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Abstract

Wrappers are a mechanism in denotational semantics that model class inheritance
of object oriented programming. In this paper we try to give evidence that the unu-
sual step of reintroducing a semantic mechanism into the language being described

can be sensible.
With wrappers now being explicit, a disciplined variant of multiple inheritance
can be formulated as single inheritance and a better reusability of code is gained.

keywords: wrapper, denotational semantics, class inheritance, multiple inheritance,
hierarchy inheritance

Besides the need for denotational semantics for conducting proofs and defining a programming
language abstractly, a denotational semantics may help the novice in understanding the prin-
ciples of a new programming language if the semantics is written in a clear and intuitive way.
Advocating denotational semantics for teaching stems from the experience that “operational
reasoning is a tremendous waste of mental effort” [Dij89, page 1403]. Of course, this can be
argued and many people will think that operational semantics is more intuitive. The naturalness
of semantics is a matter of personal preferences, after all.

Smalltalk [GR89] often serves as a prototype of object oriented programming languages.
The first semantics for Smalltalk was operational. [Wol87] described the semantics of a sub-
set of Smalltalk in the denotational style. This semantics still has some operational elements:
inheritance is described by method lookup. [Kam88] described Smalltalk with a denotational
semantics in continuation style. Both semantics have the disadvantage of being long because
they describe a large subset of Smalltalk. This disadvantage has been overcome by [Red88]
who described a small object oriented programming language with a direct semantics; he uses
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fixed points for modeling self. [Wol88] regards inheritance as an optional feature. He gives a
denotational semantics of a language with objects and classes. The language with inheritance is
then translated into a language without inheritance. [CP89] described the semantics of inheri-
tance without state using wrappers. According to [Weg87] an essential feature of object oriented
programming are objects with state. [Hen90] showed that wrapper semantics is applicable to an
object oriented programming language with state.

Once a denotational semantics using wrappers is defined for a language, it is easy to introduce
explicit wrappers into the language: informally, on the programming language level you just have
to separate the definition of a new class from the naming of a superclass. This step is exemplified
in O’small. The separation results in an increased flexibility: in addition to reusing classes one
can reuse the differences that discern classes from each other.

Section 1 defines wrappers in a purely functional framework (ob jects have no state). Section 2
discusses explicit wrappers and gives motivating examples in O’small. Among them are multiple
inheritance and the application of one wrapper to different classes. The appendix A contains
the denotational semantics of O’small.

1 Semantics of Inheritance

This section describes the semantics of inheritance without state as in [Co089].

Definition 1.1 A record is a finite mapping from a set of labels onto a set of values. A
T P un
record is denoted by : with labels z; and values v;. All labels that are not
z, — Up
in the list are mapped onto L. The empty record, where all labels are mapped onto L is
denoted by [].

An objectis a record with functions as values. These functions my refer recursively to the whole
record. Note that in this section objects have no state. A generator is a function to which a
fixed point operator can be applied. Its first formal parameter represents self-reference. The
functional for the factorial function is an example of a generator:

FACT = AXs.An.if n =1 then 1 else

Let Y denote the fixed point operator. The factorial function fact is defined as the least fixed
point of the generator FACT: fact = Y(FACT) A class is a generator that creates objects. C
is the class of points in the plane. The variable s is used like self.

z - a
y - b
= Aa.\b.)As.
< ABAD A2 distFromOrg — +/(self.z)? + (self.y)?
closerToOrg +— MAp.self.distFromOrg < p.distFromOrg

An object p of class C is created by:



VAN

Figure 1: class

Figure 2: wrapper

z — 2
y -2
=Y(C22)=
P ( ) distFromOrg — /8
closerToOrg +— Ap./8 < p.distFromOrg

Inheritance is the derivation of a new generator from an existing one, where the formal para-
meters for self-reference of both generators are shared. A wrapper is a function that modifies a
generator in a self-referentiai way. A wrapper has a parameter for self-reference and a parameter
for the generator it modifies. From now on we will consider wrappers that operate on classes.

Definition 1.2 Let dom(m) = {z | m(z) #L1}. The left-preferential combination of records
is defined by:

m(z) if z € dom(m)
(m@n)(z)=4 n(z) ifz € dom(n)— dom(m)
L otherwise

Definition 1.3 Let * be a binary operator on values. The distributive version of  is denoted
by . It operates on generators and is defined by:
G1 E] Gz = AS.G]_(.S) * Gz(s)

Definition 1.4 The inheritance function o] applies a wrapper W to a class C and returns
a class. > is defined by: woc = (w-¢) ® ¢ = w(c) ® c where - is the application.

