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Integrodifferential Equations for Multiscale

Wavelet Shrinkage: The Discrete Case

S. Didas∗ G. Steidl† J. Weickert∗

July 22, 2008

Abstract

We investigate the relations between wavelet shrinkage and integrod-

ifferential equations for image simplification and denoising in the discrete

case. Previous investigations in the continuous one-dimensional setting are

transferred to the discrete multidimentional case. The key observation is

that a wavelet transform can be understood as derivative operator in con-

nection with convolution with a smoothing kernel. In this paper, we extend

these ideas to the practically relevant discrete formulation with both or-

thogonal and biorthogonal wavelets. In the discrete setting, the behaviour

of the smoothing kernels for different scales is more complicated than in

the continuous setting and of special interest for the understanding of the

filters. With the help of tensor product wavelets and special shrinkage

rules, the approach is extended to more than one spatial dimension. The

results of wavelet shrinkage and related integrodifferential equations are

compared in terms of quality by numerical experiments.

Keywords: Image Denoising, Wavelet Shrinkage, Integrodifferential Equations
AMS subject classification: 68U10,45K05,65T60

1 Introduction

Since the beginning of the 1990s, wavelet shrinkage and nonlinear diffusion fil-
tering are two established classes of methods for signal and image simplification
and denoising [35, 11, 26, 37].
The idea behind wavelet shrinkage is to denoise an image by performing very sim-
ple pointwise operations in a suitable multiresolution representation of the data
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[35]. This representation is obtained by using the wavelet transform. Depend-
ing on the application, the use of different types of wavelets might be suitable.
Via the concept of multiresolution analysis [18, 19, 21] the shrinkage technique is
closely related to earlier signal processing methods like filter banks and subband
coding [5, 6, 22, 28, 33, 32].
Nonlinear diffusion filtering simplifies and denoises an image by solving a partial
differential equation which is typically done without changing the spatial repre-
sentation of the image. In this setting, first or higher order derivatives of the
image are used to formalise the desired smoothness and to detect and eliminate
the noise [26, 37, 17, 10].
The close relationship between both methods is emphasised, for example, by
the fact that wavelet shrinkage can also be understood as energy minimisation
[3, 4, 2]. This fact already relates it to the context of scale-spaces [15, 39, 26, 1]
and PDE-based methods. In the discrete setting, translationally invariant wavelet
shrinkage on the finest scale is even equivalent to total variation regularisation
and diffusion [29].
The connections between multiscale wavelet shrinkage and corresponding inte-
grodifferential equations in the continuous one-dimensional setting have been the
topic of an earlier publication by the authors [9]. The goal of this paper is to
transfer the ideas and results from the continuous to the practically relevant
discrete setting. Since the dilation operation on the wavelets can only be ap-
proximated on a discrete grid, the formulation is slightly more technical here.
Moreover, we will not restrict ourselves to orthogonal wavelets, but also have a
look at biorthogonal ones allowing for more general integrodifferential equations.
Preliminary results concerning this transfer have been presented at a conference
[8]. In addition, we will transfer the one-dimensional case to two dimensions
using tensor product wavelets and special shrinkage rules to increase rotational
invariance. We also discuss in detail the behaviour of the appearing smoothing
kernels at different scales. Numerical experiments will be shown to compare the
resulting methods in terms of denoising quality.
This paper is organised as follows: Section 2 introduces some notations used
throughout the paper. Sections 3 and 4 describe classical wavelet shrinkage and
nonlinear diffusion filtering in a discrete setting. The factorisation of a discrete
wavelet into a convolution kernel and a derivative approximation is derived in
Section 5. In Section 6, this idea is used to derive relations between discrete
wavelet shrinkage and integrodifferential equations. Section 7 shows how these
ideas can be generalised two higher dimensions. Numerical experiments in Section
8 display the behaviour of the presented filters in practice. The paper is concluded
with a summary in Section 9.
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2 Preliminaries and Notations

Let us start with the notations used
throughout this paper. Let f ∈ ℓ2(Z) := {(fn)n∈Z | ∑∞

n=−∞ f 2
n < ∞} be a real

signal of infinite length. Then

f̂(ω) :=

∞
∑

n=−∞
fn exp(−inξ) and F (z) :=

∞
∑

n=−∞
fnz

−n (1)

denote the Fourier- and the z-transform of f , respectively. The importance of
the z-transform in this context results from the fact that it allows for an easy
formulation of convolutions as multiplications of formal Laurent series. More
precisely, the k-th component of the convolution a ∗ f given by

(a ∗ f)k :=
∑

j∈Z

ajfk−j

corresponds to the coefficient of z−k in A(z)F (z).
In practice, we will work with signals of finite length N and assume N -periodic
extensions of the signals. Then the k-th component of the cyclic convolution a∗f
of the vectors a, f ∈ R

N given by

(a ∗ f)k :=
N−1
∑

j=0

ajf(k−j) mod N

corresponds to the coefficient of z−k in A(z)F (z) mod zN −1. On the other hand,
the cyclic convolution of a, f ∈ R

N can be expressed as multiplication of f with
the circulant matrix corresponding to a [14]:

A :=















a0 a1 a2 . . . aN−1

aN−1 a0 a1 . . . aN−2

aN−2 aN−1 a0 . . . aN−3
...

