The OBSCURE Manual

Part I: Editing and Rapid Prototyping

A 03 / 91

Version of February 1991

AUTHORS: Jirgen Fuchs, Annette Hoffmann, Liane Meiss, Joachim Philippi,
Michael Stolz, Markus Wolf, Jorg Zeyer

EDITED BY Jacques Loeckx and Markus Wolf

This is the first version of a manual for an implementation of the specification language
OBSCURE!. It without doubt still contains errors and some sections may be unclear or
even obscure. The editors are grateful for any comment or suggestion.

Jacques Loeckx, Markus Wolf

Fachbereich 14 (Informatik)

Universitat des Saarlandes

D-6600 Saarbriicken

e-mail: loeckx@cs.uni-sb.de
lupus@cs.uni-sb.de

'The development of OBSCURE has been supported by the Deutsche Forschungsgemeinschaft,

How to use the present manual

The present manual may be used as a tutorial, as a reference manual or as a description of
the OBSCURE system. Before providing some hints to the reader we shortly indicate the
contents of the different chapters.

The first chapter presents a short introduction to the system components and the Emacs
editor which is used as a user environment for the system. The notational conventions
adhered to throughout the manual are indicated.

The second chapter constitutes a protocol of a session with the system.

The third chapter presents the syntactical constructs of the specification language OB-
SCURE and their semantics. For a detailed description of the algorithmic specification

method and the specification language OBSCURE the reader is referred to [Lo 87] and [LL
90] respectively.

The fourth chapter describes the OBSCURE system proper. All available commands of
the system are shortly discussed.

Examples of OBSCURE specifications and an illustration of the work with some system
components are to be found in the fifth chapter.

The final chapter explains how to call the components of the system from a standard
UNIX shell.

The appendices give an index of the variables and functions of the system, a complete
context free syntax for the specification language, a non trivial example of a specification in
OBSCURE, an installation guide and references to the literature.

The beginner using the present manual as a tutorial should have a quick look at Section
1.1, Section 4.1 and —if necessary— to Appendix E. He/She should then work through
Chapter 2 by repeating the session described on a terminal. He/She may also consult Chapter
5.

i1

When using the manual as a reference manual one will be interested in particular in
Chapter 4 and the Appendices A and B.

The reader interested in a description of the OBSCURE system is suggested to read
Section 1.1 and Chapter 3. He/She may then have a look at Chapter 2 and Chapter 5.

Contents

1 Introduction 1
1.1 An overview of the components of the system 2
1.1.1 Theparser. i i e e e e e e 2

1.1.2 The module database I 2

1,33 Theinterpreter . « « s v s s s ss s s s p s 6 K s BB s B B 6 B @ & & & & 2

1.1.4 The Source-To-Source-Translator 2

115 ThetheoTemM PIOVEL o 2 « s : : & o s 6 53 = 9 : 8 % 35 8 s 5 @5 & 5 5 3

12 OnEmacs e e e 3
1.3 Notational conventions 4
1.4 How to get help from thesystem 4

1.5 Some useful Emacscommands 5

2 A commented protocol 7
2.1 Starting thesystem 8
2.2 Editing an atomic specification o0 0oL, 8
2.3 Using the parser, correctingerrors 14
2.4 Using the module database 17
2.5 Building composed specifications 0. 23
2.6 Using the module database (continued) 24

v

CONTENTS

2.7 Using the interpreter
2.8 Translating into the programming language C .
2.9 Ending thesession

3 The specification language OBSCURE

................

................

3.1 Atomic specifications e
F1l ‘General : v w5 bt p e i e B B B RSB R R RE R s b
3.1.2 Acontextfreesyntax e
3:1:3 ABMPIEEXAINPIE =« = s » 5 ¢ 5 5.0 & £ &% @5 B % FE B G ha K Rd B w

32 Thecomstructs e
3.2.1 The compose constructs
322 Therenamingconstructs . . . « . o o c s ¢ s o s 5 s s 5 00 ® 50w s
3.23 The FORGET construct
324 Theaxiom constructs: . = : » v : s ss s s w m s 5 53 5 a6 © wuws s s
3.2.5 The SUBSET and QUOTIENT constructs

33 Modules e e e
3.3.1 Declarationofamodule
3.3.2 Instantiationofamodule. 0L
333 NOLE : 5o 05 dt56mtdsiseiRBsRARRiIioHdEssd B S

4 The System OBSCURE

4.1 Starting and using the system
4.1.1 Starting thesystem
4.1.2 Using the system for the first time . . .

4.1.3 Using the system together with Suntools

................

................

................

32

35

37

38

39

39

40

42

44

44

48

49

50

51

52

52

52

52

53

CONTENTS

4.1.4 Advanced procedures
42 "THEPELHET 5 : o s w v+ 8 # s 8 @ d © 36 63 5 & s 5 858 & 58 @ Le @ssad
4.3 The module databases
4.3.1 Generalconcepts e
4.3.2 The structure of the module databases
433 Thecommands
4.3.4 Thewariables . ::c v issss s msmasen:amsassansass
4.3.5 The query parameter <condition>
4.4 Theinterpreter e e e e e e
441 Thecommandso,
4.4.2 Theinterpretermode
4.5 The Source-to-Source-Translation of specifications
4.6 Special editingcommands L0 L oL,
5 Examples
5.1 Examplesofspecifications . . .« : « s « » 5.6 95 5 5 vs wus 8 06 & 95 8§
5.1.1 Simpleexampleso
5.1.2 Examples illustrating the use of the interpreter
5.2 Example queries to the module database
6 OBSCURE and UNIX
6.1 Callingtheparser
6.2 Calling the interpreter o
6.3 Calling the Source-to-Source-Translation
6.4 Calling the module database

vi

56
57
58
58
58
60
62
63
66
66
67
70

il

74
74
74
7

85

88

CONTENTS vii

A Index of commands and functions 93
B Index of variables 95
C The context free syntax for the specification language 96
D A more complex example 102
E Installation guide 115
E.1 Installation of thesystem. 115
E.1.1 If shipped together with Emacs 115

E.1.2 If not shipped together with Emacs 116

E.2 Furtherremarks R 117

F References 119

Chapter 1

Introduction

The OBSCURE system is a specification environment embedded in the Emacs editor. It
supports the design, test and maintenance of large specifications written in a specification
language also called OBSCURE.

The components of the OBSCURE system are:

® a parser;

a set of module databases;

an interpreter;

a Source-To-Source-Translator (SoToSoTra);

a theorem prover.

The theorem prover is still under development. Its structure and use will be described
in Part II of the OBSCURE maanual.

The Emacs editor constitutes the core of the system. All components of the system can
be called from Emacs, as well as from a standard UNIX-shell.

The following section gives a short overview of the four components of the OBSCURE system.

CHAPTER 1. INTRODUCTION 2

1.1 An overview of the components of the system

1.1.1 The parser

The parser checks the specification text for correctness with respect to the context free
grammar and the context conditions of the specification language OBSCURE (see 3 [The
specification Language OBSCURE]|, page 38 for more information). Successfully parsed
specifications are entered into the user’s module database by the parser.

1.1.2 The module database

There are two types of module databases, a global database mdbpool to which all users
have reading access, and the personal databases to which the users have reading access
and —via the parser— writing access. Each database contains modules, i.e. specifications
provided with names. Only the parser can write into a module database. This guarantees
that databases contain only syntactically correct specification modules. The user can direct
queries to a database through a query language.

1.1.3 The interpreter

The interpreter provides means for rapid prototyping. More precisely, the interpreter eval-
uates terms. These terms have to be terms over the signature of a “closed” specification,
i.e. a specification that imports “basic” sorts and operations only (see C [The context free
syntax for the specification language|, page 96 for more information). The term may contain
variables. To this end the interpreter contains a mechanism allowing to assign values to
variables. It moreover contains a tracer for debugging and online help.

1.1.4 The Source-To-Source-Translator

The Source-To-Source-Translator (So-To-So-Tra) is a program for translating syntactically
correct specifications into a programming language. As for the interpreter a specification
to be translated has to be “closed”. Currently a translation is possible into C only, but
translations into C++ and ML are under development. Note that a specification translated
by So-To-So-Tra allows rapid prototyping which is in general substantially more efficient
than the rapid prototyping performed by the interpreter.

CHAPTER 1. INTRODUCTION 3
1.1.5 The theorem prover

The theorem prover

e generates formulas the validity of which guarantees the consistency of the specifications
(see [LL 90] for more details);

e proves semi-automatically or automatically the validity of these formulas.

The theorem prover is still under development and is to be described in Part II of this
Manual.

1.2 On Emacs

OBSCURE is embedded in the Emacs editor extended by a special mode of Emacs, called
obscure-mode. The syntax of the commands specific to OBSCURE are compatible with the
normal command syntax of Emacs in order to help the experienced user.

The usual help-functions (see 1.4 [How to get help from ...], page 4), e.g. command-apropos,
describe-bindings, describe-function etc., are also available in the obscure-mode.

The version of Emacs used here is that of [Sta 85]. The Emacs manual should be available
online on your system. There is also a tutorial available on any Emacs system. A short
introduction to the conventions and the philosophy of Emacs is given in the following.

Emacs is an extensible, customizable, self-documenting, real-time display editor. In com-
parison with other text editors it offers additional comfort, such as the simultaneous editing
of several files, automatic program indentation and powerful editing commands. Through
few keystrokes Emacs provides help with concepts, commands, variables, key bindings etc.
It is relatively easy to extend the editor by new commands and programs, and it is possible
to start other processes from inside the editor. For these reasons Emacs was chosen the user

environment for OBSCURE.

In Emacs, the screen can be divided into several windows. At the start of an Emacs
session only one window is visible. It fills the whole screen except for the last line. The last
line, called echo-area, echoes entered commands and serves as display area for the so-called

minibuffer.

A buffer in Emacs is an ‘object’ containing a collection of symbols. Each buffer has
a name and a cursor position viz. the position, at which a command takes effect. The
contents of a buffer can be made visible in a window. In principle, the number of buffers
in one incarnation of Emacs is unlimited, but of course only one of them is the active one
in which a command takes effect. The user can transform any buffer into the active one by

CHAPTER 1. INTRODUCTION 4

a simple command. Note that there is a file-name associated with each buffer which is not
necessarily identical with the name of the buffer.

The Minibuffer mentioned above is a special buffer; its contents are visible on the last

line of the screen. It is used to read arguments for “complex commands” and to display error
messages.

1.3 Notational conventions

As will be described in the following chapters, the commands of the OBSCURE system are
called by pressing the ESC or Meta key, then the key labeled x and by entering the command
name. Following the notational conventions of the Emacs manual [Sta 85| this is denoted by
M-x <command name>.

Most commands can also be called by a short Control-sequence. This is denoted by

C-x

and stands for simultaneously pressing the Control-key and the key labeled x. These alter-
native key sequences are printed as a comment behind the command name as follows

M-x <command name> # C-x

A short summary of the OBSCURE commands and their key bindings can be found in
Appendix A (For more information see A [command index], page 93)

The following notational conventions, concerning variables and arguments to commands
are adhered to throughout the present text:

e a variable or argument ‘xy’ is written as xy;

e arguments that are read interactively after the call of a command are listed in order
of their occurrence.

1.4 How to get help from the system

This section presents a few help facilities as offered by Emacs. A more complete description
of the help facilities can be found in the Emacs-info-documentation—reader (see the next but
one paragraph for an explanation of the use of the reader).

The ‘help’-function is called by the key sequence C-h. Emacs then asks for an option
describing the kind of help wanted. If C-his typed again, a list of all available options together

CHAPTER 1. INTRODUCTION 5

with their meanings is displayed. Emacs offers an automatic name completion when asked
for help with functions or variables. In case more than one completion is possible, a list of
all possible completions is displayed in a separate window that disappears after selecting one
of the completions. The completion of the string typed in is started by pressing either SPC
or TAB. While SPC only completes up to a symbol different from a letter, TAB completes as
far as possible.

By typing the option i after invoking the help command one starts the Emacs-info-
documentation-reader which provides an online access to the Emacs manual, as well as to
the present manual. The ‘t’ option starts the Emacs Tutorial teaching how to work with
Emacs interactively.

1.5 Some useful Emacs commands

Note that any command using the minibuffer (e. g. any function call preceded by M-x) is
saved in a special history-list. A few useful commands manipulating the history-list are now
listed.

M-x repeat-complex-command (also called by: C-x ESC)

This command restarts any previous command that used the minibuffer.
The command asks for the name of the command to be repeated; the default
value is the last command executed.

M-x previous-complex-command (also called by: M-p)

After a repeat-complex-command the user can wander through the history
list or repeat the command just called. This command can be called successively
an arbitrary number of times thus allowing to wander through the history list
“back in time”.

M-x next-complex-command (also called by: M-n)

This command is the opposite of previous-complex-command in that it
allows to wander “forward in time”.

M-x list-command-history

The entire history list is displayed in the order of execution. The last com-
mand is on the first place. This list is displayed in a newly created buffer called
Command History. '

CHAPTER 1. INTRODUCTION 6

Sometimes the user wants to change some of the system variables used by OBSCURE or
Emacs. This can be achieved by the following command:

M-x set-variable

The user is first asked for the name of the system variable to be set. Then
he/she is asked for the value of the variable.

Chapter 2

A commented protocol

The aim of this tutorial is to introduce the OBSCURE system by explaining a session with
the system. It is advantageous if the reader has an access to the OBSCURE system through a
terminal. During the session the three specifications NAT, STACK and NATSTACK, are specified
with the help of the system.

The user of the system is supposed to carry the login name arbor and it is assumed,
that his/her home directory is /users/arbor (or 7/ for short). It is further assumed that
the user has access to a database called arbor which has been created by the command
o-mdb-install.

The file /users/arbor/.emacs should contain the following entry:
(load "obscure.elc")

For an explanation of this entry see 4.1 [Starting and .. .], page 53. If this file does not exist,
it should be created before proceeding any further with this tutorial.

The following conventions are used in the text of the now following protocol. Comments
are started with the symbol ‘#’. The symbol ‘<RET>’ stands for typing the key labecled
‘RETURN’, the symbol M-x stands for typing the key with the label ‘ESC’ or ‘META’ and
then typing the key labeled ‘x’ (cf. Section 1.3). The symbol C-x stands for typing the keys
‘CTRL’ and ‘x’ simultaneously (cf. Section 1.3). The symbol stands for typing the
key labeled ‘DEL’ or ‘Delete’..

The contents of an Emacs buffer with the name P-NAME are displayed in the following
manner:

P-NAME

P-NAME
The contents of the minibuffer (i.e. the last line of the screen) are printed as follows:

7

CHAPTER 2. A COMMENTED PROTOCOL 8

MINIBUFFER:

<text in the minibuffer>

Inputs of the user are preceded by ‘INPUT: ’. Most commands of Emacs can be called
either by their name or by a short keysequence. In this tutorial the keysequence is used, but
the alternative call is given as a comment. For a detailed description of the commands used
see 4 [The OBSCURE System]|, page 53.

2.1 Starting the system

INPUT: emacs # starts Emacs
The Emacs editor is started and the buffer *scratch# is displayed. This buffer is in
fundamental-mode at the start. If Emacs is not available, the vi editor can also be used,
but the OBSCURE components have to be called from a standard UNIX shell. For an
explanation on how to call the components from UNIX see 6 [OBSCURE and UNIX], page 88.
INPUT: M-o # call of the function M-x obscure-mode
The buffer *scratch* is switched to the obscure-mode. All key bindings of the OBS-

CURE system are now available. For more information about the modes of Emacs see [Sta
85].

2.2 Editing an atomic specification

The editing of a specification with the OBSCURE system is shown step by step in the
following. First, an atomic, i.e. algorithmic specification in the sense of [Lo 87, called
STACK , is created. The basic structure of an atomic specification is written into the buffer
STACK as follows:

INPUT: C-0 a # call of the function M-x o-at-spec

In the minibuffer appears:

MINIBUFFER:

buffer name: (default *scratchx*)

INPUT: STACK<RET>

CHAPTER 2. A COMMENTED PROTOCOL 9

The empty (new) buffer STACK is displayed on the screen and the following question appears
in the minibuffer:

MINIBUFFER:

Insert specification skeleton ? (y or n)

INPUT: y

The “skeleton” of a specification is generated by the answer ‘y’. The new contents of the

buffer STACK are displayed on the screen:
STACK

IMPORTS
SORTS

OPNS

CREATE
SORTS

OPNS

SEMANTICS
CONSTRS

WITH IMPORTED CONSTRS

VARS

PROGRAMS

ENDCREATE

E_AXIOMS
VARS H

ENDAXIOMS

I_AXIOMS
VARS H

ENDAXIOMS
FORGET

SORTS
OPNS

CHAPTER 2. A COMMENTED PROTOCOL 10

SUBSET OF <s> BY VARS ; <axiom> ENDSUBSET

QUOTIENT OF <s> BY VARS ; <axiom> ENDQUOTIENT
I_RENAME SORTS <l_sort> AS SORTS <l_sorts>

OPNS <l.opn> AS OPNS <l._oname>

E_RENAME SORTS <l.sort> AS SORTS <l_sorts>

OPNS <l.opn> AS OPNS <l.oname>

STACK

MINIBUFFER:

File to save in:7/

INPUT: STACK.T<RET>

The contents of the buffer STACK are written into the file /STACK.T. The buffer STACK
is linked to the file /STACK.T (see 1.2 [On Emacs|, page 3 for more information). Note that
the parser of the OBSCURE system expects the filenames given as argument to end in .T.

MINIBUFFER:

Wrote /users/arbor/STACK.T

The user can now complete the specification text by editing the buffer STACK with the

help of the Emacs editing commands. The buffer now looks as follows:
STACK

IMPORTS
SORTS el

CREATE
SORTS stack

OPNS
empty: -> stack
- push _ : el, stack -> stack

top: stack -> el
pop: stack -> stack

SEMANTICS
CONSTRS

VARS

PROGRAMS

CHAPTER 2. A COMMENTED PROTOCOL

ENDCREATE

11

STACK

The list of operations following the keyword OPNS is copied behind the keyword CON-

STRS to save work.

INPUT: C-0 ¢

call of the function M-x o-copy-opns

STACK

IMPORTS
SORTS el

CREATE
SORTS stack

OPNS

empty: -> stack

- push . : el, stack -> stack
top: stack ->el

pop: stack -> stack

SEMANTICS
CONSTRS
empty:-> stack
- push _ : el, stack -> stack
top: stack -> el
pop: stack -> stack

VARS
PROGRAMS

ENDCREATE

STACK

Operations that are not constructors are now deleted from the list with the help of Emacs

editing commands.

