to answer positively the open question
from [55] regarding the existence of game-theoretic definitions that are equivalent to
cryptographic notions for which the ideal world simulator does not depend on both the
distinguisher and the input distribution. While developing the above mentioned result,
we also show new equivalence relations among various existing security notions. Such
results are important also on their own: Indeed, our main achievement in this study is
a separation result between two variants of the universal composability (UC) security
definition: 1-bit specialized simulator UC security and specialized simulator UC security.
The separation result between these UC variants was stated as an open question [71] and

3

it comes in contrast with the well known equivalence result between 1-bit UC security
and UC security.

The rest of this thesis is structured as follows: In Chapter 2 we present the mathemat-
ical model and the design for our rational file sharing protocol RatFish. In Chapter 3 we
develop a general method for automated verification for rational cryptographic protocols
and we show how to apply our technique in order to automatically derive the Nash equi-
librium property for RatFish. In Chapter 4 we study some intrinsic connections between
game theory and cryptography: We define a new game theoretic notion, game universal
implementation, and we show its equivalence with the notion of weak stand-alone security.
Our overall conclusions for this thesis are given in Chapter 5. Appendix A contains full
Proverif listings related to Chapter 3.

Chapter 2

Rational File Sharing with
RatFish

2.1 Introduction

Recently, the peer-to-peer (P2P) paradigm has emerged as a decentralized way to share
data and services among a network of loosely connected nodes. Characteristics such
as failure resilience, scalability and adaptivity to dynamic situations have popularized
P2P networks in both academia and industry. The proliferation of P2P computing has
also been propelled by popular applications, most notably file sharing protocols such as
BitTorrent [32].

A crucial assumption underlying the design of such file sharing protocols is that users
follow the protocol as specified; i.e., they do not try to bypass the design choices in order
to achieve higher download rates, or to avoid uploading to the system at all. However,
not all users are necessarily altruistic, and publicly available, modified BitTorrent clients
like BitThief [73] or BitTyrant [90] can be used to strategically exploit BitTorrent’s
design to achieve a higher download while contributing less or nothing at all in return.
While several minor protocol adaptations have been suggested to mitigate the attacks
underlying these clients [105], the core weaknesses remain: In its current form, BitTorrent
– and current file sharing protocols in general – offer better service to cheating clients,
thereby creating incentives for users to deviate from the protocol; in turn, it further
decreases the performance of honest clients. The task is thus to design a protocol that
not only retains the remarkable characteristics of current file sharing protocols, but that
is rational in the sense that it offers sufficient incentives for users to stick to the precise
protocol specification. In more technical terms, this file sharing protocol should constitute
an equilibrium state: Adhering to the protocol should optimize the benefits received by
each individual participant, and any deviation from the protocol should result in a lower
payoff for the cheating user.

4

2.1. INTRODUCTION 5

2.1.1 Contributions

We contribute RatFish, a protocol for rational file sharing. RatFish is built upon the
concepts and design choices that underlie BitTorrent, but it resolves the weaknesses
that clients such as BitThief and BitTyrant exploit. We achieve this mostly by ensuring
rational exchange of pieces between leechers and by having the tracker participate in
the coordination of the downloads. In this context, an exchange is called rational if the
participants have no incentive to deviate from it.

The distinctive feature of RatFish, however, is not that it discourages the use of several
selfish strategies, but that it comes with a formal proof that deviating from RatFish is
irrational for both seeders and leechers. In order to do this, we first characterize rational
behaviors of leechers and seeders in file sharing protocols, building upon the concept
of the recently emerging field of rational cryptography, in which users are defined as
rational players in a game-theoretic sense. Intuitively, leechers are primarily interested in
minimizing their download time and the amount of uploaded data, whereas seeders value
the efficiency of the protocol in using their upload capacity. We cast this intuition into a
rigorous mathematical model, and we formally prove that our protocol is secure against
deviations of rational parties, by showing that it constitutes a Nash equilibrium. This
holds even though RatFish allows users to dynamically leave and (re-)join. We prove
this Nash equilibrium using a new proof technique that is of independent interest for
rational cryptography: the step-by-step substitution of a deviating strategy with hybrid,
semi-rational strategies.

We have built a prototype implementation of RatFish that demonstrates that RatFish
is practical and efficient. We stress though that the purpose of RatFish is not to achieve
performance improvements over existing protocols, but to establish a formal proof that
under realistic conditions, such as dynamically joining users, no rationally-behaving user
has an incentive to deviate from RatFish. The additional computational overhead of
RatFish compared to BitTorrent is small: basic cryptographic primitives (symmetric
encryptions and digital signatures schemes) are used, and the tracker is assigned additional
tasks such as the coordination of downloads and the generation of user incentives. The
communication overhead of a RatFish client is kept to a minimum.

2.1.2 Related Work

The performance of BitTorrent has been thoroughly studied [93, 17, 59, 92, 91]. All
these works attest to the impressive performance of BitTorrent in the presence of honest
participants; however, it has been noted [17] that the rate-based Tit-For-Tat policy of
BitTorrent does not prevent nodes from uploading less content than they should serve
(in all fairness), thereby creating an incentive for abuse of the protocol.

The behavior of BitTorrent in the presence of cheating peers was subsequently
investigated [72, 90, 73, 101], revealing that cheating leads to a loss in overall performance
for honest peers.

Our rigorous model of rational file sharing is grounded in the recently emerging field
of rational cryptography, where users are assumed to only deviate from a protocol if doing

6 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

so offers them an advantage. Rational cryptography is centered around (adapted) notions
of game theory such as computational equilibria [33]. A comprehensive line of work
already exists that develops novel protocols for important cryptographic primitives such as
rational secret sharing and rational secure multiparty computation [2, 37, 53, 48, 63, 39].

There has been already a variety of research aimed at making BitTorrent more robust
against deviations of rationally-behaving users [105, 68, 91, 85, 102]. All these works
provide stronger user incentives: they choke problematic connections [105], grant addi-
tional bandwidth to generously uploading neighbors [68], reward leechers that continue
seeding after their download is completed [91], optimally distribute a seeder’s bandwidth
across swarms [85], and employ fair exchange protocols to stop leechers from aborting
the protocol [102] early. These modified protocols, however, are still prone to rational
attacks; in particular, none of these works reached a (Nash) equilibrium. There has been
research [102] on how to ensure that certain deviations from selfish leechers or attacks
of malicious peers cannot succeed, e..g., no peer can assume another authorized peer’s
identity. However, so far there is no work which ensures that deviating from the protocol
cannot yield better results.

There is also previous work that strived to establish an equilibrium in the context of
file sharing [93]. However, this equilibrium was severely restricted in that it was only
guaranteed when rational parties were allowed to only tweak the protocol parameters,
but not when they could deviate in larger ways.

More recent research such as BAR-B [3], Equicast [61], and FOX [96] aimed at
deploying incentives and punishments such that obeying the protocol is the best strategy
for every rational player. The first two protocols were shown to be strict Nash equilibria,
i.e., a rational peer obtains no benefit from unilaterally deviating from the assigned
strategy. The drawback is that their strict equilibrium solutions limit the design: the
BAR-B system only permits a static set of users. Equicast requires the rate at which
leechers join to precisely match the rate of which they leave and considers only restricted
utility functions that do not take downloading time into account; moreover, these protocols
require nodes to waste network bandwidth by sending garbage data to balance bandwidth
consumption. FOX [96] establishes a stable Nash equilibrium, but again it only allows
a static set of leechers; moreover, its rationality is not grounded on incentives but on
fear of retaliation such that a single Byzantine node can cause the entire system to
collapse. Somewhat orthogonal to our work are the file streaming applications BAR-
Gossip [70] and FlightPath [69]. Both works show a Nash equilibrium (a strict one for
BAR-GOSSIP, and an approximate one for Flightpath), but rational players are only
interested in minimizing the amount of uploaded data and reducing jitter. While such
time-independent utility functions are reasonable for streaming applications, they do
not apply to the more sophisticated setting of rational file sharing, where minimizing
the time to complete a download is usually the primary goal. Moreover, none of these
five protocols considers seeders as part of the rational model. We conclude by saying
that like our approach, none of these works offers resistance against Sybil attacks. A
Nash equilibrium ensures that no individual user has an incentive to deviate. However,
it conceptually does not take coalitions of users into account, rendering Sybil attacks

2.2. A BIRD’S EYE VIEW ON HOW TO RATIONALIZE P2P 7

possible in most works on rationally secure protocols.

2.1.3 Outline

Section 2.2 provides a bird’s eye view of the core ideas underlying how we create incentives
in file sharing. Section 2.3 summarizes the concepts we use from rational cryptography
and defines rational behaviors of seeders and leechers. Section 2.4 presents the RatFish
protocol in detail. Section 2.5 contains the proof of equilibrium for RatFish; i.e., it shows
that users cannot achieve a better payoff by deviating from the protocol. Section 2.6
discusses our experimental results. Section 2.7 concludes this chapter.

2.2 A Bird’s Eye View on How to Rationalize P2P

For the sake of exposition, we provide a high-level overview of the core ideas underlying
how we create incentives in file sharing. We briefly discuss which behaviors of seeders and
leechers we consider rational, intuitively explain how to incentivize these behaviors, and
finally discuss how an equilibrium is obtained for a small example protocol. In this section,
we abstract away many important system’s details and impose several assumptions to
improve understanding. However, all these restrictions will be removed in section 2.4
where we present our RatFish protocol in its full generality.

In the following, we consider a single seeder S that intends to upload a file f to
leechers L1, . . . , LM . The file is split into pieces f1, . . . , fM2 . In this exposition, we
describe a simplistic protocol that proceeds in a sequence of M + 1 monolithic rounds.
We assume that the seeder can upload exactly M pieces per round and that every leecher
is able to upload and to download at least M pieces of the file in each round.

On the Rationality of Seeding. A seeder is a player that uploads without requesting
reciprocation. Intuitively, it thus acts rationally if it uses its upload time and upload
speed as efficiently as possible; i.e., for any fixed upload speed and time that the seeder
spends within the system, the average download time for all leechers should be as small
as possible. It is thus in the interest of the seeder to incentivize leechers to share parts of
the file amongst each other as this increases the throughput of the whole system. As
a consequence, the naive approach of uploading the whole file to an arbitrary leecher
at once cannot yield a rationally secure protocol: This leecher may just complete the
download and leave, causing some pieces of the file to be effectively lost from the system.
Moreover, since there is only one seeder in this simplistic protocol and the number of
leechers is known and does not change, there is no need for a third party, i.e., a tracker.
In the simplistic protocol, the seeder sends each leecher Li in each round j the piece
fj·M+i.

On the Rationality of Leechers. Leechers aim to download the file as fast as possible
while saving upload capacity. The protocol thus has to enforce leecher participation as
they will otherwise just download and leave. We need to propose a suitable piece selection
algorithm and a piece exchange mechanism that prevents parties from cheating each
other. In our example, piece selection is easy: In each round j a leecher Li holds a piece

8 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

fj·M+i obtained from the seeder that no one else has. As the leecher can upload M pieces
per round, he can exchange with the rest of the leechers their unique pieces. To ensure
fair exchanges, leechers first exchange the pieces in encrypted form and subsequently
send the corresponding decryption keys.

How an Equilibrium is Achieved. We conclude with some basic intuition on why
no rational user has an incentive to deviate from the protocol. If all peers adhere to
the protocol, the seeder will upload the file exactly once and stay in the system for M
rounds. Each of the leechers will upload M2 −M pieces and complete its download after
M + 1 rounds. It is easy to see that the average download time and hence the seeder’s
utility cannot be improved.

This outcome cannot be further improved for the leechers either: None of the leechers
can download the file in less than M + 1 rounds since after round M each of them
is missing at least M − 1 pieces. This holds because the protocol treats the rounds
integrally. Otherwise, we could split a sufficiently big file into MK pieces for some K and
achieve a slightly reduced, optimal download time of M + M2

MK using an analog algorithm.
Moreover, since the seeder only provides M pieces to each of its peers, no leecher can
obtain the full file without uploading at least M2 −M pieces in exchange for the pieces
that it is missing from the seeder. This statement holds as no leecher can cheat during
the rational piece exchange protocol: A leecher spends his upload capacity to receive an
encrypted piece, hence he has no incentive not to send the much smaller decryption key
to its partner. Thus, no party can improve its utility by deviating from the protocol.

2.3 A Game-theoretic Model for File Sharing

In this section, we propose a game-theoretic model for rationally secure file sharing. We
start by reviewing central concepts from game theory and rational cryptography.

A Bayesian game Γ = ({Ti}ni=1, {Ai}ni=1,Pr , {ui}ni=1), also called a game with incom-
plete information, consists of players 1, . . . , n. The incomplete information is captured by
the fact that the type for each player i (i.e., its private information) is chosen externally,
from a set Ti, prior to the beginning of the game. Pr is a publicly known distribution
over the types. Each player has a set Ai of possible actions to play and individual utility
functions ui. Actions are played either simultaneously or sequentially; afterwards, every
player i receives a payoff that is determined by applying its utility function ui to the
vector of types received in the game, i.e., profile types, and the actions played, i.e., action
profile.

Recent work has extended the traditional notion of a game to the requirements of
cryptographic settings with their probabilistically generated actions and computationally-
bounded running times. The resulting definition – called computational game [60] – allows
each player i to decide on a probabilistic polynomial-time, in the security parameter,
interactive Turing machine Mi (short PPITM). The machine Mi is called the strategy for
player i. The output of Mi in the joint execution of these interactive Turing machines
denotes the actions played by participant i.

2.3. A GAME-THEORETIC MODEL FOR FILE SHARING 9

Definition 1 (Computational Game). Let k be the security parameter and let Γ =
({Ti}ni=1, {Ai}ni=1,Pr , {ui}ni=1) be a Bayesian game. Then Γ is a computational game if
the played action Ai of each participant i is computed by a PPITM Mi and if the utility
ui of each player i is polynomial-time computable.

Because of the probabilistic strategies, the utility functions ui now correspond to
the expected payoffs. Thus, when there is no possibility for confusion, we overload the
notation for ui. However, when the utility we employ is not clear from the context, we
denote by Ui the expected utility for party i.

Rationally behaving players aim to maximize these payoffs. In particular, if a player
knew which strategies the remaining players intend to choose, he would hence pick the
strategy that induces the most benefit for him. As this simultaneously holds for every
player, we are looking for a so-called Nash equilibrium, i.e., a strategy vector where each
player has no incentive to deviate from, provided that the remaining strategies do not
change. Similar to the notion of a game, we consider a computational variant of a Nash
equilibrium.

Definition 2 (Computational Nash Equilibrium). Let Γ be a computational game, where
Γ = ({Ti}ni=1, {Ai}ni=1,Pr , {ui}ni=1) and let k be the security parameter. A strategy vector

(or machine profile) consisting of PPITMs
−→
M = (M1, . . . ,Mn) is a computational Nash

equilibrium if for all i and any PPITM M ′i there exists a negligible function ε such that

ui(k,M
′
i ,
−−→
M−i)− ui(k,

−→
M) ≤ ε(k)

holds.

Here ui(k,M
′
i ,
−−→
M−i) denotes the function ui applied to the setting where every player

j 6= i sticks to its designated strategy Mj and only player i deviates by choosing the

strategy M ′i . In the definition above, we call Mi a computational best response to
−−→
M−i.

We finally define the outcome of a computational game as the transcript of all players’
inputs and the actions each has taken. In contrast to strategy vectors, an outcome
thus constitutes a finished game where every player can determine its payoff directly.
A utility function is thus naturally defined on the outcome of a computational game:
When applied to a strategy vector with its probabilistic choices, it describes the vector’s
expected payoff; when applied to an outcome of the game, it describes the exact payoff
for this outcome.

2.3.1 A Game-theoretic Model for File Sharing Protocols

We now define the utility functions for seeders and leechers such that these functions
characterize rational behavior in a file sharing protocol. We start by introducing common
notation and some preliminaries.
Notation and Preliminaries. Following the BitTorrent convention, we call a player
in the file sharing game a peer. The peers are divided into two groups: A seeder uploads
to other peers a file f that it owns, whereas a leecher downloads f . To mediate the

10 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

communication among peers, we thus implicitly require a trusted party called the tracker.
The tracker holds a signing key pair (pk , sk), and we assume that its IP address and
public key pk are known to all peers.

The file f consists of pieces f1, . . . , fN , each of length B bytes. The participants in the
file sharing protocol hold the values h1 = h(f1), . . . , hN = h(fN), where h is a publicly
known hash function. When deployed in practice, this publicly known information is
distributed via a metainfo file. The tracker is only responsible for coordinating peers
that are exchanging the same file. In order to stay close to a realistic setting, we allow
different peers to have different upload and download capacities. Every seeder Si has its
individual upload speed upsi (t, o) that depends on the time t and the outcome o. Note
that a seeder does not download anything except for metadata; hence we do not need
to consider the download speed of seeders. Similarly, every leecher Li has individual
upload and download speeds upli(t, o) and downli(t, o). We denote by Ti,fin(o) the total
time that leecher Li spends downloading the file. In terms of measurement units, each
of the upload and download capacities defined so far is considered as bytes per second.
Additionally, the time is measured in seconds. To increase readability, we omit the
outcome in all formulas whenever it is clear from the context. We also introduce the sets
L = {i | Li is a leecher} and S = {i | Si is a seeder}.
Rationally-behaving Seeders. A seeder uploads parts of the file to other peers
without requesting reciprocation. Intuitively, a seeder is interested in using as efficiently
as possible its upload time and upload speed. Thus for any fixed upload speed and time
that the seeder spends within the system, the average download time for all leechers
should be as small as possible. We express this preference by the following seeder’s utility
function.

Definition 3 (Seeder’s Utility Function). We say that usi is a utility function for a
seeder Si if for any two outcomes o, o′ of the game with the same fixed upload speed upsi
and fixed time T si spent by Si in the system, it holds that ui(o) ≥ ui(o

′) if and only if
1
|L|
∑

i∈L Ti,fin(o) ≤ 1
|L|
∑

i∈L Ti,fin(o′).

If Si is the first seeder in the system, we implicitly require that Si uploads the whole
file at least once. Otherwise, it is not rational to share the file in the first place.
Rationally-behaving Leechers. Leechers aim at downloading the shared file as fast
as possible; moreover, they also try to use as little upload capacity as possible. The
relative weight of these two (typically contradictory) goals is given by a parameter αi in
the system measuring time units per capacity units, e.g., sec2/bytes.

Definition 4 (Leecher’s Utility Function). Let αi ≥ 0 be a fixed value. We say that uli
is a utility function for leecher Li if the following condition holds: For two outcomes o, o′,
Li prefers outcome o to o′ if and only if

αi ·
∫ Ti,fin(o)

0
upli(t, o) dt+ Ti,fin(o) ≤ αi ·

∫ Ti,fin(o′)

0
upli(t, o

′) dt+ Ti,fin(o′).

The value αi corresponds to Li’s individual valuation for upload speed and time; e.g.,
if αi = 0.5 sec2

bytes , the leecher values time twice as much as the uploaded data.

2.4. THE RATFISH PROTOCOL 11

In particular, this definition implies that a rationally-behaving leecher prioritizes
completing the download over everything else: If the leecher does not download the file
in outcome o, then Ti,fin(o) equals infinity. If it downloads the file in some outcome o′,
then Ti,fin(o′) is finite and thus increases its payoff.

2.4 The RatFish Protocol

We now present the RatFish protocol. We start with the description of the tracker and
proceed with the seeders and leechers, respectively.

2.4.1 The Protocol of the Tracker

Similar to BitTorrent, our tracker manages all valid IP addresses in the system and
introduces new leechers to a set of neighbors. However, we assign the tracker additional
tasks: First, our tracker is responsible for awarding each newcomer with seeding capacity
equivalent to γ file pieces, for a tunable parameter γ. In practice, γ is a small constant
number just big enough for the new leecher to participate in the system. As long as the
seeders can provide γ pieces to each newly joining leecher, this value does not influence
the existence of the Nash equilibrium.

Second, our tracker keeps track of which file pieces each peer owns at any given
moment. This bookkeeping will be crucial for incentivizing peers to follow the RatFish
protocol, for computing the deserved rewards and for answering queries about the leechers’
availabilities. Third, the tracker imposes a forced wait for every leecher upon connecting,
thereby preventing leechers from gaining advantages by frequently disconnecting and
rejoining the protocol. Finally, if a leecher wishes to disconnect, the tracker provides a
certificate on the most recent set of pieces the leecher has to offer. This allows leechers
to later reconnect to RatFish and use their partially downloaded data, i.e., in order to
cope with network disruptions. In the following, we describe the individual subprotocols
of the tracker in detail. A rigorous description is given in Fig. 2.1, Fig. 2.2, Fig. 2.3 and
Fig. 2.4.

The Connect Protocol. The tracker assigns every new leecher Li a random subset of
size H of all leechers that are currently in the system. This random subset corresponds
to Li’s local neighborhood. The tracker sends this neighborhood information to Li after
T seconds. Once the forced wait is over, the leecher may start downloading γ free pieces
from seeders. The rationale behind this forced wait is that granting newly joined leechers
free pieces creates incentives for whitewashing, i.e., frequent disconnecting and rejoining.
Intuitively, the forced wait is a simple defense against such a behavior. From a rational
perspective, if a leecher joins the system only once, the induced small delay will not be
hurtful; however, whitewashing by frequently rejoining will cause an accumulated delay
that will result in a smaller payoff. The forced wait is achieved by having the tracker sign
the leecher’s connecting time and IP address. Such signed timestamps are exchanged
between neighboors and are used to determine whether leechers are allowed to start
uploading to eachother. Neighbors use the timestamps to determine whether they are

12 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

TrackerConnect(peer)
If peer is a seeder Si, receive the seeder’s upload speed upsi and store it. Else, do:

• – If a message PIECES(a1, . . . , aN , idr′′ , sig ′′i) is received from Li, verify that
sig ′′i is a valid signature on (a1, . . . , aN , idr′′) for verification key pk and
that p = (a1, . . . , aN , idr′′) was previously stored. Each correct am, with
m ∈ {1, . . . , N}, is the binary representation of availability of piece j. If
all above checks succeed, remove p from storage and set Ami := am, for all
m ∈ {1, . . . , N} and select a random id r.

– Otherwise, if a message PIECES(0, . . . , 0) is received, select a random id r.

• As soon as the current time Tc is larger than T +T ip, where T ip is the connecting
time of the leecher, i.e., Tc is the time after the forced wait of T seconds, send
Li a random subset of size H of current leechers’ IP addresses, corresponding
to Li’s neighborhood. Moreover, compute Ssk(i, T

i
p), yielding a signature sig i.

Send TIME(T ip, id r, sig i) to Li.

Figure 2.1: The protocol of the tracker with procedure Connect.

allowed to start uploading to each other. Thus as long as a user’s IP address does not
change, it can idle and become active again without being penalized by a forced wait,
since the user’s old signature on its IP address and time is still valid. This is detailed in
Fig. 2.1.

The RatFish tracker has a mechanism for proving piece availability of rejoining
leechers: it chooses a random rejoin ID id r and signs it together with the departing
leecher’s piece availability. The tracker stores the availability status for leecher Li and
each piece m in the variable Aim. The algorithms of the trackers ensure that Aim = 1 if
Li has m-th piece of file f and Aim = 0 otherwise. The leecher uses id r to prove its piece
availability to the tracker upon rejoining the system. The rejoining id r is then deleted
from the tracker’s memory preventing leechers from reconnecting twice using the same
reconnect id r. This is detailed in Fig. 2.1, Fig. 2.2 and Fig. 2.3.

The Reward Protocol. The reward system constitutes the crucial part of RatFish.
The underlying idea is to reward only leechers who are exchanging. We only allow one
exception to this rule: The leechers that have just connected to the tracker in the previous
round are also entitled to a reward of γ pieces in the current round. Thus the seeders do
not automatically upload to their neighborhood as in BitTorrent; rather they are told by
the tracker whom to upload to.

To determine whether an exchange between Li and Lj has indeed taken place, the
tracker asks both Li and Lj to acknowledge the exchange. If the acknowledgements
succeed, the tracker internally increases the variables Xi and Xj , which corresponds

2.4. THE RATFISH PROTOCOL 13

CheckExchange
Do the following steps unless one of their checks fails; abort in this case: (Below it is
given only the protocol between the tracker and Li. By symmetry, we can obtain the
protocol between the tracker and Lj , where Lj is the exchange partner of Li for the
exchange described below.)

• Upon receiving a message HAS(j, y) from a leecher Li, send back 1 if Ayj = 1,
and 0 otherwise.

• Upon receiving a message EXCHANGED(j, y, x) from a leecher Li, indicat-
ing that pieces fx and fy have been exchanged with Lj , send the message
ACKNOWLEDGE(i, x, y) to Lj .

• Upon subsequently receiving the message OK(i, x, y) from Lj , set Xi := Xi + 1
and Ayi := 1, and send the message OK(j, y, x) to Li. Xi denotes the number
of acknowledged exchanges of leecher Li in the current round of T seconds. Xi

is reset to 0 and computed anew each round.

Figure 2.2: The protocol of the tracker with procedure Check Exchange.

PeerLeave(i)

• Compute sig ′i := Ssk (A1
i , . . . , A

N
i , id r). Store (A1

i , . . . , A
N
i , id r).

• Send the message LEAVE(id r, sig ′i) to Li and disconnect from Li.

Figure 2.3: The protocol of the tracker with procedure PeerLeave.

14 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

RewardLeechers (called every T seconds, i.e., at the start of a new round)

• Award γ pieces to every leecher that joined in the previous round. Let prev be
the number of these leechers.

• Compute for every leecher Li its deserved percentage of seeders’ upload speed:

ri := min

{
Xi∑
k∈LXk

,
1

2

}

• Let βi := ri ·
(∑

k∈S up
s
k·T

B − γ · prev
)

. For every i, assign a set of seeders to

jointly offer βi pieces to Li such that the individual upload capacity of the
seeders is respected, see Sect. 2.4.1. Send to every seeder the corresponding set
of leechers and the number of pieces that these leechers should download from
them.

• Set Ayi := 1 when a seeder informs the tracker that fy was downloaded by Li.
Reset Xi := 0 for all i.

Figure 2.4: The protocol of the tracker with procedure RewardLeechers.

to the number of file piece exchanges of Li and Lj , respectively. The tracker moreover
stores which pieces of the file the leechers now additionally know. This is detailed in
Fig. 2.4. Details on the participation of the tracker in the exchange protocol are given in
Sect. 2.4.3, where the rational exchange of pieces between leechers is explained.

Every round, i.e., after T seconds, the actual rewards are given out. The tracker
distributes the seeders’ upstream proportional to the number of exchanges every leecher
made in the previous round. Hence, the more exchanges a leecher completed in a certain
round, the larger the reward computed for him by the tracker, and hence the more
download capacity the leecher receives from the seeders. At the beginning of a round,
once the reward deserved by each leecher is computed, the old values Xi are reset to
0 and computed anew, according to the exchanges performed in the current round. A
graphical illustration of the reward protocol is given in Fig. 2.5.

More precisely, Fig. 2.5 depicts a system with a tracker, four leechers and four seeders.
During the latest complete round of exchanges, leecher L1 has performed a number of 8
exchanges and leechers L2, L3 and L4 have performed a number of 4,10 and 6 exchanges,
respectively. In terms of existing notation, this can simply be written as X1 = 8, X2 = 4,
X3 = 10 and X4 = 6. This means that for example L1 has performed 28, 57% of all
exchanges during the latest complete round. Taking into account that there are no new
leechers currently connecting to the system, according to Fig. 2.5, at the beginning of
next round, L1 will receive for free 28, 57% of all the seeding capacity currently available

2.4. THE RATFISH PROTOCOL 15

Seeders' Capacity

L1 L2 L3 L4

Number of
Exchanges

Deserved Reward

L1 L2 L3 L4

S1 S2 S3 S4

Figure 2.5: Schematic distribution of the rewards

in the system. Given the existing upload capacity of the seeders, this effectively implies
that the tracker informs seeders S1 and S2 that they should upload 2 and respectively
6 file pieces for free to L1. It is assumed that S1 and S2 have the complete file, so L1

can choose which pieces he wants to download for free. The same reward distribution
algorithm applies for the rest of the leechers and seeders.

2.4.2 The Protocol of the Seeder

Upon connecting, the seeder informs the tracker about the upload speed it is going to
offer. The tracker adds the seeder’s speed to the amount of free available upload capacity.
As the tracker performs all the computations for determining the rewards, the seeder
simply proceeds by uploading the number of file pieces to the leechers as instructed by
the tracker. To keep the tracker’s information about individual leechers up-to-date, the
seeder informs the tracker whenever it uploads a piece to a leecher. A rigorous description
is given in Fig. 2.6.

2.4.3 The Protocol of the Leecher

From a rational perspective, the leecher protocol is the most difficult to get right: while
the tracker is honest and seeders partially altruistic, a leecher tries to bypass the incentives
for uploading wherever reasonable. Intuitively, the exchange protocol looks like this:
Leechers use the signed messages from the tracker to verify each other’s join times. Also,
when two leechers exchange data, the tracker participates in this exchange: Before two
leechers start an exchange, they verify with the tracker that the other party holds the
desired piece. If this check succeeds, the encryptions of the pieces agreed upon are

16 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

Seedingj
Upon connecting, the seeder sends its upload speed upsj to the tracker. Additionally,
in each round:

• Receive from the tracker a set M of leechers and the corresponding number of
pieces ωi that every leecher Li ∈M should receive.

• Inform every leecher Li ∈M how many pieces ωi they are allowed to download.

• When a leecher Li ∈M requests at most ωi pieces by Li (potentially incremen-
tally in this round, i.e., it may ask for a few pieces first), send these pieces to
Li and send a message to the tracker that these pieces have been uploaded to
Li. Requests by leechers Lj 6∈M are ignored.

Figure 2.6: The protocol of the seeder Sj .

exchanged. Before they also send the key to each other to decrypt these messages, both
leechers acknowledge the exchange to each other so that they get a higher reward.

The Connect Protocol. When a leecher connects to the tracker for the first time, it
requests a local neighborhood. If the leecher rejoins, it additionally proves to the tracker
that it already owns some pieces of the file by sending the signature received from the
tracker at its last disconnect. When connecting to a seeder, the leecher requests pieces
until its seeder’s reward is depleted.

