An OPTRAN-generated
Front-End
for Ada

Paul Keller, Thomas Maas

Fachbereich 14
Universitdt des Saarlandes

Technischer Bericht Nr. A 04/90

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication and will probably be copyrighted if accept-
ed. It has been issued as a Research Report for early dissemination of its contents. In
view of the transfer of copyright to the publisher, its distribution prior to publication

should be limited to peer communication and specific requests.

An OPTRAN-generated Front-End for Ada

Paul Keller, Thomas Maas

FB 14 - Informatik
Universitaet des Saarlandes
D-6600 Saarbruecken
Federal Republic of Germany
E-Mail: pk@cs.uni-sb.de, maas@cs.uni-sb.de

ABSTRACT

Ada is a high-level imperative programming language with complex
static semantics. In this paper we present a compiler front-end that
translates Ada programs into DIANA trees - a standard intermediate
form for Ada. In order to avoid the difficulties that arise from the ambi-
guous Ada syntax we designed a transformation system that maps the
initial program tree into a more specific one. Semantic checks like over-
load resolution, type checking etc. are then performed on that tree.

The OPTRAN sysiem developed at the Universitaet des Saarlandes
was used to specify and implement the Ada front-end. Both the
analysis of static semantics and the transformation of the initial program
tree are described using the OPTRAN language which combines attri-
buted tree grammars with sets of so-called transformation rules. The
Ada project was a test case for the OPTRAN generator.

In this paper we give a detailed view on the Ada front-end and summar-
ize the experience gained in specifying and implementing it.

1. OPTRAN System Overview

The OPTRAN-System is designed as a specification tool for attributed abstract syntax
trees and transformations thereof. The structure of abstract syntax trees is described
by a regular tree grammar. A set of attributes is associated with each node of a tree.
These attributes may be used to collect context information in the tree.

For every production of the tree grammar there is a set of associated semantic rules
specifying the functional dependencies between attributes.

Transformation rules are used to describe possible changes in the structure of the
tree. Each transformation rule consists of two parts: The so-called left-hand side
specifies syntactical and semantical conditions for the applications of the transforma-
tion rules, the right hand side consists of the specification of the output tree structure
possibly augmented by so-called explicit semantic rules.

The syntactical condition of the left-hand side is described by a tree pattern. Additional
contextual conditions may be specified as a boolean predicate over the attributes of
the input tree pattern.

A transformation rule is said to be applicable at a node of a tree
— if there is a match for the input pattern at that node
— and the predicate is satisfied.

if a transformation rule is actually applied the matching part of the input pattern is
replaced by the output pattern. In general this transformation changes the functional
dependencies of the attributes in the tree. Therefore the values of the attributes for
which the dependencies have actually changed (the so-called inconsistent attributes)
have to be recomputed.

The OPTRAN specification of a tree transforming system (t-system) is called transfor-
mation unit (t-unit).

A t-unit consists of 5 parts:

— a tree grammar describing the structure of abstract syntax trees

- the association between the nodes of the tree and sets of attributes

— semantic rules associated with productions denoting the functional dependencies
between attributes

- a set of transformation rules
- a user supplied strategy for the application of transformation rules.

OPTRAN is a batch-oriented system to precompute a t-system for a given t-unit. At

runtime the generated t-system consumes an abstract syntax tree and performs the

following actions:

- Initially the attribute evaluator computes the value of all attributes according to the
functional dependencies in the t-unit.

- The tree analyzer searches the attributed syntax tree according to the specified
strategy for a node where a tree template matches and the corresponding predicate
is satisfied.

— The tree transformer applies the selected transformation rule to the tree.

- The attribute reevaluator recomputes the value of inconsistent attributes of the
transformed tree.

It is possible to perform these tasks efficiently because of the extensive analysis of the

static properties of a t-unit at generation time:

2 e

- The attribute (re)evaluator generator analyzes the attribute dependencies

- The tree analyzer generator analyzes the set of input patterns of the transformation
rules and produces an efficient tree pattern matcher [We83]

— The trec transformer generator generates efficient tree transforming programs for
the trarsiormation rules [Wi81].

