Approximate Algorithms for
Approximate Congruence
by
Stefan Schirra

A 21/90

Fachbereich 14 — Informatik
Universitat des Saarlandes
6600 Saarbriicken

Germany

This research was supported by the DFG SPP Datenstrukturen und Algorithmen
Grant Me 620/6

1

Two sets A and B of points in the plane are called congruent if there is an isometry
which maps the points in 4 onto the points in B, where a map I : R* — R? is called
isometry if distz(a,b) = disty(I(a),I(b)) for all points a and b. Here dist, denotes

Approximate Algorithms for
Approximate Congruence

Stefan Schirra *
Fachbereich 14 Informatik
Universitiat des Saarlandes

6600 Saarbriicken
Germany

Abstract

We study the decision problem whether two sets of n points in the plane
are approximately congruent with a given tolerance e. Approximate algorithm
means that the algorithm is not guaranteed to take a decision for all tolerance
values. For point sets A and B let €,,:(A4, B) be the smallest tolerance value
permitting approximate congruence of A and B. An algorithm for approximate
congruence is said to be (a,3)-approximate for a,3 > 0 if the algorithm is
guaranteed to give an answer for test values outside the interval [e,p(A, B) —
a, eopt(A, B) 4+ B). For tolerance values in [eqpe(A, B) — a,eopt(A, B) +), the
algorithm may give an correct answer or may report that an answer cannot be
found. We give an (%eopt(A,B),eopt(A,B))-approximate algorithm with time
complexity O(n*). We use an additional input parameter v for tradeoff be-
tween running time and size of the uncertainty interval and give an (v,7)-
approximate algorithm with running time O((f;)zrf). Moreover we give an
(3¢7,(A, B),eL (A, B))-approximate algorithm with run time O(n*?) for ap-
proximate congruence enabled by a translation and an (,v)-approximate algo-
rithm for this case with running time O((%)znz's). Here eI ,(A, B) is the smallest
tolerance value permitting approximate congruence of A and B enabled by a
translation.

Introduction

Fuclidian metric.

*This work was supported by the DFG Schwerpunktprogramm Datenstrukturen und Algorithmen

Grant Me 620/6

Although there are several optimal O(nlogn) algorithms [1,2] for testing congru-
ence, testing congruence is difficult in practice. Clearly, every algorithm for testing
congruence is highly sensitive to inexact computations and often, the input data are
inaccurate. Therefore Alt et al. [1] considered approximate congruence.

Definition 1 (Alt et al.) Let A = {a;,...,a,} and B = {b,,...,b,} be two sets of
points in the plane and let ¢ be a non-negative real number. The point sets A and B
are called approximately congruent with tolerance ¢ (or shortly e-congruent) if an
isometric mapping I and a bijective labeling £ : A — B exist s.t. dist(I(a;)—£(a;)) <
e for all1,1 <1 <n. We say that I and ¢ enable approrimate congruence for A and
B.

Note that approximate congruence as defined above depends on the chosen metric.
Alt et al. studied two kinds of problems in connection with approximate congruence:

1. The decision problem: For a given tolerance value ¢ decide whether A and
B are e-congruent.

2. The optimization problem: Compute the smallest tolerance value £,,,(4, B)
permitting approximate congruence for A and B.

They gave an algorithm for the general decision problem and algorithms for some
restricted decision and optimization problems where the approximate congruence
must be enabled by special isometries e.g. translations, rotations around a fixed
center,.... Moreover they considered different metrics. The decision algorithm of
Alt et al. for the general case with Euclidian metric has running time O(n®) (in
contrast to several optimal O(n logn) algorithms [1,2] for testing exact congruence.

In the case of exact congruence the isometry fixes the correspondence between the
points. In the approximate case however, the correspondence between the points,
the labeling, has to be found by the algorithm. Therefore the problem is easier
if a labeling is fixed in advance: Alt et al. [1] and Iwanowski [5] gave O(nlogn)
time algorithms for some restricted decision problems and Imai et al. [4] presented
optimization algorithms with time complexity O(n®logn) for Euclidian metric and
O(n) for maximum metric. In this paper we consider only the case that a labeling
is not given and use Euclidian metric.

