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Abstract

The problem of adding range restrictions to decomposable searching prob-
lems is considered. First, a general technique is given that makes an arbitrary
dynamic data structure partially persistent. Then, a general technique is given
that transforms a partially persistent data structure that solves a decomposable
searching problem into a structure for the same problem with added range re-
strictions. Applying the general technique to specific searching problems gives
efficient data structures, especially in case more than one range restriction, one
of which has constant width, is added.

1 Introduction

In the theory of data structures, we want to design structures that store a given set
of objects in such a way that specific questions (queries) about these objects can be
answered efficiently. A well-known example is the member searching problem, where
we are given a set V of objects. To answer a member query, we get an object ¢, and we
are asked whether or not g is an element of V. Another example is the (orthogonal)
range searching problem, where we are given a set V of points in d-dimensional space,
and an axis-parallel hyper-rectangle ¢ = ([a; : b1],...,[aq : b4]), and we are asked to
determine all points p = (p1,...,p4) in V, such that a; < p; < by,...,a4 < pg < by,
i.e., all points of V that are in the hyper-rectangle q. As a last example, in the
nearest neighbor searching problem, we are given a set V of points in the plane and
a query point ¢, and we are asked to find a point in V that is nearest to q.

Many general techniques are known to design static and dynamic data structures
that solve such searching problems. See e.g. Bentley [1,2], Overmars [11].

*This work was supported by the ESPRIT II Basic Research Actions Program, under contract
No. 3075 (project ALCOM).



There is a special class of searching problems that has received much attention,
the so-called decomposable searching problems. Let PR(q, V) denote the answer to
a searching problem PR with query object ¢ and object set V.

Definition 1 (Bentley [1]) A searching problem PR is called decomposable, if
PR(q,V) = O(PR(g, A), PR(g, B)),

for any partition V = AU B and any query object q, where the function O can be
computed in constant time.

For example, the member searching problem is decomposable with 00 = Vv, the
range searching problem is decomposable with O = U, and the nearest neighbor
searching problem is decomposable with O = “minimal distance”.

In this paper, we consider the problem of transforming searching problems into
other problems by adding range restrictions. This transformation was introduced
by Bentley [1], and was subsequently investigated by Willard and Lueker [17] and
Scholten and Overmars [14].

If we add a range restriction to a searching problem for a set V', then we give each
object z in V an additional parameter k,. We assume that these new parameters
are real numbers. In the transformed searching problem, we only query objects in V'
that have their parameter in a given range. We define this more precisely:

Definition 2 Let PR be a searching problem for a set V of objects. To add a range
restriction, we associate with each object = in V a real number k.. In the transformed
searching problem TPR, a query consists of a query object q together with an interval
la :b], and

TPR(q,[a:b],V) := PR(q,{z € V : a < k, < b}).

To illustrate the notion of adding a range restriction, consider the nearest neigh-
bor searching problem. Interpret each point in the set V as a city. For each city z,
define k, as the size of its population. Then in the transformed problem we ask for
the city having a population between, say, 100,000 and 500,000, that is nearest to q.

A trivial example is the d-dimensional range searching problem, which is obtained
by adding a range restriction to the (d — 1)-dimensional range searching problem.

Bentley [1] gives a general technique for obtaining efficient data structures for
searching problems that arise by adding a range restriction to decomposable search-
ing problems. More precisely, suppose we have a (static) data structure DS for a
decomposable searching problem PR having query time Q(n), size S(n), and that can
be built in P(n) time. Then there exists a data structure for the transformed prob-
lem TPR for which these three complexity measures increase by a factor of O(logn).
Willard and Lueker [17] show that if the data structure DS is dynamic, then the
transformed structure can also be made dynamic. Scholten and Overmars [14] give
a general technique that gives trade-offs between the query time and the size of the
transformed structure. They present both static and dynamic solutions.



Gabow, Bentley and Tarjan [8] considered problems that can be viewed as adding
several range restrictions. An example of the problems they consider is the problem
of range searching for maximum. (See also Sections 5 and 7.)

In this paper, we give new techniques for adding range restrictions. The main
part of the paper considers the problem of adding range restrictions of constant
width. That is, in the transformed query problem TPR, we only query with a
range restriction on the associated parameter of the form [a : a + ¢, where a is an
arbitrary real number, but c is fixed for all queries. We give a general technique that
transforms a data structure for a problem PR into another structure in which the
transformed problem TPR can be solved efficiently.

Applying this technique gives e.g. an optimal solution to the planar fixed height
range searching problem. (This result was known already.) We also generalize the
technique such that several range restrictions, only one of which has constant width,
can be added. This technique leads to interesting results, such as a data structure
for the d-dimensional “fixed” height range searching problem.

In the transformations, we use partially persistent data structures, which are
dynamic structures in which we cannot only query the current version, but also old
versions, that arise by inserting objects. The main idea in the transformation is to
consider the values of the additional parameters k, as moments in time. Note that
this idea is not new. Sarnak and Tarjan [13] use it to obtain an optimal solution for
the planar point location problem.

The rest of this paper is organized as follows. In Section 2, we use a Van Emde
Boas Tree—implemented using dynamic perfect hashing—to make arbitrary data
structures partially persistent, at the cost of a slight increase in complexity, and at
the cost of introducing randomization. This technique was mentioned by Tarjan at
the FOCS 88 conference during the presentation of Dietzfelbinger et al. [4]. Since—
as far as we know—the technique has not been published yet, and since there are
some non-trivial details in the proof, we present it here in full detail.