2. The Ada Front-End

In this section we give a survey of a front-end for Ada that was specified and
implemented using the OPTRAN system.

The front-end translates Ada programs into their respective DIANA representations.
The input of the front-end may consist of several Ada compilation units, i.e. packages,
tasks, generic units, procedures or functions. The front-end produces DIANA trees, a
standard fcrm to represent the structural and static semantic properties of Ada pro-
grams in compilers (cf. [GWEB83]). These DIANA trees might be processed by further
components of an Ada programming environment, e.g. optimizers, compiler back-ends,
syntax-driven editors etc. .

The Ada front-end consists of three components:

A scanner/parser unit checks the lexical and syntactical correctness of the Ada input.
An operator tree t1 is built up to represent the given program.

Analysis of static semantics is done by two OPTRAN transformation systems:
t-system | analyses the explicit and implicit declarations in the input program. The
operator tree t1 is then transformed into a tree t2. All subtrees of t1 that represent an
Ada name construct are substituted by trees whose operators specify which category
the name belongs to. For example a subtree that describes an Ada name like f(x) is
replaced by a tree that designates a function call, a type conversion, an array access
etc. . This transformation process which we call nhame class analysis is driven by
semantic intormation accumulated in attributes. The transformations manipulate large
areas of the input tree since an Ada programmer must always use a name construct to
designate any object of the language. Name class analysis considerably facilitates the
specification of overload resolution in t-unit Il.

The task of the second t-system is to check all applications of identifiers in names and
expressions thereby performing type checking and testing some other semantic rules
of Ada. The central issue is to resolve overloading. Moreover t-system Il is the inter-
face of the front-end to further components of a programming environment. It produces
the DIANA external form of the given Ada program.

Every component of the front-end was constructed by generators using abstract
descriptions. The functionality of the scanner/parser unit is determined by a string-to-
tree grammar processed by the POPSY/POCO system (cf. [GPSW86]). The t-units for
static semantic analysis include attributed tree grammars and, in the case of t-unit |, a
set of transformation rules. From these specifications the OPTRAN system creates the
two transformation systems. In fact the second system is merely an attribute evaluator.

context free parser
POCO-generated

context free iyntactic
i analysi
declaration analysis

Y

name class analysis , T-System |
* OPTRAN-generated

tree transformation]
context sensitive_syntax analysis

lexical analysis }

T-System I
OPTRAN-generated

{

DIANA generation

overload resolution }

Fig. 1

Figure 1 shows the components of the front-end and the systems involved in their gen-
eration.

The following sections give a more detailed description of the semantic analysis
phases and the experience gained in specifying and implementing them.

3. T-System I: Declaration and Name Class Analysis, Tree Transformation

The tasks of the first t-system are to do full Ada declaration analysis, to resolve
syntactic unsignificance and to transform the attributed operator tree into a tree
representing the special semantics of applied declarations in its structure.

3.1. Declaration Analysis

The declaration analysis phase of the t-system has to collect the information offered in
the declarations and to keep it in a symbol table for later lookup. For every declared
entity the symbol table has to provide a unique description for all its static properties.
Besides these tasks common for all compilers the symbol table has to reflect special
features of Ada [cf. Ada83] like:

— block structured scopes

— packages

- generic units

~ overloaded Identifiers

- Incomplete and textually separated declarations
- renaming declarations

-~ use clauses

— separate compilation

The specific rules about the visibility, overloading and use of identifiers are very com-
plex, changing subtly in different contexts. For every type of declaration the symbol
table mechanism has to perform special semantic checks.

Besides explicit declarations some elements of Ada induce implicit declarations:

— derived type declarations may cause implicit derivation of overloaded subprograms

- label, block and loop names are implicitly declared at the end of the enclosing
block.