Since the running times of the algorithms for testing approximate congruence are
far from being practical, approximation algorithms are interesting. The basic idea of
our algorithm for approximate congruence is known from daily life. If one compares
distances (e.g. between cities on a map) most of the time it is obvious which of two
distances is smaller. A tapemeasure is necessary only if the distances are nearly
equal. Nearly the same applies to approximate congruence. It is not necessary to
have a complicated algorithm that solves every problem instance. There are simpler
and faster strategies that work correctly if the testvalue ¢ is evidently large enough
for permitting approximate congruence or evidently to small.

More precisely, we call an algorithm an (a,()-approximate algorithm for ap-
proximate congruence if it solves the decision problem for all ¢ outside the interval

[€opt(A, B)—a, €opt(A, B)+3), where €,,,(A, B) is the smallest tolerance value permit-
ting approximate congruence for A and B. Similarly let sit(A, B) be the smallest tol-
erance value permitting approximate congruence for A and B when the approximate
congruence has to be enabled by a translation. Analogously an algorithm for testing
approximate congruence under translations is called (,3)-approximate if it solves
the decision problem for all € outside the interval [L,(A4, B) —a,¢l (A, B)+8). Fur-
thermore we require that an («, 3)-approximate algorithm reports "’ DON’T KNOW”
if a decision can not be taken. Hence an (a,(3)-approximate algorithm always ter-
minates and works reliable, i.e. all >’YES” and ”NO” answers are correct.

In the next section we derive an (3¢Z,(A, B),eZ,(A, B))-approximate algorithm
for approximate congruence under translation with running time O(n?®) and an
(3€0pt(A, B), €opt(A, B))-approximate algorithm with running time O (n*) for the gen-
eral case. In Section 3 an additional input parameter is used as tradeoff between
running time and size of the uncertainty interval. We give an (v,~)-approximate
algorithm with running time O((£)?n*) for the general case. The comparable exact
((0,0)-approximate) algorithm of Alt et al. [1] has running time O(n®). Furthermore
we give an (v,v)-approximate algorithm with running time O((£)2n?%) for testing
approximate congruence under translation. Here the comparable exact algorithm
of Alt et al. has running time O(n®). In Section 4 we discuss briefly the machine
model used in the time analysis of the previous sections, the Real-RAM [9], and
it’s relation to practice in connection with approximate congruence. Section 5 offers
some concluding remarks.

2 First Approximate Algorithms

First of all we derive an (3¢Z,(4, B),eL,(A, B))-approximate algorithm for testing
approximate congruence with tolerance ¢ of two point sets A = {a;,...,a,} and
B = {by,...,b,}. Then we give an (%sopt(A,B),eopt(A,B))-approxirna.te algorithm
for the general case. Both algorithms are based on the fact, that an isometry which
enables approximate congruence maps the centroid c4 of A near to the centroid cp
of B. Let T,,.,
sometimes define the labeling £ on the point sets implicitly by a permutation = on

the index set. In this case £(a;) = bx(;).

be the translation that maps c4, onto point cg. In the sequel we

Lemma 1 Every tsometry I that enables approrimate congruence with tolerance ¢
maps c, into the ball with radius € around cp.

Proof: Let m be the permutation that defines the labeling. We have
Ica) —ep=I(:(Za) - 1Tb =1 5(I(a;) —bay)) < s X e=¢

Lemma 2 Let T be a translation and £ a labeling that enable e-congruence for A
and B. Let T, be the translation that maps c4 onto point cg. T,

cAch cacp
approzimative congruence for A and B with tolerance e+ || T'(c4) — cs ||

enables

Figure 1: A and B

Figure 2: B with e-balls and I(A), where I is an isometry which enables e-congruence

Figure 3: B with e- and 2e-balls and T,

CACB

(A) rotated by 90°

Proof: T is the composition of T,,., and the translation which maps cg onto T'(c4).