CHAPTER 2. A COMMENTED PROTOCOL 12

The text is modified by further editing, until it is of the following form:

STACK

IMPORTS

SORTS el
CREATE

SORTS stack

OPKNS

empty: -> stack

- push _ : el, stack -> stack

top: stack -del

pop: stack -> stack
SEMANTICS

CONSTRS

empty:-> stack

- push _ : el, stack -> stack

VAES e: el,

s, 8’: stack

PROGRAMS

top(s) <~ CASE s OF
ENDCREATE

STACK

The constructors of the sort stack are needed to define the recursive program for the
operation top. The OBSCURE system offers a command which displays the constructors of
a sort s of the specification in the current buffer.

INPUT: C-0o h # call of the function M-x o-show-constrs
MINIBUFFER:
new sort:

INPUT: stack<RET>

The screen is divided into two windows. The upper one still displays the contents of the
buffer STACK, the lower one displays the contents of a new buffer called *Constructorss*:

CHAPTER 2. A COMMENTED PROTOCOL 13

Constructors#

Constructors for the new sort stack:

empty: -> stack
- push _ : el, stack -> stack

sConstructorss*

MINIBUFFER:

Type C-x 1 to remove *Constructors* window

With the information of the buffer *Constuctors* the specification of a stack of elements

can now be completed. The buffer STACK contains the following text:
STACK

IMPORTS
SORTS el

CREATE
SORTS stack
OPNS
empty: =-> stack
- push _ : el, stack -> stack
top: stack ->el
pop: stack -> stack

SEMANTICS
CONSTRS
empty:-> stack
- push . : el, stack -> stack
VARS e: el,
8, 8’: stack
PROGRAMS
top(s) <- CASE s OF
empty: null;
e push 8’: e
ESAC;
pop(s) <- CASE s OF
empty: empty;
e push s’: s’
ESAC
ENDCREATE

STACK

CHAPTER 2. A COMMENTED PROTOCOL 14

INPUT: C-x 1 # Removal of the second text window

The window displaying the contents of the buffer *Constructors#*, disappears from the
screen.

2.3 Using the parser, correcting errors

To illustrate the correction of errors an error has been included into the specification of the
last section:

top(empty)=null

The operation null: -> el is unknown to the parser, because it has been declared neither
as imported nor as created.

INPUT: C-0 p # call of the function M-x o-parser
This command starts the OBSCURE parser.

MINIBUFFER:
Buffer name: STACK
INPUT: <RET>
MINIBUFFER:
Options [cfv]:
INPUT: <RET>
MINIBUFFER:
Save file /users/arbor/STACK.T? (y or n)
INPUT: y
MINIBUFFER:

Wrote /users/arbor/STACK.T

CHAPTER 2. A COMMENTED PROTOCOL 15

MINIBUFFER:

Save file /users/arbor/STACK.T? (y or n)
INPUT: y
MINIBUFFER:

Wrote /users/arbor/STACK.T

The screen is divided into two windows. The upper one still displays the buffer STACK,
the lower one displays the new buffer *compilation* which, after parsing, contains the
following text:

compilation#

cd /users/arbor/

/users/obscure/d-run/compile-command /users/arbor/STACK.T
STACK.T, line 23: token: "null";

here the name "null" is defined neither as prefixname nor as
infixname nor as mixfixname nor as variablename

STACK.T, line 23:

token: "null"; syntax error

specification is not accepted:

1 errors

Compilation exited abnormally with code 1 at Wed Aug 16 12:55:57

scompilation#*

The error in the specification has been found and described by the parser.
INPUT: C-x¢ # call of the function: M-x next-error

The cursor is positioned on column 1 in line 23 (viz. the line containing the error) in the
buffer STACK.

The specification is now modified in order to correct this error: the word null is replaced
by the predefined operation ERROR(el). In the case construct of the operator pop the case
of the empty stack is redefined to ERROR(stack). The buffer now looks as follows:

CHAPTER 2. A COMMENTED PROTOCOL

STACK

IMPORTS
SORTS el

CREATE
SORTS stack
OPNS
empty: -> stack
- push _ : el, stack -> stack
top: stack -del
pop: stack -> stack

SEMANTICS
CONSTRS
empty:-> stack
- push _ : el, stack -> stack

VARS e: el,
8, 8’: stack

PROGRAMS
top(s) <- CASE s OF
empty: ERROR(el);
e push 8’: e
ESAC;
pop(8) <- CASE s OF
empty: ERROR(stack);
e push 8’: s’
ESAC
ENDCREATE

STACK

INPUT: C-0 p

call of the function M-x

The buffer *compilation* now displays the following:

compilation#

cd /users/arbor/

Compilation finished at Wed Aug 16 13:11:23

compilation#

/users/obscure/d-run/compile-command /users/arbor/STACK

16

o-parser

The specification STACK has been parsed correctly; it has been automatically entered
into the module database of the user arbor. This command is the only one allowing to
enter specifications into the user’s module database; it guarantees that the module database
contains syntactically correct specifications only. The lower window is now removed by the

CHAPTER 2. A COMMENTED PROTOCOL 17

following input:

INPUT: C-x 1 # removing the lower textwindow

2.4 Using the module database

The following sections explain the use of the user’s personal module database and the global
database. This is accomplished by resuming the example from the last sections. A database
query concerning the imported and exported sorts and operations and the exported con-
structors of the module STACK is started as follows:

INPUT: C-o0 s # call of the function o-mdb-select

A buffer called *Data-base-input* is displayed on the screen.
Data-base-input

aRnpRERRRRRRRhahakahrsits Select from MDB *» SRR RRRR -

C-i start the search in the data base

C-c start selecting field names ESC escape from selecting field names

RET select a field name C-t toggle all fields

SPC move to the next field name DEL move to the previous field name
P T P ERERARRIREBRRRE T SREREREREE
SELECT FROM

Data base: arbor
List of field names: mname

iparams [] eparams [] isorts [] esorts []

iopns [] eopns [] icomstr [] ecomstr []

iaxioms [] eaxioms [] uses [] isusedby [] compiled []
WHERE Condition:

Data-base-input

CHAPTER 2. A COMMENTED PROTOCOL 18

This buffer can now be edited with the commands offered in the upper part of the
window. The condition for the search in the database (mname = "STACK") has to be written
via Emacs editing commands onto the last line behind the words “WHERE Condition:”.
mname is a keyword and stands for the name of the module; the name of the module itself
(= STACK) must be written in double quotes ("STACK"). After editing the buffer should look
as follows:

Data-base-input=

T T s stk s ol oo ok ot #* Select from MDB »= * .

C-i start the search in the data base
C-c start selecting field names ESC escape from selecting field names

RET select a field name C-t toggle all fields

SPC move to the next field name DEL move to the previous field name
T P P e Pt L D L T = ke »
SELECT FROM

Data base: arbor
List of field names: mname

iparams [] eparams [] isorts [X] esorts [X]

iopns [X] eopns [X] iconstr [X] ecomstr [X]

iaxioms [] eaxioms [] uses [] isusedby [] compiled []
VHERE Condition: mname = "STACK"

*Data-base-input+

The search is then initiated by typing the following:
INPUT: C-i # call of the function M-x o-make-mdb-input

The contents of the buffer STACK are displayed in the upper half of the screen. The new
buffer *MDB-0QUTPUT* containing the answer to the database query is displayed in the lower
half.

CHAPTER 2. A COMMENTED PROTOCOL 19

MDB-0UTPUT

Start
arbor.mname:

STACK
arbor.isorts:

el
arbor.esorts:

el

stack

arbor.iopns:
(nil)

arbor.eopns:
pop:stack->stack
top:stack->el

arbor.iconstr: (nil)

arbor.econstr:
- push _:el,stack->stack

empty:->stack

The End

MDB-QUTPUT

A stack of natural numbers is specified in the following text. In order to find out whether
such a specification already exists the global module database is checked. (The careful reader
of the OBSCURE manual may have realized that the integers are a predefined sort (“basic
sort”) of the OBSCURE system (see C [The syntax for the specification language|, page 96
for more information). In contrast the natural numbers are not predefined.) The second
textwindow is removed first:

INPUT: C-x 1 # removal of the second textwindow
The command C-o s is used to find out whether there is a specification module of natural
numbers in the database. To be more specific, the user investigates whether there is a
specification name containing ‘nat’ as a substring. This is expressed by writing "LIKE"

instead of “=".

INPUT: C-o0 s # call of the function M-x o-mdb-select

CHAPTER 2. A COMMENTED PROTOCOL 20

As above the buffer *Data-base-input* is edited:
Data-base-input=

dRkadhhakRhbassnthsnnssnr Select from MDB #kssmssss L

C-i start the search in the data base

C-c start selecting field names ESC escape from selecting field names
RET select a field name C-t toggle all fields
SPC move to the next field name DEL move to the previous field name
o 3 e e aje o o e afe o oo ofe ol e e afe e oo oo o ot afe s e sl o ol o e o e ol o o o oe o e e ® L L L *
SELECT FROM

Data base: mdbpool
List of field names: mname
iparams [] eparams [] isorts [X] esorts [X]
iopns [X] eopns [X] icomstr [X] econmstr [X]
iaxioms [] eaxioms [] uses [] isusedby [] compiled []
WHERE Condition: mname LIKE "nat"

Data-base-inputs

The search is then started:

INPUT: C-i # call of the function M-x o-make-mdb-input
The result of the search is displayed in the buffer *MDB-OUTPUT*
MDB-0UTPUT
Start
The End
MDB-0QUTPUT

The answer is negative. Hence it is improbable that the natural numbers have already
been specified. Therefore a specification NAT is created in the same way as the specification
STACK. For the creation of STACK, repeat all neccessary steps until the buffer NAT is of the
following form:

NAT

CREATE

SORTS

nat

OPNS

add : nat nat -> nat

succ : mnat -> nat

null : -> nat
SEMANTICS

CONSTRS

succ : nat -> nat

null : -> nat

CHAPTER 2. A COMMENTED PROTOCOL 21

VARS i1 i2 i1’ : nat

PROGRAMS
add(il, i2) <- CASE i1 OF
null: 1i2;
succ(il’): succ(add(il’, i2));
ESAC;
ENDCREATE
NAT
The specification is then parsed.
INPUT: C-0 p # call of the function M-x o-parser

The window of the buffer *compilation* now displays:
compilation#

cd /users/arbor/
/users/obscure/d-run/compile-command /users/arbor/NAT

Compilation finished at Wed Aug 16 13:11:23

scompilation*

In order to control the entry into the database, the text of the specification NAT is read
from the database.

INPUT: C-o w # call of the function M-x o-print-spec

MINIBUFFER:

Module name:

INPUT: NAT<RET>

MINIBUFFER:

Data base: mdbpool

The word mdbpool has to be deleted and replaced by arbor, because NAT does not exist
in the global module database, but in the personal module database (of the user, whose
name is arbor).

INpUT:

INPUT: arbor<RET>

CHAPTER 2. A COMMENTED PROTOCOL 22
MINIBUFFER:
Options [scvrb]:

INpUT: <RET>

The screen is divided and in the lower half the buffer *Specification* is displayed.

»Specification*

IMPORTS
no sorts
no operations
CREATE
SORTS
nat
OPNS
add : nat nat -> nat
succ : nat -> nat
null : -> nat
SEMANTICS
CONSTRS
succ : nat -> nat
null : -> nat
VARS
i1 i2 i1’ : nat
PROGRAMS
add(i1, i2) <-
CASE il
OF
null:
i2;
succ(il’):
succ(add(i1’, i2));
ESAC;

ENDCREATE
The End

#Specification*

MINIBUFFER:

Type C-x 1 to remove window

INPUT: C-x 1

CHAPTER 2. A COMMENTED PROTOCOL 23

The window displaying the contents of the buffer NAT now fills the whole screen.

2.5 Building composed specifications

We are now ready to build the specification of a stack of natural numbers NAT-STACK from
these two specifications.

INPUT: C-x Db # changing to a new buffer

MINIBUFFER:

Switch to buffer: (default *Specificationx)

INPUT: NAT-STACK<RET>
This buffer being in the fundamental-mode it has to be switched into the obscure-mode.
INPUT: M-o | # switch to obscure-mode

The empty buffer NAT-STACK is displayed on the screen. After editing it should contain the
following specification text:

NAT-STACK
(INCLUDE STACK
I_RENAME SORTS el AS SORTS nat)
X_COMPOSE
(INCLUDE NAT)
NAT-STACK

Before this file is parsed, it is saved with the Emacs command C-x C-s.

INPUT: C-x C-s # call of the function M-x save-buffer

MINIBUFFER:

File to save in:7/

INPUT: NAT-STACK.T<RET>

MINIBUFFER:

Wrote /users/arbor/NAT-STACK.T

CHAPTER 2. A COMMENTED PROTOCOL 24

INPUT: C-o0 p # call of the function M-x o-parser

MINIBUFFER:
File name: /NAT-STACK
INPUT: <RET>
MINIBUFFER:
Options [cfv]:
INpUT: <RET>
MINIBUFFER:
Save file /users/arbor/NAT-STACK.T? (y or n)
INPUT: ¥y
MINIBUFFER:

Wrote /users/arbor/NAT-STACK.T

The buffer *compilation* then contains the following text:
scompilation*

¢d /users/arbor/
/users/obscure/d-run/compile-command /users/arbor/NAT-STACK.T

Compilation finished at Wed Aug 16 15:26:22

compilation#

The specification of a stack of natural numbers is now completed.

2.6 Using the module database (continued)

The personal module database now contains the specification of a stack of natural numbers.
Some of the possibilities to get information about composed specifications are illustrated in
the following.

The signature of the specification is displayed by the command:

CHAPTER 2. A COMMENTED PROTOCOL 25

INPUT: C-0 t # call of the function M-x o-curr-signature

The window displaying the buffer *compilation* is replaced by a window showing the new
buffer *Signaturex*:

#Signature#*
File name: "/users/arbor/NAT-STACK.T"

list of sorts and operatioms:

imported and exported (inherited).
no sorts
no operations

not imported and exported (created).

SORTS

stack nat
OPNS

- push _ : nat stack -> stack
pop : stack -> stack

empty : -> stack

add : nat nat -> nat

succ : nat -> nat

null : -> nat

top : stack -> nat
imported and not exported (hidden).
no sorts

no operations

list of constructors:

imported
exported

null : -> nat

succ : nat -> nat

empty : -> stack

- push _ : nat stack -> stack
The End

#Signature*

As explained earlier, the command C-o w is used to read the text of a specification from
the database. It can also be used to instantiate the calls of the specifications STACK and NAT
by their actual texts. The option "-r" is used for this purpose.

INPUT: C-o w # call of the function M-x o-print-spec

MINIBUFFER:

CHAPTER 2. A COMMENTED PROTOCOL 26
Module name: NAT

INPUT: NAT-STACK<KRET>
MINIBUFFER:
Data base: arbor
INpUT: <RET>
MINIBUFFER:
Options [scvrb]:

INPUT: -r<RET>

The contents of the buffer *Specification* are displayed in the lower half of the screen.
#Specification*

(
(
IMPORTS
SORTS
el
no operations
CREATE
SORTS
stack
OPNS
- push _ : el stack -> stack
pop : stack -> stack
empty : -> stack
top : stack -> el
SEMANTICS
CONSTRS
- push _ : el stack -> stack
empty : -> stack
VARS
8’ 8 : stack
e : el
PROGRAMS
pop(s) <-
CASE s
OF
empty:
ERROR(stack);

CHAPTER 2. A COMMENTED PROTOCOL

e push s’:
8’;
ESAC;

top(s) <-
CASE s
OF
empty:
ERROR(el);
e push s8’:
e;
ESAC;

ENDCREATE
)
I_RENAME
SORTS
el
no operations
AS
SORTS
nat
no operations
)
X_COMPOSE
(
(
IMPORTS
no sorts
no operations
CREATE
SORTS
nat
OPNS
add : nat nat -> nat
succ : nat -> nat
null : -> nat
SEMANTICS
CONSTRS
succ : nat -> nat
null : -> nat
VARS
i1 i2 i1’ : nat
PROGRAMS
add(i1, i2) <-
CASE i1
OF
null:

27

CHAPTER 2. A COMMENTED PROTOCOL 28

i2;

succ(il’):

succ(add(il’, i2));
ESAC;

ENDCREATE
)

)
The End

Specification

In order to work with this specification it is saved in a file. The buffer called *Specifi-
cation* is made the active buffer first; note that the name *Specification* can be typed
as *Sp<TAB> (because Emacs tries to complete the name when <TAB> is entered).

INPUT: C-x Db

MINIBUFFER:

Switch to buffer: (default *Signaturex*)

INPUT: *Sp<TAB><RET>
INPUT: C-x C-s # call of the function M-x save-buffer

MINIBUFFER:

File to save in 7/

INPUT: NAT-STACK2.T<RET>

MINIBUFFER:

Wrote /users/arbor/NAT-STACK2.T

The text of the specification NAT-STACK, in which the instantiations of the modules NAT
and STACK have been replaced by their text, has been saved in the file NAT-STACK2.T, by the
sequence of commands used above. The module NAT-STACK (from the module database) and
the text in the file NAT-STACK2.T have the same semantic meaning; they only differ in the
text of their specification. By using the parser it is shown that NAT-STACK2 is a syntactically
correct specification, too. Before the parser can be called the buffer has to be switched to the
obscure-mode (this time the rather long word obscure-mode is abbreviated by the name
completion as explained above).

INPUT: M-x ob<TAB><RET> # call of the function M-x obscure-mode

CHAPTER 2. A COMMENTED PROTOCOL 29

INPUT: C-o0 p # call of the function M-x o-parser

MINIBUFFER:
File name: x*Specification*
INpUT: <RET>
MINIBUFFER:
Options [cfv]:
INpUT: <RET>
MINIBUFFER:
Save file /users/arbor/NAT-STACK2.T? (y or n)
INPUT: ¥
MINIBUFFER:

Wrote /users/arbor/NAT-STACK2.T

scompilation*

c¢d /users/arbor/
/users/obscure/d-run/compile-command /users/arbor/NAT-STACK2.T

Compilation finished at Wed Aug 16 16:32:57

#compilation#*

CHAPTER 2. A COMMENTED PROTOCOL 30

In order to compare the two specification modules NAT-STACK and NAT-STACK2 a database

query is started.
INPUT: C-x 1

INPUT: C-o0 s

removal of the lower textwindow

call of the function M-x o-mdb-select

The well-known buffer of the database query appears. It is edited until it looks as follows:

BkkdnpekpRrkhkskrhaknhnsses Select from MDB #»» wR kR LR L

C-i start the search in the data base

C-c start selecting field names
RET select a field name
SPC move to the next field name

s#Data-base-input*

escape from selecting field names
toggle all fields
move to the previous field name

W s afe ool o oo s ol sl ek * * L L L

SELECT FROM
Data base: arbor
List of field names: mname

iparams [] eparams [] isorts
iopns [X] eopns [X] icomstr

iaxioms [] eaxioms [] uses

WHERE Condition: mname = "NAT-STACK2"

INPUT: C-i

Start

arbor.mname:
NAT-STACK2

arbor.isorts:
(nil)

arbor.esorts:
stack
nat

arbor.iopns:
(nil)

arbor.eopns:
pop:stack->stack
add:nat,nat->nat
top:stack->nat
arbor.econstr:
- push _:nat,stack->stack
empty:->stack

succ:nat->nat

sData-base-input#

sMDB-0UTPUT*

[x] esorts [x]
[1 ecomstr [X]
[X] isusedby [] compiled []

call of the function M-x o-make-mdb-input

CHAPTER 2. A COMMENTED PROTOCOL 31

null:->nat

arbor.uses:
(nil)

The End

MDB-0UTPUT

It is now clear that NAT-STACK and NAT-STACK2 specifiy the same sorts and operations.
Therefore, the specification NAT-STACK2 is deleted from the module database arbor with the
following steps.

