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Abstract

In the strive for more flexible type checkers, Rémy and Wand proposed flexible record
types in order to avoid the complications involved with subtyping.

We formalize their approach in the framework of order-sorted logic. R, the considered
language of records, is so simple that the type inference algorithm can be expressed as a
constraint solver in first-order logic. We specify expressions and types, give an effective
method for finding a typing, and state soundness results. R can be the basis of type

inference for object-oriented programming languages.
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1 Motivation

Languages with records and subtypes are currently receiving much attention [1, 2, 4, 3, 5, 20, 29].
This intensive research activity is motivated by the endeavor to increase the flexibility and reliability
of programming languages at the same time. Objects of object-oriented languages can be modeled as
records, and subtyping is a notion occurring in this context. Subtyping, in those languages, roughly
amounts to saying that an object (= record) having more methods (= components) than necessary
can always “do the job”. Closely linked to the notion of ‘object’ is an internal state. It is however
problematic to mix a general subtyping notion with imperative features [4]. This may have been
the incentive behind Rémy’s [24] and Wand’s [30, 31] “subtyping without subtypes” by extensible
record types. A variable which requires an a-component will have a type that is specific about this
a-component, but is extensible in the sense that an object having the required a-component and

further components as well also fits the type.

Wand presents a type inference algorithm for a record language and an informal semantics of extensi-
ble record types. A correctness probf of this algorithm cannot be performed without a formalization
of extensible record types. We formalize these types in first-order logic. As far as we know, this is
the first formalization of a type inference system entirely based on first-order logic. We are aware

that this is only possible because of the extreme simplicity of the considered language.

The considered language, R, is the result of repeated “onion peeling”: object-oriented programming
languages can be translated into a A-calculus with records and imperative features [12].  The
imperative features can be stripped off. If we also strip off the “A-part”, we get R. Summing up,
it can be said that R is the kernel that allows the description of the object-oriented programming
language O’sMALL [13]. The language R is extremely simple: only a stepwise construction of records
and the selection of components can be expressed. Although R will be specified later, we give its

abstract syntax here:
e u= z|[]|e-ale]]|ea.

There are variables, an empty record, extension of a record by one field (“record cons”), and record
selection. If a record is extended more than once by the same field, the rightmost extension wins.
Variables are introduced for later extensions of R. We will see that, in this framework, we are able
to infer types for variables. The language contains no recursion; consequently, there are no non-
terminating calculations (every term has a normal form). It is more restricted than Wand'’s language,
because it does not contain general record concatenation. The latter is responsible for the loss of
the principal type property [15, 31]. The motive for our considerations is O’sMALL. There, method
definitions in classes are explained by fieldwise record extension. Classes are no first-class values
(i.e. they cannot be the result of functions etc.) and, thus, method names are known beforehand.
There are twc points where our record language is insecure: (1) The left-hand side of an extension
should be a record. (2) A record from which a component is selected should contain that component.
To separate secure from insecure expressions, we define a language of types and give an effective

procedure to test whether an expression has a typing.



The characteristics of the type system are flezible record types and infinite types. When typing the
expression (z - b[5]).a, we get [a : c,...] as a flexible record type for z. This means that z must be a

record with an a-component and perhaps further components. The type of the whole expression is

«.

In object-oriented languages, recursive types occur even in situations where one would not expect
them in “ordinary” languages. The use of the pseudo variable self [11, 13] is the reason for this. We
need more than finite trees for representing types. If finite trees had been sufficient, we would have
taken the initial model and definition 5.3 would have become much simpler. What we need instead,

are finitely representable infinite trees. They are called rational trees [22, 24] or regular trees.

Infinite types are necessary because of the peculiarities of the object-oriented programming style.
The example (z.a)z can be read as “send the message a to = with the argument z”. This would be
the object-oriented way of writing the addition z + z. The type inferred forzisa=[a:a — 3,...],

an infinite type.

Section 2 advertises the advantages of the order-sorted approach for type inference systems. Sections 4
and 5 specify expressions and types, and state confluence and termination results for the corresponding
rewrite systems. Expressions and types are related to each other in section 6, and the notion of a
typing is defined. An effective method for finding a typing is presented in section 7. Correctness and
completeness of the effective method as well as soundness of the typing rules are proved. Finally,
in section 8, a “lazy” rewriting systems for R is presented and compared to the “eager” system of

section 4.

Warning! The words ‘sort’ and ‘type’ are both used and have different meanings. The expressions
of the record language are defined in the framework of order-sorted logic and, thus, every expression
has a sort. The types of the expressions are defined in the same framework and, thus, every type
(term) has a sort. Expressions will be related to types. An expression related to a type is said to
have that type. The languages of expressions and of types are not mixed. In other words, there are

no type declarations in expressions; the types are inferred.

