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ABSTRACT

In this work we consider the use of the genome signature for two important bioinformatics
problems; the taxonomic assignment of metagenome sequences and tree inference from
whole genomes. We look at those problems from a sequence comparison point of view and
propose machine learning based methods as solutions. For the first problem, we propose a
novel method based on structural support vector machines that can directly predict paths in a
tree implied by evolutionary relationships between taxa. The method is based on an ensemble
strategy to predict highly specific assighnments for varying length sequences arising from
metagenome projects. Through controlled experimental analyses on simulated and real data
sets we show the benefits of our method under realistic conditions.

For the task of genome tree inference we propose a metric learning method. Based on the
assumption that for different groups of prokaryotes, as defined by their phylogeny, genomic or
ecological properties, different oligonucleotide weights can be more informative, our method
learns group-specific distance metrics. We show that, indeed, it is possible to learn specific
distance metrics that provide improved genome trees for the groups.

In the outlook, we expect that for the addressed problems the work of this thesis will
complement and in some cases even outperform alignment-based sequence comparison at a
considerably reduced computational cost, allowing it to keep up with advancements in
sequencing technologies.
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KURZFASSUNG

In dieser Arbeit wird die Verwendung der Genomsignatur fiir zwei wichtige bioinformatische
Probleme untersucht. Diese sind zum einen die taxonomische Einordnung von Sequenzen aus
Metagenomexperimenten und zum anderen das Lernen eines taxonomischen Baums aus
verschiedenen ganzen Genomen. Diese beiden Probleme werden aus dem Blickwinkel der
Sequenzanalyse betrachtet und Verfahren des maschinellen Lernens werden als
Losungsansatze vorgeschlagen. Fiir die Losung des ersten Problems schlagen wir eine neue
Methode vor, die auf strukturellen Support Vektor Maschinen beruht und direkt Pfade in
einem Baum vorhersagen kann, der auf den evolutioniren Ahnlichkeiten der Taxa beruht. Die
Methode basiert auf einer Ensemble Strategie, um sehr genaue Zuweisungen fiir Sequenzen
verschiedener Linge, die in Metagenomprojekten gemessen wurden, vorherzusagen. Wir
zeigen die Vorteile unserer Methode auf simulierten sowie auf experimentellen Daten.

Fiir das zweite Problem, bei dem ein taxonomischer Baum, basierend auf der genetischen
Sequenz gelernt werden soll, schlagen wir eine Methode vor, die eine Metrik lernt. Die
Annahme, auf der diese Methode beruht, ist, dass fiir verschiedene Gruppen von Prokaryoten
unterschiedliche Gewichtungen der Oligonukleotidvorkommen notwendig sind, weswegen
eine gruppenspezifische Metrik gelernt wird. Die Gruppen konnen dabei aufgrund ihrer
phylogenetischen Beziehungen oder Okologischer sowie genomischer Merkmale bestimmt
sein. Wir zeigen in unserer Analyse, dass es hierdurch moglich ist, spezifische Metriken zu
lernen, die zu besseren Baumen fiir diese Gruppen fihren.

Wir erwarten, dass unsere hier vorgestellten Arbeiten fiir die bearbeiteten Probleme
Alignment-basierte Ansdtze erganzen und teilweise sogar Uberbieten kénnen, wobei unsere
Losungen deutlich weniger Rechenzeit bendtigen und damit mit dem rasanten Wachstum im
Sequenzierbereich schritthalten kénnen.
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1 BACKGROUND

In this chapter we will lay out the background for the work in this thesis and provide necessary
notations and definitions. Particularly we will briefly discuss the biological background and
motivations. Although most of the work is computational in nature, biological background is
provided in order to justify the methods and to motivate the computational work. Note that
this is not meant to be an exhaustive account of the related fields. Topics that are not relevant
to this work are not discussed.

This work exclusively deals with DNA sequences of prokaryotic origin; therefore, we will start
by describing those in sections 1.1 and 1.2. In section 1.3 we will describe metagenomics.
Section 1.4 introduces sequence comparison including the genome signature paradigm
followed by the challenge of data overload due to advances in sequencing technologies in
section 1.5. In section 1.6 we provide overview of machine learning techniques followed by a
brief description of the addressed problems.

The mathematical notations used in this thesis follow the following convention; scalar
variables will be denoted using small italic letters, vectors will be denoted using small bold
non-italic letters and matrices will be denoted using capital bold non-italic letters. Vector and
matrix elements will be denoted using non-bold italic letters along with a subscript. The
transpose of a vector is denoted using the superscript T.

Several definitions, terms and concepts in this thesis have been taken from other sources as |
believe that they cannot be described in a better way. They are indicated with the sign> and
the sources are cited. Some of those are modified to match the convention and notation used
in this thesis. Some of the frequently used short forms are;

e Glossary(NCBI) 2002: Glossary — The NCBI Handbook — NCBI Bookshelf.
e Metagenomics(NCBI) 2006: Metagenomics — NCBI Bookshelf.
e Glossary(Genome): Genome Glossary — Human Genome Project Information.

e Glossary(Systematics): Palaeos — Systematics, Taxonomy, and Phylogeny: Glossary

1.1 DNA AND MOLECULAR EVOLUTION

All known living organisms use genetic material as means to store information and transfer it
to next generation underpinning unity of life at a molecular level. Most of the organisms (both
unicellular and multicellular) the genetic material used is the deoxyribonucleic acid (DNA) with
an exception of quasi-life viruses that use ribonucleic acid (RNA).

> DNA (Glossary(NCBI) 2002)

Deoxyribonucleic acid is the chemical inside the nucleus of a cell that carries the genetic
instructions for making living organisms.



DNA is made of four nucleotide bases (or bases); adenine (A), guanine (G), cytosine (C) and
thymine (T). While bases A and G are purines, C and T are pyrimidines. These bases are
attached to the backbone structure made out of sugars and phosphate bonds (Levene 1919).
The DNA molecule is a double helix structure made of two complementary polymers in which
A pairs with T and C pairs with G creating hydrogen bonds resulting in base pairs (bp) (Watson
& Crick 1953). This A-T and C-G pairing is called the Watson-Crick base pairing. Thus a DNA
molecule can be considered and analyzed using one or more possible structures, including the
primary structure which is a base sequence, the secondary structure describing interactions
between bases and strands and the tertiary structure describing location of atoms in space. In
this work we consider DNA in its primary structure; that is a string made of four nucleotides A,
C, G and T. Hereafter all references to a sequence mean a DNA sequence unless otherwise
specified.

> DNA sequence (Glossary(Genome))

The relative order of base pairs, whether in a DNA fragment, gene, chromosome, or an entire
genome.

> Gene (Glossary(Genome))

The fundamental physical and functional unit of heredity. A gene is an ordered sequence of
nucleotides located in a particular position on a particular chromosome that encodes a
specific functional product (i.e., a protein or RNA molecule).

> Genome (Glossary(Genome))

All the genetic material in the chromosomes of a particular organism; its size is generally
given as its total number of base pairs.

> Chromosome (Glossary(Genome))

The self-replicating genetic structure of cells containing the cellular DNA that bears in its
nucleotide sequence the linear array of genes. In prokaryotes, chromosomal DNA is circular,
and the entire genome is carried on one chromosome.

> Phenotype (Glossary(Genome))

The physical characteristics of an organism or the presence of a disease that may or may not
be genetic.

DNA is the carrier of genetic information in which genes are information encoding and
hereditary units. The central dogma of molecular biology dictates that a gene is transferred
into ribonucleic acids (RNA) which is then further translated into proteins that carry out the
actual phenotypic functions (Crick et al. 1961). This also implies that the information flows
from the DNA to the exterior; consequently the environment affects the DNA only indirectly.
This has been disputed and recent understandings in epigenetic modifications and inheritance
questions the central dogma (Koonin 2012). We will not discuss this further as the findings in
this thesis are not directly affected by whether the central dogma is accepted or refuted.



Before we describe molecular evolution, let us first briefly consider evolution in general. The
theory of evolution consists of two mechanisms; descent with modification and natural
selection. It was put forward in 1859 by Charles Darwin in his book “On the origin of species by
means of natural selection, or the preservation of favored races in the struggle of life” (Darwin
1859). In this book he described how heritable variations combined with natural selection
results in survival of the fittest and consequently over a large span of geological time can give
rise to the observed biological diversity. As these variations are normally rather small the
process of evolution gives rise to a tree-like structure which Darwin depicted in the sole
illustration in his book. With the advances in sequencing technologies the evolutionary
changes could be studied at a molecular level. Consequently, all known life on the Earth can be
represented as a tree depicting evolutionary relationships (Ciccarelli et al. 2006), implying that
life originated from a common ancestor. Though the validity of such a tree, especially for
prokaryotes, has been questioned (Doolittle 1999, 2000; Bapteste et al. 2009).

> Phylogenetic tree (Glossary(Systematics))

A branching tree-like, diagrammatic representation of the evolutionary relationships and
patterns of branching in the history of the organisms being considered.

> Mutation (Glossary(Genome))
Any heritable change in DNA sequence.

Each cell contains long structures of DNA called chromosomes which are duplicated during cell
division with each cell acquiring its own copy. This process of duplication is not perfect and
might cause one of three types of errors; substitution — replacing one type of base by other,
deletion — removal of a base and insertion —inserting a new base in the sequence. These errors
are called point mutations and lead to novel genotypes. These mutations are either eliminated
or become fixed in the genome depending upon whether they are deleterious or
advantageous to fitness with respect to natural selection acting upon the phenotypes due to
them (Rocha 2008). Alternatively neutral mutations, with no effect on the fitness, can get fixed
due to random genetic drift. Furthermore, insertion or deletion of long stretches of DNA can
occur by acquiring or removal of transposable elements such as plasmids. Those changes lead
to novel genotypes, which can lead to changes in the phenotype as dictated by the central
dogma. The phenotypes with an adaptive advantage, for instance efficient utilization of
nutrients, reproduce more, in turn increasing the representation of successful genotypes in the
population. Alternatively less fit phenotypes reproduce less, thus reducing representation of
respective genotypes. Those evolutionary processes can lead to the creation of new species
with generations of changes and selection causing the genotypes to be quite different than the
one they originated from.

Furthermore, environment can influence genomic features, such as its nucleotide and/or
amino acid composition (Foerstner et al. 2005; Willenbrock et al. 2006; Bohlin, Skjerve &
Ussery 2009) and physiological structure, either by imposing selective forces or by creating
mechanistic mutational biases that in turn can lead to speciation (Orr & Smith 1998; Cohan &
Koeppel 2008). Although prokaryotes reproduce asexually, they can recombine within and
across lineages. It is generally agreed that the evolution of prokaryotic species is facilitated by



a combination of point mutations and horizontal transfer. Albeit the nucleotide composition
pattern is constant within species and varies across species forming the basis of the genome
signature paradigm discussed in section 1.4.2.

1.2 PROKARYOTES

The invention of the microscope in the 19" century led to the discovery of the existence of
microorganisms. The advent of technologies has rapidly advanced our knowledge about their
ubiquitous nature and astonishing phenotypic and molecular diversity. Prokaryotes are single
celled ubiquitous microorganisms that lack a cell nucleus. Phylogenetically they make two
known domains of life; bacteria and Achaea (Figure 1.1). They show astonishing diversity in
habitats and metabolic capabilities making up a large portion of the Earth’s biomass.
Prokaryotes affect the ecosystem and our own health in many ways. They are a part of the
important processes in the ecosystem, such as photosynthesis and nitrogen fixation, cycling of
nutrients and production and consumption of organic matter. Prokaryotes, along with other
microorganisms like viruses, inhibit various internal and external body parts of higher
organisms including human beings and are important for health. Therefore, study of
microorganisms is vital not only for understanding of life and ecosystems but also for applied
biological sciences such as agriculture and health.

> Genetic marker (Glossary(Genome))
A gene or other identifiable portion of DNA whose inheritance can be followed.

An easy to ask but difficult to answer question about the prokaryotes is what is the biodiversity
of an environment or in other words “how many different species are there in a given
environment?” Attempts have been made to, at least partly, answer this question at local and
global scales using numerical (Curtis, Sloan & Scannell 2002; Ward 2002) and phylogenetic
techniques (Hugenholtz, Goebel & Pace 1998; Hugenholtz 2002). The former has provided an
estimate that the entire bacterial diversity of the sea to be about 2 x 10° and that of a ton of
soil to be 4 x 10° different taxa.

At the genome level prokaryotes show high diversity in genome sizes and nucleotide
compositional but, remarkably, they all have high coding density with approximately one gene
per kilobase (kb), which is not true for eukaryotes (Casjens 1998; Bentley & Parkhill 2004). This
high coding density has an important implication on the compositional homogeneity of
genomes. Culture independent sequencing (discussed in section 1.3) has greatly contributed
towards our understanding of this immense genetic and functional diversity.
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Figure 1.1. Phylogenetic tree showing the diversity of prokaryotes, compared to eukaryotes. From
Wikipedia (http://en.wikipedia.org/wiki/File:Phylogenetic_Tree_of_Life.png).

1.3 METAGENOMICS

Genomic studies have advanced our knowledge about molecular basis of life in an
unprecedented manner; however, they have some limitations. Sequencing the genome of an
organism with traditional methods requires cloning of the entire genome. This is not always
possible as majority of the microbes are difficult, if not impossible, to culture in laboratory
conditions due to their complex interaction with other species in the community they live in
and the environment. Consequently, the uncultivable microbes were and still are largely
underrepresented in the molecular databases. This has limited our understanding of the
microbial diversity, function and interactions with each other and with the environment. Based
on phylogenetic marker gene analyses, these "unknowns" are estimated to represent about
99% of the microbial diversity (Handelsman et al. 1998; Hugenholtz et al. 1998; Hugenholtz
2002; Handelsman 2004).

> Metagenomics (Metagenomics(NCBI) 2006)

Metagenomics is the functional and sequence-based analysis of the collective microbial
genomes that are contained in an environmental sample. The word metagenomics describes
"the notion of analysis of a collection of similar but not identical items, as in a meta-analysis,
which is an analysis of analyses" (Handelsman, Microbiol Mol Biol Rev. 2004).

Handelsman and colleagues (Handelsman et al. 1998) proposed direct cloning of the collective
genomes followed by functional analysis of uncultured soil microbes. By directly extracting
DNA from soil and cloning it into readily culturable Escherichia coli (E. coli), they performed
screening for novel chemical products. This opened up a door into the untapped diversity of
uncultivable microorganisms. Further progress was made by use of random shotgun
sequencing (Tyson et al. 2004; Venter et al. 2004). Numerous metagenomic studies have
provided a wealth of information about the structure and function of the communities residing
in diverse ecological niches such as the Saragasso sea (Venter et al. 2004), acid mine drainage



(Tyson et al. 2004), sludge processing plant (Garcia Martin et al. 2006) and human and animal
gut microbiota (Gill et al. 2006; Turnbaugh et al. 2006; Warnecke et al. 2007; Pope et al. 2010;
Turnbaugh et al. 2010; Pope et al. 2012). Such studies not only provide insights into the
ecosystems, but also facilitate progress in medicine and biotechnology by identifying genes
and enzymes that are drug targets and improve processes such as biomass degradation.

Experimental design
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Figure 1.2. Flow diagram of typical metagenome projects. Dashed arrows indicate steps that can be
omitted. From (Thomas, Gilbert & Meyer 2012).

The flow-diagram of a typical metagenome project is depicted in Figure 1.2 (Thomas et al.
2012). The output from the DNA sequencing stage are nucleotide sequences (reads)
representing the DNA content of the collection of microbes in the sample. Therefore, these
studies are often called "community genomics", "environmental genomics" (as sequences for a
group of organisms residing in an environment can be obtained) or "metagenomics". These
reads can vary in length approximately from 50 bp to 1000 bp depending upon the technology
(Table 1.1) and can be subsequently assembled into contigs based on their overlaps. The
contigs can be further optionally grouped into scaffolds (or supercontigs) using the paired-end
information between the reads in different contigs and the roughly known length between
them (Figure 1.3). Note that the scaffolds normally contain unknown sequences of roughly

known lengths (gaps) generally indicated by repeating the letter ‘N’ along the known lengths.



We will refer to all of them simply as sequences. See (Pop, Kosack & Salzberg 2004) for details
on the shotgun sequencing and the assembly process.

> Contig (Metagenomics(NCBI) 2006)

A non-redundant sequence formed by joining, based on sequence overlap, one or more
smaller sequences. There should be no gaps.

> Scaffold (Metagenomics(NCBI) 2006)
A non-redundant sequence formed by joining one or more contig sequences. A sequence

overlap is not required to form a scaffold. Typically, a scaffold contains one or more gaps.

Scaffold
o
Contig 1 Contig 2

- s
- 4=

w—i=  Fragment
4= Raad (known sequence)
—  Roughly known length but not known sequence

Figure 1.3. The whole-genome shotgun assembly procedure. From JGl Genome Portal
(http://genome.jgi.doe.gov/help/scaffolds.html).

As these sequences typically originate from a collection of genomes belonging to the
organisms in the community, it is necessary to group the contigs that belong together either at
the genome level or at some other higher level, this process is referred to as "binning"
(Metagenomics(NRC) 2007; Mavromatis et al. 2007) (Figure 1.2). Binning can be achieved by
assigning taxonomic affiliations to the contigs, which is an approach we take in this study. See
(Thomas et al. 2012) for a more detailed discussion on metagenomics and involved
computational methods.

1.4 SEQUENCE COMPARISON

> Ortholog (Glossary(NCBI) 2002)

Orthology describes genes in different species that derive from a single ancestral gene in the
last common ancestor of the respective species.

> Homologous (Glossary(NCBI) 2002)
The term refers to similarity attributable to descent from a common ancestor.

Comparison of genomic DNA sequences lies at the center stage in the post-genomic era
molecular biology and also of this thesis. Hereafter we will refer to a DNA sequence simply as
sequence. The goal of sequence comparison is to identify structural, function or evolutionary
similarity between sequences. The basic assumption is that similarity in genomic sequences
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reflects higher level similarity. The methods proposed in this work are concerned with the use
of sequence comparison in order to quantify evolutionary relatedness between the
corresponding organisms. Thus, the sequence similarity reflects evolutionarily relatedness.

Two conceptually different methods are often used to compare genomic sequences;
alignment-based and alighment-free methods. Alignment methods, such as the basic local
alignment search tool (BLAST) (Altschul et al. 1990), are used to identify orthologs from
different taxa based on sequence similarity which subsequently can be analyzed with standard
phylogenetic inference methods to infer their evolutionary relationships.

1.4.1 ALIGNMENT-BASED COMPARISON

Two sequences are aligned in order to quantify their identity which in turn can reflect their
homology. Two sequences are said to be homologous if they share a common ancestry
(Koonin 2005). Such a pair-wise alignment can be either global or local depending upon
whether the similarity is considered across the full extent or some regions of the sequences,
respectively. Alignments with gaps, representing deletions or insertions, cause the number of
possible alignments to grow exponentially with sequence length. Therefore dynamic
programming based algorithms were proposed; for example the Needleman and Wunsch
algorithm (Needleman & Wunsch 1970) for global alignment and the Smith-Waterman
algorithm (Smith & Waterman 1981) for local alignment. Biologically speaking, there is only
one true, but unknown alignment between two sequences. In order to find the most plausible
alignment the matches, mismatches and gaps in alternative alignments are scored based on
scoring matrices and gap penalties and the best alignment is chosen based on the resulting
overall scores.

Computational time can be a bottleneck when one wants to compare a query sequence with a
database of target sequences. With the growing size of sequence databases an exhaustive
search demands a massive amount of time. Basic Local Alignment Search Tool (BLAST) is a
heuristic version of the Smith-Waterman algorithm developed for fast database searches.
Given a query sequence it scans the database for likely matches before performing alignments
consequently reducing search time. Details on BLAST can be found in (Altschul et al. 1990;
Pertsemlidis & Fondon 2001).

There are two major shortcomings of alignment-based methods: (i) alignment methods cannot
be applied to sequences that are not well conserved across taxa and thus have no orthologs
and (ii) they are computationally expensive. Alignment-based similarity is restricted to
homologous sequences and cannot be directly applied to sequences with low homology or
complete genomes. Furthermore, pair-wise sequence alignment incurs a computational
bottleneck because of the O(N®) asymptotic time and space requirement, where N is the
maximum of the lengths of the two sequences being aligned. This makes alignment based
algorithms a poor choice for large scale data analyses. Algorithms to compare genomic
sequences without alignment were, therefore, proposed, however they tend to be less
accurate than alignment-based methods in some settings (Vinga and Almeida 2003; Hohl and
Ragan 2007; Reinert et al. 2009). Alignment-free methods utilize the “genome signature”, the
evolutionary signal that is contained in the oligonucleotide composition of microbial genomes
(Blaisdell 1986; Karlin and Burge 1995).



1.4.2 ALIGNMENT-FREE COMPARISON

In order to address the problems associated with alignment-based comparison, alighnment-free
methods were proposed. Alignment-free methods primarily rely upon the composition of the
sequences in terms of their constituent subsequences. Therefore, knowledge of whole genome
or homology is not necessary for alignment-free comparison, as it is not required for the
matching subsequences to be contiguous, which is a prerequisite for sequence alignment.
Furthermore, the computational complexity of alignment-free comparison is O(N), in contract
to the O(N?) complexity of alignment-based comparison, making it an attractive choice for
large scale analyses.

> Oligonucleotide (Glossary(Genome))
A molecule usually composed of 25 or fewer nucleotides.

Alignment-free comparison stems from the observation that prokaryotic genomes are
homogenous in oligonucleotide composition (Rolfe & Meselson 1959; Sueoka 1961a, 1961b;
Burge, Campbell & Karlin 1992; Karlin 1994; Karlin & Cardon 1994; Bohlin, Skjerve & Ussery
2008; Blaisdell 1986), meaning that the base composition is invariable for long stretches of
sequences within a genome. Due to this characteristic nature the dinucleotide composition is
called the genome signature (Campbell, Mrazek & Karlin 1999). Furthermore, alighment-free
comparison in general considers a sequence as a continuous unit of information rather than a
group of genes (Rocha, Viari & Danchin 1998). Formally a genome signature is expected to
exhibit several desirable properties as listed below, in the order of their essentiality.

e Species-specificity — a signature should be similar within species and vary across
species. This is an essential property for a valid signature.

e Pervasiveness — the species-specificity of a signature should pervade the entire
genome. This property is essential if the signature is meant to be used for arbitrary
segments of a genome.

e Phylogenetic signal — distance between signatures should be in accordance with the
phylogenetic distance between the corresponding organisms. This property is essential
whether evolutionary comparative analyses should be performed.

An excellent review of genome signature along with associated methods and applications can
be found in (Vinga & Almeida 2003). Given a sequence several different signatures can be
derived; some are discussed in the following sections. In the following, the function fr denotes
the frequency of an oligonucleotide assuming that a DNA sequence to calculate the frequency
from is given. While the nucleotides are generally denoted using the corresponding capital
letter, for example the frequency of cytosine as fr(C), the oligonucleotides are denoted using
place-holders, for example vxyz denotes a tetranucleotide.

GC-CONTENT

By analyzing the amounts of nucleotides present in DNA sequences Erwin Chargaff discovered
two rules which are known as Chargaff's first and second parity rules, which are essentially



rules of symmetry. Chargaff’s first parity rule says that for a double stranded DNA the
proportion of A equals that of T and the proportion of C equals that of G (Chargaff 1950).
Chargaff’'s second parity rule extends the first parity rule for sufficiently long (>100 kb) single
strands of DNA and is applicable for mononucleotides and oligonucleotides (Rudner, Karkas &
Chargaff 1968). While the first rule is a direct consequence of the Watson-Crick base pairing in
double-helix structure of DNA (Watson & Crick 1953) the origin and reasons for the second
rule are not completely understood (Albrecht-Buehler 2006).

In 1951 Chargaff proposed that the GC-content with respect to total nucleotide counts is
species-specific (Eq. 1.1), that is it is constant within a species and varies across species
(Chargaff 1951). This has been termed as Chargaff’'s “GC rule” (Forsdyke & Mortimer 2000).

~ fr(G)+ fr(C)
 fr(A)+fr(C) +fr(G) + f(T)

%

Eq. 1.1

It has been suggested that this genomic GC-content is related to phylogeny (Sueoka 1961b,
1962; Schildkraut et al. 1962). GC-content, although informative, does not have enough
resolution (Sandberg et al. 2003) and is a confounding factor in phylogenetic analyses (Mooers
& Holmes 2000; Takahashi, Kryukov & Saitou 2009).

OLIGONUCLEOTIDE SIGNATURE

Similarly to the Chargaff’s GC rule, the species-specificity of dinucleotide frequency normalized
with the frequency of constituent bases (relative abundances) was established biochemically
(Josse, Kaiser & Kornberg 1961; Swartz, Kornberg & Trautner 1962). They observed that the
dinucleotide frequencies are non-random, that is their frequency differed from chance
expectation, and the relative abundances are different for different species. Those
experiments were devised to confirm the Watson-Crick base-pairing and the dinucleotide
signature was a side product.

Availability of DNA sequences and advances in information technology allowed computational
analyses and further strengthened this idea (Muto & Osawa 1987; Burge et al. 1992). These
computational studies established that for long segments of DNA (approximately 50 kb) the
dinucleotide relative abundance is species-specific. The dinucleotide relative abundance is
defined as the odds-ratio where the numerator is the observed frequency and the
denominator represents the expected frequency of the dinucleotide assuming the bases are
independently and identically distributed over the sequence, which is a zero-order Markov
assumption (Almagor 1983).

o 09)= o

=— . Eq. 1.2
fro(x)fr (y)

Here fr*(x) denotes frequency of an oligonucleotide X on both strands, computed as average
frequency of x and its reverse complement. Thus the relative abundance ratio measures the
deviation of the observed value from the expected value, causing it to be higher for
overrepresented dinucleotides and lower for underrepresented dinucleotides. The species
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specificity of this signature was established with the observation that for different species
different dinucleotides are over and underrepresented.

Karlin and colleagues also proposed a distance metric to calculate distance between the
relative abundances. The corresponding 6* distance is show below a general form.

) =53 0n) - ()

Using this distance metric they were able to show that the distances between relative
abundances are in accordance with the phylogenetic distance, in other words, the genome
signature contains phylogenetic signal. This property has been successfully used by Karlin and
colleagues (Karlin & Cardon 1994; Karlin & Burge 1995; Karlin, Mrazek & Campbell 1997;
Karlin, Campbell & Mrazek 1998; Campbell et al. 1999) and others (Hao & Qi 2003; Pride et al.
2003; Qi, Wang & Hao 2004b; Sims et al. 2009; Takahashi et al. 2009) to elucidate evolutionary
relationship between closely related species based on genome signature. The §* distance
between whole genome dinucleotide abundances correlates weakly, albeit significantly, with
16S rDNA similarity and strongly with DNA-DNA hybridization values (Coenye & Vandamme
2004).

The signature concept was extended to higher order oligonucleotides, often accompanied by
higher order Markov model to calculate the expected frequency, which can show a stronger
specificity (Bohlin et al. 2008). In general for a fixed length k the signature over an alphabet X is
a |2 dimensional vector. In the case of DNA sequences the alphabet is the nucleotides
¥={A,C,G,T}. The similarity or dissimilarity between sequences is then measured in this
oligonucleotide space, allowing use of standard machine learning techniques. Such a

Ill

representation has been termed “spectrum kernel” and can optionally allow mismatches or
gaps (Leslie, Eskin & Noble 2002). The short sub-strings are referred to as oligonucleotides, k-
mers, k-tuples or n-grams. We use these interchangeably. Analysis using this representation is
also referred to as composition-based analysis or alignment-free analysis as we will refer to it.
Similar representation can be derived for protein sequences but it is not discussed as this work

focuses upon nucleotide sequences.