Lemma 2 gives an approximate algorithm for testing approximate congruence en-
abled by a translation. Consider the following algorithm.

o
-y
~

Construct G, = (V, E) where

V ={uy,...,un} U{v1,...,v,} and

E = {{u, vk} | Tc,c; maps a; into the e-ball with center by};
if G, has a perfect matching then return YES fi;
Construct Gy, = (V, E) where

V ={u1,...,un} U{v1,...,v,} and

(=) o O O
<)) W N
R e i

AN AN AN TN TN AN TN N N
[
54

07) E = {{w;, v} | T.,cp, maps q; into the 2e-ball with center b;};
08) if G4, has not a perfect matching then return NO fi;
09) return DON’T KNOW;
Theorem 1 The algorithm above is an (3el (A, B),eL,(A, B))-approzimate algo-

rithm for approrimate congruence by translation with time complezity O(n*®).

Proof: A labeling which together with T,,., enables e-congruence corresponds to
a matching of the bipartite graph G. of maximum cardinality. Hence T.,.,
ables approximate congruence with tolerance ¢ iff G, has a perfect matching. So all
"YES” answers are reliable. If there is a translation and a labeling ¢ that enable
.cp and £ enable approximate congruence with tolerance 2¢. Hence,
if G5, has not a perfect matching, A and B are not e-congruent by a translation.

en-

e-congruence, 1,

For the time analysis note first that the centroids of A and B, and T.,.,(A) can be
computed in time O(n). G. and G3. can be constructed in time O(n?). Testing for
a perfect matching can be done by computing a maximum matching in time O(n?%)
[8]. Figure 4 shows the dependence of the algorithm on ¢ and s;t(A,B). For the
general case the following basic observation [1] is helpful: It is sufficient to have
an algorithm that searches for a composition of a translation and a rotation that
enables approximate congruence since every other isometry is a composition of a
reflection at a line that can be chosen arbitraryly, a translation and a rotation. Such
an algorithm can then be applied first to A and B and then to A and the image of
B obtained by a reflection of B at an arbitrary line e.g. a coordinate axis. Therefore
we restrict our attention to compositions of translations and rotations, which are
called even isometries or rigid motions [7].

Lemma 3 Let I be an even tsometry and £ a labeling that enable e-congruence for
A and B. Let T, be the translation that maps point d onto point e. There s a

rotation R with center e, s.t. R and £ enable approrimate congruence with tolerance
e+ || I(d) — e || for T4(A) and B.

Proof: Every even isometry is a composition of a translation and a rotation whose
center can be chosen arbitrarily [7]. So we have I = T'o R, where T is the translation
that maps d onto I(d) and R is a rotation with center d. We show that the rotation

Te ,cp does not Tcycp may Te ,cp enables

enable enable it BN,
0 e-congruence e-congruence e-cong .
1 [[N
r [[7
1.7 T T
0 ieopt(A’B) Eopt(A) B) 2€opt(A7 B)
1 ol | l N
T E 1 ?

Te,cp does not Te¢,cp may
AcB A°B Tc,cp enables

enable enable 2eccon o

0 2e-congruence 2e-congruence e-congruence

1 [[N
I [[?

NO or YES or

0 NG DON'T KNOW DON'T KNOW XES

1 { [[N
I b P [T g T ; i

feopt(A’ B) Eopt(A’ B) 2€opt(A’ B)

Figure 4: Output in relation to €2 ,(4, B)

R = Ty o Ro T;' with center e enables approximate congruence for T4e(A) and B
with tolerance e+ || I(d) — e ||. Let 7 be the permutation that defines the labeling ¢
and let T' be the translation that maps I(d) onto e. We have

| R(Tue(a:)) = bagy) | = || Tae 0 Ro Ti" 0 Tue) () — bagy |
| 51:" o T o R)(a:) — bagy) |

= || T(I(a:)) = bxgy) ||

| I(a:) = bagiy || + [| I(d) — e ||
e+ || I(d) —e ||

<
<

Combining Lemma 1 and Lemma 3 we have

Lemma 4 Let I be an even isometry and £ a labeling that enable e-congruence for
A and B. There 1s a rotation R with center cg s.t. R and £ enable approzimate
congruence with tolerance e+ || I(ca) — cp ||< 2¢ for T.,.,(A) and B.

