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Abstract

We consider variational integrals whose energy densities are represented by N -

functions h of at least quadratic growth. Under rather general conditions on h

almost everywhere regularity of vector-valued local minimizers is established, and it

is possible to include the case of higher order variational problems without essential

changes in the arguments.

1 Introduction

In recent years increasing attention has been paid to the study of the regularity properties
of local minimizers u : R

n ⊃ Ω → R
M of variational integrals of the form

(1.1) I[w, Ω] =

∫

Ω

H(∇w) dx

with density H : R
nM → [0,∞) being a strictly convex function of “nonstandard growth”,

which means in rough words that we do not have an ellipticity estimate of the form
λ(|Z|)|Y |2 ≤ D2H(Z)(Y, Y ) ≤ Λ(|Z|)|Y |2 for all Y , Z ∈ R

nM with functions λ, Λ such
that

c1 ≤ Λ(t)
/
λ(t) ≤ c2

holds for all t ≥ 0 and with constants c1, c2 > 0. One major class showing such
a behaviour is generated by so-called integrands of anisotropic power growth, e.g.
H(∇u) = (1+ |∇u|2)p/2 +(1+ |∂nu|2)q/2 with exponents p < q, for which we have λ(t) =

a(1 + t2)
p−2

2 , Λ(t) = A(1 + t2)
q−2

2 as functions characterizing the growth of D2H.
In this setting and if in addition the scalar case (i.e. M = 1) is considered Marcellini
proved in [Ma1] and [Ma4] the interior C1,α–regularity of local minimizers under
conditions of the form q < c(n)p relating the exponents p and q, where c(n) is rather
large for low dimensions n, but c(n) ց 1 as n → ∞. As a matter of fact - without
further hypotheses on H - one can only hope for almost everywhere regularity in the
general vector case M ≥ 2. Here we mention the important contributions of Passarelli
Di Napoli and Siepe [PS], of Acerbi and Fusco [AF] and of Esposito, Leonetti and
Mingione [ELM1,2] as well as the references mentioned in these papers. In addition,
also the publications [BF1,2] are devoted to the partial regularity theory for variational

1



problems with anisotropic (p, q)–growth, and it should be emphasized that in all the
above mentioned papers again an inequality like q < c(n)p is needed.

A second class of integrands with nonstandard behaviour arises if H satisfies

(1.2) H(Z) = h(|Z|), Z ∈ R
nM ,

for a given N–function h. In this case we have (compare v) below)

λ(t) = min

{
h′(t)

t
, h′′(t)

}
, Λ = max {. . .} ,

so that the condition of uniform ellipticity in general is violated. Concentrating on the
vector case interior C1,α–regularity of local minimizers of integrals depending on the
modulus of the gradient has been proved by many authors: starting with the work of
Uhlenbeck [Uh] on the p–growth case, i.e. h(t) = tp for some p > 1, which was later on
extended by Giaquinta and Modica [GM], Marcellini and Marcellini and Papi studied
very general N– functions h in [Ma1–3] and [MP], whereas the case of nearly linear
growth, i.e. h(t) = t ln(1 + t), is due to Mingione and Siepe [MS]. Further contributions
concerning the regularity problem under condition (1.2) are given in the recent paper
[ABF].

The purpose of the present note is threefold:

1. In Theorem 1.1 below we will establish almost everywhere regularity of vector–
valued local minimizers requirering (1.2) but under (in a sense to be made precise)
more general hypotheses as for example used in [MP].

2. The methods apply to variational problems of higher order (see Theorem 1.2) pro-
viding some extensions of the results obtained in [ApF].

3. We think that with some additional work our results can be transfered to local
minima u : R

n ⊃ Ω → R
n of integrals like

∫
Ω

h(|ε(u)|) dx subject to the constraint
div u = 0. Here ε(u) is the symmetric gradient of u, and for n = 2 this variant of
the stationary Stokes problem has been the subject of the recent paper [Fu2]. To
our knowledge the hypothesis (1.2) seems to be a natural assumption for the study
of fluids: it occurs for example in the setting of electrorheological fluids for which
partial regularity has been proved by Acerbi and Mingione [AM].

