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Abstract

Developers change source code to add new functionality, fix bugs, or refactor their
code. Many of these changes have immediate impact on quality or stability. However,
some impact of changes may become evident only in the long term. This thesis makes
use of change genealogy dependency graphs modeling dependencies between code
changes capturing how earlier changes enable and cause later ones. Using change
genealogies, it is possible to:

(a) apply formal methods like model checking on version archives to reveal temporal
process patterns. Such patterns encode key features of the software process and
can be validated automatically: In an evaluation of four open source histories, our
prototype would recommend pending activities with a precision of 60—72%.

(b) classify the purpose of code changes. Analyzing the change dependencies on
change genealogies shows that change genealogy network metrics can be used
to automatically separate bug fixing from feature implementing code changes.

(c) build competitive defect prediction models. Defect prediction models based on
change genealogy network metrics show competitive prediction accuracy when
compared to state-of-the-art defect prediction models.

As many other approaches mining version archives, change genealogies and their
applications rely on two basic assumptions: code changes are considered to be atomic
and bug reports are considered to refer to corrective maintenance tasks. In a manual
examination of more than 7,000 issue reports and code changes from bug databases and
version control systems of open- source projects, we found 34% of all issue reports
to be misclassified and that up to 15% of all applied issue fixes consist of multiple
combined code changes serving multiple developer maintenance tasks. This introduces
bias in bug prediction models confusing bugs and features. To partially solve these
issues we present an approach to untangle such combined changes with a mean success
rate of 58—90% after the fact.
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Zusammenfassung

Softwareentwickler ändern Source-Code um neue Funktionalität hinzuzufügen, Bugs zu beheben
oder um ihren Code zu restrukturieren. Viele dieser Änderungen haben einen direkten Ein-
fluss auf Qualität und Stabilität des Softwareprodukts. Jedoch kommen einige dieser Einflüsse
erst zu einem späteren Zeitpunkt zur Geltung. Diese Arbeit verwendet Genealogien zwischen
Code-Änderungen um zu erfassen, wie frühere Änderungen spätere Änderungen erfordern oder
ermöglichen. Die Verwendung von Änderungs-Genealogien ermöglicht:

(a) die Anwendung formaler Methoden wie Model-Checking auf Versionsarchive um tem-
poräre Prozessmuster zu erkennen. Solche Prozessmuster verdeutlichen Hauptmerkmale
eines Softwareentwicklungsprozesses: In einer Evaluation auf vier Open-Source Projek-
ten war unser Prototyp im Stande noch ausstehende Änderungen mit einer Präzision von
60–72% vorherzusagen.

(b) die Absicht einer Code-Änderung zu bestimmen. Analysen von Änderungsabhängigkeiten
zeigen, dass Netzwerkmetriken auf Änderungsgenealogien geeignet sind um fehlerbe-
hebende Änderungen von funktionalitätshinzufügenden Änderungen zu trennen.

(c) konkurrenzfähige Fehlervorhersagen zu erstellen. Fehlervorhersagen basierend auf Ge-
nealogie-Metriken können sich mit anerkannten Fehlervorhersagemodellen messen.

Änderungs-Genealogien und deren Anwendungen basieren, wie andere Data-Mining An-
sätze auch, auf zwei fundamentalen Annahmen: Code-Änderungen beabsichtigen die Lösung
nur eines Problems und Bug-Reports weisen auf Fehler korrigierende Tätigkeiten hin. Eine
manuelle Inspektion von mehr als 7.000 Issue-Reports und Code-Änderungen hat ergeben, dass
34% aller Issue-Reports falsch klassifiziert sind und dass bis zu 15% aller fehlerbehebender
Änderungen mehr als nur einem Entwicklungs-Task dienen. Dies wirkt sich negativ auf Vorher-
sagemodelle aus, die nicht mehr klar zwischen Bug-Fixes und anderen Änderungen unterschei-
den können. Als Lösungsansatz stellen wir einen Algorithmus vor, der solche nicht eindeutigen
Änderungen mit einer Erfolgsrate von 58–90% entwirrt.
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Chapter 1

Introduction

Software development is an incremental process in which developers apply changes
to the current version of a software project to achieve the next advancement towards a
milestone or release. Each change is supposed to add new value to the software: adding
a new feature, fixing a bug, adapting the software to new environments, or simply to
clean up the code base. Some of the changes made by the developers introduce new
issues and defects. Fixing those defects gets increasingly expensive as the software
development process progresses [97]. Thus, one goal of quality assurance is to detect
as many defects as possible and fix them in the earlier stages of development. To
increase quality assurance effectiveness, it is crucial to focus on those components that
are most likely to contain defects.

Software and its reliability is a product of its history. Therefore it is important to
analyze and understand the project history. The goal is to gather evidence on good
and bad practices that influence the quality of the corresponding software system—
evidence on the effectiveness of testing, the quality of bug reports, the role of complex-
ity metrics, the influence of code changes on each other, and so on. Software archives,
such as version control systems and issue tracking systems, are a rich source of such
evidence. These archives record many of the activities around a software product in-
cluding problem descriptions and code changes applied. This evidence can be used to
build powerful and effective tools to support developers helping them to write better
source code inducing fewer defects. Supporting quality assurance, the evidence can
also be used to detect and predict defect prone code entities that should be target of
careful and excessive quality testing.

1



2 CHAPTER 1. INTRODUCTION

This thesis makes two major contributions to mining version archives. First and
foremost, we introduce the concept of change dependency graphs called change ge-
nealogies that combine two popular but limited visions on version control systems.
Many research studies in analyzing software history have been mostly constrained to
either space or time. Being constrained to space means that one examines the evolu-
tion of single components, aggregating features over time. Being constrained to time
means that one examines which components were changed at a single moment in time,
extracting co-changes from the resulting change sets. What we would like to have is
reasoning over multiple components at multiple points in time. Change genealogies
allow such multi-dimensional reasoning but also allow the use of formal methods such
as model checking and the use of temporal logic formulas like CTL to express both
temporal and spatial patterns.

The second contribution of this thesis targets the threats of noise and bias in com-
mon mining data sets. The tremendous progress gained in the research field of empiri-
cal software engineering and in particular in the mining software repository community
is raising ever-growing concerns about the amount of noise in data sets and the impact
of such noise on any mining model based on such data sets. During our experiments we
identified two major noise factors in common mining data sets: tangled code changes
and misclassified issue reports. This thesis discusses these two common noise factors,
shows their impact on quality models, and provides approaches to reduce the amount
of noise and bias within these common mining data sets.

More detailed, this work makes the following contributions to the research field of
mining version archives.

Change genealogies We introduce the concept of change genealogies that model de-
pendencies between code changes adding, modifying, or deleting methods and
method calls as graph structure.

Evaluation of bug data In a large scale manual inspection of over 7,000 bug reports,
we collected evidence that bug databases contain large fractions of misclassified
bug reports threatening state-of-the-art mining models based on such noised and
biased data sets. The manual classified data set is public available and can be
used as ground truth for further research.

Tangled code changes Change genealogies and other mining models assume code
changes to be atomic—code changes serving different developer maintenance
tasks are applied separately. This thesis provides evidence that there exist a large
fraction of non-atomic code changes that threaten state-of-the-art defect predic-
tion models and mining models.
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Untangling code changes To address this issue of tangled code changes, we intro-
duce an algorithm that will partition tangled code changes into individual, non-
overlapping sub-changes each suspected to address a separate developer mainte-
nance task.

Change genealogy metrics Based on the change genealogy graphs, we compute net-
work metrics that can be used to distinct between bug fixing and feature adding
code changes and that allow the construction of precise defect prediction models.

Long-term cause effect chains By mining and model checking change genealogies,
we obtain frequent temporal patterns that encode key features of the software
process that span both space and time.

1.1 Thesis Structure

The main contributions of this thesis are the introduction of change genealogies to
model change dependencies, to improve state-of-the-art mining approaches adding ad-
ditional change dependency information, and to partially solve issues regarding noise
and bias in software repository data sets and their impact on common mining ap-
proaches and techniques. The remainder of this thesis is structured as follows:

Chapter 2 gives a short introduction on mining software archives, related definitions
and related work. After discussing concepts and giving a short overview over
common mining techniques, we will focus on three common assumptions and
hypotheses many mining approaches rely on and that threaten any mining ap-
proach if invalid.

Chapter 3 introduces the concept of change genealogies modeling temporal and struc-
tural dependencies between code changes or sets of code changes.

Chapter 4 will then follow up on the noise and bias discussion to investigate the relia-
bility of issue report types mined from issue tracking systems. Our investigation
shows that there exist a critical amount of falsely classified bug reports threat-
ening any mining model not performing extra bug data validation. The public
available data set containing our manual inspection results can be used as ground
truth for further research.



4 CHAPTER 1. INTRODUCTION

Chapter 5 focuses on the issue of tangled code changes—changes being a mixture
of several developer developer maintenance tasks. The study provides evidence
of the existence and spreading of tangled changes and their potential impact on
common mining models. We also provide an untangling algorithm that parti-
tions tangled sets of code changes into smaller, non-overlapping partitions. Each
code change partition contains a set of code changes that are likely to depend
on each other and thus are likely to be necessary to resolve the same developer
maintenance task. Our approach untangles any two artificially tangled change
sets with a precision between 0.67 and 0.93 and reduces the number of source
files falsely associated to developer maintenance tasks by 55% to 81%.

Chapter 6 describes a set of change genealogy network metrics used to automatically
detect bug fixing code changes and to predict defective source files. Bug fixing
code changes show significant different structural dependencies to other code
changes when compared to feature adding code changes. Change genealogy
metrics can be used to express these dependency differences to build appropriate
classifiers. Further, we show that we can use change genealogy metrics to predict
defective source files.

Chapter 7 shows how to use change genealogies to apply model checking to version
archives. Using the expressive power of CTL formulas and a directed acyclic
change genealogy we were able to predict long-term cause effect chains between
code changes. Each reported long-term coupling implies a structural dependency
between coupled artifacts. Using additional change properties as coupling con-
ditions we were able to detect change coupling CTL rules that cannot be detected
by comparable approaches.

Chapter 8 concludes with a summary of our results, lessons learned, and ideas for
future work.
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1.2 Publications

This dissertation builds on the following papers (in chronological order):

• Kim Herzig.
Capturing the long-term impact of changes. In Proceedings of the 32nd Inter-
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York, NY, USA, 2010. ACM.

• Kim Herzig and Andreas Zeller.
Mining Cause-Effect-Chains from Version Histories. In Proceedings of the
22nd International Symposium on Software Reliability Engineering pages 60–
69 Washington, DC, USA, 2011. IEEE Computer Society.

• Kim Herzig, Sascha Just, and Andreas Zeller.
It’s not a Bug, it’s a Feature: How Misclassification Impacts Bug Prediction. In
Proceedings of the 35nd International Conference on Software Engineering New
York, NY, USA, 2013. ACM.

The following technical reports are public available and under submission:

• Kim Herzig and Andreas Zeller.
Untangling Changes. In Proceedings of the 10th Working Conference on Mining
Software Repositories San Francisco, California, USA, 2013. ACM.

• Kim Herzig, Sascha Just, Andreas Rau, and Andreas Zeller.
Classifying Changes and Predicting Defects using Change Genealogies. Sub-
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All experiments and experimental setups presented and discussed in this thesis are
designed and conducted by the author of this thesis.
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Chapter 2

Background

2.1 Software Repositories

Developing and using software can produce large amounts of artifacts over years of
project history: problems occurred, changes applied, problems fixed, documentation
updated, etc. Most of these artifacts get collected and stored, at least temporarily. Stor-
ages for such artifacts are called software repositories—an umbrella term for reposi-
tories containing different kinds of artifacts produced during developing and usage of
the software. One of the most prominent software repository types is the version con-
trol system (e.g. Git [1], Mercurial [3], Subversion [4]) that contains all changes
applied to the code base of the software project.

Fortunately, software repositories are also a relative inexpensive way to gather lots
of information about the software project and its development process. Using these
important sources of historic data it is possible to recap most of the project history and
to extract frequently occurring problems and patterns. Software repositories provide a
good basis to learn from history without setting up additional infrastructure, disturbing
developers, or to slow down development. In this work, we will concentrate mostly on
two software repositories: version control systems and issue tracking systems.

7
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2.1.1 Version Control Systems

Version control systems record changes applied to documents and files. In software
projects, most of these changes are applied to source files modifying the code base
of the software system and therefore also change the runtime behavior of the soft-
ware product. Most version control systems also store meta data attached to each file
changed. Prominent examples are the author (username, email or full name), the times-
tamp of the change, and a short message—usually called commit message—given by
the author of the change. Although different version control systems are based on
different concepts, most of these systems group simultaneously applied changes into
change sets. Thus, a change set contains multiple code changes to at least one file that
got committed simultaneously. Author, timestamp, and commit message are annotat-
ing change sets. Each change set is identified using a unique identification number or
string. Using this identifier, one can restore the files to the state when this revision
reflected the most current version of the software.

2.1.2 Change Sets

In practice, changes to source code are not applied separately but would be committed
together. Ideally, code changes belonging to the same logical unit or development task
are committed together. Committing a set of code changes creates a snapshot of the
software project that can be restored any time later. Depending on the version con-
trol system implementation, committing code changes might make the applied code
changes public available and might require other developers to update their code base
according to your applied patch. Version control systems like Git [1] require an ex-
plicit command in order to publish committed code changes. For the remainder of
this thesis, we use the term change sets for the set of simultaneously committed code
changes.

2.1.3 Change Operations

Version control systems record changes applied to any file. In the context of this work,
version control systems record changes to files containing source code. Changes to
files not containing source code will be ignored, unless stated otherwise. Thus, analyz-
ing version control systems requires analyzing code changes on a predefined level of
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int cache = 10;

...

6

...

public class C {
public C() {

List<String> list = new List<String>();

if(list.size() < 1){
if(list.isEmty()){

}
}

3
4

5

9
 

20
21

Figure 2.1: Sample diff output containing three change operations and two add/delete
change operations.

granularity. Many diff tools (e.g. GNU Diffutils1) output differences line by line. All
changes applied within the same line are combined into a single change replacing the
old line by a new line. Other tools like LSDiff [85, 49] work on structural differences
on source code files to extract more fine-grained source code changes.

In this thesis, we define change operation as a set of source code changes that
added or deleted method calls and definitions, or that modified method bodies. Method
definitions are identified using their full-qualified name2. Method calls are identified
using their absolute position in the source code3. We call a set of source code changes
that added or deleted method calls or method definitions add/delete change operation.
Add/delete change operations do not include modifications of method definitions and
bodies. Thus each change set corresponds to a set of change operations adding or
deleting a method definition (AD, DD), modifying a method body (MD), or a method
call (AC, DC). Analog, each add/delete change operation corresponds to a set of change
operations adding or deleting a method definition (AD, DD) or a method call (AC, DC).
Thus, an add/delete change operation is a subset of the corresponding change operation.

The change set shown in Figure 2.1 derives a set containing three change oper-
ations. One DC operation that deletes the method call list.size(), one AC op-
eration adding list.isEmpty(), and one MD operation modifying the constructor
public C(){...}. The MD operation is contained in the set of change operations,
only. The corresponding add/delete change operations contain only the DC and DC
operations.

1http://www.gnu.org/software/diffutils/
2in Java: package name + class name + method name + method signature.
3full-qualified source file name + character position in source file
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Further, changing a method body by adding a method call will result in two change
operations, one MD and one AC. Renaming of method definition or moving a defined
method to a super or sub class is represented using a method definition deletion (DD)
and a method definition addition (AD).

2.1.4 Issue tracking systems

Issue tracking systems are used to keep track of developer tasks and program issues.
In most projects, the majority of recorded issues are so called bug reports—software
problems and defects found by users and developers. But there can be many other issue
types such as tasks, feature requests, documentation issues, questions, and specification
issues. Each issue can be assigned to individual members of the development team,
contains multiple fields that express specific environmental setups, but also provide the
possibility using comments attached to each issue.

2.2 Software Metrics

Source code is structured text that can be interpreted by a compiler or an interpreter.
But how do you argue about the quality of this structured text, its maintainability, or its
complexity. We need objective, reproducible, and quantifiable measurements that allow
us to argue about specific properties of source code. These measurements are typically
called software metrics. One of the most common software metrics measured the length
of source code (e.g. lines of code or lines of statements). Software metrics are used
in many applications and allow a numeric representation of source code properties.
Hundreds of software metrics are used every day. The studies and approaches presented
in this thesis are using many different software metrics that are suitable to express the
complexity, maintainability, stability, or quality of a source code artifact. The number
of defects fixed in a source code artifact can be seen as a software metric.

The classical software metric is based on the source code or an individual source
code artifact. But frequently, these classical software metrics are extended or even
replaced by software metrics based on the development process and dependencies be-
tween artifacts. While development process metrics focus on the history of the source
code (see Section 2.2.2) most dependency metrics are based on network graph struc-
tures [126, 151, 22] that express interactions between source code artifacts (e.g. method
calls or include statements). These networks are similar to network models extracted



2.2. SOFTWARE METRICS 11

known from social media applications and allow the use of communication and social
media metrics.

It is important to realize that the set of software metrics that can used to success-
fully build recommendation or prediction models is highly dependent on the software
projects, the analyzed programming language, and the purpose the software metrics
will be used for. For instance, building defect prediction models for different projects
usually requires different sets and combinations of software metrics to optimize the
performance of the resulting model. Studies building defect prediction models for dif-
ferent projects or even projects releases [40, 110, 148, 134] and studies on cross project
defect prediction [119, 152] show that there is no single set of metrics that performs
equally well on all projects and on all levels of granularity. This implies that different
projects require software metrics. Source code changes over time and so does the per-
formance of software metrics. Once an optimal set of software metrics is found one
should check their performance regularly to ensure the accuracy of the models based
on this feature set.

2.2.1 Complexity Metrics

One of the most prominent sets of software metrics are classical complexity metrics.
The rational behind complexity metrics is that the complexity of source code can be
expressed by the structure of the source code. The more complex the structure of
the source code, the harder the logic behind it and the easier it is to make mistakes.
Cyclomatic complexity [96] is one of the most prominent complexity metric. Roughly,
cyclomatic complexity is computed on the control flow graph of the program counting
the number of decision points (e.g. loops and if-statements). Complexity metrics are
usually easy to understand, easy to implement, and easy to compute.

Although complexity metrics tend to be simple and very limited they have been suc-
cessfully used in many application domains. Complexity metrics are frequently used to
estimate code quality and to train defect prediction models [64, 74, 98, 108, 115, 153].
But complexity metrics have shown to be useful to measure program maintenance [79,
118, 122] and to estimate development efforts [6, 125, 131]. A survey on Microsoft
developers conducted by Zimmermann et al. [148] (including the author of this thesis)
showed that 91% of the interviewed developers consider complex and highly coupled
code to be more defect prone.
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2.2.2 Change History Metrics

Code complexity has shown to be important to explain and estimate the number of
defects in a program. But code complexity is only one variable of the equation. Graves
et al. [58] showed that metrics describing the history of the existing code base could
also be used to train successful defect prediction models. Change history metrics such
as the number of past changes applied to the source code are strong indicators for
defects. Changing source code frequently increases the likelihood of defects to be
introduced. Similar, Hassan et al. [65] and Kim et al. [89] developed defect prediction
models based on the number of fixes applied to the source code. The more fixes were
applied the higher the chance to detect more bugs in future. Such defect prediction
models can be highly accurate. In fact, Moser et al. showed that “change data are
effectively better indicators for the presence or absence of software defects than static
code attributes” [102]. Lately, Nagappan et al. [110] (including the author of this thesis)
introduced the concept of change bursts—many frequent changes to a source code
artifact in short time. Change bursts indicate incomplete requirements, hairy bugs, or
insufficient quality assurance. Again, change bursts make no use of code structure.

2.2.3 Other Code Metrics

There exist many other software metrics that are frequently used in mining models. In
particular, the set of network metrics is important for this thesis.

Network metrics are software metrics that are computed on network graphs mod-
eling dependencies between code artifacts such as graphs modeling method calls be-
tween classes or import structures between files. Schröter et al. [126] used import
dependencies to predict failure prone entities at design time. Studies from Microsoft
Research [105, 150] used code dependencies to successfully identify failure-prone bi-
naries. Shin et al. [128] provided evidence that defect prediction models can benefit
when adding calling structure metrics. Program dependence graphs [44, 62, 117] have
been used to improve testing [13, 117, 123], debugging and maintenance [117, 123].

Network metrics are very popular in social science using graphs modeling the in-
teractions between humans. Zimmermann and Nagappan [151] were among the first
that transferred this concept of social metrics on code databases. The assumption is
that code artifacts interact with each other (like human actors) by calling each others
methods or accessing their variables. The resulting graph structure can be used to apply
social network analysis on code dependency graphs and to reuse social network metrics
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on such code dependency graphs. The results presented by Zimmermann and Nagap-
pan [151] show that network metrics can be very helpful when predicting defects and
likewise. Later, Bird et al. [22] extended the set of network metrics by extending code
dependency graph adding contribution dependency edges. Contribution edges model
the dependency between code artifacts derived from the contribution history of a soft-
ware project as described by Pinzger et al. [116]. Premraj and Herzig [119] showed
that network metrics in a realistic defect prediction setup add no significant value com-
pared to an experimental setup using complexity metrics, only. Still, network metrics
overcome a drawback most software metrics and complexity metrics have. While com-
plexity metrics are focused on a single code artifact (e.g. class), network metrics target
the interaction between code artifacts.

2.3 Mining Software Repositories

Parts of the contents of this section have been published in Herzig and Zeller [70].

Software repositories record much of the activity around a software project. By min-
ing these repositories automatically, you can obtain lots of initial evidence about your
product—evidence that already is worth in itself, but which may also pave the path
toward further experiments and further insights. During software development, pro-
grammers routinely produce and collect lots of data, all of which can be accessed and
analyzed automatically:

• The source code for a product. This is the most important input to any analy-
sis, as it provides locations (files, units, classes, components, etc.) that can be
associated with various product or process factors.

• Collecting data on the execution of the software provides profiles, identifying
frequently executed code parts and which parts were not.

• Documentation fragments such as design documents or requirement documents
provide important features that explain why code looks the way it does or that
explain why specific features have been implemented.

• The resulting software can be analyzed statically, providing features such as com-
plexity metrics (see Section 2.2.1) or dependencies (e.g. see Section 2.2.3).

• Version archives (see Section 2.1.1) record the changes made to the product,
including who, when, where, and why.
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• To map problems to locations, one can use issue tracking systems (see Sec-
tion 2.1.4) that describe problems that occurred and track their life cycles.

• Finally, social data can help to understand the developer team background be-
hind the software product. With such data, for instance, it is possible to deter-
mine how much effort maps to individual tasks or locations, or how individual
groups contribute to changes and to errors.

From a researchers point of view, the advantage of accessing these data sources is
that they are unbiased—they record changes, problems, and other events at the moment
they happen and with a realistic perspective that directly reflects the activities of the de-
velopers dealing with them. On the other hand, the data also may be noisy, incomplete,
or even incorrect, which is why special steps are required before analysis.

Historic data for a software project is preserved though many different activities
and many different systems. In order to extract and learn from these histories of a
software project, accessing these resources is primary goal. For many open source
systems (e.g. Eclipse or Rhino), most of these resources are publicly available and can
be accessed easily. But each software repository is different, and so are the mining steps
necessary to extract the relevant data points. Still, most mining tools and setups share
a common procedure. This section introduces those common procedures and practices
that are used or targeted by this thesis. The discussion is limited on two main subjects
of mining software repositories: version control and issue tracking systems and how to
connect these two independent repositories. Some of the experiments described in this
thesis might also make use of additional repositories, procedures, and assumptions that
will be explained in the corresponding sections describing the experimental setups.

2.3.1 Mining Version Archives

Version control systems maintain change logs for each change set—a set of simultane-
ously applied source code changes. These change logs contain information about the
authors, the time of the change, the files that changed, how these files changed, and the
commit message of the change set. Thus, parsing these code change logs provides the
information about all source code changes ever applied to the software project.

There exists a wide range of approaches that mine version archives covering a wide
range of purposes and application targets. German and Mockus [53] were among the
first to present a tool called SoftChange that extracts and summarizes information from
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version archives. Since then, version archives have been used to build many different
recommendation and prediction tools. Mockus and Votta [101] analyzed log messages
using word frequencies and keyword classification techniques to determine the purpose
of code changes applied to version archives. Giger et al. [57] used fine-grained source
code changes (SCC) to predict whether a certain type of SCC affect a source file.

Version control systems allow to detect fine-grained logical couplings between
classes [51], files and functions [149], code clones [52], and to detect patterns code ar-
tifacts frequently changing together [146, 154]. Hassan et al. [66] used version archives
to assess the effectiveness of change propagation tools.

The number of research projects relying on version archives is endless and the small
subset of presented approaches is far from being complete. The ever growing number
of mining projects using different data layouts lead to exchange languages and data
repositories that allow sharing and reusing existing data mining sets [24, 88]. There
exists a wide range of approaches and studies combining version archives and bug
databases. These papers are discussed in Section 2.3.4.

2.3.2 Dependencies between code changes

The difference between two (consecutive) source code revisions can be determined us-
ing a simple diff algorithm. But identifying the consequences of code changes and thus
their dependencies between each other requires more detailed analysis. A code change
adding a method call to a defined method (e.g. in Figure 2.1 list.isEmpty() on a
collection) depends on the code change that added the method definition. But there ex-
ist also more complex dependencies. Gall et al. [50] were the first to examine version
archives to detect logical couplings between program modules. Stoerzer et al. [132]
determined failure-inducing changes using dependencies between code changes based
on change location. Change sets depend on those change sets that previously changed
the same or a subset of code lines. Going one step further, one can use the concept
of failure-inducing changes to identify and extract code changes that can be applied to
version archives without causing existing tests to fail [144]. Association rule mining
techniques can be used to detect coupled changes and to automatically suggest and pre-
dict likely further changes [77, 127, 146, 154]. Fluri et al. [49] extracted hierarchically
structured changes on statement level along with change type information. Later, they
used their own tool to describe development activities using change patterns derived
from change type combinations [48]. On method level, Kim et al. [85] presented an
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approach that represents structural changes as a set of high-level change rules, auto-
matically infers likely change rules, and deter mines method-level matches based on
these rules. Change couplings not caused by source code changes cannot be detected
by program analysis and require structural change information to be detected [47]. To
allow the detection of coupled changes over multiple change sets, Canfora et al. [29]
used a sliding window approach to detect change couplings occurring within certain
time frames across multiple change sets but without detecting structural dependencies
between these change sets.

Impact analysis techniques such as CoverageImpact [113] and PathImpact [91] de-
termine the immediate impact of code changes on program executions. Ren et al. [121]
presented a tool to decompose program version differences into sets of atomic changes
and to report test cases, whose execution behavior may have been changed. However,
these approaches only consider the immediate impact of code changes on program
structure and behavior. But these approaches assume that the software project can be
completely compiled and executed. Consequently, these approaches are not applicable
to all revisions of a project history that cannot be compiled.

To model dependencies between changes and change sets, Brudaru and Zeller [27]
introduced the concept of change genealogies. A change genealogy is a directed graph
structure to model dependencies between change sets. Change genealogies span the
complete software project lifetime and allow reasoning about the impact a particular
change set had on other, later applied change sets. German et al. [54] used the similar
concept of change impact graphs to identify those code changes that influenced the
reported location of a failure. But they resolved change dependencies backwards using
a given starting point in the source code to identify possible causes for a bug or failure to
occur. Alam et al. [5] used the concept of change dependency graphs [54] to examine
how changes build on each other over time. The authors showed that dependencies
between changes vary across different projects and that changes build on top of new
code—instead on old stable code—are more defect prone.

2.3.3 Mining Issue Databases

Issue databases are a key factor of software maintenance containing a large propor-
tion of problems and issues related to the software project. They contain the issue
history of a software product. Learning from past issues is one of the key benefits of
mining bug databases. Thus, many mining approaches are based on bug databases in
some way, either as standalone artifact or as a combination between bug reports and
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code changes. It is important to realize that not every bug found in source code will
be reported using an issue report. Many pre-release issues—issues that arise during
development and intermediate testing—might get fixed unrecorded. Nevertheless, the
larger fraction containing user issues and the most severe issues will be documented
using issue reports.

Bug reports have been used to tackle a wide range of topics and problem sets.
Among others, topics include automatic assignment of bug reports to developers [9, 31,
60], assigning locations to issues [30] using structural information [17], predicting and
estimating effort for fixing bug reports [7, 19, 55, 95, 141, 147], bug triage [10, 135],
and categorizing bug reports automatically [8, 130]. The quality of issue reports is a
frequent discussed topic [14, 15, 59, 75]. Many of these studies show that bug reports
often contain too little or too incomplete information in order to reproduce and fix
them. It is possible to automatically detect bug report duplicates [16, 124, 138] that,
when combined, might fill information gaps that prevent bug report fixes.

Antoniol et al. [8] showed that a significant number of bug reports refer to main-
tenance tasks, which are not of corrective nature. This finding implies that there exist
a significant number of issue reports marked as source code defect although they were
resolved and “fixed” without applying a source code path that fixed a code defect.
Although their work had very little impact, Antoniol et al. [8] reported a highly prob-
lematic fact. Nearly all mining approaches rely on the fact that reported bugs are indeed
documenting corrective maintenance tasks. We will address this issue in Chapter 4.

2.3.4 Mapping Artifacts across Repositories

In general, the more software repositories at hand, the more empirical data can be
mined and the more evidence can be used to learn from the past. But having multi-
ple software repositories at hand the more important to connect the artifacts in these
repositories with the artifacts in the other repositories. As an example, combining bug
reports to change sets opens the possibility to map bug fixes to individual code arti-
facts. Counting the number of fixed bug reports whose patch touched a specific file is
frequently used to determine the quality of the source code. In most cases, bug report
will not contain the applied source code changes. To detect which files were changed
in order to fix the reported issue requires the version control system that contains the
detailed changes. If both systems are not integrated or connected to each other mapping
the artifacts to each other is a mining task.
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Figure 2.2: Mapping issue reports to code changes. Regular ex-
pressions used to identify issue report and change set references (e.g.
[bug|issue|fixed]:?\s*#?\s?(\d+)) might differ from project to project.
The number of used filters and their thresholds depend on the project.

One of the most important relations between software repositories is the connection
issue tracking systems and version control systems. Fischer et al. [45] and Čubranić
and Murphy [136] were among the first to search for references between code changes
in version control systems and bug reports contained in issue tracking systems. The
approach is straightforward. Commit messages of change sets contain references to
bug report identifiers (e.g. “Fixes bug id 7478” or simply “fixes #2367”). These links
will then be further filtered based on their activity, authorship and report date. Other
approaches use slightly different techniques, but most of them are based on the same
basic principle [45, 63, 86, 153]. Lately, Murgia et al. [103] presented an approach
based on a more general natural language processing which groups commit messages
sharing the same text features. Giger et al. [55] used bug report attributes to estimate
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the time to fix the corresponding issue. This thesis will also use code quality data
derived using mapping strategies. Figure 2.2 describes the approach used in this thesis
to map issue reports to change sets.