For example the explicit declaration
type int is new integer,
implicitly declares the following overloaded operators:

function "="(left, right: int) return boolean;
function "/="(left, right: int) return boolean;
function "<"(left, right: int) return boolean;
function "<="(left, right: int) return boolean;
function ">"(left, right: int) return boolean;
function ">="(left, right: int) return boolean;
function "+"(right: int) return int;

function "-"(right: int) return int;

function "abs"(right: intj return int;
function "+"(left, right: int) return int;
function "-"(left, right: .int) return int;
function "*"(left, right: int) return int;
function "/"(left, right: int) return int;
function "rem"(left, right: int) return int;
function "mod"(left, right: int) return int;
function "**"(left, right: int) return int;

For a detailed discussion about the situations where identifiers can be renamed, hid
den, made potentially visible and later made directly visible and other problems com:
plicating the visibility rules in Ada, see [Ada83], [Bac84] and [Ke90].

Symbol Table Attributes

The symbol table attributes isymtab and ssymtab (inherited and synthesized symbol
table) are used to represent the logical sequence of declarations. These attributes are
attached to every operator in the tree.

The inherited symbol table isymtab is initialized at the root of the operator tree to con-
tain the predefined declarations of the Ada package STANDARD [cf. ADA83, Appen-
dix C]

For those operators representing the various forms of declarations isymtab holds the
symbol table state before the actual declaration, ssymtab represents the state after the
declaration. The value of the ssymtab attribute is the symbol table before the declara-
tion augmented with the new declaration if the semantic checks are passed success-
fully. Otherwise the symbol table contents are unchanged and an appropriate error
message is emitted.”

* In fact most of the code of the semantic rules is checking for semantic errors. The error mes-
sages denote the error situation as specific as possible.

= B

The 1086 semantic rules specifying declaration analysis are formulated to induce a
total evaluation order for all symbol table attributes in the tree. This was neccessary
as all the instances of symbol table attributes internally refer to a global symbol table
structure. Because of this total order we can guarantee that the symbol table attributes
are always in a consistent state. For a discussion about the special problems of glo-
bal data structures see [Li86]. The data structures and algorithms used for declaration
analysis together with the semantic checks are described in detail in [Ke90].

Symbol Table Lookup

In contrary to the bulk of specialized semantic routines used to enter a new declaration
into the symbol table only 3 lookup functions are needed:

— the function direct_visible returns for a given designator at a position in the program
text the set of all directly visible local and global declarations for that designator. All
the rules of scope, of direct and of potential visibility, and of importing declarations
from precompiled modules are taken into consideration.

- for a given designator the function local_decls returns the set of all local declara-
tions with that designator within a given declarative region.

- the boolean function is_nested tests whether the actual position is nested within a
given declarative region.

3.2. Name Class Analysis
Motivation

The majority of syntactic and semantic problems in the Ada language come from from
the recursive nonterminal name. Throughout the language all kinds of references to a
declared entity are specified using that nonterminal. The problem is that the alterna-
tives derivable from name cannot be distinguished by a context free parser. The syn-
tax of [Ada83] is augmented by semantic annotations.

When removing these annotations the syntax might look like:*

primary = ...| name | function_call | type_conversion
type_conversion = name (expression)

type_mark = name

functior:_call = name [(expression {, expression })]
name = prefix (expression {, expression}) | ...
indexed_component := name (expression {, expression })

slice = prefix (discrete_range)

procedure_call = name [(expression {, expression })];
expression = .. | primary

selectec_component := prefix . selector

selector = simple_name | character_literal | operator_symbol | all
prefix = name | function_call

in order to be able to use a context free parser we had to remove the ambiguities in
the grammar. In contrast to the grammar in [Ada83] the modified syntax does not dis-
tinguish between the above alternatives.

* Some alternatives are omitted. Square brackets enclose options, braces encicse zero ore more
repetitions.

All forms of
name = name [(sequence of expressions)]

are initially represented by the operator apply.
Bottom-up name class pass

The attribute snameclass (synthesized name class) was introduced to compute the
semantical class of name subtrees. These classes specify whether a name subtree is
semantically a procedure call, a type conversion, etc. For every operator within a
name subtree the snameclass attribute contains the class of the name and a set of
references to those declarations being candidates for identification.