Upon contacting another leecher, it waits until both forced waits are over. Afterwards,
both leechers exchange information such that they know which pieces they can request
from each other. To keep track of the availability in its neighborhood, the leecher observes
the messages that leechers broadcast to their local neighborhood, indicating which pieces
of the file they have just downloaded. A detailed description is given in Fig. 2.7.

The Piece Exchange. The piece exchange protocol run between two leechers uses
encryptions to ensure that no leecher can get a piece without completing the exchange
phase. From a practical perspective, it is important to note that the key sizes are small
compared to a file piece size. Thus the communication and storage overhead induced
by the keys and cryptographic operations is kept manageable. Leechers additionally
query the tracker to ensure that their exchange partners own a file piece they need.
Moreover, leechers want their exchanges to be counted and rewarded. Thus, after the
encryptions are exchanged, each leecher prompts the tracker to ask the other leecher for
an acknowledgement. Intuitively, there is no incentive to deviate in this step as they
still lack the key from the other party. Once the acknowledgement step is successfully
completed, both leechers exchange the keys. If a leecher deviates from any of these
steps, it is blacklisted by the other leecher. We stress that blacklisting is not required for
the security proof; it solely constitutes a common technique in this setting to deal with

2.4. THE RATFISH PROTOCOL 17

LeecherConnecti(party)
If party is the tracker, then:

1. If Li rejoins the protocol, send PIECES(a1, . . . , aN , id r, sig
′
i) to the tracker where

am = 1 if Li owns the m-th piece of the file, id r is the rejoin ID and sig′i is the
signature received when disconnecting from the system last time. If Li is a new
leecher, it sends PIECES(0, . . . , 0).

2. Receive TIME(T ip, id r, sigi) from the tracker – indicating the signed connecting
time and ID, as well as a set of neighbors’ IP addresses. Connect to them.

If party is a leecher Lj , do (abort if a check fails):

• Send the message MYTIME(T ip, sigi) to Lj .

• Receive the message MYTIME(T jp , sigj) from Lj . Verify that sigj is a valid

signature on (j, T jp) for pk and that Tc > T jp + T holds.

• Send AVAILABILITY(a1, . . . , aN) to Lj where am = 1 if Li owns fm.

• Receive the message AVAILABILITY(a′1, . . . , a
′
N) from Lj .

Figure 2.7: The Connect protocol for leecher Li.

18 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

LeecherAwarded
Whenever Li is informed by a seeder Sj that it can download ωi pieces, request up
to ωi pieces from Sj (potentially incrementally in this round, i.e., Li may ask for a
few pieces first), and download these pieces.

Exchangei(fx, j, y)
If any of the following checks fails, blacklist Lj and abort.

• Send the message HAS(j, y) to the tracker and wait for a positive answer
represented by a bit b = 1.

• Choose a random key kj,x and compute cj,x ← E(kj,x, fx).

• Send cj,x to Lj and wait for cy from Lj .

• Perform the following two steps in parallel and proceed once both steps are
completed:

– Send EXCHANGED(j, x, y) to the tracker and wait for OK(j, x, y) as re-
sponse

– If receiving ACKNOWLEDGE(j, y, x) from the tracker, reply with
OK(j, y, x).

• Send the key kj,x to Lj .

• Upon receiving ky from Lj , retrieve f ′y ← D(ky, cy) and verify hy = h(f ′y).

• Broadcast to the local neighborhood that you now own the piece y.

Figure 2.8: The Award and Exchange protocols for leecher Li.

2.5. EQUILIBRIUM PROOF 19

cy

k
fy ← D(k, cy)

Leecher Li

Acknowledge

OK

OK

Tracker

Lj

Exchanged y
for x with j

cx := E(kj,x, fx)kj,x ← Un

Ay
i := 1
Xi++

kj,x

Figure 2.9: The core part of piece exchange protocol between two leechers

malicious parties. A detailed description is given in Fig. 2.8. Fair exchange protocols have
been used in prior work to incentivize peers to fairly exchange information [102]. A fair
exchange intuitively means that either both parties obtain what they want or none of them
obtains something. In contrast to [102], however, RatFish needs to neither periodically
renew cryptographic keys, nor implement a non-repudiable complaint mechanism to allow
parties to prove possible misbehaviors; instead it relies on short acknowledgment messages
for each recipient and on collecting these messages to monitor the file completion for
the participants. In fact, RatFish implements a weaker version of fair exchange, which
is called rational exchange [21, 103]. Intuitively, an exchange protocol is rational if the
self-interested participating parties do not have an incentive to deviate. A schematic
overview of the core part of the piece exchange protocol is provided in Fig. 2.9. More
details on the differences between rational exchange and fair exchange can be found in
Chapter 3.

2.5 Equilibrium Proof

In this section we prove that RatFish yields a computational Nash equilibrium; i.e., no
leecher or seeder has an incentive to deviate from the protocol.

2.5.1 Underlying Assumptions

Recall that RatFish proceeds in rounds of T seconds. For simplicity, we assume that
peers can join or leave only at the beginning or end of a round. This assumption can be
easily enforced by letting the tracker force joining peers to wait until the first round after
at least T seconds pass. We also assume that it is impossible to forge identities on the IP
layer (e.g., by using appropriate authentication mechanisms). Additionally, at least one
seeder is present in the beginning to bootstrap the system and that the overall seeding
capacity does not exceed twice the overall upload capacity of the leechers; this bound on

20 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

the seeding capacity prevents the leechers from free riding, which is easy given enough
seeding power. We moreover assume that each leecher’s dedicated upload speed upli is
fully exhausted by other peers. This is equivalent to saying that there are enough leechers
in the system such that each of them has enough neighbors for completely exhausting
his upload capacity. These assumptions seem reasonable as the average seeders/leechers
ratio is often close to 1:1 [18], and optimized centralized coordinators are capable of
distributing upload capacities among different swarms [85]. Moreover, we assume that
there exists a value δ such that for every leecher Li the download speed downli is at
most δ times larger than upli. This assumption is not restrictive in the sense that we
do not need to make any assumption regarding the magnitude of δ. Additionally, we
assume keys do not contribute to the uploaded amount, since in practice, the size of the
short keys is dominated by the size of the encrypted file piece. Moreover, we assume
that each peer is only able to maintain one identity in the system. This in particular
excludes Sybil attacks, in which multiple distinct identities are created by the same peer
to subvert the reputation system of a P2P network. This assumption does not come as
a surprise, since the Nash equilibrium conceptually does not defend against coalitions,
rendering Sybil attacks possible in most works on rationally secure protocols. Regarding
the cryptographic primitives, we assume that the signature scheme used by the tracker is
secure against existential forgery under chosen-message attack and that the encryption
scheme is semantically secure under chosen-plaintext attack. Finally, we assume that the
encryption scheme is length preserving.

2.5.2 Proving the Nash Equilibrium

We finally show that RatFish constitutes a Nash equilibrium.
We first prove that a leecher deviating from the protocol cannot increase its utility

by more than at most a negligible value, provided that no other party deviates. To
show this, we determine two sets of possible cheating actions for leechers, which we call
independent actions and correlated actions. Intuitively, the independent cheating actions
can be individually replaced by honest actions without decreasing the utility, independent
of the remaining parts of the deviating strategy. Correlated cheating actions are sensitive
to the details of the deviating strategy: we can only replace a correlated cheating action
by a corresponding honest action without decreasing the utility if all deviating actions
that jointly influence the leecher’s utility are simultaneously replaced in one round. We
show that the only correlated cheating action is the refusal of acknowledgement for an
exchange.

Our proof technique starts with an arbitrary deviating strategy M ′i and provides a
proof in two steps: In the first step, we replace all independent cheating actions step-
by-step; here, a step within a strategy denotes the computation performed within the
strategy between two consecutive outputs. Slightly more formally, let Mi be the honest
strategy for leecher Li, M

′
i a deviating strategy, and {H∗ack ,j}j the set of all strategies that

in every step are either honest or do not acknowledge an exchange. Then our technique
takes as input M ′i and yields a so-called semi-honest strategy M∗i ∈ {H∗ack ,j}j that for
every input and random tape outputs in every step the same action as M ′i whenever

2.5. EQUILIBRIUM PROOF 21

possible, and plays honest otherwise. We then show that the semi-honest strategy M∗i
cannot yield a worse payoff than M ′i . The proof is based on the novel concept of hybrid
concatenation of strategies.

We start by proving the following:

Lemma 5 (No Independent Cheating Actions of Leechers). Let γ be the number of
uploaded pieces a newly joined leecher is awarded. Let M ′i be a deviating strategy of Li
and let M∗i be the semi-rational strategy as defined above. Then for αi ∈ [0, T

δ·γ·B], we
have

ui(k,M
′
i ,M−i)− ui(k,M∗i ,M−i) ≤ ε(k),

for some negligible function ε.

Proof. We consider two main cases, depending on the number of steps of M ′i . If M ′i does
not terminate in a finite number of steps, then the time Ti,fin(o) the leecher Li has to
spend in the system is infinite. Thus any strategy, including M∗i , cannot give a worse
payoff. If M ′i runs in N ∈ N steps, then we construct N hybrid concatenations and prove
that for all n = 0, . . . , N − 1, there exist a negligible function εni such that it holds

ui(k,M
′
i‖snM∗i ,M−i) ≤ ui(k,M ′i‖sn+1M

∗
i ,M−i) + εni (k), (2.1)

where by M ′i‖snM∗i we denote the strategy M ′i with the last n steps replaced by last
n steps of the rational strategy M∗i .

In order to show this, we use induction on the steps of strategy M ′i . As there is no
difference between the base case and the inductive step, we present below only the later.
We examine all possible independent cheating actions which could have been performed
by M ′i at step n+ 1. Intuitively, such independent cheating actions can be grouped into
two main categories: related to the messages sent or related to the messages received.
When a message is sent, there are three possible scenarios: sending no message, sending
the correct message or sending a malformed message. When a message is received, there
are also three possible scenarios: receiving no message, receiving the message and using it
correctly for necessary computations or receiving the message and using it in a different
way than described by the protocol.

In the following, we will concentrate on the case of messages which are sent. For the
messages received, the proof follows a very similar approach.

It is clear that if at step n+ 1 the action performed is the action prescribed by M∗i ,
then we have:

ui(k,M
′
i‖snM∗i ,M−i) = ui(k,M

′
i‖sn+1M

∗
i ,M−i). (2.2)

Below we give a detailed case distinction for the situation when the action is either
to send no message or to send a malformed message.

Case 1: M ′i does not announce the correct timestamp that it received from the tracker.
Because Li is required to provide a valid signature from the tracker on the timestamp,

this deviation will be undetected only with a negligible probability, corresponding to
the probability of constructing a selective forgery against the signature scheme. If Li

22 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

is caught cheating, then the other peers do not let Li connect to them. Therefore, we
obtain that (2.1) holds.

Case 2: M ′i does not announce any timestamp that it received from the tracker.

As the other leechers follow the protocol as prescribed, they will not connect to a
neighbor which did not announce his timestamp received from the tracker. Thus, in this
case, leecher Li cannot complete the file download and (2.1) trivially holds.

Case 3: M ′i connects to leechers before the penalty wait of T seconds is over.

Other leechers will not reply to Li unless it provides a valid signature on a timestamp
T ip < Tc − T . Since an invalid signature can be produced only with negligible probability,
we have that (2.1) holds.

Case 4: M ′i connects to leechers after the penalty wait of T seconds is over.

The more time leecher Li waits to connect to others after his penalty wait is over,
the more his utility decreases as compared to the case when he follows the prescribed
strategy. So (2.1) is true.

Case 5: M ′i does not connect to leechers even after the penalty wait of T seconds is
over.

If Li does not connect to other leechers in his neighborhood or Li does not reply to
their connect requests, then Li will not be able to download the file at all or his upload
capacity will not be fully utilized as it is the case when he follows the protocol. In both
situations, his benefit by performing this deviation decreases compared to the prescribed
run of the protocol. More formally, (2.1) holds.

Case 6: M ′i accepts connections from leechers whose penalty wait is not over.

Because those leechers will not connect to Li, this does not change the outcome of
the game. Therefore, (2.1) trivially holds.

Case 7: M ′i does not accept connections from at least one leecher in its own neigh-
borhood, even though leecher’s penalty wait is over.

Such a deviation would slow down Li as his upload capacity would not be fully
exhausted. Thus, we have (2.1).

Case 8: M ′i announces to hold more pieces than it actually does.

There are two possible cases. Either Li tries to convince the tracker upon connecting
that it holds more pieces, or it has sent wrong “HAVE x” messages. In the first case, Li
has to provide a valid signature from the tracker on wrong data, which is possible only
with negligible probability. In the second case, this will not affect anything until some
other leecher requests a piece fx from Li that it does not own yet. Then, in the exchange
step, the tracker will send the other leecher the message that Li does not have fx. The
exchange will be canceled and this will not allow Li to increase his utility, thus fulfilling
(2.1).

Case 9: M ′i announces to hold fewer pieces than it actually does.

This does not increase its utility, because the amount of pieces is used by other
leechers to determine whether they can exchange with Li. Fewer parties are willing to
exchange with Li if it claims to have fewer pieces. This case also fulfills (2.1).

Case 10: M ′i does not make any announcement on the pieces it has. Such a deviation
from Li would only slow it down as the other leechers would not connect to Li for

2.5. EQUILIBRIUM PROOF 23

performing new exchanges: Li would potentially have no interesting pieces to offer.
Hence, (2.1) holds.

Case 11: When receiving an encrypted piece from a neighbor, M ′i does not send
anything as a reply to the corresponding leecher.

In this case, the utility of Li would increase only if the leecher is able to guess the file
piece from the encrypted message. Since the encryption scheme is semantically secure
against chosen plaintext attack, the deviating leecher would succeed only with negligible
probability so (2.1) is fulfilled.

Case 12: In the exchange phase, M ′i sends a wrong encryption upon being requested
to exchange piece fx.

Assume Li does not hold piece fx. Because other leechers only request what it
announced with “HAVE x”, this means it wrongly announced that it has too many pieces.
This case is already discussed above. Therefore, Li has the piece the other party requested
and the other party expects a message of the length |Ek(fx)|. But then, Li can also send
the encryption of the requested piece, because sending a wrong encryption still requires
it to upload exactly as much as uploading the right encryption. Thus, this deviation
leaves Li with (2.1).

Case 13: M ′i requests an invalid reward from the tracker.

By assumption, M ′i cannot send a message under the identity of another player (we
assumed authentic channels). However, its request will not be acknowledged by any other
party, as they are sticking to the protocol. Therefore, this does not increase its utility
and (2.1) holds.

Case 14: M ′i makes no request for reward, even though he is entitled to such a
reward. By performing this deviation, the overall download time for Li will increase, thus
trivially (2.1) holds.

Case 15: In the exchange phase, M ′i does not send the key in the end.

If the exchange reached the keys sending phase, since Li’s partner follows the protocol,
it means that the two parties have the right piece for one another and they have already
exchanged encryptions. By assumption, the key size does not increase the uploaded
amount so if Li sends the key it will not reduce his utility and (2.1) still holds.

Case 16: M ′i reconnects after r rounds.

Let o′ be the outcome when Li follows the reconnecting strategy M ′i‖snM∗i and let
o be the outcome when Li follows M ′i‖sn+1M

∗
i . Since the strategies of all other parties

do not change and a leecher can reconnect only at the beginning of a new round, we
have the following relation: Ti,fin(o′) = Ti,fin(o) + τ . The value τ is the additional time
Li spends in the system since for at least one round, Li did not interact with any leecher.
In a similar way, if Ui is the overall amount of uploaded data for outcome o, then the
amount of uploaded data in o′ is at most Ui − γ ·B, where γ ·B is the number of free
awarded bytes for a (re-)joining leecher. As a reminder, B represents the bytes size of a
file piece.

We observe that in outcome o′, after the rejoin, the leecher is missing at least T · upli
bytes compared to o. By assumption we know that the leecher never has a download
speed larger than δ · upli. Hence, the time τ the leecher needs to additionally stay in the

24 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

system is given by how fast he can download the missing data. This is at least:

τ ≥ T · upli
δ · upli

=
T

δ
.

Proving (2.1) is equivalent to proving

Ti,fin(o) + αi · Ui ≤ Ti,fin(o) + τ + αi · (Ui − γB).

This holds true if αi ≤ τ
γ·B . The last inequality holds since by assumption αi ∈ [0, T

δ·γ·B]

and τ ≥ T
δ .

Case 17: M ′i sends incompliant messages.
Because such messages are ignored by other parties, this does not affect the utility,

and (2.1) is fulfilled.
To summarize, we obtain that (2.1) holds for all n ∈ {0, . . . , N − 1}. By summating

al these equations and taking into account that N is polynomial in k and also that the
sum of polynomially many negligible functions is still negligible, we infer that there exists
a negligible function ε′ such that:

ui(k,M
′
i ,M−i) = ui(k,M

′
i‖s0M∗i ,M−i)

≤ ui(k,M ′i‖sNM∗i ,M−i) + ε′(k)

= ui(k,M
∗
i ,M−i) + ε′(k).

This concludes our proof.

Thus far, we have transformed a deviating strategy M ′i into a semi-rational strategy
M∗i that uses only correlated cheating actions and does not decrease the payoff. In the
second step, we replace all correlated cheating actions round-by-round until we reach the
honest strategy Mi. We use a hybrid argument based on the hybrid concatenation of
strategies to show that the honest strategy outperforms the semi-rational strategy for
leechers.

Lemma 6 (No Correlated Cheating Actions of Leechers). Let Mi be the honest strategy
for Li, i.e., following the RatFish protocol and let M∗i be the semi-rational strategy as
defined above. Then

ui(k,M
∗
i ,M−i)− ui(k,Mi,M−i) ≤ ε(k),

holds for some negligible function ε.

Proof. We again use the hybrid concatenation of strategies. However, now we need to
replace correlated deviations with honest actions; hence the hybrids are constructed over
rounds, and the notation A‖rnB denotes that the last n rounds of strategy A are replaced
by the last n rounds of strategy B. The proof starts with the last round and replaces the
deviating strategy with the RatFish protocol round-by-round. We show by induction

2.5. EQUILIBRIUM PROOF 25

that each such replacement will not decrease the utility, i.e., for every n ∈ {1, . . . , R},
where R is the number of rounds for strategy M∗i , there exists a negligible function εni
such that:

ui(k,M
∗
i ‖rn−1Mi,M−i) ≤ ui(k,M∗i ‖rnMi,M−i) + εni (k). (2.3)

As a consequence, the payoff for the honest Mi cannot be exceeded.

For the base step, we examine the initial hybrid where no deviation has been removed.
Clearly, it holds that ui(k,M

∗
i ‖r0Mi,M−i) = ui(k,M

∗
i ,M−i). For the inductive step, we

have the induction hypothesis

ui(k,M
∗
i ‖rn−1Mi,M−i) ≤ ui(k,M∗i ‖rnMi,M−i) + εni (k),

for some negligible function εni .

Now we consider the n-th hybrid: the last n rounds are all played according to Mi

and all previous rounds are played according to M∗i . If we compare this hybrid with
the n+ 1st hybrid, the only difference is that the possibly deviating n+ 1-st round is
replaced by an honest one. By definition, in round n+ 1, the strategy M∗i says that Li
does not acknowledge Z ≥ 0 correct exchanges, but his exchange partners acknowledge
all exchanges made so far. If Z = 0, then M∗i played in round n the honest strategy Mi,
thus:

ui(k,M
∗
i ‖rnMi,M−i) = ui(k,M

∗
i ‖rn+1Mi,M−i).

For the case where Z > 0, we investigate the properties of the utility function. To
reach the phase of acknowledging the other’s exchange, Li first needs to upload the
encrypted data. Therefore, the amount of uploaded data stays the same both in the
deviating strategy and in the honest strategy. The only possibility to increase the utility
is then to download more data in the same time span. In the following, we show this is
not possible.

With Mi, the leecher’s amount of downloaded data corresponding to one round of T
seconds equals

B ·Xi + T · (
∑
k∈S

upsk) ·min

{
Xi∑
k∈LXk

,
1

2

}
.

Note that in the second summand, we have the reward gained in the next round,
because the tracker rewards exchanges always one round later. Furthermore, the tracker
caps the reward to at most one half of the total seeders’ upload, according to the protocol
in Fig. 2.2. However, for a non-deviating player, it is impossible to obtain more than half

of the overall exchanges, thus we have min
{

Xi∑
k∈LXk

, 1
2

}
= Xi∑

k∈LXk
. Using M∗i in round

n+ 1, the leecher gains Z ·B bytes less from the cheated exchanges, but he may obtain
higher reward from the seeders.

This sums up to at most

B · (Xi − Z) + T · (
∑
k∈S

upsk) ·min

{
Xi

(
∑

k∈LXk)− Z
,
1

2

}
.

26 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

Indeed, the intuition for the first summand is that when leecher Li does not ac-
knowledge Z exchanges in a round, there is only a negligible probability that Li will
obtain the corresponding decryption keys for these exchanges. This holds as Li has only
honest exchange partners and they respond to a non-acknowledge of a correct exchange
by blacklisting the deviating Li and also by interrupting communication with Li. The
second summand gives the amount of upload reward that Li receives from the seeders in
a round of T seconds when he does not acknowledge Z exchanges. The value Xi

(
∑
k∈LXk)−Z

gives the ratio of acknowledged exchanges for Li to the total number of acknowledged
exchanges. Therefore, his utility will not increase if

Z ·B + T · (
∑
k

upsk)
Xi∑
kXk

≥ T · (
∑
k

upsk) ·min

{
Xi

(
∑

kXk)− Z
,
1

2

}
. (2.4)

To simplify the inequality more, we can express the number of exchanges Xk as the
ratio of capacity used for uploading in one correct round divided by the size of a file
piece. Formally, we have

Xk =
T

B
· uplk, (2.5)

for all k ∈ L.

Indeed, due to our assumption, for each leecher Lk there are enough neighbors in
the system that can exhaust Lk’s upload capacity. Due to the fact that values Xk, with
k ∈ {1, . . . , n}, are defined for the case when everybody is honest, and following the
protocol implies exchanging with the neighbors until the full upload capacity is exhausted,
we have that (2.5) holds.

We are now ready to distinguish two cases for the current proof. In the first case, the
deviating leecher increases the benefit from the seeders, but stays below 1

2 of the overall
seeding capacity. In the second case, the reward is capped by the tracker at exactly half
of this capacity. Note that those computations below rely on the assumption that seeding
power is at most twice as large as leeching power.

Case 1: min{ Xi
(
∑
kXk)−Z ,

1
2} = Xi

(
∑
kXk)−Z . Then (2.4) evaluates to

Z ·B · (∑kXk) · ((
∑

kXk)− Z)

T · (∑k up
s
k)

≥ Z ·Xi

⇔ (
∑

k up
l
k)

(
∑

k up
s
k)︸ ︷︷ ︸

≥ 1
2

((
∑
k

Xk)− Z) ≥ Xi.

The last inequality holds as we are in case 1.

2.5. EQUILIBRIUM PROOF 27

Case 2: min{ Xi
(
∑
kXk)−Z ,

1
2} = 1

2 , then (2.4) evaluates to

Z ·B + T · (
∑
k

upsk)
Xi∑
kXk

≥ T

2
(
∑
k

upsk)

⇔
∑

k up
l
k∑

k up
s
k︸ ︷︷ ︸

≥ 1
2

Z ≥ 1

2
(
∑
k

Xk)−Xi.

The above inequality is fulfilled as we are in case 2. It follows that

ui(k,M
∗
i ‖rnMi,M−i) ≤ ui(k,M∗i ‖rn+1Mi,M−i) + εn+1

i (k)

and this also concludes our induction proof. By summing up all the inequalities described
by (2.3), where n ∈ {1, . . . , R} and taking into account that R is the number of rounds of
a polynomially bounded strategy, we obtain there exists a negligible function ε′ such that

ui(k,M
∗
i ,M−i) = ui(k,M

∗
i ‖r0Mi,M−i)

≤ ui(k,M∗i ‖rRM∗i ,M−i) + ε′(k)

= ui(k,M) + ε′(k).

This concludes our proof.

Showing that seeders have no incentive to deviate from the protocol is considerably
easier than the corresponding statement for leechers, since seeders are considered partially
altruistic. We show that as long as all leechers follow the protocol, a seeder cannot run a
deviating strategy to improve its payoff.

Lemma 7 (No Seeder Deviation). There is no deviating strategy for any seeder that
increases its payoff if all other parties follow the RatFish protocol.

Proof. We prove that no matter how a seeder distributes its upload speed over the
leechers, their average time to completion does not decrease. In particular, it implies the
seeder’s utility does not increase if its upload speed initially announced to the tracker
decreases.

The statement holds as all other participants stick to their strategy: a seeder may
deviate only by assigning leechers different weights than those received from the tracker.
Let r be the last round in which the seeder Sj deviates and let upsi be its full upload speed.
Let ω1, . . . , ωn be the weights on the upload speed to all leechers given by the tracker and
let φ1, . . . , φn be some other arbitrary weights. It holds that

∑n
k=1 φk ≤

∑n
k=1 ωk = 1

and that we have ωk, φk ≥ 0 for all k. We obtain the following bound for the average
download speed of all leechers in round r:

1

|L|
∑
k∈L

(downlk + ωk · upsi) =
1

|L|

(∑
k∈L

(downlk) + upsi

)

≤ 1

|L|
∑
k∈L

(downlk + φk · upsi).

28 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

Thus, if a seeder deviates from RatFish, it causes a decrease in the average download
speed in round r for the leechers. Consequently, the average completion time for a leecher
does increase when the seeder deviates, i.e., the seeder has no incentive to deviate from
RatFish.

We finally combine the results that neither leechers nor seeders have an incentive to
deviate (the tracker is honest by assumption) to establish our main result.

Theorem 8 (Computational Nash Equilibrium). The RatFish protocol constitutes a
computational Nash equilibrium if αi ∈ [0, T

δ·γ·B] for all i ∈ L.

Proof. We show that for every participant in the protocol, a deviation increases the
utility by at most a negligible value. Assume leecher Li deviates from the strategy Mi

described by the protocol using M ′i . Then, by Lemma 5, we have that there exists a
sem-rational strategy M∗i ∈ {H∗ack ,j}j such that for some negligible function ε1 it holds

ui(k,M
′
i ,M−i)− ui(k,M∗i ,M−i) ≤ ε1(k).

However, by Lemma 6, we have that for all M∗i and for some negligible function ε2,

ui(k,M
∗
i ,M−i)− ui(k,M) ≤ ε2(k).

Therefore, we obtain that for all deviating strategies M ′i there exists a negligible function
ε such that

ui(k,M
′
i ,M−i)− ui(k,M) ≤ ε(k).

Lemma 7 gives us an analogous result for seeders. Therefore, RatFish gives a computa-
tional Nash equilibrium.

After we have shown how to derive by hand the rather long and intricate proof that
RatFish represents a Nash equilibrium, an important observation is due. First, it is not
clear at first glance that our case analysis technique is exhaustive. Unfortunately, since
the protocol is rather complex in terms of number of different messages which are sent
and received and also in terms of the side effects that they may incur, it is not clear how
to perform an exhaustive case analysis by hand. Second, using a tool or a method off-
the-shelf that performs an automatic verification of the game theoretic property, namely
computational Nash equilibrium, for a protocol that involves cryptographic primitives
and assumptions, has not been, to the best of our knowledge, attempted yet. Thus, in the
current chapter we have seen an analysis using only known or adapted proofs techniques
and we study how this analysis can be automated in Chapter 3.

2.6 Implementation and Performance Evaluation

In this section, we describe the implementation of RatFish and we experimentally evaluate
its performance. We focus on the implementation and performance evaluation of the
tracker, since the tracker took on several additional responsibilities and is now involved

2.6. IMPLEMENTATION AND PERFORMANCE EVALUATION 29

in every exchange. In contrast to the tracker, seeders and leechers are largely unchanged
when compared to BitTorrent: the exchange of encrypted pieces constitutes a small
computational overhead, but leaves the network complexity that usually constitutes the
performance bottleneck of P2P protocols essentially unchanged.

2.6.1 Implementation

The RatFish tracker was implemented using about 5000 lines of code in Java, thus
ensuring compatibility with common operating systems. The implementation is designed
to work with both UDP and TCP.

The messages sent in the protocol start with the protocol version number and message
ID (which determines the length of the message), followed by the torrent ID, and
additional information that depends on the type of message.

Afterwards, a task is created that processes the received message. This task is given
to the threadpool executor – the main part of the RatFish tracker that also ensures
parallelization. The threadpool sustains eight parallel threads and assigns new tasks to
the next free thread. For instance, when the tracker receives a notification that a leecher
joined the protocol, the task extracts the leecher’s IP from this message and triggers the
forced wait. After T = 300 seconds it replies with a digital signature for the leecher using
an RSA-based signature scheme that signs SHA-1 hashes.

2.6.2 Experimental Setup

For the evaluation, we ran the RatFish tracker on a server with a 2-cores Intel Xeon CPU,
2GB of RAM, a 100MBit Internet connection and an Ubuntu SMP operating system with
kernel version 2.6.28-18. We simulated a swarm with up to 50,000 peers, divided into
neighborhoods of size 4. The simulated leechers send the same messages as a real leecher
would, thus yielding an accurate workload measure for the tracker. Every leecher was
configured to complete one exchange per second, and we chose the size of a piece to be
256 kB according to BitTorrent standards. Hence every leecher has a virtual upload speed
of 256 kB/s. The size of the shared file is 50 MB, and the seeders upload one forth of the
file per second in a round-robin fashion to their neighborhoods. The simulated clients
are running on a separate machine. This allows us to measure network throughput. In
our simulation, we need to pretend to the tracker that clients connect from different IPs.
We thus used UDP in our experiments. Deploying RatFish in reality would presumably
be based on TCP, which would slightly increase the network complexity.