The wrapper W specifies the differences between points an circles. The variable p is used like
super.



Figure 3: inheritance

r - c
W = Xa.Ab.)\c.As.Ap.
N S8l distFromOrg +— maz(0,p.distFromOrg — self.r)

The circle-class C' is created by:
C' = Xa.Xb.Ae.(Wabc)[p](C abd)

An object ¢ of class C' is created by:

- - 3 .
y =3
c=Y(C'332)=|r - 2
distFromOrg — 18 -2
| closerToOrg +— Ap./18 — 2 < p.distFromOrg |

To illustrate the inheritance function we introduce iceberg-diagrams, an intuitive description
of classes and wrappers. A class is depicted by a triangle where the visible part (methods
in O’small) is above the surface and the invisible part (instance variables in O’small) below
(figure 1). There is an arrow for self-reference. A wrapper is depicted by an angular shape
(figure 2). Inheritance is a wrapper applied to a class (see figure 3). The common line of
wrappers and classes in the diagram represents the references to self, super, and the methods
that are not redefined. Note that the self-reference of the wrapper and the class now point to
the whole.

2 Wrappers as a Language Construct

In object oriented programming languages with class inheritance, e.g. Smalltalk [GR89], a class
declaration is a modification of an existing class, its superclass. In some cases the modification
is interesting in its own right: it is advantageous to apply the modification to more than one
superclass. We call such modifications wrappers according to the semantic construct of [Coo89].

Let us explain the difference between class declarations with and without explicit wrappers
in the syntax of the object oriented programming language O’small. Before, i.e. in [Hen90], a
class A was defined as a subclass of another class B. The modification is contained in the new
instance variables V' and the new methods M. In the following O’small-fragments, V represents
a sequence of variable declarations and M represents a sequence of method declarations.
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class A subclassOf B def V in M ni

Now, with explicit wrappers, a wrapper W is defined in much the same way as a class before,
except that it does not name a superclass.

wrapper W def V in M ni

The syntax and semantics of the modification, i.e. V and M, are as before. The class A is defined
as the wrapper W applied to the superclass B. The next program line is again O’small-syntax.}

class A =WB

But now, that wrappers are denotable, i.e. they can be bound to variables, they can be applied
to several classes. For example:

class D =W C

2.1 Multiple Application of a Wrapper
2.1.1 TUniversal Wrappers

A wrapper with method names different from all method names in existing classes, whose method
bodies refer with self to its own methods only, and with no occurrence of super, is called a
universal wrapper. A universal wrapper can be applied to any existing class. An example
for a universal wrapper is the wrapper COLOR in the O’small-program in figure 4.2 This is
what [Co089] calls hierarchy inheritance — although you still have to apply the wrapper to each
member of the hierarchy “by hand”. The wrapper for the color is applied to the class Point
which results in the class Col Point. The resulting class hierarchy can be seen in figure 5. Point
is a superclass of Circle. The derived hierarchy is ColPoint and ColCircle. In the example
ColCircle is a subclass of Circle but it could also be a subclass of ColPoint as the dashed line
suggests. That is to say, had we applied CTRCLE to ColPoint this would have resulted in the
same ColCircle.?

2.1.2 Special Wrappers

A special wrapper is a wrapper that is not universal. A special wrapper refers in some way to
methods defined in its superclass. If it were applied to a class that does not define the methods
in the expected way the result could be run-time errors. We will show an example of a special
wrapper that can nevertheless be applied to more than one class.

LIf we were allowed to go beyond ASCII in a programming language we might have replaced the program line

by class A=W [E] B.
2in our O’small-examples wrapper identifiers are written in upper case and class identifiers starting with capital

letters.
3in a “real language” it should be possible to identify any universal wrapper with the class that results from

its application to the empty class. This would economize on writing.



wrapper POINT

def var xComp := 0; var yComp := 0

in meth x() xComp
meth y() yComp
meth move(X,Y) xComp := X+xComp; yComp := Y+yComp
meth distFromOrg() sqrt(xComp*xComp + yComp*yComp)

meth closerToOrg(point) self.distFromOrg < point.distFromOrg ni

wrapper CIRCLE
def var radius := 0
in meth r() radius
meth setR(r) radius := T
meth distFromOrg() max(0, super.distFrom0Org - self.r) ni

wrapper COLOR

def var ¢ := 1
in meth setColor(t) ¢ := t
meth color() c ni
class Point = POINT Base class Circle = CIRCLE Point
class ColPoint = COLOR Point class ColCircle = COLOR Circle

