PROSPECTRA
an ESPRIT Project

Grammar Flow Analysis

Ulrich R. Moéncke

Universitat des Saarlandes
6600 Saarbricken
Bundesrepublik Deutschland

Deliverable Item S.1.3 - R - 2.2
1986 - 03 - 01 (revised 1987 - 01 - 13)

Distribution: public

ABSTRACT

This paper specifies the theoretical basis for the implementation
of different generators of the OPTRAN system. Grammar Flow
analysis transports the techniques of data flow analysis to the meta
level of compiler construction. The analogon to the states in data
flow analysis are the syntax trees together with some information,
which is associated with trees by propagation functions. One exam-
ple is the association of characteristic graphs, another example the

association of sets of matching tree patterns.

public

(c) 198% by

Ulrich R. Moncke

Universitidt des Saarlandes

in the Project

PROgram development by
SPECification and
TRAnsformation

sponsored by the

Commission of the European Communities
under the

European

Strategic

Programme for

Research and development in

Information

Technology

Project Ref. No. 390

1. Introduction

Data flow analysis is a well known technique to collect information at compile
time concerning possible states of program execution at run time
[Cousot,Cousot79]. Grammar Flow Analysis (GFA) transports this theory to the
generation time computation of compile time properties of syntax trees. The
analogon to the states in data flow analysis are the syntax trees together with some
information associated with tree nodes by propagation functions. This information
may be of a very complex structure. One example is the association of charac-
teristic graphs with tree nodes, another example the association of sets of matching
tree patterns. As in data flow analysis we distinguish the universal GFA scheme
or framework from its application in special problem areas (tasks). Characteristic
graphs and tree pattern matching are such areas of application, optimal code selec-

tion (cf. chapter 5) may be another area.

system user —— system designer
(designer of a compiler) transforaation rules
attributation
\ 4

Y
Al LTI
//i AN
77 N\

III§

\

generator scheme

I
user 7 (0
/ transforned
attributed

tree

tree

Figure 1

Depending on the nature of the functions, which assign information to tree
nodes we furthermore distinguish two kinds of flow analysis schemes. In the
bottom-up scheme, information is assigned to tree nodes bottom-up starting at the
leaves, in the top-down scheme information is propagated from the root top down,
thereby using the results of bottom-up propagation. Given a node which is not a
leave or the root a tree can be split into a subtree and a upper tree fragment.
Bottom up information characterizes sets of subtrees, top-down information charac-

terizes sets of upper tree fragments. Parameterized for a given GFA problem, the

- 4 -

GFA scheme precomputes at generation time which information may be associated
with subtrees rooted by nonterminal X, resp. precomputes, which information may
be associated with an upper tree fragment at a node labeled X at runtime. In the
latter case the answer may depend on a bottom-up context, which is the subtree

associated with X as its root.

top down information re'c.Bi
B0 information record

\Upper tree fragment

characterized by _
top down information record

X produces

characterized by :
< / bottom up information record 4!

Figure 2

The motivation behind this theoretical framework “grammar flow analysis”
stems from the implementation of a major tree transformational system including
pattern matching and attribute reevaluation facilities. Embedded in a compiler -
compiler, the tree transformations are executed at compile time. In such a system

precomputing is done for two reasons:

First, at generation time, the system should try to give the user, who is going to
design a transformational system, as much as possible information about the (com-
pile time) bebhaviour of the system. In particular, the user has questions for con-
sistency:

Are there trees with cyclic attribute dependencies ?

Are there transformation rules, which can never be applied ?

-5 =

Are there sequences of transformations, which could block syntactically?

Second, both pattern matching and scheduling the attributes for (re)evaluation are
time consuming tasks. Therefore, it is useful, to precompute automata, which
would execute these tasks very fast. Grammar flow analysis is the mean to get
both the consistency information and the efficient automata. Grammar flow
analysis can be implemented as a generic module making the implementation of
different and new applications easy. The generic module provides a lot of special
features (cf. chapter 4), which can be used by a system designer with respect to
special properties inherent to the application area. Use of such features will

accelerate the generation process.

The system designer, i.e. the user of the generic module, must only take care of
problem specific functions, i.e. s’he has to model the domain of information.
Preparing the grammar graph, a representation of the underlying grammar, effi-
cient computation of fixed points, bookkeeping and management of generated

automata are part of the system.

2. Bottom up grammar flow analysis
The description of bottom-up flow analysis is split into two parts:

The first part describes the formalism for assignment of information to tree
nodes at compile time. In the second part, the method of precomputation at gen-

eration time will be explained.

Before starting let us make a remark concerning our notation: We define
objects with respect to individual derivation trees. These objects, which we call
information records will represent assertions about trees or tree fragments. For a
given problem we denote information records by the name of the problem and the
approximation type "exact”, e.g. “exact characteristic graphs”. The exact informa-
tion records are just those records, which we will obtain from derivation trees.
Later on, in our grammar flow framework we will precompute these exact infor-
mation records and, in addition, many approximations (lower and upper bounds)
for them. We will denote the approximations by the problem name and the
approximation type.

As a running example we will use the GFA problem “characteristic graphs”.
Characteristic graphs describe relations between the set of inherited attributes I(X)
and the set of synthesized attributes S(X) for a nonterminal X. An edge i-s in a
characteristic graph means that there may be a dependency of an instance of s on
an instance of i in some tree rooted X. The ”exact characteristic graphs” only

= B -

have these edges if there in fact exists at least one tree that has global dependen-
cies inducing these edges.

Another example is tree pattern matching. Without going into technical details (cf.
[Moencke87]) we assume, that there are tree structured objects called patterns,
each consisting of a label and a number of subpatterns, according to the rank of
the label. Atomic patterns may be labels or parameters.

Trivially, a pattern pat matches a tree, if it is a parameter. A pattern pat matches
a tree t rooted in X, if the label matches X and, for i=l..rank, each subpattern
pat/i of pat matches t/i, the i.th subtree of t. Whether the label matches X or not
may be specified by a function g, g(pat,X)e {true,false}. We are looking for the
set of matching patterns at the root of a given subtree produced by X.

2.1. Bottom up assignment of information records

A bottom-up assignment system
BU-ASYS = (G,{B%(X)}x e sr, {fp}p € p)
describes how so called information records may be attached to the nodes of syn-

tax trees, produced by a given grammar.

For convenience, we assume that G contains productions of the form
p = (Xo::=s9 Xy 51 ... Xy s¢) and p = (X::=s), where X,, X;,...,X} are non-
terminals and s is a terminal symbol. Production p has rank k, the number of

nonterminals on the right side of p, which in the latter case is 0.

The tree nodes may be labeled by pairs (Xp,p), where the leftside nonterminal
p[0] of p is X,. Depending on the context we refer to the production or to the

nonterminal. We assume that the grammar is in normal form.

The assignment system contains the context free grammar G, a family of basic
sets {B1(X)}x e ar , one attached to each nonterminal, and a family of propaga-
tion functions {f,}, ¢ p, one for each production.

A basic set B1(X) contains the information records, which (at least in princi-
ple) can occur at the root of syntax trees produced by X.

In the characteristic graph example B1(X) is the set of all graphs, which can be
constructed with edges from inherited to synthesized attributes of X:
Let 2" denote the powerset of set M.

