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Introduction : The use of computers in executing algorithms always leads 

to the question of how "expensive" these algoritluns are. This can mean, 

for example, the amount of computing time or storage space required by 

a given algoritlun. Such questions are handled in complexity theorYi 

their ' practical significance is apparent. Upon closer examination 

these questions are seen to be qui te complica·ted, and everyday problems 

prove to be extremely difficult to solve. 

The first attempt at developing a complexity theory for general compu­

table functions began with the axiomatic approach of Blum*. In the form 

of the famous speed-up theorems this approach led, however, to dis­

appointing results. Another approach by Schnorr** with respect to op­

timal Gödel numberings was also taken up by Hartmanis***, . but appears 

not to ha~e been further handled. In the direction of a general theory 

the .most far reaching results have been presented by Strassen in his 

development of the degree-bound. Alth:0ugh this is sharpfor several 

interesting special cases, in general, it underestimates the complexi­

ty of polynomials guite significantly_ 

For several reasons the complexity of Boolean networks has received 

special attention. Go~d lower bounds for these netwo~ks would also 

lead to good lower bounds for polynomials. The results of Fischer and 

Schnorr**** show that beyond this, such ~esults could also yield in­

formation about the complexity of general computable functions. Un­

fortunately, until now all of the efforts applied to the complexity 

of Boolean networks have led to only modest results. For example, see 

the report by Patterson [9], and also the papers by Paul [13] and 

Schnorr [15], which are quite complicated considering their results_ 

The goal of this paper is to examine complexity measures over an axio­

matic basis. These measures include the complexity measures induced by 

* 

** 

*** 

Blum,H.:" A Machine Independent Theory of the Cornplexity of Recursive Functions"~ 
J.ACH 14,2 (1967), 322-336. 

Schnorr,C.P.: "Optimal Enumerations and Optimal Gödel Nurnberings" ,U.Syst.Th.8(1974) 

Hartmanis,J.+ Baker,T . P.: "On Simple Gödel Nurnberings and .Translations" in Auto­
mata, Languages and Prograroroing, 2nd Collo Univ. of Saarbrücken, .1974, LNCS 14. 

**** Fischer,M.J.: Lectureson Network Complexity, pres.at the Univ. of prankfurt,1974 

Schnorr,C.P.: "The Network Cömplexity and the Turing Complexity of Finite Func­
tions", Acta Informatica 7, (1976), ~5-107. 
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cost functions like the size c ornple x ity, d epth c ornp lexity, and breadth 

complexity studied in [16] and [ 9 ] . Also included are the applications 

of entropy [12] [18] and the degree-bound [ 17 ]~ 

We develop this theory on the ba s is o f cat egories with an added monoid 

multiplication. It will be examined under whic h conditions the cost­

function-induced complexity meas ure s c an be a p9 rox irnated by general 

complexity measures. Method s wi ll be developed for c onstructing com­

plexity measures, and the conditions under which the entropy can be 

used for the definition of c omplexity meas ures will be g i ven. Finally 

we will briefly mention c omplexity rneasure s for monotone functions 

developed over monotone elements . 

This paper has its basis in the ext e nded a bstract [5 ] . The formal, more 

cornplete, and e xtended v ers i on found in the current p aper is primarily 

the work of the s e cond a uthor. 
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§1. The Mathema t i cal Representat ion of Switching Circuits. 

In this paper the si z e complexity , depth complexity, and oth e r 

complexity measures o f Boo l ean f u n ct i ons represented by switching 

circuits will be exa mined . F ir st o f a ll we n eed a good mathemati­

cal representation of switc h i ng ci r cui ts. 

The first idea in th i s direct i on is to repre sent a switching 

circuit by a digraph in which n odes ar e labeled with el e mentary 

switching e lements a nd the edges repre sent wires of the circuit. 

This kind of repre sentation hasan i mpor t ant dis adv antag e : We are 

not able to disting u ish bet wee n the differe nt inpu ts of a switching 

element. If we consid er o n ly bases wi th commu t a tive switching 

elements t this i s n o t a h and i cap. Bu t we d o not want to restrict 

ourselves to commutativ e bases. There f or e , we must devise a method 

for distingui s h ing among the diff erent input wires of the switching­

elements. 

To do this we may wri te f or e ach switching element (node in the 

graph) a line a s fo l lows 

n: < a ; n 1, n 2 , ..., n
k

> 

where a is an element ary switching el e ment (label of this node) 

with indegree k a nd n
1 

, ... , n
k 

a r e line numbers less than n (the 

current line n umber ) wi t h t he fo l l o wing meaning: The i-th input 

of a is the outpu t of the s witc hing eleme n t coded in line n . . 
1 

For the inputs of the who le s witching circuit we wust write 

extra lines: 

1 : 

2 : 

1 : 

where xl' ... ,x l repre sen t t h e inp u t v ar iables. Also for the two 

constants "true" and "fals e" we need extra lines: 

1 +1 : 

1+2: 

true 

false. 

t An elementary switchin g element is called c ommutative iff a 

permutation of the input wires never changes the interpretation 

of the circuit as a Boolean function. For examole A , v, 1 are 

commutative switching elements. 



- 4 -

Since not all of the wires are outputs of the whole switching 

circuit, we must give a selecting function 0, such that the i-th 

output is loaded with the output of the switching element coded 

in line o(i). Note also that this model only allows for elementary 

switching elements with only one output wire. 
t 

Another more algebraic description of switching circuits is 

given in [~]. There the concept of so called X-categories is 

introduced. In [3] the X-categories are called "strict monoidial 

categories" and in [1J they a re c al led "Kronecker categories". 

1.1 DEFINITION. 

An X- category X is a 3- tupel (X, x, E ) su c h that 

( .. I L -

rii) 

X is a ca tegory~ 

x: X x X + X is a c o varian t bi functor (we writ e fxg instead 

o f x(f,g) fo r mor p h isms f, g E Mor(X) an d J anaZogo u sZ y 

uxv f o r ob j ects u, v E Ob(X) ) J 

(iii) E EOb(X) is a special element J and 

(iv) (Mor(X), x, 1 ) is a monoid with x a s ope r ation and 1 E + E J E E 
t h e i d e n t it y on E J as unit element . 

Property (ii) implies: If f : u' ---r U, f': u" ---r u ' , g: v' -+ v ~ 

g': v" + v' are morphisms in X, then fxg: U'XV ' -+ uxv and 

f I xg ': u" xv" -+ U I xv I, and we have t he fol l owi ng equation: 

(f of ' ) X(gog') = (f xg) o (f'x g ' ) . 

Furthermore c la im (i i ) toge ther with claim ( i v ) implies that 

(Ob (X) , x, E ) is a lso a mono id. Beca us e of (iv) every X-category 

is a small categor y (a monoid i s a lway s a set). 

1.2 DEFINITION. 

Lnt X~ Y be two X- catego r ies . A fu nc tor ~:X -+ Y is called X-functo r 

i ff X regarded as a ma pping Mor(X) + Mor(Y) is a monoid homomor­

phism . 

t I-or c xample a switching element consisting of two parallel 

Jl\ ~\l dl.i lJ llS ila~; mure Lllan one ou t pu t WiL-0 S : 
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1.3 DEFINITION. 

(iJ Let X be an X- c ategory and A c Mor (X). A i s cal led a 

fr ee ge n er at ing system for X iff th e f ol l owing unive r sal 

pr oper t y ho lds: 

If Y is a n arb itr ary X-category, ~l: Ob(X) ~ Ob(Y) a 

monoid homomorph i sm, a nd ~2: A ~ Mor(Y) a mapping su c h 

that ~ 2 (a): ~l (u) ~ ~l (v) f o r a: u ~ v E A then there 

exis ts a uni q ue l y dete rmin ed X-func t o r ~: X ~ Y which is 

a n ex t e n sio n of ~l and ~ 2 . 