With respect to 1. our result is not optimal: we expect that the singular set is empty
but we could not rule out the occurrence of singular points. For variational problems of
higher order or in the framework of fluids it seems to be even harder to develop methods
which use the structure condition (1.2) in order to exclude singularities.
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Let us give a precise formulation of our assumptions: let n ≥ 3, M ≥ 1 and consider
an open set Ω ⊂ R

n. Let the density H : R
nM → [0,∞) satisfy (1.2), where h : [0,∞) →

[0,∞) is of class C2. We will impose the following hypotheses on h:

(A1) h is strictly increasing and convex together with h′′(0) > 0 and lim
t↓0

h(t)
t

= 0 ;

(A2) there exists a constant k > 0 such that h(2t) ≤ k h(t) for all t ≥ 0 ;

(A3)

{
for an exponent ω ≥ 0 and a constant a ≥ 0 we have
h′(t)

t
≤ h′′(t) ≤ a(1 + t2)

ω
2

h′(t)
t

for all t ≥ 0 .

Let us give some comments on (A1-3):

i) We have h(0) = h′(0), and by convexity h′ is an increasing function with h′(t) > 0
for all t > 0: otherwise it would follow that h′ = 0 on some interval [0, t0], t0 > 0,
contradicting the first part of (A1).

ii) The inequality h′(t)
t

≤ h′′(t) implies that the function t 7→ h′(t)
t

is increasing, moreover
we deduce the lower bound

(1.3) h(t) ≥ 1

2
h′′(0)t2, t ≥ 0 .

(A1) combined with (1.3) shows that h is a N -function in the sense of [Ad, Section
8.2].

iii) (A2) states that h satisfies a global (∆2)- condition, and it is easy to see that

h(t) ≤ c(tm + 1)

for a suitable exponent m ≥ 2 and a constant c. The convexity of h then implies
that h′(t) can be bounded in terms of tm−1.

iv) From (A2) and from the convexity of h we deduce the inequality

(1.4) k
−1

h′(t)t ≤ h(t) ≤ th′(t), t ≥ 0 .

v) From (1.2) it follows for all Y , Z ∈ R
nM

min

{
h′(|Z|)
|Z| , h′′(|Z|)

}
|Y |2 ≤ D2H(Z)(Y, Y ) ≤

max

{
h′(|Z|)
|Z| , h′′(|Z|)

}
|Y |2 ,
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hence by (A3)

(1.5)
h′(|Z|)
|Z| |Y |2 ≤ D2H(Z)(Y, Y ) ≤ a(1 + |Z|2)ω

2

h′(|Z|)
|Z| |Y |2 .

Recalling iii) and using ( see ii)) h′(|Z|)
|Z|

≥ h′′(0), we get from (1.5) with exponent
q := m + ω

(1.6) h′′(0)|Y |2 ≤ D2H(Z)(Y, Y ) ≤ C(1 + |Z|2) q−2

2 |Y |2 ,

and (1.6) means that H is of anisotropic (2, q)–growth.

Definition 1.1. A function u ∈ W 1
1,loc(Ω; RM) is a local minimizer of the energy I

from (1.1) if for any subdomain Ω′ with compact closure in Ω it holds I[u, Ω′] < ∞
and I[u, Ω′] ≤ I[v, Ω′], where v is an arbitrary function from W 1

1,loc(Ω; RM) such that
spt(u − v) ⊂ Ω′.

For a definition of the Sobolev spaces W k
p,loc(Ω; RM) and related classes we refer the reader

to the monograph [Ad]. Note that a local minimizer actually belongs to the Orlicz-
Sobolev class W 1

h,loc(Ω; RM), in particular (see (1.3)) local minimizers are in the space
W 1

2,loc(Ω; RM).

Let us now state our first result

Theorem 1.1. Let (A1) - (A3) hold and consider a local minimizer u ∈ W 1
1,loc(Ω; RM) of

the functional I from (1.1) with integrand H defined according to (1.2). Suppose further
that there is a finite constant c such that

(1.7) tω ≤ c
[
h(t)

2

n−2 + 1
]

for all sufficiently large t. Then there is an open subset Ω0 of Ω with full Lebesgue measure
such that u ∈ C1,α(Ω0; R

M) for any 0 < α < 1.

Remark 1.1. According to (1.3) we have the validity of (1.7) if we require ω ≤ 4/(n−2).

Remark 1.2. Let us compare Theorem 1.1 with the recent result obtained by Marcellini
and Papi [MP]. Roughly speaking, they replace the second inequality from (A3) by the
requirement (compare (2.9) of [MP])

(1.8) h′′(t) ≤ const

(
h′(t)

t

) n
n−1

.