BT(X) ‘- 2Inh(X) X Syn(X)

In the pattern matching example B1(X) is the whole set of patterns and subpat-
terns.

In general, there are elements in Bt(X), which never occur at the root of any

syntax tree produced by X. Recognizing such elements requires flow analysis.

f, denotes a propagation function:
f, : Bt(X1) x - - - x Bt(Xy) - Bt(Xo)

where k is the rank of p. The propagation function for a production with rank 0
is a constant. Because this function is applied in an individual syntax tree, we
sometimes call it individual propagation function. These functions may be not dis-
turbed with the flow propagation functions defined in chapter 2.2.

f, describ¢s how information is associated with a node labeled (X,,p) given infor-
mation associated with the descendent nodes X;.

In our characteristic graph example, the function f, would be the composition of
the following computation steps:

1) substitution of characteristic graphs Cj,...,C; in the local dependency graph of
the production, according to their positions.

2) building the transitive closure of the graph obtained in step 1
3) the restriction of this graph to the attributes of X,.
In our pattern matching example, the function f, would compute from the set of
matching patterns and subpattern given for each position those patterns and sub-
patterns, which match tree t at its root, assumed the above mentioned sets match
the subtrees t/i.
Applying the f,’s bottom-up we attach an information record to each subtree by a
recursively defined function f1 :

Let t/n be a subtree of derivation tree t at node n, n be a node in t :

Let p be the production, applied at node n: p=(Xy::=X; ...X})

Therefore, nodes n, n.1 ... n.k are labeled accordingly:

(Xo,p)y=t(n), X =t(n.1),...,X,=t(n.k)

fr(e/n):=fF1,(f1(t/n.1),...,f1(t/n.k))
In principle, there is no need to precompute something: all the propagation could
be done at transformation time in an interpretative way, applying the propagation
functions bottom-up (cf. [Reps82] for propagation of characteristic graphs).

2.2. Simulation at generation time

Applying a propagation function and holding the information records themselves
at the tree nodes may be expensive. In our graph example each step would cost in

the worst case

max ((rank(p) +1)* pax | Inh(X)*Syn(X)|)?, because of the closure building.
peb NT

-8 -

Therefore, we would like to precompute the information records, which can actu-
ally occur in some tree, encode these sets and represent the propagation functions
using a table. Technically, this table implements a propagation function, which is
isomorphic to the original propagation function. Let ’codes(X)’ denote the set of
encoded information records for X, g denote the propagation of encodings, and h
the mapping of encodings to information records. h is an injective function.

hy: codes(X) - B1(X)

gp: codes(Xy) x...x codes(Xy) » codes(Xo)

where: hygp(cy.....c)= fp(hy,(c1),.. b (ck))

Precomputation is, essentially, the simulation of the propagation process, which
would be carried out in the individual tree. For each tree, produced by X, f1(t)
may be computed.

For each nonterminal X : R(X)e2810;

R(X):={f1(¢) | t is derivation tree for a sentence produced by X}
is the set of information records, which really occur in some individual tree, called
the real set.

For each nonterminal a description of the sets of really occurring information
records is to be computed. Therefore, GFA handles ’descriptions’ of sets of infor-
mation records. The descriptions may be exact, i.e. they describe the sets and
only the sets of really occuring information records, or they may be approxima-
tive, i.e. they in general describe a superset of the set R(X) of really occurring
information records. As in DFA, approximating exact flow information may be
precise enough for some purposes and cheaper to compute. Different kinds of
approximations need different kinds of description domains, called description
spaces. We denote the family of description spaces by {Dt*(X)}yexr where a”

denotes the approximation type. As B1(X) is the domain of information records,

so Dt*(X) is the domain of descriptions.

‘The description spaces D1%(X) are structured, i.e in general they are semilattices.
Finite description spaces have been always sufficient in the applications we have
worked out so far with the methods of grammar flow analysis. Therefore we will

restrict ourselves in the following to finite spaces.

The descriptions must be propagated over the grammar graph. This is the
analogon of propagation of data flow information over the program graph. The
grammar graph has a bipartite node set: the set of nonterminal nodes and the set
of production nodes. Flow propagating functions are associated with production

nodes of the grammar flow graph. In contrast to propagation functions in DFA

-9 -

they may have more than one argument. Different edges entering the same non-
terminal node transport descriptions stemming from the different alternative pro-

ductions, i.e. productions with the same left side, for a nonterminal.

In general, the description space must be a join resp. meet semilattice with a addi-
tional bottom resp. top element. The semilattice operation V handles the combina-
tion of descriptions, obtained from different pathes. A join resp. meet operation
Vi is associated with each nonterminal node in the grammar graph describing how
the flow of information from different alternative productions has to be combined.
Of course, this depends on the approximation type.

Fp are the flow propagating functions, propagating descriptions:

F18:D1%(Xy) x - - - x D1%(X;) » D1%(X,)

The definition of the flow propagation function depends on the type of approxima-
tion (cf. chapter 1.3).

The family of description spaces and the family of flow propagation functions
together with the grammar define the flow problem:

FP := (G,{Dt*(X)}xenr, {F1p%}per , (V% }xenr)
For convenience we avoid writing the subscript nonterminal and superscript type

at V if it is obvious from the context.

[z X p: Z:=XY
; g Xu=XY

v: Xu:=a

u Y==5b

}'

Figure 3

A solution of a flow problem consists of one description for each nonterminal.
This family of descriptions is computed as a fixed point solution of the following
equational system:

for all XeNT :

- 10 -

L(X)e D15(X);

L(X) = Vi Ftp(L(Xy),..,L(Xrank(p)))
(p€P | X=plo])

2.3. Different types of simulation

2.3.1. Exact simulation

For the exact simulation, i.e. for precomputation of the sets of really occurring
information records for each nonterminal, we define the description space as fol-
lows:

DTe(X):=2BT(X)
Let ”e” denote the approximation type ”exact” precomputation. The descriptions
are themselves the ’real’ sets; there is no approximation. In this particular case
the space of descriptions, belonging to a nonterminal, is the powerset of the basic
set B1(X). The bottom element in the description space is the empty set 0, the

compare operation is set inclusion S, and the join operation is set union U.

The flow propagation function simply extends the individual propagation func-
tion f, to sets:
F13(dy,...,dy) := { fp(my,...,my)| myed,, for i=1..k, k=rank(p)}
i.e. a flow propagation function applied to a tuple of descriptions forms the set of
all results of the propagation function applied to all “combinations” of information

records described by the tuple of descriptions.

The solution of the "exact” problem is the minimal fixed point solution of the fol-
lowing equations:

for all XeNT :

LX)= Y - F1ALOX0), oL (Kranet))

Each information record m ¢ L°(X) characterizes trees, namely such trees t which

could be produced by X and m is assigned to their roots by f1(t). L"(X)
induces a partition of the set of subtrees produced by X (cf. figure 4).

In our running example, the L°(X) are sets of characteristic graphs , in the

second example sets of patterns.

-/

characterized by
bottom up information record

Figure 4
2.3.2. Generation of approximative descriptions

Approximation abstracts from the concrete set of individual information
records. By the operation of interpretation each description can be mapped back
to a set of information records. In general, the descriptions may be arbitrarily
chosen assertions about sets of information records. In special cases, as considered
in this paper, these descriptions are themselves elements from the basic sets or, at
least, elements from the powerset of basic information record sets. In all cases of
approximative flow analysis, we look for intervals which will include the really
occurring information records. We will now discuss some descriptions and then

consider the relationship between abstraction and interpretation.

