First Order Data Types and
First Order Logic
by
Ralf Treinen

A 01/91

Saarbriicken, Januar 1993

Abstract: This paper concerns the relation between parameter-
ized first order data types and first order logic. Augmenting first
order logic by data type definitions' yields in general a strictly
stronger logic than first order logic. We consider some proper-
ties of the new logic for fixed data type definitions. While our
new logic always fulfills the downward Skolem-Lowenheim prop-
erty, compactness is fulfilled if and only if for the given data type
definition the new logic has the same expressive power than first
order logic. We show that this last property is undecidable.

Ralif Treinen
Fachbereich 14 - Informatik

Im Stadtwald

Universitat des Saarlandes
W6600 Saarbriicken

- Germany

Electronic Mail: treinen@cs.uni-sb.de

Contents
1 Introduction

2 Preliminaries

3 Modules
31 Syntax e e e e e e e e e e e
32 SemMantiC8 : s s six 55 56 w4 W s KW AE RE BE $E L4 Fa B e w
3.3 Basic Properties of the Semantics
4 Logic
4.1 Basic Definitions and Properties
4.2 Classes of Parameter Algebras.
4.3 Parameter Conditions

5 Properties of the New Logic
5.1 Downward Skolem-Lowenheim

52 Compactness

6 Decidability Questions

11

13
13
14
16

18
18
19

23

1 Introduction

The use of modules for data abstraction is now a well-established principle in
software design, see for instance [Bis86]. From the programmers point of view
a module is a piece of encapsulated software that propagates only a well-defined
subset of its data structures and operations to its environment, we call this the ez-
port part of the module. Outside the module these data structures and operations
are accessible only via their names, the implementation remains hidden from the
users of the module. The module may use data structures and operations defined
elsewhere in the program, this leads to the important concept of parameterization:
The parameter part of module specifies the sorts and operations that have to be
supplied to the module. In the following we will always consider modules as pa-
rameterized modules, even if the the parameter part is not stated explicitly in the
syntax. This interpretation of modules reflects in the semantics: The semantics
of module now has to be defined as a function that maps the denotations of the
paramter part to the denotations of the export part.

Among the modularization concepts known from programming languages we here
only mention the clusters of CLU ([LG86], [LAB*81]), the packages of Adal
([DoD81], [ANSI83]), the modules of MODULA-2([Wir85]) and the structures
of ML ([Mac86]). Generic data types as in ML or Miranda? ([Tur85], [Tur86])
provide another parameterization concept by abstracting basic sorts from data
type definitions. Furthermore parameterization comes naturally with specification
languages, no matter whether they are operational, axiomatic (algebraic) or algo-
rithmic ([EM90]). A non-exhaustive list of specification languages using parame-
terization is Alphard ((WLS76], [Sha81]), CLEAR([BG80]), ACT ONE ([EM85])
and OBSCURE ([LL87], [LL90]). All these languages differ substantially in the
methods used for implementing, resp. specifying, data structures and operations.
In this paper we take an abstract approach and present an idealized language for
expressing modules. The language follows the Algorithmic Specification language
of [Loe87] and can be seen as a programming language as well as a specifica-
tion language. We only consider modules defining data structures and operations,
higher order functions are not included in our language. We have a purely func-
tional point of view, that is modules construct new “exported” algebras from given
“parameter” algebras.

We do not distinguish between the import- and the parameter part of a module
as it is done in [EM85]: In our sense the import part comprises all the sorts
and operations that may be used by a module but are not defined in it. [EM85]
call this the import part while their parameter part designates some sorts and
operations that are common to the import and the export part. We choose the
name “parameter” in order to emphasize that the semantics of a module depends

1Ada is a registerd trademark of the United States Departement of Defense.
2Miranda is a registered trademark of Research Software Ltd.

exactly on the meaning of these sort and operation symbols.

In our idealized language functions are defined by general recursive programs as
in functional programming languages, but without syntactic sugar as for instance
the let-construct or patern matching. Data structures are defined by constructor
functions, this kind of data definition is known from languages like ML, Miranda
or Algorithmic Specifications. The Algorithmic Specification method furthermore
introduces subset and quotient operations on algebras, but as shown in [Loe87]
these are not relevant for the logic and we are allowed to drop them here. Although
restricted in expressive power we claim that our idealized language provides a
representation of interesting subsets of the languages above (also the imperative
ones in the case of absence of global variables, such that the functional perspective
is retained).

This idealized language can be seen as a generalization of program schemes (see for
instance [Gre75]). In fact, when we restrict the module language by excluding the
definition of new sorts we meet exactly the situation of recursive program schemes,
where for some module a parameter algebra corresponds to an interpretation of
a program scheme. While in the theory of program schemes one is interested in
deriving properties of schemes that hold for all interpretations from some fixed
class, we are here interested in another question.

Our interest in modules is motivated by their use in the top-down design of soft-
ware. Given some properties of the export algebra of a module, we would like
to know the exact requirements to the parameter algebra that ensure that the
properties are satisfied. This leads to the central notion of a weakest parameter
condition: For a given module m, a formula v over the parameter signature of m
is called a weakest parameter condition of a formula w over the export signature
of m if for each parameter algebra P: P fulfills v iff the semantics of m, applied
to P, fulfills w.

In order to investigate the existence of weakest parameter conditions we incorpo-
rate the semantics of modules into a new logic that extends first order logic. In
this new logic the models are parameter algebras and the formulas are first order
formulas over the export signature of some given module. We always refer to some
fixed module, that is the modules themselves do not occur in the formulas of our
new logic. In the terminology of [KT90], our logic is an endogenous logic about
modules, not an exogenous one.

The Logic of Effective Definitions (EDL) of [Tiu81] considers completely unstruc-
tered schemes that are a generalization of recursive program schemes. Model the-
oretic and proof theoretic properties of EDL are discussed in [Tiu81]. In contrast
to EDL our logic incorporates data structures defined by constructors. Further-
more we concentrate on the relation between first order logic and the new logic as
described above.

This paper is organized as follows: In the next section we first shortly review

the notions we use in the rest of the paper. In Section 3 we define syntax and
semantics of our module language and show some basic properties of the semantics.
Section 4 defines the central notions with regard to the logic. The fundamental
model-theoretic properties of our new logic are investigated in Section 5. Section 6
addresses decidability questions.

2 Preliminaries

The purpose of this section is fixing the notations used in this paper, not giving
complete definitions.

We summarize some basic notions about signatures and algebras. A complete set
of definitions is given in [EM85].

A signature is a pair (S, F'), where

e S is a set of sort symbols.

e Fis a set of S-sorted function symbols, that is each f € F is equipped with
an arity arity(f) € S* x S. For arity(f) = (81,...,8n,8) we will often write
fi81,...,8, — 8.