2 The order-sorted approach

Many-sorted logic is the basis for algebraic specifications [10, 9, 23], rewriting techniques [18, 19], and
unification theory [17, 27]. Its results extend to order-sorted logic [28, 26] under certain conditions.
In many-sorted logic, the sorts are completely unrelated, while in the order-sorted case, there is a
subsort relationship. When it comes to the description of the semantics of programming languages,
the subsort relationship is extremely useful: in an untyped language, the denotations of all terms
belong to one set. There is no separation into a number of unrelated sets. Consequently, the many-
sorted approach is not helpful for structuring this problem. Even in an untyped language, there is
usually a distinction between terms denoting errors and terms denoting proper values. It certainly

makes sense to see the set of proper values as a subset, or a subsort, of all denotations.



A specification of a language in order-sorted logic can be turned into an executable operational
semantics bj reading the equations as rewrite rules and showing that the resulting rewrite system
is confluent. As stated already, we have two languages: one is the language of expressions, R, and
the other is the language of types, RT. Each language specification can be turned into an executable
operational semantics. To have sophisticated “calculations” on types is not common but, here, we
have to model the so-called padding [31] for extensible record types. When an extensible record type
is unified with another record type, the missing components are padded in such that both have the

same set of labels.

What we have explained so far could have been done with only a slight loss of structure using
many-sorted logic instead of order-sorted logic. The advantage of the latter becomes clearer in the
soundness proofs. There, we must show that terms having a type cannot produce an error when they
are evaluated. Thanks to a property of the rewrite rules (they are sort-decreasing), the soundness

proof reduces to showing that the term itself, or its normal form, is in the subsort of proper values.

Terms for expressions and terms for types 7 will be constructed successively. They will be related
by the typing relation .- : 7. Typings are then first-order formulas over the typing relation. The type

inference algorithm is formulated as a constraint solver on these formulas.

3 Mathematical preliminaries

Note The hurried reader may skip this section and return to it if he wants to know more details in

subsequent sections.

3.1 Order-sorted logic

The definitions follow the notation of [28].

Syntax We use lowe: case bold roman font words for sort symbols, e.g. p, sp, f. Function symbols
are declared with thei arity. If the arity is zero, we call them constant symbols. We use z, v, z for
variables. Every variable z has a sort, sort(z), which is a sort symbol. A subsort declaration has the

form r < s, where r and s are sort symbols. A function declaration has the form

where n is the arity of f. Function symbols do not have to be written in prefix notation; they may

appear in “mixfix”.

A signature T is a set of subsort and function declarations. The subsort order r <y s of T is the least
partial order <y on the sort symbols of T so that r <y s if r < s € Z. The subsort order is extended

componentwise to striigs of sort symbols. If there is no danger of confusion, the index T is omitted.



Let © be a signature. A X-term of sort s is either a variable = so that sort(x) <g s, or it has the

form f(s1,...,3.) and there is a declaration
(f-..coi81X...XSy, =T)ELD
such that r <g s and, for : € {1,...,n}, s; is a I-term of sort s;.

A T-equation is an ordered pair of L-terms written as s = t. A I-term is called ground if it contains
no variables. Vs is used for the set of variables occurring in the term s. A Z-substitution is a function

from X-terms to Z-terms such that

e if sis a I-term of sort s, then Os is a L-term of sort s,

o 0f(s1,...,8n) = f(6s1,...,03,),

e DO := {z | 6 # z} is finite.
Substitution [7] of a variable v by term e in term e’ is denoted by [e/v]e’.

[e2/v2]([e1/v1]e)

is abbreviated to

le1/v1, e2/v2]e .

These substitutions avoid name clashes: bound variables (as in A-terms) are appropriately renamed.

A specification S = (I, £) consists of a signature ¥ and a set £ of T-equations, called azioms of S.

Y or £ may be countably infinite.

Semantics Let T be a signature. A I-algebra A consists of denotations s* and f* for the sort and

function symbols of X such that:

o s?is a set.

e If (r <s) €L, then r C sA.

Ca :=|J{s?* | s is a sort symbol of T} is called the carrier of A.

o f*is a mapping Dj* — C4 whose domain D4 is a subset of Cj,where n is the arity of f.

f(f-...c:s1X...X8, = 3s) €Xanda; Gs;" (1 € {1,...,n}), then (ay,...,a,) € D'f‘t and
lagy: o ; 84) € 5%



C7 denotes the cartesian product Cq x ... x C4 with n factors. A function symbol has only one

denotation, although it may have more than one declaration in the signature.

