Notes on TRAFOLA, i

The Objects of the

Transtormation Language

and the Operations upon them

Reinhold Heckmann

Fachbereich 10

Universitat des Saarlandes
Technischer Bericht Nr. A 08 /87

PROSPECTRA — Study Note S.1.6—SN—7.0
1987—05—19

PROSPECTRA
an ESPRIT Project

Notes on TRAFOLA, 1I

The Objects of the Transformation Language
and the operations upon them

Reinhold Heckmann

Universitidt des Saarlandes
6600 Saarbriicken
Bundesrepublik Deutschland
PROSPECTRA Study Note S.1.6-SN -7.0
1987 -05-19

Distribution: public

ABSTRACT

This note tries to treat formally several features introduced in the
Study Note 'A Proposal for the Syntactic Part of the PROSPEC-
TRA Transformation Language', referred to as [1] in the sequel.

At first we consider values and the operations on them. The term

fragments of the study note contained exactly one hole, this will be

generalized. Different kinds of syntactic insertion (inserting values

into holes of another value) will be introduced, and their algebraic

properties will be investigated. At last, we shall consider the number

of partitions of a given term into an upper and a lower fragment.

At the end of this document, we give a summary of all definitions

and theorems contained in it as a quick reference.

Public

1987 by

Reinhold Heckmann
Universitat des Saarlandes

in the Project
PROgram development by

SPECification and
TRAnsformation

sponsored by the

Commission of the European Communities
under the

European

Strategic

Programme for

Research and development in

Information

Technology

Project Ref. No. 390

1. Definition of general values

First we define general values Val’, later we shall define some useful subsets:
well formed values Val, closed values CVal, well grouped values GVal, and
ungrouped values UVal.

Definition 1
Let Const be a finite set of constants (operators of arity 0) and Op be a finite
set of other operators containing one special element <>, the grouping opera-
tor. Then
Val’ = Val’ (Const, Op) = ({[]} U Const U (Op X Val’))*

General values are finite strings of primitive constituents (this fact is denoted by
the Kleene star in the definition). There are three kinds of primitive constituents:
holes [], constants, and trees i.e. a root operator together with a new value. This
new value is to be understood as children list of the tree; its constituents are the

children.

We shall denote values by () — the empty value - resp. (vy, ..., v,) — finite
sequence of primitive constituents v;. If n is 1, the parentheses may be omitted.
Primitive constituents being trees are denoted by op v where op ¢ Op and
v € Val. The empty value () is sometimes denoted by ¢.

In the sequel, we shall adopt the convention that u, v, w, u’ etc. denote values,

¢, d etc. denote constants, and op operators.

Examples for values:

add ([], sub (¢, [])) 0

(add [], sub (c, d, e, []), mul ()

For the moment, we do not restrict the set of values by means of a tree gram-
mar; instead we allow each operator to have an arbitrary number of arbitrary chil-
dren.

According to the definition of Val’, recursive definitions and inductive proofs
over values will always contain the following cases:

Hv =20
2) v = (V1) ...y Vq)
G v =1
(4) v = c € Const
b)) v = opV
For values containing the grouping operator ' <>', we propose an alternative

paraphrasing:

<> <> or <()>
<>v <v>

(<vi>, .o, <V>) <Viy eee 3 Vp>
(<v>, <>) <v; >

The virtues of this notation will be seen later when the insertion A is defined.

At last some notions being useful when reasoning about values.
A value op v is called op value, and a value <v> is called '<>"' value or
grouped value.
The relation 'is subvalue of' is the reflexive transitive closure of
- v, is subvalue of (vy, ..., v)) forall iwith1 SiSn

- v is subvalue of op v

If a value op v’ is a subvalue of v, then op occurs in v, and if '[]' is a sub-
value of v, then '[]' occurs in v.
If v=(w, ..., vp) and v; = op v for some i, we say op occurs in v at top level;
analogously for '[]'.
If v has a subvalue u= op (u, ..., u;) and u; = op’ u’ for some i, then op’
occurs in v under op.

Instead of 'x occurs in v', we also say 'v contains (an occurrence of) x'.

2. Subsets of values

Now we shall define some subsets of arbitrary values with respect to the
occurrences of holes and grouping operators.

Definition 2
Well formed values: Val:= {v e Val' | '<>' occursinv
only under ' <> or at top level}
Ungrouped values: UVal := {v € Val’ | v does not contain ' <> '}
Closed values: CVal := {v e Val l '[]' does not occur in v at top level}
Grouped values: GVal’ := {v e Val |
(a) the primitive constituents of v are grouped values
(b) ' <>"' occurs in v only at top level }
= {veVal|v = (<u>,.., <u;>) (n 2 0) (a) where u; ¢ UVal (b)}
Well grouped values: GVal : = {v ¢ GVal’ | (c) v has no primitive constituent <()> }
We shall often refer to the conditions (a), (b), and (c).

Examples:
'add (1, 2)' is in Val, CVal, and UVal, but not in GVal’ or GVal.
'<1, <2, 8>, 4>"' is in Val and CVal, but not in UVal, GVal’, or GVal.

'<1; 2, 3; >' is in Val, CVal, and GVal’, but not in UVal or GVal.

'<1; 2, 8>"' is in Val, CVal, GVal’, and GVal, but not in UVal.

'(add (1, 2), [])' is in UVal and Val, but not in GVal’, GVal, or CVal.

'add (<1>, 2)' is in Val’, but neither in Val nor in any other of the defined sets.

Proposition 3

(1) GVal c GVal’ c CVal C Val € Val’, and UVal C Val C Val’

(2) GValN UVal = GVal’ N UVal = {c¢}. ¢ is in all of those sets.

(3) If u is a subvalue of v and v is in Val (UVal), then u is in Val (UVal), too.
(4) CVal, GVal’, and GVal do not satisfy a property such as (3).

Proof:

(1) GVal’ € Val: ' <>"' occurs only at top level.

GVal’ € CVal: since GVal’ € Val and the constituents of a value in GVal’
are grouped - thus they are not holes.

CVal € Val € Val’, UVal € Val, GVal € GVal’: by definition

For the proper inclusions see the examples above.

(2) & does not contain any occurrence of ' < >', thus it is in UVal, and it satis-
fies the conditions (a) through (c) of the definition of GVal. Conversely, if a
value is both in GVal’ and UVal, its primitive constituents are grouped and
don’t contain ' < >"'. This contradiction implies that the value consists of no

primitive constituents, therefore it is «.

(3) Val: If ' <> "' occurred in u under an operator op # < >, it would occur in
v under op, too.
UVal: If ' <>"' occurred in u, then it would also occur in v.

(4) CVal: u = [] is subvalue of v = op [], v is in CVal, but u is not.
GVal, GVal’: u = c is subvalue of v = <c¢>, v in GVal’, u not in GVal.

The difference between (3) and (4) is due to the fact that the property of being
well formed or being ungrouped depends on the whole value, whereas being closed
and being well grouped are properties of the top level of a value.

Val is introduced since the grouping operator is meaningless under another
operator; only at top level or under another occurrence of itself it is useful (see [1]
- 5.7. 'Preventing concatenation', and syntactic insertion below). Prop. 3 (3)
and the fact that Val will be closed under concatenation and insertion imply that

we may drop the values not in Val and restrict ourselves to well formed values.

The notion of closed values is important since the top level of a closed value is

not affected when other values are inserted in its holes.

When we define the syntactic insertion 'u A v' later, v will be required to be

-6 -

well grouped. The constituents (groups) of v are inserted in the holes of u by
stripping their ' <> ' operator (thus condition (a) is needed). Conditions (b) and
(c) are needed to assert that the result 'u A v' is well formed, that insertion A is

associative, and that only a finite number of decompositions of a given value exist.

We shall show what would go wrong if the conditions (b) and (c) were omitted.
Therefore we shall introduce another insertion 'u A’ v' where v must only be in
GVal’. This operation will neither be associative, nor the number of partitions of
a given value will be finite.

Ungrouped values are needed when we shall discuss alternative definitions of

insertion.

