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Introduction : The use of computers in executing algorithms always leads

to the question of how "expensive" these algorithms are. This can mean,
for example, the amount of computing time or storage space reqﬁired by
a given algorithm. Such questions are handled in complexity theory;
their - practical significance is apparent. Upon closer examination
these questions are seen to be quite complicated, and everyday problems

prove to be extremely difficult to solve.

The first attempt at developing a complexity theory for general compu-
table functions began with the axiomatic apprqach of Blum*. In the form
of the famous speéd-up theorems this aporoach led, however, to dis-—
appointing results. Another apprroach by Schnorr#** with respect to op-
timal G&del numberings was also taken up by Hartmanis***, but appears
not to have been further handled. In the direction of a general theory
the most far reaching results have been presented by Strassen in his
development of the degree-bound. Although this is sharp for several
interesting special cases, in general, it underestimates the complexi-

ty of polynomials guite significantly.

For several reasons the complexity of Boolean networks has received
special attention. Gond lower bounds for these networks would also
lead to good lower bounds for polynomials. The results of Fischer and
Schnorr**** show that beyond this, such results could also yield in-
formation about the complexity of general ¢omputable functions. yn-
fortunately, until now all of the efforts applied to the complexity
of Boolean networks have led to only modest results. For example, see
the report by Patterson [9], and also the papers by Paul [13] and

Schnorr [15], which are quite complicated considerihg their results.

The goal of this paper is to examine complexity measures over an axio-

matic basis. These measures include the complexity measures induced by

* Blum,M.:" A Machine Independent Theory of the Complexity of Recursive Functions",
J.ACM 14,2 (1967), 322-336.

**  Schnorr,C.P.: "Optimal Enumerations and Optimal G6del Numberings",M.Syst.Th.8(1974)

*¥%  Hartmanis,J.+ Baker,T.P.: "On Simple G&del Numberings and Translations" in Auto-
mata, Languages and Programming, 2nd Coll. Univ. of Saarbriicken,.1974, LNCS 14.

**¥** Fischer,M.J.: Lectures on Network Complexity, pres.at the Univ. of Frankfurt,1974

Schnorr,C.P.: "The Network Complexity and the Turing Complexity of Finite Func-
tions", Acta Informatica 7, (1976), 95-107.



cost functions like the size complexity, depth complexity, and breadth
complexity studied in [16] and [9]. Also included are the applications
of entropy [12] [18] and the degree-bound [17].

We develop this theory on the basis of categories with an added monoid
multiplication. It will be examined under which conditions the cost-
function-induced complexity measures can be aporoximated by general
complexity measures. Methods will be developed for constructing com-
plexity measures, and the conditions under which the entropy can be
used for the definition of complexity measures will be given. Finally
we will briefly mention complexity measures for monotone functions

developed over monotone elements.

This paper has its basis in the extended abstract [5]. The formal, more
complete, and extended version found in the current paper is primarily

the work of the second author.



§1. The Mathematical Representation of Switching Circuits.

In this paper the size complexity, depth complexity, and other
complexity measures of Boolean functions represented by switching
circuits will be examined. First of all we need a good mathemati-
cal representation of switching circuits.

The first idea in this direction is to represent a switching
circuit by a digraph in which nodes are labeled with elementary
switching elements and the edges represent wires of the circuit.
This kind of representation hac an important disadvantage:. We are
not able to distinguish between the different inputs of a switching
element. If we consider only bases with commutative switching
elements 1t this is not a handicap. But we do not want to restrict
ourselves to commutative bases. Therefore, we must devise a method
for distinguishing among the different input wires of the switching-
elements.

To do this we may write for each switching element (node in the

graph) a line as follows
n: <ajy Niy Noy «iay nk>

where a is an elementary switching element (label of this node)
with indegree k and n1,...,nk are line numbers less than n (the
current line number) with the following meaning: The i-th input
of a is the output of the switching element coded in line n, .
For the inputs of the whole switching circuit we must write

extra lines:

1: X4
2: X2
1: xl

where x --,X; represent the input variables. Also for the two

17
constants "true" and "false" we need extra lines:
1+1: true
1+2: false.

t An elementary switching element is called commutative iff a
permutation of the input wires never changes the interpretation
of the circuit as a Boolean function. For example A, v, 7 are

commutative switching elements.



Since not all of the wires are outputs of the whole switching
circuit, we must give a selecting function o, such that the i-th
output is loaded with the output of the switching element coded
in line o(i). Note also.that this model only allows for elementary
switching elements with only one output wire.

Another more algebraic description of switching circuits is
given in [4]. There the concept of so called X-categories is
introduced. In [3] the X-categories are called "strict monoidial

categories" and in [1] they are called "Kronecker categories”.

1.1 DEFINITION,

An X-category X s a 3-tupel (X, x, €) such that

(¢t} X 28 a category,

(22) x: X x X » X 78 a covariant bifunctor (we write fxg instead
of x(f,9) for morphisms £, g € Mor(X) and, analogously
uxv for objects u, v € Ob (X)), |

(777) € €0b (X) s a special element, and

(Zv) (Mor (X), x, 15) 18 a monoid with x as operation and 15: € > €,

the <dentity on €, as unit element.

Property (ii) implies: If f: u' - u, f£': u" » u', g: v' > v,

g': v" » v' are morphisms in X, then fxg: u'xv' > uxv and

" "

f'xg': u"xv" > u'xv', and we have the following equation:

(fof') x(gog') = (fxg)o(f'xg").
Furthermore claim (ii) together with claim (iv) implies that
(Ob(X), x, €) is also a monoid. Because of (iv) every X-category

is a small category (a monoid is always a set).

1.2 DEFINITION,

Let X, Y be two X-categories. A functor $:X -~ VY 7s called X-functor
i1ff X regarded as a mapping Mor (X) - Mor(Y) <s a monoid homomor-

phism.

+ lor cxample a switching element consisting of two parallel

negatitons has more than one output wites:

H




1.5 DEFINITION.,
(2) Let Xbe an X-category and A < Mor(X). A s called a

free generating system for X Iff the following universal
property holds:
If VY Zs an arbitrary X-category, ®:1: Ob(X) > Ob(Y) a
monoid homomorphism, and ®2: A » Mor(Y) a mapping such
that ¢,(a): d;(u) » &,(v) for a: u > v € A then there
exists a uniquely determined X-functor ¢: X > Y which is
an extension of &y and o,.

(27) A X-category s called free 7Iff it posses a free genera-

ting system.

1.4 THEOREM AND NOTATION,

Given any free monoid 0 andan arbitrary set A together with
two mappings S, T: A + 0 there exist a free X-category F(A, 0)
which ©s unique up to funmctorial isomorphism with free genera-
ting system A and 0 as monoid of objects such that every a € A

becomes a morphism a: S(a) » T(a) in F(A, 0).

For a PROOF see, for example, [1] or [7]. =

The following example shows us how a switching circuit may be

represented by a free X-category.

1.5 ExamMPLE.

Let B be a basis generating all of the Boolean functions
{true, false}"™ -+ {true, falsel}™ for example, B = {A, v, 21}. In a
switching circuit there are also some other elementary switching

elements such as

(i) crossing of two wires ;x: denoted by c,
(11) Dbranching of a single wire )\v denoted by d,
(diagonalization)

(iii) Boolean constant wires t{Fe fq%se denoted by true

and false,

(iv) truncation of a wire 1 denoted by t.

As monoid 0 of objects we will use N, with addition as operation.

It £ is a switching circuit we will interpret f as a morphism



f: u > v with u, v eINOT where u denotes the number of inputs

and v the number of outputs of f. The free generating system A
consists of the elements of B and ¢, d, true, false, t where the

mappings S, T are defined as follows:

S(a) = 8(v) =2, T(A) = T(v) =1,

S() =1, T() =1,

s(d) =1, T(d) = 2,

S(c) = 2, T(ec) = 2,

S(true) = S(false) = 0, T(true) = T(false) = 1,
S(t) =1, T(t) = O.

The operaticns x and o, of F(A, (0) are interpreted as follows:
If £f and g are two circuits fxg means the circuit built by dra-

wing f on the left of g without connecting any wires.