2.3.2.1. Set of descriptions, abstraction and interpretation

Some elements in a set of information records might "dominate” others. A first
try in reducing the size of descriptions keeps only maximal or minimal (incompar-
able) elements with respect to the order given in the basic sets. Another approxi-

mation takes upper/lower bounds of the information records in a set.

Approximation with maximal and minimal incomparable elements leads to ’realis-
tic’ results, because the information records, computed this way, are members of
the real sets, i.e. they really occur in some trees. Computing upper/lower bounds
on the other side may result in information records which might not occur in the
real sets.

This leads to different types of descriptions, corresponding to different approxi-
mations. ’Exact descriptions’ (cf. chapter 1.3.1), which contain just the really

occuring information records are very space consuming. Descriptions, which only

characterized by
subordinate characteristic graph

- 12 -

contain incomparable information records may be much better. The best descrip-
tions from the viewpoint of space usage are the upper resp. lower bound descrip-

tions, which consist only of a single information record.

We give a summary of approximative description spaces: Let a denote the approxi-
mation type.
1) descriptions, which contain sets of incomparable elements
la) sets of maximal incomparable elements (a = max)
1b) sets of minirmal incomparable elements (a = min)
2) bounds (descriptions consisting of a single element)
2a) upper bound (a =ubd)
2b) lower bound (a =1lbd)

According to the types of approximation, the basic sets must fulfill different
requirements:
1) partially ordered by some relation
2) semilattice with operation and a special element:
2a) join operation, bottom element
2b) meet operation, top element
The special bottom/top element may be an artificially defined one.

In the characteristic graph example the partial ordering is induced by the inclu-
sion of sets of edges and therefore join and meet operation are the corresponding
set operations. Union of the edge sets corresponds to the superposition (merging)
of graphs. Bottom element is the empty graph and top element the full graph, con-
taining one edge from each inherited attribute to each synthesized attribute.

Analogously, the in the pattern sets constitute a semilattice.

The description spaces are the following:
Let max-set-of(M) := {meM |xeM, x2m - x=m }
min-set-of (M) := {meM |xeM, xSm - x=m }
1a) D1™X(X) :={max-set-of (M)| Me221(0)}
1b) Dt™%(X) :={min-set-of (M)| Me22T(¥)}
2) Dt(X):=Dt™ =B t(X)
In these spaces the following compare relations are defined:
la) d; S™* d, iff for all myed, there exists mgedp : mySm,
1b) dy S™" d, iff for all myed, there exists myed; : mySm,
2a) dy S d, iff d;Sd,
2b) dy ™ d, iff d,Sd,
Remark: S is the relation in the basic sets.

= 18 =

The top resp. bottom elements are:
1a) bottom™* = 0
1b) top™" =0
2a) bottom"™ is the bottom element in the basic set
2b) top™ is the top element in the basic set

Abstraction and interpretation play a crucial role in grammar flow analysis as in
data flow analysis.

The abstraction maps sets of information records to a description:
atg: 2810 L ptex)
In the above mentioned four cases:
atg(M):=
1a) max-set-of(M)
1b) min-set-of(M)
2a) join(M)
2b) meet(M)
Interpretation maps descriptions to sets of information records:
y1: D15(X) - PLANCY
yti(d):=
la) U {mSm' |meB1(X)}
1b) U {mzm' |meBt(X)}

2a) {mSd|meB1(X)}
2b) {m2d | meB1(X)}

The image of an interpretation is therefore an union of intervals rsp. an interval.
In the case of exact flow analysis, a =e, both abstraction and interpretation are the
identity.

In general, the interpretation is not an inverse of the abstraction. A family
(atf,yt%)xenr of pairs of abstraction and interpretation is correct iff
Y18@t§(M)2 M for all Me22"™) for all XeNT, i.e. interpretation of a
description includes the argument set of information records. Of course, in the

exact flow analysis "=" holds.

2.3.2.2. Propagation of descriptions

Flow propagation must preserve correctness. We compare two mappings, the
mapping in the space of descriptions to the mapping in the space of information
records. Abstraction and interpretation describe the relationship between the

- 14 -

original individual propagation functions and the flow propagation functions to be
applied in the flow analysis. The individual popagation function maps tuples of
information records to information records, whereas the flow propagation function
maps tuples of descriptions to descriptions. The relationship can be graphically
shown by a kind of commutative diagram, wherein the vertical links symbolize
applications of individual propagation functions resp. flow propagation, and the

horizontal links symbolize the abstraction resp. interpretation.

(ds,...,d¢) - interpretation~ { (my,...,mc) | m; € yt§(d;), i=1..k }

flow propagation multiple individual propagation

| {fp(my,...,my) | moe y1§(d;) ,i=1..k }

(4]
dy - interpretation - Y1X, (do)

Propagating a tuple of descriptions by the flow propagation function F13 results in
a description. The argument descriptions are abstractions of sets of information
records. Let us now apply the propagation function f, to all the tuples of informa-
tion records, which are described by the tuple of descriptions. Let us compare the
resulting set to the set of information records, which we would obtain from the
result description by interpretation. Of course, the latter set may contain records,
we never would compute from some tuple of records. This is just the effect of
computing flow information approximatively.
On the other hand, we would expect each record, which we can compute from a
single tuple, to be also in the interpretation set. There must be no ”loss” of
records in the computation of the flow propagation function:

Y1 (Ftp(dy,...,dy)) 2 Ft(y1i(dy),...,y 1 £(dk))
The lattice operation in the description space, which combines descriptions from
different paths (i.e. productions) at the left side nonterminal, must preserve
correctness, too:

YTH(di VE d5) 2 Y1§(d) UytE(ds) (%)
A general correctness preserving definition of flow propagation and combination is
the following:

Flow propagation (cf. figure 5):

F13:D1%(Xy) x - - - x Dt%(X,) - D1*(Xo)

= B =

Ft¥(dy,....de) = at#({ fp(my,...,m)| meyt} (dy), for i=1.k })
= at§ F12(dy,...,d)

] informatien verord

B description X abstraction
0 interpretati v
set of information records Eﬂ 4—”—” ;
associated with X
/ Individual .
propagation flow propagation
p

interpretation
¢

interpretation

Figure 5

Flow combination (cf. figure 6):
dl V; dg = QT;(Y?;(dl) U YTxa(dz))

abstraction
;nterpretation E
e semilattice operation
interpretation interpretation
qrerpretation. | JreniEting
Figure 6

From these definitions and inclusion (*) follows that flow propagation and combi-
nation are correctness preserving.

The special structure of the description spaces allows to define the flow propaga-
tion function and the semilattice operation with respect to the abstraction in a sim-
plified way:

Flow propagation:

- 16 -

Ft28: D1%X;) x - - - x D1%(X;) »~ D1%(X,)
F13(dy,...,di) = at§({ fp(my,...,my)| myed;, for i=1..k })
if a€ {max,min}

ng(di,...,dk) = {p(di"")dk) if ae{ubd,]bd}

Flow combination:
dy V§ dy := at§(dy U dp), if ae {max,min}
dl Vx. dz - Qtf({d(, dg}), if ae {Ibd,ubd}

The result of the approximative analysis is the solution of the equational system
which is described in the following:
for all XeNT :

L}(X)y= V§ FtHL*(Xy),...,L*(Xram(p)))
{p€P|X=plo]}

where ae {max,min,lbd,ubd }
Different solutions of the previous systems (cf. figure 7) may be considered. The
most precise solution both for the max - and the ubd - approximation is the least
fixed point, the most precise one for min ~ and lbd - approximation is the greatest

fixed point. For a=ubd (upper bound) we compute the least upper bound (lub),
for a=1bd the greatest lower bound (glb).

