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ABSTRACT 
In this work we consider the use of the genome signature for two important bioinformatics 

problems; the taxonomic assignment of metagenome sequences and tree inference from 

whole genomes. We look at those problems from a sequence comparison point of view and 

propose machine learning based methods as solutions. For the first problem, we propose a 

novel method based on structural support vector machines that can directly predict paths in a 

tree implied by evolutionary relationships between taxa. The method is based on an ensemble 

strategy to predict highly specific assignments for varying length sequences arising from 

metagenome projects. Through controlled experimental analyses on simulated and real data 

sets we show the benefits of our method under realistic conditions. 

For the task of genome tree inference we propose a metric learning method. Based on the 

assumption that for different groups of prokaryotes, as defined by their phylogeny, genomic or 

ecological properties, different oligonucleotide weights can be more informative, our method 

learns group-specific distance metrics. We show that, indeed, it is possible to learn specific 

distance metrics that provide improved genome trees for the groups. 

In the outlook, we expect that for the addressed problems the work of this thesis will 

complement and in some cases even outperform alignment-based sequence comparison at a 

considerably reduced computational cost, allowing it to keep up with advancements in 

sequencing technologies. 
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KURZFASSUNG 
In dieser Arbeit wird die Verwendung der Genomsignatur für zwei wichtige bioinformatische 

Probleme untersucht. Diese sind zum einen die taxonomische Einordnung von Sequenzen aus 

Metagenomexperimenten und zum anderen das Lernen eines taxonomischen Baums aus 

verschiedenen ganzen Genomen. Diese beiden Probleme werden aus dem Blickwinkel der 

Sequenzanalyse betrachtet und Verfahren des maschinellen Lernens werden als 

Lösungsansätze vorgeschlagen. Für die Lösung des ersten Problems schlagen wir eine neue 

Methode vor, die auf strukturellen Support Vektor Maschinen beruht und direkt Pfade in 

einem Baum vorhersagen kann, der auf den evolutionären Ähnlichkeiten der Taxa beruht. Die 

Methode basiert auf einer Ensemble Strategie, um sehr genaue Zuweisungen für Sequenzen 

verschiedener Länge, die in Metagenomprojekten gemessen wurden, vorherzusagen. Wir 

zeigen die Vorteile unserer Methode auf simulierten sowie auf experimentellen Daten. 

Für das zweite Problem, bei dem ein taxonomischer Baum, basierend auf der genetischen 

Sequenz gelernt werden soll, schlagen wir eine Methode vor, die eine Metrik lernt. Die 

Annahme, auf der diese Methode beruht, ist, dass für verschiedene Gruppen von Prokaryoten 

unterschiedliche Gewichtungen der Oligonukleotidvorkommen notwendig sind, weswegen 

eine gruppenspezifische Metrik gelernt wird. Die Gruppen können dabei aufgrund ihrer 

phylogenetischen Beziehungen oder ökologischer sowie genomischer Merkmale bestimmt 

sein.  Wir zeigen in unserer Analyse, dass es hierdurch möglich ist, spezifische Metriken zu 

lernen, die zu besseren Bäumen für diese Gruppen führen. 

Wir erwarten, dass unsere hier vorgestellten Arbeiten für die bearbeiteten Probleme 

Alignment-basierte Ansätze ergänzen und teilweise sogar überbieten können, wobei unsere 

Lösungen deutlich weniger Rechenzeit benötigen und damit mit dem rasanten Wachstum im 

Sequenzierbereich schritthalten können. 
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1 BACKGROUND 
In this chapter we will lay out the background for the work in this thesis and provide necessary 

notations and definitions. Particularly we will briefly discuss the biological background and 

motivations. Although most of the work is computational in nature, biological background is 

provided in order to justify the methods and to motivate the computational work. Note that 

this is not meant to be an exhaustive account of the related fields. Topics that are not relevant 

to this work are not discussed. 

This work exclusively deals with DNA sequences of prokaryotic origin; therefore, we will start 

by describing those in sections 1.1 and 1.2. In section 1.3 we will describe metagenomics. 

Section 1.4 introduces sequence comparison including the genome signature paradigm 

followed by the challenge of data overload due to advances in sequencing technologies in 

section 1.5. In section 1.6 we provide overview of machine learning techniques followed by a 

brief description of the addressed problems. 

The mathematical notations used in this thesis follow the following convention; scalar 

variables will be denoted using small italic letters, vectors will be denoted using small bold 

non-italic letters and matrices will be denoted using capital bold non-italic letters. Vector and 

matrix elements will be denoted using non-bold italic letters along with a subscript. The 

transpose of a vector is denoted using the superscript T. 

Several definitions, terms and concepts in this thesis have been taken from other sources as I 

believe that they cannot be described in a better way. They are indicated with the sign and 

the sources are cited. Some of those are modified to match the convention and notation used 

in this thesis. Some of the frequently used short forms are; 

 Glossary(NCBI) 2002: Glossary – The NCBI Handbook – NCBI Bookshelf. 

 Metagenomics(NCBI) 2006: Metagenomics – NCBI Bookshelf. 

 Glossary(Genome): Genome Glossary – Human Genome Project Information. 

 Glossary(Systematics): Palaeos – Systematics, Taxonomy, and Phylogeny: Glossary 

1.1 DNA AND MOLECULAR EVOLUTION 
All known living organisms use genetic material as means to store information and transfer it 

to next generation underpinning unity of life at a molecular level. Most of the organisms (both 

unicellular and multicellular) the genetic material used is the deoxyribonucleic acid (DNA) with 

an exception of quasi-life viruses that use ribonucleic acid (RNA).  

DNA (Glossary(NCBI) 2002) 

Deoxyribonucleic acid is the chemical inside the nucleus of a cell that carries the genetic 

instructions for making living organisms. 
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DNA is made of four nucleotide bases (or bases); adenine (A), guanine (G), cytosine (C) and 

thymine (T). While bases A and G are purines, C and T are pyrimidines. These bases are 

attached to the backbone structure made out of sugars and phosphate bonds (Levene 1919). 

The DNA molecule is a double helix structure made of two complementary polymers in which 

A pairs with T and C pairs with G creating hydrogen bonds resulting in base pairs (bp) (Watson 

& Crick 1953). This A-T and C-G pairing is called the Watson-Crick base pairing. Thus a DNA 

molecule can be considered and analyzed using one or more possible structures, including the 

primary structure which is a base sequence, the secondary structure describing interactions 

between bases and strands and the tertiary structure describing location of atoms in space. In 

this work we consider DNA in its primary structure; that is a string made of four nucleotides A, 

C, G and T. Hereafter all references to a sequence mean a DNA sequence unless otherwise 

specified. 

DNA sequence (Glossary(Genome)) 

The relative order of base pairs, whether in a DNA fragment, gene, chromosome, or an entire 

genome.  

Gene (Glossary(Genome)) 

The fundamental physical and functional unit of heredity. A gene is an ordered sequence of 

nucleotides located in a particular position on a particular chromosome that encodes a 

specific functional product (i.e., a protein or RNA molecule). 

Genome (Glossary(Genome)) 

All the genetic material in the chromosomes of a particular organism; its size is generally 

given as its total number of base pairs.  

 Chromosome (Glossary(Genome)) 

The self-replicating genetic structure of cells containing the cellular DNA that bears in its 

nucleotide sequence the linear array of genes. In prokaryotes, chromosomal DNA is circular, 

and the entire genome is carried on one chromosome. 

 Phenotype (Glossary(Genome)) 

The physical characteristics of an organism or the presence of a disease that may or may not 

be genetic.  

DNA is the carrier of genetic information in which genes are information encoding and 

hereditary units. The central dogma of molecular biology dictates that a gene is transferred 

into ribonucleic acids (RNA) which is then further translated into proteins that carry out the 

actual phenotypic functions (Crick et al. 1961). This also implies that the information flows 

from the DNA to the exterior; consequently the environment affects the DNA only indirectly. 

This has been disputed and recent understandings in epigenetic modifications and inheritance 

questions the central dogma (Koonin 2012). We will not discuss this further as the findings in 

this thesis are not directly affected by whether the central dogma is accepted or refuted. 
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Before we describe molecular evolution, let us first briefly consider evolution in general. The 

theory of evolution consists of two mechanisms; descent with modification and natural 

selection. It was put forward in 1859 by Charles Darwin in his book “On the origin of species by 

means of natural selection, or the preservation of favored races in the struggle of life” (Darwin 

1859). In this book he described how heritable variations combined with natural selection 

results in survival of the fittest and consequently over a large span of geological time can give 

rise to the observed biological diversity. As these variations are normally rather small the 

process of evolution gives rise to a tree-like structure which Darwin depicted in the sole 

illustration in his book. With the advances in sequencing technologies the evolutionary 

changes could be studied at a molecular level. Consequently, all known life on the Earth can be 

represented as a tree depicting evolutionary relationships (Ciccarelli et al. 2006), implying that 

life originated from a common ancestor. Though the validity of such a tree, especially for 

prokaryotes, has been questioned (Doolittle 1999, 2000; Bapteste et al. 2009). 

 Phylogenetic tree (Glossary(Systematics)) 

A branching tree-like, diagrammatic representation of the evolutionary relationships and 

patterns of branching in the history of the organisms being considered. 

Mutation (Glossary(Genome)) 

Any heritable change in DNA sequence.  

Each cell contains long structures of DNA called chromosomes which are duplicated during cell 

division with each cell acquiring its own copy. This process of duplication is not perfect and 

might cause one of three types of errors; substitution – replacing one type of base by other, 

deletion – removal of a base and insertion – inserting a new base in the sequence. These errors 

are called point mutations and lead to novel genotypes. These mutations are either eliminated 

or become fixed in the genome depending upon whether they are deleterious or 

advantageous to fitness with respect to natural selection acting upon the phenotypes due to 

them (Rocha 2008). Alternatively neutral mutations, with no effect on the fitness, can get fixed 

due to random genetic drift. Furthermore, insertion or deletion of long stretches of DNA can 

occur by acquiring or removal of transposable elements such as plasmids. Those changes lead 

to novel genotypes, which can lead to changes in the phenotype as dictated by the central 

dogma. The phenotypes with an adaptive advantage, for instance efficient utilization of 

nutrients, reproduce more, in turn increasing the representation of successful genotypes in the 

population. Alternatively less fit phenotypes reproduce less, thus reducing representation of 

respective genotypes. Those evolutionary processes can lead to the creation of new species 

with generations of changes and selection causing the genotypes to be quite different than the 

one they originated from. 

Furthermore, environment can influence genomic features, such as its nucleotide and/or 

amino acid composition (Foerstner et al. 2005; Willenbrock et al. 2006; Bohlin, Skjerve & 

Ussery 2009) and physiological structure, either by imposing selective forces or by creating 

mechanistic mutational biases that in turn can lead to speciation (Orr & Smith 1998; Cohan & 

Koeppel 2008). Although prokaryotes reproduce asexually, they can recombine within and 

across lineages. It is generally agreed that the evolution of prokaryotic species is facilitated by 
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a combination of point mutations and horizontal transfer. Albeit the nucleotide composition 

pattern is constant within species and varies across species forming the basis of the genome 

signature paradigm discussed in section 1.4.2. 

1.2 PROKARYOTES 
The invention of the microscope in the 19th century led to the discovery of the existence of 

microorganisms. The advent of technologies has rapidly advanced our knowledge about their 

ubiquitous nature and astonishing phenotypic and molecular diversity. Prokaryotes are single 

celled ubiquitous microorganisms that lack a cell nucleus. Phylogenetically they make two 

known domains of life; bacteria and Achaea (Figure 1.1). They show astonishing diversity in 

habitats and metabolic capabilities making up a large portion of the Earth’s biomass. 

Prokaryotes affect the ecosystem and our own health in many ways. They are a part of the 

important processes in the ecosystem, such as photosynthesis and nitrogen fixation, cycling of 

nutrients and production and consumption of organic matter. Prokaryotes, along with other 

microorganisms like viruses, inhibit various internal and external body parts of higher 

organisms including human beings and are important for health. Therefore, study of 

microorganisms is vital not only for understanding of life and ecosystems but also for applied 

biological sciences such as agriculture and health. 

Genetic marker (Glossary(Genome))   

A gene or other identifiable portion of DNA whose inheritance can be followed.  

An easy to ask but difficult to answer question about the prokaryotes is what is the biodiversity 

of an environment or in other words “how many different species are there in a given 

environment?” Attempts have been made to, at least partly, answer this question at local and 

global scales using numerical (Curtis, Sloan & Scannell 2002; Ward 2002) and phylogenetic 

techniques (Hugenholtz, Goebel & Pace 1998; Hugenholtz 2002).  The former has provided an 

estimate that the entire bacterial diversity of the sea to be about 2 x 106 and that of a ton of 

soil to be 4 x 106 different taxa. 

At the genome level prokaryotes show high diversity in genome sizes and nucleotide 

compositional but, remarkably, they all have high coding density with approximately one gene 

per kilobase (kb), which is not true for eukaryotes (Casjens 1998; Bentley & Parkhill 2004). This 

high coding density has an important implication on the compositional homogeneity of 

genomes. Culture independent sequencing (discussed in section 1.3) has greatly contributed 

towards our understanding of this immense genetic and functional diversity. 
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Figure 1.1. Phylogenetic tree showing the diversity of prokaryotes, compared to eukaryotes. From 

Wikipedia (http://en.wikipedia.org/wiki/File:Phylogenetic_Tree_of_Life.png). 

1.3 METAGENOMICS 
Genomic studies have advanced our knowledge about molecular basis of life in an 

unprecedented manner; however, they have some limitations. Sequencing the genome of an 

organism with traditional methods requires cloning of the entire genome. This is not always 

possible as majority of the microbes are difficult, if not impossible, to culture in laboratory 

conditions due to their complex interaction with other species in the community they live in 

and the environment. Consequently, the uncultivable microbes were and still are largely 

underrepresented in the molecular databases. This has limited our understanding of the 

microbial diversity, function and interactions with each other and with the environment. Based 

on phylogenetic marker gene analyses, these "unknowns" are estimated to represent about 

99% of the microbial diversity (Handelsman et al. 1998; Hugenholtz et al. 1998; Hugenholtz 

2002; Handelsman 2004). 

Metagenomics (Metagenomics(NCBI) 2006) 

Metagenomics is the functional and sequence-based analysis of the collective microbial 

genomes that are contained in an environmental sample. The word metagenomics describes 

"the notion of analysis of a collection of similar but not identical items, as in a meta-analysis, 

which is an analysis of analyses" (Handelsman, Microbiol Mol Biol Rev. 2004). 

Handelsman and colleagues (Handelsman et al. 1998) proposed direct cloning of the collective 

genomes followed by functional analysis of uncultured soil microbes. By directly extracting 

DNA from soil and cloning it into readily culturable Escherichia coli (E. coli), they performed 

screening for novel chemical products. This opened up a door into the untapped diversity of 

uncultivable microorganisms. Further progress was made by use of random shotgun 

sequencing (Tyson et al. 2004; Venter et al. 2004). Numerous metagenomic studies have 

provided a wealth of information about the structure and function of the communities residing 

in diverse ecological niches such as the Saragasso sea (Venter et al. 2004), acid mine drainage 
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(Tyson et al. 2004), sludge processing plant (Garcia Martin et al. 2006) and human and animal 

gut microbiota (Gill et al. 2006; Turnbaugh et al. 2006; Warnecke et al. 2007; Pope et al. 2010; 

Turnbaugh et al. 2010; Pope et al. 2012). Such studies not only provide insights into the 

ecosystems, but also facilitate progress in medicine and biotechnology by identifying genes 

and enzymes that are drug targets and improve processes such as biomass degradation. 

 

Figure 1.2. Flow diagram of typical metagenome projects. Dashed arrows indicate steps that can be 

omitted. From (Thomas, Gilbert & Meyer 2012). 

The flow-diagram of a typical metagenome project is depicted in Figure 1.2 (Thomas et al. 

2012). The output from the DNA sequencing stage are nucleotide sequences (reads) 

representing the DNA content of the collection of microbes in the sample. Therefore, these 

studies are often called "community genomics", "environmental genomics" (as sequences for a 

group of organisms residing in an environment can be obtained) or "metagenomics". These 

reads can vary in length approximately from 50 bp to 1000 bp depending upon the technology 

(Table 1.1) and can be subsequently assembled into contigs based on their overlaps. The 

contigs can be further optionally grouped into scaffolds (or supercontigs) using the paired-end 

information between the reads in different contigs and the roughly known length between 

them (Figure 1.3). Note that the scaffolds normally contain unknown sequences of roughly 

known lengths (gaps) generally indicated by repeating the letter ‘N’ along the known lengths. 
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We will refer to all of them simply as sequences. See (Pop, Kosack & Salzberg 2004) for details 

on the shotgun sequencing and the assembly process. 

 Contig (Metagenomics(NCBI) 2006) 

A non-redundant sequence formed by joining, based on sequence overlap, one or more 

smaller sequences. There should be no gaps. 

 Scaffold (Metagenomics(NCBI) 2006) 

A non-redundant sequence formed by joining one or more contig sequences. A sequence 

overlap is not required to form a scaffold. Typically, a scaffold contains one or more gaps. 

 

Figure 1.3. The whole-genome shotgun assembly procedure. From JGI Genome Portal 

(http://genome.jgi.doe.gov/help/scaffolds.html). 

As these sequences typically originate from a collection of genomes belonging to the 

organisms in the community, it is necessary to group the contigs that belong together either at 

the genome level or at some other higher level, this process is referred to as "binning" 

(Metagenomics(NRC) 2007; Mavromatis et al. 2007) (Figure 1.2). Binning can be achieved by 

assigning taxonomic affiliations to the contigs, which is an approach we take in this study. See 

(Thomas et al. 2012) for a more detailed discussion on metagenomics and involved 

computational methods. 

1.4 SEQUENCE COMPARISON 

Ortholog (Glossary(NCBI) 2002) 

Orthology describes genes in different species that derive from a single ancestral gene in the 

last common ancestor of the respective species. 

Homologous (Glossary(NCBI) 2002) 

The term refers to similarity attributable to descent from a common ancestor. 

Comparison of genomic DNA sequences lies at the center stage in the post-genomic era 

molecular biology and also of this thesis. Hereafter we will refer to a DNA sequence simply as 

sequence. The goal of sequence comparison is to identify structural, function or evolutionary 

similarity between sequences. The basic assumption is that similarity in genomic sequences 
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reflects higher level similarity. The methods proposed in this work are concerned with the use 

of sequence comparison in order to quantify evolutionary relatedness between the 

corresponding organisms. Thus, the sequence similarity reflects evolutionarily relatedness. 

Two conceptually different methods are often used to compare genomic sequences; 

alignment-based and alignment-free methods. Alignment methods, such as  the basic local 

alignment search tool (BLAST) (Altschul et al. 1990), are used to identify orthologs from 

different taxa based on sequence similarity which subsequently can be analyzed with standard 

phylogenetic inference methods to  infer their evolutionary relationships. 

1.4.1 ALIGNMENT-BASED COMPARISON 

Two sequences are aligned in order to quantify their identity which in turn can reflect their 

homology.  Two sequences are said to be homologous if they share a common ancestry 

(Koonin 2005). Such a pair-wise alignment can be either global or local depending upon 

whether the similarity is considered across the full extent or some regions of the sequences, 

respectively. Alignments with gaps, representing deletions or insertions, cause the number of 

possible alignments to grow exponentially with sequence length. Therefore dynamic 

programming based algorithms were proposed; for example the Needleman and Wunsch 

algorithm (Needleman & Wunsch 1970) for global alignment and the Smith-Waterman 

algorithm (Smith & Waterman 1981) for local alignment. Biologically speaking, there is only 

one true, but unknown alignment between two sequences. In order to find the most plausible 

alignment the matches, mismatches and gaps in alternative alignments are scored based on 

scoring matrices and gap penalties and the best alignment is chosen based on the resulting 

overall scores. 

Computational time can be a bottleneck when one wants to compare a query sequence with a 

database of target sequences. With the growing size of sequence databases an exhaustive 

search demands a massive amount of time. Basic Local Alignment Search Tool (BLAST) is a 

heuristic version of the Smith-Waterman algorithm developed for fast database searches. 

Given a query sequence it scans the database for likely matches before performing alignments 

consequently reducing search time. Details on BLAST can be found in (Altschul et al. 1990; 

Pertsemlidis & Fondon 2001). 

There are two major shortcomings of alignment-based methods: (i) alignment methods cannot 

be applied to sequences that are not well conserved across taxa and thus have no orthologs 

and (ii) they are computationally expensive. Alignment-based similarity is restricted to 

homologous sequences and cannot be directly applied to sequences with low homology or 

complete genomes. Furthermore, pair-wise sequence alignment incurs a computational 

bottleneck because of the O(N2) asymptotic time and space requirement, where N is the 

maximum of the lengths of the two sequences being aligned. This makes alignment based 

algorithms a poor choice for large scale data analyses. Algorithms to compare genomic 

sequences without alignment were, therefore, proposed, however they tend to be less 

accurate than alignment-based methods in some settings (Vinga and Almeida 2003; Höhl and 

Ragan 2007; Reinert et al. 2009). Alignment-free methods utilize the “genome signature”, the 

evolutionary signal that is contained in the oligonucleotide composition of microbial genomes 

(Blaisdell 1986; Karlin and Burge 1995). 
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1.4.2 ALIGNMENT-FREE COMPARISON 

In order to address the problems associated with alignment-based comparison, alignment-free 

methods were proposed. Alignment-free methods primarily rely upon the composition of the 

sequences in terms of their constituent subsequences. Therefore, knowledge of whole genome 

or homology is not necessary for alignment-free comparison, as it is not required for the 

matching subsequences to be contiguous, which is a prerequisite for sequence alignment. 

Furthermore, the computational complexity of alignment-free comparison is O(N), in contract 

to the O(N2) complexity of alignment-based comparison, making it an attractive choice for 

large scale analyses. 

Oligonucleotide (Glossary(Genome)) 

A molecule usually composed of 25 or fewer nucleotides. 

Alignment-free comparison stems from the observation that prokaryotic genomes are 

homogenous in oligonucleotide composition (Rolfe & Meselson 1959; Sueoka 1961a, 1961b; 

Burge, Campbell & Karlin 1992; Karlin 1994; Karlin & Cardon 1994; Bohlin, Skjerve & Ussery 

2008; Blaisdell 1986), meaning that the base composition is invariable for long stretches of 

sequences within a genome. Due to this characteristic nature the dinucleotide composition is 

called the genome signature (Campbell, Mrazek & Karlin 1999). Furthermore, alignment-free 

comparison in general considers a sequence as a continuous unit of information rather than a 

group of genes (Rocha, Viari & Danchin 1998). Formally a genome signature is expected to 

exhibit several desirable properties as listed below, in the order of their essentiality. 

 Species-specificity – a signature should be similar within species and vary across 

species. This is an essential property for a valid signature. 

 Pervasiveness – the species-specificity of a signature should pervade the entire 

genome. This property is essential if the signature is meant to be used for arbitrary 

segments of a genome. 

 Phylogenetic signal – distance between signatures should be in accordance with the 

phylogenetic distance between the corresponding organisms. This property is essential 

whether evolutionary comparative analyses should be performed. 

An excellent review of genome signature along with associated methods and applications can 

be found in (Vinga & Almeida 2003). Given a sequence several different signatures can be 

derived; some are discussed in the following sections. In the following, the function fr denotes 

the frequency of an oligonucleotide assuming that a DNA sequence to calculate the frequency 

from is given. While the nucleotides are generally denoted using the corresponding capital 

letter, for example the frequency of cytosine as fr(C), the oligonucleotides are denoted using 

place-holders, for example vxyz denotes a tetranucleotide.  

GC-CONTENT  

By analyzing the amounts of nucleotides present in DNA sequences Erwin Chargaff discovered 

two rules which are known as Chargaff's first and second parity rules, which are essentially 



 

 

10 
1

0
 

rules of symmetry. Chargaff’s first parity rule says that for a double stranded DNA the 

proportion of A equals that of T and the proportion of C equals that of G (Chargaff 1950). 

Chargaff’s second parity rule extends the first parity rule for sufficiently long (>100 kb) single 

strands of DNA and is applicable for mononucleotides and oligonucleotides (Rudner, Karkas & 

Chargaff 1968). While the first rule is a direct consequence of the Watson-Crick base pairing in 

double-helix structure of DNA (Watson & Crick 1953) the origin and reasons for the second 

rule are not completely understood (Albrecht-Buehler 2006).  

In 1951 Chargaff proposed that the GC-content with respect to total nucleotide counts is 

species-specific (Eq. 1.1), that is it is constant within a species and varies across species 

(Chargaff 1951). This has been termed as Chargaff’s “GC rule” (Forsdyke & Mortimer 2000).  

 

f(T)fr(G)fr(C)fr(A)

fr(C)fr(G)
%GC




  Eq. 1.1 

It has been suggested that this genomic GC-content is related to phylogeny (Sueoka 1961b, 

1962; Schildkraut et al. 1962). GC-content, although informative, does not have enough 

resolution (Sandberg et al. 2003) and is a confounding factor in phylogenetic analyses (Mooers 

& Holmes 2000; Takahashi, Kryukov & Saitou 2009). 

OLIGONUCLEOTIDE SIGNATURE 

Similarly to the Chargaff’s GC rule, the species-specificity of dinucleotide frequency normalized 

with the frequency of constituent bases (relative abundances) was established biochemically 

(Josse, Kaiser & Kornberg 1961; Swartz, Kornberg & Trautner 1962). They observed that the 

dinucleotide frequencies are non-random, that is their frequency differed from chance 

expectation, and the relative abundances are different for different species. Those 

experiments were devised to confirm the Watson-Crick base-pairing and the dinucleotide 

signature was a side product. 

Availability of DNA sequences and advances in information technology allowed computational 

analyses and further strengthened this idea (Muto & Osawa 1987; Burge et al. 1992). These 

computational studies established that for long segments of DNA (approximately 50 kb) the 

dinucleotide relative abundance is species-specific. The dinucleotide relative abundance is 

defined as the odds-ratio where the numerator is the observed frequency and the 

denominator represents the expected frequency of the dinucleotide assuming the bases are 

independently and identically distributed over the sequence, which is a zero-order Markov 

assumption (Almagor 1983). 

 
 

)(fr)(fr

)(fr
ρ

**

*
*

yx

xy
xy   Eq. 1.2 

Here fr*(x) denotes frequency of an oligonucleotide x on both strands, computed as average 

frequency of x and its reverse complement. Thus the relative abundance ratio measures the 

deviation of the observed value from the expected value, causing it to be higher for 

overrepresented dinucleotides and lower for underrepresented dinucleotides. The species 
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specificity of this signature was established with the observation that for different species 

different dinucleotides are over and underrepresented. 

Karlin and colleagues also proposed a distance metric to calculate distance between the 

relative abundances. The corresponding δ* distance is show below a general form. 

 
   




p
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,
1

*** ρρ
1

)(δ yx  Eq. 1.3 

Using this distance metric they were able to show that the distances between relative 

abundances are in accordance with the phylogenetic distance, in other words, the genome 

signature contains phylogenetic signal. This property has been successfully used by Karlin and 

colleagues (Karlin & Cardon 1994; Karlin & Burge 1995; Karlin, Mrazek & Campbell 1997; 

Karlin, Campbell & Mrazek 1998; Campbell et al. 1999) and others (Hao & Qi 2003; Pride et al. 