L]
ISR fxg

—+— +Hh ——

g
il Tiill
IREEE ]
If £ has u inputs and g has u outputs then fog is defined and
means the circuit built by connecting the inputs of f pairwise

with the outputs of g without changing their order.

g fog

W

As example consider the following switching circuit:

In F(A, 0) this circuit is written as
vo(Axa)o(TixaxT12)o0(T1xdxTy).

From now on we denote the so constructed free X-category by G(B).



1.6 ExaMPLES (c.f. [4]1, [2]).
Let M be an arbitrary set. Denote by CM the following X-cate-
gory:
Ob(CM) := Ny together with + as monoid operation,

Mor(CM) := {f: n »m : f is a function from M tova}.

Thereby we identify M® with the set {e} consisting of a single
element e. Identifying MOxM™ and M"xM® with M" we may define _
fxg for f, g € Mor(CM) in the usual way. Then it is easily proved
that (Mor(CM), x) is a monoid and that CM is indeed a (not free)

X-category. As a special example we have the X-category B :=

C of Boolean functions. If G is defined as in 1.5
{true, false!}

we have an X-functor I: G({a, v, 1}) -+ B:

I(A)(x,y) = X A Y,

I(v)(x,y) =X vy,

I(4) (%) =1 X,

I(true) (e) = true,

I(false) (e) = false,

I(t) (x) = 8y

I(c)(x,y) = (y.,x),

I(d) (x) = (x,%x), where x, v € M = {true, falsel.

I is called the interpretation of G({Aa, v, +}) in B. If f €
Mor(G({Aa, v, 1})) is a switching circuit then I(f) is the Boolean
function represented by f. '

As another example let R be an arbitrary’ring and denoﬁe by PR
the subcategory of CR consisting of all polynomial T functions
r" > R™ (n, m € Ng). Then PR is also an X-category. An interpre-

tation I: G({+, -, *}) ~» PR is defined in the obvious way.

There is a difference . between the representation of a switching
circuit by a free X-category and the method discussed at the
beginning of this section. The following two switching circuits
have the same representation as digraphs with ordered inputs but

are different morphisms in G({a, v, 11}):

— i ——— o —— ————

t A function f: R™ » R™ is called polynomial iff there exist
m polynomials Pqre--sPp € R[X1,...,Xn] such that f(x1,...,xn) =

(Py(XgpeerX )y ooy Py (Xqre-.rx)) for all (x1,...,xn) € RD,



Another pair of such circuits is:

(g:j:l1 Ijtg\)“

Because of this problem we will define special sorts of X-
categories and use them for representing of switching circuits.
First, Hotz has introduced such special X-categories, called the

free D-categories (c.f. [41]).

1.7. DEFINITION (c.f. [1]).

Let X be an X-category. We call X

(2) a symmetric X-category (S—-category for short) Iff for any
two objects u, v € Ob(X) there exist a morphism
Cy,ys UXV * vxu € Mor (X) (called a crossing morphism) such
that the following axioms hold:

(51) If £f: u » r and g: v + s are morphisms in Mor(X) then

cr.so(fXg) = (gxf)oc, u,v
uxv ———3—*rxs
7 t Cr,s
// vxu —Elﬁ—&sxr
(52) cV,uocu,v = uxv for all u,cv € Ob (X).
u,v
// ’ uxv —IL—vxu
7
| e
= | uxv
/ ‘ uxv



(53) 1 xC c x1 ) = u v xw for all u, v, w € Ob(X) .
x 1

// | cu,v w
UxXV xw——————> v xuxw
f>\\\\<4 :>>\\\ Y l 1 xe
V U.,W
u,vxw

(i2) an X-category with finite direct products (D-category for
short) Zff for every u € Ob(X) there are morphisms typu > e
(called truncations) such that for any two objects v, w €

Ob (X) the following diagram is a direct product diagram in X.

V XW
1Vxﬁ;// \\:VX1
\Y% w

If X 28 a D-category we introduce the following notations:

(a) Let u € Ob(X) and consider the following diagram in X:

There 728 a uniquely determined morphism d, :u > uxu
(called diagonalization) which makes the diagram commu-

tative:

(D2) 1u = (1uxtu)0du = (tux1u)odu

(b) Let u, v € Ob(X) and consider the following diagram in X:

There exists a uniquely determined isomorphism = -
’

uxv > vxu (called crossing) which makes the diagram

commutative:

(D3) 1uxtV = (tVX‘Iu)ocu v and tux1v,= (1thu)ocu v

14 ’



1.8 PROPOSITION,

Let X be an S-category. Then the following hold:

(S0) B g = By oy = 1u for all u € Ob(X).
(53') (dual to S3) (cu,wx1v)o(1uxcv,w) = cuxv,w for all u,v,w € Ob(X).
(54) (cv,wx1u)°(1vx u, w)o(c ,vx1w) = (1wxcu,v)°(cu,wx1v)°(1uxcv,w)

vV \ \' u,w
UXVXW-—-—"*V xuxw———L—>vxwxu

) = j V,W /// CV,Wx‘]l.l
/ UXW XV WX U XV

FTWXV XU
x ] 1 xc
u,w v w ou,v

PrROOF [11)
(S3)
(50) cu,e = u,€EXe = (1.xc Jol(c " x1€) = cu,socu,e
(S2) (S2)
= = o] oC = C oC oC = C
u u,e “€,u u,e u,e €,u u,e
= 1 =1 oc = C
u ,u €,u
(S2)
(53%) (cu,wx1v)°(1uxcv,w) - (cu,wx1v)o(1uxcv,w)ocw,uxvocuxv,w
(S3)
= (cu, Jo(1,xc ,w)°(1uxcw,v)°(cw,ux1 ) uxv,w
(s2) (S2)
= (c x1 )o (c x1 )oc = c
u,w v w,u Vv uxv,w uxv,w
(S3)
(S4) (c ) x‘]u)o(‘lvxcu’w)o(cu’vx1w)‘ = (cv’wx1u) S—
(S1)
= (1._xc )
u,WxVv u v,w
(83)
= (1. xc Yo l(c x1 )o (1 xc ) [



If we represent switching circuits by free S-categories which
are defined in a way analogous to free X-categories (as will be

shown later) then the two circuits

k\ and )
Te \
5

becomes the same morphism in the S-category (use axiom S1). Also

— W
-

the following two circuits have the same description in these

S-category (axiom S1):

SO

But the two circuits

- 0

are still different as morphisms in a free S-category. Therefore
we will often use free D-categories for describing switching

circuits.

1.9 PrOPOSITION,

Let X be a D-category. Then X Zs an S-category and the following
hold:

(D) t€ = 18 and tuxv = tuxtv for all u, v € Ob(X). Further i1f

f: u-~» e € Mor(X) then £ = tu' This means that tu 18 the

only morphism u + € in Mor (X).



(D1) Let f: u > vxw, g: u > vxw be two morphisms in Mor (X).

(1vxtw)0f = (1thw)og and (tVX1w)of = (tvx1w)og

then £ = g.

Il

(D4) (1uXdu)odu (duX1u)odu for all u € Ob(X).

Ay
u +~uxu
: J o Ta,
UXU———>Uxuxu
u u
(D5) €, = d for all u € Ob(X).
d
u
u—————uxu
< c
a u,u
u
uxu
(D6) (1uxcu’vx1v)o(duxdv) = .y SOV all u, v € Ob(X).
M - /A\ \ u[
N
Uxvxuxv

(D7) (£xf)od = d of for all morphisms f: u > v € Mor(X).