INPUT: C-0 d # call of the function M-x o-mdb-delete

MINIBUFFER:

specification name:

INPUT: NAT-STACK2<RET>

MINIBUFFER:

data base name: arbor

INPUT: <RET>

MINIBUFFER:

Do you want a protocol of the deletions ? (y or n)

INPUT: y

A protocol of the executed work is shown in the buffer *MDB-QUTPUT* in the lower textwin-
dow.

=MDB-0QUTPUT»
Protocol of deletions:
Relation NAT-STACK2 deleted in database "arbor".

File NAT-STACK2.0 deleted.
The End

MDB-0UTPUT=

CHAPTER 2. A COMMENTED PROTOCOL 32

2.7 Using the interpreter

In the following section the usage of the OBSCURE interpreter is explained with the help
of the specification of natural numbers created so far. The interpreter is started by typing:

INPUT: C-0 i # call of the function M-x o-interprete

The prompt of the interpreter ;-) appears in the buffer *Interpreter* in the lower
textwindow:

Interpreter

3-)

sInterpreter*

A specification is loaded into the interpreter by typing the following command:
INPUT: currspec NAT-STACK

The command currspec makes the specification NAT-STACK known to the interpreter.

The buffer *Interpreter* now looks as follows:
Interpreter

;=) currspec NAT-STACK
i-)

#Interpreter*

The interpreter is ready for new inputs. If the command currspec is called without a
name as parameter, then the name of the current specification is displayed.

Names and bindings can be made known to the interpreter by the command 1et NAME=TERM.
Names must start with the symbol $. Some names will be made known to the interpreter
for further experiments.

INPUT: let $one=succ(null)

INPUT: let $two=succ(succ(succ(null)))

INPUT: let $three=succ(succ(succ(null)))

CHAPTER 2. A COMMENTED PROTOCOL 33

It is possible to show the binding of a name or of all names by the commands show
NAME or show, respectively.

INPUT: show

The bindings of all names are shown in the buffer *Interpreterx.

Interpreter
;=) show
name: "$three " valme: "succ(succ(succ(null)))"
name: "$one " value: '"succ(null)"
name: "$two " value: "succ(succ(succ(null)))"
o)

Interpreter

During the input of $two a mistake occurred. This mistake is corrected with the help of

the command delete NAME which deletes the binding of NAME (delete without the parameter
NAME deletes every binding).

INPUT: delete $two
INPUT: let $two=succ(succ(null))
INPUT: show $two

The buffer *Interpreter* now looks as follows:

Interpreter
;=) delete $two
;=) let $two =succ(succ(null))
;=) show $two
value: "succ(succ(null))"
i)
#Interpreter#*

It is possible to save bindings in a file for further usage. This process is demonstrated
with the current bindings.

INPUT: write nat # saving the bindings in the file nat.B

In order to check the success of the saving and in order to show the loading of bindings,
all bindings are deleted and the bindings just saved are loaded into the system and listed.

INPUT: delete<RET> # deleting all bindings

INPUT: y<RET>

INPUT: read nat<RET> # loading the bindings from the file nat.B

CHAPTER 2. A COMMENTED PROTOCOL 34

INPUT: show<RET> # displaying the bindings

After this sequence of commands the buffer *Interpreter* looks as follows:
#Interpreter=*

;=) write nat
;=) delete
really delete all bindings (y/n) y

;-) read nat

;=) show

name: "$three " value: "succ(succ(succ(null)))"
name: '"$one " value: "succ(null)"

name: "$two " value: "succ(succ(null))"

=)

sInterpreter*

We now shortly illustrate the evaluation of terms.

First, the result of add($three,$two) is evaluated and bound to the name $five. Then,
a stack of the elements $two, $three and $five is created and bound to the name $stack.
Finally, the first element of this stack is listed before and after an application of pop.

INPUT: eval add($three,$two) <RET>

INPUT: let $five=add($three,$two)<RET>

INPUT: let $stack=$five push ($three push ($two push empty))

INpUT: <RET>

INPUT: eval $stack<RET>

INPUT: eval top($stack)<RET>

INPUT: eval top(pop($stack))<RET>

During the input the following appears in the buffer *Interpreterx*:
#Interpreter*

;=) eval add($three, $two)
succ(succ(succ(succ(succ(null)))))

;=) let $five—add($three, $two)

;=) let $stack =$fuenf push ($three push ($two push empty))
;=) eval $stack

succ(succ(succ(succ(suce(

null))))) push succ(succ(succ(null)))push succ(succ(null))
push empty

;=) eval top($stack)

succ(succ(succ(succ(succ(null)))))

CHAPTER 2. A COMMENTED PROTOCOL 35

;-) eval top(pop($stack))
succ(succ(succ(

null)))

3-)

sInterpreter*

The session with the interpreter is stopped by typing the quit command.
INPUT: quit<RET>
The interpreter of the OBSCURE system offers further possibilities, such as a trace-mode

used for debugging incorrect specifications. For more information see 4.4 [The Interpreter],
page 66.

2.8 Translating into the programming language C

The OBSCURE system offers the possibility to translate specifications into the programming
language C. For the moment this is only possible for atomic specifications. The process of a
translation is illustrated in the following. More precisely, the specification NAT used in the
examples of the previous sections is translated into C. To this end the buffer containing the
specification of the natural numbers must be changed into the active buffer.

INPUT: C-x b

MINIBUFFER:

Switch to buffer: (default NAT-STACK)

INPUT: NAT<RET>
Then, the Source-to-Source-Translation (So-to—So—Tra for short) is started as follows:

INPUT: C-o u # call of the function M-x 0-So-To-So-Tra

MINIBUFFER:

Specification name: NAT

INPUT: <RET>

MINIBUFFER:

Option [c,m]: ¢ # c fir C, m fiir ML

CHAPTER 2. A COMMENTED PROTOCOL 36

INPUT: <RET>

The screen splits into two windows. The upper one displays a buffer called NAT.h that
looks as follows:

NAT.h

enum SOT-nat {SOT-succ, SOT-null};

struct nat {
enum SOT nat SOT-Typ;
union {
struct succ {
struct nat *S0T_1;
} succ;
} SO0T.union;

b

struct nat *add();
struct nat *succ();
struct nat *null();

NAT.h

The lower window displays a buffer called NAT.c that looks as follows:
HAT.c

#include<stdio.h>
#include "NAT.h"

#define true 1
#define false O

struct nat *nat_copy(arg)

struct nat *arg;
{
return(
arg->S0T_Typ==S0T-succ?succ(nat.copy(arg->S0T_union.succ.S0T-1)):
arg->S0T_Typ==S0T_null?null():
NULL);

}

struct nat *succ(vl)
struct nat *vi;

{

struct nat *ret;

ret=(struct nat *)malloc(sizeof(struct nat));
ret->S0T_union.succ.S0T_1=v1;
ret->S0T_Typ=S0T-succ;

return(ret);

CHAPTER 2. A COMMENTED PROTOCOL 37

}

struct nat *null()

{

struct nat #*ret;

ret=(struct nat *)malloc(sizeof(struct nat));
ret->S0T_Typ=SOT_null;
return(ret);

}

struct nat =add(il, i2)
struct nat =ii;
struct nat *i2;
{
return(
(i1->SO0T_Typ==S0T_succ?succ(add(i1->S0T_union.succ.SO0T_1, i2)):
i1->S0T-Typ==S0T_null?i2:
NULL)
);

}

NAT.c

These two buffers can be saved by typing C-x s. The files thus created can then be
compiled with a C compiler (after adding a ‘main’ function).

2.9 Ending the session

The session with the OBSCURE system is stopped by the following input:

INPUT: C-x C-c

FAKHAAAKAKAKKKKKKKKKKKNK Roturn to the shell *****kkkkdshkihskskkkkhhkhns

Chapter 3

The specification language

OBSCURE

This chapter merely constitutes a rough description of the constructs of the specification
language OBSCURE. For a precise description of the specification language the reader is
referred to [LL 88] or [LL 90], and for a precise description of the algorithmic specification
method to [Lo 87].

Essentially the specification language OBSCURE consists of atomic specifications drawn
up according to the algorithmic specification method together with constructs which allow
to put specifications together.

An atomic specification consists of a list of imported sorts and operations and/or a list
of created sorts and operations. Some of the created operations are declared as constructors.
The semantics of a created sort is defined to be the term language generated by the con-
structors. The semantics of the operations are described in the form of recursive programs.

Four constructs allow to compose specifications: PLUS, COMPOSE, X_COMPOSE and
F_COMPOSE. The latter two may be viewed as macros.

Five further constructs allow to rename imported and exported sorts and operations,
to add axioms restricting the class of imported and exported sorts and operations, and to
forget sorts and operations (information hiding). Finally, two more constructs allow to build
subalgebras and quotient algebras.

Semantically an OBSCURE-specification describes an algebra module, i.e. a function
mapping algebras (of the imported signature) into algebras (of the exported signature).
The exact definition of the semantics and the proof that an OBSCURE-specification indeed
defines an algebra module can be found in [LL 88] and [LL 90].

The full syntax of OBSCURE can be found in Appendix C (See C [The context free syntax
for the specification language|, page 96, for more info).

38

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 39

A formal description of the context conditions of OBSCURE can be found in [Zey 89).

3.1 Atomic specifications

3.1.1 General

Syntactically, an atomic specification consists of three parts. The first part is a list of
“imported” sorts and operations and is introduced by the keyword IMPORTS. The second
part is a list of “new” sorts and operations and is introduced by the keyword CREATE. The
third part associates a semantic with the new sorts and operations and is introduced by the
keyword SEMANTICS. The semantics are defined by a list of “constructors” (CONSTRS)
and a list of recursive programs (PROGRAMS). Operations are defined as prefix, infix or
mixfix operations. A context free syntax for atomic specifications can be found in section
3.1.2.

Typical context-conditions are:

o prefix operations with the same name must differ by the number of their arguments or
the sort of at least one of their arguments;

e the name of an infix operation may not appear as one of the component names of a

mixfix operation;
e the variables occurring in a recursive program must be among those listed after VARS;

e there is exactly one recursive program for each new operation that is not a constructor.

A complete list of these context conditions may be found in [Zey 89].

The semantics of atomic specifications is precisely described in [Lo 87]. Note the two
following additional facilities used in OBSCURE. LAZY allows the introduction of infinite
carriers (and lazy interpretations of corresponding operations). By importing constructors
(WITH IMPORTED CONSTRS) it is possible to use case distinction on the basis of con-

structors specified elsewhere.

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 40

3.1.2 A context free syntax

The syntax is written in Extended Backus-Naur Form: [...] means that the part within |
and | is optional and {...} means that the part within { and } may be omitted or repeated.

<atomic specification> ::= IMPORTS <list of sorts and operations>

| IMPORTS <list of sorts and operations>
CREATE <list of sorts and operations>
SEMANTICS <algorithmic semantics>
ENDCREATE

| CREATE
<list of sorts and operations>
SEMANTICS <algorithmic semantics>
ENDCREATE

SORTS <list of sorts>
| SORTS <list of sorts>
OPNS <list of operations>
| OPNS <list of operations>

<list of sorts and operations> ::

<list of sorts> i:= { <sort>[,] }

<sort> ::= <name>

<list of operations> { <operation>[,] }
<operation> ::= <name>:-> <sort>
| <name>: <sort> {[,] <sort>} -> <sort>
| <name> _: <sort> -> <sort>
| _ <name> _: <sort>[,] <sort>
-> <sort>
| <name> _ <name> { _ <name> }:
<sort> {[,] <sort> } -> <sort>
| _ <name> { _ <name> }:
<sort> {[,] <sort> } -> <sort>

<name> = <letter> { <symbol> }

| <special symbol>
<letter> =alblecl...1lz|AIB]| ... |2Z
<symbol> = <letter> | <digit> | _

<special symbol>

digit> ol1l21...19

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 41

-

<special symbol> = <> = #] " 11 1 |+
| el $

C
* | /1 -1 I

o —

<algorithmic semantics> ::= CONSTRS <list of constructors>
([WITH IMPORTED CONSTRS
<list of constructors>]
VARS <list of variables>
PROGRAMS <list of programs>]
| [WITH IMPORTED CONSTRS
<list of comstructors>]
VARS <1list of variables>
PROGRAMS <list of programs>

<list of variables> {{ <name>[,] }: <sort>[,] }

<list of constructors> { <constructor>[,] }

<constructor> ::= <name>:-> <sort>

<name>: <args> {[,] <args> } -> <sort>
<name> _: <args> -> <sort>

_ <name> _: <args>[,] <args> -> <sort>
<name>

_ <name> {[,] <name> }:
<args> {[,] <args> } -> <sort>
| _ <name> { _ <name> }:
<args> {[,] <args> } -> <sort>

<args> ::= [LAZY] <sort>
<list of programs> ::= <head> <~ <term>; { <head> <- <term>; }
<head> = <prefix name>

<prefix name> ({ <variable>, })

<infix name> <variable>

<variable> <infix name> <variable>
<mixfix name> <variable> <mixfix name>
{ <variable> < mixfix name> }

| <variable> <mixfix name>

{ <variable> <mixfix name> }

<prefix name> ::= <name>
<infix name> = <name>
<mixfix name> ::= <name>

<variable> ::= <name>

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 42

<infixterm>
| <mixfix name> <infixterm> <mixfix name>
{ <infixterm> <mixfix name> }

<term>

<infixterm> ::= <baseterm>
| <infixterm> <infix name> <baseterm>

<baseterm> 1i= (<term>)

| ERROR (<sort>)

| <variable>

| IF <term> THEN <term>
ELSE <term> FI1

| CASE <term> OF
<head>: <term>; { <head>: <term>; };
[ELSE <term>] ESAC

| <prefix name>

| <prefix name> (<term< { , <term> })

| <infix name> <baseterm>

3.1.3 A simple example

The following text is a simple example specifying a list of elements. ERROR stands for the
undefined value (of [Lo 87]).

IMPORTS

SORTS el

OPNS _ = _: el el -> bool

CREATE

SORTS 1list

OPNS nil : => list
- - : list el -> list
_ is_empty : list -> bool
last_of _ : list -> el
body_of _ : list -> list

append _ to _ end : list list -> list

SEMANTICS

CONSTRS

nil : => list

- - : list el -> list
VARS

ee’ e’ : el

11’1 : list

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE

PROGRAMS
1 is_empty <- 1 = nil;
last_of 1 <- CASE 1 OF
nil : ERROR(list);
1’ e : e
ESAC;
body_of 1 <- CASE 1 OF
nil : ERROR(1list);
1’ e : 1
ESAC;
append 1 to 1’ end <- CASE 1 OF
nil : 1%;
1’’ e : append 1’’ to (1’ e) end
ESAC;

ENDCREATE

43

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 44

3.2 The constructs

3.2.1 The compose constructs

The constructs PLUS and COMPOSE are the constructs + and o of [LL 88] and [LL 90].
For a precise definition of their semantics the reader is refered to these papers. A graphical

illustration is on Figure 1 below.

The constructs X_COMPOSE and F_COMPOSE allow to avoid the stringent context
conditions of the COMPOSE construct. They are illustrated on Figure 2 on the next page.

The four constructs may be illustrated by the following figures.

P
IR ‘e
al et cf_jc f ™
my I my a cC d
af bl c——Tcbf d ms
A g [
(a) m = (my + m,) a b

(b) m = (my o my)

FIGURE 1 Graphical illustration of the compose constructs of the specification language.
In this illustration a specification is represented by a box. The arrows entering a box represent
its imported sorts and operations, those leaving a box represent its exported sorts and
operations. A dotted line represents an inherited sort or operation. Each of the symbols
a,b,...,e, f stands for a sort or an operation.

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 45

f b e f b
p p 3 A Y
} kb 3 \b
: ms | m,
al b a
d} te n d} te
mo mo
Jb & 1P =
m m
a b c a b c

(c) m = (m; X_COMPOSE m,) (d) m = (m; F.COMPOSE m;,)

FIGURE 2 Graphical illustration of the X_.COMPOSE and F.COMPOSE constructs of the

specification language. The conventions are those of Figure 1. Note that in the illustration
of the F.COMPOSE construct the sort or operation e is “forgotten”.

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 46

3.2.1.1 A context free syntax

<composed specification> ::= <simple specification>

| <composed specification>
PLUS <simple specification>

| <composed specification>
COMPOSE <simple specification>

| <composed specification>
X_COMPOSE <simple specification>

| <composed specification>
F_COMPOSE <simple specification>

The exact definition of a <simple specification> may be found in Appendix C, page
96. The difference between a <simple specification> and a <composed specification>
is purely syntactical. It allows to implicitly associate with the compose constructs a lower
priority than with other constructs.

3.2.1.2 The context conditions

Let spec; and spec, be two specifications. Let ;, = (S;,, %,), Zi, = (Si,, ;) be the import
signatures of spec; and spec, respectively and ., = (S.,, e,), Ze; = (Se;, e;) their export
signatures. Let C;;(s) be the set of imported constructors of a sort s € §;; in spec; and
C.,(s) be the set of exported constructors of a sort s € S, in spec;, 1 <j < 2.

Put

o im_op:= (%, — Q)

o sorts(im_op) := {s | s is a sort occurring in im_op}
e im_so:= (S; — S.,) U sorts(im_op)

o exopi=(l, -)

o sorts(ez-op) := {s | s is a sort occurring in ex_op}

o ez_so := (S,, — Si,) U sorts(ex_op)

Let the symbols U, N, — denote the union, disjunction and substraction of sets. We now
indicate under which conditions the context free rules of Section 3.2.2 may be applied.

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 47

For the application of the context free rule with PLUS the following conditions must be met:

o (S, — Si,)N (S, US;,) is empty.
o (R — Q) N (Qe, UK,) is empty.
o (S, — Si;;) N (S, US;,) is empty.
o (2, — Q,) N (R, UQ,) is empty.

e all operations of spec; and spec, have to be compatible in the following sense: there
may not be the same operation name with the same source and target sorts in spec, and
spec,. There may also be no infix operation name in one specification which appears
as a component name of a mixfix operation name in the other specification.

e the set of all constructors of a sort s of (S;, N S;;) has to be the same in both specifi-
cations.

