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Abstract

We combine a Korn type inequality with Widman’s hole filling technique to prove

the interior regularity of minimizers for energies occurring in General Relativity.

In addition we provide a new variant of this Korn type inequality valid for the

nonquadratic case.

In a recent paper Dain [Da] proves Korn type inequalities in which the symmetric gradient

ε(u) =
1

2

(

∂iu
j + ∂ju

i
)

1≤i,j≤n

of vector fields u : Ω → R
n defined on a bounded Lipschitz domain Ω ⊂ R

n is replaced
by its trace free part

εD(u) = ε(u) −
1

n
(div u) 1,

where 1 denotes the unit-matrix. More precisely, it is shown that in case n ≥ 3 it holds

(1) ‖u‖2
W 1

2
(Ω) ≤ C





∫

Ω

|u|2 dx +

∫

Ω

∣

∣εD(u)
∣

∣

2
dx





for all functions u from the Sobolev space W 1
2 (Ω; Rn) (see [Ad] for a definition), whereas

for n = 2 we have

(2)

∫

Ω

|∇ϕ|2 dx ≤ 2

∫

Ω

∣

∣εD(ϕ)
∣

∣

2
dx

valid now for fields ϕ ∈ C∞
0 (Ω; R2). By approximation (2) extends to the space

◦

W1
2(Ω; R2)

of Sobolev functions with zero trace, and another application of (2) yields

(3) X :=
{

u ∈ L2
loc(Ω; R2) : εD(u) ∈ L2

loc(Ω; S2)
}

= W 1
2,loc(Ω; R2).

(Here S
2 denotes the space of symmetric (2 × 2)-matrices.) In fact, if w ∈ X, then we

consider η w(ρν), where η is a localization function and w(ρν) is a sequence of mollifications.
Since (2) is true for η w(ρν), we easily obtain that w belongs to W 1

2,loc(Ω; R2). The need
for inequalities of the form (1) or (2) origins from the question, if functionals of the form

(4) E(u, Ω) :=

∫

Ω

(

∣

∣εD(u)
∣

∣

2
− g · u

)

dx

studied in General Relativity (see [BI]) are coercive under suitable boundary conditions.
Due to (1) and (2) the answer is positive, and the goal of our paper is the investigation
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of the smoothness properties of minimizers of functionals being more general than E
introduced in (4) at least for the 2D–case. To be precise, consider an energy density
f : S

2 → [0,∞) of class C2 such that with constants λ, Λ > 0 it holds

(5) λ |σ|2 ≤ D2f(τ)(σ, σ) ≤ Λ |σ|2

for all σ, τ ∈ S
2. Suppose further that Ω is a domain in R

2 and that we are given functions

(6) u0 ∈ W 1
2 (Ω; R2), g ∈ L∞(Ω; R2) .

We then define the energy

(7) I[u, Ω] :=

∫

Ω

[

f(εD(u)) − g · u
]

dx

on the class

(8) K := u0+
◦

W
1
2(Ω; R2)

and get

THEOREM 1. Let (5) - (8) hold. Then we have:

a) The problem I[·, Ω] → min on K admits a unique solution u ∈ K.

b) This solution belongs to the space C1,α(Ω; R2) for some α ∈ (0, 1).

From the proof we will deduce

Corollary 1. Let (5) hold and consider u ∈ X, which locally minimizes the functional I
from (7) with g ∈ L∞

loc(Ω; R2), i.e. I[u, Ω′] < ∞ and I[u, Ω′] ≤ I[v, Ω′] for all v ∈ X such
that spt(u− v) ⋐ Ω′, where Ω′ is any subdomain of Ω such that Ω′ is a compact subset of
Ω. Then the first derivatives of u are locally Hölder continuous in Ω.

Proof of Theorem 1

Step 1: Existence and uniqueness of the minimizer
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For any function v ∈ K it holds (on account of (5))

∫

Ω

f
(

εD(v)
)

dx ≥ c





∫

Ω

∣

∣εD(v)
∣

∣

2
dx − |Ω|





≥ c





∫

Ω

∣

∣εD(v − u0)
∣

∣

2
dx −

∫

Ω

|∇u0|
2 dx − |Ω|





(2)

≥ c





∫

Ω

|∇(v − u0)|
2 dx −

∫

Ω

|∇u0|
2 dx − |Ω|





≥ c





∫

Ω

|∇v|2 dx −

∫

Ω

|∇u0|
2 dx − |Ω|



 ,

where here and in what follows c represents a positive constant being independent of v,
whose value may change from line to line. With Poincaré’s and Young’s inequality we
obtain for any δ > 0