Three cases may shine up:

— Name class analysis can determine a unique name class and exactly one declara-
tion for each component of a name subtree: there are no ambiguities within the
name tree. Name class analysis has Identified every component.

— Name class analysis can determine a unique name class for each component of a
name subtree. For at least one component more than one declaration was found:
the components of the name subtree can only be identified by overload resolution.

-~ The Ada input is semantically wrong. Appropriate error messages are emitted.

3.3. Tree transformation

The last phase of t-system | is the tree transformation phase. The purpose of this
phase three-fold:

- Replacement of semantically ambiguous operators like apply by operators
corresponding to the grammar.

- Due to the lack of context sensitivity in the [Ada83] syntax analysis phase some
syntax properties are not checked by the parser. These context sensitive* syntac-
tic checks are performed by the tree pattern matcher.

— Normalizations regarding the usage of Ada relational operators: Ada operators are
defined to be equivalent to functions. Thus usage of Ada operators in conventional
infix notation and in function call notation is semantically equivalent. Therefore the
transformetions normalize all applications of operators to use the function call nota-
tion.

The operator tree is searched for applications of application rules according to a top-
down left-to <ight strategy. In cases where more than one transformation rule is appli-
cable the ruls with the most specific input pattern is chosen. If two patterns are incom-
parable the ‘extually preceding rule is chosen (cf. [Li88]).

* as defined by Chomsky

Examples

apply

C used_id j C general expr j

" "

ObjeCt ' seq_general expr ’

seq_general_expr ‘ simple_ expr__termj

C simple_expr_ terr;j Cmple expr termj C integer_literal j
I
C integer_literal j C integer_| Ilteral j

C indexed_comp j
e
C used_id j E index_list)
|

”F"

seq_index_lJist

seq_index_list @ple_expr_term j
<
Gimple__expr__term ’ Gmple_expr_termj C integer_literal j
| | 3
C integer_literal _D Cinteger__literal j
1 2

Fig. 2

Removing unspecific syntax:

Let f(1,2,3) be a component of the 3-dimensional array f. Fig. 2 shows the transforma-
tion of the corresponding apply subtree into a tree representing array indexing.

‘ procedure_call '
= \
‘ used_id) Garameter_assocj
1

" "

procedure param

C choices j integer_literal
. Crmoion),
C seq_choices j
el N
Gmple_expr_termj @nple_expr_tennj
1 1
C identifier j C identifier j

“A " "B "

procedure_call !

d_id t
C used_j) Qarame ?r_assoa |
" " |
procedure C parsm j ;
error_choices integer_literal |
Crosmm) Comeen),
Cseq_choioes | !

z N
simple_expr_term ’ ‘ simple_expr_termj

| |
(identifier ’ (identifier j

"A " [B "

Fig. 3

Context sensitive syntax check:

The parser cannot distinguish between record and aggregate syntax and procedure
calls. For a variant record X the program fragment X(a]b => 4) would define a default
value of 4 for the discriminant record components a and b. But this notation would be
ilegal if X were a procedure. Fig. 3 shows how the transformation creates an specific
operator indicating that error situation.

-10 -

relation ’ i
simple_expr_term unequal ‘ simple_expr_term '

"/= "

=) =)

IIA " "B ”

-

' unary_operator ' }
|
Z \ |
C not j (function_call '

“not” / \ function 5
C operator_call) C param_assoc J

|
"__ " i
|

function

‘ seq_parameler_lisD
Csimpleﬁxpr__term ' ‘ simple__expr_term]

=) =)

"A L " B " 1

Fig. 4

Tree normalization:
Fig. 4 shows how the program fragment a /= b is transformed into the semantically
equivalent form not("="(a, b)).

4. T-System li: Overload Resolution and Diana Generation

The tasks of the second t-system which is in fact an attribute evaluator are to
identify the meaning of overloaded entities in the given Ada program and to build up
its DIANA external form.
An identifier is overloaded if it can have several alternative meanings at a given point
in the program text. Overloading in Ada can occur in one of the following forms (cf.
[Ada83]):

— ldentifiers of subprograms, i.e. procedures and functions, can be overloaded by
those of other subprograms, by enumeration literals and by identifiers of entries.

