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ABSTRACT

Regular right part grammars extended by tree generator specifica-
tions are interpreted by a combined parser generator and tree gen-
erator generator that produces an ELL(2) parser. This parser is able
to translate programs of the specified language into abstract syntax

trees according to the tree specifications in the generator input.
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Introduction

This manual consists of four main parts: a system overview, the description of
the generator input (a regular right part grammar extended by tree specifications),
the description of actions and output of the generator (combined parser generator
and tree generator generator), and the description of the generated parsers (com-

bined ELL(2) parsers and abstract syntax tree generators).

Some aspects of the generator are therefore considered twice, once when explain-

ing the input, once when describing actions and output.

Due a bug in the text printer, the ASCII character 35 that normally looks like

two intermeshed + characters is printed as § throughout this document.

1. System overview

1.1. Principal design of the input grammar

A simple parser that can be generated from a context-free grammar, is able to
parse a sentence of the language defined by the grammar into a (concrete) syntax
tree. Such trees contain unimportant terminals like parentheses, semicolons etc.
used only to structure the original linear sentence, and non-terminal chains result-

ing from productions having only one non-terminal on the right hand side.

Abstract syntax trees do not contain such superfluous informations, but on the
other hand they may include nodes standing for things not occurring in the string

form, e.g. the abstract syntax tree for

“if—stat”’

if B then S1 else S2 could be B S1 52

“if—stat’

and for ifB then S

in order to respect the ternarity of the node marked by 'if-stat'. If we want to
generate a parser directly constructing abstract syntax trees, we must therefore

extend the context-free grammar to control the tree construction process.

The generator input consists of some specifications, of a list of terminal symbols,

and of the extended grammar itself. The grammar contains a list of productions



where regular expressions are produced by the non-terminal symbols. A regular

expression is built by concatenations and alternations from some atomic elements.
The atomic elements are:

- Non-terminal symbols

- Unimportant terminals only occurring in the string

- Important terminals occurring in string and tree

- Operator names only occurring in the tree like 'null' in the example above

- The word EMPTY occurring neither in the string nor in the tree; it may occur

in the grammar to improve its readability

- List descriptions standing for star expressions

1.2. Implementation

Generator and generated objects are implemented in the programming language
Pascal on a VAX 11/780 computer of Digital Equipment Corporation under

operation system Unix 4.2 bsd, a trademark of Bell Laboratories.
There are three deviations from Standard Pascal in the system:

1) The Unix operation system allows the user for giving an arbitrary number of
arguments separated by blanks in addition to the call of a program. These
command line arguments may be read by Unix Pascal programs using some
predefined variables and procedures. In our system, command line arguments

serve as options to control the activities of both generator and generated object.

2) reset and rewrite may be called with two parameters to achieve the association
of internal Pascal files with external Unix files.

3) Unix Pascal programs may contain lines
§include ” file”
Such lines are replaced by the contents of the given file when the Pascal com-
piler reads the source code. This include facility is used only in the generated

object, not in the generator.

1.3. Interaction of system components

The parts of the system and their relations are figured in the picture. Rectan-
gles denote executable programs and ovals data or source code files. The depicted
relations are maximal, i.e. it is possible to let the generator output only a parser

table and nothing else, or only an Optran tree grammar.

Optran [2] is a tool for transformations of attributed syntax trees. The gen-
erated objects may be used as Optran front-end as figured in the picture, or they
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may be used for other purposes or in their own right.

The generator is controlled by options given as command line arguments, and
reads its input file from standard input. This input contains lexical, syntactic and
tree generation specifications. The generator prints listings and messages onto
standard output, a parser table derived from the syntactic specifications, a scanner
generator input that is essentially a copy of the lexical specifications, and an

Optran tree grammar derived from the tree generation specifications.

POCO [1] is a compiler generator system here used as scanner generator.
POCO takes as command line arguments no options, but names of input and out-
put files. It reads from the first file, gives listings and messages on the second file,

and generates the scanner onto the third file.

The extractor is a little program written in the C language that extracts a
slightly transformed scanner table from the POCO generated scanner. This is
necessary since the POCO scanner driver is also modified to allow the integration

in the generated object.

The decfile module was written by B. Weisgerber; its purpose is to construct the
so-called decfile for Optran.

In fact, there are four different parser drivers: notrpas.i for a parser written in
Pascal that generates no trees, treepas.i for a tree generating parser, muenpas.i for
a multi-entry tree generating parser, and incrpas.i for an incremental tree generat-
ing parser. The scanner driver is on file scan.i and the decfile module on file
decfile.i.

All these different parts of the generated object are combined by the include
facility and translated by the standard Unix Pascal compilers pc or pi.

Assume the specification for language lan is on file lan.spec. Then the
appropriate sequence of commands to generate a complete front-end for the

language lan is as follows:

generator c:lan s+ o+ (other options) < lan.spec > lan.messages
POCO lan.scspec lan.scan.messages lan.scan
extract < lan.scan > lan.scan.i

pc lan.p

This will produce a file of messages of the generator (lan.messages) and of POCO
(lan.scan.messages) and an Optran tree grammar (lan.optranprog). The characters
’<” and ’>’ bind Unix file names to standard input and output; the other files

are bound by options to the generator.