Modern development environments such as Jazz [78] integrate multiple software
archives into a single development tool. This helps developers to work in one uniform
environment without switching tool contexts. But integrating or connecting software
archives also helps software archive miners. Mapping artifacts based on user input
instead of heuristics and filters reduces data noise and help to prevent bias [69].

2.3.5 Classifying Code Changes

Classifying code changes is common in mining version control systems. There exist
different approaches classifying code changes with respect to various aspects. Mapping
bug reports to change sets (see Section 2.3.4) allows efficient bug fix identification.
But these mapping techniques can only identify change sets that contain bug report
references in the commit message.

Research has also focused on classifying code changes according to their impact
on program execution [32], software architecture [42, 92, 133, 142], and program exe-
cution [32]. Closely related is the approach of Fluri et al. who developed a framework
capable of differentiating “between several types of changes on the method or class
level” [46]. With their framework, the authors are able to assess the impact of a code
change on other source code entities and whether the applied change set modifies the
functionality of the software system or not. Although, the our code change classifica-
tion approach described in Chapter 6 uses a very similar abstraction layer, the aim of
our approach is it to classify code changes with respect to their purpose: is a change
set a bug fix or is it adding a new feature?

Kim et al. [86] classified code changes with respect to the likelihood that the applied
change set introduces new software defects. Although this approach limits the search
space for defect prediction models drastically, it cannot identify bug fixing change sets.
Within their approach, the authors themselves used a commit message based approach
to identify bug fixing change sets.

Lately, Kawrykow and Robillard [84] presented an approach that classified code
changes due to their purity. Their framework allows to identify so called non-essential
changes—changes that are of “cosmetic nature, generally behavior-preserving, and un-
likely to yield further insights into the roles of or relationships between the program
entities they modify” [84].
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Figure 2.3: The operation mode of defect prediction models.

2.3.6 Defect Prediction Models

Data sets extracted from version control systems are frequently used to improve and
support quality assurance tools, recommendation systems, and prediction models. The
variety and range of approaches and tools using such data sets is huge and has gained
a lot of attraction and activity over the past couple of years. For this thesis, ap-
proaches building and improving defect prediction models are of importance. This
thesis presents techniques and approaches that can be used to further improve defect
prediction models. Evaluation setups contained within this thesis will refer and make
use of defect prediction models. Thus, describing the concept and fundamentals of de-
fect prediction models shall provide fundamental information required to understand
motivations, requirements, and evaluation setups. This section contains a discussion
on basic concepts of defect prediction models and a rough review of past approaches
predicting defects for software systems.

Defect prediction models aim to predict the number and sometimes the location of
defects to be fixed in near future. Such systems can be used to allocate quality assur-
ance resource that is deciding how much testing and reviewing effort should be applied
to individual code artifacts. Defects and their impact are not equally distributed across
the code base of a software project. Thus, distributing quality assurance equally over
all code artifacts might be ineffective and might miss a significant number of defects
that could have been found using a more sophisticated effort distribution. From a user’s
perspective, a defect prediction model should take a set of code artifacts and return a
risk factor that indicates the likelihood that a given artifact contains a software defect
(classification) or even more precisely a number of expected defects to be found within
the code artifact (regression) as shown in Figure 2.3. Defect prediction models works
as a black box. Supplied with a number of source files they return a risk factor for each
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Figure 2.4: Training defect prediction models.

supplied input. Usually, defect prediction models are based on software metrics and
historic data (e.g. past defects found per artifact). Defect-prone source files might be
worth spending extra testing and reviewing effort on these artifacts. Complexity met-
rics and other software metrics are used to determine which features of the source code
artifacts correlate with defect likelihood and thus can be used to check new code arti-
facts against harmful code features expressed by their corresponding software metrics.

To learn metric defect correlation, defect prediction models have to be trained
on historic data sets as shown in Figure 2.4. Computing software metrics on a code
base snapshot (see Section 2.2) and mapping past defect fixes to source code artifacts
(see Section 2.3.4) can be used as defect prediction model training input. To model the
relationship between the dependent variable (number of past fixes per artifact) and the
explanatory variables (computed software metrics per artifact) can be done using vari-
ous statistical analyses and machine learning techniques (e.g. linear regression, logistic
regression, support vector machine).

Measuring the predictive power and prediction accuracy of a defect prediction
model requires training and testing data sets. The training set will be used to model the
relationship between past defects and code features while the testing set will be used to
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Figure 2.5: Precision, recall, and accuracy.

predict the risk factors for the code artifacts in the testing set. Comparing the predic-
tion result with the known number of defects that were actually fixed allows to reason
about the predictive accuracy. The higher the intersection of predicted and actual fixed
defects the higher the prediction accuracy. To express the predictive power of a model
in more detail one can use many different statistical measurements to express the frac-
tion of correctly or falsely predicted entities. The most common set of measurements
are precision, recall, and accuracy. These three measurements relate the number of
true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN)
(see Figure 2.5).

Precision, recall, accuracy are fraction values between zero and one. A high preci-
sion means that the number of artifacts not predicted to be defect prone but observed to
be defect prone is small. A high recall indicates a low number of false negatives—only
few of those artifacts that were predicted as defect free where defect prone. Accuracy
expresses the fraction of all correctly classified artifacts. There exist more prediction
accuracy measurements that will be discussed where used in evaluation setups through-
out this thesis.

Training and testing defect prediction models requires training and testing data
sets. Figure 2.6 shows two common approaches to train and test defect prediction
models. Random splitting a single data set into two subsets is frequently used if only
one revision of a software project is available. The single data set is split into a training
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timeversion N
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(assess the model)

2/3 1/3

(a) Random sampling or stratified random sam-
pling splits one snapshot of a software project into
2/3 training and 1/3 testing parts.

timerelease N+1release N

Training
(build a model)

Testing
(assess the model)

100% 100%

(b) Using two releases or version of one or differ-
ent project histories is closest to what can be de-
ployed in the real world where past project data is
used to identify defect-prone entities in on-going
or future releases.

Figure 2.6: Generating training and testing data sets to build and assess prediction
models.

set (usually containing two third of the original sets artifacts) and into a testing set (see
Figure 2.6(a)). The intersection of training and testing set is empty while the union of
training and testing data matches the original data set. Stratified sampling is used to
preserve the original proportions of defect prone and non-defect prone entities in the
training and testing sets.

Sampling data sets includes fuzziness: a single random sample can produce good
results although the prediction model performs poorly on average. Thus, sampling is
often combined with repeated holdout setups. Instead of splitting once, the data set
gets repeatedly split into training and testing subsets and for each cross-fold or holdout
precision, recall, and accuracy are recorded. The reported precision, recall, and accu-
racy values correspond to the mean values over the corresponding set of performance
measures.

The alternative of splitting one revision of a software project apart is to use two
revisions of the software code base (see Figure 2.6(b)). This method is commonly
used to train and test prediction models based on releases. The earlier release serves as
training set while the other, later revision is used to test the prediction model. Models
are trained on revisions of different software projects. These forward or cross-project
prediction setups are closest to what can be deployed in the real world where past
project data is used to identify defect-prone entities in on-going or future releases.
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Table 2.1: Overall defect prediction model accuracy using different software measures
on Windows Vista. Content taken from [106] and [110].

Model Precision Recall

Change Bursts [110] 91.1% 92.0%
Organizational Structure [109] 86.2% 84.0%
Code Churn [104] 78.6% 79.9%
Code Complexity 79.3% 66.0%
Social network measures [22] 76.9% 70.5%
Dependencies [151] 74.4% 69.9%
Test Coverage [100] 83.8% 54.4%
Pre-Release Defects 73.8% 62.9%

Table 2.1 summarized the predictive power of post-release defect prediction models
for Windows Vista categorized by the type of software metrics the models are based
on. The differences in precision and recall measures show that different sets of software
metrics heavily influence the prediction performance of the corresponding prediction
model. Note that these are numbers for the Microsoft’s Windows Vista software prod-
uct, only. Switching to different software products in Microsoft or outside Microsoft
might lead to different prediction performances and might also result in different rank-
ings. As mentioned in Section 2.2, software metrics and their usefulness highly depend
on a potentially large number of relevant context variables [12].

The number of studies and approaches related to defect prediction published is
large and continues to grow. This section references only those approaches and studies
that are closely related to this work. The given list of references is neither complete
nor representative for the overall list of defect prediction models, their applications,
and related approaches.

In 1996, Basili et al. [11] validated object-oriented design metrics as quality indica-
tors and were among the first who empirically validated software metrics to be suitable
to predict and estimate the quality of software products. In the same year, Ohlson
and Alberg [112] presented one of the first empirical studies investigating the relation-
ship between software metrics and code quality measured by the number of test failure
reports. The authors also built a prediction model to identify the most defect prone en-
tities. In 1999, Fenton and Neil [43] systematically reviewed and criticized approaches
and studies related to defect prediction models and their theoretical and practical issues,
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while Briand et al. [26] performed an industrial case study confirming the correlation
between complexity metrics and defects.

In 2000, Graves et al. predicted fault incidence using software change history. In
their paper, the authors defined “code to be aged or decayed if its structure makes it
unnecessarily difficult to understand or change and we measure the extent of decay by
counting the number of faults in code in a period of time” [58]. Their paper was one of
the first studies on defect prediction models based on change history and showed that
process measures based on change history outperform complexity metrics when pre-
dicting fault rates. Denaro and Pezzè [41] showed that multivariate models can predict
fault-proneness of code entities across different software packages. Ostrand et al. [114]
showed that defect prediction models can be used to predict the number of faults for
large industrial systems using four consecutive releases spanning a development time
window of more than four years.

In 2005, Hassan and Holt [65] developed a dynamic fault prediction model based on
changes and fix frequencies only. Such dynamic fault prediction systems can be used
at any time and reflect changes to the top ten list of most defect prone entities as they
occur without retraining a statistical model explicitly. Later, Kim et al. [89] extended
this concept by adding not only frequently changed and fixed code entities to a so called
“bug cache” but also closely related entities. This way, the bug cache containing 10%
of all source code files represent up to 95% of faults fixed in the software product.

Nagappan et al. [104, 107, 108] distinguished between pre- and post-release de-
fects and used historical in-process and static complexity metrics for prediction pur-
poses (later verified by Holschuh et al. [74] using different industrial data). Schröter
et al. [126] used past failure history and Java import statements to predict the number
of defects for source files at design time; well before the actual code has been written
and complexity metrics could be collected. In 2007, Zimmermann et al. published a
study on defect prediction models targeting the open source software product Eclipse
and published the data set listing the number of “pre- and post-release defects for ev-
ery package and file in the Eclipse releases 2.0, 2.1, and 3.0” [153]. The data set also
contains complexity metrics for files and packages.

Nagappan et al. [109] sowed the influence of organizational structure on software
quality using a metric scheme to quantify organizational complexity. The authors
showed that organizational metrics are one of the most effective defect prediction mod-
els for Windows Vista. Lately, Zimmermann and Nagappan [151] introduced network
metrics in the field of defect prediction treating code entities as actors in communi-
cation or social media networks and method calls between these entities as links be-
tween actors. Later, Bird et al. [22] extended the set of network metrics by adding
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socio-technical network metrics to improve prediction accuracy. Tosun et al. [134] and
Premraj and Herzig [119] replicated these studies on different open source data sets. To
check weather defect prediction models also work across different projects, domains,
and process models Zimmermann et al. [152] conducted a large-scale experiment on 12
real-world applications running 622 cross-project prediction models. The results were
disillusioning. Only 3.4% of all prediction models actually worked. In 2011, Nagap-
pan et al. [110] introduced the concept of change bursts—consecutive code changes on
a set of files over a period of time. The authors (including the author of this thesis)
showed that change bursts mark the best single defect predicting metric on Windows
Vista. But the authors also showed that the very same metric fails for open source
projects like Eclipse.

Lately, Giger et al. [56] used fine-grained source code changes to improve defect
prediction models based on code churn metrics while Bird et al. identified “reasons that
low-expertise developers make changes to components and showed that the removal of
low- expertise contributions dramatically decreases the performance of contribution
based defect prediction” [23].

2.4 Hypotheses, Noise, and Bias

The discussion of defect prediction models in the last section unveiled a couple of di-
vergences. Defect prediction models highly depend on the underlying software project,
the programming language and in particular on the underlying development process.
Many promising approaches evaluated on industrial data sets performed poorly when
evaluated on open source projects and vice versa. Cross project defect prediction mod-
els tend to work only under specific circumstances and the number and sets of software
metrics performing well is changing not only from project to project but also differ
between consecutive releases of the same software product. This section focuses on
a very important but long ignored issue in data mining: underlying hypotheses, data
noise, and the resulting bias. Mockus [99] and Liebchen and Shepperd [94] mentioned
that data quality in empirical software engineering can be low and might impact the
outcome of many empirical studies. Liebchen and Shepperd [94] found that only a tiny
fraction of software engineering papers suggest data quality issues and their possible
effect on their analysis results. Nguyen et al. [111] reported similar issues with studies
investigating commercial software products, which usually follow more strict develop-
ment guidelines compared to open source projects. This section contains a discussion
over three hypotheses that are closely related with this thesis.
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2.4.1 Hypothesis 1: We can map all bugs to code changes

We already discussed that mapping issue reports to change sets and thus mapping fixes
to code entities is a key factor to measure the quality of the existing code base and thus
key for the research domain of mining version archives. But how accurate can we map
these artifacts? In 2009, Bird et al. [20] investigated bug and commit bias and their
potential implications for defect prediction models. Their result showed the presence
of systematic data noise and bias in several open source data sets affecting the perfor-
mance of award winning defect prediction models. Later, Bird et al. [21] developed
a framework allowing efficient manual inspections annotating mined data. But such
manual inspection phases are rarely found in studies conducting defect prediction re-
search. To ease the pain of manual inspection Wu et al. [145] developed an automatic
link recovery algorithm to improve links between issue tracking systems and change
sets in order to reduce data noise. Kim et al. [87] provided guidelines for acceptable
noise levels and proposed a noise detection and elimination algorithm that identifies
noised data instances.

2.4.2 Hypothesis 2: Bug reports are bug reports

Issue tracking systems contain many different types of issue reports: bug reports, fea-
ture requests, task descriptions, and requests for improvements. Most studies on defect
prediction models consider issue tracking systems and their content as unbiased. But
is every bug report a bug report? From a customer’s point of view, this might be true
since nearly every unexpected or undocumented behavior points to a defect. But does
every bug report really lead to a corrective maintenance change set? In 2008, Anto-
niol et al. [8] showed that a potentially large fraction of issue reports in issue tracking
systems of open source projects are wrongly classified. In the same paper, the authors
provided an algorithm to automatically detect issue report types using the description
and discussion within the issue report. But the authors did not show the exact extend
of these misclassified issue reports and their potential threat on code quality models. In
Chapter 4 we present the results of a manual inspection of over 7,000 issue reports and
show that misclassified issue reports can severely impact code quality models.

2.4.3 Hypothesis 3: Code changes are atomic

For most approaches a mapping between change sets and bug reports is insufficient. To
measure code quality, fixes need to be mapped to source entities such as source files
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or classes. For this purpose, issue reports have to be associated with those files that
were changed by the associated and corresponding change set. The distinct number
of associated issue reports per source files can then be used as quality measure for
individual source entities.

But simply assigning the associated issue reports of a change set to the changed
code entities assumes that all code entities were changed to resolve all assigned issues.
We assume that either all code entities were changed to fix all assigned issues or that
code changes resolving different issues are applied in separate change sets. Both is
not the case. Kawrykow and Robillard [84] showed that up to 15% of all method
updates were due to so called non-essential changes: “low-level code changes that
are i) cosmetic in nature, ii) generally behavior- preserving, and iii) unlikely to yield
further insights into the roles of or relationships between the program entities they
modify.” [84]. Thus, simply taking all code entities changed by a fixing change set as
being fixed introduces imprecision. Up to 15% of these code entities were changed to
perform cosmetic changes. Similar, what to do if a change set contains more than one
bug fix? How many bugs do we assign to which code entity? What to do when multiple
change sets are referencing the same issue report? Do we consider all changes as fixes
or do we consider only the last one as fix and all others changes as being reverted? In
Chapter 5 we discuss the issue of code changes serving multiple developer maintenance
tasks and present an untangling algorithm that can be used to reduce the amount of bias
introduced by non-atomic change sets.

2.5 Summary

In this chapter, we discussed the value of software archives that contain large amounts
of artifacts that describe the software development process and daily developer activi-
ties. Mining these archives is a key component to learn from past failures and patterns
and to use this historic knowledge to prevent future development issues. Combining
version control systems and issue tracking systems allows to reason about past code
quality. Software metrics have shown to be well suited for defect prediction purposes.
The related work presented in this chapter shows that mining version archives has a
large and active research community that gained more and more importance over the
past decade.

But we also discussed unresolved, severe issues in the field of mining version
archives. The number of studies showing the amount of data noise and bias is con-
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stantly growing. A lack of data integrity checks, which often require manual inspec-
tion, is threatening the community to produce unreliable algorithms and mining mod-
els. The number of solutions to reduce data noise and bias is limited and so are the
studies measuring the impact of noise and bias on existing mining models.
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Chapter 3

Change Genealogies

Parts of the contents of this chapter have been published in Herzig [73] and Herzig and
Zeller [71].

3.1 Introduction

Software development is an incremental process that uses earlier stages of a software
product to build newer versions. During software development, source code is added,
changed and removed. Directly after applying a code change, the software structure
and execution behavior may have changed [91, 113]. There exist many research stud-
ies to determine incomplete changes or further code changes that are likely to occur
soon [29, 77, 85, 127, 146, 154].

Research studies analyzing software histories have been mostly constrained to ei-
ther space or time. Being constrained to space means to examine the evolution of
single components, aggregating features over time. Being constrained to time means
to examine which components were changed at a single moment in time, extracting
co-changes from the resulting transactions. But we would like to reason over multiple
components at multiple points in time. However, such reasoning requires a holistic
view of all changes to all components.

31
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Consider the following example: Your development team develops and maintains
large-scale web applications with thousands of users. All web applications share a
central authentication service that has been proven to be reliable, and secure. To fur-
ther improve security, the team maintaining the authentication service decides to add
a 2-way authentication option requiring users to enter a second key stemming from
an additional device (e.g. PDA). The old authentication method, bypassing the newly
introduced 2-way authentication process, gets deprecated to allow backward compat-
ibility but to force all application teams to ensure a maximum of security. What will
be the consequences of this design decision? How will this change impact the quality
and stability of this project in the long term? How much development effort is neces-
sary to change all references to the now deprecated authentication method? How much
effort will it be to maintain two authentication APIs in parallel to allow backward com-
patibility? Influencing the development process over a period of time implies having
influence on later decisions. Thus, measuring the long-term impact of a code change
requires recording or reconstructing the dependencies between code changes. Change
sets causing more dependent change sets have wider long term impact than others.

To allow such multi-dimensional reasoning and to measure long-term impact of
code changes, we reused the theoretical concept of change genealogies [27] that model
dependencies between change sets in a graph structure and built a practical change
genealogy implementation modeling how changes influence and cause each other.

3.2 Source Code Change Dependencies

Brudaru and Zeller [27] proposed the theoretical concept of change genealogies that
models dependencies between individual code changes. In this context, the term code
change is too imprecise to allow any specific model to be built. Code changes can be
captured in different levels of granularity: changes to tokens, changes to code lines,
changes to methods, changes to files, etc. The lower the level of granularity the higher
the number of entities and dependencies to be modeled, but the more precise the de-
pendency model. On the other hand, choosing a low level of granularity requires very
detailed and exhaustive code analysis techniques to detect dependencies. The lower
the level of granularity the lower the context description making it harder to determine
code changes touching the same change context.
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A a = new A();6

public class C {
public C() {

B b = new B();

b.bar(5);
a.foo(5f);

}
}

3
4
5

7
 

8
9

Figure 3.1: Sample diff output. Deleted method calls (DC) and definitions (DD) are
marked red. Added method calls (AC) and definitions (AD) are marked green. Modifi-
cations applied to method definitions (MD) are marked orange. The diff output corre-
sponds to table cell of column CS 4 and row File3 shown in Figure 3.2. It also corre-
sponds to the genealogy vertex CS 4 shown in Figure 3.6.

Independent from granularity, we define the dependency between code changes as:

Definition (Change Dependency). Code change C2 depends on code change C1 if and
only if change C2 can be applied only if change C1 was applied before.

Dependencies between code changes are directed. Each dependency points from
the dependent code change (C2) to the code change that is required to be applied first
(C1). Detecting all possible dependencies between code changes requires full type and
cross-reference resolution over the complete project history. As an example: applying
the code change shown in Figure 3.1 depends on each code changes that added

• the deleted statement b.bar(5),

• the type definitions of class A and class B,

• the statements declaring the variables a, b,

• the method definition of A.foo(float).

In object-oriented code, many dependencies between code changes are caused by
methods calling each other. Adding a method call to a method that does not exist would
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cause compilation errors. Thus, applying a change set adding a method call depends
on the change set that last updated the method definition of the method that is called
(either modified or created). We call code changes that add, modify, or delete method
definitions and method calls change operations1. There are many other possible inter-
actions between code changes that would model code change dependencies on a lower
level of granularity (e.g. token or statements). But in this thesis, we will model only
dependencies between change operations and thus model only dependencies on method
level.

Detecting dependencies between change operations aggregates many dependen-
cies of lower level granularity into a much smaller set of dependencies, relaxing the
complexity and size of change genealogies as dependency models, but introducing im-
precision. Dependencies caused by changes to bindings and names are only covered if
method calls were added, modified, or deleted. In any other case, these dependencies
are not detected and modeled by change genealogies used in this thesis. Analyzing
object-oriented code, change operations represent code changes that are guaranteed
to influence either the interface of a module (e.g. adding or removing a method) or
the execution behavior of the module (e.g. adding new method calls). Thus, change
operations are likely to be dependent on past changes or be required by future changes.

To compute change genealogies on a project history, we reduce all change sets of
the project history to sets of change operations that added or deleted a method defini-
tion (AD, DD), modified a method body (MD), or added or deleted a method call (AC,
DC). Using an example change set that applied the code change shown in Figure 3.1 we
derive a set containing three change operations. One change operation that deletes the
method call b.bar(5), one change operation that adds the method call a.foo(5f),
and one change operation that modifies the method definition C.C() containing the
other two change operations. This example shown in Figure 3.1 corresponds to the
two change operations shown in Figure 3.2 for column CS 4 and row File3 using the
resolved type binding of the individual called classes. The MD representing the modi-
fication of C.C() is an indirect change operation caused by the DC and AC operations
in the method body of C.C(). Indirect change operations are hidden in Figure 3.2.

The set of possible dependencies between change operations is limited and can be
described using a set of change dependency rules that can also be used to implement
a dependency detection algorithm. Each change operation to a method depends on the
previous modification or deletion of the very same method.

1A more detailed description on change operations can be found in Section 2.1.3.
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Table 3.1: Change dependency rule set defining valid dependencies between change
operations adding, modifying, and deleting method definitions and method calls.

Rule Description

ADD → DDD A change operation AD adding a method definition D might
depend on a DD deleting a method with the same full-qualified
path. (One can define a method only once.)

MDD → ADD A change operation MD modifying a method Definition D

depends on the last change operation to the definition D of the
method (this can either be a modification MD to D or the
creation AD of D).

MDD → MDD

DDD → ADD A deletion DD of a method definition D depends on either the
initial AD that added method definition D or the last MD that
modified D (if D got modified since its definition).

DDD → MDD

ACD → ADD A change operation AC adding a call to method D depends on
either the initial AD that added method definition D or the last
MD that modified D (if D got modified since its definition).

ACD → MDD

DCC → ACC A change operation DC deleting a method call C depends on
the initial AC that added method call.



36 CHAPTER 3. CHANGE GENEALOGIES

File 2

File 3

File 4

File 1

Change Set (CS2)

x  =  B.bar(5)

Change Set (CS1)

int  A.foo(int)

void B.bar(int)

Change Set (CS4)

x  =  B.bar(5)
x  =  A.foo(5f)

d  =  A.foo(d)

Change Set (CS5)

e  =  A.foo(-1f)

Change Set (CS3)

d  =  A.foo(5f)

int   A.foo(int)
float A.foo(float)+

+

+

+

+ -

+

+

+

-

Figure 3.2: We characterize change sets by method calls and definitions added or
deleted. Changes depend on each other based on the affected methods.

Change operations adding a method call depend on the change operation that added
the called method definition or the change operation that changed the method defini-
tion. A change operation deleting a method call depends on the change operation that
added the method call just deleted. The complete change dependency rule set also con-
tains MD change operations can be found in Table 3.1. The change dependency rule set
strictly follows the basic dependency definition. Method definitions are identified using
their full-qualified name. Method calls are identified using the absolute position2 of the
method calling statement in the source code. Dependencies between change operations
are not only directed but also labeled. The edge label contains the full-qualified name
of the method definition or method call that caused the dependency (see Table 3.1 for
detailed description). Although we limit the concept of change operations to method
definitions and method calls in this thesis, the basic concept of dependencies between
code changes is independent from the chosen level of change dependency granularity.
When switching to more fine grained granularity levels (e.g. line or token based) the
concept of change genealogies and all approaches relying on the given change depen-
dency rules will remain valid and functional.

3.3 The Concept of Change Genealogies

The original concept of change genealogies as given by Brudaru and Zeller [27] mod-
els change dependencies using directed acyclic graphs. These graphs contain edges
C2 → C1 if and only if change C2 can be applied only if change C1 was applied before.
This model matches our change dependency definition given in Section 3.2. But depen-
dency graphs modeling dependencies between individual change operations will not be

2source file and character position within file
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File 3

File 4

File 1

File 2

Change Set (CS1) Change Set (CS2) Change Set (CS4) Change Set (CS5)Change Set (CS3)

AD    AC

AD    DD

AC    DC

DD    AD

AD    AC AD    AC
AD    AC

AD    AC

Figure 3.3: Change genealogy modeling sample history shown in Figure 3.2.

acyclic. Adding two method definitions that call each other will cause a dependency
cycle. We will deal with that problem in Section 3.4. For now, we use the definition of
change genealogies as give by Brudaru and Zeller [27] without requiring a genealogy
graph to be acyclic.

The change genealogy graph structure consists of vertices, each corresponding to
exactly one change operation. Edges represent a direct structural dependency between
the corresponding change operations (see Section 3.2). The direction of a dependency
edge corresponds to the direction of the dependency between source and target. Each
dependency edge is annotated with a rationale—the change dependency rule that le-
gitimates the dependency edge (see Table 3.1). If there exist multiple dependencies
between the same pair of change operations, the rationale comprises them all. Change
genealogies based on change operations are likely to contain cycles. Change operations
that depend on each other and being applied simultaneously are occurring frequently.

Figure 3.3 shows a change genealogy graph that models all change operation depen-
dencies extracted from our sample history shown in Figure 3.2. Each change operation
shown as diff statement in Figure 3.2 is represented as graph vertex in Figure 3.3.
Change sets on one file might be represented using multiple genealogy vertices as
shown for CS 3 on File1 in Figure 3.3. One genealogy vertex (left) for the removal of
method definition int A.foo(int) and one genealogy vertex (right) for the addition
of method definition float A.foo(float).

3.3.1 Properties of Change Genealogies

Change genealogies are simple graph structures modeling structural dependencies be-
tween individual change operations. The various properties of the graph structure make
change genealogies powerful.
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Vertices represent temporal and spatial position. Each vertex of a change geneal-
ogy corresponds to a change operation once applied to the software project.
Change operations are bound to a specific point in time—the timestamp of the
change set that applied the change operation—and to a specific location—the
code artifact the change operation was applied to. Having a two dimensional
coordinate (temporal and spatial) each vertex does not only represent a change
operation being applied to the source code, but also a historic event and its exact
position in the two dimensional space.

Vertex annotations. Vertex annotations add important context information. Each ver-
tex is annotated with the original chunk of changed lines explaining the change
operation and with the timestamp, author, and identifier of the change set that
applied the change operation, and with the full-qualified method, class, and file
names that were affected by the change operation (see Figure 3.4). Using ver-
tex annotations it is possible to retrieve details about the context in which the
change operation was applied. Each vertex annotation references the original
change set in the version control system allowing to map genealogy vertices to
other artifacts such as issue reports as discussed in Section 2.3.4. For reasons of
simplicity, vertex annotations are not shown in Figure 3.3.

Edge annotations. Edge annotations add rationales to each modeled dependency. The
rational identifies the change dependency rule that legitimates the dependency
edge as shown in Figure 3.3. If there exist multiple dependencies between the
same pair of change operations, the rationale comprises them all. The full- qual-
ified names of the method definitions and method calls depending on each other
can be retrieved from the corresponding vertex annotations. Change genealogy
edge annotations enable the user to ignore single or multiple change dependency
rules for analysis purposes. If an analysis of change dependencies shall ignore all
dependencies based on method calls or modification change operations, one sim-
ply ignores edges annotated with corresponding change dependency rules when
traversing the change genealogy graph.

Edges span periods of time. The source and target change operations of a depen-
dency edge may be applied at different points in time. Thus, change genealogy
edges span arbitrary long periods of time. The vertex annotations contain the
timestamps at which source and target vertex were applied. Using this informa-
tion the actual length of the time span can be derived. An important property
of change genealogies is that the dependent change operations are either applied
after or simultaneously with the dependency edge target change operations—the
future cannot influence the past.
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Genealogy 
Vertex

Author

Timestamp

Change set ID
method name

class namefull qualified

file name

Vertex annotation:

Figure 3.4: Example change genealogy vertex annotation showing the annotation con-
tent that is attached to every change genealogy node.

Spatial dimension. The spatial dimension of a change genealogy is given by the fact
that different change operations might affect different source entities such as
methods, classes, and files. Thus, change genealogy edges might link different
space coordinates with each other.

Cycles. Change genealogies are likely to contain dependency cycles. Although the the-
oretical, original definition of change genealogies [27] did not allow dependency
cycles, the change genealogy implementation used in this thesis is likely to con-
tain dependency cycles. Two change operations applied in the same change set
and depending on each other (e.g. adding two method definitions calling each
other) will introduce a dependency cycle in the corresponding change geneal-
ogy. It is desirable to define change genealogies as directed acyclic graph since
acyclic graphs would define a topological order on dependent change operations.
We will deal with this problem later in Section 3.4.