Genome signatures have been extensively used to detect laterally transferred DNA (Karlin et
al. 1997; Karlin 1998; Pride & Blaser 2002; Dufraigne et al. 2005), inference of evolutionary
relationships (Karlin et al. 1997, 1998; Pride et al. 2003; Sims et al. 2009; Xu & Hao 2009)
amongst other applications. Hereafter we will refer to oligonucleotide genome signature as
genome signature or simply as signature.

ORIGIN AND MAINTENANCE OF GENOME SIGNATURE

The highly variable nucleotide composition of prokaryotes has been observed for a long time
(Sueoka 1961b, 1962; Andersson & Sharp 1996), though its origin and maintenance is still not
completely understood. In this section some plausible explanations are reviewed.

Two types of evolutionary explanations have been proposed to explain the variation in
nucleotide content across prokaryotic species; mutational biases and selective forces. While
the former is based on the observation that the GC content in prokaryotes varies from 25% to
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75%, suggesting that mutational differences, for example due to differences in DNA replication
and repair machinery, play an important role. Furthermore mutational pressure differs in
replication strands causing a skew in relative amount of G versus C nucleotide frequencies
(McLean, Wolfe & Devine 1998; Lobry & Sueoka 2002). Those observations are consistent with
the hypothesis that differences in mutational pressures are responsible for the observed
differences in genomic nucleotide content. It was suggested that context dependent
mutations, such as CG suppression, can result in some dinucleotides being preferentially
generated (Karlin et al. 1997).

Another explanation attributes the observed species specificity of genome signature to
selective forces. Many studies have suggested a link between various genomic features and
environmental factors such as; exposure to UV is a selective pressure towards high GC content
(Singer & Ames 1970), nitrogen fixing aerobes have higher GC content than the ones from the
same genus that do not fix nitrogen (McEwan, Gatherer & McEwan 1998), habitat (Rocha &
Danchin 2002; Moran, McCutcheon & Nakabachi 2008; Mann & Chen 2010; Botzman &
Margalit 2011), optimal growth temperature (Musto et al. 2004; Basak, Mandal & Ghosh 2005;
Musto et al. 2005; Kirzhner et al. 2007a; Zeldovich, Berezovsky & Shakhnovich 2007) (see
(Hurst & Merchant 2001; Marashi & Ghalanbor 2004; Wang, Susko & Roger 2006) for contrary
view), Aerobiosis (Naya et al. 2002; Kirzhner et al. 2007a) and combined effects of
phylogenetic and environmental factors (Foerstner et al. 2005; Bohlin et al. 2009; Rudi 2009).
Taken together, those findings suggest that genomic nucleotide content contains traces of
environmental adaptations, implying the latter being a causative agent.

The pervasiveness of the genome signatures suggests that forces acting on larger stretches of
DNA might be involved. That said, to a certain extent signatures may vary within genomes. This
intra-genomic variation can be attributed to two different mechanisms. The redundancy of the
genetic code allows use of synonymous codons and many organisms show non-random usage.
The preferred use of some codons can be due to mutational pressure (Chen et al. 2004) or to
adapting the expressional efficiency and accuracy of highly expressed genes (lkemura 1985;
Karlin & Mrazek 2000; Supek et al. 2010; McHardy et al. 2004). Another important source of
intra-genomic variation is lateral gene transfer (Koonin, Makarova & Aravind 2001) which
causes compositional heterogeneity by introducing foreign DNA. Considering that both sources
cause local heterogeneity we ignore them in this work.

GENOME SIGNATURE SETTINGS

At least three parameters need to be set in order to derive genome signatures from sequences
and compare them; length of the oligonucleotides, a normalization strategy and a distance
metric to compare signatures. All of those choices are vital for the task at hand and are
discussed below.

Too short oligonucleotides might not be suitable due to a weaker signal. On the other hand the
dimension of the signature vector increases exponentially with the oligonucleotide length
resulting in a high dimensional space which can also be problematic, as the distance of a vector
to its nearest vector approaches the distance to the farthest vector as the dimension grows
(Beyer et al. 1999). Such concentration of distances might render the signatures incomparable.
Therefore, a proper choice of oligonucleotide length is necessary for obtaining good results.
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Often oligonucleotides between lengths two and ten are chosen in practice, in general, longer
oligonucleotides showing stronger species-specificity signal but incur a higher computational
cost (Bohlin et al. 2008, 2010). Furthermore, it is known that different oligonucleotide lengths
work better for different organisms or groups of organisms (Mrazek 2009). Often
oligonucleotides with length between four and six are chosen as they offer a good compromise
between signal strength and computational efficiency. Recently a database containing
frequencies of oligonucleotides of lengths one to ten has been created (Kryukov et al. 2012).
Such databases will eliminate the redundant enumeration of oligonucleotides, further
reducing computational requirements.

There are two reasons why one might want to normalize the raw oligonucleotide counts.
Firstly, to be able to compare signatures derived from sequences of different lengths.
Secondly, to remove biases due to constituent oligonucleotides in order to improve the
underlying signal. In the first case, it is sufficient to normalize by the sequence length or total
number of oligonucleotides which is a popular choice. In the second case, a count is
normalized using the expected count computed using constituent shorter oligonucleotides
under a Markov assumption. This can be problematic, particularly for short sequences as the
expected count might not be a reliable estimate.

Following the notation used in (Mrazek 2009) we will denote each genomic signature with a
pattern lknm, where | and n are place holders for the oligonucleotide length denoted by k and
the length of oligonucleotides used for normalization denoted by m, respectively. As a special
case we will use L to denote normalization using the number of nucleotides in a sequence
which in turn will be generally represented as |N| for a nucleotide sequence N. Thus, for
example, the tetranucleotide signature normalized using sequence length is denoted as |4nL
and normalization using base frequencies is denoted as l4nl. The notation is optionally
followed by the alphabet used (e.g. “ry”) if an alphabet other than nucleotide was used.

Each element of a tetranucleotide signature vector normalized using the length for a DNA
sequence N is defined as;

e _ fr(vxyz)

pvxyz|N - | N | Eq.1.4

Thus a tetranucleotide signature contains 256 elements (4%) each corresponding to one
tetranucleotide. To take the double stranded nature of the DNA into account, the values of the
elements and their corresponding reverse complements (rev_comp) can be averaged.

l4nL l4nL
p*:,i;]Z‘LN _ pvxyz|N + prev_comp(vxyz)|N Eq. 1.5
2

Third choice is the choice of a distance metric to compare genomic signatures. Choices include;
the 6* distance due to Karlin and colleagues (see equation Eq. 1.3) (Burge et al. 1992; Karlin et
al. 1998), Euclidean distance, cosine distance (Qi, Luo & Hao 2004a), correlation (Pearson or
Spearman) based distance (Kirzhner et al. 2002), Mahalanobis distance (Suzuki et al. 2008) and
information theoretic distances such as Kullback-Liebler divergence and Jensen-Shanon
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divergence (Sims et al. 2009). All of those choices have their own advantages and
disadvantages making it difficult to opt for one.

All three choices will be made clear in the respective context.

OTHER SIGNATURES

The signature, or rather the class of signatures, we described above is often referred to as
“composition-based” signatures as they represent a sequence as a fixed-length vector derived
from oligonucleotide composition. Several other signatures have been proposed and are
briefly discussed below.

CODON USAGE

> Codon (Glossary(NCBI) 2002)

Sequence of three nucleotides in DNA or mRNA that specifies a particular amino acid during
protein synthesis; also called a triplet. Of the 64 possible codons, 3 are stop codons, which do
not specify amino acids.

The redundancy of the genetic code (many to one association between codons and amino
acid) is used in non-random manner by different species (Grantham 1980; Grantham et al.
1980). Grantham’s genome hypothesis was based on the observation that genes in a
taxonomic group tend to consistently use similar degenerate codons. This qualifies codon
usage bias as a genomic signature on the basis of species-specificity and pervasiveness at gene
level. However, some consistent inconsistencies are attributed to gene expression level,
abundance of corresponding tRNAs and horizontally acquired genes (lkemura 1985; Sharp & Li
1987). The species-specificity of codon usage was further confirmed by (Wang et al. 2001;
Sandberg et al. 2003). Codon usage bias is an attractive choice; however, it requires knowledge
of gene boundaries which can be avoided by the use of oligonucleotide based signatures that
also pervade non-coding DNA (Campbell et al. 1999).

CHAOS GAME REPRESENTATION (CGR)

Jeffrey (leffrey 1990) studied non-randomness of genomic sequences and proposed a
visualization technique called CGR which is a 2-dimensional image representation of the
sequence. CGR is a generalization of Markov chain processes (Almeida et al. 2001).
Deschavanne and colleagues (Deschavanne et al. 1999) drew parallels between CGR and
oligonucleotide composition. Later it was realized that for a CGR with resolution is }gk and the
DNA sequence is much longer than k then the corresponding CGR is completely determined by

all the numbers of length k oligonucleotide occurrences (Wang et al. 2005). Therefore, using
CGR is, to a large extent, equivalent to using oligonucleotide signatures.

DNA BARCODES

DNA barcodes are short sequences of length 20-25 bp that are present in the genomes of a
particular species and are unlikely to be present in the genomes of other species (Stoeckle &
Hebert 2008). Barcodes are useful for species identification and classification in an existing
taxonomy. However, DNA barcodes are not particularly useful for sequence comparison in
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general. Moreover, they do not show genome-wide pervasiveness which is an important
requirement for the methods proposed in this work.

OLIGONUCLEOTIDE FREQUENCY DERIVED ERROR GRADIENT (OFDEG)

This signature was proposed by Saeed and Halgamuge (Saeed & Halgamuge 2009) as a single-
dimensional genomic signature to extract phylogenetic signals from relatively short DNA
sequences. The OFDEG is derived using Euclidean distance (error) between the un-normalized
composition vector of a sequence and its sub-sequences of varying lengths. The error
decreases with increasing length of the sub-sequences and shows a linear relationship with the
sub-sequence length up to certain length. The rate of error reduction within this linear region
is the OFDEG value. They showed that OFDEG works as a signature for sequences as short as
200 bp and applied it to the task of taxonomic assignment of metagenome sequences.

1.5 SEQUENCING TECHNOLOGIES AND NEED FOR EFFICIENT
METHODS

> Sequencing (Glossary(Genome))

Determination of the order of nucleotides (base sequences) in a DNA or RNA molecule or the
order of amino acids in a protein.

> Sequencing technology (Glossary(Genome))
The instrumentation and procedures used to determine the order of nucleotides in DNA.

The first sequencing technology was developed by Frederick Sanger and colleagues (Sanger &
Coulson 1975; Sanger, Nicklen & Coulson 1977) and is known as the “Sanger sequencing” or
“chain terminator sequencing”. Post-Sanger sequencing technologies are normally referred to
as next generation sequencing (NGS) technologies. NGS technologies produce large amount of
sequence data cheaply. Several NGS technologies are commercially available and produce
reads of different length, quality and amount. An overview is shown in Table 1.1. Further
details on the NGS technologies can be found in reviews (Metzker 2010).

Advancements in genomics, particularly in sequencing technologies, along with the hardware
and software aspects of information technologies have fueled rapid development in basic and
applied biological sciences. However, the enormous amount of sequence data produced by
NGS technologies outperforms the development in computational machinery in terms of
processing power and storage (Figure 1.4) and present challenges at various stages of
processing and analysis (Kahn 2011).

Sequencing technologies are expected to continue providing improvement in sequence
amounts and quality in the future causing data overload. Therefore, one of the biggest
challenges is to analyze this large scale data to derive useful information. At the same time it is
also important to keep the future developments in mind. Consequently conceptual and
methodological development is necessary in order to deliver feasible solutions. The genome
signature paradigm (section 1.4.2) provides a sequence comparison framework to devise
efficient algorithms that can handle large scale sequence data.
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Table 1.1: Throughput and read lengths of different sequencing technologies.

Normalized .
Ma:::z:‘tct:ll;er and Lt:lr:g;h Throughput* throughput** Tl';l(':z:xeg*h*iut Tlmrsnper
8y P (Mb/h)
Solexa/lllumina Sequencing 300 Gb/8.5 days— 8.5 days—
by Synthesis 100-150 600 Gb/11 days 1500-2300 104 11 days
Life Technologies/Applied 7 Gb/day— 2 days-7
Biosystems SOLiD >0-75 20 Gb/day 300-800 103-104 days
. . 100- 10 Mb/2 h—
Life Technologies/lon Torrent 200 1Gb/2 h 5-500 101-103 2h
. 550- 450 Mb/10 h— 10 h-
Roche/454 Pyrosequencing 1000 700 Mb/23 h 30-45 102 23 h
Life Technologies Capillary | 600— 690 kb/day— N
Sanger sequencing 900 2100 kb/day 0.029-0.088 100 7h
*Numbers are based on vendor information: Illumina Inc. (www.illumina.com), Life Technologies

(www.lifetechnologies.com), Roche/454 (www.454.com). **Normalized throughput is scaled to a 1-h period and
rounded. ***The throughput scale is compared with Life Technologies 3730 Sanger chemistry-based sequencer and
shows the ratio of throughput values in terms of order of magnitude. Because lack of information on sequencing
statistics or commercial availability, Pacific Biosciences (www.pacificbiosciences.com), Oxford Nanopore
Technologies (www.nanoporetech.com) and Helicos Biosciences (www.helicosbio.com) are excluded. From (Droge
& McHardy 2012).

Sequencing Progress vs Compute and Storage
Moore’s and Kryder's Laws fall far behind
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Figure 1.4. A doubling of sequencing output every 9 months has outpaced and overtaken performance
improvements within the disk storage and high-performance computation fields.From (Kahn 2011).
Reprinted with permission from AAAS.

1.6 MACHINE LEARNING TECHNIQUES

Having defined the problems addressed in this thesis and described the biological background
in the previous sections; this section introduces the machine learning techniques used to solve
the corresponding problems.
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Machine learning began in the early 1950s and went through many ups and downs as any
other scientific disciplines. We will jump straight into defining machine learning. The aim of
machine learning is to devise programs, referred to as machines, which learn to perform a task
by experience without explicit teaching. A more formal definition was provided by Tom
Mitchell.

> Machine learning (Mitchell 1997)

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

The experience needed to learn is normally provided through “training data” which provides
the necessary information (independent variables or features or input space) needed to
perform the task correctly (dependent variable or output space). The performance measure, as
the name says, measures the performance of a learner at the give task. Therefore, these
methods learn from empirical data. Depending upon the nature of the training data machine
learning methods can be grouped into two categories;

e Unsupervised (cluster analysis) — In this case there is no designated output space,
often because it is simply not known or is not measured. The training data in this case
is said to be unlabeled.

e Supervised — In this case the learner has access to the output space. The training data
is said to be labeled.

Depending on whether the output space is continuous or discrete a supervised learning
problem is said to be either a regression problem or a classification problem, respectively. The
nature of the output space further categorizes the classification problems into following three
types;

e Binary — The output can take one of the two possible values often represented as {-
1,+1}.

e Multiclass — The output takes one of the possible m values {yi, Y2, ..., Ym}-

e Structured — This is a generalization of the multiclass problem where the outputs are
related to each other in a known structure.

This thesis uses supervised learning methods which are more formally introduced in the
following section focusing on the statistical learning theory (Boser, Guyon & Vapnik 1992;
Cortes & Vapnik 1995; Vapnik 1995; Hastie, Tibshirani & Friedman 2009).

1.6.1 SUPERVISED LEARNING AND SUPPORT VECTOR MACHINES

The aim of a supervised learning method is to induce a function f : X — Y that maps an

input X € Xto an outputy € Y . Given training data as a finite set of independently and

identically distributed (iid) input-output pairs (examples)S:{(Xi,yi)}in:land a loss
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function A(Y, ¥') that quantifies the discrepancy between the correct output y and an output

y’, the goal of a supervised method is to learn a function such that expected risk over the joint
input-output probability distribution P(X, y) is minimized;

R(f)= JA(y. f(x)P(x,y)dxdy Ea. 1.6

Due to the unknown probability distribution P the expected risk cannot be computed and has
to be induced using a limited training data as the empirical risk;

Eq.1.7

Run(1)=2 2803, 1)

> Inducer / induction algorithm (Kohavi & Provost 1998)

An algorithm that takes as input specific instances and produces a model that generalizes
beyond these instances.

The most intuitive loss function for a binary classifier is the 0/1 loss which incurs a penalty of 1
for an incorrect output and no penalty for correct output.

ol 1619)=1

0 if f(X)=y

. Eq. 1.8
1 otherwise

This is a step function and hence not differentiable and non-convex. Hence a convex
approximation is often used for large margin classifiers, called the hinge loss.

A, (f(x),y)=max(01-y'x f(x)) Eq. 1.9

Here Yy’ € +1 is the true label. We consider function f as a linear hyperplane represented using

a vector W (parameters) with same dimensionality as the input space and an optional bias term

b.
f(x)=w'x+b Eq. 1.10

The sign of the function f(x) gives the corresponding predicted output y. The scalar product of
two real valued vectors w and X, W'X is an inner product.

> Inner product (PlanetMath)

An inner product on a vector space V over a field K (which must be either the field R of real
numbers or the field C of complex numbers) is a function {:,-):VxV— K such that, for all a,peK
and X,y,ZeV

(ax+by,z) = a(x,z) +b(y,z)

1.
2. (xy)=({y,x
3. (x,x) > 0,and (x,x) = 0if and only if x =0

@
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Inductive algorithms normally estimate the optimal parameters by minimizing risk on the
available finite training data, which is the empirical risk. A learned machine (or a fitted model)
is then used to predict the output for unseen input data. Therefore, it is important to estimate
the predictive capability of a model before employing it. This estimated performance on
unseen data is referred to as “generalization performance”. Direct minimization of empirical
risk can be problematic as it is an ill-posed problem leading to multiple possible solutions and
the expected risk might be high even with a low empirical risk (over-fitting). Vapnik proposed
finding a hyperplane that is as far away as possible from either of the classes, or in other words
a hyperplane with largest margin. Furthermore, a complexity control mechanism is introduced
and one often needs to balance two conflicting goals in order to find a generalizable model;
empirical risk and the model complexity. This balance forms the basis of the regularization
theory and statistical learning theory (Evgeniou et al. 2002). Intuitively the complexity control
can be seen as application of Occam’s razor where simpler solutions are preferred. Vapnik
showed that choosing of a model from a set of models by simultaneously minimizing the
empirical risk and maximizing the margin leads to a lower expected risk. Maximizing the
margin is equivalent to minimizing the capacity of the machine as defined by the notion of
Vapnik-Chervonenkis (VC) dimension providing a probabilistic upper bound on the expected
risk. Resulting is the following soft-margin SVM optimization problem for the binary
classification task;

n
i=1’

primal
binary *

Optimization problem SVM Given a training setS ={(x;,y;)}",, wherex, € RPand

Yy, € {il}

.1, 2 CL
WTI&QOE”W” +Fi§§i Eq. 1.11

sty (Whx +b)21-¢ Vi

Here C is a hyper-parameter that controls the trade-off between the empirical risk and the
complexity of the solution. This is known as the “soft margin” SVM as it allows some
misclassifications that are penalized using the slack variables £ The resulting solution
maximizes the margin (distance between the hyper-plane and closest point of each class)
around the separating hyper-plane. A dual form of this optimization problem can be derived
using Lagrangian multipliers (Vapnik 1995);

Optimization problem SVM 22! .

binary*

n 1 n n
.
@f‘g’é;“i +§Zz(xiajyiijixj

i=l j=1
Eq. 1.12

s.t. iociyi =0 Vi
i=1

The solution of this problem results in a set of examples with non-zero weights (a value) which
are called support vectors. In the linearly separable case, these are the examples closest to the
hyperplane. The primal parameters can be obtained using the following equation;
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n
w = Z Y X, Eq. 1.13
i=1
The prediction function takes the form;
. n
f(x)=x"W +b=>"y, (aixiij +D) Eq. 1.14
i=1

As both the optimization and the prediction functions can be expressed in terms of the inner
products between the input examples they can be rewritten using a “kernel function” K over
the examples.

K(xi,xj)zxiTx.

i Eq. 1.15

This ability to express both the learning and the inference problems in terms of inner products
allows use of any symmetric similarity function that is positive semi-definite satisfying;

X"Mx >0 xeR", MeR™ Eq. 1.16

This assures that the kernel is an inner product between the input examples in some Hilbert
space H (feature space) via a mapping@: X —>H.

K(Xi 1 Xj ): o(x; )" (P(X,-) Eq. 1.17
> Inner product space (PlanetMath)

An inner product space (or pre-Hilbert space) is a vector space (over R or C) with an inner
product (-,-).

> Hilbert space (PlanetMath)
A Hilbert space is an inner product space which is complete under the induced metric.

Thus similarity between the input examples can be computed in a high dimensional, possibly
infinite, feature space without explicit mapping. This “kernel trick”, that is a linear solution in
the feature space can be non-linear in the input space, is used to solve non-linear classification
problems using the linear formulation discussed above. In summary, supervised learning is
achieved by identifying a set of parameters such that the expected risk is minimized. A learning
method can be generally represented asL : S,® — W; where O is a set of hyper-parameters
that are “tuned” for model selection as described below. In the formulation above the hyper-
parameter is the regularization constant C. The generalization of the binary SVM to multiclass
and structured output will be discussed in section 2.3.1.

1.6.2 MODEL SELECTION VIA CROSS-VALIDATION

The choice of hyper-parameters affects the induced model and it is necessary to choose a
model with lower expected risk. Cross-validation is a popular technique used for this purpose.
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> Model selection (Hastie et al. 2009)
Estimating the performance of different models in order to choose the best one.
> Cross-validation (Kohavi & Provost 1998)

A method for estimating the accuracy (or error) of an inducer by dividing the data into k
mutually exclusive subsets (the “folds”) of approximately equal size. The inducer is trained
and tested k times. Each time it is trained on the data set minus a fold and tested on that
fold. The accuracy estimate is the average accuracy for the k folds.

The hyper-parameters of a method are varied in order to identify values suitable for data at
hand as estimated by the best cross-validation performance. We have used three-fold cross-
validation along with a grid search to vary the hyper-parameters in the proposed methods in
order to identify optimal models.

1.6.3 METRIC LEARNING

Quantifying similarity or dissimilarity between observations is central to many applications.
Often some standard measure is employed for this purpose, for example the Euclidean
distance. However, such “off-the-shelf” metric might not be always suitable for the task at
hand. Data driven approach can be used to learn a distance metric such that when applied to
the target data it produces distances close to the desired distances. We will refer to this
problem as metric learning problem.

The Mahalanobis distance metric (Mahalanobis 1936) provides a principled way to represent
and learn custom metrics. It is defined as;

Mahal(x,y)=/(x —y)" M(x—y) Eq. 1.18

Where X,y € R" are input examples (vectors) and M € R”?is a positive semi-definite matrix
satisfying Eq. 1.16. Note that the Euclidean distance is a special case of Mahalanobis metric
parameterized by an identity matrix. The metric learning problem can then be defined as
identification of an adequate matrix M such that the resulting Mahalanobis distances are close
to the desired distances.

As with the supervised classification problem (section 1.6) the goal here is to learn a
generalizable metric that can accurately predict the taxonomic distances between new
genomes using their genome signatures.

EVOLUTIONARY STRATEGY

As the objective function of the resulting optimization problem is not differentiable,
discontinuous and non-convex, gradient based techniques cannot be used. We, therefore,
have used evolutionary strategy (ES) (Hansen, Muller & Koumoutsakos 2003) based
optimization framework suitable for numerical optimization in this scenario. Evolutionary
strategies are based on the concept of natural evolution in the sense that change in a
genotype (problem solution) leads to a change in the phenotype (objective function) and
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better solutions can be found by recombination and mutation (variation of existing solutions)
combined with selection of good solutions produce better solutions over generations
(iterations). In a variation of ES the mutation step size for each coordinate of the solution
space can be adapted and the correlations amongst them can be accounted for via a
covariance matrix. This is called as the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES). In other words, the covariance matrix of the distribution is adapted in such a way that the
variance is increased in the favorable directions.

1.7 ADDRESSED PROBLEMS

In this thesis we addressed two important bioinformatics problems from the realm of
sequence comparison. We rely on the paradigm of genome signature for sequence comparison
with the overall aim to achieve good performance with a low computational cost.

1.7.1 TAXONOMIC ASSIGNMENT OF METAGENOME SEQUENCES

> Taxon (plural: taxa) (Glossary(Systematics))

A group of organisms, considered to be a unit, and which generally has been formally named
with a scientific (Latin or Greek) proper name and a rank.

> Rank (Glossary(Systematics))

The hierarchical level of a supra-specific taxon, according to the Linnaean approach to
classification.

> Taxonomy (Glossary(Systematics))
The field of science convened with discovering, describing, classifying, and naming organisms.

The sequence data generated by metagenomics presents many opportunities to understand
the microbial communities and effectively use the knowledge generated. One important and
natural question to ask is “who is out there?”. This question can be answered by estimating
the taxonomic composition of a metagenome sequence sample. Phylogenetic surveys can
answer this question but do not allow us to ask and answer further questions such as “which
sequences belong to what taxa?”. This is the taxonomic assignment problem where the goal is
to assign taxonomic affiliation to the sequences. Taxonomic assignment allows functional and
process-level analysis of the community and possibly genome reconstruction either in whole or
in parts. Taxonomic assignments can be obtained by comparing the metagenome sequences
with reference sequences with known taxonomic affiliation. In the simplest sense one can
assign to a sequence the taxonomic affiliation of its closest match. Indeed, such assignments
were performed in the initial metagenome projects (Venter et al. 2004). From the machine
learning point of view such a method or its variants are termed a supervised learning
techniques (McHardy & Rigoutsos 2007), as they need sequences with known taxonomic
affiliation (training data). Unsupervised techniques, on the other hand, are a class of
techniques that do not need training data and only use the similarity or dissimilarity between
the sequences in a sample to group them. Unsupervised techniques are typically less accurate
than supervised techniques when appropriate training data are available.
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There are two important challenges in the taxonomic assignment task; a large number of
sequences to perform taxonomic assignment on and availability of only partial or no closely
related reference data. The oligonucleotide based genome signature paradigm provides a
suitable framework that is capable of addressing both challenges. An important thing to clarify
is whether the genome signature is applicable to metagenome sequences.

The concept of genome signature was established using analyses of cultivated organisms. As
discussed above, two important properties of a genome signature are species-specificity and
pervasiveness (genome-wide conservation). Although environmental forces shape nucleotide
composition, the genome signature is still prevalent in metagenome sequences (Teeling et al.
2004; Abe et al. 2005) even in extreme environments such as acid mine drainage (Dick et al.
2009). Therefore, genome signature based analyses can be applied to metagenome sequences
and several methods have been proposed for taxonomic assignment of metagenome
sequences (McHardy et al. 2007; Diaz et al. 2009; Saeed, Tang & Halgamuge 2011) in addition
to alignment-based methods (Huson et al. 2007; Krause et al. 2008; Monzoorul Haque et al.
2009; Segata et al. 2012; Sharma et al. 2012). In this thesis we propose a novel method that
relies on the genome signature paradigm and uses state-of-the art supervised machine
learning methods to achieve good performance with high computational efficiency. Details are
provided in chapter 2 and 3.