The generated object also accepts options from the command line, and reads the



program to be parsed from standard input. On standard output, it gives listings,
messages and the abstract syntax tree in readable form. If it is used as front-end
for Optran, it also generates the tree in Optran code and additional informations

for Optran about scanner attributes etc. in the program that was parsed.
2. The generator input

2.1. Overview

The generator input is given to the generator as standard input. It consists of

six sections:

options section
classes section
terminals section
typename section
axiom section

productions section

The sections must appear in this order, but some sections are not obligatory and
may be missing. The options section allows for giving options together with the
input, classes, terminals, and typename section define the lexical structure, and
axiom and productions section the syntax of the language to be analyzed by the

generated parser.

The command line is considered as first input line, thus its contents are treated
as ordinary input. Normally, the command line will contain only options, but it

would also be possible to place a complete input grammar on it.

2.2. Options

The options section may be missing. If present, it consists of an arbitrary

number of options separated by blanks, tabs, or newlines.

An option consists of an option specifier (a lower case letter), a value (a single
character, in most cases ’ -’ for ’disabled’, ’ +’ for ’enabled’, and ’§’ for ’strongly
enabled’), and in some cases an argument (a number or a word). Blanks, tabs,
and newlines are option separators, thus an option must not contain them, but

between two options, there must be at least one of them.

If an option is not given or given without argument, a default value resp. a
standard argument is assumed. For some options, this default depends on other
options (see below). The order of options is arbitrary, but if two options with the

same code are encountered, the second one is ignored. Since the command line is
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evaluated before the ordinary input, it is possible to override options given inside a

generator input file by options on the command line.

Listing 1- 1+  Default: 1+
Controls the listing of the generator input. If 1- is given on the command
line, the listing is totally suppressed.

Messages m- m+  Default: m+
If m- is given, only warning and error messages are output; otherwise also

positive messages are given.

Informations i- i+ 1§ Default: i-
i+ : Output the grammar graph in readable form
i§ : Output grammar graph together with first- and follow-sets
The output of these informations is the last action of the generator. If an error
occurs during the reading of the language specification, there is no complete

grammar graph and thus no output of informations about it.

ELL(2) checking e- e+ e§ Default: e§
e - : no computation of first- and follow-sets and no ELL checking
e+ : computation of first- and follow-sets and ELL(2) checking
e§ : like e+, but with automatic ELL(2) conflict resolving (see 3.4)

Printing messages about ELL(1) conflicts p- p+ Default: p+
If p- is given, only messages about ELL(2) conflicts are output.

Tree condition checking t- t+ t§
Default:  if gn then t- else if o+ or of then t§ else t+
The tree conditions are statements about the completeness and consisterice of
tree generation specifications (see 2.7, 3.5). The default value of this option
depends on the values of the options g and o.
t - : none of the tree conditions is checked
t+ : conditions (TC1) through (TC3) are checked,
but not the arity condition (TC4)

t§ : all four tree conditions are checked

Generation g- gn gt gm gi
Default: if e~ then g - else if t = then gn else gi

g - : Don’t generate a parser

gn : Generate a pure parser without tree generation

gt : Generate a string-to-tree parser

gm : Generate a multi-entry string-to-tree parser

gi : Generate an incremental string-to-tree parser

Without ELL(2) checking, nothing can be generated; without checking of tree

conditions, no parser with tree generation can be generated. If the given value



of the g option 1is “greater” than the default (in the order
g- < gn < gt < gm < gi), an error occurs.

Code file name c:cname  Default: c:code
If the given name cname has suffix ’.p’, this suffix is omitted by the option
reader. With c:cname, the generated parser table is printed onto file cname.p,
and the scanner table is expected to be on file cname.scan.i . cname is also

used as prefix for the default values of other file names.

Scanner specification: s- s+ s+sname s§ s§sname
Default: s- , sname = cname . .scspec
The default sname = cname.scspec is chosen, if s+ or s§ without following
sname are given.
s- : Don’t output the scanner specification
s+ sname : Output scanner specification onto file sname
and continue processing of the input
s§sname : Only output the scanner specification and do nothing else
Option s§ is appropriate if an error was detected and corrected only in the lexi-
cal specification part of the input i.e. parser table and Optran tree grammar
need not be recomputed. s§ is more powerful than all other options, i.e. gi, e,

t§, etc. are not respected if s§ is given.

Optran tree grammar: o- o+ o+oname o0 oSoname
Default: o- , oname = oname.optranprog
o- : Don’t output a tree grammar

o+ oname : Output simple tree grammar onto file oname

o§oname : Output better tree grammar onto file oname

Optran tree grammars are very restricted, thus only an approximation of the
real tree grammar G” of chapter 2.7 can be output. This approximation speci-
fies a superset of the real tree language of the generated tree generator. The
approximation of o+ does not contain anything of the original structure and
respects only the arity of operators, but is quickly computed; whereas the tree
grammar of o§ is as close as possible at the real tree grammar, but hard to
compute. See chapter 3.6 for further details.

Attributes: a- a+  Default: a+
If a+ is given, the Optran tree grammar output in case of o+ or of is attri-
buted by scanner attributes declared as ”local” and ”imported”. These scanner
attributes contain information about place and kind of terminal symbol instances

found by the scanner.