Then, full interior regularity is established, i.e. it holds Ω0 = Ω, whereas we could not
exclude the occurrence of singular points despite of our structure condition (1.2). But if
we consider functions h such that

h′′ = 1 on [0,∞) −
∞⋃

i=1

Ii ,
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where Ii := [ai − ε, ai + εi] for an appropriate sequence ai → ∞ with corresponding very
small εi, and if we let h′′(ai) = aκ

i for a suitable power κ, then (1.8) is violated, whereas
the right-hand side of (A3) together with (1.7) can be guaranteed.

Remark 1.3. The regularity problem under the hypotheses (A1-3) has been addressed
from a different point of view in the paper [ABF]: assuming that the local minimizer is
also a locally bounded function we could prove Ω0 = Ω replacing (1.7) by the dimensionless
condition ω < 2.

Remark 1.4. As stated after (1.6) our variational integral also falls into the category
of anisotropic energies and it is possible to deduce Theorem 1.1 from the papers on this
subject provided (compare (1.6) and choose p = 2) we know that q < p n

n−2
(or a similar

inequality) is true. But if we recall the definition of q, it is immediate that such a bound
for q is too restrictive.

Let us now consider the case of higher order variational problems, i.e. we discuss local
minima of variational integrals like

(1.9) J [w, Ω] =

∫

Ω

h(|∇kw|) dx ,

where k ≥ 2 denotes a given integer. The symbol ∇kw stands for the tensor of all kth

order (weak) partial derivatives of the function w, and w is assumed to be an element of
the space W k

1,loc(Ω; RM). The appropriate modification of Definition 1.1 for the situation
at hand is immediate, and we have

Theorem 1.2. Let (A1-3) and (1.7) hold and let u ∈ W k
1,loc(Ω; RM), M ≥ 1, k ≥ 2,

denote a local minimizer of the functional J from (1.9). Then there is an open set Ω0 ⊂ Ω
of full Lebesgue measure such that u ∈ Ck,ν(Ω0; R

M) for any 0 < ν < 1.

Remark 1.5. In [ApF] we proved partial regularity for local minimizers of anisotropic
variational problems of higher order but as outlined in Remark 1.4 the result of Theorem
1.2 follows from Theorem 1.1 in [ApF] only under very restrictive assumptions on h.

Remark 1.6. We note that with obvious simplifications our results apply to the case
Ω ⊂ R

2, which means that then hypothesis (1.7) becomes superfluous.

Our paper is organized as follows: in Section 2 we collect some auxiliary results among
which Lemma 2.2 is of separate interest since it contains a statement on the local higher
integrability of ∇u without using the hypothesis (1.7).
Section 3 is devoted to the proof of Theorem 1.1, which is based on the blow–up technique.
In Section 4 we sketch how to adjust these arguments to the higher order case described
in Theorem 1.2.
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2 Preliminary results

Throughout this section we consider a local minimizer u as defined in Definition 1.1 and
assume the validity of (A1-3), whereas (1.7) is not required. The following calculations
can be made precise by replacing u, H, I by a suitable local regularization uδ, Hδ, Iδ,
δ > 0, with exponent q as outlined for example in [BF1].

Lemma 2.1. Let Ψ :=
∫ |∇u|

0

√
h′(t)

t
dt. Then it holds for balls BR(x0) ⊂ Ω and 0 < t < 1

(2.1)

∫

BtR(x0)

|∇Ψ|2 dx ≤ cR−2(1 − t)−2

∫

BR(x0)

h(|∇u|) dx .

Proof: Let η ∈ C∞
0 (Ω). We have (summation w.r.t. α = 1, . . . , n)

0 =

∫

Ω

∂α (DH(∇u)) : ∇
(
η2∂αu

)
dx

=

∫

Ω

∂α (DH(∇u)) : ∂α∇uη2 dx

+

∫

Ω

∂α (DH(∇u)) :
(
∇η2 ⊗ ∂αu

)
dx ,

where “ : ” is the scalar product of matrices and where “⊗ ” represents the tensor product.
We obtain

∫

Ω

∂α (DH(∇u)) : ∂α∇uη2 dx =

∫

Ω

DH(∇u) : ∂α

(
∇η2 ⊗ ∂αu

)
dx.

Using the first inequality in (1.5) and observing |DH(Z)| ≤ h′(|Z|) we get

∫

Ω

η2h′(|∇u|)
|∇u| |∇2u|2 dx ≤

∫

Ω

h′(|∇u|)|∇u||∇2η2| dx

+2

∫

Ω

h′(∇u|)η|∇η||∇2u| dx

1.4)

≤ c

∫

Ω

|∇2η2|h(|∇u|) dx

+2

∫

Ω

(
h′(|∇u|)
|∇u|

)1/2

η|∇2u| (h′(|∇u|)|∇u|)1/2 |∇η| dx ,

and Young’s inequality together with another application of (1.4) yields

(2.2)

∫

Ω

η2h′(|∇u|)
|∇u| |∇2u|2 dx ≤ c

∫

Ω

[
|∇η|2 + |∇2η2|

]
h(|∇u|) dx .