For an application of the context free rule with COMPOSE the following conditions must
be met:

L] Sﬁ = S,_z and Qix = Qez.
o (S, - St'x) N S;, is empty.
o (R, — Q) Ny, is empty.

o C; (s) = Cc,(8) or Cy,(s) = Ciy(s) or C;,(s) is a subset of ;, and there is no imported
constructor in specy with target sort s — for all sorts s which are target sort of an
imported constructor of spec;.

X_COMPOSE is a macro defined as follows:

spec;, X_COMPOSE spec,
stands for:

((spec; PLUS
(IMPORTS SORTS ex_so
OPNS ex_op))
COMPOSE

((IMPORTS SORTS im so
OPNS im op)
PLUS spec,))

The context conditions for the context free rule with X_COMPOSE result from those of the
constituent components.

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 48

F_COMPOSE is a macro defined as follows:

spec; F_COMPOSE spec,
stands for:

(spec;, COMPOSE

((specy
FORGET SORTS (S.,, — S;,)
OPNS ex_op)
PLUS

(IMPORTS SORTS im so
OPNS im op)))

The context conditions for the context free rule with F_COMPOSE result from those of the
constituent components.

3.2.2 The renaming constructs

There are two renaming constructs renaming exported sorts and operations and imported
sorts and operations respectively. The corresponding keywords are E_.RENAME and I_RE-
NAME. The constructs are equivalent to the constructs [lsol/lso2]m; and m,[lsol/ls02] of

[LL 88].

Figure 3 gives a graphical illustration of these constructs:

f e
\ Y
i [f{ al di |e
al ct dt
m, m,
a b m al b c
4 4
a b m
(e) my ERENAME (q,c) f 9
AS (e, f)
(f) m; LRENAME (a,b,¢)
AS (f,9,9)

FIGURE 3 Graphical illustration of the renaming constructs of the specification language.
The conventions are those of Figure 1.

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 49

The corresponding context free rules are

<simple specification> ::= <simple specification>
E_RENAME <rename list>

| <simple specification>
I_RENAME <rename list>

<rename list> ::= SORTS { <sort>, } AS SORTS { <sort>, }
[OPNS { <operation>, }
AS OPNS { <operation name>, }]
| AS SORTS { <sort>, } OPNS { <operation name>, }

<operation name> ::= <name>
| <name> _
| _ <name> _
| <name> _ <name> { _ <name> }
| _ <name> { _ <name> }

The context conditions are, among others:

e the number of sorts (operations) on the second list must be the same as on the first
list;

e no sort or operation may occur twice on the first list;

e if an operation name on the second list contains underscores, then the operation on
the first list corresponding to it must have as many arguments as the operation name
on the second list has underscores.

3.2.3 The FORGET construct

The forget construct allows to “forget” exported sorts and operations. Note that “forgetting”
a sort implies “forgetting” all operations in which this sort occurs. Note also that the
constructors can no longer be exported if one or more constructors are “forgotten” (cf. Sect.
3.1.1).

In addition to the forget construct there is the macro FORGET_ALL_BUT which can be
used to forget all sorts and operations but a few listed after this keyword.

A graphical illustration of the construct is in Figure 4:

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 50

§
a ¢ |d
A
my
a b m
a b

(g) m; FORGET (a,c)

FIGURE 4 Graphical illustration of the FORGET construct of the specification language.
The conventions are those of Figure 1.

<simple specification> ::= <simple specification> FORGET
<list of sorts and operations>
| <simple specification> FORGET_ALL_BUT
<list of sorts and operations>

3.2.4 The axiom constructs

There exist two axiom constructs constraining the imported and the exported algebras re-
spectively. They are characterized by the keywords I_AXIOMS and E_AXIOMS respectively.
Essentially, the imported axiom construct is used to express parameter constraints; the ex-
ported axiom construct is used to check properties. A precise semantics of the constructs
may be found in [LL 88] and [LL 90|, and a discussion of their use in [LL 90].

The axioms are expressed in first-order predicate logic.
The context free rules are:
<simple specification> ::= <simple specification> E_AXIOMS <axiom>
ENDAXIOMS

| <simple specification> I_AXIOMS <axiom>
ENDAXIOMS

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 51

<axiom> ::= <formula>; { <formula>; }
| VARS <list of variables>; <formula>;
{ <formula>; }

<formula> ::= <disjunction>
| <disjunction> { => <formula> }
| <disjunction> { <=> <formula> }

<disjunction> ::= <conjunction> { | <conjunction> }
<conjunction> ::= <simple formula> { & <simple formula> }
<simple formula> ::= <equation>

| (<formula>)

| ! <simple formula>

| EX <variable> {, <variable>}
.<simple_formula>

| ALL <variable> {, <variable>}
.<simple_formula>

<equation> 1= <te == <term>
| <term> [= <term>

Note that the symbols !, EX, ALL stand for the logical symbols -, 3, V from classical
logic.

3.2.5 The SUBSET and QUOTIENT constructs

The SUBSET and QUOTIENT constructs build a subalgebra and a quotient algebra respec-
tively. The reader is referred to [LL 88] or [LL 90] for a precise definition.

Context free rules are:

<simple specification> ::= <simple specification> SUBSET OF <sort>
BY <axiom> ENDSUBSET

<simple specfication> ::= <simple specification> QUOTIENT OF <sort>
BY <axiom> ENDQUOTIENT

CHAPTER 3. THE SPECIFICATION LANGUAGE OBSCURE 52

3.3 Modules

Informally, a module is a specification together with its name.

3.3.1 Declaration of a module

A specification is automatically turned into a module when loaded into the module database.
The name of the module is the name chosen at the start of the editing of the specification.

3.3.2 Instantiation of a module

A module is instantiated (“called”) by its name. The corresponding context free rule is:

<simple specification> ::= INCLUDE <name>

where <name> denotes the module name.

3.3.3 Note

Contrasting with [LL 88] and [LL 90| the OBSCURE system allows no parameterized
modules. Actually, a parameter passing mechanism may be simulated by appending an
I_RENAME construct to the module instantiation: the renamed sorts and operations con-
stitute the formal parameters, the new names the actual parameters (cf. [LL 88], [LL 90]).

Chapter 4

The System OBSCURE

The following sections present a description of the components of the system OBSCURE and
indicate how to use them. The last section describes the special editing commands available
in Emacs to the user.

4.1 Starting and using the system

The following section explains how to start the system and what has to be observed when
starting the system for the first time. The information presented in this section is only valid
when the system is used together with the Emacs editor. This is strongly recommended. If
Emacs is not available, OBSCURE can still be used by calling the system components from
a standard UNIX shell; the synopsis of the calls is presented in Chapter 6.

4.1.1 Starting the system

The system is started by starting the Emacs editor. How to do this may be different from
system to system (usually, this is obtained by typing emacs). Before the system can be used
the following remarks have to be observed.

The obscure-mode is a special major mode for Emacs. Of course, the (code for this)
mode has to be loaded into the Emacs editor before the mode can be started. The loading
of such modes is achieved by the following command of Emacs:

M-x load-file

The user is asked for the name of a file. The file is loaded into the Emacs
editor and its code is evaluated.

53

CHAPTER 4. THE SYSTEM OBSCURE 54
Hence the obscure-mode is loaded by typing
M-x load-file
and then typing the file name
obscure.el

The obscure-mode is now available to Emacs but not yet started. The following command
is used to start the mode:

M-x obscure-mode (also called by: M-o)

The obscure-mode, a local ‘major mode’ in Emacs, is started. This means in
particular that all special key bindings and variables are available and that the
variables are initialized. Moreover all “OBSCURE-commands” are available in
the active buffer.

For a frequent user it is not recommended to follow these steps every time. In Section
4.1.4 some alternatives allowing the automatic loading of the obscure-mode are indicated.

4.1.2 Using the system for the first time

When working with the OBSCURE system for the first time, the user should notice the
following two points.

(1) After having started the system for the first time, the user will be asked by Emacs
whether automatic loading of the VIP-mode should be suppressed at the start of the obscure-mode
(the VIP-mode is another Emacs mode, simulating the behaviour of the well-known vi edi-
tor). The answer is saved for later sessions in the user’s personal ‘.obscure’ file. If the user
later changes his/her mind and wants the VIP-mode to be active during a session, he/she
can achieve this by setting the variable o-vip-desired to the value t. If he/she wants to
switch it off again, he/she resets it to the value nil.

(ii) As explained in the introduction (see 1 [Introduction|, page 1), the OBSCURE system
provides module databases. Each user may have a single personal database, in which all
his/her specification modules are entered. This module data base has to be created and
initialized during the first session with the system. This is performed by the command

o-mdb-install

to be given with Emacs in obscure-mode. (see 4.3 [The module database], page 58 for more
information.)

CHAPTER 4. THE SYSTEM OBSCURE 55
4.1.3 Using the system together with Suntools

If the OBSCURE system is started under Suntools, a so-called OBSCURE-menu-window
appears above the left edge of the window Emacs is running in. This window makes working
with the system more comfortable. It contains several buttons, two lines for text input and
a line for system messages. The OBSCURE-menu-window is connected to an Emacs window
via pipes. Besides ‘The End’ and ‘Help’, all functions chosen in the OBSCURE-menu-window
are executed in the Emacs window.

The choice of a button is made by pointing with the mouse pointer at it and then pressing
the left mouse button. The pressing of the middle mouse button starts the Emacs-info-
documentation-reader in the Emacs window, which displays the help information available
for the function chosen. The pressing of the right mouse button in the Emacs window of a
buffer, which is in the obscure-mode, opens up a submenue offering additional functions.

The following list shows the correspondence between the buttons in the window and the
commands of the obscure-mode:

e Button label: MDB-select
Name of the command: (o-mdb-select)
Documentation: (See 4.3 [The module database|, page 58)

e Button label: Interpreter
Name of the command: (o-interpreter)
Documentation: (See 4.4 [The interpreter|, page 66)

e Button label: Signature
Name of the command: (o-act-signature)
Documentation: (See 4.6 [Special editing commands|, page 71)

e Button label: Parser
Name of the command: (o-parser (buffer-name (current-buffer)) o-parser-opts)

Documentation: (See 4.2 [The parser], page 57)

e Button label: Module Graph
Name of the command: (o-module-graph (buffer-name (current-buffer)))
Documentation: (See 4.6 [Special editing commands], page 71)

e Button label: Load Module
Name of the command: (find-file FILENAME)
Documentation: (FILENAME is constructed from the values of the text input fields
‘Directory’ and ‘Modulename’. These fields also show the chosen, possibly new, direc-
tory or filename during the execution of the find-file command.)

e Button label: Parser Options
An additional menu window is opened. The options for the parser can be set with the
help of this window.
Documentation: (See 4.2 [The parser], page 57, for more info.)

CHAPTER 4. THE SYSTEM OBSCURE 56

4.1.4 Advanced procedures

In Section 4.1.1 it was shown how to start the obscure-mode. This procedure is too cum-
bersome for frequent usage. Instead, a frequent user is recommended to add with the help
of an editor (Emacs or vi, for example) one of the following two function calls to his/her
personal ‘.emacs’ file:

(autoload ’obscure-mode "obscure.elc" "" t)

(setq auto-mode-alist (cons ’("

.T$" . obscure-mode) auto-mode-alist))
or

(load "obscure.elc")

The difference between these two possibilities is as follows.

The former possibility turns the function obscure-mode into a user command of Emacs
and states that the code of the function is to be found in a file called obscure.elc. Emacs

will also start the obscure-mode automatically whenever a file ending with ‘.T’ is loaded
into Emacs.

The latter function call causes the automatic loading of the file ‘obscure.elc’ containing
the obscure-mode at the start of Emacs. In that case the obscure-mode has then still to
be started as explained in Section 4.1.1.

If the user wants a given function to be executed at each start of the obscure-mode,
he/she has to add the following function call to his ‘.emacs’ file:

(setq obscure-mode-hook ’<function to be called or its definition>)

CHAPTER 4. THE SYSTEM OBSCURE 57

4.2 The parser

The parser checks a specification from an Emacs buffer or a file with respect to the context
free syntax and the context conditions described in Chapter 3. If a specification is syn-
tactically correct, the parser creates an internal representation for it and writes it into the
personal module database.

The user should note the following points:

e the name of the specification to be parsed (i.e. the name of the buffer or file containing
the text of the specification) must end with . T’;

e the name of an OBSCURE specification in the module database is the same as the
name of the file containing its text, but ends with ‘.0’

The different commands related to the parser are explained in the following.

M-x o-parser (also called by: C-o p or C-o C-p)

The user is asked for a filename and options.

The file filename (note that the filename completion mechanism of Emacs
can be used when entering a filename such‘as filename) is parsed according
to the options options. The default value of filename is the name of the file
associated with the active buffer (See Section 1.2, p. 3 for more information) if
it exists. Error messages and other relevant messages are displayed in a special
buffer called *compilationx.

The options can be entered with or without a ‘-’ sign. The following options
are possible:

-e The text on which the parser is working is displayed during the parsing.

-f The standard output is directed to ‘FILENAME.E’ (instead of the buffer
*compilationx).

-v The version number of the OBSCURE parser is displayed.

It is possible to give no option.

When a file is parsed correctly an internal representation of it is entered into
the user’s personal module database. In the case an entry with the same name
already exists, the user is asked whether the entry shall be overwritten. If over-
writing is not desired, the specification is parsed but the internal representation
is not entered into the module database.

If the specification to be parsed contains an instantiation (INCLUDE) of
another specification module the text of which has been modified since its last
parsing, an error message is displayed and the parser is stopped.

After a call of the parser the command next-error (C-x ¢) is available as an Emacs com-
mand and can be used to jump to the lines of the specification containing an error.

CHAPTER 4. THE SYSTEM OBSCURE 58

M-x next-error (also called by: C-x ¢)

The buffer containing the latest specification parsed becomes the active
buffer, the cursor is set to the beginning of the line containing the next error
and the buffer *compilation# is scrolled, so that the next error message is in
the top line.

The following variable controls the working of the OBSCURE parser. Its value can be
modified by the user.(See 1.5 [Some usefull Emacs Commands], page 5, for more information.)

o-parser-opts

This variable contains the default value of options, that is the value of
options at the last call of the parser.

The sorts bool and integer together with the corresponding constructors and operations
are known to the parser by default. They may be omitted from the lists of the imported
sorts and operations of a specification. (See C [The context free syntax for the specification
language], page 96, for more info.) '

4.3 The module databases

This section explains the structure of the module databases of the system and introduces
the corresponding query language.

4.3.1 General concepts

A database consists of a collection of data in a structured form. The data in a database are
ordered in tables. A table contains only data with the same “structure”.

Each table has a name and consists of lines and columns. Data items in the same column
are supposed to refer to the same “concept”; data items on the same line are supposed to
refer to the same “object”. For instance, a column may contain (names of) persons and a
line the name, age, sex, etc. of a person. A column is called a field, a line is called a (data)
record. Each field has a name called field name or attribute.

4.3.2 The structure of the module databases

The following sections describe the structure of a module database and the user interface to
these module databases.

CHAPTER 4. THE SYSTEM OBSCURE 59

The module databases of the OBSCURE system contain information about the specifi-
cations built with the system.

A distinction is made between personal module databases and the global module database.
Each user of the system can install his/her personal module database (see Section 4.3.3,
o-mdb-install). The global module database contains specifications that are of interest to
any user; only a user with the account mdbpool has a writing access to it.

Each user has reading access to all module data bases but a writing access to his personal
module database only. More precisely, he/she can enter a specification only into his/her
personal database through the parser. The requirement to use the parser makes sure that a
database contains syntactically correct specifications only. Moreover, the user can delete a
specification from his/her personal module database only.

The names
The global module database is called ‘mdbpool’.

The user installs his/her personal module database with the command o-mdb-install
as explained in Section 4.3.3. The name of the module database thus created is the same as
the account of the user calling o-mdb-install. '

The attributes

A module database contains the following attributes:

e the name of the specification;

o the imported sorts of the specification;

e the exported sorts of the specification;

e the imported operations of the specification;

e the exported operations of the specification;

e the imported constructors of the specification;

o the exported constructors of the specification;

e the import axioms of the specification;

¢ the export axioms of the specification;

e the list of the specifications, that are instantiated by this specification (uses-entry);

o the list of the specifications in which this specification is instantiated (is-used-by-entry);

an attribute showing whether the specification has to be parsed again.

The name of a specification constitutes a key attribute because it univocally characterizes a
data record of the database.

CHAPTER 4. THE SYSTEM OBSCURE 60

Queries

A query is performed by the command o-mdb-select to be described in Section 4.3.3.
Essentially, a query is characterized by three query parameters:

e a database name;
e a list of attribute names;

e a condition.

The answer to a query consists of a list of attributes. More precisely, the attributes are
those identified by the second query parameter; they belong to the module(s) satisfying the
third query parameter; these modules belong to the data base identified by the first query
parameter. '

4.3.3 The commands

The command o-mdb-install

M-x o-mdb-install

An empty module database is created, if there exists not yet a personal
module database for the user. If such a personal module database already
exists nothing happens.

The name of the module database created is the same as the account of the
user calling o-mdb-install. When the module database has been created the
message ‘Database created’ is displayed in the minibuffer.

CHAPTER 4. THE SYSTEM OBSCURE 61

The command o-mdb-select

This command performs a query.

M-x o-mdb-select (also called by: C-o s or C-o C-s)

A frame for the query parameters containing the values of the last call of
o-mdb-select is displayed in the buffer *Data-base-input*. This buffer may
for instance look as follows:
skokkok kR kokkdokkkkkkkkkk Select from MDB ksskokskskokkkokkkokok ko kkkok

C-i start the search in the data base

C-c start selecting field names ESC escape from selecting field
names

RET select a field name C-t toggle all fields

SPC move to the next field name DEL move to the previous field
name

0 o Ao o Ko KK Ko Koo ok o ok o ok o ok ok ok ook s ok kK

SELECT FROM

Data base: arbor

List of field names: mname

iparams [] eparams [] isorts [X] esorts [X]

iopns [X] eopns [] iconstr [] econstr [X]

iaxioms [] eaxioms [] uses [] isusedby [] compiled [X]
WHERE Condition: mname LIKE "int*"
The field names iparams and eparams are—at the present stage of develop-
ment of the system—irrelevant; the field names isorts, esorts,...,compiled are
the attributes mentioned in Section 4.3.2.

The first query parameter is the database name following “Data base:”.
The second query parameter is the list of attribute names identified by the [X].
The third query parameter, viz. a condition, is consists of the text following
“WHERE Condition:”.