If £ = (S, F) is a signature and F’ is a S-sorted set of function symbols we write
Y U F' for (S,F U F'). The intersection of signatures ¥; = (S;, F;), i = 1,2, is
defined as £, NE; := (S; NSz, F1NF,). A signature ¥, = (S;, F) is a subsignature
of a signature X, = (S2,F2) if S; C S; and F; C F,. A variable family for a
signature ¥ = (S, F) is a family X = (X,),es of sets of variable symbols that are
pairwise disjoint and disjoint to F. We will often use set notation instead of the
exact family notation. For a variable family X = (X,),es and (S, F)-algebra A
I'x,a or shortly I 4 denotes the set of A-assignments.

If X is a variable family for the signature ¥ = (S, F), Ts(X) is the set of terms
built with F and X. The set of ground terms Tx(0) is also written as Ty. For
t € Ts(X) the sort of t sort(t) € S and the set of free variables of ¢ free(t) C X
are defined as usual, Tx ,(X) denotes the subset of terms with sort s.

Let ¥ = (S, F) be a signature. A X-algebra A consists of
e aset 34 for each s € S, called the carrier set of sort s, and
e a function f4 : sf!,...,84 — 34 for each function symbol f € F with

fi815...,8, > 8

Let ¥ = (S, F) be a signature. The X-algebra B is a X- subalgebra of the X-algebra
A (notation: B C A), if:

o forall se S: 88 C g4

e forall fEF, fi8,,...,8, = 8: fB=fA |sf X ... %8B
If ¥, is a subsignature of ¥; and A a ¥,-algebra then A l21 denotes the restriction
of A to ¥;. A X-algebra A induces an interpretation function for terms:

A:Tg(X) — (Fx,a — A)

We assume from the reader basic knowledge on first order logic (see for instance
[End72], [CK90]). We only consider first order logic with equality as the only
predicate symbol, therefore we can consider algebras as models in the sense of first
order logic. We write A,a = w if the formula w is satisfied by the model A and
the assignment a € T'4, if w is a sentence we write A |= w in this case. This
generalizes to sets W of sentences by A |= W if A = w for all w € W. For a class
C of algebras we write C |= w if A = w for each A € C.

We use a somewhat sloppy notation for extensions of algebras adopted from
[CK90]. If A is a (S, F)-algebra, (SU{c}, F) an extension of (S, F') by one constant
symbol ¢ of sort s and a € 84, then we denote by (A,a) the (S U {c}, F)-algebra
that coincides with A on (S, F') and assignes a to c.

IC is the equivalence junctor. For a sentence w and terms ¢;, t2 of the same
sort where t; does not have a bound variable occurrence in w, w(t;/t;) denotes
the sentence obtained by substituting every occurrence of ¢{; in w by ;. It is
understood that bound variables are renamed such that no free variable of ¢, is
captured by a quantifier of w.

A XY-algebra A is an elementary submodel of a Y-algebra B if A C B and for all
Y-formulas w and all A-assignments a € T4 CT'p: A,a | wiff B,a = w. Thisis
a stronger notion than beeing a submodel, especially elementary submodels have
the same first order theory ([CK90]).

We use some basic notions from the theory of the semantics of programs, see for
instance [LS87).

3 Modules

3.1 Syntax

The syntax of modules as given in this section closely resembles the syntax of
Algorithmic Specifications as given in [Loe87].

Before we give the exact syntax of a module we define the notion of a standard
signature. A signature will be called standard if some distinguished sort and
operation symbols are present in it.

Definition 1 A signature (S, F) is called a standard signature ([Loe87]) if:

e S contains the sort bool and
o F contatns the following function symbols:

true : — bool
false : — bool
1, : —s forallse S
ifthenelse, : bool,s,8 — 8 forallse S
=, : 8,8 — bool forallse S

In [Loe87] L, and ifthenelse, have not been included in the standard signatures.

Informally speaking, a module as it will be formally defined in Definition 2 consists
of the following items (see Figure 1 for an example):

¢ the signature of the parameter algebra
e the body of the module containing

— the list of newly defined sorts. For each new sort s we implicitely define
functions 1,, =, and ifthenelse, of appropriate sort.

— the list of constructor symbols that will be used to define the carriers
of the new sorts. The domain sorts of these constructors may include
sorts from the parameter algebra, their range must of course be a new
sort. The introduction of a constructor, say ¢, automatically entails
the definition of a pertaining test function is.? and selector functions
select!. This bears some similarities with the list data structure of
Common LISP ([Ste90]) where nil and cons are constructors, consp
is a test predicate and car and cons serve as selectors>.

— the list of recursive function symbols. Together with all the functions
mentioned above they build the set of accessible function symbols.

— a recursive program for the recursive function symbols. This recursive
program may make use of all accessible function symbols.

o the set of exported function symbols that designates some subset of the set of
accessible function symbols as exported. The other function symbols remain
hidden inside the module.

We do not consider hiding of sorts here since this is not relevant from the logical
point of view.

3This is of course no complete analogy since LISP does not obey a strong typing discipline.

Definition 2 A module is a tuple
(PSuis PF oy NS s Konis NEgiys EF s PRyy;)
where PS,,, PF,,, NS,., K,, and NF,, are pairwise disjoint sets and

e (PS,,,PF,,) is a standard signature, called £p,,. PS,, contains the param-
eter sorts of m.

e (PS,, UNS,,,PF,, UK,, UNF,,) is a signature and the range of all func-
tion symbols in K,, is an element of NS,,. Eztending this signature by the
following set of function symbols:

{ifthenelse,:bool,s,s — s | s € NS,,}
U {=,:8,8 > bool | s € NS,,}
U {is.?:8 — bool | s € NS,,}
U {selectl:s — 8;|c€ Km,C:81,...,8j,-..,8, = 8}
U {Ll,:— s|s€NS,}
we obtain a standard signature ¥ 4., = (ASm,AF).

e PR,, is a recursive program of the form

fl(zl,l,...,zl,h) I 7

fn(zn,la cee azn,l,.) < tn
where NFp, = {f1,...,fa}, for all i the z;; are pairwise distinct and of
appropriate sort and t; € Ty, ({*i1,...,%i}) of appropriate sort.

e EF,, is a subset of AF,, such that ¥g,, := (ASn,EF,,) is a standard sig-
nature.

The pair (Xpm, XEm) constitutes the signature of the module m.

Figure 1 contains an example of a module written in a more user friendly syntax.
We will be somewhat sloppy in syntax and will not mention the standard parts of
the signatures, drop the sort indices if known from the context and allow mixfix
syntax if convenient. Furthermore we will not mention EF,, if identical to AF,,.

In order to formulate Theorem 2 we will need the notion of an extension of a
module by a set of constants.

Definition 3 Let m be a module and C a set of constant symbols disjoint from
all components of m. Then the extension of m by C is the module

(PSm, PFm U C, NSy, K, NFpn, EFm, PRyy)

PAR SORTS elem
OPNS 0: — elem
+:elem,elem — elem
BODY SORTS list
CONS nil: — list
cons:elem,list — list
FCTS app:list,list — list
sum:list — elem
PROG app(ll,lz) < it is,;?(l;) then [
else
cons(selectl ., (I1),app(select?, (I),12))
sum(l) <« if is,;?(l) then 0
else select! ., (I) + sum(select?,, (1))

Figure 1: An example of a module definition.