"Recursive” instead of "iterative” trees: r—- r+  r+ prefix

Default: if o+ or of then r+empty _elser- ; r+ meansr+empty _
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Actual Optran does not accept a special kind of trees (”iterative trees”). These
must be replaced by corresponding “recursive” trees if the generated object shall
be used as front-end for Optran. The exact explanation and the meaning of the

prefix are given in chapter 2.7.

Format options:

fomnumber  Default: fm80

fgnumber  Default:  fg80

fonumber  Default:  fo80
The number gives the maximum line length of the messages file (fm), the gen-
erated code (fc), and the Optran tree grammar (fo). The generator breaks lines
such that this length is not exceeded. If a number less than 60 is given, it can-
not be granted that all lines respect this maximum length. The listing of the
input is not formatted, but directly copied from input onto output.

2.3. Lexical considerations

2.3.1. Tokens in the generator input

The generator input is a sequence of ”important” tokens separated by blanks,
tabs, newlines, or comments. In the following chapters, we introduce some token
classes that may occur in different sections; token classes specific for one section

are defined when the section is described.

2.3.2. Comments

Comments are sequences of characters starting with (¢ and ending at the first
subsequent occurrence of ¢). Inside a comment all characters including newline
are possible. Comments may be given everywhere between the other tokens.

2.3.3. Symbol and operator names

A symbol name is a non-empty sequence of freely usable characters; its end is
given by the first subsequent character that is not freely usable. An operator name
is a sequence of freely usable characters enclosed by quotes '. These quotes are
part of the operator name, thus it is impossible that an operator name equals any

symbol name.

Freely usable characters are the letters ’a’ through ’z’ and ’A’ through ’Z’, the
digits ’0’ through ’9’, and the special characters

1@S8%"& - + =" "\;7<>,0?
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The generator distinguishes between upper and lower case letters.

e ] b b b bt

Names of terminal symbols should not begin with ’+°, =’/ > =" or ™, other-
wise the terminals section reader could be disturbed. Examples for legal symbol

names are

statement STATEMENT Statement <statement> “statement”
if-statement s @ Is+7 11 &

Note that all these symbol names are different from each other.

Although symbol and operator names may be arbitrarily long, only their first 32
characters are stored in the generator. Thus two names are considered as equal if
they do not differ in their first 32 characters, and the deparser does not output the

whole name if it is longer than this limit.

Symbol names may be used as names for terminal and non-terminal symbols,
and operator names denote operators (markings of nodes in the abstract syntax
tree). Terminal and non-terminal symbols are distinguished by looking up in the
list of terminal symbols given in the terminals section. Thus it is impossible to

use the same name for a terminal and non-terminal symbol.

2.3.4. Reserved keywords

Some possible names are reserved as section headers to structure the input.

They are

CLASSES TERMINALS TYPENAME  AXIOM

classes terminals typename axiom

They are not reserved inside the productions section, thus they may be used as

non-terminal names, but not as terminal names.

In addition, the names

PRODUCTIONS FINIS EMPTY ROOT LEFT RIGHT EPS
productions finis empty root left right

are reserved to have special meaning only in the productions section. Thus they

may be used neither as terminal nor as non-terminal names.

Corresponding upper and lower case keywords have the same meaning for the
generator, they may be freely mixed. Names like Empty, <empty >, or ”"empty”
are not considered as keyword and may be freely used. The word EPS is reserved

since it denotes the empty word ¢ in the output of the generator.
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2.4. classes and terminals section

These sections declare the terminal symbols of the grammar and contain the lex-
ical specifications that are handed over to the scanner generator POCO. Thus
their structure is closely related to the structure of POCO input.

The classes section may be omitted and consists of the section header CLASSES

or classes followed by POCO character class definitions, e.g.
letter = 'A' - '2Z2','a' - 'z';

These character class definitions are ignored if option s - is given, and copied to
the file sname without change otherwise.
Warning:
Character class names must be POCO names i.e. contain only letters and
digits (first character must be a letter), and must be different from the

POCO reserved names.

The terminals section may also be omitted and consists of the section header
TERMINALS or terminals followed by a list of terminal symbol declarations.

The structure of this declarations is

symbol-class-mode symbol-class-name  lexical-specification

If no scanner generation is intended (i.e. with option s-), lexical specification
and symbol class mode are ignored and may be missing. With option s+ or s§,

they are obligatory.

To understand the different symbol class modes note that a parser considers ter-
minal symbols as atomic units without further structure whereas a scanner consid-
ers them as classes (regular sets) of several instances. When a POCO generated
scanner detects an instance of a terminal symbol in the input stream, it submits
four numbers to the calling parser: class code (number of class the instance belongs
to), relative code (number of instance in the class), line number, and column
number. The parser uses only the class code for its purposes, the other three

numbers are stored somewhere to be used by eventual semantic analysis.

There are different methods to compute the relative code; the appropriate

. B |

method is chosen by the user by means of the class mode. It may be ’+’, ’#’,

=, or ¢ (invisible).

e¢: This mode is only allowed for finite classes consisting of some fixed
instances. The scanner generator associates a relative code with each
instance, and the generated scanner cannot alter this association. An exam-
ple is the class of multiplication operators in Pascal consisting of the five

instances * / div mod and.
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>+’: This mode is appropriate for infinite classes where each instance shall
uniquely be associated with a relative code when it is first encountered by the
scanner. Subsequent occurrences of the same instance lead to the same rela-
tive code as the first occurrence. Typically, identifiers in a programming

language are defined to form such a class.