The user can now modify the query parameters by using the commands
displayed in the top four lines of the frame. More precisely, he may add or delete
“X” between the bracket pairs [] and he may modify the database name and
the condition, i.e. the text following “Database:” and “WHERE Condition:”.
The query itself is then started by C-i and consists in searching in the module
database for those modules that satisfy the condition and in displaying their
attributes.

The syntax and semantics of the condition constituting the third query
parameter can be found in Section 4.3.5, page 63.

CHAPTER 4. THE SYSTEM OBSCURE 62

Examples of database queries can be found in the chapter Examples (see 5.2 [Example
queries . ..], page 85).

The command o-mdb-delete

This command deletes a data record, i.e. a module, from the module database.

M-x o-mdb-delete (also called by: C-o d or C-o C-d)

The user is first asked by Emacs for a specification name and a database
name. The data record corresponding to the specification specification name is
then deleted from the module database data base name (default-value: name of
the personal module database). The file with the internal representation of the
module is also deleted. The user is asked, whether he wants a protocol of the
deletions. Messages of success or errors and possibly the protocol are displayed
in the buffer *MDB-0UTPUT*.

A data record and its internal representation can only be deleted if the
following condition is fulfilled:

e there is no entry for the attribute ISUSEDBY of the specified data record.
This condition avoids deleting a specification used by another specification.

The command o-mdb-help

M-x o-mdb-help

Starts the Emacs information reader with the description of the module
database.

4.3.4 The variables

The following variables, the value of which the user can modify (see 1.5 [Usefull Emacs
commands|, page 5 for more information), control the behaviour of the commands accessing
a module database:

o-mdb-out

This variable indicates where the answers to interactions with the module
database (o-mdb-select, o-mdb-delete) may be found. The default value of
this variable is ‘STDOUT’, which means that the output is displayed in the buffer
MDB-QUTPUT. If the output is to be written into a given file, the variable
o-mdb-out must contain the name of that file.

CHAPTER 4. THE SYSTEM OBSCURE 63

o-lfieldname

This variable contains the list of field names of the module database cho-
sen at the last call of o-mdb-select. This list constitutes the second query
parameter.

o-condition

This variable contains the third query parameter of the last call to
o-mdb-select.

o-mdb

This variable contains the name of a module database, i.e. the first query
parameter of the last call of o-mdb-select. The default value is the name of
the personal database.

4.3.5 The query parameter <condition>

The now following syntax and semantics of the third query parameter may seem too so-
phisticated for a system like OBSCURE. In practice, only a small fraction of the facilities
offered by this query parameter will effectively be used. The reason for the high degree of
sophistication lies in the fact that the database system was originally developed for another
project.

4.3.5.1 The syntax

Note that the syntax now following differs from the syntax of the specification language
OBSCURE.

The grammar is given in EBNF.

<condition> = <table field> <cmpop> <table field>
| <table field> <cmpop> <value>

| <table field> LIKE <expression>

| <table field> UNLIKE <expression>
| <string constant> IN <table field2>
| <condition> AND <condition>
| <condition> OR <condition>
| NOT <condition>

| (<condition>)

CHAPTER 4. THE SYSTEM OBSCURE 64

<table field>

<attribute name>
<name>.<attribute name>
<table field2> = isorts | esorts | uses
| isusedby | iopns | eopns
| iconstr | ecomstr
| iaxioms | eaxioms

<value> ::= <string constant>

<string constant> ::= “ sequence of ASCII symbols ”

<expression> ::= “ regular expression ”, explained in 4.3.4.3
<cmpop> = = | <k=|>= <> =

mname | isorts | esorts

iopns | eopns | icomstr

econstr | laxioms | eaxioms

uses | isusedby | compiled

<letter> { <alphanumerical symbol> }

<attribute name>

<name>

<alphanumerical symbol> <letter> | <digit>

<letter> AlBJ]C..lalblc...| =z

ol1121]...19

<digit>

For examples on the usage of the conditions see 5.2 [Example queries .. .|, page 85.

4.3.5.2 The semantics

The semantics of the conditions is as one would expect and as suggested by the names of
the predicates (AND, OR, ...). The usual priorities hold for the operations NOT, AND
and OR, i.e. NOT binds strongest, then AND follows. OR has lowest priority.

The relations defined by <cmpop> implement the usual lexicographic order on strings with
respect to the order on the ASCII symbols.

LIKE and UNLIKE are used to search for entries into the given table field that match
the given regular expression. All matching entries are outputted. IIN checks whether the
string on its left hand side occurs in the table field identified by its right hand side.

CHAPTER 4. THE SYSTEM OBSCURE 65

4.3.5.3 The regular expressions

As indicated above the <expression> following LIKE and UNLIKE is a regular expression.
This expression has to be of the following form:

Let "ASCII" be the set of all ASCII symbols. Let x,y,z be symbols from “ASCII”.

o o e +
| A regular | Meaning I
| expression is | |
Hmm e o e e +
| x | the symbol x |
| 7 | any symbol from "ASCII" |
| [xyz] | the symbol is either x or y or z I
["xyz]	the symbol is neither x nor y nor z
[x-y]	the symbol is in the range x to y
["x-y]	the symbol is not in the range x to y
=	string of any length (including the empty string
e ———————— e e +
Additional rules:

1. A symbol of the set of special symbols { \, ¢ ”, ?, [,], * } must not appear between |
and |. A symbol of the set of symbols { \ , [,], -, © } may appear between [and |. If a
special symbol shall be represented as a symbol of the alphabet “ASCII”, then it has
to be preceded by “\”.

2. The symbol “°” for the negation may appear only directly after the opening bracket
between [and |. The symbol “-” for ranges has to be between two symbols of the
alphabet “ASCII”. Furthermore, successions of the form [x-y-z] are not allowed. No
other special symbols may appear between the brackets [].

3. Between the pair of symbols |], there has to be at least one symbol of the alphabet

4. The special symbol

“ASCII”.

(13 31}

may not be followed directly by another “*”.

CHAPTER 4. THE SYSTEM OBSCURE 66

Some examples of possible regular expressions are:

o N?TSTACK—matches all strings starting with a N followed by an ASCII symbol and
ending in TSTACK;

e NAT*STACK—matches all strings starting with NAT and ending in STACK;

e N[aeiou] TSTACK—matches all strings starting with a N followed by a vowel and ending
in TSTACK;

e NA["aeiou] STACK-matches all strings starting with NA followed by a character which
is not a vowel and ending in STACK.

4.4 The interpreter

The goal of the OBSCURE interpreter is the evaluation of terms.

The interpreter essentially reduces input terms to output terms. The notions of input
and output terms are defined in the following:

Any term over a current specification importing basic sorts and operations only (see C [The
context free syntax for the specification language|, page 96 for more information.) is an input
term. The term may contain bound variables which have to be identifiers starting with the
symbol $.

Output terms are the result of the evaluation of input terms and consist of constructors only.

As already indicated in Chapter 3 it is possible to specify infinite datatypes (e.g. infinite
lists). This leads to termination problems when interpreting terms. The interpreter therefore
works on the basis of ‘call-by-need’ semantics: the values of variables (that is formal
parameters and variables that develop from the bindings in a CASE-term) are computed
only if they are accessed. More precisely, the specifier has the possibility to delay the
evaluation of arguments to constructors by marking the constructors in the specification
with the keyword LAZY (“lazy specification”). More information on the subject may be
found in [Sto 91|. For an example of a “lazy specification” and of lazy-evaluation with the
interpreter see Section 5.1.2.2, page 78.

4.4.1 The commands

The interpreter is embedded in a so-called interpreter mode. The call of this mode is ex-
plained in the following. The special commands of the mode are explained in Section 4.4.2.

CHAPTER 4. THE SYSTEM OBSCURE 67

M-x o-interprete (also called by: C-o i or C-o C-i)

This command starts the interpreter mode. The communication between
the user and the interpreter happens via the Emacs buffer *Interpreter*. It
contains the interpreter mode and all interaction with the interpreter happens
through this buffer.

4.4.2 The interpreter mode

The interpreter mode (called OIM for short) knows the following commands:

currspec name

let

The specification name becomes the current specification provided it exists in the
module database, it is marked as compiled and it does not import sorts or operations
other than basic ones (see Appendix C, p.97). If the specification exists, but is marked
as uncompiled, a list of specification names which are contained in this specification is
displayed as well as all specifications used by the specifications marked as uncompiled.
If ‘currspec’ is called without name the name of the current specification is displayed.

name=term

This command is used to declare a variable and its binding. The text of term is
textually bound to the string name. Name must be a string starting with ‘’$’’ and
not containing " ", "\n", "\t" or "=".

show name

Displays the binding of the variable name. The conventions for name are as for the let
command.

show

Displays all variables with their bindings.

- delete name

Deletes variable name.

- delete

Deletes all variables.

- write name

Saves all variables and bindings in the file ‘name.B’.

read name

Reads variables and bindings from the file ‘name.B’. Any bindings of variables that
also occur in the ‘name.B’ are overwritten.

eval term

Replaces all names in term starting with ‘¢’ by their corresponding value, parses the
term and evaluates it with respect to the current specification. If some names starting

CHAPTER 4. THE SYSTEM OBSCURE 68

with ‘¢’ have no binding, a list of those names is displayed. A current specification
must be given (via the ‘currspec’ command) before the first eval command.

- varbind yes
Only the bindings of the variables occurring in constructor terms in argument places
which are declared as LAZY in the constructor list of the specification are displayed
(in square brackets).

- varbind no
All bindings are displayed.

- trace yes
The ‘trace mechanism’ is switched on. The next call of the eval command starts the
trace mode. The trace mode has its own prompt: (Otm). The following commands
are available in the trace mode:

8

help
Starts the Emacs-information-reader with the description of the interpreter.

. break term

Sets up a ‘breakpoint’ in the form of a term. This term must be an input term
over the signature of the current specification. Only the topmost function symbol
of Term is relevant, i.e. if the breakpoint is f(x,y) and the term to be evaluated
next is f(g(x,y),z) then the evaluation is stopped, because the topmost function
symbols are the same.

A number is associated with each breakpoint, i.e. the first breakpoint set up by
the user gets the number 1 and so on.

. list

Lists the breakpoints in the order they have been set up.

delete integer
Deletes the breakpoint with the number integer.

. run

Resumes the evaluation until the next breakpoint is reached.

step
The next step of the evaluation is started.

. next

The subterm to be evaluated next is evaluated without displaying the intermediate
steps of the evaluation. For instance the original term has been f(g(x,y),z) and the
term to be evaluated next is g(x,y), then g(x,y) is evaluated without displaying
the intermediate steps of the evaluation. If a breakpoint is reached during this
evaluation the evaluation is stopped.

modify term

If a term that is a variable is to be evaluated next its binding can be changed via
this command into the given input term term of the current specification. If the
command is entered at a point where it can not be executed (no evaluation of a
term that is a variable comes next), an error message is displayed.

CHAPTER 4. THE SYSTEM OBSCURE 69

9. where
This command displays the “hierarchy” of functions to be evaluated. For instance
if the subterm g(h(x)) of term f(g(h(x))) is to be evaluated next, the command
would display g(h(x)) and then f(g(h(x))).

When the evaluation is finished the system is still in trace mode. The following com-
mand named trace no can be used to leave the trace mode:

- trace no
The ‘trace mechanism’ is switched off.
- quit
Quits the interpreter mode and closes the connected window.

- help
Starts the Emacs-information-reader with the description of the interpreter given above.

It is sufficient to enter unambigous prefixes of the commands in the interpreter mode and
the trace mode, i.e. one may write c instead of currspec.
Quitting the interpreter, the hard way

The user can leave the interpreter mode at any time—also from within the trace mode—
by pressing C-c twice. The message "really leave OIU (y/n)?" is displayed and the inter-
preter mode is quitted if ’y’ is pressed. The Emacs window containing the interpreter mode
disappears from the screen.
Changing the prompt of the interpreter

The prompt of the interpreter mode: “;-) " is used by default. It can be modified by
changing the value of the shell variable OIU_PROMPT. This has of course to be done in the
standard UNIX shell.

For example: setenv OIU_PROMPT ’><:’

For examples illustrating the use of the interpreter and the trace mechanism the reader
is referred to Section 5.1.2 and 5.1.2.3 respectively.

CHAPTER 4. THE SYSTEM OBSCURE 70

4.5 The Source-to-Source-Translation of specifications

M-x o-So-to-So-Tra (also called by: C-o u or C-o C-u)

After starting this command the user is asked for the name of a specification
spec and for an option opt.

The specification spec, which must be contained in the personal module
database of the user, is translated into C. The default value for spec is the
name of the active buffer.

The option opt defines the target language. As in its present state the
system contains a compiler into C only, so the only option possible is ‘c’.

At the present moment only atomic specifications can be translated. If the
specification is not atomic an error message is displayed. After the translation,
the source code created is displayed in a corresponding Emacs buffer; more
precisely after the call of o-So-to-So-Tra with the parameters spec and ‘c’ the
files ‘spec.h’ and ‘spec.c’ are displayed in two corresponding Emacs windows.

The source code created by o-So-to-So-Tra can in principle be included into a program
written in C. In that case the following syntactical rules have to be observed in order to
match the syntax of C:

e the names of operations and variables must conform to the C-syntax;

e the symbol prime may not occur in variable names.

Note that the mixfix operation names occurring in a specification are concatenated into a
single name after translation.

CHAPTER 4. THE SYSTEM OBSCURE 71

4.6 Special editing commands

The following commands support the editing of specifications by saving some writing.

M-x

o-curr-signature (also called by: C-o t or C-o C-t)

The current signature, i.e. all imported and exported sorts and operations
of the specification in the active buffer, is displayed in an Emacs buffer called
Signature. If the specification has not yet been parsed, a corresponding
error message is displayed.

M-x

o-at-spec (also called by: C-o a or C-o C-a)

The contents of the buffer, the name of which is (interactively) entered by
the user, is displayed in the active buffer. Moreover, the frame of a specification
is inserted into the active buffer, if the user confirms a corresponding query. If
the buffer does not exist, a new buffer is created, and the user is asked into
which file its contents should be saved. Instead of a filename the user can also
enter C-g. In that case no file is connected to the buffer.

o-copy-opns (also called by: C-o ¢ or C-o C-c)

The list of .operations following the keyword CREATE is copied into the
active buffer behind the keyword CONSTRS.

o-copy-constrs (also called by: C-o z or C-o C-z)

The list of constructors following the keyword CONSTRS is copied onto the
top of the list of operations following the keyword CREATE.

o-ins-comment (also called by: C-o k or C-o C-k)

If the current line is not a comment line already it is marked as such by
inserting ‘##’ at the very left of the line.

o-kill-comment (also called by: C-o K or C-o C-K)

The comment markers ‘##’ are deleted from the current line.

CHAPTER 4. THE SYSTEM OBSCURE (P

M-x o-print-spec (also called by: C-o wor C-o C-w)

The user is asked for the name of a specification spec and the name of a
module database mdb. A textual representation of the specification module
spec contained in the module database mdb is written into the Emacs buffer
Specification. The module name of the last call of o-print-spec is the
default value of spec. The following options control the behaviour of the com-
mand:

-m: prints the specification while expanding the three macros X_.COMPOSE,
F_COMPOSE and FORGET-ALL. BUT.

-r: prints the specification while replacing each INCLUDE construct by the
specification it stands for;

-bnumber: sets the linewidth for the output to number; the default value is 75.

-v: prints the version number of the printer. This can be used to control
whether the newest version of the printer is installed. The number of the
current version is 1.2.

M-x o-news (also called by: C-o n or C-o C-n)

The file ‘OBS-NEWS’ is loaded and displayed if it has changed since its last
reading. Otherwise, the message ‘No News’ is displayed.

M-x o-show-constrs (also called by: C-o h or C-o C-h)

The user is asked for the name of a sort. If the active buffer contains an
atomic specification the list of constructors of this sort is displayed in the Emacs
buffer *Constructorsx.

M-x o-opns-to-def (also called by: C-o o or C-o C-o)

If the active buffer contains an atomic specification then the list of all op-
erations to be defined by recursive programs is displayed in the Emacs buffer
0pns-to-be-definedx.

CHAPTER 4. THE SYSTEM OBSCURE 73

M-x o-LaTeX-format (also called by: C-o 1 or C-o C-1)

The user is asked for the name of a file which should contain the text
of a specification. The contents of this file are translated into IATEX format
according to the information in the variables o-sym-file, o-word-file and o-other-
opts. If the name of the file is spec.T then the IATEX format is displayed in the
buffer spec.tex. The following options are possible:

-h: displays help information;

-iinfile: the text of the specification is to be read from the file infile; the default
value is ‘stdin’;

-ooutfile: the translation is written into the file outfile; the default value is
‘stdout’;

-tnumber: defines the width of a tabulator stop; the default value is 8;

-n[l—r][e][number]: switches the line numbering on; the default value is ‘of£’.
The optional arguments I-r, e and number indicate whether the number
has to be printed to the right or to the left, whether empty lines should
be numbered, and which is the starting number;

-x: if this option is set, the usual convention of IATgX ignoring several succes-
sive blanks is circumvented; this means that all blanks in the input become
blanks in the output too;

-vlength: defines the distance to be added for empty lines. The default value
is 3mm,;
-ssymfile: the format information is to be read from the file symfile;

-wwordfile: the reserved words (to be printed in bold face) are to be read from
the file wordfile.

Note that this command is rather powerful and can be used to format texts in
any programming language by modifying symfile or wordfile according to the
language in question.

Chapter 5

Examples

The following sections give examples of specifications, of queries to the module database and
of evaluations by the interpreter.

5.1 Examples of specifications

In the following section a simple example for a specification is given. It is the example
already treated in Chapter 2. For a more complex example see Appendix D.

5.1.1 Simple examples

Three specifications are presented: a specification of the natural numbers, a specification of
stacks (of elements) and a specification of stacks of natural numbers.

In the OBSCURE system each module has to be saved into a file with a name, of the form

‘<name of the module>.T’. In the now following text the name of the module is written
on the first line as a comment.