3. Concatenation, upper and lower length

In the set VaI’ = ({ [] } U Const U (Op X Val’))* we introduce the operation
of concatenation '-' with neutral element ¢ = () and call the number of primitive
constituents of a value UL meaning upper length. The number of holes in a

value will be denoted as LL meaning lower length.

Formal recursive definition:

Definition 4
(Jryv=y"()=y
(Viy oo s Vo) * (W1, ooy, Wp) = (V1 ooy Vi, We, oo, Wp)
UL() =0 UL (v4, ... , Vo) = n
LL() =0 LL (v4, ... , V4) = LL (v4) + ... + LL (vy)
LL(]) =1 LL(c) =0 LL (op v) = LL (v)
The primitive constituents u; of a value u = (uy, ... , u,) have upper length 1.

In the sequel, we shall call a value whose upper length is 1, primitive. Primitives
are similar to prime numbers in number theory. If we write (u, ..., up), the

values u; will be primitive.

From the definition, the following properties are obvious:

Proposition 5
u-(v-w)=(u-v)-w V'E = g V=YV
u-v =u-v impliesv = v’ u-v =u -vimpliesu = v’
UL (¢) = LL (e) = 0 UL (v) = 0iffv = ¢

UL (u-v) = UL (u) + UL (v) LL(u-v) = LL (u) + LL (v)
Val, UVal, CVal, GVal’, and GVal are closed under concatenation, even
u - v in Val (UVal, CVal, GVal(’)) iff u and v in Val (UVal, CVal, GVal(’))

Val’ is a monoid under concatenation, and UL and LL are monoid

.

homomorphisms from (Val’, :) to (N,, +). (UVal,) etc. are submonoids of
(val’, ©). UL and LL may independently vary in N, except that UL(v) = 0
implies LL(v) = 0.

4. Insertion

Now we want to introduce syntactic insertion of values into holes. First, we
shall define two similar operations A and A’ that will only differ in the domain
where they are defined. u A’ v resp. u A v shall denote the value obtained by
inserting the constituents of v into the holes of u. This may be done only if v is
(well) grouped (v in GVal’ resp. GVal), and if the number of constituents of v
equals the number of holes of u: UL (v) = LL (u). v is split into its grouped
constituents, and these are inserted into the holes of u by stripping the ' <>

operator.

Definition 6
A’ and A: Val’ X Val’ » Val’ are partial mappings.
u A’ v is defined iff v € GVal’ and LL (u) = UL (v).

O0Aa v = (v must equal () to make this defined)
(ug, ... ,u) &’ v = (ug A’ vy) - ... - (up A’ vy)
where u; primitive and LL (u;) = UL (v;)and vy + ... - v = v
For short, we call this: v is partitioned into vy, ... , v, according to u
148 <w> = w (Note that the <> operator is stripped here)
cAv =c (v must equal () to make this defined)
(opu) A’ v = op (ud’v) specially <u> A’v = <u A’ v>

u A is defined iff v in GVal and LL (u) = UL (v).
Then u Av = u A’ v holds.

Examples:
op[]A <v> = opvV
<op[]> A <v> = <opv>
if ([, t,) A <c> = if(c, t, €)
([], list (al, [], a2, a3, [])) A’ <bl, b2; cl, c2, c3; > =
(b1, b2, list (al, cl, c2, c3, a2, a3))
add ([], []) &’ <1, 2> is undefined (too many holes)
add [] A’ <1; 2> is undefined (too many groups)
[] A’ c is undefined (c is not grouped (a))
[] A’ < <c> > is undefined (condition (b) is violated)
[] A < > is undefined (not well grouped due to condition (c))
14 <>=20

From the first example, we learn that even with alternative paraphrasing - op

-8 -

means op [] —= op v is different from op A v.

Values may be thought of as trapezoids with height 1, length of the upper edge
UL and of the lower edge LL. Then, concatenation corresponds to a horizontal
combination of trapezoids, A’ to a vertical combination that is only possible if the
lengths agree.

The only difference between A and A’ is that A’ is more defined than A. But
this induces important differences in the algebraic properties of the operations.
Proposition 7

Let u and v be values (elements of Val’) such that u A’ v is defined.

Then v is in GVal’ and

u is in Val (UVal) iff u 4’ v is in Val (UVal),

if u is in CVal (GVal’), then u A’ v is in CVal (GVal’), the inverse is not true.

u in GVal neither implies u A’ v in GVal, nor vice versa.

uld’v = ¢iffu = [[Fand v = <>* for some k 2 0.

Proof: Simultaneous induction by u.

Case u = (Joru = c: Then v must be ¢, and u A’ v equals u. Thus the
statements trivially hold (k = 0 in the statement about u A’ v = ¢).

Case u = []: Then v = <v’> holds and u A’ v = v’. [] is in Val and

UVal, but not in CVal, GVal’, or GVal.

CVal: v’ may be closed or not, thus the 'iff' property does not hold for
CVal.

Val: Since v = <v’> is in GVal’, it is also in Val, and thus its subvalue v’
is in Val, too, by Prop. 3(3).

UVal: If v’ were not in UVal, it would contain an occurrence of '<>"'.
This occurrence would not be at top level in v, and v would not be grouped
(condition b). Thus v’ is in UVal.

e: ulA v = ¢ciffvV = ¢ iff v = <>, This is the case k = 1.

Case u = op u’ where 'op' isnot '<>': ThenuA’v = ob (u’ A’ v).

Val, UVal: u isin Val (UVal) iff v’ is in Val (UVal)

iff w’ A’ v in Val (UVal) iff op (u’ A’ v) in Val (UVal).

CVal: op u’ and op (u’ A’ v) are both in CVal.
GVal’: Both are not in GVal’.
€3 Both don’t equal ¢.

Caseu = <u’>,thenu lA’v = <u’ A’ v>.
Val: analogous to case 'op u’'
UVal: <u’> and <u’ A’ v> are not in UVal.
CVal: They are both closed.
es Both don’t equal ¢.

« Qe

GVal’: Cond. (a) is satisfied by both values.
<u’> satisfies (b) iff u’ in UVal
iff w’ A’ v in UVal iff <u’ A’ v> satisfies (b)
Case u = (ug, ..., uy), n > 1.
Thenv = vy - ... -vpandu A’ v = (u; A’ vy) - ... » (ug A vy).
u is in Val (UVal, CVal, GVal’) iff all u; are in Val (UVal, CVal, GVal’),
and u A’ v is in Val (UVal, CVal, GVal’) iff all u; A’ v, are in Val (UVal,
CVal, GVal’), thus the statements are true by induction.
ulA'v = giffaluy; A’ v; = ¢ iffu; = [and v; = <> iff
u=|[*and v = <>*wherek = k; + ... + ky.
Examples:

1) [] is not in CVal, but [] A’ <c> = cis.

2) u = [] is neither in GVal nor in GVal’. Letv = <>, thenuA’v = ()is in
both GVal and GVal’.

3)u = <[]>isinGVal. Letv = <>. ulA’v = <> is not in GVal.

4) Assume condition (b) in the definition of GVal’ would not exist. Then op [] in
Val, but op [|] A’ <<c>> = op <c> is not, [] is in UVal, but not in
GVal’, whereas [] A’ <<c>> = <c> is not in UVal, but in GVal.

Proposition 8
Let u and v be values (elements of Val’) such that u A v is defined.

Then v is in GVal and

u is in Val (UVal, GVal’, GVal) iff u A v is in Val (UVal, GVal’, GVal),

if u is in CVal, then u A v is in CVal, the inverse is not true.

uAv = giffu =v = ¢

Note the differences: ¢ may be written as u A’ v in infinitely many ways, but as

u A v in exactly one way. The statements about GVal and GVal’ are stronger,

this will be important for associativity.

Proof:

If u A v is defined, then u A’ v is also defined and equals u A v. Thus the
statements for Val, UVal, and CVal directly follow from Prop. 7.

e: [[*A <>¥is defined iff k = 0, thusu = v = ¢ holds.

GVal, GVal’: Induction on u. Induction is needed since there are no
correspondent properties of A’.