2.6.3 Performance Evaluations

Fig. 2.10 depicts the results for our experiments. The main observation, shown in the
left part of Fig. 2.10, is that even though we engage the tracker in every exchange in the
swarm, the protocol scales well (a resource usage of 65% for 50,000 leechers). One can
also observe that the computation complexity becomes a limiting factor, but we expect

30 CHAPTER 2. RATIONAL FILE SHARING WITH RATFISH

10000 30000 50000
0

20

40

60

80

100

Joining leechers per swarm

%CPU

%Bandwidth

%Memory

100 200 300 400
0

20

40

60

80

100

Joining leechers per second

%CPU

%Bandwidth

Figure 2.10: Left: Resource usage for a static number of leechers engaging in exchanges.
Right: Resource usage for dynamically joining leechers.

this to change for more cores given our highly parallelized implementation. Memory was
not a bottleneck in any experiment.

The right part of Fig. 2.10 considers the case where many leechers join at once, but
no exchanges are happening. This study is important since the tracker’s most expensive
task is to sign the join time of leechers. In our experiments, the tracker was able to serve
about 400 new leechers per second. Since the server has T seconds for signing in practical
deployments, the signature computation would be scheduled in free CPU time and hence
not delay ongoing exchanges. We also observed that the two measurements depicted in
Fig. 2.10 on CPU usage are additive, e.g., a system with 30,000 leechers and 200 joining
leechers per second uses 90% of the CPU.

2.7 Conclusion

We have proposed a file sharing protocol called RatFish and we have proven it is
secure against deviations of rational users. We first characterized rational behaviors of
leechers and seeders in file sharing protocols. Subsequently, we formally showed that
no rational party has an incentive to deviate from RatFish; i.e., RatFish constitutes a
Nash equilibrium. While the tracker in RatFish is assigned additional tasks compared
to existing file sharing protocols such as BitTorrent, the communication overhead of a
RatFish client compared to a BitTorrent client is minimal. We have demonstrated by
means of a prototype implementation that RatFish is practical and efficient.

A currently open research area is creating a framework for automated verification
of Nash equilibrium property for ProVerif. Indeed, while we have seen that such a
framework would tremendously simplify and provide rigor to the existing hand-made
proofs, there is no automated verification model yet which can be directly applied to
RatFish. The need for automated verification actually extends further, to general rational
cryptographic protocols: The only rational cryptographic protocol which has been subject
of formal analysis is rational exchange [21, 103]. However, even for rational exchange
protocols no automated analysis exists. In Chapter 3 we give the first framework for
automated verification of rational cryptography by showing how rational protocols and
their game-theoretic properties can be modeled in applied pi calculus.

Chapter 3

Automated Verification for
RatFish

3.1 Introduction

As presented in Chapter 2, rational cryptographic solution concepts and methods are
used for designing secure protocols with respect to a non-traditional adversarial model,
called rational model, where participants do not arbitrarily misbehave for the sake of
breaking the security goals of the protocol, but just for maximizing their benefit. The
rational model is applicable to scenarios where participants have a predictable behaviour
and we have studied the example of file sharing. The main benefits of using the rational
model over the traditional “black and white” adversarial models, in which parties are
either honest or arbitrarily compromised, is that rationally secure protocols are in general
less complex, more efficient or even overcome classical impossibility results.

Formally proving rationality in the presence of cryptographic primitives is, however,
neither an easy, nor a well studied task. Indeed, as highlighted in Chapter 2, proofs of
Nash equilibrium for rational cryptographic protocols are lengthy, difficult, and error-
prone, since they combine the complexity of game theory proofs with the complexity of
cryptographic proofs. Specifically, a deviating party may perform arbitrary cryptographic
operations and combine in an unexpected manner the messages received from the other
parties. Despite the impressive progress in the automated analysis of cryptographic
protocols, security proofs for rational cryptographic protocols are at present done by
hand. The main problem is that the existing cryptographic protocol verifiers deal with
a different adversary model, the so called Dolev-Yao adversary [34], which models an
omnipresent and omnipotent network-level adversary that can overhear, intercept, and
synthesise any message, is only limited by the security constraints of the employed
cryptographic schemes, and unconditionally tries to break the security goals of the
cryptographic protocol. In fact, the automated verification of rational cryptographic
protocols, and in particular making utility functions accessible to existing cryptographic
protocol verifiers, is recognized as an open challenge [5].

31

32 CHAPTER 3. AUTOMATED VERIFICATION FOR RATFISH

3.1.1 Contributions

In this chapter, we take the first steps towards the automated verification of rational
cryptographic protocols. We model these protocols in the applied pi calculus [1], a well-
established process calculus for the specification and analysis of cryptographic protocols.
In order to make the security properties of these protocols amenable to automated
verification, we formalize the concept of utility functions and Nash equilibrium as trace
properties.

To exemplify our approach, we model the Ratfish rational file sharing protocol [8] in
the applied pi calculus and analyse it using ProVerif [19], a state-of-the-art cryptographic
protocol verifier. Ratfish relies on a fairly sophisticated utility function based on the
length of messages, which expresses the interest of rational parties in completing the
download of their files while minimizing the amount of uploaded data. We show how to
manually encode a Nash equilibrium property into the ProVerif query language, based
on the RatFish utility function. More explicitly, we use the concept of correspondence
assertions [107], a formalism originally developed to state intended properties of crypto-
graphic authentication protocols. The analysis of the resulting query is automated and
takes about a minute.

To the best of our knowledge, this is the first attempt to leverage an automated
cryptographic protocol verifier in the analysis of rational cryptographic protocols.

3.1.2 Related Work

In the following, we give a detailed review of the related work in the areas of automated
theorem proving and model checking for fairness and related rationality properties.

Model Checking Nash Equilibria

The related research [77, 78] which comes closest to our goal in this chapter is describing
how model checking methods can be used for automated verification of Nash equilibrium
property for general distributed systems. When protocol specifications for each protocol
participant can be modeled as a finite state machine, model checking algorithms exist
[77] for verification of the Nash equilibrium property without coalitions.

In the follow-up paper [78], the framework is extended to reason also about Nash
equilibrium in the presence of coalitions. More precisely, using the proposed framework, it
can be inferred whether a protocol for distributed systems is an ε- f - q- Nash equilibrium,
where ε is the maximum gain of a coalition in deviating from the protocol, f is the
maximum number of Byzantine players and q is the maximum size of the coalition of
rational players. The authors propose two model checking algorithms on top of the
NuSMV model checker and implement the algorithms on two examples. However, in
both of these examples, the representation of the underlying finite state mechanism
comprises no more than 18 participants for which no more than 2 states and 3 actions
are possible, or 6 participants for which no more than 3 states and 4 actions are possible.
The verification algorithms may require up to 30 hours. Moreover, the examples modeled

3.1. INTRODUCTION 33

contain no cryptographic primitives.
Another related approach is taken by Chen et al. [27] and they present an automatic

verification technique for the modelling and quantitative analysis of probabilistic systems
that incorporate competitive behaviour. Specifically, the authors present a model checking
algorithm, implemented in the PRISM model checker, for verifying quantitative properties
of stochastic multi-player games.

Our approach differs in three major ways from the models and techniques outlined
above: First, our approach is aimed at automated verification of rational cryptographic
protocols rather than verification of general distributed systems’ protocol. This implies
our model requires a way for defining semantics for the symbolic cryptography used
within the protocols. For example, we need to model the fact that in case the attacker is
able to gain access to the correct keys, then he can retrieve the corresponding secrets.
We also need to model various security properties for the cryptographic schemes involved
in the protocol, e.g., secrecy, authentication, unforgeability.

Second, we use ProVerif, an automated verification tool for security properties which
allows for verification of an unbounded number of process replication. In contrast, the
previously used approaches of employing model checkers do not have this capability.

Third, in case of rational players, even though they have the capability to arbitrarily
deviate, they will do so only if they benefit from it. Thus, intuitively, since we investigate
rational exchanges, we have to reason only about those traces where a rational player
has the incentive to choose a different behavior than the prescribed one. On one hand,
a model checker is more suitable to use for a brute-force search on the entire space of
the traces. One the other hand, ProVerif allows us to reason about traces with certain
properties, for example by using correspondence assertions. Thus, our approach is more
suitable for situations where efficiency has priority. Indeed, verifying the rational security
properties of the RatFish file sharing system using our framework takes less than two
minutes.

Computation with Fairness

The rational exchange protocols which we automatically verify in this chapter are part of
a wider line of research related to security and fairness. Indeed, rational exchanges and,
more generally, rational cryptography, e.g. [8, 39, 48, 53, 63] aim at providing incentives
for self interested participants to follow the protocol as designed. The most common
utilities for such parties can be resumed intuitively as follows: ”I am happy when I learn
a certain secret value and if this happens, I am even happier when the other participants
in the protocol do not learn the secret value I am interested in. However, I am unhappy
when I do not learn the secret value I am interested in.” Generally, rational cryptography
proposes protocols that achieve roughly the following property : ”I can learn the secret
value I am interested in if and only if the other parties also learn the secret value(s) they
are interested in.”

In this context, it becomes clear that rational cryptography and different degrees
of fairness (informally, for example, either all participants receive at least a certain
”amount” of the correct output of the protocol or nobody does receive anything) are

34 CHAPTER 3. AUTOMATED VERIFICATION FOR RATFISH

well connected: Rational cryptographic problems can be viewed as instances of fairness
problems which occur in the presence of rational players. Thus, below we review previous
work on achieving and verifying fairness in various non-rational settings and afterwards
we continue with an overview of the state-of-the-art verification for fairness properties in
rational contexts with a focus on rational exchanges.

It is a known fact that under the appropriate assumptions, essentially any polynomial
time function can be computed by a protocol in such a way that any desired security
property is fulfilled, even in the presence of a malicious majority [43, 62, 110]. This holds
as long as we do not consider the complete fairness property, i.e., either all participants
receive the complete and correct output of the protocol, or nobody does. Indeed, it has
been shown [31] that even a coin toss (and hence the boolean XOR) cannot be computed
fairly with a dishonest majority. In particular, fairness becomes a non-trivial problem for
the two party case.

On one hand, it has been shown that any arbitrary functionality can be implemented
with complete fairness when the majority of protocol participants are honest [12, 16, 26, 94].
On the other hand, for the case of dishonest majority, it has been shown [40] that any
functionality can be implemented with any number of corrupted parties, as long as only
the weaker property of fairness with abort is required (i.e., the adversary in this case
may abort the protocol when it receives its output). In the same line of work, another
possibility to achieve some degree of fairness is by applying the gradual release technique1,
e.g. [14, 20, 46]. However, this will ensure only partial fairness 2

Recently, it has been shown that the impossibility result from [31] for the dishonest
majority does not apply to every polynomial time computable function. Indeed, an entire
line of work, e.g., [49, 50, 51, 52] has been dedicated to classifying which functions can
be computed with complete fairness in the presence of malicious (majority) of players
and for which functions only partial fairness guaranties can be made.

In more detail, for the two party setting it has been shown [49] that the boolean
functions AND and OR, as well as Yao’s millionaires’ problem [108] can be computed
with complete fairness. These are just concrete example functions that can be computed
with complete fairness. A general result [49] shows that any two-party function (over
polynomial-size domains) which does not contain an “embedded XOR” (i.e. inputs
x0, x1, y0, y1 such that f(xi, yj) = i ⊕ j), can be computed with complete fairness.
Moreover, the authors also prove that there exist two-party functions containing an
“embedded XOR” that can be computed with complete fairness. The first study of
implementing fairness in multiparty setting [51] gives a protocol for computing the
3-party majority function and the boolean OR with complete fairness, but each of them
require at least logarithmic number of rounds and a private broadcast channel.

Another way to look at fairness is to understand which are the minimal assump-
tions that have to be fulfilled in order for this security property to hold when more
than half of the participants are corrupted. When looking at the bigger picture, it is

1Gradual release informally means that at any point in the protocol, both the honest and the adversarial
parties can obtain their output by performing similar amounts of effort.

2In case of coin flip, partial fairness means that the coin output by the correct parties is biased.

3.1. INTRODUCTION 35

known [43, 62, 110] that for achieving computational security (without fairness) for any
function with dishonest majority, it suffices for the participants to have access to an
oblivious transfer functionality. Actually, it has been shown [62] that an oblivious transfer
functionality is both necessary and sufficient for computational security, when there
is a majority of dishonest participants. We say that oblivious transfer is a complete
primitive for computational security without fairness.3 The first complete primitive for
fair computation for two-party and multi-party setting has been described in [38], but
its input size and running time depend on the complexity of the target functionality,
however, achieving completely fair computation using a more efficient primitive is possible
[50]. The functionality used in the two-party case is a fair reconstruction procedure for
secret sharing. The input to the primitive depends on the security parameter and on the
output of the desired function to be computed fairly. One can compute any multiparty
function with complete fairness [50]. However, an additional efficiency trade-off has to be
considered between the input size and number of times the fair reconstruction procedure
for secret sharing is invoked.

Formal Methods, Fair Exchange and Rational Exchange

From the field of fair computation, the results in this chapter have the most in common
with fair exchange and rational exchange. Intuitively, an exchange between two parties
mutually interested in a piece of information in possession of the other party is fair if the
outcome of the exchange is such that either both parties get what they want or none of
them does. It has been shown that in general fair exchange has strong limitations, i.e.
it is impossible to implement without a third trusted party [84]. Various fair exchange
protocols have been designed, e.g., [11, 15, 64, 65, 79, 104, 111]. In order to cope with the
computational overhead of the trusted third party, the notion of optimistic fair exchange
[6, 7] can be used instead. Optimistic fair exchange ensures that if all parties follow the
protocol, all parties receive the information item they were interested in. Otherwise, in
the improbable event that a party deviates, then the party catching this deviation can
gather evidence from the protocol about the Byzantine behavior of the deviating party
and take this to a judge or arbiter. Based on correct evidence, the judge rules in favor of
the non-deviating participant, which as part of the protocol, is eligible for compensation.

The automated verification of fair exchange protocols is subject of active research,
since the seminal works by Shmatikov and Mitchell [98, 99, 100] and by Kremer and
Raskin [66, 64]. The former use Murϕ, a finite-state model checker for the verification
of a fair exchange and contract signing protocols. Similar to the work presented in this
chapter, they rely on a Dolev-Yao adversary to model possibly deviating parties, so that
the adversary and the deviating parties share their knowledge. The latter use Mocha, a
model-checker for alternating transition systems, formalizing cryptographic protocols and
their security properties in a game-based setting. The analysis is precise and covers a
wide range of security properties, such as non-repudiation and timeliness. None of these

3As in the case of impossibility of realizing complete fairness in the plain model [31], there is also an
impossibility result for realizing computational security, in general, in the plain model [28].

36 CHAPTER 3. AUTOMATED VERIFICATION FOR RATFISH

works, however, deals with rational cryptographic protocols and the associated utility
functions.

An alternative to fair exchange is rational exchange. Intuitively, an exchange is
rational if the participating parties have no incentives to deviate. Rational exchange
protocols [103, 21] have already been subject of formal, but not automated, analysis.
Alcaide [4] studies a few existing rational exchanges [103, 21] and enhances them with
a game-theoretic model of utilities for the participating parties. She also presents an
in-depth Bayesian analysis of various parameters related to the utilities in order to ensure
Nash equilibrium. The proofs, however, are done by hand and it is not clear how to
generalize that framework to arbitrary rational cryptographic protocols. Buttyán et
al. [22] study the connections between the two different notions of fair exchange and
rational exchange, which the authors redefine in terms of Nash equilibrium. They show
that fairness implies rationality, but not viceversa. They also give an in-depth game-
theoretic analysis of Syverson exchange protocol [103] and they conclude that this is a
rational, but not a fair exchange protocol. The aim of their work is to define a sound
and expressive game-theoretic model for designing and proving rationality for exchange
protocols, but the analysis is not automated and tailored to the class of fair exchange
protocols.

Fairness as a Game for Model Checking

Finally, automatic verification of fairness, modeled as a game between two players, has
been also investigated in the context of model checking. For example, verifying whether
a formula holds true can also be modeled as a two player game [67, 58]. On the one hand,
the verifier aims to prove that the formula holds. On the other hand, the refuter aims to
find a sub-formula that does not hold such that due to this the entire formula cannot
hold. Such a game, called Hintikka game, has been used in connection with concurrent
systems subject to fairness constraints, such as ”Every action that is always enabled, is
eventually executed.”

3.1.3 Outline

This chapter is structured as follows: Section 3.2 reviews the applied pi calculus. Sec-
tion 3.3 formalizes the concepts of rational cryptographic protocols and Nash equilibrium
in applied pi-calculus. Section 3.4 illustrates our technique at work on RatFish. In
Section 3.5 we give the conclusions for this chapter.

3.2 Applied Pi Calculus (Review)

In this section we briefly recall the syntax of applied pi calculus [1], we give an informal
account of its operational semantics, and we introduce the notations used in the rest of
the chapter.

The syntax of the calculus is shown in Table 3.1. Terms are defined by means of a
signature Σ, which is a set of function symbols, each with an arity. The set of terms

3.2. APPLIED PI CALCULUS (REVIEW) 37

M, N ::= terms

a, b, c,m, n names

x, y, z variables

f(M1, . . . ,Ml) function applications

P, Q,R, T ::= processes

0 null process

P |Q parallel composition

!P replication

νn.P name restriction

if M = N then P else Q conditional

N(x).P message input

N̄〈M〉.P message output

P{N/x} substitution

ev M.P event

Table 3.1: Syntax of the calculus

is the term algebra built from names, variables, and function symbols in Σ applied
to arguments. The language supports an arbitrary equational theory E for terms: we
write E ` M = N for equality and E 0 M = N for inequality modulo E. Equational
theories are an expressive tool to describe a variety of cryptographic operations: for
instance, we can model symmetric-key cryptography with an equational theory E such
that E ` dec(enc(M,K),K) = M .

Processes are defined as follows. The null process 0 does nothing and is usually
omitted from process specifications; P |Q executes P and Q in parallel; !P generates an
unbounded number of copies of p; νn.P generates a fresh name n and behaves as P ;
if M = N then P else Q behaves as P if E ` M = N and Q otherwise; c(x).P
receives message N on channel c and behaves as P{N/x}; c̄〈M〉.P outputs a message M
on channel c and then behaves as P ; evM.P raises the event M and then behaves as P .

As usual, the scope of names and variables is delimited by restrictions and inputs.
We write fv(P) for the free variables and fn(P) for the free names in a process P . We say

that a process is closed if it does not have free variables. We let M̃ denote an arbitrary
sequence M1, . . . ,Mk of terms and νñ a sequence νn1 . . . νnk of name restrictions.

As for the pi calculus, the operational semantics of the applied pi calculus is defined in
terms of structural equivalence and the reduction relation. Structural equivalence (P ≡ Q)
captures rearrangements of parallel compositions and restrictions, and the equational
rewriting of the terms in a process. The reduction relation (P → Q) formalizes the
semantics of process synchronizations and conditionals.

Next, we introduce labeled transitions P
α−→ Q, where α has two possibilities: either

α = ev M or α is an empty label. We require that P → Q if and only if there exist an α

38 CHAPTER 3. AUTOMATED VERIFICATION FOR RATFISH

as defined above such that P
α−→ Q. Finally we define execution traces in the context

of the above defined semantics: A trace t captures all the events raised during process
reduction. We write t ∈ Tr(P) to denote the possibly infinite set of execution traces of
P .

In the rest of this chapter we rather need the transitive and reflexive closure of the
reduction relation P → Q and we denote it by P →∗ Q. Finally, we introduce the
labeling for the transitive and reflexive closure of P → Q. The requirement now is that

P →∗ Q if and only if there exists a trace t such that P
t→∗Q.

3.3 Rational Cryptography in the Applied Pi Calculus

In this section, we show how to model rational cryptographic protocols and to formalize
the concept of Nash equilibrium in the applied pi calculus.

Intuitively, we model rational cryptographic protocols as processes of the form P =
νñ.(P1 | . . . |Pm), where the sequence ñ of restricted names contains the cryptographic
keys and the communication channels used by the protocol parties P1, . . . , Pm. In the
following, for every i ∈ {1, . . . , n} we let cin(Pi) and respectively cout(Pi), denote the
set of terms used as input and respectively as output channels in Pi. From a semantic
perspective, in the following, unless states otherwise, we always assume all free names and
bound names are distinct. Indeed, this is easy to achieve using a suitable alpha-renaming.

Definition 9 (Rational Cryptographic Protocol). A closed process P is called a rational
cryptographic protocol if it has the form P = νñ.(P1 | . . . |Pm) and for every i ∈
{1, . . . ,m} it fulfills the following properties:

1. cin(Pi) ∪ cout(Pi) ⊆ ñ (communication channels are private);

2. cin(Pi) ⊆
⋃
j∈{1,...,m},j 6=i{cj,i} and cout(Pi) ⊆

⋃
j∈{1,...,m},j 6=i{ci,j} (communication

channels are all distinct);

3. for all contexts C[], processes Q, and indexes j such that

(a) Pi = C[cj,i(x).Q], we have that Q = ev Recv(i, j, x, . . .).Q′ for some Q′.

(b) Pi = C[ci,j〈M〉.Q], there exists a context D[] such that

C[] = D[ev Send(i, j,M, . . .).[]].

Condition 1 requires the communication channels used by each protocol party to
be globally restricted names, i.e., unknown to the adversary. Condition 2 names such
channels: ci,j is the channel used by Pi to send messages to Pj . Condition 3 rules
the usage of events: party i receiving message x from party j is tracked by the event
Recv(i, j, x, . . .), which may take additional arguments as input, while party i sending
message M to party j is tracked by the event Send(i, j,M, . . .).

In the model presented so far, all parties are honest and there is no way for them to
deviate from the protocol. We model rational players, who may arbitrarily deviate from

3.3. RATIONAL CRYPTOGRAPHY IN THE APPLIED PI CALCULUS 39

the protocol if they have an interest in doing so, by putting them under the control of
the adversary. This is achieved by replacing, for example, the corresponding process Pi
with the null process and by removing all the secrets used in Pi from the initial sequence
ñ of restricted names, including the communication channels. This allows the adversary
to take control over rational player Pi and to act on Pi’s behalf with honest parties.

Definition 10 (Party Corruption). Let P = νñ.(P1 | . . . |Pm) be a rational cryptographic
protocol. For every i ∈ {1, . . .m}, we define the process transformation fi as follows:

fi(P) = νñ′.(P1 | . . . | Pi−1 | 0 | Pi+1 | . . . |Pm), where ñ′ = ñ\fn(Pi).

We say that fi is the corruption function for process Pi.

Rational parties deviate from the protocol if they have an interest in doing so, which
is formally captured by the utility function. It is natural to express the utility function
in terms of execution traces. Moreover, as we will see in the formal definition of utility
function, it is sometimes sufficient to restrict our attention to the actions of a single
rational player. For this reason, we define a projection operation tracei on traces, which
given a trace t returns the subtrace of t composed of the events referring to party i. Since
we use this function in a setting in which party i is under the control of the attacker and
her events are also controlled by the adversary, they should not occur in the trace. Thus,
we only look at the events of the parties exchanging messages with party i.

Definition 11 (Trace Projection). For a process P and for every t ∈ Tr(P), we define
the projection operation tracei as follows:

tracei(t) =


α :: tracei(t

′) if t = α :: t′ and α ∈ Event(j, i)

tracei(t
′) if t = α :: t′ and α /∈ Event(j, i)

ε if t = ε

where for every i, j ∈ {1, . . . ,m} with i 6= j, we denote:

Event(i, j) =
⋃

message M

{Send(i, j,M),Receive(i, j,M)}.

The definition above says that for a trace t, an event initiated by a party Pj and
designated for party Pi is part of the trace projection tracei(t). However, all other events,
where the pair (sender, recipient) is different from pairs of type (j, i), are not a part of
tracei(t).

We are now ready to formalize the concept of utility in the applied pi calculus. The
utility of party i is a function ui mapping execution traces to real numbers. Utility
functions can be non-envious, if they are only defined on the actions of the respective
party, or possibly envious, if they take into account the actions of other parties.

From a technical perspective, there is a subtlety related to utility functions in
computational settings that needs to be incorporated also into any utility definition

40 CHAPTER 3. AUTOMATED VERIFICATION FOR RATFISH

for applied pi calculus. Indeed, in the computational setting, when discussing utilities
for honest participants for a non-deterministic protocol, we actually refer to expected
utilities, as described in Section 2.3. If we try to translate the expected utility from the
computational setting directly to the applied pi setting, then we have to compute the
average of the exact utility values of each trace t for a given protocol. However, such an
approach cannot be used in relation with automated verification tools as the number of
traces may be exponential in the security parameter or even infinite.

The alternative is to construct in the applied pi setting another counterpart for the
expected value from the computational setting. At first glance, it seems that a good
candidate for utility in the symbolic world is the maximum of all exact utility values
obtained for a non-deterministic honest protocol, if such a value exists. However, there
are non-deterministic protocols where even when participants follow them honestly, the
trace t which gives the highest benefit occurs only with negligible probability, while all
other traces give only small benefit. To complicate matters even further, it can be the
case that while a trace of an honest protocol gives a participant a high benefit, for all the
others, the benefits are small. Thus, there are protocols that even when all participants
are honest, there exists no trace that simultaneously maximizes the benefit for all of
them. As we will see shortly, such a design choice for an honest protocol hinders us from
defining the Nash equilibrium property in the applied calculus.

In order to avoid the situation described above, we define the payoff if and only
if the honest protocol has the following property: For each participant i there exists
a certain value ri such that independent of where we are in the execution tree of an
honest non-deterministic protocol, there is alway a sub-trace leading to the benefit ri
for participant i, and there is no sub-trace that leads to a higher benefit than ri for
participant i. More formally, we have:

Definition 12 (Utility and Rational Setting). Let P ≡ νñ.(P1 | . . . | Pm) be a rational
cryptographic protocol.

• The utility for party i is a function ui : Tr(P)→ R from traces to real numbers4.

• We say that ui is a non-envious utility if for all traces t ∈ Tr(P), ui(t) =
ui(tracei(t)); otherwise we say that ui is a possibly envious utility.

• For every k ≤ m, we call the pair (P, (ui)i∈{1,...,k}) a rational setting with k rational
players (the remaining players are said trusted and do not deviate from the protocol).

• If for every i ∈ {1, . . . ,m}, there exists ri ∈ R such that for every trace t and for

every process Q with P
t→∗Q there exists t′ ∈ Tr(Q) such that ui(t :: t′) = ri and

there is no t′′ ∈ Tr(Q) such that ui(t :: t′′) > ri, then we say (r1, . . . , rm) is the
payoff vector for P and ri is the payoff for party i.

We now formalize the concept of Nash equilibrium in the context of the applied pi
calculus.

4We use R to denote the set of real numbers extended with the infinity symbols, i.e., R = R∪{−∞,+∞}.

3.4. RATIONAL EXCHANGE FOR FILE SHARING PROTOCOLS 41

Definition 13 (Nash Equilibrium). Let (P, (ui)i∈{1,...,k}) be a rational setting with k
rational players. We say that P is Nash equilibrium for (ui)i∈{1,...,k} if for every i ∈
{1, . . . , k}, adversary A, and tr ∈ Tr(fi(P)|A), we have that ui(tr) ≤ ri, where ri is the
payoff of party i.

The framework presented so far captures the traditional adversarial model for rational
cryptographic protocols, which comprises rational parties who may arbitrarily deviate
from the protocol in order to maximize their payoffs. It is interesting to observe that
we can easily modify our framework to deal with a stronger adversarial model, which
combines rational players and Dolev-Yao adversary. We have just to modify the process
modeling the rational cryptographic protocol (cf. Definition 9) in such a way that the
communication channels are free, as opposed to restricted, and thus available to the
adversary. In this way, protocol parties communicate over untrusted channels and rational
parties can collude with the Dolev-Yao adversary to maximize their payoff.

3.4 Rational Exchange for File Sharing Protocols

We exemplify our verification framework on a simplified version of the RatFish rational
file sharing protocol [8]. First we review this protocol together with the utilities associated
with the protocol participants (Section 3.4.1). Next we model the protocol in the applied
pi calculus (Section 3.4.2). Finally we show how to conclude the Nash equilibrium property
using ProVerif [19], a state-of-the-art cryptographic protocol verifier (Section 3.4.3).

3.4.1 RatFish Protocol

Preliminaries. We start by giving a brief reminder on file sharing protocols. (More
details are covered by Chapter 2.3) In the following, we call a player in the file sharing
game a peer. The peers are of two types: A seeder, denoted S, uploads a file f that it
owns to other peers, whereas a leecher, denoted Li, downloads f . The communication
among peers is mediated by a trusted party called the tracker, T . We assume that the
tracker’s IP address is known to all peers.

The file f consists of pieces f1, . . . , fN , each of length B bytes. All participants in the
file sharing protocol (i.e., leechers, seeders, tracker) hold the values h1 = h(f1), . . . , hN =
h(fN), where h is a publicly known hash function. When deployed in practice, this publicly
known information is distributed via a metainfo file. The tracker is only responsible for
coordinating peers that are exchanging the same file. Different peers may have different
upload and download capacities, which is usually expressed by the number of peers a
leecher can upload to and download from, simultaneously.

Utility Functions. We now describe the utilities associated with each peer type in
RatFish. On the one hand, the seeders are interested in sharing a file they own with as
many other leechers and as effectively as possible. More formally, in RatFish the utility
of a seeder is inversely proportional to the average time a leecher needs to download the
file f . On the other hand, leechers are interested in completing the download in the most

42 CHAPTER 3. AUTOMATED VERIFICATION FOR RATFISH

effective manner. Thus, their utilities are inversely proportional to the time they spend
in the system until the download is complete and also to the amount of uploaded data.

In this section, we analyse a simplified version of Ratfish. Since the applied pi calculus
does not incorporate a notion of time, we exclude the temporal aspects from the utility
functions. In particular, we consider seeders as trusted parties and let the payoff of
leechers be directly proportional to the difference between the amount of downloaded
data and the amount of uploaded data. The leecher’s utility function is formalized below:

Definition 14 (Leecher’s Utility Function). Let (P, (ui)i∈{1,...,k}) be a rational setting
with k rational players. For a trace t ∈ Tr(P), the utility ui of a leecher Li is defined as

ui(t) =

 −∞ if the complete file was not downloaded

αi + βi · (pdown − pup) otherwise

where

• αi represents the utility value if leecher Li has downloaded the file and the number
of uploaded file pieces equals the number of downloaded pieces;

• βi represents the utility value gained by Li for each piece downloaded without
uploading any piece in return;

• pdown represents the number of pieces downloaded by Li from other leechers as result
of exchanges;

• pup represents the number of pieces uploaded by Li from other leechers as required
by exchanges.