Figure 4: universal wrapper

ColPoint

Figure 5: hierarchy inheritance



Definition 2.1 Let M be a set. A subset H C M x M defines a preorder (we often write
a < b for (a,b) € H), if the following holds:

VaeM: a<la
a<bAbLce = a<lec

If, in addition, a < b A b < a = a=>bholds, (M,.<.)is called a (partial) order.
Definition 2.2 Let N X N be the set and < a relation defined as:
(,9)< (=) & z+y < 2'+y

Definition 2.3 Let Z be the set and < a relation defined as:

' & JzeZ:zxz="7

z2< z
One easily verifies that (N X N,. < .) and (Z,. < .) are preorders. It is possible to obtain an
order from every preorder by changing to equivalence classes, where two elements a and b of a
preorder are equivalent (a = b) if a < b A b < a. An order is obtained by regarding ~ as the
equality.
The O’small-program in figure 6 shows the preorders of definition 2.3 and definition 2.2 and
a wrapper that changes to the equivalence classes and thus makes an order from every preorder.
We require the equality to be named eq and the relation leq.

2.2 Multiple Inheritance

Inheritance is a mechanism for incremental modification. In our current framework it is possible
to redefine methods such that their semantics in the subclass has nothing to do with their
semantics in the superclass. As long as certain minimal requirements on type compatibility are
guaranteed [Coo89], no run time errors will occur. But we require more than that and advocate
a disciplined version of inheritance that allows us to make certain compatibility assumptions on
subclasses. Otherwise methods will be inherited just because they happen to fit into the current
scheme, and many dependencies between classes will hinder modifications in implementations.
Therefore inheritance should exclude cancellation. Cancellation does not occur at the level of
names in O’small, i.e. every method of the superclass must occur in the subclass. For inheritance,
as explained in section 1, to work, a minimal type compatibility is required: the type of the self-
reference of an inheritor must be a subtype [Car88] of the type of the self-reference of its parents
[CHC90]. For the principle of substitutability [WZ88] modulo a static type checking system also
type compatibility of the external interfaces (signature compatibility) of inheritor and parents is
necessary. Flexible static type checking systems for object oriented programming languages are
subject to research. Semantic compatibility (behavioral compatibility) is also desirable. There
has been a pragmatic approach with Hoare-logic where some aspects of semantic compatibility
are checked at run-time [Mey88]. The definition of semantic compatibility in object oriented
languages is still subject to research [Gun90].

One speaks of multiple inheritance when a class inherits the properties of at least two classes.
This implies, according to our view, that objects of the new class are substitutable for objects
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wrapper PAIR

def var xComp := 0 var yComp := 0
in meth set(a,b) xComp := a; yComp := b
meth x() xComp
meth y() yComp

meth leq(p)  (xComp+yComp) <= (p.x+p.y)
meth eq(p) xComp=p.x and yComp=p.y ni

wrapper DIV

def var z := 0

in meth set(v) =z:=v
meth value() z
meth leq(n) (n.value mod z) = 0
meth eq(n) z = n.value ni

wrapper PREORDER20RDER
meth eq(e) self.leq(e) and e.leq(self)

PAIR Base
DIV Base
PREORDER20RDER Pair
PREORDER20RDER Div

class Pair

class Div

class OrderedPair

class OrderedDiv

Figure 6: a special wrapper

of both parent classes. There is a problem when there are name conflicts [Knu88] between the
classes from which is inherited.

Let A and B in figure 7 each define a method m and let m not be redefined in C. Let us
denote by m4 the definition in 4 and by mp the definition in B. If m4 and mp are incompatible
at the signature level, if they have incompatible types, cancellation at the signature level is the
consequence because either m4 of mp has to be chosen when a message with the selector m is
sent to an object of class C. One can try to master the name conflict by renaming [Mey88] but
this is no remedy for cancellation. Cancellation at the signature level is not desirable because it
may be a cause of run time errors. If m4 and mp are compatible at the behavioral level (this
implies compatibility at the signature level) there is no cancellation. Still either m4 or mp has
to be chosen.