In Section 3, we prove that in order to add range restrictions of constant width,
it suffices to have fast transformations that add half-infinite range restrictions of
the form (—oo : b] and [a : 0©). Section 4 gives the transformation for adding a
range restriction of constant width. This transformation is illustrated in Section 5
with some examples. We obtain e.g. an optimal solution for the fixed height range
searching problem.

Of course, the transformation can be repeated to add several range restrictions.
In Section 6, however, we give another transformation that gives better results.
This transformation is based on range trees and fractional cascading. We illus-
trate it in Section 7 with some examples. One of the results is a data structure
for the d-dimensional fixed “height” range searching problem, having expected size
O(n(log n)?~2 loglog n), in which queries can be solved in O((logn)? *(loglogn)? +
kloglogn) time in the worst case, where k is the size of the output.

In Section 8, we show how the results can be extended to arbitrary range restric-
tions. We finish the paper in Section 9 with some concluding remarks.



In the rest of this paper, we use the notations Q(n), I(n), S(n) and P(n) to
denote the query time, insertion time, size and building time of a data structure,
respectively. We assume that all these functions are non-decreasing. Furthermore,
the functions S(n)/n and P(n)/n are assumed to be non-decreasing.

We often state that a certain operation takes “expected and amortized time
O(f(n))”. This means that a sequence of n such operations takes O(n f(n)) expected
time, where the randomization is based on choices made by the algorithm and is
independent of the sequence of operations.

2 Partially persistent data structures

In general, data structures are ephemeral, in the sense that queries and updates can
only be performed in the current version of the structure. In this paper, we need
data structures in which we can query the current and old versions, and such that we
can perform updates in the current version. Data structures in which this is possible
are called partially persistent. (This in contrast to fully persistent data structures in
which we can also update old versions.) See Driscoll et al. [6], Sarnak and Tarjan [13|
for these notions.

Driscoll et al. 6] showed that ephemeral data structures of bounded in-degree can
be transformed into partially persistent data structures, having the same complexity.
For binary search trees, their result is as follows.

Theorem 1 ([8]) There ezists a partially persistent binary search tree, in which we
can search for the largest (resp. smallest) element that is at most (resp. at least) equal
to a given element z, in an arbstrary version, in O(log n) worst-case time. Also, one-
dimensional range queries can be performed sin an arbitrary version, in O(logn + k)
worst-case time, if k 15 the size of the output. An element can be tnserted or deleted
in the current version of the structure, in O(logn) worst-case time. The size of the
data structure is bounded by O(n). Here, n is the mazimal number of elements that
have been present so far.

Unfortunately, the technique in [6] only applies to data structures of bounded
in-degree. For example, it does not apply to Van Emde Boas Trees [15,16] which
have in-degree \/n. In the rest of this section, we show how an arbitrary ephemeral
data structure, in which the current version can be queried, and in which objects can
be inserted and deleted, can be transformed into a partially persistent structure. As
mentioned already, this technique was mentioned by Tarjan during the presentation
of [4]. As far as we know, a complete description of the method and a full proof of
the complexity bounds have not appeared yet.

In order to give this transformation, we need a randomized version of the Van
Emde Boas Tree in which we insert elements only in increasing order. This random-
ized version uses dynamic perfect hashing as given by Dietzfelbinger and Meyer auf
der Heide (5], and is partially due to Mehlhorn and Naher [10]:



Theorem 2 Let n be a prime number. A randomsized version of the Van Emde Boas
Tree, that stores m integers in the range [1 : n| has size O(m). In this structure,
we can search for the largest element that 1s at most equal to a given integer z, in
O(log log n) worst-case time. In this structure, we can snsert a new mazsimal element
in ezpected and amortized O(1) time. We can find the current mazimal element in
O(1) worst-case time. The structure for the empty set can be initialized sn O(1)
worst-case time.

Proof. Mehlhorn and Naher [10] first give a so-called stratified tree. They use
the dynamic perfect hashing strategy of [4] to implement this tree. This strategy,
however, has the disadvantage that single insertions may take a lot of time, because
the update time in [4] is amortized and expected. Recently, Dietzfelbinger and Meyer
auf der Heide [5| gave a dynamic perfect hashing strategy where the update time is
expected worst-case. We use this latter strategy to implement stratified trees.

Then, if the set of elements has size m and if these elements are integers in [1 : n|,
this stratified tree has size O(mloglogn). Searches for arbitrary integers in [1 : n|
take O(loglogn) worst-case time. The maximal element stored in the tree can be
found in O(1) worst-case time. An arbitrary integer in [1 : n| can be inserted in
expected O(loglogn) time. Finally, this structure can be initialized for the empty
set in O(1) worst-case time.

As in [10,15], we apply the method of pruning to this stratified tree. That is,
we divide the current set of m elements into buckets of size |loglogn|, such that
the elements of the first bucket are less than those of the second one, which in turn
are less than those in the third bucket, etc. We store the minimal element of each
bucket in a stratified tree. Each bucket is stored as an (unordered) linked list.

To search for an element, we first search in the stratified tree to locate the ap-
propriate bucket. Then we do a linear search in this bucket. Clearly, the searching
time is bounded by O(loglogn) in the worst case.

To insert a new maximal element, we first use the stratified tree to find the
“maximal” bucket, i.e., the bucket storing the largest elements. Then, we add the
new element at the end of the list belonging to this bucket. As soon as the maximal
bucket has size 2|loglogn|, we split it in two buckets of equal size, such that the
elements in the first bucket are smaller than those in the second bucket. We insert
the minimal element of the bucket containing the largest elements into the stratified
tree.

If no splitting is necessary, an insertion takes O(1) worst-case time. Otherwise,
we need O(log log n) time to split the bucket (using a linear time median algorithm),
and expected O(log log n) time to insert the minimal element of the new bucket into
the stratified tree. Since this splitting occurs only once every |loglogn| insertions,
it follows that the expected and amortized time to insert a new maximal element is
bounded by O(1).