3.4 Change Genealogies Layers

The basic concept of change genealogies as discussed in Section 3.3 models depen-
dencies between single change operations. Although this level of granularity already
ignores more detailed dependencies between modifications of single statements or to-
kens, there exist cases in which dependencies between change operations are already
too fine grained. Analyzing the change dependencies between different developers
requires dependency analysis between change sets. Change operations in the same



40 CHAPTER 3. CHANGE GENEALOGIES

Figure 3.5: Change genealogy layers.

change set are applied by the same developer and thus can be combined. To support
higher-level change genealogy analyses, the change genealogy framework presented in
this thesis can generate different layers on top of the basic change genealogy layer mod-
eling change operation dependencies. For this purpose, a partition of change genealogy
vertices is generated on the fly without the need to recompute vertex dependencies. De-
pendency edges connecting two change operations in the same higher-level partition get
dropped. Dependencies between two change operations that are contained by different
partitions will be represented by a dependency edge between the two corresponding
change operation partitions. Figure 3.5 shows the concept of change genealogy layers
graphically. The higher the change genealogy layer, the higher the dependency abstrac-
tion. One can compare layers with zoom levels on street maps. The lower the zoom
factor, the lower the details presented on the map. Although tiny streets are not visi-
ble anymore, connections between major cities remain visible. The developed change
genealogy framework allows user defined partition algorithms to create arbitrary user
defined partition layers. We divide change genealogy layers into two main categories:
structural layers and temporal layers. Change genealogies remain directed, indepen-
dent from the layer and the partition type. But partitioning the change genealogy graph
structure might add additional graph properties to the change genealogy layer. While
every basic change genealogy graph structure is likely to contain path cycles, there
exist graph partitions that are guaranteed to be acyclic.
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CS1 CS2 CS4CS3 CS5

day 0   0 day   1 day   6 day   15 day

File 1, File 2

AD    AC

File 3 File 1, File 2 File 3, File 4 File 4

AD    AC

AD    AC

+ + + +

AC    DD

AC    DC

Figure 3.6: Change set layer of the change genealogy shown in Figure 3.3.

Structural layers are based on partitions based on the structural dependency be-
tween change operations within the same change set. A useful structural layer might be
derived by grouping change operations within a single change set such that each change
operation group contains changes applied to the same source artifact (e.g. source files).
Using such a structural layer raises the level of granularity from method definitions and
method calls to source file level. Temporal layers create change operation partitions
based on their temporal dependencies. As indicated in Figure 3.5, the graph partitions
in these layers span multiple change sets. This way one can model dependencies be-
tween different development phases (e.g. between weeks or between development and
testing phase).

Change Set Layer

One of the important temporal change genealogy layers is the so called change set
layer. The layer corresponds to a change genealogy in which vertices represent dif-
ferent change sets applied to the version control system. Dependency edges model
dependencies between individual change sets—dependencies between change opera-
tions that were applied at different points in time. Figure 3.6 shows the change set
change genealogy layer of our initial example history shown in Figure 3.2. The pre-
sented change set layer is based on the change genealogy presented in Figure 3.3 and
simply aggregates vertices and dependencies to the change set level. As shown, at the
change set level each vertex corresponds to exactly one change set of the project his-
tory. A change set CS j depends on a change set CS i if and only if at least one of the
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Figure 3.7: Overview over the change genealogy computation process. This overview
corresponds to the overall algorithm as shown in Algorithm 3.1.

change operations applied by CS j depends on at least one of the change operations ap-
plied by CS i. Edge annotations at the change set layer contain all edge annotations of
those edges that reach from one change set partition to the other. At this layer, different
vertices were applied at different points in time allowing a strict temporal order Otemp

of change genealogy vertices. It is natural that change operations cannot depend on
change operations that have not been applied at that time. There exist only dependency
edges vi ← v j where i ≺ j ∈ Otemp. Thus, Otemp guarantees the change genealogy layer
to be acyclic.

3.5 Extracting Change Genealogies

The computation of change genealogies is straightforward but requires high computa-
tional effort. Change genealogies are based on change operations. Constructing change
genealogies requires the computation of change operations for the entire given version
history. To compute change operations for an individual change set we have to checkout
and compile the corresponding change operation and its precedent change operation.
Depending on the length of the project history and the size of each individual change
operation this process might take days. The overall process of generating change ge-
nealogies is shown in Figure 3.7 and described in more detail in Algorithm 3.1 using
pseudo code. The process diagram from Figure 3.7 is repeated for every change set in
the version archive.

Line 2 of Algorithm 3.1 calls a function that generates the change operations for a
particular change set. This function is described in Section 3.5.1. Our overall algorithm
then iterates over all change operations of the current change set to search for added
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Input: Version Archive SCM

1 foreach change set CS i ∈ SCM do
2 OPS i = getChangeOperations (CS i); // See Section 3.5.1
3 foreach OPi ∈ OPS i do
4 addVertexToGenealogy (OPi); // Simply add vertices
5 end
6 addEdgesToGenealogy (OPS i); // See Section 3.5.2

7 end

Algorithm 3.1: Algorithm to compute change genealogies.

(AC) and deleted (DC) method calls. This is necessary since AC and DC operations
potentially change a method definition by modifying the method body. Thus, the algo-
rithm fetches the surrounding method definition of each AC and DC change operation
and adds the newly created change operation to the list of change operations for the
current change set. Once all change operations are computed, we add a vertex for each
change operation to the change genealogy data structure. The procedure describing
the usage of change dependency rules (see Section 3.2) and the computation of change
genealogy edges is described in Section 3.5.2.

Algorithms presented in this chapter assume can only operate on single software
development branches. Change genealogies covering multiple branches are not sup-
ported and should in general be handled with care. Multiple branches can contain
multiple versions of method definitions with the same full-qualified names referring to
different method definitions.

3.5.1 Computing Change Operations

This section contains a detailed description of how to extract change operations from
version archives. As discussed in the previous section, change operations are extracted
based on change sets. For each change set the algorithm will return a set of change op-
erations that were applied within the change set. All change operations discussed in this
section are based on method definitions and method calls declared in object-oriented
source code. Still, the general approach is also applicable for other levels of source
code entity granularity as well as for non object-oriented code requiring adaptations
and many more special cases.
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Data: De fCS i−1 = {method definitions ∈ CS i−1}
Data: CallCS i−1 = {method calls ∈ CS i−1}

Input: CS i

Output: (DDi, MDi, ADi, DCi, ACi) ; // Change operations of CS i

1 Fmodified = checkout(CS i) ; // modified files
2 DDi = ∅; MDi = ∅; ADi = ∅; DCi = ∅; ACi = ∅;

3 foreach f ∈ Fmodified do

// method definitions and calls in f
4 (De f( f ,CS i),Call( f ,CS i)) = PPA(f) ; // using PPA [37]
5 ADi = ADi ∪ (De f( f ,CS i) \ De fCS i−1 );
6 DDi = DDi ∪ (De fCS i−1 \ De f( f ,CS i));

// we identify calls using their code position that might
// be shifted (no details here).

7 ACi = ACi ∪ (Call( f ,CS i) \CallCS i−1 );
8 DCi = DCi ∪ (CallCS i−1 \Call( f ,CS i));

// check for implicit MD caused by
// added and deleted method calls

9 foreach OPcall ∈ {ACi ∪ DCi } do

// get method definition modified by call operation
10 D = getSurroundingMethodDef(OPcall);
11 if {DDi ∪ ADi ∪ MDi } contains no operation on D then
12 MDi = MDi ∪ {createMD(D)};
13 end
14 end
15 end

Algorithm 3.2: Algorithm to compute change operations based on change sets.
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The algorithm to compute the change operations for a given change set (see Al-
gorithm 3.2 on page 44) takes a set of defined method definitions and method calls as
input (in Algorithm 3.2 it is a map associating method definitions and method calls
to change operations but for this algorithm a simple set would suffice). Computing
change operations for a series of consecutive change sets you can pass the return value
of Algorithm 3.2 for CS i as input for the algorithm computing change operations for
CS i+1. For the first change set of the series CS start one has to compute this set of present
method definitions based on the source code revision CS start−1. If CS start equals the
very first revision in the project’s history, the set can be left empty since no source code
was present before CS start.

Algorithm 3.2 hides the details of source code parsing and is not optimized to keep
the pseudo code as simple as possible. In general, we try to compile each source
code file using the partial program analysis tool (PPA) for Java [37] that is based on
the Eclipse JDT3 framework. Provided with the source code, the PPA tool provides
a abstract binding tree (ABT) corresponding to this source code. We identify method
definitions and calls by simply traversing the ABT returned by PPA using the standard
JDT visitor pattern framework. We ignore type bindings that cannot be identified by
PPA (e.g. dynamically dispatched type bindings).

The full-qualified Java method definition signature can be used as a primary key to
identify every Java method definition. Multiple methods having the exact same full-
qualified signature are prohibited by the Java language standard. Thus, identifying
added and deleted method definition change operations can be done using set opera-
tions. This is different from Java method calls (line 3 to line 15 in Algorithm 3.2). For
method calls we have to determine pairs of old and new method call locations. Since
code lines were added before individual method calls we have to compute offsets to
find for each method call location the corresponding method call location of the previ-
ous revision. Those method calls that have no corresponding location are newly added.
For offset computation we use GNU diff blocks.

The output of this change operation computation algorithm presented in Algo-
rithm 3.2 can be directly used to add change genealogy vertices. For each computed
change operation we add one vertex to the base change genealogy layer. The algorithm
used to add change genealogy vertices is discussed in the next section.

3http://www.eclipse.org/jdt/
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3.5.2 Computing Genealogy Edges

In the previous section we discussed how to compute change operations correspond-
ing to line 2 in Algorithm 3.1. Each of the change operations computed will finally
be added (see line 4 in Algorithm 3.1). In this section, we will go through the algo-
rithm that uses the change dependency rules discussed in Section 3.2 to add edges to
the change genealogy under construction. Before executing line 6 in Algorithm 3.1
the change genealogy graph structure contains only change operations applied in this
change set but no edges to earlier applied change sets.

The pseudo code algorithm adding genealogy edges is presented in Algorithm 3.3
and mainly consists of switch statements to handle the appropriate change dependency
rules. The algorithm makes use of the fact that Algorithm 3.1 iterates over change sets
in topological order. This way, we can maintain so called operation stacks that contain
one stack of change operations for each known method definition and method call
instance. Using the operation stacks, we can quickly identify those change operations
that modified a method definition or method call previously (also in topological order).
The newly processed change operations get pushed onto the corresponding change
operation stack. Each added edge is labeled with the change dependency rule that
caused the edge to be added. Not shown in Algorithm 3.3 is the case for duplicate
edges. If an edge between two change operations already exists, we simply update the
label of the existing edge by adding the change dependency rule if not already present.
The most important part of the edge computation algorithm is the change operation
sorting (see line 1 in Algorithm 3.3). Sorting the change operations is crucial since it
ensures correct inner change set dependencies. If a change operation adding a method
call to a method m is processed before the change operation adding m in the same
change set the method stacks would not contain the AD change operation adding m
and thus we would miss important inner change set dependencies. The total order of
change operations is bound to change operations in the same change set. In one change
set, each method definition and call can only be assigned to one change operation.

With the termination of this algorithm we successfully completed one computa-
tion process (see Figure 3.7) for one change set. This sequence of operations is then
repeated for all remaining change sets in topological order. The algorithm can be ter-
minated after each change set iteration without compromising the underlying change
genealogy structure. Adding more change sets to an already existing change genealogy
requires reconstruction (e.g. serialization and restore) of the operation stacks. Com-
puting a complete change genealogy typically takes hours but highly depends on the
history and code size of the project under analysis. Adding a small set of change sets
to an existing change genealogy (e.g. a development week) usually takes minutes.
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Input: OPS i

Data: De fMap = a map from method definitions to a list of change operations
last modifying the definition.

Data: CallMap = a map from method call location to a list of change operations
last modifying the call.

// Sort change operations by priority:
// DD ≺ MD ≺ AD ≺ DC ≺ AC

1 OPS i = sortChangeOPs(OPS i);

2 foreach op in OPS i do
3 switch the type of change applied by op do
4 case AD
5 D = full-qualified name of added defintion;
6 De fpre f = De fMap [D][end] ; // might also be a DD
7 addDependency(De fpre f ← op);
8 De fMap [D][end + 1] = op
9 case MD

10 case DD
11 case AC
12 D = full-qualified name of added defintion;
13 De fpre f = De fMap [D][end] ; // must not be a DD
14 addDependency(De fpre f ← op);
15 De fMap [D][end + 1] = op
16 case DC
17 L = location of deleted method call;
18 Callpre f = CallMap [L][end] ; // must not be a DC
19 addDependency(Callpre f ← op);
20 CallMap [L][end + 1] = op
21

22 endsw
23 end

Algorithm 3.3: Algorithm to compute change genealogy edges given a set of change
operations of an change set.
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3.5.3 Change Genealogy Layers as Intelligent Wrappers

In Section 3.4 we discussed the concept of change genealogy layers. Change genealogy
layers are read-only layers that can be used to inspect the underlying change geneal-
ogy from different perspectives. Change genealogy layers cannot be used to modify
the underlying change genealogy. This way, we ensure that the base change genealogy
contains edges between individual change operations. If we would allow adding edges
between two change sets, we could not determine the corresponding change opera-
tions that caused the edge to exist and thus would destroy the accuracy of other change
genealogy layers. Each change genealogy layer is operating on the basic change ge-
nealogy layer and its underlying graph database translating read requests (e.g. get
all dependent nodes) into read requests sent to the basic change genealogy layer. In
similar fashion, the response value returned by the basic change genealogy layer is
transformed or aggregated into a response value that matches the layer partition strat-
egy. The algorithms 3.4 and 3.5 show pseudocode translating read requests into base
layer read requests. Algorithm 3.4 shows the pseudo code to check whether the change
set change genealogy layer contains an edge between two change sets. Algorithm 3.5
shows pseudo code for getting all dependent change sets of a given change set. Due to
the fact that change genealogy layers are read only layers implementing a new change
genealogy layer means to implement a single class interface.

3.6 Change Genealogy Assumptions

Like many other mining approaches, change genealogies depend on the development
process used when the analyzed software was implemented. Violations of these as-
sumptions have to be considered to bias approaches based on such assumptions. In this
section we will discuss the most threatening assumption that we made when construct-
ing change genealogies and in particular when defining the default change set change
genealogy layers.

When lifting the level of granularity from basic change operations to change sets,
we combine all basic change operations change genealogy vertices that are applied
simultaneously to the version control system into one higher level change set change
genealogy vertex. Consequently we assumed that all code changes applied in a change
set depend on each other (see Section 2.4.3). But this is only true if we can assume that
all code changes applied in the same change set serve the same developer maintenance
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Data: CGbasic = basic underlying change genealogy model
Input: CL f rom = change set that shall be source of edge.
Input: CLto = change set that shall be target of edge.

1 foreach CO f rom ∈ getAppliedChangeOperations(CL f rom) do
2 foreach COto ∈ getAppliedChangeOperations(CLto) do
3 if edge(CO f rom,COto) ∈ CGbasic then
4 return true
5 end
6 end
7 end
8 return false

Algorithm 3.4: Change set change genealogy layer algorithm to check if an edge
between two change sets exist.

Data: CGbasic = basic underlying change genealogy model
Input: CLin = change set to get dependent change sets for

1 result = ∅;
2 foreach COin ∈ getAppliedChangeOperations(CLin) do
3 foreach {edge(COdep,COin) ∈ CGbasic } do
4 if COdep < CLin then
5 result = result ∪ {COdep}

6 end
7 end
8 end
9 return result;

Algorithm 3.5: Change set change genealogy layer algorithm to get all dependent
change sets of a given change set.
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task. If the version control system contains tangled change sets, which serve multi-
ple developer maintenance tasks, aggregating from the basic change set to any higher
change genealogy layer is likely to add further imprecision and thus bias approaches
based on change genealogies.

To explain how tangled change sets affect higher layers of change genealogies lets
consider a typical example of tangled change sets. Figure 3.8 shows a real world ex-
ample change set that changes two source files Fx and Fy. The change set adds one
new method definition to class X (AD1) and two method calls (AC1 and AC2) to class X
and class Y . The commit message of the corresponding change set states: “Fixing is-
sues #956 and #1072”. Issue #956 is a bug report while issue #1072 requests a new
feature. On the basic change genealogy layer that models dependencies between indi-
vidual change operations this tangled change set causes no issues. But when using the
higher order change set change genealogy layer, all three change operations will be in
the same change genealogy partition and thus will be represented by a single change
genealogy vertex. The corresponding vertex represents a feature implementation and a
bug fix and combines the change set dependencies caused by the bug fix (AC1 and AC2)
and the feature implementation (AD1). Thus, the corresponding change set change ge-
nealogy layer models AD1 to be dependent on the method definition of X.getState()
and the change operations AC1 and AC2 depend on those method definitions called
within the newly added method X.recoverState().

A classification model that separates bug fixing from feature implementing change
sets can classify such tangled change sets either as bug fix or as feature implementation.
Independent from the decision of the classification model, the classification returned
by the models has to be wrong. A single change set can only be classified as bug fixing
or feature implementing but served both development purposes.

Tangled change sets also affect approaches predicting the long-term impact of code
changes or predicting defects for source files. The wrongly combined dependencies of
both developer maintenance tasks may indicate long-term cause effect chains (Chap-
ter 7) that do not exist. Similar, larger tangled change sets being a composition of
multiple trivial code changes can be interpreted as a single crucial code change influ-
encing defect prediction models as described in Chapter 6.

In Chapter 5 we will investigate the impact of tangled code changes on other com-
mon mining approaches and provide an algorithm that can be used as preprocessing
step to reduce the amount of data noise introduced by tangled change sets.
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public State recoverState() {
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public boolean isValid() {
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}
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Figure 3.8: Tangled change set example.
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3.7 Summary

Constant changes in requirements induce constant code changes. It is more than natural
that code changes depend on each other. Understanding the complexity of software
development activities and being able to track back decisions that formed the code
base provides fundamental information that determines the quality of a change. Change
genealogies model change operation dependencies using structural code dependencies
that cannot be detected by standard mining techniques [30, 146, 149]. In general,
change genealogies are not bound to model dependencies between change operations.
It is possible to choose more fine grained dependency levels which then would require
a much larger set of change dependency rules and require more detailed source code
dependency analysis techniques. Change genealogies presented in this thesis are based
on projects written in Java and use dependencies determined on method level. Adapting
change genealogies to other object-oriented programming languages is possible but
would require different source code dependency analysis tools. Switching from purely
object-oriented code to functional programming languages or mixed languages such
as C would require a definition of change dependency rules for code changes affecting
functional language constructs and entities. Considering all vertex and edge properties,
change genealogies model structural code change dependencies between individual
change operations applied at different times and affecting different source code entities.



Chapter 4

It’s not a bug. It’s a feature.

Parts of the contents of this chapter have been published in Herzig et al. [68].

4.1 Introduction

In empirical software engineering, it has become commonplace to mine data from
change and bug databases to detect where bugs have occurred in the past, or to predict
where they will occur in the future. Later in Chapter 6, we will associate bug reports to
code changes to mark change sets as bug fixes and to reason about the purpose of code
changes and code quality. The accuracy of such measurements and predictions depends
on the quality of the data. Therefore, mining software archives must take appropriate
steps to assure data quality.

A general challenge in mining is to separate bugs from non-bugs. In a bug database,
the majority of issue reports are classified as bugs—that is, requests for corrective code
maintenance. However, an issue report may refer to “perfective and adaptive mainte-
nance, refactoring, discussions, requests for help, and so on” [8]—that is, activities that
are unrelated to errors in the code, and would therefore be classified in a non-bug cat-
egory. If one wants to mine code history to locate or predict error prone code regions,
one would therefore only consider issue reports classified as bugs. Such filtering needs
nothing more than a simple database query.

53
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However, all this assumes that the category of the issue report is accurate. In 2008,
Antoniol et al. [8] raised the problem of misclassified issue reports—reports classified
as bugs, but actually referring to non-bug issues. If such mix-ups (which mostly stem
from issue reporters and developers interpreting “bug” differently) occurred frequently
and systematically they would introduce bias in data mining models threatening the
external validity of any study that builds on such data: Predicting the most error-prone
files, for instance, may actually yield files most prone to new features. But how often
does such misclassification occur and does it actually bias mining models?

These are the questions we address in this chapter. From five open source projects
(Section 4.2), we manually classified more than 7,000 issue reports into a fixed set of
issue report categories clearly distinguishing the kind of maintenance work required to
resolve the task (Section 4.3). Our findings indicate substantial data quality issues:

Issue report classifications are unreliable. In the five bug databases investigated,
more than 40% of issue reports are inaccurately classified (Section 4.4)

Every third bug is not a bug. 33.8% of all bug reports do not refer to corrective code
maintenance (Section 4.5).

After discussing the possible sources of these misclassifications (Section 4.6), we
turn to the consequences. We find that the validity of studies regarding the distribution
and prediction of bugs in code is threatened:

Files are wrongly marked as fixed. Due to misclassifications, 39% of files marked as
defective actually have never had a bug (Section 4.7).

Files are wrongly marked to be error-prone. Between 16% and 40% of the top 10%
most defect-prone files do not belong in this category after reclassification (Sec-
tion 4.8).

Section 4.9 details studies affected and unaffected by these issues. After discussing
threats to validity (Section 4.10), we close with conclusion and consequences (Sec-
tion 4.11).
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Table 4.1: Details of projects used for manual issue report classification.

Project Maintainer Tracker type # Reports

HttpClient Apache Jira 746
Jackrabbit Apache Jira 2,402
Lucene Apache Jira 2,443
Rhino Mozilla Bugzilla 1,226
Tomcat5 Apache Bugzilla 584

4.2 Study Subjects

We conducted our study on five open-source Java projects described in Table 4.1. We
aimed to select projects that were under active development and were developed by
teams that follow strict commit and bug fixing procedures similar to industry. We also
aimed to have a more or less homogeneous data set, which eased the manual inspec-
tion phase. Projects from Apache and Mozilla seemed to fit our requirements best.
Additionally, we selected the five projects such that we cover at least two different and
popular bug tracking systems: Bugzilla1 and Jira2. Three out of five projects (Lucene,
Jackrabbit, and HttpClient) use a Jira bug tracker. The remaining two projects (Rhino,
Tomcat5) use a Bugzilla tracker.

For each of the five projects, we selected all issue reports that were marked as being
RESOLVED, CLOSED, or VERIFIED and whose resolution was set to FIXED and
performed a manual inspection on these issues. We disregarded issues with resolution
in progress or not being accepted, as their features may change in the future.

The number of inspected reports per project can be found in Table 4.1. In total, we
obtained 7,401 closed and fixed issue reports. 1,810 of these reports originate from the
Rhino and Tomcat5 projects and represent Bugzilla issue reports. The remaining of
the 5,591 reports were filed in a Jira bug tracker.

1http://www.bugzilla.org/
2http://www.atlassian.com/JIRA

http://www.bugzilla.org/
http://www.atlassian.com/JIRA
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Figure 4.1: The manual report inspection process.

4.3 Manually Classifying Bug Reports

To validate the issue categories contained in the project bug databases, we manually
inspected all 7,401 issue reports and checked if the type of each report reflects the
maintenance task the developer had to perform in order to fix the corresponding issue.
For our manual inspections, we used (a) the issue report itself, (b) all the attached
comments and discussions, as well as (c) the code change that was applied to the source
code. We analyzed code changes if and only if neither the issue report nor its comments
clarified the underlying problem of the reported issue. Each issue report was then
categorized into one of eleven different issue report categories shown in Table 4.2.

To assign issue reports to one of the categories, we used a fixed set of rules that de-
scribe how to classify issue reports based on specific issue report properties. If none of
these rules applied, and if we were not able to understand the underlying problem even
when inspecting a possible attached patch, we left the original category unchanged.
Hence, we favored possible original misclassification noise over new misclassification
noise introduced by manual misclassification. The rule set used for classification is
given in Section 4.3.1. For each category, we also present a typical real world example.
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Table 4.2: The issue report categories used for manual classification.

Category Description

BUG Issue reports documenting corrective maintenance tasks
that require semantic changes to source code.

RFE Issue reports documenting an adaptive maintenance task
whose resolving patch(es) implemented new functional-
ity (request for enhancement; feature request).

IMPR Issue reports documenting a perfective maintenance task
whose resolution improved the overall handling or per-
formance of existing functionality.

DOC Issue reports solved by updating external (e.g. website)
or code documentation (e.g. JavaDoc).

REFAC Issues reports resolved by refactoring source code. Typ-
ically, these reports were filed by developers.

OTHER Any issue report that did not fit into any of the other
categories. This includes: reports requesting a backport
(BACKPORT), code cleanups (CLEANUP), changes to spec-
ification (rather than documentation or code; SPEC), gen-
eral development tasks (TASK), and issues regarding test
cases (TEST). These subcategories are found in the pub-
lic dataset accompanying this paper.
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The manual classification was conducted in three phases as shown in Figure 4.1:

1. In the first phase, the first author inspected all 7,401 issue reports and assigned a
report category using the set of report classification rules.

2. The second author re-classified the set of issue reports that were considered to be
misclassified after phase one. Again, the second author was using the fixed set
of classification rules and the issue reports only; he had no access to the classi-
fication results of the first phase. Overall, 3,093 misclassification candidates got
reinspected.

3. We then compared the classification results from phase one and phase two to
detect classification conflicts—issue reports that were classified differently by
the first and the second author. This affected 340 of the 3,093 re-inspected is-
sue reports; the other 94% were independently classified identically by the first
and second author and thus validated the accuracy and complexness of the rule
set. Each classification conflict finally got resolved by a joint pair-inspection
of both authors, partially inducing clarification and refinements of the rule set.
(Section 4.3.1 lists the final rule set.)

The first two phases of the inspection process were processed by one individual
each. This ensures that all issue reports across all projects are treated and categorized
equally. Every issue report reported as misclassified in this paper was independently
verified. We did not double check whether the first author did oversee misclassified
reports. This implies that the presented misclassification ratios and impact measure-
ments can be considered as a lower bound. The effort for the 10,884 inspections was
4 minutes per issue report on average, totaling 725 hours, or 90 working days.

4.3.1 Classification Rules

A report is categorized as BUG (Fix Request) if. . .

1. it reports a NullpointerException (NPE).

2. the discussion concludes that a semantic code change was applied to perform a
corrective maintenance task.

3. it fixes runtime or memory issues cause by defects such as endless loops.
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Example: Tomcat5 report 281473 is categorized as RFE but reports a bug that causes a “JasperException for jsp files that

are symbolic links”. The underlying issue was that tomcat used canonical instead of absolute paths. The applied fix touches

one line replacing one method invocation. According to Rule 2, we classified the applied code change as a corrective

maintenance task and thus the issue report as BUG.

A report is categorized as RFE (Feature Request) if. . .

1. it requests to implement a new access/getter method.

2. it requests to add new functionality.

3. it requests to support new object types, specifications, or standards.

Example: Lucene report LUCENE-20744 is categorized as BUG. But the applied patch and the discussion unveil that a new

versioning mechanism had to be implemented. The first comment by Uwe Schindler makes it explicit: “Here the patch. It

uses an interface containing the needed methods to easyliy [sic] switch between both impl. The old one was deprecated

[...]”. This is reclassified as RFE by Rule 2.

A report is categorized as IMPR (Improvement Request) if. . .

1. it discusses resource issues (time, memory) caused by non-optimal algorithms or
garbage collection strategies.

2. it discusses semantics-preserving changes (typos, formatting) to code, log mes-
sages, exception messages, or property fields.

3. it requests more or fewer log messages.

4. it requests changing the content of log messages.

5. it requests changing the type and/or the message of Exceptions to be thrown.

6. it requests changes supporting new input or output formats (e.g. for backward
compatibility or user satisfaction).

7. it introduces concurrent versions of already existent functionalities.

3https://issues.apache.org/bugzilla/show_bug.cgi?id=28147
4https://issues.apache.org/jira/browse/LUCENE-2074

https://issues.apache.org/bugzilla/show_bug.cgi?id=28147
https://issues.apache.org/jira/browse/LUCENE-2074
https://issues.apache.org/bugzilla/show_bug.cgi?id=28147
https://issues.apache.org/jira/browse/LUCENE-2074
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8. it suggests upgrading or patching third party libraries to overcome issues caused
by third party libraries.

9. it requests changes that correct/synchronize an already implemented feature ac-
cording to specification/documentation.

Example: Jackrabbit report JCR-28925 is filed as BUG under the title “Large fetch sizes have potentially deleterious effects

on VM memory requirements when using Oracle”. The algorithm fetches data from a database with a large amount of

columns and rows, which caused the Oracle driver to allocate a large buffer. The resolution was to develop a new algorithm

consuming less memory. This is an IMPR according to Rule 1 since no new functionality was implemented and since the

program did not contain any defect.

A report is categorized as DOC (Documentation Request) if. . .

1. its discussion unveils that the report was filed due to missing, ambiguous, or
outdated documentation.

Example: Tomcat5 bug report 300486 fixes the problem“Setting compressableMimeTypes is ignored.” by “Docs updated

in CVS to reflect correct spelling.” This is a DOC.

A report is categorized as REFAC (Refactoring Request) if. . .

1. it requests to move code into other packages, classes, or methods.

2. it requests to rename variables, methods, classes, packages, or configuration op-
tions.

Example: Tomcat5 report 282867 is filed as BUG and contains a patch adding a new interface SSOValve. But in comment 4,

Remy Maucherat refuses to apply the patch and the idea to introduce a new interface. Instead, he commits a patch that

refactors class AuthenticatorBase to allow subclassing. This is a REFAC as per Rule 2.

5https://issues.apache.org/jira/browse/JCR-2892
6https://issues.apache.org/bugzilla/show_bug.cgi?id=30048
7https://issues.apache.org/bugzilla/show_bug.cgi?id=28286

https://issues.apache.org/jira/browse/JCR-2892
https://issues.apache.org/bugzilla/show_bug.cgi?id=30048
https://issues.apache.org/bugzilla/show_bug.cgi?id=28286
https://issues.apache.org/jira/browse/JCR-2892
https://issues.apache.org/bugzilla/show_bug.cgi?id=30048
https://issues.apache.org/bugzilla/show_bug.cgi?id=28286
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A report is categorized as OTHER if. . .

1. it reports violations of Java contracts without causing failures (e.g. “equals() but
no hashCode()”).

2. complains about compatibility fixes (e.g. “should compile with GCJ”).

3. the task does not require changing source or documentation (like packaging,
configuration, download, etc.)

Example: Lucene report LUCENE-18938 complains that “classes implement equals() but not hashCode()”. This violated

Java contracts but does not cause failures. Lucene report LUCENE-2899 requests “better support gcj compilation”. Ac-

cording to our rules this is considered to be an compatibility improvement classified as OTHER.

4.4 Amount of Data Noise

In this section, we show the amount of data noise and bias (with respect to issue report
types) that is evident in the bug databases of the five analyzed projects (see Section 4.2).
We start analyzing the issue report data sets by measuring the false positive rates and
slicing individual categories to show how many issue reports were misclassified and
which categories these misclassified reports belong to. Later, we will discuss the impact
and bias rates for data sets that map issue reports to code changes and source files before
we measure the impact on models identifying the most defect-prone files.

As overall noise rate we measured the false positive rate. The false positive rate
represents the ratio between misclassified issue reports and all issue reports in the data
set. The noise rate is independent from individual issue report categories. We will
discuss individual categories in Section 4.5. The higher the noise rate, the higher the
threat that the noise might cause bias in approaches based on these data sets.