If
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PROOF,

The axioms (S2) and (S3) follow directly from the universal

property of direct product diagrams. For example to prove (52)
consider the diagram

, C °oC :
XV v,u “u,v

uxv > uxv; this implies that they must be identical.
(S1) will be proved after (DO).

in X which is commutative for both morphisms 1u

(DO) Consider the following diagram in X (recall tE = t€x1 =

1Ext€, and € = exg):

There must exist a (unique) morphism f: ¢ » ¢ such that 1E =
tEof = te'

Next we will prove that f: u » ¢ &€ Mor(X) implies f = tu. Then
tuxv = tuXtv is clear. Consider the diagram (recall 1u = 1uxtc’

tu = tux1€, and uxe = u):



There must exist a unique morphism g: u = uxe = u such that

1u = 1u0g = tuOg. It follows f = tu'

(S1): Let f: v »> v'
Then (1u,Xtv,)o(fxg) = fxtV and (tu.xTV,)o(fxg) =
is true for tv,og: v + € € Mor (X) and therefore by (DO)

g and £ =

u~>u', g: be two morphisms in Mor (X).

tuxg. This
t _,0g = tV

and analogously tu,Of = t,- Now we see that fxg:

uxv + u'xv' is the unique morphism making the following diagram

commutative:

Now (S1) is easily proved by combining this diagram with the
diagram defining Cy

(D1) and

su’

(D4) to (D5) may similarly be proved using the univer-

sal properties of direct'product diagrams and the definitions

of du (D2) and cu,v (D3) . ]

1.10 DEFINITION,

(Z) By K we will denote the category of all X-categories as
objects together with all X-functors as morphisms.

(i72) By 8§ we will denote the category of all S-categories as
objects together with all X-functors which preserve
the crossing morphisms. If ¢: X > VY 72s an X-functor and
X, Y are S-categories then ¢ preserves the crossing mor-
phisms Zff ¢(cu,v) = Co(u), o(v) for ull u, v € Ob(X).
We will ceall sueh functors as S-functors.

-’-

Recall that X-categories are small categories.



(t27) By D we will denote the full subcategory of K consisting

of all D-categories as objects.

(iv) Let 0 be a fixed monoid (with x as operation). Then we
will denote by K(0), 8(0), P(0) the subcategories of
K, §, D resp. consisting of X-categories X with Ob(X)
= 0 as objects and such X-functors which are the Zdentity

mapping id: 0 - 0 on the objects.

1.11 REmARK.

A functor ¢: X » V € Mor(P) preserves croegsings, truncations,
diagonalizations, and finite direct products. So P Zis also a

full subcategory of S.

PROOF,

Because (DO) is satisfied in Y we have Q(tu) = t@(u) for all

u € Ob(X). Therefore ¢ preserves the direct product diagrams

uxv
1uxty/// \\{§x1v
u v

Since another direct product w € Ob(X) of u and v is isomor-
phic to uxv it can easily be proved that ¢ preserves all finite
direct products. From the universal properties of direct
products it then follows that ¢ also preserves the crossings,

and diagonalizations. ®

1.17 DEFINITION,

(1) Let X be an S-category (D-category) and A < Mor(X). A
is called a free S-generating system (free D-generating

system) for X iff the following universal property holds:



If Y Zs an arbitrary S-category (D-category), oi:
Ob(X) = Ob(Y) a monoid homomorphism,and ®2: A - Mor(Y)
a mapping such that ®;(a): & (u) > & (v) zf a: u > v
€ A, then there exists a uniquely defined S-funetor

(X-functor) ®: X » Y which Zs an extension of &1 and o».

(22) An S-category (D-category) is called free <Iff it possess

1.15

(7)

(27)

a free S-generating system (D-gemnerating system).

THEOREM AND NOTATION.

Given any free monoid 0 and an arbitrary set A together
with two mappings S, T: A » 0 there exists a - up to an
tsomorphism in S - uniquely determined free S-category

FS(A, 0) with free S-generating system A and 0 as moncid
of objects such that every a € A becomes a morphism a:
S(a) » T(a) € Mor(Fg(n, 0)).

Given any free monoid 0 and an arbitrary set A together
with two mappings S, T: A + 0 such that € ¢ T/(A) there
exists a - up to an tsomorphism in D - uniquely deter-
mined free D-category FD(A, 0) with free D-generating
system A and 0 as monoid of objects such that every a

€ A becomes a morphism a: S(a) » T(a) € Mor(FD(A, 0)).

SKETCH OF A PROOF (c.f. [11, [21, [41).

(1)

Let 0 = £¥ with an alphabet Z. Define

A' := AU {c s,t ¢ £} T

s,t:

and extend S,T to S, T: A' - 0 by S(cS
T(c

’t)—= sxt and

s t):z txs. Let X be the free X-category X := F(A', 0)

’

(c.f. 2.4). Then Cq ¢ becomes a morphism c

14

€ Mor (X), s,t € yv. Define c t= C =
u,e £,u u

€ 0. Further define € u inductively using (

’

e using (S3') for u, v € 0. Now let R be the congruence
’

: sxt » txs
s,t
1. for all u
S3) and then

U denotes the disjoint union.



relation in Mor (X) generated by the axioms (S1}, (S2),
and (S3). Let ¥:X » X/R be the canonical functor and define
FS(A, 0) := X/R. It is clear that X/R is an S-category.

(ii) Define

A' 2= A U {ts: s € L}

] {ds: s e»z}

u {Cs,t: s,t € I}
and extend S, T to S, T: A' » 0 by S(tS) = S(ds):z s,
S(Cs,t)'= sxt, T(tS).= £, T(ds):: sxg, and T(cs,t)': txs.

Let X be the free X-category X := F(A', 0). Define Cy oy

4

du, and tu for arbitrary u, v € 0 in an analogous way as
in (i) using (S3), (s3'), (DO), and (D6). Let R be the
congruence relation on Mor (X) generated by the axioms
(s1), (s2), (s3), and by (DO), ..., (D7). Let ¥: X + X/R
be the canonical functor and define FD(A, Q) := X/R. Then
X/R 1is a D-category. For two given morphisms f: w - u and
g: w > v in Mor (X/R) h := (fxg)odw makes the following
diagram commutative ((DO) and (D2})), and by (D1) must be

unique.

In the both cases (i) and (ii) now we have to prove that A may
be considered as a subset of X/R and that A then is a free S-
generating system (D-generating system) for X/R. We sketch the
proof for (ii), a proof for (i) is similar.

Let Y be an arbitrary D-category, ¢;:0 » Ob(Y) a monoid
homomorphism, and ¢,: A -+ Mor(Y) a mapping such that ¢, (a):
¢, (S(a)) » ¢, (T(a)) € Mor(Y) for a € A. ¢, may be extended to



a mapping ¢3: A' € Mor(Y) in an obvious way such that the

images of c d , and ts are the crossings, diagonalizations,

s,t’ 7s

and truncations in Y. Since A' is a free generating system for
X there exists a unique X-functor ¢': X » ¥ extending ¢; and
¢). Since all the relations in R also holds in ¥ we have an

X-functor ¢: X/R » Y making the following diagram commutative:

X
1
y ¢
v 7
X/R »> Y

Clearly ¢ is an extension .of ¢; and ¢,.

Now we will prove that W{A: A - Mor (X/R) is injective. Let
M be a set such that card(M) > card(A) and let CM be as in

example 1.6. It is easily proved that Cb is a D-category. Then

1
may define

®1: 0 > Ob(Cy) = No by &;(u) := lu|Tfor a1l u € 0
and

$r: A > Mor(CM) such that &, (a): &;(S(a)) > ¢; (T(a)).
Since card(M) > card(A), and ¢; (T(a)} > 1, we are able to
define ¢, in such a way that it is injective. Then ¢' is

A

injective too and therefore VY must be injective. =

A

For describing a switching circuit as a morphism in a free
D-category it is not essential how the circuit paths are
factored. However because of (D7) the following two circuits

also have the same description.

|u| denotes the number of letters in u € I~.

we
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But if we are not interested in the outdegree of switching
elements this is not a handicap. Our earlier method of
describing switching circuits by a digraph together with a
linear order on the inputs of the nodes (switching elements)
is a special representation of the morphisms in FD(A, No) .