(ii J A X- ca t ego r y &s ca ll ed fr ee iff it p os s es a f r ee genera­

ti ng syst em. 

1.4 THEOREM AND NOTATION. 

Giv en any fr ee mono id 0 and an arbitrary set A tog et he r wi t h 

t wo ma ppings S, T: A ~ 0 t h er e exist a free X-categ ory F(A, 0) 

which is uni que u p t o fun c t orial isomorphism with fr ee ge n er a ­

ting s y stem A and 0 a s monoid of objects such that ev e r y a E A 

becomps a mo r p hism a: S(a) ~ T(a) in F(A, 0). 

For a PROOF see, for example, [1] or[7]. • 

The following example shows us how a switching circuit may be 

represented by a free X-category. 

1. 5 EXM1PLE. 

Let B be a basis generating all of the Boolean fun c tions 

{true, false}n ~ {true, false}m for example, B = {A, V, l}. In a 

switc hing circuit there are also some other elementary switching 

elements such as 

(i) c rossing of two wires X denoted by c, 

(ii) branching of a single wire A denoted by d, 
(diagonalization) 

(iii) Boolean constant wires true false denoted by true 
T T and false, 

(iv) truncation of a wire 1.. denoted by t. 

As monoid 0 of objects we will use ~o with addition as operation . 

11 i is a switching circuit we will interpret f as a morphism 
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f: u ~ v with u, v e ~o! where u denotes the number of inputs 

and v the number of outputs of f. The free generating system A 

eonsists of the elements of Band e, d, true, false, t where the 

mappings S, T are defined as follows: 

S(A) 

S (1 ) 

S (d) 

S (e) 

= 
= 
= 
= 

S(v) 

1 , 

1 , 

2, 

= 2, T(A) =T(v) = 1, 

T (1 ) = 1, 

T(d) = 2, 

T (e) = 2, 

S(true) = S(false) = 0, T(true) = T(false) = 1, 

S (t) = 1, T (t) = o. 
The operations xand 0 of F(A, 0) are interpreted as follows: 

If fand gare two eireuits fxg means the eireuit built by dra­

wing f on the left of 9 without eonnecting any wires. 

fxg 

If f has u inputs and 9 has u outputs then fog is defined and 

means the cireui t built by connecting the inputs of f pairwise 

with the outputs of 9 without changing their order. 

fog 

As example con sider the followi ng switching circuit: 

In F(A, 0) this eircuit is written as 

v 0 (A x A) 0 ( 1 1 x 1 x 1 2) 0 (1 1 xd x 1 1) • 

From now on we denote the so constructed free X-category by G(B). 

t !N o := N U [oL 
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1. 6 EXAr~PLEs (c. f. [4], [2]). 

Let M be an arbitrary set. Denote by CM the following X-cate-

gory: 

Ob(CM) := No together with + as monoid operation, 

Mor(C
M

) := {f: n + m : f is a function from Mn toMrn}. 

Thereby we identify MO with the set {e} consisting of a ~ingle 
o n n o. n element e. ldentifying M xM and M xM wlth M . we may define 

fxg for f, 9 E Mor(CM) in the usual way. Then it is easily proved 

that (Mor(CM), x) is a monoid and that CM is indeed a (not free) 

X-category. As a special example we have the X-category B := 

C{true, false} of Boolean functions. lf G is defined as in 1.5 

we have an X-functor I: G({A, v, ,}) + B: 

l(A) (x,y) = x A y, 

l(v) (x,y) = x v y, 

I (,) (x) =, x, 

I (true) (e) = true, 

I (false) (e) = false, 

I (t) (x) = e, 

I (c) (x,y) = (y ,x) , 

I (d) (x) = (x,x), where x, y E M = {true, false}. 

I is called the interpretation of G({A, v, ,}) in B. lf f E 

Mor(G({A, v, ,})) is a switching circuit then l(f) is the Boolean 

function represented by f. 

As another example let R be an arbitrary ring and denote by PR 

the subcategory of CR consisting of all polynomial t functions 

Rn + Rm (n, m E No). Then PR is also an X-category. An interpre­

tation I: G({+, -, *}) + PR is defined in the obvious way. 

There is a difference between the representation of a switching 

circuit by a free X-category and the method discussed at the 

beginning of this section. The following two switching circuits 

have the same representation as digraphs with ordered inputs but 

are different morphisms in G({A, v, ,}): 

t A function f: Rn + Rm is called polynomial iff there exist 

m polynomials P1, ... ,Pm E R[X 1 ,·.·,Xn ] such that f(x 1 , ... ,xn ) = 
(P1 (x 1 '··· ,xn ), ... , Pm (x 1 '··· ,xn )) for all (x 1 ' .. · ,xn ) ERn. 
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, 

, 

Another pair of such circuits is: 

.., 

Because of this problem we will define special sorts of X­

categories and use them for representing of switching circuits. 

First, Hotz has introduced such special X-categories, called the 

free O-categories (c.f. [4]). 

1.7. DEFINITION (c.f. [1]). 

Let X be an X-eategory. We eall X 

(i) asymmetrie X-eategory (S-eategory for short) iff for any 

two objeets u, v € Ob(X) there exist a morphism 

C : uxv + vxu E Mor(X) u,v (ealled a erossing morphism) such 

that the following axioms hold: 

(S1) If f: u + rand g: v + s are morphisms in Mor(X) then 

c 0 (fxg) = (gxf) oc . r,s u,v 

( S 2) 

'=6 
/ uxv f X9: ·rxs 

Cu,~ i cr,s 4 

gxf 
/ f 

vxu ~sicr 

c oc 
v,u u,v = 1 for all u, v E Ob(X). uxv 

<> X = 

Cu v 
uxv ' +vxu 

X,;p 1 c 1 v,u 
uxv 

uxv 
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(53) (1 xc )o(e x1) v u,w U,v w e u,vxw for all u, v, wEOb(X). 

>s< »< 
e x 1 
u,v w uxvxw -+vxuxw 

C ~ l 1
v'C ( / = // U,w U,vxw 

vxwxu 

(iiJ an X-category with finite direct products (D-category for 

shortJ iff for every u E Ob(X) there are morphisms t : u -+ E 
U 

(called truncations) such that for any two objects v, w E 

Ob(X) the foZlowing diagram is a di~ect product diagram in X. 

vxw 

1 xtw / \ t x1 
v I \v w 

v w 

If X is a D-category we introduce the following notations: 

(a) Let u E Ob(X) and consider the following diagram in X: 

u 

u u 

There is a uniquely determined morphism d :u -+ uxu 
u 

(called diagonalization) which makes the diagram commu-

tative: 

(D2) = (1 xt )od = (t x1 )od . u u u U u u 

(bJ Let u, v E Ob(X) and consider the following diagram ~n X: 

1 xt 
u 

u 

u~v~ I 
le 

~. ~ u,~ t x1 
vxu ,/ u v 

t x1 ~ ~ v · u 1vxt~v 

There exists a uniquely determined isomorphism e : u,v 
uxv -+ vxu (called crossingJ which makes the diagram 

commutative: 

( D 3 ) 1 x t = ( t x 1 ) 0 e a nd t x 1 = ( 1 x t ) 0 e . u v v u u,V u v v u u,V 
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1.8 PROPOSITION. 

Let X be an 8-category. Then the following hold: 

(80 ) e = e = 1 for all u E Ob(X). u,€ €,u u 

(83') (dual to 83) (e x1) 0 (1 xc ) == e for all u,v,w E Ob(X). u,w v u v,w uxv,W 

(84) (e x1 )0(1 xc )o(e x1) = (1 xc )o(e x1 )0(1 xc ) v,w u v u,w u,v w w u,v u,w v u v,w 

u,v,w E Ob(X). 

e x 1 1 xc u,v w v u,w",vxwxu 

) / uxvxw ~v xu xw 
I 

/ 1 1 'c Y/ 1 C ,1 = u v,w v,w u 

/ ( uxwxv x1 -+wxuxv -+wxvxu 
/ e 1 xc u,w v w u,v 

PROOF. (e. f. [1]). 