Case u = (Joru = c: Then v must be ¢, and u A v equals u. Thus the
statements trivially hold.

Case u = []: Thenv = <v’> holds and u A v = v’. [] is neither in GVal
nor in GVal’, but it is in UVal, hence v’ is in UVal, too.

-10 -

Due to condition (c) of GVal, v’ is not ¢, and since UVal N GVal’ = {¢},
v’ is not in GVal’, and not in GVal.
Case u = op u’ where 'op' isnot '<>"': Thenu A v = op (u” Av).
Both are not in GVal or GVal’.
Caseu = <u’>,thenuldAv = <u’ Av>.
GVal’: Cond. (a) is satisfied by both values.
<u’> satisfies (b) iff u’ in UVal iff
u’ A v in UVal iff <u’ A v> satisfies (b)
GVal: <u’> satisfies (c) iff u’ # ¢ iff i’ A v # ¢ iff <u’ A v> satisfies (c)
Caseu = (uy, ..., up), n > 1.
Thenv = vy - ... -vpandu A v = (ug Awvy) - ... (up A vp).
u is in GVal(’) iff all u; are in GVal(’), and u A v is in GVal(’) iff all u; A v,
are in GVal(’), thus the statements are true by induction.
Syntactic insertion does not allow for omitting common operands in equations:
uAv = uA v does not imply v = v’, and
uAv = u Avdoes not imply u = u’.
Examples: ([], []) A <a, b;c> = (a, b,c) = ([], []) A <a; b, c>
(c, [DA <c> = (c,c) = ([], c) A <c>

5. The X-category properties
In this section, we shall check that '-' and 'A' satisfy the axioms of an

X-category (see [2]). We shall use two conventions in our propositions and

theorems:

1) All formulae about values are to be understood as preceded by an all quantifier
over all free variables occurring in it. Variables u, v, w, u’ etc. denote values,

¢, d etc. denote constants, and op operators.
2) Let e and fbe two expressions over values.

e = fmeans: e is defined iff fis, and if both are defined, they are equal.

e = fmeans: if e is defined, then fis also defined and both are equal.

e = fmeans: if both e and fare defined, they are equal.
Example: uAv = ul'v

Clearly, e = fimplies e = f and this implies e = £ ' ="' is a congruence
relation, but ' = ' is not symmetric, and '="' is not transitive e.g. 1 = 1/0 = 2,
but 1 = 2 is false.

- 11 -

Proposition 9
LL(uAv) = LL(uA’v) = LL (v)

i.e. u A(’) v contains as many holes as v.

Due to our convention, this is an abbreviation for
For all u in Val’ and v in Val’, wkere u A v is defined,
LL (uAv) = LL (u A’ v) holds, and for all u, v in Val’,
where u A’ v is defined, LL (u A’ v) = LL (v) holds.

Proof: Induction by u:

LL((Q)Av)=LL(() = LL (v) since v = ()

LL ((ug, ..., up) A’ v) = LL ((ug &’ vq) * ... - (g &’ vy))
= LL (uy &’ vy) + ... + LL (u, &’ vp) by Prop. 5
= LL (v4) + ... + LL (vy) by induction hypothesis
= LL (v * ... * vy) = LL (v)

LL (] &’ <w>) = LL (w) = LL (<w>)

LL(cA’v) = LL(c) = 0 = LL (v) since v = ()

LL(opud’v) = LL(op(ud’v)) = LL (uA’v) = LL (v) by induction

A corresponding proposition for the upper length - UL (u A’ v) = UL (u) -
is not generally true, e.g. UL ([]) = 1, but UL ([] A <c,d>) = UL (c, d) = 2,
and UL ([] A’ <>) = 0. But it holds if u is closed:

Proposition 10

If u A v is defined, then UL (u A v) 2 UL (u).
Ifuisin CVal, then UL(uAv) = UL(@uA’v) = UL (u) holds.

Proof:
Caseu = () UL(()A’v) = UL(()
Case u = (uy, ..., up):
UL (u, ... , up) = n,
UL (uA’v) = UL ((ug &’ vy) + ... - (Up A&’ vp)) =

UL (u; &’ v4) + ... + UL (u, &’ v).
We have to show that UL (u; A’ v;) 2 1 for uy = [] and v; in GVal,
and = 1 ifu #[].
uy = ¢ UL(u;A’vy) = UL(c) =1
u; = opu’: UL (u; A’ v{) = UL (op (0’ &’ vy)) = 1
u; = [): Thenv; = <v’>. UL(ujAv,) = UL (V)21
due to condition (c) of the definition of GVal (v’ # ¢).

The operations A resp. A’ do not possess a neutral element, but for each length

-12 -

there is a partial neutral element:

Proposition 11

Let e = <[]> and € = e ... - e (k times), € = ().
Then e*isin GVal, and UL (¢¥) = LL (¢¥) = k holds, and
for all u in Val’ with LL (u) = k, uA e = u holds, and
for all v in GVal with UL (v) = k, e*Av = v holds.

Examples: < [];[] > A <v;w> = <y; w>
op((lba,DAa<[;[0>=op(lalD

Proof:
The first part is proved by induction on u:
0Ae =0
(U, ..., Up) A € = (uy A €2V) - (u, A €M)
= Uy * ... U, = (ug, ..., Up) by induction
Nae =[a<[]>=]
cAe® = ¢

opulek = op(ul e = opu

Proof of the second part:
IfUL(v) = O, thenv = (Jandk = 0, and () A () = () holds.
Let UL(v) = k > 0:

AV = <[]; .. []> A <vy; o s W> since v is well grouped
- <[JA<V> > <[] <v> >
= <vy> . <vw> = <vy; ..., V> =V

The neutral elements of A are compatible with concatenation:
Proposition 12: e!*Jd=¢! - ¢
Proof: trivial

The horizontal and vertical combinations are interchangeable:

Proposition 13
uUAV)-(WAV)= (u-uw)A(v V) (same for A’)
Scheme: u . u’
v . v’

Proof: (A’ is analogous to A)
The right hand side is defined since v, v’ in GVal(’) implies v - v’ in GVal(’)
and LL (u-u’) = LL(u) + LL(u’) = UL(v) + UL(V’) = UL (v - V')
Case u = ¢: Then v must be ¢, too.

- 18 -

(eAv) - (WAV)=¢ WAV)=U AV =
(e wW)A(e V) = (u-u)A(v: V)
Case u’ = ¢: analogous

Case u = (uy, ... , up), u’ = (uy’, ..., uy’) wheren, m > 0:
Let v be partitioned into vy, ... , v, according to u, and v’ into v,’, ... , v’
according to u’. Then vy, ... , vy, vo’, ... , vy’ is a partition of v - Vv’

according to u - u’.
(uAv) @ AV)
= (U Avy) s (UpAvy) (U Avy) sl (U Avy)
= (u-u)A(v-Vv)
The operation A is associative, but A’ is not:

Proposition 14

Ul VA W=ul’(vA'w)

If v in GVal’, then ' = ' holds above.
uAv)A w=ul(va w)

A vV)Aw =ul’(vaw)
(WAv)Aw =uld(vAw)

Proof:
Case (&’, A’):
Left hand side defined
iff vand win GVal’ and LL(u A’ v) = UL(w) and LL(u) = UL(v)
iff vand win GVal’ and LL(u) = UL(v) and LL(v) = UL(w) (1)
Right hand side defined
iff v A’wand win GVal’ and
LL(u) = UL(v A’ w) and LL(v) = UL(w) (2)
(1) implies (2): v in GVal’ implies v A’ w in GVal’ by Prop. 7
and v in GVal’ € CVal implies UL(v A’ w) = UL(v) by Prop. 10
(2) implies (1) if v in GVal’: same argument as above
Cases (A(’), A): Then we have
Left hand side defined
iff v in GVal(’) and w in GVal and LL(u) = UL(v) and LL(v) = UL(w) (1)
Right hand side defined
iff v Awin GVal(’) and w in GVal and
LL(u) = UL(v A w) and LL(v) = UL(w) (2)
'v in GVal(’)' and 'v A w in GVal(’)' are equivalent due to Prop. 8,
and v in GVal(’) implies UL (v A w) = UL (v) by Prop. 10.