74

CHAPTER 5. EXAMPLES

(1) A specification of natural numbers

nat.T
CREATE
SORTS nat
OPNS null: -> nat
succ: nat -> nat

add: nat nat -> nat
SEMANTICS
CONSTRS null: -> nat
succ: nat -> nat
VARS
i1, i1’, i2: nat
PROGRAMS
add (i1, i2) <-
CASE i1 OF null: i2;
succ(il’): succ(add(il’, i2))
ESAC;
ENDCREATE
The End

(i1) A specification of a stack of elements

element-stack.T
IMPORTS
SORTS element
CREATE
SORTS stack
OPNS empty: -> stack,
push: element, stack -> stack
pop: stack -> stack

top: stack -> element
SEMANTICS

CONSTRS
empty: -> stack,
push: element, stack -> stack
VARS s,s’: stack,
e: element
PROGRAMS
pop(s) <-
CASE s OF
empty: ERROR(stack);
push(e, s’): s’
ESAC; '

top(s) <-
CASE s OF
empty: ERROR(element);

75

CHAPTER 5. EXAMPLES

push(e, s’): e
ESAC;
ENDCREATE
The End

(ii) A specification of a stack of natural numbers

nat_stack.T
(INCLUDE element-stack
I_RENAME
SORTS element
AS
SORTS nat)

COMPOSE

(INCLUDE nat)
The End

76

CHAPTER 5. EXAMPLES 77

5.1.2 Examples illustrating the use of the interpreter

5.1.2.1 A first example

Let NAT be a specification of the natural numbers with the constructors

succ: nat -> nat and
null: -> nat

and the function add: nat nat -> nat defined by:

add (i1,i2) <-

CASE i1 OF

null : 12

succ(il’): succ(add(il’,i2))
ESAC ;

The following protocol illustrates the use of the interpreter (remember that ;-) is the
prompt of the interpreter mode):

;=) currspec NAT

;=) eval add(succ(null),succ(null))

succ(succ(null))

;=) eval succ(succ(null))

succ(succ(null))

;=) eval add(i1,i2)

Error message of the term parser:
/local_pathname/mdbpool/username/NAT.0, line 1: token: "il"; error:
here the name "il" is declared neither as prefixname nor as infixname
nor as mixfixname nor as variablename
/local_pathname/mdbpool/username/NAT.0, line 1: token: "il"; error:
syntax error
error

The reason for the error message lies in the fact that il and i2 are free variables.

;-) eval add(add(null,null),null)

null

CHAPTER 5. EXAMPLES 78

;=) eval succ(add(null,succ(null))

succ(succ(null))

5.1.2.2 Example illustrating lazy evaluation

The following specification specifies infinite and finite lists of natural numbers. Note the use
of LAZY:

all_nat_list.T
CREATE
SORTS inf_natlist, fin_natlist

OPNS

lcons : integer, inf_natlist -> inf_natlist

cons : integer, fin_natlist -> fin_natlist

nil : -> fin_natlist

all_ints : integer -> inf_natlist

showl : inf_natlist, integer, inf_natlist -> inf_natlist
show2 : inf_natlist, integer, fin_natlist -> fin_natlist

SEMANTICS
CONSTRS
lcons : integer, LAZY inf_natlist -> inf_natlist
(Remark: thanks to LAZY the second argument of Icons
is evaluated only when required!)
cons : integer, fin_natlist -> fin_natlist
nil : -> fin_natlist

VARS t , j : integer
il , i1’ , init_inf : inf_natlist
init_fin : fin_natlist

PROGRAMS

all_ints (j) <-

lcons (j,all_ints (j+1)) ;
Remark: Had the second argument of the constructor Icons not been
declared as LAZY, the function all_ints would have been
#2 undefined for any argument.

showl (il , t , init_inf) <-

IF t >= 1

THEN CASE il OF
lcons (j,il’) : showil (i1’ , t - 1 , lcomns (j,init_inf)) ;
ESAC

CHAPTER 5. EXAMPLES 79

ELSE init_inf
FI;
showl gets the first t elements from a list il and puts them in
reverse order into the argument init_inf.
init_inf is of sort inf_natlist.
show2 (i1 , t , init_fin) <-
IF t >= 1
THEN CASE il OF
lcons (j,il’) : show2 (i1’ , t - 1, cons (j,init_fin)) ;
ESAC
ELSE init_fin
FI;
the same as showl, but the argument init_fin is of sort fin_natlist.

ENDCREATE

The following protocol illustrates the use of the interpreter:

;=) currspec all_nat_list
;=) varbind yes

Only the bindings of variables occurring in LAZY arguments of
constructors are displayed (in square brackets).

;-) eval all_ints(1)

lcons(1,all_ints(j[1]+1))

;-) eval showi(all_ints(1),0,ERROR(inf_natlist))

ERROR

;=) eval showi(all_ints(1),2,ERROR(inf_natlist))
lcons(2,init_inf [lcons(j[1],init_inf [ERROR(inf_natlist)])])
;-) eval show2(all_ints(1),2,nil)

cons(2,cons(1,nil))

5.1.2.3 Example illustrating the trace mechanism

Consider the following specification of natural numbers together with a sort sort consisting
of a single carrier:

CHAPTER 5. EXAMPLES 80

integer.T

CREATE

SORTS int,sort

OPNS null: -> int
succ: int -> int

ander : -> sort
add: int int -> int
SEMANTICS

CONSTRS null: -> int
succ: int -> int

ander : -> sort
VARS
i1, i1’, Arbeit, i2, i2’ : int
PROGRAMS

add (i1, i2) <-
CASE i2 OF null: ii;
succ(i2’): succ(add(i1, i2’))
ESAC;
ENDCREATE

The specification shown above is loaded into the interpreter with the command ‘currspec’.

;=) currspec integer
;=) trace yes
;-) eval add(null,add(null,null))
You are in the OBSCURE trace mechanism on term level
e o oo o o oo o K K Ko e e e o o e o o Kok oK oK oo e e e oo o o o ok ok ok s s ok o ok ok ok ok ok
You want to interpret the following term :
add(null, add(null, null))
sk ke s s o o o3 e e o K 0 e e o 3 8 R e 0k o o e e e e s e ook o ko oo sk o ek o ook ok ke o
the next term, which will be interpreted :
add(null, add(null, null))
(Otm) step
you are in the CASE-term with evaluation Nr. : 1
CASE i2
OF
null:
i1,
succ(i2’):
succ(add(i1, i2’));
ESAC
this CASE-term is enclosed by the term :
add(null, add(null, null))

(0tm) step
the evaluation of the input term of the CASE-term
with the evaluation Nr. : 1 begins !

the next term, which will be interpreted :
i2[add(null, null)]

CHAPTER 5. EXAMPLES

(0tm) step
the next term, which will be interpreted :
add(null,
null)
(0tm) step
you are in the CASE-term with evaluation Nr. : 2
CASE i2
OF
null:
i1;
succ(i2’):
succ(add(i1l, i2?));
ESAC
this CASE-term is enclosed by the term :
add(null, null)
(0tm) where
add(null, null)
is called in :
add(null, add(null, null))

(Otm) step
the evaluation of the input term of the CASE-term
with the evaluation Nr. : 2 begins !

the next term, which will be interpreted :
i2(null]

(Otm) step
the next term, which will be interpreteted :
null

(Otm) step
you are again in the CASE-term

with evaluation Nr. : 2
CASE i2
OF
null:
il;
sucel(i2?):
succ(add(il, 12’));
ESAC
this CASE-term is enclosed by the term :
add(null, null)

(0tm) step
the next term, which will be interpreted :
i1 [null]

(0tm) next
the next term, which will be interpreteted :
null

(0tm) next
the evaluation of the term:
null

81

CHAPTER 5. EXAMPLES

has been finished and delivers ->

null

do acknowledge !

(press enter key, if you want to go on)
the evaluation of :

add(null, null)

has been finished and delivers ->

null

do acknowledge !

(press enter key, if you want to go on)
you are again in the CASE-term

with evaluation Nr. : 1
CASE 12

oF

null:

il;

succ(i2’):

succ(add(i1, i2’));

ESAC

this CASE-term is enclosed by the term :
add(null, add(null, null))
(Otm) step
the next term, which will be interpreted :
i1 [null]
(0Otm) modify ander
sort-conflict : sort of your term and sort of the variable does not
agree !
(0tm) modify succ(null)
variable modified !
the next term, which will be interpreted :
i1 [succ(null)]
(0tm) next
the next term, which will be interpreteted :
succ(null)
(0Otm) next
the evaluation of the term:
succ(null)
has been finished and delivers ->
succ(null)
do acknowledge !
(press enter key, if you want to go on)
the evaluation of :
add(null, add(null, null))
has been finished and delivers ->
succ(null)
do acknowledge !
(press enter key, if you want to go on)
The term reduction has finished and delivers the result :

CHAPTER 5. EXAMPLES

succ(null)
You are leaving the OBSCURE trace mechanism !

;=) currspec integer
;=) trace yes
:-) e add(null,null)
You are in the OBSCURE trace mechanism on term level x*x*
b b ke o e e ke 6 e ke e ek 0 o ok o e o s e 3 ke ok ke e o ke o o s o s o o o ae o oo o e ok k ke ke o o o sk
You want to interpret the following term :
add(null, null)
sk o e ok ok ok e oo K 3 ke oo o ok ke o oo oo e s ke K ek ko ko ok ok ok ok ok sk ok ok ok ok ok ok ok
the next term, which will be interpreted :
add(null, null)
(Otm) break null
break is accepted !
(0tm) 1list
break Nr. : 1
null
(0tm) run
break Nr. 1 is reached !
the next term, which will be interpreteted :
null
(Otm) where
add(null, null)

(Otm) list
break Nr. : 1
null

(Otm) delete 1
break is deleted !
(0tm) step
you are again in the CASE-term
with evaluation Nr. : 1
CASE i2
OF
null:
il;
succ(i2’):
succ(add(i1l, i2?));
ESAC
this CASE-term is enclosed by the term :
add(null, null)
(Otm) step
the next term, which will be interpreted :
i1[null]
(Otm) step
the next term, which will be interpreteted :
null
(0tm) step

83

CHAPTER 5. EXAMPLES

the evaluation of :

add(null, null)

has been finished and delivers ->

null

do acknowledge !

(press enter key, if you want to go on)

The term reduction has finished and delivers the result :

null
You are leaving the OBSCURE trace mechanism !

;=) quit

84

CHAPTER 5. EXAMPLES 85

5.2 Example queries to the module database

The following text explains some examples of queries to the module database of the user
‘arbor’.

He/She wants to know for which specification modules there is an entry into his/her
personal database ‘arbor’. This query looks as follows:

s ookt ok ook dkokokokskok ok kokokokkokokkok ok S@lect from MDB sk koo sk sk sk ok she o ok s ok ok ok o ek ok ok ok ok ok ok ke ook
C-i start the search in the data base

C-c start selecting field names ESC escape from selecting field
names

RET select a field name C-t toggle all fields

SPC move to the next field name DEL move to the previous field
name

s A KR K KR R A AR RS oo K o A Ko o o o

SELECT FROM

Data base: arbor

List of field names: mname
iparams [] eparams [] isorts [] esorts []
iopns [] eopns [] iconstr [] econstr []
iaxioms [] eaxioms [] uses [] isusedby [] compiled []

WHERE Condition: mname LIKE '"x*"

The answer to this query might, for example, look as follows:

Start
arbor.mname:

arbor.mname:
set_of_pair

The End

CHAPTER 5. EXAMPLES 86

Hence, the personal module database of the user arbor contains four specifications with
the names pair, list, set and set_of_pair respectively.

As a further example, the user wants to display the name of all specification modules,
which have been changed since their entry into the module database, but have not been
recompiled. The query looks as follows:

ok ok kokok ok okok ok dkok Rk ok kkokkkkokkkkk Select from MDB skokokskok sk s skt ok ok sk s ok s ok o s ok ok o ok ok ok ok ok e ok
C-i start the search in the data base

C-c start selecting field names ESC escape from selecting field
names

RET select a field name C-t toggle all fields

SPC move to the next field name DEL move to the previous field
name

K 3 3k 3 3 k¢ K e 3k 3k e 2k 2k e 2k 3¢ e 3 2 e 3 e 3 ke 3 4 o e ke o 2 3 e e e e 24 2 e 3¢ 3 3 3k 3k e 3 3 3 e 3k e ke o e e 3k e e 3k e ke e 3k ke e 3k ke 4k 3 3k 3k Xk

SELECT FROM

Data base: arbor

List of field names: mname
iparams [] eparams [] isorts [] esorts [1]
iopns [] eopns [] iconstr [] econstr []
iaxioms [] eaxioms [] uses [] isusedby []

WHERE Condition: compiled LIKE "false"

compiled []

The following query asks for the name and the list of imported sorts of all specifications
importing the sort ‘stack’.

etk ok ko o kok ok okok ok ok ok kkok ok ok ok kokkk S@lect From MDB ok skokskosk ok skok ok sk sk sk s sk o ok o 3k ol ok o ok ok ok ok o ok oK
C-i start the search in the data base

C-c start selecting field names ESC escape from selecting field
names

RET select a field name C-t toggle all fields

SPC move to the next field name DEL move to the previous field
name

k3 2k 3 3 2k K 2 3 2 e e A e 3 e A e A e e e ke 36 A e e ke 5 3k 4 3 3 4 3 e e ok e ke 2 e ke 3 e e e ok e ke e e ke e e e 3 e e e ok e e 3 e ek ke ek Ak kK

SELECT FROM
Data base: arbor
List of field names: mname
iparams [] eparams [] isorts [X] esorts []
iopns [] eopns [] iconstr [] econstr []
iaxioms [] eaxioms [] uses [] isusedby [] compiled []
WHERE Condition: stack IN isorts

The last example asks for the name and the list of the exported sorts of all specifications
fulfilling the following condition: the list of imported sorts is equal to the list of exported
sorts.

CHAPTER 5. EXAMPLES

87

skok kR AOK KRRk Rk ok kkkkk S@lact From MDB sk kdok sk ok ok koo ok ok ek ko

C-i start the search in the data base

C-c start selecting field names ESC
RET select a field name C-t
SPC move to the next field name DEL

escape from selecting field
names

toggle all fields

move to the previous field
name

3 2k 2k 3k 3k 3k 2k e ke k¢ 3k 3 2k 2 3k k¢ k¢ e 3 3 e 2 3 3k e e e 3 3k 3k 3 ke e e 3 e 3 e 2k 3k 3k e e e 3k e 3k e A e e e 3k 3¢ e ke 2k e e e e e ke e 3k e A e A ok ke 3k Xk

SELECT FROM
Data base: arbor
List of field names: mname

iparams [] eparams [] isorts []
iopns [] eopns [] iconstr []
iaxioms [] eaxioms [] wuses []

WHERE Condition: isorts=esorts

esorts [x]
econstr []

isusedby [] compiled []

Chapter 6

OBSCURE and UNIX

The following sections describe the call of the components of the OBSCURE system from a
standard UNIX shell. All component programs can be found in the subdirectory ‘d-run’ of
the OBSCURE system.

6.1 Calling the parser
The parser is implemented by three programs in the OBSCURE system:

e a syntactical analyzer, called ‘parser’;

e a program, called ‘mdb-parser’ inserting the .O file created by the parser into a module
database;

e a program, called ‘compile-command’ which combines the two parts preceding into one
program.

The program ‘compile-command’ is called by the ‘o-parser’ command of the ‘obscure-mode

The description of these three programs is given as follows:

88

CHAPTER 6. OBSCURE AND UNIX 89

(i) Name parser
Action parsing of a specification and creation of a ‘.0’ file.
Synopsis parser [-efv | ‘filename’

Description The file ‘filename’ is parsed and an internal representation is created. The
name of the file must end in ‘. T’. In the file created the extension is changed into .0’.
The filename given to the parser as a parameter may either have the extension ‘.T’ or
not. In the latter case the extension is supplied by the parser.

Options

-e The text on which the parser is working is displayed during the parsing.
-f The standard output is redirected to ‘FILENAME.E’ (instead of the screen).

-v The version number of the parser is displayed.

FILES ~obscure/d-run/parser

(ii) Name mdb-parser

Action enters the internal representation of a specification created by the parser into the
personal module database.

Synopsis mdb-parser ‘filename’

Description The file ‘filename’ is entered into the module database. The name of the file
must have the extension ‘.0’ and the original file is deleted at the end of the process,
so that the file does not exist in two incarnations. As above, the name can be given
either with or without the extension.

FILES ~obscure/d-run/mdb-parser

(iii) Name compile-command

Action parsing of a specification and writing its internal representation into the personal
module database.

Synopsis compile-command [-efv | ‘filename’

Description The file ‘filename’ is parsed and entered into the personal module database.
The name of the file must end in ‘. T’. As above the filename given to the parser as a
parameter may have the extension ‘.T’ or not.

Options

-e The text on which the parser is working is displayed during the parsing.
-f The standard output is redirected to ‘FILENAME.E’ (instead of the screen).

CHAPTER 6. OBSCURE AND UNIX 90

-v The version number of the parser is displayed.

FILES
“obscure/d-run/parser

“obscure/d-run/mdb-parser

“obscure/d-run/compile-command

6.2 Calling the interpreter

Name Interpreter
Action The interpreter mode for the interpretation of specifications is started.
Synopsis interpreter [‘filename’|

Description The interpreter environment is started and the specification given by ‘filename’
is loaded. For a complete description of the interpreter environment see 4.4.1 [The In-
terpreter Mode|, page 66.

FILES ~obscure/d-run/interpreter

6.3 Calling the Source-to-Source-Translation

Name sotosotra
Action The source to source translation of specifications into C is started.
Synopsis sotosotra ‘filename’

Description The specification ‘filename’ is read from the personal database and translated
into a C program with the same name. A header file ‘.h’ and a C file ‘.c’ are created.

FILES ~“obscure/d-run/sotosotra

6.4 Calling the module database

There are three programs allowing to work with the module databases.

(1) Name mdb-install
Action Installing a personal module database.

Synopsis mdb-install

CHAPTER 6. OBSCURE AND UNIX 91

Description A personal module database is installed. The module database has the name
contained by the environment variable USER.

FILES ~obscure/d-run/mdb-install

(ii) Name mdb-select
Action A query to a module database is executed.

Synopsis mdb-select [-m‘filename’ -f'list of field names’ -t‘database name’
-c‘search condition’]

Description This program starts queries to a module database. The queries are directed
by the options.

Options

-m output file
The answer of the query is written into this file. The default value is ‘stdin’.

-f list of fleld names

The contents of the field names of the list will be outputted. For more information
on the organization of the module database see 4.3.2 [The OBSCURE module
database], page 58.

-t database name

The name of the database to search in. The default value is the name given in
the environment variable USER.

-c conditions
The condition of the search has to be given here. Please remember to escape
symbols recognized by the shell, like * or " by a backslash, i.e. write * instead
of *. For more information on the syntax of the conditions allowed see 4.3.5 [The
third query parameter <condition>], page 63.

FILES ~obscure/d-run/mdb-select

(iii) Name mdb-delete

Action Deleting a specification from a module database.

Synopsis mdb-delete [-m‘filename’ -s‘specificationname’ -t‘databasename’ -v|
Description A specification is deleted from the database.

Options

-m output file

The names of the specifications deleted are written to this file. The default value
is ‘stdout’.

CHAPTER 6. OBSCURE AND UNIX 92

-s specification name
The name of the specification to be deleted must be given here. There is no
default name and an error message will be printed if no name is given.

-t database name The database, from which the file shall be deleted, has to be given
here. The default value is the name given in the environment variable USER.

-v This option writes the names of the specifications deleted into the file identified by
the -m option.

FILES ~“obscure/d-run/mdb-delete

Appendix A

Index of commands and functions

For each command the page where it is explained is indicated.