Let A be a L-algebra and V a set of L-variables. A T-assignmentis a mapping a : V — C 4 such that
a(z) € (sort(z))* for all variables z € V. Given a I-assignment « and a I-term s, the denotation

[s]a of s in A under a is defined as follows:
[]la = o=),
[[f(slx'--vsn)]a = fA([[sl]]a)-“stﬂ],a) .

Validity of I-equations in a T-algebra A is defined as follows:
Al s =t:4 VE-assignment a([s]. = [t]a) -

If A s=t, wesay that s =t is valid in A or that A satisfies s = t.

Let S = (%, €) be a specification and A a X-algebra. A is a model of S if A satisfies every equation
of £.

Connectives and quantifiers are interpreted as usual [16]: let 7 be an interpretation and a a Z-

assignment. ($)7 are the solutions of ¢ in 7, i.e. the set of all Z-assignments.

(@A) = (&7 n (@)
(s=t)7 {a | [s]a = [t]a}
(3u(9)” {a|3d € T([d/v]e € (¢)7)}

Il

Definition 3.1 We say that 1 is a consequence of ¢ (written ¢ = ) if and only if every inter-

pretation which is a model of ¢ is also a model of 3.

We use the symbol |= for both the satisfaction relation (A |= ¢) and for the consequence relation
(¢ = ). The symbol preceding “I=" determines the meaning.

Definition 3.2 Let ¢ be a constraint of logical connectives and existential quantifiers. The prenez
normal form [22] of ¢ is Jvy, ..., um(¢'), where vy, ..., vy, are all existentially quantified variables of

¢, and ¢’ contains no more existential quantors.

3.2 Order-sorted rewriting

The definitions follow the notation of [28]. The notations and results of term rewriting [18, 19] are

generalized to order-sorted logic.

Definition 3.3 An (algebraic) I-rewrite rule s — t is a T-equation s = ¢ such that s is not
a variable, and every variable occurring in the right-hand side ¢ occurs in the left-hand side s. An
(algebraic) rewriting system is a specification R = (I, £) such that every equation in £ is an (algebraic)

rewrite rule.



The notion of algebraic rewriting rules (8] is used to differentiate these rules from the F-reduction
rule of the A-calculus. There is also the notion of applicative term rewriting systems [21] which are
algebraic rewriting systems containing a special binary operator called application. This operator is

usually syntactically invisible and left-associative.

The following notation and theorems come from [18]. Let — be a binary relation on some set. Then,
Z, denotes the reflexive and transitive closure of —, and < denotes the reflexive, symmetric, and
transitive closure of —. We write s | ¢t (read “s and t converge”) if there is an r such that s = r and
t = r. The relation — is called locally confluent if r — s and » — t implies s | t. The relation — is
called confluent if + — s and + = t implies s | t. The relation — is called terminating if there are
no infinite chains s; — s» — ... . An element s is called normal if there is no ¢ such that s — t. An

element t is called a normal form of s if s = t and ¢ is normal.

Proposition 3.4 Let — be a confluent relation. Then no element has more than one normal

form. If — is confluent and terminating, then every element has exactly one normal form.
Theorem 3.5 Let — be a confluent relation. Then s < ¢t if and only if s | ¢.
Theorem 3.6 A relation is confluent if it is locally confluent and terminating.

The following definitions come from [28]. A syntactical Z-object, O’, is a variant of a L-object O
if O’ is obtainable from O by consistent variable renaming, i.e. there exist Z-substitutions § and v

such that O’ = 80O and O = yO’.

Definition 3.7 An overlap of a rewrite system R is a triple (s — ¢, 7, s’ — t') such that
e s —t and 8’ — t’ are variable disjoint variants of rules of R, and 7 is a position of s such that
s/ is not a variable,
e if s/ = s, then s — t is not a variant of s’ — ¢/,
e there exists an R-substitution 6 such that (6s)/7 = 8s’.

An overlap (s — t,m, s — t') is called a variant of an overlap (v — v, 7, v’ — v') if u — v is a variant

of s -t and v/ — v’ a variant of s’ — ¢’.

Definition 3.8 A critical pair of an overlap (s — t, 7, s’ — t') of R is a pair (6t,6(s[r — t']))
such that (6s)/7 = 6s’, 6(s[r — t']) is an R-term, and 6 is an R-substitution. A pair (s,1) is called
R-critical if (s,t) is a critical pair of an overlap of R. We say that a pair (s,t) converges in R if

slrt.

Theorem 3.9 Let R be a sort decreasing rewriting system. Then R is locally confluent if and

only if all critical pairs of R converge.



3.3 Notation

An abbreviating notation for records is used for better readability:

(---(([1-a1[s1]) - @2[s2]) . . .) - an[sa]
is written as
[ay > 81,02 — $3,...,a, — 8,] .