The remainder of the proof is done for case (A, A), the other cases are

-14 -

analogous.
Assume both sides are defined. Then the law is proved by induction on u:
OA(VAW) = =0Av=(AV)AW
(ug, ..., up) & (v A w):
Let v be partitioned into vy, ..., v, such that LL(u;) = UL(vy),
and let w be partitioned into wy, ..., w, such that LL(v,) = UL(w;y).
Then v Aw = (vi A wy) -...- (Vo A wp) holds by Prop. 13,
and this is a partition of v A w according to u since UL(v; A wy) = UL(v).
Thus: (uy, ..., uy) A (v A w)
= (ug A (vi A wy)) -...- (ugp A (Vo A Wy))

= ((ug & vi) A wy) oo ((un A vy) & wy) by induction hypothesis
= ((ugAvy) .- (upAvp) A w by Prop. 13
= (ulAv)Aw by Prop. 13 again or by definition of A

[[A(KV'>AwW) =[]lAVAWD> =V Aw = ([J]A<V>)Aw
cA(vAw)=c=cAv=(cAv)Aw
(opuw’)A(vAw) = op(u A(vAw) = op(u Av)Aw)

= (op(W AV)Aw = (opu’)Av)Aw

Examples:

O0A(1A <>)=(0A(0) = () but () A[]) A’ <> is not defined, since ’[]’
is not grouped and the lengths don’t agree.
This example works as well if A is replaced by A’.
[1A(<[]> A’ <>) = [] A <> is not defined due to condition (c),
but ([] A <[]>) 4 <> =[]4 <> = ().
Condition (b) (operator ' < >"' only at top level) is as important as condition
(c) (no <()> constituent) for associativity: without (b), [] &’ ([] &’ <<c>>)
would be [] A’ <c> = c, whereas ([] A’ []) A <<c>> would not be defined
since condition (a) is violated by the value [].

All the propositions of this chapter taken together mean that both GVal’
together with the operations '-' and A’ and GVal together with the operations
'-' and A are X-categories (see [2]).

6. An alternative definition of insertion

In the previous section, we have defined insertion A only for values where the
number of holes of the upper value equals the number of groups of the lower one.
Now we want to define insertion for arbitrary grouped values (A”) to obtain a total
operation on GVal, and we shall show that this operation is unsatisfactory.

If there are more holes than groups, some holes remain unfilled, and if there are
less holes than groups, some groups are placed unaltered onto the top level of the

- 15 -

resulting value.

We cannot delete the superfluous groups since we later want to define patterns
performing the inverse operation of insertion, i.e. from a value w, we want to
obtain the set of all pairs (u, v) such that u A” v = w. If subvalves were deleted
during insertion, this set might be infinite, and the semantics of patterns would be

incomputable.

Naturally, we must determine which holes remain resp. which groups are placed
onto the top level. We decide that the process of inserting groups into holes
proceeds from left to right; this introduces an ugly asymmetry into the new opera-

tion.

Examples:

Too many holes: add ([], sub ([], [])) A” <a; b> = add (a, sub (b, []))

Too many groups: add ([], 3) A” <2; §> = (add (2, 3), <5>)

<add ([], 3)> A” <2; 5> = <add (2, 3); 5>

Formal definition: u A” v is defined iff v is well grouped (v € GVal)

Lete = <[]>

(1) If LL(u) > UL(v) then uA”v = uA (v - el - W)

(2) If LL(u) = UL(v) then uA” v = ulyv

(3) If LL(u) < UL(v) then uA” v = (u - eV -y Ay

If there are too many holes (case 1), then the lower value v is extended to the
right by as many groups <[]> as there are superfluous holes. Those groups are
inserted into these holes by A such that the holes seem to remain unfilled. If there
are too many groups (case 3), then the upper value u is extended to the right by
as many holes <[]> as there are superfluous groups in v.

Remarks to the definition:
Case (2) is a special case of both (1) and (3) since € = ¢.
A is always defined in it:
Case (1): UL (v - ¥ -y w UL(v) + LL(u) - UL(v) = LL(u)
Case (3): LL (u - ™" -1y w IL(u) + UL(v) - LL(u) = UL(v)
The operation A” is a total, associative operation in GVal with neutral element
e. The relations to UL and LL are more complex than the relations of A:
LL (u A” v) = LL(v) + max (0, LL(u) - UL(v))
UL (u A” v) = UL(u) + max (0, UL(v) - LL(u))
Most of these properties may be proved straightforward, only the proof of the
associativity is very tedious.
The property (u A” v) - (W’ A” v’) = (u + u’) A” (v - V’) is not true.

Example:

- 16 -

u = <add (], [D> u = <sub ([], [)>

v e <1> Vo= <2>

(uA”v) - (W A" V) = <add (1, [)> - <sub (2, [])>
= <add (1, []); sub (2, [])>

(- w)A” (v-v) = <add([], [} sub (], [)> A" <1; 2>
= <add (1, 2); sub ([], [D>

Advantages of the alternative insertion A” are its totality and the existence of a
real neutral element, but severe drawbacks are its inherent asymmetry, its complex
relations with UL and LL, and the missing compatibility with concatenation.
Moreover, we think that A” is less natural than the original operation A such that
we shall not consider it any longer.

7. Insertion one by one

The insertion A defined above is "many to many”: it allows for inserting many
(2 1) primitives into each of many (& 0) holes. It requires that the second
operand is well grouped such that the groups of primitives to be inserted into one
hole can be recognized.

Now we want to define a "one to many” insertion that inserts exactly one primi-
tive into each hole. Therefore the second operand need not be grouped. We shall
define the new operation in terms of A and thus need a mapping to introduce
'<>"' into ungrouped values.

Definition 15 (grouping mapping)

group () = ()
group (Vi, ... , vp) = (<vy1>, ..., <vp>) = <vy; o V>

Proposition 16
'group’ is an injective, but not surjective monoid homomorphism
from UVal to GVal.

group: UVal » GVal u in UVal iff group (u) in GVal
group (c) = ¢ group (u + v) = group (u) - group (v)
group (u) = group (v) implies u = v

UL (group v) = UL (v) LL (group v) = LL (v)

If u in CVal then group (u A(’) v) = group (u) AC) v

For u not in CVal, this equation does not generally hold.

If UL (uAv) = UL (u) then group (u Av) = group (u) A v
A corresponding statement for A’ is not true.

Proof:

-17 -

The first, third, fourth, and fifth line is trivial. 'group' is not surjective since
values such as <a, b; ¢> are not in its image.
Let u = (uy, ... , uy), then group (u) = (<uy>, ... , <u,>). group (u)
always satisfies conditions (a) and (c) of GVal, (c) since the u; are primitive and
thus they are not ¢. Condition (b) is equivalent to 'all u; are in UVal', i.e. u
in UVal.
group (u A(’) v) = group (u) A(’) v:
Examples: group ([] A(C’) <a, b>) = group (a, b) = <a; b>
whereas group ([]) A() <a, b> = <[]> A(’) <a, b> = <a, b>.
UL (], [I) = 2 and UL ((], []) A’ <a, b; >) = UL (a, b) = 2,
but group ([], []) A’ <a, b; > = <[]; []> A’ <a, b; > = <a, b; >,
group (([}, []) &’ <a, b; >) = group (a, b) = <a; b>.

Proof for A:
u= () group(uldv) =group() = () = JAv = group (u) Av.
u = (uy, ..., uy): Let v be partitioned into vy, ... , v, according to u.

If u is in CVal, all u; are in CVal, and thus UL (u; A v;) = UL (u;) = 1.
If UL (u A v) = UL (u), then we may conclude UL (u; A v;) =
UL (uy) = 1, since UL (u; A vy) 2 UL (u;) holds due to Prop. 10.
Therefore, the values u; A v; are the primitive constituents of u A v.
group (WA v) = (Suyy Avi>, ..., <uAvy>) =
(<uy> Avy, ..., <up> Avy) = group (u) A v.
For A’ instead of A, the argument for case 'u in CVal' works analogously, but
the UL argument does not work.