It will be clear that the current maximum can be maintained such that it can be
found in O(1) worst-case time.

Since the stratified tree stores only m/loglogn elements, it has size O(m). Also,



the lists of the buckets together have size O(m). Hence, the entire data structure
has size O(m). This finishes the proof. O

Remark. If we had used the dynamic perfect hashing technique of [4], then
the insertion time would also have been O(1) expected and amortized. Using the
hashing method of [5], however, guarantees that during a sequence of |loglogn|
insertions, we spend |loglogn| — 1 times O(1) time in the worst case, and once we
spend expected time O(loglogn) in the worst case. (Using [4], this latter bound
would have been amortized instead of worst-case.) This is important in the analysis
of the partially persistent structure. See the proof of Theorem 3.

We take the Random Access Machine (RAM) as our model of computation. The
memory of a RAM consists of an array, the entries of which have unique addresses.
Such a memory location can be accessed in constant time if this address is known.

We assume that the total number of updates that has to be carried out in the
persistent data structure is known in advance. Call this number n. If n is not a
prime, then we apply Theorem 2 with p the smallest prime that is at least equal
to n. It is known that n < p < 2n. Therefore, all complexity bounds of the form
O(f(p)) are asymptotically equivalent to O(f(n)). We assume that this prime p is
given with n as part of the input. For practical applications, n has at most, say,
10 decimal digits. Therefore, for these values of n, the corresponding prime p can
be found in tables. (It is not a restriction to assume that the number of updates
is known in advance. If this number is not known, then we can use the standard
doubling method.)

Because of this remark, we assume from now on, that if we apply Theorem 2,
then n is a prime number.

Suppose we have an ephemeral data structure DS for some searching problem PR.
Let Q(m), U(m) and S(m) denote the query time, the time to perform an update
and the size of DS, respectively. Let C(m) be the number of memory locations that
are changed during an update. We transform DS into a partially persistent data
structure.

The partially persistent data structure: Before we give the structure, note
that in the ephemeral case the (current version of the) data structure DS would have
been stored in certain memory locations of the RAM.

The persistent structure looks as follows. In each memory location 2 that ever
would have been used by the ephemeral structure, we store a pointer to a randomized
Van Emde Boas Tree T; of Theorem 2, in which we maintain the history of this
memory location. In such a tree T;, we store all “time stamps” at which the content
of memory location : was changed. These time stamps are integers in the range
[1: n], and represent the numbers of the updates. With each time stamp ¢ we store
the (changed) content of cell ¢ at time ¢.



The update algorithm: We assume that we start with an empty structure,
and we number the updates 1,2,.... Consider the t-th update. So suppose that
we perform the t-th update in the current version of the persistent data structure.
Then we simulate the update algorithm of the ephemeral structure: If we want to
read the content of memory cell 7, then we follow the pointer to the Van Emde Boas
Tree T;, and we search for the maximal element that is stored in this tree. With this
maximum, we find the current content of memory cell :. Given this content, we take
the appropriate action.

If during this simulation, we want to change the content of memory location ¢,
then we insert the time stamp ¢ in the corresponding Van Emde Boas Tree 7;. With
this time stamp, we store the new content of memory location . If in the simulated
structure we would have to rewrite a memory location ¢ more than once, then we
find out that the time stamp ¢ is already present in T;. In that case, we rewrite the
content of location ¢ that is stored with time stamp ¢.

If the simulated structure would have needed a new memory location 2z, then
we initialize an empty Van Emde Boas Tree T;, and we insert the time stamp ¢
together with the content of location ¢ in T;. In location 1 itself, we store a pointer
to T;. (If a memory location is not needed anymore, we keep in it the pointer to the
corresponding Van Emde Boas Tree.)

The query algorithm: Suppose we want to perform a query in the version
of DS as it was at “time” ¢, i.e., after exactly t updates have been carried out. Then
we simulate the query algorithm of the ephemeral data structure: If we want to read
the content of memory cell 7, we follow the pointer to the corresponding Van Emde
Boas Tree T;, and we search in T; for the largest time stamp t' that is at most equal
to t. With this time stamp, we find the content of memory cell : at time ¢. Given
this content, we take the appropriate action.

Theorem 3 In the partially persistent version of the data structure DS, we can
query arbitrary versions in worst-case time O(Q(n) log logn), and we can update the
current version in ezpected and amortized time O(I(n)). The ezpected size of the
persistent structure is bounded by O(S(n) + nC(n)).

Proof. Since we perform n updates, the maximal number of objects that are repre-
sented by the data structure is at most n.

To prove the bound on the query time, observe that if we want to know the
content of memory cell 7 at time ¢, we search in the Van Emde Boas Tree T; for t.
By Theorem 2, this takes O(log log n) time. Therefore, since we need the content of
at most Q(n) memory locations, the query time increases by a factor of O(loglogn).

To perform an update, we have to insert time stamps in several Van Emde Boas
Trees. Note that these time stamps are new maximal elements, because we only
allow updates to be performed in the current version of the data structure.

The time to perform an update in the current version of the data structure
is proportional to the update time of the ephemeral structure plus the number of



memory locations in which the content is changed multiplied by the time needed to
update the corresponding Van Emde Boas Trees.

Note that in the insertion algorithm of the structure of Theorem 2 we perform
|loglog n| — 1 insertions at constant cost, and then one insertion at an expected cost
of O(loglogn).