+’: This is another possible mode for infinite classes. All occurrences of
instances are numbered from 1 on by the scanner such that different
occurrences of the same instance lead to different numbers. This is more
efficient than ’+’ mode since the scanner need not compare new instances
with previous ones. The class of strings in programming languages may be
given this mode since it is likely not necessary to know whether two strings

are equal.

-’: Instances of this class are ignorable, e.g. comments or sequences of blanks,

and will not be passed on to the calling parser.

Hint: It is recommendable but not obliged to place the declarations of ignorable
terminal symbols at the end of the declaration list. Then the parser gen-
erator does not count them, does not do work for them, and does not gen-
erate space and code for them; thus generator and generated parser work

more efficiently than otherwise.

The lexical specification for a class is either structured as in POCO:

regular-expression g

)y

or consists only of the single character This character may be used if a termi-
nal class shall contain only one instance that equals the terminal class name (typi-
cal for keywords in programming languages).

Terminal symbol names are not subject to the POCO restrictions since the
parser generator renames them automatically when it outputs the POCO input.
The original names are added as comments such that the user be able to under-

stand eventual POCO error messages.

A disadvantage of this renaming is that occurrences of terminal symbol names

inside a regular expression belonging to another terminal symbol, must be marked

2

by an exclamation-point to allow for their renaming. Besides this exception,

the regular expression is formed as described in the POCO manual.

Remark: It is necessary to separate the terminal symbol name from the following

’ ’ »)

=’ or " character of the lexical specification by space since ’=’ and

")

™ might be part of a symbol name. Symbol names occurring after

inside a lexical specification need not be separated from their context
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(see also 3.1.5).

As an example we give the classes and terminals section for a small language

and the scanner specification output by our generator.

classes
letter = 'A' - 'Z','a' - 'z';
digit = '0' - '9';
terminals
* integer = digit «+ [digit];
+ real = ! integer '.' linteger;
+ identifier = letter = [(letter I digit)];
while -
do -
od -
read B
write\ln = ( 'write' I 'writeln' );
add-op -('+'l'—');
mul-op = ('s' || 'div' | 'mod' );
rel-op -(l<lll<l|-||l-l|l<ll>l);
(* '<="'"or'<''="' would not work *)
- comment = '(" "s" allbut ( 's' "))
- space = s1-[""];
This is transformed into:
(*$S+,C+,Q++)
TERMINALS
letter = 'A' - 'Z', 'a' - 'z';
digit = '0' - '9";

1 » t001 (» integer ») = digit = [digit];

2 + t002 (» real +) = t001 (+ integer +) '.' t001 (* integer *);
3 + t003 (» identifier s) = letter = [(letter | digit)];

4 t004 (» while *) = 'while';

5 t005 (* do *) = 'do’;
6 t006 (= od *) = 'od';
7  t007 (* read *) = 'read’;



s IE =

8 t008 (» write\ln ) = ( 'write' | "writeln' );

9 t009 (»addop ) = ('+' | 't Y
10  t010 (+» mul-op ) = ('s' | '/' | 'div' | 'mod' );
11 t011 (trel-op ‘)_(|<|l|<'|_|||_|||<||>|);

(* '<="or '<''=" would not work )
12 _ t012 (‘ Commcnt *) P I(l l‘l allbut( l‘l l)l );
13 - t013 (= space #) = s1-["' ']

AXIOM S

PRODUCTIONS
S: .

FINIS

As you see, there are the following transformations:

1) A header and a tail are added since POCO must be controlled by some options
and expects at least one production.

2) The keyword classes is replaced by terminals, and terminals is omitted.
3) The terminal declarations are numbered.

4) The symbol names are replaced by t001 etc. In our example, the names if]
then, else, while, do, add-op, mul-op, rel-op, and write\In would have been for-

bidden without renaming.
5) The tilde ™ is expanded into a regular expression.

6) The regular expressions are copied without change except renaming forced by

exclamation-points.

2.5. typename section

This section is ignored and may be missing if option g—, gn, or gt is given,
but is oligatory in case of gm and gi. Then the text to be parsed by the generated
parser may contain "holes” i.e. so-called "type names” derived from non-terminal
names standing for a subconstruct left unspecified. The set of type names must be
disjoint to the set of instances of normal terminal symbol classes, and must be lexi-

’

cally specified as ’+’ class somewhere in the terminals section. The typename
section states this terminal name and defines how the type names are to be derived

from the non-terminal names.

The typename section may have one of the following structures:

typename terminal -symbol-name

typename terminal-symbol-name firstchar character
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typename terminal-symbol-name lastchar character

typename terminal-symbol-name firstchar character lastchar character

where typename, firstchar, and lastchar are keyword: that may also be g’ en
upper case.

Some examples will show the meaning of this secion. Assume you want to
specify a grammar for a simple language whose only sentence is id, id where id is

standing for identifiers being strings of letters.

Consider the following grammar without typename section:

CLASSES
letter -'A' - 'Z', 'a' - 'z';
TERMINALS
+ id = +1 - [letter];
comma -
- space =s1-[""];
PRODUCTIONS
Pair : First comma Second.
First :oid.
Second :oid.
FINIS

(This grammar and the other ones in this paragraph are incorrect since the tree

generation specifications are omitted for reasons of simplicity.)