...
...

. . .
...

a1 a2 a3 . . . a0















∈ R
N,N .

Each circulant matrix can be written as

A :=

N−1
∑

j=0

ajC
j , where C :=















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0















denotes the so-called basic circulant permutation matrix. Multiplication with C
performs a periodic left-shift of a vector.
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H1(z
−1) ↓ 2 ��

��
S ↑ 2 G1(z)

��
��

+

H0(z
−1) ↓ 2 ↑ 2 G0(z)

Figure 1: Filter bank for wavelet shrinkage on the finest scale.

In the following we will often use some vector a ∈ R
N in connection with its cor-

responding N -dimensional circulant matrix A =
∑N−1

j=0 ajC
j and its z-transform

A(z) =
∑N−1

j=0 ajz
−j . The circulant N × N -matrices can be diagonalised by the

same matrix, namely the N -th Fourier matrix. Hence, the multiplication of cir-
culant matrices is commutative.

3 Discrete Wavelet Shrinkage

In this section, we review the three steps of wavelet shrinkage in the discrete
setting [35]: Figure 1 shows the corresponding filter bank for wavelet shrinkage
on the finest scale, where the z-transform notation of the filters is used.

1. Analysis: In the analysis step, the initial signal is transferred to a wavelet
coefficient representation. This decomposition is done with the help of the
analysis filters h0 and h1 which can be obtained as scaling coefficients of
the corresponding scaling function. The filter h0 plays the role of a low-
pass filter, and h1 plays the role of the corresponding high-pass filter. In
addition, both channels are sampled down by leaving out all components
with an odd index. This is indicated in the filter bank with the symbol ↓ 2.

2. Shrinkage: The wavelet coefficients of the signal are shrunken towards
zero in this step while the low-frequency components are kept. This is
modelled as applying a nonlinear shrinkage function S : R → R to each of
the wavelet coefficients.

3. Synthesis: In this step, the resulting signal is synthesised from the wavelet
coefficients. First an upsampling is used by introducing zeros between each
pair of neighbouring signal components. This is written as ↑ 2 here. For
the synthesis, the filter pair g0 and g1 is used.

We note that the analysis filters h0 and h1 are mirrored in our notation. To
ensure perfect reconstruction of the signal, the analysis and the synthesis filters
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H1(z
−1) ��

��
S G1(z)

��
��
+1

2

H0(z
−1)

H0(z
−2)

H1(z
−2) ��

��
S G1(z

2)

G0(z
2)

��
��
+1

2 G0(z)

Figure 2: Filter bank for translational invariant wavelet shrinkage with multiple
scales using the algorithme à trous.

have to satisfy the following properties, [34, 30, 20]:

G0(z)H0(z
−1) + G1(z)H1(z

−1) = 2, (2)

G0(z)H0(−z−1) + G1(z)H1(−z−1) = 0 . (3)

For filters of finite length, one can further show (see [34, p. 120] or [20, Theorem
7.9], for example) that there are numbers α 6= 0 and k ∈ Z such that

G0(z) =
2

α
z2k+1 H1(−z−1) and G1(z) = − 2

α
z2k+1 H0(−z−1) . (4)

For simplicity, we assume without loss of generality that α = 2 and k = 0. This
gives us the simple relations between analysis and synthesis filters:

G0(z) = zH1(−z−1) , G1(z) = −zH0(−z−1) . (5)

It immediately follows that

H0(z) = zG1(−z−1) . (6)

These equations hold for the general biorthogonal case with filters of finite length.
In order to have orthonormal filters, we have the additional requirement that

Gi(z) = Hi(z) for i ∈ {0, 1} (7)

which allows us to determine all four filters with one prototype.
To make wavelet methods compatible to PDE approaches we need a translation
invariant wavelet shrinkage process. This can be obtained by skipping the down-
and up-sampling procedure as shown in Figure 2. For the synthesis, the result
has to be multiplied with 1/2 at each scale. This is also known as algorithme
à trous, cf. Holschneider et al. [13, 20]. We see that the analysis and synthesis
filters are widened by inserting zeros into the filters.
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4 Discrete Higher Order Nonlinear Diffusion

Next, let us have a look at the discretisations of nonlinear diffusion which we will
need in this section.
Here we use a discretisation of the nonlinear higher order diffusion equation

∂tu = (−1)p+1 ∂p
x

(

g
(

(∂p
xu)2) ∂p

xu
)

(8)

with initial condition u(·, 0) = f as it has been described in [10], for example.
We restrict our attention to N -periodic signals on the interval [0, N − 1]. To
discretise this equation, we consider the sampled version u ∈ R

N of u at an
equidistant grid {jh : j = 0, . . . , N − 1} with spatial step size h = 1.
To approximate the spatial derivatives in (8), we use a forward difference as
approximation of the first derivative. It can be expressed in matrix-vector form
as ∂x ∼ Du, where