3.2 Semantics

The semantics of modules as defined in this section again resembles [Loe87]. In
contrast to [Loe87] where the semantics is defined denotationally we here take an
approach that is adopted from the algebraic semantics method ([Gue79]).

An algebra over a standard signature will be called standard if it assignes the
intended meanings to the standard parts of the signature.

Definition 4 Let ¥ = (S, F) be a standard signature. A X-algebra A is called a
standard algebra ([Loe87]) if

o bool4 = {true,false, L poo1} and true? = true, false4 = false, L& | = Lyon

o foralls € S and z,,z, € 34:

ifthenelse(true,z;,z;) =
ifthenelse(false,z;,z;) = =z
ifthenelseA(Lyoo,21,22) = LA

e For each function symbol f € F the denotation f4 is continuous with respect
to the following ordering C,:

T, L, zo iff Ty =23 oOr T = _Lf

Algy, denotes the class of all standard algebras with signature T.

Note that, since a standard signature contains a constant symbol 1, of each sort
s, a standard algebra always contains a distinguished carrier L4 of each sort s.

In the following we will always consider standard algebras. We will now in several
steps define the semantics of a module m. The semantics will be formalized as a
function M that maps a module m with signature (¥p,Xg) and a ¥ p-standard
algebra A to a Y g-standard algebra B.

First we define the carrier sets of the algebra constructed by the semantics of a
module.

Definition 5 Let m be a module with signature (Xp,XEg) and A € Algy,. We
define a family of sets (DT’A)aeAS,,. as follows:

o for each s € PS,, let D4 := ¢4 — {14}

e for all s € NS,, define sets D™4 by simultaneous induction:

ifk € K, k:e,,...,a_,.—»s and d; € D;’:"‘ fori=1,...,n
then k(dy,...,d,) € D™A4

o now define for all 8 € AS,,: D™4 := D™AU{L,}

Now we define an intermediate algebra that extends the parameter algebra by the
newly defined sorts and operations except the recursive functions. This interme-
diate algebra will then be used in order to define the semantics of the recursive
functions and to obtain the complete semantics of the module.

Definition 8 Let m be a module with signature (Xp,XE) and A € Algy,. We
define an algebra A* with signature (AS,,,AF,, \ NF,,) as follows:

[] A* IEP = A
o 34" := D™A for all s € NS,
o LA:=1, forall s € NS,,

e For all 8 € NS,, ifthenelse, and =, obtain their meaning according to the
definition of standard algebra
o Forallk:s,,...,8, - 8€ K,,:

N . . A .
kA (z1,...,2n) :={ {cl_(:l’m’z") Ja: # Ly, for all i

o otherwise
e Forallc:sy1,...,8, > 38€ Kp,:
true ifz =c(zy,...,2,) for some z;
. A" — . _ 1A
is.? (z) == ¢ Llooar fz =L

false otherwise

e Forallc:8y,...,8, > 8€ K.

4 z; fe=cl@,...,25...,25)
select! (z):= for some z; # L4,i=1...n
.ij otherwise

Lemma 1 A* is a standard algebra.

Proof: This follows from the continuity of the sequential i f —then —else function
([LS87]) and the strictness of the remaining functions. a

In order to define the semantics of the recursive function symbols we need the
notion of iteration. Intuitively, the n-times iteration of a term ¢ is obtained by
n-times simultaneously unfolding all occurrences of recursive function symbols in
t. The remaining recursive function symbols are replaced by L, this yields a term
that is assigned a meaning by the algebra A*.

Definition 7 Let m be a module with signature (Xp,Xg) and t € Ty, (X).
Then for each n € N, t(n) is the term obtained by n-fold application of the full
substitution computation rule on t and then replacing each occurrence of recursive
function symbols by L.

In the terminology of [Gue79], Definition 3.22, this is the n-th element t™ of the
Kleene sequence of t.

The reader is referred to [Gue79] for a formal definition.

We are now ready to give the complete definition of the semantics of a module. Our
definition of the semantics of recursive function symbols is in the spirit of algebraic
semantics (see for instance [Gue79], in contrast to [Loe87] where a denotational
approach was token). The advantage of the algebraic semantics is that it makes
the distinction between the recursion structure given by the program and the
interpretation of the base functions explicit. Furthermore we will make use of the
iterations of a term later in the logic.

Definition 8 Let m be a module with signature (£p,Xg). Then M(m) is a func-
tion

M(m): Algs, — Algs,
where for all A € Algy,,:

o M(m)(A) |(AS,,, EF s \ NF) = 4" [(AS,, EF u \ NF,3)
e forall f:8,,...,8, > 8€ NF,,NEF,,, a; € s;“‘:
P qy, L an) = || A (F(ers - 2) elei — a))

i>0

for an arbitrary assignment a € I' 4.

10

The choice of the assignment « is arbitrary since z,,...z, are the only free vari-
ables in the terms under consideration. The existence of the least upper bound of
this set of values is a simple consequence of the fact that all cpo’s are flat.

Lemma 2 M(m)(A) is a standard algebra.

Proof: follows from Lemma 1 and the fact that the denotations of recursive
function symbols are again continuous, see for instance [LS87]. O

Lemma 8 Letm be a module with signature (Xp,Xg), A € Algy,, B = M(m)(A),
f:81,...,8, = 8 € EFNNF,, and a; € sP. Let a € T'p with a(z;) = a; for all
t1=1,...,n. Then

e either fB(ay,...,an) = LB and B(f(21,...,2.){§))(@) = LB forallj€N

e or fB(ay,...,a,) = ¢ # LB and there is a jo such that for all j > jo:
B(f(1,...za){i)) (@) = ¢

Proof: This is a simple consequence of the continuity of the functions and of the
fact that the cpo is flat, see [LS87]. a

3.3 Basic Properties of the Semantics

Our semantics obeys the persistency condition. Intuitively this means that the
sorts and operations of the parameter algebra are not modified by the semantics
of a module.

Lemma 4 Let m be a module with signature (2p,Xg) and A € Algy,,. Then

M(m)(A) g, nsp=4Alspnsg

We now show two lemmas that we will need for the proof of Theorem 1.

Lemma 8 Let m be a module with signature (Xp,XE), A,B € Algy, and A C B.
Then M(m)(A) C M(m)(B)

Proof: The inclusion of the carrier sets is obvious. The coincidence of the
semantics of the new function symbols is easily shown from the definitions. a

11

appl m
. pply M(m) . M(m)(4)

restrict to Xp

restrict to Xp B

» M(m)(B) = B”

apply M(m)

Figure 2: The algebras used in Lemma 6

Lemma 8 Let m be a module with signature (Ep,Zg), Tp C Zg, A € Algy,
and B' € Algy, with B' C M(m)(A).

Then B' = M(m)(B’ |2P).