RQ9.1 How much noise due to issue report misclassification exists in bug databases?

Table 4.3 shows the noise rate values for all five projects and for a combined data
set containing the issue reports of all five projects. The noise rates for all projects

8https://issues.apache.org/jira/browse/LUCENE-1893
9https://issues.apache.org/jira/browse/LUCENE-289

https://issues.apache.org/jira/browse/LUCENE-1893
https://issues.apache.org/jira/browse/LUCENE-289
https://issues.apache.org/jira/browse/LUCENE-1893
https://issues.apache.org/jira/browse/LUCENE-289
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Table 4.3: Issue report type rates for all projects and for a combined data set.

Project Noise rate

HttpClient 47.8%
Jackrabbit 37.6%
Lucene 46.4%
Rhino 43.2%
Tomcat5 41.4%

All projects combined 42.6%

lie between 37% and 47%. The overall noise rate lies at 42.6%—that is, two out of
five issue reports are wrongly typed. This unexpected high ratio raises threats to any
approach based on raw issue report data sets.

* Over all five projects researched, we found 42.6% of all issue reports to be
wrongly typed.

The noise rates of the individual report categories and their variances are shown in
Figure 4.2 as box plot. We excluded the categories DOC and REFAC from this plot since
none of the analyzed bug tracking systems supported these report types. The boxes
representing the categories IMPR and OTHER are based on the Jira projects only since
Bugzilla does not support these types of reports. Although the noise rates for IMPR
reports show more variance all projects show comparable noise rates. The variance
for RFE reports is huge and is partially caused by the fact that the overall number of
RFE reports is low. Most feature requests have their origin from within the project,
especially in open source projects, and it is questionable if or how many such feature
requests are documented using a bug tracker.

4.5 Bugs vs. Features

We have seen that two out of five issue reports are misclassified. And we have seen that
there exist misclassified BUG reports. This is a threat for all empirical studies based on
raw, unchecked bug data sets. To raise the level of detail, we sliced issue categories to
show the percentage of issue reports that were associated with a category but marked
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as misclassified. We also include the individual categories the reclassified bug reports
belong to when using our classification rule sets presented in Section 4.3.1.

RQ9.2 Which percentage of issue reports associated with a category was marked as
misclassified? Which category do these misclassified reports actually belong to?

Each slice contains the set of all issue reports originally associated to a given cat-
egory and shows to which category the individual issue report actually belongs to (Ta-
bles 4.4—4.6). Thus, each slice table cell contains the percentage of issue reports
originally associated to a given category that were manually classified into the issue
category indicated by the row name. The lengths of the bars behind the percentage
numbers represent the individual percentage visually. The last row of each slice states
the percentage of reports originally associated to the corresponding category that were
assigned a different category during manual classification. The values of this last row
correspond to the category boxes in the box plot shown in Figure 4.2.

4.5.1 Bugs

Table 4.4 contains the noise rate slice for the BUG issue category. We already discussed
in Section 4.4 that the noise rate for BUG reports is surprisingly high for all projects.
Tracking bug reports and their target categories shows that 13% of BUG reports are
manually classified into the OTHER category containing multiple sub-categories (see
Section 4.3). Between 6% and 13% of filed BUG reports are improvement requests and
up to 10% contain documentation issues. The fraction of bug reports containing feature
requests lies between 2% and 7%. The striking number, however, is that on average
33.8% of all issue reports are misclassified.

* Every third bug report is no bug report.

The noise rate slice for bug reports is of great importance. Bug reports are one of
the most frequently used instruments to measure code quality when being mapped to
code changes. But feature requests, improvement requests, and even documentation
issues can also be mapped to code changes implementing a new feature, implementing
an improvement, or fixing code comments. Thus, we cannot rely on natural filtering
mechanisms that rule out misclassified BUG reports belonging to any report category
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Table 4.4: Reclassification of reports originally filed as BUG

Classified category HttpClient Jackrabbit Lucene Rhino Tomcat5 Combined

BUG 63.5% 75.1% 65.4% 59.2% 61.3% 66.2%
RFE 6.6% 1.9% 4.8% 6.0% 3.1% 3.9%
DOC 8.7% 1.5% 4.8% 0.0% 10.3% 5.1%
IMPR 13.0% 5.9% 7.9% 8.8% 12.0% 9.0%
REFAC 1.7% 0.9% 4.3% 10.2% 0.5% 2.8%
OTHER 6.4% 14.7% 12.7% 15.8% 12.9% 13.0%

Misclassifications 36.5% 24.9% 34.6% 40.8% 38.7% 33.8%

Table 4.5: Reclassification of reports originally filed as RFE

Classified category HttpClient Jackrabbit Lucene Rhino Tomcat5 Combined

BUG 0.0% 0.7% 0.0% 3.6% 8.1% 2.8%
RFE 100.0% 91.3% 97.0% 42.9% 39.6% 72.6%
DOC 0.0% 2.0% 0.0% 0.0% 18.1% 5.3%
IMPR 0.0% 0.7% 0.6% 19.0% 20.8% 8.6%
REFAC 0.0% 0.0% 0.0% 15.5% 3.4% 3.2%
OTHER 0.0% 5.3% 2.4% 19.0% 10.1% 7.5%

Misclassifications 0.0% 8.6% 3.0% 57.1% 60.4% 24.7%

Table 4.6: Reclassification of reports originally filed as IMPR.

Classified category HttpClient Jackrabbit Lucene Rhino Tomcat5 Combined

BUG 2.6% 2.8% 1.8% 0.0% 0.0% 2.3%
RFE 45.3% 18.8% 28.6% 0.0% 0.0% 26.1%
DOC 11.6% 3.7% 7.2% 0.0% 0.0% 6.2%
IMPR 26.7% 45.6% 35.2% 0.0% 0.0% 38.8%
REFAC 4.3% 9.2% 14.2% 0.0% 0.0% 10.9%
OTHER 9.5% 19.8% 13.0% 0.0% 0.0% 29.4%

Misclassifications 73.3% 54.4% 64.8% 0.0% 0.0% 61.2%
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Figure 4.2: The noise rates split by category over all projects. The categories DOC
and REFAC are not present since none of the bug trackers supports these categories.
The Bugzilla projects are only included in the analysis of BUG and RFE reports since
Bugzilla does not support any of the other issue report categories.
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that will not cause code changes being applied to source files. Studies that use bug data
sets might be impacted by data noise as shown in Table 4.4. The noise rates in this
section include issue reports that might not be mapped to code changes or files. We
will discuss the bias caused by bug data noise later in this paper.

4.5.2 Feature Requests

The noise rate slice for issues originally categorized as RFE is interesting because it
shows a fundamental difference between Bugzilla and Jira trackers. As you can see
in Table 4.5 the false positive rates for all three Jira projects lie between zero and nine
percent. The corresponding false positive rates jump to 57% and 60% for Bugzilla
trackers. Interpreting these values, it seems that issue reports in Bugzilla trackers are
less reliable than Jira reports. This matches the fact that the false positive rates for BUG
reports in Table 4.4 where larger for Bugzilla trackers, too. By default, Bugzilla track-
ers support less issue report types than Jira. This has the consequence that reporters
and developers that file issue tickets not being bug reports use the only alternative label
RFE.

4.5.3 Improvement Requests

The last noise rate slice shows how many improvement requests were differently cat-
egorized during manual inspection (see Table 4.6). The columns for Bugzilla tracker
projects remain zero since by default Bugzilla trackers do not support these issue cat-
egories. For the remaining three projects, between 19% and 45% of improvement
requests were manually categorized as RFE issue reports. Only a very marginal low
fraction of 2% were manually classified as bug reports. On average, more than 60% of
improvement requests were reclassified during manual inspection.

4.6 Sources of Misclassification

The misclassification ratios presented in the last section shed a low light on the data
quality of bug databases. But why do issue tracking systems contain so many misclas-
sified reports? For us, the main reason is that users and developers have very different
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views and insights on bug classification, and that classification is not rectified once a
bug has been resolved.

Bug tracking systems are communication tools that allow users to file bug reports
that will be fixed by developers. But users and developers do not share the same per-
spective regarding the project internals. In many cases, users have no project insight
at all and might not even have the ability to understand technical project details. Users
tend to consider every problem as a bug. From their perspective, the software does not
comply with their expectations or with the provided documentation and so they file a
bug report. A user filing an issue report might not even know the difference between
improvement, feature request, or bug report. But it is the reporter who assigns an issue
category.

On the other side, the developer is the expert of any technical detail of the program;
she designed and implemented it. This difference between reporter and resolver already
is a source of uncertainty. In contrast to a reporter, a developer certainly has the ability
to distinguish between different problems and the required maintenance task to solve
the issue. The developer would be the right person to categorize issue reports. But this
is not how bug trackers work. Of course, the developer could change the issue category
after resolution—but this happens rarely. In many cases there exists no real motivation
to change the issue category once the cause for a problem is found and fixed.

This conceptional problem may explain many of the misclassification patterns we
observed during manual inspection. It also explains the high misclassification noise
rates for BUG reports. Using their default configuration, many bug tracking systems set
the report type to BUG by default. Combining this technical limitation with the above
discussed problem that the potentially more inexperienced communication partner de-
cides which report type to be assigned, we are left with many BUG reports that should
have been filed as improvement request or even feature request.

The question is whether these misclassification sources impact issue reports that
can actually be mapped to source code changes and thus to source files. Consider a
user filing a bug report complaining about a documentation issue. To resolve this issue,
the developer might have to change the code documentation contained in the source
file. So we would map the report into source code and count it as a bug fix although the
plain source code did not change. And this is why DOC issues originally filed as BUG
are dangerous. We cannot rely on automatic filters that rule out any report that did not
change any source file.
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4.6.1 Ambiguous Terms

Many misclassifications stem from ambiguous terms and vague definitions. In this
paper we showed that Bugzilla contains many RFE reports that do not contain feature
requests (see Section 4.4). The main source for this misclassification lies in Bugzilla
itself. In default configuration, Bugzilla offers only two different issue categories: BUG
and Enhancement. But the term of an enhancement is ambiguous. Fixing a bug can
be seen as an enhancement but we as data miners would like to see bug fixes being
classified as BUG. During manual classification we considered enhancements as feature
requests. And indeed, the largest group of the enhancement requests are requests for
implementing new features although the majority of enhancement requests should not
be marked as RFE (see Table 4.5). You could also mark Bugzilla enhancements as
IMPR but you have to make a decision when mining and no matter how you decide,
you will end up with issue misclassification noise.

Similar reasons exist for the high proportion of Jira improvement requests being
manually classified to RFE. Here we run into a general definition problem: “When does
a code change apply a feature implementation and when does it apply an improve-
ment?” Since we classify issue reports from a developer perspective, we considered
code changes adding any new functionality (e.g. adding a getter method or adding new
API methods) as RFE. In the context of this paper, improvements are strictly bound
to maintenance tasks improving existing code fragments and algorithms. Across all
projects, there exists a number of reports requesting documentation improvements
(“The error message contains a misleading error cause”), build improvements (“The
project does not build on architecture X”), or test improvements (“Running the test
suite takes too long”). In line with bug reports targeting non-functional properties of
the source code, we classified these improvement requests as DOC or OTHER issues.

4.7 Impact on Mapping

The issue report misclassification noise presented in Sections 4.4 and 4.5 can impact
studies and tools that use these or similar data sets without validating them. As a first
category, we discuss how misclassified issue reports impact approaches that map issue
reports to source code changes—for instance, to identify files that had the most bugs in
the past.

RQ9.3 What is the impact of misclassified issue reports when mapping issue reports
to source code changes?
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For this purpose, we followed the issue report mapping strategy described by Zim-
mermann et al. [153], a mapping method frequently replicated by many studies. Scan-
ning through the commit messages contained in a version archive, we detect issue
report identifiers using regular expressions and key words. Once we mapped issue re-
ports to version archive revision, we can identify the set of issue reports that caused
a change within the source file. Ignoring report severity we then count the number of
distinct issue reports originally classified as BUG (num_original_bugs) for each source
file of a given software project. Additionally, we count the number of distinct issue re-
ports that were classified as BUG during manual inspection (num_classified_bugs). We
measure the issue mapping bias using five different bias measurements.

MappingBiasRate: This bias rate expresses the percentage of false positive original
BUG reports that could be mapped to code files. The mappingBiasRate corre-
sponds to the false positive rates shown in Figure 4.2 but is limited to BUG reports
that can be mapped to code changes.

DiffBugNumRate: The diffBugNumRate represents the number of files for which

num_original_bugs − num_classified_bugs , 0.

The measure ignores files for which the set but not the number of issue reports
differ. Counting the fixes does not require the individual report to be known.

MissDefectRate: The missDefectRate is defined as

missDefectRate =
numMissDefect

numZeroOriginalDefect

where numMissDefect represents the number of source files for which no original
bug report could be mapped but that have at least one manually classified bug
report assigned and where numZeroOriginalDefect is the number of source files
having no original bug report assigned. This measure is important for defect
classification models (distinction between has bug or has no bug).

FalseDefectRate: Analog to missDefectRate, we compute the falseDefectRate as

falseDefectRate =
numFalseDefect

numOriginalDefect

where numFalseDefect is the number of source files with at least one original
bug report assigned but no manually classified bug report. numOriginalDefect
equals the total number of source files that got at least one original bug report
assigned.
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Table 4.7: Impact of misclassified issue reports on mapping strategies and approaches.

Measure HttpClient Jackrabbit Lucene Rhino Tomcat5 Average

MappingBiasRate 24% 36% 21% 38% 28% 29%
(False positive rate for mappable BUG reports)
DiffBugNumRate 62% 17% 14% 52% 39% 37%
(How many files will change their defect-prone ranking?)
MissDefectRate 1% 0.3% 0.7% 0% 38% 8%
(How many files with no original BUG have at least one classified BUG?)
FalseDefectRate 70% 43% 29% 32% 21% 39%
(How many files with at least one original BUG have no classified BUG?)

The values of these bias measures for our five target projects are shown in Table 4.7
along with an additional column containing the average bias measures. For all projects,
the number of misclassified BUG reports that can be mapped to source files (mappingBi-
asRate) lies above 20%. On average, every third mappable bug report is misclassified.
This is a threatening high fraction and confirms that the misclassification noise rates
presented in Section 4.4 also affect issue reports that can be mapped to source code
changes. On average, the mappingBiasRate is only five percent points below the av-
erage false positive rate for bug reports shown in Table 4.4. The mappingBiasRate
indicates that bug tracking systems and their different usage behavior seem to have no
impact on the mapping bias.

The second row of Table 4.7 shows the fraction of files having a different number
of mapped bug reports. The diffBugNumRate shows how many files will change their
defect-prone ranking. This value might also have severe consequences for defect pre-
diction models based on concrete bug count numbers (see Section 4.8). On average
37% of all source files have biased bug count numbers. For the projects HttpClient
and Rhino the diffBugNumRate well exceeds the 50% margin.

Row three and row four of Table 4.7 are interesting for approaches using classifica-
tion models grouping source files into two groups of defect-prone and non defect-prone
entities. The fractions of files that were falsely marked as defect free (missDefectRate)
is very low and can be disregarded, except for Tomcat5. But the fraction of false clas-
sified defect-prone using a threshold of one to distinguish between defect-prone and
non defect-prone entities (falseDefectRate) is significant. 20% to 70% of the original
defect-prone marked source files contained no defect. An average falseDefectRate of
39% shows that mapping bias is a real threat to any defect prone classification model.

* On average, 39% of all files marked as defective actually never had a bug.
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To give some more details on the differences between original and classified bug
counts (diffBugNumRate), Figure 4.3 shows stacked bars displaying the distribution of
bug count differences among source files. Each stacked bar contains intervals reflect-
ing the difference between num_original_bugs and num_classified_bugs. A positive
difference indicates that the number of defects fixed in the corresponding source files
is actually lower. For files showing a negative difference more defect fixes could have
been found. While most files show no or only little changes to their bug count there
also exist files for that between five and 26 bugs were wrongly counted. The number
of files for which more bugs could have been found is marginal.

4.8 Impact on Bug Prediction

The results presented in the last section indicate that defect prediction models based on
bug data sets containing misclassified bug reports might be severely biased. To verify
this threat, we conducted an experiment that uses a simple quality model that identi-
fies the most defect-prone source files by counting the number of distinct bug reports
mapped to the corresponding file. If we can show that such a simple bug count model is
affected, more complex models based on similar count or classification schemata will
be affected too.

RQ9.4 How does bug mapping bias introduced by misclassified issue reports impact
the TOP 5%, 10%, 15%, 20% of most defect prone source files?

The experiment to answer RQ9.4) is visually described in Figure 4.4. We duplicate
the set of source files and sort each copy by two different criteria. One set gets sorted in
descending order using the number of original bug reports (num_original_bugs). The
other set clone gets sorted in descending order using the number of manually classified
bug reports (num_classified_bugs). In each set, the most defect-prone file is the top
element. Comparing the top X% of both file sets (containing the same elements but
in potentially different order) allows us to reason about the impact of mapping bias on
models using bug counts to identify the most defect-prone entities. Since both cutoffs
are equally large (the number of source files does not change, only their ranks), we can
define the cutoff_difference as:

size of cutoff − size of intersection
size of cutoff

.
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Figure 4.3: Histograms showing diffBugNumRates and their frequencies across all five
projects. For files with a diffBugNumRate of zero the number of associated bugs re-
mained equal. Files with a positive diff rate had too many bug reports assigned.
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The result is a number between zero and one where zero indicates that both cutoffs
are identical and where a value of one implies two cutoffs with an empty intersection.
A low cutoff_difference is desirable.

Figure 4.5 contains the cutoff_differences for all five projects using the top 5%,
10%, 15%, and 20%. The cutoff_differences is stable across projects and cutoff sizes.
Considering the top 5% cutoff the cutoff_differences lie between 11% and 29% and
raise to a range between 16% and 35% for a cutoff size of 20%. The variance be-
tween the different cutoff sizes per project lies around 15% for HttpClient and Tom-
cat5 and 5% for Lucene and Rhino. But the bias measured for all projects and cutoffs
lies well above 10%. The comparable relative stable results across all projects and
cutoff sized show that quality measuring approaches using biased report to code map-
pings would report a false positive rate between 16% and 40% for the top 10% most
defect-prone files.

* When predicting the top 10% most defect-prone files, 16% to 40% of the files
do not belong in this category because of misclassification.

Table 4.8 and Figure 4.6 show the Spearman rank correlations for all source files in
the corresponding intersections. These rank correlations indicate the relative order for
those files that remain in the top X% most defect-prone source files. A correlation value
of one means that there exist files that should not belong to the top cutoff but at least
the relative order of the correctly classified files remains stable. All rank correlation for
HttpClient are above 0.7 suggesting that the relative order or correctly classified files
is least impacted. Except for Rhino top 10% and Tomcat5 top 5%, the rank correlations
lie below 0.7 and reach correlation values close to zero and even below zero.

* Misclassification also impacts the relative order
of the most defect-prone files.

4.9 Implications on Earlier Studies

The results presented in this chapter show that misclassified issue reports can affect the
assessment and prediction of code quality based on bug data sets. Hence, empirical
studies that use or used bug data sets without validating them might suffer from bias.
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Figure 4.4: The cutoff_difference for the top x% illustrating the impact of misclassified
issue reports on quality data models.
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Figure 4.5: The cutoff_differences caused by misclassified bug reports.
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Table 4.8: Spearman rank correlations for all source files remaining in the intersection
of original and classified most defect-prone entities.

TOP 5% TOP 10% TOP 15% TOP 20%

HttpClient 1 0.8 0.8 0.7
Jackrabbit 0.2 0.3 0.5 0.6
Lucene 0.4 0.5 0.4 0.2
Rhino −0.1 0.7 0.4 0.4
Tomcat5 0.8 0.5 0.5 0.6

Figure 4.6: Spearman rank correlations for all source files remaining in the intersection
of original and classified most defect prone entities.
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The approaches and their evaluations remain valid—training and testing machine learn-
ers on equally biased training and testing sets does not harm the models themselves.
But biased data sets raise questions whether the trained and tested models actually fit
the desired goal. As an example, if half of the issue reports treated as BUG reports are
actually RFE reports, the resulting “defect” prediction models are likely to predict code
changes in general but not bug fixes. Even if there exist a high correlation between the
number code changes and bug fixes per source artifact, the models trained and tested
on the biased data sets do not deliver the answers to a given research question.

The list of threatened studies and approaches mentioned in this section is neither
representative nor complete. Our aim is to give a brief overview over studies that
are likely (but not proven) to be biased. Any study reusing these experimental setups
without performing extra bug data validation is likely to be biased as well.

4.9.1 Studies threatened to be biased

Mapping bugs to code changes was first introduced by Fischer et al. [45] and Čubranić
et al. [137] who described procedures to created a release history database from version
control and bug tracking systems and to map bug reports to code changes. These two
approaches do not interpret the mapped artifacts and are per se not threatened; however,
any study using one of these approaches to derived code quality measures is likely to
be threatened if it did not perform additional data validation.

The list of papers affected encompasses more than 150 published studies in the
ACM digital library citing these two approaches (as of August 2012). Zimmermann
et al. [153] is a particular important case, as a large number of papers built on the
accompanying (now found to be biased) bug data set. Taking the blame, other typical
examples with one of us as co-authors are: [89, 110, 119, 126, 129].

The threat to validity for all these papers is that the bug data set they have been
evaluated on contains a mix of bugs and non-bugs. Hence, in their evaluation, they
map and predict non-bugs as well as bugs. Users would be generally interested in
predicting bugs rather than non-bugs, however; and we now no longer know how these
approaches perform and compare when using a data set consisting only of true bugs.
This threatens their external validity.

Construct and internal validity remain unquestioned, though: the approaches and
techniques are still original and valid, and can still provide good results. It may even
be that filtering out non-bugs yields less noise in terms of predictor features, and thus
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generally improves results. Assessing such effects for all earlier studies is beyond the
scope of this paper; however, we provide rectified data for future studies.

How about studies using industrial bug data? Since we have no insights on the data
quality of industrial data sets, these studies may or may not be threatened. In general,
one might hypothesize that industry has stronger process rules and incentives (speak:
measurements and goal metrics), which encourage accurate issue classification. Lately,
Nguyen et al. provided evidence that “even in such a perfect setting, with a near-
ideal dataset, bias do exist [...]” [111]. Still, a more strict development process and
thus less bias in corresponding data sets could explain why predictors such as change
bursts [110] or network metrics [151] work extremely well on industrial data sets, but
poorly on open source data sets.

Exploring the quality of such data sets and differences between industrial and open
source projects again is a topic for future research.

4.9.2 Preventing misclassification threats

How can we improve the quality of bug datasets? The following approaches all help:

Test cases. Approaches like iBugs [39] validate bug reports using test cases to repli-
cate bugs. This straightforward filtering mechanism ensures each bug is valid.
Consequently, studies relying on the iBugs data sets are not affected by issues
discussed in this paper.

Code history. Kim et al. [86] uses version control history to verify that applied code
changes are actual fixes. This approach solely relies on code evolution and thus
is not sensitive to bug database issues. Again, this is a recommended procedure
to prevent misclassification.

Automatic classification. Automatic classification models as described by Antoniol
et al. [8] can be used to categorize issue reports based on the text of the issue
report itself with precision rates between 77% and 82%. Although, constructing
classification training sets requires initial human effort, such predictors should
quickly reduce the required human interaction.

Rectified Data Sets. Our data sets rectified by manual bug classification are publicly
available (Section 4.11); we encourage their use for further research.
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We strongly recommend to use additional data (e.g. tests) or human effort to reduce
the high amount of misclassified issue reports. This means that the contributions of the
mining software archive field can still all be applied; one just needs a bit of validation
in the first place.

4.10 Threats to Validity

Empirical studies like this one have their own threats to validity. We identified three
noteworthy threats:

Manual inspection. First and most noteworthy, the manual inspection phase is cru-
cial. To counter the threat of us making classification mistakes, we chose a setup
that ensures that every misclassified bug report is cross-validated and that clas-
sification conflicts have to pass a third inspection. Still, we cannot rule out that
the manual inspection contains errors. Additionally, we make our entire dataset
available for independent assessment.

Classification rules. Second, the set of classification rules is only one possibility to
classify issue reports. There exists no clear definition separating feature and im-
provement requests. Using a different classification rule set will certainly impact
the results presented in this paper. We counter this threat by listing the complete
rules verbatim.

Study subjects. Third, the projects and bug tracking systems investigated might not
be representative, threatening the external validity of our findings. Although
Jira and Bugzilla are popular bug tracking systems, we cannot ensure that other
projects using the same or even other bug tracking systems contain comparable
amount and distribution of misclassified issue reports.

4.11 Summary

Mining software archives has long been seen as the full automation of empirical soft-
ware engineering—all one needs to do is to point the mining tool at a new data source,
and out pop the correlations and recommendations. The findings in this paper sug-
gest widespread issues with the separation of bugs and non-bugs in software archives,
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which can severely impact the accuracy of any tool and study that leverages such data.
The consequences are straightforward:

• First and foremost, automated quantitative analysis should always include human
qualitative analysis of the input data—and of the findings. Approaches relying on
bug datasets should be preceded by a careful manual validation of data quality;
at least of a significant sample. Data quality should be discussed as a threat to
validity.

• Bug prediction models trained and evaluated on biased data sets are threatened
to predict changes instead of bugs. Filtering out non-bugs when estimating code
quality might even improve results.

• The categorization of bug reports is dependent on the perspective of the observer.
Approaches using bug data sets should be aware of this fact and validate whether
the perspective of the prediction model matches the perspective of the bug cre-
ator.

Generally, one should always be aware that not all bugs should be treated equal.
Many bugs are of little to no consequence, while a few ones–such as security or privacy
issues—can easily damage the reputation of the entire product or even threaten the
existence of the company. Assessing such consequences cannot be left to machines
alone.

Hence, dealing with bug databases will always require human effort—an invest-
ment which, however, pays off in the end. Our motivation for this work was to have a
well-classified set of bug reports and features, which we now can leverage (and share)
for future research. In the long run, better data will lead to better recommendations,
and better recommendations in turn will make developers more conscious of maintain-
ing data quality—a virtuous circle in which processes and their metrics can improve in
unison.

Detailed references, all data sets (original and rectified), all slices and more infor-
mation can be found at:

http://www.softevo.org/bugclassify

http://www.softevo.org/bugclassify
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Chapter 5

Untangling Changes

Parts of the contents of this chapter have been published in the technical report Herzig
and Zeller [72] (currently under submission).

5.1 Introduction

A large fraction of recent work in empirical software engineering is based on mining
version archives—analyzing which changes were made to a system, by whom, when,
and where. Such mined information can be used to predict related changes [154],
to predict future defects [98, 153], to analyze who should be assigned a particular
task [9, 18], or simply to gain insights about specific projects [93].

All these studies, including the work presented in this thesis, depend on the accu-
racy of the mined information —accuracy that is threatened by noise. Such noise can
come from missing associations between change and bug databases [20] or misclas-
sified issue reports (see Chapter 4). One significant source of noise so far overseen,
however, are tangled change sets. Section 3.6 contains a discussion on why tangled
change sets are a major threat for change genealogies.

What is a tangled change set? Let us assume we have a developer who is assigned
multiple tasks A, B, and C. Let all these have a separate purpose; A may be a bug

81
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Table 5.1: Proportion of issue-fixing changes that address more than one issue.

# fixes # tangled fixes

ArgoUML 2,945 171 (5.8%)
GoogleWebtool Kit 809 68 (8.4%)
Jaxen 105 12 (11.4%)
JRuby 2,977 275 (9.2%)
Xstream 312 37 (11.9%)

fix, B may be an extension, and C may be a refactoring. When the developer is done
with the three tasks, she has to commit her changes to the version control system,
such that the changes get propagated to other developers and can go into production.
When committing her changes, she may be disciplined and group her changes into three
individual commits, each containing the changes pertaining to each task and coming
with an individual description. This separation is complicated, though; for instance,
the tasks may require changes in similar locations. Therefore, it is more likely that she
will commit all changes tangled in a single transaction, with a message such as “Fixed
bug #334 in foo.c and bar.c; new feature #776 in bar.c; qux.c refactored; general
typo fixes”.

Such tangled change sets do not cause serious trouble in development. However,
they introduce noise in any analysis of the version archive, thereby compromising the
accuracy of the analysis. As the tangled change set fixed a bug, all files touched by
it will now be marked as having had a defect, even though the tangled tasks B and C
have nothing to do with a defect. Likewise, all files will be marked as being changed
together, which may now induce a recommender to suggest changes to qux.cwhenever
foo.c is changed. Commit messages such as “general typo fixes” point to additional
minor changes all over the code—locations which will now be related with each other
as well as the tasks A, B, and C.

The problem of tangled change sets is not a theoretical one. In an exploratory study
on five open source projects, we manually classified more than 7,000 individual issue-
fixing changes and checked whether these changes addressed multiple (“tangled”) de-
veloper tasks. Table 5.1 summarizes our results: Between 6% and 15% of all fixes
address multiple concerns at once—they are tangled and therefore introduce noise and
bias into any analysis of the respective change history (Section 5.2 has more on this
study.). These findings confirm results of earlier research studies [83, 84].
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The are two main approaches to overcome the problem of tangled change sets. One
solution is to detect tangled change sets and to ignore these data points in any further
analyses. But this solution makes two major assumptions. First, one must be able to
detect tangled change sets automatically; second, the fraction of tangled change sets
must be small enough such that deleting these data points does not cause the overall
data set to be compromised. The second approach to deal with such tangled change sets
is to untangle them into separate changes that can be individually analyzed, thereby
reducing the noise.

In this chapter, we present an approach to untangle changes. It splits tangled change
sets into smaller partitions, where each partition contains a subset of change operations
that are related to each other, but not related to the change operations in other partitions.
The algorithm is based on static code analysis only and is fully automatic, allowing
archive miners to untangle tangled change sets and to use the created change parti-
tions instead of the original tangled change set. Our experiments on five open-source
projects show that neither data dependencies, distance measures, change couplings,
or distances in call graphs serve as a one-size-fits-all solution. By combining these
measures, however, we obtain an effective approach that untangles multiple combined
changes with a mean precision of 58%–80%.

In his Master thesis, Kawrykow [83] presented a similar approach to detect subtasks
in change sets. His approach focuses on connections between updated elements. Our
approach developed in parallel but independently shares the same basic approach but
operates on a higher level of granularity.

The remainder of this chapter is organized as follows. To motivate untangling, we
discuss the causes and effects of tangled change sets in Section 5.2. Then, we discuss
the basic principles of our untangling approach, before describing the evaluation setup
in Section 5.5. The evaluation results are presented in Section 5.6 and the threats to
validity in (Section 5.8). Section 5.9 closes with conclusion and consequences.