1.7.2 GENOME TREE INFERENCE

Understanding and inferring evolutionary relationships between organisms is vital. The
evolutionary relationships are normally depicted in the form of a phylogenetic tree or a
phylogeny.  Earlier phylogenies were derived using morphological and physiological
characteristics (Orla-Jensen 1909; Stanier & van Niel 1941). Classical examples for bacterial
morphological characteristics include cell shape, motility and Gram stain. This clearly poses a
problem for microorganisms since it is difficult to identify and characterize morphological
features and thus provides a limited resolution for separating different taxa. Later it became
clear that morphological and physiological characteristics do not reflect phylogenetic
relationships between prokaryotes (Stanier & Van Niel 1962; van Niel 1946). Advent of
genomics allowed use of molecular data and thus revolutionized phylogenetic systematics.
Molecular sequence based phylogenies are often derived using short molecular sequences
such as the ubiquitous small subunit ribosomal RNA genes (16S rRNA and 18S rRNA) that
delineated the three domains of life and confirmed the gram stain dichotomy (Woese & Fox
1977; Fox et al. 1980). Although very popular, use of 16S rRNA is not without limitations. As
this gene represents only a plausible relationship between organisms and genes are prone to
differential evolution rates and horizontal transfer phylogenies inferred using different genes
often disagree. To reconstruct the evolutionary history of the organisms many methods were
developed that consider several genes (Ciccarelli et al. 2006; Wu & Eisen 2008). These
methods rely on multiple sequence alignment of homologous genes.

Following the advent of sequencing technologies a large number of complete genomes
became available and it was possible to probe whether evolutionary signals can be found in
this rich data source. Traditionally used sequence alignment cannot be directly used for
complete genomes as it is only applicable to homologous sequences. Furthermore, genomes
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can be non-collinear due to processes of recombination, rearrangement and gene gain and
loss. Therefore, several other sources of information are considered, such as gene content,
gene order and genomic signature (Delsuc, Brinkmann & Philippe 2005; Snel, Huynen & Dutilh
2005).

> Gene transfer (Glossary(Genome))

Incorporation of new DNA into and organism's cells, usually by a vector such as a modified
virus. Used in gene therapy.

Given evidence of horizontal transfer as a stronger evolutionary mechanism than previously
anticipated, the tree-like evolution of prokaryotes is under scrutiny, discussed at length in
(Bapteste et al. 2009). We believe that a tree-like representation nonetheless provides
practical means to understand the diversity of and relationships between prokaryotes. The
usefulness of a tree-like representation is demonstrated by our method for taxonomic
assignment of metagenome sequences (see above, Chapter 2). Furthermore, there is a clear
distinction between a phylogeny and taxonomy. While phylogeny is meant to describe
evolutionary relationships by means of vertical inheritance, taxonomy is a classification system
that categorizes organisms into hierarchically organized groups (not necessarily ancestral)
along with associated nomenclature conventions (Sneath 1989; Kampfer & Glaeser 2012). In
this context the work discussed in Chapter 4 should be viewed as elucidating taxonomic
relationships between the organisms which might or might not be evolutionary in nature.

Details for this problem and our solution are provided in chapter 4.
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2 PHYLOPYTHIAS FOR TAXONOMIC ASSIGNMENT
OF METAGENOME SEQUENCES

Metagenome studies analyze communities of microorganisms from an environment of interest
by direct sequencing, thus giving access to uncultivable organisms. A routinely performed step
in metagenomic analysis is the taxonomic assignment of the obtained sequences, a procedure
known as taxonomic classification. Accurate classification of metagenome samples is a
challenging task and depends on the complexity of the microbiome sample, data quality and
taxonomic distance to reference genomes. Furthermore, the amount of data produced by next
generation sequencing technologies has created a novel challenge namely; there is now a need
for fast methods that are scalable for data sets of 500 Mb of sequence in size or more. We
present a new taxonomic classification method, PhyloPythiaS, which takes the relationships
between taxa into consideration using the structured output prediction paradigm.

2.1 INTRODUCTION

Circumventing the need for isolation and cultivation of individual microbes, metagenomic
studies provide insights into the vast and mostly uncultured microbial world. This not only
allows the study of microorganisms unreachable by traditional genomics approaches but also
facilitates community-level analysis. It has been estimated (Hugenholtz 2002) that 99% of the
microbial diversity is uncultured. This produces immense interest in metagenomic studies, with
the hope of increasing our knowledge of biodiversity and discovering novel proteins that are of
biotechnological or biomedical interest.

Metagenome projects generate a large number of sequencing reads, representing the genetic
content of the organismal mixture from the sampled environment. Various computational
analyses can be performed on this data; assembly, gene prediction, diversity estimation, and
taxonomic assignment some of the common tasks. In the taxonomic assignment problem
sequence fragments are assigned to taxonomic units or so-called bins (therefore it is also
called as taxonomic binning). The individual bins stand for the species or higher level taxa
represented by the populations in the metagenome sample. Taxonomic assignment can be
performed either on the reads or on assembled sequence fragments, such as contigs and
scaffolds (see sections 1.3 and 1.5).

Three sources have been extensively used to obtain reference taxonomic information for this
task; phylogenetic analysis of 16S ribosomal RNA (rRNA) (Woese & Fox 1977), other conserved
marker genes (Von Mering et al. 2007; Wu & Eisen 2008) and clade specific marker genes
(Segata et al. 2012), similarity searches in sequence databases (Huson et al. 2007; Monzoorul
Haque et al. 2009), and sequence similarity in terms of sequence composition, that is using
genome signature (McHardy et al. 2007; Diaz et al. 2009; Patil et al. 2011). Marker gene based
studies typically assign very few sequences, less than 1% (Hugenholtz 2002). Sequence
databases are mainly populated with sequences that are of particular interest, such as
biomedical and biotechnological applications (Wu et al. 2009). As sequence similarity searches
based on alignment require complete genome sequences, they often fail to identify similar
sequences. Sequence composition represents an attractive method for taxonomic assignment
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as accurate models can be learned from small amounts of reference sequence (approximately
100 kb), which in some cases can be obtained directly from the sample.

From a methodological perspective, sequence composition-based methods can be categorized
as either unsupervised or supervised approaches. A problem which particularly affects
unsupervised methods is that the data may be noisy, and influenced by processes unrelated to
taxonomic origin such as the environment. For example closely related sequences from
different environments; such as farm soil and ocean, differ in their GC content (Foerstner et al.
2005), different lifestyles; such as free living, symbiotic, intercellular and extracellular
pathogens, show specific codon usage biases (Willenbrock et al. 2006) and genomic purine
composition (A+G) is positively correlated with optimal growth temperature (Zeldovich et al.
2007). Consequently, this may misguide the clustering process towards groupings that might
not corroborate with taxonomic origin. Given sufficient amounts of reference sequence,
supervised methods can better cope with noisy data by guiding the learning process to focus
on the features/examples in a way that confirms with the known class labels.

This chapter presents the design of the PhyloPythiaS method and the associated web server.
PhyloPythiaS is a successor to the previously published method PhyloPythia (McHardy et al.
2007) and its name stands for PhyloPythia Structured as it is based on the structured output
prediction paradigm. We will describe the associated machine learning techniques in section
2.3 followed by the output and input space and associated choices 2.3.2. In section 2.4 the
PhyloPythiaS workflow is presented, in section 2.5 we will present the web server and the
chapter ends by showing the advantage of structured output prediction methods in section
2.6.

2.2 EXAMPLES OF DOWNSTREAM ANALYSES

Taxonomic assignment of metagenome sequences facilitates further downstream analyses in
turn generating insights into the molecular basis of the biological phenomenon. In order to
motivate the work and emphasize the importance of the taxonomic assignment problem, this
section provides examples of downstream analyses to gain biological insights in two
metagenome projects. Both metagenome samples were analyzed using PhyloPythiaS, in
addition to PhyloPythia, achieving high performance as discussed in sections 3.5.4 and 3.5.5.
The corresponding samples are described in the section 3.3.2.

Pope and colleagues (Pope et al. 2010) performed compositional and comparative
metagenomic analyses of the foregut microbiome of the marsupial; Tammar wallaby
(Macropus eugenii). The resulting metagenome sequences were taxonomically binned using
PhyloPythia. The sequences assigned to a dominant lineage WG-1 from the family
Succinivibrionaceae were then used to reconstruct its partial metabolism, devising cultivation-
based strategies (Pope et al. 2011). This allowed isolation and characterization of a strain
representing the WG-1 lineage, subsequently revealing the microbiological basis for lower
methane emissions from macropodids. Taxonomic assignments for this metagenome were
also obtained using PhyloPythiaS in order to test the performance of the new method. The
results show that both PhyloPythia and PhyloPythiaS performed well and assigned
approximately 2.6 Mb to WG-1 with >97% scaffold-contig consistency (described in section
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3.2.2). Both methods also showed similarly high performance for other two dominant
populations WG-2 and WG-3 (detailed analysis in section 3.5.4).

Another way to use taxonomic assignment is to compare metagenomes in order to identify
similarities and differences in their composition, for example taxonomic or genetic, that are
potentially associated with a phenotype of interest. Turnbaugh and colleagues (Turnbaugh et
al. 2010) performed a study that included comparison of taxonomic bins to identify similarities
and differences in deeply sequenced gut microbiomes from monozygotic cotwins. Taxonomic
assignment with PhyloPythia identified 25 and 24 genus- and family-level bins were identified
in the TS28 and TS29 microbiomes respectively, out of which 22 were common. This taxonomic
assignment provided an opportunity for in-depth analysis revealing that Faecalibacterium had
the highest level of variation, whereas Methanobrevibacter had the lowest. The
metatransciptome analysis using complementary DNA (cDNA) was then performed respective
to the taxonomic assignments, which allowed the authors to calculate the relative expression
levels of each bin and gene. This in turn was used to characterize pathways represented by
genes with high or low relative expression, which showed that pathways for essential cell
processes, e.g. Pyruvate metabolism and Glycolysis, were consistently represented by
relatively highly expressed genes. Generic tools have been developed for identification of
differentially abundant bins between two or more microbial communities (Huson et al. 2009;
Segata et al. 2011). Taxonomic assignment of the metagenome sequence is an essential step
prior to such comparative analysis.

2.3 PHYLOPYTHIAS

Building upon PhyloPythia (McHardy et al. 2007) we have developed a new binning method,
PhyloPythiaS (Patil et al. 2011; Patil, Roune & McHardy 2012), which uses support vector
machine (SVM) based supervised learning method for structured output spaces (Altun,
Tsochantaridis & Hofmann 2003; Tsochantaridis et al. 2005; Rousu et al. 2006). Structured
output learning exploits a structure which relates different output variables - in this case taxa
and their taxonomic relationships as specified by taxonomy - to improve classification
performance. Moreover, the structural SVM is based upon the maximum margin principle
which gives theoretical generalization guarantees and has also empirically shown good
performance. The taxonomic information is obtained from the NCBI taxonomy, which is used
to model the evolutionary relationships between taxa or groupings of organisms. Thus, the
taxonomic assignment problem becomes a path prediction problem where the output
variables (taxa) are organized in a hierarchical structure and the training data consists of
oligonucleotide composition of genome fragments of known phylogenetic origin. In the
following sections we will first introduce the supervised learning methodology followed by the
choice of the input and output spaces.

2.3.1 MACHINE LEARNING TECHNIQUES

STRUCTURED OUTPUT PREDICTION

Structured output prediction is different from binary and multiclass prediction in that the
classes are not independent but have some known relationship defined using some structure.
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In the present case, this structure is a taxonomy representing the relationships between a set
of taxa. In section 1.6.1 we introduced the binary SVM. Two generalizations of the binary
classifier have been proposed. The first one extends the classification problem of more than
two classes (multiclass) (Crammer & Singer 2001) and the second extends to classification of
more than two interdependent classes (structured output) (Altun et al. 2003; Tsochantaridis et
al. 2005). Those extensions are introduced next and the link between them is pointed out. For
simplicity the discussion is restricted to linear functions and the primal form of the
optimization problems, more details can be found in the corresponding references.

MuLTICLASS SVM

Many real world problems contain more than two classes and the corresponding classification
problem is referred to as multiclass classification. We will denote the output space of m classes
as integersY = {1,2,..., m}. In this section we will briefly mention the ideas behind the
multiclass SVM. Continuing with the previous notation (section 1.6.1), the learning function,
the inputs, the outputs and the parameter vector will be denoted as f, X, y and w, respectively.
The bias term b is ignored for simplicity but without loss of generalization.

Two types of methods can be found in literature for the multiclass classification task. The first
types of methods decompose the multiclass problem into a set of independent binary
classification problems. The most popular strategy is one-versus-all; that is given m classes one
first constructs m binary classifiers that separate a particular class from the rest (Crammer &
Singer 2001; Rifkin & Klautau 2004). Thus, a different parameter vector is learned for each

classw, € RP. At classification time a new input example is classified by all the classifiers and

the class label of the class y yielding the highest positive value is chosen as the output (see
section 1.6.1, Eq. 1.10).

f (x)=argmax w] x Eq. 2.1
yeY

Other strategies include all-versus-all classification, error correcting codes and defining class
structure. Those will not be discussed here and the reader is referred to (Platt, Cristianini &
Shawe-Taylor 2000; Pimenta & Gama 2005) and references therein for details.

The second type of techniques can naturally handle multiclass problems, such as nearest
neighbor and decision trees (Mitchell 1997; Hastie et al. 2009). Large margin frameworks for
construction of a single classifier to handle multiclass problems have been proposed (Vapnik
1998; Weston & Watkins 1999). Crammer and Singer (Crammer & Singer 2001) generalized the
notion of margins to multiclass problems and proposed an optimization problem with an
efficient algorithms to solve it. Their generalization of the linear binary classifier models the

hypotheses space as a matrix M € R™® with each row corresponding to a parameter vector
for one of the m classes. As the matrix M can be viewed as stacked parameter vectors (one
corresponding to a particular class), , without losing the meaning, we will represent the

hypotheses space as a set of m parameter vectors W, eRP, ye{1,2,...,m}, in order to

continue with the notation used in this work. The inference problem is defined similarly to Eq.
2.1.
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Further, they proposed a notion of the margin as the difference between the score of the
correct row and the maximum of the scores due to one of the other rows (most violating
score). The piecewise linear bound on the error for an input vector X with correct output y is
given by;

T T
maxX w X—W, X
VeY\y y y Eq. 2.2
This loss function becomes zero for correct classification and produces a number proportional
to the difference between the correct score and the most violating score. The empirical risk in
this case is given by;

R

n
emp (W) = EZ[maX W; X _W;Xi} Eq.2.3

' i
n i=1 y'eY\y

Here w is the concatenation of all the parameter vectors. Defining the norm of the hypothesis
space as the norm of the concatenation of all the parameter vectors and using slack variables
to allow non-separable data, the optimization problem becomes;

Optimization problem SVM "™

multiclass *

.12 C
V’Pgi}@”w” +FZ§‘
e i=1 Eq.2.4

T T :
s.t. W, X; —yr;g%iwy,xi 21-¢& Vi
Here C > 0 is a constant controlling trade-off between the empirical risk and the model

complexity.

STRUCTURED oUuTPUT SVM

The multiclass framework of Crammer and Singer was generalized to incorporate structured
output prediction problems (Altun et al. 2003; Tsochantaridis et al. 2004). This framework
allows generalization across classes by capturing the common properties of the classes as
defined by their interdependencies. This framework can learn over an arbitrary structure
among classes, but we will discuss only the special case of hierarchical classification, which is
relevant for this work. An important distinction for the structured output paradigm is that an
output is a vector instead of a scalar, in the particular case of hierarchical classification each

output is a path in the hierarchy with m nodesy = [nl, n,,.., nm]. As before, each input vector

is of dimensionality p.

The structured output inference problem is generally defined as;

f(x)= argrmax wy(x,y) Eq. 2.5
ye

The joint input-output space v is defined depending upon the problem at hand, as described

below for hierarchical classification. Consider a hierarchy as a set of elements Z > Y along
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with a partial order <, each path in the hierarchy can be then represented as a vector. Each
element of this vector is defined over every element z in Z as following;

ify<zory=z

A, (Y)= {By'z Eq. 2.6

0 otherwise

Here By,z € R defines the similarity between the outputs with respect to the partial order <.

We set By’z to 1, thus obtaining a binary vector for each possible output. In other words, each

output (a path in the hierarchy) is represented as a binary vector of size |Z| (number of nodes
in the hierarchy) whose each element shows whether a particular node is included in the
output or not. Consequently, all the paths containing a node will have a 1 in the corresponding
position of the binary representation, indicating the “sharing” between related outputs.

Denoting the binary representation for an output y byA(y) and an input example X in the
feature space as (p(X), the joint input-output space is then defined using the tensor

product ®: R? xR™ — R such thatc=a®b ¢;=a xb; as;

v(x,y)=ox)®Aly) Eq. 2.7

For example, consider the linear feature map for an input X defined as ¢(X)=x and the binary
representation of an output y as A(Y)=[1 0 1 1 0] as a path consisting of three nodes in a
hierarchy with five nodes. Then the joint feature space is given by y(X,y)=[X 0 X X 0], where 0 is
a vector of Zeros of the same length p as the input vector X. Hereafter, we will use the input
space feature map function ¢ as defined above.

This is equivalent to introducing a parameter vector W, e RP for every node z in the

hierarchy. Thus the complete hypotheses space can be represented as a vectorWeRpX‘Z‘,

which is a concatenation of all w, vectors. Note that even though there might not be any input
examples directly observed at some paths they use input examples from their children, thus
enabling generalization across classes using the compatibility score defined below.

Fxy;w)= > w;x Eq.2.8

zy<zory=z

Analogous to the Crammer and Singer notion of the margin, a more general functional margin
for structured output problems is defined as follows;

Y(CY;W) =Wy (X y) - max w'y(x.y') Eq. 2.9

After fixing the minimum functional margin to 1 and penalizing for margin violations the soft-
margin optimization problem becomes;
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primal
structured *

Optimization problem SVM

Vrvngpogllvvll += Ze‘
Eq. 2.10
st.why(X,y;)- WTw(Xi,y;)ZI—L Vi, Yyl eY\y,

A(y:.Y))

The constraints require that for each training example the score of the correct output (Y;)
. ’ .
must be greater than the score of all incorrect outputs (Y;) by a margin of 1. There are a large

numbers of constraints in this optimization problem O(n|Y|)which makes it intractable to solve

by standard quadratic solvers. As only a small number of these constraints are expected to be
active and overlap of information in the joint feature space, an efficient cutting plane
algorithm was proposed that guarantees a solution to arbitrary precision by evaluating a
polynomial number of constraints. The details of this algorithm are out of the scope of this
work and can be found in (Tsochantaridis et al. 2005). The above formulation is the n-slack
formulation, since it assigns one slack variable to each training example. A 1-slack formulation
of the structural SVM problem was proposed which is computationally more efficient
(Joachims, Finley & Yu 2009). The slack-rescaling 1-slack formulation is;

M primal 1-slack .
structured,slack-rescaling *

Optimization problem SV

min 2w+ c2

2.11
' T
S-t-HZA(yi,yi)[w Wy ) -w ylx,y))] > S ZA y,.yi)-&ieln vy eY
i=1

Similarly the margin-rescaling version of the problem is formulated as follows;
Optimization prOblem SVM slz:tjgilrids::;lr(gln rescallng

m|n —|w|" +C

in 2w +cé
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i=1 i=1

The reader is referred to (Joachims et al. 2009) for the duals of those optimization problems.
We used duals of the above optimization problems as implemented in the SVMstruct
application programming interface available at http://svmlight.joachims.org/ (version 3.10).

2.3.2 OUTPUT AND INPUT SPACES

THE OUTPUT SPACE

Our output space comprises a hierarchical structure representing a set of taxa (nodes) and
their taxonomic relationships (edges). Essentially it is a rooted tree. In particular, we use the
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taxa and relationships defined by the NCBI taxonomy
(http://www.ncbi.nlm.nih.gov/Taxonomyy/) as the reference. In this structured representation,
each possible output corresponds to a valid path in the hierarchy. Each path is encoded as a
binary vector of length equal to the number of nodes. In this vector, the elements
corresponding to the nodes in the path are set to one and the rest to zero. If an internal node
has some training examples assigned to it a miscellaneous terminal child node is added as its
child followed by re-assignment of the corresponding training examples to the child node. We
used the seven major taxonomic ranks; species, genus, family, order, class, phylum and
superkingdom to define the hierarchy.

PATH LOSS

The 0/1 loss used for binary and multiclass problems is not suitable for hierarchical
classification as some predictions can be more correct than others. A more suitable loss in this
scenario is the path loss. The path loss measures the number of edges on the shortest path
between the terminal nodes of two paths (Figure 2.1).

Figure 2.1. The concept of the path loss. For the shown hierarchy, predicting the path from the root
node R to the node B is more correct than predicting the path to node C when the correct output is
the path to the node A. In this case the path loss for the paths to B and C are 2 and 4, respectively.

As we are dealing with a rooted tree the path loss can be implemented using the depth of the
terminal nodes of the corresponding paths and the depth of their lowest common ancestor
(LCA);

A (y,y") = depth(y) + depth(y’) - 2x depth(LCA(y, y")) Eq. 2.13

The path loss can be normalized using the longest path distance in order to restrict maximum
loss at one. Other loss functions over a hierarchy can be defined, such as the measure due to
(Wu & Palmer 1994); however, we decided to use the path loss for its simplicity and good
performance (Cesa-Bianchi, Gentile & Zaniboni 2006; Rousu et al. 2006).

USE OF DYNAMIC PROGRAMMING

Each output in our structured output prediction problem is a path in the taxonomy. Both
learning and inference processes depend on the compatibility score (Eq. 2.8), which measures
the strength of association between an input-output pair. Let’s consider two paths p; and p, in

a hierarchy consisting of nodes {nl,nz,ns} and {n,,n, }, respectively. Note that this not the

binary representation of the paths, but just an enumeration of constituent nodes. Furthermore
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assume the dependency relationship N, > N, > N3, saying that n, is parent of n, and n, is

parent of n3. The compatibility score of these paths for a given input vector x are given by (see
Eq. 2.8);

F(X,p ;W) =W X+W x+w/ x
o Eq. 2.14
F(X,pysw) =w, X+W, X

Thus calculation of the compatibility score of the whole path needs the compatibility score of
its constituent nodes which in turn needs the scores of its ancestors. As a concrete example,
the compatibility score for the path p; can be rewritten as follows;

F(x,p,; W) = F(X,p,; W) +W, X Eq. 2.15

Therefore a hierarchy can be traversed either in depth-first preorder or in breadth-first level-
order to calculate compatibility scores of all the paths. This dynamic programming results in
high computational efficiency.

INPUT SPACE SETTINGS

As the input space we use a genome signature defined over a set of oligonucleotides. There
are at-least two parameters that have to be defined to get a signature space; the lengths of
the oligonucleotides and a normalization strategy of the oligonucleotide frequencies (see
section 1.4.2). We first fixed the range of oligonucleotide lengths from four to six, as this
choice has been used by various previous works (Teeling et al. 2004; Abe et al. 2005; McHardy
et al. 2007). We performed 3-fold cross-validation experiments to identify suitable parameter
settings. The cross-validation experiments were performed by varying the regularization
constant C (see Eq. 2.11, Eqg. 2.12) in the set {0.1, 1, 1000, 10000}. Those experiments were
performed on 1332 complete prokaryotic genomes downloaded from NCBI. All the taxa from
the superkingdom to the species rank were modeled if at-least three genomes could be
assigned to it, which resulted in 401 taxa in total (2 superkingdoms, 21 phyla, 34 classes, 69
orders, 105 families, 105 genera and 65 species).

First we performed cross-validation experiments to identify which normalization to use. Two
normalization strategies were tested; sequence length and constituent mononucleotides
(zero-order Markov assumption) (see section 1.4.2). Tetranucleotide signatures were
calculated using Eq. 2.16 and Eq. 2.17, sequence length and mononucleotide normalization,
respectively. Pentanucleotide and hexanucleotide signatures were calculated similarly. Note
that the latter incurs a higher computational cost. The oligonucleotide counts are generally not
reliable for short fragments and thus we expected the mononucleotide normalization to
perform worse on shorter fragments. The mononucleotide normalization performed worse for
1000 bp fragments and comparatively better for 5000 and 50000 bp fragments (Figure 2.2), as
expected. It can be observed that with a proper choice of the C parameter the sequence
length normalization is able to deliver same cross-validation performance as the
mononucleotide normalization. Therefore, we chose sequence length normalization.
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Figure 2.2. Cross-validation experiments to select a normalization strategy. Each bar shows the
accuracy for oligonucleotides of selected length and a C value.

The next choice to make is the oligonucleotide length. We investigated the following choices of
oligonucleotide lengths (dimensionality in brackets); 4 (256), 5 (1024), 6 (4096) and a
concatenation of 4, 5 and 6 (5376). As before; the C parameter was searched in the set {0.1, 1,
1000, 10000}. It was observed that for all three fragment lengths performance improved with
increasing dimensionality of the input space (Figure 2.3). Note the trend that cross-validation
performance improves for longer fragments, confirming that longer sequence fragments
encode a stronger signal. Based on these experiments we chose the input space to be a
concatenation of oligonucleotides of lengths 4, 5 and 6 normalized with sequence length.

REGULARIZATION PARAMETER SETTING

The structural SVM problem has a hyper-parameter, the regularization constant C. The choice
of this parameter affects the trade-off between the empirical risk and the complexity of the
solution. The cross-validation experiments suggest that a C value of 1000 works well for all
fragment lengths (Figure 2.3). Therefore, this value was used from then on.
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Figure 2.3. Cross-validation experiments to select oligonucleotide lengths. Each bar shows the
accuracy for oligonucleotides of selected length and a C value.

2.3.3 ENSEMBLE OF CLASSIFIERS

The prediction problem that we intend to address using structured output SVMs involves
potentially differing distributions of training and test data due to the varying lengths of
sequences produced in a metagenome project (section 1.3). Following (McHardy et al. 2007)
we build six models using six fragment lengths; 1000, 3000, 5000, 10000, 15000 and 50000 bp,
to be able to classify sequences of varying lengths typical in metagenome studies. The six
structural SVM models induced using genome signatures from each of those fragments
comprise a PhyloPythiaS model. Each test example (sequence) is classified with at most three
classifiers close to its sequence length or longer. The resulting predictions are then combined
using an ensemble strategy. Due to the hierarchical structure of the classes the majority vote
ensemble normally used with multi-class techniques is not applicable here. Considering that
we would like the predictions to be as specific as possible, that is close to the leaf nodes we
devised an ensemble strategy “majority vote lowest node”. In this strategy, first a vote is
assigned to each node equal to the number of classifiers predicting a path containing that
node. Then, for an ensemble of three classifiers, the nodes with a vote greater than one are
traversed in breadth-first order until the corresponding classifiers agree on the predicted path,
finally assigning that path as the output (Figure 2.4). In other words, the path on which the
majority of the classifiers agree upon is the output of this ensemble strategy.

35



Figure 2.4. The majority vote lowest node ensemble strategy. A colored line adjacent to an edge
represents inclusion in the prediction by a classifier, where each color represents a classifier. In this
hypothetical case, two out of three classifiers make consistent prediction till node A, thus assigning

the path from the root to node A as the output of the ensemble.

2.3.4 GENERIC AND SAMPLE-SPECIFIC MODES

PhyloPythiaS has two different modes of operation — generic and sample-specific.

A generic model is learned from public sequence data from the NCBI along with the
corresponding taxonomy. First the taxa are identified for which at least three genomes are
available. The reference taxonomy is then completed using the higher level parents of the
selected taxa from any of the seven major taxonomic ranks. The generic mode of PhyloPythiaS
uses a generic model and is suitable for the analysis of a metagenome sample, if no further
information on the sample's taxonomic composition or relevant reference data is available.

Lack of appropriate reference data can cause taxonomic assignments to be either of low
resolution (i.e. assighnments to high ranking taxa) or inaccurate. There are two reasons why the
appropriate reference data might be lacking. Firstly, the vast majority of microbial diversity has
not been cultured and sequenced (Hugenholtz 2002), and therefore metagenome samples
often represent novel species for which no sequences of closely related organisms are
available in public databases. Secondly, although the genomic signature is informative for
species and higher-level taxonomic clades (Burge et al. 1992; McHardy & Rigoutsos 2007), it is
also known that sequence characteristics are dependent upon environmental factors
(Foerstner et al. 2005; Willenbrock et al. 2006). In this case, the genomic signature of the
organisms in the metagenome sample can deviate from the genomic signature of the
evolutionarily close organisms available in public databases. A sample-specific model (i.e. a
model that includes training data from the metagenome sample itself in addition to public
data) is better suited in such scenarios. By including sample-specific sequences and taxonomy
in the training of SSVM, the dataset shift problem can be reduced (Adams 2010).