With this grammar, it is impossible to generate a parser that also accepts sen-
tences where subconstructs are left unspecified. If you want this, you must choose
type names standing for these "holes”. Taking the non-terminal names immedi-
ately as type names is impossible since the names First and Second are instances
of the class id. One possible solution is to take @First and @Second as type

names:
CLASSES

letter -'A' - 'Z' 'a' - 'z,
TERMINALS
+ id = +]1 - [letter];

comma -
+ types ='@' lid;

- space =+1-[""'];
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TYPENAME types FIRSTCHAR @

PRODUCTIONS
Pair
First

Second
FINIS

First comma Second.
id.
id.

The parser generated from this grammar accepts the completely qualified sen-

tence id, id as well as the sentences with holes”

@Pair

@First, @Second

@First, id
id, @Second

Another possible solution is to use non-terminal names that are not instances of

id:

CLASSES

letter

TERMINALS
+id

comma
+ types

~ space
TYPENAME types

PRODUCTIONS
< Pair >
<First>
< Second >

FINIS

TA' - 'Z', 'a' - 'zu;

1 - [letter];

" 0,
LI ]

<t ld >
-

<First> comma <Second>.
id.
id.

Accepted sentences: id, id <First>, id etc.

A completely equivalent parser would be generated from this grammar:

CLASSES

letter

TERMINALS
+ id

-lAl - UZI’ Ial - lzl;

= 1 - [letter];
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comma =
+ types ='<'lid'>";
- space -s1-[""];

TYPENAME types FIRSTCHAR < LASTCHAR >

PRODUCTIONS
Pair : First comma Second.
First :oad.
Second 1 oid.

FINIS

Now we give the exact correspondence between non-terminal and type names:

Let wf and wl be two strings such that

wf =wl=¢ for TYPENAME T

wf ="¢c’, wl=c¢ for  TYPENAME T FIRSTCHAR ¢

wf=¢, wl=’c" for TYPENAME T LASTCHAR ¢

wf ="c, wl ="c;” for TYPENAME T FIRSTCHAR c¢; LASTCHAR c;

Then the type name belonging to the non-terminal N is the concatenation of
wf, N, and wi.

Remarks:
1) There must not be blanks between wf and N or N and wl in type names.

2) The type name symbol class must have mode ’ +’. It is recommended but not
obliged to place it at the end of the terminals section just before the first ignor-
able class.

3) The type name symbol class must not be used as terminal symbol in the pro-

ductions of the grammar.

2.6. axiom and productions section: the input grammar

2.6.1. The axiom section

The axiom section defines the axiom of the grammar. It looks like
AXIOM non-terminal

The axiom section may be omitted, the axiom is then the non-terminal on the left

hand side of the first production.
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2.6.2. Tokens in the productions section

Key characters
Key characters are colon :, dot ., the bracket pairs ()[]{}, and finally | and /.

Iteration operators

There is a non-empty iteration operator which is .. or equivalent ... and
an empty iteration operator, that is ..0.. or also ...0... (the character among
the dots is the numeral zero). Use and meaning of this operator and of the other

characters with special meanings are described in the next chapter.

2.6.3. Syntax of the productions section

The productions section has the following structure:

PRODUCTIONS
sequence of productions
FINIS

Each production consists of a non-terminal (left hand side) followed by a colon
>:” ("produces”) and a regular expression (right hand side), and is completed by a
dot ’.” . A regular expression is a sequence of regular terms separated by an alter-
nation symbol; that is ’|’ or equivalent ’/>. A regular term is a sequence of regu-
lar factors that may be empty.

There are seven kinds of regular factors:

1) regular expressions enclosed in parentheses () ;
2) the keyword EMPTY (see below);

3) non-terminal symbols;

4) pure terminal symbols (unimportant terminals that will not be put into the syn-
tax tree);

5) node descriptions defining leaves of the syntax tree;

6) node descriptions preceeded by keyword ROOT specifying the root of the sub-

tree corresponding to the actual production;
7) list descriptions.

A node description is either an operator or an operator followed by [terminal].
The described node is marked by the given operator, and in the second case, the

given terminal is consumed from the input of the parser and attached to the

described node as scanner attribute.
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The simplest form of a list description is {operator}. It defines an empty list

also occurring in the tree. Other legal forms of list descriptions are

{ N T it N} (only allowed if no trees shall be generateq,
{ON T it N}
{ NO[T] it N} A
{ NO it N’}
where
O  is an operator name
N  is a non-terminal
N’ is either empty or a repetition of non-terminal N
T  is a terminal
T’  is either a terminal or empty
it is an arbitrary iteration operator
it’  is the iteration operator .. or
A is an associativity specification that is either LEFT or RIGHT.
The keyword EMPTY is standing for the empty string. It may be omitted, but

in some situations, it improves the readability of the grammar.
Examples:

-  if Condition then Statement-list (else Statement-list | EMPTY) fi
is equivalent to

if Condition then Statement-list (else Statement-list | ) fi

- An empty production may be written as A: EMPTY. oras A: ..

A list description must not contain the keyword EMPTY; if a part is said to be

empty, this means it is the empty string and thus invisible.

The informal syntactic meaning of these list descriptions is "list of N separated
by T resp. T°” e.g. {Statement semicolon ... Statement} is standing for list of

statements separated by semicolon”.