Since |∇Ψ|2 ≤ h′(|∇u|)
|∇u|

|∇2u|2, (2.1) follows from (2.2) by specifying η.
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Let us give upper and lower bounds for the function Ψ: we have

Ψ ≥
∫ |∇u|

|∇u|/2

√
h′(t)

t
dt ≥ |∇u|

2

√
h′(|∇u|/2)

/
(|∇u|/2)

=

√
1

2
|∇u|h′(|∇u|/2)

(1.4)

≥
√

h(|∇u|/2)

by the monotonicity of t 7→ h′(t)
t

, hence by (A2)

(2.3) h(|∇u|) ≤ cΨ2 .

On the other hand we clearly have Ψ ≤ |∇u|
√

h′(|∇u|)
|∇u|

, hence

(2.4) Ψ2 ≤ ch(|∇u|) .

The r.h.s. of (2.4) is in L1
loc(Ω), which together with (2.1) implies Ψ ∈ W 1

2,loc(Ω). This
gives by Sobolev’s theorem in combination with (2.3):

Lemma 2.2. We have h(|∇u|) n
n−2 ∈ L1

loc(Ω).

Next we recall the Caccioppoli-type inequality (see, e.g., [BF1])

(2.5)

∫

Ω

η2D2H(∇u)(∂α∇u, ∂α∇u) dx ≤ c

∫

Ω

|D2H(∇u)||∇η|2|∇u − Q|2 dx

valid for η ∈ C∞
0 (Ω) and Q ∈ R

nM . From (2.5) it follows

(2.6)

∫

Ω

η2h′(|∇u|)
|∇u| |∇2u|2 dx ≤ c

∫

Ω

|∇η|2(1 + |∇u|2)ω
2

h′(|∇u|)
|∇u| |∇u − Q|2 dx .

Note that the integrands on the right-hand sides of (2.5) and (2.6) behave like
|∇u|ωh(|∇u|), and by Lemma 2.2 their local integrability will follow if condition (1.7)
is valid.

3 Proof of Theorem 1.1 via blow-up

¿From now on let the assumptions of Theorem 1.1 hold. Let u denote a local I-minimizer
and suppose that ω > 0 in (A3). (Otherwise the claim of Theorem 1.1 follows with Ω0 = Ω
from [MP].) We further let

h̃(t) := tωh(t), t ≥ 0 ,
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and observe that h̃ is a N -function. From (1.7) and Lemma 2.2 it follows that u ∈
W 1

eh,loc
(Ω; RM), hence the excess-function

E(x, r) :=

∫

Br(x)

− |∇u − (∇u)x,r|2 dy +

∫

Br(x)

− h̃(|∇u − (∇u)x,r|) dy

for balls Br(x) ⋐ Ω is well-defined. Here and in what follows
∫
−

...
f, (f)... denote the mean

value of a function f .

Lemma 3.1. Fix L > 0 and a subdomain Ω′ ⋐ Ω. Then there is a constant C∗(L) such
that for every τ ∈ (0, 1) one can find a number ε = ε(L, τ) with the following property: if
Br(x) ⊂ Ω′ and if

(3.1) |(∇u)x,r| ≤ L, E(x, r) ≤ ε ,

then it holds

(3.2) E(x, τr) ≤ C∗(L)τ 2E(x, r) .

Once having established Lemma 3.1, it is standard (see, e.g. Giaquinta’s textbook [Gi])
to prove the desired partial regularity result. It turns out that the regular set Ω0 is given
by

Ω0 =

{
x ∈ Ω : sup

r>0
|(∇u)x,r| < ∞ and lim inf

r↓0
E(x, r) = 0

}
,

i.e. Lemma 3.1 shows that the set on the r.h.s. is open and ∇u ∈ C0,α there for any
0 < α < 1. Obviously it is a set of full Lebesgue measure.

We divide the proof of Lemma 3.1 into several steps.