For record types, we use colons instead of arrows:

(---(([1-a1[n]) - a2[m2]) .. .) - an[m]

becomes
[a1:7m,82: 72, 0y a0 i ]

Furthermore, p— - p, - b[int] is written as [b:int,...] or [b:int, R]. The p, does not appear explicitly
in this abbreviating notation. The three dots or the row variable [31] R stand for the extensible part.

Three dots are used for an anonymous row variable.

For convenience, we use a vector notation. Let _* _ be a binary relation symbol, vy,..., v, pairwise

disjoint variables, and t;,...,t, terms. We abbreviate the conjunction vy *t; A... A vp *t, to U % 1{.

4 Expressions

We specify a simple record language in the framework of order-sorted logic following the notation
of [28]. The syntax differs slightly from the abstract syntax in the introduction because we aim at
a close correspondence between expressions and types. The equations can be turned into confluent

rewrite rules, thus yielding an operational semantics.

Definition 4.1 (Signature R) We define the signature R of records. Let a be the sort of all
expressions ranged over by variables z, y, z. Let p be the sort of proper values ranged over by variables
p,q. Let ¢ be the sort of other values ranged over by variables ¢,d. Let r be the sort of record values
ranged over by variables r, and s the sort of single record values ranged over by variables s. The latter
are record values with exactly one component. The sorts are ordered as follows (see also figure 1):
s<r<p<a,c<p. aand bstand for labels from a countable set of labels. Thus, a[.] stands for

one instance of a countable number of functions. We assume a total order on the set of labels.

(] : =

a[] : a—a



Figure 1: The sort hierarchy of R

al] : p—s
-.a a—a
. : axa—a
- 1 rxs-—r

[ ] stands for the empty record, a[_] builds a singleton record with the field a, _.a is the selection of
label a, and _- _ is a “right-preferential record cons”, i.e. exactly one component can be added to a

record overwriting existing components with the same label.

The semantics of the operations is given by models fulfilling equations. The following equation
schemes stand for a countable number of equations (cf. remarks on labels above). The conditions in

equations (3), (4), and (9) are conditions for the existence of an equation, not conditional equations.

Definition 4.2 (R-equations)

variables: p,¢ : p
s : T

For every label a

afp]-alg] = afq]. (1)

For every label a

(r-alp])-alg] = r-alg]. (2)
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For every label a, for every label b, and a < b

blg]-alp] = alp]- blg]. 3)

For every label a, for every label b, and a < b

(r-bg])-alp] = (r-alp])-blq]. (4)

[]-s = s (5)

For every label a

alpl.a = p. (6)

For every label a

(r-a[p]).a = p. (1)

For every label a, for every label b, and a # b

alplb = []b. (8)

For every label a, for every label b, and a # b
(r-afp])b = r.b. (9)

Equations (1) and (2) represent right-preferential overwriting: if a label occurs more than once in a
record, the value of the rightmost occurrence wins. Equations (3) and (4) put the labels into their
assumed total order (e.g. lexicographical order for strings). Equation (5) states that the empty
record is the left-neutral element of concatenation. Equations (6), (7), (8), and (9) realize selection
of a component. Rule (8) is the product of a completion process: it has been added to the other rules
to make the system confluent. The equations are formulated in a strict way. We will be using them
(oriented to the right) as rewrite rules. In equation (1), p is disregarded in the rewriting process.

Nevertheless, the sort of p implies that it is a proper value. The term

ala[( ]}-a] - a[[ ]]

cannot be rewritten with rule (1), because a[[ ]].a is not in p. Only after rewriting it to

al( ]]-[[]],
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using rule (6), does rule (1) become applicable. The signature, R, does not contain other values

than records. Only a sort and corresponding variables are provided for other values.

Since we do not intend to restrict ourselves to the initial model, we will define the theory of R-terms

by stating explicitly which axioms are given.

Definition 4.3 The theory, TR, of R-termsis given by equations (1) through (9) and the axiom

scheme
variables: z,y : a

For every label a, for every label b, and a # b

alzg] =bly) — L. (10)

Theorem 4.4 The rewrite system obtained by orienting the equations of definition 4.2 to the

right is sort-decreasing, terminating, and confluent.

Corollary 4.5 (4.4) Every R-term has a (unique) normal form in the rewriting system of the-

orem 4.4.

All functions with a sort less or equal to p in the codomain are constructors. In definition 4.1, all
functions, except the selection, are therefore constructors. If the normal form of a term contains a
selection, it represents an error element. Its sort is a, but not p. Record concatenation is another
source of error elements: if the normal form of the right-hand side is not in s, the result will not be

in p.

5 Types

So far, we have defined terms and their operational semantics by an order-sorted specification and
the transformation of the equations to a confluent rewrite system. Now, we will define type terms
in the same way. In many “ordinary” type systems, two types are different if they are syntactically
different; e.g. int — (int — int) is different from int — int. In our type system, syntactically different
type terms may denote the same type: e.g. the types a[int]-a[int] and a[int] are the same. This is why,

in definition 5.1, there will be equations on type expressions — something which is a little unusual.