Now we need an algorithm for testing approximate congruence of two point sets
D ={d,...,d,} and E = {ey,...,e,} enabled by a rotation around a given center
¢ when no labeling is given. Alt et al. [1] studied this restricted problem, but only
the case that a labeling is given. However, it is straightforward to combine their
algorithm with the methods used in other algorithms of [1] to design an algorithm
for the case that no labeling is known.

We identify the rotations with center ¢ with the points on the unit sphere S*.
The set of rotations around the fixed center ¢ that map d; into the e-ball around e,
form a circular interval I; » on S'. We assign a bipartite graph G, = (V, E,) to each
point a € S, where V = {uy,...,u,} U{vy,...,v,} and E, = { {u;,ve} }; x € I} }.
The rotation corresponding to a enables approximate congruence iff G, has a perfect
matching. Since for every a there is an endpoint 8 of an interval s.t. E, C Ep, it
suffices to compute maximum matchings for the graphs assigned to the endpoints
of the intervals and to test if one of them is perfect. A maximum matching can be
computed in time O(n*®) [8]. Since there are O(n?) interval endpoints that can be
computed in constant time each, we have an algorithm that solves our problem in
time O(n*®).

This can be done better. We sort the endpoints in time O(n’logn) and test
the graphs for a perfect matching in the computed order. In general (if all interval
endpoints are different) the graphs associated to two contiguous endpoints differ
only by one edge that is deleted or added. We start with an arbitrary endpoint 3,.
We build the graph Gg, and compute a maximum matching. Each time we proceed
from interval endpoint «; to the successor a,, one edge is added or deleted. If an
edge is added, we try to compute an augmenting path. The computation of one
augmenting path is sufficient because the cardinality of the matching can increase
only by one. If an edge is deleted which is not contained in the maximum matching
of G4,, the maximum matching of G, is a maximum matching for G,,, too. If the
deleted edge was in the matching, it suffices again to compute an augmenting path.
The procedure can easily be modified for degenerate cases. Since an augmenting
path can be computed in time O(n?), we have an algorithm for testing approximate
congruence of two point sets of cardinality n enabled by a rotation around a given
center with running time O(n*).

Consider the following outline of an algorithm.

(01) ifT.,.,(A) and B are e-congruent by a rotation with center cp

(02) then return YES fi;

(03) if T ,.5(A) and B are not 2e-congruent by a rotation with center cp
(04) then return NO fi;

(05) return DON'T KNOW

Theorem 2 The algorithm above is an (3e.pt(A, B),eopt(A, B))-approzimate algo-
rithm for approzimate congruence with time complezity O(n*).

Proof: By Lemma 4, T,,.,(A) and B have to be approximately congruent with
tolerance 2¢ by a rotation with center cg if A and B are approximately congruent
with tolerance e. Thus if the test in (03) is positive, A and B cannot be approximately
congruent with tolerance e. Further, A and B are e-congruent if T, ., (A4) and B are

e-congruent, because T, ., is an isometry.

By Lemma 1 there is an isometry I, s.t. || I,(ca) —c¢B ||< €opt(A4, B). Hence a rotation
around cp exists s.t. T,,.,(A) and B are approximately congruent with tolerance

2¢0,t(A, B). Clearly T.,.;(A) and B cannot be 2e-congruent if ¢ < Jeo,(A,B).

Hence the algorithm may be unable to give an answer only if the tolerance value lies
in the interval [Jeope (A4, B), 2¢0p(4, B)).

The computation of T, ., (A) takes time O(n). Lines (02) and (03) use the algorithm
described above for testing approximate congruence by rotation around a given cen-
ter. They have time complexity O(n*) each.

Two remarks:

1. If the algorithm reports "DON’T KNOW”, we may conclude that the test
value is near €,y (A, B) without any knowledge of the exact value of ¢,,:(4, B).

2. The algorithm may give a correct answer even if the test value lies in the

interval [1e,pe(A, B), 260t (A, B)).

3 Time versus Uncertainty

The uncertainty interval can be made arbitrarily small at the expense of running
time. Let v be a positive real number smaller than the test value ¢. Cover the ball
with center cg and radius £ with balls of radius v. Let U; be the :-th ball of the
covering, ¢; be it’s center, and T, ,., the translation that maps c4 onto ¢;. Consider
the following outline of an algorithm.