Proof: (See also Figure 2.) Define B := B’ |2P and B” := M(m)(B). By the
definition of subalgebra we get immediately B C A. We now show that B’ and B”
have the same carrier sets. For the carrier sets of parameter sort this is immediate
by Lemma 4.

sB" - sB' for s € NS:

This follows by structural induction from B C A since B’ is closed under the
denotation of the constructors.

sB' - sB" for s € NS:

Assume there is some carrier of B’ that is not a carrier of B”. Let z be a minimal
carrier (w.r.t. to the subterm ordering) of B’ that is not a carrier of B”. By
construction ¢ must be of the form ¢(z;,...,z,) for some constructor c¢. Since
B’ is closed under the denotation of the selectors, z;,...,z, are carriers of B’ and
by minimality of = are also carriers of B”. Therefore ¢ = ¢(z,,...,2,) is also a
carrier of B”, this contradicts the assumption.

Since B’ and B” have the same carriers and are both subalgebras of the same
superalgebra, the denotations of the function symbols also coincide, so B’ = B”.
a

12

4 Logic

In this section we show how to apply first order logic to modules.

4.1 Basic Definitions and Properties

Definition 9 For a standard signature ¥ = (S, F) let WFFy, be the set of first
order sentences over the language (S, F,{=,| 8 € S}) where each =, is a binary
predicate symbol.

If m is a module with signature (¥p,Xg) we denote WFFy, by PWFF,, and
WFF's, by WFF,,.

The symbol =, is overloaded here: we use it as a function symbol with arity
8,8 — bool and as a binary predicate symbol of the logic. Again we will drop the
sort index if convenient.

Let us emphasize that we only consider sentences, that is first order formulas
without free variables. By definition the set of first order sentences, considered
as a subset of the set of first order formulas, is generated from the atoms (here:
equalities) by negation, conjunction and existential quantification, but we also
use the other usual logical junctors as syntactic abbreviations (see [End72] for a
complete set of definitions). Furthermore we use the following:

(t; Cty) stands for (t; =L Vit =tp)

Vee€s. w standsfor Ve:s.z=1,Vw

Jdzr€s.w standsfor Iz:s.z2# L, Aw
We now come to the central definition of this paper. For a sentence w € WFFy
and (not necessarily standard) algebra A we write as usual A = w if A is a model
of w, see again [End72] for complete definitions. The point is that we can now use

the sematics of a module with signature (¥p, Xg) in order to express properties
of standard ¥ p-algebras by X g-sentences.

Definition 10 Let m be a module with signature (Xp,XE), A € Algy,, and w €
WFF,,. We define

Al & Mm)A) v

For W C WFF,, we write All=, W if Al w for all w € W. |5, w means
AlE,,w for all A € Algy . Furthermore Th,,(A) := {w € WFF,, | A=, w}

For example let m be the module of Figure 1 and Nat the extension of the algebra
of natural numbers to a standard algebra. Then

Nat =, Vi, 1, : list . sum(app(ly,12)) = sum(ly) + sum(l2)

13

As an immediate consequence of the persistency of the semantics (Lemma 4) we
get

Lemma 7 Let m be a module with signature (Xp,Xg), A € Algy, and w €
WFFs, nxg. Then
AEw if AlEw

This means that our new logic is at least as expressive as first order logic. Later
we will see that, depending on the module under consideration, there is in general
indeed a gain in expressiveness.

4.2 Classes of Parameter Algebras

We are not always interested in parameter algebras from the whole class Algy .
Instead it is often natural to restrict the parameter algebras to some subclass of
Algy,. The choice of this subclass should depend only on the input signature.
We put some reasonable constraints on the possible classes of parameter algebras
that we will need in the following.

We call a class of algebras compact if the compactness theorem of first order logic
holds in this class of models.

Definition 11 A class C of X-algebras is called compact if for each set W C
WFFy, of formulas the following holds:

If each finite subset of W has a model in C
then W has a model in C

The choice of a particular class of parameter algebras is formally expressed by the
concept of a domain operator:

Definition 12 A domain operator X maps each standard signature X to a subclass
Sy of Algys, such that the following holds:

1. Iy 18 compact.
2. Sy 18 closed under elementary submodels.

3. For any sort symbol s in ¥ and constant symbol ¢ not in L:

Spu(es) = {(4,8) | A € O and a € 54}
The following mappings are no domain operators:

14

(1) Vz:bool.(z = Lpost V& =true Vz = false)
(2) Lpoor # true

(3) L boot # falae

(4) true # false

(5) Vz,y:8.[(z=,y)=true L (z=yAz#L,))

(6) Vz,y:s.[(z=,y)=false L (z#yAz# L, Ay#L,))
(7)) Vz,y:8.[(2 =5 y) = Lioat I (z=1L,Vy=1,)]

(8) Vz,y:s.if true then z else y fi==z

(9) Vz,y:s.if false then z else y fi=y

(10) Vz,y:8.if Llpoo then z else y fi =1,

(11) Va?,',g}',-:s. [Ai:l...n(zi c yi) B .f(zl’”' ’zn) c f(yli'-"yn)]

Figure 3: Axiom schemes for standard algebras.

1. F mapping each signature to the class of all standard algebras where all
functions terminate for all but a finite set of input values. Using the com-
pactness theorem of first order logic it is easy to show that for non-trivial £
Fs, does not fulfill compactness.

2. The operator mapping each signature to the class of standard algebras with
cardinality greater than Rq violates the closure under elementary submodels.
This is an easy consequence of the sharpened Skolem-Lowenheim Theorem
of first order logic.

3. There is an imported case not covered by the definition of a domain operator:
The mapping T'G that carries each signature X to the class of term-generated
models is no domain operator since the last condition of Definition 12 is
violated.

On the other hand the next lemma shows that a wide class of mappings satisfies
the constraints of Definition 12:

Lemma 8 Let ¢ be a mapping that maps each standard signature £ = (S, F) to
some set of formulas L(X) C WFFy, where only constants from {true, false}U{L, |
s € S} are allowed. Then the operator mapping each signature ¥ to the class of
standard algebras that are models of ((X) is a domain operator.

Proof: First observe that the class of standard algebras is exactely the class of
models of the set of axioms given by the axiom schemes of Figure 3 where s varies
over all sorts and f varies over all function symbols of the signature. Therefore
the compactness property and the closure under elementary submodels are easy
consequences of the pertaining theorems of first order logic: The compactness the-
orem (Theorem 1.3.22 in [CK90]), respectively the sharpened Skolem-Lowenheim

15

Theorem (Theorem 3.1.6 in [CK90]). The proof of the third constraint is trivial.
a

As a consequence the following operators are indeed domain operators:

1. The operator S/ mapping each signature to the full class of standard alge-
bras.

2. The operator 9*!"*°* mapping each signature to the class of standard algebras
where all functions except if — then — else are strict.