Before going into details, let us give an intuitive idea about flexible record types. Consider the
function Az.(z.a). We use additional parentheses to emphasize that the first dot is the one of -
abs:raction and the second, the one of record selection. Variables z,y, z are also used for A-bound
variables. A record [a — 5] could be its argument, and the result of the application (Az.(z.a))[a +— 5]
would be 5. To infer the type [a: @] — « for this function would be quite inflexible since the function
can also have arguments that contain further components; e.g. (Az.(z.a))[a — 5,b +— 7] = 5. We

thezefore infer a flexible record type which looks like this in the abbreviated notation: [a: «,...] — a.
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{al’ az, (13}

{a1,a2}

{ali aZ}

{}

Figure 2: The sort hierarchy of RT
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The ellipsis stands for a record extension ranging over all labels except a. This idea is formalized in

defirition 5.1.

The types for the simple record language (definition 4.1) are specified in the same framework as the
values, i.e. order-sorted logic. The sort system is more elaborate than the one of expressions. The

type language is essentially the language of expressions without selection.

Definition 5.1 We define the signature RT of types for records. Let pt be the sort of all types
ranged over by variables «, 8. Let ct be the sort of types for other values ranged over by variable «.
The set of record sorts is an infinite lattice containing finite and cofinite sorts. Variables p, ranging
over terms having record sorts, are indexed with finite or cofinite sets. A finite sort is denoted by
its set A or — more explicitly — by {a1,...,a,}, where n > 0 and the a;s are pairwise disjoint labels.
Finite sorts are ranged over by variables p,, . q4,. A cofinite sort is denoted by its set A or — more
explicitly — by {ai,...,an}, where n > 0. Cofinite sorts are ranged over by variables Par—ax The
sort {} is the top element of the lattice, and is also called rt. For variables ranging over rt, the index
may be omitted, and we just write p The finite sort A stands for the type of a record with the labels
contained in A. The cofinite sort A stands for the type of a record extension ranging over all labels,

except those contained in A.

rt < pt

A < rt

A < rt

A < B if and only if ACB

A < B if and only if ADB

A < B if and only if ANB=0

Fig ire 2 shows the sort hierarchy of type terms. The lattice part below rt has a complex structure

which is infinitely branching upwards as well as downwards.

00
al] : pt—{a}

o+- : rtxq{a} —rt
ot Ax{a} - AU{a}
- : Aw{a}x{a} o4

Definition 5.2 (RT-equations) In the following equation schemes, variables with distinct in-
dices are distinct. In order to understand the rules, the sorts of the variables described above are

extcemely important.
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variables: a : pt
p : rt
Pa : A{a}

e : {b}

For every label a

0a-ala] = ala]. (11)

For every label a

(p-pa)-ala] = p-ala]. (12)

For every label a, for every label b, and a < b

PbPa = Pa-Pb- (13)

For every label a, for every label b, and a < b

(P-p)-pa = (p-Pa):po (14)
(- = » (15)
p-[l = » (16)

Equations (11) and (12) represent right-preferential overwriting. Equations (13) and (14) order
the labels. Equation (15) states again that the empty record type is the left-neutral element of
concatenation. The only “new” equation, compared to the equations for values, is the one for the
right-neutrality (16). We need this equation, because the type of the empty record is in the subsort

of the types of records having at most one component. This contrasts to the sort hierarchy for values.

As in the definition of TR, we want to admit more than the initial model. For our types, this is
essential because, in particular, we want to admit rational trees. Thus, the next definition explicitly

states the axioms for RT-terms.

Definition 5.3 The theory of RT-terms, TR, is given by equations (11) through (16) and the

following axiom schemes:

variables: a,B : pt
pp i rt

Pa,py : {a}

pz ¢ {a}

i o {8}

/

v Py {a, b}
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For every label a

Pi Pa=P5 Py — Pa=pP; A pa=p,. (17)

For every label a

pi=p-Pa — Pa=p N pa=][] (18)

For every label a

[]=p-afa] — L. (19)

For every label a, for every label b, and a # b

m-a[a]ipﬁ-b[ﬁ] - 1. (20)

For every label a

prala)=p -alf] — a=p. (21)

The last axiom scheme states that record types are decomposable:

vaiiables: p : rt
Pz ° {a1,..:18n}
pa; ¢ {a} (1<i1<n)
For all label sets A = {ay,...,a,} and all p, there exist pgr—3=, Pa,; - - -) Pa, such that
P = Paran Pay - Pan - (22)
Theorem 5.4 The rewrite system obtained by orienting the equations of definition 5.2 to the

right is sort-decreasing, terminating, and confluent.