-11 -

The declaration of overloaded subprograms is allowed in the same scope if they
differ in their parameter and result type profiles.

— ldentifiers of entrles and enumeration literals can analogously be overloaded by
other entries or enumeration literals and by subprograms. The parameter and resuit
type profile of an enumeration literal can be determined by interpreting the literal as
a parameterless function whose result type is the type of the literal.

— The literal null of an access type - it designates an empty access value - overloads
null literals of other acces types.

— Aggregates are used to explicitly state values of record or array types. An aggre-
gate is a so-called basic operation that is created implicitly by declaring a record or
array type. This operation is anonymous, i.e. it has no identifier. Aggregates of
different types can be distinguished neither syntactically nor by an identifier. There-
fore an aggregate is overloaded if it appears at a point in the program text where
several record or array types are visible.

~ An allocator new x creates a new object of type x and returns an access value for
this object. It is an anonymous basic operation. An allocator new x is overloaded if
it appears at a point in the program text where several access types are visible
which all designate the type x.

- String literals are also overloaded basic operations.
There are two situations in which the Ada front-end must resolve overloading:

— Given is an application of an identifier x and a set D, |D| > 1, of declarations,
which are visible at that point in the program text. D contains declarations of sub-
programs and/or entries and/or enumeration literals.

— Given is an application of an anonymous basic operation y (aggregate, allocator,
string literal) or the literal null and there is a set T of visible types, |T| > 1, where
every element of T might be the result type of y.

An Ada compiler must find the correct declaration or type in the set D or T by consid-
ering the context of the application. The compiler must state an error if none of the ele-
ments in D resp. T can be applied in this context. Both the outer and the inner context
must be considered. In the example of an assignment A:=f(x) where A is a variable, f
an overloaded function and x the actual parameter as well the type of A as the possi-
ble types of x must be used to determine the effective meaning of f. Moreover the
inner and the outer context can themselves be overloaded.

Several algorithms for resolving overloading in preliminary Ada were published, e.g.
[Bak82], [Cor81], [GaR80], [Per80]. The method used in our front-end is based on the
algorithm of Persch et. al. [Per80]*. It analyses the operator tree of an Ada expression
in a bottom-up pass followed by a top-down pass. Persch et. al. see all items in an
expression tree as applications of functions. Initially an operator op is associated with
the set of visible declarations for the function at op. The bottom-up pass deletes from
the set those functions whose formal parameter types do not agree with the possible
types of the actual parameters. The top-down pass then removes every function
whose result type is not the one expected from the context. After completion of the
second pass the set at every operator in the expression tree must contain exactly one
element which is the actual meaning of the respective function call. Otherwise the
expression is faulty.

* For a more detailed discussion of the different algorithms see [Ma88]

-12 -

Persch et. al. use a model attribute grammar to describe their method for overload
resolution. The grammar consists of one production that defines the structure of a
function call and evaluation rules for two attributes that are used to collect the sets
mentioned above. The attribute dependencies determine an evaluation in two passes.
We transferred the method of Persch et. al. to the Ada grammar we used for the front-
end (about 550 productions). The attribute grammar for Ada was specified in five
phases:

Initialization

The attribute grammar for the second t-unit was derived from that of t-unit | by remov-
ing all apply-related operators. The attributes and semantic rules to build up the sym-
bol table had to be installed in t-unit Il once again because the OPTRAN system has
no interface yet to take over values of attribute instances from one t-system to another.

The generation of the DIANA external form was already specified in the initial gram-
mar. This considerably helped to check every developmental step of the front-end.

Bottom-up Pass

The attribute spm (synthesized possible meanings) was introduced to collect the sets
of possible declarations or types at an operator. The attribute occurences of spom and
their semantic rules could not be specified in one step because the subgrammar for
names, expressions and their contexts includes about 270 productions. Every
occurence of spm must be computed according to the specific semantic conditions for
every construct that may appear in an Ada expression (c.f. rules for function call, slice,
aggregate, allocator, array access etc.). The individual constructs were stepwise
integrated in the bottom-up pass beginning with the operators that may be the leaves
of an expression tree. In several cases supporting attributes were introduced, e.g. to
collect overloaded parameter and result type profiles. For names this differentiated
specification process was possible because all apply operators are replaced by
t-system |. After every step the front-end was generated once more.