In every case described so far, the inheritance graph in figure 7 is either impossible, because
the resulting C is illegal, or misleading, because the graph suggests symmetry where there is
none. Figure 7 is acceptable only if every method for a message selector that is understood by A
and B is defined in a common superclass of A and B. That is to say, we regard figure 7 only as
a graphical way to express that C inherits the properties of A and B (with single inheritance)
but it does not matter in which order.

After tailoring multiple inheritance to our needs, we are able to define it with explicit wrap-
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pers. For every class there is a defining sequence of wrappers, starting from the predefined class

Figure 7: multiple inheritance

Base (see section A). We can therefore represent A and B like:

A = WAG](---(Wi 5] Base)---)
B = WEG](-(WE 5] Base)--)

Because wrappers are now explicitly denotable values we can reuse them and define C as:

¢ = WORJWAR](-- (W 5] (WR [5] (- (WY [&] Base)--))) -+ ))

Let us look at an example represented by iceberg diagrams. Let in figure 7, A be derived from
Base with two wrappers (I = 2) and B with three (m = 3). Let further the two sets of wrappers
be disjoint. If C does not add any definitions, the multiple inheritance for C is depicted by

figure 8.

2.3 Related work

[Sny86] categorizes different strategies in multiple inheritance into graph oriented solutions as
in Trellis/Owl [SCB*86], linear solutions as in Flavors [Moo86] or CommonLoops [BKK*86],
and tree solutions as in Common Objects [Sny85]. Graph oriented solutions are flexible yet
complicated and they make inheritance become part of the external interface [Sny86]. In linear
solutions the inheritance graph is transformed into a chain. The problem here is that one class
may have a new parent of which the designer was not aware of. In tree solutions the graph is
transformed into a tree by duplicating nodes. For each inheritance path to a superclass a new set
of instance variables for thrat superclass is created. Our solution may be seen as a linear solution.
In O’small there are no name-conflicts with instance variables because they are encapsulated.

The mixing of flavors in the programming language Flavors [Moo86] resembles our explana-
tion of multiple inheritance most. Flavors can be regarded as analogous to classes that can be
used like wrappers. This comes from another context and there are some differences. Flavors
has intricate method combination and instance variables are not encapsulated. Duplicate flavors
in multiple inheritance are eliminated. This would correspond to the elimination of duplicates of
identical wrappers WA = Wf in the definition of C. In our context this is impossible in general
because of the pseudo-variable super. Whereas Flavors uses a standard mechanism for multiple
inheritance O’small enables the simulation of multiple inheritance “by hand”. In O’small it is
the responsibility of the user to solve name conflicts.

[Co089] characterizes multiple inheritance in a general way and not completely. He introduces
a new kind of wrapper (n-wrapper) whereas we use ordinary wrappers. n-wrappers are more
general than our wrappers.



N\
a)

A B

Figure 8: multiple inheritance

O’small ML

Figure 9: dynamic binding / static binding

Explicit use of wrappers bears a certain resemblance to functors in the module system of
ML [Mac85]. Classes correspond to ML-structures. In contrast to wrappers, functors can have
more than one argument and arguments must be qualified. The main difference is the absence of
dynamic binding in ML. If we depict functors and structures in the same way as wrappers and
classes, with iceberg diagrams, the difference between ML and O’small can be seen in figure 9.
ML has no pseudo-variable self but it has recursion. Thus the arrows in the diagram stand
for recursion in the functions of the module. A function of the old (lower) module will always
recursively refer to functions of the old module, even if functions of the same name have been
defined in the new module.
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3 Conclusion

A new language construct and its denotational semantics have been presented. The resulting
language is an extension of O’small [Hen90]. With explicit wrappers we are able to realize
enhanced reusability of definitions, something that comes close to hierarchy inheritance, and a
disciplined version of multiple inheritance. Our version of multiple inheritance can be described
with the same mechanism as single inheritance.

Wrappers are not applicable to all classes but to a subset only. A static type system could
check if a wrapper application is legal.
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A Semantics of O’small

In this section we show how to extend the semantics of inheritance without state of section 1 to a
semantics of an object oriented programming language, i.e. we add the state that was abstracted
from in section 1. The proper semantics definition consists of the abstract syntax (section A.3)
and the mapping from the syntactic domains onto the semantic domains defined by the semantic
clauses (section A.4). Our way of describing semantics goes back to [Sto77] and [Gor79].