(SO) 

(S3' ) 

(S 4) 

(S 3) 

e = e = u,€ U,€x€ (1 xc )o(e x1) ==e oe € u,€ u,€ € u,€ u,€ 

(S2 ) (S2) 
~ 1 = 

u 
e oe = e oe oe = u,€ €,U u,€ U,€ €,u 

~ 1 = 1 oe u u €,u e €,u 

(S2) 

e u,€ 

(e x1 )0(1 xc ) u,w v u v,w = ( e x1 )0(1 xc )Oe Oe u,w v u v,w w,uxv uxv,w 

(S3 ) 
= (e x1 )0(1 xc )0(1 xc )o(e x1 )oe u,w v u v,w u w,v w,u v uxv,w 

(S2) (S2) 
= (e x1 )o(e x1 )oe = u,w v w,u v uxv,w 

(S3) 

e uxv,w 

(e x1 )0(1 xc )o(e x1) v,w u v u,w u,v w = (e x1 )oe v,w u u,vxw 

(S 1 ) 
== e 0(1 xc ) U,WlrV U V,W 

(S3 ) 

= (1 xc )o(e x1 )0(1 xc ) w u,v u,w v u v,w • 
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If we represent switching circuits by free S-categories which 

are defined in a way analogous to free X-categories (as will be 

shown later) then the two circuits 

and 

becomes the same morphism in the S-category (use axiom S1). Also 

the following two circuits have the same description in these 

S-category (axiom S1): 

and 

But the two circuits 

and 

are still different as morphisms in a free S-category. Therefore 

we will often use free D-categories for describing switching 

circuits. 

1.9 PROPOSITION. 

Le t X be a D-category. Then X is an S-category and the following 

hold: 

(DO) t r ~ 1 and t = t xt for all u, v E Ob(X). Further if 
~ t.: uxv u V 

f: u ~ t.: E Mor(X) then f = t . Th i s means that t is the 
u u 

only morphism u + t.: in Mor(X). 
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(Dl) Let f: u -+ vxw, g: u -+ vxw be two morphisms in Mor(X). If 

(D4) 

(D5 ) 

( D6) 

(D7J 

(1 xt )of = (1 xt log and (t x1 )of = (t x1 log vw vw vw vw 

then f = g. 

(1 xd )od = (d x1 )od for all u E Ob(X). u u u u u u 

= 

uxu 1 xd -+uxuxu 
u u 

= d for all u E Ob(X). 
u 

= 

d 
u 

(1 xc x1 )o(d xd) =d forallu, vEOb(X). u u,v v u v uxv 

(fxf)od = d of for u v 

= 

d xd u v uxv +uxuxvxv 

d~ ~ 
uxV ~ 

I 

1 
UxVxuxv 

1 xc x 1 
u . UcV v 

all morphisms f: u -+ v E Mor (X) • 

d u U )UXU 

fj /P 1 fxf 

v d 
IVXV 

V 
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PROOF. 

The axioms (82) and (83) follow directly from the universal 

property of direct product diagrams. For example to prove (82) 

consider the diagram 

1 xt 
u v 

1 

uxv 

uxv c oC v,u u,v 
t x 1 u v 

in X which is commutative for both morphisms , c 0 c uxv v,u u,v 
uxv + Uxvi this implies that they must be identical. 

(81) will be proved after (Da). 

(Da) Consider the following diagram in X (recall t ~ t x1 ~ E E E 
1 x t , and E ~ E XE) : 

E E 

There must exist a (unique) morphism f: E + E such that 1 ~ 
E 

tEof = t E · 

Next we will prove that f: u + E C Mor(X) implies f ~ t . Then 
u 

t uxv t xt is clear. Consider the diagram (recall u v 
tu = t u

x 1 E, and UXE = u): 

1 = 1 xt , u u c 
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~tt~ I 

1 : 9 f 
u #/ v 0/ 

M
UXE: 

1 t u u 
U E: 

There must exist a unique morphism g: u ~ UXE: = u such that 

l u = l u og = 9 and f = tuog. It foll ows f = tu · 

(Sl): Let f: u ~ u', g: v + v' be two mo r phisms in Mor (X) • 

Then (1 ,xt ,) ° (fxg) = fxt and (t ,xl ,) ° (fxg) = t xg. This u v v u v u 
is true for t ,og: v + E: E Mor(X) and t here fo re by (DO) v 
t ,og = t and analogously v v t of = t . Now we see that fxg: u' u 
uxv + u' xv' is the unique morphi sm ma king the foll owing diagram 

commutative: 

1 xt uxv~t xl . u -~ I U V 

uV-- ! fxg v 

fl ~u' :v' if [9 
u' \ ~v' 

1 u' x t v ' t' x 1 u v' 

Now (Sl) is easily proved by combini ng this diagram with the 

diagram defining c v,u 
(Dl) and (D4) to (D5) may similarly be p roved using the univer-

sal properties of direct p r od uc t diagrams and the d e finitions 

o f du ( D 2) and c ( D 3) • • u,v 

1.10 DEFINITION, 

(i) By K we will denote th e cat ego ry o f al l X- cat eg ori e s as 

obje c ts together wi t h all X-fu nc t ors a s morphi sms. t 

(ii) By S we will den ot e th e cat egory o f a l l S - c a t egories as 

objects together with all X-fu nc t or s wh i ch pr e s erve 

t 

the crossing morphisms. If ~: X ~ Y is a n X-functor and 

X, Y ar'e S-catego"('1: e s the n cjl l' l' c s er v e s t he " ross i no mo )'­

phisms iff t(cu,v) = c~(u) , ~ (v) [ o r ~l l u, v E Ob(X). 

We will oall suoh funotors as S-func t or s . 

Recall that X-categories are small categories. 
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1f Y is an arbitrar y S-category (D-category), <PI: 

Ob(X) + Ob(Y) a monoid homomorphism,and ~2: A + Mor(Y) 

a mapp1~ng such that <P2 (a): ~I (u) + ~I (v) if a: u + v 

E A, then there exists a uniquely defined S-functor 

(X-functor) ~: X + Y which is an extension of <PI and <P2. 

(ii) An S-category (D-category) is called fre e iff it possess 

a free S-generating s ystem (D-generating system). 

1, 13 THEOREM AND NOTATION. 

(i) Gi ve n any f re e monoid 0 and an arbitrary set A together 

with two mapping s S , T: A + 0 there exists a - up to an 

isomorphism i n S - uniquely determined free S -category 

FS(A, 0 ) with fre e S - g e nerating system A and 0 as moncid 

of obj ects such that every a E A becomes a morphism a: 

S(a) + T (a) E Mor(F S(A, 0)). 

(ii) Gi ven any f re e mono id 0 and an arbitrary set A together 

with two mappings 5, T: A + 0 such that E ~ T(A) there 

exists a - up to an isomorphism in V - uniquely deter­

mi ned free D-ca tegory FD (A, 0) with free D-generating 

system A and 0 as monoid of objects such that every a 

E A becomes a mo rphism a: 5(a) + T(a) E Mor(Fo(A, 0)). 

SKETCH OF A PROOF (c.f. [ 1 ], [2], [4]). 

(i) Let 0 ~ L* wi t h an alphabet I. Oefine 

A' := A Ü {c t: s,t E I} t 
5, 

t • 

and extend S, T to S, T: A' + 0 by 5 (c ):= 5 x t and 
s,t 

T (c t):= t x s. 
5, 

Let X be the free X-category X := F(A', 0) 

(c.f. 2.4). Then c t becomes a morphism c t: sxt + txs 
5, 5, 

E Mor(X), s,t E L. Define c := C := 1 for all u 
U,E E,U U 

E O. Further define c inductively using (53) and then 
S,U 

c using (5 3') for u, v E O. Now let R be the congruence v,u 

U denotes the disloint union. 
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relation in Mor(X) generated by the axioms (S1), (S2), 

and (S3). Let .:X ~ X/R be the canonical functor and define 

Fs(A, 0) := X/Re It is clear that X/R 1s an S-category. 