The bottom-up pass had to be adjusted to some changes on preliminary Ada made in
the language definition in 1983 [Ada83]. The type of aggregates and allocators must
solely be determined from the context not considering the arguments. For example to -
resolve overloading of aggregates information on individual component associations
must not be used. This arises the question what type an aggregate or allocator syn-
thesizes in the bottom-up pass. We chose to define two types for this purpose,
universal_aggregate and universal_allocator. They are different from every other type
in a given program. In comparing types universal_aggregate matches every record or
array type, universal_allocator every access type.

Numeric literals are not overloaded in Ada '83. Instead they are of the predefined
types universal_integer resp. universal_real. Therefore implicit type conversions had to
be integrated into overload resolution.

The development of the bottom-up pass was completed by designing an error report-
ing system that generates specific error messages (about 70 for overload resolution)
and avoids follow-up messages.

Top-down Pass

The attribute imeaning (inherited meaning) was introduced to collect the actual mean-
ing of an operator. The top-down pass starts at productions where the right-hand side
does not contain names or expressions but the production itself does not belong to the
expression subgrammar, e.g. productions for assignment, abort statement, representa-
tion clauses etc. . The operators defined in these productions may be the roots of

18 =

subtrees on which overload resolution is applied. Again specific semantic rules had to
be designed to compute a unique meaning at the root operator. For example for an
assignment it is checked whether a unique type was synthesized on one of the sides
of the statement. This type determines the meaning on the other side. So overloading
can be resolved even on the left-hand side of an assignment.

OPTRAN allows for the use of local attributes in a t-unit. Local attributes are associ-
ated with a production rather than a nonterminal (cf. [Moe86b]). This feature proved
very useful in the specification process for the Ada front-end. Temporary results of
computations can be stored to be used by more than one semantic rule. T-unit II
includes about 230 local attributes for overloacd resolution.

Evaluation of Static Expressions

As will be shown below the evaluation of static expressions for discrete types is a
necessary part of overload resolution (cf. [Ada83], [Ma88]). The evaluation can be
done following the top-down pass. The front-end must simulate the application of all
predefined operators and Ada attributes on discrete types.

Analysis of Aggregates for Varlable Record Types

The 2-pass scheme cannot be used to analyse aggregates of variable record types.
Variable record types depend on one or more discriminants. An aggregate for such a
type has a different structure depending on the discrimant values. It is a-priori un-
known where the expressions that define values of discriminants are situated in the
aggregate because named and others associations can be used beside positional
ones. An Ada compiler must locate and evaluate the discriminant expressions to deter-
mine the structure of the aggregate which allows for resolving overloading in its com-
ponents.

The 2-pass scheme extended by a bottom-up pass for static evaluation leads to an
attribute grammar with cyclic dependencies. Consider the components of an aggre-
gate: The start of the static evaluation pass depends on the presence of unique mean-
ings at all operators of the expression tree. On the other hand not before the static
evaluation of discriminant values is completed can the structure of the aggregate be
determined which leads to unique meanings in the expression tree. For the Ada front-
end we specified an algorithm that analyses an aggregate in one left-to-right traversal
thereby avoiding cyclic dependencies.

It can be shown that any tree of the attribute grammar for overload resolution is still
gvaluable in two passes (cf. [Ma88]). The algorithm of Persch et. al. merely computes
values of attribute instances in the up-visit of the first depth-first pass and in the
down-visit of the second one. The computations that arise from static expression
evaluation and from aggregate analysis can be performed during the up-visit of the
second pass. However aggregate analysis requires an evaluation from left to right
whereas the algorithm of Persch et. al. allows for evaluation in both directions. So the
attribute grammar for overload resolution in Ada belongs to the class (L-AG; L-AG)
which is included in the class of absolutely noncircular grammars, the class accepted
by the OPTRAN system.