Step 1. Scaling

We argue by contradiction. Let L > 0 and choose C∗ = C∗(L) as outlined in Step 2.
Then, for some τ ∈ (0, 1), there is a sequence of balls Brm

(xm) ⋐ Ω′ such that

|(∇u)xm,rm
| ≤ L, E(xm, rm) =: λ2

m → 0, as m → ∞ ,(3.3)

E(xm, τrm) > C∗τ
2λ2

m .(3.4)

Letting am := (u)xm,rm
, Am := (∇u)xm,rm

we define for z ∈ B1 := B1(0)

um(z) :=
1

λmrm

[
u(xm + rmz) − am − rmAmz

]

and get from (3.3)

(3.5) |Am| ≤ L,

∫

B1

− |∇um|2 dz + λ−2
m

∫

B1

− h̃(λm|∇um|) dz = 1 .

8



On the other hand, (3.4) reads after scaling

(3.6)

∫

Bτ

− |∇um − (∇um)0,τ |2 dz + λ−2
m

∫

Bτ

− h̃(λm|∇um − (∇um)0,τ |) dz > C∗τ
2 .

After passing to suitable subsequences we obtain from (3.5)

Am →: A, um ⇁: u in W 1
2 (B1; R

M) ,

λm∇um → 0 in L2(B1; R
nM) and a.e. ,(3.7)

where obviously (u)0,1 = 0, (∇u)0,1 = 0.

Step 2. Limit equation

For any ϕ ∈ C∞
0 (B1; R

M) the Euler equation satisfied by u implies after scaling

∫

B1

D2H(Am)(∇um,∇ϕ) dz

= −
∫

B1

∫ 1

0

[
D2H(Zm) − D2H(Am)

]
(∇um,∇ϕ) ds dz ,(3.8)

where we have abbreviated

Zm := Zm(s, z) := Am + sλm∇um(z) .

The first line of (3.7) yields

(3.9) l.h.s. of (3.8)
m→∞−→

∫

B1

D2H(A)(∇u,∇ϕ) dz .

For discussing the r.h.s of (3.8) we let ε > 0 and choose δ = δ(ε) such that

(3.10)

∫

A

|∇ϕ|2 dz ≤ ε

for any measurable subset A of B1 such that Ln(A) ≤ δ. The second line of (3.7) gives
the existence of S ⊂ B1 such that Ln(B1 − S) ≤ δ and

(3.11) λm∇um ⇉ 0 on S .

¿From (3.11) we immediatly infer (using also (3.5))

∣∣∣
∫

S

∫ 1

0

[
D2H(Zm) − D2H(Am)

]
(∇um,∇ϕ) ds dz

∣∣∣

≤ sup
S×[0,1]

∣∣∣[. . .]
∣∣∣
( ∫

B1

|∇um|2 dz
)1/2( ∫

B1

|∇ϕ|2 dz
)1/2

→ 0(3.12)
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as m → ∞. At the same time we use (1.5) to see

T :=
∣∣∣
∫

B1−S

∫ 1

0

[. . .](∇um,∇ϕ) ds dz
∣∣∣

≤ c

∫

B1−S

∫ 1

0

{
1 + |D2H(Zm)|

}
|∇um||∇ϕ| ds dz

≤ c

∫

B1−S

∫ 1

0

{
1 + (1 + |Zm|2)

ω
2

h′(|Zm|)
|Zm|

}
|∇um||∇ϕ| ds dz

= c

{∫

(B1−S)∩M1

∫ 1

0

. . . ds dz +

∫

(B1−S)∩M2

∫ 1

0

. . . ds dz

}

=: c{T1 + T2} ,

where we have abbreviated

M1 := [λm|∇um| ≤ K],M2 := [λm|∇um| > K]

for a sufficiently large number K. On M1 we have

|Zm| ≤ sup
m

|Am| + K ≤ L + K =: k

so that

(1 + |Zm|2)
ω
2

h′(|Zm|)
|Zm|

≤ c(K)
h′(k)

k
(A3)

≤ c(K)h′′(k)

and in conclusion

T1 ≤ c(K)

∫

B1−S

|∇um||∇ϕ| dz

≤ c(K)

(∫

B1−S

|∇um|2 dz

)1/2 (∫

B1−S

|∇ϕ|2 dz

)1/2

(3.10)

≤ c(K)
√

ε .(3.13)

For T2 we obtain (assuming |Zm| ≤ 2λm|∇um| on M2)

T2 ≤ c

∫

(B1−S)∩M2

|∇um||∇ϕ| dz

+c

∫

(B1−S)∩M2

(λm|∇um|)ω h′(2λm|∇um|)
2λm|∇um|

|∇um||∇ϕ| dz ,
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and as before the first integral on the r.h.s. is bounded by c
√

ε. Using (1.4) and (A2) we
get

T2 ≤ c
√

ε + cλ−1
m

∫

(B1−S)∩M2

(λm|∇um|)ω−1h(λm|∇um|)|∇ϕ| dz .