Define 

A' := A 
. 
U {t : s E l:} 

s 

• 
U {d. : 

s s E E} 

u {c t: s,t E l:} s, 

and extend S, T to S, T: A' -+ 0 by S (t ) = S (d ) := s, 
s s 

S (c t):= s x t, T ( t ) := E, T (d ) := s, s s 
Let X be the free X- category X := 

d , and t for arbitrary u, v E 0 u u 

s x s, and T (c t):= t x s . s, 
F(A' , 0). Defi nec , u,v 
in an analogous way as 

in (i) using (S3), (S3 ' ), (DO) , and (D6). Let Rbethe 

congruence relation on Mor (X) generated by the axioms 

(S1), (S2), (S3), and by (DO) , ... , (D7). Let 'f': X -t;- X/R 

be the canonical functor and define FD(A, 0) := X/R. Then 

X/R is a D-category. For two given morphisms f: w -+ u and 

g: w -+ v in Mor(X/R) h := {fxg)od makes the following w 
diagram cornrnutative « 0 0 ) and (D2)), and by (D1) must be 

unique. 

f /,lh 0/ 9 
Z;:;uxv 
u~ ~v u v u v 

I n the both cases (i) and (ii ) now we have to prove that A may 

be c onsidered as a subset of X/R and that Athen is a free S­

generating system (D-generating system) for X/R. We sketch the 

proof for (ii) I a proof for (i) is similar. 

Let Y be an arbitrary D-category, ~1:0 -+ Ob(Y) a monoid 

homomorphism, and ~2: A -+ Mo r(Y) a mapping such that ~2 (a): 

~l (S(a)) -+ ~l (T(a)) E Mor(Y) for a E A. ~2 may be extended to 
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a mapping ~~: AI E Mor(Y) in an obvious way such that the 

images of c t' d , and t are the crossings, diagonalizations, s, s s 
and truncations in Y. Since AI is a free generating system for 

X there exists a unique X-functor ~I: X ~ Y extending ~l and 

~~. Since all the relations in R also holds in Y we have an 

X-functor ~: X/R ~ Y making the following d i agram commutative: 

X 

X/R ---::----~Y 

Clearly ~ is an extension.of ~l and ~2. 

Now we will prove that ~IA: A ~ Mor (X/R) is injective. Let 

M be a set such that card(M) > card(A) and let CM be as in 

example 1.6. It is ~asily proved that CM is a D-category. Then we 

may define 

and 

Since card(M) > card(A), and ~l (T (a) ) > 1, we a r e able to 

define ~2 in such a way that it is i n j ective. Then ~I IA is 

injective too and therefore ~IA must be injective. -

For describing a switching circuit as a morphism in a free 

D-category it 1s not essential how the circuit paths are 

factored. However because of (D7) the following two circuits 

also have the same description. 

t lul denotes the number of letters in u E L*. 
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But if we are not interested in the outdegree of switching 

elements this 1s not a handicap. Our earlier method of 

describing switch1ng circuits by a digraph together with a 

linear order on the inputs of the nodes (switching elements) 

is a special representation of the morphisms in FD(A, ~o). 

We only had to consider 

< ai n
1

, ... , n > 
k 

(a E A) 

as an abbreviation of the morphism 

:= (1 l xa )of +k 2 of +k 3 1 o . .. of 1 ' n- n - , n k n - , n k - n- ,n1 

where 

f := (1 xC1 )0 (1 xd 1
x l ) 

v,~ ~ ,v-~ v v-~ 

is the morphism which connects the ~-th wire of v parallel 

wires with a new wire to the right of them. For example if 

6: '</"; 2, 4> 

is a line then ~6 is the morp h ism 

The first 1 lines representing the i nput variables will be 

omitted, and the two lines for the cons tants true and false 

are 

~1+1 := 11 xtrue, 

~1+2 := 1 l + 1
xfalse. 

Then the switching circuit represented by m such lines is the 

morphism 

oo9;mo ... o~l+1 

where 0 is the output selecting function written as a morphism 

in F D (A, IN 0 ) • 
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There are several other representations and normal forms 

of the morphisms of an X- category , S-category, or O-category. 

For them we reffer the r eader to [1J. As an example every 

morphism f in a O-category may be factored as f = f'of" where 

f" is constructed using only diagonalizations as switching 

elements and in f' no diagonalizations occur. then f' may be 

considered a s the usual formula notation describing f. 

The fo llowing def ini t i on generalizes the concept of Boolean 

and arithmetic functions in the sense of Strassen's D-algebras 

[ 1 6] . 

1.14 DEF I N I TI ON. 

L b f · n 7l d et M e a set. A unct&on w: M + M &s ca& e an n-ary 

operation on M ( n E ~ ). Let D be a set of operations on M 

together with a mapping S: D + ~ such that w E D is an S(w)­

ary o peration on M. Now we define A := MUD dnd extend S to 

a mapping S : A + IN o by se tt ing S( x ) = 0 for all x E M. Furth er 

we define another ma pp ing T : A ~ ~ o such that T(a) = for all 

a E A. Us i ng theo r em 1.13 we get the free D-category Fo(A, INo). 

Let CM be de f ined as in exam p le 1.6 and define an interpre­

tation I: Fo(A, lNo) + CM a s follows: 

I is the i d e ntity mapping on the objects and 

I( w) (x1 '. "'XS (w» = w (x1 ' ... 'XS (w » fer all w E D .. 

x 1 , ••• ,xS (w) EM, 

I {x) (e) = x for all x E M. 

This means t ha t the elements of M a r e interpreted as constant 

fun~tions { e} + M. Now we denote by PM,D the image of the 

functor I. Cl ear ly PM, D i s a D- ca teg ory . 

1.15 EXAMPLES. 

(i) If M = [ true, fal se} and D = {A, v, l} where A, v, and 1 

are the we llknown Boolean ope rations on M then PM,D = B (c.f. 

example 1 .5). 
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(ii) If M = {true, false} and ~ = { ~, v} then PM,~ = Bm, the 

O-category of all monotone Boolean f u nct ions. 

(iii) If M = R is a ring and ~ = {+, -, *} is the set of the 

ring operations, then PM,~ = PR is the O-category of all poly­

nomial functions over R. 
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§2. Complexity Measures on X-categories. 

In t his s e ction S denotes a fixed additive commutative ordered 

monoid wi th unit element 0 satisfying the following cond ition: 

(P) s > 0 for all sES. 

In th i s case we call S a positive monoid. For example S may 

be the additive semigroup No togethe r with the natural order. 

2.1. DEFINI TION. 

Let X be an X-aa t egory. A complexity measure on X wit h va lue s 

in S i s a f unction c: Mor(X) ~ S satisfying the fo llowing ax &oms: 

( Cl) c (1 ) = 0 
u 

for a ll objeets u E Ob(X). 

(C2) c( fog) < c(f ) + c(g) f or a ll f , 9 E Mor(X) suc h tha t fo g 

is def'ined. 

(C 3) c(fxg) ~ c(f) + c(g) for all f , 9 E Mor(X ). 

I n t he fu ture we will o ften denote a eomp l ex i ty measure c 

by I··· I . 
If c satisfies the stronger condition 

(C 2 ' ) c( fog) ~ ' Max(c(f), c(g» if fog is de f i ned ( f ,g E Mo r (X) 

inst ead of (C2)~ we eall c a breadth measure o n X~ and i f c 

s a t is f ie s 

( C 3 ' ) c (f x 9 ) ~ Max ( c ( f), c (g) ) ( f, 9 E Mor (X) ) 

instead of (CJ)j we eall c a depth measure on X. 