We only had to consider
ne < a; Nys ey nk> {a € A)
as an abbreviation of the morphism

L. = (1

xa)of of o...0f
n n-1

n+k—2,nk n+k—3,nk—1 n—1,n1’

where

£ = (‘quc1

VU V—=u

is the morphism which connects the pu-th wire of v parallel -
wires with a new wire to the right of them. For example if

6: <A} 2, 4>

is a line then g, is the morphism

6

[ 1

A

b g
- 35,
Fls*

The first 1 lines representing the input variables will be
omitted, and the two lines for the constants true and false

are

£l+1 = 1lxtrue,

£l+2 1= 1l+1Xfalse.

- Then the switching circuit represented by m such lines is the

morphism
OOQmO...021+1

where o is the output selecting function written as a morphism
in FD(A, Ny ).



There are several other representations and normal forms
of the morphisms of an ¥X-category, S-category, or D-category.
For them we reffer the reader to [1]. As an example every
morphism f in a D-category may be factored as f = f'of" where
f" is constructed using only diagconalizations as switching
elements and in f' no diagonalizations occur. then f' may be
considered as the usual formula notation describing f.

The following definition generalizes the concept of Boolean
and arithmetic functions in the sense of Strassen's Q¥algebras
[1€].

1.14 DEFINITION.

Let M be a set. A function w: M® > M {s called an n-ary
operation on M (n € N). Let Q be a set of operations on M
together with a mapping S: Q - m such that w € 0 Zs an S(w)-
ary operatton on M. Now we define A := M U Q and extend S to
a mapping S: A =+ INg by setting S(x) = O for all x € M. Further
we define another mapping T: A ~ Ng such that T(a) = 1 for all
a € A. Using theorem 1.13 we get the free D-category FD(A,INO).
Let CM be defined as in example 1.6 and define an interpre-

tation 1: FD(A, Ng) ~ CM as follows:

I 45 the identity mapping on the objects and

I(m)(x1,...,xs(w)) = w(x1,...,xs(w)) for all w € Q,
x1""’xS(w) € M,

I(x)(e) = x for all x € M.

This means that the elements of M are interpreted as constant
funetions {e} + M. Now we denote by P the image of the

funetor I. Clearly P

M,Q 18 a D-category.

1.15 ExamMPLES,

(i) If M ={ true, false} and @ = {A, v, 1} where A, v, and -
are the wellknown Boolean operations on M then PM Q= B (c.f.
example 1.5).



(ii) If M = {true, false} and Q@ = {A,v} then PM G = B™, the

D-category of all monotone Boolean functions.
(iii) If M = R is a ring and Q@ = {+, =, *} is the set of the
ring operations, then P = P_ is the D-category of all poly-

M,Q R
nomial functions over R.
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§2. Complexity Measures on X-categories.

In this section S denotes a fixed additive commutative ordered
monoid with unit element O satisfying the following condition:
(P) s >0 for all s € 8.

In this case we call S a positive moncid. For example S may

be the additive semigroup Ng together with the natural order.

2.1, DEFINITION,

Let X be an X-category. A complexity measure on X with values

in S 28 a funetion c: Mor(X) + S satisfying the following axioms:

(C1) c(1u) =0 for all objects u € Ob(X).

(ce) c(fog) < c(f) + clg) for all £, g € Mor(X) such that fog

18 defined.

(C3) c(fxg) < c(f) + c(g) for all £, g € Mor(X).

In the future we will often denote a complexity measure c

by |...].

If c satisfies the stronger condition
(€2') c(fog) <'Max(c(f), c(g)) if fog is defined (f,g € Mor(X))

tnstead of (C2), we call c a breadth measure on X, and if c

satisfies
(€3') c(fxg) < Max(c(£f), c(g)) (f, g € Mor (X))

instead of (C3), we call c a depth measure on X.
If X 28 an S-category (D-category) we call a complexity measure )

c on X an S-complexity measure (D-complexity measure) iff
) = = = . 3 - /
C(cu,v’ 0 (c(tu) c(du) c(cu,v) O) for all v, v € Ob(X)z/

2.2 EXAMPLES, /!

/

Let X = F(a, 0) (X = FS(A, 0)) be a free X—category;(free
S-category) and L: A » S an arbitrary function. We may inter-
pret S as an X-category where o and x both mean the addition +
in S and o is always defined. The monoid Ob(S) consists of a
single element e. Therefore, S is also an S-category with Ce, e

1= 15. Extending the function L to an X-functor (S-functor)



L: X > 8

gives us a complexity measure L on X with values in S for which

the following equations hold:

(1) L(1u) =0 (L(cu V) = 0 in addition) (u,v € Ob(X)).
(ii) L(fog) = L(f) + L(g) if feg is defined (f,g € Mor(X)).
(iii) L(fxg) = L(f) + L(g) (f,g € Mor(X)).

Such a complexity measure on free X-categories (free S-catego-
ries) is called a cost function. Since L(tvof) = L(tu) =0

(f: u > v € Mor(X)) in a free D-category there exist only trivial
cost functions (that means L(f) = O for all f € Mor(X)).

If X denotes the free X-category G(A) of switching circuits
over the basis A and L:A » S is the cost of a single switching
element (in A), then for a circuit f € Mor(X) L(f) denotes the
cost of this circuit. The cost of a single switching element
may be the price we must pay for it or the energy this element
uses on the average for working correctly. In both cases S may
be the positive monoid Rg of the nonnegative real numbers. But
we also may combine the two cost functions as L: A ~+ R: X Rg
such that the first component of L(a) is the price and the
second component is the energy consumption. In this case the
semigroup S is not a submonoid of Rf. The order on S = R: X Rg
is the lexicographical order. This is analogous to valuations
of rank > 1 in algebra.

Another important example is given in [5]: Let M be a finite
set and X a sub-X-category of CM such that Mor (X) consists only
of isomorphisms (bijections) on CM' et I = (ﬂu)uQNo be a
sequence of partitions such that

u

M™ = U o where a N B =@ for different.a,B €

€T
u

u’

Define an entropy function H : Mor (X) - R by

card (o) card (f (a) N B) Vs card(f (a) N B)

HH(f) = g card(Mu) 8 card (o) card (o)

for £: u » v € Mor(X) where o runs over nu and R runs over ﬂv



2

Then in [5] is proved that H: Mor (X) - Ry defined by
H(f) = sup {anf}: I sequence of partitions as above}

is a complexity measure. This complexity measure is used to
get lower bounds on the complexity of permutations (matrix

transposition for example) and merging networks (c.f. [13]

and [18]).

In algebra we define valuations on rings. Here, one of the

axioms is |x+y| = |x|:|y| where an equallity instead of an
inequallity is postulated. Therefore in the theory of valuations
on a ring or on a field we have a lot of results characteri-
zing the set of possible valuaticns. But in our case we have

the following difficulties:

.3 REMARKS.

Let X be an X-category and cC: Mor (X) » S a complexity
measure on X. If @w: S > 8 denotes an avbitrary monotone sub-
. . i ¥ o 3 ;
linear function with @(0) = Q, then woc: Mor(X) - S 28 also

a complexity measure on X.

PROOF: easy calculation. =

2

+

4 EXAMPLE,

I1f S is the positive semigroup Rg, then : R? -+ Rg defined
as w(x) = log(1 + x) is monotone and convex and satisfies ¢(Q)
= 0. If in general @, Y: S » S are monotone and convex with
p(0) = YP(0) = O then woyP: S =+ 8§ is also such a function. If we
have one complexity measure c: Mor (X) * S we are able to con-
struct a lot of other complexity measures, such as goc, wo®oc,

@owowoc, ... which are all not very different from c.

Therefore we will later define "strict complexity measures”.
But before considering the set of all complexity measures on
a fixed X-category X we will prove some theorems about complexity

measures.

A function y: R + R is called sublinear iff Y(x + y) < ¢(x) + y(y).



- 25 -

2.5 THEOREM AND NoTATION,

Let &: X » YV be an X-functor defined over X-categories X

and VY.

1

() If c: Mor (V) - S is a complexity measure on Y, then &  (c):

Mor (X} » S defined by

0”1 (c) (£) := c(a(f)) (f € Mor (X))
18 a complexity measure on X.