Recalling the definition of h̃, we see

ωtω−1h(t) ≤ h̃′(t) ,

hence

(3.14) T2 ≤ c
√

ε + cλ−1
m

∫

(B1−S)∩M2

h̃′(λm|∇um|)|∇ϕ| dz ,

and it remains to discuss the integral on the r.h.s. of (3.14). To this purpose we let for

τ > 0 gτ (t) := τ h̃∗(t), h̃∗ being the conjugate function of h̃, and use Young’s inequality
in the form

αβ ≤ gτ (α) + g∗
τ (β)

for numbers α, β ≥ 0. With α := h̃′(λm|∇um|), β := |∇ϕ| we obtain

h̃′(λm|∇um|)|∇ϕ| ≤ τ h̃∗
(
h̃′(λm|∇um|)

)
+ g∗

τ (|∇ϕ|)

= τ
[
λm|∇um|h̃′(λm|∇um|) − h̃(λm|∇um|)

]
+ g∗

τ (|∇ϕ|)

≤ cτ h̃(λm|∇um|) + g∗
τ (|∇ϕ|) ,

g∗
τ (|∇ϕ|) = sup

γ≥0

[
βγ − τ h̃∗(γ)

]
= τ sup

γ≥0

[
β

τ
γ − h̃∗(γ)

]
= τ h̃(β/τ) = τ h̃(|∇ϕ|/τ) .

This gives

ξm := λ−1
m

∫

(B1−S)∩M2

h̃′(λm|∇um|)|∇ϕ| dz

≤ cλ−1
m τ

∫

B1

h̃(λm|∇um|) dz + cλ−1
m τ

∫

B1

h̃

(
1

τ
|∇ϕ|

)
dz .

Now let τ := λδ−1
m for a small δ > 0. Then it holds

ξm ≤ c

[
λδ−2

m

∫

B1

h̃(λm|∇um|) dz + λδ−2
m

∫

B1

h̃(λ1−δ
m |∇ϕ|) dz

]
.

The definition of h̃ gives for any ℓ > 0

h̃(t) ≤ const (ℓ)t2+ω ∀ 0 ≤ t ≤ ℓ ,

where const (ℓ) is depending on the value of ℓ. Here we choose ℓ := ‖∇ϕ‖∞, hence

λδ−2
m

∫

B1

h̃
(
λ1−δ

m |∇ϕ|
)

dz ≤ c(‖∇ϕ‖∞)λδ−2+(1−δ)(2+ω)
m ,

11



and since ω is positive, it is possible to choose δ > 0 such that

λδ−2
m

∫

B1

h̃
(
λ1−δ

m |∇ϕ|
)

dz → 0, m → ∞ .

Since according to (3.5)

λδ−2
m

∫

B1

h̃(λm|∇um|) dz → 0, m → ∞ ,

we arrive at lim
m→∞

ξm = 0. Combining this fact with the estimates (3.12) - (3.14) it is

shown that

(3.15) lim sup
m→∞

|r.h.s. of (3.8)| ≤ c
√

ε .

Now ε can be chosen as small as we want, hence (3.8) and (3.9) together with (3.15) lead
to the elliptic system with constant coefficients

∫

B1

D2H(A)(∇u,∇ϕ) dz = 0

satisfied by u. According to [Gi] u is of class C∞(B1; R
M), and we have the Campanato

estimate ∫

Bτ

− |∇u − (∇u)0,τ |2 dz ≤ C∗τ 2

∫

B1

− |∇u − (∇u)0,1|2 dz

for a constant C∗ = C∗(L). Observing (see (3.5))
∫
−

B1

|∇u|2 dz ≤ 1 and recalling (∇u)0,1 =
0, we get

(3.16)

∫

Bτ

− |∇u − (∇u)0,τ |2 dz ≤ C∗τ 2 .

Letting C∗ := 2C∗ we see that (3.16) contradicts (3.6) as soon as we can shown the validity
of

(3.17) ∇um → ∇u in L2
loc

(
B1; R

nM
)

,

(3.18) λ−2
m

∫

Br

− h̃ (λm|∇um|) dz → 0, r < 1 .