In our characteristic graph example the elements obtained as the least fixed point
to approximation max are called covering graphs in [Deransart,Jourdan,Lorho83]
and were also proposed in [Raeihae,Saarinen82]. The least upper bounds of
approximation ubd are called input output graphs and were introduced by
[Kennedy,Warren79)]. Of course, lower bounds for the set of characteristic graphs
may be computed as greatest fixed point to approximation min rsp. lbd

[Moencke,Wilhelm82].
Let $* ¢ [NT~ XEUNT Dt'™(X)] be the least fixed point solution for the approxi-

mation a of a grammar flow problem, where ae {ubd,max}. A solution S where
S(X) 2* S*(X) for all X, is acceptable, iff
for all XeNT :

S(X)2* Vi F13(S(X1),-»S(Xran(p)))
{p€P|X=plo])

An acceptable solution needs not to be a fixed point, but has to be consistent with
the propagation function. Assumed a=ubd, an acceptable solution is a single
information record for each nonterminal. The information record $(X) may be a

very rough approximation compared to S°(X). Of course, S(X) must approxi-
mate join({ fo(S(X1),--S(Xranwip)) | PIOI=X})

- 17 -

O.@. element in basic set

o0 elenent in real set
e naxinal element in resl set
s R % . element in basic set

least upper bound for real set
nerge-over-all-trees solution

element in basic set
least fixed point solution

/ interpretation of max-set
/ interpretation of least fixed point

basic set of information records

Figure 7

2.3.2.3. Construction of bottom-up assignments from precomputation

From a solution S of a grammar flow problem, a new bottom-up assignment
system may be constructed. The knowledge, won by the precomputation, may be
used to restrict the domains of information records, i.e. the basic sets, to such
record sets, which are result of the fixed point computation, and to define the
(individual) propagation function accordingly. On the one hand, this construction
is used to get functions, which can be encoded (as described in chapter 2.2). The
tables will be used in runtime. As mentioned before, the assignment of approxima-

tive information sometimes is sufficent. In the latter case the tables are smaller.
On the other hand, the constructed bottom-up assignment is used as a base for
top-down flow analysis. In the case of approximative bottom-up analysis, only the
information records contained in the solution S(X) serve as inputs to upper tree
fragments (cf. figure 2).

The construction is based on assumptions on the internal structure of the

bottom-up solution, i.e. the bottom-up descriptions.

- 18 -

We distinguish the cases a=e,max,ubd. The solution, from which an new
bottom-up assignment system is derived needs not to be a fixed point.
B15(X) := S$*(X) for a=¢€ or a=max.
B1t5(X) := {S*®(X)} ; for uniformity in case of the "ubd - approximation”
we must widen the elements to sets.
The bottom-up propagation functions are constructed using the new basic sets.
ame:
The propagation functions are restricted to the new domain.
f, : Bt5(Xy) x ... x Bt5(X,) » B15(Xy)
fg(ml,...,mk) c= fp(my,...,my).
a = max:
f(my,...,my) := m, where meS™¥(X,) and m2f,(my,...,my). m is
arbitrarily chosen but fixed (cf. figure 8). The reason for this somewhat
artifical construction is, that) in general, image
{f,(my,....m) | m,;eS™(X,), i=1..k} S™ S™X(X,).

/ choice N\
0 (&g e
constructed S o description (incomparable elements)

individual f I
propagation P /"
indiviaval © 9 O
propagation ; flow propagation

—e

description (incomparable elements) description (incomparable elements)

Figure 8
a = ubd:
f§(my,...,my):=m, where m=8"*(X). This means, that as an approxima-

tion an assignment of information records to nodes labeled by X can be

- 19 -

found, which does not depend on subtrees. The constructed propagation
function is really a constant. (cf. figure 9).

@ description (upper bound)

constructed g

individual

propagation
individual
propagation g flow propagation

description (upper bound) description (upper bound)

Figure 9

3. Top down grammar flow analysis

3.1. Top down assignment of information records

A top-down assignment system is build up on a bottom-up assignment
system. The top-down system specifies how to propagate information
top-down in a syntax tree, thereby assuming that bottom-up information has
already been assigned to the nodes of the tree. Let S be a bu - assignment
system BU-ASYS. S may be an original given system or may be constructed
as described in the previous chapter. S is one component of a top-down

assignment system.

TD-ASYS = (G, S, {BY(X)}xenr, {fp,1}pep , 181 Srank(p))

which consists of a context free grammar G, a bu - assignment system S, a
family of basic sets of top-down information records {B!(X)}yesr and a

family of propagation functions {f, s }pep , 151 Srank(p)» Where

f,.1:B(Xo) x B1(Xy) x -+ - x B1(Xy) = BU(X,)

- 20 -

Information records are propagated top-down to leaves by repeated applica-

tion of the propagation function f, ; .

Function f! describes the assignment of information records to nodes of the

concrete syntax tree:

Let n and n.i be nodes in tree t, 1SiSk, where k is the rank of the operator,
which labels n.
£i(t,ni):=f, ;(£i(t,n),f1(t/n.1),...,f1(t/n.k))

Having computed an information for node n, we propagate this information
downwards to all direct descendents. fi(t,e) may be defined as a special
case:

fi(t,e) := fsart(f1(t)), where f1 maps the bottom-up information record,
which is obtained at the root of a tree produced by the axiom, to a top-down

information record.

In the case of top-down assignment we must take care about the
bottom-up context, i.e. the information records attached by the bottom-up
propagation. Therefore, real sets of top-down information records cannot
exist without their bottom-up context. Let R1(X) be the real set of
bottom-up information records for nonterminal X. We define the real sets
with respect to bottom-up records and therefore obtain functions:

R lRT(X)E[R ?(X)»ZB“X)]

For all r ¢ R1(X):

RIFY(X)(s) : = {fi(t,n) | t produced by axiom Z, n ¢ dom t,
t/n produced by X, and r=f1t(t/n)}

The real set for a fixed bottom-up information record r is the set of all
records that can occur together with s at a node of a syntax tree which
belongs to a sentence of the language. Formally seen, a top-down informa-
tion record is a function from a bottom-up information record, which is
input to an upper tree fragment and the upper tree fragment itself. R (X))
combines the bottom-up record given as argument with all upper tree frag-
ments. Note, that the term ”real” is related to the underlying assignment
systems. If the bu system is constructed as described in chapter 2.3.2.3, then
R 1(X)=8(X) by construction.

- 21 -

3.2. Simulation at generation time with respect to bottom-up assignments

The first case to be discussed is again the exact simulation. Note that, at
least in principle, there are two possibilities to use approximations: first, the
underlying bottom-up solution may be itself a solution of the approximative
problem, second, the top-down computation may be approximative by itself.