3. The operator mapping each signature to the class of standard algebras where
all functions are sequential ([Vui74]).

On the other hand the operator TG mentioned above is not of great interest in
this framework, since we do not want to require that all functions of an algebra are
explicitelly listed in the parameter part of a module. For instance we could define
a module ‘list of elements” that we want to apply to several algebras without
worrying about all the other functions that might be present in the parameter
algebra.

We therefore claim that the constraints in Definition 12 are reasonable. Note that
we did not require closure of the domain operator under the semantics of modules,
although this would be an acceptable constraint in view of vertical composition of
modules. To be precise, we do not require that M(m)(A) € Sy, for A € Sy,.

4.3 Parameter Conditions
The notion of a parameter condition links first order logic to our new logic.

Definition 138 Let m be a module with signature (Xp,XEg), & a class operator
and w € WFF,,. A sentence v € PWFF,, is a §, m-parameter condition of w if
for all A € Sg,:

AEv = AlE,w

A sentence v € PWFF,, is a &, m-weakest parameter condition of w if for all
A€ SQyg,:
AEv & AlE,w

The following lemma is immediate by the definition:
Lemma 9 Weakest parameter conditions are unique up to equivalence, that is: let

m be a module with signature (¥p,Xg), & a domain operator and w € WFF,,.
Then for all weakest parameter conditions vy,v; € PWFF,,: Sy, E v IC v2

16

PAR SORTS elem
OPNS 0: — elem
pred:elem — elem
BODY FCTS isstandard:elem — bool
PROG isstandard(z) < if z =0 then true
else isstandard(pred(z))

Figure 4: A module used for distinguishing standard from nonstandard models.

PAR SORTS elem
BODY SORTS list

CONS nil: — list

cons: elem,list — list
FCTS isin:elem,list — bool
PROG isin(e,l) < if is,;;?(I) then false
else if selectl (/) =e then true
else isin(e,select? (1))

Figure 5: A module used for distinguishing finite algebras from infinite ones.

We illustrate the important notion of a weakest parameter condition with some
examples.

1. Let m be the module of Figure 1. The formula

(Verlem.0+z=z/\z+0=z) A
(Vi1 Iz € list . sum(app(l1, l2)) = sum(ly) + sum(l2))

has the Q%" m-weakest parameter condition:
(Vx€elem.0+z=zAz+0=2z)A
(Vz1, 22,23 € elem .21 + (22 + 23) = (21 + 22) + z3)
2. Consider the module m of Figure 4. The formula
w := Vz € elem.isstandard(z) = true

does not have a I**"i°* m-weakest parameter condition since the standard
and the nonstandard model of arithmetic have the same first order theory
while the former fulfills w and the latter does not.

17

3. The last example shows that the same problem might also occur with prim-
itive recursive functions. Take the module m of Figure 5. The class of
standard algebras that fulfill the formula

= 3l € list .Vz € elem.isin(z,l) = true

is exactely the class of finite X p,,-algebras. Since the class of finite algebras
cannot be described by means of first order logic ([CK90]) w does not have
a Qf, m-weakest parameter condition.

These last examples show that our new logic is more expressive than first order
logic. In the next section we will discuss the model theoretic properties of the new
logic that reflect this gain in expressiveness.

The following lemma gives a special case in which a &, m-weakest parameter con-
dition always exists:

Lemma 10 Let m be a module with NF,, = @ and S a domain operator. Then for
each w € WFF,, there ezxists a S, m-weakest parameter condition. Furthermore
for each formula w the weakest parameter condition is computable.

Proof: The proof follows from procedures for solving equational problems in
term algebras ([CL89], [Mah88]). See [Tre91] and [Buh91] for details how to apply
these results to the semantics of modules.

5 Properties of the New Logic

We now consider two basic model-theoretic properties of our new logic. Lindstrom
([Lin69]) has shown that first order logic is the only logic fulfilling countable com-
pactness and the Skolem-Lowenheim property (see also [Mon76], [CK90]). Besides
the fact that he considers logical systems with the whole class of algebras as do-
main (instead of standard algebras in our case) his theorem applies in our case
only to an endogenous variant of our logic where all possible modules are consid-
ered. Here we are interested in obtaining theorems about the logical properties of
distinguished modules.

5.1 Downward Skolem-Lowenheim

In this subsection we show that our new logic has the downward Skolem-Lowenhein
property. An analogous result has been proven in [Tiu81] for the Logic of Effective
Definitions by translation to the logic Lw;w ([Kei71]). The proof of the theorem
below directly depends on the closure of the domain operators under elementary

18

submodels. For domain operators described by first order axioms this closure prop-
erty follows from the strong version of the first order Skolem-Lowenheim property,
infinitary logic is not needed here.

Theorem 1 Let m be a module with signature (Xp,Xg), S a domain operator
and A € Sy P

Then for each family Z = (Z,),cps of sets with cardinality at most Xy and Z, C s4
there is a B € Qyx, of cardinality Ry that contains Z such that M(m)(B) is an
elementary submodel of M(m)(A).

Proof: Without loss of generality let Z contain Ry many elements. Further-
more we may assume Lp C X g since elementary submodels are invariant under
restriction of the signature.

By the sharpened downward Skolem Lowenheim Theorem of first order logic (The-
orem 3.1.6 of [CK90]) there is an elementary submodel B’ of M(m)(A) with car-
dinality Ro containing Z.

Let B := B’ lEP' B contains Z and therefore has cardinality Xo. By Theorem 6:
B’ = M(m)(B). Since B’ is an elementary submodel of M(m)(A), B is also an

elementary submodel of A. By the closure of Sz, under elmentary submodels
B € Qyx,. a

Corollary 1 Let m be a module with signature (Xp,XEg) and A € Sz, of infinite
cardinality. Then there is a B € Sg, of cardinality Ro with Thy,(A) = Thy,(B).

Proof: Let B be the model according to Theorem 1. By the properties of
elementary submodels M(m)(A) and M(m)(B) have the same first order theory
and so Thy,(A) = Th,,(B).]

5.2 Compactness

From first order logic it is known that the most applications of the compactness
theorem require the introduction of new constant symbols in some intermediate
step. These new constants in some sense allow to express an existential quantifica-
tion over an inifinite conjunction of formulas. Therefore the compactness theorem
can be used in order to show that a theory has a model containing an element sat-
isfying some infinite set of formulas (see for instance Proposition 2.2.7 in [CK90]).
In order to argue about compactness properties of our logic we therefore have to
consider extensions of given modules, since including them into the parameter part
is the only way to incorporate new constant symbols.

Definition 14 Let m be a module with signature (Xp,Xg) and & a domain op-
erator. We say that)l=,, is S-compact if for each W C WFF,, the following

19

holds:

If for each finite F C W there is a A € Sx, with A=, F, then there
ezists B € Sy, with Bl=, W

Theorem 2 Let m be a module and & a domain operator. Then the following
statements are equivalent:

1. For each extension m' of m, |l=,,., is S-compact.

2. For each extension m' of m and w € WFF,,, w has a &, m'-weakest para-
meter condition

Proof:
(1) =)

This is an easy consequence of the definition of a weakest parameter condition and
of the compactness property of the domain operator <.

