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Introduction

One of the major differences between combinatorial computing and other areas of
computing such as statistics, numerical analysis and linear programming is the use of
complex data types. Whilst the built-in types, such as integers, reals, vectors, and
matrices, usually suffice in the other areas, combinatorial computing relies heavily on
types like stacks, queues, dictionaries, sequences, sorted sequences, priority queues,
graphs, points, segments, ... In the fall of 1988, we started a project (called LEDA for
Library of Efficient Data types and Algorithms) to build a small, but growing library
of data types and algorithms in a form which allows them to be used by non-experts.
We hope that the system will narrow the gap between algorithms research, teaching,
and implementation. The main features of LEDA are:

1) A clear separation between (abstract) data types and the data structures used
to implement them. This distinction is frequently not made in the combinatorial
algorithms literature, but is crucial for a library.

2) Generic data types: Most of the data types in LEDA have type parameters. For
example, a dictionary has a key type K and an information type I and a specific
dictionary type is obtained by setting, say, K to int and I to real.

3) LEDA is extendible: Users can include own data types either by implementing
data structures from scratch in C++ or by combining already existing LEDA data

types.

4) Ease of use: All data types and algorithms are precompiled C++ modules which
can be linked with application programs.

This manual contains the specifications of all data types and algorithms currently
available in LEDA. Users should be familiar with the C++ programming language (see
[S86] or [L89]). The main concepts and some implementation details of LEDA are
described in [MN89]. The manual is structured as follows: In chapter one, which is a
prerequisite for all other chapters, we discuss the basic concepts and notations used
in LEDA. The other chapters define the data types and algorithms available in LEDA
and give examples of their use. These chapters can be consulted independently from

one another.






1. Basics

We start with an example. The following program counts the number of occurrences
of each string in a sequence of strings

#include <LEDA/d_array.h>

declare2(d_array,string,int)

main ()
{
d_array(string,int) N(0);
string s;
while (cin >> s && s != “stop”) N|[s| + +;
forall_defined(s, N) cout << s << “” << N[s] << “\n”;

The program can be compiled using the LEDA library (cf. section 1.9). When executed
it reads a sequence of strings from the standard input until the string “stop” is encountered
and then prints the number of occurrences of each string on the standard output.
More examples of LEDA programs can be found throughout this manual.

The program above uses the data type dictionary array (d_array) from the library.
This is expressed by the include statement (cf. section 1.8 for more details). The
specification of the data type d_array can be found in section 4.4. We use it also as
a running example to discuss the principles underlying LEDA in sections 1.1 to 1.6.

1.1 Specifications

In general the specification of a LEDA data type consists of five parts: a definition of
the set of objects comprising the (parameterized) abstract data type, a description of
how to derive a concrete data type from a parameterized data type, a description of
how to create an object of the data type, the definition of the operations available on
the objects of the data type, and finally, informations about the implementation. The
five parts appear under the headers definition, type declaration, creation, operations,
and implementation respectively.

e Definition

This part of the specification defines the objects (also called instances or elements)
comprising the data type using standard mathematical concepts and notation.
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Example, the generic data type dictionary array:

An object a of type d_array(I, E) is an injective function from the data type I to
the set of variables of data type E. The types I and E are called the index and the

element type respectively, a is called a dictionary array from I to E.

Note that the types I and E are parameters in the definition above. A concrete
dictionary array type is declared by a type declaration which we discuss next.

¢ Type Declaration

This part gives the syntax for deriving specific data types from parameterized or generic
data types, i.e., it shows how to set the formal type parameters of a generic data
type to concrete data types. For a generic data type XYZ with k type parameters the
statement

declarek(XYZ,t,,...,t)

introduces a new data type with name “XYZ(t,,t,,...,tx)”, where t;,...,%; are the
names of the actual type parameters. (Due to a limitation of the implementation
language C++ , the number k of type parameters also appears in the name of the
declare-macro.) For example,

declare2(d_array, string, int)

introduces a new data type with name “d_array(string,int)”. An object of data type
d_array(string,int) is a injective mapping from the set of all strings to the set of
variables of type int.

Only simple data types are allowed as actual type parameters in declarations of
parameterized data types. Simple data types are the C++ built in types char and int,
all C++ pointer types, the LEDA types bool, real, string, vector, and matriz (cf.
section 2), all basic two-dimensional objects from section 6.1 (point, segment, line,
polygon, circle), and all item types (cf. section 1.5). In order to realize generic data
types with more complicated subtypes (such as dictionaries, lists, graphs, ...) pointers
to these types must be used.

e Creation

A variableof a (previously declared) data type is introduced by a C++ variable declaration.
For all LEDA data types variables are initialized at the time of declaration. In many
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cases the user has to provide arguments used for the initialization of the variable. In
general a declaration

XYZ(ts,e o th) Y(o1,--e,20);

introduces a variable y of the data type with name “XYZ(¢,,...,%)” and uses the
arguments z1,...,z¢ to initialize it. For example,

d_array(string,int) A(0)

introduces A as a dictionary array from strings to integers, and initializes A as
follows: an injective function a from string to the set of unused variables of type int
is constructed, and is assigned to A. Moreover, all variables in the range of a are
initialized to 0. The reader may wonder how LEDA handles an array of infinite size.
The solution is , of course, that only that part of A is explicitly stored which has been
accessed already.

For most data types, in particular for the simple types, the assignment operator is
available for variables of that type. However, assignment is in general not a constant
time operation, e.g., if s; and s; are variables of type string then the assignment
s; = 83 takes time proportional to the length of the value of s,.

Remark: For most of the complex data types of LEDA, e.g., dictionaries, lists, and
priority queues, it is convenient to interpret a variable name as the name for an object
of the data type which evolves over time by means of the operations applied to it.
This is appropriate, whenever the operations on a data type only “modify” the values
of variables, e.g., it is more natural to say an operation on a dictionary D modifies D
than to say that it takes the old value of D, constructs a new dictionary out of it, and
assigns the new value to D. Of course, both interpretations are equivalent. From this
more object-oriented point of view, a variable declaration, e.g., dictionary(string,int)
D, is creating a new dictionary object with name D rather than introducing a new
variable of type dictionary(string,int); hence the name “creation” for this part of a
specification.

e Operations

In this section the operations of the data types are described. For each operation the
description consists of two parts

a) The interface of the operation is defined using the C++ function declaration syntax.
In this syntax the result type of the operation (void if there is no result) is followed
by the operation name and an argument list specifying the type of each argument.
For example,



list item L.insert (E z, list_item it, rel_pos p = after)

defines the interface of the insert operation on a list L of elements of type E .(cf.
section 3.7). Insert takes as arguments an element z of type E, a list_item it and
an optional relative position argument p. It returns a list_item as result.

E& Al z]
defines the interface of the access operation on a dictionary array A. It takes an
element of I as an argument and returns a variable of type E.

b) The effect of the operation is defined. Often the arguments have to fulfill certain
preconditions. If such a condition is violated the effect of the operation is not
defined. Some, but not all, of these cases result in error messages and abnormal
termination of the program (see also section 7.5).

For the insert operation on lists this definition reads:
A new item with contents z is inserted after (if p = after) or before (if p = before)
item it into L. The new item is returned. (precondition: item it must be in L)

For the access operation on dictionary arrays the definition reads:
returns the variable A(z).

¢ Implementation

The implementation section lists the data structures used to implement the data type
and gives the time bounds for the operations and the space requirement. For example,

Dictionary arrays are implemented by red black trees. Access operations A[z| take
time O(logdom(A)). The space requirement is O(dom(A4)).

1.2 Arguments

e Optional Arguments

The trailing arguments in the argument list of an operation may be optional. If these
trailing arguments are missing in a call of an operation the default argument values
given in the specification are used. For example, if the relative position argument in the
list insert operation is missing it is assumed to have the value after, i.e., L.insert(it,y)
will insert the item < y > after item ¢ into L.
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e Argument Passing

There are two kinds of argument passing in C++ , by value and by reference. An
argument z of type type specified by “type z” in the argument list of an operation
or user defined function will be passed by value, i.e., the operation or function is
provided with a copy of z. The syntax for specifying an argument passed by reference
is “type& z”. In this case the operation or function works directly on z ( the variable
z is passed not its value).

Passing by reference must always be used if the operation is to change the value of
the argument. It should always be used for passing large objects such as lists, arrays,
graphs and other LEDA data types to functions. Otherwise a complete copy of the
actual argument is made, which takes time proportional to its size, whereas passing
by reference always takes constant time.

e Functions as Arguments

Some operations take functions as arguments. For instance the bucket sort operation
on lists requires a function which maps the elements of the list into an interval of
integers. We use the C++ syntax to define the type of a function argument f:

T (*f)(Tl,Tz,. ..,Tk)

declares f to be a function taking k arguments of the data types T3, ..., Tk, respectively,
and returning a result of type T, ie, f: Ty X ... xT) — T .

1.3 Overloading

Operation and function names may be overloaded, i.e., there can be different interfaces for
the same operation. An example is the translate operations for points (cf. section 6.1).

point p.translate(vector v)

point p.translate(real o, real dist)

It can either be called with a vector as argument or with two arguments of type real
specifying the direction and the distance of the translation.

An important overloaded function is discussed in the next section: Function compare,
used to define linear orders for simple data types.



1.4 Linear Orders

Many data types, such as dictionaries, priority queues, and sorted sequences require
linearly ordered subtypes. Whenever a type T is used in such a situation, e.g. in
declare2(dictionary,T,...) the function

int compare(T&,T&)
must be declared and must define a linear order on the data type T'.

A binary relation rel on a set T' is called a linear order on T if for all z,y,z € T

1) z rel y

2) z rel y and y rel z implies = rel 2
3)zrelyoryrel

4) z rel y and y rel = implies z =y

A function int compare(T&,T&) is said to define the linear order rel on T if

<0, ifzrelyand z #y

compare(z,y) { =0, fz=y
>0, ifyrel zand z #y

For each of the simple data types char, int, real, string, and point a function compare
is predefined and defines the so-called default ordering on that type. The default
ordering is the usual < - order for char, int, and real, the lexicographic ordering
for string, and for point the lexicographic ordering of the cartesian coordinates. For
all other simple types T there is no default ordering, and the user has to provide a
compare function whenever a linear order on T is required.

Example: Suppose pairs of real numbers shall be used as keys in a dictionary with
the lexicographic order of their components. First we declare type pair as the type of
pointers to pairs of real numbers, and then we define the lexicographic order on pair
by declaring an appropriate compare function.

struct Pair {
real «;

real vy;

5
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int compare(pair& p, pair& q)

{ if (p >z <q— z) return -1;
if (p > >q— z) return 1;
if (p > y<g—y) return -1;
if (p >y>q—y) return 1;
return 0;

}

declare2(dictionary, pair, ... );

Sometimes, a user may need additional linear orders on a simple data type T which are
different from the order defined by compare, e.g., he might want to order points in the
plane by the lexicographic ordering of their cartesian coordinates and by their polar
coordinates. In this example, the former ordering is the default ordering for points. The
user can introduce an alternative ordering on the data type point (cf. section 6.1) by
defining an appropriate comparing function int cmp(point&, point&) and then declaring
the type POINT(cmp) with “declare(POINT,cmp)”. POINT is a parameterized
data type (cf. section 1.1) with one parameter which must be the name of a comparing
function. All data types POINT(cmp) derived from POINT are equivalent to the
data type point, with the only exception that if POINT(cmp) is used as an actual
parameter in a type declaration, e.g. in “declare2(dictionary, POINT (cmp),...)”, the
resulting type ( dictionary(POINT (cmp),...)) is based on the linear order defined
by emp. For every simple data type ¢ (except of pointer types) there exists such an
equivalent parameterized type T which can be used to define additional linear orders
on t by declaring types T'(cmp) as described for points. The name of T is always the
name of ¢ written with capital letters.

In the example, we first declare a function pol_cmp and the type POINT (pol_cmp).
int pol_cmp(point& z, point& y)
{ //lexicographic ordering on polar coordinates

}
declare(POINT, pol_cmp)

Now, dictionaries based on either ordering can be defined.
declare2(dictionary, point, ...)
declare2(dictionary, POINT (pol_cmp), ...)



main ()

{
dictionary(POINT (pol_cmp),/fpilabqrdering

dictionary(point, int) Do; //default ordering

}

Remark: We have chosen to associate a fixed linear order with most of the simple
types (by predefining the function compare). This order is used whenever operations
require a linear order on the type, e.g., the operations on a dictionary. Alternatively,
we could have required the user to specify a linear order each time he uses a simple
type in a situation where an ordering is needed, e.g., a user could define

declare3(dictionary,point,lexicographic_ordering,.. . )
and
declare3(dictionary,point,polar_ordering,. . .)

This alternative would handle the cases where two or more different orderings are
needed more elegantly. However, we have chosen the first alternative because of the
smaller implementation effort.

1.5 Items

Many of the advanced data types in LEDA (e.g. dictionaries), are defined in terms of
so-called items. An item is a container which can hold an object relevant for the data
type. For example, in the case of dictionaries a dic_item contains a pair consisting of
a key and an information. A general definition of items will be given at the end of
this section.

We now discuss the role of items for the dictionary example in some detail. A popular
specification of dictionaries defines a dictionary as a partial function from some type
K to some other type I, or alternatively, as a set of pairs from K x I, i.e., as the
graph of the function. In an implementation each pair (k,?) in the dictionary is stored
in some location of the memory. Efficiency dictates that the pair (k,z) cannot only
be accessed through the key k but sometimes also through the location where it is
stored, e.g., we might want to lookup the information 7 associated with key k (this
involves a search in the data structure), then compute with the value i a new value 7',
and finally associate the new value with k. This either involves another search in the
data structure or, if the lookup returned the location where the pair (k,7) is stored,
can be done by direct access. Of course, the second solution is more efficient and we
therefore wanted to provide it in LEDA.

In LEDA items play the role of positions or locations in data structures. Thus an
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object of type dictionary(K,I), where K and I are types, is defined as a collection of
items (type dic_item) where each item contains a pair in K x I. We use < k,z > to
denote an item with key k and information i and require that for each k € K there is
at most one 7 € I such that < k,z > is in the dictionary. In mathematical terms this
definition may be rephrased as follows: A dictionary d is a partial function from the
set dic_item to the set K x I. Moreover, for each k£ € K there is at most one z € I
such that the pair (k,?) is in d.

The functionality of the operations
dic_item D.lookup(K k)
I D.inf(dic_item it)
void D.change_inf(dic_item it, I i')

is now as follows: D.lookup(k) returns an item it with contents (k,7), D.inf(:t) extracts
i from it, and a new value ¢' can be associated with k by D.change_inf(it,s').

Let us have a look at the insert operation for dictionaries next:
dic_item D.insert(K k, I 1)

There are two cases to consider. If D contains an item it with contents (k,:') then ¢
is replaced by ¢ and it is returned. If D contains no such item, then a new item, i.e.,
an item which is not contained in any dictionary, is added to D, this item is made to
contain (k, %) and is returned. In this manual (cf. section 4.3) all of this is abbreviated

to

diciitem D.insert(K k, I i) associates the information i with the key k.
If there is an item < k,7 > in D then j is
replaced by i, else a new item < k,7 > is added
to D. In both cases the item is returned.

We now turn to a general discussion. With some LEDA types XY Z there is an associated
type XY Z item of items. Nothing is known about the objects of type XY Z _item except
that there are infinitely many of them. The only operations available on XY Z_items
besides the one defined in the specification of type XY Z is the equality predicate “=="
and the assignment operator “=" . The objects of type XY Z are defined as sets or
sequences of XY Z items containing objects of some other type Z. In this situation
an XY Z item containing an object z € Z is denoted by < z >. A new or unused

XY Z atem is any XY Z item which is not part of any object of type XY Z.

Remark: For some readers it may be useful to interpret a dic_item as a pointer to
a variable of type K x I. The differences are that the assignment to the variable
contained in a dic_item is restricted, e.g., the K-component cannot be changed, and
that in return for this restriction the access to dic_items is more flexible than for
ordinary variables, e.g., access through the value of the K-component is possible.
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1.6 Input and output

Some parameterized data types (e.g. list) provide the operations print and read for
printing their contents to the standard output and for initializing an instance of this
type by inserting elements read from the standard input. There are two overloaded
functions which can be used for defining input and output functions for user-defined
pointer types which are used by read and print operations (and sometimes for error
messages).

void Read(T&) { ...} defines an input function for objects of type T'.

void Print(T&) { ...} defines an output function for objects of type T

Example: We declare the data type list(pair) (see section 3.7) and want to read
and print lists of pairs. Note that the Read and Print functions have to be declared
before the declaration of the list type.

void Read(pair&p) { cin >>p—oz>>p—y; }
void Print(pair&p) { cout << p—z <<p—y; }

declare(list, pair)
main()

{
list(pair) L;

L.read(“L = ");
L.print(“L = ");

1.7 Iteration

For many data types LEDA provides iteration macros. These macros can be used to
iterate over the elements of lists, sets and dictionaries or the nodes and edges of a
graph. Iteration macros can be used similarly to the C++ for statement. Examples
are

for lists and sets:
forall(z, L) { the elements of L are successively assigned to z}

for graphs:

12



forall nodes(v,G) { the nodes of G are successively assigned to v}

forall_adj nodes(w,v) { the neighbor nodes of v are successively assigned to w}

Note: Update operations on an object z are not allowed inside the body of an iteration
statement for z.