5.2 Tangled Changes

Many approaches to mining version archives require quality data used to train machine
learning models. Such quality data can be extracted when combining bug databases
and version archives. Zimmermann et al. [153] describe one standard approach to
generate their historic quality data sets mapping bug fixes to code artifacts. The idea
is as follows: one requires a list of bug fixes applied to individual code artifacts (e.g.
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code files) during project history: The more bugs were fixed over time, the worse the
code artifact’s original quality. To retrieve such a bug fix count, one identifies bug
fixing change sets by parsing commit messages. Once the change set is confirmed to
reference a closed and fixed bug report, all code artifacts changed within the change
set are marked as being fixed. But such an approach relies on the basic assumption that
change sets are atomic—each change set contains only those changes that are necessary
to fix the referenced issue. However, as discussed in Section 3.1, there may be various
reasons to tangle multiple unrelated tasks into a single commit.

When analyzing such tangled change sets, it is not easy to determine which code
artifacts were changed due to which developer maintenance task.Instead of mapping
developer maintenance tasks to all changed code artifacts within the original change
set, one would assign individual developer maintenance tasks to those code artifacts
changed within the change set partition. Assigning developer tasks to change set parti-
tions would require change classification techniques automatically deciding whether a
code change fixes a bug or implements a new feature. Mockus and Votta [101] showed
that bug fixes show significant different impact on code complexity compared to other
code changes. Using a automated change classification model (see Chapter 6) we
can distinguish between bug fixing and feature implementing change sets. Untangling
change sets containing multiple bug fixes —e.g. in bug fixing branches—requires no
such classification techniques. To the best of our knowledge, however, all approaches
to mining version archives consider change sets as atomic. When it comes to defect
prediction, this implies that a bug report is mapped to every single change in the asso-
ciated change sets; consequently, this will introduce bias into the data set, which may
spoil the results of any analysis based on this data.

The bias caused by tangled change sets is significant. Table 5.1 shows the num-
ber of change sets applying a fix for at least one issue report (may also be a feature
request) for five open-source projects. We considered only those change sets that con-
tained the keywords fixed, resolved, or issue and later manually validated that their
commit message marks an issue within the source code (bug and feature requests).
We also manually checked the commit messages of these fixes and marked a change
set as tangled if the commit message clearly indicated that the applied changes tackle
more than one developer maintenance task. This can either be commit messages that
contain more than one issue report reference (e.g. “XSTR-93, XSTR-120, XSTR-170:
Support for \r newline in strings.”) or a commit message indicating extra work com-
mitted along the issue fix (e.g.“Fixes issue #591[. . . ]. Also contains some formatting
and cleanup.”)—mostly cleanups and refactorings. The fraction of tangled fixes lies
between 6% and 12% (Table 5.1) for issue fixing change sets.
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These findings are supported by other studies reporting similar bias figures for
change sets. Dallmeier [38] used delta debugging to minimize bug fixes of two open
source projects to a minimal set of code changes letting a regression test pass. The
results show that on average 50% to 60% of the code changes applied within a bug
fix transaction had no effect on the result of the regression tests. Similarly, in a study
of over 24,000 change sets from seven open-source projects [84], Kawrykow and Ro-
billard found that 2% to 15% of all method updates were due to non-essential differ-
ences—code changes that did not change the semantics of the program. Combining the
bias fractions caused by non-essential changes and tangled change sets, up to 30% of
all changes are falsely associated with bug reports; they either are tangled with other
changes by coincidence, or have no impact on the semantics at all. The effects of such
biased data mining sets are significant [20, 84].

* Up to 30% of all changes are falsely associated with bug reports.

5.3 The Untangling Algorithm

Many change sets contain change operations serving multiple developer maintenance
tasks. Files touched by a single tangled change set may contain changes applied to
resolve different developer maintenance tasks and should be separated when analyzing
them or mapping developer maintenance tasks to changed files. Otherwise, such tan-
gled change sets lead to harmful bias impacting prediction models based on version
archive training sets. To reduce this bias, it is necessary to untangle change sets into
individual, corresponding change set partitions.

Generally, determining unrelated code changes applied together is undecidable, as
the halting problem prevents predicting whether a given code change has an effect
on a given problem. Consequently, every untangling algorithm will have to rely on
heuristics presenting an approximation of how to separate two or more code changes.
We cannot solve the untangling problem completely, but we hope to reduce the amount
of bias significantly.

An untangling algorithm should be fully automatic and simple at the same time.
The algorithm proposed in this chapter expects an arbitrary change set as input and
returns a set of change set partitions. Each change set partition contains change opera-
tions that are related—ideally all change operations necessary to resolve one developer
maintenance task (e.g. fixing a bug). The union of all change set partitions equals the
original change set.
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5.3.1 Related changes

For each pair of applied change operations, the algorithm has to decide whether both
change operations belong to the same change set partition (are related) or should be
assigned to separate change set partitions (are not related). To determine whether two
change operations are related or not, we have to determine the relation distance be-
tween two code changes such that the distance between two related change operations
is significantly lower than the distance between two unrelated change operations. An-
alyzing the change operations themselves and considering the project’s history, there
are multiple ways to define distance between two change operations. However, none
of them seem to be powerful enough to capture the complexity of change operation
relations. For example, it seems reasonable that two change operations changing state-
ments reading/writing the same local variable are very likely to belong together. But
vice versa, two code changes not reading/writing the same local variable may very well
belong together—if both change operations affect consecutive lines. As a consequence,
our untangling algorithm is based on a feature vector spanning multiple aspects de-
scribing the distances between individual change operations and should combine these
distance measures to separate related from unrelated change operations.

In Section 5.4, we will discuss how to combine multiple distance measures to de-
cide which code changes are likely to be related. But before that, let us discuss how
the overall algorithm is designed.

5.3.2 Using Multilevel Graph Partitioning

From the previous section we learned that the untangling algorithm has to iterate over
pairs of change operations and needs to determine the likelihood that these two change
operations are related and thus should belong to the same change set partition. Al-
though we do not partition graphs, we reuse the basic concepts of a general multilevel
graph-partitioning algorithm proposed by Karypis and Kumar [80, 81, 82]. We use a
triangle partition matrix to represent existing untangling partitions and the confidence
values indicating how confident we are that two corresponding partitions belong to-
gether. We will start with the finest granular partitioning and merge those partitions
with the highest merge confidence value. After each partition merge we delete two
partitions and add one new partition representing the partition union of the two deleted
partition. Thus, in each partition merge iteration, we reduce the dimension of our tri-
angle partition matrix by one. We also ensure that we always combine those partitions
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Figure 5.1: The procedure to build the initial triangle matrix used within the modified
multilevel graph partitioning algorithm.

that are most likely related to each other. More detailed, the algorithm performs the
following steps:

1. Build up a triangle partition matrix M of dimension m × m containing one row
and one column for each change set partition. We start with the finest granular
partitioning of the original change set—one partition for each change operation
applied by the change set.

2. For each matrix cell [Pi, P j] with i < j ≤ m of M, we compute a confidence value
indicating the likelihood that the partitions Pi and P j are related and should be
unified (see Section 5.4 for details on how to compute these confidence values).
The confidence value for matrix cell [Pi, P j] equals the confidence value for the
partition pair (P j, Pi). Figure 5.1 shows this step in detail.

3. After building up the triangle matrix, we determine the pair (Ps, Pt) of partitions
with the highest confidence value but for which s , t. We then delete the two
rows and two columns corresponding to the partitions Ps and Pt and add one
column and one row and one column for the partition Pm+1. The new partition
Pm+1 contains the union of change operations from Ps and Pt. In other words we
combine those partitions most likely being related.

4. For the just newly generated partition Pm+1 we compute confidence values be-
tween the new partition and all remaining partitions within M. There are differ-
ent strategies to compute the confidence values between two partitions Px and
Py containing multiple change operations. For the presented results, we took the
maximum of all confidence values between change operations stemming from
different partitions:

Conf (Px, Py) = Max{Conf (ci, c j) | ci ∈ P1 ∧ c j ∈ P2}.

The intention to use the maximum value here is that two change set partitions
can be related even though they have very few properties in common but operate
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on the same data structure or object instance. In such cases, using the mean value
instead would disregard such dependencies.

Without determining a stopping criterion, this algorithm would run until only one
partition is left. This would be the original change set itself. Our algorithm can handle
two different stopping strategies, both used for different purposes. Giving the algorithm
a fixed number of partitions to be produced, it merges partitions until it reaches the
desired number of partitions and returns. This strategy might be a good candidate for
analyzing change sets of projects that follow a very strict commit message format. In
these cases, it might suffice to scan the commit message to extract the expected number
of partitions. If the number of partitions to be expected is unknown, the algorithm
allows the user to specify a confidence threshold that must be exceeded in order to allow
to partitions to be merged. If no cell within M exceeds this threshold, the algorithm
terminates.

The untangling algorithm shown so far represents the partitioning framework used
to merge change operations into partitions only. This part of the algorithm is general
and makes no assumptions about source code, change operations, or any other aspect
that estimates the relation between individual change operations. It is important to
notice that the generated partitions do not overlap. A change operation can only belong
to one partition and there exists no partition belonging to no partition.

In the next sections, we will discuss how to derive the initial confidence values
between change operations filling the cells of the initial triangle matrix M and how to
combine multiple dependency measures into a single confidence value.

5.4 Confidence Voters

To combine various dependency and relation aspects between change operations, the
untangling framework itself does not decide which change operations are likely to be
related but asks a set of so called confidence voters (ConfVoters) (see Figure 5.2). Each
ConfVoter expects a pair of change operations and returns a confidence value between
zero and one. A confidence value of one represents a change operation dependency
aspect that strongly suggests to put both change operations into the same partition.
Conversely, a return value of zero indicates that the change operations are unrelated
according to this voter.
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Figure 5.2: The untangling algorithm partitions change sets using multiple, config-
urable aspect extracted from source code.

ConfVoters can handle multiple relation dependency aspects within the untangling
framework. Each ConfVoter represents exactly one dependency aspect. Below we
describe the set of ConfVoters used throughout our experiments.

FileDistance In Section 5.3.1 we discussed that change operations are bound to sin-
gle lines. This ConfVoter returns the number of lines between the two change
operation divided by the line length of the source code file both change opera-
tions are applied to. If both change operations were applied to different files this
ConfVoter will not be considered.

PackageDistance If both change operations were applied to different code files, this
ConfVoter will return the number of different package name segments comparing
the package names of the changed files. Will not be considered otherwise.

CallGraph Using a static call graph derived after applying the complete change set we
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identify the modified method definitions and calls and measure the call distance
between two call graph nodes. The call graph distance between two method
change operations is defined as the sum of all edge weights of the shortest path
between both nodes. An edge weight between method m1 and method m2 is
defined as one divided by the number of method calls between m1 and m2.

ChangeCouplings The confidence value returned by this ConfVoter is based on the
concept of change couplings as described by Zimmermann et al. [154]. The
ConfVoter computes frequently occurring sets of code artifacts that got changed
within the same change set. The more frequent two files changed together, the
more likely it is that both files are required to be changed together. The confi-
dence value returned by this ConfVoter indicated the probability that the change
pattern will occur whenever one of the patterns components change.

DataDependency Returns a value of one if both changes read or write the same vari-
able(s); returns zero otherwise. This relates to any Java variable (local, class, or
static) and is derived using a static, intra-procedural analysis.

5.5 Evaluation Setup

The current prototype of the untangling framework allows ConfVoters to be registered
as plug-ins. This way, we can add or remove project-specific change operation depen-
dency aspects within minutes.

To transform multiple confidence values—one per registered ConfVoter—into a
single confidence value required for the initial triangle matrix M (see Section 5.3.2),
we have to aggregate, respecting the fact that different ConfVoters may have different
importance (e.g. data dependency might be a stronger indication than change cou-
plings). For this purpose, we train a linear regression model to determine a project’s
specific linear combination of dependency aspects that matter to separate related from
unrelated change operations. Once such a model is trained, we can use it to determine
a single confidence value (regression) providing all confidence values of all registered
ConfVoters. For details on how to train the linear regression model see Section 5.5.3.

To determine the precision of our untangling algorithm, we ran experiments on
five open-source Java projects (see Table 5.2). For all projects we analyzed more than
50 months of active development history. Each project counts more than 10 active
developers. The number of committed change sets ranges from 1,300 (Jaxen) to 16,000
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Table 5.2: Details of projects used during untangling experiments. Comparing to Ta-
ble 5.1 most change sets could not be classified as atomic or tangled. These change sets are
classified as undecided and will not be used.

ArgoUML GWT† Jaxen JRuby Xstream

Lines of code 164,851 266,115 20,997 101,799 22,021
Development history (months) 150 54 114 105 90
# Developers 50 120 20 67 12
# Change sets 16,481 5,326 1,353 11,134 1,756
# Bug fixes 2,945 809 105 2,977 312
# Atomic bug fixes 125 (4.2%) 44 (5.4%) 32 (30.5%) 200 (6.7%) 40 (12.8%)
†GoogleWebtool Kit

(ArgoUML), and the number of bug fixing change sets ranges from 105 (Jaxen) to
nearly 3,000 (ArgoUML and JRuby). Choosing projects with different size (# change
sets) allow us to check whether the proposed untangling algorithm works on smaller
projects as well as on large project histories.

In the next sections, we will discuss how to determine the expected outcome of an
untangling procedure in order to measure its precision using a set of ground truths and
a method to produce a set of artificially tangled change sets.

5.5.1 Ground Truth

In Section 5.2, we discussed that a significant proportion of change sets must be con-
sidered as tangled. For our experimental setup this means that we cannot rely on the
existing data to evaluate our untangling algorithm, simply because we cannot deter-
mine whether a produced change set partition is correct and if not, how much it differs
from an expected result.

We consider change sets that contain only change operations to fulfill exactly one
developer maintenance task as atomic and unbiased. To determine a reliable set of
atomic and unbiased change sets we used a two-phase manual inspection of issue fixing
change sets:

1. We pre-selected change sets that could be linked to exactly one fixed and resolved
bug report (similar to Zimmermann et al. [153]).
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2. Each change set from Step 1 was manually inspected and classified as atomic
or non-atomic. During manual inspection, we first read the commit message.
In many cases, the commit message already indicated a tangled change set and
therefore the change set was marked non-atomic. If the commit message did
not classify the change set as non-atomic, we inspected the actual code changes.
Only if we had no doubt that the change set served only one developer main-
tenance task that was stated within the linked bug report (also no additional
refactoring or code cleanup), we classified the change set as atomic. During
classification, we tried to be as conservative as possible. If we had any doubt
that the change set might not be atomic, we classified it as non-atomic.

The limitation to change sets referencing issue reports was necessary in order to
understand the reason of the applied code changes. Without having a document de-
scribing the applied changes, it is very hard to judge whether a code change is tangled
or not.

The last row of Table 5.2 contains the number of manually classified atomic change
sets per project. The number depends on two project specific factors: the more bug
fixing change sets contain a reference to the corresponding bug report, the more change
sets rank for manual inspection; second, the smaller and cleaner a change set the easier
its manual classification is. For the three projects with the lowest number of change
sets Google Webtool Kit, Jaxen, and Xstream, we found between 30 and 40 atomic
changes each. Considering the total amount of appliedchange sets, this number is small
but does not necessarily represent the amount of atomic change sets within the project.
Due to the very restrictive selection of change sets for manual classification, we have
limited the number of atomic changes to a small selection. For the two larger projects
ArgoUML and JRuby, we found more atomic change sets. The the fraction of atomic
change sets (0.8–2.4%) represent the fraction of change sets that could be classified as
atomic but does not include all atomic change sets. For the vast majority of change sets
we could not determine whether these change sets are atomic or tangled. The figures
presented in Table 5.1 are the fraction of change sets that could be classified as tangled.
There exist more tangled change sets but we could not identify them. This implies that
the majority of change sets could not be classified by our conservative approach.

5.5.2 Artificial Tangled Change Sets

Evaluating our untangling approach requires a set of tangled change sets for which we
already know the correct partitioning. But getting such a set is hard. Tangled change
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sets get not untangled so far and in many cases a “correct” untangling might not even
be possible. Still, we need a set of known and already untangled tangled change sets
for evaluation purposes.

There are two main strategies to get such a set of ground truth. The first option is to
manually untangling natural occurring tangled change sets. But this requires detailed
project and source code knowledge and a detailed understanding of the intention behind
all change operations applied within a change set. As project outsiders we are not the
right persons to perform such a manual untangling and all wrongly partitioned tangled
change sets added to the set of ground truth would bias our evaluation set. In this
work, we follow the second strategy to generate a set of ground truth: we artificially
tangle atomic change sets into artificially tangled change sets. For such artificially
tangled change sets we know already the perfect partitioning: all change operations
applied by the same atomic change set should be put into the same partition. We agree
that artificially tangled change sets do not necessarily simulate all types of naturally
occurring tangled change sets, but we believe that using artificially tangled change sets
for evaluation purposes allows us to demonstrate the general untangling performance
of our algorithm and its impact on quality models.

Combining atomic change sets into artificially tangled change sets is straight for-
ward. Nevertheless, we have to be careful which atomic change sets to tangle. Com-
bining them randomly is easy but would not simulate real tangled change sets. In most
cases, developers do not combine arbitrary changes, but code changes that are close to
each other (e.g. fixing two bugs in the same file or improving a loop while fixing a
bug). To simulate such relations to some extend, we combined change sets using the
following three tangling strategies:

Change close packages (pack). Using this strategy we combine only change sets that
contain at least two change operations touching source files that are not more
than two sub-packages apart.

As an example, assume we have a set of three change sets changing three classes
CS 1 = {com.my. f oo.intern.F1}, CS 2 = {com.my. f oo.extern.F2}, and CS 3 =

{com.your. f oo.intern.F3}. Each class is identified by its fully qualified name.
Using this strategy we combine CS 1 with CS 2 since they are only one sub-
package apart. But we would not combine CS 1 with CS 3 nor CS 2 with CS 3.1

1This slightly penalizes the ConfVoter which uses package distances as a heuristic. However, we favored
a more realistic distribution of changes over total fairness across all ConfVoters.
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Frequently changed before (coupl). This strategy computes and uses change cou-
pling rules [154] (see also Chapter 6). Two code changes get only tangled if in
history at least two code artifacts changed by different change sets showed to be
frequently changed together.

For example, let CS i and CS j be a pair of atomic change sets and let CS i be ap-
plied before CS j. CS i changed file Fs while CS j changes file Ft. First, we com-
pute all change coupling rules using the approach of Zimmermann et al. [154]
and call this set S. The computed change coupling rules indicate how frequently
Fs and Ft got changed together in one change set before CS i got applied. We
combine CS i and CS j only if S contains a file coupling rule showing that Fs and
Ft had been changed in at least three change sets applied before CS i. Further we
require that in at least 70% of change sets applied before CS i that changes either
Fs or Ft the corresponding other file got changed as well.

Consecutive change sets (consec). We combine consecutive change sets applied by
the same author. Consecutive change sets are change set that would have ended
up in a tangled change set if the developer forgot to commit the previous change
set before starting a new developer maintenance task.

Furthermore, we limit all strategies to combine only atomic change sets that lie
no more than 14 days apart. The main reason for this limitation was to simulate real
world code changes. This limitation was also necessary for technical reasons. Most of
our ConfVoters require type resolution using the partial program analysis tool [37] that
needs to partially compile the source code. Longer time periods between atomic change
sets imply higher probability that merging change sets will lead to uncompilable code.
Applying our approach to real world tangled change sets, such a situation will never
occur.

5.5.3 Training a Confidence Voter Model

In Section 5.4, we mentioned the use of a linear regression model to aggregate all
ConfVoter confidence values for a pair of change operations into a single confidence
value.

To train the model, we need a set of positive and negative samples. Positive sam-
ples are pairs of change operations that belong to the same change set partition. A
negative sample consists of change operations belonging to different change set parti-
tions. Positive samples can be directly extracted from our ground truth set containing
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Figure 5.3: Artificially tangled change sets are generated using manually classified
atomic change sets to compare created partitions and desired output. Here, two change
operations are put into a wrong partition, and hence the precision is 7

9 = 77.7%.

atomic change sets (see Section 5.5.1). Each pair of a change set within the ground
truth set is a positive sample. Negative samples can be generated by computing Con-
fVoter values for pairs of change operations that were applied by different change set
from the ground truth set. We use thirty per cent of the corresponding ground truth set
to generate positive and negative samples.

Using these positive and negative samples, we will then train our aggregation model
using the Weka framework [143]. To aggregate confidence values within the untangling
algorithm itself, it suffices to let the model predict the result value based on the Con-
fVoter confidence values computed for each pair of change operations.

5.5.4 Precision

To test our untangling algorithm, we generate all possible artificially tangled change
sets as described in Section 5.5.1. Since we know the origin of each change operation,
we now can compare the expected partitioning with the partitioning produced by the
untangling algorithm (see Figure 5.3). We measure the difference between original and
produced partitioning as the number of change operations that were put into a “wrong”
partition.
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For a set of tangled change sets B, we define precision as

precision =
# correctly assigned change operations

total # of change operations ∈ B

As an example for precision, consider Figure 5.3. In the tangled change set, we
have 9 change operations overall. Out of these, two are misclassified (the black one in
the middle partition, and the gray one in the lower partition); the other seven change
operations are assigned to the correct partition. Consequently, the precision is 7/9 =

77.7%, implying that 2/9 = 22.2% of all changes need to be recategorized in order to
obtain the ground truth partitioning.

For each set of tangled change sets there exist multiple precision values. The preci-
sion depends on which change set partition is compared against which original atomic
change set. Precision values reported in this chapter correspond to the partition change
set association with the highest sum of Jaccard indices [76]. The Jaccard index be-
tween two sets expresses the similarity for two sets and is defined as

J(A, B) =
|A ∩ B|
|A ∪ B|

The higher the Jaccard index the higher the similarity of the sets A and B. Thus,
by maximizing the sum of Jaccard indices over a set of association permutations relat-
ing partitions with atomic change sets we chose the association permutation with the
highest similarity of associated pairs. Short, we report the best precision value over all
existing association permutations.

5.6 Results and Discussion

The results presented in this section depend on the size of the artificial tangled change
sets that is to be untangled—the so called blob size. The blob size represents the num-
ber of atomic change sets contained within the same artificial tangled change set. We
did not generate artificially tangled change sets larger than four, although possible.
During our manual change set inspection (see Section 5.2) we rarely found commits
that had or exceeded a blob size of four. The distribution of blob sizes is shown in Fig-
ure 5.4. 73% of all tangled change sets found during manual inspection had a blob size
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Figure 5.4: The number of tangled change sets discovered during manual inspection
having a specific blob size.

of two. Concentrating on tangled change sets with a blob size of four or lower covers
96% of all found tangled change sets. For the presented results, we used a confidence
threshold (see Section 5.3.2) of 0.5 to stop further partition aggregation. To determine
whether the number of tangled change sets influences the untangling precision (see
Section 5.5.4) we report results of different blob sizes separately.

* 73% of all discovered tangled change sets had a blob size of two.

* 96% of all discovered tangled change sets had a blob size lower than five.

5.6.1 Artificially Tangled Change Sets

Table 5.3 contains the number of generated artificially tangled change sets grouped by
blob size and combination strategy (see Section 5.5.2). The last three rows of Table 5.3
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Table 5.3: Number of generated artificially tangled change sets sorted by blob size and
generation strategy. The abbreviation pack. stands for the package distance strategy,
coupl. for change coupling strategy, and consec. for the strategy using consecutive
change sets.

Blobsize Strategy ArgoUML GWT† JRuby Xstream

pack. 40 110 1,430 32
coupl. 0 20 590 02
consec. 180 30 3,364 30

pack. 13 40 17.3k 133
coupl. 0 0 19.2k 03
consec. 673 70 11.4k 53

pack. 0 40 1.2M 83
coupl. 0 0 81.9k 04
consec. 743 70 695.3k 25

pack. 53 190 1.2M 248
coupl. 0 20 101.1k 0

∑
consec. 1,596 170 710.0k 108

†GWT = GoogleWebtool Kit

contain the sum of artificially tangled change sets generated using different strategies
but across different blob sizes. The number of artificially tangled change sets following
the change coupling strategy (coupl.) is low except for JRuby. The ability to generate
artificially tangled change sets from project history depends on the number of atomic
change sets, on the number of files touched by these atomic change sets, on the change
frequency within the project, and on the number of existing change couplings.

A good example is the Google Webtool Kit project. It is the project with the
second lowest number of generated artificially tangled change sets, but also the project
with one of the highest fraction of non-atomic bug fixes (see Table 5.1) and the second
smallest number of atomic change sets identified (see Table 5.2). The project with
the highest number of artificially tangled change sets is JRuby. Accordingly, it is the
project with the second lowest number of tangled bug fixes (Table 5.1) and the project
with the highest number of atomic change sets (Table 5.2).
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Table 5.4: Precision rates of the untangling algorithm sorted by blob size and genera-
tion strategy.

Blobsize Strategy ArgoUML GWT† JRuby Xstream x

pack. 0.79 0.67 0.91 0.81 0.80
coupl. — 0.75 0.93 — 0.84
consec. 0.74 0.70 0.91 0.79 0.792

y 0.77 0.71 0.92 0.80 0.80

pack. 0.70 0.63 0.69 0.65 0.67
coupl. — — 0.68 — 0.68
consec. 0.62 0.57 0.70 0.66 0.643

y 0.66 0.60 0.69 0.66 0.66

pack. — 0.58 0.62 0.50 0.57
coupl. — — 0.63 — 0.63
consec. 0.55 0.54 0.64 0.59 0.584

y 0.55 0.56 0.63 0.55 0.58
†GWT = GoogleWebtool Kit

5.6.2 Untangling Artificial Tangled Change Sets

The precision of the untangling algorithm is shown in Table 5.4. Precision values are
grouped by project, blob size, and tangling strategy. Rows stating y as strategy contain
the average precision over all strategies for the corresponding blob size. The column
x shows the average precision across different projects for the corresponding blob gen-
eration strategy. The cells (x, y) contain the average precision across all projects and
blob generation strategies for the corresponding blob size. Table cells containing no
precision values correspond to the combinations of blob sizes and generation strategies
for which we were unable to produce any artificially tangled change sets.

The algorithm performs well on all subject projects. Projects with higher number
of generated artificially tangled change sets also show higher untangling precision. The
more artificially tangled change sets, the higher the number of instances to train our lin-
ear regression aggregation model on (see Section 5.5.3). Overall, the precision values
across projects show similar ranges and most importantly similar trends in relation to
the chosen blob size.

* The untangling algorithm shows comparable results across all subject projects.
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For all projects, the precision is negatively correlated with the used blob size. The
more change operations to be included and the more partitions to be generated, the
higher the likelihood of misclassifications. Figure 5.4 shows that tangled change sets
with a blob size of two are most common (73%). The results in Table 5.4 show that
for the most popular cases our untangling algorithm achieves precision values between
0.67 and 0.93—0.80 on average. Increasing the blob size from two to three, precision
drops by approximately 14%, across all projects and from 80% to 66% on average.
Increasing the blob size further has a negative impact on precision.

* Our approach untangles any two artificially tangled change sets with a preci-
sion between 0.67–0.93.

* The mean precision across all blob sizes is 58% (blob size four) to 80% (blob
size two).

Table 5.4 shows that the precision values for artificially tangled change sets are
stable across tangling strategies. For each project and blob size the precision values
across different strategies differ at most by 0.09 and on average by 0.04.

* The performance of our untangling algorithm is stable across all tangling
strategies.

In Section 5.1 we discussed the issue of tangled change sets when building de-
fect prediction models. Imagine we want to count the number of applied bug fixes
per source file. And lets assume that there exists at least one tangled change set that
implements one feature, fixes one bug, and changes two source files. Which file will
be assigned a bug fix? Since we do not know which source file had to be changed in
order to fix the bug, we can either count one bug for both files or we count one bug
for one of the files that we choose randomly. Either strategy may end up with a false
positive and thus might introduce noise. Above, we showed that our untangling algo-
rithm is capable of separating change operation applied to fix different code bugs with
a reasonable precision. Using our untangling algorithm to increase bug count precision
for bug counting model described above, our measured untangling precision does not
indicate the fraction of source files that would be assigned a false positive bug fix count.

For this purpose, we measured the relative file error during untangling tangled
change sets. For each tangled change set untangled we lift the level for computing
precision values to the file level measuring the number source code files correctly or
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Table 5.5: Relative untangling file error.

Blobsize Strategy ArgoUML GWT† JRuby Xstream x

pack. 0.00 0.00 0.10 0.30 0.00
coupl. — 0.25 0.15 — 0.20
consec. 0.26 0.30 0.22 0.32 0.282

y 0.13 0.18 0.16 0.31 0.19

pack. 0.00 0.36 0.32 0.34 0.34
coupl. — — 0.42 — 0.42
consec. 0.38 0.40 0.37 0.45 0.403

y 0.19 0.38 0.37 0.40 0.29

pack. — 0.50 0.47 0.41 0.46
coupl. — — 0.48 — 0.48
consec. 0.44 0.40 0.45 0.47 0.444

y 0.44 0.45 0.47 0.44 0.45
†GWT = GoogleWebtool Kit

falsely associated with an untangling result partition. Thus, the relative file error reports
the proportion of source files that would be falsely assigned to a developer maintenance
task. Table 5.5 shows the results for all subject projects grouped by tangling strategy
and blob size. Similar to Table 5.4, the y column contains the average error rates over
all strategies; x rows contain the average error rates across different projects for the
corresponding blob generation strategy. The cells (x, y) contain the average error rates
across all projects and blob generation strategies for the corresponding blob size.

Overall the average file error rates over all projects and strategies (red colored cells)
correspond to the overall precision values in Table 5.4. For a blob size of two, the
relative file error rates are below 0.30. Untangling change sets of blob size two reduces
the number of source files falsely associated to developer maintenance tasks by at least
70%. Like untangling precision, the relative file error is positively correlated with the
blob size. The higher the blob size the lower the untangling precision and the higher
the relative file error rates. Although the relative file error rates raise to a value of 0.5
for tangled change sets of size four, we still reduce the number of source files falsely
associated to developer maintenance tasks by at least 50%.

* Untangling code changes reduces the number of source files falsely associated
to developer maintenance tasks by 55% (blob size four) to 81% (blob size two).
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5.7 Impact on Bug Prediction

To show the impact of untangling tangled change sets we conduct a similar experimen-
tal setup as discussed in Section 4.8. We use a simple quality model that identifies the
most defect-prone source files by counting the number of distinct bug reports mapped
to the corresponding file (see Section 2.3.4).

To compare quality models untangling tangled change sets against classic models,
we generate two bug count data sets. For the classic reference models, we associate all
referenced bug reports to all source files changed by a change set, disregarding whether
we marked it tangled or not. For the untangled bug count set, we used our untangling
algorithm to untangle manual classified tangled change sets. If the tangled change set
reference bug reports only, we assigned one bug report to each partition—since we
only count the number of bug, it is not important which report gets assigned to which
partition.

For change sets referencing not only bug reports we used an automatic change pur-
pose classification model based on the findings of Herzig et al. [67] (see also Chapter 6)
indicating that bug fixing change sets apply less change operations when compared
to feature implementing change sets. Thus, we classify those partitions applying the
fewest change operations as bug fixes. Only those files that were changed in the bug
fixing partitions were assigned with one of the bug reports. Both bug counting sets get
sorted in descending order using the distinct number bug reports associated with the
file (see Figure 5.5).