* For a detailed discussion see [Ma88]

=14 =

5. Implementation data

on SUN 3/160, 16 MB memory, running UNIX 4.2 bsd, SunOS 3.4

Scanner/Parser:
String-to-tree grammar 2000 lines
300 lines Lexical description 300 lines
CPU-Time for Generation 20 minutes

Transformation-Unit i:

OPTRAN-Specification 14300 lines
including:
569 Productions
417 Operators
223 Nonterminals
20 Attributes
297 Local Attributes
4211 Applications of Semantic Rules
116 Transformation Templates

Semantic Rules (Pascal) 6200 lines

Generated Pascal-Source 26000 lines
Executable Transformer 730 kbytes
CPU-Time for Generation 45 minutes

Transformation-Unit Ii:

OPTRAN-Specification 15000 lines

including:

550 Productions

400 Operators

223 Nonterminals

35 Attributes

230 Local Attributes

4950 Applications of Semantic Rules
0 Transformation Templates

Semantic Rules (Pascal) 12000 lines
Generated Pascal-Source 26300 lines
Executable "Transformer" 780 kbytes

CPU-Time for Generation 45 minutes

6.

-15 -

Summary
We have shown how an Ada front-end was specified and implemented using the

OPTRAN generator. The development of the front-end was a test for the OPTRAN
system. We now summarize the experience gained in using the generator:

i

The OPTRAN language has the power to express the complex static semantics of
Ada. Both attributed grammars used in the t-units are included in the class of abso-
lutely noncircular grammars which is accepted by the OPTRAN generator.

The OPTRAN generator is capable of processing an input of the size required for
Ada.

The technique to use a generating system processing abstract descriptions proved
an advantage for the development of the front-end. Analysis of static semantics
could be shaped according to the abstract syntax of Ada. Subphases of the
analysis could be introduced step-by-step. In every stage of the development new
versions of the front-end were generated and testet. Moreover the consistency and
completeness checks performed by OPTRAN at generator time were helpful to pin
down errors in the t-units.

Due to the large scale of the task at hand the benefit mentioned above was crucial
for the feasibility of the project. But this advantage could only be exploited because
the first t-system transforms the inital operator trees thereby establishing a syntax
for Ada that is considerably more specific than the one delivered by the parser.
The ambiguities of the Ada syntax as defined in [Ada83] would not have allowed for
applying specific semantic rules to the individual constructs. Instead large general
rules would have had to analyse constructs that are syntactically similar but
semantically different.

The OPTRAN feature of local attributes proved very helpful. Local attributes are
widely used in both t-units.

The compilation speed of the front-end is not optimal. The simple interface
batween t-systems that cannot hand over values of attribute instances is one rea-
son thereof. The second t-system must build up the symbol table once again.
Intensive profiling (cf. [Gra83]) shows that a high percentage of the running time is
spent during initialization of internal data structures. This is due to the fact that this
phase is implemented using Pascal file-io.

We found it difficult to deal with the large attributed grammar for Ada without being
supported by the generator. For example to introduce a widely used inherited attri-
bute an extensive search had to be conducted for the productions where the attri-
bute occurences must be computed by semantic rules. Generally it would be help-
ful to be supported in such a project by tools to deal with large grammars, e.g. an
interactive system using a grammar graph (cf. [Moe86a]).

The Ada front-end and the OPTRAN system are operational and can be demon-
strated.

-16 -

References

[Ada83] Reference Manual for the Ada Programming Language, ANSI / MIL-STD 1815
A, 1983

[Bac84] Bach, I. Unorthogonalities in the Identification Rules in Ada, in ACM Ada
Letters, Vol IV, March 1984

[Bak82] Baker, T.P. A One-Pass Algorithm for Overload Resolution in Ada, in ACM
Transactions on Programming Languages and Systems, Vol. 4, No 4, October
1982, pp. 601-614

[Cor81] Cormack, G.V. An Algorithm for the Selection of Overloaded Functions in
Ada, in ACM Sigplan Notices 16, February 1981, pp. 48-52

[GPSW86] Greim, M., Pistorius, St., Solsbacher, M. and Weisgerber, B., POPSY and
OPTRAN-Manual, in ESPRIT: PROSPECTRA-Project Report, S.1.6-R-3.0,
Technical Report No. A 08/86, FB 14 - Informatik, Universitaet des Saarlandes,
Saarbruecken, 1986.