1.8 Header Files

LEDA data types and algorithms can be used in any C++ program as described in
this manual. The specifications (class declarations) are contained in header files. To
use a specific data type its header file has to be included into the program. In general

the header file for data type XYZ is <LEDA/XYZ.h>. Exceptions are

<LEDA /basic.h>

This header file contains the declarations for the simple data types bool, real, string
(section 2), and the macros and functions described in section 7.

<LEDA/graph.h>

contains the declarations for graphs and related data types and the declarations of all
graph algorithms (section 5).

<LEDA/plane.h>

contains the two-dimensional objects point, segment, line, polygon, and circle and
some basic two-dimensional algorithms (section 6.1).

<LEDA /sunview.h>

contains a version of the graphic window data type gwindow providing an interface to
the SunView window system.
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1.9 Libraries

The implementions of all LEDA data types and algorithms are precompiled and
contained in three libraries which can be linked with C++ application programs.

a) libL.a

This is the main LEDA library, it contains the implementations of all simple data types
(section 2), basic data types (section 3), dictionaries and priority queues (section 4).
To compile a program prog.c using any of these data types the libL.a library has to
be used like this:

CC prog.c libL.a

b) 1ibG.a

This is the LEDA graph library. It contains the implementations of all graph data
types and algorithms (section 5). To compile a program using any graph u data types
or algorithms both the libG.a and libL.a library have to be used:

CC prog.c libG.a libL.a

c) libP.a

This is the LEDA library for geometry in the plane. It contains the implementations
of all data types and algorithms for two-dimensional geometry (section 6). To compile
a program using two-dimensional data types or algorithms all libraries have to be used:

CC prog.c libP.a libG.a libL.a -lm ( -lsuntool -lsunwindow -lpixrect )

Note that the libraries must be given in this order, the suntool, sunwindow, and
pizrect libraries must be added if a SunView graphic window (cf. section 6.7) is used.
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2. Simple Data Types

Simple data types are the C++ built in types char, int, the LEDA data types bool, real,
string, vector, matriz, all C++ pointer types and all item types. Simple data types may
be used as actual type parameters for generic data types, e.g. dictionary(real,string).

2.1 Boolean Values (bool)

An instance of the data type bool has either the value true or false. The usual
C++ logical operators && (and), || (or), ! (negation) are defined for bool.

2.2 Real Numbers (real)

Data type real is the LEDA equivalent of the C++ built in type double. Variables of
the data type real behave exactly like variables of type double (arithmetic, compare and
input/output operators are the same). The only difference between real and double
lies in the fact that real is allowed as subtype (type parameter) for generic data types.
There is automatic type conversion from real to double. Thus, all functions taking
double arguments accept also arguments of type real and vice versa. In particular
the mathematical functions declared in <math.h>> can be used with real arguments.
The ~operator is defined to explicitly convert an instance of the data type real to a
C++ double. This allows the use of the C++ functions printf and form for formatted
ouput of reals.

Example:

#include <math.h>

real r = 3.1415;
real s =sin(r);
cout << form(“sine of %f = %f\n”,”r,” s);
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2.3 Strings (string)

Data type string is the LEDA equivalent of charx in C++ . The differences to the
charx-type are that assignment, compare and concatenation operators are defined and
that argument passing by value works properly, i.e., there is passed a copy of the
string and not only a copy of a pointer. Furthermore a few useful operations for string
manipulations are available. The ~operator converts a string instance to a charx.

1. Creation of a string
a) string s;
b) string s(char x c);

introduces a variable s of type string initialized with the empty string. Variant b)
takes as argument a string constant ¢ (charx) and initializes s with ec.

2. Operations on a string s

int s.length() returns the length of string s

char s [int 1] returns the character at position 3
Precondition: 0 <1 < s.length()-1

string s (int 1, int j) returns the substring of s starting at
position i and ending at position j
Precondition: 0 <1 < j < s.length()-1
string s.tail(int 1) returns s(i, s.length()-1)
Precondition: 0 <1 < s.length()
string s.head(int 1) returns s(0, 1)
Precondition: 0 <1 < s.length()-1
int s.pos(string sl) returns the first position of sl in s if s1 is
a substring of s, —1 otherwise
string s.insert(string s1, int i) returns s.head(:) + sl + s.tail(z + 1)
Precondition: 0 <1 < s.length()-1
string s.replace(string sl, string s2)
returns s.head(s.pos(s1)-1) + s2
+ s.tail(s.pos(s1)+sl.length())
Precondition: sl is a substing of s.

charx s converts s into a C++ string (charx)

string& s = sl assigns the value of sl to s and returns it
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string s+ sl returns the concatenation of s and sl

string& s + = sl appends sl to s and returns s

bool s == sl returns true iff s and s1 are equal
bool s!l= sl returns true iff s and s1 are not equal
bool s < sl returns true iff s is lexicographically

smaller than sl

bool s> sl returns true iff s is lexicographically
larger than sl

bool s <= sl returns (s < sl) || (s == s1)
bool s >= sl returns (s > s1) || (s == sl)
ostream& O << s writes string s to the output stream O
istream& I >> s reads string s from the input stream I

3. Implementation

Strings are implemented by C++ character vectors. All operations on a string s take
time O(s.length()), except of s|| and s.length() which take constant time.
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2.4 Real-Valued Vectors (vector)

An instance of the data type vector is a vector of real variables.

1. Creation of a vector

a) vector wv(int d);

b) wvector v(real a, real b);

c) wvector v(real a, real b, real c);

creates an instance v of type vector; v is initialized to the zero vector of dimension
d (variant a), the two-dimensional vector (a,b) (variant b) or the three-dimensional

vector (a,b,c) (variant c).

2. Operations on a vector v

int v.dim() returns the dimension of v.

real v.length() returns the Euclidean length of v

real v.angle(vector w) returns the angle between v and w.

real& v [int i returns i-th component of v.
Precondition: 0 <1 < v.dim() - 1.

vector v+ v Addition

Precondstion: v.dim() = v;.dim().

vector v — v Subtraction

Precondition: v.dim() = v;.dim().

real v % O Scalar multiplication
Precondition: v.dim() = v;.dim().

vector vV % r Componentwise multiplication with real r

vector& v= v Componentwise assignment; returns v
Precondition: v.dim() = v;.dim().

bool U == Test for equality

bool v!= v Test for inequality

ostream& O << v writes v componentwise to the output stream O
1stream& I >> v reads v componentwise from the input stream I
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3. Implementation

Vectors are implemented by arrays of real numbers. All operations on a vector v

take time O(v.dim()), except of dim and [ | which take constant time. The space

requirement is O(v.dim()).

2.5 Real-Valued Matrices (matrix)

An instance of the data type mairiz is a matrix of real variables.

1. Creation of a matrix

matriz M (int n, int m);

creates an instance M of type matriz, M is initialized to the n X m - zero matrix.

2. Operations on a matrix M

int
int
vector

vector

matrizc

real

matriz

vector

real&

matriz&

M .dim1()
M .dim2()
M row(int 1)

M .col(int 1)

M .trans()
M .det()

M .inv()

M .solve(vector b)

M (int i, int j)

M= M

returns n, the number of rows of M.
returns m, the number of cols of M.
returns the :-th row of M (an m-vector).
Precondition: 0<:<n-—1.

returns the i-th column of M (an n-vector).
Precondstion: 0 <i<m—1.

returns M7 (m x n - matrix).

returns the determinant of M.
Precondition: M is quadratic.

returns the inverse matrix of M.
Precondition: M .det() # 0.

returns vector = with M -z = b.
Precondition: M.diml1() = M.dim2() = b.dim()
and M.det() # 0.

returns M; ;.
Precondition: 0<i<n—-1and0<j;<m-1.

Componentwise assignment; returns M.
Precondition: M .dim1() = M;.dim1() and
M .dim2() = M;.dim2().
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matric M+ M, Addition
Precondition: M.diml() = M;.dim1() and
M .dim2() = M,.dim2().

matriz M- M Subtraktion
Precondition: M .dim1() = M;.dim1() and
M.dim2() = M;.dim2().

matric M % M, Multiplication

Precondition: M.dim2() = M;.dim1().
matrizc M x r Multiplication with real
vector M x v Multiplication with vector

Precondition: M .dim2() = v.dim().

ostreem& O << M writes matrix M to the output stream O
wstream& I >> M reads matrix M from the input stream I

3. Implementation

Data type matriz is implemented by two-dimensional arrays of real numbers. All
operations take time O(nm), except of det, inv, and solve which take time O(n!), and
dim1, dim2, row, and col, which take constant time. The space requirement is O(nm).
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3. Basic Data Types

3.1 One Dimensional Arrays (array)

An instance A of the data type array is a mapping from an interval I = [a..b] of
integers, called the index set of A, to a set of variables of a data type F, called the
element type of A. A(7) is called the element at position 1.

1. Declaration of an array type

declare(array, E)

introduces a new data type with name array(E) consisting of all arrays with element
type E.

2. Creation of an array

array(E) A(int a, int b);

creates an instance A of type array(E) with index set [a..b].

3. Operations on an array A

E& A [int i] returns A(z). Precondition: a <1 <b
int A.low() returns the minimal index a
int A.high() returns the maximal index b

void  Asort(int (xemp)(E&,E&)) sorts the elements of A, using function cmp
to compare two elements, i.e., if (in,,...,in;)
and (out,,...,out,) denote the values of the
variables (A(a),...,A(b)) before and after the
call of sort, then cmp(out;,out;) <0 for : <j
and there is a permutation 7 of [a..b] such that
out; = in,,(,') for a < 1 < b.

int A.binary search(E z, int (xcmp)(E&, E&))
performs a binary search for z. Returns
with Aff] =z if z in A4, Alow() — 1
otherwise. Function cmp is used to compare
two elements. Precondition: A must be sorted
according to cmp.
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4. Implementation

Arrays are implemented by C++ vectors. The access operation takes time O(1), the
sorting is realized by quicksort (time O(nlogn)) and the binary search operation takes
time O(logn), where n =b —a+ 1. The space requirement is O(|I|).

3.2 Two Dimensional Arrays (array2)

An instance A of the data type array2 is a mapping from a set of pairs I = [a..b] X [c..d],
called the index set of A, to a set of variables of a data type F, called the element type
of A, for two fixed intervals of integers [a..b] and [b..c|]. A(%,7) is called the element
at position (z, 7).

1. Declaration of a two dimensional array type
declare(array?2, E)
introduces a new data type with name array2(E) consisting of all two-dimensional

arrays with element type E.

2. Creation of a two-dimensional array
array2(E) A(a,b,c,d);

creates an instance A of type array2(E) with index set [a..b] x [c..d].

3. Operations on a two-dimensional array A

E& A (int 1, int j) returns A(s, j).
Precondition: a <i<band c<j<d.
int Alowl() returns a
int A.highl() returns b
int Alow2() returns c
int A.high2() returns d

4. Implementation

Two dimensional arrays are implemented by C++ vectors. All operations take time
O(1), the space requirement is O(|I|).
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3.3 Stacks (stack)

An instance S of the data type stack is a sequence of elements of a data type F, called
the element type of S. Insertions or deletions of elements take place only at one end
of the sequence, called the top of S. The size of S is the length of the sequence, a
stack of size zero is called the empty stack.

1. Declaration of a stack type

declare(stack, E)

introduces a new data type with name stack(E) consisting all all stacks with element
type E.

2. Creation of a stack

stack(E) S;

creates an instance S of type stack(E). S is initialized with the empty stack.

3. Operations on a stack S

E S.top() returns the top element of S
Precondstion: S is not empty.

E S.pop() deletes and returns the top element of S
Precondition: S is not empty.

E S.push(E z) adds z as new top element to S.

void S.clear() makes S the empty stack.

int S .size() returns the size of S.

bool S.empty() returns true if S is empty, false otherwise.

4. Implementation

Stacks are implemented by singly linked linear lists. All operations take time O(1),
except clear which takes time O(n), where n is the size of the stack.

23



3.4 Queues (queue)

An instance @ of the data type queue is a sequence of elements of a data type E,
called the element type of Q. Elements are inserted at one end (the rear) and deleted
at the other end (the front) of Q. The size of Q is the length of the sequence, a queue
of size zero is called the empty queue.

1. Declaration of a queue type

declare(queue, E)

introduces a new data type with name queue(E) consisting all all queues with element

type E.

2. Creation of a queue

queve(E) Q;

creates an instance Q of type queue(E). Q is initialized with the empty queue.

3. Operations on a queue @

E Q-top() returns the front element of Q
Precondition: @ is not empty.

E Q.pop() deletes and returns the front element of Q
Precondstion: @Q is not empty.

E Q.append(E z) appends z to the rear end of Q.

void Q.clear() makes @ the empty queue.

int Q.size() returns the size of Q.

bool Q.empty() returns true if Q is empty, false otherwise.

4. Implementation

Queues are implemented by singly linked linear lists. All operations take time O(1),
except clear which takes time O(n), where n is the size of the queue.
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3.5 Bounded Stacks (b_stack)

An instance S of the data type b_stack is a stack (see section 2.3) of bounded size.

1. Declaration of a bounded stack type

declare(b_stack, E)

introduces a new data type with name b_stack(E) consisting all bounded stacks with
element type FE.

2. Creation of a bounded stack

b_stack(E) S(n);

creates an instance S of type b_stack(FE) that can hold up to n elements. S is initialized
with the empty stack.

3. Operations on a b_stack S

E S.top() returns the top element of S
Precondstion: S is not empty.

E S.pop() deletes and returns the top element of S
Precondition: S is not empty.

E S.push(E z) adds z as new top element to S
Precondstion: S.size() < n.

void S.clear() makes S the empty stack.

int S .size() returns the size of S.

bool S.empty() returns true if S is empty, false otherwise.

4. Implementation

Bounded Stacks are implemented by C++ vectors. All operations take time O(1). The
space requirement is O(n).
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3.6 Bounded Queues (b_queue)

An instance @ of the data type b_queue is a queue (see section 2.4) of bounded size.

1. Declaration of a bounded queue type
declare(b_queue, E)
introduces a new data type with name b_queue(E) consisting all bounded queue with

element type E.

2. Creation of a bounded queue

b_queue(E) Q(n);

creates an instance Q of type b_queue(E) that can hold up to n elements. Q is initialized
with the empty queue.

3. Operations on a b_queue Q

E Q.top() returns the front element of Q
Precondstion: @Q is not empty.

E Q-pop() deletes and returns the front element of Q
Precondstion: @ is not empty.

E Q.append(E z) appends z to the rear end of Q
Precondition: Q.size()< n.

void Q.clear() makes Q the empty queue.

int Q size() returns the size of Q.

bool Q.empty() returns true if Q is empty, false otherwise.

4. Implementation

Bounded Queues are implemented by circular arrays. All operations take time O(1).
The space requirement is O(n).
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3.7 Linear Lists (list)

An instance L of the data type list is a sequence of items (list_item). Each item in L
contains an element of a data type E, called the element type of L. The number of
items in L is called the length of L. If L has length zero it is called the empty list.
In the sequel < z > is used to denote a list item containing the element z and L[] is
used to denote the contents of list item 7 in L.

1. Declaration of a list type

declare(list, E)

introduces a new data type with name list(E) consisting of all lists with element type
E.

2. Creation of list

list(E) L;

creates an instance L of type list(E) and initializes it to the empty list.

3. Operations on a list L

a) Access Operations

int L.length() returns the length of L.

int L size() returns L.length().

bool L.empty() returns true if L is empty, false otherwise.
list.item L .first() returns the first item of L.

list_item L.last() returns the last item of L.

list item L.succ(list_item it) returns the successor item of item i, nil

if it = L.last().