As in Section 4.8 the most defect-prone file is the top element in each bug count set.
Comparing the top X% of both file sets (containing the same elements but in potentially
different order) allows us to reason about the impact of tangled change sets on models
using bug counts to identify the most defect-prone entities. Since both cutoffs are
equally large (the number of source files does not change, only their ranks), we can
define the cutoff_difference as:

size of cutoff − size of intersection
size of cutoff

.

The result is a number between zero and one where zero indicates that both cutoffs
are identical and where a value of one implies two cutoffs with an empty intersection.
A low cutoff_difference is desirable.
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Figure 5.5: The cutoff_difference for the top x% illustrating the impact of tangled
change sets on quality data models.
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Figure 5.6: The cutoff_differences caused by tangled change sets.
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Remember that we untangled only those change sets that we manually classified
as tangled change sets (see Table 5.1). The fraction of tangled change sets lies be-
tween 6% and 15%, only. Figure 5.6 shows that untangling these few tangled change
sets already has a significant impact on the set of source files marked as most defect
prone. Figure 5.6 shows the cutoff_differences for the top 5%, 10%, 15%, and 20%
of files with the highest distinct number of associated bug reports. The impact of
untangling lies between 0% and 50%. It is not surprising that cutoff_difference and
fraction of tangled change sets is correlated. JRuby had the lowest fraction of blobs
and shows the smallest cutoff_differences. Jaxen had the highest tangled change set
fraction and shows the highest cutoff_differences. We can summarize that untangling
tangled change sets impacts bug counting models and thus are very likely to impact
more complex quality models or even bug prediction models trained on these data sets,
too.

* Tangled change sets severely impact bug counting models. On our open-source
projects, untangling manual classified tangled change sets showed that be-
tween 6% and 50% of the most defect prone files do not belong in this category
because they were falsely associated with bug reports.

We further observed that in total between 10% and 38% of all source files we
assigned different bug counts when untangling tangled change sets. Between 1.5% and
7.1% of the files originally associated with bug report had no bug count after untangling
tangled change sets.

5.8 Threats to Validity

Like any other empirical study of this kind, the approach presented in this study has
threats to its validity. We identified four noteworthy threats.

The change set classification process used in Section 5.5.1 involved manual code
change inspection. We tried to be as conservative as possible when classifying atomic
change sets, but the classification process was conducted by software engineers not
familiar with the internal details of the individual projects. Thus, it is not unlikely that
the manual selection process or the pre-filtering process misclassified change sets. This
could impact the number and the quality of generated artificially tangled change sets
and thus could impact the untangling results, in general.
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A second threat is given by the selected software projects used throughout our ex-
perimental setup. We cannot claim that the selected Java projects are representative
in any way. We tried to include projects of different size and domains. With Google
Webtool Kit, we also considered a project that is developed by an industrial company.
Nevertheless, we have to be aware that untangling results for other projects may dif-
fer. The very same holds for the selection of ConfVoters. Choosing a different set of
ConfVoters will impact untangling results.

The process of constructing artificially tangled change sets may not be simulating
real life tangled change sets caused by developers combining multiple developer main-
tenance task into single change sets. Thus, results of untangling real developer change
sets may differ.

The untangling results presented in this paper are based on artificially tangled
change sets derived using the ground truth set which contains issue fixing change sets,
only. Thus, it might be that the ground truth set is not representative for all types of
code changes.

The aggregation process to transform multiple confidence values into a one includes
a machine learner training phase. The data sets used to train these aggregation models
are produced by random splits (see Section 5.5.3). Using different random splits may
impact the aggregation results significantly and thus may impact the overall untangling
results.

We use bug counting models to measure the impact of untangling on defect predic-
tion and other code quality related models. Although most defect prediction models
use these simple bug count models as underlying classification or regression basis, it
might be that the impact of tangled change sets on real prediction models differs from
the presented results.

As mentioned briefly, we use the partial program analysis tool [37] by Dagnais and
Hendren within our untangling algorithm. Thus, the validity of our results depends on
the validity of the used approach.
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5.9 Summary

This work proposes an untangling algorithm that helps to reduce the amount of bias
within data mining sets, caused by version control system commits. Combining code
changes serving multiple developer maintenance tasks into one change set produces
tangled change sets. Our results support the findings of Kawrykow [83] and show that
the fraction of tangled changes may be substantial, causing a serious threat to empirical
findings based on version archives.

For the five open-source projects used within our experiments, our untangling algo-
rithm showed an average precision between 58% and 80%, depending on the number
of developer maintenance tasks combined in a single change set. Basing empirical
findings on untangled changes will make them more precise, and less threatened by
bias and noise. Independent results reported by Kawrykow [83] show similar precision
rates.

We are committed to make the entire untangling framework and all training exam-
ples publicly available. We expect to release this package early 2013 at the project web
site:

http://www.softevo.org/untangling

http://www.softevo.org/untangling


Chapter 6

Classifying Code Changes and
Predicting Defects Using
Change Genealogies

Parts of the contents of this chapter have been published in the technical report Herzig
et al. [67] (currently under submission).

6.1 Introduction

Identifying bug fixes and using them to estimate or even predict software quality is a
frequent task when mining version archives. The number of applied bug fixes serves as
a code quality metric identifying defect-prone and non-defect-prone code artifacts. But
when is a change set considered a bug fix and which metrics should be used to build
high quality defect prediction models? Most commonly, bug fixes are identified by
analyzing commit messages—short, mostly unstructured pieces of plain text. Commit
messages containing keywords such as “fix” or “issue” followed by a bug report iden-
tifier, are considered to fix the corresponding bug report (see Section 2.3.4). Similar,
most defect prediction models use metrics describing the structure, complexity, churn,
or dependencies of source code artifacts.

107
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But commit messages and code metrics describe the state of software artifacts and
code changes at a particular point in time, disregarding their genealogies that describe
how the current state of the source code came to be. There are approaches measuring
historic properties of code artifacts [58, 65, 89, 102, 110] and using code dependency
graphs [151, 22] but non of these approaches track the structural dependency paths of
code changes to measure the centrality and impact of change sets. But change sets are
those development events that make the source code look as it does.

In this chapter, we make use of change genealogies to define a set of change ge-
nealogy metrics (referred to as CGMs for sake of brevity) describing the structural
dependencies of change sets. We further investigate whether CGMs can be used to
identify bug fixing change sets (without using commit messages and bug databases)
and whether CGMs are expressive enough to build effective defect prediction models
classifying source files to be defect-prone or not.

Regarding the identification of change sets dedicated to fix bugs, our assumption
is that change sets applying bug fixes show significant dependency differences when
compared to change sets applying new feature implementations. We suspect that im-
plementing and adding a new feature implies adding new method definitions that im-
pact a large set of later applied code changes, which add code fragments adding method
calls to these newly defined methods. In contrast, we suspect bug fixes to be relatively
small (as shown by Mockus and Votta [101]) rarely defining new methods but modi-
fying existing features and thus having a small impact on later applied code changes.
The impact of bug fixes is to modify the runtime behavior of the software system rather
than causing future change sets to use different functionality.

We call change sets having dependencies to a large number of earlier or later ap-
plied change sets central and suspect such central change sets to be crucial to the soft-
ware development process. Consequently, we suspect code artifacts that got many
crucial and central code changes applied to be more defect prone than others. More
specifically, we seek to answer the following research questions in our study:

RQ6.1 How do bug fix classifiers based on change genealogy metrics compare to clas-
sification models based on code complexity churn metrics (Section 6.4)?

RQ6.2 How do defect prediction models compare with defect prediction models based
on code complexity or code dependency network metrics (Section 6.5)?

We tested the classification and prediction abilities of our approaches on four open
source projects. The results show that CGMs can be used to separate bug fixing from
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feature implementing change sets with an average precision of 72% and an average
recall of 89%. Our results also show that defect prediction models based on CGMs
can predict defect-prone source files with precision and recall values of up to 80%. On
average the precision for change genealogy models lies at 69% and the average recall
at 81%. Compared to prediction models based on code dependency network metrics,
change genealogy based prediction models achieve better precision and comparable
recall values.

6.2 Change Genealogy Metrics

In Chapter 3 we discussed the concept of change genealogies and how to construct them
in detail. Summarizing, change genealogies model dependencies (edges) between in-
dividual change sets (vertices). Similar to code dependency metrics [151, 22] we can
use change genealogies to define and compute change genealogy metrics (CGMs) de-
scribing the dependency structures between code changes instead of code artifacts.
Each change set applied to the software system is represented by a change genealogy
vertex. Computing network metrics for each change genealogy vertex means to com-
pute change set dependency metrics. Later, we will use this set of CGMs to classify
change sets as bug fixing or feature implementing using a machine learner and to pre-
dict defect-prone source code artifacts.

In accordance to social network metrics, we divide the neighborhood of a change
genealogy vertex called EGO into two main categories: the ego network and the global
network (see Figure 6.1(b)). The ego network contains all direct children and direct
parents of the EGO vertex. Further, we distinct between metrics based on structural
holes [28], centrality measures, temporal change genealogy metrics, and change set
related metrics. We also distinguish between metrics related to change genealogy par-
ents and change genealogy children (see Figure 6.1(a)) of the EGO vertex. Parents of
EGO are all those vertices that can be reached by following outgoing dependency edges.
Code changes represented by the EGO vertex could have not been applied without ap-
plying the parent code changes before. Children of a vertex are those vertices that can
be reached by following incoming edges. Code changes applied by children depend on
code changes applied by EGO.

To capture as many of such dependency differences as possible, we implemented
various genealogy dependency metrics of different categories.
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(a) Parents and children of a change geneal-
ogy vertex.

EGO network

GLOBAL network

EGO

(b) EGO and global network neighborhoods
in change genealogies.

Figure 6.1: Parents, children, global and EGO networks in change genealogies.

6.2.1 EGO Network Metrics

Ego network metrics measure dependencies between change genealogy vertices and
their direct neighbors (see Figure 6.1). For every vertex we consider direct children or
direct parents, only. Thus, this set of metrics measures the immediate impact of change
sets on other change sets. Table 6.1 describes the implemented change genealogy ego
network metrics.

The metrics NumDepAuthors and NumParentAuthors refer to the authorship of
change set. Bug fixes might depend mainly on change sets that have the same au-
thor. The last six metrics in Table 6.1 express temporal dependencies between change
sets based on their commit timestamp.

6.2.2 GLOBAL Network Metrics

Global network metrics describe a wider neighborhood (see Figure 6.1). Most global
network metrics described in Table 6.2 can be computed for the global universe of
vertices and dependencies. For practical reasons, we limited the metric traversal depth
to a maximal depth of five.
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Table 6.1: Ego network metrics capturing direct neighbor dependencies.

Metric name Description

NumParents The distinct number of vertices being source of an in-
coming edge.

NumDefParents The distinct number of vertices representing a method
definition operation and being source of an incoming
edge.

NumCallParents The distinct number of vertices representing a method
call operation and being source of an incoming edge.

NumDependants The distinct number of vertices being target of an out-
going edge.

NumDefDependants The distinct number of vertices representing a method
definition operation and being target of an outgoing
edge.

NumCallDependants The distinct number of vertices representing a method
call operation and being target of an outgoing edge.

AvgInDegree The average number of incoming edges.
AvgOutDegree The average number of outgoing edges.

NumDepAuthors The distinct number of authors responsible for the di-
rect children.

NumParentAuthors The distinct number of authors that implemented the
direct ascendants of this vertex.

AvgResponseTime The average number of days between a vertex and all
its children.

MaxResponseTime The number of days between a vertex and the latest ap-
plied child.

MinResponseTime The number of days between a vertex and the earliest
applied child.

AvgParentAge The average number of days between a vertex and all
its parents.

MaxParentAge The number of days between a vertex and the earliest
applied parent.

MinParentAge The number of days between a vertex and the latest ap-
plied parent.
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Table 6.2: Global network metrics.

Metric name Description

NumParents† The distinct number of vertices being part of on in-
coming path.

NumDefParents† Like NumParents but limited to vertices that change
method definitions.

NumCallParents† Like NumParents but limited to vertices that change
method calls.

NumDependants† The distinct number of vertices being part of on out-
going path.

NumDefDependants† Like NumDependants but limited to vertices that
change method definitions.

NumCallDependants† Like NumDependants but limited to vertices that
change method calls.

NumSiblingChildren The number of children sharing at least one parent
with this vertex.

AvgSiblingChildren The average number of parents this vertex and its
children have in common.

NumInbreedParents The number of grandparents also being parents.
NumInbreedChildren The number of grandchildren also being children.
AvgInbreedParents The average number of grandparents also being par-

ent.
AvgInbreedChildren The average number of grandchildren also being

children.
† maximal network traversal depth is set to 5.



6.2. CHANGE GENEALOGY METRICS 113

Metrics counting the number of global descendants or ascendants express the indi-
rect impact of change sets on other change sets and how long this impact propagates
though history. The set of inbreed metrics express dependencies between a change set
and its children in terms of common ascendants or descendants. Code changes that
depend on nearly the same earlier change sets as their children might indicate reverted
or incomplete changes.

6.2.3 Structural Holes

The concept of structural holes was introduces by Burt [28] and measures the influence
of actors in balanced social networks. In networks where each actor is connected to all
other actors is well balanced. As soon as dependencies between individual actors are
missing (“structural holes”) some actors are in advanced positions (see Figure 6.2).

The effective size of a network is the number of change sets that are connected to
a vertex minus the average number of ties between these connected vertices. The effi-
ciency of a change set is its effective size normed by the number of vertices contained
in the ego network. The higher the metric values for these metrics the closer the con-
nection of a change set to its ego network. Table 6.3 lists the complete list of used
structural hole metrics.

6.2.4 Change Metrics

The last set of metrics shown in Table 6.4 measures the amount of code churn applied
by the corresponding change sets and its neighbors in the ego network. In our case,
we counted the different number of added and deleted method definitions and method
calls. The intuition behind these churn metrics is that bug-fixes should in general be
considerable smaller than other developer tasks such as feature implementations or
code cleanups [101].
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Figure 6.2: The concept of structural holes in ego networks.

Table 6.3: Structural holes metrics similar as defined by Burt [28].

Metric name Description

EffSize The number of vertices connected to this vertex minus the
average number of ties between these connected vertices.

InEffSize The number of vertices connected by incoming edges to this
vertex minus the average number of ties between these con-
nected vertices.

OutEffSize The number of vertices connected by outgoing edges to this
vertex minus the average number of ties between these con-
nected vertices.

Efficiency norms EffSize by the number of vertices of the ego-network.
InEfficiency norms InEffSize by the number of vertices of the ego-

network.
OutEfficiency norms OutEffSize by the number of vertices of the ego-

network.
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Table 6.4: Change size metrics describe a vertex using the number of change operations
applied by the corresponding code change.

Metric name Description

ChangeSize The number of change operations corresponding to the
vertex.

NumAddOps The number of adding change operations corresponding
to the vertex.

NumDelOps The number of deleting change operations corresponding
to the vertex.

NumAddMethDefOps The number of change operations adding method defini-
tions corresponding to the vertex.

NumDelMethDefOps The number of change operations deleting method defini-
tions corresponding to the vertex.

NumAddCallOps The number of change operations adding method calls
corresponding to the vertex.

NumDelCallOps The number of change operations deleting method calls
corresponding to the vertex.

AvgDepChangeSize The mean number of change operations applied by direct
children.

MaxDepChangeSize The maximal number of change operations applied by one
of the direct children.

SumDepChangeSize The total number of change operations applied by direct
children.

AvgParentChangeSize The mean number of change operations applied by direct
parents.

MaxParentChangeSize The maximal number of change operations applied by one
of the direct parents.

SumParentChangeSize The total number of change operations applied by direct
parents.



116 CHAPTER 6. CLASSIFYING CODE CHANGES AND PREDICTING DEFECTS

Table 6.5: Projects used for experiments.

HttpClient Jackrabbit† Lucene Rhino

History length 6.5 years 8 years 2 years 13 years
Lines of Code 57,143 65,764 362,128 56,084
# Source files 570 687 2,542 217
# Code changes 1,622 7,465 5,771 2,883
# Mapped BUG reports 92 756 255 194
# Mapped RFE reports 63 305 203 38

Change genealogy details

# vertices 973 4,694 2,794 2,261
# edges 2,461 15,796 8,588 9,002
† considered only sub-project Jackrabbit content repository (JCR).

6.3 Data Collection

The goals of our approach are (a) to classify bug fixing change sets independent from
commit messages and bug databases and (b) to predict defect prone source files, both
using CGMs. To reason about the precision of our classification and prediction models,
we compare our derived models to state-of-the-art benchmark models.

Mockus and Votta [101] (referred to as M&V for sake of brevity) used code churn
metrics to identify bug fixing change sets. Following their approach, we compute com-
plexity churn metrics to train change purpose classification benchmark models. Sec-
tion 6.3.2 contains details on the used complexity metrics. Section 6.3.3 describes the
used code complexity churn metrics and how to compute them.

We compare change genealogy defect prediction models against two benchmark
models: models based on code complexity (see Section 2.3.6) and models based on
code dependency metrics as proposed by Zimmermann and Nagappan [151] (referred
to as Z&N). Section 6.3.2 and Section 6.3.4 contain details on the used complexity and
code dependency network metrics.

We evaluate our classification and prediction models on four open-source projects:
HttpClient, Lucene, Rhino, and Jackrabbit. The projects differ in size from small
(HttpClient) to large (Lucene) allowing us to investigate whether the classification and
prediction models are sensitive to project size. All projects are known in the research
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Figure 6.3: Process of linking change sets to bug reports.

community and follow the strict and industry-like development processes of Apache
and Mozilla. A brief summary of the projects and their genealogy graphs is presented
in Table 6.5. Change genealogies contain approximately as many vertices as applied
change sets. The difference in the number of vertices and the number of change sets
is caused by change sets that do not add or delete any method definition or call (e.g.
documentation modifications).

6.3.1 Bugs

For both approaches, change classification and defect prediction, we need to identified
bug fixing change sets and the corresponding bug ID. Using this mapping we can as-
sociate bug fixing change sets with modified source files and count the distinct number
of fixed bug reports per source file.

To associate change sets with bug reports, we followed the approach by Zimmer-
mann et al. [153] (see also Figure 6.3):

1. Bug reports and change sets are read from the corresponding bug tracking system
and version archive.

2. In a preprocessing step we select potential candidates using regular expressions
such as [bug|issue|fixed]:?\s*#?\s?(\d+) to search for potential bug report
references in commit messages.

3. The pairs received from step 2) then pass a set of filters checking

(a) that the bug report is marked as resolved.

(b) that the change set was applied after the bug report was opened.

(c) that the bug report was marked as resolved not later than two weeks after
the change set was applied.
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To determine a set of ground truth identifying the real purpose of change sets we
use the manual classified bug report data set described in Chapter 4. This set contains
a manual classified issue report type for each individual filed issue report. Instead
of using the original issue report type to identify bug reports, we used the manual
classified issue report type.

6.3.2 Complexity Metrics (CMs)

We computed complexity metrics (CMs) for all source files of each projects trunk
version using a commercial tool called JHawk [2]. JHawk computes classical object-
oriented code complexity metrics for Java projects. Using JHawk we computed the
code complexity metrics listed in Table 6.6.

6.3.3 Complexity Churn Metrics (C∆Ms)

For each change set we compute complexity churn metrics derived as the difference
in code complexity before and after the change set was applied. Thus, we compute
the set of complexity metrics described in Section 6.3.2 for each historic revision of
the software project. For each metric M ∈ CMs we sum up the metric values over
all source files at revision CS i−1 and subtract the same sum of metric values collected
at revision CS i. Doing this for every code complexity metrics, yields a set of code
complexity metric values reflecting the amount of code complexity added or deleted
by change set CS i—we call this set code complexity churn metrics (C∆Ms).

6.3.4 Network Metrics (NMs)

Code dependency network metrics as proposed by Z&N express the information flow
between code entities modeled by code dependency graphs. The set of network met-
rics used in this work slightly differs from the original metric set used by Z&N. We
computed the used network metrics using the R statistical software [120] and the
igraph [36] package. Using igraph we could not re-implement two of the 25 origi-
nal network metrics: ReachEfficiency and Eigenvector.
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Table 6.6: Set of code complexity metrics used.

Identifier Description

NOM Total number of methods per source file.
LCOM Lack of cohesion of methods in source file.
AVCC Cyclomatic complexity after McCabe [96].
NOS Number of statements in source file.
INSTΣ Number of class instance variables.
PACK Number of imported packages.
RCS� Total response for class (# methods + # distinct method calls).
CBO� Couplings between objects [33].
CCML Number of comment lines.
MOD� Number of modifiers for class declaration.
INTRΣ Number of implemented interfaces.
MPC� Represents coupling between classes induced by message passing.
NSUBΣ Number of sub classes.
EXTΣ Number of external methods called.
FOUTΣ Also called fan out or effect coupling. The number of other classes

referenced by a class.
F-INΣ Also called fan in or afferent coupling. The number of other classes

referencing a class.
DIT∧ The maximum length of a path from a class to a root class in the

inheritance structure.
HIERΣ Number of class hierarchy methods called.
LMCΣ Number of local methods called.
Σ aggregated using the sum of all metric values of lower order granularity.
� aggregated using the mean value.
∧ aggregated using the max value.
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While we simply excluded ReachEfficiency from our network metric set, we substi-
tuted the Eigenvector by alpha.centrality—a metric that can be “considered as a gen-
eralization of eigenvector centrality to directed graphs” [25]. Table 6.7 lists all code
dependency network metrics used in this work. Metrics carry the same metric name
than the corresponding metric described by Z&N. For the sake of brevity, we refer the
set of network metrics shown in Table 6.7 as NMs.

6.3.5 Genealogy Metrics (CGMs)

We discussed the set of genealogy metrics in Section 6.2. To compute these metrics,
we constructed change genealogy graphs modeling dependencies between change sets
over the entire project history.

6.4 Classifying Code Changes (RQ6.1)

In this first series of experiments we seek an answer to RQ6.1: Can we use change
genealogy metrics to identify bug fixing change sets and how do such code change
classification models compare to classification models based on C∆Ms?

For each subject project, we build two sets of change set classification models and
compare both sets of classification models against each other. For each classification
model to be built, we need a data collection containing explanatory variables (metric
values per change set) and the dependent variable classifying the corresponding change
sets as bug fixing or as feature adding (see Figure 6.4). The columns containing CGMs
are used to train the change genealogy classification model, the code complexity churn
columns are used to train the benchmark model.

6.4.1 Experimental Setups

We use two different experimental setups to evaluate the change set classification power
of CGMs. We first conduct a stratified repeated holdout setup to measure the classifi-
cation quality within each individual subject project. We then conduct a cross-project
classification setup to see whether CGMs can be used to train more universal change
set classification models sharing a common set of the most influential metrics.
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Table 6.7: List of code dependency network metrics.
Metric name Description

Ego-network metrics (computed each for incoming, outgoing, and undirected depen-
dencies; descriptions adapted from Z&N):
Size # nodes connected to the ego network
Ties # directed ties corresponds to the number of edges
Pairs # ordered pairs is the maximal number of directed ties
Density % of possible ties that are actually present
WeakComp # weak components in neighborhood
nWeakComp # weak components normalized by size
TwoStepReach % nodes that are two steps away
Brokerage # pairs not directly connected. The higher this number, the more

paths go through ego
nBrokerage Brokerage normalized by the number of pairs
EgoBetween % shortest paths between neighbors through ego
nEgoBetween EgoBetween normalized by the size of the ego network

Structural metrics (descriptions adapted from Z&N):
EffSize # entities that are connected to an entity minus the average number

of ties between these entities
Efficiency Normalizes the effective size of a network to the total size of the

network
Constraint Measures how strongly an entity is constrained by its neighbors
Hierarchy Measures how the constraint measure is distributed across neigh-

bors. When most of the constraint comes from a single neighbor,
the value for hierarchy is higher

Centrality metrics (computed each for incoming, outgoing, and undirected dependencies;
descriptions adapted from Z&N):
Degree # dependencies for an entity
nDegree # dependencies normalized by number of entities
Closeness Total length of the shortest paths from an entity (or to an entity) to

all other entities
Reachability # entities that can be reached from a entity (or which can reach an

entity)
alpha.centrality† Generalization of eigenvector centrality [25]
Information Harmonic mean of the length of paths ending in entity
Betweenness Measure for a entity in how many shortest paths between other en-

tities it occurs
nBetweenness Betweenness normalized by the number of entities
† Metrics not used by Z&N.
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Figure 6.4: Data collection used for change set classification purposes.

We conducted our experiments using the R statistical software [120] and more pre-
cisely Max Kuhn’s R package caret [90]. This package provides helpful wrapper func-
tions to several machine learning algorithms available in other packages. Table 6.8 lists
the prediction models we used for classification. Each model can be optimized using
several different parameters. This is handled by the caret package when a tuneLength
value is specified. We set this number to five.

As evaluation measures, we report precision, recall, and F-measure. Each of these
measures is a value between zero and one. A precision of one indicated that the clas-
sification model did not produce any false positives; that is classified non bug fixes as
bug fixes. A recall of one would imply that the classification model did not produce
any false negatives—classified a bug fix not as such. The F-measure represents the
harmonic mean of precision and recall.

Stratified Repeated Holdout Setup

To train and test our classification models on each subject project, we split our orig-
inal data set as shown in Figure 6.4 into training and testing subsets using stratified
sampling——the ratio of bug fixing change sets in the original data set is preserved in
both training and testing data sets. This makes training and testing sets more represen-
tative by reducing sampling errors.

Next, we split the training and testing sets into subsets. Each subset contains the
change set type columns, change set type, and identifier columns. One subset contains
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Table 6.8: List of models used for classification experiments.

Model∗ Description

k-nearest neighbor
(knn)

This model finds k training instances closest in Euclidean
distance to the given test instance and predicts the class
that is the majority amongst these training instances.

Logistic regression
(multinom)

This is a generalized linear model using a logic function
and hence suited for binomial regression, i.e. where the
outcome class is dichotomous.

Recursive partitioning
(rpart)

A variant of decision trees, this model can be represented
as a binomial tree and popularly used for classification
tasks.

Support vector
machines (svmRadial)

This model classifies data by determining a separator that
distinguishes the data with the largest margin. We used
the radial kernel for our experiments.

Tree Bagging
(treebag)

Another variant of decision trees, this model uses boot-
strapping to stabilize the decision trees.

Random forest
(randomForest)

An ensemble of decision tree classifiers. Random forests
grow multiple decision trees each “voting” for the class
on an instance to be classified.

∗ For a fuller understanding of these models, we advise the reader to refer to specialized machine
learning texts such as by Wittig and Frank [143].
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only CGMs and one subset contains only C∆Ms. Splitting metric sets after creating
testing and training sets, we create pairs of classification models using the same training
and testing split but using different metrics data as feature vectors.

We repeatedly sample the original data sets 100 times in order to generate 100
independent training and testing sets. Each split is used to built one change genealogy
and one code complexity churn model. In total, we test 200 independent prediction
models for each project.

Cross-Project Setup

The cross project classification setup entails using data sets from one project to classify
change sets of another project. The rationale behind evaluating this setup is to verify
whether change set classification models are transferable from one project to another.
If the results are promising, it will suggest that projects with little or no data from the
past can leverage data from other projects for classification purposes.

Additionally, we performed a stratified repeated holdout experiment using the met-
ric sets over all four subject projects. Achieving good classification results with such a
setup suggest universal change set properties that can be used for change set classifica-
tion purposes.

6.4.2 Classification Quality

Stratified Repeated Holdout Setup

The results of the stratified repeated holdout setup are shown in Figure 6.5. Panels on
the x-axis represent the subject projects. Each classification model ran on 100 stratified
random samples on the two metric sets: change genealogy and complexity difference
metrics.

The black line in the middle of each boxplot indicates the median value of the
distribution. The red colored horizontal lines do not have any statistical meaning—
they have been added to ease visual comparison. Additionally, we performed a non-
parametric statistical test (Kruskal-Wallis) to statistically compare the results from the
use of two pairs of metrics sets: change genealogy metrics vs. code complexity metric
differences.



6.4. CLASSIFYING CODE CHANGES (RQ6.1) 125

httpclient jackrabbit lucene rhino

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

treebagtreebagtreebagtreebagtreebagtreebag randomForestrandomForestrandomForestrandomForestrandomForestrandomForest

rpartrpartrpartrpartrpartrpart knnknnknnknnknnknn

treebagtreebagtreebagtreebagtreebagtreebag multinormmultinormmultinormmultinormmultinormmultinorm

multinormmultinormmultinormmultinormmultinormmultinorm randomForestrandomForestrandomForestrandomForestrandomForestrandomForest

svmRadialsvmRadialsvmRadialsvmRadialsvmRadialsvmRadial treebagtreebagtreebagtreebagtreebagtreebag

svmRadialsvmRadialsvmRadialsvmRadialsvmRadialsvmRadial rpartrpartrpartrpartrpartrpart

rpartrpartrpartrpartrpartrpart

svmRadialsvmRadialsvmRadialsvmRadialsvmRadialsvmRadial

rpartrpartrpartrpartrpartrpart

randomForestrandomForestrandomForestrandomForestrandomForestrandomForest randomForestrandomForestrandomForestrandomForestrandomForestrandomForest

svmRadialsvmRadialsvmRadialsvmRadialsvmRadialsvmRadial svmRadialsvmRadialsvmRadialsvmRadialsvmRadialsvmRadial

svmRadialsvmRadialsvmRadialsvmRadialsvmRadialsvmRadial knnknnknnknnknnknn

precision
recall

f-m
easure

Genealogy Churn Genealogy Churn Genealogy Churn Genealogy Churn

Figure 6.5: Results from the repeated holdout experiment to separate bug fixing from
feature implementing code changes.
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The results shown in Figure 6.5 show that the classification performances of both
metric sets are close to each other, except for Lucene. In all three cases C∆Ms show
stronger classification results than CGMs. In fact, the statistical tests showed that the
difference in classification performance is statistically significant (p < 0.05) except
for the recall values for Jackrabbit. In summary, C∆Ms outperform CGMs on three
out of four projects while for Lucene C∆Ms could not be used to train a functional
bug fix classification model. Nearly all Lucene change sets modified code complexity
only marginally. Thus, C∆Ms showed too little variance to allow classification model
training. Project size seems to have no impact on classification accuracy.

Over all projects, classifiers based on CGMs showed a median precision of 0.69
and a median recall of 0.81. Models based on complexity churn showed a median
precision of 0.72 and a median recall of 0.89. Figure 6.5 also shows that different ma-
chine learning models give best results for different projects, metric sets, and evaluation
measures.

* In 3 of 4 cases complexity metrics show statistically significant better perfor-
mance measures when compared to change genealogy metrics.

* Classification models based on change genealogy metrics show a median pre-
cision of 0.69 and a median recall of 0.81.