Now consider a sequence of n updates, starting with an empty structure. It
takes 3°7_; U(j) time to simulate the update algorithm of the ephemeral structure.
If during the sequence of updates there are n; changes in memory location z, then
the total expected time needed to update the Van Emde Boas Tree T; is bounded by

O(n:) + [ j x O(log logn) = O(ny).

|log log n |

It follows that the total expected time for this sequence of n updates is bounded by
n S(n)
O UG +Oo| X ml,

where the variable ¢ in the second summation ranges over all memory locations that
would ever have been used by the ephemeral structure. The first summation is
bounded by O(nU(n)). To bound the second summation, note that it is equal to
the total number of memory changes that occur during the n updates. Since during
n updates we can change at most n U(n) memory locations, the second summation
is also bounded by O(n U(n)). This proves that the amortized expected update time
of the partially persistent structure is bounded by O(U(n)).

Since there at most n elements present, the ephemeral structure would use at
most S(n) memory cells. Hence, there are at most S(n) pointers to Van Emde
Boas Trees. So we are left with the total size of the randomized Van Emde Boas
Trees. If we change the content of a memory location during an update, we add
an expected and amortized amount of O(1) information to the corresponding Van
Emde Boas Tree, because we spend expected and amortized O(1) time. (Note that
such a tree has a size that is linear in the number of stored elements, not in the
size of the universe!) Therefore, in a sequence of n updates, the expected amount of
information we add to all these trees is bounded by O(n C(n)). Hence, the expected
size of these trees together is bounded by O(n C(n)). This completes the proof. O

3 It suffices to consider half-infinite range restric-
tions

As we said already, we restrict ourselves to decomposable searching problems, and
we only add range restrictions of constant width. In this section, we show that it
is sufficient to consider the case where we add half-infinite range restrictions, i.e.,
range restrictions of the form (—oo : b| and [a : 00).



Let PR be a decomposable searching problem for a set V of objects. Let each
object z in V have an additional parameter k,. Let TPR be the searching problem
that is obtained by adding a range restriction to PR.

Suppose we have a data structure DS that stores the set V', such that queries
TPR(g,[a : o), V) can be solved in Q(n) time. Let S(n) and P(n) be the size and
the building time of the structure DS, respectively.

It is clear that by replacing the values k, by —k., we can store V in a structure
DS' of the same type as DS, such that queries TPR(q,(—ooc : b], V) can be solved in
time Q(n). Also, the size resp. building time of DS' is S(n) resp. P(n).

We give a data structure that solves queries TPR(q,[a : a + ¢|, V), where c—the
width of the range restriction—is a fixed real number.

Partition the reals into intervals I; := [ic, (i + 1)c) of length c, where i ranges
over the integers. Next, partition the set V into subsets V; := {z € V : k, € L;}.

The data structure: For each index z, for which V; is not empty, there are two
data structures DS; and DS, both storing V;. In the structure DS;, we can answer
queries with a range restriction [a : 00). In the other structure DS}, we can answer
queries with range restriction (—oo : b].

There is a balanced binary search tree T that contains all indices i for which V;
is not empty. Each such index ¢ contains pointers to the structures DS; and DS..

The query algorithm: To answer a query TPR(q,[a : a+¢|,V), do the follow-
ing. Let ¢ := |a/c]. Then search in the tree T for i. If ¢ is not present, then there
are no objects in V having their additional parameter in the interval [ic, (i + 1)c).
Otherwise, if 1 is present, do a query TPR(q,[a : 00),V) in the structure DS;. Next,
search for 7 + 1 in the tree T'. If it is not present, we are finished. Otherwise, do a
query TPR(gq,(—oco0:a+ c|,V) in the structure DS ;.

Finally, use the merge operator O belonging to PR to combine the answers ob-
tained by these two queries, to obtain the final answer to the query.

Theorem 4 In the above data structure, querses with range restriction of constant
width ¢ can be answered in O(Q(n) + logn) time. The size resp. buslding time of the
data structure is bounded by O(S(n)) resp. O(nlogn + P(n)).

Proof. It is clear that the range restriction [a : a + ¢| overlaps only two intervals
I; and I;;;, where i = |a/c|. Therefore, we only have to consider objects in V; and
Vit1- Since ;N [a:a+¢c| = [a: (i + 1)c), and since all objects in V; have additional
parameters that are less than (z + 1)c < a + c, it suffices to query all objects in V;
with range restriction [a : 00). Similarly, it suffices to query the objects in V;;; with
range restriction (—oo : a + ¢|]. This proves that the query algorithm is correct.

The time for a query is bounded by O(logn + Q(|V;|) + @(|Vi+1])). Since both
V; and V4, have size at most n, and since we assumed that the query time is non-
decreasing, the bound on the query time follows.



The size of the data structure is bounded by
o (n+ >, S(IV.I)) .
i:V;#0
We assumed that S(n)/n is non-decreasing. Therefore,

S(Ivil)
Vil

stavi) = vl ST <y Ste),

It follows that the size of the data structure is bounded by

Y (n + 2. [V (S(n)/n)) = O(n + 5(n)) = O(S(n)).
1:Vi#0

The bound on the building time follows in a similar way. Here, the O(n logn) term

is the building time of the tree T'. O

4 Adding a range restriction of constant width

We use now the results of the preceding sections to transform a data structure
that solves a decomposable searching problem into a structure that solves the same
problem with an added range restriction of constant width. By Theorem 4, it suffices
to consider the case where the range restriction is half-infinite.

Let PR be a decomposable searching problem for a set V of objects. Let DS be
a partially persistent data structure that stores V. Let Q(n) be the time needed to
query an arbitrary version, let I(n) be the time needed to insert an object in the
current version, and let S(n) be the size of the data structure.

Each element z of V gets an additional parameter k,. Let TPR be the searching
problem obtained by adding a range restriction to PR.