Precondstion: it is an item in L.

list_item L.pred(list_item it) returns the predecessor item of item i¢, nil
if it = L.first().
Precondition: it is an item in L.

list_item L.cyclicsucc(list_item it)  returns the cyclic successor of item it, i.e.,
L first() if it = L.last(), L.succ(it) otherwise.

list item L.cyclic_pred(list_item it) returns the cyclic predecessor of item it, i.e,

27



list item L.search(E z)

E

&

int

L.contents(list_item it)

L.inf(lzst_item it)
L.head()

L .tail()

L.rank(FE z)

b) Update Operations

L.last() if it = L.first(), L.pred(it) otherwise.

returns the first item of L that contains z,
nil if z is not an element of L

returns the contents L[it] of item it
Precondition: it is an item in L.

returns L.contents(it).

returns the first element of L, i.e. the contents
of L.first().
Precondition: L is not empty.

returns the last element of L, i.e. the contents
of L.last().
Precondstion: L is not empty.

returns the rank of « in L, i.e. its first
position in L as an integer from [1...|L|]
(0 if z is not in L).

list item L.insert(E z,list_item it, direction dir = after)

list item L.push(E z)

list_item L.append(E z)

E

void

void

L.del item(list_item it)

L.pop()

L.Pop()

L.assign(list_item it, E z)

L.conc(list& L1)

inserts a new item < z > after (if dir = after)
or before (if dir = before) item it into L and
returns it. Precondstion: it is an item in L.

adds a new item < z > at the front of L and
returns it ( L.insert(z, L.first(),before) )

appends a new item < z > to L and returns
it ( L.insert(z, L.last(),after) )

deletes the item ¢ from L and returns its
contents L[it].
Precondition: it is an item in L.

deletes the first item from L and returns its
contents.
Precondition: L is not empty.

deletes the last item from L and returns its
contents.
Precondstion: L is not empty.

makes = the contents of item z¢.
Precondition: it is an item in L.

appends list L1 to list L and makes L1 the
empty list
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void

void

void

void

void

void

L.split(list_item it,list& L1,

L.apply(void (xf)(E&))

L.sort(int (xemp)(E&, E&))

L2)

splits L at item it into lists L1 and L2

and makes L the empty list. More precisely,
if L=2,...,2k-1,1,Z+1,...,Z, then

Ll =2z,...,2k—1 and L2 =it,zk41,...,2Zn
Precondstion: it is an item in L.

for all items < ¢ > in L function f is
called with argument z (passed by reference).

sorts the items of L using the ordering defined
by the compare function cmp : E x E — int,
<0,ifa<bd
with emp(a,b) =0, if a=1b
<0,ifa>b
More precisely, if L = (z1,...,z,) before the sort
then L = (zx(1),---;Zx(n)) for some permutation
n of [1..n] and emp(L[z;], L[zj4+1]) < O for
1 < j < n after the sort.

L.bucket sort(int i, int j, int (xf)(E&))

L.permute()
L.clear()

¢) Input and Output Operations

void

void
void

void

vord

L.read(string s, char delim)

L.read(string s)
L.read(char delim)
L.read()

sorts the items of L using bucket sort,

where f: E — int with f(z) € [i..j] for

all elements =z of L. The sort is stable,

i.e., if f(z) = f(y) and < z > is before <y > in
L then < z > is before < y > after the sort.
the items of L are randomly permuted.

makes L the empty list

Prints string s on the standard output and then
reads a sequence of objects of type E terminated
by the delimiter delim from the standard input
using the overloaded Read function (section 1.5)
L is made a list of appropriate length and the
sequence is stored in L.

calls L.read(s, ’\n’).
calls L.read(””, delim).
calls L.read(””, ’\n’).

L.print(string s, char space)

Prints the contents of list L to the standard
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void L.print(string s)
void L.print(char space)
void L.print()

d) Iterators

output using the overload Print function to
print each element. The elements are separated
by the space character space. String s is

used as a header.

calls L.print(s, * ).

calls L.print(*”, space).

calls L.print(*”, ¢ ¢).

FEach list L has a special item called the iterator of L. There are operations to read

the current value or the contents of this iterator, to move it (setting it to its successor

or predecessor) and to test whether the end (head or tail) of the list is reached. If

the iterator contains a list_item # nil we call this item the position of the iterator.

Iterators are used to implement iteration statements on lists.

void L set_iterator(list_item 1it)

void L.init_iterator()

list_item L.get_iterator()

assigns item ¢ to the iterator
Precondition: it is in L or it = nil.
assigns nil to the iterator

returns the current value of the iterator

list_item L.move_iterator(direction dir = forward)

bool L.current_element(E& z)
bool L.next_element(E& z)
bool L.prev_element(E& z)

e) Operators
E L(list item it]
list(E)& L1 = L2

moves the iterator to its successor (predecessor)
if dir = forward (backward) and to the first
(last) item if it is undefined (= nil), returns
the iterator.

if the iterator is defined (# nil) its contents is
assigned to z and true is returned else false
is returned

L.move_iterator(forward) +
return L.current_element(z)

L.move_iterator(backward) +
return L.current_element(z)

returns L.contents(it)

assignment:

The assignment operator makes list L1 a copy of list L2. More precisely if L2 is the

sequence of items z;,z,,...2, then L1 is made a sequence of item y;,¥y2,...y, with

L1[y;] = L2[z;] for 1 <1 < n.
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5. Iteration
forall list_items(it, L) { “the items of L are successively assigned to it” }

forall(z, L) { “the elements of L are successively assigned to z” }

6. Implementation

The data type list is realized by doubly linked linear lists. All operations take constant
time except for the following operations. Search and rank take linear time O(n),
bucket sort takes time O(n + j — i) and sort takes time O(n - c - log n) where c is the
time complexity of the compare function. n is always the current length of the list.
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3.8 Sets (set)

An instance S of the data type set is collection of elements of a linearly ordered type
U, called the element type of S. The size of S is the number of elements in S, a set
of size zero is called the empty set.

1. Declaration of a set type

declare(set,U)

introduces a new data type with name set(U) consisting of all sets with element type
U. Precondition: U is linearly ordered.

2. Creation of a set

set(U) S;

creates an instance S of type set(U) and initializes it to the empty set.

3. Operations on a set S

void S.insert(U z) adds z to S

void S.del(U =) deletes z from S

bool S.member(U z) returns true if z in S, false otherwise

U S.choose() returns an element of S (error if S is empty)

Precondition: S is not empty.

bool S.empty|() returns true if S is empty, false otherwise
int S size() returns the size of S
void S.clear() makes S the empty set

4. Iteration

forall(z,S) { “the elements of S are successively assigned to z” }

5. Implementation

Sets are implemented by red black trees. Operations insert, del, member take time
O(log n), empty, size take time O(1), and clear takes time O(n), where n is the current
size of the set.
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3.9 Integer Sets (int_set)

An instance S of the data type int_set is a subset of a fixed interval interval [a..b] of
the integers.

1. Creation of an int_set

int_set S(a,b);

creates an instance S of type int_set for elements from [a..b] and initializes it to the

empty set.

2. Operations on a int _set S

void S.insert(int z) adds z to S
Precondition: a <z <b.
void S.del(int z) deletes z from S
Precondition: a <z <b.
bool S.member(int z) returns true if z in S, false otherwise
Precondition: a <z <b.
void S.clear() makes S the empty set
int_set S1 = S2 assignment
int_set S1 | S2 returns the union of S1 and 52
int_set S1 & S2 returns the intersection of S1 and 52
int_set S returns the complement of S

3. Implementation

Integer sets are implemented by bit vectors. Operations insert, delete, member,empty,
and size take constant time. Clear, intersection, union and complement take time
O(b—a+1).

33



3.10 Partitions (partition)

An instance of the data type partition consists of a finite set of items (predefined type
partition_item) and a partition of this set into blocks.

1. Creation of a partition
partition P;

Creates an instance P of type partition and initializes it to the empty partition.

2. Operations on a partition P

partition_item P.make_ block() returns a new partition_itemn it and adds
the block {it} to partition P.

partition_ item P .find(partition_item p)
returns a canonical item of the block that

contains item p, i.e., if P.same_ block(p, q)
then P.find(p) = P.find(q).
Precondition: p is an item in P.

bool P.same_block(partition_item p, partition_item q)
returns true if p and ¢ belong to the same
block of partition P.
Precondition: p and ¢ are items in P.
void P _.union_blocks(partition_item p, partition_item q)
unites the blocks of partition P containing
items p and gq.
Precondition: p and ¢ are items in P.

3. Implementation

Partitions are implemented by the union find algorithm with weighted union and path
compression (cf. [T83]). Any sequence of n make block and m > n other operations
takes time O(ma(m,n)), where « is a functional inverse of Ackerman’s function.

4. Example

Spanning Tree Algorithms (cf. graph)
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3.11 Dynamic collections of trees (tree_collection)

An instance D of the data type tree_collection is a collection of vertex disjoint rooted
trees, each of whose vertices has a real-valued cost and contains an information of type
I, called the information type of D.

1. Declaration of a dynamic tree collection type
declare(tree_collection, I)

introduces a new data type with name tree_collection(I) consisting of all dynamic tree
collections with information type I.

2. Creation of a tree_collection
tree_collection(I) D;

creates an instance D of type tree_collection(I), initialized with the empty collection.

3. Operations on a tree_collection D

dvertex D.maketree(I z) Adds a new tree to D containing a single
vertex v with cost zero and information =z,
and returns v.

I D.inf(d_vertez v) Returns the information of vertex v.
dwvertex D.findroot(d_vertex v)  Returns the root of the tree containing v.

dvertez D.findcost(d_vertez v, real& z)
Sets z to the minimum cost of a vertex on the
tree path from v to findroot(v) and returns
the last vertex (closest to the root) on this
path of cost z.

void D.addcost(d_vertez v, real z)
Adds real number z to the cost of every vertex
on the tree path from v to findroot(v).

void D.link(d_vertez v, dvertezx w)
Combines the trees containing vertices v and w
by adding the edge (v,w). (We regard tree
edges as directed from child to parent.)
Precondition: v and w are in different trees
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and v is a root.

void D.cut(d_vertez v) Divides the tree containing vertex v into
two trees by deleting the edge out of v.

Precondstion: v is not a tree root.

4. Implementation

Dynamic collections of trees are implemented by partitioning the trees into vertex
disjoint paths and representing each path by a self-adjusting binary tree (see [T83]). All
operations take amortized time O(log n) where n is the number of maketree operations.
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4. Priority Queues and Dictionaries

4.1 Priority Queues (priority_queue)

An instance @ of the data type priority_queue is a collection of items (type pg_item).
Every item contains a key from a type K and an information from a linearly ordered
type I. K is called the key type of Q and I is called the information type of Q. The
number of items in Q is called the size of Q. If Q has size zero it is called the empty
priority queue. We use < k,i > to denote a pq_item with key k£ and information 1.
on I.

1. Declaration of a priority queue type

declare2(priority_queue, K, I)

introduces a new data type with name priority_queue(K,I) consisting of all priority
queues with key type K and information type I. Precondition: I is linearly ordered.
2. Creation of a priority queue

priority_queve(K,I) Q;

creates an instance @ of type priority_queue(K,I) and initializes it with the empty

priority queue.

3. Operations on a priority_queue Q

K Q key(pq-item it) returns the key of item it.
Precondstion: it is an item in Q.

I Q.inf(pq_item 1t) returns the information of item it.
Precondition: it is an item in Q.

pg-item Q.insert(K k,I 1) adds a new item < k,z > to @Q and returns it.

pgitem Q.find_min() returns an item with minimal information
(nil if Q is empty)

void Q.del_item(pg_ttem it) removes the item it from Q.

Precondstion: it is an item in Q.

K Q.del_min() removes the item with minimal information
from Q and returns its key.
Precondition: @ is not empty.
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pq-ttem

void

void
bool

int

Q.decrease_inf(pg_item it, I i) makes i the new information of item it
Precondition: it is an item in @ and 1
is not larger then inf(it).

Q.change key(pgq_item it, K k) makes k the new key of item it
Precondstion: it is an item in Q.

Q.clear() makes @ the empty priority queue
Q.empty() returns true, if Q is empty, false otherwise
Q.size() returns the size of Q.

4. Implementation

Priority queues are implemented by Fibonacci heaps ([FT84]. Operations insert,

del_item, del_min take time O(logn), find_min, decrease_inf, key, inf, empty take time

O(1) and clear takes time O(n), where n is the size of Q. The space requirement is

O(n).

5. Example

Dijkstra’s Algorithm (cf. section 8.1)
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4.2 Bounded Priority Queues (b_priority_queue)

An instance Q of the data type b_priority_queue is a priority_queue (cf. section 4.1)
whose items contain informations from a fixed interval [a..b] of integers.

1. Declaration of a bounded priority queue type

declare(b_priority_queue, K)

introduces a new data type with name b_priority_queue(K) consisting of all bounded
priority queues with key type K.

2. Creation of a bounded priority queue

b_priority_queue(K) Q(a,bd);

creates an instance Q of type b_priority_queue(K) with information type [a..b] and
initializes it with the empty priority queue.

3. Operations on a b_priority_queue Q

The operations are the same as for the data type priority_queue with the additional
precondition that any information argument must be in the range [a..b].

4. Implementation

Bounded priority queues are implemented by arrays of linear lists. Operations insert,
find_min, delitem, decrease_inf, key, inf, and empty take time O(1), del.min ( =
del_item for the minimal element) takes time O(d), where d is the distance of the
minimal element to the next bigger element in the queue ( = O(b — a) in the worst
case). clear takes time O(b— a + n) and the space requirement is O(b — a + n), where
n is the current size of the queue.
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4.3 Dictionaries (dictionary)

An instance D of the data type dictionary is a collection of items (dic_item). Every
item in D contains a key from a linearly ordered data type K, called the key type
of D, and an information from a data type I, called the information type of D. The
number of items in D is called the size of D. A dictionary of size zero is called the
empty dictionary. We use < k,7 > to denote an item with key k and information i (2
is said to be the information associated with key k). For each k € K there is at most
one item < k,: >€ D.

1. Declaration of a dictionary type

declare2(dictionary, K, I)

introduces a new data type with name dictionary(K,I) consisting of all dictionaries
with key type K and information type I. Precondition: K is linearly ordered.

2. Creation of a dictionary
dictionary(K,I) D;

creates an instance D of type dictionary(K, I) and initializes D to the empty dictionary.

3. Operations on a dictionary D

K D key(dic_item 1t) returns the key of item it.
Precondition: it is an item in D.

I D.inf(dic_item it) returns the information of item it.
Precondition: it is an item in D.

dic_item D.insert(K k, I 1) associates the information 7 with the key k.
If there is an item < k,j > in D then j is

replaced by i, else a new item < k,z > is added

to D. In both cases the item is returned.

dic_item D.lookup(K k) returns the item with key k (nil if no such
item exists in D).

I D.access(K k) returns the information associated with key &

Precondition: there is an item with key k£ in D.

void D.del(K k) deletes the item with key k from D
(null operation, if no such item exists).

void D .del item(dic_item it) removes item it from D.
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void D.change_inf(dic_item it, I 1)

void D .clear()
bool D .empty/()
int D size()

4. Iteration

Precondstion: it is an item in D.

makes ¢ the information of item zt.
Precondition: it is an item in D.

makes D the empty dictionary.
returns true if D is empty, false otherwise.

returns the size of D.

forall_dic_items(i, D) { “the items of D are successively assigned to i ” }

5. Implementation

Dictionaries are implemented by leaf oriented red black trees. Operations insert,

lookup, del.item, del take time O(logn), key, inf, empty, size, change_inf take time

O(1), and clear takes time O(n). Here n is the current size of the dictionary. The

space requirement is O(n).

6. Example

Using a dictionary to count the number of occurrences of the elements in a sequence

of strings, terminated by string “stop”.
#include <LEDA /dictionary.h>

declare2(dictionary, string, int)

main()

{

dictionary(string, int) D;
string s;

dic_item 1t;

while ( (cin >> s) && (s != “stop”) )

{ it = D.lookup(s);
if (¢t == nal) D.insert(s,1);

else D.change_inf(it,D.info(it)+1);

}

forall_dic_items(it, D) cout << D.info(it) << “” << D.key(it) << “\n”;
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4.4 Dictionary Arrays (d_array)

An instance A of the data type d_array (dictionary array) is an injective mapping
from a linearly ordered data type I, called the index type of A, to a set of variables
of a data type E, called the element type of A.

1. Declaration of a d_array type

declare2(d_array,I,E)

introduces a new data type with name d_array(I, E) consisting of all d_arrays with

index type I and element type E. Precondstion: I is linearly ordered.

2. Creation of a d_array
d_array(I,E) A(z);
creates an injective function a from I to the set of unused variables of type F, assigns

z to all variables in the range of a and initializes A with a.

3. Operations on a d_array A

E& A (I z returns the variable A(z)
bool A.defined(I z) returns true if ¢ € dom(A), false otherwise; here

dom(A) is the set of all z € I for which A[z] has
already been executed.

4. Tteration

forall_defined(z, A) { “the elements from dom(A) are successively assigned to z” }

5. Implementation

Dictionary arrays are implemented by red black trees. Access operations A[z] take
time O(logdom(A)). The space requirement is O(dom(4)).
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6. Example

Program 1: Using a dictionary array to count the number of occurences of the
elements in a sequence of strings.

#include <LEDA/d_array.h>

declare2(d_array,string,int)

main()

{

d_array(string,int) N(0);

string s;

while (cin >> s && s != “stop”) N|[s] + +;
forall_defined(s, N) cout << s << “” << N[s] << “\n”;

Program 2: Using a d_array to realize an english/german dictionary.