We will treat the case of exact simulation and of approximative analysis in
an uniform way. Parameter ”b” denotes the type of approximation, which is
chosen for the top-down analysis independent from the underlying bottom-up
solution. In the first step we shall explain the structure of the description
spaces (with respect to bottom-up contexts), and in the second step we shall

define the propagation functions.

The space of top-down descriptions for X is a set of functions with
domain S(X). Let us define this set in two steps: In the first step, a local
set of descriptions DP-local(X) is defined in the same way as in the case of
bottom-up flow analysis. The basic sets are now the top-down basic sets
Bl(X). The local description spaces do not depend on the bottom-up con-

text.

In the second step, the top-down description space is defined with respect
to the bottom-up context. Given an information record as an input to an
arbitrarily chosen upper tree fragment a top-down information record would
be returned.

D55(X) = [§(X) » D-local’(X)].
Top - down descriptions are functions from the bu - information records,
which are expected to occur at trees produced by X, to descriptions taken

from the local top-down description space.

- 22 -

set of upper tree fragments

basic set of top down
infornation records

basic set of top down
information records

s o
inclusion
characterizes
abstr(ction basi 0
. . Dasic set of bottom up
mterpregtxon information records
L. / !
description space chlucter y

<

N

Figure 10

Relations r-local in the description space D-local® induce relations in the
description space:

r€ Di5:5(X) x DI5:¥(X):

dy r dy iff for all seS(X) : dy(s) r-local dys)
Top and bottom elements in space D-local® induce top and bottom elements
in the top-down description space:
For all s € S(X): top(X)(s) := top-local(X)
For all s € S(X): bottom(X)(s) := bottom-local(X)

Semilattice operations:
Let d,, d; ¢ DI%°(X).
For all s ¢ S(X):
(d1V§°bdp) (s) :=d,(s) V{ -local dys)
Considering two sets of upper tree fragments produced at X and fixed
bottom-up context s, for each set of upper fragments a description of

top-down information records will be obtained. Vj-local combines those

- 25

(local) descriptions (with respect to s). V§'® combines two S -indexed

"arrays” of descriptions.

Interpretation and abstraction are defined locally, too, and are extended to

functions. Of course, y!§'? and a!§'? are higher order functions.

Y45 : DISB(X) » RI5(X)
For all s € S(X):
Y4§dXs) := Y} -local(d(s))

alf'?: RI5(X) - DI5P(X)
For all s € S(X):
al§8r)(s) := af-local(r(s))
The meaning of operations,functions and objects should become clear from
the context.

Now let us illustrate the top-down case with a little example. We have
choosen again the characteristic graphs. An superior characteristic graph
represents a assertion about an upper tree fragment. It has edges from syn-
thesized attributes to inherited attributes. The propagation function f, ; sub-
stitutes superior and subordinate graphs, with exception of the subordinate
characteristic graph, which belongs to position i, to the local dependency
graph, builds the transitive closure and restricts the result to the attributes at
nonterminal X;. The local description space for each nonterminal is the set
of superior characteristic graphs over its synthesized and inherited attributes.

3.3. Approximative top-down propagation of descriptions

Let now D{5:%(X) denote the top-down description space, assuming S is
a solution of the corresponding bottom-up problem. S defines the set of

bottom-up contexts.

The flow propagation function maps a top-down description d ¢ Di5:%(X),
occurring at position 0 of a production to a top-down description d’, occur-
ing at position i of the production. Hereby, the context must be taken into
account.

Fi5:p: DI5%(X,) » DI5P(X))
Again, we define the flow propagation function with respect to the special
structure of the description spaces by applying the abstraction function to the

result of "exact” propagation.

- 24 -

Fig:Xdo) == alfX(Fi5:(do))

The functions Fi5'? are monotonic, the description spaces are finite and
therefore the fixed point may be computed by iteration. The following for-
mula describes the flow propagation in the case of simulating the exact
top-down propagation.

Let X=p[i], be the target position of propagation.

Let X;=p[j], for j=1..i =1,i +1..k.

for all se S(X):

FE:(d)(s):=

{fp. 1(mo,S4,...,8,...,5) | mg € d(fp(s1,...,51-1,5,8141,--,5k)),

s;€S8(X,), j=l.i-1i+1..k }

The result is a function from S(X;) to the powerset of basic top-down sets.
For each bottom-up context s € S(X;), there is a set of top-down records.
Assumed s being fixed, we have to construct the remaining arguments
s;,J=1..i =1,i +1..k of the tuple, to combine them with s and to apply the
individual top-down propagation function. The result is the set of top-down
information records, which can occur in context of s. To get the “right”
top-down information records from position 0, we have to compute the

bottom-up context at this position for the chosen tuple of arguments at posi-
tion 1..k.

The requirements for correctness are the same as described above:
Yi§ B FiS2(d)) 2 Fi5:2 (yix {d)) and analogously for the meet/join
operation.

Now, we have to solve the following system of equations:
L(X)= vi® Fig:} (L(Xo))

{(p,i) | X=pl1], 1S1Srank(p)}
where p[0]=X,.
In the important special case of "homogeneous” top-down assignment sys-
tems (cf. [Moencke85]), the result of a top-down propagation f, ; does not
depend on the bottom-up records at position i. In other words, we can sub-
stitute an arbitrarily chosen (sub)tree at node n.i in t, without altering any
top-down information at n and ancestors of n in t. The top-down informa-
tion record obtained at a tree node labeled by X depends only on the upper
tree fragment. It does not depend on a bottom-up context seS(X) (cf. fig-
ure 6). In this case, top-down flow analysis can be simplified: all the exten-

sions, made with respect to the bottom-up context are now unnecessary.

- 25 -

S(Xo)

namnnany
SN
N

N

® information record

set of top down
information records
associated with s

f/ bottom up

}J" agation P
top down
propagation

NN

\\\\\§§§\\

Therefore, top-down analysis handles sets of information records as in the
bottom-up scheme, instead sets of functions.

Figure 11

The (top-down) characteristic graph assignment is homogenous, because
the superior characteristic graph only mirrors attribute dependencies in the
upper tree fragment of X and therefore does not depend on the characteristic
graph for the subtree, which may be substituted in X.

Other problems, e.g. the problem of computing a top-down ordered partition
of attributes , are not homogeneous. (Ordered partitions” are important
means to generate reattribute evaluators for arbitrary cycle - free attribute

grammars, cf. [LMOWS87]).

3.4. A hierarchy of approximations
At first, the bottom-up precomputation leads to a hierarchy of solutions by
itself. Solutions are distinguished according to the degree of approximation.
We restrict this chapter to the consideration of upper bounds.
As an analogon to the data flow analysis term merge over all paths solu-
tion we define the merge over all trees - solution:
amot - :
ST = P,
Let S*(X) denote the least fixed point solutions. The following equalities
resp. unequalities hold:

= 96 =

bu-1) §°(X) = R(X) (exact simulation computes the real sets)
bu-2) S™%(X) = max-set-of(S°(X))

bu-3) S (X)2 (*) join m= join m = S™'(X)
€ SmX(x) m&se(x)

Note, that in general the relation at (*) is strict. If the propagation functions

f, are distributive in each argument with respect to the join operation,
then ’ =’ holds at (*).