Symbol names and the different kinds of iteration operators are described in the
previous chapter. The keywords may be given in upper or lower case letters.
The meaning of the various syntactic constructs with respect to the definition of a

language and the specification of tree generation is given below.
A correct grammar has to satisfy some context conditions:

(CC1) Each non-terminal must have at most one production.
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(CC2) Each non-terminal must have at least one production.

(CC3) Each non-terminal must be productive, i.e. able to derive at least one

string of terminal symbols.
(CC4) Each non-terminal must be reachable from the axiom.
(CC5) In list descriptions, the second non-terminal must equal the first one.

There are some further conditions with respect to the compleieness and con-
sistence of tree generation specifications. These tree conditions and the ELL(2)
conditions that guarantee the existence of an ELL(2) parser for the input gram-
mar, are given below.

2.6.4. Limitations to the input grammar

The length of input lines is restricted to 255 characters. The number of termi-
nal symbols is limited by constant “tzahl” actually being 255, the number of
non-terminals by constant “nzahl” that is 1000, and the number of operator names
by constant "ozahl” being 2000. Huge regular expressions having hundreds of
nesting levels may cause the stack of the grammar reader to overflow. The max-
imum stack length is given by the constant "maxparse” whose current value is
1000. The maximum number of regular factors in a regular term and of regular

terms in a regular expression is 255.
2.7. Meaning of the input grammar

2.7.1. Introduction

The input grammar G is a regular right part grammar extended by tree genera-
tion specifications. Thus it has two meanings: it defines a context-free language
L = L(G) and a mapping T = T(G) associating an abstract syntax tree with each

sentence in L.

We shall define the correspondence between G, L, and T by use of an auxili-
ary context-free grammar G’ that has only strings on the right hand sides of its
productions, but in general has an infinite number of productions, and a tree
grammar G” that is closely related to G’. G’ has the same set of terminal sym-
bols as G, and the language L = L(G) belonging to G is defined as L = L(G’).

The tree grammar G” has the same set of non-terminal symbols as G’, and as
many productions as G’. The axiom of G” is a single non-terminal leave S
where S is the axiom of G’. Each production p’: X, - X; - -+ X, of G’
corresponds to a production p”: X, = t(p”) where t(p”) is a tree that has as
many occurrences of non-terminal leaves as there are occurrences of non-terminal

symbols in X; - - - X such that there is a one-to-one correspondence between
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them.

All nodes in t(p”) that are not non-terminal leaves - called real nodes from
now on - are marked by an operator. Some of the real nodes are attributed by a
terminal symbol that is related to an occurrence of this terminal symboi in
X3 -+ Xk. The scanner attributes of these occurrences of terminal symbol.
will be attached to their related attributed nodes when parsing a concrete sentence

of L. Those real nodes that are not attributed are called pure nodes.

The abstract syntax tree T(w) of a sentence w in L = L(G’) with given
G’-derivation path is obtained as last element of a G”-derivation path starting at
the axiom of G” and using corresponding productions of G” at corresponding

non-terminal leaves.
For an example, assume that grammar G’ among others has the productions
Expression - Term,

Term - Factor] mulop Factor2,

Factor - identifier,

where mulop and identifier are terminal symbols. Let the corresponding tree pro-
ductions be

Expression —» Term

Term —> ( “mulop ": mulop )

Factor — ( “id”: identifier)

The numbers after Factor are given to define the required correspondence between

occurrences of non-terminals in p’ and p”.

The derivation of the abstract syntax tree of a + b then looks like



- 28 -

Expression Expression
V4 V4
Term Term

Factor1 mulop (%) Factor2

Factor1 Factor2

identifier (a) mulop (*) Factor2

€D Facor

1%

identifier (a) mulop (*) identifier (b)

eC

2.7.2. Operators

Before we give the construction of G’ and G” from G, we must consider the
different kinds of nodes on the right hand sides of tree productions. There are
non-terminal leaves that we simply denote by the name of the non-terminal. The
other nodes are marked by a string called operator like 'mulop' or 'id' in the

example above.

An operator is said to be of fixed arity if the generator guarantees that each
node in the tree productions marked by this operator has the same number of chil-
dren. The other operators are called list operators. In pictures, we represent

nodes with operators of fixed arity as circles or ovals, and list nodes - nodes with
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list operators - as rectangles. In our example, ' mulop' is an operator of fixed
arity 2 and 'id' of 0.

Actual optran does not allow for list operators; all operators must have fixed
arity. If a generated parser shall be used as freat-end for Optran, the iterative

construct of list nodes must be transformed into a recursive replacement:

vy

N1 ... Nk

is replaced by

(o)

In the recursive tree, there is an additional operator, 'empty op' in our exam-
ple. This operator does not occur in the generator input and is constructed by the
generator if option r+ is given. Its name is derived from the name of the
corresponding list operator by the prefix given in the r+ option (default is
empty _ as in our example). A parser generated with option r+ is able to con-
struct both iterative and recursive trees according to a run-time decision of the
user, whereas a parser generated with r- is only able to construct iterative trees

since the additional prefixed operators are missing.

2.7.3. Construction of G’ and G” from G
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2.7.3.1. Ordinary productions
Let G =(Vy, Vp, P, S) be the input grammar. V) denotes its set of

non-terminal symbols, V7 its set of terminal symbols, P the prod.ction set, and S
the axiom. Then let G’ =(Vy, V%, P’, §’) and G” =(Vy, V7, P”, §”)
where Vi = V§ = Vy U {n(ld) | Id is a list description occurring somewhere on
the right hand sides of the productions of G}, V4 =V, 8”7 =8 =8. V7is
the set of real nodes on the right hand sides of the productions of G”.