We give a data structure TDS that solves the problem TPR for range restrictions
of the form (—oo : b].

The data structure: Order the objects in V according to their additional
parameters k.. (Equal parameters are ordered in arbitrary order.) Let k., < k., <
... < k., be this order. Store the parameters k. for z € V, in this order, in an array

V(1:n).
Then, insert the objects, one after another, into the initially empty partially
persistent data structure DS, in the order z,,...,z,.

The query algorithm: To answer a query TPR(q,(—o0 : b],V), do the follow-
ing. Search for b in the array V. Let i be the position of b, i.e., V(i) < b < V(i +1).

We have to solve the searching problem PR for all objects in V that have an
additional parameter that is at most equal to b. But these are exactly the objects
that were present in DS after i insertions, i.e., at “time” i. Therefore, query the
persistent structure DS at time 1.

10



Theorem 5 The data structure TDS allows queries with range restrictions of the
form (—oo : b] to be solved in O(logn + Q(n)) time, has size O(S(n)), and can be
buslt in O(nlogn + nI(n)) time.

Proof. It is clear that the query algorithm is correct. The time to locate b in the
array V is bounded by O(logn). Once we have located b, we know its position ¢ and
we can query the structure DS at time ¢, in Q(n) time. The size of the data structure
is bounded by O(n) for the array V, plus S(n) for the structure DS. Because S(n) is
at least linear, the size of the entire data structure is bounded by O(S(n)). To build
the structure, we order the objects in V in order of increasing additional parameter,
and we build the array V. This takes O(nlogn) time. Finally, we insert the objects
in increasing order in the structure DS. This takes }-", I(¢) time. Since we assumed
the function I(-) to be non-decreasing, this sum is bounded by n I(n). This completes
the proof. O

Applying Theorem 4 leads to the main result of this section.

Theorem 6 For the searching problem TPR, there exists a data structure that al-
lows queries with range restrictions of constant width to be solved in O(logn+ Q(n))
time, that has size O(S(n)), and that can be buslt in O(nlogn + nI(n)) time.

5 Examples

In this section, we give some applications of Theorem 6. As a first application,
consider the fized height range searching problem. Here we are given a set V of points
in the plane. A query consists of an axis-parallel rectangle [a; : 4] X [az : a2 + €]
of fixed height ¢, and we have to find all points p = (p1,p2) in V that are in this
rectangle, i.e., satisfy a; < p; < b, and a; < p; < a3 + ¢. Clearly, this is an example
of a one-dimensional range searching problem with the addition of a constant width
range restriction.

So, in the above terminology, let PR be the one-dimensional range searching
problem. Let DS be the partially persistent search tree of Theorem 1. This structure
allows one-dimensional range queries in arbitrary versions to be solved in Q(n) =
O(log n + k) time in the worst case, elements can be inserted in the current version
in I(n) = O(log n) time in the worst case, and it has size S(n) = O(n).

Use this partially persistent structure DS for the first coordinates of the points
in V. Each first coordinate z has as additional parameter k, the corresponding
second coordinate. In this way, the problem TPR—with a constant width range
restriction—is the fixed height range searching problem.

Applying Theorem 6 to DS gives the following result:

Theorem 7 For the fized height range searching problem, there exists a data struc-
ture having a worst-case query time of O(log n+k), where k is the number of answers
to the query, that has size O(n), and that can be buslt in O(nlogn) time.

11



This gives an optimal solution for the fixed height range searching problem. Note
that Klein et al. [9] even give a fully dynamic solution to this problem.

The above solution can be generalized to higher dimensions. Let V be a set of
points in d-dimensional space. A query consists of a hyper-rectangle [a; : b1] X ... x
[@d-1 : ba—1] X [aq : aq + c] of fixed “height” ¢, and we have to find all points of V
that are in the hyper-rectangle. Take the data structure of Theorem 7 for the last
two dimensions, and add the first d-2 dimensions using the technique of Bentley [1].
This leads to the following result:

Theorem 8 Let d > 2. For the d-dimensional range searching problem, where the
query rectangles have constant width sn one fized dimension, there erxists a data
structure having a worst-case query time of O((log n)?~! + k), where k is the num-
ber of answers to the query, that has size O(n(logn)?~%), and that can be built in
O(n(log n)?1) time.

Next, we consider the problem of range searching for minimum. Let V be a set
of n points in the plane. A query consists of a “rectangle” [a; : 00) X [az : a2 + ¢]
for some fixed c. We have to find a point in V that is lying in this rectangle, with
minimal first coordinate. That is, among all points p = (p;,p;) in V, such that
a; < p1, and a; < p; < a2 + ¢, find one for which p; is minimal. (This is a two-
dimensional generalization of a problem that was considered by Gabow, Bentley
and Tarjan [8]. They consider the problem of searching for the point in the region
(—o0 : 00) X [ag : bg] X ... X [aq : bg] having minimal first coordinate. In Section 7,
we consider the generalization of this higher dimensional problem.)

In this case, let PR be the following searching problem. We are given a set of
real numbers. A query consists of a real number a, and we have to find the smallest
p in the set that is at least equal to a. Note that PR is decomposable. Again, we
take for DS the partially persistent structure of Theorem 1. This structure solves
problem PR with complexity Q(n) = O(logn) in the worst case, I(n) = O(log n) in
the worst case, and S(n) = O(n).

We use this structure DS for the first coordinates of the points in V. Each
first coordinate z of these points has as additional parameter k. the point’s second
coordinate. In this way, the problem TPR is the problem of range searching for
minimum.

Applying Theorem 6 leads to the following result:

Theorem 9 For the problem of range searching for minimum, where the query re-
gions have constant height, there erists a data structure having a worst-case query
time of O(logn), that has size O(n), and that can be built in O(nlogn) time.