2003; Qi, Wang & Hao 2004b; Sims et al. 2009; Takahashi et al. 2009) to elucidate evolutionary 

relationship between closely related species based on genome signature. The δ* distance 

between whole genome dinucleotide abundances correlates weakly, albeit significantly, with 

16S rDNA similarity and strongly with DNA-DNA hybridization values (Coenye & Vandamme 

2004). 

The signature concept was extended to higher order oligonucleotides, often accompanied by 

higher order Markov model to calculate the expected frequency, which can show a stronger 

specificity (Bohlin et al. 2008). In general for a fixed length k the signature over an alphabet Σ is 

a |Σ|k dimensional vector. In the case of DNA sequences the alphabet is the nucleotides 

Σ={A,C,G,T}. The similarity or dissimilarity between sequences is then measured in this 

oligonucleotide space, allowing use of standard machine learning techniques. Such a 

representation has been termed “spectrum kernel” and can optionally allow mismatches or 

gaps (Leslie, Eskin & Noble 2002). The short sub-strings are referred to as oligonucleotides, k-

mers, k-tuples or n-grams. We use these interchangeably. Analysis using this representation is 

also referred to as composition-based analysis or alignment-free analysis as we will refer to it. 

Similar representation can be derived for protein sequences but it is not discussed as this work 

focuses upon nucleotide sequences. 

Genome signatures have been extensively used to detect laterally transferred DNA (Karlin et 

al. 1997; Karlin 1998; Pride & Blaser 2002; Dufraigne et al. 2005), inference of evolutionary 

relationships (Karlin et al. 1997, 1998; Pride et al. 2003; Sims et al. 2009; Xu & Hao 2009) 

amongst other applications. Hereafter we will refer to oligonucleotide genome signature as 

genome signature or simply as signature. 

ORIGIN AND MAINTENANCE OF GENOME SIGNATURE 

The highly variable nucleotide composition of prokaryotes has been observed for a long time 

(Sueoka 1961b, 1962; Andersson & Sharp 1996), though its origin and maintenance is still not 

completely understood. In this section some plausible explanations are reviewed.  

Two types of evolutionary explanations have been proposed to explain the variation in 

nucleotide content across prokaryotic species; mutational biases and selective forces. While 

the former is based on the observation that the GC content in prokaryotes varies from 25% to 
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75%, suggesting that mutational differences, for example due to differences in DNA replication 

and repair machinery, play an important role. Furthermore mutational pressure differs in 

replication strands causing a skew in relative amount of G versus C nucleotide frequencies 

(McLean, Wolfe & Devine 1998; Lobry & Sueoka 2002). Those observations are consistent with 

the hypothesis that differences in mutational pressures are responsible for the observed 

differences in genomic nucleotide content. It was suggested that context dependent 

mutations, such as CG suppression, can result in  some dinucleotides being preferentially 

generated (Karlin et al. 1997). 

Another explanation attributes the observed species specificity of genome signature to 

selective forces. Many studies have suggested a link between various genomic features and 

environmental factors such as; exposure to UV is a selective pressure towards high GC content 

(Singer & Ames 1970), nitrogen fixing aerobes have higher GC content than the ones from the 

same genus that do not fix nitrogen (McEwan, Gatherer & McEwan 1998), habitat (Rocha & 

Danchin 2002; Moran, McCutcheon & Nakabachi 2008; Mann & Chen 2010; Botzman & 

Margalit 2011), optimal growth temperature (Musto et al. 2004; Basak, Mandal & Ghosh 2005; 

Musto et al. 2005; Kirzhner et al. 2007a; Zeldovich, Berezovsky & Shakhnovich 2007) (see 

(Hurst & Merchant 2001; Marashi & Ghalanbor 2004; Wang, Susko & Roger 2006) for contrary 

view), Aerobiosis (Naya et al. 2002; Kirzhner et al. 2007a) and combined effects of 

phylogenetic and environmental factors (Foerstner et al. 2005; Bohlin et al. 2009; Rudi 2009). 

Taken together, those findings suggest that genomic nucleotide content contains traces of 

environmental adaptations, implying the latter being a causative agent. 

The pervasiveness of the genome signatures suggests that forces acting on larger stretches of 

DNA might be involved. That said, to a certain extent signatures may vary within genomes. This 

intra-genomic variation can be attributed to two different mechanisms. The redundancy of the 

genetic code allows use of synonymous codons and many organisms show non-random usage. 

The preferred use of some codons can be due to mutational pressure (Chen et al. 2004) or to 

adapting the expressional efficiency and accuracy of highly expressed genes (Ikemura 1985; 

Karlin & Mrazek 2000; Supek et al. 2010; McHardy et al. 2004). Another important source of 

intra-genomic variation is  lateral gene transfer (Koonin, Makarova & Aravind 2001) which 

causes compositional heterogeneity by introducing foreign DNA. Considering that both sources 

cause local heterogeneity we ignore them in this work. 

GENOME SIGNATURE SETTINGS 

At least three parameters need to be set in order to derive genome signatures from sequences 

and compare them; length of the oligonucleotides, a normalization strategy and a distance 

metric to compare signatures. All of those choices are vital for the task at hand and are 

discussed below. 

Too short oligonucleotides might not be suitable due to a weaker signal. On the other hand the 

dimension of the signature vector increases exponentially with the oligonucleotide length 

resulting in a high dimensional space which can also be problematic, as the distance of a vector 

to its nearest vector approaches the distance to the farthest vector as the dimension grows 

(Beyer et al. 1999). Such concentration of distances might render the signatures incomparable. 

Therefore, a proper choice of oligonucleotide length is necessary for obtaining good results. 
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Often oligonucleotides between lengths two and ten are chosen in practice, in general, longer 

oligonucleotides showing stronger species-specificity signal but incur a higher computational 

cost (Bohlin et al. 2008, 2010). Furthermore, it is known that different oligonucleotide lengths 

work better for different organisms or groups of organisms (Mrazek 2009). Often 

oligonucleotides with length between four and six are chosen as they offer a good compromise 

between signal strength and computational efficiency. Recently a database containing 

frequencies of oligonucleotides of lengths one to ten has been created (Kryukov et al. 2012). 

Such databases will eliminate the redundant enumeration of oligonucleotides, further 

reducing computational requirements. 

There are two reasons why one might want to normalize the raw oligonucleotide counts. 

Firstly, to be able to compare signatures derived from sequences of different lengths. 

Secondly, to remove biases due to constituent oligonucleotides in order to improve the 

underlying signal. In the first case, it is sufficient to normalize by the sequence length or total 

number of oligonucleotides which is a popular choice. In the second case, a count is 

normalized using the expected count computed using constituent shorter oligonucleotides 

under a Markov assumption. This can be problematic, particularly for short sequences as the 

expected count might not be a reliable estimate. 

Following the notation used in (Mrazek 2009) we will denote each genomic signature with a 

pattern lknm, where l and n are place holders for the oligonucleotide length denoted by k and 

the length of oligonucleotides used for normalization denoted by m, respectively. As a special 

case we will use L to denote normalization using the number of nucleotides in a sequence 

which in turn will be generally represented as |N| for a nucleotide sequence N. Thus, for 

example, the tetranucleotide signature normalized using sequence length is denoted as l4nL 

and normalization using base frequencies is denoted as l4n1. The notation is optionally 

followed by the alphabet used (e.g. “ry”) if an alphabet other than nucleotide was used. 

Each element of a tetranucleotide signature vector normalized using the length for a DNA 

sequence N is defined as; 

 

|N|

)fr(
ρ 4

N|

vxyznLl

vxyz   Eq. 1.4 

Thus a tetranucleotide signature contains 256 elements (44) each corresponding to one 

tetranucleotide. To take the double stranded nature of the DNA into account, the values of the 

elements and their corresponding reverse complements (rev_comp) can be averaged. 
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
  Eq. 1.5 

Third choice is the choice of a distance metric to compare genomic signatures. Choices include; 

the δ* distance due to Karlin and colleagues (see equation Eq. 1.3) (Burge et al. 1992; Karlin et 

al. 1998), Euclidean distance, cosine distance (Qi, Luo & Hao 2004a), correlation (Pearson or 

Spearman) based distance (Kirzhner et al. 2002), Mahalanobis distance (Suzuki et al. 2008) and 

information theoretic distances such as Kullback-Liebler divergence and Jensen-Shanon 
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divergence (Sims et al. 2009). All of those choices have their own advantages and 

disadvantages making it difficult to opt for one.  

All three choices will be made clear in the respective context. 

OTHER SIGNATURES 

The signature, or rather the class of signatures, we described above is often referred to as 

“composition-based” signatures as they represent a sequence as a fixed-length vector derived 

from oligonucleotide composition. Several other signatures have been proposed and are 

briefly discussed below. 

CODON USAGE 

 Codon (Glossary(NCBI) 2002) 

Sequence of three nucleotides in DNA or mRNA that specifies a particular amino acid during 

protein synthesis; also called a triplet. Of the 64 possible codons, 3 are stop codons, which do 

not specify amino acids. 

The redundancy of the genetic code (many to one association between codons and amino 

acid) is used in non-random manner by different species (Grantham 1980; Grantham et al. 

1980). Grantham’s genome hypothesis was based on the observation that genes in a 

taxonomic group tend to consistently use similar degenerate codons. This qualifies codon 

usage bias as a genomic signature on the basis of species-specificity and pervasiveness at gene 

level. However, some consistent inconsistencies are attributed to gene expression level, 

abundance of corresponding tRNAs and horizontally acquired genes (Ikemura 1985; Sharp & Li 

1987). The species-specificity of codon usage was further confirmed by (Wang et al. 2001; 

Sandberg et al. 2003). Codon usage bias is an attractive choice; however, it requires knowledge 

of gene boundaries which can be avoided by the use of oligonucleotide based signatures that 

also pervade non-coding DNA (Campbell et al. 1999). 

CHAOS GAME REPRESENTATION (CGR) 

Jeffrey (Jeffrey 1990) studied non-randomness of genomic sequences and proposed a 

visualization technique called CGR which is a 2-dimensional image representation of the 

sequence. CGR is a generalization of Markov chain processes (Almeida et al. 2001). 

Deschavanne and colleagues (Deschavanne et al. 1999) drew parallels between CGR and 

oligonucleotide composition. Later it was realized that for a CGR with resolution is k2
1 and the 

DNA sequence is much longer than k then the corresponding CGR is completely determined by 

all the numbers of length k oligonucleotide occurrences (Wang et al. 2005). Therefore, using 

CGR is, to a large extent, equivalent to using oligonucleotide signatures. 

DNA BARCODES 

DNA barcodes are short sequences of length 20-25 bp that are present in the genomes of a 

particular species and are unlikely to be present in the genomes of other species (Stoeckle & 

Hebert 2008). Barcodes are useful for species identification and classification in an existing 

taxonomy. However, DNA barcodes are not particularly useful for sequence comparison in 



 

 

15 
1

5
 

general. Moreover, they do not show genome-wide pervasiveness which is an important 

requirement for the methods proposed in this work. 

OLIGONUCLEOTIDE FREQUENCY DERIVED ERROR GRADIENT (OFDEG) 

This signature was proposed by Saeed and Halgamuge (Saeed & Halgamuge 2009) as a single-

dimensional genomic signature to extract phylogenetic signals from relatively short DNA 

sequences. The OFDEG is derived using Euclidean distance (error) between the un-normalized 

composition vector of a sequence and its sub-sequences of varying lengths. The error 

decreases with increasing length of the sub-sequences and shows a linear relationship with the 

sub-sequence length up to certain length. The rate of error reduction within this linear region 

is the OFDEG value. They showed that OFDEG works as a signature for sequences as short as 

200 bp and applied it to the task of taxonomic assignment of metagenome sequences. 

1.5 SEQUENCING TECHNOLOGIES AND NEED FOR EFFICIENT 

METHODS 

 Sequencing (Glossary(Genome)) 

Determination of the order of nucleotides (base sequences) in a DNA or RNA molecule or the 

order of amino acids in a protein. 

 Sequencing technology (Glossary(Genome)) 

The instrumentation and procedures used to determine the order of nucleotides in DNA.  

The first sequencing technology was developed by Frederick Sanger and colleagues (Sanger & 

Coulson 1975; Sanger, Nicklen & Coulson 1977) and is known as the “Sanger sequencing” or 

“chain terminator sequencing”. Post-Sanger sequencing technologies are normally referred to 

as next generation sequencing (NGS) technologies. NGS technologies produce large amount of 

sequence data cheaply. Several NGS technologies are commercially available and produce 

reads of different length, quality and amount. An overview is shown in Table 1.1. Further 

details on the NGS technologies can be found in reviews (Metzker 2010). 

Advancements in genomics, particularly in sequencing technologies, along with the hardware 

and software aspects of information technologies have fueled rapid development in basic and 

applied biological sciences. However, the enormous amount of sequence data produced by 

NGS technologies outperforms the development in computational machinery in terms of 

processing power and storage (Figure 1.4) and present challenges at various stages of 

processing and analysis (Kahn 2011). 

Sequencing technologies are expected to continue providing improvement in sequence 

amounts and quality in the future causing data overload. Therefore, one of the biggest 

challenges is to analyze this large scale data to derive useful information. At the same time it is 

also important to keep the future developments in mind. Consequently conceptual and 

methodological development is necessary in order to deliver feasible solutions. The genome 

signature paradigm (section 1.4.2) provides a sequence comparison framework to devise 

efficient algorithms that can handle large scale sequence data. 
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Table 1.1: Throughput and read lengths of different sequencing technologies. 

Manufacturer and 
technology 

Length 
(bp) 

Throughput* 
Normalized 

throughput** 
(Mb/h) 

Throughput 
scale*** 

Time per 
run 

Solexa/Illumina Sequencing 
by Synthesis 

100-150 
300 Gb/8.5 days– 
600 Gb/11 days 

1500-2300 104 
8.5 days–
11 days 

Life Technologies/Applied 
Biosystems SOLiD 

50–75 
7 Gb/day–
20 Gb/day 

300–800 103–104 
2 days–7 

days 

Life Technologies/Ion Torrent 
100–
200 

10 Mb/2 h–
1 Gb/2 h 

5–500 101–103 2 h 

Roche/454 Pyrosequencing 
550–
1000 

450 Mb/10 h–
700 Mb/23 h 

30–45 102 
10 h–
23 h 

Life Technologies Capillary 
Sanger sequencing 

600–
900 

690 kb/day–
2100 kb/day 

0.029–0.088 100 ~7 h 

*Numbers are based on vendor information: Illumina Inc. (www.illumina.com), Life Technologies 

(www.lifetechnologies.com), Roche/454 (www.454.com). **Normalized throughput is scaled to a 1-h period and 

rounded. ***The throughput scale is compared with Life Technologies 3730 Sanger chemistry-based sequencer and 

shows the ratio of throughput values in terms of order of magnitude. Because lack of information on sequencing 

statistics or commercial availability, Pacific Biosciences (www.pacificbiosciences.com), Oxford Nanopore 

Technologies (www.nanoporetech.com) and Helicos Biosciences (www.helicosbio.com) are excluded. From (Dröge 

& McHardy 2012). 

 

Figure 1.4. A doubling of sequencing output every 9 months has outpaced and overtaken performance 

improvements within the disk storage and high-performance computation fields.From (Kahn 2011). 

Reprinted with permission from AAAS. 

1.6 MACHINE LEARNING TECHNIQUES 
Having defined the problems addressed in this thesis and described the biological background 

in the previous sections; this section introduces the machine learning techniques used to solve 

the corresponding problems. 
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Machine learning began in the early 1950s and went through many ups and downs as any 

other scientific disciplines. We will jump straight into defining machine learning. The aim of 

machine learning is to devise programs, referred to as machines, which learn to perform a task 

by experience without explicit teaching. A more formal definition was provided by Tom 

Mitchell. 

Machine learning (Mitchell 1997) 

A computer program is said to learn from experience E with respect to some class of tasks T 

and performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E. 

The experience needed to learn is normally provided through “training data” which provides 

the necessary information (independent variables or features or input space) needed to 

perform the task correctly (dependent variable or output space). The performance measure, as 

the name says, measures the performance of a learner at the give task. Therefore, these 

methods learn from empirical data. Depending upon the nature of the training data machine 

learning methods can be grouped into two categories; 

 Unsupervised (cluster analysis) – In this case there is no designated output space, 

often because it is simply not known or is not measured. The training data in this case 

is said to be unlabeled. 

 Supervised – In this case the learner has access to the output space. The training data 

is said to be labeled. 

Depending on whether the output space is continuous or discrete a supervised learning 

problem is said to be either a regression problem or a classification problem, respectively. The 

nature of the output space further categorizes the classification problems into following three 

types; 

 Binary – The output can take one of the two possible values often represented as {-

1,+1}. 

 Multiclass – The output takes one of the possible m values {y1, y2, …, ym}. 

 Structured – This is a generalization of the multiclass problem where the outputs are 

related to each other in a known structure. 

This thesis uses supervised learning methods which are more formally introduced in the 

following section focusing on the statistical learning theory (Boser, Guyon & Vapnik 1992; 

Cortes & Vapnik 1995; Vapnik 1995; Hastie, Tibshirani & Friedman 2009). 

1.6.1 SUPERVISED LEARNING AND SUPPORT VECTOR MACHINES 

The aim of a supervised learning method is to induce a function :f that maps an 

input x to an output y . Given training data as a finite set of independently and 

identically distributed (iid) input-output pairs (examples)   n

iii yS
1

,


 x and a loss 
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function ),( yy  that quantifies the discrepancy between the correct output y and an output 

y’, the goal of a supervised method is to learn a function such that expected risk over the joint 

input-output probability distribution ),P( yx is minimized; 

        yyfyf dd,P,R
,

xxx


  
Eq. 1.6 

Due to the unknown probability distribution P the expected risk cannot be computed and has 

to be induced using a limited training data as the empirical risk; 

 
    




n

i

i fy
n

f
1

emp ,
1

R ix  
Eq. 1.7 

 

 Inducer / induction algorithm (Kohavi & Provost 1998) 

An algorithm that takes as input specific instances and produces a model that generalizes 

beyond these instances. 

The most intuitive loss function for a binary classifier is the 0/1 loss which incurs a penalty of 1 

for an incorrect output and no penalty for correct output. 

 
  



 


otherwise1

)( if0
,1/0

yf
yf

x
x  Eq. 1.8 

This is a step function and hence not differentiable and non-convex. Hence a convex 

approximation is often used for large margin classifiers, called the hinge loss. 

     )(1,0max, xx fyyf   Eq. 1.9 

Here 1y  is the true label. We consider function f as a linear hyperplane represented using 

a vector w (parameters) with same dimensionality as the input space and an optional bias term 

b.  

   bf  xwx
T  Eq. 1.10 

The sign of the function f(x) gives the corresponding predicted output y. The scalar product of 

two real valued vectors w and x, wTx is an inner product. 

 Inner product (PlanetMath) 

An inner product on a vector space V over a field K (which must be either the field ℝ of real 

numbers or the field ℂ of complex numbers) is a function ⟨⋅,⋅⟩:V×V⟶ K such that, for all a,b∈K 

and x,y,z∈V 

0= ifonly  and if 0=, and 0,,  3.

, =,  2.
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Inductive algorithms normally estimate the optimal parameters by minimizing risk on the 

available finite training data, which is the empirical risk. A learned machine (or a fitted model) 

is then used to predict the output for unseen input data. Therefore, it is important to estimate 

the predictive capability of a model before employing it. This estimated performance on 

unseen data is referred to as “generalization performance”. Direct minimization of empirical 

risk can be problematic as it is an ill-posed problem leading to multiple possible solutions and 

the expected risk might be high even with a low empirical risk (over-fitting). Vapnik proposed 

finding a hyperplane that is as far away as possible from either of the classes, or in other words 

a hyperplane with largest margin. Furthermore, a complexity control mechanism is introduced 

and one often needs to balance two conflicting goals in order to find a generalizable model; 

empirical risk and the model complexity. This balance forms the basis of the regularization 

theory and statistical learning theory (Evgeniou et al. 2002). Intuitively the complexity control 

can be seen as application of Occam’s razor where simpler solutions are preferred. Vapnik 

showed that choosing of a model from a set of models by simultaneously minimizing the 

empirical risk and maximizing the margin leads to a lower expected risk. Maximizing the 

margin is equivalent to minimizing the capacity of the machine as defined by the notion of 

Vapnik-Chervonenkis (VC) dimension providing a probabilistic upper bound on the expected 

risk. Resulting is the following soft-margin SVM optimization problem for the binary 

classification task; 

Optimization problem primal

binarySVM : Given a training set   n

iii yS
1

,


 x , where p

i x and 

 1iy  
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
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
w ξ
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w x

 Eq. 1.11 

Here C is a hyper-parameter that controls the trade-off between the empirical risk and the 

complexity of the solution. This is known as the “soft margin” SVM as it allows some 

misclassifications that are penalized using the slack variables ξ. The resulting solution 

maximizes the margin (distance between the hyper-plane and closest point of each class) 

around the separating hyper-plane. A dual form of this optimization problem can be derived 

using Lagrangian multipliers (Vapnik 1995); 

Optimization problem dual

binarySVM : 
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 Eq. 1.12 

The solution of this problem results in a set of examples with non-zero weights (α value) which 

are called support vectors. In the linearly separable case, these are the examples closest to the 

hyperplane. The primal parameters can be obtained using the following equation; 
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The prediction function takes the form; 

 
   




n

i

jiii bybf
1

TT
xxwxx

*   Eq. 1.14 

As both the optimization and the prediction functions can be expressed in terms of the inner 

products between the input examples they can be rewritten using a “kernel function” K over 

the examples. 

   jiji xxxx
T,K   Eq. 1.15 

This ability to express both the learning and the inference problems in terms of inner products 

allows use of any symmetric similarity function that is positive semi-definite satisfying; 

 T 0        ,  n n n  x Mx x M  Eq. 1.16 

This assures that the kernel is an inner product between the input examples in some Hilbert 

space H (feature space) via a mapping HX :φ  .  

      
jiji xxxx φφ,K

T
  Eq. 1.17 

 Inner product space (PlanetMath) 

An inner product space (or pre-Hilbert space) is a vector space (over ℝ or ℂ) with an inner 

product ⟨⋅,⋅⟩. 

Hilbert space (PlanetMath) 

A Hilbert space is an inner product space which is complete under the induced metric. 

Thus similarity between the input examples can be computed in a high dimensional, possibly 

infinite, feature space without explicit mapping. This “kernel trick”, that is a linear solution in 

the feature space can be non-linear in the input space, is used to solve non-linear classification 

problems using the linear formulation discussed above. In summary, supervised learning is 

achieved by identifying a set of parameters such that the expected risk is minimized. A learning 

method can be generally represented as wSL ,: ; where Θ is a set of hyper-parameters 

that are “tuned” for model selection as described below. In the formulation above the hyper-

parameter is the regularization constant C. The generalization of the binary SVM to multiclass 

and structured output will be discussed in section 2.3.1. 

1.6.2 MODEL SELECTION VIA CROSS-VALIDATION 

The choice of hyper-parameters affects the induced model and it is necessary to choose a 

model with lower expected risk. Cross-validation is a popular technique used for this purpose. 
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Model selection (Hastie et al. 2009) 

Estimating the performance of different models in order to choose the best one. 

 Cross-validation (Kohavi & Provost 1998) 

A method for estimating the accuracy (or error) of an inducer by dividing the data into k 

mutually exclusive subsets (the “folds”) of approximately equal size. The inducer is trained 

and tested k times. Each time it is trained on the data set minus a fold and tested on that 

fold. The accuracy estimate is the average accuracy for the k folds. 

The hyper-parameters of a method are varied in order to identify values suitable for data at 

hand as estimated by the best cross-validation performance. We have used three-fold cross-

validation along with a grid search to vary the hyper-parameters in the proposed methods in 

order to identify optimal models. 

1.6.3 METRIC LEARNING 

Quantifying similarity or dissimilarity between observations is central to many applications. 

Often some standard measure is employed for this purpose, for example the Euclidean 

distance. However, such “off-the-shelf” metric might not be always suitable for the task at 

hand. Data driven approach can be used to learn a distance metric such that when applied to 

the target data it produces distances close to the desired distances. We will refer to this 

problem as metric learning problem. 

The Mahalanobis distance metric (Mahalanobis 1936) provides a principled way to represent 

and learn custom metrics. It is defined as; 

      yxMyxyx 
T

,Mahal  Eq. 1.18 

Where , px y are input examples (vectors) and p pM is a positive semi-definite matrix 

satisfying Eq. 1.16. Note that the Euclidean distance is a special case of Mahalanobis metric 

parameterized by an identity matrix. The metric learning problem can then be defined as 

identification of an adequate matrix M such that the resulting Mahalanobis distances are close 

to the desired distances.  

As with the supervised classification problem (section 1.6) the goal here is to learn a 

generalizable metric that can accurately predict the taxonomic distances between new 

genomes using their genome signatures. 

EVOLUTIONARY STRATEGY 

As the objective function of the resulting optimization problem is not differentiable, 

discontinuous and non-convex, gradient based techniques cannot be used. We, therefore, 

have used evolutionary strategy (ES) (Hansen, Muller & Koumoutsakos 2003) based 

optimization framework suitable for numerical optimization in this scenario. Evolutionary 

strategies are based on the concept of natural evolution in the sense that change in a 

genotype (problem solution) leads to a change in the phenotype (objective function) and 
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better solutions can be found by recombination and mutation (variation of existing solutions) 

combined with selection of good solutions produce better solutions over generations 

(iterations). In a variation of ES the mutation step size for each coordinate of the solution 

space can be adapted and the correlations amongst them can be accounted for via a 

covariance matrix. This is called as the Covariance Matrix Adaptation Evolution Strategy (CMA-

ES). In other words, the covariance matrix of the distribution is adapted in such a way that the 

variance is increased in the favorable directions. 

1.7 ADDRESSED PROBLEMS 
In this thesis we addressed two important bioinformatics problems from the realm of 

sequence comparison. We rely on the paradigm of genome signature for sequence comparison 

with the overall aim to achieve good performance with a low computational cost. 

1.7.1 TAXONOMIC ASSIGNMENT OF METAGENOME SEQUENCES 

 Taxon (plural: taxa) (Glossary(Systematics)) 

A group of organisms, considered to be a unit, and which generally has been formally named 

with a scientific (Latin or Greek) proper name and a rank. 

 Rank (Glossary(Systematics)) 

The hierarchical level of a supra-specific taxon, according to the Linnaean approach to 

classification. 

 Taxonomy (Glossary(Systematics)) 

The field of science convened with discovering, describing, classifying, and naming organisms. 