#include <LEDA /d_array.h>

declare2(d_array,string,string)

main ()

{

d_array(string,string) trans;

trans[“hello”] = “hallo”;

trans|“world”| = “Welt”;
trans[“book”] = “Buch”;
trans[“key”] = “Schluessel”;

string s;
forall_defined(s, trans) cout << s << “” << trans(s] << “\n”;
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4.5 Hashing arrays (h_array)

An instance A of the data type h_array (hashing array) is an injective mapping from
a data type I, called the index type of A, to a set of variables of a data type E, called
the element type of A. I must be char, int, a pointer type, or an item type.

1. Declaration of an hashing array type

declare2(h_array, I, E)

introduces a new data type with name h_array(I, E) consisting of all h_arrays with
index type I and element type E.

2. Creation of a h_array

h_array(I,E) A(z);

creates an injective function a from I to the set of unused variables of type F, assigns

z to all variables in the range of a and initializes A with a.

3. Operations on a h_array A

E& A [I z] returns the variable A(z)
bool A.defined(I =) returns true if ¢ € dom(A), false otherwise; here

dom(A) is the set of all z € I for which A[z] has
already been executed.

4. Iteration

forall_defined(z, A) { “the elements from dom(A) are successively assigned to z” }

5. Implementation

Hashing arrays are implemented by dynamic perfect hashing ((DKMMRT88]). Access
operations A[z] take time O(1). Hashing arrays are more efficient than dictionary

arrays.
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4.6 Sorted Sequences (sortseq)

An instance S of the data type sortseq is a sequence of items (seq_item). Every item
contains a key from a linearly ordered data type K , called the key type of S, and
an information from a data type I, called the information type of S. The number of
items in S is called the size of S. A sorted sequence of size zero is called empty. We
use < k,i > to denote a seq.item with key k and information 7 (called the information
associated with key k). For each k € K there is at most one item < k,i >€ S.

The linear order on K may be time-dependent, e.g., in an algorithm that sweeps
an arrangement of lines by a vertical sweep line we may want to order the lines by
the y-coordinates of their intersections with the sweep line. However, whenever an
operation (except of reverse_items) is applied to a sorted sequence S, the keys of S
must form an increasing sequence according to the currently valid linear order on K.
For operation reverse_items this must hold after the execution of the operation.

1. Declaration of a sorted sequence type
declare2(sortseq, K, I)

introduces a new data type with name sortseq(K,I) consisting of all sorted sequences
with key type K and information type I.

2. Creation of a sorted sequence
sortseq(K,I) S;

creates an instance S of type sortseq(K,I) and initializes it to the empty sorted

sequence.

3. Operations on a sortseq S

K S key(seqitem it) returns the key of item it
Precondition: it is an item in S.

I S.inf(seq_item 1t) returns the information of item 3t
Precondition: it is an item in S.

seq_item S.lookup(K k) returns the item with key k
( nil if no such item exists in S )

seq_item S.insert(K k,I 1) associates information ¢ with key k: If
there is an item < k,j > in S then j is
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seq_item

seq_item

seq_item

seqitem

seq_item

seq_item

void

void

void

void

void
int

bool

replaced by 17, else a new item < k,7 > is
added to S. In both cases the item is
returned.

S.insert_at_item(seq_item it, K k,I 1)

S.locate(K k)

S.succ(seq_item it)

S.pred(seq_item it)

S.max()

S.min()
S.del_item(seq_item it)
S.del(K k)

S.change_inf(seq_item it, I 1)

Like insert(k,7), the item it gives the
position of the item < k,%z > in the sequence
Precondition: it is an item in S with either
key(it) is maximal with key(it) < k or
key(:t) is minimal with key(it) > k

returns the item < k',7 > in S such that

k' is minimal with k' >=k ( nil if no

such item exists).

returns the successor item of it, i.e., the
item < k,7 > in S such that k is minimal
with k > key(it) (nil if no such item exists).
Precondition: it is an item in S.

returns the predecessor item of it, i.e., the
item < k,7 > in S such that k is maximal
with k < key(it) (nil if no such item exists).
Precondition: it is an item in S.

returns the item with maximal key
(nil if S is empty).

returns the item with minimal key
(nil if S is empty).

removes the item ¢ from S.

Precondstion: it is an item in S.

removes the item with key k from S

(null operation if no such item exists).

makes : the information of item =z¢.

Precondition: it is an item in S.

S.reverse_items(seq_item a, seq_item b)

S.clear()
S size()
S.empty()

the subsequence of S from a to b is reversed.
Precondition: Item a appears before item b

in S.
makes S the empty sorted sequence.

returns the size of S.

returns true if S is empty, false otherwise.
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4. Iteration

forall seq_items(z, S) { “the items of S are successively assigned to :” }

5. Implementation

Sorted sequences are implemented by (2,4)-trees. Operations lookup, locate, insert,
del take time O(logn), operations succ, pred, max, min, key, inf, insert_at_item and
del_item take time O(1). Clear takes time O(n) and reverse_items O(f), where £ is
the length of the reversed subsequence. The space requirement is O(n). Here n is the
current size of the sequence.

6. Example

Using a sorted sequence to list all elements in a sequence of strings lying lexicographically
between two given search strings.

#include <LEDA /sortseq.h>

declare2(sortseq,string,int);

main()

{
sortseq(string,int) S;
string s, s1, s2;
while ( cin >> s && s != “stop” ) S.insert(s,0);
while ( cin >> s1 >> s2)
{ seq.item itl = S.locate(sl);
seq-item it2 = S.locate(s2);
while (it1! = 4t2)
{ cout << S.key(itl) << “\n”;
itl = S.succ(:t1);

}
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5. Graphs and Related Data Types

5.1 Directed graphs (graph)

An instance G of the data type graph consists of a set of nodes V and a set of edges

E (node and edge are predefined data types). Every edge e € E is a pair of nodes

(v,w) € V x V, v is called the source of e and w is called the target of e. With every
node v the list of its adjacent edges adj_list(v) = { e € E |source(e) =v }, called the
adjacency list of v, is associated.

1. Creation of a graph

graph G,

creates an instance G of type graph and initializes it to the empty graph.

2. Operations on a graph G

a) Access operations

G.indeg(node v)
G.outdeg(node v)

G .source(edge e)
G.target(edge e)
G.number_of _nodes|()
G.number_of_edges()
G.all_.nodes()
G.all_edges()
G.adj_edges(node v)
G.adjnodes(node v)

G .first_adj_edge(node v)
G.last_adj_edge(node v)
G.adj_succ(edge e)

G.adj_pred(edge e)

returns the indegree of node v

returns the outdegree of node v

returns the source node of edge e

returns the target node of edge e

returns the number of nodes in G

returns the number of edges in G

returns the list of all nodes of G

returns the list of all edges of G

returns the list of all edges adjacent to v
returns the list of all nodes adjacent to v
returns the first edge in the adjacency list of v
returns the last edge in the adjacency list of v

returns the successor of edge e in the
adjacency list of source(e)
(nil if it does not exist)

returns the predecessor of edge e in the
adjacency list of source(e)
(nil if it does not exist)
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edge G.cyclic_adj_succ(edge e) returns the cyclic successor of edge e in the

adjacency list of source(e)

edge G.cyclic_adj_pred(edge e) returns the cyclic predecessor of edge e in the
adjacency list of source(e)

node G.choose_node() returns a node of G (nil if G is empty)

edge G.choose_edge() returns an edge of G (nil if G is empty)

b) Update operations

node G.new_node() adds a new node to G and returns it

void G.del_.node(node v) deletes v and all edges adjacent to v
from G. Precondition: indeg(v) = 0.

edge G.new_edge(node v, w) adds a new edge (v,w) to G by appending

it to the adjacency list of v and returns it.

edge G.new_edge(edge e, node w, rel_pos dir = after)
adds a new edge €' = (source(e),w) to G by
inserting it after (dir=after) or before (dir
=before) edge e into the adjacency list of
source(e), returns e'.

voird G.del_edge(edge €) deletes the edge e from G

void G.del_all_nodes() deletes all nodes from G

void G.del_ all_edges() deletes all edges from G

edge G.rev_edge(edge e) reverses the edge e = (v,w) by removing it

from G and inserting the edge ' = (w,v)
into G by appending it to the adjacency list
of w, returns e'

void G.rev() all edges in G are reversed

void G .sort_nodes(int(xcmp)(node&, node&))
the nodes of G are sorted according to the
ordering defined by the comparing function
cmp. Subsequent executions of forall nodes

step through the nodes in this order.
(cf. TOPSORT1 in section 8.1)

void G .sort_edges(int(xcmp) (edged&s, edge&))
the edges of G are sorted according to the
ordering defined by the comparing function
cmp. Subsequent executions of forall_edges

step through the edges in this order.
(cf. TOPSORT1 in section 8.1)
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list(edge) G.insert_reverse_edges()
for every edge (v,w) in G the reverse edge
(w,v) is inserted into G. The list of all
inserted edges is returned.

void G.clear() makes G the empty graph

c) Iterators

With the adjacency list of every node v is associated a list iterator called the adjacency
iterator of v (cf. list). There are operations to initialize the adjacency iterator, to
move it to the successor or predecessor list item, to access its contents (an edge) and
to test if it is defined, (# nil). Adjacency iterators are used to implement iteration
statements (forall_adj_edges, forall_adj nodes).

void G.init_adj_iterator(node v) assigns nil to the adjacency iterator of node v

bool G.current_adj_edge(edge& e, node v)
if the adjacency iterator of v is defined (# nil)
its contents is assigned to e and true is returned
else false is returned.

bool G.next.adj_edge(edge& e, node v)
moves the adjacency iterator of v forward (to the
first item of adj_list(v) if it is nil) and returns
G.current_adj_edge(e,v)

bool G.current_adj node(node& w, node v)
if G.current_adj_edge(e, v) = true then assign
target(e) to w and return true, else return
false

bool G.next.adj node(node& w, node v)
if G.next_adj_edge(e, v) = true then assign
target(e) to w and return true, else return

false
void G.reset() assign nil to all adjacency iterators in G
d) Miscellaneous operations
void G.write(string s) writes a compressed representation of G to

the file with name s

void G.read(string s) read a compressed representation of G from
the file with name s
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void G.print_node(node v)
void G.print_edge(edge e)

void G.print()

e) Operators
graph& G = G1

3. Iteration

writes a readable representation of node v to
the standard output

writes a readable representation of edge e to
the standard output

writes a readable representation of G to the
standard output

makes a copy of G1 and assigns it to G.

forall nodes(v,G) { “the nodes of G are successively assigned to v” }

forall edges(e, G) { “the edges of G are successively assigned to e” }

forall_adj_edges(e, w)

{ “the edges adjacent to node w are successively assigned to e” }

forall_adj nodes(v,w)

{ “the nodes adjacent to node w are successively assigned to v” }

4. Implementation

Graphs are implemented by adjacency lists. Most operations take constant time, except
of all.nodes, all_edges, del_all_nodes, del_all_edges, clear, write, and read which take
time O(n +m), where n is the current number of nodes and m is the current number

of edges. The space requirement is O(n + m).

5. Examples

See section 8.1.
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5.2 Undirected graphs (ugraph)

An instance G of the data type ugraph consists of a set of nodes V and a set of

undirected edges E. Every edge e € E is a set of two nodes {v,w}, v and w are

called the endpoints of e. With every node v is associated the list of its adjacent edges
adj list(v)={e€E [veEe}.

1. Creation of an undirected graph

ugraph G,

creates an instance G of type ugraph and initializes it to the empty undirected graph.

2. Operations on a ugraph G

Most operations are the same as for directed graphs. The following operations are

either additional or have different effects.

node
int

edge

edge

edge

edge

edge

edge

G.opposite(node v, edge €)
G.degree(node v)

G.new_edge(node v, node w)

returns w if e = {v,w}, nil otherwise
returns the degree of node v.

inserts the undirected edge {v,w} into G by
appending it to the adjacency lists of both
v and w and returns it

G.new_edge(node v, node w, edge el, edge €2, dirl = after, dir2 = after)

G.adjsucc(edge e, node v)

G.adj_pred(edge e, node v)

inserts the undirected edge {v,w} after (if dirl
= after) or before (if dirl = before) the edge
el into the adjacency list of v and after (if dir2
= after) or before (if dir2 = before) the edge
€2 into the adjacency list of w and returns it
returns the successor of edge e in the

adjacency list of v.

returns the predecessor of edge e in the
adjacency list of v.

G.cyclic_adj_succ(edge e, node v)

returns the cyclic successor of edge e in the
adjacency list of v.

G.cyclic_adj_pred(edge e, node v)

returns the cyclic predecessor of edge e in the
adjacency list of v.
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3. Implementation

Undirected graphs are implemented like directed graphs by adjacency lists. The
adjacency list of a node v contains all edges {v,w} of the graph. Most operations take
constant time, except of all nodes, all edges, del_all_nodes, del_all_edges, clear, write,
and read which take time O(n + m), where n is the current number of nodes and m
is the current number of edges. The space requirement is O(n + m).

5.3 Planar Maps (planar_map)

An instance M of the data type planar_map is the combinatorial embedding of a
planar graph.

1. Creation of a planar_map
planar _map M/(graph G);

creates an instance M of type planar_map and initializes it to the planar map represented
by the directed graph G. Precondition: G represents an undirected planar map, i.e.
for every edge (v,w) in G the reverse edge (w,v) is also in G and there is a planar
embedding of G such that for every node v the ordering of the edges in the adjacency
list of v corresponds to the counter-clockwise ordering of these edges around v in the
embedding.

2. Operations on a planar map M

Most operations are the same as for directed graphs. The following operations are
either additional or have different effects.

face M .adj face(edge €) returns the face of M to the right of e.

list(face) M .all faces() returns the list of all faces of M.

list(face) M.adjfaces(node v) returns the list of all faces of M adjacent
to node v in counter-clockwise order.

list(edge) M.adj_edges(face f) returns the list of all edges of M bounding
face f in clockwise order.

list(node) M.adjnodes(face f) returns the list of all nodes of M adjacent

to face f in clockwise order.

edge M .reverse(edge e) returns the reversal of edge e in M.
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edge M first_face_edge() returns the first edge of face f in M.

edge M .succ_face_edge(edge €)  returns the successor edge of e in face f
i.e., the next edge in clockwise order.

edge M .pred_face_edge(edge e) returns the predecessor edge of e in face f,
i.e., the next edge in counter-clockwise order.

edge M .new_edge(edge e;, edge e;)
inserts the edge e = (source(e;), source(ez))
and its reversal edge into M. Precondition:
e; and e, are bounding the same face F'.
The operation splits F' into two new faces.

edge M .del_edge(edge e) deletes the edge e from M. The two faces
adjacent to e are united to one face.

list(edge) M .triangulate() triangulates all faces of M by inserting new
edges. The list of inserted edges is is returned.

void M straight_line_embedding(node_array(int) zcoord, node_array(int) ycoord)
computes a straight line embedding for M with
integer coordinates zcoord[v], ycoord[v]) in the
range 0...2(n — 1) for every node v of M.

3. Iteration
Additional iteration macros are
forall faces(f, M) { “the faces of M are successively assigned to f” }
forall_adj_edges(e, f)
{ “the edges adjacent to face f are successively assigned to e” }

4. Implementation

Planar maps are implemented by parameterized directed graphs. All operations take
constant time, except of, new_edge and del_edge which take time O(f) where f is the
number of edges in the created faces, and triangulate and straight_line_embedding take
time O(n) where n is the current size (number of edges) of the planar map.
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5.4 Parameterized Graphs (GRAPH)

A parameterized graph G is a graph whose nodes and edges contain additional (user
defined) informations. Every node contains an element of a data type vtype, called
the node type of G and every edge contains an element of a data type etype called
the edge type of G. We use < v,w,y > to denote an edge (v,w) with information y
and < z > to denote a node with information z.

All operations defined on instances of the data type graph are also defined on instances
of any parameterized graph type GRAPH (vtype, etype). For parameterized graphs
there are additional operations to access or update the informations associated with
its nodes and edges. Instances of a parameterized graph type can be used wherever an
instance of the data type graph can be used, e.g., in assignments and as arguments to
functions with formal parameters of type graph or graph&. If a function f(graph& G)
is called with an argument Q of type GRAP H (vtype, etype) then inside f only the
basic graph structure of Q (the adjacency lists) can be accessed. The node and edge
informations are hidden. This allows the design of generic graph algorithms, i.e.,
algorithms accepting instances of any parametrized graph type as argument.

1. Declaration of a parameterized graph type

declare2(GRAP H,vtype, etype)

introduces a new data type with name GRAP H (vtype, etype) consisting of all param-
eterized graphs with node type viype and edge type etype.