Therefore, assignment accuracy can be improved by creation and use of a sample-specific
model, which includes clades for the abundant sample population that are inferred from the
appropriate reference sequences. A sample-specific model is inferred from the public
sequence data combined with sequences with known taxonomic affiliation identified from the
metagenome sample (sample-specific sequences), together with a sample-specific taxonomy.
The sample-specific sequences along with any other available information, such as the ecology
of the sample, can be used to identify the taxa that should be modeled, which along with their
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parent taxa makes the sample-specific taxonomy. If a good match between the sample-specific
sequences and taxonomy and the taxonomic composition of the metagenome sample is
achieved, sample-specific models normally exhibit higher predictive accuracy (discussed in
section 3.5), and have improved resolution to low-ranking clades and higher coverage in terms
of assigned sequences, compared to a generic model. Normally, accurate assignments can be
obtained based on ~100 kb of reference sequence for a modeled sample population. This is
possible due to the pervasiveness of the genome signature. Suitable sample-specific training
sequences can be obtained from the metagenome sample itself, for example based on
sequence homology of the sample sequences to 16S rRNA or other phylogenetic marker genes,
or by targeted sequencing of metagenomic fosmid library with such phylogenetic marker
genes (Warnecke et al. 2007; Pope et al. 2010).

2.4 THE PHYLOPYTHIAS WORKFLOW

Having described the components of PhyloPythia$, in this section we will describe the detailed
workflow for building a PhyloPythiaS model and making taxonomic assignments using it.

The prerequisites for building a model include DNA sequences, either complete genomes or
parts of it, with known taxonomic affiliation and a database of taxonomic relationships. Note
that the sequences can come from public databases such as the NCBI GenBank or can be
obtained from the metagenome sample itself as sample-specific sequences. Plasmid
sequences are omitted if such information is available. The model building starts by cleaning
the sequences of undefined characters so that they have minimum effect on the sequence
length which is used for normalizing the oligonucleotide counts. For this, contiguous non-ATGC
characters longer than the selected oligonucleotide length (k) are substituted by k ‘N’
characters. This also makes sure that invalid oligonucleotides are not counted. Then the nodes
to model are identified based on the taxonomic affiliation of the sequences. While for a
generic model the nodes at species or higher level major taxonomic ranks where at least three
sequences can be mapped are modeled (this number can be set by the user), for a sample-
specific model the nodes to be modeled are defined by the user depending upon the sample
composition. This information is then converted into the Newick tree format (nested
parentheses format) (Figure 2.5) and retained for later use. All the sequences are then mapped
to the lowest possible node in this tree. The sequences are then fragmented into non-
overlapping fragments of desired length and an equal number of fragments are selected for
each node such that the total number of fragments equals the desired number of training
examples set by the user (default value 10,000). Only the nodes where the sequences were
mapped are counted. Note that as sample-specific sequences are normally short (~100 kb),
they are fragmented into overlapping fragments such that the required number of fragments
are generated. If there are more fragments than required then the required number of
fragments are randomly sampled stratified with respect to the original sequences, ensuring
that every sequence makes equal contribution wherever possible. The genome signature of
each of the fragments is then computed as per user defined oligonucleotide length (default 4-
6). This set of genome signatures can be represented as a matrix where each row is one
signature. We used the sparse matrix representation supported by SVMstruct to store this
matrix. This matrix along with the Newick tree is then used to train a SSVM model. Before
learning starts every column of the matrix is standardized to have zero mean and standard
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deviation of one. The means and standard deviations of each column are retained for later use.
To avoid incomplete paths, the tree is modified by adding miscellaneous leaf nodes to the
internal nodes if they have sequences assigned to them. The regularization parameter C is by
default set to 1000 or it can be also obtained via cross-validation. By repeating this procedure
for each of the fragment lengths (default 1, 3, 5, 10, 15 and 50 kb) different SSVM models are
obtained which together make a PhyloPythiaS model. Supplementary Figure 1
diagrammatically shows the training process.

A (A,B,(C,D)E)F,
A
B
B F
c
E
D

Figure 2.5. A Newick tree example in the nested parentheses format (A) and the corresponding
dendrogram visualized using Dendroscope (Huson & Scornavacca 2012) (B).

At the prediction time the test sequences are converted into genome signatures using the
same settings as used for model building. Each of those genome signatures are then classified
with at most three SSVM models built with the fragment lengths closest to that of the test
sequence length. The genome signature is standardized using the mean and standard
deviation of the corresponding model before running the inference (section 2.3.1, Eq. 2.5).
Each SSVM outputs a path in the model taxonomy. If two or more SSVM models were used
then the resulting predictions are combined using the majority vote lowest node ensemble
strategy (section 2.3.3). This process is repeated for each of the test sequences and all the
outputs are written in a file.

2.5 THE PHYLOPYTHIAS WEB SERVER

The PhyloPythiaS software is freely available for non-commercial users and can be installed on
a Linux-based machine. For researchers with limited computational resources or who are not
familiar with command line usage under Unix/Linux, web servers provide computational
resources and a graphical user interface for convenient use. Furthermore, they allow a visual
presentation of results for a quick overview and exploration of data sets. Therefore, we
implemented a web server that provides the PhyloPythiaS functionality. Several web servers
for taxonomic assignment are available, such as the MG-RAST (Meyer et al. 2008), WebCARMA
(Gerlach et al. 2009) and the naive Bayes Classification (NBC) (Rosen, Reichenberger &
Rosenfeld 2010) web servers. Our server is unique in that it provides the ability to construct
and use sample-specific models, besides enabling assignment with generic models.
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As previously described, the web server can be used in two different modes — generic or
sample-specific. The generic mode accepts sequences as a multi-FASTA file of up to 100 Mb in
size and performs taxonomic assignments using a generic model. The generic model is
constructed from prokaryotic genome sequences available at NCBI and models sufficiently
covered clades from domain to species level (see Introduction). The sample-specific mode
allows the user to specify the clades for a model and upload representative sequences for
construction of a user-defined model. In this mode, the user has to provide three files: (1) a
tree file: a plain text file with NCBI identifiers for the clades to be modeled or a rooted Newick
tree with non-negative integer node names; (2) a sample-specific FASTA file: a multi-FASTA file
with sample-specific sequences, where each sequence header must contain a valid node
identifier X as “label:X”; and (3) a prediction FASTA file: a multi-FASTA file with the sequences
for which taxonomic assignments are to be made. The sample-specific data provided by the
user is pooled with the reference data used for generic model to build a model with default
parameters as described in previous sections. This model is then used for taxonomic
assignment of the test sequences provided in the prediction FASTA file.

The generic and sample-specific models produce output in the same format. The output page
shows an assignments table with a maximum of 100 entries, as well as a pie chart and the
model taxonomy. The pie chart shows the abundance of the taxa and can be interactively
changed to visualize different taxonomic ranks and to display either the number of sequences
or number of bases. The taxonomy shows the modeled tree along with the assignment
information for each node. The taxonomy can be interactively changed to display either the
taxonomic identifiers or the NCBI scientific names.

Such interactivity allows the user to easily visualize the distribution of the assignments over
the taxonomy. Every node in the tree contains additional information, such as the number of
sequences/bases assigned to the node or its sub-tree. Additionally, a link is provided to obtain
the sequences assigned to each node. The assignments can be downloaded, possibly with
additional data, or received via email. If the server was invoked in the sample-specific mode
then additional assighnments on separate data can be obtained using the same model.

Metagenome samples can be larger than the upload limitations of the web server. For this
reason, the ability to visualize and download combined assignments from multiple submissions
for classification with the same model is provided. One uploads a large sample in the form of
multiple non-overlapping FASTA files, each as a different process, and retains the
corresponding process identifiers. Once all the processes are finished, the process identifiers
can then be provided to the ‘multiplex-sample’ utility, which combines the predictions from all
processes and generates visualizations and download files.
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Figure 2.6. Schematic representation of the PhyloPythiaS web server implementation. Arrows
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The web server consists of multiple components (Figure 2.6). The web interface is
implemented in PHP and JavaScript, and runs on an Apache server. The visualization and help
routines are implemented in JavaScript using the Dojo toolkit (http://dojotoolkit.org/). The
computational routines for the backend are written in the Ruby scripting language
(http://www.ruby-lang.org/) embedded inside an XMLRPC server. These routines pre-process
every job to create the necessary files and then invoke binaries compiled from C code (for
oligonucleotide feature generation and SSVM). A relational database based on MySQL is used
to store the uploaded data, results and configuration. The jobs are processed in the same
order they enter the database. The jobs and any associated data are deleted 30 days after
their finishing time. The user does not need to register for using the web server, and job
identification and result retrieval is done using a unique identifier assigned to every job at the
submission time. By default, one processor each is reserved for the generic and the sample
specific mode. This can be changed by the administrators in case of large number of pending
jobs and depending upon availability of resources.

2.6 COMPARISON WITH FLAT TECHNIQUES

Machine learning based prediction techniques that consider classes independently are known
as flat methods. Flat methods are normally faster to learn than the methods that take
structure between classes into account (structured methods for short). Furthermore, it has
been shown that structured methods for hierarchical classification of documents into genre
can perform poorly for imbalanced hierarchies (Wu, Markert & Sharoff 2010). Therefore, it is
important to assess whether structured methods provide improvement over flat methods for
the taxonomic assignment task. We empirically compared two variants of structural SVM (slack
rescaling and margin rescaling) with four flat methods (SVMmulticlass, libSVM, kNN and naive
Bayes) using 3-fold cross validation experiments. SVMmulticlass and libSVM are multiclass
extensions of SVMs. While SVMmulticlass is an implementation of the Crammer and Singer
multiclass SVM as a special case of structural SVM, libSVM uses one-against-one strategy (Hsu
& Lin 2002). The kNN is one of the simplest and oldest techniques with native support for
multiclass classification (Cover & Hart 1967). Finally, naive Bayes is a probabilistic classifier that
assumes independence between features (Mitchell 1997). Note that all these techniques have
been used in the context of taxonomic assignment (see Introduction). The SVMmulticlass
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(version 2.20) was obtained from the author’s website
http://svmlight.joachims.org/svm multiclass.html, 1ibSVM and naive Bayes classifiers were
from the “e1071” package (version 1.5-24) and kNN from the “class” package (both in R

version 2.11.1).

Two types of validation experiments were performed; class-stratified experiment where
examples for each class were randomly split into three folds and leave-classes-out experiment
where examples for all the classes were randomly divided into three folds. While the class-
stratified experiments assess generalization performance when input examples from all the
classes are available, the leave-classes-out experiments assess generalization performance
when either no or only closely related input examples are available. The cross-validation
experiments were repeated 10 times with different random seeds while maintaining same
folds for all the methods. Thus, each technique was tested on 30 folds in total.

The experiments were performed on a dataset with 166 classes with a total of 402 nodes in
the hierarchy. The classes belonged to the hierarchy at different taxonomic ranks; species (65
classes), genus (60), family (33), order (6) and phylum (2), indicating the imbalanced nature of
the hierarchy. The input space used was the l4nL genome signature. As our aim here was to
quantify differences between methods with and without hierarchy other signatures were not
tested. Five different C parameters were used for SVMs {0.1, 1, 10, 1000, 10000} and the
number of nearest neighbors for kNN {1, 2, 3, 4, 5}. For each of the 10 cross-validation
experiments the performance on the folds using the hyperparameter with the best cross-
validation performance was used. For all the methods, except naive Bayes, the data was
standardized to zero mean and unit variance. We measured accuracy and path loss for both
flat and structured methods.

The paired Wilcoxon signed-rank test was used to compare the performance of any two
methods on the 30 folds. On the class-stratified cross-validation experiments both
SVMmulticlass and libSVM performed significantly better than all other methods, including
structured, in terms of accuracy. However, while libSVM performed better than the structured
methods in terms of path loss, SVMmulticlass performed significantly worse that the
structured methods. Both kNN and naive Bayes performed significantly worse than all the
other methods with kNN performing relatively better. Also note that SVMmulticlass performs
better than structured methods (P<0.05, Wilcoxon test) on the accuracy but worse (P<le-4,
Wilcoxon test) on path loss measure, suggesting that direct minimization of 0/1 error does not
necessarily improve path loss performance (Figure 2.7, Supplementary Figure 2).
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Figure 2.7. Performance of the six machine learning techniques in two cross-validation scenarios. The
0/1 loss and the path loss in class-stratified cross-validation, (A) and (B) respectively. Path loss in
leave-classes-out cross-validation (C).

In the case of the leave-classes-out cross-validation, where the complete classes were left out,
the structured methods outperformed all flat methods on the path loss measure. Note that in
this case the accuracy of all the methods is zero. The margin rescaling formulation performed
significantly better than the slack rescaling formulation (P=2.83e-4, Wilcoxon test). Both
multiclass SVM methods performed similarly, still outperforming kNN and naive Bayes (Figure
2.7, Supplementary Figure 2). Note that the average loss for a worst classifier that assigns a
label with maximum loss and a random classifier is 0.92 (standard deviation 0.019) and 0.68
(standard deviation 0.0049), respectively, implying that all the techniques tested indeed learn

and generalize.

Taken together, those results suggest that structured methods are beneficial when data from
the same class is not available for training. We, therefore, expect that as data becomes scarce,
structured methods become more beneficial because they can use information from closely
related classes (as defined by the hierarchy) analogous to multitask learning scenario
(Evgeniou & Pontil 2004).

42



3 PHYLOPYTHIAS EVALUATION AND
APPLICATION

As most of the microorganism diversity is still unknown it is very unlikely that complete genome
sequences of the dominant populations are available as a reference for the taxonomic
assignment of a metagenome sample. Moreover, there might be varying degree of
evolutionary relatedness between the available reference data and the dominant populations.
In some cases it is possible to obtain limited amounts of sequence data for the dominant
populations which we call sample-specific data. Thus, it is crucial to assess the performance of
taxonomic classification methods when limited amounts or no reference data from closely
related organisms are available. We, therefore, performed controlled experiments on simulated
and real data sets mimicking realistic scenarios. We show that PhyloPythiaS performs well on
both simulated and real data and offers a significant improvement in execution time.

3.1 INTRODUCTION

The assignment performance on a metagenome sample depends on a combination of various
factors that are either intrinsic or extrinsic to the sample. While intrinsic factors include
organismal complexity, data quality and lengths of the sequences, extrinsic factors include the
assignment method and availability of closely related reference sequences. In particular, the
assignment of short fragments of less than 1000 base pairs is a difficult task (McHardy &
Rigoutsos 2007). Although various methods have been developed for this purpose (Krause et
al. 2008; Brady & Salzberg 2009; Parks, MacDonald & Beiko 2011), the accuracy remains less
than what is achievable for longer fragments. From the extrinsic factors availability of closely
related genomes is an important issue and a taxonomic method should be able to cope with
the availability of partial genomes or lack of thereof.

Apart from those intrinsic and extrinsic challenges associated with metagenome samples, the
large volumes of sequence data generated with next generation sequencing technologies
represents a major challenge. In the future, the amount of data generated in metagenome
studies will continue to grow, as sequencing comes with further reductions in costs and
simultaneous increases in speed (see section 1.5). Therefore, taxonomic assignment methods
should be able to cope with this sheer amount of data, while delivering good performance at
the same time. However, currently, many binning methods cannot process large data sets in
reasonable time.

The design of the PhyloPythiaS method and the evaluation setup was devised while
considering the challenges described above. We will first describe the performance measures
used in section 3.2, followed by the data sets and taxonomic classification methods in sections
3.3 and 3.4, respectively. The evaluation results are presented in sections 3.5 and 3.6. The
chapter is concluded in section 3.7. Note that these analyses were performed at different
times and therefore use different reference data, such that the more recent data is a superset
of the older data.
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3.2 PERFORMANCE MEASURES

3.2.1 SIMULATED DATA SETS

As the correct taxonomic assignment for test fragments is known, evaluation of simulated
datasets can be performed using well established performance measures. Here we compute
the sensitivity and specificity of assignments, averaged over all the taxa at a fixed taxonomic
rank (Baldi & Brunak 2001). The measures are computed for each taxon separately by
considering combination of all the other taxa as a different class as shown in the Table 3.1.

Table 3.1. Confusion matrix.

Predicted class

Taxon; Taxon;
Taxon; True Positive (t, False Negative (fn
Correct class : — (tp) gat (fn)
Taxon; False Positive (fp) True Negative (tn)

Thus, the average sensitivity, or macro-accuracy, and specificity are defined as follows (Baldi
and Brunak 2001; McHardy et al. 2007);

specificity = lz Lt

n‘z'tp; + fp, Ba. 34

o 1 &t tp_,
sensitivity = L+ Eq. 3.2
Y njtliz_lltpi +fn tp,+fn, a

The index -1 denotes items that do not belong to any of the modeled taxa for a given rank.
Furthermore, we compute the classification accuracy, which corresponds to the overall
number of correctly classified items at a given taxonomic rank. Note that while the macro-
accuracy measures the classification accuracy averaged over all classes represented in a test
data set, the accuracy measures classification performance for a given data set in a way that
every input item contributes equally. This distinction becomes important if the taxa are
represented in uneven amounts in a given data set, such as is often the case for metagenomic
data, in which case, the overall classification accuracy becomes a more relevant performance
measure than the macro-accuracy of assignments.

tp
tp+ fn

accuracy = Eq. 3.3

Ideally, a method should score well in terms of all measures.

We also have used the average non-normalized path loss (Eq. 2.13) in order to measure the
taxonomic distance between the correct and the predicted taxa.
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3.2.2 REAL DATA SETS

As for real metagenome samples the correct taxonomic assignment of the fragments is not
known, measuring the binning performance on real metagenome samples is a non-trivial task
and traditional measures like accuracy, sensitivity and specificity cannot be calculated. We use
here an intuitive and informative measure, called “scaffold-contig consistency”, for assessing
the binning performance of a method (McHardy et al. 2007). We extended this measure to
incorporate contig lengths, as described below.

Consider a metagenome data set for which the reads are assembled into contigs and that a set
of contigs are known to jointly originate from a particular genome, based on the mate pair
information. This is denoted by their grouping into a scaffold (see Figure 1.3). A taxonomic
assignment method is then used to infer the taxonomic assignment of the contigs. The
scaffold-contig consistency measures the consistency of the taxonomic assignments for a
scaffold in terms of its constituent contig assignments. For this purpose, first the “true”
taxonomic assignment for each scaffold is obtained as follows; a scaffold is first labeled with
the assignment of one of its constituent contigs with the lowest taxonomic rank. In case there
are multiple lowest rank assignments, then the assignment with the longest collective contig
length is used. The consistency of scaffold assignments is then measured with respect to this
taxonomic label. For each contig of a scaffold, the taxonomic assignment is considered to be
consistent if it is either the same or a more general taxonomic assignment with respect to the
true taxonomic origin of the scaffold; otherwise it is considered an inconsistent assignment.
The percentage of consistently assigned contig base-pairs is the scaffold-contig consistency.
The scaffold-contig consistency is then averaged over all the scaffolds with the same
assignment, to measure the assignment consistency of a clade. Furthermore, we also calculate
the average taxonomic distance of contig assignments in terms of the path distance to the
scaffold label as a more fine grained consistency measure. High scaffold-contig consistency is a
desirable property for a binning method. For a given data set we use the same reference
taxonomy for all the methods for calculating scaffold-contig consistency. Note that the
scaffold-contig consistency measure can be tricked by a method that is consistently making
wrong predictions, as it can achieve a high performance with this measure. For example,
consider a method that assigns same label to all contigs. Such a method will achieve perfect
scaffold-contig consistency scores. Nevertheless it is still an informative measure for “honest”
methods. Several other performance measures were used for the individual real data sets and
will be explained in the respective context.

3.3 DATASETS

3.3.1 SIMULATED DATA SETS

It is not straightforward enough to incorporate all the complexities present in real
metagenome sequence samples such as organismal diversity and novelty in simulated data
sets. However, when aware of these limitations, simulated data represent a good starting
point for a thorough evaluation. Note that by simulated data we mean sequence fragments
that were selected from genomes with known taxonomic affiliation and not simulated
sequences or hierarchies. Recently, three simulated datasets of varying complexity were
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constructed from fragments of sequenced genomes and used to benchmark the performance
of various computational methods, including taxonomic binning techniques (Mavromatis et al.
2007). We use the medium complexity dataset (simMC) from this benchmark collection for
evaluation, as well as newly constructed simulated data sets of short fragments.

ACID MINE DRAINAGE DATA SET (SIMMC)

We analyzed the simulated acid mine drainage data set (simMC) (Mavromatis et al. 2007)
to evaluate the performance of the different binning methods. We used the data set of
contigs assembled with the Arachne assembler, which consist of 7307 contigs of which
~99% come from six strains of three species (two strains each); Rhodopseudomonas palustris,
Bradyrhizobium sp. BTAi1 and Xylella fastidiosa. The average contig length is 2332 bp. We used
the NCBI complete genomes for the training. Controlled sets of genomes were excluded as
described in the results section.

SHORT FRAGMENTS DATA SET (SIMSF)

Next generation sequencing technologies yield short reads (~30-1000bp depending upon
technology) and produce large amounts of data. It is, therefore, interesting to see, whether it
is possible to characterize such short fragments directly without assembly. We simulated short
fragments data sets to answer this question. The benchmark data sets were constructed with
two constraints: First, the fragments to be characterized should not belong to any of the
organisms represented among the reference sequences, as metagenome sample
populations are rarely among the available sequenced isolate genomes. Secondly, they
should be chosen such that the closest reference genomes are found at different
taxonomic ranks, to model different degrees of evolutionary relatedness of metagenome
sample populations to available reference sequences. To simulate this set-up, sequences
from the NCBI genomes database were used as reference data for model construction.
One hundred isolate sequences from the NCBI whole genome shotgun database with no
mapping to any of the genera of the reference data were used for testing. Of the latter,
48 belong to a family, 39 to an order and 13 to a class of the reference taxonomy (data not
shown). Thus, the test genomes were ‘unknown’ for PhyloPythiaS; that is not seen during
training. Approximately 10,000 non-overlapping fragments of 100, 300, 500, 800 and 1000 bp
in length were randomly sampled from the test sequences to create the test sets of varying
lengths.

3.3.2 REAL DATA SETS

ACID MINE DRAINAGE METAGENOME SAMPLE (AMD)

The AMD is a well-studied metagenome sample of an acidophilic biofilm community,
sequenced with Sanger sequencing technology (Tringe et al. 2005). The AMD community
comprises five abundant species: Ferroplasma Types | and Il, a Thermoplasmatales species (all
Euryarchaeota), and Leptospirillum sp. Group | and Il of the phylum Nitrospirae. The test
scaffolds for the AMD metagenome were downloaded from the IMG/M portal
(http://img.jgi.doe.gov/, taxon object ID 2001200000). These data comprise 1183 scaffolds and
~10.83 Mb of DNA sequence. Draft genome assemblies, comprising 908 scaffolds overall, were
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created using sequencing coverage and nucleotide composition for the five populations of the
AMD sample; the genome assemblies were then deposited at NCBI (accession numbers
CH003520—CH004435). We mapped the AMD scaffolds to these reference assemblies with
BLASTN (Altschul et al. 1990) and used the best match in terms of the lowest E-value for each
scaffold of the AMD data set as an estimate of its “correct taxonomic affiliation”.

TAMMAR WALLABY FOREGUT METAGENOME SAMPLE (TW)

Microbial communities from the gut of the Australian Tammar wallaby (Macropus
eugenii) were sequenced by Sanger sequencing (Pope et al. 2010) (GenBank accession
number ADGC00000000). This sample consists of approximately 13.572 Mb of assembled DNA
sequence, with contig lengths varying in length from 438 bp to 27,865 bp (average
length 2,276.38 bp). 16S rRNA analysis determined that organisms from the phyla
Firmicutes and Bacteroidetes and the gamma-subdivision of Proteobacteria are abundant.
This sample contains at least three abundant microbial populations, namely Wallaby gut 1
(WG-1 — a population of an uncultured Succinivibrionaceae bacterium), WG-2 (of a novel deep
branching lineage within the Lachnospiraceae) and WG-3 (a novel bacterium of the
Erysipelotrichaceae).

HUMAN GUT METAGENOME SAMPLES (HG-TS28 AND HG-TS29)

Two metagenome sequence samples from the gut of two human monozygotic, female twins
were obtained by Roche/454 deep sequencing of the total fecal community DNA with 454
Titanium single- and paired-end protocols (Turnbaugh et al. 2010) (referred to as TS28 and
TS29). We analyzed approximately 113 Mb and 72 Mb of assembled contig sequences for TS28
and TS29, respectively. Sample-specific training data was obtained with BLASTN homology
searches versus a reference database of 118 sequenced gut genomes. Training data was
identified based on the following criteria; e-value<10”, bitscore>50, percent identity>90,
percent sequence aligned>90, and total contig length>2 kb. Furthermore, all significant
matches were required to originate from the same reference genome.

COw RUMEN METAGENOME SAMPLE (CR)

We furthermore performed taxonomic assignments for 26,042 metagenomic scaffolds (568
Mbp) of a microbial community adherent to switchgrass incubated in a bovine rumen (Hess et
al. 2011) with a twofold objective: First, to demonstrate usage of the PhyloPythiaS web server
on a large dataset and, second, to verify usability of the method for sequences generated by
Illumina sequencing technology. The data was downloaded from the DOE Joint Genome
Institute website (ftp://ftp.jgi-psf.org/pub/rnd2/Cow_Rumen/). The majority of the scaffolds
were found to have no similarity to sequenced genomes in the original study, suggesting
uncharacterized microbes as their origin. Fifteen near-complete ‘genome bins’ of abundant
populations from four orders were identified in the original study from the cow rumen sample,
based on analysis of tetranucleotide frequency and assembly information (Hess et al. 2011).
We used these genome bins, comprising 466 scaffolds overall, as the correct taxonomic
affiliation for comparison with the taxonomic assignments of PhyloPythiaS. The partial genome
bins published in the original article are not guaranteed to be entirely correct, nevertheless
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they provide a qualitative reference point, as they were generated based on multiple sources
of information and verified by human in-depth inspection.

3.3.3 PHYLOPYTHIAS SETTINGS

We wused the genome sequences from the NCBI complete genomes repository as
reference data for model construction. The output hierarchy was restricted to the taxa to
with at least three genomes could be assigned or as defined by the sample-specific data. We
built six structural SYM models using different fragment lengths; 1, 3, 5, 10, 15 and 50 kb. For
each of these models approximately 10,000 input examples were used equally distributed over
all the taxa being modeled. The C value was fixed to 1000 (section 2.3).

3.4 METHODS USED FOR COMPARISON

The following sub-sections give a brief account of taxonomic classification methods used for
comparison. All of those methods are based upon supervised machine learning techniques.

3.4.1 PHYLOPYTHIA

PhyloPythia uses patterns of oligonucleotides along with ensemble of hierarchical classifiers
combining multi-class SVMs the radial basis function kernel for taxonomic assignment of
variable length metagenome sequences (McHardy et al. 2007). PhyloPythia builds a multiclass
SVM for each of the domain to genus taxonomic ranks and combines them using a bottom-up
approach for hierarchical classification.

3.4.2 PHYMM AND PHYMMBL

Phymm uses interpolated Markov models (IMMs) using sequence composition features for
taxonomic classification of metagenome sequences. It was specially designed to classify reads
as short as 100 bp. PhymmBL is a hybrid classifier which combines Phymm with BLAST to
improve the assignment accuracy (Brady & Salzberg 2009).