The sequence data generated by metagenomics presents many opportunities to understand 

the microbial communities and effectively use the knowledge generated. One important and 

natural question to ask is “who is out there?”. This question can be answered by estimating 

the taxonomic composition of a metagenome sequence sample. Phylogenetic surveys can 

answer this question but do not allow us to ask and answer further questions such as “which 

sequences belong to what taxa?”. This is the taxonomic assignment problem where the goal is 

to assign taxonomic affiliation to the sequences. Taxonomic assignment allows functional and 

process-level analysis of the community and possibly genome reconstruction either in whole or 

in parts. Taxonomic assignments can be obtained by comparing the metagenome sequences 

with reference sequences with known taxonomic affiliation. In the simplest sense one can 

assign to a sequence the taxonomic affiliation of its closest match. Indeed, such assignments 

were performed in the initial metagenome projects (Venter et al. 2004). From the machine 

learning point of view such a method or its variants are termed a supervised learning 

techniques (McHardy & Rigoutsos 2007), as they need sequences with known taxonomic 

affiliation (training data). Unsupervised techniques, on the other hand, are a class of 

techniques that do not need training data and only use the similarity or dissimilarity between 

the sequences in a sample to group them. Unsupervised techniques are typically less accurate 

than supervised techniques when appropriate training data are available. 
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There are two important challenges in the taxonomic assignment task; a large number of 

sequences to perform taxonomic assignment on and availability of only partial or no closely 

related reference data. The oligonucleotide based genome signature paradigm provides a 

suitable framework that is capable of addressing both challenges. An important thing to clarify 

is whether the genome signature is applicable to metagenome sequences. 

The concept of genome signature was established using analyses of cultivated organisms. As 

discussed above, two important properties of a genome signature are species-specificity and 

pervasiveness (genome-wide conservation). Although environmental forces shape nucleotide 

composition, the genome signature is still prevalent in metagenome sequences (Teeling et al. 

2004; Abe et al. 2005) even in extreme environments such as acid mine drainage (Dick et al. 

2009). Therefore, genome signature based analyses can be applied to metagenome sequences 

and several methods have been proposed for taxonomic assignment of metagenome 

sequences (McHardy et al. 2007; Diaz et al. 2009; Saeed, Tang & Halgamuge 2011) in addition 

to alignment-based methods (Huson et al. 2007; Krause et al. 2008; Monzoorul Haque et al. 

2009; Segata et al. 2012; Sharma et al. 2012). In this thesis we propose a novel method that 

relies on the genome signature paradigm and uses state-of-the art supervised machine 

learning methods to achieve good performance with high computational efficiency. Details are 

provided in chapter 2 and 3. 

1.7.2 GENOME TREE INFERENCE 

Understanding and inferring evolutionary relationships between organisms is vital. The 

evolutionary relationships are normally depicted in the form of a phylogenetic tree or a 

phylogeny.  Earlier phylogenies were derived using morphological and physiological 

characteristics (Orla-Jensen 1909; Stanier & van Niel 1941). Classical examples for bacterial 

morphological characteristics include cell shape, motility and Gram stain. This clearly poses a 

problem for microorganisms since it is difficult to identify and characterize morphological 

features and thus provides a limited resolution for separating different taxa. Later it became 

clear that morphological and physiological characteristics do not reflect phylogenetic 

relationships between prokaryotes (Stanier & Van Niel 1962; van Niel 1946). Advent of 

genomics allowed use of molecular data and thus revolutionized phylogenetic systematics. 

Molecular sequence based phylogenies are often derived using short molecular sequences 

such as the ubiquitous small subunit ribosomal RNA genes (16S rRNA and 18S rRNA) that 

delineated the three domains of life and confirmed the gram stain dichotomy (Woese & Fox 

1977; Fox et al. 1980). Although very popular, use of 16S rRNA is not without limitations. As 

this gene represents only a plausible relationship between organisms and genes are prone to 

differential evolution rates and horizontal transfer phylogenies inferred using different genes 

often disagree. To reconstruct the evolutionary history of the organisms many methods were 

developed that consider several genes (Ciccarelli et al. 2006; Wu & Eisen 2008). These 

methods rely on multiple sequence alignment of homologous genes. 

Following the advent of sequencing technologies a large number of complete genomes 

became available and it was possible to probe whether evolutionary signals can be found in 

this rich data source. Traditionally used sequence alignment cannot be directly used for 

complete genomes as it is only applicable to homologous sequences. Furthermore, genomes 
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can be non-collinear due to processes of recombination, rearrangement and gene gain and 

loss. Therefore, several other sources of information are considered, such as gene content, 

gene order and genomic signature (Delsuc, Brinkmann & Philippe 2005; Snel, Huynen & Dutilh 

2005). 

Gene transfer (Glossary(Genome)) 

Incorporation of new DNA into and organism's cells, usually by a vector such as a modified 

virus. Used in gene therapy.  

Given evidence of horizontal transfer as a stronger evolutionary mechanism than previously 

anticipated, the tree-like evolution of prokaryotes is under scrutiny, discussed at length in 

(Bapteste et al. 2009). We believe that a tree-like representation nonetheless provides 

practical means to understand the diversity of and relationships between prokaryotes. The 

usefulness of a tree-like representation is demonstrated by our method for taxonomic 

assignment of metagenome sequences (see above, Chapter 2). Furthermore, there is a clear 

distinction between a phylogeny and taxonomy. While phylogeny is meant to describe 

evolutionary relationships by means of vertical inheritance, taxonomy is a classification system 

that categorizes organisms into hierarchically organized groups (not necessarily ancestral) 

along with associated nomenclature conventions (Sneath 1989; Kampfer & Glaeser 2012). In 

this context the work discussed in Chapter 4 should be viewed as elucidating taxonomic 

relationships between the organisms which might or might not be evolutionary in nature. 

Details for this problem and our solution are provided in chapter 4. 
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2 PHYLOPYTHIAS FOR TAXONOMIC ASSIGNMENT 

OF METAGENOME SEQUENCES  
Metagenome studies analyze communities of microorganisms from an environment of interest 

by direct sequencing, thus giving access to uncultivable organisms. A routinely performed step 

in metagenomic analysis is the taxonomic assignment of the obtained sequences, a procedure 

known as taxonomic classification. Accurate classification of metagenome samples is a 

challenging task and depends on the complexity of the microbiome sample, data quality and 

taxonomic distance to reference genomes. Furthermore, the amount of data produced by next 

generation sequencing technologies has created a novel challenge namely; there is now a need 

for fast methods that are scalable for data sets of 500 Mb of sequence in size or more. We 

present a new taxonomic classification method, PhyloPythiaS, which takes the relationships 

between taxa into consideration using the structured output prediction paradigm. 

2.1 INTRODUCTION 
Circumventing the need for isolation and cultivation of individual microbes, metagenomic 

studies provide insights into the vast and mostly uncultured microbial world. This not only 

allows the study of microorganisms unreachable by traditional genomics approaches but also 

facilitates community-level analysis. It has been estimated (Hugenholtz 2002) that 99% of the 

microbial diversity is uncultured. This produces immense interest in metagenomic studies, with 

the hope of increasing our knowledge of biodiversity and discovering novel proteins that are of 

biotechnological or biomedical interest.  

Metagenome projects generate a large number of sequencing reads, representing the genetic 

content of the organismal mixture from the sampled environment. Various computational 

analyses can be performed on this data; assembly, gene prediction, diversity estimation, and 

taxonomic assignment some of the common tasks. In the taxonomic assignment problem 

sequence fragments are assigned to taxonomic units or so-called bins (therefore it is also 

called as taxonomic binning). The individual bins stand for the species or higher level taxa 

represented by the populations in the metagenome sample. Taxonomic assignment can be 

performed either on the reads or on assembled sequence fragments, such as contigs and 

scaffolds (see sections 1.3 and 1.5). 

Three sources have been extensively used to obtain reference taxonomic information for this 

task; phylogenetic analysis of 16S ribosomal RNA (rRNA) (Woese & Fox 1977), other conserved 

marker genes (Von Mering et al. 2007; Wu & Eisen 2008) and clade specific marker genes 

(Segata et al. 2012), similarity searches in sequence databases (Huson et al. 2007; Monzoorul 

Haque et al. 2009), and sequence similarity in terms of sequence composition, that is using 

genome signature (McHardy et al. 2007; Diaz et al. 2009; Patil et al. 2011). Marker gene based 

studies typically assign very few sequences, less than 1% (Hugenholtz 2002). Sequence 

databases are mainly populated with sequences that are of particular interest, such as 

biomedical and biotechnological applications (Wu et al. 2009). As sequence similarity searches 

based on alignment require complete genome sequences, they often fail to identify similar 

sequences. Sequence composition represents an attractive method for taxonomic assignment 
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as accurate models can be learned from small amounts of reference sequence (approximately 

100 kb), which in some cases can be obtained directly from the sample. 

From a methodological perspective, sequence composition-based methods can be categorized 

as either unsupervised or supervised approaches. A problem which particularly affects 

unsupervised methods is that the data may be noisy, and influenced by processes unrelated to 

taxonomic origin such as the environment.  For example closely related sequences from 

different environments; such as farm soil and ocean, differ in their GC content (Foerstner et al. 

2005), different lifestyles; such as free living, symbiotic, intercellular and extracellular 

pathogens, show specific codon usage biases (Willenbrock et al. 2006) and genomic purine 

composition (A+G) is positively correlated with optimal growth temperature (Zeldovich et al. 

2007). Consequently, this may misguide the clustering process towards groupings that might 

not corroborate with taxonomic origin. Given sufficient amounts of reference sequence, 

supervised methods can better cope with noisy data by guiding the learning process to focus 

on the features/examples in a way that confirms with the known class labels. 

This chapter presents the design of the PhyloPythiaS method and the associated web server. 

PhyloPythiaS is a successor to the previously published method PhyloPythia (McHardy et al. 

2007) and its name stands for PhyloPythia Structured as it is based on the structured output 

prediction paradigm. We will describe the associated machine learning techniques in section 

2.3 followed by the output and input space and associated choices 2.3.2. In section 2.4 the 

PhyloPythiaS workflow is presented, in section 2.5 we will present the web server and the 

chapter ends by showing the advantage of structured output prediction methods in section 

2.6. 

2.2 EXAMPLES OF DOWNSTREAM ANALYSES 
Taxonomic assignment of metagenome sequences facilitates further downstream analyses in 

turn generating insights into the molecular basis of the biological phenomenon. In order to 

motivate the work and emphasize the importance of the taxonomic assignment problem, this 

section provides examples of downstream analyses to gain biological insights in two 

metagenome projects. Both metagenome samples were analyzed using PhyloPythiaS, in 

addition to PhyloPythia, achieving high performance as discussed in sections 3.5.4 and 3.5.5. 

The corresponding samples are described in the section 3.3.2.  

Pope and colleagues (Pope et al. 2010) performed compositional and comparative 

metagenomic analyses of the foregut microbiome of the marsupial; Tammar wallaby 

(Macropus eugenii). The resulting metagenome sequences were taxonomically binned using 

PhyloPythia. The sequences assigned to a dominant lineage WG-1 from the family 

Succinivibrionaceae were then used to reconstruct its partial metabolism, devising cultivation-

based strategies (Pope et al. 2011).  This allowed isolation and characterization of a strain 

representing the WG-1 lineage, subsequently revealing the microbiological basis for lower 

methane emissions from macropodids. Taxonomic assignments for this metagenome were 

also obtained using PhyloPythiaS in order to test the performance of the new method. The 

results show that both PhyloPythia and PhyloPythiaS performed well and assigned 

approximately 2.6 Mb to WG-1 with >97% scaffold-contig consistency (described in section 
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3.2.2). Both methods also showed similarly high performance for other two dominant 

populations WG-2 and WG-3 (detailed analysis in section 3.5.4). 

Another way to use taxonomic assignment is to compare metagenomes in order to identify 

similarities and differences in their composition, for example taxonomic or genetic, that are 

potentially associated with a phenotype of interest.  Turnbaugh and colleagues (Turnbaugh et 

al. 2010) performed a study that included comparison of taxonomic bins to identify similarities 

and differences in deeply sequenced gut microbiomes from monozygotic cotwins. Taxonomic 

assignment with PhyloPythia identified 25 and 24 genus- and family-level bins were identified 

in the TS28 and TS29 microbiomes respectively, out of which 22 were common. This taxonomic 

assignment provided an opportunity for in-depth analysis revealing that Faecalibacterium had 

the highest level of variation, whereas Methanobrevibacter had the lowest. The 

metatransciptome analysis using complementary DNA (cDNA) was then performed respective 

to the taxonomic assignments, which allowed the authors to calculate the relative expression 

levels of each bin and gene. This in turn was used to characterize pathways represented by 

genes with high or low relative expression, which showed that pathways for essential cell 

processes, e.g. Pyruvate metabolism and Glycolysis, were consistently represented by 

relatively highly expressed genes. Generic tools have been developed for identification of 

differentially abundant bins between two or more microbial communities (Huson et al. 2009; 

Segata et al. 2011). Taxonomic assignment of the metagenome sequence is an essential step 

prior to such comparative analysis. 

2.3 PHYLOPYTHIAS 
Building upon PhyloPythia (McHardy et al. 2007) we have developed a new binning method, 

PhyloPythiaS (Patil et al. 2011; Patil, Roune & McHardy 2012), which uses support vector 

machine (SVM) based supervised learning method for structured output spaces (Altun, 

Tsochantaridis & Hofmann 2003; Tsochantaridis et al. 2005; Rousu et al. 2006). Structured 

output learning exploits a structure which relates different output variables - in this case taxa 

and their taxonomic relationships as specified by taxonomy - to improve classification 

performance. Moreover, the structural SVM is based upon the maximum margin principle 

which gives theoretical generalization guarantees and has also empirically shown good 

performance. The taxonomic information is obtained from the NCBI taxonomy, which is used 

to model the evolutionary relationships between taxa or groupings of organisms. Thus, the 

taxonomic assignment problem becomes a path prediction problem where the output 

variables (taxa) are organized in a hierarchical structure and the training data consists of 

oligonucleotide composition of genome fragments of known phylogenetic origin. In the 

following sections we will first introduce the supervised learning methodology followed by the 

choice of the input and output spaces. 

2.3.1 MACHINE LEARNING TECHNIQUES 

STRUCTURED OUTPUT PREDICTION 

Structured output prediction is different from binary and multiclass prediction in that the 

classes are not independent but have some known relationship defined using some structure. 
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In the present case, this structure is a taxonomy representing the relationships between a set 

of taxa. In section 1.6.1 we introduced the binary SVM. Two generalizations of the binary 

classifier have been proposed. The first one extends the classification problem of more than 

two classes (multiclass) (Crammer & Singer 2001) and the second extends to classification of 

more than two interdependent classes (structured output) (Altun et al. 2003; Tsochantaridis et 

al. 2005). Those extensions are introduced next and the link between them is pointed out. For 

simplicity the discussion is restricted to linear functions and the primal form of the 

optimization problems, more details can be found in the corresponding references. 

MULTICLASS SVM 

Many real world problems contain more than two classes and the corresponding classification 

problem is referred to as multiclass classification. We will denote the output space of m classes 

as integers  m,...,2,1 . In this section we will briefly mention the ideas behind the 

multiclass SVM. Continuing with the previous notation (section 1.6.1), the learning function, 

the inputs, the outputs and the parameter vector will be denoted as f, x, y and w, respectively. 

The bias term b is ignored for simplicity but without loss of generalization.  

Two types of methods can be found in literature for the multiclass classification task. The first 

types of methods decompose the multiclass problem into a set of independent binary 

classification problems. The most popular strategy is one-versus-all; that is given m classes one 

first constructs m binary classifiers that separate a particular class from the rest (Crammer & 

Singer 2001; Rifkin & Klautau 2004). Thus, a different parameter vector is learned for each 

class p

y w . At classification time a new input example is classified by all the classifiers and 

the class label of the class y yielding the highest positive value is chosen as the output (see 

section 1.6.1, Eq. 1.10). 

   xwx
Targmax y

y

f


  Eq. 2.1 

Other strategies include all-versus-all classification, error correcting codes and defining class 

structure. Those will not be discussed here and the reader is referred to (Platt, Cristianini & 

Shawe-Taylor 2000; Pimenta & Gama 2005) and references therein for details. 

The second type of techniques can naturally handle multiclass problems, such as nearest 

neighbor and decision trees (Mitchell 1997; Hastie et al. 2009). Large margin frameworks for 

construction of a single classifier to handle multiclass problems have been proposed (Vapnik 

1998; Weston & Watkins 1999). Crammer and Singer (Crammer & Singer 2001) generalized the 

notion of margins to multiclass problems and proposed an optimization problem with an 

efficient algorithms to solve it. Their generalization of the linear binary classifier models the 

hypotheses space as a matrix m pM  with each row corresponding to a parameter vector 

for one of the m classes. As the matrix M can be viewed as stacked parameter vectors (one 

corresponding to a particular class), , without losing the meaning, we will represent the 

hypotheses space as a set of m parameter vectors  ,  y 1,2,...,p

y m w , in order to 

continue with the notation used in this work. The inference problem is defined similarly to Eq. 

2.1. 
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Further, they proposed a notion of the margin as the difference between the score of the 

correct row and the maximum of the scores due to one of the other rows (most violating 

score). The piecewise linear bound on the error for an input vector x with correct output y is 

given by; 

 T T

\
max y y
y y




w x w x  Eq. 2.2 

This loss function becomes zero for correct classification and produces a number proportional 

to the difference between the correct score and the most violating score. The empirical risk in 

this case is given by; 

 
  T T
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1
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n

y i y i
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in





  
  

w w x w x  Eq. 2.3 

Here w is the concatenation of all the parameter vectors. Defining the norm of the hypothesis 

space as the norm of the concatenation of all the parameter vectors and using slack variables 

to allow non-separable data, the optimization problem becomes; 

Optimization problem primal

multiclassSVM : 
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

xwxw

w
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 Eq. 2.4 

Here C > 0 is a constant controlling trade-off between the empirical risk and the model 

complexity. 

STRUCTURED OUTPUT SVM 

The multiclass framework of Crammer and Singer was generalized to incorporate structured 

output prediction problems (Altun et al. 2003; Tsochantaridis et al. 2004). This framework 

allows generalization across classes by capturing the common properties of the classes as 

defined by their interdependencies. This framework can learn over an arbitrary structure 

among classes, but we will discuss only the special case of hierarchical classification, which is 

relevant for this work. An important distinction for the structured output paradigm is that an 

output is a vector instead of a scalar, in the particular case of hierarchical classification each 

output is a path in the hierarchy with m nodes  mnnn ,..,, 21y . As before, each input vector 

is of dimensionality p. 

The structured output inference problem is generally defined as; 

    yxwx
y

,ψargmax T



f  Eq. 2.5 

The joint input-output space ψ  is defined depending upon the problem at hand, as described 

below for hierarchical classification. Consider a hierarchy as a set of elements  along 
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with a partial order , each path in the hierarchy can be then represented as a vector. Each 

element of this vector is defined over every element z in Z as following; 

 
 



 


otherwise0

or   ifβ
λ

, zzz

z

yy
y

y 
 Eq. 2.6 

Here ,β z y
defines the similarity between the outputs with respect to the partial order .  

We set z,βy  to 1, thus obtaining a binary vector for each possible output. In other words, each 

output (a path in the hierarchy) is represented as a binary vector of size |Z| (number of nodes 

in the hierarchy) whose each element shows whether a particular node is included in the 

output or not. Consequently, all the paths containing a node will have a 1 in the corresponding 

position of the binary representation, indicating the “sharing” between related outputs. 

Denoting the binary representation for an output y by  yΛ  and an input example x in the 

feature space as  xφ , the joint input-output space is then defined using the tensor 

product : p m p m    such that   =ij i jc a b  c a b  as; 

      yxyx Λφ,ψ   Eq. 2.7 

For example, consider the linear feature map for an input x defined as φ(x)=x and the binary 

representation of an output y as Λ(y)=[1 0 1 1 0] as a path consisting of three nodes in a 

hierarchy with five nodes. Then the joint feature space is given by ψ(x,y)=[x o x x o], where o is 

a vector of Zeros of the same length p as the input vector x. Hereafter, we will use the input 

space feature map function φ as defined above. 

This is equivalent to introducing a parameter vector p

z w  for every node z in the 

hierarchy. Thus the complete hypotheses space can be represented as a vector
p

w , 

which is a concatenation of all wz vectors. Note that even though there might not be any input 

examples directly observed at some paths they use input examples from their children, thus 

enabling generalization across classes using the compatibility score defined below. 

   



zorzz

z

yy

xwwyx
  :

T;,F


 Eq. 2.8 

Analogous to the Crammer and Singer notion of the margin, a more general functional margin 

for structured output problems is defined as follows; 

      T T

\
γ , ; ψ , max ψ ,


 

y y
x y w w x y w x y  Eq. 2.9 

After fixing the minimum functional margin to 1 and penalizing for margin violations the soft-

margin optimization problem becomes; 
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Optimization problem primal

structuredSVM : 
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 Eq. 2.10 

The constraints require that for each training example the score of the correct output ( iy ) 

must be greater than the score of all incorrect outputs ( iy ) by a margin of 1. There are a large 

numbers of constraints in this optimization problem   n which makes it intractable to solve 

by standard quadratic solvers. As only a small number of these constraints are expected to be 

active and overlap of information in the joint feature space, an efficient cutting plane 

algorithm was proposed that guarantees a solution to arbitrary precision by evaluating a 

polynomial number of constraints. The details of this algorithm are out of the scope of this 

work and can be found in (Tsochantaridis et al. 2005). The above formulation is the n-slack 

formulation, since it assigns one slack variable to each training example. A 1-slack formulation 

of the structural SVM problem was proposed which is computationally more efficient 

(Joachims, Finley & Yu 2009). The slack-rescaling 1-slack formulation is; 

Optimization problem primal,1-slack

structured,slack-rescalingSVM : 
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Eq. 

2.11 

Similarly the margin-rescaling version of the problem is formulated as follows; 

Optimization problem primal,1-slack

structured,margin-rescalingSVM : 
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Eq. 

2.12 

The reader is referred to (Joachims et al. 2009) for the duals of those optimization problems. 

We used duals of the above optimization problems as implemented in the SVMstruct 

application programming interface available at http://svmlight.joachims.org/ (version 3.10). 

2.3.2 OUTPUT AND INPUT SPACES 

THE OUTPUT SPACE 

Our output space comprises a hierarchical structure representing a set of taxa (nodes) and 

their taxonomic relationships (edges). Essentially it is a rooted tree. In particular, we use the 

http://svmlight.joachims.org/
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taxa and relationships defined by the NCBI taxonomy 

(http://www.ncbi.nlm.nih.gov/Taxonomy/) as the reference. In this structured representation, 

each possible output corresponds to a valid path in the hierarchy. Each path is encoded as a 

binary vector of length equal to the number of nodes. In this vector, the elements 

corresponding to the nodes in the path are set to one and the rest to zero. If an internal node 

has some training examples assigned to it a miscellaneous terminal child node is added as its 

child followed by re-assignment of the corresponding training examples to the child node. We 

used the seven major taxonomic ranks; species, genus, family, order, class, phylum and 

superkingdom to define the hierarchy.  

PATH LOSS 

The 0/1 loss used for binary and multiclass problems is not suitable for hierarchical 

classification as some predictions can be more correct than others. A more suitable loss in this 

scenario is the path loss. The path loss measures the number of edges on the shortest path 

between the terminal nodes of two paths (Figure 2.1). 

 

Figure 2.1. The concept of the path loss. For the shown hierarchy, predicting the path from the root 

node R to the node B is more correct than predicting the path to node C when the correct output is 

the path to the node A. In this case the path loss for the paths to B and C are 2 and 4, respectively. 

As we are dealing with a rooted tree the path loss can be implemented using the depth of the 

terminal nodes of the corresponding paths and the depth of their lowest common ancestor 

(LCA); 

         yyyyyy  ,LCAdepth2 - depth + depth,Δpath  Eq. 2.13 

The path loss can be normalized using the longest path distance in order to restrict maximum 

loss at one. Other loss functions over a hierarchy can be defined, such as the measure due to 

(Wu & Palmer 1994); however, we decided to use the path loss for its simplicity and good 

performance (Cesa-Bianchi, Gentile & Zaniboni 2006; Rousu et al. 2006).  

USE OF DYNAMIC PROGRAMMING 

Each output in our structured output prediction problem is a path in the taxonomy. Both 

learning and inference processes depend on the compatibility score (Eq. 2.8), which measures 

the strength of association between an input-output pair. Let’s consider two paths p1 and p2 in 

a hierarchy consisting of nodes 321 ,, nnn  and 21,nn , respectively. Note that this not the 

binary representation of the paths, but just an enumeration of constituent nodes. Furthermore 
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assume the dependency relationship 321 nnn  , saying that n1 is parent of n2 and n2 is 

parent of n3. The compatibility score of these paths for a given input vector x are given by (see 

Eq. 2.8); 

 

xwxwwpx

xwxwxwwpx
TT

2

TTT

1

21

321

);,F(

);,F(

nn

nnn




 Eq. 2.14 

Thus calculation of the compatibility score of the whole path needs the compatibility score of 

its constituent nodes which in turn needs the scores of its ancestors. As a concrete example, 

the compatibility score for the path p1 can be rewritten as follows; 

 xwwpxwpx
T

21 3
);,F();,F( n  Eq. 2.15 

Therefore a hierarchy can be traversed either in depth-first preorder or in breadth-first level-

order to calculate compatibility scores of all the paths. This dynamic programming results in 

high computational efficiency. 

INPUT SPACE SETTINGS 

As the input space we use a genome signature defined over a set of oligonucleotides. There 

are at-least two parameters that have to be defined to get a signature space; the lengths of 

the oligonucleotides and a normalization strategy of the oligonucleotide frequencies (see 

section 1.4.2). We first fixed the range of oligonucleotide lengths from four to six, as this 

choice has been used by various previous works (Teeling et al. 2004; Abe et al. 2005; McHardy 

et al. 2007). We performed 3-fold cross-validation experiments to identify suitable parameter 

settings. The cross-validation experiments were performed by varying the regularization 

constant C (see Eq. 2.11, Eq. 2.12) in the set {0.1, 1, 1000, 10000}. Those experiments were 

performed on 1332 complete prokaryotic genomes downloaded from NCBI. All the taxa from 

the superkingdom to the species rank were modeled if at-least three genomes could be 

assigned to it, which resulted in 401 taxa in total (2 superkingdoms, 21 phyla, 34 classes, 69 

orders, 105 families, 105 genera and 65 species). 

First we performed cross-validation experiments to identify which normalization to use. Two 

normalization strategies were tested; sequence length and constituent mononucleotides 

(zero-order Markov assumption) (see section 1.4.2). Tetranucleotide signatures were 

calculated using Eq. 2.16 and Eq. 2.17, sequence length and mononucleotide normalization, 

respectively. Pentanucleotide and hexanucleotide signatures were calculated similarly. Note 

that the latter incurs a higher computational cost. The oligonucleotide counts are generally not 

reliable for short fragments and thus we expected the mononucleotide normalization to 

perform worse on shorter fragments. The mononucleotide normalization performed worse for 

1000 bp fragments and comparatively better for 5000 and 50000 bp fragments (Figure 2.2), as 

expected. It can be observed that with a proper choice of the C parameter the sequence 

length normalization is able to deliver same cross-validation performance as the 

mononucleotide normalization. Therefore, we chose sequence length normalization. 
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Figure 2.2. Cross-validation experiments to select a normalization strategy. Each bar shows the 

accuracy for oligonucleotides of selected length and a C value. 