∣

∣

∣

∣

∣

∣

∫

Ω

g · v dx

∣

∣

∣

∣

∣

∣

≤ δ

∫

Ω

|v − u0|
2 dx + c(δ)

∫

Ω

|g|2 dx + c

∫

Ω

|g||u0| dx

≤ δc

∫

Ω

|∇(v − u0)|
2 dx + c(δ)

∫

Ω

|g|2 dx + c

∫

Ω

|u0||g| dx ,

so that appropriate choice of δ implies

(9) I[v, Ω] ≥ c

∫

Ω

|∇v|2 dx − c
(

|Ω|, λ, Λ, ‖g‖L2, ‖u0‖W 1

2

)

,

and alternatively we can replace
∫

Ω

|∇v|2 dx on the r.h.s. by
∫

Ω

|∇v −∇u0|
2 dx. If {un}

denotes on I-minimizing sequence in K, then (9) clearly implies

sup
n

‖un‖W 1

2
(Ω) < ∞ ,

so that after passing to a subsequence we can assume un ⇁: u in W 1
2 (Ω; R2), un → u

in L2(Ω; R2) for a function u ∈ K. The lower semicontinuity of I[·, Ω] yields that u is
a solution of the minimization problem. Suppose that ũ ∈ K is a second solution. If
εD(u) 6= εD(ũ) holds on a set of positive measure, then the strict inequality

f

(

εD

(

u + ũ

2

))

<
1

2
f

(

εD(u)
)

+
1

2
f

(

εD(ũ)
)
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is true on this set which leads to the contradiction

I

[

u + ũ

2
, Ω

]

< inf
K

I .

We therefore have εD(u − ũ) = 0 a.e. on Ω and (2) shows u = ũ. Thus part a) of
the Theorem is proved. We note that for this step it is enough to have g ∈ L2(Ω; R2)
(compare (6)) which is also sufficient to carry out the next step.

Step 2: Higher weak differentiability of the minimizer u

We claim that

(10) u ∈ W 2
2,loc(Ω; R2)

is true, which by Sobolev’s theorem implies that u is locally Hölder continuous on Ω for
any exponent α < 1. For proving (10), we fix a coordinate direction i, i = 1, 2, and let
∆h denote the difference quotient of functions in this direction. From the minimality of
u we deduce

(11)

∫

Ω

(

Df
(

εD(u)
)

: εD(v) − g · v
)

dx = 0

for all v ∈
◦

W 1
2(Ω; R2). We let v := ∆−h(η

2∆hu) with η ∈ C∞
0 (Ω), 0 ≤ η ≤ 1, and deduce

from (11)

(12)

∫

Ω

∆h

(

Df
(

εD(u)
))

: εD(η2∆hu) dx = −

∫

Ω

g · ∆−h(η
2∆hu) dx .

Abbreviating

Bx :=

1
∫

Ω

D2f
(

εD(u)(x) + th εD(∆hu)(x)
)

dt

we get
∆h

(

Df
(

εD(u)
))

= Bx

(

εD(∆hu) , ·
)

,
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hence
(

Zh := εD(η2∆hu) − η2εD(∆hu)
)

l.h.s. of (12) =

∫

Ω

Bx

(

εD(∆hu), εD
(

η2∆hu
))

dx

=

∫

Ω

Bx

(

εD(∆hu), εD(∆hu)
)

η2 dx +

∫

Ω

Bx

(

εD(∆hu), Zh

)

dx

(5)

≥ λ

∫

Ω

η2
∣

∣εD(∆hu)
∣

∣

2
dx − Λ

∫

Ω

|εD(∆hu)|2η|∇η||∆hu| dx

≥
λ

2

∫

Ω

η2
∣

∣εD(∆hu)
∣

∣

2
dx − c

∫

Ω

|∇η|2 |∆hu|
2 dx .

Therefore (12) implies

(13)
λ

2

∫

Ω

η2
∣

∣εD(∆hu)
∣

∣

2
dx ≤

∫

Ω

|g||∆−h

(

η2∆hu
)

| dx + c

∫

Ω

|∇η|2 |∆hu|
2 dx .

If |h| < dist (spt η, ∂Ω), then we quote Lemma 7.23 of [GT] and get

(14)

∫

Ω

|∇η|2 |∆hu|
2 dx ≤ ‖∇η‖2

L∞(Ω)

∫

Ω

|∇u|2 dx .