Corollary 5.5 (5.4) Every term of definiticn 5.1 has a (unique) normal form.

6 Typings

So far, we have defined expressions and types by the theories 7R and TRy. Expressions and types
will be related by the typing relation. Axioms for the typing relation will be stated, and our theory

will be the union of all theories presented.

Definition 6.1 The typing relation relates terms of sorts a and pt. It is denoted by a colon. The
following axiom schemes are expressed in such a way that they “decompose a term” when applied

left to right:
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variables: ~ z,y : a
a : pt
pp : rt

For every label a

z-alyl:p o 3o ,a(p=p-ala] A z:p Ay:a).

For every label a

alz]: p & Ja(p=ala]Az:a).

J:p « p=1].

For every label a
z.a:a — 3p(z:p-ala]).

The next axiom states that types are disjoint:

variables: T : a

a,B : pt

r:aAz:8 — a=p.

The theory Ti; of the typing relation is given by axioms schemes (23) through (27).

(26)

In the rule for concatenation (23), we de not know whether the type of e contains a component with

label a. However, the result is guaranteed to have such a component, and any previous component

with label a is overwritten. In the rule for selection (26), the selected component must be in the record.

Note that we have defined the typing relation for a restricted language. The second component of

concatenation (23) has an explicit label. In the introduction, it was mentioned that the motive for

this investigation is the object-oriented language O’SMALL. O’SMALL does not have classes as first-

class values and, therefore, this restriction can be imposed. With this restriction, we have principal

types, whereas Wand [30] does not have them.

The following theory will be used in the sequel.

Definition 6.2 We define the theory 7 as the union of the theories above,

T = TRUTRTU’]'“ .

With this theory, we are able to define semantically what we mean by “a term has a type”. The

corresponding formal concept of this notion is the typing.
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Definition 6.3 A type environment I' has the form
D'= Jag; w0l s g A B =T)
such that exactly one type variable a and the value variables Z are free.

A type environment contains types for term variables and a substitution ﬁ = 7. The substitution
is used to represent regular trees. The only free type variable represents the type of the considered

term. This will become clear in an example.

In the sequel, we will drop the index 7 and write |= instead of =7 since there is no danger of

confusion.

In the following definition, we will see when a type environment can be called a typing for a term.

Definition 6.4 We say that a tgtm e has a typing T if there is a type environment I', such that
F'ke:q,

where « is the only free type variable of T'.

Definition 6.5 Let T and I be two typings. I' is more general than I’ if and only if IV =T .

The “more-general-than” relation is a preorder.

Definition 6.6 A typing I is called prinicipal for an expression e if and only if IV |= T for every
typing IV of e.
Proposition 6.7 Rewriting preserves types. Let ' := Z : &’/\E =7Fand [':=%: 0 /\ﬁ = 7

and let T = I mean that & = ¢’ and 7 = 7. Then the following implication holds.

I E e:r
r _: r Fkeid.
e — ¢
r > T
Lemma 6.8 If a term has a typing, then all its subterms have typings.

Theorem 6.9 Well typed terms do not go wrong: for all ground e, if e has a typing, then the

normal form of e is of sort p.

Theorem 6.10 Every ground term of sort p has a typing.

Corollary 6.11 The normal form of a ground term in the restricted language is of sort p if and

only if it has a typing.
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7 Finding a typing

After having defined the typing relation, we will now give an effective method for deciding whether

a term has a typing.

Definition 7.1 We define W,, an algorithm for finding a typing for a term. The input is e : «,

a term and a type variable. The output is either a principal typing or failure.

Step 1 Use axioms (23) through (26) to decompose the expression e recursively until only variables

occur on the left-hand side of the colon.
Step 2 Apply the rule
variables: z : a
T:oAT:T

T:0AT=T
until there is at most one membership for every variable.

Step 3 Let {a1,...,a.} be the set of labels occurring in e. For every variable p in the constraints

resulting from steps 1 and 2 add

variables: pgr—ar @ {a1,...,a.}
Pa; {a"} (1 SlSn)
p : rt
a3 Pars+ - -1 Pan (P = Parran * Pay "+ -+ * Paa)

and replace p in all the other equations by the right-hand side of the equation above.
Step 4 Transform to prenex normal form. We then get:
Jay,...,am(z1:01A... ATy 0y APAE)

where P contains the conjunction of the new equations from step 3, and E does not contain any
of the old p’s.