If X i s an S-category (D-eateg ory ) we e al l a eom p l exi t y measure / / 

c on X an S-oompZexity measure (D-compZexity meas ur e ) i ff 

c(cu v) = 0 (c(t ) = c(d } = c(c ) = O)fo r all u, v E Ob( X) ./ 1 , u u U,v 

2.2 EXAMPLES . 
/ 

Let X = F (A, 0) (X = F S (A, 0» be a free X-category ( (free 

S-category) and L: A ~ S an arbitrary function . We may i n ter­

pret S as a n X-category where 0 and x both mean the a d d ition + 

in Sand 0 is always defined. The 1monoid Ob (S) con s ists of a 

sing l e e lement E. Therefore , S is also an S-category wi t h c 
E,E 

.- 1&. Extending the function L to an X-functor (S-functor) 
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L : X -+ S 

gives us a complexity measure L on X with values in S f or which 

the foll owing equations hold: 

(i) L (1 ) 
u = 0 (L(Cu,v) = 0 i n add i t:ion) (u ,v E Ob(X». 

(ii) L(fog) = L (f ) + L(g) if fo g is defi ned (f ,g E Mor (X) ) • 

(iii) L (fxg) = L (f ) + L(g) (f ,g E Mor (X) ) • 

Such a complexi ty measure on fre e X-categories (free S-cate go­

ries) is called a cost funct ion. S i nce L(tvof) = L(tu ) = 0 

(f: u -+ v E Mor(X» in a free D-category there exist only t rivia l 

cost f unct i ons (that means L(f) = 0 for all f E Mo r (X». 

If X d enotes the free X-category G(A) of sw i tching ci r c ui t s 

over t h e basis A and L:A -+ S is the cost of a single switching 

element ( in A) , then for a c i rcuit f E Mor(X) L ( f ) denotes t h e 

cast o f this circuit. The cost of a single switching element 

may be the price we must pay for it or the energy this element 

uses on the average for working correctly. In both cases S may 

be t h e positive monoid R6 of the nonnegative real numbers. But 
+ + we also may combine the two cost functions as L : A -+ IR o x lR o 

suc h t hat the first component of L(a) is t he p rice and the 

second component i s theenergy consumption. In this cas e the 

semigroup S is not a submonoid of IRt. The order on S = 1R6 x 1R6 
is t he lexicographical order. This is analogou s to valua t ions 

of r ank > 1 in algebra. 

Another important example 1s give in [5] : Let M be a fi n i te 

set a nd X a sub-X-category of CM such that Mor(X) cons i st s only 

of isomorphisms (bijections) on CM. Let rr = (n ) EIN be a u u 0 

sequence of partitions such that 

M
U = U a 

aEn 
u 

wh~re a n ß = ~ for differe nt a,ß E TI • 
U 

Def ine a n entropy function H + Mor(X) -+ Ro by 

:= - I card(a) L card(f (a )nß ) log card(f( a) n ß) 

Ci card(Mu ) ß card( a ) card (a ) 

for f: u + v E Mor(X ) where ~ runs ovcr TI and B runs ovrr TI • 
U V 
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2.6 EXAMPLE. 

Consider t h e following two free X-categories: 

v = F ({ f I I 9 I } I {u I V I w} *) 4 

Let ~: X + Y be the following X-functor: 

~ (r ) := u , 

1> (SI) := cI>(S 2 ) : = v , 
1> (t) := w. 

cI>(f) := f' I 

1> (gl ) := <f>(gz) := g', 

+ If c: Mor(X) + S := Ra U {~} is defined by 

c( f) := C(gl) == 0, 

(c.f. 2.2) t hen we have 

~(c) (g'of ' ) = inf {c(h): ~(h) = g'of'} = 1 

since ~-1 (h) = {g l of } but 

cI> (c) (g') = ~ (c) (fl) = 0, 

and so cI>(c) cannot be a cornplexity measure on Y. 
The above problem arose because 1> was not injective on 

Ob(X) + Ob(Y ). It is also clear that i f cI> is not surjective on 

the ob jects cI>(c) eannot satisfy the axiom (C1) . 

Beeause of theorem 2.5 we are able to define the size complexity 

of Boolean functions. Let I : G( { A, V, l }) + B the i nterpret ion 

defined in §1. On G ( [A , v, l }) we are able to define a co s t 

funetion L with values in ~o such that L (d ) = L (e ) = L(t ) . u u,v u 
= 0 (u, v E t\I 0 ) and L (A ) = L (v) = L ( ,) = 1 (c . f. 2. 2 .). Then 

I(L) is t he size complexity on B. 
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Throughou t the rest of this section we wi l l consider only 

X-catego ries in K(O) for a fixed monoid O. Fur t her we will 
+ assurne S = R o U { ~ } , wh ich we mayaiso conside r as a semiring. 

Then we d ef ine: 

2,7 DEF INITION, 

We denote by C the fol l owing category: 

Ob(C) := { (X, cl: X E Ob(K(O» and c is a c omp lex ity 

measure on X with values in R6 U [oo}} 

Mo r (C ) : ={ <I>: ( X I C ) -+ ( X I, c') : 

and 3 A E ~+ such that 

for all f E Mor(X) }.t 

<I>: X -+ X' E Mor (K (O » 

c'(<ll(f» S A· c (f) 

If id: X -+ X is t he i denti t y f unc tor (X E K{O» ) and Cl, C 2 are 

two compl exity mea sur es on X, t hen we wi l l wr i t e 

ifi id: (X, Cl ) -+ (X, C 2) E Mor (X} . 

Fuy,ther 

It is easily checked that C is indeed a category . Th eorem 

2.5 shows us that t he following are morphisms in C. 

2.8 PROPOSITI ON, 

Let 4>: X -+ V be a morphism in the aategory K(O}. 

(i) If c is a aomplexity measur e o n V, then 

<I>: (X, 4> -1 (c) -+ (V, c) E Mor ( C) • 

(ii) If c is a aomplex i t y measure on X, then 

<ll: ( X, c) -+ (Y I <I> (c» E Mor (C) • 

PROOF, 

Take A = 1 .• 

t 
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2,9 PROPOSI TION. 

Let ~: X ~ Y be a morp hism in the ca teg or y K( O). 

(i) If Cl, C2 are compl exi ty meas ur es on Y and C l ~ Cl, 

then we have ~-1 (Cl ) ~ q,- 1 (C 2 ) on X. 

(ii) If C l, C l ar e compl ex i ty mea s ures on X and Cl ~ C l, 

then we have q, (Cl) ~ <I> (C l) on Y. 

(X, -1 id 
~ (Cl» ---~ ( X, 

<pi ~ 

PROOF, 

(i) !p- 1 (C2 ) (f) = c l<I>( f) ~ " 'CI (\Il( f» = )". q,- 1 ( C l) (f ). 

( i i) ~ (c 2) (f ) = inf {C 2 ( f I) : cI> (f ') = f} 

~ inf { A' C 1 (f I) : . <l> 'Cf ') = f } =. A' cI> (c I ) (f) . • 

In t he f ollowing we will prove some simulation t h eorems us i ng 

the f ollowing definition: 

2,10 DEFIN ITON, 

Let C be a c ompZexity measur e on a n X-categor y X with va lu es 

in R!U{ ~}. T he n C is c alled nond egenerate i ff fo r a ll f E Mor (X) 

C (f) =f 00. 

2.11 PRO POSITION. 

Let X = r(A, 0) be a free X-category with fi nit e gener ating 

system A, Cl a cost function on X, and C 2 an ar b i t r ary complexity 

measure on X. Assume t hat Cl, C2 both are nond eg e nerate. If 

Cl (a) = 0 ~ C2 (a) = 0 V a E A t hen C 1 ~ C l. 