A.1 Extending the Semantic Domains

In the description of the imperative programming language SMALL there are three semantic
domains for values. For the description of O’small these domains have to be extended. There
are Storable values which can be put into locations in the store. Denotable values can be bound
to an identifier in an environment. Ezpressible values can be the result of expressions. Storable
values are so called R-values and files. Files serve for input and output. R-values are the results
of evaluating the right hand sides of assignments. We extend R-values by objects. Denotable
values are locations in the store, R-values, procedures and functions. We extend the denotable
values by classes and wrappers. Expressible values are the same as denotable values. We will
refer to them as denotable values from now on.

A.2 The New Semantic Domains

The newly introduced semantic domains are Object, Class, and Wrapper. Objects, classes, and
wrappers were introduced in section 1. Their domains were:

Object = Record
Class = Object — Object
Wrapper = Object — Object — Object
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What are the new semantic domains in the semantics of O’small which correspond to the se-
mantics of inheritance? For Object it is still Record, although the record values are different
now because the state is hidden inside the record values. The domain of wrappers is completely
determined by the domain of classes and the latter is discussed now.

To understand the semantic domain of classes we take a closer look at class declaration and
object creation. When a class is declared, the current environment is enriched by the class name.
The class name is bound to the result of a wrapper application. In this wrapper application
the wrapper for the current class is applied to an existing class. The store remains unchanged
because the instance variables are not allocated at the time of the class declaration or wrapper
declaration. An object is created by application of the fixed point operator to the class. For the
fixed point operator to be applied to it the domain of the class must be

a— Qa

where a is any domain (the domain of classes was Object — Object in section 1). The environ-
ment for methods is recursive whereas the environment for instance variables is not. We allocate
the instance variables after the application of the fixed point operator. A function is needed
for the allocation of all instance variables* of the new object. This function has to “know”
the current store and has to return it with the instance variables inside it; the store must thus
appear in the domain and the codomain of the function. In addition this function has to return
an object. Therefore the result of the application of the fixed point operator to the class is:

Store — [Object X Store]
This is our a. Thus the domain for classes is:

(Store — [Object x Store]) — (Store — [Object x Store])

A.3 Syntax of O’small
A.3.1 Syntactic Domains

There are primitive syntactic domains:

Ide the domain of identifiers I
Bas the domain of basic constants B
BinOp the domain of binary operators O

To the right are the variables ranging over the respective domain in the clauses. And there are
compound syntactic domains:

Pro the domain of programs

Exp  the domain of expressions

CExp the domain of compound expressions

Var the domain of variable declarations

WrCl the domain of wrapper and class declarations
Meth the domain of method declarations

2g<am

‘including the instance variables declared in superclasses
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Method declarations are distinguished from variable and class declarations because methods are
declared in classes only. In lieu of commands [Gor79] we have compound expressions. Their
syntactic appearance is similar to commands but compound expressions return a value, whence
the name.

A.3.2 Syntactic Clauses

n=WKC

::= wrapper Idef Vin M |class; = I, I3 | W; W, | ¢

2:=E |I:=E |output E |if E then C; else C, | while Edo C | def Vin C | Cy;Cs
=B |true |false |read |I | EI(E,,...,E,) |newE | E; O E,

u=varl:=E |V, V, |e¢

::= meth I(I,...,I,) C | M; M, |¢

2 <HQg

Wrapper, class, variable, and method declarations may be empty.

A.4 Semantics of O’small
A.4.1 Semantic Domains

Primitive semantic domains:

Unit the one-point-domain u
Bool the domain of booleans b
Loc the domain of locations 1

Bv the domain of basic values e

The element of Unit is denoted by unit. Compound semantic domains are defined by the fol-
lowing domain equations:

Recordyg = a — [ + {L1}] records

Env = Recordyge, Dy environments T

Object = Recordge,pv objects o
Dv = Loc + Rv + Method,, + Class + Wrapper denotable values d
Sv = File + Rv storable values v
Rv = Unit + Bool + Bv + Object R-values e

File = Rv* files i

Store = Recordpoc,sv stores s

Method,, = Dv™ — Store — [Dvx Store] method values m
Class = Fixed — Fixed class values c

Fixed = Store — [Object x Store] fixed values x
Wrapper = Fixed — Class wrapper values w
Ans = Filex{error, stop} program answers a

Records are polymorphic. Only a finite subset of labels is mapped to values other than L.
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Domains Method,, are needed for each n € INy. Fixed values can create objects but are not
suited for inheritance. They are the results of fixed point operations applied to classes.