(01) possible «— false;

(02) for each ball of the covering do

(03) Compute T, (A);

(04) if T ,.,(A) and B are e-congruent by a rotation around c;
(05) then return YES fj;

(06) if T.,..(A) and B are (¢ + 7v)-congruent by a rotation around c;
(07) then possible — true fi

(08) od;

(09) if possible

(10) then return DON'T KNOW

(11) else return NO

(12) £

Theorem 3 The algorithm above ts an (v,7)- approzimate algorithm for approzi-
mate congruence with time complezxity O((f{)2n4).

Proof: If j exists s.t. T, (A) and B are e-congruent, then A and B are e-congruent,
too. On the other hand, every isometry that enables e-congruence for A and B maps
ca in U.(cp) and hence in some Uy of the covering. Therefore by Lemma 3 (with
d = cy and e = ¢;) T¢,., (A) and B are (¢ + v)-congruent by a rotation around cy.
Hence if there is no such k, then A and B cannot be e-congruent. This shows the
correctness of the algorithm.

If € is less than €,,, (A, B) — 7, then T, ., (A) and B cannot be (& +v)-congruent. By
Lemma 1 there is a ball, say U;, that contains the image of c4 under an isometry that
enables congruence with tolerance e,,:(A, B). Hence by Lemma 3 a rotation around
c; exists that enables approximate congruence for T, (A) and B with tolerance ¢
if € > €,pt(A,B) + 7. So the interval where the algorithm may be unable to give
an answer is [eqpt(4, B) — 7, €opt(A, B) + 7). Since 4—1‘72 balls of radius v are sufficient
to cover the e-ball with center cp, there are O(:—:) iterations of the loop. As in the
proof of Theorem 2, each execution of the loop has time complexity O(n?).

Analogously an (vy,v)-approximate algorithm for testing approximate congruence
enabled by a translation can be constructed. Again, the e-ball with center cp is
covered by ~v-balls. For each center ¢; we test whether the translation which maps
c4 onto ¢; enables e-congruence or (e + v)-congruence. We get

Theorem 4 There ts an (v,v)-approzimate algorithm for approzrimate congruence
enabled by a translation with time complezity O((2)*n*?).

4 Bit Complexity

The analysis of the algorithms of the previous sections is based on the Real-RAM
model [9]. This means we have a RAM that can store reals and compute exactly
with reals. From a theoretical point of view this model is an adequate simplifi-
cation for developing algorithms in computational geometry, but from a practical
point of view it is not. Real computer cannot handle real numbers. In practice,
floating point arithmetic is used, and rounding and cancellation errors often cause
many problems in robustness of the implemented algorithms. Theoretically correct
algorithms compute wrong answers or no answers at all.

Since exact congruence is destroyed by perturbations of the data, it is evident
that algorithms for deciding exact congruence have to be highly sensitive to rounding
errors. Although rounding errors and inaccurate input data were the motivation for
Alt et al. to investigate approximate congruence, their algorithms [1] are also highly
sensitive to rounding errors. This is also true for the algorithm of Section 2 for
approximate congruence enabled by a rotation around a given center. Rounding
errors might lead to wrong answers, e.g. if the interval endpoints are not sorted
in the right order. Moreover we may not assume that the centroids are correctly
computed if floating point arithmetic is used. Hence the analysis of the uncertainty
set becomes wrong.

Designing algorithms that use floating point arithmetic and can be guaranteed
to produce an output that is the correct output for a slightly perturbed input is not
useful for congruence problems. Since there is always an arbitrary small perturbation
of the input s.t. the point sets are not congruent, a trivial algorithm that always
decides that the point sets are not congruent without regard to the input obviously
satisfies the above condition on the output.

If we want reliable answers for the actual input data, we have to avoid round-
ing errors. In the sequel we consider rational numbers and use rational arithmetic

9

with arbitrary precision. Since floating point numbers are rational, this is not a
restriction. A rational number is stored as a pair of integers representing nominator
and denominator. We call the maximum of the lengths of the binary representa-
tions of nominator and denominator the length of the represented rational number.
In contrast to floating point arithmetic, space and time needed for the elementary
arithmetic operations are not bounded by a constant, hence it is no longer fair to
assume unit costs for arithmetic computations. In the remaining part of this section
we redo the time analysis of Section 3 and base it on the bit complexity model where
every manipulation of a single bit has unit costs. We assume that all input data
have length L at most.