D :=















−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 −1 1
1 0 . . . 0 −1















= C − I (9)

and in terms of the z-transform as D(z)u(z)mod(zN − 1) with D(z) = z−1 − 1.
Then the transposed matrix DT corresponds to the z-transform DT (z) = z − 1
and yields an approximation of the negated first derivative with a backward
difference. Further Dp and (DT )p serve as approximations of p-th derivatives
with appropriate sign. For time discretisation we use a simple Euler forward
scheme. Then the discrete iterative scheme can be written as

u0 = f

uk+1 = uk − τ(DT )pΦDp(uk)Dpuk, k ∈ N . (10)

The diagonal matrix ΦDp(uk) := diag
(

g(|(Dpuk)j |)
)

j=0,...,N−1
stands for the mul-

tiplication with the nonlinear diffusivity function. In our computations we use
the Perona-Malik function [26] defined as

g(s2) =

(

1 +
s2

λ2

)−1

. (11)

See for example [25] for a list of other possible diffusivity functions.
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5 Discrete Wavelets and Convolution Kernels

In this section, we formulate the key idea of factorising discrete wavelets into
derivative approximations of smoothing kernels. We make the assumption that
the wavelet has p vanishing moments to relate the wavelet transform to an ap-
proximation of the p-th derivative. In the discrete setting, this condition reads
as: A signal f ∈ ℓ2(Z) is said to have p ∈ N vanishing moments if

∞
∑

n=−∞
nj fn = 0 for j ∈ {0, . . . , p − 1} and

∞
∑

n=−∞
np fn 6= 0 . (12)

Let us now factorise the z-transform of a wavelet with p vanishing moments such
that we obtain a derivative approximation filter and a convolution or smoothing
kernel. Since the number of vanishing moments is directly connected with regu-
larity properties, such factorisations are often used in the design of wavelets (see
[7, 30, 20, 16], for example). It should also be noticed that the number of vanish-
ing moments of the filter coefficients is the same as the number of (continuous)
vanishing moments of the continuous wavelet function; see [20, Theorem 7.4].

Proposition 5.1 (Wavelet Filter Factorisation)
Let f ∈ ℓ2(Z) be a filter of finite length and p vanishing moments. Then its
z-transform can be decomposed as

F (z) = (z − 1)p K(z), K(1) 6= 0 ,

where K is the z-transform of the corresponding filter k which will be understood
as smoothing kernel.

Although it is standard in wavelet analysis, we attach the simple proof in order
to make the paper more self-contained:
Proof: Since f has finite length, the Fourier transform f̂ ∈ C ∞ is infinitely many
times differentiable. The j-th derivative of f̂ at the point 0 is then

f̂ (j)(0) = (−i)j

∞
∑

n=−∞
nj fn (13)

which is the j-th moment of f times the nonzero constant (−i)j . Our assumption
about f then reads as f̂ (j) = 0 for j ∈ {0, . . . , p − 1}. This means the Fourier
transform of f is a trigonometric polynomial which has a zero of order p in 0.
Thus it can be factorised as

f̂(ξ) = (exp(iξ) − 1)p K(exp(iξ)) (14)

with a suitable (Laurent-) polynomial K. Replacing exp(iξ) by z directly yields
the desired factorisation F (z) = (z − 1)pK(z) of the z-transform. �

With the help of this proposition, we can understand the convolution with a
wavelet as derivative approximation of a presmoothed signal. We remember that
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z − 1 is the z-transform of the finite difference matrix DT approximating the
negated first derivative. Thus (z−1)p can be used as approximation of (−1)p times
the p-th derivative. This reasoning of understanding the wavelet as derivative of
a smoothing kernel is in accordance with the approach in the previous section and
the continuous considerations in [9]. For details on such factorisations, see [20,
Section 7.2] for orthogonal wavelets and [20, Section 7.4.2] for the biorthogonal
case, for example. Let p and q be the number of vanishing moments of our
analysis and synthesis highpass filters H1 and G1. Then Proposition 5.1 allows
us to write the filters as

H1(z) = (z − 1)pKH(z) and G1(z) = (z − 1)qKG(z) (15)

where KH and KG are the z-transforms of two smoothing kernels kH and kG

of the synthesis and analysis wavelet. For orthogonal wavelets, we simply have
KH(z) = KG(z) and p = q. With the two relations (5) and (6) between low- and
highpass we see that for the lowpass filters H0 and G0, the following relations
hold:

H0(z) = (−1)q z(z−1 + 1)q KG(−z−1), (16)

G0(z) = (−1)p z(z−1 + 1)p KH(−z−1). (17)

To make these formulae a bit more intuitive, let us now give some examples of
kernels KH and KG for commonly used orthogonal wavelets on the finest scale:

Example 5.2 (Discrete Wavelets and Convolution Kernels)
(a) Haar Wavelet: For the discrete Haar wavelet, we have H1(z) = 1√

2
(z − 1).

The kernel on the finest scale is in this case just a scalar factor KH(z) = 1√
2
.