* Over all projects classification models based on complexity metrics perform
slightly better than models based on change genealogy metrics.
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Cross-Project Setup

The results from the cross-project experimental setup are shown in Figure 6.6. The
panels across the x-axis indicate the project the model got trained on. Panels across the
y-axis indicate the subject projects the corresponding model was tested on. Note that
only a single run of experiments is required to derive precision, recall, and f-measure
using the three metrics sets in this setup; hence no statistical tests were performed to
compare the results from using the different metrics sets.

The cross project results show the same trend as the results derived from the re-
peated holdout setup. Change genealogy and complexity churn classification models
show very similar results. Also, the trend that classifiers based on C∆Ms show slight
advantages is preserved when switching to the cross-project setup.

* Bug fix classification models trained on change genealogy and complexity met-
rics can be used as cross-project classifiers with comparable classification ac-
curacy.

* On a combined data set, there is no statistically significant difference between
classification models based on either change genealogy or complexity metrics.

* Using complexity metrics may be best given that the time to collect the com-
plexity metrics is substantially lower than building and analyzing change ge-
nealogy graphs.

The good classification performances of both classifiers on the cross-project exper-
iment suggests a common subset of driving factors indicating the difference between
bug fixes and feature implementing change sets. The result of the repeated holdout ex-
periment over all projects is shown in Figure 6.7 and confirms the strong classification
results of the previous experimental setups. Both metric sets yield classification mod-
els whose precision lies between 0.66 and 0.7 while the recall values reach from 0.83
to 0.99. A non- parametric statistical test (Kruskal-Wallis) showed that the difference
in classification performance is statistically significant (p < 0.05).
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Figure 6.6: Results from the cross-project experiment to separate bug fixing from fea-
ture implementing code changes.
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Figure 6.7: Results from the experiment combining all projects to separate bug fixing
from feature implementing code changes.
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6.4.3 Influential Metrics

The R package caret [90] allows computing the importance of individual metrics using
the filterVarImp function. The function computes a ROC curve by first applying
a series of cutoffs for each metric and then computing the sensitivity and specificity
for each cutoff point. The importance of the metric is then determined by computing
the area under the ROC curve. We used the combined metrics set to compute variable
importance for CGMs and C∆Ms and considered the top-10 most influential metrics for
each metrics set for examination.

The most influential CGMs are dedicated to the number of applied change opera-
tions, code age, the number of change set parents, and network efficiency. Bug fixing
change sets seem to apply fewer change operations and change older code while fea-
ture implementations are based on newer code fragments. It also seems universal that
feature implementing change sets have more structural dependency parents than bug
fixing ones.

The most influential complexity difference metrics show that the higher the impact
of a change set on cyclomatic complexity of the underlying source code, the higher the
chance that the change set is implementing a new feature. Thus, bug fixing change sets
show smaller impact on code complexity than feature implementations. Surprisingly,
metrics explicitly referring to the size of a change set, such as number of statements,
are not among the top ten most influential complexity metrics.

6.5 Predicting Defects (RQ6.2)

This series of experiments is dedicated to research question RQ6.2: How do defect
prediction models based on CMs compare with defect prediction models based on CMs
or NMs? We do not aim to build the best prediction models possible and thus do
not make any performance tuning optimizations when training the different prediction
models. Our prediction models are trained to classify source code files as containing at
least one defect or no defect.

6.5.1 Experimental Setup

To train and test classification models on CMs and NMs, we can use the originally
generated set of metrics as described in Section 6.3.2 and Section 6.3.4.
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Figure 6.8: Data collection used to predict defects for source files.

The set of CGMs cannot be reused without modification. CGMs are collected on
change set basis and do not refer to source file level. Thus, we have to convert CGMs
to the source file level. For each source file of the project, we aggregate all CGMs
values over all change set that modified the corresponding file. We used three different
aggregation functions: mean, max, and sum. The resulting data collection is illustrated
in Figure 6.8.

Similar to Section 6.4.1 we perform a stratified repeated holdout setup to train and
test defect prediction models based on CMs, NMs, CGMs, and a combined network
metric set containing both NMs and CGMs. For each metric set we repeatedly sampled
the original data collection (see Figure 6.8) 100 times. For each cross-fold we then
trained four series of prediction models (CMs, NMs, CGMs, and combined network
metrics set) using six different machine learners (see Table 6.8 on page 123). In total
we trained and 9,600 independent prediction models.

6.5.2 Prediction Accuracy

Results from the stratified repeated holdout experimental setup (see Section 6.5.1) are
presented in Figure 6.9. Panels across the x-axis in the figure represent the subject
projects. The four prediction models were run on 100 stratified random samples on
four metric sets: CMs, NMs, CGMs, and a combined set Combined combining NMs
and CGMs. For each run we computed precision, recall and F-measure values.
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The boxplots in the figure reflect their distribution and for each distribution the best
performing model (see Section 6.5.1) is stated under the corresponding boxplot. The
black line in the middle of each boxplot indicates the median value of the corresponding
distribution. Larger median values indicate better performance on the metric set for the
project based on the respective evaluation measure. Note that the red colored horizontal
lines connecting the medians across the boxplots do not have any statistical meaning—
they have been added to aid visual comparison of the performance of the metrics set.
An upward horizontal line between two boxplots indicates that the metrics set on the
right performs better than the one of the left and vice versa. Additionally, we performed
a non- parametric statistical test (Kruskal-Wallis) to statistically compare the results.

The results shown in Figure 6.9 suggest that network metrics outperform code com-
plexity metrics. Network metric prediction models show better precision and recall
values for all four subject projects. Change genealogy models report up to 20% (on av-
erage 10%) less false positives (higher recall) when compared to code network metric
models. At the same time, recall values for change genealogy models drop slightly in
comparison to network metric models. The statistical tests showed that the differences
in classification performances are statistically significant (p < 0.05).

Models trained on feature vectors combining code dependency and change depen-
dency network metrics show better precision values for HttpClient and Rhino but
worse precision values for Lucene when compared to models trained on change ge-
nealogy metrics, only. The precision values for Lucene even drop below the precision
values of the corresponding network metric models. But interestingly, models trained
using the combined metric sets show better recall values for all four projects. For three
out of four projects, the recall values are considerable increased (HttpClient, Jackrab-
bit, Rhino). Additionally, project size seems to have no impact on prediction accuracy.

* Code dependency network metrics outperform complexity metrics at predicting
defects.

* Models based on change genealogy metrics report less false positives when
compared to models trained on either complexity metrics or code dependency
network metrics.

* Combining code dependency network metrics and change genealogy metrics
yields prediction models with increased recall but decreased precision values.
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Figure 6.9: Results from the repeated holdout experimental setup. Note that the
“Comb.” label refers to the combined metric set containing NMs and CGMs.
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6.6 Influential Metrics

We used the same strategy as described in Section 6.4.3 to determine top-10 most
influential metrics. For three out of four projects (HttpClient, Jackrabbit, Rhino)
seven of the ten most influential metrics are change genealogy metrics. Only for Lucene
the top-10 most influential metrics contains no change genealogy metric.

We observed three different patterns with respect to presence and ranking of net-
work and change genealogy metrics. Each of the four top-10 most influential metric
sets contained one of the EffSize or Efficiency metrics as the most important network
metrics. For HttpClient, Jackrabbit, and Rhino the top two most influential metrics
were change genealogy metrics describing the relation between a change set and its
dependencies to earlier applied change sets (outgoing dependencies). The number and
type of the dependency parents as well as the time span between the change set and
its parents seem to be crucial. The higher the number of parents and the longer the
time span between a change set and its parents the higher the probability to add new
defects. Thus, code entities changed by many change sets combining multiple older
functionality are more likely to be defect prone than others.

* Code entities with a series of changes combining multiple older functionalities
are more defect prone than others.

6.7 Threats to Validity

Empirical studies like this one have threats to validity. We identified three noteworthy
threats:

Change Genealogies. Change genealogies model only a dependencies between added
and deleted method definitions and method calls. Disregarding change depen-
dencies not modeled by change genealogies might have an impact on change
dependency metrics. More precise change dependency models might lead to
different change genealogy metric values and thus might change the predictive
accuracy of the corresponding classification and prediction models.
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Number of bugs. Computing the number of bugs per file is based on heuristics. While
we applied the same technique as other contemporary studies do, there is a
chance the count of bugs for some files may be an approximation.

Issue reports. We reused a manual classified set of issue reports to determine the pur-
pose of individual change sets. The threats to validity of the original manual
classification study (see Chapter 4) also apply to this study.

Non-atomic change sets. Individual change sets might refer to only one issue report
but still apply code changes serving multiple other development purposes (e.g.
refactorings or code cleanups). Such non-atomic change sets introduce data
noise into the change genealogy metric sets and thus might bias the correspond-
ing classification models.

Study subject. The projects investigated might not be representative, threatening the
external validity of our findings. Using different subject projects to compare
change genealogy, code dependency, and complexity metrics might yield differ-
ent results.

6.8 Summary

In this chapter, we investigated whether change dependencies modeled by change ge-
nealogies are expressive enough to allow automatic bug fix identification. For this pur-
pose, we defined and computed a set of network metrics on change genealogy graphs
and used these metrics to build the first automatic bug fix identification model based on
change dependencies, only. Comparing this change genealogy change set classification
model against a benchmark model based on complexity churn metrics, we showed that
both classification models were both able to separate bug fixing from feature adding
change sets with a median precision of 70% and a median recall of 85%. Classifiers
based on complexity churn metrics seem to have slight advantage when compared to
change genealogy based classifiers while change genealogy based classifiers were able
to operate on projects for which no complexity churn classifier could be built.

In a second series of experiments, we investigated whether change genealogy can
be used for defect prediction purposes. Our assumption was that crucial code changes
show more dependencies to earlier and later code changes than other code changes and
that such crucial code changes are more likely to introduce new defects into source
code. We used change genealogy metrics to train classification models separating
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defect prone source files from non-defect prone source files. The results of this ex-
periment show that change genealogy metrics aggregated to source file level perform
well when used as defect prediction feature vectors and report less false positives than
models based on the original network metrics. Identifying the most influential met-
rics using the combined metric set containing network and change genealogy metrics
unveiled that code entities applied in order to apply code changes combining multiple
older functionalities tend to be more defect prone than others.

The data sets used within these experiments are made public available can be down-
loaded from the website at:

http://www.softevo.org/change_genealogies/

http://www.softevo.org/change_genealogies/


Chapter 7

Predicting Long-Term Cause
Effect Chains

Parts of the contents of this chapter have been published in Herzig and Zeller [71].

7.1 Introduction

Software and its reliability is a product of its history, which can be characterized as a
sequence of changes. By mining recorded changes, one can identify frequently chang-
ing components—an important factor in predicting the risk of defects. And one can
discover sets of components that changed frequently together, revealing couplings that
are inaccessible to program analysis.

Research studies in analyzing software history have been mostly constrained to
either space or time. Being constrained to space means that one examines the evolu-
tion of single components, aggregating features over time. Being constrained to time
means that one examines which components were changed at a single moment in time,
extracting co-changes from the resulting transactions. Change genealogies model de-
pendencies between individual code changes telling how changes influence and cause
each other. Thus, change genealogies allow us to reason over multiple components at
multiple points in time.

137
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Figure 7.1: Model checking change genealogies to extract frequent rules that describe
temporal key features of the underlying software process.

By mining and model checking change genealogies, we obtain frequent temporal
patterns that encode key features of the software process that span both space and time:
“Whenever class C is changed, its test case is later updated as well.” or “Whenever Tom
changes his code, Anna has to respond on Tom’s change”. Once mined, such patterns
can be used as building blocks for a software process model; they also can be validated
and enforced automatically in further development.

In this chapter, we make again use of the change set change genealogy layer mod-
eling dependencies between all change sets ever applied in a software projects history.
We can use change genealogies to mine for frequent patterns—in particular tempo-
ral patterns that span space and time. For this purpose, we make use of the vertex
annotations of a change genealogy associating each change set with features such as
the file or package being modified. We then use model checking to determine fre-
quent rules. These rules are expressed in computation tree logic (CTL); a rule such as
“file1 ⇒ EF file2” means that whenever file1 is changed, eventually, file2 is changed as
well. Additionally, the rule implies that the change to file2 is structural dependent on
the change applied to file1. Such long-term coupling based on change set dependen-
cies is not detected by current mining approaches [50, 77, 127, 146, 154] due to their
restriction in space and time. Canfora et al. [29] used a sliding window approach to
detect change couplings occurring within certain time frames across multiple change
sets. But their rules might cover frequent occurring independent activities as their slid-
ing window approach is not based on any change dependency information.

Mined temporal rules can become part of the formal software process model; gen-
erally speaking, they encode actions that typically follow immediately or after some
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period of time. Of course, they can also be validated and enforced automatically:
Should file1 be changed without its test case file2 following suit before release, chances
are that file1 is not properly tested. When file1 is changed, we can give a recommen-
dation reminding developers that file2 must eventually be examined—or changed—as
well. These recommendations are quite accurate: In an evaluation of four open source
histories, GENEVA1 would recommend pending activities with a precision of 60–72%.

The remainder of this chapter is organized as follows. We first describe how to
extract temporal rules (Section 7.2) and how to mine these rules (Section 7.3) using
change genealogies. We then evaluate the accuracy and usefulness of the mined rules
both qualitatively (Section 7.4) and quantitatively (Section 7.5). We then close with
threads to validity in Section 7.6 and conclusion and consequences in Section 7.7.

7.2 Long-Term Couplings

To demonstrate the expressive power of change genealogies and to give a practical
working example how to use such change genealogies, we implemented a tool that
predicts long-term cause effect chains based on change genealogies. We build on the
concept of change couplings, introduced by Gall et al. [50] and later improved by Zim-
mermann et al. [154] and Canfora et al. [29]: If two artifacts are coupled by frequent
common changes, we can use this coupling to predict related changes. Such couplings
are usually undetectable by program analysis [47].

We consider artifacts frequently or exclusively changed together (within the same
change set) to be strongly coupled. Using change couplings, it is possible to detect
incomplete code changes, to give recommendations for further changes or to raise
awareness that code changes might trigger a number of response changes raising the
instability of a software project. The concept of change couplings has an important
deficiency, though: It relies on the assumption that coupled artifacts get changed fre-
quently (or always) together within the same change set or at least in small, static time
windows after each other. Often, artifacts that are frequently changed across multiple
transactions by different authors get disregarded. As an example, consider a login
function defined in project P1 and a service class defined in project P2. Changing the
login function by throwing a new runtime exception requires the developer of class
service to respond. Both files are maintained by different developers and thus would
never occur within one change set. Further, the dependency would not be detected by

1GENEVA = GENealogy Extraction from Version Archives.
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simply compiling all projects. Still, these files should be considered as tightly cou-
pled. Tools like eROSE [154] do not detect these couplings because they analyze each
change set independently. Additionally, approaches like Canfora et al. [29] disregard
structural information. Files changed frequently short after each other might not be
structurally dependent but got changed due to an iterative development process. To
detect cross-transaction change couplings, we need structural dependency information.
Considering the temporal order of transactions only does not suffice.

7.2.1 Computational Tree Logic on Genealogies

Change genealogies model dependencies between changes and can be used to extend
the concept of change couplings. Long-term change couplings are change couplings
spanning across multiple software revisions. In terms of change genealogies, we search
for software artifact A1 and A2 such that whenever A1 got changed, there exists a ge-
nealogy path from A1 to A2. The existence of such a path would imply that both
changes structurally depend on each other. Each long-term coupling can be seen as
a cause-effect chain: a developer changes her code and other developers respond to her
change; the responding change can again cause other developers to respond to it.

To express long-term couplings, we use computational tree logic. CTL is the nat-
ural temporal logic interpreted over branching time structures introducing path qual-
ifiers. The above example could be expressed as: A1 ⇒ EF A2—read as “A1 imply
exists finally A2”, and means that on every path starting at a change set changing A1,
there is at least one path going through a change genealogy vertex corresponding to a
change set changing A2.

Using CTL to express long-term change couplings allows us to use formal verifi-
cation techniques to model check long-term change couplings on change genealogies.
While being able to express complex long-term dependency relations in logical formu-
las, we can also verify those relations automatically on any change genealogy at any
time.

CTL is a powerful language with which you can express very complicated temporal
properties on a change genealogy graph. Figure 7.2 contains an introduction to model
checking and CTL that is taken from Wasylkowski and Zeller [140]. Our goal is to find
many plausible CTL formulas that might express long-term cause effect chains. To do
so, we use predefined CTL templates [61] that are suitable to express long-term cause
effect chains. Our CTL formulas make use of only three CTL operators: EF (exists
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In general, temporal logic model checking [35] can be used to verify that a system
satisfies a specification given as temporal logic formula. The system is typically
modeled as a Kripke structure—a finite state automaton. CTL (computational tree
logic) [34] is a temporal logic language used to express specifications. Let AP be a
set of atomic propositions. A Kripke structure over AP is a tuple M = (S , I,R, L),
where S is a finite set of states, I ⊆ S is the set of initial states, R ⊆ S × S
is a left-total transition relation, and L : S → 2AP is a labeling function. Atomic
propositions are used to describe the state the system is in, and the Kripke structure
represents transitions between the states of the system. Because R is a left-total
relation, all the behaviors of the system are infinite. CTL is a temporal logic used
to predicate over the behaviors represented by the Kripke structure. It is defined
over the same set AP of atomic propositions that the Kripke structure uses:

1. true and false are CTL formulas

2. Every atomic proposition p ∈ AP is a CTL formula

3. If f1 and f2 are CTL formulas, then so are ¬ f1, f1 ∨ f2, f1 ∧ f2, f1 ⇒ f2, and
f1 ⇔ f2.

4. If f1 and f2 are CTL formulas, then so are AX f1, EX f1, AF f1, EF f1, AG f1,
EG f1, A[ f1

⋃
f2], E[ f1

⋃
f2].

A means “for all paths”, and E means “there exists a path”. X stands for “next”, F
stands for “finally”, G stands for “globally”, and U stands for “until”. The intuitive
meaning of some CTL formulas is as follows: AX f1 means that “for each state
s0 ∈ I, for all (A) paths starting in s0, f1 holds in the next (X) state”. EF f1 means
that “for each state s0 ∈ I, there exists (E) a path, where f1 holds somewhere along
(F) this path”. AG f1 means that “for each state s0 ∈ I, for all (A) paths starting
in s0, f1 holds in all states along (G) the path”. A[ f1

⋃
f2] means that “for each

state s0 ∈ I, for all (A) paths starting in s0, f1 holds until (U) f2 holds” (i.e., f2
must hold somewhere along the path, and until then, f1 must always hold). An
atomic proposition p holds in a given state iff this state is labeled with p. Model
checking a given CTL formula f against a given Kripke structure M = (S , I,R, L)
is equivalent to asking if f holds for each s0 ∈ I. If it does, f is said to be true for
M; if it does not, f is said to be false for M.

Figure 7.2: CTL and model checking in a nutshell. Taken from Wasylkowski and
Zeller [140].
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finally), EX (exists next), and AG (all globally). We also limit the number of involved
source code artifacts to three:

Templ1: A1 ⇒ EF A2: Changing A1 cause at least one dependent change on A2.

Templ2: A1 ⇒ EF(A2 ∧ A3): Changing the artifact A1 causes dependent changes in A2
and A3 within the same change set.

Templ3: A1 ⇒ EF A2 ∧ EF A3: Changing A1 causes dependent changes in A2 and A3
but not necessarily in the same change set.

Templ4: A1 ⇒ AG(A2 ⇒ EF A3): Changing A1 and later changing A2 causes a change
in A3. All later changes depend on the initial change of A1.

We do not claim these formulas as complete. In fact, you can choose any CTL formula.

While CTL formulas are defined on software artifacts a change genealogy graph
expresses dependencies between change sets. To bridge this gap, we use the change
set change genealogy layer. Replacing the template’s artifact placeholders A1,A2, and
A3 with the corresponding changed source files, we can express temporal source file
dependencies over change genealogy paths.

To illustrate this procedure, lets consider the change genealogy from Figure 3.6
on page 41 using CTL template Templ1. We choose a path that matches the temporal
logic of Templ1: {CS 1,CS 3,CS 5}. Within Templ1 we replace the variable A1 with
the file names changed within CS 1: File1, File2 and the variable A2 with those file
names changed within CS 5 : File4. The resulting formulas are: File1 ⇒ EF File4
and File2 ⇒ EF File4. Later (Section 7.2.3) we will see that not all possible template
instances have to be generated.

For clarification: consider the change genealogy shown in Figure 3.6 and replace
A1, A2, and A3 by File1, File2, and File3 in the four templates above. The formula de-
rived from Templ1 holds when model checked, because all path start in CS 1 and there
exists a path covering a change in File2: CS 3 (same holds for Templ3). The formula
from Templ2 does not hold. There exists no vertex that changes File2 and File3 to-
gether. Finally, the formula from Templ4 does not hold, because the path CS 1,CS 3,CS 4
does not change File3.

* Long-term couplings detected by GENEVA imply structural dependencies be-
tween coupled artifacts.
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7.2.2 Limiting the Temporal Scope

In the previous section, we discussed how to generate CTL formulas using CTL tem-
plates. But in most projects all such dependencies will become eventually true. Even
though each temporal path expressed by a long-term coupling rule is based on structural
code dependencies, we want to limit the temporal scope in which such long-term cou-
pling rules must be valid. The longer the time between two dependent nodes, the lower
the probability that the later applied change was caused by the earlier one. Therefore,
we limit the number of days between the initial change and the depending changes.
Doing so, we can ensure that there is a maximal time window (maxdays) in which a
CTL formula must be valid.

For this purpose, we use a sliding window approach to generate multiple genealogy
sub graphs from the original change genealogy graph. For each vertex u of the original
change genealogy graph G(V, E) we generate a corresponding sub graph G′(V ′, E′)
such that:

V ′ = {v ∈ V | t(u, v) ≤ max_days ∧ path(u, v)} ∪ {u}
where t(u, v) equals the number of days between the commit dates of u and v.
path(u, v) is true if and only if there exists a path from u to v in G.

E′ = {e(v1, v2) ∈ E | v1 ∈ V ′ ∧ v2 ∈ V ′}

Figure 7.3 shows an example genealogy sub graphs extracted from our initial ge-
nealogy in Figure 3.6 on page 41 (maxdays = 1). Each genealogy sub graph is a
connected graph having u (here CS 1) as a root. The number of generated genealogy
sub graphs equals the number of vertices in the original genealogy graph G. Graphs
with a depth of one can be ignored.

Model checking the CTL formulas on the genealogy sub graphs ensures a time win-
dow in which these formulas have to be valid. Additionally, we automatically ignore
changes with no outgoing dependency. This reduces the model checking space and
makes model checking all these formulas feasible.

7.2.3 Model Checking Genealogies

At this point, we have introduced the concept of change genealogies and explained the
concept of long-term change couplings described as CTL formulas. To derive valid
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Figure 7.3: Extracting change genealogy sub graphs from change genealogy graph us-
ing sliding time window and converting change genealogy sub graphs to Kripke struc-
ture.

long-term couplings, we model check which CTL formulas hold on the genealogy sub
graphs. But before, we have to transform each genealogy sub graph into a Kripke
structure—a nondeterministic finite state machine whose nodes represent reachable
states with transition edges between them.

Our genealogy subgraphs discussed in Section 7.2.2 are connected, directed, and
acyclic. They can be interpreted as a nondeterministic finite state machine and therefore
already are Kripke structures. It remains to add a new artificial final state (the graph
will be left-total) and replacing the original node labels by those filenames changed
by the corresponding change set (using the vertex annotations). This way, our Kripke
structures express temporal dependencies between changed files instead of change sets.

The resulting Kripke structures can be used to model check our CTL formulas. For-
mulas evaluating to true on at least one Kripke structure are worth further investigation
since they represent potential long-term coupling rules.

7.3 Long-Term Coupling Rules

In the previous section, we generated valid CTL formulas and prepared our data model
to allow automatic CTL validation. But which formulas describe frequent change pat-
terns? Which formulas occurred rarely or only once? To mark important rules and to
determine the strength of a rule we rank rules by their support and confidence mea-
sures [154]:
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Support. We measure the number of Kripke structures on which the CTL formula f
was evaluated to be true as support( f ). For the example genealogy graph shown
in Figure 3.6, the formula File1 ⇒ EF File3 has a support of two. File1 was
changed in change sets CS 1 and CS 3. The change sets CS 2 and CS 4 change
File3 and depend on either CS 1 or CS 3.

Confidence. To measure the strength of the consequence expressed in formula f we
calculate confidence( f ) as the fraction of the formula’s support divided by the
number of times the premises has occurred. For the example genealogy graph
shown in Figure 3.6, the formula File1 ⇒ EF File3 has a confidence value of
one. The support value of the formula is two (see above) and File1 got changed
twice.

Rules are primarily ranked by confidence. Rules with equal confidence are ranked
by support.

7.3.1 Rules as Recommendations

The purpose of change couplings is to be used as recommendations. Whenever a pro-
grammer commits a change, a recommendation tool suggests further changes based
on rules extracted from earlier code changes. But change couplings can also be used
in retro perspective to decide whether an applied refactoring worked (the refactoring
should uncouple entities) or to simply identify frequent occurring change patterns that
can be used for further software development process analyses. Long-term change
rules express frequent change rules that span multiple change sets. Thus, each rec-
ommendation based on long-term change rules does not suggest code changes to be
made within the same change set but might indicate future development activities; fur-
ther changes to be applied by a different developer within a time window of maxdays
number of days.

The computation of long-term coupling rules is already described in Section 7.2.
To compute recommendations for a given change set CS i, we have to execute the fol-
lowing steps:

1. Generate the change genealogy graph until CLi−1 and generate all valid CTL
formulas within the current genealogy sub graph. That is, extract all changed
files from all change sets of the genealogy sub graph and create all possible CTL
formulas if not in the CTL cache. Each CTL formula is stored as long-term
coupling rule together with the up-to-date support and confidence values.
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2. Select all long-term coupling rules with implication premises that correspond to
files changed within CLi.

3. Rank the selected rules by confidence and support.

The computation of change genealogies and CTL rules, model checking them and
computing support and confidence values on the fly takes time. Generating all long-
term coupling rules for a mid-size project spanning a history of 15,000 transactions
take several hours—depending on the average number of files changed by transactions.
(Change genealogies must not be regenerated for change set but can be extended by
single or multiple change sets.) Still, to improve efficiency of GENEVA, we used the
following optimizations:

Ignoring large change sets. Change sets that touch many files are suspicious because
most of them either combine multiple changes that should be separated, refer to
refactoring or documentation updates. In general, such vertices have a large in-
degree and out-degree causing millions of CTL formulas generated with higher
probabilities to cause false positives.

We determine the median number of files changed by earlier change sets. Change
genealogy vertices for which the number of changed files is larger than the 3/4-
quantile of the change size distribution are ignored.

Ignoring rarely changed files. In a project history, there are many code entities that
have a very limited life span. Other entities are rarely updated, if ever. To mini-
mize the number of relevant CTL formulas and to ease the memory consumption,
we ignored all source files that were changed only once.

Ignoring deleted files. We drop rules that would contain source files deleted within
the transaction as implication. Whenever a source code entity gets deleted, we
remove all CTL formulas that have the deleted artifacts as implication premise.

Optimized, generating long-term coupling recommendations for single change set
is fast and takes about one second.2

2All times were measured on a Linux Server using a single Intel Xeon(X5570) processor (2.93GHz) and
8GB RAM.
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7.3.2 Additional Change Properties

There might be cause-effect chains that occur under certain circumstances only. To
capture cause-effect chains that are bound to certain development activities, we have
to combine long-term coupling rules with change properties such as size, author, or
purpose of a change.

We implemented two such properties: fixes and big changes. Analyzing commit
messages similar to Zimmermann et al. [153], we can determine if the applied changes
were made to fix a bug. Change sets changing more than 20% of a file’s content are
classified as big changes with respect to the individual file. Formulas with general
low confidence might have high confidence when considering fixing change sets or
big changes only. An example of such conditional long-term coupling rule is given in
Section 7.4.

7.3.3 Inner-Transaction Rules

So far, GENEVA extracts long-term coupling rules occurring across multiple change
sets only. Previous work [154, 29] also reported rules that occur within the very same
change set. For comparison purposes, we added an option adding inner-transaction
rules to adjust formulas support and confidence values.

Our main purpose of this study is highlighting the contribution of long-term cou-
plings. Thus, we obtained all results with disabled inner-transaction rules. In Sec-
tion 7.5.7, however, we will see that inner-transaction rules increase the number of
recommendations without sacrificing the precision.

7.4 Example Long-Term Coupling Rules

GENEVA uncovers long-term change couplings. Unlike couplings within change sets,
long-term change couplings might not be obvious nor directly understandable by look-
ing at the code in one version—simply because they span a longer period of time. To
project outsiders, many long-term change rules may come as surprises (which may ac-
tually add to their value). Below, we give three basic examples of long-term coupling
rules from the JRuby project in CTL style.
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Long-term couplings in JRuby. The JRuby project is based on a large compiler in-
frastructure defining many compiler interfaces and implementations for these
interfaces. One such interface is called VariableCompiler. It changed 18
times between 2001 and 2010. Out of these 18 changes, 16 caused a change in
StandardASMCompiler within 8 days. Each time, both change sets depended
indirectly on each other. Considering the complete JRuby project history, the
long-term coupling rule has a support value of 16 and a confidence of 0.77.

VariableCompiler⇒ EF StandardASMCompiler

Although, both files were never changed together, the same developer maintains
both files. Both classes even call each other indirectly: StandardASMCompiler
uses BodyCompiler as interface; its implementation BaseBodyCompiler then
references VariableCompiler. The coupling although frequent, can only be
detected over time—by using an approach like GENEVA.

Test suite changes. Adding functionality to classes often requires new test cases to be
added. Such dependencies occur frequently within the same change set. But
there are also cases in which changed test cases unveil problems in classes that
might not be directly under test. These cases often span multiple change sets
since the newly discovered issues cannot be checked ad hoc:

MainTestSuite⇒ EF RubyObject

Nine changes to the MainTestSuite made other developers change the class
RubyObject. The obvious assumption is that the main test suite unveiled new
problems in RubyObject; the long-term coupling rule connecting both files has
a confidence of 0.65.

For JRuby we found 8 rules having a test case as premises with an average confi-
dence of 0.59 and an average support value of 6.25. Note that most of these case
could not be detected by compiling the project(s) due to the fact that most test
errors are runtime issues.

Fixes vs. changes. Some change couplings occur only under certain circumstances.
The following rule has an overall confidence value below 0.5:

RubyIO⇒ (EF RubyStructure ∧ EF Visibility)

However, if the changes applied to RubyIO are bug fixes, the rule has a confi-
dence of 0.8. In other words, fixes to RubyIO imply other changes, while regular
changes do not.



7.5. QUANTITATIVE EVALUATION 149

For JRubywe found 31 long-term coupling rules that only occur frequently when
fixing an artifact. The average confidence of these rules lies at 0.63 with an
average support value of 5.4.