The algorithm for deciding e-congruence by a rotation with a fixed center can be
executed exactly with arbitrary precision rational arithmetic. Let us assume that
the coordinates of the points in the two sets, the coordinates of the fixed center, and
¢ are rational numbers of length < K. In [1] it is shown that the cosinus values of
the interval endpoints have the form u + v/z, where u,v, z are rational numbers of
length O(K). Since two such numbers can be compared in time Og(K'*%), § > 0, the
endpoints of the intervals [;; can be sorted in time Og(n’lognK'*?). Here index B
indicates that the bit complexity model is used for the time analysis. The matchings
can be computed in time Op(n*logn) where the additional logn factor in the time
bound arises from computations with non-negative integers < n. Hence in the bit
complexity model the algorithm has time complexity Op(n*logn + n?lognK*¢),
where K is the length of the rational coordinates of the input points.

Computing the centroid of n points exactly with rational coordinates is quite
expensive, because the length of a sum of two rational numbers may be twice as
large as the length of the terms of the sum. With the fast integer multiplication
algorithm of Schénhage and Strassen [11] the sum of two rational numbers of length
K can be computed in time Op(K log K loglog K) = O(K'*%), § > 0. Using a binary
scheme for addition, the sum of n coordinates can be computed in time Og((nL)*?)
(in the first step 5 additions of rational numbers of length L at most have to be done,
in the second step 7 additions of rational numbers of length 2L at most, ...,and in
the last step one addition of two numbers of length 3L at most.) Since multiplication
with 1 can be done in time Op(nL logn), the centroids c4 and cg can be computed
in time Op((nL)'*?). Their coordinates have length O(nL).

Let H be the length of 4. This implies ¥ > 1/2¥. If the error in the computation
of the centroids is bounded by 1, every isometry that enables e-congruence for A
and B maps the approximation point for ¢4 into the the ball with radius ¢ + v
centered at the approximation point for cg. We compute the exact value of c4 in
each coordinate using rational arithmetic and then compute the nearest point z4
with integers coordinates to 29*2c4 and use z,/2¥*? as approximation for c4. In
the same way we compute an approximation zg to cg. Then z4/2F+? — ¢, < o
Since the coordinates of the input points are bounded by 2%, the coordinates of the
centroids are also bounded by 2~. Hence the approximation points have coordinates
of length O(L + H) and can be computed in time Og(nL + H).

10

It remains to determine the centers of the covering balls. Let (c.,c,) be the

coordinates of the approximation for cg and let t = [ﬂ . We choose the points

(cz £ kv,eytjy) 0<k,j<t+1

as centers of the covering balls. |£] is an integer of length L + H + 1 at most.
Therefore each coordinate of a center has length in O(L + H). Also the points in
T;(A) have length in O(L + H). Hence each test for approximate congruence with
tolerance ¢ or € + v can be done in time Og(n*logn +n?logn(L + H)'*%). We have

Theorem 5 If all coordinates of the input points and e are rational numbers of
length L at most and v 1s a rational number of length H at most, the (v,7)-
approzimate algorithm described in Section 8 has time complezxity

oB((%V(n* logn + n*logn(L + H)'*?))

in the bit complezity model.

Rational arithmetic is not sufficient for the general decision algorithm of [1] with
rational input data. Non-rational real algebraic numbers may occur in some compu-
tations during an execution of the algorithm and a method for exact computations
with real algebraic numbers is necessary. Using the representation of real algebraic
numbers by isolating intervals and defining polynomials [6], the algorithm of Alt et al.
has time complexity Op(n®logn + n®lognL**%) [10]. There appears no dependence
on the degree of the defining polynomials in the time bound because all polynomials
computed by the algorithm have small degree bounded by some constant. The time
bound improves if real algebraic numbers are represented by defining polynomials
and sign sequences a la Thom [3]. Since coding & la Thom requires no computation
of approximations like isolating intervals, computations with integers of length O(L)
suffice and the running time is Og(n®logn + n®lognL!*?%).