(t7) Let S be such, that for every subset M <« S 1inf(M) exists
respective to the order on S. If ¢ considered as a mapping
Ob(X) » Ob(Y) Zs bijective and c: Mor(X) » S <5 a complexity
measure on X, then %(c): Mor(Y) =+ S defined by

¢(c) (£) := inf {c(f'): O(f') = £ } (f € Moxr(VY))
18 a complexity measure on Y. If inf(@) = o does not exist
tn 8 but 9 is also surjective on the morphisms, then d(c)

can be defined in the same way.

PROOF .

(i) obvious.
(ii) (C1): Since ¢ is surjective on the objects, for every
u € Ob(Y) there is a u' € 0Ob(X) with @(Tu.) = 1
Therefore @(c)(1u) = 0.
{C2): %¢(c) (fog) = inf {c(h): ¢&(h) = fog}

uc

< inf {c(f’og'): &(f') = £ and d(g') = g}
gince ¢ is injective on the objects
< inf {c(f'): &§(£f') = £}

+ inf {c(g'): ®(g') = g}
¢(c) (£) + ¢(c) (g).
(C3): similar to (C2) without using the assumption, that ¢

]

is injective on the objects. ]

The following example shows us that the supposition that ¢ is

bijective on the objects is necessary.
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2.6 EXAMPLE.

Consider the following two free X-categories:
X=F({f, Jir gZ}l {rl S1¢s S2. t}*), V=F({f', g'}, {ul A W}*)_
r u
5 |
S v
i
S3 W

Let ¢: X » VY be the following X-functor:

d(r) := u, G(E) = £°*,
¢(s1) = @(s2) =V, (g1} = ®(g2) :=g9g',
olt) 1= w.

If c: Mor(X) » S := Ry U {=} is defined by

c(f) := c(g1) == 0O, c(gz) == 1
(c.f. 2.2) then we have

d(c) (g'of') = inf { c(h): &(h) = g'of'} =1
since ¢ '(h) = {gi0f} but

¢(c) (g') = @(c) (E') = O,

and so ¢(c) cannot be a complexity measure on Y.

The above problem arose because ¢ was not injective on
Ob(X) - Ob(Y). It is also clear that if ¢ is not surjective on
the objects ¢(c) cannot satisfy the axiom (C1).

Because of theorem 2.5 we are able to define the size complexity
of Boolean functions. Let I: G( {A, v, 1}) + B the interpretion
defined in §1. On G( {A, v, 1}) we are able to define a cost
function 1 with values in Ny, such that L(du) = L(Cu,v) = L(tu)
=0 (u, v € Ng) and L(A) = L(v) = L(7) =1 (c.£f. 2.2.). Then

I(L) is the size complexity on B.
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Throughout the rest of this section we will consider only
X-categories in K(0) for a fixed monoid 0. Further we will
assume S = m} U {=}, which we may also consider as a semiring.

Then we define:

2.7 DEFINITION,

We denote by € the following category:

Ob(€) :=1{ (X, c¢): X € Ob(K(?)) and ¢ is a complexity
measure on X with values in Rj U { =}}
Mor (€) :={®%: (X, c) » (X', c¢'): &: X » X' € Mor(K(0))
and 3 A € R+ such that c'(®(£f)) < X-c(f)
for all f € Mor(X)}.T

If id: X - X 28 the identity functor (X € K(0)) and ci,c, are
two complexity measures on X, then we will write
e ?.Cz ’l:ff id: (X, C1) & (X, Cz) € MOI‘(X).

Further

C1 & C3 ’l:ff C1 é_—CQ and Ca < Coe.

It is easily checked that ¢ is indeed a category. Theorem

2.5 shows us that the following are merphisms in C.

2.8 PROPOSITION,

Let ¢: X » YV be a morphism in the category K(0).
() If ¢ is a complexity measure on Y, then

o: (X, o

(c}) + (Y, ¢) € Mor (D).
(Z2) If c ts a complexity measure on X, then

¢: (X, ) » (¥, $(c)) € Mor(C).

—— e —— ——— - —— -

{x € R: x > 0}

it
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2.9 PrROPOSITION,

Let ¢: X > VY be a morphism in the category K(0).

(1) If ci1, €2 are complexity measures on Y and C1 3= C»,
then we have ®—1(c1) >=®_1(cz) on X.

(i2) If c1, C» are complexity measures on X and Cj 2= Cy,
then we have ®(ci) 3= d(cz) on VY.

(X, c1}—32 (X, ©s) (X, ) (c1))-2%(x, 871 (cs))
& & o ® = d
(Y5 Q(Cl))—Ia+(V. d(ca)) (Y, cq)—— (Y, c3)
PROOF,
(1) 0 Vica) (£) = €18(F) = A-cyl6lE)) = -0~ V(ecD) (£).

(ii) @ (cy) () inf {co(£'): @(£f') = £}

inf {A-C1(£'): (£') = £} = A-0(c1) (£). m

IA

In the following we will prove some simulation theorems using

the following definition:

2,10 DEFINITON,

Let ¢ be a complexity measure on ar X-category X with values
in R?U{W}. Then c is called nondegenerate iff for all £ € Mor (X)
c(f) # o,

2.11 PROPOSITION,

Let X = F(A, 0) be a free X-category with finite generating
system A, c1 a cost function on X, and ¢z an arbitrary complexity
measure on X. Assume that ci1, C» both are nondegenerate. If

ci{a) =0 =cp(a) =0V a € A then c; »=C».

PrROOF .

Let A := Max {g%%g%: a € A such that ci1(a) # O }. This maxi-
mum exists since A is finite and we have O < A < « since ci1, C2
both are nondegenerate. Let f € Mor(X). We will prove by induc-
tion on the length of a sequential representation (c.f. [7])

of £, that c2(f) £ A-c1(f).



(i) 1If £

i

1u for some object u € 0, then c,(f) = 0 = ¢c; (f).

(ii) If £
then we have
cy; (f) <€ cyo(a) + ¢z (g)

< x-ci;(a) + A+c;{g) by definition of X and
induction hypothesis

i

(1uxax1v)0g with u,v € 0, a € A and g € Mor(X),

A-(cy(a) + c1(9))
= A-cl((1uxax1v)og) = A-cy (f}) since c¢; is a cost

function on X. =

2.12 FIRST SIMULATION THEOREM,

Let X be a finitely generated free X-category and ci, Cz two
non degenerate cost functions on X with ¢, (f) = 0 « c,(f) =0

for all £ € Mor(X). Then we have c; ™~ Cj.

PROOF ,

Since every cost function is a complexity measure, we have

from 3.11 that ci3=c, and c; 2=c;. Therefore c; & c,. [ ]

2.15 THEOREM (llAXIMALITY OF THE SIZE COMPLEXITY) (c.f. [5]1).

Let $: X » ¥V € Mor(K(0)) where X Zs a finittely generated
free X-category and ¢ 18 surjective on the morphisms. Further,
let c1 be a non degenerate cost function on X and c; be an
arbitrary non degenerate complexity measure on Y such that
ci1(f) = O =» cp (O(£)) = O for all £ € Mor(X). Then Cz:\(‘b(Cx).

(X, c¢y)———(V, c2)

\"/}/d

(v, ¢{ci1))

In the case ¢ = I, X = G({A, v, 2}), and V B this means:
Every non degenerate complexity measure c on B with c(du) =
- v) = 0 for all u,v € Ob(B) = Ny is (without a

constant factor A) a lower bound for the size complexity in

C(tu) = ¢fc
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B. Further, two non degenerate size complexity measures cC;
and c, on B are equivalent (¢, = c;) 1iff c,;(f) = 0 & c, (f) =0
for all £ € Mor (X).

PrROOF ,
®-1
c1(f) =0 = ¢—1{Cz}(f) = cr(®(f) = 0 for all £ € Mor (X).

Then 2.11 implies that ¢_1(cgqucl and because of 2.9 we get

(c2) is a non degenerate complexity measure on X with

®(®_1{02)}qg $(c1). Now we will prove that under the supposi-

tion that ¢, regarded as a mapping ¢: Mor (X) > Mor(Y) is sur-
1

jective, we have c, = ¢(¢ (cz)). Let £ € Mor(Y). Then we have
2(87 " (c2)) (£) = infl@” ' (co) (£'): @(F') = £}
= inf {ca (®(£")): Q(£f') = f}
= c, (f)
since there exists an f' € Mor (X) with ¢(f') = f. ]

2.14 OPEN PROBLEM,

Find complexity measures which can easily be computed, but

still give good lower bounds on the size complexity.