(1) = (2)

Assume that for each extension m’ of m ||=,., is compact. We define the set W
as the set of all formulas that belong to some arbitrary extension of m. Strictly
speaking this is a set only if we fix some set of possible constant symbols, but we
do not bother about set theoretic peculiarities here.

wi= |J WFFn.

m' extends m

For each w € W define

e ¢;(w) is the number of occurrences of existential quantifiers in w ranging
over some new sort

e ¢o(w) is the number of occurrences of existential quantifiers in w ranging
over some parameter sort plus the number of occurrences of -, A in w.

With the help of these notions we define a relation C on W by

wy B wa: 6= (91(w1), $2(w1)) <iex (91(w2), p2(w2))

where <), is the lexicographic extension of the ordering < on natural numbers.
From the properties of lexicographic orderings it is obvious that C is a well founded
quasi ordering ([Der87]).

20

Now let w € W be a minimal formula with respect to C such that there exists
an extension m’ of m with w € WFF,,, and w does not have a weakest &, m/'-
parameter condition. ¥’ denotes the parameter signature of m’. First we show
that w must be an atomic formula. Note that for a given formula v € W we can
restrict our attention to the minimal extension m* of m such that v € WFF,,..
The addition of further constants does not affect the existence of a weakest param-
eter condition. We say that v € W has a weakest parameter condition (without
mentioning the module) if it has a &, m*-weakest parameter condition where m*
is the extension of m by the constants occurring in v.

1. Suppose w = 3z : 8. v where s is a parameter sort. Let ¢ be a new constant
symbol not occurring in m’ or w. By the minimality condition v(z/c) has a
weakest parameter condition ». We obtain a contradiction by showing that
Jy : 8.7(c/y) is a weakest parameter condition of w where y does not occur
freely in ».

Let m” denote the extension of m’ by {c:s} and A € Sy.

AE3dy:s.r(c/y)
& (Ayja)FEr for some extension (A,a) of A
& (Aya)]E,.wv(z/c) since r is a ¥,m"” weakest parameter
condition of v(z/c)

& (A,a)]l,,»3z:8.v since c does not occur in m" or w
& AR, 3z:s.v since ¢ does not occur in m’ or w

2. Suppose w = 3z : 8.v(z) where s is a new sort. Define
C, := Tk ,(Xpar) U{Ls}

where X, is the familiy of variables of parameter sort. From the definition
of the semantics it is immediate that for each A € S5/ and a € sM(m)(4)
there is a t € C, and an assignment o € I'4 with

M(m')(A)(t)(a) =@ (1)

For each finite set F C C,, the formula

\/ 3free(t) . v(z/t)

teF

has by minimality of w a &, m/'-weakest parameter condition rr which is itself
a 3, m/-parameter condition of w. Since w by assumption does not have a
weakest parameter condition, for each finite F C C, there is a A € Sy with

AlE, {3z : 8. v} U {Vfree(t). ~v(z/t) | t € F}

21

Since]k=,., is compact there is an A € Sy with
Al {3z : 8.v} U {Vfree(t) . ~v(z/t) | t € C,}
This contradicts (1).

3. Suppose w = —w. By minimality of w v has a weakest parameter condition
r. Then = must be a weakest parameter condition of w.

4. Suppose w = v; V vz. By minimality of w v; and v, have weakest parameter
conditions r; and ry, respectively. Then 7; V r, must be a weakest parameter
condition of w.

We now know that w must be of the form ¢, = t,. This formula is equivalent to

(t]_ =l At # _L)V—v(tl # 1LVt #.L)
~ ~ s e e

v v2 v3

As in the cases (3),(4) above it follows that at least one of v;, v2, vs does not have
a weakest parameter condition. Without loss of generality we assume that v; does
not have a weakest parameter condition.

By Lemma 10 we know that for each natural number n there is a I, m’-weakest
parameter condition r, of t;(n) = t2(n) At;(n) # L. Observe that = _,~r, D
-7, for n > m. Since 7, is a parameter condition for v; and since v; by assumption
does not have a weakest parameter condition, for each finite set F' of natural
numbers there is a A € Sy with

AlFn{vi}U{-r | n € F}
By the compactness property of Jl=,, there is a A € Sy with
Al {ti=ta Aty # L} U {t1(n) # t2(n) Vt1(n) = L | n > 0}

According to the properties of monotonic functions there are two possibilities:

e For all n: M(m')(A)(t;(n) = L. This contradicts M(m')(A)(t,) # L by

Lemma 3.

o There is a ng such that M(m')(A)(t1(no)) # L. Then for all n > ng
M(m')(A)(t1(n)) # L and therefore M(m')(t1(n)) # M(m')(t2(n)). This
contradicts M(m’)(A)(t;) = M(m')(A)(t2) by Lemma 3.

22

6 Decidability Questions

We now show that the existence of weakest parameter conditions is in general
undecidable, even if the module does not introduce new sorts.

In order to show undecidability of the existence of weakest parameter conditions
we have to take care that the domain operator under consideration is rich enough.
If the domain operator is too trivial a weakest parameter condition always exists.
We illustrate this remark with one example:

Take the domain operator &, that carries each signature to the class of finite stan-
dard algebras with cardinality less or equal to the fixed number n. In any Q, 5
there exist up to isomorphism only finitely many algebras and each isomorphism
class can be characterized by an appropriate formula. As in Lemma 8 we obtain
that I, is indeed a domain operator. Note that the axiomatization of the isomor-
phism classes does involve the constant symbols, nevertheless the constraint on
the constants is obviously fulfilled. On the other hand there is a weakest I, ,m-
parameter condition for each formula w, namely the disjunction of those axioms
associated to the isomorphism classes that satisfy w.

Therefore we require the domain operator to be non-trivial. In order to define
non-triviality we use some notions from [WPP*83]:

Definition 15 A domain operator I is called non-trivial if for each hierarchical
type T = (X, E, P) where

e P is the specification BOOL
o FE is a finite set of X-equations

e T is hierarchy-persistent

the extension of the initial model of T to a standard algebra is contained in Sy.

The extension of A to a standard algebra is obtained by extending the signature
to a standard signature, assigning L, ifthenelse and = their standard meaning
and extending all functions of A strictly.

The hierarchy-persistence here means that the equations of £ do not “destroy”
the datatype BOOL and do not introduce new elements of sort bool.

We use a result about two-head automata that turned out to be useful for unde-
cidability results in the field of program schemes. The reason for the adequacy for
program schemes is that no particular data types are required except bit sequences
(these can be simulated by predicates) and the states of the finite control (these
are coded directly in the program).

23

We shortly repeat the definition of a two-head automaton and the pertaining un-
decidability result. Details can be found in [LPP70] and [Gre75], see also [Ros63].
Here we consider only automata over a fixed binary alphabet {0,1}.