Each production N: R. from P leads to a set of some productions in P’ and
P”. The regular expression R consists of an alternation of concatenations of regu-
lar factors. Regular factors may be

(RE) regular expressions enclosed in parentheses ’(’ ’)’

(EM) the keyword EMPTY

(NT) non-terminal symbols: non -terminal

(PT) pure terminal symbols: terminal

(PO) pure operators: operator

(AO) attributed operators: operator [terminal)

(PR) pure root-statements: ROOT operator

(AR) attributed root-statements: ROOT operator [terminal]

(LD) list descriptions.

The first step to obtain productions of G’ and G” from a production of G, is to
transform the regular expression R using the distributive law into an alternation of
¢ concatenations of regular factors of kind (EM) through (LD). Each concatena-
tion will be refined to the right hand side of a production of G’ and a correspond-
ing production of G”. Thus the original production of G leads to ¢ productions
of G’ and G”.

Let rf; - - - rf, be such a concatenation of regular factors of kind (EM)
through (LD). Let §xx be the number of factors of kind (XX) in it (e.g. §pt =
number of pure terminals in it). Thus §re = 0 and §em + - - - + §ld = n holds.

To obtain the right hand side of a production of G’ from this concatenation,
delete all EMPTY’s, pure root-statements and pure operators from it, thus only
factors of kind (NT), (PT), (AO), (AR), and (LD) are remaining. Then replace
attributed operators and root-statements by the terminal contained in it, and
replace the list descriptions Id by the non-terminals n(ld). The resulting string is
the right hand side of a production of G’ and consists of §pt + §ao + §ar terminal
and §nt + §id non-terminal symbols.

To obtain the tree in the corresponding tree production, delete at first all
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EMPTY’s and pure terminals from the concatenation rf; - - - rf,, then extract
all root-statements out of it. Let m = §nt + §po + §ao + §ld be the length of the
resulting concatenation rfy - - - rf,. The tree production can be constructed

only if the input grammar satisfies some tree conditions:

(TC1) There is at most one root-statement in the original concatenation
rfy -+ rf,:  §pr+§ar S 1.

(TC2) There is at least one regular factor in the refined concatenation
rf{ -+ rfy: m 21,

(TC3) If there is more than one regular factor in the refined concatenation, there
must be a root-statement in the original one:
m > 1 - §pr +§ar > 0.

There is one further tree condition given below.

The right hand side of the tree production then looks as follows:

m=1 m>1
#pr + #ar = 0 k1 violation of (TC3)
= (=
(ROOT “op”)
k1 k1 km
#ar =1
(ROOT “op [T1])
k1
k1 - -+ km are nodes corresponding to the regular factors rfy - - - rf,

according to the following table:
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kind rf) ki

(AQ) op” [T] opT: T
(NT) N N
(LD) Id n (Id)

The required correspondences between the §nt + §ld occurrences of non-terminal
symbols and between the §ao + §ar attributed nodes resp. important terminals in
the production of G’ resp. G” are given by the left-to-right order in the original

concatenation rfy - - - rf,.

2.7.3.2. Productions resulting from list descriptions

From a list description, we in general construct an infinite number of produc-
tions of G’ and corresponding productions of G”. In the following table, we write
these productions by use of a parameter k. 'op' denotes an operator name, N a
non-terminal name, and T a terminal name. NI, N2, - - - denote occurrences
of N and T1, T2, - - - occurrences of T to define the correspondence between
G’ and G”. The dots ”...” in the list description are real syntactic dots (iteration

”

operator); the dots ” - - - ” in the productions of G’ and G” are meta-dots abbre-
viating a sequence of similar units. We first give the list description, then in the
same line the right hand sides of the corresponding productions of G’. The trees
on the right hand sides of the associated productions of G” are figured below; if
some different list descriptions lead to the same family of trees, it is drawn only

once to save space.

{'op'} € 65"
{'op' N .. N} Nl --- Nk, k>0
{'op' N ..0.. N} Nl --- Nk, k20

{top' NT ... N} NI T1 --- Nk1 Tk-l1 Nk , k >0
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{'op' NT ..0.. N} N1 Tt --- Nkl Tkl Nk , k20

With option r -, list nodes are generated:

“op” only | ‘op” | if k=0

!

N1 ... Nk

With option r+, the list nodes are avoided. For the example, we assume the

standard prefix empty .

m NK only “empty_op’ if k=0

Nk—1

If the generated parser shall not generate trees, the operator name may be omitted
in the four kinds of list description above.

{ N 'op' ... N} left Ni1 --- Nk , k>0

@ Nk only N1 if k=1

Nk=1

N1 N2
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{ N 'op' [T] ... N} left NI T1 --- Nkl Tkl Nk , k > 0

Nk—1
N1 N2

{N 'op' ... N } right Ni --- Nk, k>0

N1 6 only N1 if k=1

N2 %

ot

Nk—1 Nk

{ N 'op' [T] ... N} right N1 Tt --- Nki1 Tkl Nk , k >0

only N1 if k=1
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»

There are equivalent forms of list descriptions: ”...” and ”..” are equivalent;
”..0..” and ”...0...”, too; the second non-terminal in the list description may be
omitted, e.g. {'op' N .. N} is equivalent to {'op' N ..} and
{N 'op' [T] ... N} LEFT to {N 'op' [T] ...} LEFT.