Notice that the leecher’s utility function is non-envious (cf. Definition 12).

Protocol Description. We are now ready to describe our automatic verification
technique for rational cryptography at use on a RatFish example protocol. We assume a
RatFish system with two leechers, a tracker and a seeder. The seeder owns a file which
is split in four equally long pieces and the description of the file together with the hash
values for the pieces are publicly available in a metafile. The protocol has two phases,
the setup phase and the exchange phase.

In the setup phase, each of the leechers contacts the tracker in order to join the
system. In turn, the tracker contacts the seeder and instructs him to upload two pieces
of the file for free to each leecher, such that they can proceed to the next phase. The
seeder replies to the tracker’s request by contacting the two leechers indicated by the
tracker, and by giving them 2 different pieces of the file, together with the indices of the
file pieces that the other leecher has received. The seeder also notifies the tracker about
the indices of the pieces received by each leecher. As part of our model, we assume that
the seeder stays in the system as long as the file has not been yet downloaded by the
leechers. This is in accordance with the assumptions described in Section 2.5 that ensure
the existence of Nash equilibrium for RatFish.

3.4. RATIONAL EXCHANGE FOR FILE SHARING PROTOCOLS 43

L1(piece1, piece3, in2, in4)
new k1

e1 = senc(piece1,k1)

piece2= sdec(e2,k2)

L2(piece2, piece4, in1, in3)

e1(1)

e2 (2)

(13)

Seeder

(12)

(11)

k1(7)

(8)k2

Tracker
message_sent (4)

message_received(6)

message_sent(3)

message_received (5)

(9) in4 (10)in3

piece4

L1,in4,L2,in3

piece3

CorrectLength(e2) ?

If so, then ...

event Receive_piece(...,piece2,...)
event Receive_piece(...,piece4,...)

event Receive_enc(...,e2,...)

Figure 3.1: Exchange and Rewarding Protocol in RatFish

The exchange phase has three steps: the agreement, the exchange and the rewarding.
In the agreement step, the leechers send the tracker the index of a piece they lack and the
tracker acknowledges whether the other leecher has acquired it in the setup phase or not.
If both leechers receive positive acknowledgements, then they proceed to the next step.

The exchange and rewarding phases are displayed in Figure 3.1. Since the protocol is
symmetric, we describe it from the view point of one of the leechers, e.g., L1. Assume
L1 received in the setup phase piece1 and piece3 together with the indices in2 and in4

of the missing pieces.5 Hence L1 is interested in the file piece2, that according to the
agreement step is owned by L2. L1 encrypts piece1 with a fresh symmetric key k1, sends
the resulting ciphertext e1 to L2, and expects e2 as a reply (messages (1)-(2)). As we
assume that the encryption scheme is length preserving, L1 checks that the length of the
received ciphertext e2 matches the one of the file pieces. As detailed below, this check is
essential for establishing the Nash equilibrium property. Next, L1 sends a confirmation
to the tracker that the exchange of encryptions took place and he expects as a reply
a confirmation that the other leecher has also acknowledged the exchange (messages
(3)-(6)). The exchange phase is concluded by the exchange of the keys: L1 sends his
decryption key to L2 and expects a correct key for decrypting e2 in return (messages (7)

5These are represented as input parameters of L1 in Listing 3.1.

44 CHAPTER 3. AUTOMATED VERIFICATION FOR RATFISH

and (8)).
The rewarding phase consists of a number of file pieces that the tracker uploads for

free to each of the leechers, proportional to the number of exchanges they have performed.
In practice, the rewarding is limited to the most active leechers since the bandwidth of
the seeder is limited, the seeder may go offline before rewarding all the leechers, and
so on. The exchange phase is depicted by dotted arrows. Each leecher contacts the
tracker in order to receive their reward from the seeder. In this example, we assume the
seeder can reward each leecher after they have completed the exchange with one free
piece. More precisely, the protocol works as follows: the leechers send the tracker the
indices of the file pieces they would like to receive as reward from the seeder (messages
(9) and (10)). The tracker forwards both request to the seeder and adds the identity of
the leechers (message (11)). The seeder replies by uploading to each of the leechers the
file piece it has requested (messages (12) and (13)). Moreover, we observe that if both
leechers follow the protocol as prescribed, then they both obtain the file at the end of
the two phases. An important detail to observe here is that the communication between
each pair of participants is conducted on secure channels.

3.4.2 Protocol Model in the Applied Pi Calculus

We modelled the RatFish protocol in ProVerif, a cryptographic protocol verifier that
accepts as input applied pi calculus processes. Below we discuss the code of the leecher,
from which one can derive the code of the other participants by symmetry. Listing 3.1
shows the code for the exchange and rewarding phases. Since the ProVerif implementation
of RatFish protocol follows naturally from the protocol details specified in Section 3.4.1,
we just discuss the most interesting aspects and we give the full implementation code
in the appendix. For the sake of readability, we use distinct communication channels
for each message exchange and name them according to the principals involved in the
communication (e.g., cL1L2 is the channel used by L1 to send messages to L2). Similarly,
we use only the events required for the Nash equilibrium property and use meaningful
names.

A first important detail to discuss is our modeling of message length. For our
purposes, it suffices to use four constants (i.e., nullary functions) for describing the
length of messages, namely, hashLength for the length of hashed messages, keyLength for
the length of keys, pieceLength for the length of file pieces, and otherLength for other
lengths. In ProVerif, messages are typed and the type of these constants is Length. In
the following, we let l range over constants of this type. The messages exchanged on the
network have type key or they have the type Data and they may be of the form hash(M),
senc(M,K), data(M, l) and keyD(M). The term data(M, l) denotes bitstrings of length
l and the term keyD(M) denotes that type key is just a subtype of Data. To exemplify,
piecei is actually of the form data(filepiecei, pieceLength), where filepiecei can be seen
as the actual piece content. We use the function length(Data) : Length to compute the
length of a bitstring. This function is defined as follows: length(hash(N)) = hashLength,
length(senc(N,K)) = length(N) (encryptions are assumed to be length preserving), and
length(data(M, l)) = l. Similarly, for messages K of type key , we have the function

3.4. RATIONAL EXCHANGE FOR FILE SHARING PROTOCOLS 45

Listing 3.1: Code for Leecher (Exchange phase)

l e t l e e che r exchange (p i e c e 1 : Data , dex 2 : index ,
dex 4 : index , phase id : phase id) =

new k 1 : key ;
l e t e 1 : data = senc (p i e ce 1 , k 1) in
out (c L1L2 , e 1) ;
in (c L2L1 , e 2 : Data) ;
event Rece ive enc (L1 , L2 , e 2 , dex 2 , phase id) ;
i f CorrectLength (e 2) then

out (c L1t , message sent) ;
in (c tL1 , =message rece ived) ;
out (c L1L2 , k 1) ;
in (c L2L1 , k 2 : key) ;
l e t p i e c e 2 : Data = sdec (e 2 , k 2) in
event R e c e i v e p i e c e (L1 , L2 , p i e ce 2 ,

phase id) .

l e t leecher demand reward (phase id : phase id) =
out (c L1t , dex 4) ;
in (c sL1 , p i e c e 4 : Data) ;
event R e c e i v e p i e c e (L1 , L2 , p i e ce 4 , phase id) .

l e t l e e c h e r (p i e c e 1 : Data , dex 1 : index , p i e c e 3 : Data ,
dex 3 : index , dex 2 : index , dex 4 : index) =

(phase 1 ; l e e che r exchange (p i e ce 1 , dex 2 , dex 4 ,
phase 1)) |

(phase 1 ; leecher demand reward (phase 1)) .

46 CHAPTER 3. AUTOMATED VERIFICATION FOR RATFISH

Listing 3.2: Nash Equilibrium Query for Deviating Leecher 2

query dex : index , x : Data ;
(a t ta cke r ((f i l e p i e c e 1 , f i l e p i e c e 3)) phase 1) ==>

(event (S e n d f r e e p i e c e (sed , L2 , data (f i l e p i e c e 3 ,
p ieceLength))) ==>

event (Rece ive enc (L1 , L2 , x , dex , phase 1)) &&
CorrectLength (x)) .

length(keyD(K)) = keyLength.
Finally, we briefly discuss how phases are modelled in ProVerif. The idea is that

each part of the process runs in a certain phase and processes can only synchronize
(i.e., exchange messages) with processes that are running in the same phase. Phases are
denoted by sequential numbers starting from 0. We use two phases: phase 0 for the setup
phase and phase 1 for the exchange and rewarding phase.

3.4.3 Automated Verification of Nash Equilibrium

Our overall goal is to verify whether or not a certain protocol constitutes a Nash
equilibrium. The utility functions underlying the definition of Nash equilibrium (cf.
Definition 13), however, are not supported by ProVerif, nor by any other cryptographic
protocol verifier. Therefore, we have to manually encode the Nash equilibrium property
based on the Ratfish utility function (cf. Definition 14) into a query accepted by ProVerif.
Such an encoding is fairly easy and natural to define. We can easily see that the payoff
of leecher i is αi + βi, since the protocol allows each leecher to complete the download of
the file by uploading only one piece and downloading one piece from the other leecher
and one piece from the seeder in the rewarding phase.

Hence, we have to verify that a deviating party has no way to increase this payoff.
The only way to do that would be to download the two missing pieces without uploading
any piece. We can easily write a ProVerif query to make sure that this is not possible.
Such a query is displayed in Listing 3.2 and is validated on a process modeling leecher
L2 under adversarial control. This query is based on the concept of correspondence
assertions [107], which intuitively express relations among events that should hold in all
execution traces.

In particular, the successful validation of this query ensures that if the attacker (i.e.,
leecher L2) completes the download of piece1 and piece3, then it must have been the
case that L2 has received piece3 from the seeder sed and sent a message with the correct
length to L1 The predicate CorrectLength(x) is true if the length of x is the same as the
one of file pieces, which is computed according to the previously defined function length.
The code for this predicate is given in Listing 3.3.

Notice that the adversary has to send a message of the correct length to L1, but not
necessarily the encryption of the file piece L1 is expecting. However, since the utility
function is only defined on the number of exchanged file pieces, a deviating party has no
incentive in doing so and, therefore, a rational party will follow the protocol and send

3.5. CONCLUSION 47

Listing 3.3: Definition of CorrectLength predicate

pred CorrectLength (Data) .
c l a u s e s

f o r a l l m: b i t s t r i n g ;
CorrectLength (data (m, pieceLength)) ;

f o r a l l x : Data , ke : key ;
CorrectLength (x) −> CorrectLength (senc (x , ke)) .

the correct encryption. We finally mention that the size of keys and hashes is considered
negligible in Ratfish: this explains why the utility function is solely based on the number
of exchanged file pieces. This is also the reason why Ratfish is a rational but not fair
exchange protocol: in principal, a misbehaving leecher might wait for the key to decrypt
the received piece (msg. 7) without sending back its own key (msg. 8). Leechers, however,
have no incentive in doing that, since uploading them does not cost anything.

For completeness, the ProVerif scripts are available in Appendix A. The ProVerif
code has been run on a machine with the following specifications: CPU Intel Core 2 Duo,
2GB of RAM and MAC operating system, version 10.5.8. Under these conditions, the
queries are processed in less than 2 minutes.

3.5 Conclusion

In this chapter we have presented a formal framework for the automated verification of
rational cryptographic protocols. We model protocols in the applied pi-calculus, provide
symbolic definitions of utility and Nash equilibrium, and use ProVerif to automatically
verify that a rational cryptographic protocol constitutes a Nash equilibrium. By analyzing
an example of RatFish file sharing protocol, we show how a Nash equilibrium based on a
complicated utility function can be captured by a set of trace properties amenable to
automated verification.

In our presentation so far we have focused on practical aspects related to rational
cryptography: We have shown how to design, implement and automatically verify RatFish,
a rational file sharing system. In the following, we look at the field of rational cryptography
from a different perspective: We are interested in uncovering the fundamental connections
between the two worlds that form the basis of rational cryptography, i.e., game theory
and cryptography. For this purpose, in the next chapter we investigate different notions
from both worlds and deduce the equivalence relations among them.

48 CHAPTER 3. AUTOMATED VERIFICATION FOR RATFISH

Chapter 4

Bridging Security and Game
Theory

4.1 Introduction

As the confluence of two different fields, rational cryptography allows for more appropriate
security models for settings where the traditional “black and white” cryptographic model
of either honest or arbitrarily malicious participants is too inflexible and cannot be
applied realistically. In the previous two chapters we have seen how to design, implement
and automatically verify rational cryptographic protocols. In the current chapter we
focus on the study of the intrinsic connections between the two words that rational
cryptography is built upon: game theory and cryptography. While such a research path
is crucial for the understanding of the inherent similarities and differences between the
two worlds, so far its study was mostly left as an open research field [55, 54].

Indeed, recently the view on cryptographic definitions has been extended [55] with
the incipient study of the equivalence relation between the security notion of weak
precise secure computation and a weak variant of the game-theoretic notion of universal
implementation for a trusted mediator. However, it is still left as an open problem [55, 54]
how to obtain such an equivalence result for stronger security notions.

4.1.1 Contribution

In this chapter we have a three fold contribution.

First, we relate the notion of weak stand-alone security1 to the emerging game-
theoretic concept of universal implementation [55, 54]. In contrast to previous work,
for our result we use a variant of universal implementation that discards the cost of

1The difference between stand-alone security and weak stand-alone security is in the order of quanti-
fiers. For stand-alone security, the simulator is universally quantified over all distinguishers and input
distributions. As detailed in section 4.2, for our notion of weak security the simulator depends only on
the distinguisher and not on the input distribution. This comes in contrast with [55], where the simulator
for weak precise secure computation depends on both distinguisher and input distribution.

49

50 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

computation. We are thus able to answer positively the open question from [55, 54]
regarding the existence of game-theoretic concepts that are equivalent to cryptographic
security notions where the simulator does not depend on both the input distribution and
the distinguisher.

Second, we study the propagation of weak security notion through the hierarchy of
security definitions. More precisely, we show that the notion weak security composed
under concurrent general composition is equivalent to 1-bit specialized simulator UC
security, which is a variant of UC security. Together with our first result, this implies
that weak stand-alone security and stand-alone security are not equivalent.

Third, we present a separation result between two variants of UC security: 1-bit
specialized simulator UC security and specialized simulator UC security. This solves
an open question from [71] and comes in contrast with the well known equivalence
result between 1-bit UC security and UC security [24]. Both variants of the UC security
notion are obtained from the UC security definition by changing the order of quantifiers
[35, 71].2 In order to obtain the separation result, we first show that the 1-bit specialized
simulator UC security is equivalent to a seemingly weaker version of security, namely
weak specialized simulator UC security.

The main proof technique used in our separation result is to employ a cryptographic
tool called time-lock puzzles. Intuitively, this cryptographic tool can be used for comparing
the computational power of two different polynomially bounded Turing machines. In
order to achieve the separation result, we use time-lock puzzles from which we derive
a result interesting also on its own, mainly a construction of a one-way function and a
hard-core predicate.

4.1.2 Background and Related Work

The initial work [109] on general security definitions highlighted the need for a framework
expressing security requirements in a formal way. The first formal definition of secure
computation was introduced by Goldreich et al. [42]. The first approaches for formally
defining security notions [45, 47] have taken into account only the stand-alone model.
In this model, the security of the protocol is considered with respect to its adversary,
in isolation from any other copy of itself or from a different protocol. However, there
are simple protocols [36] that fulfill stand-alone security, but are no longer secure under
parallel or concurrent composition.

Micali and Rogaway [82] introduced the first study of protocol composition, which
the authors call reducibility. The first security definition expressed as a comparison with
an ideal process, as well as the corresponding sequential composition theorem for the
stand-alone model are provided in [13]. A general definition of security for evaluating
a probabilistic function on the parties’ inputs is given in [23]. It is shown that security
is preserved under a subroutine substitution composition operation, which is a non-
concurent version of universal composition: Only a single instance of the protocol is

2This means that in contrast to the UC security definition, the simulator may depend on the
environment.

4.1. INTRODUCTION 51

active at any point in time.

The framework of universally composable security, for short UC security [24] allows
for specifying the requirements for any cryptographic task and within this framework
protocols are guaranteed to maintain their security even in the presence of an unbounded
number of arbitrary protocol instances that run concurrently in an adversarially controlled
manner.

The notion of specialized simulator UC security has been introduced in [71] and it was
shown that this is equivalent to general concurrent composability when the protocol under
consideration is composed with one instance of any possible protocol. The definition of
specialized simulator UC security is very much related to the definition of UC security,
the only difference is the change in the order of quantifiers. Changing the order of
quantifiers in the context of security definitions has been previously used in [35, 54, 55]
for strengthening or weakening given security notions. We present a more detailed review
about the existing implication relations among various security notions in section 4.5.

In parallel with the UC framework, the notion of reactive security has been developed
[87, 56, 86, 88, 89]. The framework addresses for the first time concurrent composition in
a computational setting: it is shown that security is preserved when a single instance of a
subroutine protocol is concurrently composed with the calling protocol. The framework
has been extended in [10] to deal with the case where the number of parties and protocol
instances depends on the security parameter. More about the differences between reactive
simulatability and universal composability notions can be read in the related work section
from [24].

Our study of the relation between security and game-theoretic notions has been trig-
gered by the recently emerging field of rational cryptography, where users are assumed to
only deviate from a protocol if doing so offers them an advantage. Rational cryptography
is centered around (adapted) notions of game theory such as computational equilibria [33].
A comprehensive line of work already exists developing novel protocols for cryptographic
primitives such as rational secret sharing and rational secure multiparty computation
[2, 37, 39, 48, 53, 63].

Historically, game theory and its computational aspects have been first studied in
more detail in [83] (i.e., players are modeled as finite automata) and in [80] (players are
defined as Turing machines). Later, [33, 106] study the rational cryptographic problem of
implementing mediators using polynomially bounded Turing machines. Another direction,
[54, 55, 97] considers that computation is costly for players and investigates how this
affects their utilities and the design of appropriate protocols. In [97], a player’s strategy
is defined as a finite automaton whose complexity (i.e., number of states) influences
players utilities. In [55, 54] similar considerations are made: both the input and the
complexity of the machine (which is a Turing machine this time) are taken into account.
This complexity can be interpreted, for example, as the running time or the space used by
the machine for a given input. Their work develops a game-theoretic notion of protocol
implementation and the authors show a special case of their definition is equivalent to a
weak variant of precise secure computation.

52 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

4.1.3 Organization

This chapter is structured as follows: In section 4.2 we review the necessary security
notions and in section 4.3 we revise the game-theoretic notion of universal implementation.
In section 4.4 we prove our separation result between specialized simulator UC security
and 1-bit specialized simulator UC security. In section 4.5 we show our equivalence
relation between weak security under 1-bounded concurrent general composition and 1-bit
specialized simulator UC security. In section 4.5.1 we present the equivalence between our
weak security notion and the game-theoretic notion of strong universal implementation.
In section 4.6 we present the conclusions for this chapter.

4.2 Review of Security Notions

In this chapter we consider all parties and adversaries run in polynomial time in the
security parameter k and not in the length of input. In this section we review two
models of security under composition: concurrent general composability and universal
composability. Both frameworks require the notion of (computational) indistinguishability
which we review below.

Definition 15 (Computational Indistinguishability). We call distribution ensembles
{X(k, z)}k∈N,z∈{0,1}∗ and {Y (k, z)}k∈N,z∈{0,1}∗ computationally indistinguishable and we
write X ≡ Y , if for every probabilistic polynomial time interactive Turing machine
(PPITM) D there exists a function ε, negligible in k, and k0 ∈ N such that for every
z ∈ {0, 1}∗

|(Pr(D(X(k, z)) = 1)− (Pr(D(Y (k, z)) = 1)| < ε(k),

for every k ≥ k0.

In the following, we call PPITM D a distinguisher.

A variant of this definition, which we call indistinguishability with respect to a given

adversary D and we denote it by
D≡, is analogous to the definition above, where “for every

probabilistic distinguisher D” is replaced with “for a distinguisher D”. Such a definition
will be used in relation with our notion of weak security.

Definition 16 (Indistinguishability with respect to a Given Distinguisher). We say that
the distribution ensembles {X(k, z)}k∈N,z∈{0,1}∗ and {Y (k, z)}k∈N,z∈{0,1}∗ are computa-

tionally indistinguishable with respect to a given PPITM D and we write X
D≡ Y , if there

exists a function ε, negligible in k, and k0 ∈ N such that for every z ∈ {0, 1}∗

|(Pr(D(X(k, z)) = 1)− (Pr(D(Y (k, z)) = 1)| < ε(k),

for every k ≥ k0.

4.2. REVIEW OF SECURITY NOTIONS 53

4.2.1 Universal Composability

The standard method for defining security notions is by comparing a real world protocol
execution to an ideal world process execution. In the real world execution, a protocol
interacts with its adversary and possibly with other parties. In the ideal world execution,
an idealized version of the protocol (called ideal functionality) interacts with an ideal
world adversary (usually called simulator) and possibly with other parties. The ideal
functionality is defined by the security requirements that we want our protocol to fulfill.

On an intuitive level, given an adversary, the purpose of the simulator is to mount
an attack on the ideal functionality; any PPITM distinguisher may try to tell apart
the output of the interaction between the ideal functionality and the simulator and the
output of the interaction between the protocol and its adversary. If for every adversary,
a simulator exists such that the two outputs cannot be told apart by any PPITM
distinguisher, then our initial protocol is as secure as the ideal functionality, with respect
to what is called the stand-alone model. More formally we have:

Definition 17 (Stand-alone Security). Let ρ be a protocol, F an ideal functionality and
k a security parameter. We say ρ securely implements F with respect to stand-alone
security if for every PPITM real-model adversary A there exists a PPITM ideal-model
simulator S such that for every protocol input x and for every auxiliary input z given to
the adversary with x, z ∈ {0, 1}poly(n), we have

{IDEALFS (k, x, z)}k∈N ≡ {REALρ,A(k, x, z)}k∈N.

By IDEALFS (k, x, z) we denote the output of F and S after their interaction and
REALρ,A(k, x, z) denotes the output of ρ and adversary A after their interaction.

If in Definition 17 we allow the simulator to depend also on the distinguisher, we
obtain the notion of weak stand-alone security. More formally, we have the following
definition:

Definition 18 (Weak Stand-alone Security). Let ρ be a protocol, F an ideal functionality
and k a security parameter. We say ρ computes F with respect to weak stand-alone
security if for every PPITM real-model adversary A and for every PPITM distinguisher
D there exist a PPITM simulator S such that for every x, z ∈ {0, 1}poly(n) we have

{IDEALFS (k, x, z)}k∈N
D≡ {REALρ,A(k, x, z)}k∈N.

Sometimes, for brevity of notation, we compact the definition above into the relation

{IDEAL(k,S,F)}k∈N
D≡ {REAL(k, ρ,A)}k∈N. (4.1)

There are examples [36] of protocols secure in the stand-alone model that do not
remain secure even when two of its instances run concurrently. As a consequence, more
stringent security definitions take into account that a protocol interacts not only with
its adversary, but also with other (possibly an unbounded number of) protocols or with

54 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

(an unbounded number of) copies of itself. This is intuitively captured by the universal
composability (UC) security framework [24].

The definition of universal composability follows the paradigm described above,
however it introduces an additional adversarial entity which is called environment. The
environment, usually denoted by Z, is present in both the UC real world and UC ideal
world. The environment represents everything that is external to the current execution
of the real-world protocol or to the ideal functionality.

The main difference between the execution of UC real and UC ideal world, is that in
the latter the ideal functionality cannot be directly accessed by the environment. Parties
involved in the ideal execution give their inputs to the ideal functionality which computes
some outputs and sends back these values. Since the ideal world parties perform no
computation they are called the dummy parties for the ideal functionality. The ideal F
together with its corresponding dummy parties represent an ideal process. The adversary
for the protocol is not considered to be a part of the environment, but it could be
controlled by the environment.

In order to determine whether a protocol securely implements a given task, first we
define the ideal process for carrying out that task. Intuitively, in an ideal process for a
given task, all parties give their inputs directly to the ideal functionality for that task
which can be regarded as a formal specification of the security requirement of the task.
According the universal composability security definition, a protocol securely implements
a task if any damage that can be caused by an adversary while interacting with the
protocol and the environment, can also be caused by an adversary interacting with the
ideal process for that task and the environment. Intuitively, the entity assessing the
amount of damage is the environment. Since there is no damage we can cause to the
ideal functionality, the protocol considered must also be secure. We say that the protocol
runs in a real-world model and the ideal functionality runs in the ideal-world model.

Real-world Protocols

More formally, let ρ be a cryptographic protocol. The real-world model for the execution
of protocol ρ contains the following PPITMs: a PPITM Z called the environment, a set
of PPITMs representing the parties running the protocol ρ and an adversary PPITM A.
We now have a more detailed look at each of these PPITMs and their interaction.

The environment Z represents everything that is external to the current execution of
ρ and it is modeled as an PPITM with auxiliary input. Throughout the course of the
protocol execution, the environment can provide inputs to parties running ρ and to the
adversary. These inputs can be a part of the auxiliary input of Z or can be adaptively
chosen by the environment. Also Z receives all the outputs that are generated by the
parties and the adversary. The only interaction between the environment Z and the
parties is when the environment sends the inputs and receives the outputs. Finally, at
the end of the execution of ρ, the environment outputs all the messages received.

The adversary can receive inputs from Z at any moment during the protocol execution
and it can send replies to Z at any time. In order to capture any possible adversarial
behaviour, A and Z can communicate freely throughout the course of the protocol and

4.2. REVIEW OF SECURITY NOTIONS 55

they can exchange information after any message sent between the parties and after any
output made by a party.

Next, we look at the notion of corruption. By considering a PPITM P corrupted
we mean that from that point on that adversary has access to all the inputs and
communication messages send or received by P , and for any communication model, A
can decide to alter such messages in any way it wants. Moreover, all the past incoming
or outgoing messages of P are known to A.

In order for A to corrupt a PPITM P , it first informs Z by sending it a corruption
message (corrupt, P). Thus Z is aware at any given moment about the corruption state
of all PPITMs. Depending on the moment when the adversary A can corrupt a PPITM,
there are two corruption models: static and adaptive. In the static corruption model,
the adversary A is allowed to corrupt only in the beginning of the protocol, before the
respective PPITMs receive their inputs from Z. In contrast, if A is allowed to corrupt at
any given moment during the protocol execution, then the adversary is called adaptive.
Another way to look at the corruption model is by inspecting whether the adversary is
passive, (i.e., only learns all inputs and communication messages a corrupted PPITM
sends and receives), or if A is active. The latter case implies A is allowed to modify any
input a corrupted PPITM gets and also any communication message sent.

In order to simplify the presentation, we use an equivalent definition for the static
corruption model. As in the standard static case, the moment of corruption is fixed in
the beginning, we can skip sending and receiving the corruption messages. Instead, we
assume the corrupted PPITMs are fixed from the start and the adversary does not have
to choose them. Then, the previous static adversary definition is equivalent to the latter
formulation, which we use in this chapter.

Besides corruption, the adversary may interfere with the communication between
honest parties. The most basic UC model ensures that all messages are handed to
the adversary and the adversary delivers messages of its choice to all PPITMs. This
model makes no assumption on the communication properties: authenticity, secrecy or
synchrony of the messages delivered. For the more specialised models of authenticated,
secure or synchronous communication, an ideal functionality is added to the basic model
to capture the respective properties.

Authenticated communication assumes the adversary cannot alter content of messages
without being detected. The synchronous communication model captures the property
that messages are all delivered and without delay from the moment they were generated.
The ideally secure communication model assumes the adversary receives all messages,
but it has neither access to the content of communication, nor possibility to modify any
message without breaking authenticity. In this model, the adversarial capabilities are
limited to either delaying or not delivering some or all messages between the uncorrupted
PPITMs.

When the protocol execution ends, Z outputs its view of that execution. This view
contains messages that Z has received from the adversary A and outputs of all other
PPITMs. Formally, EXEC ρ,A,Z(k, z) denote the output of Z in an execution of the
protocol ρ with adversary A and environment Z, where k is the security parameter and

56 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

z is the auxiliary input to the environment Z. We denote by EXEC ρ,A,Z the family of
random variables {EXEC ρ,A,Z(k, z)}k∈N.

Ideal Process and Ideal Functionalities

In order to formalize the ideal process, we do not want to define a different model, but
we rather need to adapt to the one above. In the same way as in the real-world, the
environment Z is the only PPITM that can send inputs at any moment to the ideal
process parties and to the ideal adversary. In the case of the ideal process, the adversary
is called the ideal simulator and is commonly denoted by S. Moreover, Z receives all the
outputs generated by the parties, as well the possible outputs of S.

The first difference is that in the ideal model there exists a trusted party, the ideal
functionality, that cannot be directly accessed by the environment. This works as follows:
PPITMs involved in the ideal process give their inputs to the ideal functionality which
computes outputs for each party and sends these values to them. Hence, the role of the
ideal functionality is to receive inputs, perform computations and send results to the
ideal PPITMs. As these PPITMs do not take an active role in the computation and just
send inputs to and receive outputs from the ideal functionality, they are called dummy
parties of the ideal functionality.

The second difference with the real-world model is that messages delivered by the
adversary to dummy parties are ignored. In the ideal protocol the adversary sends
corruption messages directly to the ideal functionality. The ideal functionality then
determines the effect of corrupting a party. A typical response is to let the adversary
know all the inputs received and outputs sent by the party so far.

The environment Z and the simulator S can communicate freely during the execution
of the ideal process. Additionally, the ideal functionality informs the simulator every
time it wants to output a message. If the simulator agrees, then the respective output
is made. This is required by the UC ideal model in order to allow S to simulate the
behavior of a UC real world adversary delaying messages or not sending some or all of
the communication among real-world protocol PPITMs.