A two-head automaton (THA for short) is a tuple

(Qly Q2, q4059a, Qraé)

where @Q; and Q. are finite sets, Q1, Q2, {g0}, {¢a} and {g.} are pairwise disjoint
sets of states and 4 is a transition function

6:(Q1U Q2 U{go}) x {0,1} = Q1 U Q2 U{¢a,q-}

Such an automaton is given as input an infinite sequence over {0,1}. The automa-
ton operates similar to a finite state automaton but now has two read-only heads
moving independently forward over the tape. In order to determine the next state
the input is taken from the first head (resp. second head) iff the actual state is a
member of Q; U {go} (resp. Q2). Then the head from which the input has been
taken moves forward to the next position. Note that for a given input tape there
are three possibilities:

e The automaton accepts its input iff it eventually reaches g,.
e The automaton rejects its input iff it eventually reaches g,..

e The automaton diverges on its input if it never reaches g, or g,.

L 4 denotes the set of inputs accepted by A, D4 the set of inputs on which A
diverges. We use the following result

Lemma 11 ([LPP70]) It is not semidecidable whether for a THA A

o the set L4 is empty.

o the set Dy is not empty.

Sketch of the proof (see [LPP70], [Gre75] for details): For a given Turing machine
T we can effectively construct a THA A7 such that the only inputs accepted by
Ar are the tapes starting with a finite computation sequence of T' with empty
input, followed by some arbitrary sequence. Using this construction we can reduce
the halting problem for Turing machines to the emptiness problem for THA’s. O

The module of Figure 6 simulates a THA in the following sense. To a given X p
algebra B we associate the input tape tape g that is defined by

: (i) = 0 if B(contentsO(nezt’:(start))) = true
9PeBY) =1 1 if B(contentsO(nezt(start))) = false

Obviously each possible input tape is a tape g for some X p algebra B.

24

PAR SORTS tapeposition
value
OPNS start: — tapeposition
next:tapeposition — tapeposition
content 80: tapeposition — bool
a: — value
f:value — value

test: value — bool

BODY FCTS H:— bool

Fy: tapeposition, tapeposition, value — bool
for all states ¢ of the automaton
PROG H <& F, (start, start,a)
Fy(p1,p2,2) < if contentsO(p;)

then Fs(q,o)(nezt(m)’ P2, "L')

else Fy,,1)(nezt(p1),p2,2)
for all states ¢ € Q;

Fo(p1,p2,2) < if contentsO(p;)

then Fj(q0)(p1,next(ps),z)

else Fy,1)(p1,next(p2),z)
for all states ¢ € Q2

F-,-(P1,P2,z) <« Fr(Pth,z)
Fa(p1,p2,2) < if test(z)
then true

else Fy (start,start, f(z))
EXPORT H: — bool

Figure 6: A module simulating a two-head automaton used for Theorem 3

Lemma 12 Let A be a two-head automaton and m be the pertaining module ac-
cording to Figure 6. For each B € Algy,, and o € I'p:

tapep € L4 = M(m)(B)(F,(start, start,z))(a) =

M(m)(B)(if test(z) thentrue else F (start, start, f(z)))(a)
tapep € Lo = M(m)(B)(Fg(start, start,z))(a) = L

Proof: This follows easily from the definitions.

25

Lemma 18 Let m be the module associated to the THA A according to Figure 6
and & a non trivial domain operator.

1.IfLo=0 then |, H=1

2. If L4 # O then the formula (H # 1) does not have a &, m-weakest parameter
condition.

Proof: (1) follows immediately from Lemma 12. For part (2), let t € L4 and n
be the last position of ¢ visited by any of the heads of A when feeded with input
t. Suppose v is a I, m weakest import condition of (H # L).

We can decscribe the relevant part of ¢ (that is the initial part of ¢ up to position
n) by a finite set of equations:

e = /\ contentsO(nezt‘:(start)) =true ift(i)=0
t= contents0(nezxt*(start)) = false if t(i) =1

1=0...n

From Lemma 12 we conclude that for each B € Algy, with B |= e;:
Bl H# L & B k= test(f*(a)) = true for some i (2)
On the other hand each set of the form
{v,e:} U {test(f'(a)) = false | i < no}

has by non-triviality of & a model in Qy,, namely the extension of the initial
model of (BOOL,Xp, E) to a standard algebra where

E = {e}
{test(f'(a)) = false |i < no}
{test(f™+(z)) = true}

cC C

By compactness of & there is an algebra in Sy, satisfying
{v,e:} U {test(f'(a)) = false | i € N}

This contradicts (2). O

As a consequence we can in each formula, if L4 = 0, replace H bei L, thus
obtaining a &, m-weakest parameter condition. Therefore we get the first unde-
cidability result of this section:

Theorem 8 For a non-trivial domain operator the following sets are not semide-
cidable:

26

PAR SORTS tapeposition
value
OPNS start: — tapeposition
neazt: tapeposition — tapeposition
contents0: tapeposition — bool
a: — value
f:value — value
test: value — bool
BODY FCTS H:— bool
F,: tapeposition, tapeposition, value — bool
for all states g of the automaton
PROG H & Fy(start, start,a)
Fy(p1,p2,2) < it test(z) then true
else if contentsO(p;)
then Fj(g,0)(nezt(p1),p2, f(<))

else Fs(q,l)(nezt(m), P2, f(=))
for all states ¢ € Q,

Fy(p1,p2,2) < it test(z) then true
else if contentsO(pz)
then Fi(q,0)(p1,nezt(p2), f(2))
else Fyq:1)(p1,nezt(p2), f(2))
for all states ¢ € Q2
Fr(P1,P2,17) < true
Fo(p1,p2,z) <« true
EXPORT H:— bool

Figure 7: A module simulating a two-head automaton used for Theorem 4

o the set of modules m such that all formulas w € WFF,, have a S, m-weakest
parameter condition

o the set of pairs (w,m) where m is a module, w € WFF,, and w has a
S, m-weakest parameter condition

In order to show that the sets of Theorem 3 are also not co-semidecidable we
use again a reduction of a not semidecidable property of THA. The module of

27

Figure 7 is in some sense a twisted version of the module presented in Figure 6.
Now we let the function H terminate iff the input tape is rejected or accepted
by the automaton, while a possible infinite sequence of tests is performed iff the
automaton diverges on the input tape. The proof is analogous to the first proof,
we therefore only state the key lemma and the concluding theorem:

Lemma 14 Let m be the module associated to the THA A according to Figure 7
and & a non trivial domain operator.

1. If Do =0 then =, H = true

2. If Ds # 0 then the formula (H # L) does not have a I, m weakest parameter
condition.

Theorem 4 For a non-trivial domain operator S the following sets are not semide-
cidable:

o the set of modules m such that some formula w € WFF,, does not have a
S, m weakest parameter condition

o the set of pairs (w, m) where m is a module and w € WFF,,, and w does not
have a S,m weakest parameter condition

I wish to thank Thomas Lehmann, Joachim Philippi, and Jacques Loeckx and for
comments and discussions.

References

[ANSI83] American National Standards Institute. The Programming Language
Ada Reference Manual. LNCS vol. 155, Springer, 1983.