(b) Daubechies Wavelets: The Daubechies wavelet [7] with p = 2 is repre-
sented by the filter

H1(z) =
1

4
√

2

(√
3 − 1 + (3 −

√
3)z − (3 +

√
3)z2 + (1 +

√
3)z3

)

(18)

which can be factorised as H1(z) = (z − 1)2KH(z) leading to

KH(z) =
1

4
√

2

(√
3 − 1 + (

√
3 + 1)z

)

. (19)

Let us briefly say a few words about the differences between our idea and previ-
ous approaches to relations between shrinkage on the finest scale and nonlinear
diffusion. In contrast to the idea in this paper, Weickert et al. [38] have directly
considered the wavelet filter H1 as stencil for a derivative approximation. With a
Taylor expansion, one can directly prove that any filter with p vanishing moments
yields an approximation of the p-th derivative up to a constant factor. This works
well as long as only the finest scale is considered, but it does not help to explain
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H
(1)
1 (z−1) ��

��
S G

(1)
1 (z) ��

��
·1
2

H
(2)
1 (z−1) ��

��
S G

(2)
1 (z) ��

��
·1
4

...
...

...
...

H
(m)
1 (z−1) ��

��
S G

(m)
1 (z) ��

��
· 1
2m

H
(m)
0 (z−1) G

(m)
0 (z) ��

��
· 1
2m

��
��

+

Figure 3: Filter bank for translation invariant wavelet shrinkage, written with
multiple channels.

what happens on coarser scales. Here, we try to model coarser scales by sep-
arating the derivative approximation from the smoothing kernel which yields a
coarse scale approximation of our signal. In the continuous setting considered in
[9], the smoothing kernel is a function for which the scaling operation is invertible
without loss of information. In contrast to this, the discrete wavelets on coarser
scales treated in this paper can change their appearance due to discretisation
effects.
Following [34, Section 3.3], we introduce wavelets on coarser scales: starting from

the filters G0 and G1 on the finest scale, we define the wavelet filters G
(σ)
0 and

G
(σ)
1 on coarser scales σ ∈ N as

G
(σ)
0 (z) =

σ−1
∏

r=0

G0(z
2r

) and G
(σ)
1 (z) = G1(z

2σ−1

)G
(σ−1)
0 (z) , (20)

and use the same formulae for H
(σ)
0 and H

(σ)
1 .

The exponents 2r come from the fact that the algorithme à trous inserts the
corresponding number of zeros between two samples of the filter at scale r. In
addition, we have to multiply the z-transforms of all filters lying on the path from
the input to the middle of the filter bank for Hi in Figure 2, or from the middle
to the output for Gi, i = 0, 1.
Having these formulae at hand we can rewrite the filter bank in Figure 2 with
m+1 different paths as shown in Figure 3. Now we are interested in the changes
of the shape of the convolution kernels corresponding to the wavelets when the
scale increases. Our starting point are the relations (20), and we firstly consider
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the scaling coefficients using the factorisation (17):

G
(σ)
0 (z) =

σ−1
∏

r=0

G0(z
2r

) =

σ−1
∏

r=0

(

(−1)pz2r

(z−2r

+ 1)p KH(−z−2r

)
)

= (−1)σp z2σ−1

(

2σ−1
∑

r=0

z−r

)p σ−1
∏

r=0

KH(−z−2r

) . (21)

We see that the scaling filter on larger scales can be decomposed into four parts:
The sign given by (−1)σp and the pure shift z(2σ)−1 do not change the shape of
the convolution kernel. This shape is determined by the rightmost two factors:
The second one is a product of the kernels kH with alternating signs and with
inserted zeros. This is actually the wavelet-dependent part. The first factor is
independent of the wavelet: It is the p times convolution of a box filter of width
2σ with itself. This can be understood as a discrete B-spline kernel of order p.
Let us see how this decomposition looks for the wavelet coefficients:

G
(σ)
1 (z) = G1(z

2σ−1

)G
(σ−1)
0 (z)

= (z2σ−1 − 1)q KG(z2σ−1

) G
(σ−1)
0 (z)

= (z − 1)q

(

2σ−1−1
∑

r=0

zr

)q

KG(z2σ−1

) G
(σ−1)
0 (z)

= (z − 1)q (−1)(σ−1)p
(

z−2σ−1+1
)p−1

(

2σ−1−1
∑

r=0

zr

)p+q

·

·KG(z2σ−1

)
σ−2
∏

r=0

KH(−z−2r

) .

Let us also analyse the ingredients of this product: The first factor (z−1)q tells us
that the wavelet can be understood as approximation of the q-th derivative (with
sign (−1)q). It is the z-transform of the finite difference matrix (DT )q defined
above. Again, the sign and the shift do not change the shape of the convolution
kernel. As for the scaling function, we also find a spline kernel of order p+ q and
a wavelet-dependent part.
Let us now give some examples of commonly used wavelets to see how the related
convolution kernels look like:

Example 5.3 (Haar Wavelet on Coarser Scales)
We have already seen that for a Haar wavelet we have p = q = 1 and the kernels
KG(z) = KH(z) = 1√

2
are just constants. Thus the wavelet on scale σ can be

seen as

G
(σ)
1 (z) = (−1)(σ−1) (z − 1)

1

2
σ

2

(

2σ−1−1
∑

r=0

zr

)2

. (22)
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Wavelet, sigma=8
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Kernel, sigma=8

Figure 4: Convolution kernel corresponding to the Haar wavelet. Left column:
Haar wavelet on scale 8. Right column: Corresponding smoothing kernel: a hat
function.

This means that in complete analogy to the continuous case, the discrete Haar
wavelet is the derivative approximation of a hat function. This hat is created by
multiplying a box filter with itself. An example for the scale σ = 8 is shown in
Figure 4.