The next choice to make is the oligonucleotide length. We investigated the following choices of 

oligonucleotide lengths (dimensionality in brackets); 4 (256), 5 (1024), 6 (4096) and a 

concatenation of 4, 5 and 6 (5376).  As before; the C parameter was searched in the set {0.1, 1, 

1000, 10000}. It was observed that for all three fragment lengths performance improved with 

increasing dimensionality of the input space (Figure 2.3). Note the trend that cross-validation 

performance improves for longer fragments, confirming that longer sequence fragments 

encode a stronger signal. Based on these experiments we chose the input space to be a 

concatenation of oligonucleotides of lengths 4, 5 and 6 normalized with sequence length. 

REGULARIZATION PARAMETER SETTING 

The structural SVM problem has a hyper-parameter, the regularization constant C. The choice 

of this parameter affects the trade-off between the empirical risk and the complexity of the 

solution. The cross-validation experiments suggest that a C value of 1000 works well for all 

fragment lengths (Figure 2.3). Therefore, this value was used from then on. 
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Figure 2.3. Cross-validation experiments to select oligonucleotide lengths. Each bar shows the 

accuracy for oligonucleotides of selected length and a C value. 

2.3.3 ENSEMBLE OF CLASSIFIERS 

The prediction problem that we intend to address using structured output SVMs involves 

potentially differing distributions of training and test data due to the varying lengths of 

sequences produced in a metagenome project (section 1.3). Following (McHardy et al. 2007) 

we build six models using six fragment lengths; 1000, 3000, 5000, 10000, 15000 and 50000 bp, 

to be able to classify sequences of varying lengths typical in metagenome studies. The six 

structural SVM models induced using genome signatures from each of those fragments 

comprise a PhyloPythiaS model. Each test example (sequence) is classified with at most three 

classifiers close to its sequence length or longer. The resulting predictions are then combined 

using an ensemble strategy. Due to the hierarchical structure of the classes the majority vote 

ensemble normally used with multi-class techniques is not applicable here. Considering that 

we would like the predictions to be as specific as possible, that is close to the leaf nodes we 

devised an ensemble strategy “majority vote lowest node”. In this strategy, first a vote is 

assigned to each node equal to the number of classifiers predicting a path containing that 

node. Then, for an ensemble of three classifiers, the nodes with a vote greater than one are 

traversed in breadth-first order until the corresponding classifiers agree on the predicted path, 

finally assigning that path as the output (Figure 2.4). In other words, the path on which the 

majority of the classifiers agree upon is the output of this ensemble strategy. 
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Figure 2.4. The majority vote lowest node ensemble strategy. A colored line adjacent to an edge 

represents inclusion in the prediction by a classifier, where each color represents a classifier. In this 

hypothetical case, two out of three classifiers make consistent prediction till node A, thus assigning 

the path from the root to node A as the output of the ensemble.  

2.3.4 GENERIC AND SAMPLE-SPECIFIC MODES 

PhyloPythiaS has two different modes of operation – generic and sample-specific.  

A generic model is learned from public sequence data from the NCBI along with the 

corresponding taxonomy. First the taxa are identified for which at least three genomes are 

available. The reference taxonomy is then completed using the higher level parents of the 

selected taxa from any of the seven major taxonomic ranks. The generic mode of PhyloPythiaS 

uses a generic model and is suitable for the analysis of a metagenome sample, if no further 

information on the sample's taxonomic composition or relevant reference data is available. 

Lack of appropriate reference data can cause taxonomic assignments to be either of low 

resolution (i.e. assignments to high ranking taxa) or inaccurate. There are two reasons why the 

appropriate reference data might be lacking. Firstly, the vast majority of microbial diversity has 

not been cultured and sequenced (Hugenholtz 2002), and therefore metagenome samples 

often represent novel species for which no sequences of closely related organisms are 

available in public databases.  Secondly, although the genomic signature is informative for 

species and higher-level taxonomic clades (Burge et al. 1992; McHardy & Rigoutsos 2007), it is 

also known that sequence characteristics are dependent upon environmental factors 

(Foerstner et al. 2005; Willenbrock et al. 2006). In this case, the genomic signature of the 

organisms in the metagenome sample can deviate from the genomic signature of the 

evolutionarily close organisms available in public databases. A sample-specific model (i.e. a 

model that includes training data from the metagenome sample itself in addition to public 

data) is better suited in such scenarios. By including sample-specific sequences and taxonomy 

in the training of SSVM, the dataset shift problem can be reduced (Adams 2010).  

Therefore, assignment accuracy can be improved by creation and use of a sample-specific 

model, which includes clades for the abundant sample population that are inferred from the 

appropriate reference sequences.  A sample-specific model is inferred from the public 

sequence data combined with sequences with known taxonomic affiliation identified from the 

metagenome sample (sample-specific sequences), together with a sample-specific taxonomy. 

The sample-specific sequences along with any other available information, such as the ecology 

of the sample, can be used to identify the taxa that should be modeled, which along with their 



 

 

37 
3

7
 

parent taxa makes the sample-specific taxonomy. If a good match between the sample-specific 

sequences and taxonomy and the taxonomic composition of the metagenome sample is 

achieved, sample-specific models normally exhibit higher predictive accuracy (discussed in 

section 3.5), and have improved resolution to low-ranking clades and higher coverage in terms 

of assigned sequences, compared to a generic model. Normally, accurate assignments can be 

obtained based on ~100 kb of reference sequence for a modeled sample population. This is 

possible due to the pervasiveness of the genome signature. Suitable sample-specific training 

sequences can be obtained from the metagenome sample itself, for example based on 

sequence homology of the sample sequences to 16S rRNA or other phylogenetic marker genes, 

or by targeted sequencing of metagenomic fosmid library with such phylogenetic marker 

genes (Warnecke et al. 2007; Pope et al. 2010). 

2.4 THE PHYLOPYTHIAS WORKFLOW 
Having described the components of PhyloPythiaS, in this section we will describe the detailed 

workflow for building a PhyloPythiaS model and making taxonomic assignments using it. 

The prerequisites for building a model include DNA sequences, either complete genomes or 

parts of it, with known taxonomic affiliation and a database of taxonomic relationships. Note 

that the sequences can come from public databases such as the NCBI GenBank or can be 

obtained from the metagenome sample itself as sample-specific sequences. Plasmid 

sequences are omitted if such information is available. The model building starts by cleaning 

the sequences of undefined characters so that they have minimum effect on the sequence 

length which is used for normalizing the oligonucleotide counts. For this, contiguous non-ATGC 

characters longer than the selected oligonucleotide length (k) are substituted by k ‘N’ 

characters. This also makes sure that invalid oligonucleotides are not counted. Then the nodes 

to model are identified based on the taxonomic affiliation of the sequences. While for a 

generic model the nodes at species or higher level major taxonomic ranks where at least three 

sequences can be mapped are modeled (this number can be set by the user), for a sample-

specific model the nodes to be modeled are defined by the user depending upon the sample 

composition. This information is then converted into the Newick tree format (nested 

parentheses format) (Figure 2.5) and retained for later use. All the sequences are then mapped 

to the lowest possible node in this tree. The sequences are then fragmented into non-

overlapping fragments of desired length and an equal number of fragments are selected for 

each node such that the total number of fragments equals the desired number of training 

examples set by the user (default value 10,000). Only the nodes where the sequences were 

mapped are counted. Note that as sample-specific sequences are normally short (~100 kb), 

they are fragmented into overlapping fragments such that the required number of fragments 

are generated. If there are more fragments than required then the required number of 

fragments are randomly sampled stratified with respect to the original sequences, ensuring 

that every sequence makes equal contribution wherever possible. The genome signature of 

each of the fragments is then computed as per user defined oligonucleotide length (default 4-

6). This set of genome signatures can be represented as a matrix where each row is one 

signature. We used the sparse matrix representation supported by SVMstruct to store this 

matrix. This matrix along with the Newick tree is then used to train a SSVM model. Before 

learning starts every column of the matrix is standardized to have zero mean and standard 
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deviation of one. The means and standard deviations of each column are retained for later use. 

To avoid incomplete paths, the tree is modified by adding miscellaneous leaf nodes to the 

internal nodes if they have sequences assigned to them. The regularization parameter C is by 

default set to 1000 or it can be also obtained via cross-validation. By repeating this procedure 

for each of the fragment lengths (default 1, 3, 5, 10, 15 and 50 kb) different SSVM models are 

obtained which together make a PhyloPythiaS model. Supplementary Figure 1 

diagrammatically shows the training process. 

 

Figure 2.5. A Newick tree example in the nested parentheses format (A) and the corresponding 

dendrogram visualized using Dendroscope (Huson & Scornavacca 2012) (B). 

At the prediction time the test sequences are converted into genome signatures using the 

same settings as used for model building. Each of those genome signatures are then classified 

with at most three SSVM models built with the fragment lengths closest to that of the test 

sequence length. The genome signature is standardized using the mean and standard 

deviation of the corresponding model before running the inference (section 2.3.1, Eq. 2.5). 

Each SSVM outputs a path in the model taxonomy. If two or more SSVM models were used 

then the resulting predictions are combined using the majority vote lowest node ensemble 

strategy (section 2.3.3). This process is repeated for each of the test sequences and all the 

outputs are written in a file. 

2.5 THE PHYLOPYTHIAS WEB SERVER 
The PhyloPythiaS software is freely available for non-commercial users and can be installed on 

a Linux-based machine. For researchers with limited computational resources or who are not 

familiar with command line usage under Unix/Linux, web servers provide computational 

resources and a graphical user interface for convenient use. Furthermore, they allow a visual 

presentation of results for a quick overview and exploration of data sets. Therefore, we 

implemented a web server that provides the PhyloPythiaS functionality. Several web servers 

for taxonomic assignment are available, such as the MG-RAST (Meyer et al. 2008), WebCARMA 

(Gerlach et al. 2009) and the naïve Bayes Classification (NBC) (Rosen, Reichenberger & 

Rosenfeld 2010) web servers. Our server is unique in that it provides the ability to construct 

and use sample-specific models, besides enabling assignment with generic models. 
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As previously described, the web server can be used in two different modes – generic or 

sample-specific. The generic mode accepts sequences as a multi-FASTA file of up to 100 Mb in 

size and performs taxonomic assignments using a generic model. The generic model is 

constructed from prokaryotic genome sequences available at NCBI and models sufficiently 

covered clades from domain to species level (see Introduction). The sample-specific mode 

allows the user to specify the clades for a model and upload representative sequences for 

construction of a user-defined model. In this mode, the user has to provide three files: (1) a 

tree file: a plain text file with NCBI identifiers for the clades to be modeled or a rooted Newick 

tree with non-negative integer node names; (2) a sample-specific FASTA file: a multi-FASTA file 

with sample-specific sequences, where each sequence header must contain a valid node 

identifier X as “label:X”; and (3) a prediction FASTA file: a multi-FASTA file with the sequences 

for which taxonomic assignments are to be made. The sample-specific data provided by the 

user is pooled with the reference data used for generic model to build a model with default 

parameters as described in previous sections. This model is then used for taxonomic 

assignment of the test sequences provided in the prediction FASTA file. 

The generic and sample-specific models produce output in the same format. The output page 

shows an assignments table with a maximum of 100 entries, as well as a pie chart and the 

model taxonomy. The pie chart shows the abundance of the taxa and can be interactively 

changed to visualize different taxonomic ranks and to display either the number of sequences 

or number of bases. The taxonomy shows the modeled tree along with the assignment 

information for each node. The taxonomy can be interactively changed to display either the 

taxonomic identifiers or the NCBI scientific names.  

Such interactivity allows the user to easily visualize the distribution of the assignments over 

the taxonomy. Every node in the tree contains additional information, such as the number of 

sequences/bases assigned to the node or its sub-tree. Additionally, a link is provided to obtain 

the sequences assigned to each node. The assignments can be downloaded, possibly with 

additional data, or received via email. If the server was invoked in the sample-specific mode 

then additional assignments on separate data can be obtained using the same model. 

Metagenome samples can be larger than the upload limitations of the web server. For this 

reason, the ability to visualize and download combined assignments from multiple submissions 

for classification with the same model is provided. One uploads a large sample in the form of 

multiple non-overlapping FASTA files, each as a different process, and retains the 

corresponding process identifiers. Once all the processes are finished, the process identifiers 

can then be provided to the ‘multiplex-sample’ utility, which combines the predictions from all 

processes and generates visualizations and download files. 
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Figure 2.6. Schematic representation of the PhyloPythiaS web server implementation. Arrows 

represent the direction of communication. 

The web server consists of multiple components (Figure 2.6). The web interface is 

implemented in PHP and JavaScript, and runs on an Apache server. The visualization and help 

routines are implemented in JavaScript using the Dojo toolkit (http://dojotoolkit.org/). The 

computational routines for the backend are written in the Ruby scripting language 

(http://www.ruby-lang.org/) embedded inside an XMLRPC server. These routines pre-process 

every job to create the necessary files and then invoke binaries compiled from C code (for 

oligonucleotide feature generation and SSVM). A relational database based on MySQL is used 

to store the uploaded data, results and configuration. The jobs are processed in the same 

order they enter the database. The jobs and any associated data are deleted 30 days after 

their finishing time. The user does not need to register for using the web server, and job 

identification and result retrieval is done using a unique identifier assigned to every job at the 

submission time. By default, one processor each is reserved for the generic and the sample 

specific mode. This can be changed by the administrators in case of large number of pending 

jobs and depending upon availability of resources. 

2.6 COMPARISON WITH FLAT TECHNIQUES 
Machine learning based prediction techniques that consider classes independently are known 

as flat methods. Flat methods are normally faster to learn than the methods that take 

structure between classes into account (structured methods for short). Furthermore, it has 

been shown that structured methods for hierarchical classification of documents into genre 

can perform poorly for imbalanced hierarchies (Wu, Markert & Sharoff 2010). Therefore, it is 

important to assess whether structured methods provide improvement over flat methods for 

the taxonomic assignment task. We empirically compared two variants of structural SVM (slack 

rescaling and margin rescaling) with four flat methods (SVMmulticlass, libSVM, kNN and naïve 

Bayes) using 3-fold cross validation experiments. SVMmulticlass and libSVM are multiclass 

extensions of SVMs. While SVMmulticlass is an implementation of the Crammer and Singer 

multiclass SVM as a special case of structural SVM, libSVM uses one-against-one strategy (Hsu 

& Lin 2002). The kNN is one of the simplest and oldest techniques with native support for 

multiclass classification (Cover & Hart 1967). Finally, naïve Bayes is a probabilistic classifier that 

assumes independence between features (Mitchell 1997). Note that all these techniques have 

been used in the context of taxonomic assignment (see Introduction). The SVMmulticlass 



 

 

41 
4

1
 

(version 2.20) was obtained from the author’s website 

http://svmlight.joachims.org/svm_multiclass.html, libSVM and naïve Bayes classifiers were 

from the “e1071” package (version 1.5-24) and kNN from the “class” package (both in R 

version 2.11.1). 

Two types of validation experiments were performed; class-stratified experiment where 

examples for each class were randomly split into three folds and leave-classes-out experiment 

where examples for all the classes were randomly divided into three folds. While the class-

stratified experiments assess generalization performance when input examples from all the 

classes are available, the leave-classes-out experiments assess generalization performance 

when either no or only closely related input examples are available. The cross-validation 

experiments were repeated 10 times with different random seeds while maintaining same 

folds for all the methods. Thus, each technique was tested on 30 folds in total. 

The experiments were performed on a dataset with 166 classes with a total of 402 nodes in 

the hierarchy. The classes belonged to the hierarchy at different taxonomic ranks; species (65 

classes), genus (60), family (33), order (6) and phylum (2), indicating the imbalanced nature of 

the hierarchy. The input space used was the l4nL genome signature. As our aim here was to 

quantify differences between methods with and without hierarchy other signatures were not 

tested. Five different C parameters were used for SVMs {0.1, 1, 10, 1000, 10000} and the 

number of nearest neighbors for kNN {1, 2, 3, 4, 5}. For each of the 10 cross-validation 

experiments the performance on the folds using the hyperparameter with the best cross-

validation performance was used. For all the methods, except naïve Bayes, the data was 

standardized to zero mean and unit variance. We measured accuracy and path loss for both 

flat and structured methods.  

The paired Wilcoxon signed-rank test was used to compare the performance of any two 

methods on the 30 folds. On the class-stratified cross-validation experiments both 

SVMmulticlass and libSVM performed significantly better than all other methods, including 

structured, in terms of accuracy.  However, while libSVM performed better than the structured 

methods in terms of path loss, SVMmulticlass performed significantly worse that the 

structured methods. Both kNN and naïve Bayes performed significantly worse than all the 

other methods with kNN performing relatively better. Also note that SVMmulticlass performs 

better than structured methods (P<0.05, Wilcoxon test) on the accuracy but worse (P<1e-4, 

Wilcoxon test) on path loss measure, suggesting that direct minimization of 0/1 error does not 

necessarily improve path loss performance (Figure 2.7, Supplementary Figure 2). 

http://svmlight.joachims.org/svm_multiclass.html
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Figure 2.7. Performance of the six machine learning techniques in two cross-validation scenarios. The 

0/1 loss and the path loss in class-stratified cross-validation, (A) and (B) respectively. Path loss in 

leave-classes-out cross-validation (C). 

In the case of the leave-classes-out cross-validation, where the complete classes were left out, 

the structured methods outperformed all flat methods on the path loss measure. Note that in 

this case the accuracy of all the methods is zero. The margin rescaling formulation performed 

significantly better than the slack rescaling formulation (P=2.83e-4, Wilcoxon test). Both 

multiclass SVM methods performed similarly, still outperforming kNN and naïve Bayes (Figure 

2.7, Supplementary Figure 2). Note that the average loss for a worst classifier that assigns a 

label with maximum loss and a random classifier is 0.92 (standard deviation 0.019) and 0.68 

(standard deviation 0.0049), respectively, implying that all the techniques tested indeed learn 

and generalize.  

Taken together, those results suggest that structured methods are beneficial when data from 

the same class is not available for training. We, therefore, expect that as data becomes scarce, 

structured methods become more beneficial because they can use information from closely 

related classes (as defined by the hierarchy) analogous to multitask learning scenario 

(Evgeniou & Pontil 2004). 
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3 PHYLOPYTHIAS EVALUATION AND 

APPLICATION 
As most of the microorganism diversity is still unknown it is very unlikely that complete genome  

sequences  of  the  dominant  populations  are  available  as  a reference  for  the taxonomic 

assignment of a metagenome sample. Moreover, there might be varying degree of 

evolutionary relatedness between the available reference data and the dominant populations. 

In some cases it is possible to obtain limited amounts of sequence data for the dominant 

populations which we call sample-specific data.  Thus, it is crucial to assess the performance of 

taxonomic classification methods when limited amounts or no reference data from closely 

related organisms are available. We, therefore, performed controlled experiments on simulated 

and real data sets mimicking realistic scenarios. We show that PhyloPythiaS performs well on 

both simulated and real data and offers a significant improvement in execution time. 

3.1 INTRODUCTION 
The assignment performance on a metagenome sample depends on a combination of various 

factors that are either intrinsic or extrinsic to the sample. While intrinsic factors include 

organismal complexity, data quality and lengths of the sequences, extrinsic factors include the 

assignment method and availability of closely related reference sequences. In particular, the 

assignment of short fragments of less than 1000 base pairs is a difficult task (McHardy & 

Rigoutsos 2007). Although various methods have been developed for this purpose (Krause et 

al. 2008; Brady & Salzberg 2009; Parks, MacDonald & Beiko 2011), the accuracy remains less 

than what is achievable for longer fragments. From the extrinsic factors availability of closely 

related genomes is an important issue and a taxonomic method should be able to cope with 

the availability of partial genomes or lack of thereof. 

Apart from those intrinsic and extrinsic challenges associated with metagenome samples, the 

large volumes of sequence data generated with next generation sequencing technologies 

represents a major challenge. In the future, the amount of data generated in metagenome 

studies will continue to grow, as sequencing comes with further reductions in costs and 

simultaneous increases in speed (see section 1.5). Therefore, taxonomic assignment methods 

should be able to cope with this sheer amount of data, while delivering good performance at 

the same time. However, currently, many binning methods cannot process large data sets in 

reasonable time. 

The design of the PhyloPythiaS method and the evaluation setup was devised while 

considering the challenges described above. We will first describe the performance measures 

used in section 3.2, followed by the data sets and taxonomic classification methods in sections 

3.3 and 3.4, respectively. The evaluation results are presented in sections 3.5 and 3.6. The 

chapter is concluded in section 3.7. Note that these analyses were performed at different 

times and therefore use different reference data, such that the more recent data is a superset 

of the older data. 
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3.2 PERFORMANCE MEASURES 

3.2.1 SIMULATED DATA SETS 

As the correct taxonomic assignment for test fragments is known, evaluation of simulated 

datasets can be performed using well established performance measures. Here we compute 

the sensitivity and specificity of assignments, averaged over all the taxa at a fixed taxonomic 

rank (Baldi & Brunak 2001). The measures are computed for each taxon separately by 

considering combination of all the other taxa as a different class as shown in the Table 3.1. 

Table 3.1. Confusion matrix. 

 
Predicted class 

Taxoni Taxon-i 

Correct class 
Taxoni True Positive (tp) False Negative (fn) 

Taxon-i False Positive (fp) True Negative (tn) 

 

Thus, the average sensitivity, or macro-accuracy, and specificity are defined as follows (Baldi 

and Brunak 2001; McHardy et al. 2007); 
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The index -1 denotes items that do not belong to any of the modeled taxa for a given rank. 

Furthermore, we compute the classification accuracy, which corresponds to the overall 

number of correctly classified items at a given taxonomic rank. Note that while the macro-

accuracy measures the classification accuracy averaged over all classes represented in a test 

data set, the accuracy measures classification performance for a given data set in a way that 

every input item contributes equally. This distinction becomes important if the taxa are 

represented in uneven amounts in a given data set, such as is often the case for metagenomic 

data, in which case, the overall classification accuracy becomes a more relevant performance 

measure than the macro-accuracy of assignments. 

 

fntp

tp


accuracy  Eq. 3.3 

Ideally, a method should score well in terms of all measures.  

We also have used the average non-normalized path loss (Eq. 2.13) in order to measure the 

taxonomic distance between the correct and the predicted taxa. 
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3.2.2 REAL DATA SETS 

As for real metagenome samples the correct taxonomic assignment of the fragments is not 

known, measuring the binning performance on real metagenome samples is a non-trivial task 

and traditional measures like accuracy, sensitivity and specificity cannot be calculated. We use 

here an intuitive and informative measure, called “scaffold-contig consistency”, for assessing 

the binning performance of a method (McHardy et al. 2007). We extended this measure to 

incorporate contig lengths, as described below. 

Consider a metagenome data set for which the reads are assembled into contigs and that a set 

of contigs are known to jointly originate from a particular genome, based on the mate pair 

information. This is denoted by their grouping into a scaffold (see Figure 1.3).  A taxonomic 

assignment method is then used to infer the taxonomic assignment of the contigs. The 

scaffold-contig consistency measures the consistency of the taxonomic assignments for a 

scaffold in terms of its constituent contig assignments. For this purpose, first the “true” 

taxonomic assignment for each scaffold is obtained as follows; a scaffold is first labeled with 

the assignment of one of its constituent contigs with the lowest taxonomic rank. In case there 

are multiple lowest rank assignments, then the assignment with the longest collective contig 

length is used. The consistency of scaffold assignments is then measured with respect to this 

taxonomic label. For each contig of a scaffold, the taxonomic assignment is considered to be 

consistent if it is either the same or a more general taxonomic assignment with respect to the 

true taxonomic origin of the scaffold; otherwise it is considered an inconsistent assignment. 

The percentage of consistently assigned contig base-pairs is the scaffold-contig consistency. 

The scaffold-contig consistency is then averaged over all the scaffolds with the same 

assignment, to measure the assignment consistency of a clade. Furthermore, we also calculate 

the average taxonomic distance of contig assignments in terms of the path distance to the 

scaffold label as a more fine grained consistency measure. High scaffold-contig consistency is a 

desirable property for a binning method. For a given data set we use the same reference 

taxonomy for all the methods for calculating scaffold-contig consistency. Note that the 

scaffold-contig consistency measure can be tricked by a method that is consistently making 

wrong predictions, as it can achieve a high performance with this measure. For example, 

consider a method that assigns same label to all contigs. Such a method will achieve perfect 

scaffold-contig consistency scores. Nevertheless it is still an informative measure for “honest” 

methods. Several other performance measures were used for the individual real data sets and 

will be explained in the respective context. 

3.3 DATA SETS 

3.3.1 SIMULATED DATA SETS 

It is not straightforward enough to incorporate all the complexities present in real 

metagenome sequence samples such as organismal diversity and novelty in simulated data 

sets. However, when aware of these limitations, simulated data represent a good starting 

point for a thorough evaluation. Note that by simulated data we mean sequence fragments 

that were selected from genomes with known taxonomic affiliation and not simulated 

sequences or hierarchies. Recently, three simulated datasets of varying complexity were 
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constructed from fragments of sequenced genomes and used to benchmark the performance 

of various computational methods, including taxonomic binning techniques (Mavromatis et al. 

2007). We use the medium complexity dataset (simMC) from this benchmark collection for 

evaluation, as well as newly constructed simulated data sets of short fragments. 

ACID MINE DRAINAGE DATA SET (SIMMC) 

We  analyzed  the  simulated  acid  mine  drainage  data  set  (simMC) (Mavromatis et al. 2007) 

to  evaluate  the performance  of  the  different  binning  methods.  We used the data  set  of  

contigs assembled  with  the  Arachne  assembler,  which consist  of  7307  contigs  of  which  

~99% come from six strains of three species (two strains each); Rhodopseudomonas palustris, 

Bradyrhizobium sp. BTAi1 and Xylella fastidiosa. The average contig length is 2332 bp. We used 

the NCBI complete genomes for the training. Controlled sets of genomes were excluded as 

described in the results section. 

SHORT FRAGMENTS DATA SET (SIMSF) 

Next generation sequencing technologies yield short reads (~30-1000bp depending upon 

technology) and produce large amounts of data. It is, therefore, interesting to see, whether it 

is possible to characterize such short fragments directly without assembly. We simulated short 

fragments data sets to answer this question. The benchmark data sets were constructed with 

two constraints:  First, the fragments to be  characterized  should  not  belong  to  any  of  the  

organisms  represented  among  the reference   sequences,   as   metagenome   sample   

populations   are   rarely   among   the available  sequenced  isolate  genomes.  Secondly,  they  

should  be  chosen  such  that  the closest  reference  genomes  are  found  at  different  

taxonomic  ranks,  to  model  different degrees  of  evolutionary  relatedness  of  metagenome  

sample  populations  to  available reference  sequences.  To  simulate  this  set-up,  sequences  

from  the  NCBI  genomes database  were  used  as  reference  data  for  model  construction.  

One  hundred  isolate sequences from the NCBI whole genome shotgun database with no 

mapping to any of the  genera  of  the  reference  data  were  used  for  testing.  Of the latter, 

48 belong to a family, 39 to an order and 13 to a class of the reference taxonomy (data not 

shown). Thus, the test genomes were ‘unknown’ for PhyloPythiaS; that is not seen during 

training. Approximately 10,000 non-overlapping fragments of 100, 300, 500, 800 and 1000 bp 

in length were randomly sampled from the test sequences to create the test sets of varying 

lengths.  