In fact, (3.17) implies the convergence of the first integral on the l.h.s. of (3.6) towards
the integral on the l.h.s. of (3.16). We further have

λ−2
m

∫

Bτ

− h̃ (λm|∇um − (∇um)0,τ |) dz

≤ c

[
λ−2

m

∫

Bτ

− h̃ (λm|∇um|) dz + λ−2
m h̃ (λm|(∇um)0,τ |)

]

12



which follows from the convexity and the (∆2)- property of h̃. By (3.18) the first term on
the r.h.s. of the above inequality vanishes as m → ∞, and (3.17) yields |(∇um)0,τ | −→
|(∇u)0,τ | as m −→ ∞, hence λ−2

m h̃ (λm|(∇um)0,τ |) behaves like λ−2
m λ2+ω

m
m→∞−→ 0, and

therefore the second term on the l.h.s. of (3.6) vanishes as m → ∞.

Step 3. Proof of (3.17) and (3.18)

We return to (2.6), observe h′(t)
t

≥ h′′(0), choose Q = Am and obtain after scaling (for a
suitable choice of η)

(3.19)

∫

Bt

|∇2um| dz ≤ C(1 − t)−2

∫

B1

|D2H (λm∇um + Am) ||∇um|2 dz

valid for 0 < t < 1. On [λm|∇um| ≤ K] we have

∣∣D2H (Am + λm∇um)
∣∣ |∇um|2 ≤ c(K)|∇um|2 ,

whereas on [λm|∇um| ≥ K] it holds (K large enough)

∣∣D2H (λm∇um + Am)
∣∣ |∇um|2

≤ c(K)

[
1 + (λm|∇um|)ω h′(λm|∇um|)

λm|∇um|

]
|∇um|2

≤ c(K)
[
|∇um|2 + λ−2

m h̃ (λm|∇um|)
]

.

(3.19) therefore implies

(3.20)

∫

Bt

|∇2um|2 dz ≤ c(1 − t)−2

[∫

B1

|∇um|2 dz + λ−2
m

∫

B1

h̃ (λm|∇um|) dz

]
,

and by (3.5) the r.h.s. of (3.20) is bounded. This together with (3.7) proves (3.17). Let
us denote by c(t) a bound for the r.h.s. of (3.20). Then another application of (2.6) yields
for t ∈ (0, 1)

(3.21)

∫

Bt

h′(|λm∇um + Am|)
|λm∇um + Am|

|∇2um|2 dz ≤ c(t) .

We introduce the auxiliary functions

Ψm :=
1

λm

{∫ |λm∇um+Am|

0

√
h′(t)

t
dt −

∫ |Am|

0

√
h′(t)

t
dt

}

and observe that by (3.21)

(3.22)

∫

Bt

|∇Ψm|2 dz ≤ c(t) .
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On [λm|∇um| ≤ K] it holds

|Ψm| =
1

λm

∣∣∣∣∣

∫ |Am+λm∇um|

|Am|

√
h′(t)

t
dt

∣∣∣∣∣

≤ 1

λm

||Am + λm∇um| − |Am||
√

h′(k)

k
,

where k := K + sup
m

|Am|. We therefore get

|Ψm| ≤
√

h′(k)

k
|∇um|

provided λm|∇um| ≤ K. For K large enough we can assume that

|Am + λm∇um| ≤ 2λm|∇um|

on [λm|∇um| ≥ K], hence

|Ψm| ≤ c
1

λm

λm|∇um|
√

h′(2λm|∇um|)
2λm|∇um|

(1.4), (A2)

≤ cλ−1
m h (λm|∇um|)1/2

≤ cλ−1
m h̃ (λm|∇um|)1/2 ,

if λm|∇um| ≥ K. Recalling the bounds from (3.5) it is shown that
∫

B1

Ψ2
m dz ≤ c < ∞

which together with (3.22) implies (0 < t < 1)

(3.23) ‖Ψm‖W 1

2
(Bt) ≤ c(t) < ∞ .

Let AK(t) := Bt ∩ [λm|∇um| ≤ K]. We use h̃(t) ≤ cKt2+ω =: cKts for t ≤ K to get
∫

AK(t)

λ−2
m h̃ (λm|∇um|) dz

≤ c

[
λs−2

m

∫

AK(t)

|∇um −∇u|s dz + λs−2
m

∫

AK(t)

|∇u|s dz

]

≤ c

[
λs−2

m

∫

AK(t)

{
|∇um|s−2 + |∇u|s−2

}
|∇um −∇u|2 dz + λs−2

m

∫

Ak(t)

|∇u|s dz

]
.