Similar to the real-world model, the environment Z outputs its view in the end of the
ideal process execution. The view contains all the messages received from the simulator
as well as all the messages that the dummy parties output to Z. More formally, by
EXECF ,S,Z(k, z) we denote the output of Z in an execution of the ideal process with
the trusted party F , simulator S and environment Z, where k is the security parameter
and z is the auxiliary input to the environment Z. We denote by EXECF ,S,Z the family
of random variables {EXECF ,S,Z(k, z)}k∈N.

Protocol Emulation

We now define what it means that a real-world protocol ρ emulates with respect to UC
security an ideal functionality F . The environment Z is the PPITM deciding whether he
can distinguish between the interactions he has with the protocols and their respective
adversaries in the real and in the ideal world.

4.2. REVIEW OF SECURITY NOTIONS 57

All the PPITMs used in either of the protocol executions for ρ or F , including the
environment Z, are computationally bounded. Thus, it is sufficient if we formalize the
notion of emulation in terms of computational indistinguishability. The environment Z
will act as a distinguisher for the two protocol executions. Since all the information Z
gains throughout its interaction is contained within the view Z outputs in the end, it
is sufficient to compare the two views. Essentially, protocol ρ emulates F if for every
adversary A there is an ideal simulator S such that for every environment Z the views
of the two interactions are computationally indistinguishable.

Definition 19 (UC Security). Let ρ be a protocol and F an ideal functionality. We
say that ρ UC securely emulates F if for every PPITM adversary A there is a PPITM
simulator S such that for every PPITM distinguisher Z and for every input z ∈ {0, 1}∗,
the two families of random variables {EXECF ,S,Z(k, z)}k∈N and {EXEC ρ,A,Z(k, z)}k∈N
are computationally indistinguishable.

In the following we also use a relaxed version of this definition, where the order of
quantifiers between the environment and the ideal-world simulator is reversed [71].

Definition 20 (Specialized Simulator UC Security). Let ρ be a protocol and F an ideal
functionality. We say that ρ emulates F under specialized simulator UC security if for
every probabilistic polynomial time adversary A and for every environment Z, there exists
a simulator S such that for every distribution of auxiliary input z ∈ {0, 1}∗, we have

{EXECF ,S,Z(k, z)}k∈N ≡ {EXEC ρ,A,Z(k, z)}k∈N

It had been shown [57] that the two notions defined above are not equivalent. In the
above definition, the output of the environment is considered to be a string of arbitrary
length. If the only change we make to the above definition is to consider environments
Z that have a 1-bit output instead of an output containing the entire view, we obtain
the notion of 1-bit specialized simulator UC security. It has been an open problem [71]
whether considering only environments with one bit output would produce an equivalent
definition. In this chapter we show how to separate the notions of specialized simulator
UC security and 1-bit specialized simulator UC security.

Definition 21 (1-bit Specialized Simulator UC Security). Let ρ be a protocol and F
an ideal functionality. We say that ρ emulates F under 1-bit specialized simulator UC
security if for every probabilistic polynomial time adversary A and for every 1-bit output
environment Z, there exists a simulator S such that for every input z ∈ {0, 1}∗, we have

{EXECF ,S,Z(k, z)}k∈N ≡ {EXEC ρ,A,Z(k, z)}k∈N.

If in the specialized simulator UC definition we let the simulator also depend on the
distinguisher who is the only PPITM to establish whether the output of the executions
in the real UC world and ideal UC world cannot be told apart, then we obtain the notion
of weak specialized simulator UC security.

58 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

Definition 22 (Weak Specialized Simulator UC Security). Let ρ be a protocol and F
an ideal functionality. We say that ρ emulates F under weak specialized simulator UC
security if for every PPITM adversary A, for every PPITM environment Z and for
every PPITM distinguisher D, there exists a PPITM simulator S such that for every
distribution of input z ∈ {0, 1}∗, we have

{EXECF ,S,Z(k, z)}k∈N
D≡ {EXEC ρ,A,Z(k, z)}k∈N.

In the revised version of [24] there is an extension of the UC model we reviewed
above. This extension mainly considers that PPITM machines run in time polynomial
in both the security parameter and the length of the input. While the extended model
is seemingly more expressive in terms of adversarial attacks, it does not allow for fine
grained separation between security notions (e.g., the separation result from [57] does
not hold in the extended UC model). Another reason for choosing the original model is
that, as it will be detailed in section 4.5, most of the UC results have been obtained in
this model.

4.2.2 Weak Security under 1- bounded Concurrent General Composi-
tion

Given a security notion, there are two approaches to ensure the security properties of
a protocol under composition. One way is to prove that the security property defined
for the stand-alone case is preserved under composition. The other way is to define the
security notion for the protocol directly under composition. The latter approach has the
benefit that it captures the security property without having the drawback of a possible
very strong and thus very restrictive stand-alone definition. Due to this reason we will
focus on the second approach.

The concurrent general composability notion has been introduced by Lindell [71]. In
this security model, a protocol ρ that is being investigated is run concurrently, possibly
multiple times, with an arbitrary protocol π. The protocol π can be any arbitrary
protocol and intuitively, it represents the network activity around ρ. There is another
way to look at this: one can consider protocol π to be the external protocol that gives
inputs and reads the outputs of the internal protocol ρ. As π is arbitrary, it can call
multiple instances of ρ. However, we consider that different instances run independently
from one another. The only correlation between them are the inputs and outputs, in the
following way: the inputs for a certain run of ρ that are provided by π might depend on
the previous inputs and outputs given and collected by π. Also, the messages of π may
be sent concurrently to the execution of ρ. This composition of π with ρ is denoted as in
the original notation by πρ.

As in the case of universal composability, in order to give the definition of security
for ρ under concurrent general composition, we need to compare the execution of ρ with
that of an ideal functionality so we have to define the real and the ideal world.

The computation in the ideal world is performed among the parties of π and a trusted
party, playing the role of an ideal functionality F . Thus, the messages considered in

4.2. REVIEW OF SECURITY NOTIONS 59

the ideal world are standard messages between parties of π and ideal messages between
π and F . The protocol π is providing F with inputs and after performing necessary
computations, F sends the results to parties of π. The ideal adversary is called a
simulator, and as in the UC model, is denoted by S. In addition to having full control
over the parties it has corrupted (see also the case of real world adversary), the simulator
controls the scheduling of the messages between the parties of π and if not otherwise
mentioned, it can also arbitrarily read and change messages. An exception is represented
by the messages between π and F : they are ideally secure, so the simulator can neither
read nor change them. This comes in contrast with the standard definition of UC ideal
protocol execution, where it is not enforced that the channels between the trusted parties
and the rest of the participants are ideally secure.

During the computation, the honest parties follow the instructions given by π and in
the end they output on their outgoing communication tape whatever value is prescribed
by π. The corrupted parties output a special corrupted symbol and additionally the
adversary may output an arbitrary image of its view. Let z be the auxiliary input for
the ideal-world adversary S and let the inputs vector for parties of π be x̄ = (x1, ..., xm).
Then the outcome of the computation of π with F in the ideal world (which we may also
call F-hybrid world) is defined by the output of all parties and S and is denoted by
{HYBRIDFπ,S(k, x̄, z)}k∈N.

The computation in the real world follows the same rules as the computation in
the ideal world, only that this time there is no trusted party. Instead, each party of π
has an PPITM that works as the specification of ρ for that party. Thus, all messages
that a party of π sends to the ideal functionality in the ideal world are now written
on the input tape of its designated PPITM. These PPITMs communicate with each
other in the same manner as specified for the parties of ρ. After the computation is
performed, the results are output by these PPITMs and the corresponding parties of
π copy them on their incoming communication tapes. These messages are used by the
parties of π in the same way as the messages output by F in the ideal-world. Similarly
as above, in the real-world the adversary has full control over message delivery. There is
one exception: any uncorrupted party of π can write and read directly to and from the
input and respectively output tape of its designated PPITM without any interference
from the adversary. Actually, the ideal adversary is not even aware of this taking place.
This is similar to the UC communication between the environment and the real-world or
ideal-world parties. Moreover, when we say that a real-world party is corrupted, we mean
that a party of π and its corresponding PPITM are corrupted. This is not a restriction
as an adversary that corrupts both a party of π and its PPITM can just fully control
only one of them and let the other one follow its prescribed protocol.

Similarly to the ideal world, during the computation, the honest parties follow the
instructions of π and their corresponding PPITM and in the end they output on their
outgoing communication tape whatever value is prescribed by π. The corrupted parties
output a special corrupted symbol and additionally the real-world adversary A may
output an arbitrary image of its view. Let z be the auxiliary input for A and let the
inputs vector be x̄ = (x1, ..., xm). Then the outcome of the computation of π with

60 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

ρ in the real world is defined by the output of all parties and A and is denoted by
{REALπρ,A(k, x̄, z)}k∈N.

Independent of the world where the corruption takes place, the adversary could be
static or adaptive. If the adversary is static, then the parties that are under the control
of the adversary are fixed and do not depend on its auxiliary input or random tape.
This is a restrictive definition of static corruption. However, the definition of adaptive
corruption and the corresponding proof include the proof for a standard static corruption
case. In the case of adaptive corruption, the adversary may decide during the protocol
to arbitrarily corrupt a party, depending on the messages received so far. In both cases,
once the adversary has corrupted a party then it learns all previous inputs and messages
that the party received. From the moment of the corruption further on, the adversary
has full control over the messages that the party sends. Moreover, we consider that the
adversary fully controls the message scheduling: he decides if and when to deliver the
messages between output tape of one party (or, more general, machine) to the input tape
of another. As mentioned above, there is one exception: the adversary does not have any
control over the messages that an uncorrupted party sends to its corresponding PPITM.

We are now ready to state the definition of security under concurrent general compo-
sition as in [71]. One can define security under concurrent general composition for the
case that π make an unbounded number of calls to F and also for the case that π utilizes
a constant number of calls to F . Both cases are summarized in the following definition:

Definition 23 (Security under Concurrent General Composition). Let ρ be a protocol and
F a functionality. Then, ρ securely computes F under concurrent general composition
if for every probabilistic polynomial-time protocol π in the F-hybrid model that utilizes
ideals calls to F and every PPITM real-model adversary A for πρ, there exists a PPITM
hybrid-model adversary S such that for every x̄, z ∈ {0, 1}∗

{HYBRIDFπ,S(k, x̄, z)}k∈N ≡ {REALπρ,A(k, x̄, z)}k∈N.

If we restrict the protocols π to those that utilize at most ` ideal calls to F , then ρ is said
to securely compute F under `-bounded concurrent general composition.

We also use a weak version of the security definition presented above.

Definition 24 (Weak Security under Concurrent General Composition). Let ρ be a
protocol and F a functionality. Then, ρ computes F under concurrent general composition
with weak security if for every probabilistic polynomial-time protocol π in the F-hybrid
model that utilizes ideals calls to F , for every PPITM real-model adversary A for πρ and
for every PPITM distinguisher D, there exists a PPITM hybrid-model adversary S such
that for every x̄, z ∈ {0, 1}∗

{HYBRIDFπ,S(k, x̄, z)}k∈N
D≡ {REALπρ,A(k, x̄, z)}k∈N.

If we restrict the protocols π to those that utilize at most ` ideal calls to F , then ρ is said
to compute F under `-bounded concurrent general composition with weak security.

4.3. GAME-THEORETIC DEFINITIONS 61

4.3 Game-theoretic Definitions

In this section we define some game-theoretic concepts that we further need for establishing
the equivalence between our notion of weak stand-alone security and a variant of the the
strong univeral implementation notion given in [54] which we defined below. We build
upon the notions already given in section 2.3.

We begin by extending the definition of a computational game presented in Chapter 2
such that it takes into account which are the utilities of a group of players participating in
the prescribed protocol, or deviating from it. In the rest of the paper we denote by Z the
set of players participating in such a coalition and we denote by uZ and UZ respectively,
the utility and the expected utility for such a coalition. We also denote for example by
MZ the vector of strategies (or the PPTMs) that the parties in Z run (or are controlled
by).

The definition of computational Nash equilibrium can be extended to the notion of
computational Nash equilibrium with immunity with respect to coalitions: We require
that the property in the definition of computational Nash equilibrium is fulfilled for all
subsets Z of players, i.e., for all Z and all PPITM M ′Z controlling the parties in Z there

exists a negligible function εZ such that UZ(k,M ′Z ,
−−−→
M−Z)− Ui(k,

−→
M) ≤ εZ(k) holds.

So far we have assumed that players communicate only among each other. We
extend the notion of computational game to a computational game with mediator. The
mediator is modeled by a PPITM denoted F . Without loss of generality, we assume all
communication passes between players and the trusted mediator (that can also forward
messages among players).

Next we follow the approach from [55] to formalize the intuition that the machine

profile
−→
M = (M1, . . . ,Mn) implements a mediator F : Each time a set of players want to

truthfully provide a value (e.g., their input or type) to the mediator F , they also want to

run
−→
M using the same values. For each player i, let its type be ti = (xi, zi), where xi is

player’s input and zi is some auxiliary information about the state of the world.

Let ΛF denote the machine that, given the type ti = (xi, zi) of player i, it sends
xi to the mediator F , outputs as action the string it receives from F and halts. So

ΛF uses only input3 xi and ignores auxiliary information zi. By
−→
ΛF we denote the

machine profile where each player uses only ΛF . We ensure that whenever the players

want to use mediator F , they also want to run
−→
M if every time

−→
ΛF is a computational

Nash equilibrium for the game (G,F), then running
−→
M using the intended input is a

computational Nash equilibrium as well.

Finally, we provide our definition for game-theoretic protocols implementing trusted
mediators. We call our notion game universal implementation. A closely related notion,
called strong universal implementation, has been previously defined [54]. On an intuitive
level, the main difference between the existing notion and the new notion is that for

3As in [54], the games considered are canonical games of fixed input length n. Any game where there
are only finitely many possible types can be represented (by corresponding padding of the input) as a
canonical game for some length n.

62 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

strong universal implementation, parties consider computation to be costly (i.e., time or
memory used for computation may incur additional costs in the utility of the users), while
our notion basically regards computation as “for free”. The naive intuition suggests that
game universal implementation is a weaker notion than strong universal implementation.
However, as we will see in Sect. 4.5.1, this intuition does not hold.

Definition 25 (Game Universal Implementation). Let ⊥i be the PPITM ran by party
i that sends no message (to the other parties or to the mediator) and outputs nothing.
Let Games be a set of m-player games, F and F ′ be mediators and let M1, . . . ,Mm be
PPITMs. We call ((M1, . . . ,Mm),F ′) a game universal implementation of F with respect

to Games if for all n ∈ N and all games G ∈ Games with input length n if
−→
Λ
F

is a
computational Nash equilibrium in the mediated game (G,F) with immunity with respect
to coalitions, then the following three properties hold:

• (Preserving Equilibrium) (M1, . . . ,Mm) is a computational Nash equilibrium in the
mediated machine game (G,F ′) with immunity with respect to coalitions;

• (Preserving Action Distributions) For each type profile (t1, . . . , tm), the output

distribution induced by
−→
Λ
F

in (G,F) is statistically close to the output distribution
induced by (M1, . . . ,Mm) in (G,F ′);

• (Preservation of Best Response ⊥i) Additionally, for all n ∈ N, all games G ∈
Games with input length n and all i ∈ {1, . . . ,m}, if ⊥i is a computational best

response to
−→
Λ
F
−i in (G,F), then ⊥i is a computational best response to

−→
M−i in

(G,F ′).

4.4 Specialized Simulator UC Variants

Our main result in this section shows the separation between the notions of specialized
simulator UC and 1-bit specialized simulator UC. The type of relation between these two
notions was stated as an open problem by Lindell [71]. Furthermore, our result helps
proving the relations among various other security notions, as explained in section 4.5.

4.4.1 On 1-bit Specialized Simulator UC

We start by showing that 1-bit specialized simulator UC (1-bit SSUC) is equivalent to
weak specialized simulator UC (weak SSUC). This will give us a simpler alternative
security notion that we can further work with.

Lemma 26 (Equivalence between 1-bit SSUC and weak SSUC). A protocol fulfills
the 1-bit specialized simulator UC security if and only if it fulfills the weak specialized
simulator UC security.

Proof. Let protocol ρ and ideal functionality F be such that ρ is as secure as F with
respect to 1-bit specialized simulator UC. We show this implies ρ as secure as F with

4.4. SPECIALIZED SIMULATOR UC VARIANTS 63

respect to weak specialized simulator UC security. Given a triple (A,Z,D∗) consisting
of adversary, environment and distinguisher we have to provide a simulator S such that
for every auxiliary input4 z the following holds:

{EXECF ,S,Z(k, z)}k∈N
D∗≡ {EXEC ρ,A,Z(k, z)}k∈N. (4.2)

Given Z and D∗, we can construct a 1-bit output environment ZD∗ in the following
way: ZD∗ internally runs a copy of Z. When internal Z writes on its output tape, this is
forwarded by ZD∗ to an internal copy of D∗. The output of D∗ becomes the output of
ZD∗ . Due to the hypothesis, there exist S such that for every auxiliary input z and for
every distinguisher D we have

{EXECF ,S,ZD∗ (k, z)}k∈N
D≡ {EXEC ρ,A,ZD∗ (k, z)}k∈N.

In particular

{EXECF ,S,ZD∗ (k, z)}k∈N
Dind≡ {EXEC ρ,A,ZD∗ (k, z)}k∈N,

where Dind is the distinguisher that outputs whatever D∗ outputs. As the simulator
S can be used without modification in an interaction with F and the environment5 Z,
the last relation is equivalent to (4.2). We conclude that ρ is as secure as F with respect
to weak specialized simulator UC security.

The implication in the opposite direction is proven as follows. Given a pair (A,Z1−bit)
consisting of adversary and 1-bit output environment Z1−bit , we need to construct a
simulator S such that for every auxiliary input z and for every distinguisher D, we have

{EXECF ,S,Z1−bit(k, z)}k∈N
D≡ {EXEC ρ,A,Z1−bit

(k, z)}k∈N.

Given a 1-bit output environment Z1−bit , we can uniquely decompose it into an
environment Z and a distinguisher D∗ that given the view of Z outputs what Z1−bit
outputs.

Indeed, to each 1-bit environment Z1−bit we can uniquely associate the environment
Z that internally runs Z1−bit : when a party or adversary sends a message to Z, the
environment forwards it internally and replies back with the messages that the copy
of Z1−bit would reply. Analogously, when the internal copy of Z1−bit wants to send a
message to a party or to the adversary, the environment Z forwards this message to
the corresponding party or adversary. Finally, Z gives as output the entire view of the
interaction, i.e., all the inputs and messages it sent to the parties and to the adversary,
all the outputs and messages it received from the other entities as well as the random
bits used.

4Here and in the following “for every auxiliary input z” should be read as “for every distribution of
auxiliary input z for Z”.

5Indeed, by construction ZD
∗

does not interact with an adversarial party (i.e., S or A) after the
simulation of internal Z is over.

64 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

Similarly, for each environment Z1−bit we uniquely associate the distinguisher D∗ as
follows: after receiving the input, D∗ internally simulates the environment Z1−bit and
emulates the rest of the entities in the protocol, including the adversary A; D∗ treats
its input as the input for the copy of Z1−bit and all other participants (either honest or
corrupted) so D∗ can use it to emulate the interaction between Z1−bit , A and the honest
parties. The output bit of the simulated Z1−bit in this context, becomes by definition
the output bit of the distinguisher D∗.

According to the definition of weak specialized simulator UC security, for A, Z, D∗
there exists a simulator S such that for every auxiliary input z we have:

{EXECF ,S,Z(k, z)}k∈N
D∗≡ {EXEC ρ,A,Z(k, z)}k∈N.

As D∗ has binary output (i.e., thus finite output), the above equation implies the two
random variables

{D∗(EXECF ,S,Z(k, z))}k∈N,z∈{0,1}∗ and {D∗(EXEC ρ,A,Z(k, z))}k∈N,z∈{0,1}∗

are statistically close. Hence, for any computationally bounded distinguisher D and for
any auxiliary input z the random variables

{EXECF ,S,Z1−bit
(k, z)}k∈N and {EXEC ρ,A,Z1−bit

(k, z)}k∈N

are indistinguishable and this concludes the proof.

4.4.2 Separation Result

Next we separate the notions of weak specialized simulator UC and specialized simulator
UC. For this we use a cryptographic tool called time-lock puzzles, originally introduced
in [95].

Definition 27 (Time-lock puzzles). A probabilistic polynomial time algorithm G (problem
generator) together with a probabilistic polynomial time algorithm V (solution verifier)
represent a time-lock puzzle if the following holds:
-sufficiently hard puzzles: for every probabilistic polynomial time algorithm B and for
every e ∈ N, there is some f ∈ N such that

sup
t≥kf ,|h|≤ke

Pr [(q, a)← G(1k, t) : V(1k, a, B(1k, q, h)) = 1] (4.3)

is negligible in k.
-sufficiently good solvers: there is some m ∈ N such that for every d ∈ N there is a
PPITM algorithm C such that

min
t≤kd

Pr [(q, a)← G(1k, t); v ← C(1k, q) : V(1k, a, v) = 1 ∧ |v| ≤ km] (4.4)

is overwhelming in k.

4.4. SPECIALIZED SIMULATOR UC VARIANTS 65

Intuitively, a time-lock puzzle is a cryptographic tool used for proving the computa-
tional power of a PPITM. G(1k, t) generates puzzles of hardness t and V(1k, a, v) verifies
that v is a valid solution as specified by a. The first requirement is that B cannot solve
any puzzle of hardness t, with t ≥ kf , for some f depending on B, with more than
negligible probability. The algorithm B may have an auxiliary input. This ensures that
even puzzles generated using hardness t chosen by B together with a trap-door like
auxiliary information (of polynomial length), do not provide B with more help in solving
the puzzle.

The second requirement is that for any polynomial hardness value there exist an
algorithm that can solve any puzzle of that hardness. It is important that the solution for
any puzzle can be expressed as a string of length bounded above by a fixed polynomial.

As promoted by [95] and later by [57], a candidate family for time-lock puzzles which
is secure if the RSA assumption holds, is presented next. A puzzle of hardness t consists

of the task to compute 22t
′

mod n where t′ := min(t, 2k) and n = p1 · p2 is a randomly
chosen Blum integer. Thus, G(1k, t) = ((n,min{t, 2k}), (p1, p2,min{t, 2k})), where n is a
k-bit Blum integer with factorization n = p1 · p2, and V(1k, (p1, p2, t

′), v) = 1 if and only

if (v = v1, v2) and v1 ≡ 22t
′
mod n and v2 = n.6 Both solving the puzzle and verifying

the solution can be efficiently done if p1 and p2 are known. From this point further we
call these puzzles the Blum integer puzzles. An important property that we use in the
following is that any Blum integer puzzle has a unique solution.

Before we state and prove our main separation result in theorem 32, we give as
reminder the definition of hard-core predicates and then we state two properties related
to them.

Definition 28 (Hard-Core Predicate). A hard-core predicate of a collection of functions
gk,t : {0, 1}∗ → {0, 1}∗ is a boolean predicate HC : {0, 1}∗ → {0, 1} such that:

• there exists a probabilistic polynomial time algorithm E with HC (x) = E(x), for
every x;

• for every probabilistic polynomial time algorithm A and for every polynomial p,
there exists kp and tp such that for every k > kp and t > tp, we have

Pr [A(1k, t, gk,t(x)) = HC (x)] <
1

2
+

1

p(k)
.

Now we are ready to state the two lemmas related to hard-core predicates. The
first result shows that from a Blum integer time-lock puzzle we can construct a one-way
function and a hard-core predicate.

6Without loosing any security of the initial definition of time-lock puzzles [95, 57], in addition to the

value 22t

mod n, our solution for the puzzle q = (t, n) contains also the value n. The full use of defining
solutions in such a way, will become more clear when we define the one-way function based on time-lock

puzzles: There is a one-to-one correspondence between the pair of values (v = (22t′
mod n, n), t) and

q = (t, n).

66 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

Lemma 29 (One-Way Function and Hard-Core Predicate from Blum Integer Time-Lock
Puzzles). Let (G,V) be a Blum integer time-lock puzzle and let t be an integer. Let
Sk,t be the set of all correctly generated solutions v = (22tmod n, n) for puzzles q, where
q = (t, n) is the output of algorithm G when invoked with parameters 1k and t. Then
the collection of functions {fk,t : Sk,t → {0, 1}∗}(k∈{0,1}∗,t∈{0,1}k) and {gk,t : Sk,t ×
{0, 1}∗ → {0, 1}∗}(k∈{0,1}∗,t∈{0,1}k) defined below are collections of one-way functions
and the predicate HC : {0, 1}∗ → {0, 1}∗ defined below is a hard-core predicate for
{gk,t}(k∈{0,1}∗,t∈{0,1}k). We alternatively call HC the hard-core predicate for (G,V). We

define fk,t(2
2tmod n, n) = (t, n) and for v, r ∈ {0, 1}∗ such that |v| = |r|, let gk,t(v, r) =

(fk,t(v), r) and HC (v, r) =
∑|v|

i=1 vi · ri mod 2.

Proof. First we prove that {fk,t}(k∈{0,1}∗,t∈{0,1}k) defined above is a collection of one-way
functions. For every security parameter k, let m(k) be the maximum number of bits that
machine G can read from its randomness tape when invoked with security parameter k.
Assume by contradiction that there exist adversary A and polynomial p such that for
every integers kp and tp there exist k ≥ kp and t ≥ tp such that

Pr [A(1k, t, (t, n)) = v : G(1k, t) = ((t, n), a),V (1k, a, v) = 1] ≥ 1

p(k)
.

If in the definition of the first property of time-lock puzzles, we take e = 0 and we
use algorithm A for solving the puzzles, then we immediately obtain a contradiction so
our assumption is false.

It is also clear that the property we have shown to hold for f , can be shown in a
similar way to hold for g.

By following exactly the steps of the well known proof by Goldreich and Levin [41],
which gives a hard-core predicate construction for any one-way function, it follows that
HC (v, r) =

∑k
i=1 vi · ri mod 2 is a hard-core predicate for g and this concludes the

proof.

The second result is a straight forward consequence of the definition of hard-core
predicates.

Lemma 30 (Distribution of Hard-Core Predicates). Let k be a security parameter. Then,
for any given integer t, let gk,t : Dk,t → {0, 1}∗ be a function such that HC : {0, 1}∗ →
{0, 1} is a hard-core predicate for the collection of functions {gk,t}k∈{0,1}∗,t∈{0,1}k . Let
X(k, t) be the distribution of (gk,t(x),HC (x)) and let Y (k, t) be the distribution of
(gk,t(x), U(x)) with x taken from the domain Dk,t and U(x) being the uniform distribution
on {0, 1}. Then the ensembles {X(k, t)}(k∈{0,1}∗,t∈{0,1}k) and {Y (k, t)}(k∈{0,1}∗,t∈{0,1}k)

are computationally indistinguishable.

Proof. In definition 28 we choose an adversary A such that its output is independent of
its input. More precisely, we take A that outputs 1 with constant probability c. This
implies that the output distributions of A and HC are also independent. If we denote
by wk,t(x) the probability that HC outputs 1 given x from a distribution Output(1k, t),
then we obtain:

4.4. SPECIALIZED SIMULATOR UC VARIANTS 67

Pr [A(1k, t, gk,t(x)) = HC (x) : x← Output(1k, t)] =

= (Pr [A(1k, t, gk,t(x))] = 0) · (Pr [HC (x)] = 0)+

+ (Pr [A(1k, t, gk,t(x))] = 1) · (Pr [HC (x)] = 1) =

= wk,t(x)(2 · c− 1) + 1− c.

Substituting this in the definition of hard-core predicate, we have that for every
polynomial p, for all sufficiently large k and all sufficiently large t: wk,t(x)(2·c−1)+1−c <
1
2 + 1

p(k) , which is equivalent to wk,t(x) < 1
2 + 1

p(k)·(2c−1) for large enough t and k. Since c

is a constant, this implies that for large enough t and k, the probability wk,t(x), (where
x← Output(1k, t)), is negligibly close to 1

2 and this concludes our proof.

Using lemmas 29 and 30, the following statement can be shown:

Lemma 31 (Weak SSUC Does Not Imply SSUC). Assume Blum integer time-lock puzzles
exist. Then there are protocols that fulfill weak specialized simulator UC security but do
not fulfill specialized simulator UC security.

Proof. Let (π,F) be a pair of protocol and ideal functionality as defined below. The
only input the ideal functionality F requires is the security parameter 1k. Then F
sends a message to the adversary (i.e. ideal simulator S) asking for its computational
hardness. Using the reply value t′ from S (which is truncated by F to maximum k bits),
the ideal functionality invokes Gen(1k, t′) → (q′, a′) to generate a time-lock puzzle q′

of hardness t′, whose solution should verify the property a′. The puzzle q′ is sent to S
which replies with v′. Finally, F checks whether v′ verifies the property a′. In case a′

does not hold, F stops without outputting any message to the environment. Otherwise,
for every value i ∈ {1, . . . , k}, F generates a puzzle qi of hardness ti = 2i. Let j be such
that 2j ≤ t′ < 2j+1, so j ∈ {1, . . . , k}.

For the puzzle qj , F computes the solution vj . F can efficiently compute this solution
as it knows the additional information aj . Additionally, F chooses r uniformly at random
from {0, 1}2k. Without loss of generality, we can assume the solution v of each puzzle q
generated using the parameters 1k and t has length 2 ·k. Indeed, we can prepend with 0’s
the string v such that its length reaches 2 · k. It is easy to see that after this operation,
the properties stated in lemma 29 still hold. The output of F to the environment is the
tuple (q1, . . . , qk, r,HC (vj , r)), where HC is the hard-core predicate of (G,V) as given by
lemma 29.

For each hardness t′, we call P (t′) the distribution of the view of Z when interacting
in the ideal world.

The real world protocol π, is defined similarly to F , the only difference is the final
output: π outputs to Z a tuple (q1, . . . , qk, r, b), with r randomly chosen from {0, 1}2k
and b randomly chosen from {0, 1}. For each hardness t used by the adversary A when
interacting with Z, we call R(t) the distribution of the view of Z when interacting in the
real world.