PROOF. 

Let A := Max { C2 (a): a E A such t hat C l (a) =f 0 }. This maxi-
C l (a) 

mum exists since A is finite and we have 0 < A < 00 since Cl, C 2 

both are nonde generate . Let f E Mor (X). We wil l prove by induc­

tion on the length of a sequent ial repr esentation (c.f. (7]) 

of f, tha t Cl (f) :S A' Cl (f) . 
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C: Mor (X) ~ R~ U {oo} d e f i ned by 
r 

c(f) := s u p {r (h o (1 xfx 1 » - r(h ) : u, v E Ob(X), r u v 

h E Mor (X) such that ho ( l xfxl ) is defined} 
u v 

is a comp ~exity measure on X sa t i s fy ing c (f) ~ r(f) for a~l 
r 

f E Mor(X). 

PROOF, 

We wi ll o n l y prove (i) , a proof of ( i i) i s s i milar. 

(C 1 ) : 

(C 2) : 

c ( 1 ) = 
r w 

c ( fog) = 
r 

sup{r«l xl xl loh) - reh) } = u w v 
U, ~/, h 

sup { re h ) - r(h)} 
h 

sup {r « l x(fog)x 1 loh) - r eh )} u v u,v,h 

sUPh{r«lUxfX1V)o«luxgX1 V)o h» - r«l u
xg x l v )oh)} 

u,v, 

+ sup {r«l xgx1 loh) - reh) } 
u v u,v,h 

$ cr(f) + cr(g ) · 

(C3): Le t f: Wl ~ wi, g: W2 ~ w~ E Mor(X ). 

c (fxg ) = r S up {r ( (1 x f x g xl) 0 h) - r (h ) } u v u,v,h 

sup {r «l xfx l ,)0«1 xgx l lo h ) 
h u W2 XV UXW l V U,V, 

- r«l xgx1 l oh)} uxw v 

+ sup {r«l xgxl loh ) - r eh) } 
h 

UXW l v U,V, 

Let f: W ~ w' E Mor (X). Taking u = v = E and h = l w we get cr(f) 

~ r(f). • 
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the size complexi ty on PR (PR' resp .) o r , in other words, the 

computational complex i t y re l ative to t h e ring R (R' resp.). 

Now the second simulat i on t heorem t eIls us that ~-1 (I' (L» 

<I(L). If f o r e xample R = ~ and R ' = 2/n2 then computing in 

~ is not easier than c ompu t ing in 7/n7. I n a similar way we 
3 get n as a lower bound f or matrix multip l i cation over ~ 

using only the monotone operations + and . f r om the same 

lower bound for mo notone Boolean mat rix mul t iplicat i o n ([ 8 ],[10]). 

For further e xample s see [5]. 
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§ 3. Th e R+-Modu l e of al l t h e Complexity Measures 

o n a F i x e d X-Cate g o r y. 

In th is sect ion 0 wi l l be a fixed f ini te ly generated free 

rnonoid and a ll of the c omplexity measure s c o nsidered here will 

have v a l ue s i n the semiring ~t. 

3.1 PROPOSITION AND NOTATION (c.f . [5]). 

Let XEOb(K(O » be an X-c a teg or y. We den o te by 

C(X) := { c: Mor(X ) + Rb: c is a cornplexity rneasure on X} 

the s et of al l complexi t y measur es on X. Le t Cl , C2 E K(O) 
and A E ~t . The n th e f ol l owing ho lds: 

(i) Cl + C2E C(X) where (Cl + c 2) ( f) := Cl ( f) + C2 (f) f or all 

f € Mor(X). 

(ii) A'Cl E C(X) wher e (A'cd (f) := A'C I (f) f or all f E Mor (X). 

Thu s C (X) + is a modu le ov er the sem&r ~ ng R a . 

PROOF: e lernen t ary calculations. -

Denoting by M the category of all R+-modu l e s and linear 

rnappings we get the following theorem: 

3.2 TH EORE!1. 

C: K(O ) + M de fine d by 

C (X) := {C! Mor (X ) IR
+ . 

+ : c lS a complex i ty measure on X} 

for X € Ob(K(O» , 

C ( <P) (c) : = <p -1 (c) f or <P : Y + X E Mor ( K ( 0 » a nd C E C (X) 

i s a contravar iant functor fr om t he categor y o f all X- categori es 
+ t o th e ca tegory of a ll lRo-m odul es . 
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PROOF: elementa ry ca l culations. -

The fo llowing remark was ma de b y one of our students 

(Thiet Dung Huynh) during a seminar lecture: 

Let ~: X + Y E Mo r (K(O» . If ~ is sur jective then C(~) is 

injective. If Cl, C2 E C(Y) such t hat C (~) (cd = C(~) (C2) 

then we have 

~- 1 (C l) (f ) = ~-1 (cL) (f ) fo r al l f E Mor (X) 

... Cl (g) = C2 (g) 

for all f E Mor( X} 

for all 9 E Mor ( Y) s ince ~ 

is surject i v e 

If now Y is an arbitrary (finitely generated) X-cate g o ry 

then we have a surjective X-functor 

4>: X + Y 

whe re X is a free (f initely generated ) X- category . 

Since C (~ ) is injective we may consider C(Y ) a s a submodule 

of C (X) . Therefore in studying all the complexi t y measures 

on all (finitely generated) X-categories in Ob{K(O » it is 

eno ugh to consider the complexity measures on (f ini t e l y gene­

ra ted ) free X-categories. But on the other hand , f or the same 

reason, it is harder to classify t he complexity measure s on a 

free X-category than on a special X-category. Fo r example, D­

compl ex i t y measures on a D-category Y hav e p roper t ies which 

are not satisfied by all cornplexity measur e s on t he free 

X-categor y X generating V, even if they have zero-values on 

the switching elements interprete d as cro s sings, truncations, 

and d iagonalizations. 

3.3 TH EOREM. 

Le t I . . . I b e a D- com p l ex i ty mea s ure o n a D-c a t e g o y'y X 

wit h Ob (X) = No. Then t he fo llo wi ng ho l ds : 
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(i) Ifxgl = Igxfl for' all f: u-+ u l , g : v -+ Vi E Mor (X) . 

(ii) 1 f 1 :=; Ifxgl for' all f: u -+ ur, g : v -+ Vi E Mor(X), u -:f o. 

(iii) 11 <f~1 1 =Ifl for' all f: w -+ wl E Mor (X) , w -:f o. u V 

PROOF, 

(i) Ifxgl = ICv',u.o( g xf)ocu, vl :=; Igx fl for IC·u.,v l = ICvl ,u , 1 

= 0, and vice versa. 

(ii) Let h v · 1 -+ v be de f ined i nductively as f o l lows (v EIN) : 

h
1 

:= 1
1

, 

~ hV +1 := ('1 xhv ) od,. 

Then (1 ,x t v )oh'+v :::t: 1, and therefore 

f = ('utxtv,)o(fxg)o(tu_,xh1+v~ (u-~ E /N o since 

1 f 1 :=; Ifxg l by (C2) • 

(iii) 1 f 1 :$; 11 xfx' 1 u v :$; I f 1 by ( i i) and (C3) • • 

3.3 (iii) g ives an answer to a question in [5], p . 408 f. 

3,4 THEOR EM AND NOTATION. 