2. Creation of a parameterized graph

G RAPH (vtype, etype) G;

creates an instance G of type GRAP H (vtype, etype) and initializes it to the empty
graph.
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3. Operations on a GRAPH G

In addition to the operations of the data type graph (see section 2):

vtype G.inf(node v)
etype G.inf(edge ¢)

returns the information of node v

returns the information of edge e

void G.assign(node v, vtype z) makes z the information of node v
void G.assign(edge e, etype y) makes y the information of edge e
node G.new_node(vtype z) adds a new node < z > to G and returns it
edge G.new_edge(node v, w, etype z)
adds a new edge e =< v,w,z > to G by
appending it to the adjacency list of v
and returns e.
edge G.new_edge(edge e, node w, etype z, dir = after)

4. Operators

viype& G [node v]

etype& G |edge €]

5. Implementation

adds a new edge e' =< source(e),w,z > to G
by inserting it after (dir=after) or before (dir
=before) edge e into the adjacency list of
source(e) and returns e'.

returns G.inf(v).

returns G.inf(e).

Parameterized graphs are derived from directed graphs. All additional operations for

manipulating the node and edge informations take constant time.
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5.5 Parameterized undirected graphs (UGRAPH)

A parameterized undirected graph G is an undirected graph whose nodes and edges
contain additional (user defined) informations. Every node contains an element of a
data type vtype, called the node type of G and every edge contains an element of a data
type etype called the edge type of G. We use < {v,w},y > to denote the undirected
edge {v,w} with information y and < z > to denote a node with information z.

1. Declaration of a parameterized undirected graph type
declare2(UGRAPH ,vtype, etype)

introduces a new data type with name UGRAPH (vtype,etype) consisting of all
undirected parameterized graphs with node type vtype and edge type etype.

2. Creation of a parameterized undirected graph
UGRAPH (vtype, etype) G;

creates an instance G of type UGRAPH (vtype, etype)and and initializes it to the
empty graph.

3. Operations on a UGRAPH G

In addition to the operations of the data type ugraph (see section 5.3):

viype/etypé.inf(node/edge a) returns the information of node/edge a
void G.assign(node/edge a, vtype/etype z)

makes z the information of node/edge a
node G.new_node(vtype z) adds a new node < z > to G and returns it
edge G .new_edge(node v, node w, etype z)

inserts the undirected edge < {v,w},z > into
G by appending it to the adjacency lists of
both v and w and returns it

edge G.new_edge(node v, node w, aflge,eteledge ¢2 etypfier) rel_posdirl =)
inserts the undirected edge < {v,w},z > after
(if dirl = after) or before (if dirl = before)
the edge el into the adjacency list of v and
after (if dir2 = after) or before (if dir2 =
before) the edge e2 into the adjacency list
of w and returns it.
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4. Implementation

Parameterized undirected graphs are derived from undirected graphs. All additional
operations for manipulating the node and edge informations take constant time.

5.6 Parameterized planar maps (PLANAR_MAP)

A parameterized planar map M is a planar map whose nodes and faces contain
additional (user defined) informations. Every node contains an element of a data type
viype, called the node type of M and every face contains an element of a data type
ftype called the face type of M. All operations of the data type planar_map are
also defined for instances of any parameterized planar_map type. For parameterized
planar maps there are additional informations to access or update the node and face

informations.

1. Declaration of a parameterized planar_map type
declare2(PLAN AR_M AP, vtype, ftype)

introduces a new data type with name PLAN AR_M AP (vtype, ftype) consisting of all
parameterized planar maps with node type vtype and face type ftype. Precondition:
The data type GRAP H (vtype, ftype), i.e., the parameterized directed graph type with
node entries of type viype and edge entries of type ftype, has been declared before.

2. Creation of a parameterized planar map
PLAN AR_M AP (vtype, ftype) M(GRAP H (vtype, ftype) G);

creates an instance M of type PLAN AR_M AP (vtype, ftype) and initializes it to the
planar map represented by the parameterized directed graph G. The node entries of
G are copied into the corresponding nodes of M and every face f of M is assigned the
information of one of its bounding edges in G. Precondition: G represents a planar
map.

3. Operations on a PLANAR _MAP M

In addition to the operations of the data type planar_map:

vtype M .inf(node v) returns the information of node v

ftype M.inf(face f) returns the information of face f
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void M .assign(node v, vtype ) makes z the information of node v

void M .assign(face f, ftype y) makes y the information of face f

edge M .new_edge(edge €1, edge ey, ftype y)
inserts the edge e = (source(e;), source(e;))
and its reversal edge €' into M. Precondition:
e; and e; are bounding the same face F'.
The operation splits F' into two new faces f,

adjacent to edge e and f', adjacent to edge
e’ with inf(f) = inf (F) and inf(f') = v.

4. Implementation

Parameterized planar maps are derived from planar maps. All additional operations
for manipulating the node and edge informations take constant time.

5.7 Node and edge arrays (node_array, edge_array)

An instance A of the data type node_array (edge_array) is a partial mapping from
the node set V (edge set E) of a (u)graph G to a set of variables of a data type E,
called the element type of the array. The domain I of A is called the index set of
A and A(z) is called the element at position z. A is said to be valid for all nodes
(edges) in I.

1. Declaration of node and edge array types

declare(node/edge_array, E)

introduces a new data type with name node_array(E) (edge_array(E)) consisting of
all node (edge) arrays with element type E.

2. Creation of a node array (edge array)

a) node/edge_array A;

b) node/edge_array A(graph G);

c) node/edge_array A(graph G, E z);

creates an instance A of type node_array(E) or edge_array(E). Variant a) initializes
the index set of A to the empty set, Variants b) and c) initialize the index set of A
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to be the entire node (edge) set of graph G, i.e., A is made valid for all nodes (edges)
currently contained in G. Variant c) in addition initializes A(:) with z for all nodes
(edges) 1 of G.

3. Operations

void A.init(graph G) sets the index set I of A to the node (edge)
set of G, i.e., makes A valid for all nodes
(edges) of G.

void A.init(graph G, E z) makes A valid for all nodes (edges) of G
and sets A(7) = z for all nodes (edges) of G
E& A [node/edge 1 access the variable A(7).

Precondition: A must be valid for node (edge)

4. Implementation

Node (edge) arrays for a graph G are implemented by C++ vectors and an internal
numbering of the nodes and edges of G. The access operation takes constant time,
init takes time O(n), where n is the number of nodes (edges) currently in G. The
space requirement is O(n).

Important: A node (edge) array is only valid for the nodes (edges) contained in G at
the moment of the array declaration or initialization (init). Access operations for later
added nodes (edges) are not allowed. Node and edge arrays for dynamic graphs can be
realized using hashing arrays (cf. section 4.5), e.g. by declare2(h_array,edge,int).
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5.8 Two dimensional node arrays (node_matrix)

An instance M of the data type node_matriz is a partial mapping from the set of
node pairs V x V of a graph to a set of variables of a data type FE, called the element
type of M. The domain I of M is called the index set of M. M is said to be valid for
all node pairs in I. A node matrix can also be viewed as a node array with element
type node_array(E) (node_array(node_array(E))).

1. Declaration of a node matrix type
declare(node_matriz, E)
introduces a new data type with name node_matriz(E) consisting of all node matrices

with element type E.

2. Creation of a node_matrix
a) node_matriz(E) M,

b) node_matriz(E) M(G);

c) node matriz(E) M(G,z);

creates an instance M of type node_matriz(E). Variant a) initializes the index set of
M to the empty set, Variants b) and c) initialize the index set of A to be the set of
all node pairs of graph G, i.e., M is made valid for all pairs in V x V where V is the
set of nodes currently contained in G. Variant c) in addition initializes M (v,w) with
z for all nodes v,w € V.

3. Operations on a node_matrix M

void M .init(graph G) sets the index set of M to V x V, where
V is the set of all nodes of G
void M .init(graph G, E z) sets the index set of M to V x V, where

V is the set of all nodes of G and initializes
M (v,w) to z for all v,w € V.

E& M (node v, node w) returns the variable M (v, w).
Precondition: M must be valid for v and w.

node_array(E)& M|[v] returns the node_array M (v).

4. Implementation
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Node matrices for a graph G are implemented by vectors of node arrays and an
internal numbering of the nodes of G. The access operation takes constant time, the
init operation takes time O(n?), where n is the number of nodes currently contained
in G. The space requirement is O(n%). Note that a node matrix is only valid for the
nodes contained in G at the moment of the matrix declaration or initialization (init).
Access operations for later added nodes are not allowed.

5.9 Sets of nodes and edges (node_set, edge_set)
An instance S of the data type node_set (edge_set) is a subset of the nodes (edges) of
a graph G. S is said to be valid for the nodes (edges) of G.

1. Creation of a node or edge set

node_set S(G);
edge_set S(G);

creates an instance S of type node_set (edge_set) valid for all nodes (edges) currently
contained in graph G and initializes it to the empty set.

2. Operations on a node/edge set S

void S.insert(z) adds node (edge) z to S

void S.del(z) removes node (edge) z from S

bool S.member(z) returns true if z in S, false otherwise
node/edge S.choose() return a node (edge) of S

int S .size() returns the size of S

bool S.empty() returns true iff S is the empty set
void S.clear() makes S the empty set

3. Implementation

A node (edge) set S for a graph G is implemented by a combination of a list L of
nodes (edges) and a node (edge) array of list_items associating with each node (edge)
its position in L. All operations take constant time, except of clear which takes time
O(|S])- The space requirement is O(n), where n is the number of nodes (edges) of G.
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5.10 Node partitions (node_partition)

An instance of the data type node_partition is a partition of the nodes of some graph
G.

1. Creation of a node partition
node_partition P(G);

creates an instance P of type node_partition containing for every node v in G a block

{v}.

2. Operations on a node_partition P

bool P.same_block(node v, node w)  returns true if v and w belong to the
same block of P.

votd  P.union_blocks(node v, node w) unites the blocks of P containing nodes

v and w.

node  P.find(node v) returns a canonical node of the block that
contains node v.

3. Implementation

A node partition for a graph G is implemented by a combination of a partition P
and a node array of partition_item associating with each node in G a partition item
in P. Initialization takes linear time, union_blocks takes time O(1) (worst-case), and
same_block and find take time O(a(n)) (amortized). The space requirement is O(n),
where n is the number of nodes of G.
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5.11 Node priority queues (node_pq)

An instance @ of the data type node_pq is a partial function from the nodes of a graph
G to some linearly ordered type I.

1. Declaration of a node priority queue type

declare(node_pgq, I)

introduces a new data type with name node_pq(I) consisting of all node priority queues

with information type I.

2. Creating a node priority queue

node_pq(I) Q(G);

creates an instance Q ot type node_pq(I) for the nodes of graph G with dom(Q) = 0.

3. Operations on a node_pq Q

void  Q.insert(node v, I 1) adds the node v with information 7 to
Q. Precondition: v ¢ dom(Q).
void  Q.decrease_inf(node v, I 1) makes : the new information of node v

(precondition: i < Q(v))
node  @Q.find_min() returns a node with the minimal
information(nil if Q is empty)
void  Q.del(node v) removes the node v from Q

node  Q.del_min() removes a node with the minimal
information from @ and returns it

(nil if Q is empty)
void  Q.clear() makes Q the empty node priority queue.

bool Q.empty() returns true if Q is the empty node
priority queue, false otherwise.

4. Implementation

Node priority queues are implemented by fibonacci heaps and node arrays. Operations
insert, del_node, del - min take time O(logn), find_min, decrease_inf, empty take time
O(1) and clear takes time O(m), where m is the size of NQ. The space requirement
is O(n), where n is the number of nodes of G.
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5.12 Graph Algorithms

This sections gives a summary of the graph algorithms contained in LEDA. All algorithms
are generic, i.e., they accept instances of any user defined parameterized graph type
GRAPH(vtype, etype) as arguments.

5.12.1 Basic Algorithms

e Topological Sorting
bool TOPSORT (graph& G, node_array(int)é& ord)

TOPSORT takes as argument a directed graph G(V, E). It sorts G topologically (if G is
acyclic) by computing for every node v € V an integer ord[v] such that 1 < ord[v] < |V|
and ord[v] < ord|w] for all edges (v,w) € E. TOPSORT returns true if G is acyclic
and false otherwise.

Running Time: O(|V|+ |E|)

e Depth First Search
list(node) DFS(graph& G, node s, node_array(bool)& reached)

DFS takes as argument a directed graph G(V, E), a node s of G and a node_array
reached of boolean values. It performs a depth first search starting at s visiting all
reachable nodes v with reached[v] = false. For every visited node v reached[v] is
changed to true. DFS returns the list of all reached nodes.

Running Time: O(|V|+ |E|)

list(edge) DFS_NUM(graph& G, node_array(int)& df snum,

node_array(int)& compnum)

DFS_NUM takes as argument a directed graph G(V, E). It performs a depth first search
of G numbering the nodes of G in two different ways. dfsnum is a numbering with
respect to the calling time and compnum a numbering with respect to the completion
time of the recursive calls. DFS_NUM returns a depth first search forest of G (list of
tree edges).

Running Time: O(|V|+ |E|)
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¢ Breadth First Search
list(node) BFS(graph& G, node s, node_array(int)& dist)

BFS takes as argument a directed graph G(V,E) and a node s of G. It performs
a breadth first search starting at s computing for every visited node v the distance
(length of a shortest path) dist[v| from s to v. BFS returns the list of all reached

nodes.

Running Time: O(|V|+ |E|)

¢ Connected Components
int COMPONENTS(ugraph& G, node_array(int)& compnum)

COMPONENTS takes an undirected graph G(V, E) as argument and computes for
every node v € V an integer compnum|v] from [0...c — 1] where ¢ is the number

of connected components of G and v belongs to the i-th connected component iff
compnum|v] =i. COMPONENTS returns c.

Running Time: O(|V|+ |E|)

e Strong Connected Components
int STRONG_COMPONENTS(graph& G, node_array(int)& compnum)

STRONG_COMPONENTS takes a directed graph G(V, E) as argument and computes
for every node v € V an integer compnum|v] from [0...c — 1] where c is the number

of strongly connected components of G and v belongs to the i-th strongly connected
component iff compnum[v] =i. STRONG_COMPONENTS returns c.

Running Time: O(|V|+ |E|)

e Transitive Closure
graph TRANSITIVE_CLOSURE(graph& G)

TRANSITIVE_CLOSURE takes a directed graph G(V, E) as argument and computes
the transitive closure of G(V, E). It returns a directed graph G'(V', E') with V' =V
and (v,w) € E' & there is a path form v to w in G.

Running Time: O(|V]-|E|)
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5.12.2 Network Algorithms

Most of the following network algorithms are overloaded. They work for both integer
and real valued edge costs.

e Single Source Shortest Paths

void DIJKSTRA (graph& G, node s, edge_array(int) cost, node_array(int) dist,
node_array(edge) pred)

void DIJKSTRA(graph& G, node s, edge_array(real) cost, node_array(real) dist,
node_array(edge) pred)

DIJKSTRA takes as arguments a directed graph G(V,E), a source node s and an
edge_array cost giving for each edge in G a non-negative cost. It computes for each
node v in G the distance dist[v] from s (cost of the least cost path from s to v) and
the predecessor edge pred[v] in the shortest path tree.

Running Time: O(|E|+ |V|log|V])

node_array(int) dist,
(

node_array(int) pred)

bool BELLMAN_FORD(graph& G, node s, edge_array(int) cost,
(

bool BELLMAN _FORD(graph& G, node s, edge_array(real) cost,
node_array(real) dist,
node_array(edge) pred)
BELLMAN_FORD takes as arguments a graph G(V,E), a source node s and an
edge_array cost giving for each edge in G a real (integer) cost. It computes for each
node v in G the distance dist[v] from s (cost of the least cost path from s to v) and the
predecessor edge pred|v] in the shortest path tree. BELLMAN_FORD returns false if

there is a negative cycle in G and true otherwise

Running Time: O(|V|-|E|)

e All Pairs Shortest Paths
void ALL_PAIRS_ SHORTEST _PATHS(graph& G, edge_array(int)& cost,
node_matriz(int)& dist)

void ALL_PAIRS SHORTEST_PATHS(graph& G, edge_array(real)& cost,

node_matriz(real)& dist)
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ALL_PAIRS SHORTES_PATHS takes as arguments a graph G(V, E) and an edge_array
cost giving for each edge in G a real (integer) valued cost. It computes for each node
pair (v,w) of G the distance dist(v,w) from v to w (cost of the least cost path from

v to w).

Running Time: O(|V|-|E|+ |V|*log|V|)

¢ Maximum Flow

int MAX_FLOW(graph& G, node s, node t, edge_array(int)& cap,
edge_array(int)& flow)
(
(

int MAX_FLOW(graph& G, node s, node t, edge_array(real)& cap,
edge_array(real)& flow)

MAX FLOW takes as arguments a directed graph G(V, E), a source node s, a sink
node ¢t and an edge_array cap giving for each edge in G a capacity. It computes for
every edge e in G a flow flow[e] such that the total flow from s to ¢ is maximal and
flow[e] < caple] for all edges e. MAXFLOW returns the total flow from s to t.

Running Time: O(|V|?)

¢ Maximum Cardinality Bipartite Matching

list(edge) MAX_CARD_BIPARTITE_ MATCHING(graph& G, list(node)& A,
list(node)& B)

MAX_CARD_BIPARTITE_MATCHING takes as arguments a directed graph G(V, E)
and two lists A and B of nodes. All edges in G must be directed from nodes in A
to nodes in B. It computes a maximum cardinality bipartite matching of G, i.e., a

maximal set of edges M such that no two edges in M share an end point (target or
source). MAX_CARD _BIPARTITE MATCHING returns M as a list of edges.