Definition 17
For u, v in Val’ we define uAv = u A group (v)
Proposition 18

A: Val’ X Val’ - Val’ is a partial mapping.
u A v is defined iff v ¢ UVal and LL (u) = UL (v).

OAv =) (v must equal () to make this defined)
(ug, ..., up) Av = (ug Avy) - ... (up Avy)

where u; primitive and LL (u;) = UL (vy)and v; * ... v, = v
[Aw=w
cCAv = (v must equal () to make this defined)
(opu)Av = op(uAv) specially <u> Av = <uAv>

Proof:
u A group (v) is defined iff group (v) in GVal and LL (u) = UL (group (v))

« 18 s

iff vin UVal and LL (u) = UL (v).
The other properties are a direct consequence of the definition of A, except
"[J Aw = w' that is a little bit more complex:
if [] Aw is defined, UL (w) = 1 holds, and group (w) = <w>.
<[JAw> = <[]> A group (w) = group (w) = <w>,
thus [JAw = w.

Examples:

op[J]AvV = opv (only if UL (v) = 1)

if([l, t,) Ac = if (c, t, €)

([], list (al, [], a2, a3, [])) A (b, ¢, d) = (b, list (al, c, a2, a3, d))
add ([], []) A 1 is undefined (too many holes)

add [] A (1, 2) is undefined (too many values to insert)

[] A <c> is undefined (<c> is not ungrouped)

Now we give a list of the properties of A. Most properties are inherited from
A, but there are some more properties since A is more restrictive than A.
Proposition 19
(1) Let u and v be values (elements of Val’) such that u A v is defined.

Then v is in UVal and
u is in Val (UVal, GVal’, GVal) iff u A v is in Val (UVal, GVal’, GVal),
if u is in CVal, then u A v is in CVal, the inverse is not true.
UAv = ¢ iff u=candv = ¢
(2) uAv = uAvVv’ does not imply v = v’.
Let u, u’, v be values such that u A v and u’ A v are both defined.

Then uAv = u’ Av implies u = u’.

(3 LL(uAv)=LL (V) (49) UL@uAv)= UL (u)
(6) group (uAv) = group (u)Av = group (u) A group (v)
6) [FAv = v uA[F=u

(7 @WAV) - W AVY) @ uU-UW)A(v- V)
8 (OV)Aw = ubO(vAw) foro = A’, A A
9 (MAV)Aw = uA(vAw)
(10) (u A v) A’ w may be different from u A (v A’ w)

Note that properties (2), (4) and (5) differ from those of A; in (4) and (5), the
precondition 'u in CVal' is not needed.
Proof:

(1) directly from Prop. 8

(2) Example: ([J, c)Ac = (c,c) = (c,[DAc

The positive statement must be proved by induction on u.

-19 -

Caseu = (Joru = c:
Then v = v’ = () must hold to make u A v and u A v’ be defined.
Caseu = [|: v=[Av=[AV =V
Case u = op u’:
(opu’) Av = (op u’) A Vv’ implies op (u’ Av) = op (u’ AV’),
thus u’ Av = u’ AV’ and hence v = v’ by induction.
Caseu = (uy, ... ,uy): ThenuAv = (uy Avy) - ... (up Awvy),
u A v’ analogous with v, replaced by v,’.
Due to (4) that will be proved soon, we may conclude
UL (uy Avy) = UL (u;) = 1, and UL (u; Avy’) = 1.
(This conclusion is not possible for A since (4) does not hold generally.)
Therefore we obtain u; A vy = u; A v,’ for all i,
whence v; = v,’ by induction, and thus v = v’.
(3) LL(uAv) = LL (u A group (v)) = LL (group (v)) = LL (v)
(4) Since the correspondent property for A does not hold, we must prove this by
induction on u. The proof is analogous to that of Prop. 10 except for case
u = []. To make [] A v defined, UL (v) = 1 must hold, and thus
UL (JAv) = UL (v) = 1 = UL ([]). (For A, we had only '2"').
(5) The second equation holds due to the definition of A. The first equation
may be proved analogously to the proof of Prop. 16 except that the line 'If
u is in CVal ...' may be dropped due to (4).

(6) uA[* = uAgroup ([|¥) = uld <[|>F = u by Prop. 11
group ([]* A v) = group ([|) A v (by (4))
= <[]>* A group (v) = group (V) by Prop. 11

Since 'group' is injective, this implies [[FA v = v.
(7) (WA V) - @ AV’) = (u A group (v)) - (u A group (v')) =
(u - u’) A (group (v) - group (V’)) = (u-uw’)A(v-Vv) by Prop. 13
(8) Case (A, A):
(uAv)Aw = (u A group (v)) A group (W)

= u A (group (v) A group (w)) by Prop. 14
= u A (group (v) Aw) = u A group (v A w) by (5)
= uA(vAw)

Case (A, A):

(uUAvV)Aw = (uAv)Agroup(w) = ul(vAgroup(w)) = ud(vAw)
Case (A’, A): analogous
Q) WAv)Aw = uA(vAw)
If the left hand side is defined, then LL (u) = UL (v) holds, and the
definedness of the right hand side implies LL (u) = UL (v A w). If both
sides are defined, we may conclude UL (v A w) = UL (v) and Prop. 16 is

- 20 -

applicable.
(WuAv)Aw = (uAgroup (V)) A w
= uA (group (vV)Aw) = uAgroup (vAw) by Prop. 16
= uA(vAw)
'2' cannot be improvedto '="' or ' ="':
uA[D)A <c,d>
uA(]A <c,d>) = uA(,d)
The first term is defined iff LL (u) = 1, and the second one iff LL (u) =
2. Now choose u = [] resp. u = ([], []) and you see that ' ="' or ' ="' do
not hold.
(10) The two terms (u Av) A’ w and u A (v A’ w) may be both defined and
yield different results.
@ a MDA DA <b,c> = (a8 <bc> = (b a)
(La AW MA& <b,c; >) = (l,a[)A® c) = (b,ac)
These properties imply that UVal together with the operations '-' and 'A' is
also an X-category. The mapping 'group' is an injective X-category homomor-
phism from (UVal, -, A) to (GVal, -, A) due to Prop. 19(5).

8. Simple insertion

In the previous section, we have restricted the general insertion A (many (2 0)
holes, many (2 1) primitives into each hole) to a new operation A (many holes,
one primitive into each hole). Another kind of restriction would be one hole,
many (2 1) primitives into it. A suitable definition would be uAv =
u A <v>. But we shall see that it is possible without drawbacks (loss of associa-
tivity, infinitely many partitions) to allow for filling ¢ into the one hole, such that
the new operation will be defined as u A v = u A’ <v>. Note that this is
exactly the operation that we have used in [1].

Definition 20

Foru,vinVal’let uAv = udl’ <v>

-21 -

Proposition 21
A: Val’ X Val’ = Val’ is a partial mapping.
u A v is defined iff v ¢ UVal and LL (u) = 1.
() A v and c A v are not defined since LL (()) = LL(c) = 0.

AV = v
(opu) Av = op (uAv) specially <u> Av = <uAv>
(ug, ..y up) AV = (ug, ..., ugyg) * (ug AV) - (Ug, ..., Uy)

where LL (u;) = 1 and LL (u;) = 0 for j # i.
(u; is the primitive containing the hole of u).

Proof:
u A is defined iff u A’ <v> is defined iff
<v> in GVal’ and LL (u) = UL (<v>) iff vin UVal and LL (u) = 1.
The other properties are proved straightforward;
<[[AV> = <[J& <v>> = <[|> A <v> = <v>
by Prop. 11; this implies [JAv = v.

Examples:

op[J]AvV = opv

add [A (1, 2) = add (1, 2)

if(c, [DA(t, e) = if(c, t, €)

list (al, [], a2, a3) A () = list (al, a2, a3)

add ([], []) A v is undefined (too many holes)

[] A <c> is undefined (<c> is not ungrouped)

Now we give a list of the properties of A. Most properties are inherited from
A’, but there are some more properties since A is more restrictive than A’.
Proposition 22
(1) Let u and v be values (elements of Val’) such that u A v is defined.