68 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

The proof has two steps. First, we show that π is as secure as F with respect to weak
specialized simulator UC security. Let D be a distinguisher of hardness tD (i.e., it can
solve puzzles of hardness less or equal to tD with overwhelming probability but it cannot
solve puzzles of hardness greater than tD with more than negligible probability) and an
adversary A of hardness tA. Let l be the minimum value such that 2l > max(tD, tA). We
now require that the simulator S has hardness t′ such that t′ ≥ 2l. As we will see next,
this is one of the constraints necessary for making the two distributions R(t′) and P (t)
indistinguishable to D.

The intuition is that in the ideal world D would have to solve a puzzle with hardness
larger than tD and learn the hard-core bit for such a puzzle. According to lemma 30, this
hard-core bit is indistinguishable from a random bit, which is actually what the protocol
π outputs to the environment.

More formally, let (A,Z,D) be a triple of real world adversary, environment and
distinguisher and let 1k be the security parameter. Then, let e be such that the length of
the messages sent by Z to D is bounded above by ke. From (4.3), there exists fDe such
that for every polynomial p there exists k0

p such that

sup
t≥kfDe ,|h|≤ke

Pr [(q′, a′)← G(1k, t′) : V(1k, a′,D(1k, q′, h)) = 1] <
1

p(k)

for every k > k0
p. This intuitively means that D can solve puzzles of hardness larger

than kf
D
e only with negligible probability. Given A, in an analogue way we define kf

A
e

and k1
p. With the notation used in the description of π and F , it now becomes clear that

we can take tD = kf
D
e and tA = kf

A
e .

We construct S such that there exists a negligible function ε and k2 such that for
every k ≥ k2 and for every distribution of auxiliary input z we have:

|(Pr(D(EXECA,π,Z(k, z)) = 1)− (Pr(D(EXECF ,S,Z(k, z)) = 1)| < ε(k). (4.5)

We take k2 such that for every k ≥ k2, it holds that max(tA, tD) < 2k.
For a given tA and tD and for l defined as above, let f ′ be such that for sufficiently

large k, 2l ≤ kf
′ ≤ 2k. Let S be the simulator of hardness kf

′
that as first reply to F

sends t′ := kf
′
. According to (4.4), there exists m such that for d := f ′ there exists Cf ′

such that

Pr [(q′, a′)← G(1k, kf
′
); v′ ← Cf ′(1

k, q′) : V(1k, a′, v′) = 1 ∧ |v′| ≤ km]

is overwhelming in k. When F sends a puzzle q′ to S, the simulator invokes Cf ′ for
(1k, q′) and sends to F the output v′ of Cf ′ . Internally, S simulates the adversary A
and emulates the messages that the adversary would receive from Z and π as follows:
When F requires the value of the computational hardness from S, then S acts as π and
requires the computational hardness from simulated A. When S receives t from A, then
it invokes Gen(1k, t), obtaining output (q, a) and forwards to simulated A the puzzle q.
Moreover, any message that internal A wants to send to the environment, S forwards it

4.4. SPECIALIZED SIMULATOR UC VARIANTS 69

to Z. Any message for A coming from Z is immediately forwarded by S to the internally
simulated adversary. This completes the construction of S.

By construction, S solves the puzzle sent by F with overwhelming probability and
hence the output of F to Z is (q1, . . . , qk, r,HC (vj , r)) with the same probability. The
view of Z in the real world is (1k, t, q, v, (q1, . . . , qk, r, b)) and the view of Z in the ideal
world is (1k, t, q, v, (q1, . . . , qk, r,HC (vj , r))). One may argue of course that the view
of Z may or may not contain the values t, q, v, depending on the adversary A. Also,
additionally to the view(s) stated above, the environment could output the interaction
that it has with A besides messages t, q, v. However, for the analysis of this proof, the
views considered above are the worst case scenario that would allow a distinguisher to
tell apart the two worlds.

By applying lemma 30 for the distinguisher D and polynomial p, there exists kp and
tp, such that for every k > kp and t > tp, the advantage of D for distinguishing between
the distributions of ((q, r), b) and ((q, r),HC (v, r)) (with G(1k, t)← (q, a), v the solution
to q, b the random bit and r the uniformly distributed string of k bits) is less than

1
p(k) . Hence, additionally to the previous constraints on k and t′, we take k such that

k > kp and max{tA, tD, tp} < 2k and t′ such that t′ > max{tA, tD, tp}. With this we can
conclude that the real and the ideal world views are indistinguishable to D.

Second, we prove that π is not as secure as F with respect to specialized simulator
UC security. Intuitively, for every hardness tS (polynomial in the security parameter k)
of a simulator machine S, there exists a distinguisher DS such that for every t ≤ tS , DS
can solve puzzles of hardness t. As we will see next, DS uses this property to distinguish
with non-negligible probability between the environment’s output distribution in the real
and in the ideal world.

Formally, let A be the real world adversary that can solve puzzles of hardness tA
such that when receiving its input from the environment, it replies to π with tA and the
corresponding correct solution for the puzzle received. Let Z be the environment that
just sends the security parameter to all parties (i.e., including the adversarial parties),
receives their outputs and then outputs as view the messages received from the honest
parties (i.e., protocol π in the real world or F in the ideal world). For every simulator S,
we show that there exists a distinguisher DS and a distribution for the auxiliary input z
such that:

{EXECF ,S,Z(k, z)}k∈N
DS
6≡ {EXEC π,A,Z(k, z)}k∈N.

Given S of hardness tS , we choose DS such that it can solve puzzles of hardness at
least tD = max (tS , tA) with overwhelming probability in k. Such a DS exists according
to (4.4). Additionally, after receiving the view of Z, DS solves one by one each puzzle qi
included in that view that has associated hardness ti ≤ tD and it obtains each time the
corresponding correct and unique solution vi with overwhelming probability. Then DS
evaluates HC (vi, r). Lets call m the last bit in the output of the honest party (i.e., F or
π) to Z7. Next, DS checks if m 6= HC (vi, r) for all i as defined above. If this holds, then
D outputs 1, otherwise it outputs 0.

7Due to the definition of Z, the string m is also a part of the output of the environment.

70 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

If m is part of the view of the real world, then according to the definition of π, m
is a random bit in {0, 1} so it is different from a given bit HC (vi, r) with probability
1
2 . This is equivalent to DS outputting 1 with probability 1

2log 2tD
= 1

tD
when the view

of Z is from the real world. Similarly, if m is part of the view of Z in the ideal world,
then there exists at least an index i such that HC (vi, r) can be computed by DS and
m = HC (vi, r); so DS outputs 1 with probability 0. This implies DS can distinguish at
least with non-negligible probability 1

tD
between the output distributions from the two

worlds and this concludes the proof.8

We are now ready to conclude that 1-bit specialized simulator UC security and
specialized simulator UC security are not equivalent notions. By putting together the
results from lemma 26 and from lemma 31 we obtain:

Theorem 32 (1-bit SSUC and SSUC Not Equivalent). Assume Blum integer time-lock
puzzles exist. Then there are protocols secure with respect to 1-bit specialized simulator
UC security which are not secure with respect to specialized simulator UC security.

4.4.3 Discussion

The separation result presented in theorem 32 is conditioned on the existence of Blum
integer time-lock puzzles, which in turn is based on the RSA assumption. To the best
of our knowledge, the only other known time-lock puzzle constructions are possible in
the random oracle model [76, 75]. However, these constructions cannot replace the Blum
integer time-lock puzzle in our proof method for the separation lemma 31.

On one hand, the construction from [76] allows only a fixed linear gap between the
time needed for generating and the time needed for solving a puzzle; with the Blum
integer time-lock puzzles we can control the hardness of the puzzle. On the other hand,
the puzzles from [75] allow for more fine tuning of the time gap, but it is not clear how to
use them to construct the one-way functions that allowed us to conclude the separation
lemma 31. This is the case since the constructions from [75] do not allow for generation
of hard enough solutions in efficient time. We did not encounter this impediment in the
case of Blum integer time-lock puzzles, since those puzzles were generated together with
a trap-door which allowed for efficient computation of the solution.

It is an open question how to construct a time lock puzzle based on general cryp-
tographic assumption (e.g., the existence of one-way functions) or to show that such a
construction cannot be used for our separation result.

4.5 Equivalence of Security Notions

Implication relations among various security notions with respect to computational
security are depicted in Fig. 4.1. Previously existing notions are written in a regular font,
while the notions defined in this chapter are written in a boldface font. The continuos line

8Since D is a polynomial time machine, its hardness tD is also a polynomial in the security parameter
k, so the function 1

tD
is non-negligible.

4.5. EQUIVALENCE OF SECURITY NOTIONS 71

Figure 4.1: Implication Relations among Computational Security Concepts

Strong
Universal

Imple-
menta-

tion

Stand-alone
Security

1-bounded
Concurrent

General
Composition

Security

Specialized
Simulator

UC Security

UC
Security

1-bit
UC

 Security

Weak
Stand-
alone

Security

Weak
1-bounded
Concurrent

General
Composition

Security

1- bit
Specialized
Simulator

UC Security

Game
Universal

Imple-
men-
tation

Weak
Specialized
Simulator

UC Security

Weak
Precise
Secure
Com-

-putation

[24]

t[71]

[71]

[57]

t

L26

L26T33

T33

tL37

t

t

[25]

tT32tC36

L38

T41T41[55][55]

C42

?

L40

?

arrows depict relations we prove in this chapter9; all other relations have been previously
known (the descriptor in the square brackets denotes the reference) or can be trivially
derived (i.e., denoted by letter t). Continuous line frames highlight security notions, while
dotted frames highlight game-theoretic concepts. Finally, open questions are marked by
question marks.

It is a well-known result that UC security and 1-bit UC security are equivalent [24].
It has been also shown [57] that specialized simulator UC security does not imply UC
security. Moreover, specialized simulator UC security is equivalent to security under
1-bounded concurrent general composition [71]. It has been shown [25] that stand-alone
security does not imply specialized simulator UC security.10 The implication in the
opposite direction holds trivially. Similarly, it is trivial to see that universal composability
implies specialized simulator UC security.

Our first result in this section proves that weak security under 1-bounded concurrent
general composition is equivalent to 1-bit specialized simulator UC security. A similar
proof technique has been used in [71], however, our proof requires more technicalities.

Theorem 33 (Equivalence between Weak 1-bounded CGC Security and 1-bit SSUC
Security). Let ρ be a protocol and F an ideal functionality. We have that ρ implements
F under weak 1-bounded concurrent general composition security, if and only if ρ securely
computes F under 1-bit specialized simulator UC security.

9 A letter and number next to an arrow represent the theorem T or the lemma L or the corollary C
where the respective result is shown in this paper.

10In order to preserve the symmetry and clarity of our picture, we have indicated that the result in [25]
is that stand-alone security does not imply 1-bounded concurrent general composition. This is indeed a
immediate consequence of combining the results from [25] and [71].

72 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

Proof. In the following we need one-time information-theoretic message authentication
codes so we include the definition below.

Definition 34 (One-Time Information-Theoretic Message Authentication Code). A
one-time information-theoretic message authentication code is a triple (Gen,Mac,Verify)
where Gen(1n) outputs a key k, Mac(k, x) outputs a tag t (obtained using k) for the
message x of length n and Verify(k,m, t) outputs 0 or 1. The correctness property requires
that ∀n,∀k in the range of Gen(1n) and ∀x ∈ {0, 1}n we have Verify(k, x,Mac(k, x)) = 1.

Moreover, the following security property is fulfilled. For every adversary A such that

Pr [(x′, t′)← A(x, t) ∧ x′ 6= x ∧Verify(k, x′, t′) = 1 :

: x← A(1n), k ← Gen(1n), t← Mac(k, x)]

is negligible in n.

Next, we prove an important lemma which will allow us to conclude theorem 33.

Lemma 35 (Equivalence between Weak Security under 1-bounded Concurrent General
Composition and Weak Specialized Simulator UC Security). Let ρ be a protocol and
F an ideal functionality. Then ρ securely computes F under 1-bounded concurrent
general composition with weak security if and only if ρ securely implements F under weak
specialized simulator UC security.

Indeed, putting together lemma 35 and lemma 26 we can conclude the theorem.

And now we give in full detail the proof for lemma 35.

Proof. As expected, the more involved part of the proof is the implication from weak
security under 1-bounded concurrent general composition to weak specialized simulator
UC security. The reverse direction can be shown analogously to the proof existing in the
initial version of [71].

Let R1 , . . . ,Rm be the parties for ρ. Let (A,Z,D) be a triple consisting of UC real
world adversary (possibly adaptive), environment and distinguisher. We need to show
there exists an UC ideal world simulator S such that the views of the environment in
real world and in the ideal world cannot be distinguished by D. The adversary A may
not corrupt any party, in which case A is still capable of scheduling messages in the
network. Additionally, in the UC model the only messages that A has no control of,
even by scheduling, are the input messages that the environment Z writes directly on
the input tapes of the parties and the output messages that Z reads directly from the
parties’ output tapes.

The intuition behind the proof is as follows: We use the fact that ρ composed with
an instance of any protocol π (i.e., even one that has more parties than ρ) is secure and
the security is of course in the sense of definition 24. We construct a protocol π for
m+ 2 parties that besides the m parties of ρ has PZ and PA playing the role of Z and A
respectively. In this way, we reduce the proof of weak specialized simulator UC security
of ρ to weak security under 1-bounded concurrent general composition. As mentioned
above, the adaptive adversary A could corrupt everyone or could corrupt no party and

4.5. EQUIVALENCE OF SECURITY NOTIONS 73

act as a network adversary. Thus, the motivation behind using the two extra parties in
the protocol π is to ensure there is always an honest entity and also a corrupted entity,
the same way as in the UC model. In order to model the ideally secure channels that the
specialized simulator UC (real/ideal) setting ensures by definition between Z and the
parties of ρ, we use one-time pads and one-time authentication MACs in the concurrent
general composition world between PZ and the parties of ρ.

However, it is important to know how long should the keys be. They should suffice
for all necessary encrypted and authenticated communication. Let q be a polynomial
such that for every security parameter n and for every i the value q(n) bounds above
the length of encryption and authentication keys needed between each pair PZ and Pi

with i ∈ {1, . . . ,m}. We postpone until after the description of π why such polynomial q
exists and how it is computed.

Formally, protocol π is described below and it can be used for both the real and the
ideal concurrent general composability worlds.

1. Inputs: Each party Pi with i ∈ {1, . . . ,m} receives a pair (k i
mac , k

i
enc) of keys.11

Party PA receives the empty string λ as input. Party Pm+1 receives an input z
and also the tuples ((k1

mac , k
1
enc), . . . , (km

mac , k
m
enc)).12

2. Outputs: The protocol outputs whatever PZ outputs. The rest of the parties of π
output an empty string λ.

3. Instructions for Pi , with i ∈ {1, . . . ,m}: When Pi receives (input , xi, ti) from
PA, it verifies the correctness of the tag. If verification succeeds, it computes
mi = xi ⊕ k i

enc and sends mi either to its corresponding ITM that emulates Ri

of ρ or to the functionality F . (This choice depends on whether π is part of the
composed protocol πρ or πF . As a reminder, independently of the channels model,
an adversary in the concurrent general composability world cannot interfere in
any way with the messages that an uncorrupted party of π wants to send to its
associated ITM for ρ.) If verification fails, then Pi halts. When the ITM emulating
Ri or when F respectively sends the output value yi to Pi , then Pi computes
ei = yi ⊕ k i

enc and vi = MAC (k i
mac , ei) and sends the message (output , ei, vi) to

party PZ .

4. Instructions for PZ : Upon receiving an input value z, it uses it for internally
invoking Z. When internal Z wants to send a message (input ,mi) to party i, then
PZ computes xi = mi ⊕ k i

enc and ti = MAC (k i
mac , xi) and sends (input, xi, ti) to

Pi . When PZ receives a message (output , yi, vi) from party Pi , it first checks the

11For ease of notation, we use one encryption key and one MAC key per party Pi , as they can be
considered long enough to encrypt and authenticate the entire communication between Pi and PZ .
However, for each different encryption (authentication) that needs to be performed, a new part of the
string k i

enc (and k i
mac , respectively) is used.

12The input of π may have any distribution and the indistinguishability between the real and the ideal
concurrent general composability worlds would still be preserved. However, for this proof we restrict the
inputs to encryption keys (i.e., they are uniformly distributed in {0, 1}q(k)) and MAC keys (i.e., they are
generated with the Gen key generation algorithm).

74 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

correctness of the tag vi. If verification succeeds, then PZ computes mi = yi ⊕ k i
enc

and stores mi. Otherwise, it halts. When internal Z wants to read the output tape
of party i, then PZ looks up if there is a message mi stored from party Pi . If so, it
writes mi to corresponding tape of Z, otherwise it just writes λ to Z. Regarding
the communication with its adversary, when PZ receives a message from Z of the
form (Z,A,m), it forwards it to PA. Similarly when PZ receives a message of the
form (A,Z,m) from PA, it forwards it internally to Z.

5. Instructions for PA: This party has no predefined instructions. PA is needed
in order to provide a means of communication for the adversary of the general
concurrent composition setting which in this model can only send messages through
a corrupted party.13

We now explain how the polynomial q is chosen. Since the communication between
PZ and each of the parties Pi with i ∈ {1, . . . ,m} has to be secure and authenticated,
the length of the secret keys for the one-time pad and and for the one-time MAC should
be long enough. The intuition is that the length of the encryption keys shared by
PZ and Pi is bounded above by the length of the longest string that machine Z can
write plus the longest string that Ri can write. Since both machines are polynomially
bounded and they are fixed before the protocol π is constructed, there exist a polynomial
qi such that qi(n) bounds from above the length of the common encryption keys for
every security parameter n. Moreover, the length of the secret key needed for the
authenticated messages between PZ and Pi is at most as long as the one-time pad secret
keys. Putting the above arguments together we conclude there exists a polynomial q
such that q(n) ≥ max{q1(n), . . . , qm(n)}.

For the protocol π given above we construct an adversary Aπ interacting with the
composed protocol πρ. Intuitively, the task of Aπ is to enable the communication among
Z (invoked by PZ), A (invoked by the adversary Aπ) and the ITMs implementing ρ, in
the same way as it happens in the UC real world. In order to make this work and for
reasons explained above, the adversary Aπ corrupts PA. We construct the adversary
Aπ as follows: It internally runs the code of the UC real world adversary A and if A
corrupts a party Ri , then Aπ corrupts the party Pi together with its corresponding ITM
for computing ρ. The intuition is that Aπ instructs the corrupted parties of π to run the
protocol as before, while their corresponding corrupted ITMs follow the instructions of
A. The handling of messages by Aπ is as follows:

1. Input messages (input , xi, ti) sent by PZ are forwarded immediately by Aπ to Pi ;
Output messages (output , ei, vi) sent by Pi are immediately forwarded by Aπ to
PZ .

Moreover, as soon as party Pi is corrupted, its current state and all its previously
received messages are sent byAπ to A. The information that Z expects to receive

13This is in contrast to the UC model where even if none of the protocol parties is corrupted, the
adversary can interact with the environment Z.

4.5. EQUIVALENCE OF SECURITY NOTIONS 75

upon corruption is sent by Aπ to PZ . All messages received from this point on by
Pi are forwarded by Aπ to A.

2. When PZ sends a message (Z,A,m) to party PA, then Aπ forwards it to its internal
run of A as if coming from Z. The messages (A,Z,m) that A wants to send to Z
are forwarded by Aπ to PZ ;

3. All messages that A instructs a corrupted party Ri to send to an uncorrupted
party Rj will be forwarded by Aπ to the corresponding ITM of Pj as if coming
from the corresponding ITM of Pi; However A schedules messages among parties
Ri , i ∈ {1, . . . ,m}, Aπ does the same for the messages among the corresponding
ITMs of parties Pi , i ∈ {1, . . . ,m}.

4. The adversary Aπ has no control over the messages between an uncorrupted Pi

and its corresponding ITM for computing ρ.

After having defined protocol π and adversary Aπ, we prove that the output of
PZ in the execution of πρ (which we denote by {REALπρ,Aπ(k, z̄)|PZ}k∈N) and the
output of Z in the UC real world are identically distributed. For every z ∈ {0, 1}∗, let
z̄ = (z, k1

enc , k
1
mac , . . . , k

m
enc , k

m
mac), λ, (k1

enc , k
1
mac), . . . , (km

enc , k
m
mac) be the vector where the

first component is the input to PZ , the second component is the input to PA, and each
of the other components is the input to a party Pi , for i ∈ {1, . . . ,m}.

We prove that for every z ∈ {0, 1}∗, for every k i
enc randomly chosen from {0, 1}q(n)

and for every k i
mac generated by Gen(1q(n)) we have:

{EXEC ρ,A,Z(k, z)}k∈N ≡ {REALπρ,Aπ(k, z̄)|PZ}k∈N (4.6)

which as a special case, of course implies:

{EXEC ρ,A,Z(k, z)}k∈N
D≡ {REALπρ,Aπ(k, z̄)|PZ}k∈N (4.7)

Our claim is based on the following facts: First, the inputs to parties are provided by
Z in both models, as in the composed protocol πρ the party PZ distributing the inputs is
internally running Z. Thus the input messages in both worlds are identically distributed.
By construction, Aπ follows the instructions of A (i.e., for network scheduling and for the
corrupted messages among the corresponding ITMs for P1 , . . . ,Pm) and it also provides
an internal perfect emulation for the view of A. Once an honest party Pi receives an
input, it immediately writes it on the input tape of its associated ITM for ρ. This implies
that such a party with its ITM follows the same protocol as the corresponding party of ρ.
We can now conclude that the view of Z in the UC real world for ρ and the view of PA
in the composed protocol πρ are identically distributed, so equation (4.6) follows.

According to the definition of weak security under 1-bounded general concurrent
composition, we know that for the triple π, Aπ and D, there exists a polynomially
bounded hybrid simulator Sπ such that for every z̄ defined as above we have:

{HYBRIDFπ,Sπ(k, z̄)}k∈N
D≡ {REALπρ,Aπ(k, z̄)}k∈N. (4.8)

76 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

We are now ready to construct a simulator S for the UC ideal world by using Sπ.
We have to observe that in the hybrid world of concurrent general composition and
in the UC real world the messages going over the network are the same. Intuitively,
the new simulator S has to have a scheduling indistinguishable from that of Sπ so the
constructed simulator S internally invokes Sπ. As a short summary of the messages
that have to be defined for S: communication from S to F , communication from S to
Z and network scheduling (between parties of π and F). As S internally runs Sπ, the
constructed adversary has to provide an emulation for the entities that Sπ is interacting
with: the parties of πF .14 Such an emulation of πF consists of defining the input/output
messages of the parties, the messages among P1 , . . . ,Pm ,PA,PZ and the messages from
P1 , . . . ,Pm to F . The description of S is as follows:

1. Messages sent by F to S are forwarded to the internally simulated Sπ. The messages
that internally emulated Sπ wants to send to F are forwarded by S to F . Similarly,
the messages that internally emulated Sπ sends to the internally simulated PZ are
forwarded by S to Z. The messages that Z sends to S are forwarded internally to
Sπ as coming from PZ .

2. Simulation of PZ : When S receives a message (Z,A,m) from Z, it sends it to the
internally emulated PA as if coming from the emulated PZ . When Sπ instructs
emulated PA (which is a corrupted party) to send a message (A,Z,m) to PZ , the
simulator S forwards the same message to Z.

3. Simulation of PA: As an uncorrupted party, PA does not do anything, just receives
messages from PZ . These messages were actually sent by Z to S. When internal
Sπ wants to corrupt emulated PA (and this is actually the first party of π that Sπ
corrupts), then all that S needs to do is to send Sπ all the messages it received
from Z.

4. In the UC ideal world, when an uncorrupted dummy party Di receives an (input ,mi)
from the environment Z, it immediately forwards the input value to F . When S
receives over the network such a message15, it generates xi randomly in the length of
the received input and a MAC key k i

mac with the corresponding generation algorithm,
computes ti = MAC(k i

mac , xi) and internally sends the message (input , xi, ti) to
Pi as if coming from PZ . When F wants to send an output message (i.e., same
discussion as above) to Di, the simulator S internally randomly generates yi in the
length of the output received over the network, then computes vi = MAC(kimac, yi)
and sends message (output , yi, vi) to Sπ as if coming from the ideal functionality in
πF .

Whenever Sπ corrupts a party Pi , we have one of the following 3 cases that define
the behavior of S:

14Observe that it is actually sufficient to simulate the parties of π without the messages sent by F as
they can be forwarded by S from its communication with the ideal functionality.

15If the channels between the dummy parties and the ideal functionality are ideally secure, then the
value received could also be encrypted, so what is forwarded should not depend on what is received.

4.5. EQUIVALENCE OF SECURITY NOTIONS 77

-For a corrupted party Pi , that Sπ wants to corrupt before a certain input is
sent to it by PZ , the simulator S corrupts the corresponding dummy party Di,
informs Z about it and generates a correct key pair (k i

enc , k
i
mac) for encryption and

authentication and gives them to Sπ.16 When input value(s) xi for Di are received
by S over the network17, then S computes yi = xi ⊕ k i

enc and vi = MAC(kimac, yi).
Next, S sends (yi, vi) to Sπ as coming from PZ . When an output oi is sent by F
to Di, then S computes ci = xi ⊕ k i

enc and ti = MAC(kimac, yi) and sends (ci, ti) to
simulated Pi as if coming from PZ .

-For a corrupted party Pi , that Sπ corrupts after a certain input is sent to Pi ,
but before the corresponding output is received, first the emulation from the case
of uncorrupted input takes place. Thus, a message (yi, vi) has been already sent
from PZ to Pi . When the corruption takes place, the simulator S corrupts the
corresponding dummy party Di, informs Z about it and generates a correct key
pair (k i

enc , k
i
mac) for encryption and authentication. Then it sends the pair to Sπ,

together with the correct input xi in plain. When an output oi is sent by F to
Di, then S computes ci = xi ⊕ k i

enc and ti = MAC(kimac, yi) and sends (ci, ti) to
simulated Pi as if coming from PZ .

-For a corrupted party Pi that Sπ corrupts after a certain input is sent to it and after
the corresponding output is received, the simulator S corrupts the corresponding
dummy party Di and informs Z about the corruption.18 Then S reads in plain
the input and output values received by Di and, using the simulated encrypted
messages, computes the corresponding encryption keys which are sent to Sπ as Pi

input.

5. The following is valid only for honest parties Pi : When Sπ delivers a message from
Pi to the ideal functionality in πF , then S delivers the same message from Di to
F .19 When Sπ delivers an output from Pi to PZ , then S delivers the output from
F to Di.20

In order to conclude the proof we have to show that the output of the executions
in both hybrid composition world and UC ideal world can be distinguished only with
negligible probability. For this we detail the following three steps: a proof that the
view of internally emulated Sπ is identical with πF , a proof that the messages in the
two worlds (hybrid composition and the UC ideal world) are identically distributed and
finally, a proof that the delivery of output messages happens in the same time in both
worlds.

16This simulates the information that Sπ should learn from the newly corrupted (simulated) party.
17As Di is corrupted, they are received from Z unencrypted.
18The simulation done by S for uncorrupted Pi receiving encrypted and authenticated input and output

from PZ already took place.
19Actually, the simulator Sπ has to make two deliveries (from PZ to Pi and from Pi to the ideal

functionality in πF), before S does the delivery of message from Di to F .
20Similarly as above, the simulator Sπ has to make two deliveries (the output of F to Pi and from Pi

to PZ), before S does its delivery from F to Di.

78 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

We start by analyzing how S internally emulates Sπ. It is easy to see that by
construction Sπ, internally invoked by S, gets and delivers the same messages as Sπ does
in the concurrent general composition world.

Next, we look at the messages sent between entities in both worlds. In the ideal
UC world, the inputs are sent by Z and in the hybrid world with πF , the inputs are
sent by PZ who runs Z. The messages that are sent between PZ (running Z) and PA
(corrupted and controlled by Sπ), are the same as the messages sent in the UC ideal
world between Z and S who runs Sπ. In both worlds, the messages sent by parties to
the ideal functionality are the same: the honest parties just forward their inputs and the
corrupted parties are instructed by Sπ and respectively by S running Sπ. We only need
to show that the delivery of messages is the same in both worlds. Combining this claim
with the proof above, we obtain that the outputs of both worlds are computationally
indistinguishable.

In the following, we compare message delivery in both worlds. It is clear that the
messages between the adversary and the environment Z or party PZ running Z are
identically delivered. The same holds for messages between the parties and the ideal
functionality. We treat in more detail the case of inputs and outputs delivery. By
definition, in the UC world, the input messages are written by Z directly on the input
tapes of the protocol parties and for the honest parties, the adversary has no control
over this step.21 In the execution of πF , PZ is distributing the inputs to the rest of
the parties, but they are scheduled by Sπ, so we cannot know when they are delivered.
However, we ensure that in both worlds an input of an honest party reaches the ideal
functionality in the same time. Indeed, this holds as an honest dummy party Di once
it receives its input, it immediately sends it to the ideal functionality. As simulator S
delivers this message only after internally simulated Sπ has delivered the same message
to F , we have shown the claim.

Similarly, we show that an output message is delivered to Z and to the party PZ
in the same time. Both entities have basically the same instructions. We assume the
machine environment Z reads all output tapes whenever it is activated. This gives the
most power to the environment to distinguish between the delivery of messages. By
construction, S sends an output of F to an honest dummy party Di only when Sπ sends
the same output to PZ . Once it receives its output, the honest Di immediately writes
this value on its output tape (and this can be read by Z at any time). Analogously, Z,
(which is internally run by PZ), can read at any time the tape with output messages
sent for it. So we have that also the outputs from the ideal functionality are delivered
simultaneously in both worlds. This implies that for every z̄ defined as before we have:

{HYBRIDFπ,Sπ(k, z̄)|PZ}k∈N≡{EXECF ,S,Z(k, z)}k∈N (4.9)

21However, in the UC ideal world, immediately after receiving inputs, the honest dummy parties are
activated and they write their inputs on the communication tape for the ideal functionality. As the
simulator is responsible for the delivery of messages, in this way it will learn that inputs have been sent
to the ideal functionality.