Most of the well known examples of such complexity measures
which are easily computed are depth measures and therefore not
good lower bounds for the size complexity. Another example
which yields nonlinear lower bounds is the entropy function
e £ 2<2) »

2.15 THEOREM.

Let X be an X-category and r: Mor (X) -~ Rt U {»} an arbitrary
function satisfying r (1) = O for all u € Ob(X).

() e, Mor(X) = Ry U {®} defined by

c (f) &= sup{r((1 x€x1 )oh) - r(h): u, v € Ob(X),

h € Mor (X) such that (1uxfx1v)oh is defined}

Z8 a complexity measure on X satisfying cr(f) 2 r(f) for all
f € Mor(X).
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(i7) _c: Mor(X) - R: U {»=} defined by
rc(f) 1= sup{r(h0(1uxfx1v)) - r(h): u, v € Ob(X),
h € Mor (X) such that ho (1 xfx1 ) is defined}

18 a complexity measure on X satisfying rc(f) > r(f) for all

f € Mor (X).

PROOF ,

We will only prove (i), a proof of (ii) is similar.

(C1) : c (1) = Sup{r((iux1wx1v)oh) - r(h)} = sup {r(h) - r(h)}
u,v,h h
= 0.
(C2) : c.(fog) = sup {r((1uX(fog)x1v)°h) - r(h)}
u,v,h
< sup {r((1uxfx1v)o((1uxgx1v)oh)) - r((1uxgx1v)oh)}
u,v.,h
+ sup {r((1 xgx1 )oh) - r(h)}
2, Vz h

s c (f) + cr(g).

(C3): Let f£: w; » wi{, g: wp, > wi € Mor(X).

cr(fxg) = sup {r((1uxfxgx1v)0h) - r(h)}
u,v,h
< sup {r((1uxfx1wixv)o((1uxw1xgx1v)0h)

u,v,h
= r((1uxw1xgx1v)oh)}

+ sup {r((1 xgx1_)oh) - r(h)}
u,v,h — v

IA

c_(f) + cr(g).

g

Let f: w > w' € Mor(X). Taking u = v = ¢ and h = 1w we get cr(f)

2 r(f). ]
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2.16 REMARKS

(1) If r: Mor(X) =~ m? U {=} 28 already a complexity measure

on X then c,. = r? = r.

(11) Let B be a finite generating system for X. If |...|denotes
the size complexity on X and r: Mor (X) - Ry U {»} satis-
ftes
(a) r(1u) = 0 for all u € Ob(X),

(b) r(TuXEx‘IV) < r(f) for all u, v € Ob(X), £ € Mor (X),

(¢) r(aoh) < |a| + r(h) for all a € A, h € Mor(X)

then we have ¢ < {amn | .
PROOF ,
(1) r(1uxfx1v)oh) - r(h) £ r(f) since r is a complexity measure.
It follows that r(f) = cr(f) <€ r(f) and similar r = ey
(ii) Let m := max{]al: a € A}. If £ € Mor(X) has a representation

of lenght 1 respective to A then cr{f) < l:m. This can

easily be proved by induction on 1 using the suppositions

(b) and (c). It follows that C, is non degenerate and there-

fore (by theorem 2.13) c . [...]. =

The second remark in 2.16 is often used to get lower bounds
for the size complexity. Examples are Strassen's degree bound
[17] or Paul's 2.5 n lower bound [13].

The following is analogous to a theorem of Strassen (c.f.
[161).

2,17 SeconD SIMULATION THEOREM (c.f. [5]).

Consider the following dragram in €:

(Xf C)_'—'—"X__"*(X'r C.)

“’J l‘b'

(Y, ¢(c)) (yr, @'(c'))
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and agsume that there exists an X-functor ¥: Y > V' such that

the following diagram in K(0) <s commutative:

) S G
¢l % l¢'
y 7 sy

Then Y is a morphism in C too; that is Y71 (9" (c*)) =L o(c).

PrOOF ,
' (c*) (Y(£f)) = inf {c'(£%): Q' (f') = ¥ (f)}
< inf {c'(x(g)): (2'oyx) (g) = ¥(£f)}
(since B ¢ A implies inf(A) < inf (B))
= inf {c'(x(g)): (Yod) (g) = VY(£f)}
< inf {A-c(g): ¥(o(g)) = ¥(£)}
(since x € Mor(C))
< A-inf {c(g): o(g) = f}

(since B < A implies inf(A) < inf (B))
= L-d(c) (f).

2.18 ExAMPLE.

Let ¢: R » R' be a ring homomorphism (R, R' rings). Then
we may define the X-categories PR and PR' as in example 1.6.
We denote the natural interpretations of G({+, -, *}) in PR
(PRI
an X-functor ¥: P, - PR' such that the following diagram in

R
K(Ng) is commutative:

resp.) by I (I' resp.). The ring homomorphism ¥ induces

G{{+r =] *})—"'"_'i_a'——)G({*" Ay *})

T L I

Let L be a cost function on G({+, -, *}) with L(+), L{=), L(*)

# O and L(d1) = L(c.i 1) = L(t1) = 0. Then I(L) (I(L') resp.) is



the size complexity on PR (PR, resp.) or, in other words, the
computational complexity relative to the ring R (R' resp.).

Now the second simulation theorem tells us that & ' (I' (L))

< I(L). If for example R = 2 and R' = Z/nZ then computing in

Z is not easier than computing in Z/n%Z. In a similar way we

get n3 as a lower bound for matrix multiplication over %

using only the monotone operations + and + from the same

lower bound for monotone Boolean matrix multiplication ([8],[10]).

For further examples see [5].
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§3. The R+—Module of all the Complexity Measures

on a Fixed X-Category.

In this section 0 will be a fixed finitely generated free
monoid and all of the complexity measures considered here will
have values in the semiring Rt.

3.1 ProrosiTION AND NOTATION (c.f. [5]).

Let X€EOb(K(0)) be an X-category. We denote by
C(X) := {c: Mor(X) » R?: c is a complexity measure on X}

the set of all complexity measures on X. Let ci1, c, € K(0)
and X € Rt. Then the following holds:

(2) c1 + c2€ €(X) where (cy + cy)(f) := c(£f) + c2(f) for all
f € Mor(X).
(i2) A+cy € €(X) where (A+cy) (£) := A*cy(f) for all £ € Mor(X).'

Thus €(X) 28 a module over the semiring R:.
PROOF: elementary calculations. »

Denoting by M the category of all R'-modules and linear
mappings we get the following theorem:

3.2 THEOREM,

C: K(0) - M defined by

C(X) :={c: Mor(X) > R': c is a complexity measure on X}

for X € Ob(K(0)),

C(d)(c) := & '(c) for ¢: V - X € Mor(K(0)) and ¢ € C(X)

18 a contravariant functor from the category of all X-categories

to the category of all Re-modules.



PROOF: elementary calculations. [ ]

The following remark was made by one of our students
(Thiet Dung Huynh) during a seminar lecture:
Let &: X » ¥ € Mor(K(0)). If & is surjective then €(¢) is

injective. If c;, c, € €(V) such that €(9){c;) = C(d) (cz)
then we have
¢-1(C1)(f) = ¢—1(c;)(f) for all f € Mor (X)
= C3 (d(f)) = c2(d(£)) for all £ € Mor (X)
=» C;(g) = c,(g) for all g € Mor(Y) since ¢

is surjective

= Cy = Cs.

If now Y is an arbitrary (finitely generated) X-category

then we have a surjective X-functor
¢: X » V

where X is a free (finitely generated) X-category.