3.3.2 REAL DATA SETS 

ACID MINE DRAINAGE METAGENOME SAMPLE (AMD) 

The AMD is a well-studied metagenome sample of an acidophilic biofilm community, 

sequenced with Sanger sequencing technology (Tringe et al. 2005). The AMD community 

comprises five abundant species: Ferroplasma Types I and II, a Thermoplasmatales species (all 

Euryarchaeota), and Leptospirillum sp. Group I and II of the phylum Nitrospirae. The test 

scaffolds for the AMD metagenome were downloaded from the IMG/M portal 

(http://img.jgi.doe.gov/, taxon object ID 2001200000). These data comprise 1183 scaffolds and 

~10.83 Mb of DNA sequence. Draft genome assemblies, comprising 908 scaffolds overall, were 
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created using sequencing coverage and nucleotide composition for the five populations of the 

AMD sample; the genome assemblies were then deposited at NCBI (accession numbers 

CH003520–CH004435). We mapped the AMD scaffolds to these reference assemblies with 

BLASTN (Altschul et al. 1990) and used the best match in terms of the lowest E-value for each 

scaffold of the AMD data set as an estimate of its “correct taxonomic affiliation”. 

TAMMAR WALLABY FOREGUT METAGENOME SAMPLE (TW) 

Microbial  communities  from  the  gut  of  the  Australian  Tammar  wallaby  (Macropus 

eugenii)   were   sequenced   by   Sanger   sequencing (Pope et al. 2010) (GenBank   accession   

number ADGC00000000). This sample consists of approximately 13.572 Mb of assembled DNA 

sequence,  with  contig  lengths  varying  in  length  from  438  bp  to  27,865  bp  (average 

length   2,276.38   bp).   16S   rRNA   analysis   determined   that organisms from the phyla 

Firmicutes and Bacteroidetes and the gamma-subdivision of Proteobacteria are   abundant. 

This sample contains at least three abundant microbial populations, namely Wallaby gut 1 

(WG-1 – a population of an uncultured Succinivibrionaceae bacterium), WG-2 (of a novel deep 

branching lineage within the Lachnospiraceae) and WG-3 (a novel bacterium of the 

Erysipelotrichaceae). 

HUMAN GUT METAGENOME SAMPLES (HG-TS28 AND HG-TS29) 

Two metagenome sequence samples from the gut of two human monozygotic, female twins 

were obtained by Roche/454 deep sequencing of the total fecal community DNA with 454 

Titanium single- and paired-end protocols (Turnbaugh et al. 2010) (referred to as TS28 and 

TS29). We analyzed approximately 113 Mb and 72 Mb of assembled contig sequences for TS28 

and TS29, respectively. Sample-specific training data was obtained with BLASTN homology 

searches versus a reference database of 118 sequenced gut genomes. Training data was 

identified based on the following criteria; e-value<10-5, bitscore>50, percent identity>90, 

percent sequence aligned>90, and total contig length>2 kb. Furthermore, all significant 

matches were required to originate from the same reference genome. 

COW RUMEN METAGENOME SAMPLE (CR) 

We furthermore performed taxonomic assignments for 26,042 metagenomic scaffolds (568 

Mbp) of a microbial community adherent to switchgrass incubated in a bovine rumen (Hess et 

al. 2011) with a twofold objective: First, to demonstrate usage of the PhyloPythiaS web server 

on a large dataset and, second, to verify usability of the method for sequences generated by 

Illumina sequencing technology. The data was downloaded from the DOE Joint Genome 

Institute website (ftp://ftp.jgi-psf.org/pub/rnd2/Cow_Rumen/). The majority of the scaffolds 

were found to have no similarity to sequenced genomes in the original study, suggesting 

uncharacterized microbes as their origin. Fifteen near-complete ‘genome bins’ of abundant 

populations from four orders were identified in the original study from the cow rumen sample, 

based on analysis of tetranucleotide frequency and assembly information (Hess et al. 2011). 

We used these genome bins, comprising 466 scaffolds overall, as the correct taxonomic 

affiliation for comparison with the taxonomic assignments of PhyloPythiaS. The partial genome 

bins published in the original article are not guaranteed to be entirely correct, nevertheless 
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they provide a qualitative reference point, as they were generated based on multiple sources 

of information and verified by human in-depth inspection. 

3.3.3 PHYLOPYTHIAS SETTINGS 

We  used  the  genome  sequences  from  the NCBI  complete  genomes repository as  

reference  data  for model  construction. The output hierarchy was restricted to the taxa to 

with at least three genomes could be assigned or as defined by the sample-specific data. We 

built six structural SVM models using different fragment lengths; 1, 3, 5, 10, 15 and 50 kb. For 

each of these models approximately 10,000 input examples were used equally distributed over 

all the taxa being modeled. The C value was fixed to 1000 (section 2.3). 

3.4 METHODS USED FOR COMPARISON 
The following sub-sections give a brief account of taxonomic classification methods used for 

comparison. All of those methods are based upon supervised machine learning techniques. 

3.4.1 PHYLOPYTHIA 

PhyloPythia uses patterns of oligonucleotides along with ensemble of hierarchical classifiers 

combining multi-class SVMs  the radial basis function kernel for taxonomic assignment of 

variable length metagenome sequences (McHardy et al. 2007). PhyloPythia builds a multiclass 

SVM for each of the domain to genus taxonomic ranks and combines them using a bottom-up 

approach for hierarchical classification. 

3.4.2 PHYMM AND PHYMMBL 

Phymm uses interpolated Markov models (IMMs) using sequence composition features for 

taxonomic classification of metagenome sequences. It was specially designed to classify reads 

as short as 100 bp. PhymmBL is a hybrid classifier which combines Phymm with BLAST to 

improve the assignment accuracy (Brady & Salzberg 2009). 

The PhymmBL package was obtained from the website 

http://www.cbcb.umd.edu/software/phymm/. This software by default downloads the NCBI 

RefSeq and taxonomy data and builds IMMs on the corresponding sequences. The first version 

of PhymmBL (available when the corresponding analyses were performed) did not allow 

training on arbitrary sequences, unless some specific conditions on the fasta headers and 

folder names are met. We, therefore, changed the perl scripts to allow use of arbitrary training 

data, so that NCBI draft assemblies and sample-specific data could be used. 

3.4.3 METAGENOME ANALYZER (MEGAN) 

MEGAN requires comparison of the metagenome sequences against databases of known 

sequences using BLAST or another comparison tool. A lowest common ancestor (LCA) 

algorithm is then used to assign reads to taxa such that the taxonomical level of the assigned 

taxon reflects the level of conservation of the sequence. MEGAN offers various parameters for 

adjustment of the LCA algorithm (Huson et al. 2007). 
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MEGAN was obtained from the website http://www-ab.informatik.uni-

tuebingen.de/software/megan. MEGAN can detect standard NCBI names in the BLAST output, 

so including sample-specific data was straight forward. We created various BLAST databases; 

NCBI complete genomes, NCBI draft assemblies and sample-specific data (when available) 

using the “formatdb” program (available with blast at 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST/). For sample-specific data, care 

was taken to include the organism names in the fasta headers before formatting them as a 

BLAST database, so that MEGAN could detect their taxonomic position. Default MEGAN 

parameters for LCA were used. Database searches were performed using blastn to appropriate 

databases using blast alias files. The complexity filter was turned off with option –F “m D” 

when performing blast searches. 

3.4.4 BEST BLASTN-HIT 

This is one of the simplest approaches used for alignment-based taxonomic classification but 

generally not well suited when closely related genomes are not available. The idea here is to 

obtain similarities between a test sequence and the reference sequences using BLASTN and 

then assign the taxonomic affiliation of the reference sequence that yields the highest 

similarity with the test sequence. The similarity is usually measured using the e-value (Altschul 

et al. 1990).  

We created BLAST databases for appropriate sequences using the “formatdb” command. The 

metagenome sequences were queried, using “blastn”, against this database with default 

parameters. The resulting blast report was parsed using BioRuby (Goto et al. 2010). Each query 

sequence is labeled with the taxonomic identifier of the genome with the best hit (lowest e-

value). Hits with e-value less than 0.1 were discarded as being insignificant. 

3.4.5 NAÏVE BAYESIAN CLASSIFIER (NBC) 

The first naïve Bayesian classifier in this context was proposed in (Sandberg et al. 2001). Later 

many other implementations with some modifications were proposed (Rosen et al. 2010; 

Parks et al. 2011). In this work we used the web server implementation as described in (Rosen 

et al. 2010). 

We downloaded the assignments provided by the NBC webserver (http://nbc.ece.drexel.edu/ 

with default N-mer length of 15 and Bacteria/Archaea genomes (accessed in April 2011) and 

used the “summarized_results.txt” file to extract the sequence headers and species level 

assignments (columns 1 and 4).  These assignments were used for subsequent analysis, for 

example generating pie charts and predictive performance calculations. 

3.5 RESULTS 

3.5.1 ACID MINE DRAINAGE SIMULATED DATA SET 

We analyzed the simulated acid mine drainage data set to evaluate the performance of the 

different binning methods. For this task, complete genomes from NCBI were used as reference 

data for model training with exception of those genomes used to create the simulated data 

http://www-ab.informatik.uni-tuebingen.de/software/megan
http://www-ab.informatik.uni-tuebingen.de/software/megan
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST/
http://nbc.ece.drexel.edu/


 

 

50 
5

0
 

set. This corresponds to the unknown genome test setting, in which no training data of the 

respective populations within a metagenome sample is used. For testing we used the contigs 

assembled with the Arachne assembler (Mavromatis et al. 2007). The performance of different 

methods is summarized in Figure 3.1. As can be seen, all methods perform well, overall, on this 

data set. PhyloPythiaS show very high specificity at all taxonomic ranks, while PhymmBL 

exhibits highest sensitivity but comparatively lower specificity at lower taxonomic ranks. 

MEGAN shows average specificity and sensitivity. Overall, PhyloPythiaS is conservative in 

assignments, tending more towards under-binning than the other methods, which results in a 

lower overall number of assignments to genus- and family-level clades on this data set. 

In order to simulate the effect of varying degree of evolutionary relatedness between the 

training and test data, we evaluated performance of the different taxonomic classification 

methods by retaining 100 kb randomly selected contiguous fragments from the three 

dominant strains each as reference data and removing all genomes of the (1) same genus, (2) 

same order and (3) same class for the dominant strains. These different experiments are 

referred to as ‘New genus’, ‘New order’ and ‘New class’ respectively. This allows us to examine 

the performance in more realistic settings. A drastic drop in the sensitivity and accuracy of the 

alignment-based methods (MEGAN and PhymmBL) can be seen in the absence of closely 

related genomes. This is due to the lack of homologous regions, as only 100 kb of sequence 

were available for the dominant populations. On the other hand, composition-based methods 

(PhyloPythiaS and Phymm) show better sensitivity and accuracy, of which PhyloPythiaS shows 

superior performance. This demonstrates the strength of composition-based methods and the 

ability of PhyloPythiaS to learn accurate models from limited amounts of reference data 

(Figure 3.1). 

3.5.2 SIMULATED SHORT FRAGMENTS DATA SETS 

This is one of the most complex tasks in metagenome sample classification; for a real sample 

corresponding to the task of assigning individual unassembled reads of rare organisms without 

reference sequences available to correct higher-level clades. The test fragments do not map to 

any genus in the reference taxonomy (or available reference sequences). The lowest clades 

that the fragments map to in the reference taxonomy are at varying taxonomic ranks above 

the rank of genus. Thus, no assignment to a genus-level clade is the optimal result for 

fragments of this data set; meaning that genus-level assignment specificity can be computed, 

while sensitivity of assignments, indicates the portion of correctly ‘not assigned’ test 

fragments. 

The results are summarized in Figure 3.2. As expected, all methods show better performance 

with increasing fragment length and a trade-off between sensitivity and specificity. Overall, 

MEGAN shows superior specificity compared to all other methods. MEGAN is conservative due 

to its LCA algorithm, in the sense that it makes very specific assignments at the cost of 

sensitivity. Of the sequence composition-based methods, PhyloPythiaS and Phymm, 

PhyloPythiaS shows better specificity with compromised sensitivity. 
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Figure 3.1. Average performance for the simMC data set at different taxonomic ranks in four different 

experiments. 

Both Phymm and PhymmBL show rather low sensitivity at the genus level. This is caused by the 

composition of the test data, for which none of the test fragments belong to any of the genus-

level clades that are part of the models. Both methods ‘over-bin’ by assigning a substantial 

fraction of sequences to genus-level clades that should rather be left unassigned. It is 

interesting to note the drastic performance improvement of PhymmBL compared to Phymm 

for all fragment lengths and at all taxonomic ranks. At family level, which is the lowest 

taxonomic rank with valid assignments, the improvement in specificity is approximately 12-

18% with a bigger effect on shorter fragments, and around 13% improvements in sensitivity. 

Furthermore, the fact that MEGAN achieves high specificity values indicates that alignment-

based sequence similarity information is beneficial for short fragment assignment. For 

sequence composition, we attribute the degraded performance to the comparatively weak 

and noisy compositional signal of short fragments. 
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Figure 3.2. Average performance for the simSF data set at different taxonomic ranks. 

A “dip” is observed in the specificity at the order level for PhyloPythiaS and other methods. 

This is due to the construction of the data set. More specifically, the test fragments have 

varying degree of evolutionary relationship with the reference sequences. This is the reason 

for non-monotonous behavior of the performance measures over different taxonomic ranks 

on this data set. 

Besides the hold-out experiments described above, we furthermore performed 3-fold cross 

validation for PhyloPythiaS on the pooled data of complete genome sequences and whole 

genome assemblies. The data were randomly split into three stratified sets according to their 

genus affiliations. Genome sequences belonging to one of these sets were used to generate 

short fragment test data, while the sequences of other two sets were used for training. This 

procedure was repeated for each of the three sets and assignment accuracy determined. The 

averaged sensitivity, specificity and accuracy values obtained are reported in Figure 3.3. 
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Figure 3.3. Average performance of PhyloPythiaS on the genus-stratified short fragment data sets. 

3.5.3 ACID MINE DRAINAGE METAGENOME SAMPLE 

We compared the PhyloPythiaS generic and sample-specific model assignments with 

predictions from the NBC web server (http://nbc.ece.drexel.edu/), MEGAN and the best 

BLASTN hit approach. As MG-RAST and WebCARMA incorporate AMD sequences as reference 

data, a comparative evaluation by direct submission to these servers would not have ensured 

strict separation of the reference data and test data. Taxonomic scaffold assignments with 

PhyloPythiaS and the other tested methods were evaluated based on draft genome assemblies 

for the five strains and the Fluorescent In-Situ Hybridization (FISH) cell counts published in the 

original AMD study (Figure 3.4 d, e). 

The PhyloPythiaS generic model returned the assignments in less than 5 minutes when 

accessed via the web server running on a machine with 4 GHz CPU, 4 GB main memory and no 

competing processes. Most scaffolds were assigned to high taxonomic ranks (taxonomic 

assignments are shown in Figure 3.4, base-pair accuracy is given in Table 3.2. Taxonomic 

distance analysis for the AMD metagenome scaffolds assignment.). As with complete scaffolds, 

bacterial clades were overestimated and archael clades were underestimated (Table 3.2, 

Supplementary Figure 3). As no reference data were available in model construction for the 

sample populations, this was expected. Euryarchaeota were identified, but many scaffolds 

were assigned to phyla Proteobacteria and Verrucomicrobia, instead of to Nitrospirae. The 

generic model assignments were similar to those of BLASTN in terms of population abundance 

(Supplementary Figure 5). In contrast, the NBC web server overestimated the abundance of 

Firmicutes and underestimated that of Euryarchaeota (Figure 3.4 f, Supplementary Figure 6). It 

might be that the NBC web server performs better on short sequence fragments rather than 

on longer sequences. In order to check for this possibility, we created fragments of length 500 

bp from the AMD scaffolds and obtained their assignments. In this case, the NBC server was 

accessed in May 2011. The resulting assignments were mapped to the phylum and domain 

level clades to facilitate visualization (Supplementary Figure 7).  
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For learning a sample-specific model, we randomly selected ~100 kb of continuous sequences 

from the five populations as sample-specific training sequences. Specifically, the five strains 

and corresponding amounts of sample-specific data used were 70 kb for Leptospirillum sp. 

Group III, 100 kb for Ferroplasma acidarmanus Type I, 100 kb for Leptospirillum sp. Group II '5-

way CG', 100 kb for Ferroplasma sp. Type II and 70 kb for Thermoplasmatales archaeon Gpl (G-

plasma). Construction of the sample-specific model took slightly less than 7 hours. 

Assignments with the sample-specific model (Figure 3.4 b, c and Supplementary Figure 4) 

corroborate well with the taxonomic makeup of this dataset. Both the generic and sample-

specific models of PhyloPythiaS produced assignments that were taxonomically consistent and 

closer to the draft assemblies than those of the BLASTN approach, MEGAN and the NBC server 

(Figure 3.4, Figure 3.5). Low scaffold consistency for the Leptospirillum sp. Group II '5-way CG'  

population (0.76) accompanied by low taxonomic distance between correct and predicted 

taxonomic affiliations (1.73) suggest that there was a certain degree of ‘back-and-forth’ in 

assignments between the Leptospirillum clades. In contrast, assignments for the Ferroplasma 

populations showed high scaffold consistency (>0.95) and higher taxonomic distance between 

correct and predicted affiliation (>3.7), suggesting that assignments were made to higher ranks 

(Table 3.2). 
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Figure 3.4. Taxonomic assignments of the AMD metagenome scaffolds. Each slice represents number 

of bases assigned. (a) the PhyloPythiaS generic model at the phylum level, (b) the PhyloPythiaS 

sample-specific model at the phylum level, (c) the PhyloPythiaS sample-specific model at various 

ranks, (d) taxonomic reference composition, obtained by alignment of the scaffolds with draft 

genome assemblies, (e) quantitative cell counts from a FISH study, reproduced from (Tyson et al. 

2004) and (f) NBC with N-mer length 15 and Bacteria/Archaea genomes at the phylum level. The 

“Other” slice represents sequences that were unassigned or assigned at a higher level.  Assignments 

were mapped to phylum level in plots a, b and f for ease of visualization. 
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Table 3.2. Taxonomic distance analysis for the AMD metagenome scaffolds assignment. The most 

specific assignments provided by each method were used for this analysis. The correct scaffold 

assignments (Population), were obtained using five strains (three species) whole genome shotgun 

sequences obtained from NCBI. The methods are PhyloPythiaS sample-specific model (PPS SS), 

PhyloPythiaS generic model (PPS G), BLASTN, MEGAN and naïve Bayesian classifier (NBC). The 

populations are Thermoplasmatales archaeon Gpl (T), Leptospirillum sp. Group III (L1), Leptospirillum 

sp. Group II '5-way CG' (L2), Ferroplasma acidarmanus (F1) and Ferroplasma sp. Type II (F2). The 

numbers in brackets after population name show number of correct scaffolds. The rows signify 

number of assigned scaffolds (Assigned), the fraction of assignments in the same lineage as the correct 

taxon (Const_n_scaff),  the fraction of base-pairs in the same lineage as the correct taxon 

(Const_n_bp) and average taxonomic distance with respect to  draft reference genomes (Tax Dist). 

Method Measure 

Population  

T (404) L1 (417) L2 (126) F1 (172) F2 (64) 
Micro  

average 
Macro  

average 

PPS SS 

Assigned 404 410 118 172 64 -- -- 

Const_n_scaff 0.83 0.91 0.76 0.98 0.95 0.89 0.89 

Const_n_bp 0.89 0.94 0.95 0.99 0.99 0.94 0.95 

Tax dist 2.82 1.60 1.73 3.72 3.83 2.11 2.74 

PPS G 

Assigned 403 414 126 172 64 -- -- 

Const_n_scaff 0.81 0.38 0.29 0.97 0.91 0.63 0.67 

Const_n_bp 0.86 0.38 0.11 0.99 0.98 0.62 0.66 

Tax dist 2.96 8.01 7.56 4.46 3.70 4.97 5.34 

BLASTN 

Assigned 403 416 126 172 64 -- -- 

Const_n_scaff 0.13 0.16 0.05 0.07 0.08 0.12 0.10 

Const_n_bp 0.08 0.11 0.01 0.02 0.02 0.05 0.05 

Tax dist 5.65 11.18 11.45 7.97 6.64 7.90 8.58 

MEGAN 

Assigned 377 306 89 164 63 -- -- 

Const_n_scaff 0.38 0.67 0.61 0.24 0.25 0.22 0.43 

Const_n_bp 0.33 0.65 0.57 0.19 0.12 0.37 0.37 

Tax dist 4.16 6.91 6.62 6.98 5.81 3.55 6.09 

NBC 

Assigned 403 413 126 172 63 -- -- 

Const_n_scaff 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Const_n_bp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tax dist 11.35 10.97 10.65 14.85 13.63 12.40 12.29 
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Figure 3.5. Performance of the different methods at six major taxonomic ranks on the AMD 

metagenome sample. All the methods except PhyloPythiaS in sample-specific mode and BLASTN 

made only incorrect assignments at genus and family levels. The performance measures are used as 

defined in section 3.2. The methods compared are the PhyloPythiaS generic model (PPS G), 

PhyloPythiaS sample-specific model (PPS SS), BLAST best hit (BLASTN), MEGAN and naïve Bayesian 

classifier (NBC). 

3.5.4 TAMMAR WALLABY FOREGUT METAGENOME SAMPLE 

For taxonomic sample characterization, sample-specific models were constructed by 

combining publicly available sequences from NCBI (complete genomes and draft assemblies) 

with sample-specific data identified based on taxonomic marker genes and sequencing of a 

scaffold metagenome library. The PhyloPythiaS and PhyloPythia models included a 

representation for these abundant sample-population in addition to higher-level bacterial and 

archaeal clades (Supplementary Table 1) (Pope et al. 2010; Patil et al. 2011). Sample-specific 

data was also incorporated into the training data for PhymmBL and a reference database for 

BLASTN similarity searches for MEGAN. Note that the PhyloPythia model was built and the 

assignments were obtained for the (Pope et al. 2010, 2011) studies. 

The performance of the different methods for the three abundant populations and the whole 

sample on average based on the scaffold-contig consistency of the assignments was calculated 

(Table 3.3). Figure 3.6 and Supplementary Figure 8 depict the scaffold-contig assignment 

consistency for scaffolds longer than 20 kb for the WG-1 and WG-2 populations for the 

different methods, respectively. Both PhyloPythiaS and PhyloPythia show a higher consistency 

than PhymmBL and MEGAN for the three uncultured populations; except that MEGAN has a 

slightly better consistency for WG-3 (Table 3.3). The overall consistency of MEGAN 

assignments is higher than for the other methods, but a considerably smaller portion of the 

sample is characterized (~63%), while the rest remained unassigned. PhymmBL assigned a 

large portion of the sample (~98%, following PhyloPythiaS ~100%) but shows lower 

consistency values.  
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Figure 3.6. Comparison of different taxonomic assignment methods using scaffold-contig consistency 

for the WG-1 population (uncultured Succinivibrionaceae bacterium) from TW sample. Contig coloring 

reflects taxonomic assignment consistency with respect to WG-1. Every horizontal bar represents a 

scaffold and its constituent contigs. Every contig is color coded to represent its consistency with 

respect to the scaffold assignment. Only scaffolds >=20 kb in length are shown for clarity. 

 

Table 3.3. Performance of different binning methods for the abundant populations in the TW sample. 

Assignment accuracy is evaluated based on the scaffold-contig consistency. Sample-specific data was 

used for all methods. 

Method Population 
Kilo-bases 
assigned 

Scaffold-contig 
consistency 

(% bp) 

Scaffold-contig consistency 
(average taxonomic 

distance) 

PhyloPythiaS 

WG-1 2,669.60 97.71 0.38 

WG-2 2,512.93 97.24 0.34 

WG-3 892.65 94.11 0.43 

Total 13,552.86 78.54 0.44 

PhyloPythia 

WG-1 2,674.70 97.94 0.29 

WG-2 2,326.76 89.75 0.53 

WG-3 870.60 94.70 0.35 

Total 12,830.05 82.90 0.43 

PhymmBL 

WG-1 3,542.94 69.90 0.72 

WG-2 2,809.81 56.69 1.12 

WG-3 1,005.99 64.59 1.12 

Total 13,286.18 60.78 1.01 

MEGAN 

WG-1 1,100.20 90.28 0.44 

WG-2 646.19 81.99 0.46 

WG-3 142.69 95.27 0.27 

Total 8,604.92 86.91 0.41 
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Table 3.4. Effect of sample-specific data on the assignment of the TW sample for PhyloPythiaS and 

PhymmBL. The “#predictions” columns shows number of predictions obtained using the sample-

specific models and for both the sample-specific and the non-sample-specific models. The 

“#consistent predictions” column shows how many of these predictions are taxonomically consistent 

with the respective population. The last column shows the average taxonomic distance between the 

predictions of the sample-specific and non-sample-specific models. For WG-2 PhymmBL without 

sample-specific data made the specified number of consistent assignments to Lachnospiraceae due to 

relabeled Ruminococcus. 

Population Method 
#predictions 

(sample-
specific) 

#predictions 
(joint) 

#consistent 
predictions 

Average 
taxonomic 

distance 

WG-1 
PhymmBL 530 434 0 8.93 

PhyloPythiaS 477 477 361 5.13 

WG-2 
PhymmBL 708 690 205 5.37 

PhyloPythiaS 482 482 419 2.05 

WG-3 
PhymmBL 286 201 0 8.59 

PhyloPythiaS 296 296 266 3.29 

 

PhyloPythiaS and PhyloPythia have comparable consistency. For WG-2, PhyloPythiaS had 

higher consistency, for WG-1 PhyloPythia performed slightly better. PhymmBL showed lower 

consistency, both for the dominant populations and the whole sample. PhymmBL generally 

assigns fragments down to the genus level-clades of the model, which results in lower 

consistency values. 

We evaluated the performance of PhyloPythiaS and PhymmBL in the presence and absence of 

the sample-specific data. The results indicate PhymmBL’s over-binning tendency of assigning 

most sequences to genus-level clades (Table 3.4). These assignments can be misleading if 

genera of the dominant sample populations are not included in the reference model. For 

PhymmBL, out of 530 contigs that were assigned to WG-1, when sample-specific data was 

included, only 33 contigs were assigned to the consistent parental clade 

Gammaproteobacteria without sample-specific data, accompanied by a large number of 

inconsistent assignments in comparison to assignments of the sample-specific model. In 

contrast, for the same population, PhyloPythiaS assigned 243 out of 477 contigs to the 

consistent general clade Bacteria, in the absence of sample-specific data, thus avoiding false 

positive assignments (Supplementary Table 2). Similar observations were made for other 

populations (data not shown). 

In order to investigate difference between the different taxonomic classification methods, we 

performed a two-tailed Wilcoxon paired sum-ranks tests for different methods on the scaffold-

contig consistency and kilo-bases assigned for 230 clades (union of predicted clades by all the 

methods). The P-values obtained (Table 3.5) show that PhymmBL is significantly different than 

other methods in both kilo-bases assigned and scaffold-contig consistency. The differences 

between the methods were visualized using Euler diagrams (Kestler et al. 2008) 

(Supplementary Figure 9, Supplementary Figure 10). 
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Table 3.5. Statistical comparison of the assignments of different methods on the TW data set. The 

bold values indicate pairs where the null hypothesis is rejected at 95% confidence.  