Step 5 Transform E using the following rules. The rules are a specialization of rational tree unifi-
cation [6] to record type terms. Note that variables for type terms and variables in type terms

are sometimes indexed by a sort, and that variables having different sort indices are different.

variables: «,8 : pt
e - {b}
pAT =0
— 28
s (28)
If o # 8 and a € V¢ then
dpAha=p (29)

(B/al¢)Aa=p



If |o| > 2 then
AT =a
pAha=oc

If1-<|o| < |7| then

pAha=cAa=T

pAha=0cAo=T

For cvery label a

¢AUE'UG£TE'T¢1

PANOG=TgAG, =T

For zvery label a, for every label b,-and a < b

¢AUE-GG;__T‘pb
[[]/pb]((ﬁ/\az-aaif)/\pbi[]

For every label a, for every label b, and a < b

¢/\0"pb.=7'5'0’a

([Veel(¢ Ao =m5-0u) Aoy =[]

For every label a

¢ Aao] = a[7]
pAoc=T

For every label a, for every label b, and a # b

& A oy - ala] = oy - B[]
L1

For every label a

#AL= p-ala]
1
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(31)

(34)

(37)

Step 8 Garbage collection. Eliminate all existentially quantified variables that have been successfully

“eliminated” by rule (29) in step 5.

It is assumed that after each application of a rule in step 5, the type terms are transformed into

normal form by the rewriting rules obtained from definition 5.2. This is important for justifying
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rules (33) and (34). After step 1, the constraint contains exactly one variable that is not quantified.
This variable stands for the type of the whole term e. After step 2, occurrences of the same variable
must have the same type. Step 3 does all the padding at once. An intuitive reason, for why padding
is possible, is that the p,; can all be instantiated to the empty record type. Given a term together
with all its constraints, it makes all labels occurring in the term explicit in the record types of the
constraints. Thus, we can do without padding rules in step 5. The proof of theorem 7.2 is much
simpler when the padding rules are not mixed with the unification rules. Step 4 moves all quantifiers

to the outside. This step prepares for step 5, where we can deal with constraints that do not contain

quantifiers.

For a discussion of rules (28), (29), (30), and (31), refer to [6]. The canonically defined term size is
written with vertical bars in rules (30) and (31). Rules (32) through (35) decompose record types.
Rule (32) analyses a record type with equal components. We always consider record types in normal
form with respect to the rules of definition 5.2 and thus, in rule (33), we know that a b-component
cannot be contained in the type of the left-hand side. It must therefore be empty on the right-hand
side too. Similarly for rule (34). Rule (35) analyzes single fields. Rules (36) and (37) represent failure.

Before we state some properties of the algorithm W,, we will give two examples of its working. The
first example shows flexible record types. We assume that we have integers as other values. The

input to the algorithm is
(z-b[5]).a: c.

step 1 (z-b[5]).a: a.
Transform with rule (26) yielding
3p(z - b[5] : p- a[a]).
Transform with rule (23) yielding
3p, 0", B(p-ala] = p' - b[B] Az :p A5 : ).
Transform with an additional rule for integers yielding
3p, 0", B(p - ala] = p' - b[B] Az : p' AB = int).
step 2 Nothing has to be done.
step 3

Bm’ Pay Pb, ;’bvp:upén P pl»,B(
P=PggPuPo AP = pg Pl Py A
Pag " Pa Py ala] = Py -y, - B[B] A

:c:p:-"—b-p;-pg/\ﬁiint).
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step 4 Has already been done on the way.

step 5 m-a[a]-pbip:n-p;-b[ﬁ]/\z:p('rb-p;-p;,/\ﬁéint.

Apply rule (29) and rule (32) twice yielding
p;,—bipf-l—;Aa[a]_%p;/\pb ﬁb[int]/\:c:pfﬁ-p; - pp A B = int.
Apply rule (30) and rule (29) yielding
o p:L—b-a[a]'p{,A,BiintApnip&EAp; = ala] A pp = b[int].
step 6 Eliminating all existentially quantified variables that have been “eliminated” yields
z::p;'—b-a.[a]-pf,.

We have found a typing. The type of the whole expression is «, and the type of z is [a: a,...]. The

a-component of z must have type «, and £ may have more components.

The second example will demonstrate what purpose the substitution in the type environment serves.
To obtain a type that is not representable by a finite tree, we have to temporarily assume that the

signature R is extended by some equality operator
.=.:axa—a,

that RT is extended by a new sort bool, and that the typing relation is extended by the axiom

scheme
s=y:a e 3Jp(z:pAy:pAa=bool). (38)

We will now show how the algorithm W, finds a principal typing for the expression z = a[z]. The

input to the algorithm is
= alz] ¢ @,

step 1 z = alz]: a.