Then v is in UVal and
u is in Val (UVal) iff u A v is in Val (UVal),
if u is in CVal (GVal’), then u A v is in CVal (GVal’), the inverse is not
true.
u in GVal does not imply u A v in GVal, and vice versa.
uAv = ¢ iff u =[Jandv = ¢
(2) uAv = uAvV does notimply v = v’.
Let u, u’, v be values such that u A v and u’ A v are both defined.
Then uAv = v’ Av implies u = u’.

(3) LL(uAv) = LL (v)

- 99 .-

(4) UL (u Av) = if u in CVal then UL (u) else UL (u) + UL (v) - 1
(5 if UL (u) = UL (u Av) then group (u Av) = group (u) Av

6) [JAvVv =V uA[] = u
(7) if UL (w) = O then (foro = A’, A, A, A)
(uOv)-w = (u-w)Ov w-(uOv) =(w-u)0Ov
B) (uAv)Ow = uA(vOw) foro = &, A, A A
9) wov)Aw = ud((vAw) foro = A, A

10y WA vV)Aw = udl (vAw)
Proof:
(1) directly from Prop. 7 for A’
The examples given there may be translated into examples for here:
fAc=c [AQO=0 <O>AQ=<>
uAv = ¢ iff ud’v = ¢
iff u=["and <v> = <>* iff u = [Jand <V> = <>
iff u=7_[andv = ¢
(2) Example: ([, c)Ac = (c,c) = (c,[)Ac
The positive statement is proved by induction on u.
Case u = () or u = c: impossible
Caseu = [|: v=[JAv =[][AV =V
Case u = op u’:
(opw’) Av = (op u’) A v’ implies op (u’ Av) = op (U AV’),
thus ww Av = u’ Av’, and hence v = v’ by induction.
Case u = (uy, ... ,uy): Thenu Av = (uy, ..., us4) - (U3 Av) - (U, ..o, Up),
u A v’ analogous with v replaced by v’.
It follows u; Av = u; Av’ and v = v’ by induction.
(3) LL(uAv) = LL(uA <v>) = LL(<v>) = LL ()
(4) Let u in CVal. Then
UL(uAv) = UL@uA’ <v>) = UL (u).

Now assume u is not in CVal and u A v is defined, i.e. LL (u) = 1.

Then u = (uy, ... , uy) with u; = [] for some i and LL (u;) = 0 for j # i.
By Prop. 21, we obtain u A v = (uy, ... , Ujq) * V * (Wi, -.. , Up),
and thus UL (u Av) = UL (u) - 1 + UL (v).
B)uAv = (ug, ... ,u3q) " (ug Av) - (U, ..., Up)
UL (u Av) = UL (v) implies UL (u; Av) = 1.
Thus the primitives of u A v are uy, ... , uj_q, U AV, U4, ... , Uy,

and this implies the statement together with <u; A v> = <u;> Awv.
OG)uA[] = uA <[[> = u

[[JAv = v by Prop. 21
(7) Case &’, A, A:

- 93 -

(ov) - w = (uOV)-(wO()) = (u-w)yd(v-()) = (u-w)@dv
Both sides are equally defined since LL (u - w) = L1 (u) + LL (w) = LL (u)
Case A: (UAV) - w = (UA <v>)-w = (Uu-wW)A <v> = (u-w)Av
(8 -10) We have to prove ' ="' for (A, O), '=' for (A, A) and (A, A),
and '=" for (4’, A).
Case (A, A): (WA’ vV)Aw = (Ul Vv)A <w>
= Ul (VA <w>) = ul’(vAw) |
Ex.: () &° []) A () is undefined, but () & ([A () = (0 &° () =
Case (A, A): analogously replied to (A, A’) with ' = ' replaced by '="'.
Ex.: The example above remains valid if A’ is replaced by A.
DA<[I>2)A0) =[0A0O = (O, but[JA(<[]> A(Q) = [] A <> is undefined.
Case (A, A): analogous to the case (A, A) in Prop. 19(9) using (5).
Ex.: (u A[]) A (c, d) is defined iff LL (u) = 1,
uA([]A(,d) = uA(c, d)is defined iff LL (u) = 2.
Case (A, DO):
(u A v) O w is defined iff
vin UValand LL (u) = 1 and win X and LL (uAv) = Y iff
vOwin UVal and LL (u) = 1 and win X and LL (v) = Y iff
u A (v O w) defined
Here, X is a set of values depending on O, and Y is a number
depending on O and UL (w).
We have just seen that both sides are equally defined.
They are really equal since
(uUAvV)Ow = (WA <v>)Ow = ul(<v>0Ow) =
ul’ <vow> = uA(vOw).
This proof uses some properties that are shared by the four insertions:
<v>0Ow = <vOw> Def. 6, Prop. 18, Prop. 21
v in UVal iff v O w in UVal Prop. 7, 8, 19(1), 22(1)

‘I'he virtue of the simple insertion is its less complexity, the ' ="' sign in the

associative law, and its relation to the application of an operator to a value:
op|] Av = opv. Furthermore, it is the only kind of insertion except A’ allowing
for filling ¢ into a hole. For patterns, we shall introduce operations that are
inverse to concatenation -, general insertion A, A, and simple insertion A. The
distinction between general and simple insertion makes sense since the inverse of
simple insertion will be probably easier to implement than the inverse of general

insertion.

- 924 -

9. Number of partitions

Finally, we investigate how many partitions into two values a given value has.

9.1. Definition

Let O be a partial operation in Val’, and let w be an element of Val’. Then we

denote the number of pairs u, v such that u O v is defined and equals w, by

ng (w).

9.2. Concatenation
n. (w) = UL (w) + 1

since (Wq, ... , Wp) = (Wy, ... , W3) * (Wis1, .. , Wy) for0 S£iSn

9.3. Most general insertion

nA' (W) = o
since w = (w - [A (<[]>®™ . <>¥ forallk 2 0.

9.4. Insertion of one primitive into each hole

Iirst, we consider na since it is easier to calculate than nA and nA.

na (@ =1 0= 0A0

na () =1 [= [0All

na(c) =2 ¢ = cA() = [JAc

nA (op w) = (if (op w) in UVal then 1 else 0) + na (w)
opw = (opu)Av = [] A (opw)
The first partition is possible whenever w = u A v, and the second one is
defined only if (op w) in UVal.

NA (Wg, «.. , Wp) = DA (Wy) * ... * nA (W)
Ifw, = uy Avy,thenw = (u; - ... -up) A(vy -+ ... * V)
Let vice versaw = u Av. Then UL (u) = UL (u Av) = n, and thus

u=(u, ... ,up)and w = (u; Avy) - ... (up A vy
Since UL (u; A v;) = UL (u;) = 1, we have wy = u; A v;.
Examples:

nA (add (a, b)) = 1 + np(a,b) =1 + npo(@a)-npa(b) =1 + 2:2 = 5.
na (if ([], add (a, b), sub (a, b))) = 1 + 1:5-5 = 26
nA (if (eq (a, b), add (a, b), sub (a, b))) = 1 + 555 = 126

- 25 -

9.5. General insertion

Remark: For all w in Val’, np (w) £ nA (w) holds.

Proof:

w = u A v implies w = u A group (v); 'group' is injective.

We shall show that np is not essentially greater than na.

npa (@) =1 0 = 080
na(() =12 I = [a<[>

nA (c)

=2 ¢ = chA() = []A <c>

nA (op w) = (if (op w) in UVal then 1 else 0) + np (w)

op

w = (opu)Av = []A <opw>

The first partition is possible whenever w = u A v, and the second one is
defined only if (op w) in UVal.

Case w = (wg, ... , Wp):

This case is more difficult then the respective one of np since some w; may be

extracted together e.g. (a, b, ¢, d) = (a, [], d) A <b, ¢>. This sample parti-

tion is only possible if b and ¢ are ungrouped such that we have to distinguish

two cases:

Case w not in UVal. Let wy be not in UVal.