(iJ Let X E Ob(K(O» and ~ t he e qu i vale nce r'e lat ion on C(X) 

defined i n 2.7. Th en ~ is a c o ngr'u e nc e r'elation on C(X) 
+ ~ 

consider'ed as an ~ -module . We de fin e t eX) := C(X)/~. 

u -:f 0 

(ii) Let ~: Y -+ X E Mor(K(O» then t her'e exis ts a canonical 

module homomor'phism C(4)) : l(X) · -+ ~( Y) s uc h th.at the folZoufing 

diagr'am is commutati ve ., and ~: K(O) -+ M becomes a functor'. 

e (X) 
C ( 4» , C (Y) 

1 0 \ 

t 
'" -+ C( Yl C(X) 

C ( <P) 
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PROOF, 

(i) Let Cl, C ;>. E C (X) with Cl ~ C2 . The n t h e re is a .>- . E IR+ 

such t hat Cl (f) ~ .>- ·c (f) for all f E Mor (X) . If c 

( ii) 

E C(X) is anothe r c omplexity measur e we have f o r ull 

f E Mor ( X) : 

(C l + c)(f) ~ A· c2(f) + c(f ) ~ A'·(C2(f) + c( f» 

X· (c;>. + c) (f ) 

where 1..' := Max {I.., 1}. Therefore Cl + c ~ C2 + c. 

If )J E Rt then clearly )J . C I ~ )J . C2 . Thus i t fol l ows 

that ~ is a congruence relation on (X) . 

We only must show that 

Let Cl, C2 E C(X) with 

.>- E R+ such that C l (f) 

fo l l ows 

- 1 -1 
Cl ~ C2 !mplies IP (C l ) ~ il> (C;>.). 

Cl ~ C2 that means there exi sts a 

S A·c2 (f) for ~ll f E Mor(X) . It 

<P - 1 (Cl)(g) = Cl(~(g» S A· c;>.(IP(g» = .>- .1P- 1 (C2 )(g) 

f or all g E Mor (X). Therefore 4>-1 (Cl) ~ <Il - 1 (C2 ) a nd 
-1 -1 

analogously <Il (C2) ~ il> (e 1) • • 

Let X E Qb(<«O» and e E C(X) such t hat c is no t bou nded 

b b f + D+
O

' • f . ( ) a ave y a constant. I ~: Ra ~ ~ lS the unctlon ~ X = 
log(1 + x) defined in 2.4 then the complexity meas ures c, 

~o c, ~O~OC, ••• are pairwise inequivalent. Furth ermore they 

are a l gebraieally indepedent over ~. If we call t he maximal 

numbe r of algebraically indepedent elements in a n ~+-module 

the dimension of that module then C(X) has in general infinite 

dime nsion. 

As n o ted in example 2.4 above we will now def ine s t r i ct 

eomplexi ty me asures. 
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§4. Str ict complexity measures. 

4.1 DEFINITI ON. 

Let X be an X- c ateg or y and c a compl x i t y me as ure on X. 

c is cal led astrie t e ompl exi t y mea s u r e iff it sat isfies 

(CS3) c(fxg ) = c(f) + c(g) for a ll f , g E Mor (X). 

Si nc e i t seems to be very difficult to get good l owe r 

bounds on t he size complexity cf Boolean functions we 

consid e r monotone Boolean functions. Let Sm denot e t h e 

subcategor y of S having only monotone Boolean f unctions 

as morp h isms. Clearly gm 1s a D-category. Let 

I: G( {A, v }) -+ lfl 

be the natural interpretation. If L is the following cost 

funct ion t hen I (L) is a strict complexity measure (f or a 

proof see (6) or [121 , for another proof see 4.7). 

L(A) := L(v) := 1, 

L(t1 ):= L(d
1
):= L(c1 ,1) : = O. 

From exa mp l e 2.4 it is clear that there exists comp lexi t y 

measur es which are not strict . The following example s hows 

that even the size complexity must not be astriet eomple x ity 

mea sure. Further this example shows that there are non strict 

compl ex ity measures on sm. Therefore monotonicity is not only 

a property of the X-category but also of the c omplex ity measur e 

con s i d eredi however we do not know whether "striet " is enough 

to c ha r acterize "monotone" complexity measures. 

4,2 EXAMPLE, 

Let R be a finite ring and consider PR' Let I: G( { +, -, .}) 

-+ PR be t he natural interpretation and I. ·.1 = I(L): Mo r ( PR) 

-+ ~t where L ist the following cost f unc t ion on G ( {+, - .}): 

L(+) := L(-) := L(· ) := 1, 

L ( t 1 ,:= L(d 1 ) := L(c 1 .
1

, = O. 
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For an nxn matrix A E Rnxn def ine the morphi s m f A: n + n E 

Mor ( PR) by f A (v ) = A · v f or a l l c o l umn 'fect ors v E Rn. If B 

is another n xn matrix over R then we have 

n t i rnes 

where B i s considered as a sequence of n column v e c t o r s from 

Rn. By Str a ssen's matrix mult i pli c a t i o n we know tha t 

\fAxfAx ..• xfA I = O{n l o g 7) . 
, v ' 

n times 

If we t ake B instead of PR we know that 

I \ 
log fAxfA

x . .. xfA = O(n 
, v ~ 

7 10g n log l og n l og log log n). 

n times 

h h d f f f ' nxn On t e o t e r han A = B. A = B ~r two mat rlce s A, B E R, 

and therefore there are at least r n different morphi s rn s f A 
with A E Rnxn where r = card(R). Further, a simple counter 

argume n t s hows that there are at most (3( 1 + n + r )2 )1 mor­

phisms f E Mor(PR) such that If l ~ 1. Now t here must exist a 

matrix A E Rnxn such that 
;< 

~ r n where 1 = I fA I . 

If r > 1 it follows that 1 = IfA I grows asymptoti c aly at l east 
n 2 

as f a s t a s log n and therefore 

nifA I > IfAxfAx . •. xfA I for n large enough . , , 

n times 

Using B instead of PR the same holds true. Thus s i nc e f A E 

Mor(Bm) we see that the restriction o f the size comp l e xi ty 

on B is not a s t rict complex i t y measure on Bm. 

Another such example i s the fast Fourier trans formation. 

In [12J Paul has shown t hat f or every s > 0 t here are mor~ 

phisms f E Mor ( B) such tha t 
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4.5 LEMMA. 

Let M and ~ be a s ab ove~ A := M U ~ a ni I: FO(A, ~ o) ~ PM, ~ 

the natural inte r p reta ti on. T hen eve ry h E Mor (Fo (A, 1No » 

such that I( h) = f~g with f: u ~ u', g; v ~ Vi E Mor( PM,~) 

may be written as 

(i) 

( ii) 

h = p xq with I(p) = f a nd I(q) = g or as 

h = h' .(1 xwx1 )"(pxq) with p: u ~ Wl , q: v ~ W2, 
Wl Wz 

h: wl+wz-1 + u'+v l E Mor(FO(A, ~o» a nd a b i n ary o pe -

ration w En, Buch that I(t 1x11)·P) an d 
W l -

I«1 1
x t 1)-q) both are no t aons t ant funa t i ons. wz-

h' 

In the s e c o nd case w is aal led a firs t mixe d swit ch ing ele­

ment in the a irauit h respective to the partition u+v of the 

input wires of h. 

PROOF: I nduction on the size of h using the relations S1, ... , 

S3 and 00, ... ,07 satisfied in a O-category. 

4.6 THEOREM. 

Let R b e a free semiring. Then the size complexi t y 

measure on PRis Btriat. 

Sketch of a PROOF. 

Let f : u + u' , g: v + Vi E Mor(PR) and let h E Mor ( Fo (RU{+,.}, 

No») ~ min imal switching circuit such that I (h ) = f xg where 

I: FD(RU{+ ,· } , ~ o ) + PR is the natural int erpretat ion as in 

Lemma 4.5 a bove. If h = pxq with I(p) = fand I(q) = g 

there is not hing to prove. Otherwise let w be a fi rst mixed 
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switching element. Since h is minimal h' is min imal too. 