The PhymmBL package was obtained from the website
http://www.cbcb.umd.edu/software/phymm/. This software by default downloads the NCBI
RefSeq and taxonomy data and builds IMMs on the corresponding sequences. The first version
of PhymmBL (available when the corresponding analyses were performed) did not allow
training on arbitrary sequences, unless some specific conditions on the fasta headers and
folder names are met. We, therefore, changed the perl scripts to allow use of arbitrary training
data, so that NCBI draft assemblies and sample-specific data could be used.

3.4.3 METAGENOME ANALYZER (MEGAN)

MEGAN requires comparison of the metagenome sequences against databases of known
sequences using BLAST or another comparison tool. A lowest common ancestor (LCA)
algorithm is then used to assign reads to taxa such that the taxonomical level of the assigned
taxon reflects the level of conservation of the sequence. MEGAN offers various parameters for
adjustment of the LCA algorithm (Huson et al. 2007).
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MEGAN was obtained from the website http://www-ab.informatik.uni-

tuebingen.de/software/megan. MEGAN can detect standard NCBI names in the BLAST output,
so including sample-specific data was straight forward. We created various BLAST databases;
NCBI complete genomes, NCBI draft assemblies and sample-specific data (when available)
using the “formatdb” program (available with blast at
ftp://ftp.ncbi.nim.nih.gov/blast/executables/release/LATEST/). For sample-specific data, care

was taken to include the organism names in the fasta headers before formatting them as a
BLAST database, so that MEGAN could detect their taxonomic position. Default MEGAN
parameters for LCA were used. Database searches were performed using blastn to appropriate
databases using blast alias files. The complexity filter was turned off with option —F “m D”
when performing blast searches.

3.4.4 BEST BLASTN-HIT

This is one of the simplest approaches used for alignment-based taxonomic classification but
generally not well suited when closely related genomes are not available. The idea here is to
obtain similarities between a test sequence and the reference sequences using BLASTN and
then assign the taxonomic affiliation of the reference sequence that yields the highest
similarity with the test sequence. The similarity is usually measured using the e-value (Altschul
et al. 1990).

We created BLAST databases for appropriate sequences using the “formatdb” command. The
metagenome sequences were queried, using “blastn”, against this database with default
parameters. The resulting blast report was parsed using BioRuby (Goto et al. 2010). Each query
sequence is labeled with the taxonomic identifier of the genome with the best hit (lowest e-
value). Hits with e-value less than 0.1 were discarded as being insignificant.

3.4.5 NAIVE BAYESIAN CLASSIFIER (NBC)

The first naive Bayesian classifier in this context was proposed in (Sandberg et al. 2001). Later
many other implementations with some modifications were proposed (Rosen et al. 2010;
Parks et al. 2011). In this work we used the web server implementation as described in (Rosen
et al. 2010).

We downloaded the assignments provided by the NBC webserver (http://nbc.ece.drexel.edu/
with default N-mer length of 15 and Bacteria/Archaea genomes (accessed in April 2011) and

used the “summarized_results.txt” file to extract the sequence headers and species level
assignments (columns 1 and 4). These assignments were used for subsequent analysis, for
example generating pie charts and predictive performance calculations.

3.5 RESULTS

3.5.1 ACID MINE DRAINAGE SIMULATED DATA SET

We analyzed the simulated acid mine drainage data set to evaluate the performance of the
different binning methods. For this task, complete genomes from NCBI were used as reference
data for model training with exception of those genomes used to create the simulated data
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set. This corresponds to the unknown genome test setting, in which no training data of the
respective populations within a metagenome sample is used. For testing we used the contigs
assembled with the Arachne assembler (Mavromatis et al. 2007). The performance of different
methods is summarized in Figure 3.1. As can be seen, all methods perform well, overall, on this
data set. PhyloPythiaS show very high specificity at all taxonomic ranks, while PhymmBL
exhibits highest sensitivity but comparatively lower specificity at lower taxonomic ranks.
MEGAN shows average specificity and sensitivity. Overall, PhyloPythiaS is conservative in
assignments, tending more towards under-binning than the other methods, which results in a
lower overall number of assignments to genus- and family-level clades on this data set.

In order to simulate the effect of varying degree of evolutionary relatedness between the
training and test data, we evaluated performance of the different taxonomic classification
methods by retaining 100 kb randomly selected contiguous fragments from the three
dominant strains each as reference data and removing all genomes of the (1) same genus, (2)
same order and (3) same class for the dominant strains. These different experiments are
referred to as ‘New genus’, ‘New order’ and ‘New class’ respectively. This allows us to examine
the performance in more realistic settings. A drastic drop in the sensitivity and accuracy of the
alignment-based methods (MEGAN and PhymmBL) can be seen in the absence of closely
related genomes. This is due to the lack of homologous regions, as only 100 kb of sequence
were available for the dominant populations. On the other hand, composition-based methods
(PhyloPythiaS and Phymm) show better sensitivity and accuracy, of which PhyloPythiaS shows
superior performance. This demonstrates the strength of composition-based methods and the
ability of PhyloPythiaS to learn accurate models from limited amounts of reference data
(Figure 3.1).

3.5.2 SIMULATED SHORT FRAGMENTS DATA SETS

This is one of the most complex tasks in metagenome sample classification; for a real sample
corresponding to the task of assigning individual unassembled reads of rare organisms without
reference sequences available to correct higher-level clades. The test fragments do not map to
any genus in the reference taxonomy (or available reference sequences). The lowest clades
that the fragments map to in the reference taxonomy are at varying taxonomic ranks above
the rank of genus. Thus, no assignment to a genus-level clade is the optimal result for
fragments of this data set; meaning that genus-level assignment specificity can be computed,
while sensitivity of assignments, indicates the portion of correctly ‘not assigned’ test
fragments.

The results are summarized in Figure 3.2. As expected, all methods show better performance
with increasing fragment length and a trade-off between sensitivity and specificity. Overall,
MEGAN shows superior specificity compared to all other methods. MEGAN is conservative due
to its LCA algorithm, in the sense that it makes very specific assighments at the cost of
sensitivity. Of the sequence composition-based methods, PhyloPythiaS and Phymm,
PhyloPythiaS shows better specificity with compromised sensitivity.
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Figure 3.1. Average performance for the simMC data set at different taxonomic ranks in four different
experiments.

Both Phymm and PhymmBL show rather low sensitivity at the genus level. This is caused by the
composition of the test data, for which none of the test fragments belong to any of the genus-
level clades that are part of the models. Both methods ‘over-bin’ by assigning a substantial
fraction of sequences to genus-level clades that should rather be left unassigned. It is
interesting to note the drastic performance improvement of PhymmBL compared to Phymm
for all fragment lengths and at all taxonomic ranks. At family level, which is the lowest
taxonomic rank with valid assignments, the improvement in specificity is approximately 12-
18% with a bigger effect on shorter fragments, and around 13% improvements in sensitivity.
Furthermore, the fact that MEGAN achieves high specificity values indicates that alignment-
based sequence similarity information is beneficial for short fragment assignment. For
sequence composition, we attribute the degraded performance to the comparatively weak
and noisy compositional signal of short fragments.
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Figure 3.2. Average performance for the simSF data set at different taxonomic ranks.

A “dip” is observed in the specificity at the order level for PhyloPythiaS and other methods.
This is due to the construction of the data set. More specifically, the test fragments have
varying degree of evolutionary relationship with the reference sequences. This is the reason
for non-monotonous behavior of the performance measures over different taxonomic ranks
on this data set.

Besides the hold-out experiments described above, we furthermore performed 3-fold cross
validation for PhyloPythiaS on the pooled data of complete genome sequences and whole
genome assemblies. The data were randomly split into three stratified sets according to their
genus affiliations. Genome sequences belonging to one of these sets were used to generate
short fragment test data, while the sequences of other two sets were used for training. This
procedure was repeated for each of the three sets and assignment accuracy determined. The
averaged sensitivity, specificity and accuracy values obtained are reported in Figure 3.3.
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Figure 3.3. Average performance of PhyloPythiaS on the genus-stratified short fragment data sets.

3.5.3 ACID MINE DRAINAGE METAGENOME SAMPLE

We compared the PhyloPythiaS generic and sample-specific model assignments with
predictions from the NBC web server (http://nbc.ece.drexel.edu/), MEGAN and the best
BLASTN hit approach. As MG-RAST and WebCARMA incorporate AMD sequences as reference
data, a comparative evaluation by direct submission to these servers would not have ensured
strict separation of the reference data and test data. Taxonomic scaffold assignments with
PhyloPythiaS and the other tested methods were evaluated based on draft genome assemblies
for the five strains and the Fluorescent In-Situ Hybridization (FISH) cell counts published in the
original AMD study (Figure 3.4 d, e).

The PhyloPythiaS generic model returned the assignments in less than 5 minutes when
accessed via the web server running on a machine with 4 GHz CPU, 4 GB main memory and no
competing processes. Most scaffolds were assigned to high taxonomic ranks (taxonomic
assignments are shown in Figure 3.4, base-pair accuracy is given in Table 3.2. Taxonomic
distance analysis for the AMD metagenome scaffolds assignment.). As with complete scaffolds,
bacterial clades were overestimated and archael clades were underestimated (Table 3.2,
Supplementary Figure 3). As no reference data were available in model construction for the
sample populations, this was expected. Euryarchaeota were identified, but many scaffolds
were assigned to phyla Proteobacteria and Verrucomicrobia, instead of to Nitrospirae. The
generic model assignments were similar to those of BLASTN in terms of population abundance
(Supplementary Figure 5). In contrast, the NBC web server overestimated the abundance of
Firmicutes and underestimated that of Euryarchaeota (Figure 3.4 f, Supplementary Figure 6). It
might be that the NBC web server performs better on short sequence fragments rather than
on longer sequences. In order to check for this possibility, we created fragments of length 500
bp from the AMD scaffolds and obtained their assignments. In this case, the NBC server was
accessed in May 2011. The resulting assignments were mapped to the phylum and domain
level clades to facilitate visualization (Supplementary Figure 7).
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For learning a sample-specific model, we randomly selected ~100 kb of continuous sequences
from the five populations as sample-specific training sequences. Specifically, the five strains
and corresponding amounts of sample-specific data used were 70 kb for Leptospirillum sp.
Group lll, 100 kb for Ferroplasma acidarmanus Type |, 100 kb for Leptospirillum sp. Group Il '5-
way CG', 100 kb for Ferroplasma sp. Type Il and 70 kb for Thermoplasmatales archaeon Gpl (G-
plasma). Construction of the sample-specific model took slightly less than 7 hours.
Assignments with the sample-specific model (Figure 3.4 b, ¢ and Supplementary Figure 4)
corroborate well with the taxonomic makeup of this dataset. Both the generic and sample-
specific models of PhyloPythiaS produced assignments that were taxonomically consistent and
closer to the draft assemblies than those of the BLASTN approach, MEGAN and the NBC server
(Figure 3.4, Figure 3.5). Low scaffold consistency for the Leptospirillum sp. Group Il '5-way CG'
population (0.76) accompanied by low taxonomic distance between correct and predicted
taxonomic affiliations (1.73) suggest that there was a certain degree of ‘back-and-forth’ in
assignments between the Leptospirillum clades. In contrast, assignments for the Ferroplasma
populations showed high scaffold consistency (>0.95) and higher taxonomic distance between
correct and predicted affiliation (>3.7), suggesting that assignments were made to higher ranks
(Table 3.2).
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Figure 3.4. Taxonomic assignments of the AMD metagenome scaffolds. Each slice represents number
of bases assigned. (a) the PhyloPythiaS generic model at the phylum level, (b) the PhyloPythia$S
sample-specific model at the phylum level, (c) the PhyloPythiaS sample-specific model at various
ranks, (d) taxonomic reference composition, obtained by alignment of the scaffolds with draft
genome assemblies, (e) quantitative cell counts from a FISH study, reproduced from (Tyson et al.
2004) and (f) NBC with N-mer length 15 and Bacteria/Archaea genomes at the phylum level. The
“Other” slice represents sequences that were unassigned or assigned at a higher level. Assignments
were mapped to phylum level in plots a, b and f for ease of visualization.
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Table 3.2. Taxonomic distance analysis for the AMD metagenome scaffolds assignment. The most
specific assignments provided by each method were used for this analysis. The correct scaffold
assignments (Population), were obtained using five strains (three species) whole genome shotgun
sequences obtained from NCBI. The methods are PhyloPythiaS sample-specific model (PPS SS),
PhyloPythiaS generic model (PPS G), BLASTN, MEGAN and naive Bayesian classifier (NBC). The
populations are Thermoplasmatales archaeon Gpl (T), Leptospirillum sp. Group Il (L1), Leptospirillum
sp. Group Il '5-way CG' (L2), Ferroplasma acidarmanus (F1) and Ferroplasma sp. Type Il (F2). The
numbers in brackets after population name show number of correct scaffolds. The rows signify
number of assigned scaffolds (Assigned), the fraction of assignments in the same lineage as the correct
taxon (Const_n_scaff), the fraction of base-pairs in the same lineage as the correct taxon
(Const_n_bp) and average taxonomic distance with respect to draft reference genomes (Tax Dist).

Population

Method Measure i
T (404) |11 (417) |12 (126) | F1 (172) | F2 (64) | MI€T© | Macro
average | average

Assigned 404 410 118 172 64 - -

PPS SS Const_n_scaff| 0.83 0.91 0.76 0.98| 0.95 0.89 0.89
Const_n_bp 0.89 0.94 0.95 0.99| 0.99 0.94 0.95

Tax dist 2.82 1.60 1.73 3.72| 3.83 2.11 2.74

Assigned 403 414 126 172 64 - -
Const_n_scaff| 0.81 0.38 0.29 0.97| 0.91 0.63 0.67

PPSG Const_n_bp 0.86 0.38 0.11 0.99| 0.98 0.62 0.66
Tax dist 2.96 8.01 7.56 4.46| 3.70 4.97 5.34

Assigned 403 416 126 172 64 -- -
Const_n_scaff| 0.13 0.16 0.05 0.07| 0.08 0.12 0.10

BLASTN Const_n_bp 0.08 0.11 0.01 0.02| 0.02 0.05 0.05
Tax dist 5.65| 11.18| 11.45 7.97| 6.64 7.90 8.58

Assigned 377 306 89 164 63 - --
Const_n_scaff| 0.38 0.67 0.61 0.24| 0.25 0.22 0.43

MEGAN Const_n_bp 0.33 0.65 0.57 0.19| 0.12 0.37 0.37
Tax dist 4.16 6.91 6.62 6.98| 5.81 3.55 6.09

Assigned 403 413 126 172 63 -- --

R Const_n_scaff| 0.00 0.00 0.00 0.00( 0.00 0.00 0.00

Const_n_bp 0.00 0.00 0.00 0.00f 0.00 0.00 0.00
Tax dist 11.35| 10.97| 10.65| 14.85| 13.63| 12.40| 12.29
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Figure 3.5. Performance of the different methods at six major taxonomic ranks on the AMD
metagenome sample. All the methods except PhyloPythiaS in sample-specific mode and BLASTN
made only incorrect assignments at genus and family levels. The performance measures are used as
defined in section 3.2. The methods compared are the PhyloPythiaS generic model (PPS G),
PhyloPythiaS sample-specific model (PPS SS), BLAST best hit (BLASTN), MEGAN and naive Bayesian
classifier (NBC).

3.5.4 TAMMAR WALLABY FOREGUT METAGENOME SAMPLE

For taxonomic sample characterization, sample-specific models were constructed by
combining publicly available sequences from NCBI (complete genomes and draft assemblies)
with sample-specific data identified based on taxonomic marker genes and sequencing of a
scaffold metagenome library. The PhyloPythiaS and PhyloPythia models included a
representation for these abundant sample-population in addition to higher-level bacterial and
archaeal clades (Supplementary Table 1) (Pope et al. 2010; Patil et al. 2011). Sample-specific
data was also incorporated into the training data for PhymmBL and a reference database for
BLASTN similarity searches for MEGAN. Note that the PhyloPythia model was built and the
assignments were obtained for the (Pope et al. 2010, 2011) studies.

The performance of the different methods for the three abundant populations and the whole
sample on average based on the scaffold-contig consistency of the assignments was calculated
(Table 3.3). Figure 3.6 and Supplementary Figure 8 depict the scaffold-contig assignment
consistency for scaffolds longer than 20 kb for the WG-1 and WG-2 populations for the
different methods, respectively. Both PhyloPythiaS and PhyloPythia show a higher consistency
than PhymmBL and MEGAN for the three uncultured populations; except that MEGAN has a
slightly better consistency for WG-3 (Table 3.3). The overall consistency of MEGAN
assignments is higher than for the other methods, but a considerably smaller portion of the
sample is characterized (~63%), while the rest remained unassigned. PhymmBL assigned a
large portion of the sample (~98%, following PhyloPythiaS ~100%) but shows lower
consistency values.

57



Scaffold identifier

:  PhyloPythia MEGAN

—* PhyloPythiaS PhymmBL

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

o
=)
n
5}

30 40 50
Length (kb)

Inconsistent below root B Inconsistent below phylum Bacteria Gammaproteobacteria W uncultured Succinivibrionaceae bacterium
B Inconsistent below class W Inconsistent below domain Proteobacteria Aeromonadales Not assigned
* Scaffold with none of the contigs assigned to the population - uncultured Succinivibrionaceae bacterium

Figure 3.6. Comparison of different taxonomic assignment methods using scaffold-contig consistency
for the WG-1 population (uncultured Succinivibrionaceae bacterium) from TW sample. Contig coloring
reflects taxonomic assignment consistency with respect to WG-1. Every horizontal bar represents a
scaffold and its constituent contigs. Every contig is color coded to represent its consistency with
respect to the scaffold assignment. Only scaffolds >=20 kb in length are shown for clarity.

Table 3.3. Performance of different binning methods for the abundant populations in the TW sample.
Assignment accuracy is evaluated based on the scaffold-contig consistency. Sample-specific data was
used for all methods.

. Scaffold-contig Scaffold-contig consistency
. Kilo-bases . .
Method |Population assigned consistency (average taxonomic
(% bp) distance)
WG-1 2,669.60 97.71 0.38
. WG-2 2,512.93 97.24 0.34
PhyloPythiaS 53 892.65 94.11 0.43
Total 13,552.86 78.54 0.44
WG-1 2,674.70 97.94 0.29
. WG-2 2,326.76 89.75 0.53
PhyloPythia =53 870.60 94.70 0.35
Total 12,830.05 82.90 0.43
WG-1 3,542.94 69.90 0.72
PhymmBL WG-2 2,809.81 56.69 1.12
WG-3 1,005.99 64.59 1.12
Total 13,286.18 60.78 1.01
WG-1 1,100.20 90.28 0.44
WG-2 646.19 81.99 0.46
MEGAN WG-3 142.69 95.27 0.27
Total 8,604.92 86.91 0.41
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Table 3.4. Effect of sample-specific data on the assignment of the TW sample for PhyloPythiaS and
PhymmBL. The “#predictions” columns shows number of predictions obtained using the sample-
specific models and for both the sample-specific and the non-sample-specific models. The
“H#consistent predictions” column shows how many of these predictions are taxonomically consistent
with the respective population. The last column shows the average taxonomic distance between the
predictions of the sample-specific and non-sample-specific models. For WG-2 PhymmBL without
sample-specific data made the specified number of consistent assignments to Lachnospiraceae due to
relabeled Ruminococcus.

#predictions . . Average
. #predictions #consistent .
Population Method (sample- . . - taxonomic
Lr (joint) predictions .
specific) distance
PhymmBL 530 434 0 8.93
WG-1 -
PhyloPythia$S 477 477 361 5.13
PhymmBL 708 690 205 5.37
WG-2 -
PhyloPythia$S 482 482 419 2.05
PhymmBL 286 201 0 8.59
WG-3 -
PhyloPythia$S 296 296 266 3.29

PhyloPythiaS and PhyloPythia have comparable consistency. For WG-2, PhyloPythiaS had
higher consistency, for WG-1 PhyloPythia performed slightly better. PhymmBL showed lower
consistency, both for the dominant populations and the whole sample. PhymmBL generally
assigns fragments down to the genus level-clades of the model, which results in lower
consistency values.

We evaluated the performance of PhyloPythiaS and PhymmBL in the presence and absence of
the sample-specific data. The results indicate PhymmBL’s over-binning tendency of assigning
most sequences to genus-level clades (Table 3.4). These assighments can be misleading if
genera of the dominant sample populations are not included in the reference model. For
PhymmBL, out of 530 contigs that were assigned to WG-1, when sample-specific data was
included, only 33 contigs were assigned to the consistent parental clade
Gammaproteobacteria without sample-specific data, accompanied by a large number of
inconsistent assignments in comparison to assignments of the sample-specific model. In
contrast, for the same population, PhyloPythiaS assigned 243 out of 477 contigs to the
consistent general clade Bacteria, in the absence of sample-specific data, thus avoiding false
positive assignments (Supplementary Table 2). Similar observations were made for other

populations (data not shown).

In order to investigate difference between the different taxonomic classification methods, we
performed a two-tailed Wilcoxon paired sum-ranks tests for different methods on the scaffold-
contig consistency and kilo-bases assigned for 230 clades (union of predicted clades by all the
methods). The P-values obtained (Table 3.5) show that PhymmBL is significantly different than
other methods in both kilo-bases assigned and scaffold-contig consistency. The differences
between the methods were visualized using Euler diagrams (Kestler et al. 2008)

(Supplementary Figure 9, Supplementary Figure 10).
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Table 3.5. Statistical comparison of the assignments of different methods on the TW data set. The

bold values indicate pairs where the null hypothesis is rejected at 95% confidence.

Methods Scaffold-contig consistency | Kilo-bases assigned
PhyloPythiaS — PhyloPythia 0.0338 0.4242
PhyloPythiaS — PhymmBL 5.5454e-09 1.7678e-07
PhyloPythiaS — MEGAN 0.5720 0.8605
PhyloPythia - PhymmBL 1.1306e-11 6.2198e-11
PhyloPythia — MEGAN 0.0591 0.5781
PhymmBL — MEGAN 2.0417e-12 8.0705e-06

NUCMER ANALYSIS

A representative of WG-1 has been cultured axenically by reverse metagenomics methods, and
its genome sequenced (Pope et al. 2011). NUCmer (nucleotide MUMmer) (Delcher et al. 2002)
was used by our collaborator Phil Pope to align the contigs predicted as WG-1 by PhyloPythiaS
and PhyloPythia, respectively, to the 43 scaffolds obtained for the WG-1 genome (Table 3.6).
Overall, 357 of 366 PhyloPythia assignments (98%) align to the reference, with 90.09%, or 1.79
Mbp, of metagenome sequence matching the genome reference. In comparison, 525 of 604
PhyloPythiaS assignments (87%) align to this reference, corresponding to 85.77%, or 1.80 Mbp,
of matching sequence. The average percent identity of alighed metagenome contigs with the
reference was 98.92% and 98.9%, respectively. The filtered alignment images indicate that the
PhyloPythiaS assignments produce a tighter coverage of the reference scaffolds than those of
PhyloPythia (data not shown). The most likely reason for this tighter coverage is that
PhyloPythiaS assigns many more short contigs than PhyloPythia. despite
PhyloPythiaS assigning more contigs, a larger fraction of contigs do not align to the reference,

However,

and the extra assignments do not significantly increase the overall coverage, as they mostly
consist of short contigs. Whilst the reference WG-1 isolate genome is not 100% complete,
there is a likelihood of some miss-assignments arising from the additional, shorter contigs that
PhyloPythiaS is assigning to WG-1. This is not surprising, given that the accuracy of short contig
assignments generally is not comparable to that for longer contigs (see above). Nonetheless,
both methods were very accurate in the taxonomic assignment of this population.

Table 3.6. NUCmer analysis of the WG-1 assignments for the TW sample.

Measure PhyloPythia PhyloPythia PhyloPythiaS PhyloPythiaS
filtered unfiltered filtered unfiltered
# contigs aligned 357 (98%) 359 (98%) 525 (87%) 543 (90%)
Length match (bp) 1,798,591 1,941,532 1,803,892 1,972,064
Coverage (%) 90.09 97.28 85.77, 93.7
Average IDY (%) 98.92 95.14 98.90 95.50

3.5.5 HUMAN GUT METAGENOME SAMPLES

PhyloPythiaS and PhyloPythia models were constructed for 29 (14+15) genus- and family-level
clades abundant in the sample and relevant higher-level taxonomic clades (Supplementary
Table 3) using data from 5,548 and 3,391 sample-specific contigs and 1,775 microbial complete
and draft microbial genomes. For PhyloPythiaS, sample-specific data was selected with active
sampling for training, while for PhyloPythia, a subset was taken. PhyloPythia assignments were
generated by Alice Carolyn McHardy in a previous study (Turnbaugh et al. 2010). For the
training of PhymmBL, only assembled and draft genome sequences were used. Due to
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excessive computational requirements of homology searches on this data set, we did not
perform assignments with MEGAN.

Contigs from both samples were assigned with PhyloPythiaS, PhyloPythia and PhymmBL and
the scaffold-contig assignment consistency was evaluated. PhyloPythiaS and PhyloPythia
consistently showed a very similar performance across all taxonomic ranks (Table 3.7).
PhymmBL also showed a high scaffold-contig consistency, but, in comparison, lesser amounts
of sequence are characterized. This is indeed an interesting result, as no sample-specific data
was included for training of PhymmBL. The high consistency observed in the absence of
sample-specific training data may be due to the fact that a large number of 122 available gut
genome sequences from the relevant taxa are in the public domain and thus could contribute
to model quality.

MARKER GENE ANALYSIS

In addition to the analysis of the scaffold-contig consistency, we performed further tests to
validate PhyloPythiaS scaffold assignments for the two human gut microbiome samples,
relative to the tests of PhyloPythia and control genomes described in (Turnbaugh et al. 2010).
These analyses were performed by our collaborator Peter Turnbaugh on the intersection of the
scaffolds assigned by both PhyloPythiaS and PhyloPythia. First, the scaffolds assignments were
validated based on 30 conserved marker genes with consistent phylogeny to 16S rRNA. All
genes from the microbiome bins were assigned to STRING orthologous groups (Jensen et al.
2009). A neighbor-joining tree was built using clustalw (Larkin et al. 2007) version 2.0.12 for
each set of marker genes after aligning the translated gene sequences from 122 gut genomes
and the binned scaffolds. Individual sequences were assigned to taxa based on the consensus
taxonomy of all sequences found at the first node. Additionally, the frequency of consistent
taxonomy between database marker genes and nearest neighbor sequences was tallied and
used as a control for the frequency of miss-assignment due to alignment errors, improper
clustering, and/or disagreement with the marker genes and NCBI taxonomy. Overall the results
indicate accurate binning at all evaluated taxonomic levels. PhyloPythiaS showed a high
accuracy based on this measure across the ranks from domain to genus for both the TS28 and
TS29 samples (Figure 3.7).
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Table 3.7. Taxonomic assignments for abundant genera in the human gut metagenome samples.

Assignment accuracy is evaluated based on the consistency of taxonomic assignment for contigs of

the same scaffold.