Fhen we may extract subvalues of wy (as far as they are ungrouped), but

we cannot extract the whole value wy. Therefore, any extracted group

(wi, ... , w;) cannot contain wy, and we obtain:
nA (Wi, «.. , Wp) = nA (Wy, ..., Wiq) * DA (Wk) * DA (Wkit, -o0 , Wp).
Corollary: np (<wg; ... ; wp>) = np (W) * ... - nA (wp)

Proof: Note that <wy; ... ; w,> = (<wy>, ..., <w,>) and
npA (<w;>) = np (wy). ‘

Case w in UVal i.e. all w, are in UVal.

Consider the last primitive w,. Either only some subvalues of w, (may be
() or wy, itself) are extracted, or wy, is extracted as part of a group
(W, ..., Wy) where i < n.
w=(u-u)A(v-v)whereudAv = (Wy, ..., wpy)and 0’ AV’ = wy
orw = (u-[)A (V- <Wgug, ..., Wp>)
where k + 1 < nanduAv = (wy, ..., Wy). ,
Thus: np (W) = np (Wy, ... , Wpq) - DA (Wy) + DA (W1, ..., Wn) +
nA (Wi, -.. , Wpa) + ... + na (()-
We shall discuss this recursive formula further after some examples.

I'xamples:

Assume u, v, w are ungrouped values.

nA
nA

(u, v) = npA (u) " npA (v) + nA () = na(u) - na(v) + 1
(u, v, w) = nA (u, v) - np (W) + na (u) + np () =

- 26 -

nA (u) - nA (v) - npA (W) + np(u) + na(w) + 1
nA (add (a, b)) = 1 + np(a,b) =1 +2:2 +1 =6
np (if ([], add (a, b), sub (a, b))) = 1 + 166 + 1 + 6 + 1 = 45
nA (if (eq (a, b), add (a, b), sub (a, b))) = 1 + 666 + 6 + 6 + 1 = 230
Discussion of the formula for np (wy, ... , w,) where all the w; are unbound:

n-2
(1) nA (W1, ..., Wp) = DA (W1, .., Woeg) * DA (W) + 3 DA (Wi, ... , Wg)

Assume n > 1, and express npA (Wy, ... , Wp4) by formula (1) applied to
(n-1) instead of n, and take the difference of both equations. We obtain

nA (Wi, «.. , Wp) = DA (Wy, ..., Wog) = DA (Wy, ..., W) - DA (W) —
nA (Wi, ..., Wpg) * NA (Wpq) + DA (Wy, .o, Wiia)
and thus

(2) npA (Wy, ..., Wwy) = (1 + nA (wp) - nA (W, ooy Wog) +
(I = nA (Wna1)) * DA (W, ooy Wp2)
Formula (1) implies that np (wy, ... , w,) monotonically depends on np (w;).
Therefore, we have the following property:
(3)B = np (wy)) SC for all i implies F, (B) S np (wy, ... , wy) S F, (C)
where Fp (X) = 1 and F; (X) = X, and
Fo(X) = (1 + X) Foy (X) + (1 = X) - Fog (X)
Formula (3) is immediately derived from (2). The numbers F,; (X) may be
explicitly calculated by the same method as applied to the Fibonacci sequence.

Result:

4)Let p = VIX-1F + 4
a=%(X+1+p) B=%X+1-p)
am %0 e 2ol b-%(l-ﬁfh

Then F,(X) = aa" + bp" = faa™ for natural X

'I'1' means rounding upward to the next integer.

(5) Estimations: (for X 2 1)

1

0SbS 0Sps1

1 1 ; 1
o — < sees _—
1 X+l$a_l X+x5usx+mm(l,x_1)

Note that the estimations imply 0 £ bp™ < 1 and since F, (X) is an integer if
X is natural, the rounding to the ceiling is correct.
Proof of the estimations:
X -1 «VX-IFSpSVX-IF + X = X + 1
If this estimation for p is inserted into the definitions of a, b, a, and B, the
formulae above result except X £ a S X + 1. Note that (a -X)a-1) = 1,
1

a-1"

and hence a = X + If the first estimation for a is applied to the

- 97 -

occurrence of a on the right hand side of the very last formula, another estima-
tion for a results. The final one is obtained by combining these two estima-

tions.

9.6. Insertion into one hole

It will turn out that the formulae for nA are more complex than the other ones.

@@ =1 0= 0A0
na () =1 1 = (A1
npa(e) =3 ¢ = [J[Ac = ((LAQD = (& [DAO

We call the last two partitions degenerated.
nA (op w) = (if LL (w) = 0 then 2 else 0) +
(if (op w) in UVal then 1 else 0) + naA (w)
opw = (@pwAvV = [[A(pw) = (LopwAQ = ©pw [)NAQ
The first partition is possible whenever w = u A v, the second one is defined
itf (op w) in UVal, and the two degenerated ones are defined iff LL (w) = 0.
Case w = (wy, ..., W)
"I'his case is more difficult then the respective one of nA since some w; may be
extracted together e.g. (a, b, ¢, d) = (a, [], d) A (b, c), but this partition is
only possible if b and ¢ are ungrouped and a and d do not contain holes.
A partition w = u A v must obey the following two rules:
1) v must be in UVal i.e. all grouping operators occurring in w must remain
mn u.
2) u must contain exactly one hole i.e. all holes occurring in w must be
cxtracted into v.

Casc w not in UVal. Let wy be not in UVal.

(1 (2)

) 3
= (W1, ooy, Wiq), W = wy, and w® = (wg, ..., wp). Thus,

w = wit . W@ . wW® UL (w(a)) = 1, w® not in UVal.

let w

If at least two of the three values w'!) contain holes, nA (w) = 0 holds, since

we had to extract at least those values containing holes such that only one

hole is remaining in u, but we cannot extract the whole value w'® since it is
not in UVal.

)

If exactly one of the three values, namely w'?, contains a hole, then np (w)

= nA (w'?) since the partitioning must cut off the part containing the hole,

(2)

but cannot go beyond the value w3 because the middle value w'® is not

ungrouped.
11 w does not contain holes,
nA (W) = np (W) + np (Ww®) + np (W) - 2

since the grouping operator in w(# cannot be extracted into v and thus splits

- 28 -

) or in

w into three regions. The partition may be performed either in w
w(® or in w(®, therefore their respective partition numbers must be added.
The two degenerated partitions w = w(¥) - [] - w® . w® A () and w =
- w(®] - w® A () are counted twice and must be subtracted.
Example showing the inner consistency of the formula:
Let w = <w’> such that w¥) = w®® = () and w® = w. Assume w
does not contain holes.
nA (W) = nA () + nA (W) + nA(() - 2 = nA (W)
Case w in UVal, w = (wy, ... , wp).
Case w contains holes.
Let k be the minimal index and 1 the maximal index such that

LL (wy) > 0 resp. LL (w;) > 0.

If k < I, then we must extract at least the subvalue (wy, ... , w;), such
that w = (wy, ... , wig, [], Wy, .. 5 Wo) A (W, ... , wy) where
1S£iskand1sjSn. These are k:(n+ 1 -1) possibilities.
If k = 1, then we may extract a part of wy or a subvalue containing wy.
(1) w = (Wg, ..., Wgg, U, Wiag, ... , W) Avwhereu Av = wy.
@2)w = (Wi, oooy Wigy []h Waety oo, W) A (Wi, oe y Wy)
where 1 Si1SkSjSn.
(1) are nA (wy) possibilities, (2) gives k:(n+ 1 -k) ones. Case u = [],
v = wyof (1) and case i = j = k of (2) are identical, thus we obtain
nA (W) = nA (wy) + k((n+1-k) - 1
Case LL (w) = 0 i.e. w does not contain holes.
(1) w = (Wy, ... , Wig, U, Wiag, ... , W) A v whereu Av = w; and
UL (u) = 1 (the degenerated partitions of w; are excluded).
(2)w = (wy, ... , Wy, [], W4y .o, W) A() where 0 SiSn
B)w = (wy, oooy, Wity [Wiagy oo, W) A (Wi, oon 5, W)
where 1 Sk <1< n.
Numbers of partitions:
(1) nA (wg) + ... + nA (wy) - 2n (the degenerated partitions)
2)n + 1
3n-1fork=1, n- 2fork =2, .., lfork=mn-1.
Summing up results in:
nA (W) = nA(wWy)) + ... + nA(wp) + 2 (n=-2)(n-1)
Examples:
nA (add (a, [])) =1 + na(@, []) =1 + naA([]) + 2:(2+1-2) - 1 =
l1+1+2-1=23
nA (add (a, b)) = 3 + na (a, b) =

- 929 .