5 Conclusions

We have presented an O(n*) algorithm for the decision problem for approximate
congruence of two point sets in the plane which is guaranteed to give an answer if ¢ ¢
[3€opt(A, B), 260pt(A, B)), where €,,,(A, B) is the smallest tolerance value permitting
approximate congruence for A and B. By an additional input parameter v we
can reduce the uncertainty interval to [¢ — v, + 7). The second algorithm has
running time O((i)zn‘). The best known algorithm which always finds an answer
has time complexity O(n®). If the input coordinates and ¢ are rational numbers of
length L at most and < is a rational number of length H at most the algorithm
has time complexity Op((%)*(n*logn + n*logn(L + H)'*’)) in the bit complexity
modell if arbitrary precision rational arithmetic is used. Also we have presented
approximate algorithms for the case that approximate congruence has to be enabled

11

by a translation. It is important to note that the algorithms are reliable, i.e. if an
decision is taken, it is correct.

We have used v as an additional parameter for tradeoff between length of the
uncertainty interval and running time. If we first test e-congruence with v = 7,
then with v = £, and so on until an answer is found, the procedure will terminate if
€ # €opt(A, B). This algorithm has running time

O(|——Pn*) = O(j1 — =*|*n*)
—¢€ €
since the execution of the algorithm with the smallest value for 4+ dominates the
running time. The algorithm is better than the algorithm of Alt et al. if
e — ol = 0(5¢)
In order to ensure termination a new parameter p can be used as a threshold value,
s.t. the algorithm stops if the actual value of « is less than u.

Lemma 1, Lemma 2, and Lemma 3 generalize directly to higher dimensions.
Hence the approximate algorithms for testing approximate congruence under trans-
lation generalize to higher dimensions, too. The generalization of the algorithms for
the general case depends on the availability of an algorithm for deciding approximate
congruence for two point sets in R? enabled by an isometry that fixes one point (a
rotation in three dimensional space).

Acknowledgement: The author thanks Kurt Mehlhorn for several helpful discus-
sions on the topic.

References

(1] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity, and
symmetries of geometric objects. Discrete and Computational Geometry, 3:237—
256, 1988.

[2] M.J. Atallah. Checking similarity of planar figures. Int. Journal of Computer
and Information Science, 13:279-290, 1984.

[3] M. Coste and M.F. Roy. Thom’s lemma, the coding of real algebraic numbers
and the computation of the topology of semi-algebraic sets. Journal of Symbolic
Computation, 5:121-129, 1988.

[4] K. Imai, S. Sumino, and H. Imai. Minimax geometric fitting of two corre-
sponding sets of points. In Proc. of the 5** ACM Symp. on Comp. Geometry,
pages 276282, Saarbriicken, Germany, 1989.

[5] S. Iwanowski. Approrimate Congruence and Symmetry Detection in the Plane.
PhD thesis, Fachbereich Mathematik, Freie Universitat Berlin, 1990.

12

[6] R. Loos. Computing in algebraic extensions. In B. Buchberger, G.E. Collins,
and R. Loos, editors, Computer Algebra, pages 173-187, Springer Verlag, 1982.

[7] G.E. Martin. Transformation Geometry. Springer Verlag, 1982.

(8] K. Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and NP-
completeness. Springer Verlag, 1984.

[9] F. Preparata and M.I. Shamos. Computational Geometry. Springer Verlag,
1985.

[10] St. Schirra. Uber die Bitkomplezitit der e-Kongruenz. Diplomarbeit, Univer-
sitat des Saarlandes, Saarbriicken, Germany, 1988.

(11] A. Schénhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Com-
puting, 7:281-292, 1971.

13

	fb1990-21-0001
	fb1990-21-0002
	fb1990-21-0003
	fb1990-21-0004
	fb1990-21-0005
	fb1990-21-0006
	fb1990-21-0007
	fb1990-21-0008
	fb1990-21-0009
	fb1990-21-0010
	fb1990-21-0011
	fb1990-21-0012
	fb1990-21-0013
	fb1990-21-0014