Example 5.4 (Daubechies Wavelets on Coarser Scales)
For some representatives of the family of Daubechies wavelets [7], we display the
corresponding kernels obtained by numerical calculations in Figure 5. One can
see that the smoothing kernels have a shape similar to a Gaussian kernel with a
perturbation at the right side where they even change the sign. Daubechies has
proven that the Haar wavelets are the only symmetric or antisymmetric orthonor-
mal wavelets with compact support [7], and so it is clear that the corresponding
kernels of Daubechies wavelets of higher order can not be symmetric.

The following two examples consider the convolution kernels corresponding to
biorthogonal filter pairs. These filters can be symmetric or antisymmetric with
compact support. Hence, the convolution kernels can be symmetric.

Example 5.5 (Compactly Supported Spline Wavelets)
Figure 6 presents the compactly supported spline wavelet filters h1 and g1 with
3 and 7 vanishing moments. Details on these filters can be found in [20, p. 271],
for example. We see that the corresponding kernel to h1 has negative parts while
the kernel derived from g1 is positive and resembles a Gaussian kernel.

Example 5.6 (Perfect Reconstruction Filters of Most Similar Length)
These biorthogonal filters are displayed in Figure 7 and details can be found in
[20, p. 273], for example. The filter corresponding to g1 has some small negative
parts.
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Figure 5: Convolution kernels corresponding to Daubechies wavelets on larger
scales. Left column: Daubechies wavelets of orders 4 and 6 on scales 2 and 8.
Right column: Corresponding smoothing kernels. The scaling comes from the
fact that wavelets are normalised with respect to the ℓ2-norm.
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Figure 6: Convolution kernels corresponding to compactly supported spline
wavelets on scale 8. Top left: Filter h1 with 3 vanishing moments. Bottom left:
Filter g1 with 7 vanishing moments. Right column: Corresponding smoothing
kernels.
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Figure 7: Convolution kernels corresponding to perfect reconstruction filters of
most similar length on scale 8. Left column: Analysis and synthesis filter. Right
column: Corresponding smoothing kernels.
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Regardless the shape of the convolution kernels, it will be important for our
considerations in the next section that we can write the analysis and the synthesis
wavelet as

G
(σ)
1 (z) = (1 − z)q KG,(σ)(z) and H

(σ)
1 (z) = (1 − z)p KH,(σ)(z) . (23)

We use the notions KG,(σ) and KH,(σ) to denote the corresponding convolution
kernels on scale σ. With the finite difference matrices introduced in (9), we can
rewrite (23) in matrix notation as

G
(σ)
1 = (Dq)T KG,(σ) and H

(σ)
1 = (Dp)T KH,(σ) . (24)

We will use these equations in the next section to rewrite iterated wavelet shrink-
age as discretisation of an integrodifferential equation.

6 Relations Between Both Methods

In this section, let f, u ∈ R
N be vectors and H

(σ)
i , G

(σ)
i , i = 0, 1 denote the N ×N

circulant matrices corresponding to the filters H
(σ)
i (z), G

(σ)
i (z) modulo zN − 1.

Then we can rewrite wavelet shrinkage according to Figure 3 as

u =
m
∑

σ=1

1

2σ
G

(σ)
1 S

(

(

H
(σ)
1

)T

f

)

+
1

2m
G

(m)
0

(

H
(m)
0

)T

f . (25)

The analysis matrices are transposed to reflect the fact that we have used Hi(z
−1)

for i = 0, 1 for the analysis part of our filter banks in Figures 1, 2, and 3. The
function S is meant to act componentwise on the vector entries.
Without shrinking the coefficients, the filter bank will allow for a perfect recon-
struction, which means that

f =
m
∑

σ=1

1

2σ
G

(σ)
1

(

H
(σ)
1

)T

f +
1

2m
G

(m)
0

(

H
(m)
0

)T

f (26)

for all f ∈ R
N . Similar to [25, 9] we use

S(x) = (1 − τg(|x|))x (27)

to rewrite our shrinkage function with the help of a function g which will play
the role of a diffusivity later on. This leads to pairs of shrinkage functions and
diffusivities which are studied in detail in [25]. Plugging (27) into (25) we obtain

u =
m
∑

σ=1

1

2σ
G

(σ)
1

(

H
(σ)
1

)T

f +
1

2m
G

(m)
0

(

H
(m)
0

)T

f (28)

− τ
m
∑

σ=1

1

2σ
G

(σ)
1 Φ

(

(

H
(σ)
1

)T

f

)

(

H
(σ)
1

)T

f ,
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where Φ is a diagonal matrix such that Φ(v) := diag
(

g(|vj|2)
)

j∈J
. By property

(26) the first part is just the reconstruction of the initial signal f , and we obtain

u = f − τ
m
∑

σ=1

1

2σ
G

(σ)
1 Φ

(

(

H
(σ)
1

)T

f

)

(

H
(σ)
1

)T

f (29)

for one multilevel shrinkage step. Iterating these multilevel shrinkage steps leads
to the scheme

u0 = f

uk+1 = uk − τ
m
∑

σ=1

1

2σ
G

(σ)
1 Φ

(

(

H
(σ)
1

)T

uk

)