Transform with rule (38) yielding
Jp(z : pAalz]: pAca = bool).
Transform with rule (24) yielding
Ip,B(z: pAp=al[f]Az: B Aa=Dbool).
step 2 3p,8(z: pAp=alf]AB = pAca=Dbool).

step 8 3pa, p4,2,08(P = pa-Pa AT :pa-papa-ps=alBf]AB=pz-p.Aa=bool).
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step 4 Has already been done on the way.

step 5 T:pg Pa Pz Pa=0alf]AB=pspa ANa = Dbool

Apply rule (29) yielding
T:pzPaPaPa=alpg-pa] AB = pg-pa. Ao =bool
Apply rule (32) yielding
T:pz-paAps=[]Apa=alpz:ps] AB = pa-pa A =bool
Apply rule (29) yielding
€ :pa Aps=[]Aps=a[pa] AB=psAa=bool
step 6 Eliminating all existentially quantified variables that have been “eliminated” yields

T : pa A pa = a[ps] A @ = bool.

We have found a typing. The type of the whole expression is bool, and z has the infinite type

ala[a[a[a[al. . J)]]]]-
Theorem 7.2 The algorithm W, terminates.

Step 1 eliminates all terms that are not variables. It uses the axioms of the typing relation.

Proposition 7.3 Steps 2 through 5 leave the set of solutions invariant.
Theorem 7.4 The algorithm W; finds a typing if it exists.

Let us discuss the consequences of theorems 7.2 and 7.4. When the algorithm terminates, there is
no more applicable rule in step 5. Then, the constraints either have a resolved form, which we have
called typing, or failure is the result. In a typing, we have a type for every variable of the term, a type

for the term itself, and a substitution. The substitution finitely represents rational trees (recursive

types).

Corollary 7.5 (7.3) The typing T', found by the algorithm W, is a principal typing.
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8 A lazy rewrite system

We have seen that the equations of definition 4.2 yield strict rewrite rules when they are oriented to
the right. This is a result of the sorts of variables used in the equations. The idea of well-typedness
is strict in the literature. We have defined well-typedness semantically and, thus, the semantics of
values had to be in accordance with it. That is, we had no choice for the equations: they had to be

strict.

In this section, we present lazy rewrite rules. They are much more permissive with respect to the
order of rewriting steps. In many cases, they allow for more efficient evaluation since not all of the
subterms have to be evaluated. We will show that, for well-typed terms, the strict and the lazy rules

“do the same thing”.

Definition 8.1 We define a lazy rewrite system for R-terms by the following rules:

variables: z,y,z : a

For every label a

afz]-aly] = afy]. (39)

For every label a

(z-al)) -alz] = z-afs]. (40)

For zvery label a, for every label b, and a < b

Hyl-alz] = afz]-bly]. (41)

For every label a, for every label b, and a < b

(z-8[y]) -alz] = (z-alz])-b[y). (42)

For every label a

(z-afy))a = v (45)
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For every label a, for every label b, and a # b

For every label a, for every label b, a # b

(z-aly]):db = =z.b (47)
Theorem 8.2 The rewrite system of definition 8.1 is sort-decreasing, terminating, and confluent.
Corollary 8.3 (8.2) Every R-term has a (unique) normal form in the rewriting system of defi-
nition 8.1.

The following proposition about the preservation of types during the rewrite process is not as strong

as theorem 6.7, and we have to show more things since we are not replacing equals by equals anymore.

Proposition 8.4 Value rewriting preserves types. Let e be an R-term with typing I' =e: 7 and

e —; e’, where —; denotes the rewrite relation of definition 8.1. Then I ¢’ : 7.
In the following two examples, the set of solutions increases as the term is rewritten.

o Here, we have a ground term that becomes typable:
(3),(7)
((b[1] - afe[2).d]).b: )T = (1:a)7

I I
0 = {int}

e The second one is a non-ground term and the set of solutions increases.

((alz + 1] - a[z].b: )7 Q (a[z]: @)7

I I

{a[int]} = {a[a]|a type}

Finally, the next theorem says that the strict rewrite rules (—,) resulting from definition 4.2 and the

lazy rewrite rules (—;) from definition 8.1 have the same behavior on well-typed terms.

Theorem 8.5 Let e be an R-term with ' = e : 7, and n, an irreducible R-term of sort p. Then

- . . *
P —, N if and only if e —n.
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9 Conclusion

We have formalized type soundness using order-sorted rewriting systems. This results in simple but
sometimes lengthy proofs. The proofs had to be omitted for the sake of brevity. They will be contained
in the first author’s forthcoming Ph.D. thesis [14]. Our language has fieldwise record extension, but
no general concatenation. In this respect it resembles the language of Rémy. Whereas Rémy [25] uses
record algebras (algébres touffues) that deal with infinite tuples, we use algebras with infinitely many
constructors, and the tuples are finite. We describe the padding algorithm of Wand [31] dealing with

infinite label sets. The padding in our description of the algorithm is done all at once in step 3.
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