We can generalize Theorem 9 to higher dimensions in the same way as we did in

Theorem 8. Then, for each dimension we add, we get an additional factor of O(log n)
in the complexity bounds.
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6 Adding several range restrictions

We now generalize the results to the case where more than one range restriction is
added. We assume that one of the restrictions has constant width, say the last one.

We first consider the case, where we add two range restrictions. Let PR be a
decomposable searching problem for a set V. Let DS be a partially persistent data
structure that stores V. Let Q(n) be the time needed to query an arbitrary version,
let I(n) be the time needed to insert an object in the current version, and let S(n)
be the size of the data structure.

Each element z of V gets two additional parameters k, and [,, taken from the
real numbers. We consider the set V as a planar point set, where the k-values resp.
l-values are the first resp. second coordinates. Let TPR be the transformed searching
problem that is obtained by adding two range restrictions, i.e.,

TPR(q,[ay : b1] X [ag : b,],V) := PR(q,{z € V : ay < k, < by,ay <1, < by}).

We give a data structure that solves the problem TPR for range restrictions in which
the second one has the form [a; : a; + ¢| for a fixed c. It can be shown in exactly the
same way as in Section 3 that it suffices to consider range restrictions in which the
last one is half-infinite, say of the form (—oo : by].

The data structure: Store the points of V in a range tree. See [1,17]. We
briefly repeat the notion of this data structure. The points of V are stored in the
leaves of a balanced binary search tree—called the main tree—ordered according
to their first coordinates k,. Each node w in this main tree contains an associated
structure, defined as follows. Let V,, be the points of V that are in the subtree rooted
at w. Then node w contains a pointer to an array V,, that stores the points of V,
ordered according to their second coordinates ..

We apply the technique of fractional cascading (see Chazelle and Guibas [3])
to this structure: Each array entry in an associated structure contains—besides a
point of V—two pointers. Let z be the point of V that is stored in such an array
location, and let w be the node of the main tree whose associated structure we are
considering. Then one pointer points to the point having largest second coordinate
that is at most equal to I, and that is stored in the associated structure of the left
son of w. The other pointer has the same meaning for the right son of w.

Finally, for each node w of the main tree, there is a partially persistent data
structure DS,, that is obtained as follows. The objects of V,, are inserted in the
initially empty structure DS,,, one after another, in order of non-decreasing second
coordinate, i.e., in order of non-decreasing [-parameter.

The query algorithm: To answer a query TPR(q,[a; : b] X (—o0 : b;),V), do
the following. Find O(logn) nodes w;,ws,... in the main tree, such that the sets
V., partition all points in V' that have first coordinates in the interval [a; : b;]. Then
search in the associated structure of the root of the main tree for b,. By following
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pointers between associated structures, find in each associated structure of the w;’s
the point with largest second coordinate that is at most equal to b,.

This gives O(logn) positions in the associated structures of the w;’s. For each
such position we have to solve the searching problem PR for all points that have
a second coordinate that is at most equal to b;. If the position in such an associ-
ated structure—of, say node w; of the main tree—is t;, then we query the partially
persistent data structure DS, at “time” ¢;.

Finally, use the merge operator O belonging to PR to combine the answers ob-
tained by these O(logn) queries, to get the final answer to the query.

Theorem 10 For the searching problem TPR usth two range restrictions, the second
one of which has constant width, there ezists a data structure that allows queries to
be solved in O(Q(n) logn) time, that has size O(S(n) logn), and that can be built in
O(n I(n) logn) time.

Proof. We saw already that it suffices to prove this theorem for range restrictions
of the form [a; : b;] X (—o0 : b].

It is clear that the above query algorithm is correct. The time to locate the
O(logn) positions in the associated structures is bounded by O(logn). Once these
locations have been located, we can query the persistent structures DS, in Q(n)
time per query. This proves that the query time is bounded by O(Q(n) logn).

The size of the data structure is bounded by O(n logn) for the range tree, plus
the total sizes of all persistent data structures. Consider a fixed level in the main
tree, and let uy,...,u,, be the nodes on this level. The total size of the persistent
structures at this level is equal to -7, S(|V,,|). Since the function S(n)/n is assumed
to be non-decreasing, this sum is bounded above by

m

EIVWI ($(n)/n).
But the sets V,, partition the set V. Therefore, the above sum is equal to S(n).
Hence, each level of the main tree contributes an amount of S(n) to the size of the
complete data structure. This proves that the total amount of space is bounded by
O(nlogn + S(n) logn) = O(S(n) log n), because S(n) = 0(n).

To build the structure, we first build the range tree in O(nlogn) time. (Use
presorting, see Bentley [2].) Then for each node w of the main tree, we insert the
objects of V,, in order of non-decreasing l-value in the structure DS,,. (Note that
the objects in V,, are ordered already according to these l-parameters.) For each
level of the main tree, there are exactly n insertions, each taking at most I(n)
time. Therefore, the time needed to build all persistent structures is bounded by
O(n I(n) logn). This proves the theorem. O

We now generalize Theorem 10. Let PR be a decomposable searching problem
for a set V. Let DS be a partially persistent data structure that stores V. Let
Q(n), I(n) and S(n) be the time needed to query an arbitrary version, the time
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needed to insert an object in the current version, and the size of DS, respectively.
Each element z in V gets d parameters kf, ..., k3, taken from the real numbers. We
consider V as a point set in d-dimensional space.

Let TPR be the transformed searching problem, i.e.,

d
TPR(q, [][ai : ], V) :== PR(q,{z € V : a; <k < b;,i =1,...,d}).
=1
We give a data structure that solves TPR for range restrictions in which the last
one has the form [ad tag + c] for a fixed c. As before, it suffices to consider the case
where the last restriction is half-infinite, say of the form (—oo : bg).