3 +npa@) +nAa(b) + % (2-2)2-1) =3 +3 +3+0=09
nA (if (eq (a, b), add (a, []), sub (b, []))) = 1 + 2:(3+1-3) =1 + 2 = 3
nA (if (eq (a, []), add (a, b), sub (a, b)))
=1+nA(q@) +13B3+1-1)-1=14+3+3-1=26
nA (if (eq (a, b), add (a, b), sub (a, b)))
= 3 + nA (eq (a, b)) + nA (add (a, b) + nA (sub (a, b)) + %2 (3-2)(8-1) =
=3+9+9+9+1=231

10. Conclusion
At last, we shall summarize the properties of the four kinds of insertion: A’, A,

A, A. We use the symbol O to denote the insertion operators.

e = f e is defined iff f is defined, both are equal
e = f if e is defined then f is defined and both are equal
e=f if both e and f are defined, they are equal.

Informal description

N A A A
Number of holes: 20 20 20 1
Number of primitives per hole: 20 21 1 20

Typical examples

list ([], a1, [], a2, []) A’ <bl, b2; c1, ¢2; > = list (bl, b2, al, cl, c2, a2)
list ([], al, [], a2) A <bl, b2; c1, c2> = list (b1, b2, al, cl, c2, a2)

list ({], al, [], a2) A (b, c) = list (b, al, c, a2)

list (al, [], a2) A (b, ¢) = list (al, b, c, a2)

list (a1, [], a2) A () = list (al, a2)

Relations among the operations (Def. 6, Def. 17, Def. 20)
uAv =ul’v uAv = u A group (v) uAv = ul’ <v>

Domains of definedness (Def. 6, Prop. 18, Prop. 21)

u A’ v is defined iff v in GVal’ and LL (u) = UL (v)
u A v is defined iff v in GVal and LL (u) = UL (v)
u A v is defined iff v in UVal and LL (u) = UL (v)
u A v is defined iff vin UVal and LL (u) = 1

- 80 -

Subsets of values (Prop. 3)

¢ € GVal c GVal’ c CVal c Val c Val’
¢ € UVal C Val Cc Val’

GVal’ N UVal = {¢}

Closure properties of the subsets (Prop. 7, 8, 19(1), 22(1))

u in X implies u O v in X holds for some sets X and operations O
Val Uval Cval GVal’ GVal

A’ and A + + + + -
A and A + + + + +

u 0 v in X implies u in X holds for some sets X and operations O
Val Uval Cval GVal’ GVal
A’ and A + + - - -

A and A + + - + +

When does ¢ result? (Prop. 7, 8, 19(1), 22(1))

uldA’v = ¢ iff u=[*and v = <>* for some k ¢ N,
uAv = ¢ iff u=v=c¢

uAv = ¢ iff u =v = ¢

uAv = ¢ iff u =[]landv = ¢

Special shapes of the operands (Def. 6, Prop. 18, Prop. 21)

Qov = cOv =c¢

(opu)Ov = op (udv) <u>0v = <uOv>
ub() =u

[J]Oo <w> = w for &’ A [Jow = w for A, A

Neutral elements (Prop. 11, 19(6), 21(6))

A’ and A: <[]>* <[]>*ov=v uo <[]>*=u
A: [FAvV = v uA[¥=u
A: [AV =v uAf] =u

Omitting common operands (End of chapter 4, Prop. 19(2), 22(2))
ubOv = u Ov does notimply u = u’ for any of the four operations

ubOv = uOvVv implies v = v’ : true for A and A, false for A’ and A

- 31 -

Relations to lengths (Prop. 9, 10, 19(3), 19(4), 22(3), 22(4))

LL (uDv) = LL (v) for A’, A, A, A
if u in CVal then UL (uov) = UL (v) for &, A, A, A
UL (uAv) = UL (v)

UL (u A v) = if u in CVal then UL (u) else UL (u) + UL (v) - 1

if u A v is defined, then UL (u A v) 2 UL (u)

Compatibility with grouping (Prop. 16, 19(5), 22(5))

if u in CVal then group (u O v) = group (u) O v for A’, A, A, A

group (u Av) = group (u) Av = group (u) A group (v)
if UL (udv) = UL (u) then group (uOv) = group (u)Ov for A, A, A

Compatibility with concatenation (Prop. 13, 19(7), 22(7))
if LLL (w) = LL (w’) = 0 then

w-(ubOv)-w = (w-u-w)Ov for A’, A, A, A
uOv)-@OV) = (U-u)O(v-v) for A’, A, A

Associativity (Prop. 14, 19(8 - 10), 22(8 - 10))
(wov)Ow = ubd(vOw) for A, A, A
(WA VYA W = udl(vaw) if vin GVal’ then ' ="'

(uDyv)Opw ? uby (vOyw)

N A A A
A - - - =
A = - = =
A £ = = =

A = = =z =

X -categories

X1 = (UVal, -, A) X2 = (GVal, -, 4) X3 = (Gval’, -, A)
‘group' is an injective X-category homomorphism from X1 to X2, and X2 is a
sub-X-category of X3.

Number of partitions (Chapter 9)

ng (w) = |[{ pairu,v|uov = w}
n. (w) = UL (w) + 1

npA' (W) = o

ForO = A and A:

ng () = 1 ng ([) = 1

- 392 -

ng (c) = 2

ng (op w) = (if (op w) in UVal then 1 else 0) + ng (w)
nA (W1, ... , Wp) = nA (wy) - ... - nA (wy)
For win UValand n > 1:

nA (Wg, ooy, Wy) =

(1 + nA (Wn) - DA (W1, oo, Wog) + (1 = nA (Wpg)) - DA (Wy, .o, W)

Estimations see section (9.5)
oA () = 1 nA ([)) = 1
nA (¢) = 3

nA (op w) = (if (op w) in UVal then 1 else 0) + (if LL (w) = O then 2 else 0) + na (w)
For w = (wy, ..., wp) in UVal:
Case LL (w) > 0:
Let k minimal and 1 maximal such that LL (wy) > 0 resp. LL (w;) > 0.
k<l nan(w)=k-(n+1-1)
k =1: nA(w) = nA(wy) + k- (n+1-k) - 1
Case LL (w) = 0: nA (W) = nA(W1) + ... + nA (W) + % (n-2) (n-1)

For w not in UVal see section (9.6)

References

[1] Heckmann, R.: A Proposal for the Syntactic Part of the
PROSPECTRA Transformation Language, [S.1.6 - SN - 6.0]

[2] Hotz, G.: Schaltkreistheorie, Walter de Gruyter & Co, (1974)

	fb1987-08-0001
	fb1987-08-0002
	fb1987-08-0003
	fb1987-08-0004
	fb1987-08-0005
	fb1987-08-0006
	fb1987-08-0007
	fb1987-08-0008
	fb1987-08-0009
	fb1987-08-0010
	fb1987-08-0011
	fb1987-08-0012
	fb1987-08-0013
	fb1987-08-0014
	fb1987-08-0015
	fb1987-08-0016
	fb1987-08-0017
	fb1987-08-0018
	fb1987-08-0019
	fb1987-08-0020
	fb1987-08-0021
	fb1987-08-0022
	fb1987-08-0023
	fb1987-08-0024
	fb1987-08-0025
	fb1987-08-0026
	fb1987-08-0027
	fb1987-08-0028
	fb1987-08-0029
	fb1987-08-0030
	fb1987-08-0031
	fb1987-08-0032
	fb1987-08-0033