Genus-level bin /

Kilo-bases assigned

Scaffold-contig
consistency

Scaffold-contig
consistency

Method . o (average taxonomic
Population (% bp) distance)
TS28 TS29 TS28 TS29 TS28 TS29
Ruminococcus 13,787.33(13,016.96 95.10 94.68 0.16 0.20
Faecalibacterium 17,049.71| 8,490.69 93.44 90.75 0.18 0.16
PhvloPvthiaS Clostridium 8296.77| 3376.53 89.41 95.74 0.24 0.22
vioPyt Eubacterium 8840.37| 2515.17 98.05 76.63 0.10 0.30
Dorea 2,443.36| 1,323.47 98.75 96.05 0.11 0.30
Bifidobacterium 4,948.32| 4,760.12 98.51 99.97 0.08 0.05
Ruminococcus 16,879.06 (14,918.45 94.78 90.18 0.15 0.29
Faecalibacterium 19,962.39| 9,372.68 94.80 85.72 0.28 0.25
PhyloPythia Clostridium 11,797.44| 4,097.59 77.42 85.62 0.39 0.45
v Eubacterium 10,138.96| 1,859.18 97.12 89.78 0.16 0.51
Dorea 3,412.84| 1,511.66 97.21 82.30 0.11 0.49
Bifidobacterium 4,946.77| 4,767.18 98.40 99.78 0.06 0.03
Ruminococcus 6,613.42| 5,694.06 96.11 94.87 0.10 0.09
Faecalibacterium 15,302.09| 6,423.28 94.09 93.96 0.12 0.07
PhvmmBL Clostridium 13,246.25| 4,917.47 87.30 92.22 0.22 0.19
v Eubacterium 5,624.48 | 1,337.88 98.01 85.77 0.08 0.26
Dorea 3,118.58 | 1,381.38 97.61 82.95 0.05 0.21
Bifidobacterium 5,057.49| 4,757.60 97.96 99.93 0.11 0.03
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Figure 3.7.Marker gene validation for the human gut metagenome sample assignments.

62




CD-HIT ANALYSIS

Peter Turnbaugh furthermore used the CD-HIT (Cameron, Bernstein & Williams 2007) to
cluster the protein sequences of the gut samples and 122 gut genomes at 60% identity. The
taxonomic consistency of genes within these clusters and the respective bin assighments was
then analyzed. Both PhyloPythiaS and PhyloPythia showed a high consistency of taxonomic bin
assignments within protein clusters (Figure 3.8).
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Figure 3.8. Validation for the human gut metagenome sample assignments using CD-HIT (fraction
matched).

3.5.6 COW RUMEN METAGENOME SAMPLE

The scaffolds from the CR sample were taxonomically assigned using the generic mode as a
multiplex sample (section 2.5) and the combined predictions were visualized. The majority of
the scaffolds were assigned to the orders Bacteroidales, Clostridiales, Bacillales,
Spirochaetales, Methanomicrobiales, Methanosarcinales, Sulfolobales, Selenomonadales and
Rhizobiales (Figure 3.9). We measured the assighment consistency as the number of base-pairs
of these scaffolds consistently assigned by the generic model to the order-level clades of the
respective genome bins. Taxonomic distances of the predictions were calculated relative to the
reported orders for the genome bins (Table 3.8). Overall the generic model made consistent
assignments for the majority of scaffolds. In particular, this was the case for genome bins of
order-level clades with substantial numbers of reference genomes available, while assignment
consistency was lower for clades covered by fewer reference genomes. Seven of the 15 bins
were more than 90% consistent, four of them even to 100%. Five bins showed low consistency.
In particular, we observed that the Clostridiales and Myxococcales genome bins were less
consistent than bins of the other three orders. For Myxococcales this is likely because fewer
sequenced genomes were available for training of the generic model (given the number of
species with sequenced genomes for all five clades). For the Clostridiales, this might be due to
genomic differences of the species represented by the genome bins to the sequenced
Clostridiales genomes used as reference (mean GC content of 50% versus a mean GC content
of 36%). However, regardless of the exact nature of the assigned taxonomic affiliation,
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scaffolds of a particular bin tended to be homogeneously assigned to the same clade by the
generic model, varying from 44% to 100% of the scaffolds for the different bins. The predictive
accuracy of the overall assignment can likely be further improved by construction of a sample-
specific model, as we showed for AMD, TW and HG samples.

Other

Methanosarcinales)

Methanomicrobi> - Rhizobiales

Sulfolobales _ . Clostridiales

“__Selenomonadales

Bacteroidales  ~ / Bacillales
N

Spirochaetales

Figure 3.9. Taxonomic assignments of the cow rumen metagenome scaffolds with the PhyloPythiaS

generic model. This data-set contained 26,042 scaffolds in total. The assignments are shown at the

order level. Each slice represents the total number of bases assigned to an order. The “Other” slice
represents sequences that were either assigned at a higher level or were unassigned.

3.6 EXECUTION TIME ANALYSIS

Empirical analysis of execution times, performed on a machine with 4 GHz CPU, 4 GB main
memory and no competing processes, determined that PhyloPythiaS requires 0.08-0.1 seconds
for the assignment of 0.1-10 kb fragments (Figure 3.10). This corresponds to a 3- to 46-fold and
5- to 68-fold improvement in comparison to MEGAN and PhymmBL, respectively. For
characterization of a 13 MB assembled metagenome sample, PhyloPythiaS showed 22-fold, 85-
fold and 106-fold speed increase in comparison to PhyloPythia, MEGAN and PhymmBL,
respectively (Table 3.9). The efficiency of PhyloPythiaS at the test time is due to the linear
nature of the inference that only requires computing the dot product between the input
example and the learned weight vector in the joint feature space. As PhyloPythiaS models
require only a subsample of the reference data for accurate assignment, in the future, training
times will not necessarily be substantially impacted by increases of sequence data, contrary to
alignment-based approaches.
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Table 3.8. Taxonomic distance and consistency analysis of the 15 genome bins from the cow rumen
metagenome consisting of 466 scaffolds in total. The first three columns describe the dataset while
the last three columns summarize the predictions of the PhyloPythiaS generic model. The last three
columns show the average taxonomic distances between the predicted order and the correct order
(Tax Dist), the consistency calculated based on the fraction of assigned scaffolds (Const_n_scaff) and
the consistency calculated based on the fraction of assigned base-pairs (Const_n_bp). See ‘Results’ for
the definitions of taxonomic distance and consistency. The micro average is the average value over all
scaffolds and the macro average represents the average over the genome bins.

PhyloPythiaS generic model prediction
Genome bin Correct order | #Scaff
Tax Dist | Const_n_scaff | Const_n_bp
AC2a Bacteroidales | 20.000 0.000 1.000 1.000
Al Bacteroidales | 22.000 0.000 1.000 1.000
AMa Spirochaetales | 19.000 0.000 1.000 1.000
AQ Bacteroidales | 24.000 0.000 1.000 1.000
AH Bacteroidales | 26.000 0.231 0.962 0.990
ATa Clostridiales | 32.000 0.625 0.906 0.967
AGa Bacteroidales | 35.000 0.743 0.886 0.938
BOa Clostridiales | 42.000 1.738 0.690 0.776
AFa Spirochaetales | 28.000 1.893 0.714 0.759
APb Clostridiales | 55.000 3.636 0.382 0.454
ASla Clostridiales | 53.000 5.245 0.189 0.114
Ala Clostridiales | 22.000 6.682 0.182 0.086
ADa Myxococcales | 20.000 3.100 0.250 0.076
AN Clostridiales | 27.000 3.704 0.074 0.046
AWa Clostridiales | 41.000 7.073 0.000 0.000
Macro average - 31.067 2.311 0.616 0.614
Micro average -- -- 2.693 0.560 0.613
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Figure 3.10. Empirical execution time evaluated on a Linux machine with 3 GHz processor and 4 GB
main memory. Results for MEGAN and PhymmBL were determined with a reference database of size
2.1GB.

Table 3.9. Execution time comparison for different methods for characterization of the three real
metagenome samples. The sample sizes are approximately 16 Mb, 113 Mb and 72 Mb for TW, TS28
and TS29 respectively.

Time (DD:HH:MM:SS)
TW TS28 TS29
PhyloPythiaS | 00:00:08:36 | 00:01:13:43 | 00:00:46:28
PhyloPythia | 00:03:12:43 | 01:08:04:25 | 00:21:18:27
PhymmBL 00:15:09:51 | 07:13:54:01 | 04:15:53:44
MEGAN 00:12:10:14 -- -

Method
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3.7 CONCLUSIONS

Some general conclusions can be drawn from the experiments performed on the simulated
and real metagenome data sets with regards to the closeness of the reference data to the
sequences in the sample and sequencing technology used.

When closely related complete genomes sequences are available for the populations in the
metagenome sample, alighment-based methods are at an advantage as the sample fragments
can be aligned to the respective reference genomes with high confidence. This was observed
for the simMC data set in the ‘known species’ experiment, where complete genome sequences
from NCBI were used as reference data for model training with exception of the genomes used
to create the simMC data set. Though the exact genomes were removed, the reference data
included genomes of either same species (for Rhodopseudomonas palustris and Xylella
fastidiosa) or same genus (for Bradyrhizobium sp. BTAi1). At lower taxonomic ranks (genus and
family) alignment-based and hybrid methods showed higher sensitivity and accuracy
compared to the composition-based methods. At higher taxonomic ranks the sensitivity and
the accuracy of all methods became more similar. PhyloPythiaS maintained high specificity at
all taxonomic ranks, while other methods except PhyloPythia generally showed lower
specificity at lower taxonomic ranks. Similarly, for the two human gut metagenomes the high
scaffold-contig consistency obtained by PhymmBL without sample-specific sequences is likely
due to the large number of gut genome sequences from related taxa (122 in total) available as
reference.

In the taxonomic assignment task for metagenomic data it is more realistic to consider that
complete genome sequences of the dominant populations are not available as reference as
most of the microorganism diversity is still unknown. Therefore, often only distantly related
genomes are available and in some cases it is possible to obtain limited amounts of sample-
specific data for the dominant populations by phylogenetic analysis of conserved marker-
genes for the sample or sequencing of additional fosmid libraries. We simulated three such
scenarios using the simMC data set; ‘New genus’, ‘New order’ and ‘New class’, by retaining 100
kb randomly selected contiguous fragments for dominant populations and removing all
reference genomes at the corresponding ranks. In the absence of the closely related genomes
the alignment-based and hybrid methods showed a drastic drop in the sensitivity and
accuracy. On the other hand, composition-based methods showed better sensitivity and
accuracy. This demonstrates strength of composition-based methods and the ability of
PhyloPythiaS to learn accurate models from limited amounts of reference data. When no
closely related or sample-specific data is available PhyloPythiaS tends to make assignments at
higher taxonomic ranks. This is a desired behavior as assignments to lower ranks can be
misleading in these cases. This suggests that PhyloPythia$S is better at assigning fragments of
the ‘known unknowns’ in metagenome data sets and is robust with respect to the reference
data.

Furthermore, with many high-throughput sequencing technologies being developed, we also
evaluated whether PhyloPythiaS copes with the different technology-specific errors and read
lengths. The technologies produce reads of different lengths and qualities, potentially affecting
performance of taxonomic assignment methods. We tested sequences generated with three
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technologies; Sanger, 454/Roche and Illumina, and found that regardless of the technology
used all samples were characterized consistently. We expect PhyloPythiaS to work equally well
with assembled sequence data from other technologies with similar sequencing error rates,
such as the SOLID (Applied Biosystems) platform (Valouev et al. 2008). It should be noted that
the performance of PhyloPythiaS on sequence fragments with high error rates is still
unexplored. Although it is possible to perform assignments for short sequences (<1000 bp),
like with other methods, these assignments are less accurate than those for longer sequences
and often to higher ranking taxa only. Therefore, we advise that short reads should be
assembled into longer contigs before performing assignments with PhyloPythiaS.
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4 GENOME TREE INFERENCE

Understanding the evolutionary relationships between organisms is vital for their in-depth
study. Gene-based methods are often used to infer such relationships, which are not without
drawbacks. One can now attempt to use genome-scale information, because of the ever
increasing number of genomes available. This opportunity also presents a challenge in terms of
computational efficiency. Two fundamentally different methods are often employed for
sequence comparisons, namely alignment-based and alignment-free methods. We used
genome-scale sequence information to infer taxonomic distances between organisms without
additional information such as gene annotations. We propose a method to improve genome
tree inference by learning specific distance metrics over the genome signature for groups of
organisms with similar phylogenetic, genomic or ecological properties. Specifically, our method
learns a Mahalanobis metric for a set of genomes and a reference taxonomy to guide the
learning process. By applying this method to more than a thousand prokaryotic genomes, we
show that, indeed, better distance metrics could be learned for most of the 18 groups of
organisms tested here. Once a group-specific metric is available, it can be used to estimate the
taxonomic distances for other sequenced organisms from the group. This study also presents a
large scale comparison between ten methods - nine alignment-free and one alignment-based.

4.1 INTRODUCTION

In this chapter we address the problem of inferring distances between whole genome (genic +
nongenic) sequences to recover their evolutionary relationships in the form of a tree that we
will refer to as the genome tree. The evolutionary relationships between different organisms,
and hence their genomes, are typically represented in the form of a phylogenetic tree.
Phylogenies are often inferred from individual gene sequences, such as the highly conserved
small subunit ribosomal RNA (Woese and Fox 1977) or from a set of conserved orthologous
genes (Ciccarelli et al. 2006; Wu and Eisen 2008). Phylogenies inferred from different genes or
gene sets often disagree with each other and only show a plausible evolutionary history for the
genes used which is not necessarily the evolutionary history of the analyzed taxa (Hasegawa
and Hashimoto 1993; Karlin and Cardon 1994). Furthermore, to apply gene-based methods,
one must first identify orthologous genes from different organisms which can be difficult due
to evolutionary processes such as gene loss, duplication and horizontal transfer (Doolittle
1999). With the availability of a large number of completely sequenced genomes whole
genome based methods were proposed to alleviate the shortcomings of gene based methods.
Various properties of the genome such as gene content, gene order, whole genome sequence
similarity and nucleotide composition biases have been used to measure distances between
genomes, see (Coenye et al. 2005; Delsuc, Brinkmann, and Philippe 2005; Snel, Huynen, and
Dutilh 2005) for recent reviews. In this work we focused on the analysis of sequence based
methods for which no additional information, such as gene annotations, is required.

In section 1.4.2 we described the concept of the genome signature and its advantages over
alignment-based comparison. However, the strength of the phylogenetic signal provided by
the genome signature varies for different groups of genomes (Mrazek 2009). An important
property of the genome signature is that it allows comparison between non-homologous
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sequences. For a given species or higher-level clade, it allows an accurate distinction for 1000
bp or longer segments, with longer segments encoding a stronger signal (see Chapter 3)
(Deschavanne et al. 1999; Sandberg et al. 2001; Jernigan and Baran 2002; McHardy and
Rigoutsos 2007; Patil et al. 2011).

As more whole genome sequences are deposited in public databases, in comparison of
alignment-based approaches, the computationally less expensive alignment-free methods
become increasingly attractive for the analysis of large-scale data sets (Hohl, Rigoutsos, and
Ragan 2006; Yang and Zhang 2008). Some limitations of the genome signature in this context
have been pointed out, such as a lower correlation with phylogenetic distance, especially for
distantly related genomes (Mrazek 2009), as well as the clustering of distantly related
genomes with similar GC-content (Takahashi, Kryukov, and Saitou 2009) (see (Coenye and
Vandamme 2003; Pride et al. 2003; van Passel et al. 2006)).

In alignment-free sequence comparison, most research has focused on the identification of the
appropriate length for oligonucleotides (Karlin and Burge 1995; Karlin, Mrazek, and Campbell
1997; Kirzhner et al. 2002; Pride et al. 2003; Wu, Huang, and Li 2005; Mrazek 2009; Sims et al.
2009; Takahashi, Kryukov, and Saitou 2009), normalization procedures (Hao and Qi 2003; Xu
and Hao 2009) and different distance functions (Wu, Burke, and Davison 1997; Kirzhner et al.
2002; Hohl, Rigoutsos, and Ragan 2006). The genome signature is inherently redundant due to
the reverse complementarity of the DNA strands. Under the influence of selection, all
oligonucleotides might not be equally important in taxonomic distance calculation, in case
they evolve at different rates. These issues have not been given enough attention. Based on
the hypothesis that a group of genomes with similar phylogenetic, genomic or ecological
attributes might have specific oligonucleotide weights that reflect their importance in distance
calculation, we propose a novel method that aims at improving genome signature-based
inference of genome trees. Thus, our goal is to enhance the signal for a group by learning
group-specific oligonucleotide weights. We propose a supervised distance metric learning
method that exploits the structure of known reference taxonomy to guide the learning process
(see Materials and Methods). We use the taxonomy as reference for calculation of phenetic
distances, rather than a phylogeny (such as one inferred from the 16S rRNA gene), due to its
“polyphasic” nature that takes genotypic and phenotypic aspects into account (Vandamme et
al. 1996) and not to bias our analysis towards possible shortcomings of gene based methods.
However, we verified that phenetic distance strongly correlates with phylogenetic distance
(see Materials and Methods).

The aim of our method is to identify a diagonal positive semi-definite matrix parameterizing
the Mahalanobis distance metric such that it maximizes the Spearman’s rank correlation
coefficient between the resulting distances and the phenetic distances within the reference
taxonomy. The phenetic distances were calculated similarly to the path loss defined in section
2.3.2 (see Eq. 2.13). The distance metric learning problem is posed as a regularized
optimization problem (see section 4.2.6 below). We defined 18 groups based on phylogenetic,
genomic or ecological factors. Contrary to other genome tree inference methods, our aim is to
improve the performance for a group of genomes defined by a common factor, such as
genome-wide GC-content or habitat, and not to reconstruct the entire tree of life. When the
species composition or ecological characteristics of the organisms at hand is approximately
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known, one can learn a group-specific distance metric using other available reference data.
Once a specific distance metric has been learned, it can be employed for the analysis of novel
genome sequences from the same group.

Various methods have been proposed for the evolutionary comparisons of entire genomes or
large genome segments, including alignment-free methods (Burge, Campbell, and Karlin 1992;
Karlin and Cardon 1994; Kirzhner et al. 2002; Pride et al. 2003; Qi, Wang, and Hao 2004; Sims
et al. 2009; Takahashi, Kryukov, and Saitou 2009; Li, Xu, and Hao 2010) and the alignment-
based methods, such as the genome blast distance phylogeny (GBDP) (Henz et al. 2005). A
direct comparison between genome tree inference methods is lacking, especially with the
alignment-based method GBDP. Therefore, in addition to proposing a new method, we also
present a large scale numerical comparison of the performance of ten genome tree inference
methods, including nine alignment-free methods and one alighment-based method.

4.2 MATERIALS AND METHODS

Continuing the notation used in section 1.4.2 each genomic signature is denoted with a
pattern lknm, where k is the oligonucleotide length and m is the length of oligonucleotides
used for normalization. Thus, for example, the tetranucleotide signature normalized using base
frequencies is denoted as 14n1. The notation is optionally followed by the alphabet used (e.g.
“ry”) if an alphabet other than nucleotide was used.

We used 1076 complete microbial genome sequences available from NCBI in April 2010 for this
study. This corresponds to 578,350 pairs of taxa to compare in terms of their taxonomic and
genomic distances. To compute pair-wise distances between species, nine alignment-free
methods for computing pair-wise genome distances were tested; the Euclidean distance based
on the l4nl genome signature, the Euclidean distance based on the 14nl signature after
dimensionality reduction with PCA, the Euclidean distance based on the 16n1 signature, CVTree
with the 16n5,4 signature (Hao and Qi 2003), the compositional spectrum based on the 110r2
signature and n=200 (Kirzhner et al. 2002) and the feature frequency profile based on the RY
alphabet with 1=10 (Sims et al. 2009). In addition we also evaluated the GBDP method based
on BLAST alignments (Henz et al. 2005), for which we aligned all pairs of genomes. Pair-wise
alignments between the nucleotide sequences were generated with the “bl2seq” program
(version 2.2.18) with default parameters. Details on these methods are provided in section
4.2.10.

The genomes were subsequently classified into 18 groups according to the following five
factors: Phylum membership (4 groups), genomic GC-content (3 groups), habitat (5 groups),
temperature range (3 groups) and oxygen requirement (3 groups). For each of these factors,
the groups were exclusive (Supplementary Table 4).

4.2.1 GENOMES, TAXONOMY AND ECOLOGICAL INFORMATION

Genome sequences were obtained from GenBank (http://www.ncbi.nlm.nih.gov/genome). The
taxonomy from the NCBI taxonomy database (http://www.ncbi.nlm.nih.gov/Taxonomy/) and
the ecological information was obtained with the NCBI Iproks service
(http://www.ncbi.nlm.nih.gov/genomes/Iproks.cgi) (Sayers et al. 2009).
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4.2.2 GENOME SIGNATURE

The genome signature represents a sequence as a point in a multi-dimensional metric space.
The dimensionality of the space is defined by the size of the alphabet and the length of
oligonucleotides. In our case the alphabet comprises four nucleotides (A, T, G and C) and the
oligonucleotide length considered is four, which gives rise to a 4* dimensional space. The
vector representation of sequences allows application of distance metric functions to these
points to uncover their interrelationships. We used the tetranucleotide signature vector
normalized based on mononucleotide frequencies (l4n1) for learning group-specific metrics.
The elements of this signature for a sequence N are defined in Eg. 2.17, which is repeated
below for convenience;

Jant fr” (abcd)
P abcdN = —— * * *
fr (a)fr (b)fr (c)fr (d)

As before, here fr* denotes frequency of the oligonucleotides averaged over both strands.

4.2.3 PHENETIC DISTANCES BETWEEN PAIRS OF TAXA IN THE REFERENCE
TAXONOMY

As our target variable, or reference distance, we used the phenetic distance between taxa in
the NCBI taxonomy. The phenetic distance between a pair of taxa was defined as the
maximum number of edges in the path between one of the taxa in the pair and their lowest
common ancestor. Seven major taxonomic ranks; species, genus, family, order, class, phylum
and superkingdom, were used to calculate the phenetic distances. Note that the number of
edges to the lowest common ancestor can differ in the NCBI Taxonomy for two taxa at a given
rank, due to missing internal nodes on the path from these taxa to their lowest common
ancestor. The matrix containing pair-wise phenetic distances will be denoted as Dyax.

To compare the phenetic distances with phylogenetic distances, aligned 16S rRNA gene
sequences were obtained from the greengenes database (http://greengenes.lbl.gov) (DeSantis
et al. 2006). When multiple genes were available for an organism only the first was chosen. In
total, genes for 887 organisms were identified. Pair-wise distances between the aligned genes
were calculated with the “DNADIST” program in the Mothur package (Schloss et al. 2009). The
phenetic distances showed a strong correlation with the phylogenetic distances (Pearson’s R=
0.84 and Spearman’s p=0.81, P=0.001 based on 999 permutations). This suggests that our
results should be valid if 16S rRNA distances were used instead of phenetic distances.

4.2.4 COMPARING TREES BASED ON COPHENETIC CORRELATION

The correlation between two tree path metrics has been used to compare tree topologies
(Pazos and Valencia 2001; Kuramae et al. 2007). We here used a similar approach to search for
a distance metric which best approximates the phenetic distances between pairs of taxa in a
given reference tree. As we were interested in the topology of the trees and not branch
lengths, we used Spearman’s rank correlation coefficient to quantify the agreement between
the phenetic distances in the reference topology and pair-wise distances between genome
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sequences. Although commonly used, Pearson correlation between distance matrices does
not always imply better topology recovery (Lapointe and Legendre 1992). Spearman’s rank
correlation is furthermore more appropriate when outliers are present and there is a non-
linear relationship between the variables. As we are calculating correlation between two
symmetric matrices, they are first vectorized using either the upper or lower half triangle.
Spearman’s p is calculated on the ranks X; and Yy; of elements in the vectorized distance
matrices according to;

2 (% =R)y; V)

\/Z(xi =X (- 9)°

p(Xy) = Eq. 4.1

The correlation between a data-derived matrix of pair-wise distances and a phenetic distance
matrix is also known as the cophenetic correlation coefficient (CPCC) (Sokal and Rohlf 1962).
The CPCC has been used for assessing how well tree topologies inferred with different
hierarchical clustering methods agree with a matrix of pair-wise distances inferred from the
data. Here we use it to evaluate how well different data-derived distance metrics agree with
phenetic distances between pairs of taxa in reference taxonomy. Although typically Pearson
correlation is used to calculate CPCC, the use of rank based correlation has been proposed
before (Johnson 1967; Mrazek 2009).

4.2.5 TOPOLOGICAL DISTANCE BETWEEN TREES

As the cophenetic correlation might not directly correspond to topological similarity (Farris
1969) we also calculated topological distances between trees. The topological distances
between trees were calculated using the normalized quartet distance, as implemented in the
program  QDist (Nielsen et al. 2011) wversion 2.0, downloaded from
http://birc.au.dk/software/qdist/.

Note that an increase in congruence between tree topologies results in an increase in the
cophenetic correlation coefficient and a decrease in the quartet distance. The cophenetic
correlation was used also as the optimization criterion as described in the following section.

4.2.6 DISTANCE METRIC LEARNING

The Euclidean distance metric is often used to calculate dissimilarities for data that can be
represented as points in a multi-dimensional metric space. However, it may not be ideal to
infer taxonomic distance between pairs of genomic signatures. This is particularly true when
some of the variables are more important than others or when some dimensions are
correlated and/or have different scales, for instance, some different genomic features could be
subject to different evolutionary constraints and evolve at different rates. In such cases, a
more suitable distance metric than the Euclidean metric can be learned from data. Originally,
distance metric learning was proposed for clustering applications where side information such
as similarity and dissimilarity constraints is available (Xing et al. 2002). The information
available in our case is the phenetic distances between pairs of taxa in the reference
taxonomy.
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Distance metric learning can be viewed as a transformation of the input space into another
(possibly lower dimensional) space, in which the Euclidean distance between the points
represent as accurately as possible the target relationships. Practically, this can be achieved by
using the Mahalanobis distance function. The Mahalanobis distance is a distance metric,
parametrized by a positive semi-definite matrix M. The Mahalanobis distance between two
vectors X and Y is defined in Eq. 1.18 and is repeated below for convenience;

Mahal(x,y) = \/(x—y) T M(x —y)

We propose learning a diagonal matrix M with nonnegative entries that maximizes the
performance criterion; that is the Spearman’s correlation coefficient between the resulting

nx(n-l)/Z pair-wise Mahalanobis distances for n analyzed genomic signatures with the

corresponding target phenetic distances. The entries in the target distance matrix, Dtax, were
defined as described above. The diagonal elements of the matrix M represent the relative
weights for the corresponding oligonucleotides. The Euclidean distance is a special case of the
Mahalanobis distance, when it is parameterized by an identity matrix and the Mahalanobis
distance corresponds to a weighted Euclidean distance, when it is parameterized with a
diagonal matrix. Let us define a function dyaa Which returns all pair-wise Mahalanobis
distances between a set of vectors S given a parameterizing matrix M.

Even though a learned metric works well for a given set of signatures (training data) it might
not provide improvement for novel signatures (test data). Such over-fitting is not desirable and
hence we pose the learning problem as a regularized optimization problem;

Optimization problem Metric : Given a training setS = {(Xi)}n

i % €RP?, Dy € R™ and
A20

p

ZM..

i (1— o(d (S!M)’DTAX))-F/li:lT Eq. 4.2

st. 0<M. <1 iel..p

Here p is the number of oligonucleotides and S is a matrix with each row representing a
genomic signature. While first term in the objective function maximizes correlation, the
second term is a regularizer that controls complexity of the solutions in terms of the L1-norm
of the diagonal entries of M. Thus higher values of 1 (1>=0) will lead to sparse diagonal entries.
As only the relative contributions of the oligonucleotides and not their absolute magnitudes
are important, the diagonal entries of M were constrained to values within the interval [0, 1],
to allow comparisons between solutions for different experiments. The parameter 1 was varied
in the set {0, 0.1, 1, 10}. For each value in the grid, a 3-fold cross-validation procedure was
performed on randomly partitioned training data as follows; three metrics were learned
separately by excluding each of the three partitions and the generalization performance was
assessed with the Spearman’s correlation between the target distances and the distances with
the learned metric on the excluded partition. The resulting three correlations for each A value
were averaged to get an estimate of the generalization performance. The value with the
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highest generalization performance was chosen to learn a metric on the complete training
data. The aim of the regularizer here is obtaining generalizable solutions and not to enforce
sparse solutions. Thus, if a less sparse solution yields a higher generalization performance (as
estimated by cross-validation) than a more sparse solution, then the less sparse solution is
selected. Note that although it is possible to formulate the optimization problem we describe
here with a weight vector instead of the matrix M, the more general formulation clarifies that
this method is easily adaptable for learning a full matrix.