If d = 2, we take the structure given above. Otherwise, if d > 2, we store the
set V in the above structure, taking only the parameters k3_; and k3 into account.
Then we use the technique of Bentley [1] to add the first d — 2 additional parameters.
For each added parameter, the complexity bounds increase by a factor of O(logn).

The result is given in the following theorem, the proof of which is left to the
reader.

Theorem 11 Let d > 2. For the searching problem TPR usth d range restrictions,
the last one of which has constant width, there exists a data structure that allows
queries to be solved in O(Q(n)(log n)4™1) time, that has size O(S(n)(logn)?™ '), and
that can be built in O(n I(n)(log n)4?!) time.

7 Examples in higher dimensional space

In this section, we consider the d-dimensional versions of the problems we considered
in Section 5.

First we consider the fized “height” range searching problem. Let V be a set
of n points in d-dimensional space. To answer a query, we get a hyper-rectangle
[@1 : b1] X ... X [ag—2 : ba—2] X [@a-1 : @a—1 + €] X [ag : by, where ¢ is a fixed real
number. We have to find all points of V that are in this rectangle.

We “normalize” the set V as follows. Store the points of V in the leaves of a
balanced binary search tree, ordered according to their d-th coordinates. With each
point, we store its rank in this order. That is, for each d-th coordinate pg; of any
point p in V, we store the number of points that have a d-th coordinate that is at
most equal to p,.

To answer a query, we search in this search tree for the values a; and b, of the
last range restriction. This gives us the ranks r(ay) and r(bs) of these numbers in the
set of d-th coordinates of points in V. It is clear that if we now query the normalized
set, i.e., the set where the d-th coordinates are replaced by their ranks, with the
rectangle [a; : b;] X ... X [@a4g-2 : ba—2| X [@a-1 : ag—1 + ¢| X [r(aq) : 7(ba)], we get the
right answer to the query.

So, we may assume that the d-th coordinates of the points in V' have integer
values in the range [1 : n|. We give a data structure that solves this normalized
problem.
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Consider a randomized ephemeral Van Emde Boas Tree for a universe [1 : n], that
stores m elements. (See Mehlhorn and Naher [10] and Theorem 2.) In this structure,
we can perform a one-dimensional range query in worst-case time O(loglogn + k),
if k is the number of reported answers. The structure has size O(m), and we can
insert a new element in expected and amortized time O(loglogn).

Apply Theorem 3 to this structure. This gives a partially persistent Van Emde
Boas Tree, in which we can perform one-dimensional range queries in arbitrary ver-
sions, in worst-case time O((log logn)? + kloglogn), if k is the size of the output.
(In the ephemeral Van Emde Boas Tree, we can find the successor of an element
in constant time. In the persistent version, however, this takes O(loglogn) time.
Therefore, we need O(log log n) for each answer.) We can insert an object in the cur-
rent version of this persistent structure in expected and amortized time O(log log n).
Finally, the expected size of this structure is bounded by O(m log logn), if it stores
m elements.

Next, apply Theorem 11, as follows. We take for PR the one-dimensional range
searching problem for a set of integers in the range [1 : n]. Let DS be the partially
persistent Van Emde Boas Tree. Use this structure to store the normalized d-th
coordinates of the points in V. Then we add d — 1 range restrictions. The first d — 2
are for the first d — 2 coordinates, the (d — 1)-th restriction—this one has constant
width—is for the (d — 1)-th coordinates.

The transformed problem TPR is exactly the normalized fixed height range
searching problem. Applying Theorem 11 gives:

Theorem 12 Let d > 2. For the d-dimensional range searching problem, where
the query rectangles have constant width in one fized dimension, there ezxists a data
structure

1. having a worst-case query time of O(logn + (log n)?~*(log log n)? + k log log n),
where k is the number of answers to the query,

2. that has ezpected size O(n(logn)??loglogn),
8. and that can be built in ezpected time O(n(logn)? 2 loglogn + nlogn).

Proof. The proof follows from Theorem 11. The first term in the query time is
the time needed to find the ranks of the endpoints of the d-th range restriction.
The third term in the query time is k log log n, because the sets of answers that are
reported by the various persistent structures are disjoint. The O(nlogn) term in
the building time is needed to cover the case that d = 2. O

A better solution than Theorem 12 is present implicitly in Overmars [12]. He gives
a deterministic data structure that stores a set of n points of the integer grid [1 : n]?,
that has size O(n) and in which range queries with query regions [a; : b;] X [a2 : ©)
can be solved in O(loglogn + k) time.

If we combine this result of Overmars with the technique of normalizing, Theo-
rem 4 and Bentley’s method of adding range restrictions, then we get a data structure
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for the d-dimensional fixed height range searching problem, of size O(n(logn)¢~?%)
that has a query time of O((logn)? 2loglogn + k).

Clearly, when applying a general technique, we are paying a price for being
general. In this case, however, the price is small, it is only O(loglogn).

Next, we consider the problem of range searching for minsimum. As mentioned
already, this is a generalization of a problem considered by Gabow, Bentley and
Tarjan [8]. Let V be a set of n points in d-dimensional space. A query consists of a
region [a; : b;] X ... X [ag—2 : by_3] X [@4-1 : @g—1 + ¢] X [aq : 20), and we have to find
a point of V in this region having minimal d-th coordinate.

Again, we normalize the d-th coordinates of the points in V, i.e., we replace each
d-th coordinate py by its rank. Clearly, if we query the normalized set, we get the
right answer.