4.5. EQUIVALENCE OF SECURITY NOTIONS 79

Thus, it holds that:

{HYBRIDFπ,Sπ(k, z̄)|PZ}k∈N
D≡ {EXECF ,S,Z(k, z)}k∈N (4.10)

By combining relations (4.7),(4.8) and (4.10), we can conclude the proof.

As a consequence of theorem 32 and of theorem 33, we are now also able to compare
the notion of 1-bounded concurrent general composition security [71] with our variant,
i.e., weak 1-bounded concurrent general composition security.

Corollary 36 (Weak 1-bounded CGC and 1-bounded CGC Not Equivalent). Assume
Blum integer time-lock puzzles exist. Then there are protocols secure with respect to weak
1-bounded concurrent general composition which are not secure with respect to 1-bounded
concurrent general composition.

Next we provide an application for theorem 33. In fact, we show that there are
protocols that are secure with respect to weak stand-alone security but they are not
secure anymore in the standard stand-alone model.

Lemma 37 (Weak Security Does Not Imply Stand-alone Security). If Blum integer
time-lock puzzles exist, then there are protocols that fulfill the weak security notion, but
do not fulfill the stand-alone security notion.

Proof. From theorem 33, weak security under 1-bounded concurrent general composition
is equivalent to 1-bit specialized simulator UC. As shown in [71], stand-alone security
under 1-bounded concurrent general composition is equivalent to specialized simulator
UC. According to theorem 32, the two UC variants are not equivalent. This implies
weak security and stand-alone security are also not equivalent. One may wonder if the
equivalence result between UC security and specialized simulator UC security that is
known to hold in the extended UC model does not hinder the correctness of this result.
However, this is not the case. On one hand, in the extended UC model, specialized
simulator UC security and UC security are equivalent. Combining this with the well
known result of equivalence between UC security and 1-bit UC security, we obtain that
in the extended UC model, specialized simulator UC security and 1-bit specialized UC
security are equivalent. This equivalence should not look surprising, as it is obtained
in a more ”permissive” adversarial UC model. On the other hand, the results obtained
in this chapter show that there is at least one composition operation under which weak
security and stand-alone security are not equivalent.

The results of lemma 38 and lemma 40 complete the graphical survey of relations
between security notions presented in Fig. 4.1.

Lemma 38 (Weak Stand-alone Security Does Not Imply Weak 1-bounded CGC Security).
There exists a protocol π which is secure with respect to weak stand-alone model, but is
not secure with respect to weak 1-bounded concurrent general composition security.

Proof. The proof is analogous with the proof of theorem 6 presented in [25].

80 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

As shown in section 4.5.1, the next security result is essential for establishing the
relation between the existing game-theoretic notion of strong universal implementation
[55] and our notion of game universal implementation. As a preamble, we first give the
intuition for weak precise secure computation. While the traditional notion of secure
computation [44] requires only the worst case running time complexity of the ideal world
simulator to match the running time of the real world adversary, weak precise secure
computation [81] requires the complexity of the simulator to match the complexity of
the real world adversary for each arbitrary distinguisher and input.

Definition 39 (Weak Precise Secure Computation). Let π be a protocol, F an ideal
functionality and let C be the function that given a security parameter k, a polynomially
bounded party Q and the view v of Q in the protocol π, it computes the time complexity
of Q running with k and v. We say that π is a weak precise secure computation of
F if there exists a polynomial p such that for every real world adversary A, for every
distinguisher D and for every input z, there exists an ideal world simulator S, with
C(k,S, v) ≤ p(k, C(k,A,S(v))) such that :

{IDEAL(k, z,S,F)}k∈N
D≡ {REAL(k, z, A,

−→
M}k∈N.

Lemma 40 (Weak Precise Secure Computation Does Not Imply Weak Stand-alone
Security). If Blum integer time-lock puzzles exist, then there exists a protocol π which is
secure with respect to weak precise secure computation, but is not secure with respect to
weak stand-alone security.

Proof. The proof follows the general lines of the constructions that we have used for our
main separation result in lemma 31, however, the details are much more straight forward.

Let π be such that on an input pair (k, t), where k is the security parameter, it
truncates t to the first k bits obtaining t′ and it generates a time-lock puzzle using
Gen(k, t′) = (q′, a′). Then it sends q′ to A and regardless of the reply received from the
adversary, it outputs 1.

In the ideal world, on an input pair (k, t), the ideal functionality F behaves exactly
like π with the only exception that it outputs 1 if and only if it receives from the adversary
it interacts with, i.e., from S, the correct solution v′ from the puzzle q′. Otherwise F
outputs 0.

Given π and F as defined above, first we show that π is not as secure as F with
respect to weak stand-alone security. Assume by contradiction that weak stand-alone
security property holds. Since in the real world π always outputs 1, in the ideal world the
ideal functionality should output 1 with overwhelming probability. This in turn means
that S should produce the correct solution for the puzzle sent by F with overwhelming
probability. However, this should be the case independent of the input t′. For a fixed
polynomially bounded simulator S, there is a polynomially bounded hardness tS for the
puzzles that is can solve. However, by the definition of the time-lock puzzles, if the
input t′ > tS then the simulator fails to reply correctly to the challenge sent by F with
overwhelming probability. In conclusion, for a given simulator there is always an input

4.5. EQUIVALENCE OF SECURITY NOTIONS 81

that the real and the ideal world are distinguishable with non-negligible probability, thus
our assumption is false.

Second, we prove that π is as secure as F with respect to weak precise secure
computation. In order to show this claim we make the following observation: From
relation (4.4) in the definition of time-lock puzzles, we deduce that for every integer d
there exists an integer pd and a polynomial time solver Cd with run time at most pd when
solving puzzles of hardness kd. By induction, it is easy to see that there is a polynomial
poly such that for every d there is a PPITM solver C ′d such that the run time of C ′d is at
most poly(d) when solving puzzles of hardness kd. This polynomial poly we can use as
polynomial p in the definition of weak precise secure computation. Given an adversary
A, a distinguisher D and an input t, it is easy to see that, for each parameter k, if we
take simulator Sk such that it has hardness at least t, then the real and the ideal world
will be indistinguishable for D. This concludes our proof.

4.5.1 Relation Between 1-bit Specialized Simulator UC and Game Uni-
versal Implementation

In the following we prove an equivalence result between our notion of game universal
implementation and our definition of weak stand-alone security. A similar result exists
[55] and it shows the equivalence between with strong universal implementation [55] and
weak precise secure computation. In order to prove this result, the authors consider a
refined version for computational games, where the utility of the players may have strong
correlations with the complexity of the computation they perform (e.g., time complexity,
memory complexity, communication complexity or complexity of operations like reading
inputs or copying messages). In this thesis, we discard the cost of computation and we
are able to prove:

Theorem 41 (Game Universal Implementation and Weak Stand-alone Security). Let
comm be a S communication mediator represented by the cryptographic notion of ideally
secure channels. Let f be an m-ary function with the property that outputs the empty
string to a party if and only if it had received the empty string from that party. Let F be

a mediator that computes22 f and let
−→
M be an abort-preserving computation of f .23 Then−→

M is a weak stand-alone secure computation of f with respect to statistical security24 if

and only if (
−→
M, comm) is a game universal implementation of F with respect to Games,

22The ideal machine profile
−→
ΛF computes f if for all n ∈ N, all inputs −→x ∈ ({0, 1}n)m, the output

vector of the players after an execution of
−→
ΛF on input −→x is identically distributed to f(−→x).

23−→M is an abort-preserving computation of f if for all n ∈ N and for all inputs x̄ ∈ ({0, 1}n)m, the

output vector of the players after an execution of (⊥,
−−−→
M−Z) on input x̄ is identically distributed to

f(λ,−−→x−Z), where Z is a subset of all parties and λ is the empty string.
24We call

−→
M a weak stand-alone secure computation of f if the following two properties are fulfilled:

• For all n ∈ N, all inputs −→x ∈ ({0, 1}n)m, the output vector of the players after an execution of
−→
M

on input −→x is distributed statistically close to f(−→x);

• For every adversary A and for every distinguisher D, there exists a simulator S such that for every

82 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

where Games is the class of games for which the utility functions of the players depend
only on players types and on the output values and each of the player’s Pi utility is
smaller than a polynomial.

Proof. In this proof, we assume without loss of generality, that the ideal functionality F
outputs to each of the parties in the ideal world the output of the computation for each
of their input together with their input value. More formally, if party i sends F as input
the value xi, it receives from F as output fi(x1, . . . , xm);xi, where by ”;” we denote the
concatenation of strings.

First we prove that if
−→
M is a weak secure computation of f with statistical security,

then (
−→
M, comm) is a strong Games universal implementation of F . Since both

−→
M and−→

ΛF compute f , according to the respective definitions, it means they have statistically
close output distributions. So the second property contained in the definition of game
universal implementation has been proven. Next we prove that ∀i ∈ {1, . . . , n}, there
exists a negligible function εi and an integer ki such that for all k ≥ ki:

Ui(k,
−→
M) = Ui(k,

−→
ΛF) + εi(k). (4.11)

Indeed, let
−→
t be the vector of inputs and −→o be the vector of outputs. Then we have:

|Ui(k,
−→
M)− Ui(k,

−→
ΛF)| =

= |
∑
−→
t ,−→o

[Pr(REAL(k,
−→
M) = −→o)− Pr(IDEAL(k,

−→
ΛF) = −→o)] · ui(k,−→t ,−→o)| ≤

≤ [
∑
−→
t ,−→o

|Pr(REAL(k,
−→
M) = −→o)− Pr(IDEAL(k,

−→
ΛF) = −→o)|] · pi(k) ≤

≤ ε(k) · pi(k) =

= εi(k).

In the inequalities above, for readability we made the following notation: we denote by

REAL(k,
−→
M the real world execution REAL(k, z, A,

−→
M}k∈N for the stand-alone security,

and we denote by IDEAL(k,
−→
ΛF the ideal world execution IDEAL(k, z,S,F)}k∈N for the

stand-alone execution.

Moreover, in order to conclude the inequalities above, we have used the following facts:
The output distributions in the real and in the ideal world are finite and statistically close

input z, the following relation is fulfilled :

{IDEAL(k, z,S,F)}k∈N
D≡ {REAL(k, z, A,

−→
M}k∈N.

In the second property, the indistinguishability relation can be further detailed with respect to perfect,
statistical or computational security. If for example, in the second property the ensembles for the real
and the ideal world are statistically indistinguishable, then we call the overall property as weak secure
stand-alone computation with respect to statistical security.

4.5. EQUIVALENCE OF SECURITY NOTIONS 83

and the utility function ui is bounded above by a polynomial pi. Hence, equation (4.11)
holds.

Also, in an analogous manner, the following equation

UZ(k,
−→
M) = UZ(k,

−→
ΛF) + εZ(k).

trivially holds, where Z can be any subset of players.

We are now ready to show that
−→
M fulfills the remaining two properties in the definition

of game universal implementation. If
−→
ΛF is a computational Nash equilibrium in the

mediated game (G,F), assume by contradiction that
−→
M is not a Nash equilibrium in

(
−→
M, comm). Then there exists a player i, a deviating strategy Ai, a polynomial pi such
that for every k0 there exists k ≥ k0 with the property:

Ui(k,Ai,
−−→
M−i) > Ui(k,

−→
M) +

1

pi(k)
. (4.12)

Due to equation (4.11) and also due to the hypothesis that
−→
ΛF is a computational Nash

equilibrium (this is where the following negligible function ε comes from) we additionally
have:

Ui(k,
−→
M) +

1

pi(k)
+ ε(k) = Ui(k,

−→
ΛF) +

1

pi(k)
+ εi(k) + ε(k)

≥ Ui(k,Si,
−−→
ΛF−i) +

1

pi(k)
,

(4.13)

for every simulator Si. Thus we obtain there exists a polynomial p′i such that

Ui(k,Ai,
−−→
M−i) > Ui(k,Si,

−−→
ΛF−i) + 1

p′i(k)
, for every Si. This is equivalent to the fact that

the output distributions of REAL(k,Ai,
−−→
M−i) and IDEAL(k,Si,F) are not statistically

close. Indeed, this can be shown in an analogous way as relation (4.11). So, for every Si,
there exists a distinguisher Di such that

{IDEAL(k,Si,F)}k∈N
Di
6≡ {REAL(k,Ai,

−−→
M−i}k∈N, (4.14)

i.e., Di (that can be also computationally unbounded) has non-negligible probability to
distinguish between the ensembles above.

Let Sim be the set of all simulators Si and let Dist be the set of all distinguishers Di
as described above. Let D be the distinguisher that runs every distinguisher in the set
Dist and outputs 1 if and only if at least one of the distinguishers in the set Dist outputs
1. Such a D may be computationally unbounded, but is a viable distinguisher in relation
with our definition of weak stand-alone computation with statistical security.

By the definition of weak security, for adversary Ai and for distinguisher D, there
exists a simulator S such that the following ensembles are statistically close distributed:

{IDEAL(k,S,F)}k∈N
D≡ {REAL(k,Ai,

−−→
M−i}k∈N

84 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

But since D also runs the distinguisher that can tell apart between the world with
S and the world with Ai, the above relation is a contradiction with the definition of

D. Thus if
−→
ΛF is a computational Nash equilibrium, then so is

−→
M . It can be shown

in an analogous way, mainly by substituting the deviating player i with any set Z of

deviating players, that if
−→
ΛF is immune to the coalition in Z, then

−→
M is also immune to

the coalition in Z.

Finally, we look at the preservation of ⊥i as a best response for a party i in
−→
M .

One one hand, As
−→
M is abort preserving and f has the empty string property, we have

Ui(⊥i,
−→
M−i) = Ui(⊥i,

−−→
ΛF−i). On the other hand, if playing ⊥i is the best response to

−−→
ΛF−i,

(i.e., ⊥i gives the highest utility for player i in the world with
−−→
ΛF−i up to a negligible value),

due to the weak stand-alone secure computation security property and by using the same
technique based on distinguishers’ properties as in the preservation of computational

Nash equilibrium above, the highest utility for party i in the real world is Ui(⊥i,
−→
M−i)

up to a negligible value. This concludes the implication that if
−→
M is a weak stand-alone

secure computation of f with statistical security, then (
−→
M, comm) is a strong Games

universal implementation of F .

For the implication in the opposite direction, we follow the case-separation idea of
the proof for theorem 4.2 (Information Theoretic Case) in [54] and we specify below the
details.

Assume by contradiction that
−→
M is not a weak secure computation of f with statistical

security. Thus, there exists a set Z of corrupted parties, there exists an adversary AZ

corrupting the parties in Z and a distinguisher D (possibly unbounded) such that for
every simulator S there exists a polynomial pS,Z such that for every integer k0 there
exists k ≥ k0:

Pr(D(k,REAL(k,AZ ,
−→
M−Z)) = 1)−

− Pr(D(k, IDEAL(k,S,F)) = 1) >
1

pS,Z(k)

(4.15)

As in [54], we distinguish between two cases:

Case 1: AZ = ⊥Z

The proof idea in this case is to design a game in the class Games, with utilities

depending on D such that
−→
ΛF is a computational Nash equilibrium (with immunity

with respect to coalitions). By hypothesis, this implies that
−→
M is a computational Nash

equilibrium (with immunity with respect to coalitions). However, for the constructed

game, we obtain that ⊥Z is the best response to
−−−→
M−Z , which represents a contradiction.

Let d = Pr(D(k, IDEAL(k,⊥Z ,F)) = 1). We denote by
−→
t the inputs of the parties,

which in game-theoretic terms correspond to the secret types of the players; and we
denote by −→o the outputs of the parties, which in game-theoretic terms correspond to the
actions taken by the players. In the following, by oZ and by λZ respectively, we denote
the output for parties in Z and the empty string corresponding to the output of the
parties in Z.

4.5. EQUIVALENCE OF SECURITY NOTIONS 85

Next, we define a game G such that for any subset of players Z ′ 6= Z, we have uZ′ = 0
and for the set Z we have:

uZ(k,
−→
t ,−→o) =


Pr(D(k,

−→
t ,−→o) = 1) if −→oZ = λZ

d otherwise

We show for the game G the strategy
−→
ΛF is a computational Nash equilibrium in the

ideal world. Indeed, for any subset of players Z ′ 6= Z, we have that UZ′(k,
−→
ΛF) = 0 =

UZ′(k,SZ′ ,
−−−→
ΛF−Z′), for any simulator S. For the set Z, on one hand we have UZ(k,

−→
ΛF) = d,

as following the strategy
−→
ΛF does result in an ”empty” output for the parties in Z only

with negligible probability (i.e., if and only if the inputs to all the parties in Z are also
the empty string). On the other hand, we have that:

UZ(k,SZ ,
−−→
ΛF−Z) =


Pr(D(k, IDEAL(k,⊥Z ,F)) = 1) if SZ = ⊥Z

d+ εS,Z(k) otherwise,

where for every S, Z, εS,Z is a negligible function.

Hence UZ(k,
−→
ΛF) + εS,Z(k) ≥ UZ(k,SZ ,

−−→
ΛF−Z), for every SZ . To summarize,

−→
ΛF is a

Nash equilibrium with immunity with respect to coalitions. Adding the hypothesis of

(
−→
M, comm) being a game universal implementation of F , we obtain that

−→
M is a Nash

equilibrium with immunity with respect to coalitions. But
−→
M and

−→
ΛF have statistically

close output distributions, so similar to (4.11) we conclude UZ(k,
−→
M) = d + εZ(k).

However, UZ(k,⊥Z ,
−→
M−Z) = Pr(D(k,REAL(k,⊥Z ,

−→
M−Z)) = 1). By assumption (4.15),

Pr(D(k,REAL(k,AZ ,
−→
M−Z)) = 1) > Pr(D(k, IDEAL(k,S,F)) = 1) + 1

pS,Z(k) , for every

simulator S. Thus, UZ(k,⊥Z ,
−−−→
M−Z) > d+ 1

pS,Z(k) − ε(k) = d+ 1
p′S,Z(k)

.

As this contradicts the equilibrium property of
−→
M , we conclude the first case.

Case 2: AZ 6= ⊥Z

Without loss of generality, we assume that AZ lets one of the players in Z output the
entire view of the adversary AZ . Indeed, we can construct A′Z from AZ such that besides
the output for each of the parties in Z, the first player in Z also outputs v′ = AZ (v). If
we define the distinguisher D′ such that

D′(k,REAL(k,AZ(v),
−→
M−Z); v′) = D(k,REAL(k,AZ(v),

−→
M−Z))

and

D′(k, IDEAL(k,S(v),)
−−→
ΛF−Z ; v′) = D′(k, IDEAL(k,S(v),)

−−→
ΛF−Z),

86 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

then the property (4.15) fulfilled by D is also fulfilled by D′. So we can assume AZ lets
one of the players in Z output the entire view of AZ .

Let d = sup
SZ

Pr(D(k, IDEAL(k,SZ ,F)) = 1). We construct a game H in the following

way. For any subset of players Z ′ 6= Z, the utility corresponding to the coalition Z ′ is 0,
independent of the parties inputs and outputs. Then we define:

uZ(k,
−→
t ,−→o) =



d if −→oZ = λZ

Pr(D(k,
−→
t ,−→o , v) = 1) if ∃ oiZ = o′iZ ; v and

−→
o′Z 6= λZ

0 otherwise

where for every jZ 6= iZ , o′jZ = ojZ .

We prove that for the game H defined above, ⊥Z is the best response to
−−→
ΛF−Z . Assume

by contradiction this does not hold. Let the simulator SbestZ be such that the strategy it

implements for the parties in Z is the best response to
−−→
ΛF−Z . This implies SbestZ 6= ⊥Z and

UZ(k,SbestZ ,
−−→
ΛF−Z) > UZ(k,⊥Z ,

−−→
ΛF−Z) + 1

pZ(k) = d+ 1
pZ(k) . From the last relation we can

conclude that IDEAL(k,SbestZ ,
−−→
ΛF−Z) and IDEAL(k,⊥Z ,

−−→
ΛF−Z) are not statistically close

distributions.
Hence, the expected utility UZ(k,SbestZ ,

−−→
ΛF−Z) can be computed using the second or

the third branch of the definition of the utility function uZ . Thus,

UZ(k,SbestZ ,
−−→
ΛF−Z) ≤ Pr(D(k, IDEAL(k,SbestZ ,F)) = 1).

So d < Pr(D(k, IDEAL(SbestZ ,F)) = 1), which is a contradiction with the definition

of d, so ⊥Z is the best response to
−−→
ΛF−Z .

By hypothesis of the current implication, we conclude ⊥Z is the best response to−−−→
M−Z . However, we show that UZ(k,AZ ,

−−−→
M−Z) > UZ(k,⊥Z ,

−−−→
M−Z) + 1

p(k) , which is an
obvious contradiction.

Indeed, on one hand:

UZ(k,AZ ,
−−−→
M−Z) = Pr(D(k,REAL(k,AZ ,

−−−→
M−Z))) >

> sup
SZ

Pr(D(k, IDEAL(k,SZ ,F)) = 1) +
1

pS,Z(k)

= d+
1

pS,Z(k)
.

On the other hand, UZ(k,⊥Z ,
−−−→
M−Z) = d due to the definition of the utility function

uZ , so the contradiction is obvious.

4.6. CONCLUSION 87

Our proof needs to clarify only one last point. What happens in the case that Z is the
empty set, or to put it equivalently, AZ is the empty adversary ⊥. Then the assumption
in equation (4.15) becomes

Pr(D(k,REAL(k,⊥,−→M)) = 1)− Pr(D(k, IDEAL(k,S,F)) = 1) >
1

pS(k)
,

for every simulator S. But this directly contradicts the fact that
−→
M and

−→
ΛF have

statistically close output distributions.
Hence theorem 41 has been proven.

So we have shown that by restricting the class of games to those for which the
computation cost for parties during protocol execution is free, our variant of universal
implementation becomes equivalent to more standard notions of security (i.e., where the
simulator depends only on the distinguisher and not anymore on both the distinguisher
and input). Finding such equivalences was stated as an open question in [55] and to the
best of our knowledge, our work makes the first step towards answering it.

One may ask if our new notion of game universal implementation is a subcase of the
existing notion of strong universal implementation [55]. Using Lemma 40, Theorem 41
and the equivalence result between strong universal implementation and weak precise
secure computation [55], we obtain:

Corollary 42 (Non-Equivalence of Universal Implementation Variants). The notion of
strong universal implementation does not imply the notion of game universal implemen-
tation.

4.6 Conclusion

In this chapter we have established an equivalence result between a security notion (i.e.,
weak stand-alone security) and a game-theoretic notion (i.e., game universal implemen-
tation). In the process of deducing this result, we had a closer look at the implication
relations among a wider set of security notions, including variants of the UC security
definition. Along this path, an important result was the proof that two variants of the
UC security definition where the order of quantifiers is reversed, namely 1-bit specialized
simulator UC security and specialized simulator UC security, are not equivalent. This
comes in contrast with the well known result that UC security and 1-bit UC security are
equivalent [24] and solves the open question raised by Lindell [71] about the implication
relation between the two above mentioned UC variants.

88 CHAPTER 4. BRIDGING SECURITY AND GAME THEORY

Chapter 5

Concluding Remarks

Rational cryptography has recently developed as a new field of research by combining
notions and techniques from cryptography and game theory. In contrast to the tradi-
tional view of cryptography where protocol participants are considered either honest or
arbitrarily malicious, rational cryptography models participants as rational players that
try to maximize their benefit and thus deviate from the protocol only if in this way they
obtain a benefit. In the context of game theory, a protocol that gives rational participants
incentives to follow constitutes an equilibrium. Rational cryptography is centered around
such (computational) equilibria concepts and uses cryptographic notions and techniques
as tools for building secure protocols with respect to rational participants.

An initial research focus for rational cryptography has been on defining computational
models for polynomially bounded rational participants (also called rational players) thus
complementing the traditional cryptographic approach that considers participants to
be either honest or arbitrarily malicious. Later, the research focus has shifted towards
designing protocols that rational participants have no incentive to deviate from, i.e., the
protocols should fulfill some game-theoretic notion of equilibrium. So far, most of these
rational protocols fall into the category of rational secret sharing, rational secure multi-
party computation and rational file sharing. File sharing is related to the recently emerging
peer-to-peer paradigm which has seen the development of decentralized applications
among loosely connected nodes that share data and services. Such applications (e.g.,
BitTorrent) became increasingly popular among users due to their efficiency, scalability,
failure resistance and their adaptability to dynamically changing situations. However,
most of such applications do not provide security against users that try to bypass the
design choices of the underlying protocols in order to obtain higher advantages from the
system (e.g., better download speed, downloading without reciprocating).

Designing rational cryptographic protocols

Our first goal in this thesis was to design, formally prove and implement RatFish [8], a
new rational file sharing protocol. We build upon some concepts and design choices of the
popular file sharing application BitTorrent but we resolve its well known weaknesses with

89

90 CHAPTER 5. CONCLUDING REMARKS

respect to users that try to deviate from the protocol. This we ensure by using rational
exchanges of pieces among the users interested in downloading files and by having the
tracker participate in the coordination of the downloads. However, our approach does not
aim at incorporating countermeasures against known attacks, but we provide a rigorous
game-theoretic model for the users and we formally prove the security of the system with
respect to these well-defined rational users, i.e., we show RatFish is a computational
Nash equilibrium. We have also implemented an actual RatFish tracker and we have
shown, using experimental simulations, that possible overhead incurred by its secure
design does not decrease its efficiency and scalability.

In spite of its provable rational security features and its tracker scalability, there
are still challenges that lie ahead for RatFish and rational file sharing in general. Fu-
ture directions to explore and tackle vary from pure theoretical approaches to actual
implementation and deployment of the system into an experimental testbed.

A central question for future work on rational file sharing and also on rational
cryptography is whether computational Nash equilibrium is a strong enough notion for
real-world applications and threat models. For instance, an equilibrium that is robust
against user coalitions might be more desirable. RatFish already provides suitable hooks
for potential mitigation techniques against coalitions, e.g., by ensuring that players
entering small coalitions can only increase their utilities by a small amount so that
entering a coalition would be irrational as well in most cases. Still, this problem needs to
be first investigated from a theoretical point of view. A well defined formal model has to
be given for the possible behavior of coalition participants. Then new features have to
be designed to deter RatFish users from entering coalitions. Such incentives could be, for
example, the “fear” of being banned from the system for a long enough time if caught
deviating. This, in turn, should be ensured by enhancing RatFish with the appropriate
cryptographic techniques.

Automated verification of rational cryptographic protocols

While the application and deployment in real-life scenarios of rational protocols such
as RatFish has the advantage of giving rational participants incentives to follow them,
there are also technical drawbacks. Proofs of Nash equilibrium for rational cryptographic
protocols are lengthy, difficult, and error-prone, since they combine the complexity
of game theory proofs with the complexity of cryptographic proofs. Specifically, a
deviating party may perform arbitrary cryptographic operations and combine in an
unexpected manner the messages received from the other parties. Despite the impressive
progress in the automated analysis of cryptographic protocols, security proofs for rational
cryptographic protocols are at present done by hand. The main problem is that the
existing cryptographic protocol verifiers deal with a different adversary model, the so
called Dolev-Yao adversary [34], which models an omnipresent and omnipotent network-
level adversary that can overhear, intercept, and synthesise any message and is only
limited by the security constraints of the employed cryptographic schemes. In fact, the
automated verification of rational cryptographic protocols, and in particular making
utility functions accessible to existing cryptographic protocol verifiers, is recognized as

91

an open challenge [5].
In this context, we have initiated the line of research aimed at automated verification

of rational cryptographic protocols [9]. We model these protocols in applied pi calculus [1],
a well-established process calculus for the specification and analysis of cryptographic
protocols. In order to make the security properties of these protocols amenable to
automated verification, we formalize the concept of utility functions and Nash equilibrium
as trace properties.

For exemplification of our approach, we have modeled the Ratfish rational file sharing
protocol [8] in the applied pi calculus and analyzed it using ProVerif [19], a state-of-
the-art cryptographic protocol verifier. Ratfish relies on a fairly sophisticated utility
function based on the length of messages, which expresses the interest of rational parties
in completing the download of their files while minimizing the amount of uploaded data.
We show how to manually encode a Nash equilibrium property based on such a utility
function into the ProVerif query language, which is based on the concept of correspondence
assertions [107], a formalism originally developed to state properties of cryptographic
authentication protocols. The analysis of the resulting query is automated and takes
about a minute. To the best of our knowledge, this is the first attempt to leverage
an automated cryptographic protocol verifier in the analysis of rational cryptographic
protocols.

This work opens up a number of interesting research directions. First off, it would
be interesting to extend existing cryptographic protocol verifiers and the underlying
resolution algorithms in order to offer direct support for utility functions, as opposed
to relying on manual encodings that are not always possible. Furthermore, refining the
algorithms so to support sophisticated arithmetic relations seems to be crucial to express
fine-grained utility functions, e.g., those underlying rational auction protocols.

The approach we have taken so far is to consider the communication network au-
thenticated and secure. This can be smoothly adapted to deal with rational adversaries
colluding with a standard Dolev-Yao attacker, by simply letting the communication
channels be available to the adversary. It would also be interesting to consider a different
adversarial model, in which the Dolev-Yao adversary does not necessarily collude with
the rational parties, extending the security definitions and the verification algorithms
accordingly.

Finally, the current framework for automated verification of rational cryptographic
protocols can reason only about the Nash equilibrium property, which deals with unilateral
deviations. It would be interesting to extend this framework to other properties, such as
strong Nash equilibrium, which allows for arbitrary coalitions of rational players, and
coalition-proof Nash equilibrium, in which players can freely discuss their strategies but
cannot make binding commitments.

Equivalences between security and game-theoretic notions

The research detailed so far has highlighted that methods and notions from game theory
can be used in cryptography and vice versa. This raises the question as to which extent
notions from game theory and cryptography are related or which is the intrinsic connection

92 CHAPTER 5. CONCLUDING REMARKS

between the two fields. This is the motivation which triggered our work [29] on equivalence
relations between security notions and game-theoretic notions. The first research result
[55] regarding such equivalence relations has been centered around the ”power of costly
computation”. The main result of this study [55] is an equivalence relation between a
very weak security notion, namely weak precise secure computation and a newly defined
game theoretic notion, which was called strong universal implementation. However, it
was left as an open question how to obtain further equivalence relations, but for stronger
security notions.