The functions for propagating characteristic graphs in general are not distri-
butive. Intuitively, the effect of single edges in the argument graphs to the
propagation could not be isolated without changing the result. Therefore, an
input - output graph may contain edges, which represent no attribute depen-
dency in any syntax tree. Such an edge could not be obtained by merging
the graphs in the real set. (Definitions of IO - graphs, found in literature,
sometimes neglect the difference between mot and lub -solution, cf.
[Reps82]).

In contrast, the bottom up functions for pattern matching are distributive.
Intuitively, the matching subpatterns may be propagated separately for each

position.

The top-down hierarchy depends on the bottom-up approximation, on
which the top-down problem is based. The idea is to construct a new
bottom-up assignment system from the results of bottom-up grammar flow
analysis as described in chapter 2.3.2.3.

Let S*'?(X) denote the result of the top-down precomputation, based on
S%(X), the bottom-up solution. a denotes the bottom-up approximation, b
the top-down approximation type. In the following, we assume that both the
max and ubd - solution are computed as least fixpoints.

Now, let us compare S°°(X)(s) with S™°(X)s) for seS™*(X). This

means, we change the bu - approximation (from ”exact” to ”"maximal ele-
ments”). Surprisingly, examples can be constructed, where for some bu
records s, seS™¥X) € S°(X), §™°(X)s) may contain information

records, which are not in S°'°(X)(s). The reason is, that the approximating
bu propagation functions f; (see above) associate bu information records
with tree contexts, in which the records would not really occur by exact pro-
pagation (cf. [Moencke85]). Instead of a concatenation of functions f, a con-
catenation of f} is applied to s. The td - functions f, ; take these records as

arguments and compute also records, which we would never find in their

- 27 -

contexts otherwise.

f f
::.1 p concatenated M‘

S
_ 1fp concatenated

4 s \bottom up information record £/ W s “hottom up information record
top down information record < top down information record
Figure 12

So, we conclude that (max,e)-approximation is less precise than (e,e)
approximation not only in its bu — component (cf. equation bu - 2)), but also

in the td - component.

Basing the top-down analysis on the bottom-up lub solution, we get
Slub.e(X). Note, that each X has one single information record as
(bottom-up) least upper bound. Because of the monotony of both the
bottom-up and the top-down propagation functions, for all se S™*(X), and
for all meS™*°(X)(s), we find at least one m' € S*?:°(X), where m' 2m.
Of course, the same holds for s€S°(X) and meS°'°(X)(s). Figure 13 shows
the "exact” top down analysis based on different bottom-up approximations.
Note, that both the bottom-up record chosen as argument and the con-
structed (approximative) propagation function f; determine the top-down

approximation.

top down lub,e

xRy x Cy

= o]
g Max.e (s .}/» \r
se'e(s')/¢° '\, s s?'i" .
o |e& C——uf®s ©
P »
e.e /
o
bottom up

Figure 13

- 28 -

Furthermore we can change the td - approximation type b while leaving
the bu - approximation type unchanged. This would result in a local hierar-
chy built upon the underlying bu - approximation

For ae {e,max,lub }.

For all seS*(X):

td - 1) §%°(X)(s) = R5(X)s)

td - 2) 8% °(X)(s) = max__set(S*™*(X)s)) (cf. Figure 14: relation
)

td - 3) S%:18(X)(s)2 join (cf. Figure 14: relation (3))

me s.mx(x)(s)
In particular, the solution S1*2+%8(X) may be useful and easy to compute.

In general, for comparison of two approximations (a,b) and (u,v), where
(a,b) is more precise than (u,v) (cf. figure 11), holds:
For all seS*(X), for all meS*'?(X)(s) there is a s' € S"(X), where
(s' 2s and there isa m' € S§"'"(X)s'), where m'2m).
(cf. Figure 14 : relation 2).
Figure 14 shows the hierarchy of approximations.

top down e max lub
bottom upj e S ¢ S e QS SR (3)®S b
A!IA\ £IA\ =IA\
max max.e max,max max, lub

max | S S-S -
;l,A\ 1A A,

ub s lub S ubLemJ_' s Iub,ma_x(s)l -5 fub,lub

Figure 14

In the characteristic graph example the solution S¥?:1*(X) gives the
top-down counterparts of the input - output graphs.

4. Implementation

The solution of the equational systems is computed by iteration over the
grammar graph. The bu-grammar graph, needed for implementation is
slightly different to the grammar graph mentioned in chapter 2.2. It has
the productions as nodes and there is an edge labeled by i from p, to p; iff
p1[0]=X=pg[i] for some i, 1SiSrank(p). The td - grammar graph differs

- 00 =

from the bu - graph only because of the inverted edges. According to data
flow techniques the graph was divided in strongly dependent components and
the components are partially ordered. (This was also proposed in [Chebo-
tar81] for the computation of subordinate characteristic graphs).

The information records, which have been computed in the iteration pro-
cess, were encoded with respect to so called coding references. A coding
reference is a set of nonterminals with identical basic sets. In the extreme
case, records are encoded with respect to single nonterminals.

To each nonterminal a buffer is assigned, which collects the encodings for
information records that are already computed for it. The buffers are collec-
tors for information, obtained from a producing production node, and supply

codes to production nodes acting as consumers.

In the bottom-up case p[i], 1SiSrank(p), are suppliers to consumer p,
and p[0] is the collector for p. In the top-down case the roles are inter-
changed: p[0] acts as the supplier to p, and p[i], 1SiSrank(p) are the collec-
tors. Note, that the bottom-up information at p[i] is fixed in the top-down
computation process, and therefore we neglect it.

Each production has bookkeeping information about what it has already
consumed from its supplying buffers. Technical, the bookkeeping is realized
by pointers into the buffers.

The iteration follows the order of the components. Within each com-
ponent iteration steps are carried out for each production in the component,
until there is no new information in the buffers for any production node in
this component. Each iteration step consists of a sequence of propagation
steps. |

One propagation step takes a tuple of encodings, decodes this to infor-
mation records, applies the propagation function and encodes the result, by
comparing it with information records already contained at the coding refer-
ence. |

propagation__step (my,...,my)=
COde&cntf}'rororonco_or(xo) (fp (dCCOdcroraronco_or(xi) (my),...,

dCCOdero{aronce_or (X,)(mk)'

The bookkeeping is important, because it avoids double computations. Let
us explain this in the bottom-up case:

- 30 -

One bottom-up iteration step (for a production) reads the buffers and
enables the propagation steps for such argument tuples, where at least one of
the argument components is new.

iteration stcp={propagation step(my,.. ,m,,)| (my,...,my)e
(old__codes(X,) x...x old__codes(X_,)

J=1. unk

x new__codes(X;)
x codes(X;,) x...x codes(Xy)) }

code tuplles without new code

7
position 2
//r7< \

codes codes

Figure 15
Of course, this does not change the complexity (here only considered for the

exact simulation):
Let S be the solution of the bottom-up analysis.

CHEY= o, T J5
propagation steps must be carried out at production p.
Top down propagation is a little bit more complicated, because of the
tunctional dependency on bottom-up context.
Therefore, top-down buffers are associated with information records found in

the bottom solutions.

Let S be the solution of bottom-up analysis. Let S5'® be the solution of the
corresponding top-down analysis.

A top-down iteration step for production p computes fy(sy,...,5) for each
argument tuple, where s;€S(X;), i=1..k. Note, that this computation may
be done by table lookup in the previous computed bottom-up propagation
table.