Running Time: O(|E|\/|V])

¢ Maximum Weight Bipartite Matching

list(edge) MAX_WEIGHT _BIPARTITE MATCHING(graph& G,
list(node)& A,
list(node)& B,
edge_array(int)& weight)
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list(edge) MAX_WEIGHT _BIPARTITE_MATCHING (graph& G,
list(node)& A,
list(node)& B,
edge_array(real)& weight)

MAX_WEIGHT _BIPARTITE MATCHING takes as arguments a directed graph G,
two lists A and B of nodes and an edge_array giving for each edge an integer (real)
weight. All edges in G must be directed from nodes in A to nodes in B. It computes
a maximum weight bipartite matching of G, i.e., a set of edges M such that the sum
of weights of all edges in M is maximal and no two edges in M share an end point.
MAX_WEIGHT _BIPARTITE MATCHING returns M as a list of edges.

Running Time: O(|V|- |E|)

¢ Spanning Tree

list(edge) SPANNING_TREE(ugraph& G)

SPANNING_TREE takes as argument an undirected graph G(V,E). It computes a
spanning tree T of G, SPANNING_TREE returns the list of edges of T.

Running Time: O(|V|+ |E|)

e Minimum Spanning Tree

list(edge) MIN_SPANNING_TREE (ugraph&G, edge_array(int)& cost)

list(edge) MIN_SPANNING_TREE(ugraph&G, edge_array(real)& cost)

MIN_SPANNING_TREE takes as argument an undirected graph G(V,E) and an
edge_array cost giving for each edge an integer cost. It computes a minimum spanning

tree T of G, i.e., a spanning tree such that the sum of all edge costs is minimal.
MIN_SPANNING_TREE returns the list of edges of T.

Running Time: O(|E|log|V|)

70



5.12.3 Algorithms for Planar Graphs

¢ Planarity Test

bool PLANAR(graph&G)

PLANAR takes as input a directed graph G(V, E) and performs a planarity test for G.
If G is a planar graph it is transformed into a planar map (a combinatorial embedding
such that the edges in all adjacency lists are in clockwise ordering). PLANAR returns
true if G is planar and false otherwise.

Running Time: O(|V ]|+ |E|)

¢ Triangulation
list(edge) TRIANGULATE_PLANAR MAP(graph& G)

TRIANGULATE_PLANAR_MAP takes a directed graph G representing a planar map.
It triangulates the faces of G by inserting additional edges. The list of inserted edges
is returned.

Running Time: O(|V|+ |E|)

¢ Straight Line Embedding

int STRAIGHT LINE_EMBEDDING(graph& G, node_array(int)& zcoord,
node_array(int)& ycoord)

STRAIGHT _LINE_EMBEDDING takes as argument a directed graph G represent-
ing a planar map. It computes a straight line embedding of G by assigning non-

negative integer coordinates (zcoord and ycoord) in the range 0..2(n — 1) to the nodes.
STRAIGHT _LINE_EMBEDDING returns the maximal coordinate.

Running Time: O(|V|?)
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5.13 Miscellaneous

5.13.1 Some useful functions

void complete_graph(graph& G, int n)
creates a complete graph G with n nodes.

void random graph(graph& G, int n, int m)
creates a random graph G with n nodes
and m edges.

void test_graph(graph& G) creates interactively a user defined graph G.

void test_bigraph(graph& G, nodelist& A, nodelist& B)
creates interactively a user defined bipartite
graph G with sides A and B. All edges are
directed from A to B.

bool compute_correspondence(graph& G, edge_array(edge)& reversal)
computes for every edge e = (v,w) in G its
reversal reversalle] = (w,v) in G (if
present). Returns true if every edge has a
reversal and false otherwise.

void eliminate_parallel edges(graph& G)
removes all parallel edges from G.

5.13.2 Predefined parameterized types

list(node) list(edge)
node_array(int) edge_array(int)
node_array(bool) edge_array(bool)
node_array(real) edge_array(real)
node_array(node) edge_array(node)
node_array(edge) edge_array(edge)

node_matriz(int)
node_matriz(bool)

node_matriz(real)
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6. Data Types For Two-Dimensional Geometry
6.1 Basic two-dimensional objects

LEDA provides a collection of simple data types for two-dimensional geometry, such
as points, segments, lines, circles, and polygons. All these types can be used as
type parameters in parameterized data types. Their declarations are contained in the
header file <LEDA /plane.h>. The corresponding list types list(point), list(segment),
list(line), list(circle), and list(polygon) are also declared in this file. Furthermore, some
basic algorithms (section 6.1.6) are included.

Note: This section is preliminary and will probably change in future versions of the
library. Above all, there is missing a hierarchy of the data types and a general concept
for infinite objects.

6.1.1 Points (point)

An instance of the data type point is a point in the two-dimensional plane R*. We use
(a,b) to denote a point with first (or x-) coordinate a and second (or y-) coordinate b.

1. Creation of a point

a) point p(real z, real y);

b) point p;

introduces a variable p of type point initialized to the point (z,y). Variant b) initializes

p to the point (0,0).

2. Operations on a point p

real p.xcoord() returns the first coordinate of point p

real p.ycoord() returns the second coordinate of point p

real p.distance(point q) returns the euclidean distance between p
and gq.

real p.distance() returns the euclidean distance between p
and (0,0).

point p.translate(vector v) returns p + v, i.e., p translated by vector

v. Precondition: v.dim() = 2.
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point p.translate(real a, real d)
returns the point created by translating
p in direction a by distance d. The
direction is given by its angle with a
right oriented horizontal ray.

point p.rotate(point ¢, real a) returns the point created by a rotation of p
about point ¢ by angle a.

3. Operators

point& point = point assignment
bool otnt == point test for equality
p
bool point != point test for inequality
point point + vector translation by vector

Input and output operators:

ostream&  ostream << point writes a point to an output stream

istream&  istream >> point reads the coordinates of a point (two reals)
from an input stream

6.1.2 Segments (segment)

An instance s of the data type segment is a directed straight line segment in the
two-dimensional plane, i.e., a straight line segment [p, ¢] connecting two points p, q € R?.
p is called the start point and ¢ is called the end point of s. The length of s is the
euclidean distance between p and q. The angle between a right oriented horizontal ray
and s is called the direction of s. The segment [(0,0),(0,0)] is said to be empty.

1. Creation of a segment

a) segment s(point p, point q);

b) segment s(point p, real a, real d);
c) segment s;

introduces a variable s of type segment. s is initialized to the segment from p to g
(variant a), to the segment with start point p, direction a, and length d (variant b)
or to the empty segment (variant c).
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2. Operations on a segment s

point
point
real
real
real
real
real

real

real

real

bool
bool

real

bool

segment

segment

segment

segment

s.start()
s.end()
s.xcoord1()
s.ycoordl()
s.xcoord2()
s.ycoord2()
s.length()

s.direction()
s.angle(segment t)

s.angle()
s.horizontal()
s.vertical()

s.slope()

returns the start point of segment s.
returns the end point of segment s.
returns the x-coordinate of s.start().
returns the y-coordinate of s.start().
returns the x-coordinate of s.end().
returns the y-coordinate of s.end().
returns the length of s.

returns the direction of s as an angle in
the intervall (—m,x].

returns the angle between s and ¢, i.e.,
t.direction() - s.direction().

returns s.direction().
returns true iff s is horizontal.
returns true iff s is vertical.

returns the slope of s.
Precondstion: s is not vertical.

s.intersection(segment t, point& p)

s.rotate(point ¢, real o)

s.rotate(real )

s.translate(vector v)

if s and t are not collinear and intersect the
intersection point is assigned to p and true is
returned, otherwise false is returned.

returns the segment created by a rotation of s
about point ¢ by angle a.

returns s.rotate(s.start(),a).

returns s + v, i.e., the segment created by
translating s by vector v. Precondition: v
has dimension 2.

s.translate(real alpha, real d)

3. Operators

segment&

bool

segment = segment

segment == segment

returns the segment created by a translation of
s in direction a by distance d.

assignment

test for equality
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bool segment != segment test for inequality

segment segment + wvector translation by vector

Input and output operators:

ostream&  ostream << segment writes a segment to an output stream.

1stream&  istream >> segment reads the coordinates of a segment (four reals)
from an input stream.

6.1.3 Straight Lines (line)

An instance [ of the data type line is a directed straight line in the two-dimensional

plane. The angle between a right oriented horizontal line and [ is called the direction
of [.

1. Creation of a line

a) line I(point p, point q);
b) line I(segment s);

c) line I(point p, real a);
d) line I

introduces a variable [ of type line. [ is initialized to the line passing through points
p and q directed form p to ¢ (variant a), to the line supporting segment s (variant
b), to the line passing through point p with direction « (variant c), or a line through
(0,0) with direction O (variant d).

2. Operations on a line [

real l.direction() returns the direction of .

real l.angle(line g) returns the angle between [ and g, i.e.,
g.direction() - l.direction().

real l.angle() returns [.direction().

bool l.horizontal() returns true iff [ is horizontal.
bool l.vertical() returns true iff [ is vertical.
real l.slope() returns the slope of .
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real

real

real

bool

bool

line

line

line

segment

Precondition: | is not vertical.

l.y_proj(real z) returns p.ycoord(), where p € I with p.xcoord|()
= z. Precondition: [ is not vertical.

l.x_proj(real y) returns p.xcoord(), where p € | with p.ycoord()
= y. Precondition: [ is not horizontal.

l.y_abs() returns the y-abscissa of [ (l.y_proj(0)).
Precondition: [ is not vertical.

lintersection(line g, point& p)
if [ and g are not collinear and intersect the
intersection point is assigned to p and true is
returned, otherwise false is returned.

l.intersection(segment s, point& p)
if [ and s are not collinear and intersect the
intersection point is assigned to p and true is
returned, otherwise false is returned.

l.translate(vector v)
returns ! + v, i.e., the line created by
translating ! by vector v. Precondstion: v
has dimension 2.

l.translate(real alpha, real d)
returns the line created by a translation of
l in direction a by distance d.

l.rotate(point g, real o) returns the line created by a rotation of [
about point ¢ by angle a.

l.perpendicular(point p) returns the nromal of p with respect to .

3. Operators

line&
bool
bool

line = line assignment
line == line test for equality
line !'= line test for inequality
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6.1.4 Polygons (polygon)

An instance P of the data type polygon is a simple polygon in the two-dimensional
plane defined by the sequence of its vertices in clockwise order. The number of vertices
is called the size of P. A polygon with empty vertex sequence is called empty.

1. Creation of a polygon
a) polygon P(list(point) pl);
b) polygon P;

introduces a variable P of type polygon. Pis initialized to the polygon with vertex
sequence pl. Precondition: The vertices in pl are given in clockwise order and define
a simple polygon. Variant b) creates the empty polygon and assings it to P.

2. Operations on a polygon P

list(point)  P.vertices() returns the vertex sequence of P.

list(segment)P .segments() returns the sequence of bounding segments of
Pin clockwise order.

list(point)  P.intersection(line ) returns P N1 as a list of points.
list(point)  P.intersection(segment s) returns PN s as a list of points.
list(polygon) P.intersection(polygon Q) returns PN Q as a list of points.

bool P.inside(point p) returns true if p lies inside of P,
false otherwise.

bool P .outside(point p) returns !P.inside(p).

polygon P translate(vector v)
returns P + v, i.e., the polygon created by
translating P by vector v. Precondition: v
has dimension 2.

polygon P .translate(real o, real d)
returns the polygon created by a translation of
of P in direction a by distance d

polygon P .rotate(point q, real ) returns the polygon created by a rotation of P
about point ¢ by angle a.

real P size() returns the size of P.

real P.empty() returns true if P is empty, false otherwise.
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3. Operators

polygon&  polygon = polygon assignment
bool polygon == polygon test for equality
bool polygon !'= polygon test for inequality

6.1.5 Circles (circle)

An instance C of the data type circle is a circle in the two-dimensional plane, i.e., the
set of points having a certain distance r from a given point p. r is called the radius
and p is called the center of C. The circle with center (0,0) and radius 0 is called the
empty circle.

1. Creation of a circle

a) circle C(point p, real r);

b) circle C;

introduces a variable C of type circle. C is initialized to the circle with center p and

radius r. Variant b) creates the empty circle and assigns it to C.

2. Operations on a circle C

real C.radius() returns the radius of C.
point C.center() returns the center of C.
list(point)  C.intersection(line 1) returns C N1 as a list of points.

list(point)  C.intersection(segment s) returns C N s as a list of points.
list(point)  C.intersection(circle D) returns C N D as a list of points.

segment C.left_tangent(point p)  returns the line segment starting in p tangent
to C and left of segment [p, C.center()].

segment C .right_tangent(point p) returns the line segment starting in p tangent
to C' and right of segment [p,C.center()].

real C.distance(point p) returns the distance between C and p
(negative if p inside C).
real C.distance(line 1) returns the distance between C and [

(negative if ! intersects C).

real C .distance(circle D) returns the distance between C' and D
(negative if D intersects C).
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bool C.inside(point p) returns true if P lies inside of C,
false otherwise.

bool C .outside(point p) returns !C.inside(p).

circle C .translate(vector v) returns C + v, i.e., the circle created by
translating C by vector v. Precondition:
v.dim = 2.

circle C.translate(real o, real d)

returns the circle created by a translation of C

in direction a by distance d.

circle C .rotate(point ¢, real a) returns the circle created by a rotation of C
about point ¢ by angle a.

3. Operators

circle& circle = circle assignment
bool circle == circle test for equality
bool circle != circle test for inequality

6.1.6 Algorithms

e Line segment intersection
void SEGMENT_INTERSECTION(list(segment)& L, list(point)& P);

SEGMENT_INTERSECTION takes a list of segments L as input and computes the
list of intersection points between all segments in L.

Running Time: O((n + k)logn) , where n is the number of segments, and k is the
number of intersections.

e Convex hull of point set
polygon CONVEX_HULL(list(point) L);

CONVEX_HULL takes as argument a list of points and returns the polygon representing
the convex hull of L. It is based on a randomized incremental algorithm.

Running Time: O(nlogn) (with high probability), where n is the number of segments.
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¢ Voronoi Diagrams

votd VORONOI(list(point)& sites,
real R,
graph& G,
node_array(point)& P,
edge_array(point)& C );

VORONOI takes as input a list of points sites and a real number R. It computes a
directed graph G representing the planar subdivision defined by the Voronoi-diagram
of sites where all “infinite” edges have length R. Node_array P stores for each node
of G the corresponding Voronoi vertex (point) and edge_array C gives for each edge e
of G the site (point) whose Voronoi region is bound by e.

6.1.7 Predefined parameterized data types

list(point), list(segment), list(line), list(polygon), list(circle)

GRAPH (point,int), node_array(point), edge_array(point)
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6.2 Two-dimensional dictionaries (d2_dictionary)

An instance D of the data type d2_dictionary is a collection of items (dic2_item).
Every item in D contains a key from a linearly ordered data type K1, a key from
a linearly ordered data type K2, and an information from a data type I. K1 and
K2 are called the key types of D, and I is called the information type of D. The
number of items in D is called the size of D. A two-dimensional dictionary of size
zero is said to be empty. We use < kj, k2,1 > to denote the item with first key ki,
second key k;, and information :. For each pair (k;,k;) € K1 x K2 there is at most
one item < ky, ks,1 >€ D. Additionally to the normal dictionary operations, the data
type d2_dictionary supports rectangular range queries on K1 x K2.

1. Declaration of a two-dimensional dictionary type

declare2(d2_dictionary, K1,K2,1I)

introduces a new data type with name d2_dictionary(K1,K2,I) consisting of all
two-dimensional dictionaries with key types K1 and K2 and information type I.
Precondition: K1 and K2 are linearly ordered.

2. Creation of a two-dimensional dictionary

d2_dictionary(K1,K2,I) D;

creates an instance D of type d2_dictionary(K1,K2,I) and initializes D to the empty

dictionary.

3. Operations on a d2_dictionary D

K1 D keyl(dic2_item 1it) returns the first key of item it.
Precondstion: it is an item in D.
K2 D key2(dic2_item 1it) returns the second key of item it.

Precondition: it is an item in D.

I D.inf(dic2_ttem it) returns the information of item it.
Precondition: it is an item in D.

dic2_item D.max key1() returns the item with maximal first key.
dic2_item D.max key2() returns the item with maximal second key.
dic2_item D.min keyl1() returns the item with minimal first key.
dic2_item D.min key2() returns the item with minimal second key.
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dic2_ttem

dic2_item

list(dic2_item)

list(dic2_item)
void
void
void
void
bool

int

4. Iteration

D.insert(K1 ki, K2 k, I 1)
associates the information ¢ with the keys
ki, and k,. If there is an item < ky,k;,5 >
in D then j is replaced by i, else a new
item < k;, k2,1 > is added to D. In both
cases the item is returned.