(

H
(σ)
1

)T

uk , k ∈ N (30)

which has a similar structure as the discretisation of the nonlinear diffusion equa-
tion (10). Using (24), the iteration rule can be written as

uk+1 = uk

−τ
m
∑

σ=1

1

2σ
(Dq)T KG,(σ) Φ

(

Dp
(

KH,(σ)
)T

uk
)

Dp
(

KH,(σ)
)T

uk . (31)

A continuous equivalent, the integrodifferential equation

uk+1 = uk − τ(−1)p+1

∫ ∞

0

σ2p ∂p
x θσ ∗

(

g
(

σp ∂p
x θ̃σ

)

(∂p
x θ̃σ ∗ u)

) dσ

σ2

with a smoothing kernel θσ and its mirrored version θ̃σ has been derived in [9]. It
becomes evident that (31) can be considered as discrete version of this integrod-
ifferential equation. As in the continuous case, we see also in our discrete setting
two differences between discrete wavelet shrinkage (31) and nonlinear diffusion
filtering (10), namely all derivatives are presmoothed and we sum over all scales
σ. In contrast to the continuous considerations, we have worked with two differ-
ent kernels to allow for biorthogonal wavelets. This can lead to partial differential
equations with different orders of the inner and the outer derivative.
In the PDE-based image processing context, similar ideas, but without pres-
moothing, have been used in the filters of Tumblin and Turk [31] and Wei [36].
They proposed to use evolution equations of the form

ut = − div
(

g(m)∇∆u
)

where m is the squared gradient norm or the squared Frobenius norm of the
Hessian matrix of u. In this respect these approaches even go one step further:
They do not only allow the derivative orders in front of the nonlinear function
and behind to be different, but the argument can also be a third order one, while
m depends on first or second order derivatives. By the construction (31) this is
not included in our framework since the argument of the diffusivity is always the
same as its multiplier.
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Remark 6.1 (Orthogonal Wavelets)
In the case of orthogonal wavelets, (31) simplifies to

uk+1 = uk

−τ
m
∑

σ=1

1

2σ
(Dp)T KH,(σ) Φ

(

Dp
(

KH,(σ)
)T

uk
)

Dp
(

KH,(σ)
)T

uk. (32)

Besides the smoothing kernels and the sum over all scales, this is identical to an
explicit discretisation of a higher order nonlinear diffusion equation. Since the
outer matrices are the adjoints of the inner ones, this approach can be understood
as arising from an energy function of the form

E(u) =
∑

i∈J

(ui − fi)
2 + α

m
∑

σ=1

1

2σ

∑

i∈J

Ψ
(

(

DpKH,(σ)u
)2

i

)

(33)

with Ψ′(s2) = g(s2). Continuous analoga to this equation can be found in [9, 4],
for example. For biorthogonal wavelets such a formulation does not exist.

7 Generalisation to Higher Dimensions

So far, the ideas in this paper have been considered in one spatial dimension
only. Let us turn to the two-dimensional case. For one single scale of Haar
wavelet shrinkage, relations to nonlinear diffusion equations have been discussed
by Mrázek and Weickert [24]. Here we follow the strategy sketched in [24], but
apply it not only to one scale of Haar wavelet shrinkage, but to multiple ones
with general biorthogonal filters.
It is common to use tensor product wavelets for the processing of two-dimensional
images; see [20, Subsections 7.7.2 and 7.7.3] or [12, Section 7.5], for example.
With the one-dimensional analysis scaling coefficients h0 and wavelet coefficients
h1, the tensor product analysis filters hs, hh, hv, and hd in 2-D read as

hs(i, j) := h0(i)h0(j), hh(i, j) := h1(i)h0(j),

hv(i, j) := h0(i)h1(j), hd(i, j) := h1(i)h1(j).

Here, the subscript s stands for scaling function, h for the horizontal, v for the
vertical, and d for the diagonal wavelet. The same definition applies for the
synthesis coefficients with g instead of h. It is a classical result that these filters
on multiple scales yield a biorthogonal family in 2-D. In analogy to (26), the
perfect reconstruction property for m scales in 2-D can be formulated as

f =
m
∑

σ=1

1

4σ

(

∑

δ∈{h,v,d}
G

(σ)
δ

(

H
(σ)
δ

)T

f
)

+
1

4m
G(m)

s

(

H(m)
s

)T
f. (34)
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Then one step of shrinkage reads as

u =

m
∑

σ=1

1

4σ

(

∑

δ∈{h,v,d}
G

(σ)
δ Sδ

((

H
(σ)
δ

)T

f
))

+
1

4m
G(m)

s

(

H(m)
s

)T
f (35)

with the shrinkage functions Sh, Sv, and Sd applied to the corresponding wavelet
coefficients.
To give a motivation for using different shrinkage functions Sδ in the three direc-
tions, we have a look at the approximation properties of the wavelet coefficients in
2-D. Convolution of an image with the filters given above can also be understood
as derivative approximation with presmoothing where the derivative order and
the smoothing kernel depend on h1 and h0. For example, let p be the number
of vanishing moments of h1. Convolution of a discrete image u with hh and hv

approximates presmoothed p-th derivatives of u in x- and y-direction. The filter
hd yields the approximation of the derivative ∂p

x∂
p
yu with additional smoothing.