Methods Scaffold-contig consistency Kilo-bases assigned 

PhyloPythiaS – PhyloPythia 0.0338 0.4242 

PhyloPythiaS – PhymmBL 5.5454e-09 1.7678e-07 

PhyloPythiaS – MEGAN 0.5720 0.8605 

PhyloPythia - PhymmBL 1.1306e-11 6.2198e-11 

PhyloPythia – MEGAN 0.0591 0.5781 

PhymmBL – MEGAN 2.0417e-12 8.0705e-06 

NUCMER ANALYSIS 

A representative of WG-1 has been cultured axenically by reverse metagenomics methods, and 

its genome sequenced (Pope et al. 2011). NUCmer (nucleotide MUMmer) (Delcher et al. 2002) 

was used by our collaborator Phil Pope to align the contigs predicted as WG-1 by PhyloPythiaS 

and PhyloPythia, respectively, to the 43 scaffolds obtained for the WG-1 genome (Table 3.6). 

Overall, 357 of 366 PhyloPythia assignments (98%) align to the reference, with 90.09%, or 1.79 

Mbp, of metagenome sequence matching the genome reference. In comparison, 525 of 604 

PhyloPythiaS assignments (87%) align to this reference, corresponding to 85.77%, or 1.80 Mbp, 

of matching sequence. The average percent identity of aligned metagenome contigs with the 

reference was 98.92% and 98.9%, respectively. The filtered alignment images indicate that the 

PhyloPythiaS assignments produce a tighter coverage of the reference scaffolds than those of 

PhyloPythia (data not shown). The most likely reason for this tighter coverage is that 

PhyloPythiaS assigns many more short contigs than PhyloPythia. However, despite 

PhyloPythiaS assigning more contigs, a larger fraction of contigs do not align to the reference, 

and the extra assignments do not significantly increase the overall coverage, as they mostly 

consist of short contigs. Whilst the reference WG-1 isolate genome is not 100% complete, 

there is a likelihood of some miss-assignments arising from the additional, shorter contigs that 

PhyloPythiaS is assigning to WG-1. This is not surprising, given that the accuracy of short contig 

assignments generally is not comparable to that for longer contigs (see above). Nonetheless, 

both methods were very accurate in the taxonomic assignment of this population. 

Table 3.6. NUCmer analysis of the WG-1 assignments for the TW sample. 

Measure 
PhyloPythia  

filtered 
PhyloPythia  
unfiltered 

PhyloPythiaS  
filtered 

PhyloPythiaS  
unfiltered 

# contigs aligned 357 (98%) 359 (98%) 525 (87%) 543 (90%) 

Length match (bp) 1,798,591 1,941,532 1,803,892 1,972,064 

Coverage (%) 90.09 97.28 85.77 93.7 

Average IDY (%) 98.92 95.14 98.90 95.50 

3.5.5 HUMAN GUT METAGENOME SAMPLES 

PhyloPythiaS and PhyloPythia models were constructed for 29 (14+15) genus- and family-level 

clades abundant in the sample and relevant higher-level taxonomic clades (Supplementary 

Table 3) using data from 5,548 and 3,391 sample-specific contigs and 1,775 microbial complete 

and draft microbial genomes.  For PhyloPythiaS, sample-specific data was selected with active 

sampling for training, while for PhyloPythia, a subset was taken. PhyloPythia assignments were 

generated by Alice Carolyn McHardy in a previous study (Turnbaugh et al. 2010). For the 

training of PhymmBL, only assembled and draft genome sequences were used. Due to 
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excessive computational requirements of homology searches on this data set, we did not 

perform assignments with MEGAN. 

Contigs from both samples were assigned with PhyloPythiaS, PhyloPythia and PhymmBL and 

the scaffold-contig assignment consistency was evaluated. PhyloPythiaS and PhyloPythia 

consistently showed a very similar performance across all taxonomic ranks (Table 3.7). 

PhymmBL also showed a high scaffold-contig consistency, but, in comparison, lesser amounts 

of sequence are characterized. This is indeed an interesting result, as no sample-specific data 

was included for training of PhymmBL. The high consistency observed in the absence of 

sample-specific training data may be due to the fact that a large number of 122 available gut 

genome sequences from the relevant taxa are in the public domain and thus could contribute 

to model quality.  

MARKER GENE ANALYSIS 

In addition to the analysis of the scaffold-contig consistency, we performed further tests to 

validate PhyloPythiaS scaffold assignments for the two human gut microbiome samples, 

relative to the tests of PhyloPythia and control genomes described in (Turnbaugh et al. 2010). 

These analyses were performed by our collaborator Peter Turnbaugh on the intersection of the 

scaffolds assigned by both PhyloPythiaS and PhyloPythia. First, the scaffolds assignments were 

validated based on 30 conserved marker genes with consistent phylogeny to 16S rRNA. All 

genes from the microbiome bins were assigned to STRING orthologous groups (Jensen et al. 

2009).  A neighbor-joining tree was built using clustalw (Larkin et al. 2007) version 2.0.12 for 

each set of marker genes after aligning the translated gene sequences from 122 gut genomes 

and the binned scaffolds. Individual sequences were assigned to taxa based on the consensus 

taxonomy of all sequences found at the first node. Additionally, the frequency of consistent 

taxonomy between database marker genes and nearest neighbor sequences was tallied and 

used as a control for the frequency of miss-assignment due to alignment errors, improper 

clustering, and/or disagreement with the marker genes and NCBI taxonomy. Overall the results 

indicate accurate binning at all evaluated taxonomic levels. PhyloPythiaS showed a high 

accuracy based on this measure across the ranks from domain to genus for both the TS28 and 

TS29 samples (Figure 3.7).  
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Table 3.7. Taxonomic assignments for abundant genera in the human gut metagenome samples. 

Assignment accuracy is evaluated based on the consistency of taxonomic assignment for contigs of 

the same scaffold.  

Method 
Genus-level bin / 

Population 

Kilo-bases assigned 
Scaffold-contig 

consistency 
(% bp) 

Scaffold-contig 
consistency 

(average taxonomic 
distance) 

TS28 TS29 TS28 TS29 TS28 TS29 

PhyloPythiaS 

Ruminococcus 13,787.33 13,016.96 95.10 94.68 0.16 0.20 

Faecalibacterium 17,049.71 8,490.69 93.44 90.75 0.18 0.16 

Clostridium 8296.77 3376.53 89.41 95.74 0.24 0.22 

Eubacterium 8840.37 2515.17 98.05 76.63 0.10 0.30 

Dorea 2,443.36 1,323.47 98.75 96.05 0.11 0.30 

Bifidobacterium 4,948.32 4,760.12 98.51 99.97 0.08 0.05 

PhyloPythia 

Ruminococcus 16,879.06 14,918.45 94.78 90.18 0.15 0.29 

Faecalibacterium 19,962.39 9,372.68 94.80 85.72 0.28 0.25 

Clostridium 11,797.44 4,097.59 77.42 85.62 0.39 0.45 

Eubacterium 10,138.96 1,859.18 97.12 89.78 0.16 0.51 

Dorea 3,412.84 1,511.66 97.21 82.30 0.11 0.49 

Bifidobacterium 4,946.77 4,767.18 98.40 99.78 0.06 0.03 

PhymmBL 

Ruminococcus 6,613.42 5,694.06 96.11 94.87 0.10 0.09 

Faecalibacterium 15,302.09         6,423.28 94.09 93.96 0.12 0.07 

Clostridium 13,246.25 4,917.47 87.30 92.22 0.22 0.19 

Eubacterium 5,624.48 1,337.88 98.01 85.77 0.08 0.26 

Dorea 3,118.58 1,381.38 97.61 82.95 0.05 0.21 

Bifidobacterium 5,057.49 4,757.60 97.96 99.93 0.11 0.03 

 

 

Figure 3.7.Marker gene validation for the human gut metagenome sample assignments.  
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CD-HIT ANALYSIS 

Peter Turnbaugh furthermore used the CD-HIT (Cameron, Bernstein & Williams 2007) to 

cluster the protein sequences of the gut samples and 122 gut genomes at 60% identity.  The 

taxonomic consistency of genes within these clusters and the respective bin assignments was 

then analyzed. Both PhyloPythiaS and PhyloPythia showed a high consistency of taxonomic bin 

assignments within protein clusters (Figure 3.8). 

 

 Figure 3.8. Validation for the human gut metagenome sample assignments using CD-HIT (fraction 

matched). 

3.5.6 COW RUMEN METAGENOME SAMPLE 

The scaffolds from the CR sample were taxonomically assigned using the generic mode as a 

multiplex sample (section 2.5) and the combined predictions were visualized. The majority of 

the scaffolds were assigned to the orders Bacteroidales, Clostridiales, Bacillales, 

Spirochaetales, Methanomicrobiales, Methanosarcinales, Sulfolobales, Selenomonadales and 

Rhizobiales (Figure 3.9). We measured the assignment consistency as the number of base-pairs 

of these scaffolds consistently assigned by the generic model to the order-level clades of the 

respective genome bins. Taxonomic distances of the predictions were calculated relative to the 

reported orders for the genome bins (Table 3.8). Overall the generic model made consistent 

assignments for the majority of scaffolds. In particular, this was the case for genome bins of 

order-level clades with substantial numbers of reference genomes available, while assignment 

consistency was lower for clades covered by fewer reference genomes. Seven of the 15 bins 

were more than 90% consistent, four of them even to 100%. Five bins showed low consistency. 

In particular, we observed that the Clostridiales and Myxococcales genome bins were less 

consistent than bins of the other three orders. For Myxococcales this is likely because fewer 

sequenced genomes were available for training of the generic model (given the number of 

species with sequenced genomes for all five clades). For the Clostridiales, this might be due to 

genomic differences of the species represented by the genome bins to the sequenced 

Clostridiales genomes used as reference (mean GC content of 50% versus a mean GC content 

of 36%). However, regardless of the exact nature of the assigned taxonomic affiliation, 
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scaffolds of a particular bin tended to be homogeneously assigned to the same clade by the 

generic model, varying from 44% to 100% of the scaffolds for the different bins. The predictive 

accuracy of the overall assignment can likely be further improved by construction of a sample-

specific model, as we showed for AMD, TW and HG samples. 

 

Figure 3.9. Taxonomic assignments of the cow rumen metagenome scaffolds with the PhyloPythiaS 

generic model. This data-set contained 26,042 scaffolds in total. The assignments are shown at the 

order level. Each slice represents the total number of bases assigned to an order. The “Other” slice 

represents sequences that were either assigned at a higher level or were unassigned. 

3.6 EXECUTION TIME ANALYSIS 
Empirical analysis of execution times, performed on a machine with 4 GHz CPU, 4 GB main 

memory and no competing processes, determined that PhyloPythiaS requires 0.08-0.1 seconds 

for the assignment of 0.1-10 kb fragments (Figure 3.10). This corresponds to a 3- to 46-fold and 

5- to 68-fold improvement in comparison to MEGAN and PhymmBL, respectively. For 

characterization of a 13 MB assembled metagenome sample, PhyloPythiaS showed 22-fold, 85-

fold and 106-fold speed increase in comparison to PhyloPythia, MEGAN and PhymmBL, 

respectively (Table 3.9). The efficiency of PhyloPythiaS at the test time is due to the linear 

nature of the inference that only requires computing the dot product between the input 

example and the learned weight vector in the joint feature space. As PhyloPythiaS models 

require only a subsample of the reference data for accurate assignment, in the future, training 

times will not necessarily be substantially impacted by increases of sequence data, contrary to 

alignment-based approaches. 

 



 

 

65 
6

5
 

Table 3.8. Taxonomic distance and consistency analysis of the 15 genome bins from the cow rumen 

metagenome consisting of 466 scaffolds in total. The first three columns describe the dataset while 

the last three columns summarize the predictions of the PhyloPythiaS generic model. The last three 

columns show the average taxonomic distances between the predicted order and the correct order 

(Tax Dist), the consistency calculated based on the fraction of assigned scaffolds (Const_n_scaff) and 

the consistency calculated based on the fraction of assigned base-pairs (Const_n_bp). See ‘Results’ for 

the definitions of taxonomic distance and consistency.  The micro average is the average value over all 

scaffolds and the macro average represents the average over the genome bins. 

Genome bin Correct order #Scaff 
PhyloPythiaS generic model prediction 

Tax Dist Const_n_scaff Const_n_bp 

AC2a Bacteroidales 20.000 0.000 1.000 1.000 

AJ Bacteroidales 22.000 0.000 1.000 1.000 

AMa Spirochaetales 19.000 0.000 1.000 1.000 

AQ Bacteroidales 24.000 0.000 1.000 1.000 

AH Bacteroidales 26.000 0.231 0.962 0.990 

ATa Clostridiales 32.000 0.625 0.906 0.967 

AGa Bacteroidales 35.000 0.743 0.886 0.938 

BOa Clostridiales 42.000 1.738 0.690 0.776 

AFa Spirochaetales 28.000 1.893 0.714 0.759 

APb Clostridiales 55.000 3.636 0.382 0.454 

AS1a Clostridiales 53.000 5.245 0.189 0.114 

AIa Clostridiales 22.000 6.682 0.182 0.086 

ADa Myxococcales 20.000 3.100 0.250 0.076 

AN Clostridiales 27.000 3.704 0.074 0.046 

AWa Clostridiales 41.000 7.073 0.000 0.000 

Macro average -- 31.067 2.311 0.616 0.614 

Micro average -- -- 2.693 0.560 0.613 
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Figure 3.10. Empirical execution time evaluated on a Linux machine with 3 GHz processor and 4 GB 

main memory. Results for MEGAN and PhymmBL were determined with a reference database of size 

2.1 GB. 

 

Table 3.9. Execution time comparison for different methods for characterization of the three real 

metagenome samples. The sample sizes are approximately 16 Mb, 113 Mb and 72 Mb for TW, TS28 

and TS29 respectively. 

Method 
Time (DD:HH:MM:SS) 

TW TS28 TS29 

PhyloPythiaS 00:00:08:36 00:01:13:43 00:00:46:28 

PhyloPythia 00:03:12:43 01:08:04:25 00:21:18:27 

PhymmBL 00:15:09:51 07:13:54:01 04:15:53:44 

MEGAN 00:12:10:14 -- -- 
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3.7 CONCLUSIONS 
Some general conclusions can be drawn from the experiments performed on the simulated 

and real metagenome data sets with regards to the closeness of the reference data to the 

sequences in the sample and sequencing technology used. 

When closely related complete genomes sequences are available for the populations in the 

metagenome sample, alignment-based methods are at an advantage as the sample fragments 

can be aligned to the respective reference genomes with high confidence. This was observed 

for the simMC data set in the ‘known species’ experiment, where complete genome sequences 

from NCBI were used as reference data for model training with exception of the genomes used 

to create the simMC data set. Though the exact genomes were removed, the reference data 

included genomes of either same species (for Rhodopseudomonas palustris and Xylella 

fastidiosa) or same genus (for Bradyrhizobium sp. BTAi1). At lower taxonomic ranks (genus and 

family) alignment-based and hybrid methods showed higher sensitivity and accuracy 

compared to the composition-based methods. At higher taxonomic ranks the sensitivity and 

the accuracy of all methods became more similar. PhyloPythiaS maintained high specificity at 

all taxonomic ranks, while other methods except PhyloPythia generally showed lower 

specificity at lower taxonomic ranks. Similarly, for the two human gut metagenomes the high 

scaffold-contig consistency obtained by PhymmBL without sample-specific sequences is likely 

due to the large number of gut genome sequences from related taxa (122 in total) available as 

reference. 

In the taxonomic assignment task for metagenomic data it is more realistic to consider that 

complete genome sequences of the dominant populations are not available as reference as 

most of the microorganism diversity is still unknown. Therefore, often only distantly related 

genomes are available and in some cases it is possible to obtain limited amounts of sample-

specific data for the dominant populations by phylogenetic analysis of conserved marker-

genes for the sample or sequencing of additional fosmid libraries. We simulated three such 

scenarios using the simMC data set; ‘New genus’, ‘New order’ and ‘New class’, by retaining 100 

kb randomly selected contiguous fragments for dominant populations and removing all 

reference genomes at the corresponding ranks. In the absence of the closely related genomes 

the alignment-based and hybrid methods showed a drastic drop in the sensitivity and 

accuracy. On the other hand, composition-based methods showed better sensitivity and 

accuracy. This demonstrates strength of composition-based methods and the ability of 

PhyloPythiaS to learn accurate models from limited amounts of reference data. When no 

closely related or sample-specific data is available PhyloPythiaS tends to make assignments at 

higher taxonomic ranks. This is a desired behavior as assignments to lower ranks can be 

misleading in these cases. This suggests that PhyloPythiaS is better at assigning fragments of 

the ‘known unknowns’ in metagenome data sets and is robust with respect to the reference 

data. 

Furthermore, with many high-throughput sequencing technologies being developed, we also 

evaluated whether PhyloPythiaS copes with the different technology-specific errors and read 

lengths. The technologies produce reads of different lengths and qualities, potentially affecting 

performance of taxonomic assignment methods. We tested sequences generated with three 
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technologies; Sanger, 454/Roche and Illumina, and found that regardless of the technology 

used all samples were characterized consistently. We expect PhyloPythiaS to work equally well 

with assembled sequence data from other technologies with similar sequencing error rates, 

such as the SOLiD (Applied Biosystems) platform (Valouev et al. 2008). It should be noted that 

the performance of PhyloPythiaS on sequence fragments with high error rates is still 

unexplored. Although it is possible to perform assignments for short sequences (<1000 bp), 

like with other methods, these assignments are less accurate than those for longer sequences 

and often to higher ranking taxa only. Therefore, we advise that short reads should be 

assembled into longer contigs before performing assignments with PhyloPythiaS.  
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4 GENOME TREE INFERENCE 
Understanding the evolutionary relationships between organisms is vital for their in-depth 

study. Gene-based methods are often used to infer such relationships, which are not without 

drawbacks. One can now attempt to use genome-scale information, because of the ever 

increasing number of genomes available. This opportunity also presents a challenge in terms of 

computational efficiency. Two fundamentally different methods are often employed for 

sequence comparisons, namely alignment-based and alignment-free methods. We used 

genome-scale sequence information to infer taxonomic distances between organisms without 

additional information such as gene annotations. We propose a method to improve genome 

tree inference by learning specific distance metrics over the genome signature for groups of 

organisms with similar phylogenetic, genomic or ecological properties. Specifically, our method 

learns a Mahalanobis metric for a set of genomes and a reference taxonomy to guide the 

learning process. By applying this method to more than a thousand prokaryotic genomes, we 

show that, indeed, better distance metrics could be learned for most of the 18 groups of 

organisms tested here. Once a group-specific metric is available, it can be used to estimate the 

taxonomic distances for other sequenced organisms from the group. This study also presents a 

large scale comparison between ten methods - nine alignment-free and one alignment-based. 

4.1 INTRODUCTION 
In this chapter we address the problem of inferring distances between whole genome (genic + 

nongenic) sequences to recover their evolutionary relationships in the form of a tree that we 

will refer to as the genome tree. The evolutionary relationships between different organisms, 

and hence their genomes, are typically represented in the form of a phylogenetic tree. 

Phylogenies are often inferred from individual gene sequences, such as the highly conserved 

small subunit ribosomal RNA (Woese and Fox 1977) or from a set of conserved orthologous 

genes (Ciccarelli et al. 2006; Wu and Eisen 2008). Phylogenies inferred from different genes or 

gene sets often disagree with each other and only show a plausible evolutionary history for the 

genes used which is not necessarily the evolutionary history of the analyzed taxa (Hasegawa 

and Hashimoto 1993; Karlin and Cardon 1994). Furthermore, to apply gene-based methods, 

one must first identify orthologous genes from different organisms which can be difficult due 

to evolutionary processes such as gene loss, duplication and horizontal transfer (Doolittle 

1999). With the availability of a large number of completely sequenced genomes whole 

genome based methods were proposed to alleviate the shortcomings of gene based methods. 

Various properties of the genome such as gene content, gene order, whole genome sequence 

similarity and nucleotide composition biases have been used to measure distances between 

genomes, see (Coenye et al. 2005; Delsuc, Brinkmann, and Philippe 2005; Snel, Huynen, and 

Dutilh 2005) for recent reviews. In this work we focused on the analysis of sequence based 

methods for which no additional information, such as gene annotations, is required. 

In section 1.4.2 we described the concept of the genome signature and its advantages over 

alignment-based comparison. However, the strength of the phylogenetic signal provided by 

the genome signature varies for different groups of genomes (Mrazek 2009). An important 

property of the genome signature is that it allows comparison between non-homologous 
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sequences. For a given species or higher-level clade, it allows an accurate distinction for 1000 

bp or longer segments, with longer segments encoding a stronger signal (see Chapter 3) 

(Deschavanne et al. 1999; Sandberg et al. 2001; Jernigan and Baran 2002; McHardy and 

Rigoutsos 2007; Patil et al. 2011).  

As more whole genome sequences are deposited in public databases, in comparison of 

alignment-based approaches, the computationally less expensive alignment-free methods 

become increasingly attractive for the analysis of large-scale data sets (Höhl, Rigoutsos, and 

Ragan 2006; Yang and Zhang 2008). Some limitations of the genome signature in this context 

have been pointed out, such as a lower correlation with phylogenetic distance, especially for 

distantly related genomes (Mrazek 2009), as well as the clustering of distantly related 

genomes with similar GC-content (Takahashi, Kryukov, and Saitou 2009) (see (Coenye and 

Vandamme 2003; Pride et al. 2003; van Passel et al. 2006)). 

In alignment-free sequence comparison, most research has focused on the identification of the 

appropriate  length for oligonucleotides (Karlin and Burge 1995; Karlin, Mrazek, and Campbell 

1997; Kirzhner et al. 2002; Pride et al. 2003; Wu, Huang, and Li 2005; Mrazek 2009; Sims et al. 

2009; Takahashi, Kryukov, and Saitou 2009), normalization procedures (Hao and Qi 2003; Xu 

and Hao 2009) and different distance functions (Wu, Burke, and Davison 1997; Kirzhner et al. 

2002; Höhl, Rigoutsos, and Ragan 2006). The genome signature is inherently redundant due to 

the reverse complementarity of the DNA strands. Under the influence of selection, all 

oligonucleotides might not be equally important in taxonomic distance calculation, in case 

they evolve at different rates. These issues have not been given enough attention. Based on 

the hypothesis that a group of genomes with similar phylogenetic, genomic or ecological 

attributes might have specific oligonucleotide weights that reflect their importance in distance 

calculation, we propose a novel method that aims at improving genome signature-based 

inference of genome trees. Thus, our goal is to enhance the signal for a group by learning 

group-specific oligonucleotide weights. We propose a supervised distance metric learning 

method that exploits the structure of known reference taxonomy to guide the learning process 

(see Materials and Methods). We use the taxonomy as reference for calculation of phenetic 

distances, rather than a phylogeny (such as one inferred from the 16S rRNA gene), due to its 

“polyphasic” nature that takes genotypic and phenotypic aspects into account (Vandamme et 

al. 1996) and not to bias our analysis towards possible shortcomings of gene based methods. 

However, we verified that phenetic distance strongly correlates with phylogenetic distance 

(see Materials and Methods). 

The aim of our method is to identify a diagonal positive semi-definite matrix parameterizing 

the Mahalanobis distance metric such that it maximizes the Spearman’s rank correlation 

coefficient between the resulting distances and the phenetic distances within the reference 

taxonomy. The phenetic distances were calculated similarly to the path loss defined in section 

2.3.2 (see Eq. 2.13). The distance metric learning problem is posed as a regularized 

optimization problem (see section 4.2.6 below). We defined 18 groups based on phylogenetic, 

genomic or ecological factors.  Contrary to other genome tree inference methods, our aim is to 

improve the performance for a group of genomes defined by a common factor, such as 

genome-wide GC-content or habitat, and not to reconstruct the entire tree of life. When the 

species composition or ecological characteristics of the organisms at hand is approximately 
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known, one can learn a group-specific distance metric using other available reference data. 

Once a specific distance metric has been learned, it can be employed for the analysis of novel 

genome sequences from the same group.  

Various methods have been proposed for the evolutionary comparisons of entire genomes or 

large genome segments, including alignment-free methods (Burge, Campbell, and Karlin 1992; 

Karlin and Cardon 1994; Kirzhner et al. 2002; Pride et al. 2003; Qi, Wang, and Hao 2004; Sims 

et al. 2009; Takahashi, Kryukov, and Saitou 2009; Li, Xu, and Hao 2010) and the alignment-

based methods, such as the genome blast distance phylogeny (GBDP) (Henz et al. 2005). A 

direct comparison between genome tree inference methods is lacking, especially with the 

alignment-based method GBDP. Therefore, in addition to proposing a new method, we also 

present a large scale numerical comparison of the performance of ten genome tree inference 

methods, including nine alignment-free methods and one alignment-based method. 

4.2 MATERIALS AND METHODS 
Continuing the notation used in section 1.4.2 each genomic signature is denoted with a 

pattern lknm, where k is the oligonucleotide length and m is the length of oligonucleotides 

used for normalization. Thus, for example, the tetranucleotide signature normalized using base 

frequencies is denoted as l4n1. The notation is optionally followed by the alphabet used (e.g. 

“ry”) if an alphabet other than nucleotide was used. 

We used 1076 complete microbial genome sequences available from NCBI in April 2010 for this 

study. This corresponds to 578,350 pairs of taxa to compare in terms of their taxonomic and 

genomic distances. To compute pair-wise distances between species, nine alignment-free 

methods for computing pair-wise genome distances were tested; the Euclidean distance based 

on the l4n1 genome signature, the Euclidean distance based on the l4n1 signature after 

dimensionality reduction with PCA, the Euclidean distance based on the l6n1 signature, CVTree 

with the l6n5,4 signature (Hao and Qi 2003), the compositional spectrum based on the l10r2 

signature and n=200 (Kirzhner et al. 2002) and the feature frequency profile based on the RY 

alphabet with l=10 (Sims et al. 2009). In addition we also evaluated the GBDP method based 

on BLAST alignments (Henz et al. 2005), for which we aligned all pairs of genomes. Pair-wise 

alignments between the nucleotide sequences were generated with the “bl2seq” program 

(version 2.2.18) with default parameters. Details on these methods are provided in section 

4.2.10.  

The genomes were subsequently classified into 18 groups according to the following five 

factors: Phylum membership (4 groups), genomic GC-content (3 groups), habitat (5 groups), 

temperature range (3 groups) and oxygen requirement (3 groups). For each of these factors, 

the groups were exclusive (Supplementary Table 4). 

4.2.1 GENOMES, TAXONOMY AND ECOLOGICAL INFORMATION 

Genome sequences were obtained from GenBank (http://www.ncbi.nlm.nih.gov/genome). The 

taxonomy from the NCBI taxonomy database (http://www.ncbi.nlm.nih.gov/Taxonomy/) and 

the ecological information was obtained with the NCBI lproks service 

(http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi) (Sayers et al. 2009).  
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4.2.2 GENOME SIGNATURE 

The genome signature represents a sequence as a point in a multi-dimensional metric space. 