A.4.2 Semantic Clauses

The following semantic functions are primitive:

B: Bas — Bv
O : BinOp — Rv — Rv — Store — [DvXxStore]

B takes syntactic basic constants and returns semantic basic values. O takes a syntactic binary
operator (e.g. +), two R-values, and a store; it returns the result of the binary operation and
leaves the store unchanged. The remaining semantic functions will be defined by clauses and
have the following types:

: Pro — File — Ans

E : Exp — Env — Store — [DvXStore]
: CExp — Env — Store — [DvXxStore]
: Var — Env — Store — [EnvXStore]
: WrCl — Env — Store — [EnvXStore]
: Method — Env — Env

ETs<n0=mO

Differing from [Gor79] we use record notation for environments and stores. Alternatives are
denoted in braces. Note that in the following clause err, inp and out are locations and not
identifiers. For the definition of auxiliary functions in the following clauses refer to appendix B.

P[W C] i = extractans sfinal
where
error, if s err
extractans = As.(s out, ' ) )
.| stop, otherwise
(rwrcl,—) = W[[W]] Tinitial Sinitial

(=S final) = CICl Tuwat Sinstsat

Tinitial = | Base +— Jo.As.result [] ]
[ err +— false

Sinitial = | inp +— 1
| out +— €

An answer from a program is gained by running it with an input. The store is initialized with
the error flag set to false , the input, and an empty output. The initial environment contains
the “empty” class Base. The initial environment is enriched by the declared classes. Then
the compound expression is evaluated Objects of the base class are records where every label is
mapped to L. In addition to the output the error flag shows if the program has come to a normal
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end (stop) or if it stopped with an error (error). For the definitions of .x. refer to the appendix B.
R[E]r = E[E]r x deref » Rv?

The semantic function R produces R-values.

E[B] r = result(B[B] )
Eftrue] r = result true
E[false] r = result false

. . seterr s ,ifi=¢
Efread] r = continp x Ails. { (b, [inp s t1i] ® ). otherwise }
E[1] r = result (rI) x Dv?
E[EI(Eq,.En)]Jt = R[E]r * Object? x Xo.(result(o I)xMethod?*

AmRI[Eﬂ] I'*Adl. “en R[[En]] r*Adﬂnm(dl’u . ,dﬂ))

The last clause is for message sending, which is record field selection (hence the notation). The
first expression is evaluated as an R-value. The result of this evaluation must be an object. The
resulting record o is applied to the message selector I. This should result in a method that is
then applied to the parameters.

E[new EJr = E[E]r % Class? x Ac.As.(Y ¢)s

After evaluating F we get a class. The fixed point operator Y is applied to this class. The result
of the application of Y is applied to the current store s.

E IIE]_ (0] Ez]] r = R[[Eﬂ] T % AeI.R([Ez]] T % /\620[0]] (el, ez)
C[E] r = E[E]r
C[I:=E]r = E[IJr * Loc? » AL R[E] r x (update 1)

Cloutput E] r R[E]r * Ae.Xs.(unit, [out — append(s out,e)] @ s)
C[if E then C; else C3] r R[E]r * Bool? x cond(C[Cy] r, C[C2] 1)
C[while E do C] r " = R[E]r x Bool? x

cond(C[C] r x Ae.C[while E do C] r, result unit)
C[def Vin C end] r V[V]r » Ar’.C[C] (r'&r)
C[Cy; Co] = = C[Cy]r * Ae.C[Ce] T

The result of assignment, output-term, and while-loop is unit. In the sequence the transmitted
value is discarded. This practice has been adopted from ML [Mil84].

W [wrapper I def V in M] r = result [I — w]

self = Tse
where w =/\Xaelf~’\xsuper-/\screate- (MIIM]] ( super — o ® Tiocal D I‘) ) Snew)
super

(rauper; Ssupcr) = Xsuper Screate
(rlocal, snew) = V[[V]] T Ssuper
(rself,—) = Xself Screate
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The wrapper w is bound to an identifier. w takes a class for self reference, a class for reference
to the superclass, and a store as parameters. The store parameter is fed at object creation
time, z,.s is fed at the fixed point operation, and z,up.- is fed at the wrapper application. The
wrapper evaluates the method definitions in an environment being determined at declaration
time — except that the locations for the instance variables have to be determined at object
creation time. The local environment is only visible in the class itself. This is the reason for
encapsulated instance variables.