That means this derivative in diagonal direction has twice the order than the
other ones. This fact suggests to follow the shrinkage rule described in [23] to
improve rotational invariance. Inspired by nonlinear diffusion filtering, it is sug-
gested in [23] to couple the horizontal and vertical coefficients in the argument of
the shrinkage function and not to shrink the diagonal ones at all. Let wh, wv, and
wd stand for the wavelet coefficients in horizontal, vertical and diagonal direction
at a given scale and position. The corresponding shrinkage functions applied to
the horizontal, vertical and diagonal coefficients can be written as:

Sh(wh, wv) := wh(1 − τg(w2
h + w2

v)), (36)

Sv(wh, wv) := wd(1 − τg(w2
h + w2

v)), (37)

Sd(wd) := wd .

In contrast to [23] we avoid the additional factor 4 in front of the function g here.
This factor can be explained as compensation of the factor 1

4
appearing in (34)

and (35) together with the fact that only the finest scale is considered in [23].
We avoid the factor here since we work on multiple scales and prefer to use the
same shrinkage function on all scales.
With these shrinkage functions and the perfect reconstruction property (34),
wavelet shrinkage (35) can be transformed into

u = f − τ

m
∑

σ=1

1

4σ

(

G
(σ)
h Φ

(σ)
h

(

H
(σ)
h

)T

f + G(σ)
v Φ(σ)

v

(

H(σ)
v

)T
f

)

. (38)

Here, Φ
(σ)
h and Φ

(σ)
v represent the pointwise multiplication of the wavelet coeffi-

cients in horizontal and vertical direction on scale σ with diffusivity g in (36) and
(37). Note that this diffusivity depends on the squared sum of the horizontal and
vertical wavelet coefficients at the corresponding position and scale. Understood
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as discretisation of an integrodifferential equation, one would use it iteratively
yielding

uk+1 = uk − τ
m
∑

σ=1

1

4σ

(

G
(σ)
h Φ

(σ)
h

(

H
(σ)
h

)T

uk + G(σ)
v Φ(σ)

v

(

H(σ)
v

)T
uk

)

. (39)

This is a 2-D analogue of (31).

Example 7.1 (Orthogonal Wavelets in 2-D)
Let us consider the case of orthogonal wavelets, i. e., Gh = Hh and Gv = Hv,
with p vanishing moments. If we neglect the presmoothing introduced by the
wavelets, the shrinkage process is obviously connected to a continuous equation
of the form

∂tu = (−1)p+1
(

∂p
x

(

g(|∂p
xu|2 + |∂p

yu|2) ∂p
xu
)

+ ∂p
y

(

g(|∂p
xu|2 + |∂p

yu|2) ∂p
yu
))

(40)

which only considers the derivatives with respect to the coordinate axes. For
p = 1, this is the classical Perona-Malik equation. For higher derivative orders
p > 1, it only involves the derivatives of order p in coordinate directions and no
mixed derivatives.

8 Numerical Experiments

In this section we want to investigate experimentally the differences between non-
linear diffusion filtering and our discrete version of the integrodifferential equa-
tions related to wavelet shrinkage described in this paper. In 1-D, we perform
detailed qualitative comparisons for the denoising of a signal with additive Gaus-
sian noise. Experiments for image simplification in 2-D show that the same effects
appear for higher spatial dimensions. All implementations have been written in
C.
Let us first describe our experiments in 1-D: Figure 8 shows our test signal
piecepoly taken from the Wavelab library1 and its noisy version with additive
Gaussian noise of standard deviation 20.
In our first experiment, we compare the quality of presmoothed iterative denoising
methods at a single scale σ given by the equation

uk+1 = uk − τ (Dp)T KH,(σ) Φσ
(

Dp
(

KH,(σ)
)T

uk
)

Dp
(

KH,(σ)
)T

uk. (41)

In our experiments, we have used the order p = 1 and the hat function as kernel
in the matrices KH . As we have seen in Section 5, this corresponds to Haar

1Wavelab is available under the address http://www-stat.stanford.edu/˜wavelab/.
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Figure 8: Test signals. Left: Piecewise polynomials signal with 1024 pixels. Right:
With additive Gaussian noise, standard deviation 20.

Table 1: Error norms for denoising results with presmoothed diffusion and one
single scale.

Scale σ ℓ1-error per pixel ℓ2-error per pixel
error λ iterations error λ iterations

1 2.740 1.02 4593 0.141 1.67 1265
2 5.087 0.10 247000 0.227 0.10 233000
3 6.515 0.10 351000 0.285 0.10 263000