[BG80] R. M. Burstall and J. A. Goguen. Semantics of CLEAR, a specifica-
tion language. In D. Bjérner, editor, Abstract Softare Specifications,
pages 292-332, Springer LNCS, vol. 86, 1980.

[Bis86] Judy Bishop. Data Abstraction in Programming Languages. Addison—
Wesley, 1986.

[Buh91] Peter Buhmann. Disunifikation in modularen Termalgebren. Master’s
thesis, Universitat des Saarlandes, 1991. In preparation.

28

[CK90]

[CL89]

[Der87]

[DoD81]

[EMSS5]

[EM90]

[End72]

[Gre75]

[GueT9]

[HMM386)]

[Kei71]

[KT90]

[LAB*81]

[LG86]

C. C. Chang and H. J. Keisler. Model Theory. Studies in Logic and
the Foundations of Mathematics, vol. 73, North-Holland Publishing
Company, third edition, 1990.

Hubert Comon and Pierre Lescanne. Equational problems and disuni-
fication. Journal of Symbolic Computation, 7(3,4):371-425, 1989.

Nachum Dershowitz. Termination of rewriting. Journal of Symbolic
Computation, 3:69-116, 1987.

United States Departement of Defense. The Programming Language
Ada. LNCS vol. 106, Springer, 1981.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifica-
tion, vol. 1. EATCS-Monographs on Theoretical Computer Science,
Springer-Verlag, 1985.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifica-
tion, vol. 2. EATCS-Monographs on Theoretical Computer Science,
Springer-Verlag, 1990.

Herbert B. Enderton. Mathematical Introduction to Logic. Academic
Press, 1972.

Sheila A. Greibach. Theory of Program Structures: Schemes, Se-
mantics, Verification. Lecture Notes in Computer Science, Vol. 35,
Springer Verlag, 1975.

Iréne Guessarian. Algebraic Semantics. Lecture Notes in Computer
Science, Vol. 99, Springer Verlag, 1979.

Robert Harper, David MacQueen, and Robin Milner. Standard ML.
Technical Report ECS-LFCS-86-2, Edinburgh University, 1986.

H. Jerome Keisler. Model Theory for Infinitary Logic. Studies in Logic
and the Foundations of Mathematics, vol. 62, North-Holland Publish-
ing Company, 1971.

D. Kozen and J. Tiuryn. Logics of programs. In Jan van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B, chapter 14,
pages 789-840, Elsevier Science Publishers, 1990.

Barbara Liskov, Rusell Atkinson, Toby Bloom, Eliot Moss, J. Craig
Schaffert, Robert Scheifler, and Alan Snyder. CLU reference manual.
LNCS vol. 114, Springer, 1981.

Barbara Liskov and John Guttag. Abstraction and Specification in
Program Development. MIT press, 1986.

29

[Lin69)

[LL87]

[LL90]

[Loe87]

[LPP70]

[LS87]

[Mac86]
[Mah88]

[Mon76]

[Ros63]

[Sha81]
[Ste90]

[Tiu81]

[Tre91]

P. Lindstrom. On extension of elementary logic. Theoria, 35:1-11,
1969.

Thomas Lehmann and Jacques Loeckx. The specification language of
OBSCURE. In D. Sannella and A. Tarlecki, editors, 5th Workshop on
Specification of Abstract Data Types, pages 131-153, Springer LNCS,
vol. 332, 1987.

Thomas Lehmann and Jacques Loeckx. OBSCURE, A Specification
Language for Abstract Data Types. Technical Report A 19-90, Univer-
sitdat des Saarlandes, 1990. Submitted for publication.

Jacques Loeckx. Algorithmic specifications: a constructive specifica-
tion method for abstract data types. ACM Transactions on Program-
ming Languages and Systems, 9(4), 1987.

D. C. Luckham, D. M. R. Park, and M. S. Paterson. On formalized
computer programs. Journal of Computer and System Sciences, 4:220-
249, 1970.

Jacques Loeckx and Kurt Sieber. The Foundations of Program Verifi-
cation. Wiley/Teubner, 2nd edition, 1987.

David MacQueeen. Modules for standard ML. In [HMM86], 1986.

Michael J. Maher. Complete axiomatisations of the algebra of finite,
rational and infinite trees. In Third Anual Symposium on Logic in
Computer Science, pages 348-357, IEEE, Edinburgh, Scotland, july
1988.

J. Donald Monk. Mathematical Logic. Graduate Tezts in Mathematics,
vol. 87, Springer, 1976.

A. Rosenberg. On multi-head finite automata. In Proceedings of the
Fifth Annual Symposium on Switching Circuit Theory and Logical De-
sign, pages 221-228, 1963.

Mary Shaw, editor. Alphard: Form and Content. Springer, 1981.

Guy Steele. Common LISP: The Language. Digital Press, second
edition, 1990.

J. Tiuryn. A survey of the logic of effective definitions. In E. Engeler,
editor, Proceedings of the Workshop on Logics of Programs, pages 198
245, Springer LNCS, vol. 125, 1981.

Ralf Treinen. First order logic applied to first order data types. PhD
thesis, Universitat des Saarlandes, 1991. In preparation.

30

[Tur85]

[Tur86]

[Vui74]

[Wir85]

[WLS76]

[WPP*83]

David A. Turner. Miranda: a non-strict functional language with poly-
morphic types. In Jean-Pierre Jouannaud, editor, IFIP International
Conference on Functional Programming Languages and Computer Ar-
chitecture, pages 1-16, Springer LNCS, vol. 201, 1985.

David A. Turner. An overview of Miranda. SIGPLAN notices,
21(12):158-166, 1986.

Jean Vuillemin. Correct and optimal implementations of recursion in
a simple programming language. Journal of Computer and System
Sciences, 9:332-354, 1974.

Niklaus Wirth. Programming in MODULA-2. Springer, third edition,
1985.

W. A. Wulf, R. L. London, and M. Shaw. An introduction to the
construction and verification of Alphard programs. IEEE Transactions
on Software Engineering, 2(4):253-263, 1976.

Martin Wirsing, Peter Pepper, Helmut Partsch, Walter Dosch, and
Manfred Broy. On hierarchies of abstract data types. Acta Informatica,
20:1-33, 1983.

31

	fb1991-010001
	fb1991-010002
	fb1991-010003
	fb1991-010004
	fb1991-010005
	fb1991-010006
	fb1991-010007
	fb1991-010008
	fb1991-010009
	fb1991-010010
	fb1991-010011
	fb1991-010012
	fb1991-010013
	fb1991-010014
	fb1991-010015
	fb1991-010016
	fb1991-010017
	fb1991-010018
	fb1991-010019
	fb1991-010020
	fb1991-010021
	fb1991-010022
	fb1991-010023
	fb1991-010024
	fb1991-010025
	fb1991-010026
	fb1991-010027
	fb1991-010028
	fb1991-010029
	fb1991-010030
	fb1991-010031
	fb1991-010032