At the same time we have with Young’s inequality
∫

Ω

|g|
∣

∣∆−h(η
2∆hu)

∣

∣

2
dx ≤ δ

∫

Ω

∣

∣∆−h(η
2∆hu)

∣

∣

2
dx + c(δ)

∫

Ω

|g|2 dx

≤ δ

∫

Ω

∣

∣∇
(

η2∆hu
)
∣

∣

2
dx + c(δ)

∫

Ω

|g|2 dx

(2)

≤ 2δ

∫

Ω

∣

∣εD(η2∆hu)
∣

∣

2
dx + c(δ)

∫

Ω

|g|2 dx

≤ 2δ

∫

Ω

η2
∣

∣εD(∆hu)
∣

∣

2
dx

+c(δ)





∫

Ω

|g|2 dx + ‖∇η‖2
L∞(Ω)

∫

Ω

|∇u|2 dx



 ,

where we also used Lemma 7.23 of [GT] again. Combining (13) with (14) and the above
estimate, we deduce after appropriate choice of δ:

(15)

∫

Ω

∣

∣∆hε
D(u)

∣

∣

2
η2 dx ≤ c





∫

Ω

|g|2 dx + ‖∇η‖2
L∞(Ω)

∫

Ω

|∇u|2 dx



 .
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Since (15) is valid for all |h| ≪ 1, we see that εD(u) is of class W 1
2,loc(Ω; S2). Therefore

εD(∂iu) = ∂iε
D(u) is in L2

loc(Ω; S2) and we infer from (3) that ∂iu ∈ W 1
2,loc(Ω; R2) is true

for i = 1, 2. This proves our claim (10).

Step 3: C1,α–regularity of the minimizer u

Here we are going to prove part b) of the Theorem applying the hole filling technique
going back to Widman’s work [Wi]. Recall that according to our assumption (6) g is a
bounded function but we remark that the following arguments can be carried out under
the weaker hypothesis g ∈ L2(Ω; R2) together with g ∈ L2,µ

loc (Ω; R2) for some µ > 0, where
L2,µ

loc (. . .) is the local Morrey space (see, e.g. [Gi], Chapter III). From (10) and (11) we get
(from now on summation w.r.t. k = 1, 2)

(16)

∫

Ω

∂k

(

Df
(

εD(u)
))

: εD
(

η2∂k[u − Px]
)

dx = −

∫

Ω

g · ∂k

(

η2∂k[u − Px]
)

dx

valid for η ∈ C∞
0 (Ω), 0 ≤ η ≤ 1, and any (2 × 2)–matrix P .

Letting Wk := εD(η2∂k[u − Px]) − η2εD(∂ku) and observing |Wk| ≤ cη|∇η||∇u − P |, we
deduce from (16) (recalling also (5))

∫

Ω

η2
∣

∣∇εD(u)
∣

∣

2
dx

≤ c





∫

Ω

η|∇εD(u)||∇η||∇u− P | dx +

∫

Ω

|g||∇η|η|∇u− P | dx +

∫

Ω

|g|η2|∇2u| dx



 ,

and if we apply Young’s inequality we find

(17)

∫

Ω

η2
∣

∣∇εD(u)
∣

∣

2
dx ≤ c





∫

Ω

|∇η|2 |∇u − P |2 dx +

∫

Ω

|g|2η2 dx +

∫

Ω

|g|η2|∇2u| dx



 .

Let us fix a coordinate direction k. We have
∫

Ω

η2 |∇∂ku|
2 dx =

∫

Ω

η2 |∇(∂ku − Pk)|
2 dx

≤ c





∫

Ω

∣

∣∇
(

η2[∂ku − Pk]
)
∣

∣

2
dx +

∫

Ω

|∇η|2 |∇u − P |2 dx





(2)

≤ c





∫

Ω

∣

∣εD
(

η2[∂ku − Pk]
)
∣

∣

2
dx +

∫

Ω

|∇η|2 |∇u − P |2 dx




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≤ c





∫

Ω

η2
∣

∣εD(∂ku)
∣

∣

2
dx +

∫

Ω

|∇η|2 |∇u − P |2 dx





≤ c





∫

Ω

η2
∣

∣∇εD(u)
∣

∣

2
dx +

∫

Ω

|∇η|2 |∇u − P |2 dx



 , i.e.