D.lookup(K1 ki, K2 k)
returns the item with keys k; and k,
(nil if no such item exists in D).

D.range search(K1 a, K1b, K2 ¢, K2 d)

returns the list of all items < k;,k2,i >€ D
with a < k; <band c<k; <d.

D.all items() returns the list of all items of D.
D.del(K1 ki1, K2 k) deletes the item with keys k; and k;
from D.

D.del item(dic2_item it) removes item it from D.
Precondition: it is an item in D.
D.change_inf(dic2_item it, I 1)
makes ¢ the information of item 2¢.
Precondstion: it is an item in D.

D .clear() makes D the empty d2_dictionary.
D.empty() returns true if D is empty, false otherwise.
D size() returns the size of D.

forall_dic2_items(:, D) { “the items of D are successively assigned to : ” }

5. Implementation

Two-dimensional dictionaries are implemented by dynamic two-dimensional range trees

based on BB[a] trees. Operations insert, lookup, del.item, del take time O(log® n),

range_search takes time O(k + log® n), where k is the size of the returned list, key, inf,

empty, size, change_inf take time O(1), and clear takes time O(nlogn). Here n is the

current size of the dictionary. The space requirement is O(nlogn).
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6.3 Sets of two-dimensional points (point_set)

An instance S of the data type point_set is a collection of items (ps_item). Every item

in S contains a two-dimensional point as key (data type point), and an information

from a data type I, called the information type of S. The number of items in S is

called the size of S. A point set of size zero is said to be empty. We use < p,z > to

denote the item with point p, and information :. For each point p there is at most one

item < p,i >€ S. Beside the normal dictionary operations, the data type point_set

provides operations for rectangular range queries and nearest neighbor queries.

1. Declaration of a two-dimensional point set type

declare(point _set, I)

introduces a new data type with name point_set(I) consisting of all two-dimensional

point sets with information type I.

2. Creation of a two-dimensional point set

point_set(I) S;

creates an instance S of type point_set(I) and initializes S to the empty set.

3. Operations on a point_set S

point S key(ps_item 1it)

I S.inf(ps_item it)
ps_item S.insert(point p, I 1)
ps_item S.lookup(point p)

returns the point of item it.
Precondition: it is an item in S.

returns the information of item :t.
Precondition: 1t is an item in S.

associates the information : with point p.
If there is an item < p,j5 > in S then j
is replaced by i, else a new item < p,7 >
is added to S. In both cases the item is
returned.

returns the item with point p (nil if no
such item exists in S).

list(ps_item) S.rangesearch(real z,, real z,, real yo, real y;)

returns all items < p,2 > € § with
zo < p.xcoord() < z; and

Yo < p.ycoord() <y,



ps_item S .nearest_neighbor(point q)

void S.del(point p)
void S.del_item(ps_itemit)
void S.change_inf(ps_item it, I 1)

list(ps_item) S.all_items()
list(point)  S.all_points()

void S.clear()
bool S.empty()
int S .size()

4. Iteration

returns the item < p,i > € S such that
the distance between p and ¢ is minimal.

deletes the item with point p from S

removes item ¢t from S.
Precondstion: it is an item in S.

makes ¢ the information of item it.
Precondstion: it is an item in S.

returns the list of all items in S.
returns the list of all points in S.
makes S the empty point_set.
returns true iff S is empty.

returns the size of S.

forall_ps_items(i, S) { “the items of S are successively assigned to : ” }

5. Implementation

Point sets are implemented by a combination of two-dimensional range trees and Voronoi

diagrams. Operations insert, lookup, del_item, del take time O(log2 n), key, inf, empty,
size, change_inf take time O(1), and clear takes time O(n logn). A range searchoperation

takes time O(k + log? n), where k is the size of the returned list. A nearest_neighbor

query takes time O(n?), if it follows any update operation (insert or delete) and O(logn)

otherwise. Here n is the current size of the point set. The space requirement is O(n?).
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6.4 Sets of intervals (interval set)

An instance S of the data type interval_set is a collection of items (zs_item). Every
item in S contains a closed interval of the real numbers as key and an information from
a data type I, called the information type of S. The number of items in S is called the
size of S. An interval set of size zero is said to be empty. We use < z,y,7 > to denote
the item with interval [z,y] and information 7, z (y) is called the left (right) boundary
of the item. For each interval [z,y] C R there is at most one item < z,y,7 >€ S.

1. Declaration of an interval set type
declare(interval set, I)

introduces a new data type with name interval_set(I) consisting of all interval sets
with information type I.

2. Creation of an interval set
interval _set(I) S;

creates an instance S of type interval_set(I) and initializes S to the empty set.

3. Operations on a interval set S

real S.left(is_item it) returns the left boundary of item :t.
Precondition: it is an item in S.

real S.right(is_item 1t) returns the right boundary of item 2.
Precondition: it is an item in S.

I S.inf(is_item 1t) returns the information of item :t.

Precondition: it is an item in S.

is_item S.insert(real z, real y, I t) associates the information : with interval
[z,y]. If there is an item < z,y,7 > in S
then j is replaced by i, else a new item
< z,y,t > is added to S. In both cases
the item is returned.

1s_item S.lookup(real z, real y) returns the item with interval [z, y]

(nil if no such item exists in S).

list(is_item) S.intersection(real a, real b)

returns all items < z,y,1 > € S with

[z,y] N [a,b] # 0.
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void S.del(real z, real y) deletes the item with interval [z, y]
from S.

void S.del _item(is_item it) removes item it from S.
Precondition: it is an item in S.

void S.change_inf(is_item it, I i) makes i the information of item it.
Precondition: it is an item in S.

void S.clear() makes S the empty interval_set.
bool S.empty() returns true iff S is empty.
int S .size() returns the size of S.

4. Iteration

forall is_items(z,S) { “the items of S are successively assigned to ¢ ” }

5. Implementation

Interval sets are implemented by two-dimensionalrange trees. Operations insert, lookup,
del_item and del take time O(log® n), intersection takes time O(k + log® n), where k
is the size of the returned list. Operations left, right, inf, empty, and size take time
O(1), and clear O(nlogn). Here n is always the current size of the interval set. The
space requirement is O(n logn).
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6.5 Sets of parallel segments (segment_set)

An instance S of the data type segment_set is a collection of items (seg_item). Every

item in S contains as key a line segment with a fixed direction o (see data type

segment) and an information from a data type I, called the information type of S. «

is called the orientation of S. We use < s,z > to denote the item with segment s and

information i. For each segment s there is at most one item < s,7 >€ S.

1. Declaration of a segment set type

declare(segment_set, I)

introduces a new data type with name segment_set(I) consisting of all segment sets

with information type I.

2. Creation of a segment set
a) segment_set(I) S(real a);

b) segment_set(I) S;

creates an empty instance S of type segment_set(I) with orientation a. Variant b)

creates a segment set of orientation zero, i.e., for horizontal segments.

3. Operations on a segment_set S

segment S key(seg_item it)

I S.inf(seg_item it)
seg_item S.insert(segment s, I 1)
ps_item S.lookup(segment s)

list(seg_item) S.intersection(segment q)
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returns the segment of item 3¢.

Precondition: it is an item in S.

returns the information of item zt.

Precondition: it is an item in S.

associates the information 7 with segment
s. If there is an item < s,7 > in S

then j is replaced by i, else a new item
< 8,1 > is added to S. In both cases the
item is returned.

returns the item with segment s (nil
if no such item exists in §).

returns all items < s,z > € S with
sNq#0. Precondition: q is
orthogonal to the segments in S.



list(seg-item) S.intersection(line 1)

returns all items < s,z > € S with
sNl#0. Precondition: [ is
orthogonal to the segments in S.

void S.del(segment s) deletes the item with segment s
from S.
void S.del_item(seg_itemit) removes item it from S.
Precondition: it is an item in S.
void S.change._inf(seg_item it, I 1)
makes : the information of item it.
Precondstion: it is an item in S.
void S.clear() makes S the empty segment _set.
bool S.empty() returns true iff S is empty.
int S size() returns the size of S.

4. Iteration

forall seg_items(z,S) { “the items of S are successively assigned to i ” }

5. Implementation

Segment sets are implemented by dynamic segment trees based on BB[a] trees.

Operations key, inf, change_inf, empty, and size take time O(1), insert, lookup, del, and

del_item take time O(log?n) and an intersection operation takes time O(k + log® n),

where k is the size of the returned list. Here n is the current size of the set. The

space requirement is O(n logn).
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6.6 Planar Subdivisions (subdivision)

An instance S of the data type subdivision is a subdivision of the two-dimensional
plane, i.e., an embedded planar graph with straight line edges (see also sections 5.3 and
5.6). With each node v of S is associated a point, called the position of v and with
each face of S is associated an information from a data type I, called the information
type of S.

1. Declaration
declare(subdivision, I)

introduces a new data type with name subdivision(I) consisting of all planar subdivisions
with information type I. Precondition: The data type GRAPH (point,I) has been
declared before.

2. Creation of a subdivision
subdivision(I) S(GRAPH (point,I) G);

creates an instance S of type subdivision(I) and initializes it to the subdivision
represented by the parameterized directed graph G. The node entries of G (of type
point) define the positions of the corresponding nodes of S. Every face f of S is
assigned the information of one of its bounding edges in G. Precondition: G represents
a planar subdivision, i.e., a straight line embedded planar map.

2. Operations on a subdivision S

point S.position(node v) returns the position of node v.
ftype S.inf(face f) returns the information of face f.
face S .locate_point(point p) returns the face containing point p.

3. Implementation

Planar subdivisions are implemented by parameterized planar maps and an additional
data structure for point location. Operations position and inf take constant time, a
locate_point operation takes time O(log2 n). Here n is the number of nodes. The space
requiremnt and the initialization time is O(n?).

90



6.7 Graphic Windows (gwindow)

The data type gwindow provides an interface for the input and output of basic geometric
objects in the plane (see section 5.1) through a graphic window on a SUN workstation.
In the current implementation only the sunview (suntools) window system is supported,
the include file is <LEDA /sunview.h>. Application programs must be started from
a sunview (suntools) window and have to be linked with the libP.a, libG.a, l:bL.a,
suntool, sunwindow, pizrect, and m libraries (see section 1.9).

An instance W of the data type gwindow is an iso-oriented rectangular window in the
two-dimensional plane. Its size and position are defined by three real numbers: =z,
the x-coordinate of the left side, z;, the x-coordinate of the right side, and y,, the
y-coordinate of the bottom side. W is displayed on the screen as a sunview window,
initially a 800 x 800 pixel square positioned in the upper right corner. The y-coordinate
of the top side of W is determined by the current size and shape of the window on the
screen, which can be changed interactively. A graphic window supports operations for
drawing points, lines, segments, arrows, circles, polygons, graphs, ...and for graphical
input of all these objects using the mouse input device. Most of the drawing operations
have an optional color argument. Possible colors are black (default), white, blue, green,
red, violet, and orange. On monochrome displays all colors different from white are
turned to black. There are 6 parameters used by the drawing operations:

1. The line width parameter (default value 1 pixel) defines the width of all kinds of
lines (segments, arrows, edges, circles, polygons).

2. The line style parameter defines the style of lines. Possible line styles are solid
(default), dashed, and dotted.

3. The node width parameter (default value 10 pixels) defines the diameter of nodes
created by the draw_node and draw_filled_node operations.

4. The text mode parameter defines how text is inserted into the window. Possible
values are transparent (default) and opaque.

5. The drawing mode parameter defines the logical operation that is used for setting
pixels in all drawing operations. Possible values are src.mode (default) and
zor_mode. In src_mode pixels are set to the respective color value, in zor_mode
the value is bitwise added to the current pixel value.

6. The redraw function parameter is used to redraw the entire window, whenever a
redrawing is necessary, e.g., if the window shape on the screen has been changed.
Its type is pointer to a void-function taking no arguments, i.e., void (*F)();
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1. Creation of a graphic window

a) gwindow W(real z,, real z,, real yp);

b) gwindow W(real zo, real z,, real yo, int d);
¢) gwindow W,

creates a graphic window W with lower left corner (zo,yo) and lower right corner
(z1,y0) . Variant b) takes an additional integer argument d to define a rectangular
grid with integer coordinates of distance d. In this case the mouse cursor can only
take grid point positions. Variant c) initializes W to a default sized window (zo = 0,
z; = 100, yo = 0). The init operation (see below) can always be used to change the
window coordinates.

2. Operations

2.1 Initialization

void W .init(real z,, real z;, real y,)
W is made a gwindow with lower left corner (z,y,)
and lower right corner (z1,yo) (like creation a).

void W .init(real zo, real z1, real yo, int d)
W is made a gwindow with lower left corner (z¢, )
and lower right corner (z;,yo) with a rectangular
grid with integer coordinates of distance d (like
creation b).

void W .clear() W is erased.

2.2 Setting parameters

int W .set_line_width(int piz)
Sets the line width parameter to piz pixels and
returns its previous value.

line_style W .set_line_style(linestyle s)
Sets the line style parameter to s and returns its
previous value.

int W .set_node_width(int piz)
Sets the node width parameter to piz pixels and
returns its previous value.
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text_mode W .set_text_mode(text_mode m)
Sets the text mode parameter to m and returns
its previous value.

draw_mode W .set_mode(draw_mode m)
Sets the drawing mode parameter to m and returns
its previous value.

void ~ W .set_redraw(void (xF)())
Sets the redraw function parameter to F.

2.3 Reading parameters and window coordinates

int W .get_line_.width() returns the current line width.
line_style W .getlinestyle() returns the current line style.
int W .get_node_width() returns the current node width.

draw_mode W .get_text_mode() returns the current text mode.

draw_mode W .get_mode() returns the current drawing mode.

real W xmin() returns z¢, the minimal x-coordinate of W.
real W .ymin() returns yo, the minimal y-coordinate of W.
real W xmax() returns z;, the maximal x-coordinate of W.
real W .ymax() returns y;, the maximal y-coordinate of W.
real W .scale() returns the number of pixels of a unit length

line segment.

2.4 Drawing points

void W .draw_point(real z, real y, color ¢ = black)
draws the point (z,y) as a cross of a vertical
and a horizontal segment intersecting at (z,y).

void W .draw_point(point p, c¢ = black)
draws point (p.xcoord(),p.ycoord()).

void W .draw(point p, ¢ = black)
same as draw_point(p,c).
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2.5 Drawing line segments

void

void

void

void

W .draw _segment(real z;, real y;, real z,, real y;, color c = black)

draws a line segment from (z1,y1) to (z2,v2).

W .draw _segment(point p, point g, color ¢ = black)
draws a line segment from point p to point gq.

W .draw_segment(segment s, color ¢ = black)

draws line segment s.

W .draw(segment s, ¢ = black)
same as draw_segment(s,c).

2.6 Drawing lines

void

void

vord

void

void

void

W .draw_line(real z,, real y;, real z, real y», color ¢ = black)

draws a straight line passing through points
(z1,¥1) and (z2,y2).

W .draw _line(point p, point q, color ¢ = black)
draws a straight line passing through points
p and q.

W .draw _hline(real y, color ¢ = black)

draws a horizontal line with y-coordinate y.

W .draw _vline(real z, color ¢ = black)

draws a vertical line with x-coordinate z.

W .draw_line(line I, color c¢ = black)

draws line [.

W .draw(line I, ¢ = black)

same as draw_line(l,c).

2.7 Drawing arrows

vord

void

void

W .draw_arrow(real z, real y;, real z2, real y;, color ¢ = black)

draws an arrow pointing from (z;,y;1) to (z2,¥2).

W .draw_arrow(point p, point q, color ¢ = black)

draws an arrow pointing from point p to point q.

W .draw_arrow(segment s, color ¢ = black)

draws an arrow pointing from s.start() to s.end().
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2.8 Drawing circles
void W .draw circle(real z, real y, real r, color ¢ = black)
draws the circle with center (z,y) and radius r.

void W .draw_circle(point p, real r, color ¢ = black)
draws the circle with center p and radius r.

void W .draw_circle(circle C, color ¢ = black)
draws circle C.

void W .draw(circle C, ¢ = black)
same as draw_circle(C,c).

2.9 Drawing discs
void W .draw_disc(real z, real y, real r, color c = black)
draws a filled circle with center (z,y) and radius r.

void W .draw_disc(point p, real r, color c = black)
draws a filled circle with center p and radius r.

void W .draw_disc(circle C, color ¢ = black)
draws filled circle C.