Let now sq¢ S(X,) denote the result. Subsequently the buffer, associated with

= §f =

Se is consulted:

If there is a new top-down record, say m,, entered in the buffer since the
last iteration step for p, these record is combined with the (actual) argument
tuple and for all positions, i=1..k, f, ;(mq,ss,...,5) is computed. The result

is entered in the buffer associated with s; at position i.

Of course, the top-down iteration step for p is enabled only if there is a
buffer for some s¢S(X,) , which has obtained a new top-down record since
the last iteration step. Let s be such a bottom-up record. Considering all
bottom-up argument tuples is not efficient, because only tuples which are
mapped to s have to be combined with top-down records from the buffer
associated with s. An argument tuple, which is not mapped to s, provides
another context for the computation of top-down records. Top down records
in the buffer at s are only valid in the context, which is mapped to s. There-
fore, an improvement would be to restrict the top-down computation to
(bottom-up) argument tuples, which are mapped to s. On the other hand,
this would cost additional space for holding the inverse f;*.

In the following, we assume, that the top-down records are independent on

the bottom-up context, as is guaranteed in the "homogeneous” case.
- s,b
Let CH(X)= max /s (X)Xso)/

the worst case number of top-down information records, obtained as
input at position 0 of production p, where p[0]=X,.
Cl(p):=Ct(p)*Cl(X)
is the number of coupled applications (fp,;), i=1..k
There are two expensive operations, dealing with the information records:
1.) propagation operation
2.) compare operations (in ’code&entry’).
In general there is a small number of records computed by a large number
of propagation operations. Considering the output stream of records, gen-
erated by a sequence of propagation steps there are long subsequences of
identical records in practice. So, (re)ordering the records by move to front

can be very helpful for decreasing the number of compare operations.

- 32 =

5. Special features

For simplicity we restrict this section to the bottom-up flow problem.

5.1. Horizontal orientation

Horizontal orientation means, that the propagation step at production p is
divided into substeps, one step for each child position of production p. This
can only be done if the propagation function is separable into partial (transi-
tion) functions, as follows:

fp(my,...,my) = f5(..(FA(f(f%(),my),my)...) where

% : -+ B1(Xo)

fi: Bt(Xg) x B1(X;) » Bt(Xo)
Then, the intermediate results may be encoded, too, and if we find an inter-
mediate result, which was already computed, the following transition steps
could be avoided. In other words, we use the structure of the production
local transition diagram, which is now seen as a directed acyclic graph rather
than a tree. The scheme for one iteration step is very similar to the
dynamic programming method, i.e. the basic idea is to tabulate the inter-
mediate states:
1)

propagating a tuple of arguments
The single step, described now, computes
fy(my,...,my,m;,my,,...,my), where only m;eBt(X;) is an informa-
tion record, which was obtained in the buffer at X since the last iteration
step. Due to the structure of the propagation function, transitions by
my,...,my, are already executed in previous iteration steps and the
results stored in sets of intermediate states I(0),I(1),...,I1(j).

Furthermore, for each element in I(i),i=j..k transitions under m; are

computed.

Starting from each intermediate result found in I(j -1) transitions under

my,...,m; must be computed.

Transitions under my, i=j..k sometimes will reach an intermediate result,

which was previouly computed (cf. figure 16). Of course, transitions

under the the remaining chain m;,,m;,s,...,m, must not be computed
repeatedly.

2)
horizontal propagation step for start position j

= 38 =

A2: new at position X2

— 01d transitions
X1 X2 X3 X4

+ new transitions

transition diagrom: changes for tuple (W1.A2.A3.n4) by new transition codes
n3 n3
X} a4 -9 i
~~a " pe new transitions
"2 by old transition codes
L) n3 nM-> M>
LX) n3
Figure 16

A list of sets of transition codes, codes(1),...,codes(k) contains the sets of
information records, for which transitions have been executed in previous
iteration steps.

New__codes(j) contains the information records, computed since the last
iteration step for p at X,. For all menew__codes(j) we have to start
with the records in I(j-1) and successively to carry out the transition
sequence under all transition elements, beginning with transitions under
new__codes(j) from I(j- 1) at position j and continuing with transitions
under codes(j +1),...,codes(k). In the transition step at position i,
i=j..k, step we may find some intermediate results, which are already
computed and available in I(i).

3)

horicontal step

The computation, described above in 2) is executed for each start position
j from k = rank(p) down to 1. In this way, we find in step j intermediate
results, which may be computed by step i, i>], i.e. for a start position at
the right side of the actual one.

Presuming that the cost of a partial propagation operation f* is less than
a 1/k of the cost of f, this method always is preferable.

- 34 -

5.2. Item set construction

Frequently, the information records themselves are sets, e.g. sets of
matching tree patterns. or sets of edges in a characteristic graph. Abstract-
ing from a individual task we call the elements of these sets ’items’. The
precomputation gives sets of items, one set for each nonterminal X. The
items all together characterize at least one tree, produced by the nonterminal
X. The greatest lower bound solution contains items which characterize
each tree, i.e. we compute the greatest common itemset. An item, found in
glb will occur at the root of each subtree (i.e we conclude on the presence).
The least upper bound solution contains at least such items which will
characterize at least one tree, but there may be more items in this set. An
item, which is missed in lub, will never occur at the root of some tree (i.e

we conclude on the absence of items).

5.3. Product frameworks and functional dependencies

In general grammar flow analysis may be applied to different tasks,
underlaying the same grammar. Tasks may be obtained from considering
different problems or by dividing one problem into subproblems. Having
computed separately the results by exact simulation for two different tasks
(w.l.o.g. bottom-up assignments) we often ask for the simultaneous
occurrence of information records from both tasks. Building the cartesian
product Ly(X) x Ly(X) may be not sufficiently precise, because we could
not conclude that for all pairs (m;,m;) from this product there is a tree pro-
duced by X, having the pair assigned to its root. The a posteriori building of
cartesian products is only an approximative solution. Defining a product
assignment from both tasks and computing the results for this product would
give us the precise solution (L, +Lo}(X) € Ly(X) x Ly(X). A thorough
investigation of the product solution may reveal inherent functional depen-
dencies or the orthogonality of the tasks. In our example, we may be
interested in the dependency of patterns and characteristic graphs: Given the
patterns, matching t, will they determine the characteristic graph t? Of
course, the products may be multidimensional. Then, analysis of functional
dependencies often will show that the information records assigned for some

tasks act as keys for the remaining tasks.

- 85 -

al

%
m

4,
4

> [

Figure 17
{(a1,by), (az,bs), (a2,bz), (as,bg)}

5.4. Use of abstract syntax trees

This requires only slight modifications with respect to chains of nontermi-

nals.

We say nonterminal X is in substitution relation sub to nonterminal Y if
there is a production X ::= Y. Let sub® be the symmetric reflexive and
transitive closure of sub. We must be sure that nonterminals, which are in
the same substitution class, posses the same basic sets. Then, the coding
references may be the classes. The equational system must be modified with
respect to the chains of nonterminals.
bottom-up system of equations:
for all XeNT :

LY(X)= Vg F13(L*(Xy),...,L*(Xrank(p))
X—"plo]

top-down system of equations:

for all XeNT :
LS.b(X)_ vS b ‘S b(LS b(X))
{(p.1) | pl11-"X , 151Smx<pn
6. Applications

The scheme for grammar flow analysis was implemented and has been
applied for a lot of different problems. All these different tasks had been
implemented in a uniform way, parameterizing the flow analysis scheme with
task specific domains and propagation functions. Despite the theoretical worst
case time complexities of all these tasks, which are exponential or, in the

case of covering, double exponential in the size of the specification, the

- 36 -

generation time measured so far is reasonable or was at least reduced to rea-
sonable amount using the maximal/minimal incomparable approximative flow
computation. Of course, computing bounds decreases the generation time

essentially. Let us now give a short summary about these tasks.