L

list-command-history L L L L L L L e
load-file: 5 s 6 8 6 2 6 85 8 6 8 3 5 & & 6 o o @ oo M. o ww e e E oy

N

next-complex-command L L L L L L L0 oo e e e e
DeXt-eITOT« . o e

(0]

O=ab=8PEC = + & ¢ & + o o » u s w o £ 5 & 8 wHE &% 6 5w ¥ E ¥E woe o wE s ¥ s B
O-COPY-=CODSEIS . &5 : v + % = = © © o & s & 55 & % & & & 8 & 5 & & & & & 4 & @& § #
O=CODY-OPIS & . w : i 2 = = & w5 5 & o & o % % 5 @& « § 5% s & & & & © s @ & 3
o-curr-signature L Lo Lo e e e e e e e e e e e e e e
o-lns-comment L. L L e e e e e e e e e e e e e e e e

o-interprete L . . L Lo e e e e e e e e e e e e e e e
o-kill-comment L L L L L oL o e e e e e e e e
o-LaTeX-format L L Lo e e
o-mdb-delete L L Lo e e e e e .
o-mdb-help oL oL L e e e e e e
o-mdb-install oL L oL e e
o-mdbsgelect . . & i = o 4w w v m s s E v B s W s m o e s e e i a e e e e
OSTIEWS . = : @ o © 2 & 5 ® © 5 8 85 & 8 § & & B & & ¥4 B b b s B mE 5B . &

O-PATSET & : = ¢ w s & s ® & @ w @ 5 % s & 5 & 9. & $ 0 $ 8 85 9% ¥ 8 HH B s 0w
O-Prilt-SPEC L e . e e e e e e e e e e e e e e e e e e e
o-show-comstrs L L Lo s
0-So-to-So-Tra e e e e

obscure-mode L L L L L L e e e e s

P

previous-complex-command L. L. L Lo

93

APPENDIX A. INDEX OF COMMANDS AND FUNCTIONS

R

repeat-complex-command L. L Lo oL L L0 o 0o

S

set-variable e e e e e e e e e e e e e e e e e e

94

Appendix B

Index of variables

O

o-condition, 63
olfieldname oL L L. L, 63
omdb Lo e 63
o-mdb-out Lo 62
o-other-opts Lo L e 73
0-parser-opts L L L L Lo oo e e e e e e e e e e e e e e s 58
OBYMAIE « ¢ © ¢ 3 5 B s P F B P B B . e e w e mw o mw y s My Me w5 E s 73
o-vipdesired . . . s i 5 i @ i B 5w b B e e e e d me e e w e m e m e s 54
OWOIOAIE & « o = w & 95 88 5 4 54 G 5 FEH G ew o m. w e ww e e s 73

95

Appendix C

The context free syntax for the
specification language

The context free syntax for the specification language is given in Extended Backus Naur
Form (EBNF). Nonterminal symbols are enclosed by ‘<’ and ‘>’. Repetitions are indicated
by { and }; for instance { <1ist> } stands for zero or more occurrences of the nonterminal
<list>. Optional parts are enclosed by [and |. The keywords of the language, like SORT'S

are printed in bold face.
The grammar rules are:

(i) Specifications

<composed specification>

<simple specification>

<simple specification>

<composed specification>

PLUS <simple specification>
<composed specification>

COMPOSE <simple specification>
<composed specification>
X_COMPOSE <simple specification>
<composed specification>

F_COMPOSE <simple specification>

INCLUDE <name>

<atomic specification>

<simple specification> FORGET
<list of sorts and operations>
<simple specification>
FORGET_ALL_BUT

<list of sorts and operations>
<simple specification> E_RENAME
<rename list>

<simple specification> I_RENAME

96

APPENDIX C. THE CONTEXT FREE SYNTAX FOR THE SPECIFICATION LANGUAGE97

<rename list>

| <simple specification> E_AXIOMS
<axiom> ENDAXIOMS

| <simple specification> I_AXIOMS
<axiom> ENDAXIOMS

| <simple specification> SUBSET OF
<sort> BY <axiom> ENDSUBSET

| <simple specification> QUOTIENT OF
<sort> BY <axiom> ENDQUOTIENT

| (<composed specification>)

(i1) Atomic Specifications

<atomic specification> ::= IMPORTS

<list of sorts and operations>

[CREATE
<list of sorts and operations>
SEMANTICS
<algorithmic semantics>
ENDCREATE]

| CREATE

<list of sorts and operations>

SEMANTICS <algorithmic semantics>

ENDCREATE

<algorithmic semantics> ::= CONSTRS <list of constructors>
[[WITH IMPORTED CONSTRS
<list of constructors>]
VARS <list of variables>
PROGRAMS <list of programs>]
| [WITH IMPORTED CONSTRS
<list of constructors>]
VARS <1list of variables>
PROGRAMS <list of programs>

<list of constructors> { <constructor>[,] }
<constructor> = <name>:-> <sort>
| <name>: <args> {[,] <args> } -> <sort>
| <name> _: <args> -> <sort>
| _ <name>
| <name> <name> { , <name> }:

<args> {[,] <args> } -> <sort>
| _ <name> { _ <name> }:

<args> {[,] <args> } -> <sort>

: <args>[,] <args> -> <sort>

<args> [LAZY] <sort>

APPENDIX C. THE CONTEXT FREE SYNTAX FOR THE SPECIFICATION LANGUAGE98

<list of variables> ::= {{ <name>[,] }: <sort>[,] }

<list of programs> ::= <head> <- <term>;
{ <head> <- <term>; }

<head> = <prefix name>
| <prefix name> ({ <variable>, })
| <infix name> <variable>
| <variable> <infix name> <variable>
| <mixfix name> <variable> <mixfix name>
{ <variable> <mixfix name> }
| <variable> <mixfix name>
{ <variable> <mixfix name> }
<prefix name> ::= <name>
<infix name> . := <name>
<mixfix name> . := <name>
<variable> . := <name>
<term> ::= <infix term>

| <mixfix name> <infix term>
<mixfix name>
{ <infix term> <mixfix name> }

<baseterm>
| <infix term> <infix name> <baseterm>

<infix term>

(<term>)
ERROR (<sort>)
<variable>
IF <term> THEN <term> ELSE
<term> FI
| CASE <term> OF
<head>: <term>; { <head>: <term>; }
[ELSE <term>] ESAC
| <prefix name>
| <prefix name> (<term> { , <term> })
| <infix name> <baseterm>

<baseterm>

_——

<name> ::= <letter> { <symbol> }
| <special symbol>

<letter>

alblcecl ... 1z AIB]| ... |2Z

APPENDIX C. THE CONTEXT FREE SYNTAX FOR THE SPECIFICATION LANGUAGE99

<symbol>

<digit>

<special symbol>

(ili) Sorts and operations

<list of sorts and operations> ::

<list of sorts>
<sort>
<list of operations>

<operation>

(iv) Renamings

<rename list>

<operation name>

(v) Formulas

—_——

<letter> | <digit> | _
<special symbol>

ol1l121...19

(2 I A

I
-1\ Tel$17%

< | >
x|/

SORTS <list of sorts>

[OPNS <list of operations>]
OPNS <list of operations>

{ <sort>[,] }

<name>

{ <operation>[,] }

<name>:-> <sort>
<name>: <sort> {[,] <sort>} -> <sort>

<name> _: <sort> -> <sort>
_ <name> _: <sort>[,] <sort>
-> <sort>

<name> _ <name> { _ <name> }:
<sort> {[,] <sort> } -> <sort>
_ <name> { _ <name> }:

<sort> {[,] <sort> } -> <sort>

SORTS { <sort>, } AS SORTS { <sort>,}
[OPNS { <operation>, } AS OPNS
{ <operation name>, }]
AS SORTS { <sort>, } OPNS
{ <operation name>, }

<name>
<name> _
- <name>
<name> _ <name> { _ <name> }
_<name> { _ <name> }

APPENDIX C. THE CONTEXT FREE SYNTAX FOR THE SPECIFICATION LANGUAGE100

<axiom> ::= <formula>; { <formula>; }
| VARS <list of variables>;
<formula>; { <formula>; }

<formula> = <disjunction>

| <disjunction> { => <formula> }

| <disjunction> { <=> <formula> }
<disjunction> ::= <conjunction> { — <conjunction> }
<conjunction> = <simple formula> { & <simple formula>}
<simple formula> <equation>

! <simple formula>
EX <variable>, { <variable>, }.
<simple formula>

| ALL <variable>, { <variable>, }.
<simple formula>

| (<formula>)
|
|

<equation> 1:= <term> == <term>
| <term> [= <term>

Remarks

1. In order to save brackets when writing terms, equations and formulas the following
priorities are valid:

the operators ‘=>’ and ‘<=>’ have the lowest priority and are left associative;

the disjunction ‘|’ has the next higher priority;

the conjunction ‘¢’ has a higher priority than the disjunction;

e on the next higher level of priority are ‘!’, ‘EX’ and ‘ALL’;

the operators ‘==" and ‘[=" have the highest priority.

2. The following sorts and operation are called basic:

sort bool

operations true, false, =, and, or, not

sort integer

operations 0,1, 2, 3, 4, 5,6, 7, 8,9, 10, =, <, <=, >=, >, +, *x, -,
div, mod

Basic sorts and operations have not to appear on the list of imported sorts and operations
of a specification. Moreover, their meaning is “known” to the interpreter.

APPENDIX C. THE CONTEXT FREE SYNTAX FOR THE SPECIFICATION LANGUAGE101

Note that you have to express numbers higher than 10 as arithmetic formulas in the
specifications and in the interpreter. The interpreter generates results greater than 10 as
usual.

3. An exhaustive description of the context conditions of the specification language can be
found in [Zey 89

Appendix D

A more complex example

As a more complex example, the notion of a signature is expressed by a specification. While
the example itself is an academic rather than a real-life example, the goal of this appendix
is to illustrate the design of a non-trivial specification in the specification language. The
design of the specification has been done with the help of the OBSCURE system.

First the overall specification of a signature is given so that the reader gets an idea of
what is specified in this example. Intuitively a signature consists of a set of sort names and
a set of operations. Actually, a slightly different view is taken here. The set of operations is
divided into two sets, a set of constructors and a set of “defined” operations. An operation
consists of an operation name, a (possibly empty) list of source sorts and a target sort. The
specifications of operations and of symbols, which are used for operations and sort names are
left to the reader. According to what has been said above, a signature is a pair of collections
of operations together with some operations on signatures like adding a constructor to a
specification, checking whether an operation is a “defined” operation of the signature, etc.
This is expressed in the specification ‘construct_signature.T’.

Some of the data types imported by the specifications are not detailed here, and it is
assumed that the reader is able to specify them.

The specification construct_signature

IMPORTS
SORTS
pair_of_collection_of_operation
collection_of_operation
operation ## the specification of this sort is left to the reader.
symbol
list_of_symbol

102

APPENDIX D. A MORE COMPLEX EXAMPLE 103

OPNS
operations of pair_of_collection_of_operation
pair_of _collection_of_operation_with
. as_constructors
_ as_defined_operators
collection_of_operation collection_of_operation ->
pair_of_collection_of_operation

constructors_of _ : pair_of_collection_of_operation ->
collection_of_operation
defined_operators_of _ : pair_of_collection_of_operation ->

collection_of_operation

operations of collection_of_operation
empty_collection_of_operation :
-> collection_of_operation

_ 1s_empty : collection_of_operation -> bool

_ is_in _ : operation
collection_of_operation -> bool

one_of _ : collection_of_operation -> operation

_ with - collection_of_operation operation

=> collection_of_operation
_ without _ : collection_of_operation operation
-> collection_of _operation
conjunction operator
u collection_of _operation collection_of_operation
=> collection_of _operation

subset operator
_Cc. _ : collection_of_operation collection_of_operation
-> bool
target sort of the operation with name symbol and target sorts
list of symbols
sort__of _ with_source _ in _ as_opns
symbol list_of_symbol collection_of_operation -> symbol
op_symbol _ with_source _ occures_in _ as_opns
symbol list_of_symbol collection_of_operation -> bool
are there any operations excluding each other 7
_ is_compatible_to _
collection_of_operation collection_of_operation -> bool
are there operations with the same name and same source sorts 7
_ has_a_common_op_symbol_with_same_source_with _
collection_of_operation
collection_of_operation -> bool

operations of operation

name_of _ operation -> symbol
source_of _ : operation -> list_of_symbol
target_of _ : operation -> symbol

APPENDIX D. A MORE COMPLEX EXAMPLE 104

operations of symbol

- = _ : symbol symbol -> bool

operations of list_of_symbol

last_of _ : list_of_symbol -> symbol

body_of _ ¢ list_of_symbol -> list_of_symbol

- = _ : list_of_symbol list_of_symbol -> bool
CREATE

OPNS

Intended to become the empty signature

empty_pair_of_collection_of_operation

: => pair_of_collection_of_operation

Adds a constructor to the constructor set while checking whether

this is possible.

_ with_constructor _ : pair_of_collection_of_operation

operation -> pair_of_collection_of_operation

Adds a defined operator to the set of defined operators while

checking whether this is possible.

_ with_defined_operator _ : pair_of_collection_of_operation
operation -> pair_of_collection_of_operation

Removes a constructor.
_ without_constructor _ pair_of_collection_of_operation
operation -> pair_of_collection_of_operation
Removes a defined operator.
_ without_defined_operator _ : pair_of_collection_of_operation
operation -> pair_of_collection_of_operation
Gets a constructor from the constructor set.
one_constructor_of _ : pair_of_collection_of_operation
-> operation
Gets a defined operator from the set of defined operators.
one_defined_operator_of _ : pair_of_collection_of_operation
-> operation
Checks whether the operation is a defined operator of the signature
is_defined_operator_of _ : operation
pair_of_collection_of_operation
-> bool
Computes the constructor signature, i.e. the signature without the
set of defined operators
constructor_signature_of _ : pair_of_collection_of_operation
-> pair_of_collection_of_operation
Checks whether two signatures are "compatible" with each other. For
a better
understanding of the notion "compatible", please read the semantics
of this operation.

APPENDIX D. A MORE COMPLEX EXAMPLE 105

_ is_compatible_to _ : pair_of_collection_of_operation
pair_of_collection_of_operation -> bool
Joins two signatures if possible.
N : pair_of_collection_of_operation
pair_of_collection_of_operation
-> pair_of_collection_of_operation
Checks whether one signature is the subset of another signature.
c _ : pair_of_collection_of_operation
pair_of_collection_of_operation -> bool
Finds the target sort of the operation with the name "symbol" and source
sorts "list_of_symbol".
sort__of _ with_source _ in _ as_sigma :
symbol list_of_symbol
pair_of_collection_of_operation -> symbol
Checks whether the operation with the name "symbol" and source sorts
"list_of_symbol" occurs in the signature.
op_symbol _ with_source _ occurs_in _ as_sigma :
symbol list_of_symbol
pair_of_collection_of_operation -> bool
Checks whether the operation with the name '"symbol" and source sorts
"list_of_symbol" is a constructor of the signature.
op_symbol _ with_source _. is_constructor_in _ as_sigma :
symbol list_of_symbol
pair_of_collection_of_operation -> bool
Checks whether the operation with the name '"symbol" and source sorts
"list_of_symbol" is a defined operator of the signature.
op_symbol _ with_source _ is_defined_operator_in _ as_sigma :
symbol list_of_symbol
pair_of_collection_of_operation -> bool

SEMANTICS

WITH IMPORTED CONSTRS
pair_of_collection_of_operation_with
- as_constructors
as_defined_operators :
collection_of_operation collection_of_operation ->
pair_of_collection_of_operation

VARS

sigl sig2 : pair_of_collection_of_operation
opcoll opcol2 : collection_of_operation

opnaml : symbol

sortlistl : list_of_symbol

opl op2 : operation

APPENDIX D. A MORE COMPLEX EXAMPLE 106

PROGRAMS

empty_pair_of_collection_of_operation <-
pair_of_collection_of_operation_with
empty_collection_of_operation as_constructors
empty_collection_of_operation as_defined_operators ;

sigl with_constructor opl <-
A constructor may not be a defined operator, too.
IF op_symbol (name_of opl)
with_source (source_of opl)
occures_in (defined_operators_of sigl) as_opns
THEN ERROR(pair_of_collection_of_operation)
ELSE pair_of_collection_of_operation_with
((constructors_of sigl)
with
opl) as_constructors
(defined_operators_of sigl) as_defined_operators
FI;

sigl with_defined_operator opl <-
A defined operator may not be a constructor, too.
IF op_symbol (name_of opl)
with_source (source_of opl)
occures_in (constructors_of sigl) as_opnms
THEN ERROR(pair_of_collection_of_operation)
ELSE pair_of_collection_of_operation_with
(constructors_of sigl) as_constructors
((defined_operators_of sigl)
with
opl
) as_defined_operators
FI;

sigl without_constructor opl <-
pair_of_collection_of_operation_with
((constructors_of sigl) without opl) as_constructors
(defined_operators_of sigi) as_defined_operators;

sigl without_defined_operator opl <-
pair_of_collection_of_operation_with
(constructors_of sigl) as_constructors
((defined_operators_of sigl) without opl) as_defined_operators;

one_constructor_of sigl <-
one_of (constructors_of sigl) ;

APPENDIX D. A MORE COMPLEX EXAMPLE 107

one_defined_operator_of sigl <-
one_of (defined_operators_of sigl) ;

opl is_defined_operator_of sigl <-
opl is_in (defined_operators_of sigl);

constructor_signature_of sigl <-
pair_of_collection_of_operation_with
(constructors_of sigl) as_constructors
empty_collection_of_operation as_defined_operators ;

Two operations with the same name and the same source sorts must not
exist in the constructors of sigl and the defined operators of sig2
and vice versa. The operations of the two constructor signatures and
the two signatures of the defined operators must be compatible with
each other. The semantics of this compatibility will be explained
later.
sigl is_compatible_to sig2 <-
(not
((constructors_of sigl)
has_a_common_op_symbol_with_same_source_with
(defined_operators_of sig2)
)
or
((constructors_of sig2)
has_a_common_op_symbol_with_same_source_with
(defined_operators_of sigl)
)
)
and
((constructors_of sigl)
is_compatible_to
(constructors_of sig2)
)
and
((defined_operators_of sigl)
is_compatible_to
(defined_operators_of sig2)

))

sigl u sig2 <-

IF sigl is_compatible_to sig2

THEN pair_of_collection_of_operation_with
((constructors_of sigl) u (constructors_of sig2))
as_constructors
((defined_operators_of sigl)

u (defined_operators_of sig2))

as_defined_operators

APPENDIX D. A MORE COMPLEX EXAMPLE 108

ELSE ERROR(pair_of_collection_of_operation)
FI;

sigl c_ sig2 <-
((constructors_of sigl) c_ (constructors_of sig2)) and
((defined_operators_of sigl) c_ (defined_operators_of sig2));

sort__of opnaml with_source sortlistl in sigl as_sigma <-
IF op_symbol opnamil
with_source sortlistil
is_constructor_in sigl as_sigma
THEN sort__of opnami
with_source sortlistl
in (constructors_of (sigl)) as_opns
ELSE
IF op_symbol opnami
with_source sortlistl
is_defined_operator_in sigl as_sigma
THEN sort__of opnami
with_source sortlistil

in (defined_operators_of (sigl)) as_opns
ELSE ERROR (symbol)
F1
FI;

op_symbol opnaml with_source sortlistl occurs_in sigl
as_sigma <-
(op_symbol opnaml with_source sortlistil
is_constructor_in sigl as_sigma)
or
(op_symbol opnaml with_source sortlisti
is_defined_operator_in sigl as_sigma);

op_symbol opnaml with_source sortlistil
is_constructor_in sigl as_sigma <-
op_symbol opnaml
with_source sortlisti
occures_in (constructors_of sigi) as_opns ;

op_symbol opnaml with_source sortlistil
is_defined_operator_in sigl as_sigma <-
op_symbol opnamil
with_source sortlistil
occures_in (defined_operators_of sigl) as_opns

ENDCREATE

APPENDIX D. A MORE COMPLEX EXAMPLE 109

The sort pair_of_collection_of_operation which is intended to become the sort
signature will be defined in the next specifications by a parameterization of the sort pair
with the sort collection_of_operation.