Using the local boundedness of ∇u as well as (3.17) we deduce

(3.24) λ−2
m

∫

AK(t)

h̃ (λm|∇um|) dz −→ 0, m → ∞ .
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Now consider the set ÃK(t) := Bt ∩ [λm|∇um| ≥ K], on which the following estimates are
valid:

Ψm =
1

λm

∫ |λm∇um+Am|

|Am|

√
h′(t)

t
dt

≥ 1

λm

∫ 2

3
λm|∇um|

1

2
λm|∇um|

√
h′(t)

t
dt

≥ c
1

λm

λm|∇um|
√

h′(λm|∇um|/2)
1
2
λm|∇um|

≥ c

λm

√
h(λm|∇um|) .

This gives

(3.25) Ψ2
m ≥ cλ−2

m h(λm|∇um|) on ÃK(t) ,

and therefore

λ−2
m

∫

eAK(t)

h̃ (λm|∇um|) dz

= λ−2
m

∫

eAK(t)

(λm|∇um|)ω h (λm|∇um|) dz

(3.25)

≤ c

∫

eAK(t)

(λm|∇um|)ω Ψ2
m dz

≤ c

(∫

Bt

Ψ
2n

n−2

m dz

)1−2/n (∫

eAK(t)

(λm|∇um|)ω n
2 dz

)2/n

(3.23)

≤ c(t)

(∫

eAK(t)

(λm|∇um|)ω n
2 dz

)2/n

(1.7)

≤ c(t)

[
Ln(ÃK(t)) +

∫

eAK(t)

h (λm|∇um|)
n

n−2 dz

]
.

The second line of (3.7) shows Ln(ÃK(t)) → 0 as m → ∞, moreover we have

∫

eAK(t)

h (λm|∇um|)
n

n−2 dz
(3.25)

≤ cλ
2n

n−2

m

∫

Bt

Ψ
2n

n−2

m dz

(3.23)

≤ c(t)λ
2n

n−2

m −→ 0, m → ∞ ,

hence
∫

eAK(t)
λ−2

m h̃ (λm|∇um|) dz −→ 0, m → ∞. This together with (3.24) proves (3.18)

which completes the proof of Lemma 3.1 and thereby of Theorem 1.1. ¤
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4 Sketch of the proof of Theorem 1.2

Clearly we can restrict ourselves to the case k = 2 together with M = 1. Then we
introduce a local regularization as done in [ApF], Section 2, and prove - dropping the
approximation parameter:

Lemma 4.1. The function

Ψ :=

∫ |∇2u|

0

√
h′(t)

t
dt

is of class W 1
2,loc(Ω) (uniformly w.r.t. the approximation).

A complete proof of Lemma 4.1 is presented in [Fu1], Step 2 of the proof of Theorem
1. Lemma 2.2 has to be replaced by

Lemma 4.2. The function h(|∇2u|) n
n−2 is in the space L1

loc(Ω) (uniformly w.r.t. the
regularization).

A version of the Caccioppoli inequality (2.5) valid for the higher order case has been
established in (2.11) of [ApF]. During the blow-up procedure we need the following
adjustments: now we let

E(x, r) :=

∫

Br(x)

− |∇2u − (∇2u)x,r|2 dy +

∫

Br(x)

− h̃(|∇2u − (∇2u)x,r|) dy

and require |(∇2u)x,r| ≤ L in (3.1). We define am, Am as after (3.4) and let Θm :=
(∇2u)xm,rm

as well as

ûm(z) :=
1

λmr2
m

[
um(xm + rmz) − am − rmAmz

−1

2
r2
mΘm(z, z) +

1

2
r2
m

∫

B1

− Θm(z̃, z̃)dz̃
]
, z ∈ B1 .

(3.7) has to be replaced by

(4.1)

{
Θm →: Θ, ûm ⇁: û in W 2

2 (B1) ,

λm∇2ûm → 0 in L2(B1; R
n×n) and a.e.

Let H(Z) := h(|Z|). From (4.1) we obtain along the lines of Step 2 of Section 3 the limit
equation

(4.2)

∫

B1

D2H(Θ)(∇2û,∇2ϕ) dz = 0

valid for all ϕ ∈ C∞
0 (B1), and to (4.2) we can apply the Campanato-type estimate (3.11)

of [ApF] by the way fixing the value of C∗. Finally we prove (see (3.17) and (3.18))

(4.3)





∇2ûm → ∇2û in L2
loc(B1; R

n×n) ,

λ−2
m

∫

Bτ

− h̃(λm|∇2ûm|) dz → 0, r < 1 ,

16



which is done exactly as in Step 3 of Section 3. But as before (4.3) will lead to the desired
contradiction by the way proving Theorem 1.2.

¤
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