6.1. Bottom up characteristic graphs

We have gained experience with different kinds of approximations for
characteristic graphs. The observations, made by Raeihae and Saarinen, and
the INRIA -group [Deransart,Jourdan,Lorho] could be restated. The
number of characteristic graphs in general, and the number of maximal
incomparable graphs is small. Nevertheless, as we have seen in student pro-
jects, the ”personal style” of specifying attributed grammars plays an impor-

tant role.

6.2. Bottom-up and top-down identity classes

Two attributes of a nonterminal are in an identity class iff their values
are known to be identical in all instances of X. This information is used to
estimate the effect of structural changes in syntax trees. It helps to construct

dynamically storage classes of identical attribute instances. (cf. [Raeithae82]).

6.3. Top down ordered partitions

Ordered partitions (cf. [Farrow83]) divide the set of attributes associated
with a nonterminal in w.l.o.g. n pairs of corresponding attribute groups.
Each pair consists of a group of inherited attributes and a group of syn-
thesized attributes, respectively. The i.th inherited group contains the attri-
butes, whose instances are simultaneously available in the i.th visit of the
subtree at the node marked by X, while the corresponding synthesized group
contains the attributes, whose values are available to the upper tree fragment
of the subtree after the i.th visit. Unfortunately, in general more than one
ordered partition for each nonterminal is needed. The choice of the ordered
partition at node n.i is then made dynamically, i.e. at attribute evaluation
time one partition is selected from the precomputed set of ordered partitions.
The choice depends on the context, which is represented in the ordered par-
tition already computed for (the father) n and the tuple of bottom-up
characteristic graphs associated with nodes n.1,...,n.k. Practical experience
has shown, that the solution L*:°(X), which is based on the input - output

- 37 -

graphs, is sufficient for generation of attribute evaluators [LMOW87].

6.4. Pattern matching sets

Patterns characterize the input and output parts of transformation rules.
A transformation rule is (structural) applicable, if its input part matches a
subtree. The output part specifies the structural change of the tree, especially
introducing new nodes, rearranging subtrees, deleting and duplicating sub-
trees. Flow analysis computes for each nonterminal the sets of patterns and
subpatterns which together match at least one tree that can be derived from
this nonterminal. Therefore, the precomputed sets of patterns induce a parti-
tion of trees in equivalence classes. An efficient pattern matching automaton

is generated [Moencke87].

6.5. Sets of covering reduction alternatives

Covering reduction alternatives characterize how trees can be reduced
completely by tree transformations, which are executed in a bottom-up stra-
tegy. There are a lot of possible applications: Code generation by tree reduc-
tion is only feasible, if syntactic blocking can be excluded, in other words,
complete covering of the given syntax tree by tree transformation rules can
be guaranteed. In principle, each transfer from one tree representation to
another requires the complete covering, and so a generation time verification
rsp. falsification is needed. Grammar flow analysis based on the pattern
matching framework mentioned above can do this kind of consistency check
[Moencke87].

Acknowledgements: 1 thank Reinhard Wilhelm, Reinhold Heckmann and
Peter Lipps for numerous helpful comments on earlier drafts of this paper
and the members of the OPTRAN working group P. Badt, J. Boerstler, M.
Olk, S. Pistorius, H. Tittelbach, P. Raber, Th. Rauber, B. Weisgerber for

implementation and gaining practical experience from examples.

References:

[Cousot,Cousot77)
Cousot P., Cousot R.

Systematic Design of Program Analysis Framework

- 38 -

6th ACM POPL, 1977

[Chebotar81]

Chebotar K.S.

Some Modifications of Knuth’s Algorithm for Verifying Cyclicity of Attri-
bute Grammars

Programming and Computer Software 7, 1 (pp 58 - 61), 1981

[Deransart,Jourdan,Lorho83]

Deransart P., Jourdan M., Lorho B.

Speeding up Circularity Tests for Attribute Grammars
Report RR - 211, INRIA, Roquencourt, 1983

[Farrow83]
Farrow R.
Covers of Attribute Grammars and Sub — Protocol Attribute Evaluators

Comp. Sci. Dept., Columbia University, New York, 1983

[Kennedy,Warren79]

Kennedy K., Warren S.K.

Automatic Generation of Efficient Evaluators for Attribute Grammars
3rd ACM POPL, Atlanta, 1979

[LMOWS87]

Lipps P., Moencke U., Olk M., Wilhelm R.

Attribute reevaluation in OPTRAN

ESPRIT Prospectra Report S.1.3 - R - 4.1, Saarbruecken 1987 [Moencke87]
Moencke U.

Simulating Automata for Weigthed Tree Reductions

ESPRIT Prospectra Report S.1.6 - R - 5.0, Saarbruecken 1987

[Moencke83]

Moencke U.

Generierung von Systemen zur Transformation attributierter Operator-
baeume,

Komponenten des Systems und Mechanismen der Generierung,

Ph.D.Thesis, Saarbruecken, 1985

- 39 -

[Moencke,Wilhelm82]

Moencke U., Wilhelm R.

Iterative algorithms on grammar graphs,

in Proc. 8th Conference on Graphtheoretic Concepts

in Computer Science, ed. H. Goettler, pp. 177 - 194, Hanser - Verlag,
1982.

[Raihae81]

Raeihae K.]J.

A Space Management Technique for Multi — Pass Attribute Evaluators
Dept. of Comp. Sc., University of Helsinki, Finland, 1981

[Raeihae,Saarinen82]

Raeihae K.J., Saarinen M.

Testing Attribute Grammars for Circularity
Acta Informatica 17 (pp.185-192) , 1982

[Reps82]

Reps T.

Generating Language based Environments

PhD thesis, Dept of Computer Sc., Cornell University, 1982

	fb1986-04_0001
	fb1986-04_0002
	fb1986-04_0003
	fb1986-04_0004
	fb1986-04_0005
	fb1986-04_0006
	fb1986-04_0007
	fb1986-04_0008
	fb1986-04_0009
	fb1986-04_0010
	fb1986-04_0011
	fb1986-04_0012
	fb1986-04_0013
	fb1986-04_0014
	fb1986-04_0015
	fb1986-04_0016
	fb1986-04_0017
	fb1986-04_0018
	fb1986-04_0019
	fb1986-04_0020
	fb1986-04_0021
	fb1986-04_0022
	fb1986-04_0023
	fb1986-04_0024
	fb1986-04_0025
	fb1986-04_0026
	fb1986-04_0027
	fb1986-04_0028
	fb1986-04_0029
	fb1986-04_0030
	fb1986-04_0031
	fb1986-04_0032
	fb1986-04_0033
	fb1986-04_0034
	fb1986-04_0035
	fb1986-04_0036
	fb1986-04_0037
	fb1986-04_0038
	fb1986-04_0039