All these rules span both space and time, and reveal long-term couplings that
GENEVA is the first approach ever to uncover. Deviations from these rules are likely
candidates for missing activities and hence problems.

* GENEVA can use additional change properties as coupling conditions to detect
change coupling rules that cannot be detected by comparable tools.

7.5 Quantitative Evaluation

After having explored some of the patterns manually, we wanted to know how many
such rules exist and how useful these patterns are in practice. The fact that long-term
coupling rules are represented in CTL formulas allows automatic pattern validation on
other change genealogies. Therefore, the accuracy of this validation is our evaluation
target: How reliable are these rules and do patterns really occur frequent enough to
allow recommendations?

7.5.1 Evaluation Subjects

For our quantitative evaluation, we chose four open source projects that had more than
two years of project history and were under constant development by more than twenty
developers (see Table 7.1). The project histories contain seven to twelve years of active
development, more than 1,300 project revisions and more than 1,000 changed source
files. In our experiments we bound out analysis to the main development branches.
The number of those files causing long-term couplings varies from project to project.
For three out of the four projects GENEVA found over 200 long-term coupling rules
with confidence above 0.5 and for two projects nearly 100 long-term couplings with
confidence above 0.7.
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Table 7.1: Evaluation subjects. ‘#Files’ is the number of files changed within the
project history. The rows ‘Number LTC ≥ 0.5’ and ‘Number LTC ≥ 0.7’ show the
number of source files for which long-term couplings with support values ≥ 3 and a
confidence ≥ 0.5 and ≥ 0.7 respectively exist.

ArgoUML Jaxen JRuby Xstream

History length 12 years 9 years 9 years 7 years
Number of authors 50 20 66 11
Number of source files 16,658 9,831 15,029 1,188

Change genealogy details
Number of vertices 9,426 618 7,848 808
Number of edges 45.130 2,297 47,940 2,709
Mean vertex out degree 4.8 3.7 6.1 3.4
Median youngest child gap 16 9 8 4

Number LTC ≥ 0.5 243 28 232 231
Number LTC ≥ 0.7 94 10 99 19

7.5.2 Exploring Change Genealogy

Table 7.1 shows details of the change genealogy graphs extracted from the four project
histories. The number of vertices equals the number of transactions in the main devel-
opment branch trunk changing at least one Java source file. GENEVA cannot deter-
mine dependencies between non-Java files and thus ignores these files.

For each project, we had to determine an appropriate window size maxdays. Choos-
ing maxdays too small will disregard many potential long-term couplings, but choosing
it too large will spoil the results by adding a lot of noise. As a first approximation, we
therefore used the change genealogy graphs to compute the median number of days
between two dependent transactions to determine a reasonable value for the window
size to be used. The values in row “Median youngest child gap” of Table 7.1 show
that the median time gaps between vertices and youngest child vary between four and
sixteen days.

7.5.3 Predicting Long-Term Couplings

To evaluate whether long-term coupling rules are precise enough to be used for recom-
mendations, we build a long-term coupling pattern prediction model. GENEVA ranks
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recommendations by their confidence and support values. The top ranked three rec-
ommendations are then used as prediction result. The first 10% of each project history
define the training period allowing GENEVA to learn common long-term change pat-
terns and rules. For the remaining 90% of transactions, we used GENEVA to predict
the top three ranked long-term coupling rules:

1. Let CL be the change set to predict rules for. Further, let CFCL be the set of files
changed by CL.

2. Remove all files f ∈ CFCL from CFCL that got removed by applying CL: CF′CL =

CFCL\{ f ∈ CFCL| f got deleted by CL}. Remove all rules that have f as implica-
tion premise.

3. Take all CTL rules seen in the past that have file c ∈ CFCL as implication premise
and store as prediction candidates PCCL.

4. Remove all entries from PCCL that have a confidence lower than 0.5 or a support
value lower than 3: PCL = {pc ∈ PCCL|conf (pc) ≥ 0.5 ∧ support(pc) ≥ 3}.

5. Sort PCL by confidence. Rank entities with equal confidence using their support
value. Remove all but the top three entities from PCL.

6. Let GCL be the change genealogy sub graph for the change set CL using maxdays
(see Table 7.1). Let FGCL be the set of CTL formulas that evaluate to true on GCL.

7. Update support and confidence values of all know formulas and add new rules.

7.5.4 Benchmark Model

To illustrate the usefulness of this approach, we compare the prediction measurements
with a very basic benchmark model that constantly predicts the top three most changed
files, at the prediction point in time. In Table 7.2, benchmark values are stated behind
the GENEVA result in brackets.

We explicitly avoided using earlier change coupling approaches [154, 29] as bench-
mark models. The reason is that these earlier approaches do not consider structural de-
pendencies and do not aim to detect and predict long-term cause effect chains but rather
incomplete code changes. Using no structural information when detecting change cou-
plings can produce report rules of frequently occurring but independent activities. Such
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activities might raise support and confidence values but do not refer to cause-effect
chains. In most cases we were also unable to reproduce the results of earlier studies.
Zimmermann et al. [154] reported an average precision of 0.5 for detecting removed
change operations within change sets. Canfora et al. [29] reported that association
rules across time windows had precision values between 0.5 and 1.0, depending on the
project. These vales can be used to compare our approach with earlier studies. But
keep in mind that the approach presented in this paper is to the only one that considers
structural code dependencies to discover and predict long-term change couplings.

7.5.5 Precision of Recommendations

As performance measurement for our prediction models, we compute their precision.
A standard metric for the fidelity of classifications, the precision determines the fraction
of correctly predicted long-term change coupling rules:

precision =
#true positives

#true positives + #false positives

Table 7.2 shows the prediction results of the described prediction process. The
precision of the prediction model lies between 60 and 72 percent—thus, roughly two
out of three recommendations correctly predict a future code change that will depend
on the current code change within the time frame of maxdays. This precision is on par
with systems like Zimmermann et al. [154] but clearly outperforms the precision of
the benchmark model. Given that the recommendations are based on structural change
dependencies and span space and time and thus face a far greater challenge, this is a
very satisfying result.

Precision is usually accompanied by recall, a measure of completeness of our pre-
dictions. In our setting, this would mean to evaluate how much of a system’s future
evolution (as expressed by future long-term couplings) is predictable from its past his-
tory. Since the future is determined by so many factors that are completely outside of
the domain of our research (and far out of the capabilities of any research), the measure
of recall makes little sense in our context.

* In our evaluation, two out of three recommendations by GENEVA correctly
predict the next structural dependent development activity.
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Table 7.2: Prediction results for long-term couplings (benchmark results in brackets).

ArgoUML Jaxen JRuby Xstream

GENEVA

Precision 0.60 (0.31) 0.70 (0.28) 0.72 (0.58) 0.63 (0.28)

Mean rank of highest hit 1.8 (2.0) 1.8 (2.4) 1.9 (2.1) 1.8 (2.1)

Changes recommended 9.2% 9.3% 32.6% 20.7%
Changes without false rec-
ommendation

52.3% 68.8% 58.0% 54.2%

GENEVA with inner-transaction rules

Precision 0.66 0.59 0.71 0.67
Mean rank of highest hit 2.0 2.0 2.0 2.1
Changes recommended 21.5% 17.2% 43.8% 37.1%
Changes without false rec-
ommendation

48.0% 47.8% 49.1% 43.8%

7.5.6 Efficiency of recommendations

In GENEVA’s recommendations, the average rank position of the highest ranked true
positive (row “Mean rank of highest hit” in Table 7.2) lies between one and two. This
means that in case GENEVA gives a recommendation, the first or second recommen-
dation is a hit. Thus, choosing a recommendation list length of more than three would
still deliver valid long-term coupling rules at the top of the recommendation list.

* GENEVA’s recommendations are efficient, placing the correct activity in the
top two positions of the ranked list.

Rows three and seven in Table 7.2 (“Changes recommended”) shows the percentage
of change sets that triggered GENEVA to recommend further changes. Only between
nine and thirty percent of all change sets actually trigger a recommendation. The per-
centage of recommendations that contain no false positives (rows four and eight) is
high. More than 50% of recommendations contain no false positive.

* More than 50% of GENEVA’s recommendations contain no false positives.
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7.5.7 Adding inner-transaction rules

The lower half of Table 7.2 shows prediction results for the enhanced GENEVA tool
integrating inner-transaction coupling rules (Section 7.3.3). With inner-transaction
rules, the prediction precision for the projects ArgoUML and Xstream slightly im-
proved, while the precision for Jaxen and JRuby decreased. Overall, though, it seems
that the integration of inner-transaction change patterns does not add many coupling
rules not known by GENEVA before. The average rank of the highest true recom-
mendation slightly drops but remains stable across all projects. Surprisingly, the num-
ber of vertices for which GENEVA gives recommendations increases drastically. To-
gether with a stable to slightly improved precision, we can conclude that adding inner-
transaction rules to GENEVA improves the overall results. This also implies that both
sets, inner-transactional and long-term couplings, are not subsets of each other. In-
creasing the number of recommendations without decreasing precision implies that
GENEVA added rules that could not be detected within single transactions and vice
versa.

* Adding inner-transaction rules to GENEVA increases the number of recom-
mendations without sacrificing precision.

7.6 Threads to Validity

External validity. We only examined the histories of four open-source projects. We
cannot claim their development process or project history is representative for
other projects. However, we expect projects with a tighter process control to
result in more process rules and increased accuracy.

Internal validity. Our approach of modeling dependencies between changes by meth-
ods is kept simple on purpose, and is neither necessarily sound nor necessarily
complete. As the problem is generally undecidable, a certain amount of impreci-
sion cannot be avoided. Concepts like the coupling between transactions (rather
than atomic changes) or the use of time windows may also reduce precision while
improving efficiency.

Construct validity. Our evaluation used a standard approach: Learning from the past
and checking whether our findings still hold in the future; no manual interpreta-
tion was involved that could threaten our findings.
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7.7 Summary

In software development, activities are spread across space and time—and yet depend
on each other. Change genealogies capture these dependencies as long-term couplings
between changes and affected entities. Our prototype GENEVA is able to detect such
long-term couplings as temporal rules that capture key features of the underlying soft-
ware process. Using computational tree logic to express these temporal rules and using
model checking to determine the validity of these temporal rules on change genealo-
gies, GENEVA predicts code changes that will be applied in future with a precision
around 70% (Table 7.2), which is considerably higher than predicting the most fre-
quently changed files. All recommendations and rules learned are based on structural
dependencies and, thus, do not contain temporal rules expressing dependencies be-
tween frequent occurring but independent development activities. Being able to predict
across space and time shows the potential of change genealogies in predicting software
features.
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Chapter 8

Conclusions and Future Work

Constant changes in requirements induce constant code changes that are spread across
space and time—–and yet depend on each other. Understanding the complexity of
software development activities and being able to track back on which decisions code
changes are based, provides fundamental information that determines the quality of a
change. Change genealogies capture these dependencies between changes and affected
artifacts and can be used to estimate the purpose, quality, and long-term impact of code
changes.

But the results of this thesis also show that mining software archives cannot be seen
as full automation of empirical software engineering. There exist widespread issues
concerning tangled changes and the separation of bug and non-bugs. Trusting raw
repository data without checking for noise and bias can severely impact the accuracy
and thus the usefulness of any mining tool and study, which leverages such data.

This thesis makes the following contributions to improve mining software reposi-
tories:

Change genealogies We introduced change genealogies, a graph structure that mod-
els dependencies between code changes. Using change genealogies it is possible
to track back which decisions caused which code changes providing fundamental
information that determines the quality of a change. Change genealogies model
dependencies between code changes applied at different times and affecting dif-
ferent code artifacts using structural code dependencies that cannot be detected
by standard mining techniques.

157



158 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bug report classification Manually inspecting and classifying over 7,000 issue re-
ports from five open source projects we provided evidence of widespread issues
regarding the separation between bugs and non-bugs in software archives. These
issues can severely impact the accuracy of any tool and study that leverages bug
data without performing a qualitative analysis of the input data. The publicly
available data sets containing the results of our the manual inspection can be
used as ground truth data set for further research and mining model calibration.

Untangling changes Tangled change sets are change sets that combine code changes
serving multiple developer maintenance tasks. Tangled change sets are common
in version control systems and cannot be avoided. We provides evidence that the
fraction of tangled change sets may be substantial, causing a serious threat to
empirical findings based on version archives. We proposed an untangling algo-
rithm that helps to reduce the amount of bias within data mining sets, caused by
version archive commits, combining changes that were committed due to mul-
tiple developer maintenance tasks. Our algorithms showed an average precision
between 67% and 93% when untangling any two artificially tangled change sets.
The mean precision across all blob sizes is 58% (blob size four) to 80% (blob
size two).

Change Genealogy Metrics We transformed the concept of network metrics as pro-
posed by Zimmermann an Nagappan [151] to change genealogies.

Change classification We then used these change genealogy metrics to automatically
separate bug fixes from feature adding change sets without using commit mes-
sage analysis nor bug databases. For this purpose, we trained and tested clas-
sification models to separate bug fixing from feature implementing change sets
using change genealogy metrics as feature vectors. Overall, classification mod-
els based on change genealogy metrics showed a median precision of 0.69 and a
median recall of 0.81. We also showed that these change purpose classification
models can be used as cross-project classification models.

Defect prediction We also showed that change genealogy metrics can be used to train
prediction models to identify defective source files. Our results show that models
based on change genealogy metrics report less false positives when compared to
models trained on network metrics. An investigation about the most influential
change genealogy metrics when classifying defect prone entities unveiled that
code entities with a series of changes combining multiple older functionalities
are more defect prone than others.
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Long-term cause effect chains We introduced GENEVA to predict long-term cause
effect chains using CTL to express long-term coupling rules that imply structural
dependencies between coupled artifacts. Using these CTL rules and a directed,
acyclic version of change genealogies we were able to use the formal method of
model checking to extract the set of valid long-term coupling rules. Using addi-
tional change genealogy properties as coupling conditions we can detect change
couplings that cannot be detected by comparable tools. In the evaluation, two out
of three recommendations by GENEVA correctly predict the next structural de-
pendent development activity. More than 50% of GENEVA’s recommendations
contain no false positive.

8.1 Lessons Learned

The importance of change dependencies. The results presented in this thesis provide
evidence that change genealogies are a valuable mining source. Code changes
provide historic evidence how source code evolved and gives partial explain the
state of a project’s source code. Expressing dependencies between code changes
across multiple points in time and across multiple components allows to reason
about the long-term impact of code changes and their importance in the past
development process.

Bug data must be used with care. Bug databases are a frequently used data source
when measuring or estimating quality related properties. But our manual classi-
fication study presented in Chapter 4 showed that raw bug data sets are “polluted”
with misclassified issue reports.

Tangled changes must be untangled. The problem of tangled code changes is well
known and in fact, there exist good reasons why developers tend to commit mul-
tiple changes together. But current approaches mining version archives tend to
ignore these issues. Although, the presented untangling algorithm presented in
Chapter 5 might not be precise enough, our approach shows the potential impact
of tangled change sets on mining approaches such as defect prediction models.

Importance of human qualitative analysis. Manual inspections and data analysis re-
quire a large amount of human efforts involves inspecting thousands of data sam-
ples but are most important. Common assumptions on data sets and their quality
must be proven before being used. In general, any automated quantitative anal-
ysis should always include human qualitative analysis of the data—and of the
findings. This is basic quality assurance.
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8.2 Future Work

This work improves common mining techniques by introducing a graph like version
archive model capturing dependencies between code changes that allows model check-
ing version archives. Additionally, the results of this thesis also provide evidence of
major data issues in many mining models, but also provides ground truth data sets and
algorithms to reduce the impact of these data noise and bias sources on state-of-the-
art mining models. The presented approaches can be improved and extended and the
following research questions should be investigated.

It’s not a bug. It’s a feature.

The manual inspection of over 7,000 issue reports and the high misclassification rates
are alarming. With their automated bug report classifier, Antoniol [8] already provided
a partial solution to this problem. But we definitely need further studies showing the
exact impact on defect prediction and other quality related models.

• Impact on real defect prediction models. It will be important to measure and
describe the impact of our findings on real defect prediction models. Unless we
can verify that defect prediction models are severely impacted, these finding re-
main primarily. It also remains unclear if current defect prediction model predict
defects or changes. Both measures might be highly inter-correlated but are not
the same.

• Impact on other quality related models. So far, we only showed the impact
of these data sets on defect prediction models. But there are many other quality
related types of models that might be affected as well.

Untangling Changes

Our results indicate that untangling changes is a surprisingly difficult task, leaving lots
of room for future improvements. Nevertheless, we showed that between 6% and 50%
of the most defect prone entities are falsely classified as such, due to tangled change
sets. Thus, the issue of tangled change sets is serious and needs to be resolved. Our
future work will focus on the following topics:
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• Non-essential changes. So far, we do not identify non-essential changes as pro-
posed by Kawrykow and Robillard [84]. We can use the author’s concept to ex-
clude non-essential changes before untangling, putting all non-essential changes
into a separate change set partition. We believe that such an integration of both
approaches would improve the precision of the untangling algorithm.

• Recommendations to developers. In the long run, one could also present un-
tangled change sets as recommendations to users—either at the time they are
committed, or at the time they would be manually analyzed. Our current focus,
however, is to reduce data noise and the resulting threats to analysis of version
archives.

Predicting Long-Term Cause Effect Chains

Besides general improvements to performance and scalability, future work should focus
on:

• Dependencies between changes. Currently, we are investigating dependencies
between changes to allow GENEVA to use a much finer-grained dependency
graph to increase prediction precision.

• More features. Right now, we express temporal patterns over individual files
affected by a change. Rules may also include authors (“Whenever Bob changes
something, Alice revises it”) or metrics (“If cyclomatic complexity exceeds 0.75,
a module will be refactored”).

• Graph patterns and metrics. Besides temporal rules, we can also search for
specific patterns in the genealogy graph, such as identifying changes that trigger
the most future changes, or the changes with the highest long-term impact on
quality or maintainability.
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[129] Śliwerski, J., Zimmermann, T., and Zeller, A. When do changes induce fixes?
In Proceedings of the 2005 international workshop on Mining software reposi-
tories (2005), MSR ’05, ACM, pp. 1–5.

[130] Somasundaram, K., andMurphy, G. C. Automatic categorization of bug reports
using latent dirichlet allocation. In Proceedings of the 5th India Software Engi-
neering Conference (New York, NY, USA, 2012), ISEC ’12, ACM, pp. 125–130.

[131] Song, Q., Shepperd, M., and Mair, C. Using grey relational analysis to predict
software effort with small data sets. In Proceedings of the 11th IEEE Interna-
tional Software Metrics Symposium (Washington, DC, USA, 2005), METRICS
’05, IEEE Computer Society, pp. 35–.

[132] Stoerzer, M., Ryder, B. G., Ren, X., and Tip, F. Finding failure-inducing
changes in java programs using change classification. In Proceedings of the
14th ACM SIGSOFT international symposium on Foundations of software engi-
neering (New York, NY, USA, 2006), SIGSOFT ’06/FSE-14, ACM, pp. 57–68.

[133] Tang, A., Nicholson, A., Jin, Y., and Han, J. Using bayesian belief networks for
change impact analysis in architecture design. J. Syst. Softw. 80 (January 2007),
127–148.

[134] Tosun, A., Turhan, B., and Bener, A. Validation of network measures as in-
dicators of defective modules in software systems. In Proceedings of the 5th
International Conference on Predictor Models in Software Engineering (New
York, NY, USA, 2009), PROMISE ’09, ACM, pp. 5:1–5:9.



BIBLIOGRAPHY 177
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Glossary

Bug A software bug refers to a fault in the source code of a program that caused a
software failure. Fixing a bug means to improve the source code in a way that
a particular software failure, often detected by observing a software error, is
overcome.

Bug report The term bug report is a bit unfortunate and misleading. A bug report is
an issue report that files an observed error or a detected failure. Bug reports filed
by non-developers (e.g. customers) are based on the observation of an error. It
is not uncommon that bug reports are not indicating a bug in the source code but
are due to wrong expectations, simple misconfiguration, or likewise. Therefore
the term error report would have been more accurate.

Change dependency rule A set of rules used to compute dependencies between indi-
vidual change operations. For more details see Section 3.2.

Change genealogy A graph structure to model dependencies between change sets.

Change genealogy layer A virtual change genealogy lifting the granularity level of
the original change genealogy to a level above the change operation level. For
more details see Section 3.4.

Change genealogy metric A network metric based on change genealogy graph struc-
tures modeling dependencies between individual code changes instead of depen-
dencies between code artifacts.

Change operation A set of source code changes that add, modify, or delete method
calls or method definitions. For more details see Section 3.5.1.
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Change set A set of code changes simultaneously committed to the version archive.
Sometime also called commits or transactions.

Change set partition A subset of change operations in a change set which serve one
individual developer maintenance task.

Complexity metric Classical set of software metrics that indicate the complexity of a
code artifact using the artifacts code structure.

Defect In this thesis, we use the term software defect as a synonym for software bug.
In the testing community, the term software defect often refers to mismatches
between requirements.

Developer maintenance task A modification of a software product performed after
delivery to correct, adapt, enhance, or prevent a software system due to one
independent issue.

Error The discrepancy between a computed and an observed value.

Failure The inability of a program to perform its requires, expected, or specified task.

Functional quality Functional quality reflects the fraction of met required and speci-
fied functionality.

Change history metric Set of software metrics that describe the change history of the
code (e.g. the number of applied changes in the past).

Issue In software development, the term issue describes a unit of work to accomplish
an improvement of the software system. This can be a problem with the software
that needs to be fixed, but it might also be a request to improve the speed or
reliability of the software system, or it might be a request to implement a new
feature.

Issue report An issue report is a record in a software repository that records an issue
to be addressed by one or multiple team members. Analogue to the definition
of an issue, an issue report can be a bug report, an improvement request, or a
feature request.

Issue tracking system Glsplbugtracker are used to track developer tasks and program
issues. Prominent examples are Bugzilla and Jira.

Network metric Set of software metrics derived from network graphs modeling de-
pendencies between source code artifacts.
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Quality Refers to structural quality unless stated otherwise.

Software repository An umbrella term for repositories and databases containing dif-
ferent kind of artifacts produced during development but also usage of a software
product.

Software failure A software failure refers to the inability of the program to perform
its required, expected, or specified task. A failure can refer to correctness, per-
formance, etc.

Software error An error in software refers to a discrepancy between a computed,
observed, or measured value and the expected or specified value that should have
been computed. Thus, an error indicated that the software is not working as
expected or specified. An error cannot be fixed. It can be observed, only.

Software metric Objective, reproducible, and quantifiable measurements of source
code.

Software quality Software quality refers to two different notions: functional quality
and structural quality. Functional quality refers to functional requirements and
specifications. A high functional quality reflects the fact that the software sys-
tem meets a high fraction of required and specified functionality. In contrast,
structural quality refers to non-functional requirements and specifications such
as maintainability, stability, robustness, or the number of failures. Thus, the more
bugs were found in the source code, the lower the structural quality of the soft-
ware system—simply because a bug causes a software failure. In this thesis, the
term quality stands as a synonym for structural quality, unless stated otherwise.

Structural quality Structural quality refers to non-functional requirements and spec-
ifications such as maintainability, stability, robustness, or the number of failures.

Tangled change set A change set that contains code changes serving multiple devel-
oper maintenance tasks (e.g. bug fix and feature implementation).

Artificially tangled change set A tangled change set that was artificially created to
evaluate the untangling algorithm (see Section 5.3).

Version archive / Version control system Version archives or version control systems
record changes to applied documents and files. Prominent examples are Git or
Subversion.
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Appendix

The Mozkito Framework

For the experiments described in this thesis, we required a general purpose mining
framework to mine and analyze version control systems and bug repositories. The
construction of change genealogies, change genealogy layers, and the computation of
change genealogy metrics requires a flexible add-on infrastructure that allows static
source code analysis. Therefore, we developed Mozkito, a mining framework that can
handle projects and repositories of large size. The goal of Mozkitowas to construct and
maintain an publicly available open-source mining tool that supports the most popular
software repositories and that can be extended easily without modifying the core com-
ponents. For this reason, Mozkito is structured in modules. Each experiment described
in this thesis is a module that makes used of and can be reused by other modules. To
this end, we implemented to following modules and functionalities:

Mozkito-Persistence: Many data mining approaches are expensive in terms of run-
time. To make results of modules effectively reusable, Mozkito can persist Java
objects into a relational database. This persistence layer is an abstraction layer
that can be used with most open-source and commercial Java persistence libraries
such as OpenJPA1 or Hibernate2. Each module can use Java annotations to de-
fine its own Java objects to be stored in a database. Database tables will be
created at the time the corresponding Mozkito module get loaded.

By default, Mozkito uses the OpenJPA as underlying persistence layer to store
Java objects into a PostgreSQL3.

1http://openjpa.apache.org
2http://www.hibernate.org
3http://www.postgresql.org
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Mozkito-Versions: This module contains functionality to mine, parse, and to persist
version control system repositories. For each change set applied to the version
control system Mozkito creates and persists Java objects representing the indi-
vidual components of a change set; such as the id of the change set, the author
that applied the change set, the timestamp and commit message and basic infor-
mation about the source files changes within the change set. Information about
individual change operations will be generated and persisted in the Mozkito-
PatchAnalysis module.

Mozkito supports the following version control system systems: git [1],
mercurial [3], and subversion [4]. To extend the set of supported version
control systems it suffices to implement the Repository interface and to add a
corresponding version control system type to the RepositoryType enum.

Mozkito-PatchAnalysis: supplies functionality to extract and persists change opera-
tion from change set as described in Section 3.2. The module internally uses the
EclipseJava development tools (JDT)4 and the Partial Program Analysis
tool [37] to map code changes applied by a change set to differences within
the Java abstract syntax tree of each changed source file.

Mozkito-Genealogies: contains the complete implementation of change genealogies
as described in Chapter 3 using the Mozkito-PatchAnalysis for change operation
extraction, including change genealogy layers. Change genealogies are graph
structures. Unlike other data structures, change genealogies are not persistent
in a relational database. Mozkito stores the basic graph structure in a Neo4J5

graph database. Each graph database node refers to a change set Java object
stored within the relational database. For compatibility, visualization, and export
reasons, it is possible to transform a change genealogy into a JUNG6 graph data
structure.

To create new change genealogy layers it is necessary to add a new Mozkito
module or to modify the existing module and to extend the abstract
ChangeGenealogyLayer class. Change genealogy layers are read only data
structures. The two main change genealogy layers (the change operation and the
change set layer) are stored in separate Neo4J database within the same direc-
tory. Change genealogy layers translate database requests one the fly to requests
targeting the core change operation change genealogy layer. This on the fly

4http://www.eclipse.org/jdt
5http://neo4j.org
6http://jung.sourceforge.net

http://www.eclipse.org/jdt
http://neo4j.org
http://jung.sourceforge.net
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translation is slow and increases runtime significantly. To accelerate our experi-
ments on the change set change genealogy layer (our default change genealogy
layer) we decided to create a separate Neo4J database for both: the core change
operation change genealogy layers as well as for the default change set change
genealogy layer.

Mozkito-ModelChecking: adds model checking support to change genealogies. This
module contains all necessary implementations and tools to reproduce the exper-
iments described in Chapter 7. The module contains a complete model checking
engine written by Andrzej Wasylkowski [139] allowing to model check CTL
formulas on change genealogies.

Mozkito-GenealogyMetrics: contains implementations of change genealogy metrics
as described and discussed in Chapter 6. The module also contains the mecha-
nisms to compute change genealogy metrics for change genealogy vertices. The
metric values are written to CSV files. Persisting metric results would make
no sense since change genealogy metric values are likely to change as soon as
the software project and the corresponding change genealogy graph structure
evolves.

Mozkito-Issues: contains a complete tool chain to parse and persist issue report and
their comments and report history. Each report is represented by a set of Java
objects that contain a snapshot of issue report as it was at the time the report got
parsed. Mozkito also persists the changes applied to a issue report so far and
allows the user to retrieve a virtual issue report representing the issue report at
an earlier point in time.

By default, Mozkito is able to automatically parse the following bug tracking
systems: Bugzilla7, GoogleCode8, Jira9, and Mantis10. Mozkito also con-
tains an implementation of Sourceforge bug tracker but the current implemen-
tation is outdated and with Sourceforge changing its interface very frequently
without providing a complete and functional REST API, we dropped the support
for Sourceforge.

Mozkito-Persons: Version control systems and bug repositories (or any other soft-
ware repository) contain related artifacts but rarely share the same authentication
systems and user databases. When mining and persisting change sets and issue

7www.bugzilla.org
8http://code.google.com
9http://www.atlassian.com/software/jira

10www.mantisbt.org

www.bugzilla.org
http://code.google.com
http://www.atlassian.com/software/jira
www.mantisbt.org
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reports Mozkito creates Java objects for every distinct author of an artifact. The
model containing the persisted Java objects are contained in this module. Further,
when mapping artifacts stemming from different software repositories it is often
necessary to check if artifacts are created or modified by the same developer
or person. But frequently, one developer has different user names identifying
him in different software archives (e.g. a short user name in git and the email
address in the bug database). The Mozkito-Persons module contains tools and
algorithms that allow to merge multiple Person instances referring to the same
developer (e.g. sharing the same email address, full name, or user name).

Mozkito-Mappings: Contains a complete tool chain that allows to relate change sets
with issue report (see Section 2.3.4). The module allows to use multiple simple
and complex mapping strategies. Please refer to the Mozkito website for more
details.

Mozkito-Callgraph: Contains a tool chain that allows to create and use static call
graphs for individual version control system change sets.

Mozkito-ChangeCouplings: Implements change couplings as proposed by Zimmer-
mann et al. [154]. Mozkito-ChangeCouplings allows the computation of change
couplings on source file and on Java method level. Please refer to the Mozkito
website for more details.

Mozkito-Untangle: implements the untangling algorithm described, discussed, and
evaluated in Chapter 5.

Mozkito is a public available open source framework published under the Apache
License, Version 2.0. To download, use, extend, or learn more about Mozkito please
visit:

http://mozkito.org

http://mozkito.org
http://mozkito.org
http://mozkito.org
http://mozkito.org
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Starting Mozkito Processes

By default, Mozkitomodules are meant to be stand-alone. The build process of Mozk-
ito will generate an executable stand-alone jar file containing all required libraries.
Thus, starting a Mozkito process means to run the corresponding jar file.

Mozkito comes with a command line framework that allows easy declaration of
command line JAVA-VM arguments. To list the mandatory and optional command line
arguments, add the -Dhelp JAVA-VM command line argument when starting the pro-
cess. To show the list of command line arguments for Mozkito-Versions please exe-
cute:

java -Dhelp -jar moskito-versions-jar-with-dependencies.jar

This should print the command line arguments for the specified Mozkito-Versions jar
file.

Extending Mozkito

The default way to extend Mozkito is to add a new maven module to the existing
Mozkito maven project. For more details on maven please refer to

http://www.sonatype.com/books/mvnex-book/reference/multimodule.html
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