We used the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen et al. 2003)
as the optimization procedure, though any other global optimization procedure can be used.
As this optimization problem is non-linear and non-convex, gradient-based optimization
techniques are not appropriate. The python code for CMA-ES was obtained from the website
http://www.lri.fr/~hansen/cmaes_inmatlab.html. The tolerance for solution improvement was

set to 1e-3 and the number of iterations was set to 500 during cross-validation and 1000 for
learning the metric with a selected A. Only the diagonal of the covariance matrix was adapted
to reduce the computational complexity. The population size for CMA-ES was set to 20 and the
step-size to 0.5.

4.2.7 SIGNIFICANCE TEST FOR CHANGE IN CORRELATION

The significance of change of the correlation coefficient was assessed with the Hotelling-
Williams test between dependent variables (Steiger 1980). Specifically, we tested whether the
CPCC of one metric was significantly different from the CPCC of another metric.

4.2.8 MEASURES OF GROUP PHYLOGENETIC STRUCTURE (NRI AND NTI)

We calculated two metrics of group phylogenetic structure. The metrics; net relatedness index
(NRI) and nearest taxon index (NTI) correspondingly quantify the distribution of the taxa
relative to a phylogeny (Webb et al. 2002). They were calculated as follows;

 mean (a,,.)—mean(a, )

NRI=-1
sdev(an) Eq. 4.3
NTI = 1, mean (b,,.)—mean(b, ) _y
sdev(b,)

Here a is a vector containing distances between all pair-wise taxa and b is a vector containing
distances between all taxa to their nearest taxon, with the same characteristic. The suffix obs
denotes observed distances and the suffix n denotes expected distances for n taxa randomly
distributed over the taxonomy. While both NRI and NTI increase with increasing clustering
they become negative with dispersed taxa. Clustering at terminal nodes causes more increase
in NTI relative to NRI. We calculated both measures with respect to the reference taxonomy
for each of the 18 groups using 999 randomizations. The corresponding functions were
implemented in R (version 2.11.1).
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4.2.9 DATA AVAILABILITY

The data wused in this study can be obtained from http://algbio.cs.uni-

duesseldorf.de/webapps/wa-download/index.php.

4.2.10 DISTANCE METRICS

The distance metrics used for comparison are described below. The metrics were chosen to
reflect the diversity of the popular metrics found in the literature, in terms of oligonucleotide
lengths, normalization strategies and distance metrics. In the following p denotes the length of
the genome signature vectors.

GROUP-SPECIFIC

The group-specific distance between two signatures of genomes from a group is given by;

Specific(x,y) = \/Zp:(xi —y, M, Eq. 4.5

i=1

Where M is a diagonal matrix learned by maximizing the estimated generalization
performance with training data from the same group (as x and y). For simplicity, the group-
specific distance metrics will be referred to as specific distance metrics.

RANDOM LEARNED

The random distance between two signatures calculated for a pair of genomes from a group is
given by;

Rand(x,y) = \/Zp:(xi —y, M, Eq. 4.6

i=1

Where M is a diagonal matrix learned by maximizing estimated generalization performance
using randomly selected training data. For simplicity this metric will be referred to as random
metric.

EUCLIDEAN DISTANCE

The Euclidean distance between two signatures is defined as following;
3 2
Eucl(x,y) = [> (x;-y;) Eq. 4.7
i=1
This distance was used with the [4n1 and |6n1 signatures.

EucLiDean PCA

This distance was calculated similarly to the Euclidean distance, but in a lower dimensional
space after application of principal component analysis (PCA) to retain either the principal
components explaining at least one original variable, that is the principal components with
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eigenvalue>=1 or three principal components, whichever is larger. This distance metric was
used with the 14n1 signature.

DELTA DISTANCES

The delta distance (Mrazek 2009) between two signhature vectors X and Yy is defined as
following;

Delta(x,y) = % Zp:|xi = Eq. 4.8
i=1

Here p is number of elements in the vector (256 for tetranucleotide signature). The delta
distance between two genomes G1 and G2 was calculated using all pairs of non-overlapping 50
kb segments. If n; and n, are number of non-overlapping segments X and Y in genomes G1 and
G2 respectively then the delta distance between the genomes was calculated as;

DeltaS0kb(GLG2) =3 3 d,u(X,.Y,) Eq. 4.9
112 =l j=

This distance was used with the 14n1 signature.

CVTREE DISTANCES

The CVTree signature was calculated using oligonucleotides of length 6 normalized by
constituent 4- and 5-mers (Gao et al. 2007). The sequences were appended with their reverse
complement for calculating this signature. The expected frequency of a hexanucleotide
‘abcdef’ was calculated as;

fr(abcde) fr(bcdef ) y (L-k+D(L-k+3)
fr(bcde) (L—k+2)°

fr® (abcdef ) = Eq. 4.10

Here L is the length of the sequence and K is the length of the oligonucleotides (k=6 for
hexanucleotides). Then the normalized elements of the signature vector were then calculated
as following;

0
fr(abcdeI ) —fr” (abcdef ) i 0 20
a(abedef ) = fr° (abcdef ) Eq. 4.11
0 if fr®=0

The distances between the resulting vectors were calculated using the cosine similarity.

CVTree(x,y) = w Eq. 4.12
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COMPOSITIONAL SPECTRUM DISTANCES

Compositional spectrum (CompSpec) distances over the DNA alphabet were calculated using
the parameter settings as in (Kirzhner et al. 2007b). We first generated 200 random
oligonucleotides of length 10 and then counted their imperfect occurrences of up to 2
mismatches (the 110r2 signature) over the complete genomes. The distances between the
resulting 200 dimensional vectors were calculated using Spearman’s rank correlation
coefficient p as;

CompSpec(x,y) =1— p(X,y) Eq. 4.13

An important aspect, in our opinion, of the CompSpec is that it only covers a subset of the
whole compositional space. For instance, employed parameters account for 9200
(200*(1+'°C,)) words out of 1048576 (4'°) possible words amounting less than 1%. We
speculate that the information loss due to this low coverage is, at least partly, responsible for
lower performance of CS distances. Although many samples of 200 words are used to build a
number of trees which are then aggregated into a final tree using a consensus method
(Kirzhner et al. 2007b), it is not straightforward to compare the resulting distances in this way.
Therefore we used a single sample of 200 words in this study.

FEATURE FREQUENCY PROFILE DISTANCES

The FFP distances were calculated using the program ffp version 3.19 downloaded from
http://ffp-phylogeny.sourceforge.net/. The two-letter RY alphabet was used along with the
length of I-mers set to 10. The distance between the normalized feature frequency profile
vectors X and y were calculated using the Jensen-Shannon divergence as;

FFP(x,y) = % KL(x,z)+ % KL(y, z) Eq. 4.14
Here z; = (xi +Y, )/2 and KL is the Kullback-Liebler divergence.

GENOME BLAST DISTANCES

The whole genome BLAST distances between two genomes were calculated by using the
alignments performed by bl2seq program available in the NCBI BLAST executable (version
2.2.18) with default parameters. The resulting tabular report was then parsed using BioRuby
(version 1.4.1) (Goto et al. 2010) and the high scoring pairs were converted into a similarity
score using the greedy version of the GBDP algorithm without trimming (Henz et al. 2005). Due
to computational restrictions we used only one directional alignment instead of averaging over
both directions.

|G1mat0h| + |szatch|

GBDP(G1,G2) =—I
(61,62 =095 min(G1,G2)

Eq. 4.15

78



4.2.11 OTHER METHODS

The inferred distance metrics was subsequently used to construct ultrametric trees.
Ultrametric trees were inferred with the Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) algorithm of the “phangorn” package in the R statistical environment. Tree
topologies were compared to the reference tree topology based on the quartet distance.
Principal component analysis (PCA) was performed in R (version 2.11.1) with the “princomp”
function. The data was centered and scaled to unit variance before performing PCA.

4.2.12 EXPERIMENTAL SETUP

The tetranucleotide signature corrected for bias in base frequencies (l14n1), i.e. normalized
using the zero-order Markov criterion, was chosen to learn the metrics, as it is has been
previously shown to contain a strong phylogenetic signal (Pride et al. 2003; van Passel et al.
2006; Mrazek 2009). The Euclidean distance on the 14n1 signature was used as the baseline for
comparison. We used two measures to quantify the performance of the methods: The first is
the cophenetic correlation coefficient (CPCC) (Sokal & Rohlf 1962) using Spearman’s rank
correlation, which is also a part of the optimization function used to learn the specific metrics
(see Materials and Methods). We also calculated the normalized quartet distance (Nielsen et
al. 2011) (referred to as quartet distance hereafter) between two trees built with UPGMA; one
using the phenetic distances and the other using the genome-based distances (see section
4.2). We say that a metric performs better only if it shows improvement on both measures;
that is a higher CPCC and a lower quartet distance. We show results for 18 groups defined by
five different attributes (phylogeny, genomic GC-content, habitat, growth temperature and
oxygen requirement, Supplementary Table 4).

For the proposed metric learning method to be of practical value, it is necessary that it is able
to learn a generalizable distance metric, a metric that works well on novel genomes not used
for learning, from a limited amount of data. Therefore, our experimental setup consisted of
randomly sampling genomes of 30 species (one genome per species) from a group and then
learning a Mahalanobis metric from the corresponding 14n1 signatures guided by the target
phenetic distances such that the estimated generalization performance is maximized (see
Materials and Methods). A Mahalanobis metric learned using signatures from one group is
referred to as a group-specific metric. The performance of a learned metric was quantified on
the test genomes, that is, the genomes from the same group not used for learning the metric.
For a set of test genomes, distances were then computed with the learned metric and
compared to the corresponding phenetic distances. At the same time the performance of the
other methods was also quantified on the test genomes by comparing their distances with the
phenetic distances. This procedure was repeated 30 times for each of the 18 groups by using
different random training samples, to quantify the variability of the learned metrics. This
resulted in 30 performance measurements for the CPCC and quartet distances for each group
and each method. Note that for Actinobacteria only 28 metrics were learned due to premature
termination of the processes on the computational cluster. The statistical significance of an
observed improvement in the 30 repetitions was tested using a one sided Wilcoxon rank sum
test. While for CPCC, the alternative hypothesis was that a metric produces higher CPCC values
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than the baseline metric, for the QD, the alternative hypothesis was that a metric results in
lower quartet distances than the baseline metric.

4.3 RESULTS

4.3.1 PHYLUM

We begin by showing that the taxonomic signal of the 14n1 genomic signature can be improved
with specifically learned metrics for phylogenetic groups at the phylum level. Four extensively
sequenced phyla, the Proteobacteria, Firmicutes, Actinobacteria and Euryarchaeota, were
chosen for this analysis (Supplementary Table 4).

Our results show that better distance metrics, that is higher cophenetic correlation and lower
guartet distance on the test genomes when compared to the baseline, could be learned for the
phylogenetic groups except for Euryarchaeota, where the learned metrics did not show
improvement over the Euclidean metric (Figure 4.1, Supplementary Table 6). The
Proteobacteria metrics showed only marginal but significant (P<0.05, Wilcoxon test)
improvement, which might be due of its diverse and non-monophyletic nature (Garrity 2005).
Such disagreement with taxonomy was also observed with Proteobacterial CVTree based on
translated protein products (Li, Xu & Hao 2010). The best performance improvement due to
specific metrics was observed for the phylum Actinobacteria, where the average cophenetic
correlation significantly increased from 0.39 to 0.64 (P=8.23e-10, Wilcoxon test) while the
average quartet distance decreased from 0.53 to 0.43 (P=2.73e-13, Wilcoxon test). More than
25 (out of the 30) learned metrics showed significantly different correlation coefficients for the
Proteobacteria, Firmicutes and Actinobacteria (Hotelling-Williams test, P<0.05)
(Supplementary Figure 11). The other 14nl based distances, the Euclidean distances after
applying PCA and the delta distances averaged over 50 kb segments, performed either similar
or only slightly better than the baseline. The metrics learned from randomly sampled species
over the entire taxonomy performed worse than the baseline except for a slight performance
improvement for the Actinobacteria. The phyla-specific metrics also performed better than the
I6nl signature-based Euclidean distances. This shows the advantage of learning specific
metrics in comparison to signatures based on longer oligonucleotides.

The phyla-specific metrics also performed better than the 16n1 signature-based Euclidean
distances. This shows the advantage of learning specific metrics in comparison to signatures
based on longer oligonucleotides. The Euclidean distances based on the 14nl and lénl
signatures performed similarly, except for the Actinobacteria, where the 16nl signature
performed better. CVTree with the 16n5,4 signature showed overall better performance than
the 16n1 Euclidean distances, the compositional spectrum and FFP distances performed less
well in comparison. Interestingly, all signature-based distances with long oligonucleotides (Eucl
I6n1, CVTree 16n5,4, CompSpec 110r2 and FFP 110ry) with lower overall cophenetic correlation,
except for FFP, performed better for the Actinobacteria than the baseline (P<0.05, Wilcoxon
test). This might be due to the close relatedness of the genomes in the phylum Actinobacteria
and their characteristically high GC-content, making longer oligonucleotides more informative.
For all groups except Firmicutes, the alignment-based method GBDP performed better than
alignment-free methods, however, this comes at a considerable computational cost.
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Figure 4.1. Performance on the phylogenetic groups. Each bar shows performance measure along with
error bars showing standard deviation.

4.3.2 GC-CONTENT

We performed similar experiments with the genomes divided into three groups according to
their genome-wide GC-content (<=30%, >30%-<=50% and >50%-<=70%, Supplementary Table
4). It has been previously noted that GC-content affects oligonucleotide based trees grouping
similar GC-content genomes together irrespective of their phylogenetic relationships and tetra
to octanucleotide frequency based trees of genomes with similar GC-content show high
congruence with gene based trees at genus and family level (Takahashi et al. 2009). Therefore
we expected that improved distance metrics could be learned for groups of genomes with
similar GC-content. The GC-specific metrics we inferred improved in cophenetic correlation
over the baseline for all three GC-content groups.

There was also a decrease in the quartet distance for the genomes with 30% or less GC-
content and for genomes with GC-content between 50% and 70% (Figure 4.2). Most metrics
for the individual groups had significantly different correlation coefficients from the baseline
method (P<0.05, computed with Hotelling-Williams test) (Supplementary Figure 11). In general
while a strong signal was observed for all the alignment-free methods on the low GC-content
group, a weaker signal was observed on the moderate GC-content genomes (Figure 4.2,
Supplementary Table 6). Of the other alignment-free methods, only CVTree consistently and
significantly (P<8.2e-6, Wilcoxon test) performed better than the baseline. The compositional
spectrum and FFP methods performed well only on the genomes with GC-content of 30% or
less. GBDP performed better than the baseline in all the groups and performed worse than the
learned 14n1 metrics on the 30% or less GC-content group.
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Figure 4.2. Performance on the GC-content groups. Each bar shows performance measure along with
error bars showing standard deviation.

4.3.3 ECOLOGICAL ATTRIBUTES

Next we investigated whether specific metrics for ecological groups show an improvement
over the baseline. This is a challenging task as ecological groups might contain distantly related
genomes, a scenario in which alignment-free methods can face difficulties (Mrazek 2009).
Three ecological factors were chosen to define groups: habitat (5 groups), temperature range
(3 groups) and oxygen requirement (3 groups) (Supplementary Table 4).

The habitat-specific 14n1 metrics showed an improvement over the baseline both in terms of
the CPCC and the quartet distance for all five groups. Only the improvement of the quartet
distance for the host-associated metrics was not significant (Figure 4.3, Supplementary Table
6). While CVTree showed an increase in the CPCC for all five habitat groups, but also an
increased quartet distance for the aquatic and specialized groups, FFP showed an
improvement over the baseline only for the multiple habitat genomes (P<7.74e-15, Wilcoxon
test).

In computation of taxonomic distances and genome trees for genomes from all three
temperature range groups, the learned 14n1 metrics performed better than the baseline (P<7e-
3, Wilcoxon test), except for an increase in the quartet distance for the mesophiles group.
Interestingly, for the mesophiles group 19 specific metrics did show a significant change in
correlation (Supplementary Figure 11). CVTree performed well for all groups except for a
decrease in the CPCC for hyperthermophiles, while FFP showed improvement only for the
hyperthermophiles group (P<1.3e-3, Wilcoxon test).
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We also observed an improvement for the learned 14n1 metrics for all oxygen-requirement
types (aerobe, anaerobe and facultative anaerobes) (P<1.2e-6, Wilcoxon test), except for a
performance reduction in term of an increase in the quartet distance for the facultative
anaerobes. CVTree, as before, showed improvement for the anerobes and facultative groups
(P<3.15e-15, Wilcoxon test) and performed similarly to GBDP for the genomes of the
facultative anaerobes. While Euclidean metric on the 14nl signature after performing PCA
showed marginal but significant improvement for aerobes and anaerobes, Delta50kb and
Euclidean metric on the I6n1 signature showed significant improvements for anaerobes and
facultative groups, respectively. The other methods did not show a consistent performance
pattern.

Overall, for all eleven ecological groups 23 or more metrics showed significant change in
correlation coefficients with the phenetic metric of the reference taxonomy in comparison to
the baseline (P<0.05, computed with Hotelling-Williams test). For three habitats - aquatic,
host-associated and specialized — as well as the mesophilic and aerobic groups, all 30 metrics
differed significantly (Supplementary Figure 11). GBDP performed best for all groups defined
by the three ecological attributes (P<1.46e-9, Wilcoxon test).
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Figure 4.3. Performance on the ecological groups from three attributes. The bars show performance
measures and the error bars indicate standard deviation.

4.3.4 GROUP-SPECIFIC METRICS NOTABLY IMPROVED TREE INFERENCE

One could argue that a learned metric performs well for a group by chance and not because it
inferred specifics of evolutionary rates for different tetranucleotides for the group. To
investigate this question we learned 30 metrics from 30 randomly selected species each
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(referred to as random metrics hereafter) and compared their performance to the
performance of the 30 group-specific learned metrics for each of the 18 groups with one sided
Wilcoxon signed rank sum test. We tested whether the group-specific metrics produce higher
CPCC and lower quartet distance than the random metrics. Note that the random metrics
showed significantly better performance with respect to the baseline metric for
Actinobacteria, GC content between 50% and 70%, aquatic and aerobic groups (P<3.61e-2,
Wilcoxon test) (Supplementary Table 6)

Table 4.1. P-values from one-sided Wilcoxon signed rank sum tests to check specificity of the learned
metrics to their respective groups. While for CPCC the alternative hypothesis was that the group-
specific metrics produce higher CPCC values than randomly learned metrics, for QD the alternative
hypothesis was that the group specific metrics produce lower quartet distance than randomly learned
metrics. Significant values (<0.05) are shown in boldface.

Attribute Group CPCC Qb
Proteobacteria 0.0000 | 0.0001
BT Firmicutes 0.0000 | 0.0000
Actinobacteria 0.0000 | 0.0000
Euryarchaeota 0.0032 | 0.0029
<=30% 0.0000 | 0.0000
GC-content >30%-<=50% 0.0014 | 0.0000
>50%-<=70% 0.0000 | 0.0013
Aquatic 0.5957 | 0.3762
Terrestrial 0.0000 | 0.0005
Habitat Multiple 0.0000 | 0.0057
Host-associated 0.0000 | 0.0386
Specialized 0.0001 | 0.0006
Hyperthermophilic | 0.0000 | 0.0000
Temperature range Thermophilic 0.0001 | 0.0000
Mesophilic 0.8850 | 0.6349
Aerobic 0.0154 | 0.1150
Oxygen requirement | Anaerobic 0.0030 | 0.0011
Facultative 0.0000 | 0.0000

For all the groups, except aquatic, mesophiles and aerobes, the specifically learned metrics
performed significantly better than the random metrics (P<3.86e-2, Wilcoxon test) (Table 4.1).
This implies that the group-specific metrics perform better than the ones learned on randomly
sampled genomes and group-specific aspects of tetranucleotide usage allow an improved
inference of the taxonomic relationships for the respective organisms. The lack of
improvement for aquatic species, mesophiles and aerobes might be in part caused by
abundance of these groups among the genomes (Supplementary Table 6). This may have
resulted in some of the learned metrics from randomly selected species to partially represent
specific properties of these groups.

84



4.3.5 DIMENSIONALITY REDUCTION RESULTED IN MARGINAL
IMPROVEMENT

Unsupervised dimensionality reduction techniques, such as principal component analysis
(PCA), have been used for noise reduction and visualization of genome signatures (Sandberg et
al. 2001; Mrazek 2009). PCA embeds the input space into a potentially lower dimensional
space defined by orthogonal basis vectors. Inferring taxonomic distances based on Euclidean
distances after applying PCA to l4nl signatures mostly resulted in a marginal or no
improvement (Figure 4.1, Figure 4.2 and Figure 4.3). The marginal improvement result is
interesting, as it suggests the existence of lower dimensional genomic signature space.

Table 4.2. Cophenetic correlation coefficient and quartet distance before (CPCC, QD) and after
(CPCC_PCA, QD_PCA) principal component analysis. The dimension and variance columns show
number of dimensions and variance retained respectively. No significant improvement was observed
after applying PCA either for the CPCC or the QD (P>0.3, one-sided Wilcoxon rank sum test).

Attribute Group CPCC | CPCC_PCA| QD |QD_PCA | Dimension Va::;;'ce
Proteobacteria 0.42 0.43|0.45 0.43 21 94
Firmicutes 0.57 0.54|0.32 0.29 20 96

Phylum - :
Actinobacteria 0.39 0.44|0.55 0.50 19 96
Euryarchaeota 0.46 0.45|0.47 0.43 20 97
<=30% 0.30 0.34/0.43 0.40 19 97
GC-content >30%-<=50% 0.36 0.34|0.51 0.51 25 94
>50%-<=70% 0.44 0.48|0.48 0.43 22 94
Aquatic 0.39 0.38|0.51 0.51 24 95
Terrestrial 0.39 0.45|0.39 0.38 18 96
Habitat Multiple 0.37 0.36/0.46 0.45 21 95
Host-associated 0.17 0.18|0.51 0.51 21 95
Specialized 0.20 0.19|0.57 0.57 23 95
Hyperthermophilic | 0.46 0.41/0.43 0.46 18 98
Temrzi';t“re Thermophilic | 0.19 024059 0.58 22 96
Mesophilic 0.25 0.24|0.51 0.52 22 93
Aerobic 0.34 0.34|0.56 0.56 22 95
rei’;:'egrir;nt Anaerobic 0.19 0.20[0.58] 0.5 24 95
Facultative 0.46 0.47/0.30 0.35 23 95

To further investigate this effect, we calculated cophenetic correlations and quartet distances
for all the groups individually to 14n1 distances with and without using PCA (Table 4.2). The
dimensionality of the reduced space was selected to be the dimensions explaining at least one
original variable, i.e. dimensions with eigenvalues of at least one. Interestingly, approximately
20 dimensions (18-25) were retained for all the groups capturing 93-98% of variance. Although
PCA resulted in a marginal non-significant (P>0.3, Wilcoxon test) improvement it performed
less well than the group-specific metrics. Similarly, when PCA was applied to the 16n1 signature
with the Euclidean distance metric, a high reduction in the dimensionality was observed (38-
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114 principal components explaining 97.81-99.96% variance), with no significant (P>0.25,
Wilcoxon test) performance improvement (Supplementary Table 7).

4.3.6 TRENDS ACROSS GROUPS

We investigated whether the genomic and taxonomic composition of the groups are relevant
for the improvement obtained by the specific metrics over the baseline. The aim of this
analysis was to get a better understanding of when application of the proposed method might
be most relevant. We calculated nine statistics for the groups (number of genomes, number of
species, mean genome size, standard deviation of genome sizes, mean GC-content, standard
deviation of GC-content, NRI and NTI) and correlated them with the change in the mean
cophenetic correlation of the specific metrics relative to the baseline (Table 4.3,
Supplementary Table 5) across the groups. The positive correlation here means that an
increase in the statistic corresponds to an improvement in the CPCC on average and vice versa.
The Actinobacteria and Euryarchaeota groups were removed from this analysis because they
behaved like an outlier with respect to change in the CPCC, above the 99" quartile and below
the 1* quartile, respectively.

Table 4.3. Correlation of the mean change in the cophenetic correlation coefficient with different
statistics across the groups. Here mean and sdev are average and standard deviation values, NRI and
NTI stand for net relatedness index and nearest taxon index respectively. The Actinobacteria and
Euryarchaeota groups were removed for this analysis as they behaved like outliers. Significant values
(P<0.05) are shown in boldface.

Genome | Genome
Correlation | Value | #genomes | #species size size
(mean) (sdev)
R -0.54 -0.17 -0.34 -0.33
Pearson
P-value 0.03 0.52 0.19 0.22
Js) -0.46 -0.13 -0.44 -0.44
Spearman
P-value 0.07 0.63 0.09 0.09
GC- GC-
Correlation | Value content | content NRI NTI
(mean) (sdev)
R 0.03 0.02 -0.54 -0.35
Pearson
P-value 0.92 0.95 0.03 0.19
P 0.06 0.03 -0.4 -0.26
Spearman
P-value 0.81 0.93 0.12 0.32

The strongest and significant negative correlation, Pearson’s R=-0.54, P=0.03, was with the
phylogenetic community measure net relatedness index (NRI) (Webb et al. 2002). NRI
measures the phylogenetic clustering behavior of the taxa; therefore, this negative correlation
suggests that as the taxa become more clustered on the taxonomy, the specific metrics
provide less improvement. This result was expected, as for closely related taxa the baseline
(14n1 signature with Euclidean distance) is expected to perform well (Mrazek 2009). A lower
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and non-significant, but also negative correlation was observed for the nearest taxa index (NTI)
(Webb et al. 2002), which increases more if taxa cluster at the terminal nodes. The overall
number of genomes in a group also showed a significant negative correlation with the mean
change of the cophenetic correlation, suggesting that our method provides a larger
improvement in the CPCC for larger groups and groups with bigger genomes. As larger groups
are normally more diverse, the baseline performs poorly and an improvement can be achieved
with the specific metrics. For the negative correlation with genome sizes we speculate that
larger genomes may exhibit a noisy genomic signature, for example due to presence of phages
and plasmids (Suzuki et al. 2010), the specific metrics might provide an improvement by
learning appropriate weights for oligonucleotides, such that the noise is reduced.

Interestingly, no significant correlation was observed with either the mean or the standard
deviation of the GC-content for each group, suggesting that the improvement provided by the
specific metric does not depend on the group GC-content, except for the Actinobacteria. Taken
together, this analysis suggests that our method provides relatively more improvement when
the baseline is expected to perform worse and less improvement otherwise.

4.3.7 THE LEARNED GROUP-SPECIFIC METRICS GENERALIZED ACROSS
LARGER TAXONOMIC DISTANCES

To investigate the effect of the genome relatedness on learning group-specific metrics we
removed genomes of the same species and order as the ones used for learning independently
for each group-specific metric and recomputed the performance measures. These experiments
were performed on the 1951 genomes obtained from NCBI GenBank in June 2012. We
observed similar trends as before (Supplementary Figure 12-16), suggesting that metric
learning is advantageous even when closely related genomes are not available for training.
However, in many cases performance of all the tested methods degraded after this removal,
indicating that signature based methods indeed perform better at lower taxonomic distances.