Since €(®) is injective we may consider €(Y) as a submodule
of €(X). Therefore in studying all the complexity measures

on all (finitely generated) X-categories in Ob(K(0)) it is
enough to consider the complexity measures on (finitely gene-
rated) free X-categories. But on the other hand, for the same
reason, it is harder to classify the complexity measures on a
free X-category than on a special X-category. For example, D-
complexity measures on a D-category Y have properties which
are not satisfied by all complexity measures on the free
X~category X generating Y, even if they have zero-values on
the switching elements interpreted as crossings, truncations,

and diagonalizations.

5.3 THEOREM,

Let |...| be a D-complexity measure on a D-category X
with Ob(X) = No. Then the following holds:
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il

(2) |£xg] |gxf| for all f: uw > u', g: v » v' € Mor (X).

(ii) | f]

A

|fxg| for all f: u > u', g: v » v' € Mor(X), u # O.

(222) [1,xEx1 | =|£| for all f: w > w' € Mor(X), w # O.

PROOF ,

< |gxf| for |e

4y | F=g] = |Cv',u'°(gxf)ocu u,v\ - lCv',u'

rVI
= 0, and vice versa.

(ii) Let hv: 1 » v be defined inductively as follows (v € IN):

h1 = 11,

hv+1 1= (11th)od1.
Then (11xtv)oh.I+V = 11 and therefore
f = (1u,xtv,)o(fxg)o(tu_1xh1+VL (u-1 € Ny since u # O
|[£] = |[£xg| by (c2).
(1ii) |E]| &

|1uxfx1v\ £ €| by (1iy and (C3). @
3.3 (iii) gives an answer to a question in [5], p. 408 f.

3.4 THEOREM AND NOTATION,

() Let X € Ob(K(0)) and s~ the equivalence relation on €(X)
defined in 2.7. Then s is a congruence rvelation on €(X)
considered as an R:—module. We define E(X) := C(X) /ms.

(77) Let ¢: Y » X € Mor(K(0)) then there exists a canonical
module homomorphism €(®): T(X) » ©(Y) such that the following

diagram is commutative, and €: K(0) ~ M becomes a funector.

cx) —C@ ¢y
T e e——— 1)

C(o)



PrROOF,
(1)

(ii)
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Let c¢1, c; € €(X) with c1 c». Then there is a X € rY
such that c; (£f) < d:c (f) for all f € Mor(X). If c

€ €(X) is another complexity measure we have for all

f € Mor (X):

(c1 + c) (f)

IA

AeCa(f) + c(f) =« A'-loplE) + elf))
= XN.(co + ©) (f)
where A' := Max {A, 1}. Therefore c; + c =< c», + C.

If p € R? then clearly p-c; =« u-cz. Thus it follows

that s~ is a congruence relation on C(X).

We only must show that c, s c, implies ®"1(c1) A ®-1(c2).
Let ¢, c; € €(X) with ¢, < C2 that means there exists a
» € R" such that c; (£) < A-c,(f) for all f € Mor(X). It
follows

A-0" 1 (ca) {g)

it

o~ (c1) (g) = c1(8(g)) < A-c2(®(g))

for all g € Mor(X). Therefore ¢—1(Cx)=< ¢-1(c2) and
analogously ¢_1(cz) < 4;1(01). ]

Let X € Ob(K(0)) and ¢ € €(X) such that c is not bounded

above by a constant. If : R: > Rg is the function ¢(x) =

log(1 + x) defined in 2.4 then the complexity measures c,

poc,

powoc, ... are pairwise inequivalent. Furthermore they

are algebraically indepedent over R. If we call the maximal

number of algebraically indepedent elements in an RT-module

the dimension of that module then €(X) has in general infinite

dimension.

As

noted in example 2.4 above we will now define strict

complexity measures.
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§4. Strict complexity measures.

4,1 DEFINITION,

Let X be an X-category and c a complexity measure on X.

c 18 called a strict complexity measure iff it satisfies

(CS3) c(fxg) = c(f) + c(g) for all £, g € Mor(X).

Since it seems to be very difficult to get good lower
bounds on the size complexity cf Boolean functions we
consider monotone Boolean functions. Let B" denote the
subcategory of B having only monotone Boolean functions

as morphisms. Clearly B" is a D-category. Let
I: G{{A, v}) + B"

be the natural interpretation. If L is the following cost
function then I(L) is a strict complexity measure (for a

proof see [6] or [12], for another proof see 4.7).

L(A) := L(v) =1,

L(tT):= L(d1):= L(c 0.

1,1) =
From example 2.4 it is clear that there exists complexity
measures which are not strict. The following example shows

that even the size complexity must not be a strict complexity
measure. Further this example shows that there are non strict
complexity measures on B", Therefore monotonicity is not only

a property of the X-category but also of the complexity measure
considered; however we do not know whether "strict" is enough

to characterize "monotone" complexity measures.

=

2 EXAMPLE.

Let R be a finite ring and consider PR' Let I: G({+, -, -})
> Pp be the natural interpretation and [...| = I(L): Moxr( Pr)
+ R} where L ist the following cost function on G({+, -, -}):

L(+) z= L(-) := L(:) =1,

L(t1)1= L(d1) = L(c1_1) =: 04
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For an nxn matrix A € R"*" define the morphism fA: n >ne€
Mor(PR) by fA(v) = A.v for all column vectors v € R". If B

is another nxn matrix over R then we have

A-B = (fofAX...Xng(B)

n times

where B is considered as a sequence of n column vectors from

R, By Strassen's matrix multiplication we know that
log 7
[ExnE, 2.0 uxEy| = 0t =99 7).
— —N—

n times

1f we take E instead of PR we know that

log 7
IfA a%- e *Ep

il

= 0(n log n log log n log log log n).

A4
n times

On the other hand f = fB ® A =B for two matrices A, B € rR" n'

and therefore there are at least r" different morphisms £
with A € Rnxn where r = card(R). Further, a simple counter
24 1.

argument shows that there are at most (3(1 + n + r)“) ™~ mor-

A

phisms f € Mor (P,) such that |f| < 1. Now there must exist a
matrix A € R™'" such that

2
(3L +n+ )%t 2 r" where 1 = |£,].

If r > 1 it fo%lows that 1 = [fA! grows asymptoticaly at least

as fast as and therefore

n
log n

nlg,| » IfA A% ..xf,| for n large enough.

v

n times

Using B instead of PR the same holds true. Thus since fA €
Mor (B™) we see that the restriction of the size complexity
on B is not a strict complexity measure on B,

Another such example is the fast Fourier transformation.

In [12] Paul has shown that for every € > O there are mor-~
phisms f € Mor (B) such that

|£x£] < (1 + €)|£].



For giving a precise meaning to the proposition "the size
complexity measure on B is not strict" we define strict equi-

valence classes of complexity measures:

4.3 DEFINITION.
Let X be an X-category and © € C(X). We call C strict iff

there is a strict complexity measure c € C. We use the nota-
tion "the size complexity measure on X is striet” iff there

18 a strict complexity measure on X whiech is equivalent to

a non degenerate size complexity measure on X having no

gero values on elementary switching elements (without trun-

cations, crossings, diagonalizations, and constant morphisms).

4.4 PROPOSITION.

The size complexity measure on PR for a finite ring R s

not strict.

PROOF,

Assume that there is a strict complexity measure c¢ which
is equivalent to the size complexity |...| with |+]| = ||
= |-| = 1. Then there are A, A' € R' such that c <X |en
and |...| < \'-c. Consider example 4.2 and let n € N such

1 n . nxn
that (fo...xfE( < =% g3+ |f5| for a matrix A € R . Then
n times

we have the following contradiction:

c(fo...xf ) < A|fo...fo|

R .
n times n times
1T n

<5 —3r £,

< 1 n c(f,) = 1 c(f., x xf_ ) [ ]
- 2 A 2 A "R "

\——V—.—J
n times

On the other hand there are a lot of examples where the
size complexity is strict.

Let M be a set and  a set of unary and binary operations
on M. In the following we will prove in some special cases
that the size complexity measure on PM,Q is strict. The proofs
will use the technic of considering a "first mixed switching

element".



.