In this thesis, we discard the cost of computation and this allows us to go a step
further: we define the notion of game universal implementation and we show it is
equivalent to weak stand-alone security. Thus, we are able to answer positively the
open question from [55] regarding the existence of game-theoretic definitions that are
equivalent to cryptographic security notions for which the ideal world simulator does not
depend on both the distinguisher and the input distribution. Additionally, we investigate
the propagation of the weak stand-alone security notion through the existing security
hierarchy, from stand-alone security to universal composability. The main achievement
in this direction is a separation result between two variants of the UC security definition:
1-bit specialized simulator UC security and specialized simulator UC security. The
separation result between the UC variants was stated as an open question [71] and it
comes in contrast with the well known equivalence result between 1-bit UC security and
UC security.

A future direction is to investigate the power of game theory in order to achieve
security properties which are not possible otherwise in a pure cryptographic setting. More
precisely, there are statements in cryptography for which it is known that under certain
assumptions they do not hold. Such an impossibility statement is the secure and correct
computation of an arbitrary function among a group of participants when more than half
of them can freely deviate. A classical concrete example is the impossibility of achieving
fair coin flipping with a dishonest majority [31]. Thus, as future research direction we
consider defining the rational settings, i.e., classes of utilities for participants, for which
cryptographic impossibility results such the one mentioned above become possible in
the rational world. Moreover, a positive result with respect to rational coin toss would
imply the existence of protocols achieving rational verifiable secret sharing and rational
broadcast.

93

94 CHAPTER 5. CONCLUDING REMARKS

Bibliography

[1] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure communi-
cation. In 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’01), pages 104–115. ACM, 2001.

[2] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed computing
meets game theory: robust mechanisms for rational secret sharing and multiparty
computation. In 25th Annual ACM Symposium on Principles of Distributed Com-
puting (PODC’06), pages 53–62. ACM, 2006.

[3] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe
Martin, and Carl Porth. BAR fault tolerance for cooperative services. Operating
Systems Review, 39(5):45–58, 2005.

[4] Almudena Alcaide. Phd thesis. Rational exchange protocols, 2008.

[5] Wihem Arsac, Giampaolo Bella, Xavier Chantry, and Luca Compagna. Validating
security protocols under the general attacker. In Foundations and Applications
of Security Analysis, chapter Validating Security Protocols under the General
Attacker, pages 34–51. Springer, 2009.

[6] N. Asokan, Victor Shoup, and Michael Waidner. Asynchronous protocols for
optimistic fair exchange. In IEEE Symposium on Security and Privacy, pages
86–99. IEEE Computer Society, 1998.

[7] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital
signatures. IEEE Journal on Selected Areas in Communications, 18(4):593–610,
2000.

[8] Michael Backes, Oana Ciobotaru, and Anton Krohmer. RatFish: A file sharing
protocol provably secure against rational users. In 15th European Symposium on
Research in Computer Security (ESORICS’10), pages 607–625. Springer, 2010.

[9] Michael Backes, Oana Ciobotaru, and Matteo Maffei. Towards automated verifica-
tion of rational cryptographic protocols, 2012. In Submission.

[10] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general composition
theorem for secure reactive systems. In 1st Theory of Cryptography Conference
(TCC’04), pages 336–354. Springer, 2004.

95

96 BIBLIOGRAPHY

[11] Feng Bao, Robert H. Deng, and Wenbo Mao. Efficient and practical fair exchange
protocols with off-line ttp. In IEEE Symposium on Security and Privacy, pages
77–85. IEEE Computer Society, 1998.

[12] Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, 4(2):75–122, 1991.

[13] Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, 4(2), 1991.

[14] Donald Beaver and Shafi Goldwasser. Multiparty computation with faulty majority.
In 9th Annual International Cryptology Conference (CRYPTO’89), pages 589–590.
Springer, 1989.

[15] Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ronald L. Rivest. A fair
protocol for signing contracts. IEEE Transactions on Information Theory, 36(1):40–
46, 1990.

[16] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In 20th Annual ACM Symposium on Theory of Computing (STOC’88), pages 1–10.
ACM, 1988.

[17] Ashwin R. Bharambe, Cormac Herley, and Venkata N. Padmanabhan. Analyzing
and improving a BitTorrent network’s performance mechanisms. In The 25th IEEE
Conference on Computer Communications (INFOCOM’06), pages 1–12. IEEE,
2006.

[18] Justin Bieber, Michael Kenney, Nick Torre, and Landon P. Cox. An empirical
study of seeders in BitTorrent. Technical report, Duke University, 2006.

[19] Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog rules.
In 14th IEEE Computer Security Foundations Workshop (CSFW’01), pages 82–96.
IEEE Computer Society, 2001.

[20] Dan Boneh and Moni Naor. Timed commitments. In 20th Annual International
Cryptology Conference (CRYPTO’00), pages 236–254. Springer, 2000.

[21] Levente Buttyán and Jean-Pierre Hubaux. Rational exchange - a formal model
based on game theory. In 2nd International Workshop of Electronic Commerce
(WELCOM’01), pages 114–126. Springer, 2001.

[22] Levente Buttyán, Jean-Pierre Hubaux, and Srdjan Capkun. A formal model of
rational exchange and its application to the analysis of Syverson’s protocol. Journal
of Computer Security, 12(3-4):551–587, 2004.

[23] Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, 2000.

BIBLIOGRAPHY 97

[24] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd IEEE symposium on Foundations of Computer Science (FOCS
’01), pages 136–145. IEEE Computer Society, 2001.

[25] Ran Canetti and Marc Fischlin. Universally composable commitments. In 21st
Annual International Cryptology Conference (CRYPTO’01), pages 19–40. Springer,
2001.

[26] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In 20th Annual ACM Symposium on Theory
of Computing (STOC’88), pages 11–19. ACM, 1988.

[27] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, and Aistis
Simaitis. Automatic verification of competitive stochastic systems. In Tools and
Algorithms for the Construction and Analysis of Systems - 18th International
Conference (TACAS’12), pages 315–330. Springer, 2012.

[28] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. SIAM
Journal on Discrete Mathematics, 4:36–47, 1991.

[29] Oana Ciobotaru. On the (non-) equivalence of UC security notions. In 6th Inter-
national Conference on Provable Security (ProvSec2012), pages 104–124. Springer-
Verlag, 2012.

[30] Allen Clement, Jeff Napper, Harry C. Li, Jean-Philippe Martin, Lorenzo Alvisi,
and Michael Dahlin. Theory of bar games. In 26th Annual ACM Symposium on
Principles of Distributed Computing (PODC’07), pages 358–359. ACM, 2007.

[31] Richard Cleve. Limits on the security of coin flips when half the processors are
faulty. In 18th Annual ACM Symposium on Theory of Computing (STOC’86),
pages 364–369. ACM, 1986.

[32] Bram Cohen. Incentives build robustness in BitTorrent. Technical report, bittor-
rent.org, 2003.

[33] Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to a
game theoretic problem. In 20th Annual International Cryptology Conference
(CRYPTO’00), pages 112–130. Springer, 2000.

[34] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[35] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic
functions. Journal of the ACM, 50(6):852–921, 2003.

[36] Uriel Feige. Alternative Models For Zero Knowledge Interactive Proofs (PhD Thesis).
PhD thesis, Weizmann Institute of Science, 1992.

98 BIBLIOGRAPHY

[37] Joan Feigenbaum and Scott Shenker. Distributed algorithmic mechanism design:
recent results and future directions. In 6th International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications (DIAL-M’02),
pages 1–13. ACM, 2002.

[38] Matthias Fitzi, Juan A. Garay, Ueli M. Maurer, and Rafail Ostrovsky. Minimal
complete primitives for secure multi-party computation. Journal of Cryptology,
18(1):37–61, 2005.

[39] Georg Fuchsbauer, Johathan Katz, and David Naccache. Efficient rational secret
sharing in standard communication networks. In 7th Theory of Cryptography
Conference (TCC’10), pages 419–436. Springer, 2010.

[40] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2004.

[41] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In 21st Anual ACM Symposium on Theory of Computing (STOC’89),
pages 25–32. ACM, 1989.

[42] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design (extended ab-
stract). In 27th Annual Symposium on Foundations of Computer Science (FOCS’86),
pages 174–187. IEEE Computer Society, 1986.

[43] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In 19th Annual
ACM Symposium on Theory of Computing (STOC’87), pages 218–229. ACM, 1987.

[44] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In 19th Annual
ACM Symposium on Theory of Computing (STOC’87), pages 218–229. ACM, 1987.

[45] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994.

[46] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in
presence of immoral majority. In 10th Annual International Cryptology Conference
(CRYPTO’90), pages 77–93. Springer, 1990.

[47] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[48] Dov Gordon and Jonathan Katz. Rational secret sharing, revisited. In 5th Confer-
ence on Security and Cryptography for Networks (SCN’06), pages 229–241. Springer,
2006.

BIBLIOGRAPHY 99

[49] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete
fairness in secure two-party computation. ACM Journal, 58(6):24, 2011.

[50] S. Dov Gordon, Yuval Ishai, Tal Moran, Rafail Ostrovsky, and Amit Sahai. On com-
plete primitives for fairness. In 7th Theory of Cryptography Conference (TCC’10),
pages 91–108. Springer, 2010.

[51] S. Dov Gordon and Jonathan Katz. Complete fairness in multi-party computation
without an honest majority. In 6th Theory of Cryptography Conference (TCC’09),
pages 19–35. Springer, 2009.

[52] S. Dov Gordon and Jonathan Katz. Partial fairness in secure two-party computation.
Journal of Cryptology, 25(1):14–40, 2012.

[53] Joseph Halpern and Vanessa Teague. Rational secret sharing and multiparty
computation: extended abstract. In 36th Annual ACM Symposium on Theory of
Computing (STOC’04), pages 623–632. ACM, 2004.

[54] Joseph Y. Halpern and Rafael Pass. A computational game-theoretic framework
for cryptography. Unpublished manuscript, 2010.

[55] Joseph Y. Halpern and Rafael Pass. Game theory with costly computation: For-
mulation and application to protocol security. In Innovations in Computer Science
(ICS’10), pages 120–142. Tsinghua University Press, 2010.

[56] Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolerable
in secure multi-party computation (extended abstract). In 6th Annual ACM
Symposium on Principles of Distributed Computing (PODC ’97), pages 25–34.
ACM, 1997.

[57] Dennis Hofheinz and Dominique Unruh. Comparing two notions of simulatability.
In 2nd Theory of Cryptography Conference (TCC’05), pages 89–103. Springer, 2005.

[58] Xiaowei Huang and Ron van der Meyden. Model checking games for a fair branching-
time temporal epistemic logic. In Australasian Conference on Artificial Intelligence,
pages 11–20. Springer, 2009.

[59] M. Izal, G. Uroy-Keller, E.W. Biersack, P. A. Felber, A. Al Hamra, and L. Garces-
Erice. Dissecting BitTorrent: Five months in torrent’s lifetime. In Passive and
Active Measurements (PAM’04), pages 1–11. Springer, 2004.

[60] Jonathan Katz. Bridging game theory and cryptography: Recent results and future
directions. In 5th Theory of Cryptography Conference (TCC’08), pages 251–272.
Springer, 2008.

[61] Idit Keidar, Roie Melamed, and Ariel Orda. Equicast: Scalable multicast with
selfish users. Computer Networks, 53(13):2373–2386, 2009.

100 BIBLIOGRAPHY

[62] Joe Kilian, Eyal Kushilevitz, Silvio Micali, and Rafail Ostrovsky. Reducibility and
completeness in private computations. SIAM Journal on Computing, 29(4):1189–
1208, 2000.

[63] Gillat Kol and Moni Naor. Cryptography and game theory: Designing protocols
for exchanging information. In 5th Theory of Cryptography Conference (TCC’08),
pages 320–339. Springer, 2008.

[64] Steve Kremer and Olivier Markowitch. Fair multi-party non-repudiation protocols.
International Journal of Information Security, 1(4):223–235, 2003.

[65] Steve Kremer, Olivier Markowitch, and Jianying Zhou. An intensive survey of fair
non-repudiation protocols. Computer Communications, 25(17):1606–1621, 2002.

[66] Steve Kremer and Jean-François Raskin. A game-based verification of non-
repudiation and fair exchange protocols. Journal of Computer Security, 11(3):399–
430, 2003.

[67] Martin Lange and Colin Stirling. Model checking games for branching time logics.
Journal of Logic and Computation, 12(4):623–639, 2002.

[68] Dave Levin, Katrina LaCurts, Neil Spring, and Bobby Bhattacharjee. BitTor-
rent is an auction: analyzing and improving BitTorrent’s incentives. Computer
Communications Review (CCR), 38(4):243–254, 2008.

[69] Harry C. Li, Allen Clement, Mirco Marchetti, Manos Kapritsos, Luke Robison,
Lorenzo Alvisi, and Michael Dahlin. FlightPath: Obedience vs. choice in coop-
erative services. In 8th USENIX Symposium on Operating Systems Design and
Implementation (USENIX OSDI’08), pages 355–368. USENIX Association, 2008.

[70] Harry C. Li, Allen Clement, Edmund L. Wong, Jeff Napper, Indrajit Roy, Lorenzo
Alvisi, and Michael Dahlin. BAR gossip. In 7th Symposium on Operating Sys-
tems Design and Implementation (USENIX OSDI’06), pages 191–204. USENIX
Association, 2006.

[71] Yehuda Lindell. General composition and universal composability in secure multi-
party computation. In 44th Symposium on Foundations of Computer Science
(FOCS’03), pages 394–403. IEEE Computer Society, 2003.

[72] Nikitas Liogkas, Robert Nelson, Eddie Kohler, and Lixia Zhang. Exploiting
BitTorrent for fun (not for profit). In 5th International Workshop on Peer-to-Peer
Systems (IPTPS’06), 2006.

[73] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer. Free riding
in BitTorrent is cheap. In 5th Workshop on Hot Topics in Networks (HotNets’06),
pages 85–90. ACM, 2006.

BIBLIOGRAPHY 101

[74] Anna Lysyanskaya and Nikos Triandopoulos. Rationality and adversarial behavior
in multi-party computation. In 26th Annual International Cryptology Conference
(CRYPTO’06), pages 180–197. Springer, 2006.

[75] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Non-interactive time-
stamping and proofs of work in the random oracle model. IACR Cryptology ePrint
Archive, 2011:553, 2011.

[76] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles in the
random oracle model. In 31st Annual Cryptology Conference (CRYPTO’11), pages
39–50. Springer, 2011.

[77] Federico Mari, Igor Melatti, Ivano Salvo, Enrico Tronci, Lorenzo Alvisi, Allen
Clement, and Harry C. Li. Model checking Nash equilibria in MAD distributed
systems. In Formal Methods in Computer-Aided Design (FMCAD’08), pages 1–8.
IEEE Computer Society, 2008.

[78] Federico Mari, Igor Melatti, Ivano Salvo, Enrico Tronci, Lorenzo Alvisi, Allen
Clement, and Harry C. Li. Model checking coalition Nash equilibria in MAD
distributed systems. In Stabilization, Safety, and Security of Distributed Systems,
11th International Symposium (SSS’09), pages 531–546. Springer, 2009.

[79] Olivier Markowitch, Dieter Gollmann, and Steve Kremer. On fairness in exchange
protocols. In 5th Conference on Information Security and Cryptology (ICISC’02),
pages 451–464. Springer, 2002.

[80] Nimrod Megiddo and Avi Wigderson. On play by means of computing machines:
preliminary version. In Proceedings of the 1986 Conference on Theoretical Aspects
of Reasoning about Knowledge (TARK ’86), pages 259–274. Morgan Kaufmann
Publishers Inc., 1986.

[81] Silvio Micali and Rafael Pass. Local zero knowledge. In 38th Anual ACM Symposium
on Theory of Computing (STOC’06), pages 306–315. ACM, 2006.

[82] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In 1st Annual
International Cryptology Conference (CRYPTO’91), pages 392–404. Springer, 1991.

[83] Abraham Neyman. Bounded complexity justifies cooperation in the finitely repeated
prisoners’ dilemma. Economics Letters, 19(3):227–229, 1985.

[84] Henning Pagnia and Felix C. Gartner. Technical Report. On the impossibility of
fair exchange without a trusted third party, 1999.

[85] Ryan S. Peterson and Emin Gün Sirer. Antfarm: efficient content distribution with
managed swarms. In 6th USENIX Symposium on Networked Systems Design and
Implementation (USENIX NSDI’09), pages 107–122. USENIX Association, 2009.

102 BIBLIOGRAPHY

[86] Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Cryptographic security
of reactive systems. Electr. Notes Theor. Comput. Sci., 32, 2000.

[87] Birgit Pfitzmann and Michael Waidner. A general framework for formal notions of
secure systems. http://www.semper.org/sirene/lit., 1994.

[88] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of
secure reactive systems. In 7th ACM conference on Computer and Communications
Security (CCS’00), pages 245–254. ACM, 2000.

[89] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In IEEE Symposium on Security
and Privacy, pages 184–, 2001.

[90] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy, and Arun
Venkataramani. Do incentives build robustness in BitTorrent? In 4th Symposium
on Networked Systems Design and Implementation (USENIX NSDI’07), pages
1–14. USENIX Association, 2007.

[91] Michael Piatek, Tomas Isdal, Arvind Krishnamurthy, and Thomas Anderson. One
hop reputations for peer to peer file sharing workloads. In 5th Symposium on
Networked Systems Design & Implementation (USENIX NSDI’08), pages 1–14.
USENIX Association, 2008.

[92] J. A. Pouwelse, P. Garbacki, D.H.J. Epema, and H. J. Sips. The BitTorrent p2p
file-sharing system: Measurements and analysis. In 4th International Workshop on
Peer-to-Peer Systems (IPTPS’05), pages 205–216. Springer, 2005.

[93] Dongyu Qiu and R. Srikant. Modeling and performance analysis of BitTorrent-like
peer-to-peer networks. In Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM’04), pages 367–378. ACM,
2004.

[94] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In 21st Annual ACM Symposium on
Theory of Computing (STOC’89), pages 73–85. ACM, 1989.

[95] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and
timed-release crypto. Technical report, Massachusetts Institute of Technology,
1996.

[96] Dave Levin Rob, Rob Sherwood, and Bobby Bhattacharjee. Fair file swarming with
FOX. In 5th International Workshop on Peer-to-Peer Systems (IPTPS’06), 2006.

[97] Ariel Rubinstein. Finite automata play the repeated prisoner’s dilemma. Journal
of Economic Theory, 20(1-3):83–96, 1986.

BIBLIOGRAPHY 103

[98] Vitaly Shmatikov and John C. Mitchell. Analysis of a fair exchange protocol. In
Proceedings of the Network and Distributed System Security Symposium (NDSS’00).
The Internet Society, 2000.

[99] Vitaly Shmatikov and John C. Mitchell. Analysis of abuse-free contract signing. In
4th International Conference on Financial Cryptography (FC’00), pages 174–191.
Springer, 2000.

[100] Vitaly Shmatikov and John C. Mitchell. Finite-state analysis of two contract
signing protocols. Theoretical Computer Science, 283(2):419–450, 2002.

[101] J. Shneidman, D. Parkes, and L. Massoulié. Faithfulness in internet algorithms. In
Workshop on Practice and Theory of Incentives and Game Theory in Networked
Systems (PINS’04), pages 220–227. ACM, 2004.

[102] Michael Sirivianos, Xiaowei Yang, and Stanislaw Jarecki. Robust and efficient incen-
tives for cooperative content distribution. Transactions On Networking, 17(6):1766–
1779, 2009.

[103] Paul F. Syverson. Weakly secret bit commitment: Applications to lotteries and fair
exchange. In Computer Security Foundations Workshop (CSFW’98), pages 2–13.
IEEE Computer Society, 1998.

[104] Tom Tedrick. Fair exchange of secrets. In Advances in Cryptology (CRYPTO’84),
pages 434–438. Springer, 1984.

[105] R.W. Thommes and M.J. Coates. BitTorrent fairness: Analysis and improvements.
In 4th IEEE Workshop on the Internet, Telecommunications and Signal Processing
(WITSP’05). IEEE, 2005.

[106] Amparo Urbano and Jose Vila. Computationally restricted unmediated talk under
incomplete information. Economic Theory, 23(2):283–320, 2004.

[107] Thomas Y.C. Woo and Simon S. Lam. A semantic model for authentication
protocols. In IEEE Symposium on Security and Privacy, pages 178–194. IEEE
Computer Society, 1993.

[108] Andrew C. Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science (FOCS’82), pages 160–164.
IEEE Computer Society, 1982.

[109] Andrew C. Yao. Theory and application of trapdoor functions. In 23rd Annual
Symposium on Foundations of Computer Science (FOCS ’82), pages 80–91. IEEE
Computer Society, 1982.

[110] Andrew C. Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science (FOCS’86), pages
162–167. IEEE Computer Society, 1986.

104 BIBLIOGRAPHY

[111] Jianying Zhou and Dieter Gollmann. A fair non-repudiation protocol. In IEEE
Symposium on Security and Privacy, pages 55–61. IEEE Computer Society, 1996.

BIBLIOGRAPHY 105

106 BIBLIOGRAPHY

Appendix A

Complete Listings

type index.

type Data.

type key.

type Length.

type haltmessage.

type participant.

type phase_id.

const phase_0: phase_id.

const phase_1: phase_id.

const dex_1: index.

const dex_2: index.

const dex_3: index.

const dex_4: index.

free dedicw: channel.

free c_L1L2: channel[private].

free c_L2L1: channel[private].

free c_L1L2_2: channel[private].

free c_L2L1_2: channel[private].

free c_L1s: channel[private].

free c_sL1: channel[private].

free c_sL1_2: channel[private].

free c_L2s: channel[private].

free c_sL2: channel[private].

107

108 APPENDIX A. COMPLETE LISTINGS

free c_sL2_2: channel[private].

free c_L1t: channel[private].

free c_tL1: channel[private].

free c_L1t_2: channel[private].

free c_tL1_2: channel[private].

free c_L1t_3: channel[private].

free c_L1t_4: channel[private].

free c_L2t: channel[private].

free c_tL2: channel[private].

free c_L2t_2: channel[private].

free c_tL2_2: channel[private].

free c_L2t_3: channel[private].

free c_L2t_4: channel[private].

free c_ts: channel[private].

free c_ts_2: channel[private].

free c_st: channel[private].

free filepiece_1: bitstring [private].

free filepiece_2: bitstring [private].

free filepiece_3: bitstring [private].

free filepiece_4: bitstring [private].

const hashLength: Length.

const pieceLength: Length.

const keyLength: Length.

const otherLength: Length.

const continue: haltmessage.

const stop: haltmessage.

const message_sent: haltmessage.

const message_received: haltmessage.

const L1: participant.

const L2: participant.

const trac: participant.

const sed: participant.

fun s(Length): Length.

fun data(bitstring, Length): Data.

fun length(Data): Length.

109

fun pair(Data, Data): Data.

fun conc(bitstring, bitstring): bitstring.

fun hash(Data): Data.

fun senc(Data, key): Data.

fun mes(Data): bitstring.

fun sdec(Data, key): Data.

fun keyD(key): Data.

equation forall ke: key; length(keyD(ke)) = keyLength.

equation forall blm: Data; length(hash(blm)) = hashLength.

equation forall ll: Length, m: bitstring; length(data(m, ll))=ll.

equation forall mm: bitstring, ll: Length, ke: key;

length(senc(data(mm, ll), ke)) = ll.

equation forall m: bitstring, l: Length; mes(data(m, l)) = m.

equation forall m: Data, k: key; sdec(senc(m,k), k) = m.

pred CorrectLength(Data).

clauses

forall m: bitstring; CorrectLength(data(m, pieceLength));

forall x: Data, ke: key;

CorrectLength(x) -> CorrectLength(senc(x, ke)).

event Receive_enc(participant, participant, Data, index, phase_id).

event Receive_key(participant, participant, key, phase_id).

event Send(participant, participant, bitstring, phase_id).

event Send_key(participant, participant, key, phase_id).

event Receive_piece(participant, participant, bitstring, phase_id).

event Send_freepiece(participant, participant, Data).

query dex:index, x: Data;

(attacker((filepiece_1,filepiece_3)) phase 1) ==>

(event(Send_freepiece(sed, L2, data(filepiece_3, pieceLength)))

==> event(Receive_enc(L1, L2, x, dex, phase_1)) && CorrectLength(x)).

let leecher_exchange(l1: participant, l2: participant, c_l1t_2:channel,

c_tl1:channel, c_l1l2:channel, c_l2l1:channel, c_l1t_3:channel,

c_tl1_2:channel, c_l1l2_2:channel, c_l2l1_2:channel, c_l1t_4: channel,

somefilepiece_1: Data, in2: index, in4: index, phase_id: phase_id) =

out(c_l1t_2, in2);

in(c_tl1, (=continue, id_2: participant));

new k_1: key;

110 APPENDIX A. COMPLETE LISTINGS

let e_1: Data = senc(somefilepiece_1, k_1) in

out(c_l1l2, e_1);

in(c_l2l1, e_2: Data);

event Receive_enc(l1, l2, e_2, in2, phase_id);

if CorrectLength(e_2) then

out (c_l1t_3, message_sent);

in (c_tl1_2, =message_received);

out(c_l1l2_2, k_1);

event Send_key(l1, l2, k_1, phase_id);

in(c_l2l1_2, k_2: key);

event Receive_key(l1, l2, k_2, phase_id);

let somefilepiece_2: Data = sdec(e_2, k_2) in

event Receive_piece(l1, l2, mes(somefilepiece_2), phase_id);

out(c_l1t_4, in4);

0

else

0.

let leecher_demand_reward(l1: participant, l2: participant,

c_sl1_2: channel, phase_id: phase_id) =

in(c_sl1_2, somefilepiece_4: Data);

event Receive_piece(l1, l2, mes(somefilepiece_4), phase_id);

0.

let leecher(l1: participant, l2: participant, ppiece_1: Data,

dex_1: index, ppiece_3: Data, dex_3: index,

dex_2: index, dex_4: index) =

(phase 1; leecher_exchange(l1, l2, c_L1t_2, c_tL1, c_L1L2,

c_L2L1, c_L1t_3, c_tL1_2, c_L1L2_2, c_L2L1_2, c_L1t_4,

ppiece_1, dex_2, dex_4, phase_1))

|

(phase 1; leecher_demand_reward(l1, l2, c_sL1_2, phase_1)).

let compromised(other_id: participant) =

out (dedicw, (other_id, c_L1L2, c_L1L2_2, c_L2L1, c_L2L1_2,

c_sL2, c_sL2_2, c_L2s, c_tL2, c_tL2_2, c_L2t, c_L2t_2, c_L2t_3,

c_L2t_4, filepiece_2, filepiece_4));

111

0.

let tracker(idd1: participant, iin1: index, iin3: index,

idd2: participant, iin2: index, iin4: index)=

(phase 1;

in(c_L1t_2, =iin2);

in(c_L2t_2, =iin1);

out(c_tL1, (continue, idd2));

out(c_tL2, (continue, idd1));

in(c_L1t_3, =message_sent);

in(c_L2t_3, =message_sent);

out(c_tL1_2, message_received);

out(c_tL2_2, message_received);

in(c_L1t_4, =iin4);

in(c_L2t_4, =iin3);

out(c_ts_2, (idd1, iin4, idd2, iin3));

0

).

let seeder(iid1: participant, iid2: participant, pp1: Data,

inn1: index, pp2: Data, inn2: index, pp3: Data, inn3: index,

pp4: Data, inn4: index)=

(phase 1;

in(c_ts_2, (=iid1, =inn4, =iid2, =inn3));

event Send_freepiece(sed, iid1, pp4);

out(c_sL1_2, pp4);

event Send_freepiece(sed, iid2, pp3);

out(c_sL2_2, pp3);

0).

process

let piece_1: Data = data(filepiece_1, pieceLength) in

let piece_2: Data = data(filepiece_2, pieceLength) in

let piece_3: Data = data(filepiece_3, pieceLength) in

let piece_4: Data = data(filepiece_4, pieceLength) in

(

(leecher(L1, L2, piece_1, dex_1, piece_3, dex_3, dex_2, dex_4))

|

(compromised(L2))

112 APPENDIX A. COMPLETE LISTINGS

|

(tracker(L1, dex_1, dex_3, L2, dex_2, dex_4))

|

(seeder(L1, L2, piece_1, dex_1, piece_2, dex_2, piece_3, dex_3,

piece_4, dex_4))

)

	Introduction
	Rational File Sharing with RatFish
	Introduction
	Contributions
	Related Work
	Outline

	A Bird's Eye View on How to Rationalize P2P
	A Game-theoretic Model for File Sharing
	A Game-theoretic Model for File Sharing Protocols

	The RatFish Protocol
	The Protocol of the Tracker
	The Protocol of the Seeder
	The Protocol of the Leecher

	Equilibrium Proof
	Underlying Assumptions
	Proving the Nash Equilibrium

	Implementation and Performance Evaluation
	Implementation
	Experimental Setup
	Performance Evaluations

	Conclusion

	Automated Verification for RatFish
	Introduction
	Contributions
	Related Work
	Outline

	Applied Pi Calculus (Review)
	Rational Cryptography in the Applied Pi Calculus
	Rational Exchange for File Sharing Protocols
	RatFish Protocol
	Protocol Model in the Applied Pi Calculus
	Automated Verification of Nash Equilibrium

	Conclusion

	Bridging Security and Game Theory
	Introduction
	Contribution
	Background and Related Work
	Organization

	Review of Security Notions
	Universal Composability
	Weak Security under 1- bounded Concurrent General Composition

	Game-theoretic Definitions
	Specialized Simulator UC Variants
	On 1-bit Specialized Simulator UC
	Separation Result
	Discussion

	Equivalence of Security Notions
	Relation Between 1-bit Specialized Simulator UC and Game Universal Implementation

	Conclusion

	Concluding Remarks
	Appendix Complete Listings