We apply Theorem 11 as follows. We take for PR the one-dimensional problem
for a set of integers in the range [1 : n], that asks for finding a minimal element that
is at least equal to a given query value a. Let DS be the partially persistent version
of the randomized version of the Van Emde Boas Tree with universe [1 : n]. This
structure solves PR. A query can be solved in an arbitrary version in O((log logn)?)
time in the worst case, an element can be inserted in O(loglogn) amortized time,
and the size of the structure is bounded by O(m loglog n) if it stores a set of size m.

We use DS for the normalized d-th coordinates of the points in V. Then we add
d—1 range restrictions as in the previous example. This leads to the following result:

Theorem 13 Let d > 2. For the d-dimensional problem of range searching for
mintmum, where the query regions have constant width in one fized dimension, there
ezists a data structure

1. in which queries can be solved in worst-case time O((logn)? ?*(log log n)?),
2. that has ezpected size O(n(logn)? % loglogn),
8. and that can be built in ezpected time O(n(logn)? 2 loglogn + nlogn).

8 Adding arbitrary range restrictions

Until now we added range restrictions, one of which was of constant width. We now
show that once a data structure for half-infinite range restrictions is available, we
can get a structure for arbitrary range restrictions. The method is due to Edels-
brunner (7], who used it to get an efficient data structure for the range searching
problem.

Let PR be a decomposable searching problem for a set V. Each object z in V
has an additional parameter k.. Let TPR be the searching problem that is obtained
by adding a range restriction to PR.

Suppose we are given a data structure DS storing the set V', such that queries
TPR(q,[a : 0),V) can be solved in Q(n) time. Let S(n) and P(n) be the size and
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the building time of the structure DS, respectively. Let DS’ be the data structure of
the same type, in which queries TPR(q,(—oo : b],V) can be solved. This structure
has the same complexity measures Q(n), S(n) and P(n).

We give a data structure that solves queries TPR(q,[a : b],V), where the range
restriction is arbitrary.

The data structure: There is a balanced binary search tree T' that stores the
objects of V in its leaves, ordered according to their additional parameters k,. Each
non-root node w in T contains a pointer to an associated structure that is defined
as follows. Let V,, be the subset of V that is stored in the subtree of w. If w is a left
son, then this associated structure is a data structure DS, storing the set V,, that
allows queries with range restrictions [a : 00) to be solved. Otherwise, if w is a right
son, the associated structure is a structure DS! for the set V,, that allows queries
with range restrictions (—oo : b] to be solved.

The query algorithm: To answer a query TPR(¢,[a : b],V), do the following.
Search in the tree T for a and b. Let u be that node in T for which the search
path to a proceeds to its left son v, and the search path to b proceeds to its right
son w. Then do a query TPR(gq,[a : o), V) in the structure DS,, and do a query
TPR(q,(—oo : b],V) in the structure DS,,. Use the merge operator O belonging to
PR to combine the answers obtained by these two queries, to obtain the final answer
to the query.

Theorem 14 In the above data structure, queries with an arbitrary range restriction
can be answered in O(Q(n) + logn) time. The size resp. buslding time of the data
structure 15 bounded by O(S(n)logn) resp. O(P(n)logn).

Proof. The proof is of the same form as the previous ones, and is, therefore, left to
the reader. In [7], the theorem is proved for the case where PR is the range searching
problem. O

To illustrate Theorem 14, consider the d-dimensional range searching problem.
In Theorem 12, we have given a data structure for this problem, in case one range
restriction is half-infinite. Applying Theorem 14 to this structure gives the following
result:

Theorem 15 Let d > 2. For the d-dimensional range searching problem, there
ezists a data structure

1. having a worst-case query time of O(logn + (logn)? *(log logn)? + k log log n),
where k ts the number of answers to the query,

2. that has ezpected size O(n(logn)?~!loglogn),
3. and that can be built in ezpected time O(n(logn)? ! loglogn).

18



This result is worse than the result of Overmars [12], who has bounds that are
better for a factor of O(loglogn). As in Theorem 12, we have to pay a price for
applying a general technique. Again, this price is only small.

Finally, we apply Theorem 14 to the problem of range searching for minimum.
Now, we combine Theorems 13 and 14, to obtain the following result:

Theorem 16 Let d > 2. For the d-dimensional problem of range searching for
minsmum, there exists a data structure

1. in which queries can be solved in worst-case time O((logn)? 2 (log log n)?),
2. that has ezpected size O(n(logn)?~!loglogn),
8. and that can be buslt in ezpected time O(n(logn)? ! loglogn).

9 Concluding remarks

We have introduced new techniques for adding range restrictions to decomposable
problems. The techniques give especially interesting results if we add several range
restrictions, one of which has constant width. The techniques show the close rela-
tion between partially persistent data structures and structures for problems with
constant width range restrictions.

We have given a general technique to make arbitrary data structures partially
persistent. In Overmars [11, pages 158-159], another technique is given that works for
static data structures that solve decomposable searching problems. The structures
that result from this technique are almost identical to Bentley’s structure for adding a
half-infinite range restriction to decomposable searching problems. (See [1].) Hence,
the relation between adding range restrictions and partially persistent data structures
was already present in the literature.

We have given only two applications of our transformations. It should be possible
to find other applications. Especially for problems that can be “normalized”, new
results may be obtained.

The most interesting results are obtained for range restrictions, one of which has
constant width. In case arbitrary range restrictions are added, the space requirement
increases for a factor of O(logn). (See Theorem 14.) An interesting direction for
further research is to investigate whether in this case the space requirement can be
reduced.

Finally, the data structures presented here are static. An interesting research
direction is to investigate whether the techniques can be adapted to obtain dynamic
structures.
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