The dimensionality of the space is defined by the size of the alphabet and the length of 

oligonucleotides. In our case the alphabet comprises four nucleotides (A, T, G and C) and the 

oligonucleotide length considered is four, which gives rise to a 44 dimensional space.  The 

vector representation of sequences allows application of distance metric functions to these 

points to uncover their interrelationships. We used the tetranucleotide signature vector 

normalized based on mononucleotide frequencies (l4n1) for learning group-specific metrics. 

The elements of this signature for a sequence N are defined in Eq. 2.17, which is repeated 

below for convenience; 
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As before, here fr* denotes frequency of the oligonucleotides averaged over both strands. 

4.2.3 PHENETIC DISTANCES BETWEEN PAIRS OF TAXA IN THE REFERENCE 

TAXONOMY 

As our target variable, or reference distance, we used the phenetic distance between taxa in 

the NCBI taxonomy. The phenetic distance between a pair of taxa was defined as the 

maximum number of edges in the path between one of the taxa in the pair and their lowest 

common ancestor. Seven major taxonomic ranks; species, genus, family, order, class, phylum 

and superkingdom, were used to calculate the phenetic distances. Note that the number of 

edges to the lowest common ancestor can differ in the NCBI Taxonomy for two taxa at a given 

rank, due to missing internal nodes on the path from these taxa to their lowest common 

ancestor. The matrix containing pair-wise phenetic distances will be denoted as DTAX. 

To compare the phenetic distances with phylogenetic distances, aligned 16S rRNA gene 

sequences were obtained from the greengenes database (http://greengenes.lbl.gov) (DeSantis 

et al. 2006). When multiple genes were available for an organism only the first was chosen. In 

total, genes for 887 organisms were identified. Pair-wise distances between the aligned genes 

were calculated with the “DNADIST” program in the Mothur package (Schloss et al. 2009). The 

phenetic distances showed a strong correlation with the phylogenetic distances (Pearson’s R= 

0.84 and Spearman’s ρ=0.81, P=0.001 based on 999 permutations). This suggests that our 

results should be valid if 16S rRNA distances were used instead of phenetic distances. 

4.2.4 COMPARING TREES BASED ON COPHENETIC CORRELATION 

The correlation between two tree path metrics has been used to compare tree topologies 

(Pazos and Valencia 2001; Kuramae et al. 2007). We here used a similar approach to search for 

a distance metric which best approximates the phenetic distances between pairs of taxa in a 

given reference tree.  As we were interested in the topology of the trees and not branch 

lengths, we used Spearman’s rank correlation coefficient to quantify the agreement between 

the phenetic distances in the reference topology and pair-wise distances between genome 
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sequences.  Although commonly used, Pearson correlation between distance matrices does 

not always imply better topology recovery (Lapointe and Legendre 1992). Spearman’s rank 

correlation is furthermore more appropriate when outliers are present and there is a non-

linear relationship between the variables. As we are calculating correlation between two 

symmetric matrices, they are first vectorized using either the upper or lower half triangle. 

Spearman’s ρ is calculated on the ranks xi and yi of elements in the vectorized distance 

matrices according to; 
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The correlation between a data-derived matrix of pair-wise distances and a phenetic distance 

matrix is also known as the cophenetic correlation coefficient (CPCC) (Sokal and Rohlf 1962). 

The CPCC has been used for assessing how well tree topologies inferred with different 

hierarchical clustering methods agree with a matrix of pair-wise distances inferred from the 

data. Here we use it to evaluate how well different data-derived distance metrics agree with 

phenetic distances between pairs of taxa in reference taxonomy. Although typically Pearson 

correlation is used to calculate CPCC, the use of rank based correlation has been proposed 

before (Johnson 1967; Mrazek 2009). 

4.2.5 TOPOLOGICAL DISTANCE BETWEEN TREES 

As the cophenetic correlation might not directly correspond to topological similarity (Farris 

1969) we also calculated topological distances between trees. The topological distances 

between trees were calculated using the normalized quartet distance, as implemented in the 

program QDist (Nielsen et al. 2011) version 2.0, downloaded from 

http://birc.au.dk/software/qdist/. 

Note that an increase in congruence between tree topologies results in an increase in the 

cophenetic correlation coefficient and a decrease in the quartet distance. The cophenetic 

correlation was used also as the optimization criterion as described in the following section. 

4.2.6 DISTANCE METRIC LEARNING 

The Euclidean distance metric is often used to calculate dissimilarities for data that can be 

represented as points in a multi-dimensional metric space. However, it may not be ideal to 

infer taxonomic distance between pairs of genomic signatures. This is particularly true when 

some of the variables are more important than others or when some dimensions are 

correlated and/or have different scales, for instance, some different genomic features could be 

subject to different evolutionary constraints and evolve at different rates. In such cases, a 

more suitable distance metric than the Euclidean metric can be learned from data. Originally, 

distance metric learning was proposed for clustering applications where side information such 

as similarity and dissimilarity constraints is available (Xing et al. 2002). The information 

available in our case is the phenetic distances between pairs of taxa in the reference 

taxonomy.  

http://birc.au.dk/software/qdist/
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Distance metric learning can be viewed as a transformation of the input space into another 

(possibly lower dimensional) space, in which the Euclidean distance between the points 

represent as accurately as possible the target relationships. Practically, this can be achieved by 

using the Mahalanobis distance function. The Mahalanobis distance is a distance metric, 

parametrized by a positive semi-definite matrix M. The Mahalanobis distance between two 

vectors x and y is defined in Eq. 1.18 and is repeated below for convenience; 
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We propose learning a diagonal matrix M with nonnegative entries that maximizes the 

performance criterion; that is the Spearman’s correlation coefficient between the resulting 

  21n-n pair-wise Mahalanobis distances for n analyzed genomic signatures with the 

corresponding target phenetic distances. The entries in the target distance matrix, DTAX, were 

defined as described above. The diagonal elements of the matrix M represent the relative 

weights for the corresponding oligonucleotides. The Euclidean distance is a special case of the 

Mahalanobis distance, when it is parameterized by an identity matrix and the Mahalanobis 

distance corresponds to a weighted Euclidean distance, when it is parameterized with a 

diagonal matrix. Let us define a function dMahal which returns all pair-wise Mahalanobis 

distances between a set of vectors S given a parameterizing matrix M. 

Even though a learned metric works well for a given set of signatures (training data) it might 

not provide improvement for novel signatures (test data). Such over-fitting is not desirable and 

hence we pose the learning problem as a regularized optimization problem; 
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Here p is the number of oligonucleotides and S is a matrix with each row representing a 

genomic signature. While first term in the objective function maximizes correlation, the 

second term is a regularizer that controls complexity of the solutions in terms of the L1-norm 

of the diagonal entries of M. Thus higher values of λ (λ>=0) will lead to sparse diagonal entries. 

As only the relative contributions of the oligonucleotides and not their absolute magnitudes 

are important, the diagonal entries of M were constrained to values within the interval [0, 1], 

to allow comparisons between solutions for different experiments. The parameter λ was varied 

in the set {0, 0.1, 1, 10}. For each value in the grid, a 3-fold cross-validation procedure was 

performed on randomly partitioned training data as follows; three metrics were learned 

separately by excluding each of the three partitions and the generalization performance was 

assessed with the Spearman’s correlation between the target distances and the distances with 

the learned metric on the excluded partition. The resulting three correlations for each λ value 

were averaged to get an estimate of the generalization performance. The value with the 
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highest generalization performance was chosen to learn a metric on the complete training 

data. The aim of the regularizer here is obtaining generalizable solutions and not to enforce 

sparse solutions. Thus, if a less sparse solution yields a higher generalization performance (as 

estimated by cross-validation) than a more sparse solution, then the less sparse solution is 

selected. Note that although it is possible to formulate the optimization problem we describe 

here with a weight vector instead of the matrix M, the more general formulation clarifies that 

this method is easily adaptable for learning a full matrix. 

We used the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen et al. 2003) 

as the optimization procedure, though any other global optimization procedure can be used. 

As this optimization problem is non-linear and non-convex, gradient-based optimization 

techniques are not appropriate.  The python code for CMA-ES was obtained from the website 

http://www.lri.fr/~hansen/cmaes_inmatlab.html. The tolerance for solution improvement was 

set to 1e-3 and the number of iterations was set to 500 during cross-validation and 1000 for 

learning the metric with a selected λ. Only the diagonal of the covariance matrix was adapted 

to reduce the computational complexity. The population size for CMA-ES was set to 20 and the 

step-size to 0.5. 

4.2.7 SIGNIFICANCE TEST FOR CHANGE IN CORRELATION 

The significance of change of the correlation coefficient was assessed with the Hotelling-

Williams test between dependent variables (Steiger 1980).  Specifically, we tested whether the 

CPCC of one metric was significantly different from the CPCC of another metric. 

4.2.8 MEASURES OF GROUP PHYLOGENETIC STRUCTURE (NRI AND NTI) 

We calculated two metrics of group phylogenetic structure. The metrics; net relatedness index 

(NRI) and nearest taxon index (NTI) correspondingly  quantify the distribution of the taxa 

relative to a phylogeny (Webb et al. 2002). They were calculated as follows; 
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Here a is a vector containing distances between all pair-wise taxa and b is a vector containing 

distances between all taxa to their nearest taxon, with the same characteristic. The suffix obs 

denotes observed distances and the suffix n denotes expected distances for n taxa randomly 

distributed over the taxonomy. While both NRI and NTI increase with increasing clustering 

they become negative with dispersed taxa. Clustering at terminal nodes causes more increase 

in NTI relative to NRI. We calculated both measures with respect to the reference taxonomy 

for each of the 18 groups using 999 randomizations. The corresponding functions were 

implemented in R (version 2.11.1). 

http://www.lri.fr/~hansen/cmaes_inmatlab.html
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4.2.9 DATA AVAILABILITY 

The data used in this study can be obtained from http://algbio.cs.uni-

duesseldorf.de/webapps/wa-download/index.php. 

4.2.10 DISTANCE METRICS 

The distance metrics used for comparison are described below. The metrics were chosen to 

reflect the diversity of the popular metrics found in the literature, in terms of oligonucleotide 

lengths, normalization strategies and distance metrics. In the following p denotes the length of 

the genome signature vectors. 

GROUP-SPECIFIC 

The group-specific distance between two signatures of genomes from a group is given by; 
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Where M is a diagonal matrix learned by maximizing the estimated generalization 

performance with training data from the same group (as x and y). For simplicity, the group-

specific distance metrics will be referred to as specific distance metrics. 

RANDOM LEARNED 

The random distance between two signatures calculated for a pair of genomes from a group is 

given by; 
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Where M is a diagonal matrix learned by maximizing estimated generalization performance 

using randomly selected training data. For simplicity this metric will be referred to as random 

metric. 

EUCLIDEAN DISTANCE 

The Euclidean distance between two signatures is defined as following; 
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This distance was used with the l4n1 and l6n1 signatures. 

EUCLIDEAN PCA 

This distance was calculated similarly to the Euclidean distance, but in a lower dimensional 

space after application of principal component analysis (PCA) to retain either the principal 

components explaining at least one original variable, that is the principal components with 

http://algbio.cs.uni-duesseldorf.de/webapps/wa-download/index.php
http://algbio.cs.uni-duesseldorf.de/webapps/wa-download/index.php
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eigenvalue>=1 or three principal components, whichever is larger. This distance metric was 

used with the l4n1 signature. 

DELTA DISTANCES 

The delta distance (Mrazek 2009) between two signature vectors x and y is defined as 

following; 
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Here p is number of elements in the vector (256 for tetranucleotide signature). The delta 

distance between two genomes G1 and G2 was calculated using all pairs of non-overlapping 50 

kb segments. If n1 and n2 are number of non-overlapping segments X and Y in genomes G1 and 

G2 respectively then the delta distance between the genomes was calculated as; 
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This distance was used with the l4n1 signature. 

CVTREE DISTANCES 

The CVTree signature was calculated using oligonucleotides of length 6 normalized by 

constituent 4- and 5-mers (Gao et al. 2007). The sequences were appended with their reverse 

complement for calculating this signature. The expected frequency of a hexanucleotide 

‘abcdef’ was calculated as; 
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Here L is the length of the sequence and k is the length of the oligonucleotides (k=6 for 

hexanucleotides). Then the normalized elements of the signature vector were then calculated 

as following; 
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The distances between the resulting vectors were calculated using the cosine similarity. 
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COMPOSITIONAL SPECTRUM DISTANCES 

Compositional spectrum (CompSpec) distances over the DNA alphabet were calculated using 

the parameter settings as in (Kirzhner et al. 2007b). We first generated 200 random 

oligonucleotides of length 10 and then counted their imperfect occurrences of up to 2 

mismatches (the l10r2 signature) over the complete genomes. The distances between the 

resulting 200 dimensional vectors were calculated using Spearman’s rank correlation 

coefficient ρ as; 

 ),(1),CompSpec( yxyx   Eq. 4.13 

An important aspect, in our opinion, of the CompSpec is that it only covers a subset of the 

whole compositional space. For instance, employed parameters account for 9200 

(200*(1+10C2)) words out of 1048576 (410) possible words amounting less than 1%. We 

speculate that the information loss due to this low coverage is, at least partly, responsible for 

lower performance of CS distances. Although many samples of 200 words are used to build a 

number of trees which are then aggregated into a final tree using a consensus method 

(Kirzhner et al. 2007b), it is not straightforward to compare the resulting distances in this way. 

Therefore we used a single sample of 200 words in this study. 

FEATURE FREQUENCY PROFILE DISTANCES 

The FFP distances were calculated using the program ffp version 3.19 downloaded from 

http://ffp-phylogeny.sourceforge.net/. The two-letter RY alphabet was used along with the 

length of l-mers set to 10. The distance between the normalized feature frequency profile 

vectors x and y were calculated using the Jensen-Shannon divergence as; 
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Here   2iii yxz  and KL is the Kullback-Liebler divergence. 

GENOME BLAST DISTANCES 

The whole genome BLAST distances between two genomes were calculated by using the 

alignments performed by bl2seq program available in the NCBI BLAST executable (version 

2.2.18) with default parameters. The resulting tabular report was then parsed using BioRuby 

(version 1.4.1) (Goto et al. 2010) and the high scoring pairs were converted into a similarity 

score using the greedy version of the GBDP algorithm without trimming (Henz et al. 2005). Due 

to computational restrictions we used only one directional alignment instead of averaging over 

both directions. 
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4.2.11 OTHER METHODS 

The inferred distance metrics was subsequently used to construct ultrametric trees.  

Ultrametric trees were inferred with the Unweighted Pair Group Method with Arithmetic 

Mean (UPGMA) algorithm of the “phangorn” package in the R statistical environment.  Tree 

topologies were compared to the reference tree topology based on the quartet distance. 

Principal component analysis (PCA) was performed in R (version 2.11.1) with the “princomp” 

function. The data was centered and scaled to unit variance before performing PCA. 

4.2.12 EXPERIMENTAL SETUP 

The tetranucleotide signature corrected  for bias in base frequencies (l4n1), i.e. normalized 

using the zero-order Markov criterion, was chosen to learn the metrics, as it is has been 

previously shown to contain a strong phylogenetic signal (Pride et al. 2003; van Passel et al. 

2006; Mrazek 2009).  The Euclidean distance on the l4n1 signature was used as the baseline for 

comparison.  We used two measures to quantify the performance of the methods: The first is 

the cophenetic correlation coefficient (CPCC) (Sokal & Rohlf 1962) using Spearman’s rank 

correlation, which is also a part of the optimization function used to learn the specific metrics 

(see Materials and Methods). We also calculated the normalized quartet distance (Nielsen et 

al. 2011) (referred to as quartet distance hereafter) between two trees built with UPGMA; one 

using the phenetic distances and the other using the genome-based distances (see section 

4.2). We say that a metric performs better only if it shows improvement on both measures; 

that is a higher CPCC and a lower quartet distance. We show results for 18 groups defined by 

five different attributes (phylogeny, genomic GC-content, habitat, growth temperature and 

oxygen requirement, Supplementary Table 4). 

For the proposed metric learning method to be of practical value, it is necessary that it is able 

to learn a generalizable distance metric, a metric that works well on novel genomes not used 

for learning, from a limited amount of data. Therefore, our experimental setup consisted of 

randomly sampling genomes of 30 species (one genome per species) from a group and then 

learning a Mahalanobis metric from the corresponding l4n1 signatures guided by the target 

phenetic distances such that the estimated generalization performance is maximized (see 

Materials and Methods). A Mahalanobis metric learned using signatures from one group is 

referred to as a group-specific metric.  The performance of a learned metric was quantified on 

the test genomes, that is, the genomes from the same group not used for learning the metric. 

For a set of test genomes, distances were then computed with the learned metric and 

compared to the corresponding phenetic distances. At the same time the performance of the 

other methods was also quantified on the test genomes by comparing their distances with the 

phenetic distances. This procedure was repeated 30 times for each of the 18 groups by using 

different random training samples, to quantify the variability of the learned metrics. This 

resulted in 30 performance measurements for the CPCC and quartet distances for each group 

and each method. Note that for Actinobacteria only 28 metrics were learned due to premature 

termination of the processes on the computational cluster. The statistical significance of an 

observed improvement in the 30 repetitions was tested using a one sided Wilcoxon rank sum 

test. While for CPCC, the alternative hypothesis was that a metric produces higher CPCC values 
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than the baseline metric, for the QD, the alternative hypothesis was that a metric results in 

lower quartet distances than the baseline metric. 

4.3 RESULTS 

4.3.1 PHYLUM 

We begin by showing that the taxonomic signal of the l4n1 genomic signature can be improved 

with specifically learned metrics for phylogenetic groups at the phylum level. Four extensively 

sequenced phyla, the Proteobacteria, Firmicutes, Actinobacteria and Euryarchaeota, were 

chosen for this analysis (Supplementary Table 4). 

Our results show that better distance metrics, that is higher cophenetic correlation and lower 

quartet distance on the test genomes when compared to the baseline, could be learned for the 

phylogenetic groups except for Euryarchaeota, where the learned metrics did not show 

improvement over the Euclidean metric (Figure 4.1, Supplementary Table 6). The 

Proteobacteria metrics showed only marginal but significant (P<0.05, Wilcoxon test) 

improvement, which might be due of its diverse and non-monophyletic nature (Garrity 2005). 

Such disagreement with taxonomy was also observed with Proteobacterial CVTree based on 

translated protein products (Li, Xu & Hao 2010). The best performance improvement due to 

specific metrics was observed for the phylum Actinobacteria, where the average cophenetic 

correlation significantly increased from 0.39 to 0.64 (P=8.23e-10, Wilcoxon test) while the 

average quartet distance decreased from 0.53 to 0.43 (P=2.73e-13, Wilcoxon test). More than 

25 (out of the 30) learned metrics showed significantly different correlation coefficients for the 

Proteobacteria, Firmicutes and Actinobacteria (Hotelling-Williams test, P<0.05) 

(Supplementary Figure 11). The other l4n1 based distances, the Euclidean distances after 

applying PCA and the delta distances averaged over 50 kb segments, performed either similar 

or only slightly better than the baseline. The metrics learned from randomly sampled species 

over the entire taxonomy performed worse than the baseline except for a slight performance 

improvement for the Actinobacteria. The phyla-specific metrics also performed better than the 

l6n1 signature-based Euclidean distances. This shows the advantage of learning specific 

metrics in comparison to signatures based on longer oligonucleotides. 

The phyla-specific metrics also performed better than the l6n1 signature-based Euclidean 

distances. This shows the advantage of learning specific metrics in comparison to signatures 

based on longer oligonucleotides. The Euclidean distances based on the l4n1 and l6n1 

signatures performed similarly, except for the Actinobacteria, where the l6n1 signature 

performed better. CVTree with the l6n5,4 signature showed overall better performance than 

the l6n1 Euclidean distances, the compositional spectrum and FFP distances performed less 

well in comparison. Interestingly, all signature-based distances with long oligonucleotides (Eucl 

l6n1, CVTree l6n5,4, CompSpec l10r2 and FFP l10ry) with lower overall cophenetic correlation, 

except for FFP,  performed better for the Actinobacteria than the baseline (P<0.05, Wilcoxon 

test). This might be due to the close relatedness of the genomes in the phylum Actinobacteria 

and their characteristically high GC-content, making longer oligonucleotides more informative. 

For all groups except Firmicutes, the alignment-based method GBDP performed better than 

alignment-free methods, however, this comes at a considerable computational cost. 
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Figure 4.1. Performance on the phylogenetic groups. Each bar shows performance measure along with 

error bars showing standard deviation. 

4.3.2 GC-CONTENT 

We performed similar experiments with the genomes divided into three groups according to 

their genome-wide GC-content (<=30%, >30%-<=50% and  >50%-<=70%, Supplementary Table 

4). It has been previously noted that GC-content affects oligonucleotide based trees grouping 

similar GC-content genomes together irrespective of their phylogenetic relationships and tetra 

to octanucleotide frequency based trees of genomes with similar GC-content show high 

congruence with gene based trees at genus and family level (Takahashi et al. 2009). Therefore 

we expected that improved distance metrics could be learned for groups of genomes with 

similar GC-content. The GC-specific metrics we inferred improved in cophenetic correlation 

over the baseline for all three GC-content groups. 

There was also a decrease in the quartet distance for the genomes with 30% or less GC-

content and for genomes with GC-content between 50% and 70% (Figure 4.2). Most metrics 

for the individual groups had significantly different correlation coefficients from the baseline 

method (P<0.05, computed with Hotelling-Williams test) (Supplementary Figure 11). In general 

while a strong signal was observed for all the alignment-free methods on the low GC-content 

group, a weaker signal was observed on the moderate GC-content genomes (Figure 4.2, 

Supplementary Table 6). Of the other alignment-free methods, only CVTree consistently and 

significantly (P<8.2e-6, Wilcoxon test) performed better than the baseline. The compositional 

spectrum and FFP methods performed well only on the genomes with GC-content of 30% or 

less. GBDP performed better than the baseline in all the groups and performed worse than the 

learned l4n1 metrics on the 30% or less GC-content group. 
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Figure 4.2. Performance on the GC-content groups. Each bar shows performance measure along with 

error bars showing standard deviation. 

4.3.3 ECOLOGICAL ATTRIBUTES 

Next we investigated whether specific metrics for ecological groups show an improvement 

over the baseline. This is a challenging task as ecological groups might contain distantly related 

genomes, a scenario in which alignment-free methods can face difficulties (Mrazek 2009). 

Three ecological factors were chosen to define groups: habitat (5 groups), temperature range 

(3 groups) and oxygen requirement (3 groups) (Supplementary Table 4). 

The habitat-specific l4n1 metrics showed an improvement over the baseline both in terms of 

the CPCC and the quartet distance for all five groups. Only the improvement of the quartet 

distance for the host-associated metrics was not significant (Figure 4.3, Supplementary Table 

6). While CVTree showed   an increase in the CPCC for all five habitat groups, but also an 

increased quartet distance for the aquatic and specialized groups, FFP showed an 

improvement over the baseline only for the multiple habitat genomes (P<7.74e-15, Wilcoxon 

test). 

In computation of taxonomic distances and genome trees for genomes from all three 

temperature range groups, the learned l4n1 metrics performed better than the baseline (P<7e-

3, Wilcoxon test), except for an increase in the quartet distance for the mesophiles group. 

Interestingly, for the mesophiles group 19 specific metrics did show a significant change in 

correlation (Supplementary Figure 11). CVTree performed well for all groups except for a 

decrease in the CPCC for hyperthermophiles, while FFP showed improvement only for the 

hyperthermophiles group (P<1.3e-3, Wilcoxon test). 
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We also observed an improvement for the learned l4n1 metrics for all oxygen-requirement 

types (aerobe, anaerobe and facultative anaerobes) (P<1.2e-6, Wilcoxon test), except for a 

performance reduction in term of an increase in the quartet distance for the facultative 

anaerobes. CVTree, as before, showed improvement for the anerobes and facultative groups 

(P<3.15e-15, Wilcoxon test) and performed similarly to GBDP for the genomes of the 

facultative anaerobes. While Euclidean metric on the l4n1 signature after performing PCA 

showed marginal but significant improvement for aerobes and anaerobes, Delta50kb and 

Euclidean metric on the l6n1 signature showed significant improvements for anaerobes and 

facultative groups, respectively. The other methods did not show a consistent performance 

pattern. 

Overall, for all eleven ecological groups 23 or more metrics showed significant change in 

correlation coefficients with the phenetic metric of the reference taxonomy in comparison to 

the baseline (P<0.05, computed with Hotelling-Williams test). For three habitats - aquatic, 

host-associated and specialized – as well as the mesophilic and aerobic groups, all 30 metrics 

differed significantly (Supplementary Figure 11). GBDP performed best for all groups defined 

by the three ecological attributes (P<1.46e-9, Wilcoxon test). 

 

Figure 4.3. Performance on the ecological groups from three attributes. The bars show performance 

measures and the error bars indicate standard deviation. 

4.3.4 GROUP-SPECIFIC METRICS NOTABLY IMPROVED TREE INFERENCE 

One could argue that a learned metric performs well for a group by chance and not because it 

inferred specifics of evolutionary rates for different tetranucleotides for the group. To 

investigate this question we learned 30 metrics from 30 randomly selected species each 
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(referred to as random metrics hereafter) and compared their performance to the 

performance of the 30 group-specific learned metrics for each of the 18 groups with  one sided 

Wilcoxon signed rank sum test. We tested whether the group-specific metrics produce higher 

CPCC and lower quartet distance than the random metrics. Note that the random metrics 

showed significantly better performance with respect to the baseline metric for 

Actinobacteria, GC content between 50% and 70%, aquatic and aerobic groups (P<3.61e-2, 

Wilcoxon test) (Supplementary Table 6) 

Table 4.1. P-values from one-sided Wilcoxon signed rank sum tests to check specificity of the learned 

metrics to their respective groups. While for CPCC the alternative hypothesis was that the group-

specific metrics produce higher CPCC values than randomly learned metrics, for QD the alternative 

hypothesis was that the group specific metrics produce lower quartet distance than randomly learned 

metrics. Significant values (<0.05) are shown in boldface. 

Attribute Group CPCC QD 

Phylum 

Proteobacteria 0.0000 0.0001 

Firmicutes 0.0000 0.0000 

Actinobacteria 0.0000 0.0000 

Euryarchaeota 0.0032 0.0029 

GC-content 

<=30% 0.0000 0.0000 

>30%-<=50% 0.0014 0.0000 

>50%-<=70% 0.0000 0.0013 

Habitat 

Aquatic 0.5957 0.3762 

Terrestrial 0.0000 0.0005 

Multiple 0.0000 0.0057 

Host-associated 0.0000 0.0386 

Specialized 0.0001 0.0006 

Temperature range 

Hyperthermophilic 0.0000 0.0000 

Thermophilic 0.0001 0.0000 

Mesophilic 0.8850 0.6349 

Oxygen requirement 

Aerobic 0.0154 0.1150 

Anaerobic 0.0030 0.0011 

Facultative 0.0000 0.0000 

 

For all the groups, except aquatic, mesophiles and aerobes, the specifically learned metrics 

performed significantly better than the random metrics (P<3.86e-2, Wilcoxon test) (Table 4.1). 

This implies that the group-specific metrics perform better than the ones learned on randomly 

sampled genomes and group-specific aspects of tetranucleotide usage allow an improved 

inference of the taxonomic relationships for the respective organisms. The lack of 

improvement for aquatic species, mesophiles and aerobes might be in part caused by 

abundance of these groups among the genomes (Supplementary Table 6). This may have 

resulted in some of the learned metrics from randomly selected species to partially represent 

specific properties of these groups. 