The specification pair_of_collection_of_operation

INCLUDE pair
I RENAME
SORTS firstsort secondsort
AS SORTS collection_of_operation collection_of_operation

E_RENAME
SORTS pair
OPNS pair _ \ _ endpair : collection_of_operation
collection_of_operation => pair
first _ : pair -> collection_of_operation
second _ : pair -> collection_of_operation
AS

SORTS pair_of_collection_of_operation

OPNS pair_of_collection_of_operation_with
_ as_constructors _ as_defined_operators,
constructors_of _ ,
defined_operators_of _

The specification of the sort pair is trivial and left to the reader. The specification
of the sort collection_of_operation is more interesting and will be explained in more
detail. Essentially, it is a parameterization of the sort set_of_operation, which is left
to the reader (the specification of set should be simple by now; operations are triples of
symbol, list_of_symbol and symbol, standing for the name, the source sorts and the
target sort respectively). But a set of operations does not capture the fact that operations in
a collection of operations, as it is needed for our notion of signature, should be “compatible”
with each other. For example there should not be two operations with the same name,
the same arity, the same source sorts, but different target sorts. The specification of the
sort collection_of _operation is done in three steps. First the sort set is parameterized
by the sort operation, then this specification is composed with a specification defining new
operators to build collections, which check the compatibility, and finally, the old constructors
are forgotten so that only collections containing compatible operations can be created.

The specification set_of_operation

INCLUDE set
I RENAME
SORTS el
AS SORTS operation

E_RENAME
SORTS set
OPNS empty_set : -> set
AS SORTS set_of_operation

APPENDIX D. A MORE COMPLEX EXAMPLE 110

OPNS empty_set_of_operation

The following specification introduces those operations which construct correct collections
of operations.

The specification construct_collection_of_operation

IMPORTS
SORTS
set_of_operation
operation
symbol
list_of_symbol

OPNS

operations of set_of_operation

empty_set_of_operation : -> set_of_operation
- is_empty : set_of_operation -> bool
one_of _ : set_of_operation -> operation
_ with - : set_of_operation operation -> set_of_operation
_ C_ _ : set_of_operation set_of_operation -> bool
R : set_of_operation set_of_operation -> set_of_operation
_ without _ : set_of_operation operation -> set_of_operation

operations of operation

name_of _ : operation -> symbol

source_of _ : operation -> list_of_symbol

target_of _ : operation -> symbol

operations of symbol

_ = _ : symbol symbol -> bool

operations of list_of_symbol

last_of _ : list_of_symbol -> symbol

body_of _ : list_of_symbol -> list_of_symbol

= _ : list_of_symbol list_of_symbol -> bool
CREATE

OPNS

the following operations are intended as a replacement for the usual

operations on sets.

_ With_op _ : set_of_operation operation -> set_of_operation
- : set_of_operation set_of_operation

-> set_of_operation

_ u_op
sort__of _ with_source _ in _ as_opns :
symbol list_of_symbol set_of_operation -> symbol
op_symbol _ with_source _ occures_in _ as_opms :
symbol list_of_symbol set_of_operation -> bool
_ is_compatible_to _
set_of _operation set_of_operation -> bool
- has_a_common_op_symbol_with_same_source_with _ :

APPENDIX D. A MORE COMPLEX EXAMPLE

set_of_operation
set_of_operation -> bool

SEMANTICS

VARS
opsetl opset2 : set_of_operation
opl op2 : operation

opsymbl opsymb2 : symbol
sourcel source2 : list_of_symbol
opcoll opcol2 : set_of_operation

PROGRAMS

opcoll with_op opl <-
IF op_symbol (name_of opl) with_source (source_of opl)
occures_in opcoll as_opns
THEN
IF (sort__of (name_of opl)
with_source (source_of opl)
in opcoll as_opns)

(target_of opi)
THEN opcol1l
ELSE ERROR((set_of_operation)
FI
ELSE opcoll with opl
FI;

opcoll u_op opcol2 <-
IF opcoll is_compatible_to opcoll
THEN opcoll u opcol2
ELSE ERROR(set_of _operation)
FI;

sort__of opsymbl with_source sourcel in opcoll as_opns <-
IF opcoll is_empty
THEN ERROR (symbol)
ELSE
IF (name_of (one_of opcoll) = opsymbl) and
(source_of (one_of opcoll) = sourcel)
THEN target_of (one_of opcoll)
ELSE sort__of opsymbl with_source sourcel in
(opcoll without (one_of opcoll)) as_opns

F1
FI;

op_symbol opsymbl with_source sourcel occures_in opcoll as_opns <-

111

APPENDIX D. A MORE COMPLEX EXAMPLE 112

IF opcoll is_empty
THEN false

ELSE
Ir (name_of (one_of opcoll)
(source_of (one_of opcoll)
THEN true
ELSE op_symbol opsymbl with_source sourcel occures_in
(opcoll without (one_of opcoll)) as_opmns

opsymbl) and
sourcel)

FI
FI;

opcoll is_compatible_to opcol2 <-
IF opcoll is_empty
THEN true
ELSE
IF op_symbol
(name_of (one_of opcoll))
with_source
(source_of (one_of opcoll))
occures_in
opcol2
as_opns
THEN
IF (target_of (ome_of opcoll))

(sort__of (name_of (one_of opcoll))
with_source (source_of (one_of opcoll))

in opcol2 as_opns

)
THEN (opcoll without (one_of opcoll)) is_compatible_to opcol2
ELSE false
FI
ELSE (opcoll without (one_of opcoll)) is_compatible_to opcol2
FI

FI;

opcoll has_a_common_op_symbol_with_same_source_with opcol2 <-
IF opcoll is_empty
THEN true

ELSE
IF op_symbol (name_of (one_of opcoll))

with_source (source_of (one_of opcoll))
occures_in opcol2
as_opns

THEN true

ELSE (opcoll without (one_of opcoll))
has_a_common_op_symbol_with_same_source_with

opcol2

APPENDIX D. A MORE COMPLEX EXAMPLE 113

FI
FI
ENDCREATE

In the third and last specification the specification construct_collection_of_operation
is composed with the specification set_of _operation. The sort set_of_operation is re-
named to collection_of_operation and the old constructors are forgotten. The main
property of this new sort is then expressed by an export axiom.

The specification collection_of_operation

(
INCLUDE construct_collection_of_operation
X_COMPOSE
INCLUDE set_of_operation
)
FORGET
OPNS
_ with - : set_of_operation operation -> set_of_operation
-u : set_of_operation set_of_operation -> set_of_operation
E_RENAME

SORTS set_of_operation
OPNS empty_set_of_operation
: => set_of_operation

_ with_op _ : set_of_operation operation
-> set_of_operation
_ u_op - : set_of_operation set_of_operation

-> set_of_operation
AS SORTS collection_of_operation
OPNS empty_collection_of_operation ,
with _ ,
u

E_AXIOMS

VARS col : collection_of_operation,
op : operation;

(op is_in col) == true
=>

(op_symbol (name_of op) with_source (source_of op)

APPENDIX D. A MORE COMPLEX EXAMPLE 114

occures_in (col without op) as_opns) == false

ENDAXIOMS

In the last specification signature, the parts specified up to now are composed and
the sort collection_of_operation is forgotten, because it was needed only for technical
purposes. Then the sort pair_of_collection_of_operation is renamed to signature.
The main property of this new sort is expressed by an export axiom.

The specification signature

(
INCLUDE construct_signature

X_COMPOSE
INCLUDE pair_of_collection_of_operation
X_COMPOSE

INCLUDE collection_of_operation
)

FORGET
SORTS

collection_of_operation

E_RENAME
SORTS pair_of_collection_of_operation
OPNS empty_pair_of_collection_of_operation : ->
pair_of_collection_of_operation
AS SORTS signature
OPNS empty_signature

E_AXIOMS
VARS sigl : signature,
naml : symbol,
1stl : list_of_symbol;
! ((op_symbol naml with_source lstil
is_constructor_in sigl as_sigma)
== true
&
(op_symbol naml with_source lstil
is_defined_operator_in sigl as_sigma)
== true
)
ENDAXIOMS

Appendix E

Installation guide

E.1 Installation of the system

E.1.1 If shipped together with Emacs

The user interface of the OBSCURE system is programmed in GNU-Emacs Lisp. A part of
GNU-Emacs Version 18.54 is also on the tape. A complete Emacs version can be sent on
request.

When installing the Emacs adaption, the following should be observed:

e Emacs should be installed in the directory ‘/users/obscure/emacs’.

e The Emacs implementation of the OBSCURE interface must be saved onto the file:

‘/users/obscure/emacs/lisp/obscure.el’.

e Every user of the OBSCURE system must add the following lines to his/her personal
=/ .emacs’ file:

(setq exec-path (cons "/users/obscure/emacs/"
(cons "/users/obscure/emacs/etc/" exec-path)))
(setq Info-directory "/users/obscure/emacs/info/")
(setq load-path (cons "/users/obscure/emacs/lisp/" load-path))

(setq auto-mode-alist (coms ’("\ \ .T$" . obscure-mode)
auto-mode-alist))
(autoload ’obscure-mode "obscure" " " t)

(setq obscure-mode-hook
’(lambda () (setq o-vip-desired nil)))

- - ——————————— ————— —— ———————————————— ——————————— ———— — —————————

115

APPENDIX E. INSTALLATION GUIDE 116
E.1.2 If not shipped together with Emacs

The user interface of the OBSCURE system is programmed in GNU-Emacs Lisp. The use
of the GNU-Emacs Version 18.50 or a later version is neccessary.

When installing the Emacs adaption, the following should be observed:

$EMACS stands for the directory Emacs is installed in.

e The Emacs implementation of the OBSCURE interface can be found in the file
‘obscure.el’.

e It is neccessary to copy the file ‘obscure.el’ into the directory ‘$EMACS/1isp’ to make
it accessible to all users.

e For technical reasons, two small changes had to be made in the file
‘$EMACS/lisp/compile.el’. Please make these changes in your file, too (they do
not alter the normal behaviour of the compile-command). They are printed at the end
of this list.

e In order to make the OBSCURE manual accessible interactively, a directory
named ‘d-obscure’ has to be produced within the directory ‘$EMACS/info’. Then
the files ‘obscure’ and ‘obsl’ to ‘obsn’ have to be copied from the directory
‘/users/obscure/d-doku’ into the directory ‘$EMACS/info/d-obscure’. Finally, the
following line has to be added to ‘$EMACS/info/dir”

* obscure: (d-obscure/obscure). The manual of the OBSCURE-System.

o Every user of the system should add the following lines to his/her personal ‘~/.emacs’
file (or create a file with this name and this line):

(setq auto-mode-alist (cons ’("\ \ .T$" . obscure-mode)
auto-mode-alist))
(autoload ’obscure-mode "obscure'" " " t)

(setq obscure-mode-hook
’(lambda () (setq o-vip-desired nil)))

Please make the following changes in the file ‘$EMACS/1lisp/compile.el’: Add the fol-
lowing behind the line (provide ’compile):

(defvar compilation-sentinel-user-action-wanted nil ; new
"*If t perform (compilation-sentinel-user-—action) ; new
after compilation is finished") ; new

Add the two lines marked by ‘new’ to the function compilation-sentinel:

(defun compilation-sentinel (proc msg)
(cond ((null (buffer-name (process-buffer proc)))
;; buffer killed

(set-process-buffer proc nil))

APPENDIX E. INSTALLATION GUIDE 117

((memq (process-status proc) ’(signal exit))
(let* ((obuf (current-buffer))
omax opoint)
;; save-excursion isn’t the right thing if
;5 process-buffer is current-buffer
(unwind-protect
(progn
;; Write something in *compilation* and hack its mode line,
(set-buffer (process-buffer proc))
(setq omax (point-max) opoint (point))
(goto-char (point-max))
(insert ?\ n mode-name " " msg)
(forward-char -1)
(insert " at "
(substring (current-time-string) 0 -5))
(forward-char 1)
(setq mode-line-process
(concat ": "
(symbol-name (process-status proc))))
;; If buffer and mode line will show that the process
;; 1s dead, we can delete it now. Otherwise it
;; will stay around until M-x list-processes.
(delete-process proc)
(if compilation-sentinel-user-action-wanted ; new
(compilation-sentinel-user-action)) ; new
)

(setq compilation-process nil)

[rest of function definiton]
After these changes have been made, this file has to be recompiled. This is done in Emacs

by the command byte-compile-file. The argument has to be ‘compile.el’ (possibly with
the pathname).

E.2 Further remarks

It is recommended not to work with the vip-mode of Emacs and the obscure-mode simul-
taneously.

The Emacs command o-latex-format can not be used.
The program obscure-module-graph is a prototype version and should be ignored.

Example specifications for the automatic translation of specifications into C may be found
in the directory ‘/users/obscure/d-sot/d-bsp’.

If changes are made in the file ‘obscure.el’ the compiled version ‘obscure.elc’ has

APPENDIX E. INSTALLATION GUIDE 118

to be reestablished. This is done in Emacs by the command byte-compile-file with the
argument ‘obscure.el’.

Appendix F

References

[LL 88] Lehmann, T., Loeckx, J., “The specification language of OBSCURE”, LNCS 332
pp.131-153 (1988)

[Lo 87] Loeckx, J., “Algorithmic Specifications: A Constructive Specification Method for
Abstract Data Types”, TOPLAS 9, 4 (1987), pp.646 - 685

[LL 90] Lehmann, T., Loeckx, J., “OBSCURE, a specification language for abstract data
types”, Int. Rep. A 19/90, Univ. Saarbriicken (1990)

[Sta 85] Stallman, R., “GNU Emacs Manual, Third Edition, Emacs Version 18"
[Sto 91] Stolz, M. “Eine verzégerte Auswertung fiir Algorithmische Spezifikationen—die The-

orie und eine Implementierung fir OBSCURE”, Master's thesis, Univ. Saarbriicken (1991),
to appear.

[Zey 89] Zeyer, J., “Kontextbedingungen fuer OBSCURE”, Int. Rep. WP 89/11, Univ.
Saarbriicken (1989)

119

	fb1991-03-0001
	fb1991-03-0002
	fb1991-03-0003
	fb1991-03-0004
	fb1991-03-0005
	fb1991-03-0006
	fb1991-03-0007
	fb1991-03-0008
	fb1991-03-0009
	fb1991-03-0010
	fb1991-03-0011
	fb1991-03-0012
	fb1991-03-0013
	fb1991-03-0014
	fb1991-03-0015
	fb1991-03-0016
	fb1991-03-0017
	fb1991-03-0018
	fb1991-03-0019
	fb1991-03-0020
	fb1991-03-0021
	fb1991-03-0022
	fb1991-03-0023
	fb1991-03-0024
	fb1991-03-0025
	fb1991-03-0026
	fb1991-03-0027
	fb1991-03-0028
	fb1991-03-0029
	fb1991-03-0030
	fb1991-03-0031
	fb1991-03-0032
	fb1991-03-0033
	fb1991-03-0034
	fb1991-03-0035
	fb1991-03-0036
	fb1991-03-0037
	fb1991-03-0038
	fb1991-03-0039
	fb1991-03-0040
	fb1991-03-0041
	fb1991-03-0042
	fb1991-03-0043
	fb1991-03-0044
	fb1991-03-0045
	fb1991-03-0046
	fb1991-03-0047
	fb1991-03-0048
	fb1991-03-0049
	fb1991-03-0050
	fb1991-03-0051
	fb1991-03-0052
	fb1991-03-0053
	fb1991-03-0054
	fb1991-03-0055
	fb1991-03-0056
	fb1991-03-0057
	fb1991-03-0058
	fb1991-03-0059
	fb1991-03-0060
	fb1991-03-0061
	fb1991-03-0062
	fb1991-03-0063
	fb1991-03-0064
	fr1991-03-0001
	fr1991-03-0002
	fr1991-03-0003
	fr1991-03-0004
	fr1991-03-0005
	fr1991-03-0006
	fr1991-03-0007
	fr1991-03-0008
	fr1991-03-0009
	fr1991-03-0010
	fr1991-03-0011
	fr1991-03-0012
	fr1991-03-0013
	fr1991-03-0014
	fr1991-03-0015
	fr1991-03-0016
	fr1991-03-0017
	fr1991-03-0018
	fr1991-03-0019
	fr1991-03-0020
	fr1991-03-0021
	fr1991-03-0022
	fr1991-03-0023
	fr1991-03-0024
	fr1991-03-0025
	fr1991-03-0026
	fr1991-03-0027
	fr1991-03-0028
	fr1991-03-0029
	fr1991-03-0030
	fr1991-03-0031
	fr1991-03-0032
	fr1991-03-0033
	fr1991-03-0034
	fr1991-03-0035
	fr1991-03-0036
	fr1991-03-0037
	fr1991-03-0038
	fr1991-03-0039
	fr1991-03-0040
	fr1991-03-0041
	fr1991-03-0042
	fr1991-03-0043
	fr1991-03-0044
	fr1991-03-0045
	fr1991-03-0046
	fr1991-03-0047
	fr1991-03-0048
	fr1991-03-0049
	fr1991-03-0050
	fr1991-03-0051
	fr1991-03-0052
	fr1991-03-0053
	fr1991-03-0054
	fr1991-03-0055
	fr1991-03-0056
	fr1991-03-0057
	fr1991-03-0058
	fr1991-03-0059
	fr1991-03-0060
	fr1991-03-0061
	fr1991-03-0062
	fr1991-03-0063