(18)

∫

Ω

η2
∣

∣∇2u
∣

∣

2
dx ≤ c





∫

Ω

η2
∣

∣∇εD(u)
∣

∣

2
dx +

∫

Ω

|∇η|2 |∇u − P |2 dx



 ,

and we may insert (17) into the r.h.s. of (18) with the result

(19)

∫

Ω

η2
∣

∣∇2u
∣

∣

2
dx ≤ c





∫

Ω

|∇η|2 |∇u − P |2 dx +

∫

Ω

|g|2η2 dx +

∫

Ω

|g|η2|∇2u| dx



 .

If we use Young’s inequality for the last integral in (19), it is shown that

(20)

∫

Ω

η2
∣

∣∇2u
∣

∣

2
dx ≤ c





∫

Ω

η2 |g|2 dx +

∫

Ω

|∇η|2 |∇u − P |2 dx



 .

In a final step we fix a disc B2R(x0) ⋐ Ω and choose η such that η = 1 on BR(x0),
spt η ⊂ B2R(x0) and |∇η| ≤ c/R. Inequality (20) implies

(21)

∫

BR(x0)

∣

∣∇2u
∣

∣

2
dx ≤ c

[

R2 + R−2

∫

TR(x0)

|∇u − P |2 dx

]

,

where TR(x0) := B2R(x0) − BR(x0). Choosing P as the mean value of ∇u over the ring
TR(x0) and applying Poincaré’s inequality, we deduce from (21)

∫

BR(x0)

∣

∣∇2u
∣

∣

2
dx ≤ c

[

R2 +

∫

TR(x0)

∣

∣∇2u
∣

∣

2
dx

]

.

Adding c
∫

BR(x0)
|∇2u|

2
dx on both sides we find

∫

BR(x0)

∣

∣∇2u
∣

∣

2
dx ≤

c

c + 1
R2 +

c

c + 1

∫

B2R(x0)

∣

∣∇2u
∣

∣

2
dx ,

and a standard iteration argument shows that
∫

Br(x0)
|∇2u|

2
dx grows at most like rκ for

some κ > 0 which proves the claim of part b) of the Theorem.
�
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REMARK 1. 1.) Having established the continuity of ∇u it is possible to prove the
interior Hölder continuity of ∇u for any exponent α ∈ (0, 1) by combining the freez-
ing technique with Campanato type estimates valid for constant coefficient systems
involving εD which have been established in [Sc].

2.) Using these Campanato estimates one can also prove partial C1–regularity for I–
minimizers now on domains Ω ⊂ R

n, n ≥ 3, and with iterative application
of the difference quotient technique one obtains C∞–regularity for minimizers of
∫

Ω

[A(εD(u), εD(u)) − g · u] dx, Ω ⊂ R
n, n ≥ 2, provided A is a positive definite,

symmetric bilinear form on S
n (:= space of symmetric (n × n)–matrices) having

constant coefficients and g is a smooth function. For details we again refer to [Sc].

Let us look at the minimization problem

(22) J [u, Ω] :=

∫

Ω

F (εD(u)) dx → min in u0+
◦

W
1
p(Ω; R2)

with u0 from the space W 1
p (Ω; R2) and with integrand F : S

2 → R being strictly convex
satisfying in addition the growth condition

(23) a|σ|p − b ≤ F (σ) ≤ A|σ|p + B, σ ∈ S
2 ,

with constants a, A > 0, b, B ≥ 0. The following Korn type inequality provides the
existence of a unique solution to (22) under the hypothesis (23).

Proposition 1. Let Ω ⊂ R
2 denote a bounded Lipschitz domain and let p ∈ (1,∞).

Then there is a constant Cp(Ω) such that

(24) ‖∇v‖Lp(Ω) ≤ Cp(Ω)‖εD(v)‖Lp(Ω)

holds for any v ∈
◦

W1
p(Ω; R2).

Proof: It is sufficient to consider the case v ∈ C∞
0 (Ω; R2). From (26) in [Da] we deduce

∂iε
D
ij(v) =

1

2
∆vj, j = 1, 2 ,

i.e. h := vj ∈
◦

W1
p(Ω) solves

(25) −∆h = div H on Ω

with H := (−2εD
ij(v))1≤i≤2 of course from the space Lp(Ω; R2). Applying standard Lp–

arguments to equation (25) (see, e.g. [Me]) we end up with

‖∇h‖Lp(Ω) ≤ Cp(Ω)‖H‖Lp(Ω)

8



and our claim (24) follows.
�

If (23) is replaced by the stronger requirement that F is a smooth p–elliptic integrand,
then we believe that the result of the Theorem extends to the p– case by combining the
Korn type inequality (24) with suitable regularity techniques as applied for example in
[BFZ].
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