In the inner where-clause above, environments and stores are created “successively”. The
instance variables for the superclass are allocated first. The instance variables for the current
class are allocated by evaluating the declarations V' in the changed store. Then z,.; is again
applied to the changed store to give the self-environment. The careful reader may have noticed
that the resulting store is not needed. This is indicated by an underscore. The reason for this
is that the instance variables of the current class have been allocated already. The method
environment is recursive, the instance variable environment is not.

W [class I; = I Is] r = E[Is] r * Class? x Ac. E[I] r x Wrapper? % Aw. result[I; — w[>]c]

I, denotes a wrapper and I3 denotes a class. The identifiers are looked up in the environment
and the result of the wrapper application is bound to I;. The result of the evaluation of a class
declaration is the binding of a class to the class name. The store remains unchanged when a
class is declared.

W[W; Wo] r = W[W ] r ~ Ar’. £’@(W[W,] (r’&r))
W[e] r = result []

VlvarI:= E] r = R[E]r x Ad. new x AL.As. ([I — 1], [1 — d]®s)
V[V1 V,]r = V[Vi]r * X’ £'@(V[V:] (r’&r))
V[e] r = result (]
L » 4
M[meth I(I;,...,I,) C]Jr = I » Ad;. ...Ad.. C[C]( : ér)
I, » dn
M[M; M:] r = (M[M]r) & (M[M;] r)

M[e] = - =1

Method definitions are not recursive. Recursion and the calling of other methods is possible by
sending messages to self.

B Auxiliary Functions
We need a generic function * for the composition of commands and declarations. This function

stops the execution of the program when an error occurs. Let there be two functions f and g
with the following types:

'y < Store > — [D, x Store], g:D; — Store — [D3 x Store]
Dy — Store
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The lines in braces represent alternatives. The alternatives in the following text are not free
but depend on the choices of the three alternatives above: If above in the braces you choose the
upper alternative, you have to choose the upper alternative in every brace below. If above in
the braces you choose the lower alternative, you have to choose the lower alternative in every
brace below. Then the composition of f and g has type

Store
fxg: < Dy — Store >a — [D3 x Store]

and is defined by
f*g=< As1 >{ (L:52), if 52 err where (d2,32)=< fa >

g da 32, otherwise fdisy

* is left associative. The definition of > in section 1 is based on the left-preferential combination
of records (denoted by ®). This symbol is also overloaded in the semantic equations. If the
arguments of @ are of the domain Fized then @ stands for:

1 ® Ty = As.(ry Oipr T2,8') where (r1,8') = 218, (r2,-) = 28

where @ stands for the operation on records that is defined in definition 1.2. This is the only
change of the inheritance function (definition 1.4). Here are further auxiliary functions. Let D
be any semantic domain:

cond.2 [D X D] — Bool =5 D auen:msmnsmsnsmssssnsmwesam o mee as5s e 6 e 5 mns o6 s o Alternative
cond(dy, d2) = Ab.b — dy, ds

cnt : Loc — Store — [[Sv + {L}] x Store] .......covviniiiiiiiiii, Contents of a location
cnt = AL.As.(s 1, s)

cont : Dv — Store — [Sv x Store] ............. Contents of a location with domain checking

cont = Loc? % cat * Sv?

D? : D’ — Store — [D’ x Store], with D C D’ ........coiiiiiiiiiiiiinn.. Domain checking
D? = Ad. result d, if isD d
seterr , otherwise

dezef © DV ~» SEor€ = [DV X SEOTE] : s vee vrs 015 515 e v 1 0 900 9 wim e i w00 e 970 e s 00w 8 35 00 Dereferencing

cont e , if isLoc e
deref = Ae. ’ .
result e, otherwise
new : Store — [Loc X Store] ..........coiiiiiiiiiiiin, Getting a new location in the store

new s = (1,5) or = (L, [err > true] @ s)

If new s = (1,s) then s 1 = L is guaranteed.

result : D — Store — [D X Store] ........c.oooiiiiiiiiiiiii, Side effect free evaluation
result d = As.(d, s)
seterr : Store — [D X Store] .......oiiiiiiiiiiiiiiii i Setting the error flag

seterr = As.(L, [err — true] @ s)

update : Loc — Dv — Store — [DvxStore] ............cooiiiiinn.n. Updating of a location
update 1 = Sv? * Ae.As.(unit, [l — €] @ s)
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