2.10 Drawing polygons
void W .draw_polygon(list(point) lp, color ¢ = black)
draws the polygon with vertex sequence Ip.

void W .draw_polygon(polygon P, color ¢ = black)
draws polygon P.

void W .draw(polygon P, c = black)
same as draw_polygon(P,c).

void W .draw_filled_polygon(list(point) lp, color ¢ = black)
draws the filled polygon with vertex sequence Ip.

void W .draw filled_polygon(polygon P, color ¢ = black)
draws filled polygon P.
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2.11 Drawing functions

void W .plot xy(real zo, real z1, (real)(xF)(real), color c = black)
draws function F in range [z¢,z,;], i.e., all points
(z,y) with y = F(z) and zy <z < 2,

void W .plot_yx(real yo, real y;, (real)(*F)(real), color c¢ = black)
draws function F' in range [yo,¥1], i.e., all points
(z,y) with z = F(y) and yo <y <y

2.12 Drawing text
void W .draw_text(real z, real y, string s, color ¢ = black)
writes string s starting at position (z,y).

void W .draw_text(point p, string s, color ¢ = black)
writes string s starting at position p.

vord W .draw _ctext(real z, real y, string s, color ¢ = black)

writes string s centered at position (z,y).

void W .draw_ctext(point p, string s, color ¢ = black)
writes string s centered at position p.

2.13 Drawing nodes

Nodes are circles of diameter node_width.

void W .draw_node(real z¢, real yy, color c = black)

draws a node at position (zg,yp)-

void W .draw_node(point p, color ¢ = black)
draws a node at position p.

void W .draw filled node(real z¢, real yo, color ¢ = black)
draws a filled node at position (zg,yp)-

void W .draw _filled_node(point p, color c¢ = black)
draws a filled node at position p.

void W .draw_text_node(real z, real y, string s, color ¢ = black)
draws a node filled with string s at position
((Bo,yo)-

void W .draw_text_node(point p, string s, color ¢ = black)

96



draws a node filled with string s at position p.

2.14 Drawing edges

Edges are straigth line segments or arrows with a clearance of node_width/2 at each

end.
void W .draw_edge(real z,, real y;, real z,, real y,, color ¢ = black)
draws an edge from (z1,y1) to (z2,y2).
void W .draw_edge(point p, point g, color c = black)
draws an edge from p to gq.
void W .draw_edge(segment s, color ¢ = black)
draws an edge from s.start() to s.end().
vord W .draw_edge_arrow(real z;, real y;, real z3, real yz, color ¢ = black)
draws a directed edge from (z;,y;) to (z2,¥2).
void W .draw_edge_arrow(point p, point g, color ¢ = black)
draws a directed edge from p to gq.
void W .draw_edge_arrow(segment s, color ¢ = black)

draws a directed edge from s.start() to s.end().

2.15 Mouse Input

nt W .read_mouse() displays the mouse cursor until a button is pressed.
Returns integer 1 for the left, 2 for the middle, and
3 for the right button (-1,-2,-3, if the shift key is
pressed simultaneously).

int W .read_mouse(real& z, real& y)
displays the mouse cursor on the screen until a
button is pressed. When a button is pressed the
current position of the cursor is assigned to
to (z,y) and the pressed button is returned.

int W read_mouse_seg(real zo, real yo, real& z, real& y)
displays a line segment from (z9,yo) to the
current cursor position until a mouse button is
pressed. When a button is pressed the current
position is assigned to (z,y) and the pressed
button is returned.
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int

int

bool

bool

bool
bool

W .read_mouse_rect(real z¢, real yo, real& z, real& y)
displays a rectangle with diagonal from (z,yo)
to the current cursor position until a mouse button
is pressed. When a button is pressed the current
position is assigned to (z,y) and the pressed
button is returned.

W .read_mouse circle(real zo, real yo, real& z, real& y)
displays a circle with center (z¢,yo) passing
through the current cursor position until a mouse
button is pressed. When a button is pressed the
current position is assigned to (z,y)and the
pressed button is returned.

W .confirm(string s) displays string s and asks for confirmation.
Returns true iff the answer was “yes”.

W .acknowledge(string s)

displays string s and asks for acknowledgement.
W .message(string s) displays s (each call adds a new line).

W .del_message() deletes the text written by all previous message
operations.

2.16 Input and output operators

For input and output of basic geometric objects in the plane such as points, lines, line

segments, circles, and polygons the << and >> operators can be used. Similar to

C++ input streams gwindows have an internal flag indicating whether there is more

input to read or not. Its initial value is true and it is turned to false if an input

sequence is terminated by clicking the right mouse button (similar to ending istream

input by the eof-character ctrl-D). In conditional statements objects of type gwindow

are automatically converted to boolean by simply returning this internal flag. Thus,

they can be used in conditional statements exactly in the same way as C++ input

streams. For example, to read a sequence of points terminated by a right button click,
use “ while (W >> p) {... }"”.

2.16.1 Output

gwindow&
guindow&

guwindow&

W << point p like W.draw_point(p)
W << segment s like W.draw_segment(s)
W << linel like W.draw_line(l)
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gwindow&

gwindow&

2.16.2 Input

gwindow&

gwindow&

gwindow&

gwindow&

gwindow&

W <<

W <<

W >>

W >>

W >>

W >>

W >>

circle C

polygon P

like W .draw_circle(C)
like W.draw_polygon(P)

reads a point p: clicking the left button
assigns the current cursor position to p.

reads a segment s: use the left button to input
the start and end point of s.

reads a line I: use the left button to input
two different points on !

reads a circle C: use the left button to input
the center of C and a point on C

reads a polygon P: use the left button to input
the sequence of vertices of P, end the sequence
by clicking the middle button.

As long as an input operation has not been completed the last read point can be erased

by simultaneously pressing the shift key and the left mouse button.
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7. Miscellaneous

This section describes some additional useful data types, functions and macros of
LEDA. They can be used in any program that includes the <LEDA /basic.h> header
file.

7.1 File input streams (file_istream)

An instance I of the data type file_istream is an C++ istream bound to a file F, i.e.,
all input operations or operators applied to I read from F'.

1. Creation of a file input stream

file_istream in(string s);

creates an instance in of type file_istream bound to the file with name s.
2. Operations

All input operations and operators (>>) defined for C++ istreams can be applied to
file input streams as well.

7.2 File output streams (file_ostream)

An instance O of the data type file_ostream is an C++ ostream bound to a file F,
i.e., all output operations or operators applied to O write to F.

1. Creation of a file output stream

file_ostream out(string s);

creates an instance out of type file_ostream bound to the file with name s.
2. Operations

All output operations and operators (<<) defined for C++ ostreams can be applied to
file output streams as well.
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7.3 Some useful functions

int read_int(string s = “”)  prints s and reads an integer

char read_char(string s = “”) prints s and reads a character

real read_real(string s = “”) prints s and reads a real number

string  read_string(string s = “”) prints s and reads a string

bool Yes(string s = “”) returns (read_char(s) == ‘y’)

void init_random() initializes the random number generator.

real random() returns a real valued random number in [0, 1]

int random(int a, int b) returns a random integer in [a..}]

real used_time() returns the currently used cpu time in seconds.

real used_time(real& T') returns the cpu time used by the program from
T up to this moment and assings the current
time to T'.

void print_statistics() prints a summary of the currently used memory

7.4 Macros

newline cout << “\n”

forever for(;;)

loop(a,b,c) for (a =bja <=c;a+ +)

in_range(a,b,c) (b<=a && a<=¢)

Max(a,b) ((a>b) 7a : b)

Min(a,b) ((a>b) 75 : a)
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7.5 Error Handling

LEDA tests the preconditions of many (not all!) operations. Preconditions are never
tested, if the test takes more than constant time. If the test of a precondition fails
an error handling routine is called. It takes an integer error number ¢ and a charx
error message string s as arguments. It writes s to the diagnostic output (cerr) and
terminates the program abnormally if ¢ # 0.

Users can provide their own error handling function handler by calling
set_error_handler(handler).
After this statement handler is used instead of the default error handler. handler

must be a function of type void handler(int, charx). The parameters are replaced by
the error number and the error message respectively.
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8. Programs

8.1 Graph and network algorithms

In this section we list the C++ sources for some of the graph algorithms in the library
(cf. section 5.12).

Depth First Search

#include <LEDA /graph.h>
#include <LEDA /stack.h>

declare(stack,node)

list(node) DFS(graph&G, node v, node_array(bool)&reached)
{

list(node) L;

stack(node) S;

node w;

if (! reached|v] )

{ reached[v] = true;
L.append(v);
S.push(v);

}

while ( !S.empty() )

{ v = S.pop();
forall adj nodes(w,v)

if ( !reached|w] )

{ reached[w] = true;
L.append(w);
S.push(w);

}
}

return L;
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Breadth First Search

#include <LEDA /graph.h>
#include <LEDA/queue.h>

declare(queue,node)

void BFS(graph& G, node v, node_array(int)& dist)
{

queue(node) Q;
node w;
forall nodes(w, G) distjw] = —1;
dist[v] = 0;
Q.append(v);
while ( !Q.empty() )
{ v=Q.pop();
forall adj nodes(w,v)
if (distjw] < 0)
{ Q.append(w);
dist|w] = dist[v] + 1;

}

}

Connected Components

#include <LEDA /graph.h>

int COMPONENTS(ugraph& G, node_array(int)& compnum)
{

node v, w;
list(node) S;
int count = 0;

node_array(bool) reached(G, false);

forall nodes (v, Q)
if ( !reached|v] )
{ S = DFS(G,v,reached);
forall (w, S) compnum|w| = count;
count + +;

}

return count;
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Depth First Search Numbering

#include <LEDA /graph.h>
int df s_countl, dfs_count2;

void d_f s(node v, node_array(bool)& S, node_array(int)& df snum,
node_array(int)& compnum,
list(edge) T )

{ // recursive DFS

node w;
edge e;
S[v] = true;
df snum(v] = + + df s_countl;
forall_adj_edges (e,v)
{ w = G.target(e);
if (!S[w])
{ T.append(e);
d fs(w, S, df snum, compnum, T);
}
}

compnum|v] = + + df s_count2;

list(edge) DFS_NUM(graph& G, node_array(int)& dfsnum, node_array(int)& compnum
{

list(edge) T;

node_array(bool) reached(G, false);

node v;

df s_countl = df s_count2 = 0;

forall nodes (v,G)

if ( !reached[v] ) dfs(v,reached, df snum,compnum,T);
return T
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Topological Sorting

#include <LEDA /graph.h>

bool TOPSORT(graph& G, node_array(int)&ord)
{
node_array (int) INDEG(G);
list(node) ZEROINDEG;
int count = 0;
node v, w;
edge e;
forall nodes(v, G)
if ((INDEG|v]=G.indeg(v))==0) ZEROINDEG.append(v);
while (!ZEROINDEG.empty())
{ v = ZEROINDEG.pop();
ord[v] = + + count,;
forall_adj nodes(w,v)
if (——INDEG|w]==0) ZEROINDEG.append(w);
}

return (count==G.number_of_nodes());

//TOPSORT1 sorts node and edge lists according to the topological ordering:

node_array(int) ord,

int cmp_node_ord(node& v, node& w)
{ return ord[v] — ord[w]; }

int cmp_edge ord(edge& el, edge& €2)
{ return cmp_node_ord(target(el),target(e2)); }

bool TOPSORT1(graph& G)
{
ord.init(G);
if (TOPSORT(G,ord))
{ G.sort_nodes(cmp_node_ord);
G .sort_edges(cmp_edge_ord);
return true;

}

return false;

}
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Strongly Connected Components

#include <LEDA /array.h>

declare(array,node)

int STRONG_COMPONENTS(graph& G, node_array(int)& compnum)

{

node v, w;
int n = G.number_of_nodes();
int count = 0;
int ;
array(node) V(1,n);
list(node) S;
node_array(int) df s_.num(G), compl_-num(G);
node_array(bool) reached(G, false);
DFS_NUM(G, df s_num, compl_num);
forall nodes (v,G) V[compl-num/|v]] = v;
G.rev();
for (t=n; i>0; i — )
if ( !reached[V[i]] )
{ S = DFS(G, V[i],reached);
forall (w,S) compnum|w] = count;
count + +;

}

return count;
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Dijkstra’s Algorithm
#include <LEDA /graph.h>
void DIJKSTRA (graph& G, node s, edge_array(int)& cost,

node_array(int)& dist, node_array(edge)& pred )
{ node_pq(int) PQ(G);

int c;

node u,v;

edge e;

forall nodes(v, G)
{ predfv] = 0;

dist[v] = infinity;
PQ.insert(v, dist[v]);
}
dist[s] = 0;
PQ.decrease_inf(s, 0);
while (! PQ.empty())
{ u = PQ.delete_min()
forall_adj_edges(e,u)
{ v = G.target(e);
¢ = dist[u| + cost|e];
if (¢ < dist[v])

{ dist|v] = c;
pred[v] =¢;
PQ.decrease_inf(v, c);
}

} /* forall_adj_edges */
} /* while x/
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Bellman /Ford Algorithm

#include <LEDA /graph.h>
#include <LEDA /queue.h>

declare(queue,node)

bool BELLMAN_FORD(graph& G, node s, edge_array(int)& cost,
node_array(int)& dist, node_array(edge)& pred)
{ node_array(bool) in_Q(G, false);
node_array(int) count(G,0);
int n = G.number_of nodes();
queue(node) Q(n);
node u,v;
edge e;
int ¢;
forall nodes (v,G) { pred[v] =0;
dist[v] = infinity;
}
dist[s] = 0;
Q.append(s);
in_Q[s] = true;
while (!Q.empty())
{ v = Q-pop();
in_Q[u] = false;
if (+ + count[u] > n) return false; //negative cycle
forall_adj_edges (e,u)
{ v = G.target(e);
¢ = dist|u| + cost|e];
if (c < dist[v])

{ dist[v] = ¢;
pred[v] = e;
if (Yin_Qv])

{ Q.append(v);
in_Q[v] = true;
}

}
} /* forall_adj_edges x/

} /* while x/
return true;
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All Pairs Shortest Paths

#include <LEDA /graph.h>

void all_pairs_shortest_paths(graph& G, edge_array(real)& cost,
node_matrix(real)& DIST)
{
// computes for every node pair (v,w) DIST(v,w) = cost of the least cost
// path from v to w, the single source shortest paths algorithms BELLMAN_FORD
// and DIJKSTRA are used as subroutines

edge e;

node v;

real C = 0;

forall_edges(e, G) C+ = fabs(cost[e]);

node s = G.new_node(); // add s to G

forall nodes(v,G) G.new_edge(s,v); // add edges (s,v) to G

node_array(real) dist1(G);

node_array(edge) pred(G);

edge_array(real) costl(G);

forall_edges(e, G) costlle] = (G.source(e) == s) ? C : cost[e];
BELLMAN_FORD(G, s, costl, distl, pred);

G.del_node(s); // delete s from G
edge_array(real) cost2(G);
forall_edges(e, G) cost2[e] = dist1[G.source(e)] + cost[e] — dist1|G.target(e)];

forall nodes(v, G) DIJKSTRA(G,v, cost2, DIST [v], pred);

forall nodes(v, G)
forall nodes(w,G) DIST(v,w) = DIST (v, w) — distl[v] + distl|w];
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Minimum Spanning Tree

#include <LEDA /graph.h>

edge_array(real)* C;

int cmp_edges(edge& el, edge& e2)
{ return (*C)[el] — (xC)[e2]; }

void MIN_SPANNING _TREE(graph& G, edge_array(real)& cost, list(edge)& EL)
{

node v, w;

edge e;

node_partition Q(G);

list(edge) OEL = G.all_edges();

C = &cost;

OEL .sort(cmp_edges);

EL.clear();
forall(e, OEL)
{ v = G.source(e);
w = G.target(e);
if (!(Q.same_block(v,w))
{ Q.union_blocks(v, w);
EL.append(e);

}
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9. Tables

9.1 Data Types

array
array2
b_priority_queue
b_queue
b_stack

bool

circle
d2_dictionary
d_array
dictionary
edge_array
edge_set
file_istream
file_ostream
graph
gwindow
GRAPH
int_set
interval_set
line

list

matrix
node_array
node_matrix

21
22
39
26
25
15
79
82
42
40

63
101
101

49

91

56

33

84

76

27

19

62

node_partition
node_pq

node _set
partition
planar_map
point
point_set
polygon
priority_queue
PLANAR_MAP
queue

real

segment
segment _set
set

sortseq

stack

string
subdivision
tree_collection
ugraph
UGRAPH

vector
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34
54
73
84
78
37

24
15
74
88
32
45
23
16

35
53
58
18



9.2 Algorithms

ALL_PAIRS_SHORTEST_PATHS
BELLMAN _FORD

BFS

COMPONENTS
CONVEX_HULL

DFS

DFS_NUM

DIJKSTRA

MAX_CARD _BIPARTITE MATCHING
MAX_FLOW

MAX_WEIGHT _BIPARTITE_MATCHING
MIN_SPANNING_TREE
PLANAR |
SEGMENT_INTERSECTION
SPANNING_TREE

STRAIGHT _LINE_EMBEDDING
STRONG_COMPONENTS
SWEEP_SEGMENTS

TOPSORT
TRANSITIVE_CLOSURE
TRIANGULATE_PLANAR _MAP
VORONOI
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61
60
59
59
73
58
58
60
61
61

62
63
72
62
63
59
72
58
60
63
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