4.4 CONCLUSIONS

In this work we proposed a method to learn taxonomic distance metrics from genome
signatures and the corresponding phenetic distances between them. Our aim was to improve
genome signature-based genome tree inference for groups of genomes where the groups
were defined by phylogenetic, genomic or ecological attributes. Our empirical analyses
showed that genome trees inferred from genome signatures can be improved by learning
group-specific distance metrics. As expected, metrics learned for different phyla and GC-
content groups showed significant improvement in the quality of inferred genome trees (for
three groups out of four and two groups out of three, respectively). Working with the
hypothesis that environmental selective forces can shape the nucleotide composition of
genomes, that is different niches drive the oligonucleotide composition in different directions,
we learned specific metrics for different ecological groups. These ecological group-specific
metric showed performance improvement for eight out of eleven ecological groups.

The performance improvement shown by specific metrics for phylogenetic and GC-content
groups of species was relatively higher and generalized better for distant genomes than for the
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ecological groups. Nevertheless, also for the ecological groups, the learned metrics in most
cases showed a performance improvement. The ecological groups in particular contain
genomes of species only distantly related to each other, where the alignment-free methods
are known to be less accurate. Of the other alignment-free methods evaluated here only
CVTree showed a consistent improvement over the baseline. The better performance of
CVTree compared to the I16n1 signature might be due to a more appropriate normalization.

For the FFP metric we also computed distances between randomly sampled 50 kb continuous
segments from the genomes in order to check whether different sizes of genomes might be
confounding the distance calculations. The results were similar (data not shown). We did not
implement the block-FFP and optimal range finding algorithms (Sims et al. 2009) and it will be
interesting to see whether those lead to performance improvement, but it is out of the scope
of this work. Furthermore, our experiments show that dimensionality reduction with PCA does
not provide a consistent performance improvement.

An important observation from our analysis was that the BLAST alignment-based genome
dissimilarity metric (GBDP) was the overall best performing method, both in terms of the
cophenetic correlation and the quartet distance. The good performance of GBDP implies that
the information necessary for tree inference can be uncovered using genome-wide alignments.
The comparatively lower performance of the alignment-free methods suggest that the
distances calculated from the genome signatures do not represent universal taxonomic
relationships with the same accuracy. The good performance of GBDP might also partly be due
to the use of an evolutionary model. At the same time, the lower performance of alignment-
free methods might result from the loss of information while encoding a longer sequence by
means of shorter oligonucleotides. Further research is needed to pin point the advantages and
shortcomings of the different methods.

However, performing alignments is computationally expensive and hence difficult to scale to a
large number of genomes. The group-specific metrics we introduced can be learned from a
small number of genomes, i.e. 30 different species, and knowledge of the target phenetic
distances in the reference taxonomy. Therefore, to save computational cost, in case a resolved
taxonomy for a group of genomes is not available, one could first infer a partial taxonomy from
a subset of the genomes with an accurate method like GDBP and then use this partial
taxonomy to learn a signature-based group-specific distance metric that in turn could be
applied to infer taxonomic distances between the remaining genomes.

In summary, our findings suggest that different types of organisms have specific distance
metrics over the genome signature and that these can be uncovered by considering their
ecological, genomic or phylogenetic attributes. Our new method performed significantly
better than a baseline technique for 13 out of 18 groups, indicating that group-specific aspects
define the genome signature and that their consideration can improve the inference of
taxonomic relationships. The existence of ecology specific metrics strengthens the hypothesis
that environmental factors affect the oligonucleotide usage of genomes. We also repeat the
need for more fine grained terms to describe specific environments and sample source
information in public repositories, as provided by the environmental ontology (Hirschman et
al. 2008). With the rapid advance in sequencing technologies large number of genome from
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microorganisms, even the ones not cultivable with traditional sequencing methods, will
become available in the near future. Accurate and efficient methods are necessary to analyze
this large scale data. Our proposed method is a step towards this goal.

The analysis of the group-specific oligonucleotide weights and whether they provide insights
into any characteristics of the group will be an interesting direction for future work. In this
work the group-specific metrics were learned only from group-specific data, therefore the
learned oligonucleotide weights do not necessarily contain discriminatory information.
Furthermore, the limited number of genomes (30) used for learning a metric, in combination
with correlations between the oligonucleotides can lead to divergent metrics for a group,
where weights can be distributed across different correlated oligonucleotides to obtain the
same result, which makes the interpretation of a biological or evolutionary meaning of the
learned weights complicated.
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5 CONCLUSIONS AND OQUTLOOK

In the following sections we present a brief summary of the main conclusions of the work
carried out in this thesis. The work done in this thesis is a step forward towards solving the
addressed problems, though challenges remain, therefore we also discuss some possible
directions for future research.

5.1 CONCLUSIONS

Genomics will play an increasingly larger role in medicine, energy and many other important
biotechnological applications. The advent of sequencing technologies means more sequence
data being generated than can be efficiently processed using the currently available
computational resources. Therefore, devising efficient algorithms that can tackle the large
amount of genomic data in a reasonable time is important, should the pace of the genomic
sciences as a whole and the benefits it provides be maintained.

To this end, this thesis proposes novel methods to address two important bioinformatics
problems; taxonomic assignment of metagenome sequences and inference of genome trees.
Both methods rely on the genome signature paradigm for sequence comparison. Genome
signatures have two main advantages when used for sequence comparison. Firstly, they allow
computationally efficient comparison between genomic sequences, as alignment is not
necessary. Secondly, due to their pervasiveness, only segments of genomes are sufficient.
Furthermore, both methods are based upon state-of-the-art machine learning methods.

By exploiting the properties of the genome signature along with the use of structural support
vector machines we proposed a new method, PhyloPythiaS, for taxonomic assignment of
metagenome sequences, an important step in metagenome analyses. Empirical analysis of
several simulated and real metagenome sequence samples showed that PhyloPythiaS
performs well, especially when only few data from dominant populations are available.
Evaluation on simulated and real data showed that PhyloPythiaS performs quite well and
outperforms other methods in realistic scenarios. We also evaluated PhyloPythiaS on the
contigs or scaffolds from three sequencing technologies resulting in consistently good
performance. Furthermore, at assignment time, PhyloPythiaS is considerably faster than other
methods, which will facilitate analysis of large metagenome samples.

The structural SVM used for taxonomic assighnment needs a reference hierarchy describing
relationships between the taxa. Currently we use the reference taxonomy from NCBI. In
future, with a large number of genome sequences produced, direct generation of a hierarchy
from the genomes will be useful and therefore we explored the use of genome signature to
infer genome trees. We developed a metric learning method to infer taxonomic distances
between genomes based on the genome signature. A primary hypothesis was that different
taxonomic distances between groups of genomes, defined by phylogenetic, GC-content and
ecological factors, are better defined by group-specific metrics. Empirical analysis of 18 groups
showed that the proposed method performs well on most of the groups.
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5.2 OuUTLOOK

This work was confined to the use of linear kernels and it will be interesting to explore
performance when non-linear or sequence alignment kernels (Watkins 2000) are used. The
decision to use of linear kernel was primarily due to higher computational cost incurred by use
of kernels, particularly for the structural SVM, where the training time computational
complexity is linear in the number of examples for linear kernel, it scales quadratically for
other kernels (Joachims et al. 2009). Therefore, use of kernels is impractical for large data sets
as used in this thesis. Two possible directions can be followed as a remedy; sparse
approximation of the kernel matrices (Joachims et al. 2009) and use of faster optimization
techniques. Use of alternative formulations of the structural SVM (Sarawagi & Gupta 2008) can
also lead to more accurate results. Furthermore, as available sequence data and the breadth of
taxonomy grow, the training phase of the structural SVM can become an issue. Towards this
end, incremental techniques that reuse existing solutions while learning new models
incorporating more sequence data and a larger hierarchy in order to reduce execution time
will be extremely useful. Another issue to tackle in the future is the lower performance of
alignment-free methods for assignment of short (<1000 bp) sequences. This is due to the
limitations on the pervasiveness of the genome signature and therefore difficult to solve.
Currently, sequence assemblies are used to obtain longer sequences in order to circumvent
this issue. As sequencing technologies progress, the increased read length will automatically
offer a solution.

In the case of genome tree inference problems the current work was confined to learning
linear distance metrics. This can be extended to learning non-linear distance metrics in the
future, which may lead to further performance improvements. It will be also interesting to
check whether learning a full matrix instead of a diagonal matrix proves to be beneficial. We
here used the cophenetic correlation with Spearman’s rank correlation coefficient as the
objective function. Although, the increase in the cophenetic correlation was correlated with
the decrease in the quartet distance (Pearson’s R=0.46, P<2.2e-16; all the 18 groups
combined), further research might identify other suitable optimality criteria. Furthermore,
distance metric learning might be extended to unsupervised binning of metagenome data
(McHardy & Rigoutsos 2007) in order to improve performance on a particular ecological niche,
such as the human-gut.
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6 SUPPLEMENT

6.1 SUPPLEMENTARY TABLES

Supplementary Table 1. Modeled taxa for the TW sample. Only the leaf taxa are shown, all the clades
at more general taxonomic ranks were included in the modeled taxonomy.

NCBI scientific name NCBI taxonomic identifier | Sample-specific data (kb)
Acinetobacter 469 -
Actinobacteria (class) 1760 --
Bradyrhizobiaceae 41294 --
Campylobacter 194 --
Desulfovibrionaceae 194924 --
Enterobacteriaceae 543 -
Eubacteriaceae 186806 --
Fusobacteriaceae 203492 --
Methanomicrobiales 2191 --
Methanosarcina 2207 --
Pasteurellaceae 712 --
Prevotellaceae 171552 --
Psychrobacter 497 --
Ruminococcaceae 541000 -
Selenomonas 970 --
Staphylococcus 1279 --
Thermoplasma 2302 --
uncultured Erysipelotrichaceae 331630 5.7
bacterium (WG-3)
uncultured Lachnospiraceae 297314 143
bacterium (WG-2)
uncultured Succinivibrionaceae 538960 257
bacterium (WG-1)
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Supplementary Table 2. Number of contigs classified by different methods at different taxonomic
ranks for the TW sample. Out of the 5,995 contigs in total for this metagenome sample. All numbers
indicate the raw output of every method. PhyloPythia does not classify fragments shorter than 1,000

bp so the total number of contigs classified is less (5,245).

Taxonomic rank | PhyloPythiaS | PhyloPythia | PhymmBL | MEGAN
Domain 1,206 1,579 - 630
Phylum 503 485 - 191

Class 214 261 92 85
Order 1,748 801 1,086 401
Family 997 1,012 250 288
Genus 71 - 2,899 1,446

Species 1,255 1,062 1,525 277
Not assigned 1 45 143 2,677
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Supplementary Table 3. Modeled clades for PhyloPythia$S for the human gut metagenome samples
(TS28 and TS29). Only the leaf clades are shown, all the clades at more general taxonomic ranks were
included in the modeled taxonomy. Only part of the sample-specific data was used to learn
PhyloPythia and PhyloPythiaS models (see Supplementary notes).

L NCBI taxonomic Sample-specific data
NCBI scientific name identifier (kb)

Alistipes 239,759 198
Anaerococcus 165,779 1,300
Anaerotruncus 244,127 74

Atopobium 1,380 --
Bacteroides 816 23,600
Bifidobacterium 1,678 3,800
Blautia 572,511 13
Butyrivibrio 830 6.2
Clostridium 1,485 7,200
Collinsella 102,106 512
Coprococcus 33,042 29
Dorea 189,330 1,500
Escherichia 561 --
Eubacterium 1,730 600
Faecalibacterium 216,851 2,300
Finegoldia 150,022 --
Holdemania 61,170 7.7
Lactococcus 1,357 --
Methanobrevibacter 2,172 1,300
Methanothermobacter 145,260 -
Parabacteroides 375,288 1,600
Porphyromonas 836 --
Providencia 586 --
Roseburia 841 31
Ruminococcus 1,263 4,000
Streptococcus 1,301 -
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Supplementary Table 4. Taxonomic breakdown of the 18 groups comprising five attributes.

Attribute Group Genomes | Species | Genus | Family | Order | Class | Phylum | Domain
Proteobacteria 507 335 180 71 36 6 1 1
Firmicutes 199 109 43 23 6 2 1 1

Phylum : :
Actinobacteria 91 76 45 33 6 1 1 1
Euryarchaeota 53 49 34 16 11 9 1 1
<=30% 77 51 22 14 12 9 7 2
GC-content >30%-<=50% 505 337 171 94 65 34 25 2
>50%-<=70% 458 332 207 107 64 28 17 2
Hyperthermophilic 47 41 22 13 11 9 7 2
Temperature range | Thermophilic 70 68 56 40 30 22 18 2
Mesophilic 830 546 293 142 75 36 23 2
Aquatic 169 143 113 69 51 27 18 2
Terrestrial 71 63 46 40 23 16 9 2
Habitat Multiple 294 188 112 72 44 18 10 2
Host-associated 330 209 101 62 37 20 13 2
Specialized 115 106 86 52 46 31 19 2
Aerobic 331 255 165 98 52 24 18 2
Oxygen requirement | Anaerobic 198 169 112 69 45 31 19 2
Facultative 345 199 92 50 35 17 12 2
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Supplementary Table 5. Group statistics. The table is divided in two parts for convenience. Here mean

and sdev are average and standard deviation values. NRI and NTI stand for net relatedness index and

nearest taxon index respectively.

A.
Genome | Genome
Attribute Group Change_rho | #organisms | #species size size
(mean) (sdev)
Proteobacteria 0.02 507 335 | 4066140 | 1853855
Phylum Firmicutes 0.10 199 109 | 3098486 | 1241844
Actinobacteria 0.25 91 76 | 4613913 | 2262225
Euryarchaeota 0.00 53 49 | 2378586 | 918270.2
<=30% 0.11 77 51 | 1703760 | 1360259
GC-content | >30%-<=50% 0.07 505 337 | 2846184 | 1450872
>50%-<=70% 0.13 458 332 | 4417507 | 1708588
Aquatic 0.08 169 41 | 3446547 | 1516513
Terrestrial 0.09 71 68 | 5500797 | 2205847
Habitat Multiple 0.09 294 546 | 4220323 | 1674874
Host-associated 0.15 330 143 | 2809106 | 1781657
Specialized 0.13 115 63 | 2676180 | 1279979
Hyperthermophilic 0.10 47 188 | 2028211 | 510843.1
Temperature -
E— Thermophilic 0.18 70 209 | 2705110 | 1172844
Mesophilic 0.05 830 106 | 3722610 | 1913293
Aerobic 0.10 331 255 | 4217805 | 2192102
rei’;:'eg::;nt Anaerobic 0.13 198 169 | 2855070 | 1237975
Facultative 0.10 345 199 | 3677349 | 1601115
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GC- GC- 5

Attribute Group content content NRI NTI
(mean) (sdev) score

Proteobacteria 52 121 1.53 | 35.14 9.65

Phylum Firmicutes 38 6.9 2.07 | 27.59 10.66

Actinobacteria 65 6.9 1.82 | 23.77 5.37

Euryarchaeota 47 12.2 1.23 7.75 4,52

<=30% 27 24 3.03 3.29 8.16

GC-content | >30%-<=50% 40 53 0.82 1.01 6.87

>50%-<=70% 60 6.2 1.03 8.92 3.06

Aquatic 44 88| 027 227 1.14

Terrestrial 49 12.7 2.39 1.03 1.60

Habitat Multiple 49 13.3 1.13 5.11 7.27

Host-associated 49 11.3 1.35 2.87 8.46

Specialized 59 13.2 1.04 | -3.85 0.43

Hyperthermophilic 50 12.8 3.70 0.33 4.93

Temrzi;aeture Thermophilic 44 128 119| -1.06| 085

Mesophilic 48 12.7 | -0.13 6.53 4.65

Aerobic 54 14.1 0.58 1.21 1.17

reif:'f:}lnt Anaerobic 45 116| 088| -506| 157

Facultative 47 10.9 1.69 11.41 10.62
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Supplementary Table 6. P-values of one-sided Wilcoxon signed rank sum tests to check improvement of different methods over the baseline Euclidean 14n1 method.
While for CPCC the alternative hypothesis was that a metric produces higher CPCC values than the baseline metric (A), for QD the alternative hypothesis was that a
metric produces lower quartet distance than the baseline metric (B). Significant values (<0.05) are shown in boldface.

A.

Specific | Rand | Eucl PCA | Delta 50kb | Eucl | CVTree | CompSpec | FFP
Attribute Group [4n1 [4nl1 | 14n1 [4n1 lenl | l16n5,4 | 110r2 [10ry | GBDP
Proteobacteria 0.017 | 1.000 0.509 0.053 | 0.974 | 1.000 1.000 | 1.000 | 0.000
Phylum Firmicutes 0.000 | 1.000 1.000 0.014 | 1.000 | 0.999 1.000 | 1.000 | 1.000
Actinobacteria 0.000 | 0.000 0.000 0.497 | 0.000 | 0.000 0.000 | 0.987 | 0.000
Euryarchaeota 0.462 | 0.988 0.322 0.291 | 0.864 | 0.719 0.945 | 0.989 | 0.000
<=30% 0.000 | 1.000 0.017 0.000 | 0.998 | 0.000 0.000 | 0.000 | 0.000
GC-content >30%-<=50% 0.000 | 0.067 1.000 0.456 | 1.000 | 0.000 1.000 | 1.000 | 0.000
>50%-<=70% 0.000 | 0.000 0.000 0.021 | 0.045 | 0.000 1.000 | 1.000 | 0.000
Aquatic 0.000 | 0.000 0.885 0.997 | 0.327 | 0.000 1.000 | 1.000 | 0.000
Terrestrial 0.000 | 0.067 0.000 0.651 | 0.006 | 0.000 0.000 | 0.888 | 0.000
Habitat Multiple 0.000 | 0.004 0.993 0.719 | 0.000 | 0.000 0.985 | 0.000 | 0.000
Host-associated 0.000 | 0.000 0.096 0.060 | 1.000 | 0.000 1.000 | 0.000 | 0.000
Specialized 0.000 | 0.000 0.801 0.485 | 0.927 | 0.421 1.000 | 1.000 | 0.000
Hyperthermophilic 0.002 | 1.000 0.914 0.462 | 0.832 | 1.000 1.000 | 0.001 | 0.000
Temperature range | Thermophilic 0.000 | 0.000 0.001 0.573 | 0.195 | 0.000 1.000 | 1.000 | 0.000
Mesophilic 0.000 | 0.000 1.000 1.000 | 1.000 | 0.000 1.000 | 0.000 | 0.000
Aerobic 0.000 | 0.000 0.007 1.000 | 1.000 | 0.973 1.000 | 1.000 | 0.000
Oxygen requirement | Anaerobic 0.000 | 0.000 0.000 0.724 | 0.000 | 0.000 1.000 | 1.000 | 0.000
Facultative 0.000 | 0.016 0.000 0.000 | 0.000 | 0.000 1.000 | 0.000 | 0.000
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Specific | Rand | Eucl PCA | Delta 50kb | Eucl CVTree | CompSpec | FFP
Attribute Group 14n1 [4n1l | 14n1 [4n1 Ibn1l | I16n5,4 | 110r2 [10ry | GBDP
Proteobacteria 0.004 | 0.983 0.008 0.000 | 1.000 | 0.000 1.000 | 1.000 | 0.000
Phylum Firmicutes 0.000 | 1.000 0.719 0.195 | 0.992 | 0.404 1.000 | 1.000 | 0.000
Actinobacteria 0.000 | 0.036 0.000 0.245 | 0.009 | 0.000 0.028 | 0.000 | 0.000
Euryarchaeota 0.052 | 0.925 0.196 0.082 | 0.650 | 0.004 0.555 | 0.561 | 0.000
<=30% 0.000 | 0.965 0.000 0.000 | 0.021 | 0.000 0.000 | 0.000 | 0.000
GC-content >30%-<=50% 0.689 | 1.000 0.999 0.975 | 0.000 | 0.000 1.000 | 1.000 | 0.000
>50%-<=70% 0.000 | 0.000 0.000 0.000 | 0.000 | 0.000 1.000 | 1.000 | 0.000
Aquatic 0.001 | 0.006 0.836 0.509 | 0.338 | 0.996 1.000 | 0.000 | 0.000
Terrestrial 0.005 | 0.888 0.091 0.784 | 0.091 | 0.000 0.127 | 0.997 | 0.000
Habitat Multiple 0.000 | 0.069 0.817 0.048 | 0.327 | 0.000 0.752 | 0.000 | 0.000
Host-associated 0.555 | 0.984 0.468 0.002 | 0.000 | 0.000 0.981 | 0.981 | 0.000
Specialized 0.000 | 0.497 0.959 0.940 | 0.992 | 0.990 1.000 | 0.989 | 0.000
Hyperthermophilic 0.000 | 1.000 0.518 0.300 | 0.628 | 0.035 0.912 | 0.000 | 0.000
Temperature range | Thermophilic 0.007 | 0.986 0.668 0.153 | 0.821 | 0.000 0.825 | 0.000 | 0.000
Mesophilic 0.990 | 0.952 1.000 0.000 | 0.009 | 0.000 1.000 | 1.000 | 0.000
Aerobic 0.000 | 0.000 0.000 0.001 | 0.009 | 0.000 0.000 | 1.000 | 0.000
Oxygen requirement | Anaerobic 0.000 | 0.086 0.000 0.091 | 0.000 | 0.000 0.000 | 0.130 | 0.000
Facultative 0.678 | 1.000 0.474 0.005 | 0.996 | 0.000 1.000 | 1.000 | 0.000
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Supplementary Table 7. Cophenetic correlation coefficient and quartet distance before (CPCC, QD) and after (CPCC_PCA, QD_PCA) principal component analysis using
the l6n1 signature. The dimension and variance columns show number of dimensions and variance retained respectively. No significant improvement was observed
after applying PCA either for the CPCC or the QD (P>0.25, one-sided Wilcoxon rank sum test).

Attribute Group CPCC | CPCC_PCA | QD | QD_PCA | Dimension | Variance (%)
Proteobacteria 0.42 0.42 | 0.47 0.43 114 98.51

Wl Firmicutes 0.54 0.54 | 0.32 0.29 82 99.55
Actinobacteria 0.45 0.45 | 0.53 0.50 63 99.83

Euryarchaeota 0.44 0.45 | 0.47 0.44 48 99.95

<=30% 0.26 0.30 | 0.44 0.41 54 99.86

GC-content >30%-<=50% 0.35 0.36 | 0.50 0.50 137 98.47
>50%-<=70% 0.44 0.50 | 0.49 0.43 122 98.51

Aquatic 0.39 0.40 | 0.50 0.50 114 99.49

Terrestrial 0.43 0.47 | 0.37 0.31 56 99.93

Habitat Multiple 0.38 0.39 | 0.46 0.45 103 99.07
Host-associated 0.14 0.18 | 0.48 0.49 114 99.05

Specialized 0.19 0.19 | 0.57 0.59 93 99.82

Hyperthermophilic | 0.44 0.39 | 0.46 0.42 38 99.96

Temperature range | Thermophilic 0.20 0.27 | 0.61 0.60 61 99.91
Mesophilic 0.24 0.25| 0.48 0.50 137 97.81

Aerobic 0.32 0.35| 0.57 0.56 112 98.77

Oxygen requirement | Anaerobic 0.21 0.23 | 0.54 0.54 121 99.42
Facultative 0.47 0.50 | 0.35 0.27 108 99.07

AVERAGE 0.35 0.37 | 0.48 0.46 93.17 99.28
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6.2 SUPPLEMENTARY FIGURES

Supplementary Figure 1. The flow diagram of the PhyloPythia$ training phase.
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Supplementary Figure 2. Pair-wise Wilcoxon paired rank-sum test P-values for 30 folds (10 runs of 3-
fold cross-validation).
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Supplementary Figure 3. Assignments for the AMD metagenome scaffolds at different taxonomic
ranks by the PhyloPythiaS generic model. This model does not assign sequences to any of the genus
level clades. This is expected behavior as none of the genera (Leptospirillum and Ferroplasma) were
present in the generic model. The existence of Deltaproteobacteria (in Actual and Proteobacteria in

Phylum) has been previously reported (Bond, Smriga, and Banfield 2000) and is due to the provisional
assignment of Leptospirillium to delta subdivision (Bock and Wagner 2006).
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Supplementary Figure 4. Assignments for the AMD metagenome scaffolds at different taxonomic
ranks by PhyloPythiaS sample-specific model. Sample specific data (approximately 100 kb from each
of the four strains) from the two genera (Leptospirillum and Ferroplasma) was used.
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Supplementary Figure 5. Assignments for the AMD metagenome scaffolds at different taxonomic
ranks by best BLASTN hit with e-value cut-off of 0.1. The blast database used same genomes used for
creating PhyloPythiaS generic model, i.e. all 1076 complete genomes available from NCBI as of April

2010.
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Supplementary Figure 6. Assignments for the AMD metagenome scaffolds at different taxonomic
ranks by the NBC webserver. Default N-mer length of 15 with Bacteria/Archaea genomes were used.
The webserver was accessed at http://nbc.ece.drexel.edu/ in April 2011.

Candldatus Solibacter
Other
‘Sorangum

Actinobacteria

Species Genus

Streptosporangium roseum

Streptosporangmm

ndidatus Solibacter usitatus

Other

. .. . angium cellulosum
Clostridium beijerinckii Clostridium

Order Phylum

Actinomycetales

Solibacterales

Acndobactena

Other Bactermdetes
Euryarchaeota

Other

Firmicutes
. Myxococcales —
Clostridiales ), ~—MY

~___Proteobacteria

Superkingdom

Archaea

Other
Bacteria

107


http://nbc.ece.drexel.edu/

Supplementary Figure 7. Assignments for the AMD metagenome (scaffolds fragmented at 500 bp) at
different taxonomic ranks by the NBC webserver. To check for the possible effect of test sequence
length on the taxonomic assignment of the AMD metagenome using the NBC webserver, we created
fragments of length 500 bp from the scaffolds and obtained their assignments. Default N-mer length
of 15 and Bacteria/Archaea genomes were used. Bacteria were overestimated while underestimating

the Archaea. The NBC webserver was accessed at http://nbc.ece.drexel.edu/ in May 2011.
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tion of different binning methods for the WG-2

liza
population from the TW sample. Every horizontal bar represents a scaffold and its constituent contigs.

ig visua

Supplementary Figure 8. Scaffold-cont|

Every contig is color coded to represent its consistency with respect to the scaffold assignment. Only

20 kb in length are shown for clarity.
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Supplementary Figure 9. Overlap between predictions of different methods on the TW sample for the
three uncultured populations. The overlaps are represented as area proportional Euler diagrams. Only
exact predictions were taken into account for each population. The areas correspond to the
predictions of the methods on the union of contigs predicted as a particular clade by at least one
method. As it can be seen, PhyloPythiaS and PhyloPythia have large overlaps for all populations.
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Supplementary Figure 10. Overlap between predictions of different methods on TW sample for
dominant phyla. The overlaps are represented as area proportional Euler diagrams. The areas
correspond to the predictions of the methods on the union of contigs predicted as a particular clade
by at least one method. All the predictions were mapped to its corresponding phyla. As it can be seen,
PhyloPythia$S, PhyloPythia and MEGAN have large overlaps for all three phyla.
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Supplementary Figure 11. Histograms of P-values computed using the Hotelling-Williams test for
dependent correlation coefficients that share a variable. Here the shared variable is phenetic
distances derived from taxonomy and change in correlation is considered with respect to the baseline
correlation. Each box shows histogram of 30 P-values for a group.
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Performance

Performance

Supplementary Figure 12. Performance of the metrics on four phylogenetic groups after removing

genomes used for learning and their species and order level relatives.
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Supplementary Figure 13. Performance of the metrics on the GC content groups after removing
genomes related to the learning genomes at species and order ranks.
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Supplementary Figure 14. Performance of the metrics on the habitat groups after removing genomes
related to the learning genomes at species and order ranks.
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10

Supplementary Figure 15. Performance of the metrics on the temperature range groups after
removing genomes related to the learning genomes at species and order ranks.
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Supplementary Figure 16. Performance of the metrics on the Oxygen requirement groups after
removing genomes related to the learning genomes at species and order ranks.
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