4.5 Lemma,

Let M and Q be as above, A := M U Q and 1: FD(A, WNg) - PM Q
r

the natural interpretation. Then every h € Mor(FD(A,INo))

such that I(h) = fxg with £f: u - u', g v > v' € Mor(PM Q)

may be written aese

(i) h pxq wtth I(p) = £ andlI(q) = g or as

Il

(1i7) h = h"(1w§mx1w2)°(pxq) with p: U > Wy, g: V > Wy,
h: wi+w,=1 > u'+v' € Mor(FD(A, N¢)) and a binary ope-
ration w € Q, such that I(twl_1x11)'p) and
I((11xtw2_1)-q) both are not constant functions.

L 11 L
6 S A
P q
" i
h |
I I ) 59) I 0 7 (I [ O 125 O
1T 111

In the second case w s called a first mixed switching ele-~
ment in the circuit h respective to the partition u+v of the

input wires of h.

PROOF: Induction on the size of h using the relations 81,...,

S3 and DO,...,D7 satisfied in a D-category.

4,6 THEOREM,

Let R be a free semiring. Then the size complexity

measure on PRis gtrict.

Sketch of a PROOF,

Liek Bx m & ﬁ', g:rv - v' E_Egr(PR) and let h € Mor(FD(RU{+,-},
No)! a minimal switching circuit such that I(h) = fxg where
I: FD(RU{+,-}, No) .~ PR is the natural interpretation as in
Lemma 4.5 above. If h = pxq with I(p) = f and I(q) = g

there is nothing to prove. Otherwise let w be a first mixed
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switching element. Since h is minimal h' is mihimal too.
Further there must exist a path from w to one of the out-
put wires of h' (otherwise we may simplify the circuit h
and eliminate w in it using DO). Since R is free the only
chance to lose the dependece of the output of w aldng this
path is multiplying by the constant 0. (This argument is

wrong if R is a ring and "-" is a switching element!) But
instead of
7 l
we may use ?

with lower cost. Therefore there is an output wire of h'
such that I((tw1x11xtw2)ah') depends on the output of w
(wl, w} € Ny, such that w} + 1 + w} = u' + v'). This means
I((tw}x11xtw5)oh.) is a polynomial H' € R[X',...,X&1_1,
Z',Y&2_1,...,Yi] in which there is at least one monomial
containing Z' and having a nonzero coeificient. Let I(p)

=(P1,...,Pwl) with polynomials Pi € R[X1,...,Xu] and

I(g) = (sz,...,Q1) with polynomials Q, € R[Y1,...,YV].

Now we get the polynomial H := I((tw,x11xtw.)oh) =
P 7 - i}

(tw;x11xtw5)0(fxg) by substituting P, for X; (1 < i < w;=1),

] L} = ] : v
Qi for Yi (1 < i< wy-1) and Pwl w sz for Z' in H'.

Since Pw and Qw both are not constant functions over R
2

there aré monomials with nonzero coefficients containing
at least one Xi (1 < i < u) and monomials containing at
least one Yi (1 < i <v). This is a contradiction to H =
(tw.X11xtw5)°(fxg) since the identity theorem for poly-

1
nomials over a free semiring holds. @

4,7 THEOREM,

Let (R, +, *) be an ordered semiring. Assume that R is
positive (that means x > O for all x € R) and that there
exists a maximal element © € R (such that X < ® for all
X € R). Consider the natural interpretation I: FD({+,‘,O,W},
Nog ) ~ CR and denote its image by Pﬁ (note that here we
do not allow arbitrary constants as switching elements),

Then the size complexity on Pé 18 strict.



PrROOF,

Let f: u > u', g: v » v' € Mor(Pﬁ) and let h €
Mor(FD({+,-,O,w}, No)) a minimal switching circuit such
that I(h) = fxg. Assume further that h has a minimal number
of mixed switching elements. Let w be a first mixed swit-
ching element in h and let p, g, and h' as in Lemma 4.5.
Further let I(p) = (P1""'Pw1) with polynomials P, €
R[X1,...,Xu], I(q) = (sz,...,Q1) with polynomials Q; €
RlY,,...,¥, ], and I(h") = (H},... H v /Hiv qreea Bl o0)
with polynomials Hi € R[X',...,X&l_1,Z',Y&2_1,...,Y{].

As a consequence of the assumption that only O and « are
allowed as constants, the polynomials Pwl and sz (which

are not constant by lemma 4.5) have no constant terms and
therefore PWI(O,...,O) = 0, Pwl(w,...,w) = o« and sz similar.
w1—1'Pw1'Qw2’Qw2—1""’01)
.,YV]. If 1 < i< u' then H, =

Let w = - and consider H! (P,,...,P
I

= H; €RIXq 00, X /¥,..
Hi Y1=O,...,YV=O and we have

H'(P1,...,P

i W1‘1’PW1.QW2'QW2'...'Q1)

= H}(Py,... P, _4,0,0,...,0)

| A

‘ _
HY(PyyeeesPy _1000Q _qreessQq)

wl—T’Pwl'ng’Q

| A

Hi(Py,.uu,P «2Qq) -

wz_.l,o-

These inequalities hold since R is an ordered semiring and
therefore all polynomial functions R" » R are monotone. Now
it follows

(] -
Hi(P1,...,P Q

w, 19

W1-1'PW1 W2‘1"..'Q1)

- 1

= Hi(P1"”'Pw1—1'o’Qw2-1"“'Q1)'
If u' < i < u'+v' we get the same equation. This proves that
the first mixed switching element w may be replaced by the

constant O. This is a contradiction to the assumption that h

has a minimal number of mixed switching elements.
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= = < i ]
If w + we have Hi Hi Y1=w,...,Yv=m for 1 £ 4ixu

and therefore

H! (P

i 1’--.,Pw1_1'Pwl+Qw21Q "IQ»])

W2-1 e

it

HY (PyyenesBy _qr®s@peen o)

| v

V
Hi(P1 r - --:Pw1_1 l°°le2_11- .= 'Q1)

v

!
Hi(P1r-’- 'PW1—1 ’PW1+QW2'QW2-1 Feee IQ1) .
This leads to the equation

]
Hi(Pyyee o Py _qoPy +Q0 4Q _qreeesQq)

= ] oo
- Hi(P1l---er1_1l IQw2_1I'-'1Q1)

which holds for all i, 1 < i < u'+v'. We may replace w by

the constant « and receive a contradiction too. ]

4,8 KOROLLAR,

The size complexity on B" i{s strict.
PROOF : B" satisfies the suppositions of theorem 4.7.

The following example shows, that allowing arbitrary
constants as switching elements, the theorem 4.7 becomes

wrong.

4,9 ExaMPLE.

Let R = {true, false} x {true, false! the cartesian
product. R becomes a semiring if we define (x, y) + (x', y')
= (x vx',yvy'" and (x, y)-(x', y') = x A x', y Ay".
Further the lexicographical order (based on "false < true")
makes R to a positive ordered semiring with maximal element

© := (true, true).
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Now let f':{true, false}™ + {true, false} € Mor (B™) be

a Boolean function. Clearly f' may be extencded to a function

£: R™ + R by £((x,y)) := (£'(x), £'(y)). Let [...| denote
the size complexity on B"™ and ||...| the size complexity on
Pg- Then we have |[£'| = [|£]] (a switching circuit for f is

also a switching circuit for f' and vice versa). Let f£,, f,
€ Mor(PR) be the functions represented by the following two

switching circuits:

:

(true,false) (false, true)
\=/
Then ||£.]| > |£'] = ||£]| and £, > |£']| = ||f||- On the other
hand f;xf, may be computed using the following switching
circuit:
(true,false) (false,true) |
v v this must be
1 repeated for
+ every input
A wire of f.
3
(true,false) (false,true)

Therefore ||[£1x£,| < ||£] + O(n). If we now take f complex

enough we have shown that ||...|| is not a strict complexity
measure.
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4,10 Open ProBLEMS,
1) Give a characterization of all strict complexity measures
on a fixed X-category.
2) Find a definition of "monotone X-categories'" as a genera-

lization of 8™,

3) Find a definition of "monotone complexity measures' on a

(monotone) X-category.
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