Further there must e x ist a path from w t o one of the out­

put wires of h' (otherwi se we may simplify the c i rcuit h 

and eliminate w in it using 00) . Since R is f ree the only 

chance to lose the dependece o f t h e ou t put of w along this 

path is multiplying by the c o nstant 0 . (Th i s arg ument is 

wrong if R is a ring and li_li i s a switc h ing element !) But 

instead of 

1 
we may use o 

T 
with lower cost. Therefore there isan output wir e o f h' 

such that I(( twlx11xtw!)~h' ) depends on the output o f w 

(w{, w~ E ~o such that wl + , + w~ = u' + v'). Th is mea n s 

I«t Ix1 1
xt , l oh') is a polynomial H' E R[X,', ... ,x' l ' w W 2 W l-

Z',Y' 1""'Y1' ] in which there is at least o ne mo nomi al 
W2-

containing Z ' a nd having a nonz ero coeE f icient. Let I (p) 

=(Pl""'P ) with polynomials P . E R[X 1 , ... ,x ) and 
W l 1. U 

I (g ) = (Q , •• • ,Q1 ) with polynomials Q. E R[Y" .. . , Y ] . 
W2 1. V 

Now we get t h e polynomial H := I«t ,x1,xt ,loh) = 
w 1 w~ 

(t ,xl1xt , ) o (f xg) by 3ubstituting P. for X. (1 < i < wl-1), w1 w 2 1. 1. - -

Q. f or y! ( 1 < i < W 2 -1 ) and P w Q f or Z ' i n H' . 
1. 1. - - W l W 2 

Since P and Q both are not constant funct i ons over R 
Wl W2 

there are monomials with nonzero coefficients cont ain ing 

at least one Xi (1 ~ i 2 u) and monornials containing a t 

least one Y. (1 < i < v). This is a cont radiction to H = 
1. - -

(tw,xl 1
xt ,) 0 (fxg) sincethe identity theorem for po l y -

1 w2 
nomials ove r a free semiring ho l ds. • 

4.7 THEOREM . 

Let (R, +, .) be a n o r dere d semi ring . AS8ume that R is 

positive (that means x > ° tor all x E R) and that there 

exists a maximal ele~Bnt 00 E R (su c h that x < 00 tor all 

x ER). Consider t h e nat ural in terpretation I: FD({+,' ,O,oo}, 

No ) ~ eR and denote its image by PR (note that here we 

da not allow arbitrar y cons tan ts a s switching elements). 

Then the size compl exity on PR is strici . 
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PROOF, 

Let f: u + u', g: v + v' E Mo r(PR) and l e t h E 

Mor(FD({+,',o,oo}, ~o» a min ima l switching c ircuit such 

that I(h) = fxg. Assume fur t her that h has a minimal number 

of mixed switching elements. Let w b e a f irst mixed s wit­

ching element in hand let p, q, a nd h' as in Lemma 4.5. 

Further let I (p) = (P 1 , ... , P
W 1

) with polynomial s Pi E 

R[X
1
,··.,x], I (q) = (Q , ••• , Ql) with polynomials Q . E 

u Wz . 1 
R[Y 1 , ••• ,Yv J , a n d I(h') = (H1, •.. ,H~"H~'+1, • .. ,H~,+v' ) 

with polynomials H~ € R[X 1',···,X' l'Z',y' 1""'Y1']' 
1 Wl- wz-

As a consequence o f t he assumption t hat only 0 and 00 a r e 

allowed as constant s , the polynomial s P and Q (wh i c h 
. Wl Wz 

are not con s t ant by lemma 4.5) have no constant terms and 

therefore P (0, •.• ,0) = 0, P (00, ••• ,00 ) = 00 and Q similar. 
Wl WI Wz 

Let w =. and consider H!(P1 , ··· ,P l'P .Q , Q " • •• ,Q1 ) 
1 Wl- Wl Wz w z -

= Hi E R[X 1 " "'Xu 'Y1""'Y
V

]. If 1 < i < u' then Hi = 
H. Iy = 0 Y =0 and we have 

1 1 , . .• , v 

H!( P 1 , ·· · ,P l'P 'Q ,Q , •• • ,Q,) 
1 Wl- Wl Wz Wz 

= H! (Pl' ... ,P 1,0,0, ... ,0) 
1 Wl-

< H!(P" ... ,P 1,0,0 1, ... ,01) 1 Wl- Wz-

< H!(P1 ,···,P ",P .Q ,Q 1, •.. ,Q1)' 
1 Wl - I Wl W2 W2 -

These inequalities hold since R is an ordered semir ing a nd 

therefo r e all polynomial functions Rn + R are monoto n e. Now 

it foll ows 

H!(P 1 ,· ··,P l'P 'Q ,Q 1,· ·· ,Q1 ) 1 Wl- Wl W2 Wz-

If u' < i ~ u' +v ' we get the same equation. Thi s proves that 

the first mixed switchi ng element w may be replaced by the 

constant O. This is a contradiction to the assumpt ion that h 

has a minimal number of mixed switching elements. 
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If w = + we have H; = H I f or 1 
4 i Y1=00, ••• , Yv=co 

< i < u' 

and therefore 

H! (P 1 ' . . . , P 1 ' P +0 , 0 1 ' . . . , Q 1 ) 1 Wl- Wl W2 Wz -

= H~ ( P 1' ••• ' P 1' oo,oo, ... , co ) 
1 Wl-

> H ~( P1" "' P 1, oo ,Qw 1,···,Q1) 
~ Wl- 2-

> Hi'(P1""'P 1'P +Q ,0 l,···,Q1 ) · Wl- Wl Wz W2-

This lead s t o the equation 

H ~ (P 1 ' • • • , P 1 ' P +Q , Q 1 ' • • . , Q 1 ) 
~ Wl- Wl Wz Wl-

= H!( Pl""'P 1,00,Q 1,···,Ql) 
~ Wl- W2-

which h o l ds for all i, 1 < i ~ u'+v'. We may replace w by 

the constant 00 and receive a contradiction too. • 

4.8 KO ROLLAR . 

The size oomp Zexity o n sm is stpiot. 

PROOF: gffi satisfies the suppositions of theorem 4.7. 

The fo llowing example shows, that a l lowing arbitrary 

constants as switching elements, the theorem 4.7 becomes 

wrong. 

4.9 EXAMPLE. 

Let R = {true, false } x {true, false} the carte s i an 

product. R becomes a semiring if we define (x, y) + (Xl, y ' ) 

: = (x v X I, Y V y') and (x I y). (x I, Y I) : = (x 1\ X r, y 1\ Y I ) 

Further t h e lexicographical order (based on "false < t r u e" ) 

makes R to a positive ordered semiring with maxima l el ement 

00 := (true, t rue). 
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Now let f ' :{tr ue, f alse}n + {true, false } E Mor(sm) be 

a Boolean funet i on . Cl early f l may be extenced to a fune t ion 

f: Rn + R by f« x,y » : = (fl (x) , f' (y) : . Let 1 .•. 1 denot e 

the size eomplexi t y on sm and 11 . •• 11 the size eompl exi t y on 

PR' Then we have If ' I = Hf ll (a switching circuit for f is 

also a switching circuit for f' a nd v i ce versa). Let fl, f2 

E Mor(PR) be the funetions r epresented by the following two 

switching circuits: 

(true, fa l s e) (false, true) 

Then 11 f 1/1 ~ I f ' I = \I f 11 and 11 f z 11 ~ I f' I = 11 f 11. On the other 
hand f1xf z ma y be eomputed using the following switehing 

circuit : 

(true , fa lse) (false,true) 

this must be 

repeat ed for 
every input 

wire of f . 

Therefor e 11 f 1 xf 211 .2. 11 f 11 + 0 (n). If we now take f eomplex 

enough we have showo that 11 ... 11 is not a str let complex i t y 
measure. 
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4,10 OPEN PROBLEM S, 

1) Give a characterization of all s tr i ct complexity measures 

on a fixed X- category . 

2) Find adefinition of "m onotone X- categories " as a genera ­

lization of zfl . 

3) Find adefi nit io n of "monotone c ompl exity meas ures " on a 

(monotone) X-category. 
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