wavelets. The kernel length is l = 2σ. Moreover, we have applied the Perona-
Malik diffusivity in the diagonal matrix Φ. Notice that σ = 1 corresponds to the
classical diffusion filtering. We have used one single scale for presmoothing, and
thus in contrast to (32), there is no sum and no weight factor on the right-hand
side. The parameters have been optimised in order to obtain minimal errors
in both the ℓ1- and ℓ2-norms. The optimal parameters and the corresponding
mimimal error measures can be found in Table 1. We see that the minimal
errors are obtained for classical nonlinear diffusion filters without presmoothing.
To visualise the differences some of the corresponding signals are displayed in
Figure 9. It is clearly visible that using single-scale presmoothing kernels for all
derivatives leads to artefacts. The process is not able to remove the noise on
the small scales which leads to oscillations. Only the general shape of the signal
is restored for larger scales. This is in accordance with the results reported by
Scherzer and Weickert [27].
In our second experiment, we do not only filter with one larger scale, but involve
all dyadic scales σ = 2l for l = 0, . . . , k and use (32) for filtering. The corre-
sponding optimal error measures are shown in Table 2. We have used a time step
size τ = 1/2. We see that involving larger scales does not influence the minimal
error as severly as in the first experiment. For the ℓ1-error, it is even possible to
obtain better values by using k = 2. We notice that using only the finest scale
requires half the number of iterations than in the first experiment: This is caused
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Figure 9: Denoising results with presmoothed diffusion and one single scale σ.
Left column: Results with optimal ℓ1-error. Right column: Results with optimal
ℓ2-error. Top row: σ = 1. Middle row: σ = 2. Bottom row: σ = 3.
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Table 2: Error norms for denoising results using presmoothed diffusion on dyadic
scales.

Largest scale ℓ1-error per pixel ℓ2-error per pixel
σ = 2k error λ iterations error λ iterations
k = 0 2.740 1.02 9197 0.140 1.67 2604
k = 1 2.824 1.47 1904 0.142 2.11 677
k = 2 2.717 2.39 495 145.03 3.57 200
k = 3 2.791 4.02 153 0.143 4.95 95
k = 4 3.000 6.36 53 0.146 5.84 61
k = 5 3.184 8.95 27 0.150 6.47 48

by the additional factor 1
2

in (32) on the finest scale which was not present in
the last experiment. The necessary number of iterations reduces by two orders of
magnitude by involving larger scales. This can be understood as approximative
numerical method for speeding up the process. The corresponding signals are
shown in Figure 10. We see that for larger scales, some smaller artefacts appear.
Nevertheless, it seems that the presence of smaller scales at the right-hand side
can help to suppress most of them.
In our 2-D experiment, we also display results for smoothing on one larger scale
and on all dyadic scales. For one larger scale, we use the filter

uk+1 = uk − τ

(

K
(σ)
h Φ

(σ)
h

(

K
(σ)
h

)T

uk + K(σ)
v Φ(σ)

v

(

K(σ)
v

)T
uk

)

. (42)

This corresponds to (39) where the factor and the sum on the right-hand side are
left out. We use p = 1 and hat functions in the directions of the derivative and
box filters in the other direction which implements tensor product Haar wavelets.
Figure 11 shows the resulting images if we fix all parameters and only vary the
scale. We see that using larger scales only introduces artefacts in the image which
can be compared to those appearing also in the 1-D case.
For involving all scales we directly use (39). Some results for involving all dyadic
scales up to a certain order are displayed in Figure 12. Here we see that more
and more small details are removed by using the larger scales while the artefacts
are suppressed.

9 Summary

In this paper, we have investigated the relation between discrete multiscale wavelet
shrinkage on the one hand and discretised nonlinear diffusion filters of arbitrary
order and their variational counterparts on the other hand. To this end we ex-
ploited the fact that the wavelet transform using wavelets with a finite number
of vanishing moments represents smoothed derivative operators. The resulting
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Figure 10: Denoising results with presmoothed diffusion and dyadic scale up to
σ = 2k. Left column: Results with optimal ℓ1-error. Right column: Results with
optimal ℓ2-error. Top row: k = 0. Second row: k = 1. Third row: k = 2. Bottom
row: k = 5.
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Figure 11: Image simplification results with presmoothed diffusion and one single
scale σ, Perona-Malik diffusivity g(s2) = 1/(1+s2/λ2) with λ = 10, and stopping
time t = 5. Top left: Original image, 512× 512 pixels. Top right: σ = 1. Bottom
left: σ = 2. Bottom right: σ = 3.
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Figure 12: Image simplification results with presmoothed diffusion, g(s2) = (1 +
s2/λ2)−1 for λ = 10, stopping time t = 20, and dyadic scales up to σ = 2k. Top
left: Original image, 512 × 512 pixels. Top right: k = 0. Bottom left: k = 1.
Bottom right: k = 5.
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discrete integrodifferential equations differ from their nonlinear diffusion counter-
parts by the additional presmoothing of derivatives and integration over a larger
number of scales. The shape of the corresponding convolution kernels changes for
coarser scales in the discrete setting due to sampling. We have extended the con-
siderations from orthogonal to biorthogonal wavelets: Here, the corresponding
discrete versions of integrodifferential equations are no longer related to diffusion
equations, but to more general PDE models like the methods by Tumblin and
Turk [31] or Wei [36]. Using tensor product wavelets and special shrinkage rules
to improve the rotation invariance, the relations have been carried over to the 2-D
setting. Numerical experiments have shown that presmoothed nonlinear diffusion
on one single larger scale gives worse results than classical nonlinear diffusion.
However, involving all dyadic scales up to a certain order, as it is done in wavelet
shrinkage, almost keeps the good quality and significantly reduces the number
of required iterations. In this sense, discrete multiscale wavelet shrinkage can be
understood as numerical method for discrete integrodifferential equations.
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