[GaR80] Ganzinger, H., Ripken, K. Operator Identification in Ada: Formal
Specification, Complexity, and Concrete Implementation, in ACM Sigplan
Notices 15, February 1980, pp. 30-42

[GWEB83] Goos, G. Wulf, W.A,, Evans Jr., E., Butler, K.J. (Edit.) DIANA An Intermedi-
ate Language for Ada, Springer Verlag, Berlin 1983

[Gra82] Graham, S.L., Kessler, P.B., McKusick, M.K., gprof: A Call Graph Execution
Profiler, in Proceedings of the SIGPLAN '82 Symposium on Compiler Construc-
tion, ACM Sigplan Notices, Vol. 17, No. 6, June 1982, pp. 120-126.

[Ke90] Keller, P., Spezifikation und Implementierung eines Ada-Front-Ends mittels
Uebersetzer-erzeugender Systeme, Teil |I: Deklarations- und Nameclass-
analyse, Diploma Thesis (in german), FB 14 - Informatik, Universitaet des Saar-
landes, Saarbruecken, 1990.

[Li86] Lipps, P., Komplexe Attribute - Mechanismen zur Verwaltung und
Berechnung In einem baumtransformierenden System, Diploma Thesis (in
german), FB 14 - Informatik, Universitaet des Saarlandes, Saarbruecken, 1986.

[Li88] Lipps, P., Moencke, U., Wilheim, R., OPTRAN - A Language/System for the
Specification of Program Transformations: System Overview and Experi-
ences, in Lecture Notes in Computer Science, Springer, October 1988, pp. 10-14.

[Ma88] Maas, T., Spezifikation und Implementierung eines Ada-Front-Ends mittels
Uebersetzer-erzeugender Systeme, Teil Il: Aufloesung der Ueberladung und
Erzeugung der DIANA-Form, Diploma Thesis (in german), FB 14 - Informatik,
Universitaet des Saarlandes, Saarbruecken, 1988.

[Moe86a] Moencke, U., Grammar Flow Analysis, in ESPRIT: PROSPECTRA-Project
Report S.1.3-R-2.1, FB 14 - Informatik, Universitaet des Saarlandes, Saar-
bruecken, 1986.

[Moe86b] Moencke, U., Production Local Attributes, in ESPRIT: PROSPECTRA-
Project Study Notes S.1.3-SN-3.0, FB 14 - Informatik, Universitaet des Saar-
landes, Saarbruecken, 1986.

[Per80] Persch, G., Winterstein, G., Dausmann, M., Drossopoulou, S. Overloading in
Preliminary Ada, in ACM Sigplan Notices 15, November 1980, pp. 47-56

[We83] Weisgerber B., Attributierte Transformationsgrammtiken: Die Baumanalyse
und Untersuchungen zu Transformationsstrategien, Diploma Thesis (in

=17 -

german), FB 14 - Informatik, Universitaet des Saarlandes, Saarbruecken, 1983.

[wig1] Wilhelm, R., A Modified Tree-To-Tree Correction Problem, in Information Pro-
cessing Letters 12(3), 1981, pp. 127-132.

	fb1990-04-0001
	fb1990-04-0002
	fb1990-04-0003
	fb1990-04-0004
	fb1990-04-0005
	fb1990-04-0006
	fb1990-04-0007
	fb1990-04-0008
	fb1990-04-0009
	fb1990-04-0010
	fb1990-04-0011
	fb1990-04-0012
	fb1990-04-0013
	fb1990-04-0014
	fb1990-04-0015
	fb1990-04-0016
	fb1990-04-0017