 

 

85 
8

5
 

4.3.5 DIMENSIONALITY REDUCTION RESULTED IN MARGINAL 

IMPROVEMENT 

Unsupervised dimensionality reduction techniques, such as principal component analysis 

(PCA), have been used for noise reduction and visualization of genome signatures (Sandberg et 

al. 2001; Mrazek 2009). PCA embeds the input space into a potentially lower dimensional 

space defined by orthogonal basis vectors. Inferring taxonomic distances based on Euclidean 

distances after applying PCA to l4n1 signatures mostly resulted in a marginal or no 

improvement (Figure 4.1, Figure 4.2 and Figure 4.3). The marginal improvement result is 

interesting, as it suggests the existence of lower dimensional genomic signature space.  

Table 4.2. Cophenetic correlation coefficient and quartet distance before (CPCC, QD) and after 

(CPCC_PCA, QD_PCA) principal component analysis. The dimension and variance columns show 

number of dimensions and variance retained respectively. No significant improvement was observed 

after applying PCA either for the CPCC or the QD (P>0.3, one-sided Wilcoxon rank sum test). 

Attribute Group CPCC CPCC_PCA QD QD_PCA Dimension 
Variance 

(%) 

Phylum 

Proteobacteria 0.42 0.43 0.45 0.43 21 94 

Firmicutes 0.57 0.54 0.32 0.29 20 96 

Actinobacteria 0.39 0.44 0.55 0.50 19 96 

Euryarchaeota 0.46 0.45 0.47 0.43 20 97 

GC-content 

<=30% 0.30 0.34 0.43 0.40 19 97 

>30%-<=50% 0.36 0.34 0.51 0.51 25 94 

>50%-<=70% 0.44 0.48 0.48 0.43 22 94 

Habitat 

Aquatic 0.39 0.38 0.51 0.51 24 95 

Terrestrial 0.39 0.45 0.39 0.38 18 96 

Multiple 0.37 0.36 0.46 0.45 21 95 

Host-associated 0.17 0.18 0.51 0.51 21 95 

Specialized 0.20 0.19 0.57 0.57 23 95 

Temperature 
range 

Hyperthermophilic 0.46 0.41 0.43 0.46 18 98 

Thermophilic 0.19 0.24 0.59 0.58 22 96 

Mesophilic 0.25 0.24 0.51 0.52 22 93 

Oxygen 
requirement 

Aerobic 0.34 0.34 0.56 0.56 22 95 

Anaerobic 0.19 0.20 0.58 0.55 24 95 

Facultative 0.46 0.47 0.30 0.35 23 95 

 

To further investigate this effect, we calculated cophenetic correlations and quartet distances 

for all the groups individually to l4n1 distances with and without using PCA (Table 4.2). The 

dimensionality of the reduced space was selected to be the dimensions explaining at least one 

original variable, i.e. dimensions with eigenvalues of at least one. Interestingly, approximately 

20 dimensions (18-25) were retained for all the groups capturing 93-98% of variance. Although 

PCA resulted in a marginal non-significant (P>0.3, Wilcoxon test) improvement it performed 

less well than the group-specific metrics. Similarly, when PCA was applied to the l6n1 signature 

with the Euclidean distance metric, a high reduction in the dimensionality was observed (38-
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114 principal components explaining 97.81-99.96% variance), with no significant (P>0.25, 

Wilcoxon test) performance improvement (Supplementary Table 7). 

4.3.6 TRENDS ACROSS GROUPS 

We investigated whether the genomic and taxonomic composition of the groups are relevant 

for the improvement obtained by the specific metrics over the baseline. The aim of this 

analysis was to get a better understanding of when application of the proposed method might 

be most relevant. We calculated nine statistics for the groups (number of genomes, number of 

species, mean genome size, standard deviation of genome sizes, mean GC-content, standard 

deviation of GC-content, NRI and NTI) and correlated them with the change in the mean 

cophenetic correlation of the specific metrics relative to the baseline (Table 4.3, 

Supplementary Table 5) across the groups. The positive correlation here means that an 

increase in the statistic corresponds to an improvement in the CPCC on average and vice versa. 

The Actinobacteria and Euryarchaeota groups were removed from this analysis because they 

behaved like an outlier with respect to change in the CPCC, above the 99th quartile and below 

the 1st quartile, respectively. 

Table 4.3. Correlation of the mean change in the cophenetic correlation coefficient with different 

statistics across the groups. Here mean and sdev are average and standard deviation values, NRI and 

NTI stand for net relatedness index and nearest taxon index respectively. The Actinobacteria and 

Euryarchaeota groups were removed for this analysis as they behaved like outliers. Significant values 

(P<0.05) are shown in boldface. 

Correlation Value #genomes #species 
Genome 

size 
(mean) 

Genome 
size 

(sdev) 

Pearson 
R -0.54 -0.17 -0.34 -0.33 

P-value 0.03 0.52 0.19 0.22 

Spearman 
ρ -0.46 -0.13 -0.44 -0.44 

P-value 0.07 0.63 0.09 0.09 

Correlation Value 
GC-

content 
(mean) 

GC-
content 
(sdev) 

NRI NTI 

Pearson 
R 0.03 0.02 -0.54 -0.35 

P-value 0.92 0.95 0.03 0.19 

Spearman 
ρ 0.06 0.03 -0.4 -0.26 

P-value 0.81 0.93 0.12 0.32 

  

The strongest and significant negative correlation, Pearson’s R=-0.54, P=0.03, was with the 

phylogenetic community measure net relatedness index (NRI) (Webb et al. 2002). NRI 

measures the phylogenetic clustering behavior of the taxa; therefore, this negative correlation 

suggests that as the taxa become more clustered on the taxonomy, the specific metrics 

provide less improvement. This result was expected, as for closely related taxa the baseline 

(l4n1 signature with Euclidean distance) is expected to perform well (Mrazek 2009). A lower 



 

 

87 
8

7
 

and non-significant, but also negative correlation was observed for the nearest taxa index (NTI) 

(Webb et al. 2002), which increases more if taxa cluster at the terminal nodes. The overall 

number of genomes in a group also showed a significant negative correlation with the mean 

change of the cophenetic correlation, suggesting that our method provides a larger 

improvement in the CPCC for larger groups and groups with bigger genomes. As larger groups 

are normally more diverse, the baseline performs poorly and an improvement can be achieved 

with the specific metrics. For the negative correlation with genome sizes we speculate that 

larger genomes may exhibit a noisy genomic signature, for example due to presence of phages 

and plasmids (Suzuki et al. 2010), the specific metrics might provide an improvement by 

learning appropriate weights for oligonucleotides, such that the noise is reduced.  

Interestingly, no significant correlation was observed with either the mean or the standard 

deviation of the GC-content for each group, suggesting that the improvement provided by the 

specific metric does not depend on the group GC-content, except for the Actinobacteria. Taken 

together, this analysis suggests that our method provides relatively more improvement when 

the baseline is expected to perform worse and less improvement otherwise. 

4.3.7 THE LEARNED GROUP-SPECIFIC METRICS GENERALIZED ACROSS 

LARGER TAXONOMIC DISTANCES 

To investigate the effect of the genome relatedness on learning group-specific metrics we 

removed genomes of the same species and order as the ones used for learning independently 

for each group-specific metric and recomputed the performance measures. These experiments 

were performed on the 1951 genomes obtained from NCBI GenBank in June 2012. We 

observed similar trends as before (Supplementary Figure 12-16), suggesting that metric 

learning is advantageous even when closely related genomes are not available for training. 

However, in many cases performance of all the tested methods degraded after this removal, 

indicating that signature based methods indeed perform better at lower taxonomic distances. 

4.4 CONCLUSIONS 
In this work we proposed a method to learn taxonomic distance metrics from genome 

signatures and the corresponding phenetic distances between them. Our aim was to improve 

genome signature-based genome tree inference for groups of genomes where the groups 

were defined by phylogenetic, genomic or ecological attributes. Our empirical analyses 

showed that genome trees inferred from genome signatures can be improved by learning 

group-specific distance metrics. As expected, metrics learned for different phyla and GC-

content groups showed significant improvement in the quality of inferred genome trees (for 

three groups out of four and two groups out of three, respectively). Working with the 

hypothesis that environmental selective forces can shape the nucleotide composition of 

genomes, that is different niches drive the oligonucleotide composition in different directions, 

we learned specific metrics for different ecological groups. These ecological group-specific 

metric showed performance improvement for eight out of eleven ecological groups. 

The performance improvement shown by specific metrics for phylogenetic and GC-content 

groups of species was relatively higher and generalized better for distant genomes than for the 
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ecological groups. Nevertheless, also for the ecological groups, the learned metrics in most 

cases showed a performance improvement. The ecological groups in particular contain 

genomes of species only distantly related to each other, where the alignment-free methods 

are known to be less accurate. Of the other alignment-free methods evaluated here only 

CVTree showed a consistent improvement over the baseline. The better performance of 

CVTree compared to the l6n1 signature might be due to a more appropriate normalization.  

For the FFP metric we also computed distances between randomly sampled 50 kb continuous 

segments from the genomes in order to check whether different sizes of genomes might be 

confounding the distance calculations. The results were similar (data not shown). We did not 

implement the block-FFP and optimal range finding algorithms (Sims et al. 2009) and it will be 

interesting to see whether those lead to performance improvement, but it is out of the scope 

of this work. Furthermore, our experiments show that dimensionality reduction with PCA does 

not provide a consistent performance improvement. 

An important observation from our analysis was that the BLAST alignment-based genome 

dissimilarity metric (GBDP) was the overall best performing method, both in terms of the 

cophenetic correlation and the quartet distance. The good performance of GBDP implies that 

the information necessary for tree inference can be uncovered using genome-wide alignments. 

The comparatively lower performance of the alignment-free methods suggest that the 

distances calculated from the genome signatures do not represent universal taxonomic 

relationships with the same accuracy. The good performance of GBDP might also partly be due 

to the use of an evolutionary model. At the same time, the lower performance of alignment-

free methods might result from the loss of information while encoding a longer sequence by 

means of shorter oligonucleotides. Further research is needed to pin point the advantages and 

shortcomings of the different methods. 

However, performing alignments is computationally expensive and hence difficult to scale to a 

large number of genomes. The group-specific metrics we introduced can be learned from a 

small number of genomes, i.e. 30 different species, and knowledge of the target phenetic 

distances in the reference taxonomy. Therefore, to save computational cost, in case a resolved 

taxonomy for a group of genomes is not available, one could first infer a partial taxonomy from 

a subset of the genomes with an accurate method like GDBP and then use this partial 

taxonomy to learn a signature-based group-specific distance metric that in turn could be 

applied to infer taxonomic distances between the remaining genomes.  

In summary, our findings suggest that different types of organisms have specific distance 

metrics over the genome signature and that these can be uncovered by considering their 

ecological, genomic or phylogenetic attributes.  Our new method performed significantly 

better than a baseline technique for 13 out of 18 groups, indicating that group-specific aspects 

define the genome signature and that their consideration can improve the inference of 

taxonomic relationships. The existence of ecology specific metrics strengthens the hypothesis 

that environmental factors affect the oligonucleotide usage of genomes. We also repeat the 

need for more fine grained terms to describe specific environments and sample source 

information in public repositories, as provided by the environmental ontology (Hirschman et 

al. 2008). With the rapid advance in sequencing technologies large number of genome from 



 

 

89 
8

9
 

microorganisms, even the ones not cultivable with traditional sequencing methods, will 

become available in the near future. Accurate and efficient methods are necessary to analyze 

this large scale data. Our proposed method is a step towards this goal. 

The analysis of the group-specific oligonucleotide weights and whether they provide insights 

into any characteristics of the group will be an interesting direction for future work. In this 

work the group-specific metrics were learned only from group-specific data, therefore the 

learned oligonucleotide weights do not necessarily contain discriminatory information. 

Furthermore, the limited number of genomes (30) used for learning a metric, in combination 

with correlations between the oligonucleotides can lead to divergent metrics for a group, 

where weights can be distributed across different correlated oligonucleotides to obtain the 

same result, which makes the interpretation of a biological or evolutionary meaning of the 

learned weights complicated. 
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5  CONCLUSIONS AND OUTLOOK 
In the following sections we present a brief summary of the main conclusions of the work 

carried out in this thesis. The work done in this thesis is a step forward towards solving the 

addressed problems, though challenges remain, therefore we also discuss some possible 

directions for future research. 

5.1 CONCLUSIONS 
Genomics will play an increasingly larger role in medicine, energy and many other important 

biotechnological applications. The advent of sequencing technologies means more sequence 

data being generated than can be efficiently processed using the currently available 

computational resources. Therefore, devising efficient algorithms that can tackle the large 

amount of genomic data in a reasonable time is important, should the pace of the genomic 

sciences as a whole and the benefits it provides be maintained. 

To this end, this thesis proposes novel methods to address two important bioinformatics 

problems; taxonomic assignment of metagenome sequences and inference of genome trees. 

Both methods rely on the genome signature paradigm for sequence comparison. Genome 

signatures have two main advantages when used for sequence comparison. Firstly, they allow 

computationally efficient comparison between genomic sequences, as alignment is not 

necessary. Secondly, due to their pervasiveness, only segments of genomes are sufficient. 

Furthermore, both methods are based upon state-of-the-art machine learning methods.  

By exploiting the properties of the genome signature along with the use of structural support 

vector machines we proposed a new method, PhyloPythiaS, for taxonomic assignment of 

metagenome sequences, an important step in metagenome analyses. Empirical analysis of 

several simulated and real metagenome sequence samples showed that PhyloPythiaS 

performs well, especially when only few data from dominant populations are available. 

Evaluation on simulated and real data showed that PhyloPythiaS performs quite well and 

outperforms other methods in realistic scenarios. We also evaluated PhyloPythiaS on the 

contigs or scaffolds from three sequencing technologies resulting in consistently good 

performance. Furthermore, at assignment time, PhyloPythiaS is considerably faster than other 

methods, which will facilitate analysis of large metagenome samples. 

The structural SVM used for taxonomic assignment needs a reference hierarchy describing 

relationships between the taxa. Currently we use the reference taxonomy from NCBI. In 

future, with a large number of genome sequences produced, direct generation of a hierarchy 

from the genomes will be useful and therefore we explored the use of genome signature to 

infer genome trees. We developed a metric learning method to infer taxonomic distances 

between genomes based on the genome signature. A primary hypothesis was that different 

taxonomic distances between groups of genomes, defined by phylogenetic, GC-content and 

ecological factors, are better defined by group-specific metrics. Empirical analysis of 18 groups 

showed that the proposed method performs well on most of the groups. 
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5.2 OUTLOOK 
This work was confined to the use of linear kernels and it will be interesting to explore 

performance when non-linear or sequence alignment kernels (Watkins 2000) are used. The 

decision to use of linear kernel was primarily due to higher computational cost incurred by use 

of kernels, particularly for the structural SVM, where the training time computational 

complexity is linear in the number of examples for linear kernel, it scales quadratically for 

other kernels (Joachims et al. 2009). Therefore, use of kernels is impractical for large data sets 

as used in this thesis. Two possible directions can be followed as a remedy; sparse 

approximation of the kernel matrices (Joachims et al. 2009) and use of faster optimization 

techniques. Use of alternative formulations of the structural SVM (Sarawagi & Gupta 2008) can 

also lead to more accurate results. Furthermore, as available sequence data and the breadth of 

taxonomy grow, the training phase of the structural SVM can become an issue. Towards this 

end, incremental techniques that reuse existing solutions while learning new models 

incorporating more sequence data and a larger hierarchy in order to reduce execution time 

will be extremely useful. Another issue to tackle in the future is the lower performance of 

alignment-free methods for assignment of short (<1000 bp) sequences. This is due to the 

limitations on the pervasiveness of the genome signature and therefore difficult to solve. 

Currently, sequence assemblies are used to obtain longer sequences in order to circumvent 

this issue. As sequencing technologies progress, the increased read length will automatically 

offer a solution. 

In the case of genome tree inference problems the current work was confined to learning 

linear distance metrics. This can be extended to learning non-linear distance metrics in the 

future, which may lead to further performance improvements. It will be also interesting to 

check whether learning a full matrix instead of a diagonal matrix proves to be beneficial. We 

here used the cophenetic correlation with Spearman’s rank correlation coefficient as the 

objective function. Although, the increase in the cophenetic correlation was correlated with 

the decrease in the quartet distance (Pearson’s R=0.46, P<2.2e-16; all the 18 groups 

combined), further research might identify other suitable optimality criteria. Furthermore, 

distance metric learning might be extended to unsupervised binning of metagenome data 

(McHardy & Rigoutsos 2007) in order to improve performance on a particular ecological niche, 

such as the human-gut. 
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6 SUPPLEMENT 

6.1 SUPPLEMENTARY TABLES 
Supplementary Table 1. Modeled taxa for the TW sample. Only the leaf taxa are shown, all the clades 

at more general taxonomic ranks were included in the modeled taxonomy.  

NCBI scientific name NCBI taxonomic identifier Sample-specific data (kb) 

Acinetobacter 469 -- 

Actinobacteria (class) 1760 -- 

Bradyrhizobiaceae 41294 -- 

Campylobacter 194 -- 

Desulfovibrionaceae 194924 -- 

Enterobacteriaceae 543 -- 

Eubacteriaceae 186806 -- 

Fusobacteriaceae 203492 -- 

Methanomicrobiales 2191 -- 

Methanosarcina 2207 -- 

Pasteurellaceae 712 -- 

Prevotellaceae 171552 -- 

Psychrobacter 497 -- 

Ruminococcaceae 541000 -- 

Selenomonas 970 -- 

Staphylococcus 1279 -- 

Thermoplasma 2302 -- 

uncultured Erysipelotrichaceae  
bacterium (WG-3) 

331630 5.7 

uncultured Lachnospiraceae  
bacterium (WG-2) 

297314 143 

uncultured Succinivibrionaceae  
bacterium (WG-1) 

538960 257 
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Supplementary Table 2. Number of contigs classified by different methods at different taxonomic 

ranks for the TW sample. Out of the 5,995 contigs in total for this metagenome sample. All numbers 

indicate the raw output of every method. PhyloPythia does not classify fragments shorter than 1,000 

bp so the total number of contigs classified is less (5,245). 

Taxonomic rank PhyloPythiaS PhyloPythia PhymmBL MEGAN 

Domain 1,206 1,579 -- 630 

Phylum 503 485 -- 191 

Class 214 261 92 85 

Order 1,748 801 1,086 401 

Family 997 1,012 250 288 

Genus 71 -- 2,899 1,446 

Species 1,255 1,062 1,525 277 

Not assigned 1 45 143 2,677 
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Supplementary Table 3. Modeled clades for PhyloPythiaS for the human gut metagenome samples 

(TS28 and TS29). Only the leaf clades are shown, all the clades at more general taxonomic ranks were 

included in the modeled taxonomy. Only part of the sample-specific data was used to learn 

PhyloPythia and PhyloPythiaS models (see Supplementary notes). 

NCBI scientific name 
NCBI taxonomic 

identifier 
Sample-specific data 

(kb) 

Alistipes 239,759 198 

Anaerococcus 165,779 1,300 

Anaerotruncus 244,127 74 

Atopobium 1,380 -- 

Bacteroides 816 23,600 

Bifidobacterium 1,678 3,800 

Blautia 572,511 13 

Butyrivibrio 830 6.2 

Clostridium 1,485 7,200 

Collinsella 102,106 512 

Coprococcus 33,042 29 

Dorea 189,330 1,500 

Escherichia 561 -- 

Eubacterium 1,730 600 

Faecalibacterium 216,851 2,300 

Finegoldia 150,022 -- 

Holdemania 61,170 7.7 

Lactococcus 1,357 -- 

Methanobrevibacter 2,172 1,300 

Methanothermobacter 145,260 -- 

Parabacteroides 375,288 1,600 

Porphyromonas 836 -- 

Providencia 586 -- 

Roseburia 841 31 

Ruminococcus 1,263 4,000 

Streptococcus 1,301 -- 
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Supplementary Table 5. Group statistics. The table is divided in two parts for convenience. Here mean 

and sdev are average and standard deviation values. NRI and NTI stand for net relatedness index and 

nearest taxon index respectively.  

A. 

Attribute Group Change_rho #organisms #species 
Genome 

size 
(mean) 

Genome 
size 

(sdev) 

Phylum 

Proteobacteria 0.02 507 335 4066140 1853855 

Firmicutes 0.10 199 109 3098486 1241844 

Actinobacteria 0.25 91 76 4613913 2262225 

Euryarchaeota 0.00 53 49 2378586 918270.2 

GC-content 

<=30% 0.11 77 51 1703760 1360259 

>30%-<=50% 0.07 505 337 2846184 1450872 

>50%-<=70% 0.13 458 332 4417507 1708588 

Habitat 

Aquatic 0.08 169 41 3446547 1516513 

Terrestrial 0.09 71 68 5500797 2205847 

Multiple 0.09 294 546 4220323 1674874 

Host-associated 0.15 330 143 2809106 1781657 

Specialized 0.13 115 63 2676180 1279979 

Temperature 
range 

Hyperthermophilic 0.10 47 188 2028211 510843.1 

Thermophilic 0.18 70 209 2705110 1172844 

Mesophilic 0.05 830 106 3722610 1913293 

Oxygen 
requirement 

Aerobic 0.10 331 255 4217805 2192102 

Anaerobic 0.13 198 169 2855070 1237975 

Facultative 0.10 345 199 3677349 1601115 
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B. 

Attribute Group 
GC-

content 
(mean) 

GC-
content 
(sdev) 

Z-
score 

NRI NTI 

Phylum 

Proteobacteria 52 12.1 1.53 35.14 9.65 

Firmicutes 38 6.9 2.07 27.59 10.66 

Actinobacteria 65 6.9 1.82 23.77 5.37 

Euryarchaeota 47 12.2 1.23 7.75 4.52 

GC-content 

<=30% 27 2.4 3.03 3.29 8.16 

>30%-<=50% 40 5.3 0.82 1.01 6.87 

>50%-<=70% 60 6.2 1.03 8.92 3.06 

Habitat 

Aquatic 44 8.8 0.27 2.27 1.14 

Terrestrial 49 12.7 2.39 1.03 1.60 

Multiple 49 13.3 1.13 5.11 7.27 

Host-associated 49 11.3 1.35 2.87 8.46 

Specialized 59 13.2 1.04 -3.85 0.43 

Temperature 
range 

Hyperthermophilic 50 12.8 3.70 0.33 4.93 

Thermophilic 44 12.8 1.19 -1.06 0.85 

Mesophilic 48 12.7 -0.13 6.53 4.65 

Oxygen 
requirement 

Aerobic 54 14.1 0.58 1.21 1.17 

Anaerobic 45 11.6 0.88 -5.06 1.57 

Facultative 47 10.9 1.69 11.41 10.62 
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6.2 SUPPLEMENTARY FIGURES 
Supplementary Figure 1. The flow diagram of the PhyloPythiaS training phase. 
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Supplementary Figure 2. Pair-wise Wilcoxon paired rank-sum test P-values for 30 folds (10 runs of 3-

fold cross-validation). 
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Supplementary Figure 3. Assignments for the AMD metagenome scaffolds at different taxonomic 

ranks by the PhyloPythiaS generic model. This model does not assign sequences to any of the genus 

level clades. This is expected behavior as none of the genera (Leptospirillum and Ferroplasma) were 

present in the generic model. The existence of Deltaproteobacteria (in Actual and Proteobacteria in 

Phylum) has been previously reported (Bond, Smriga, and Banfield 2000) and is due to the provisional 

assignment of Leptospirillium to delta subdivision (Bock and Wagner 2006). 
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Supplementary Figure 4. Assignments for the AMD metagenome scaffolds at different taxonomic 

ranks by PhyloPythiaS sample-specific model. Sample specific data (approximately 100 kb from each 

of the four strains) from the two genera (Leptospirillum and Ferroplasma) was used.  
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Supplementary Figure 5. Assignments for the AMD metagenome scaffolds at different taxonomic 

ranks by best BLASTN hit with e-value cut-off of 0.1. The blast database used same genomes used for 

creating PhyloPythiaS generic model, i.e. all 1076 complete genomes available from NCBI as of April 

2010. 
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Supplementary Figure 6. Assignments for the AMD metagenome scaffolds at different taxonomic 

ranks by the NBC webserver. Default N-mer length of 15 with Bacteria/Archaea genomes were used. 

The webserver was accessed at http://nbc.ece.drexel.edu/ in April 2011. 
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Supplementary Figure 7. Assignments for the AMD metagenome (scaffolds fragmented at 500 bp) at 

different taxonomic ranks by the NBC webserver. To check for the possible effect of test sequence 

length on the taxonomic assignment of the AMD metagenome using the NBC webserver, we created 

fragments of length 500 bp from the scaffolds and obtained their assignments. Default N-mer length 

of 15 and Bacteria/Archaea genomes were used. Bacteria were overestimated while underestimating 

the Archaea. The NBC webserver was accessed at http://nbc.ece.drexel.edu/ in May 2011. 

 

 

 

http://nbc.ece.drexel.edu/
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Supplementary Figure 8. Scaffold-contig visualization of different binning methods for the WG-2 

population from the TW sample. Every horizontal bar represents a scaffold and its constituent contigs. 

Every contig is color coded to represent its consistency with respect to the scaffold assignment. Only 

scaffolds >=20 kb in length are shown for clarity. 
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Supplementary Figure 9. Overlap between predictions of different methods on the TW sample for the 

three uncultured populations. The overlaps are represented as area proportional Euler diagrams. Only 

exact predictions were taken into account for each population. The areas correspond to the 

predictions of the methods on the union of contigs predicted as a particular clade by at least one 

method. As it can be seen, PhyloPythiaS and PhyloPythia have large overlaps for all populations. 
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Supplementary Figure 10. Overlap between predictions of different methods on TW sample for 

dominant phyla. The overlaps are represented as area proportional Euler diagrams. The areas 

correspond to the predictions of the methods on the union of contigs predicted as a particular clade 

by at least one method. All the predictions were mapped to its corresponding phyla. As it can be seen, 

PhyloPythiaS, PhyloPythia and MEGAN have large overlaps for all three phyla. 
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Supplementary Figure 11. Histograms of P-values computed using the Hotelling-Williams test for 

dependent correlation coefficients that share a variable. Here the shared variable is phenetic 

distances derived from taxonomy and change in correlation is considered with respect to the baseline 

correlation. Each box shows histogram of 30 P-values for a group. 
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Supplementary Figure 12. Performance of the metrics on four phylogenetic groups after removing 

genomes used for learning and their species and order level relatives. 

 

 

 



 

 

114 
1

1
4

 

Supplementary Figure 13. Performance of the metrics on the GC content groups after removing 

genomes related to the learning genomes at species and order ranks. 
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Supplementary Figure 14. Performance of the metrics on the habitat groups after removing genomes 

related to the learning genomes at species and order ranks. 
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Supplementary Figure 15. Performance of the metrics on the temperature range groups after 

removing genomes related to the learning genomes at species and order ranks. 
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Supplementary Figure 16. Performance of the metrics on the Oxygen requirement groups after 

removing genomes related to the learning genomes at species and order ranks. 
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