One further tree condition is

(TC4) Operators of fixed arity must have the same number of children in all pro-
ductions of G”.

This condition and the determination of arity are explained in detail in chapter
3.5.

2.7.3.3. Example

We now give an input grammar for a part of a language as example where the
keywords ROOT, EMPTY, LEFT etc. are written in upper case, terminal names
in lower case, and non-terminal names are capitalized.

CLASSES

letter = 'A' - 'Z','a' - 'z';

digit = '0' - '9';
TERMINALS

identifier = letter + [(letter | digit)];

number = +1 - [digit];

while -

do -

od -

if -

then -

else -

f -

left-par = '(';

right-par - ")

semicolon -t

comma - 'Y

assign -t ety

relop -('-'|'<'|'>'|'<"-' 'S =" | ' 'S

mulop - (' l WARDH

addop -('+'|'-');
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AXIOM Statement-list
PRODUCTIONS

Statement-list: {'statement-list' Statement semicolon ..0.. Statement}.

Statement: while Expression deo Statement-list od ROOT 'while-stat'
| if Expression then Statement-list ROOT 'if-stat’
( 'null' | else Statement-list )
fi
| 'var' [identifier] assign Expression ROOT 'assign'
| Call
| *null’.
Call: 'proc' [identifier] ROOT 'call'

( {'paralist'}
| left-par {'paralist' Expression comma ... Expression} right-par ).

Expression: Simplex ( | ROOT 'relop' [relop] Simplex ).

Simplex: {Term 'addop' [addop] ... Term} LEFT.
Term: {Factor 'mulop' [mulop] ... Factor} LEFT.
Factor: 'id' [identifier]

| *const' [number]
| ROOT 'sign' [addop] Factor
| left-par Expression right-par.

FINIS

Using this grammar, the tree corresponding to the sentence
whilea *+b = cdox:= - (x + y)*z, p(x + y + 1); qod
looks like
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“statement—list

“while—stat” \

“statement—list

4

v
Craw) (wre) (o) \ G

Cmulop': D Cproc': ;D “paralist (’proc': (D “paralist”

3. Actions and output of the generator

The generator consists of eight parts activated in the following order: input
reader; reduction tester; first- and follow-set computer; ELL(2) checker; tree condi-
tion checker; Optran tree grammar generator; code generator; grammar graph

printer.

The first two parts cause the generator to exit if they detect fatal errors. The
two generating parts may be suppressed by options and also by error flags set by
previous parts. The following chapters contain a detailed description of the vari-
ous parts and their interactions.

3.1. The input reader

The input reader consists of a base system reading input lines and placing error
messages, section readers - one for each section - , and a scheduler activating

the appropriate section reader when a section header is encountered.
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3.1.1. Base system of the input reader

The base system reads input lines and sends them to the various section readers.
In the other direction, it gets error messages coming from other parts of the input
reader and places them into the input listing.

Listing of the actual input line is delayed until either an error is detected in it,

or a new input line is to be read and option 1+ is given.

When a line is listed, it is preceeded by a line number and tabs are expanded
into the appropriate number of blanks. The command line is numbered by zero.
The listing of input lines is independent of the format options since there is no
additional breaking of long input lines.

Error messages force the actual input line to be listed even with option 1-.

n

This listing is followed by a line only containing the character *™ pointing to the
place where the error was detected. In rare cases, an error message is not related
to the actual input line, but to a previous one; the base system knows about this
and then places the pointer at the beginning of the actual line. After the line with
the pointer, an error diagnosis follows that is formatted to fit into the maximum

line length defined by the "fm” option.

As in ordinary compilers, these error messages must be considered with caution.
The place where an error is detected might be somewhere after the place where
the real error occurred, and the error diagnosis might be too general or mislead-

ing. The problem is that the generator cannot divine what the user intended.

3.1.2. The scheduler

The scheduler activates the section readers at the appropriate time. At first, the
options reader is activated to read the command line and the beginning of the
input. options, classes, and terminals section essentially consist of a repetition of
similar units. Thus the corresponding section readers - once activated - read
input until they find a section header. Then they return control to the scheduler
that considers the section header and activates the appropriate section reader, or
emits the error message ”Error: Illegal section” if the section header encountered

belongs to a section that must occur before the section just left.

The typename section has finite length, and thus the typename reader returns
control to the scheduler not only if it finds the next section header. Thus it is
possible that the scheduler gets control from the typename reader and does not
find a valid section on the input. Then the message "Error: Illegal section” is

issued, too.

Assume as example the user wanted to specify a ”first character” in the

typename section and has forgotten the character itself. The result will be
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50 typename t firstchar
51 axiom s

a

+ + + + + Error: Illegal section

What is going on here? The typename reader takes the letter ’a’ of axiom as
first character”, considers the next input word that is now xiom, recognizes that
this word is not the typename section keyword Iastchar, concludes that the
typename section is over, and returns control to the scheduler. The scheduler also
considers the word xiom, recognizes that it is not among the section headers and

Ny

emits the error message. The pointer * is below the letter ’a’ since nobody has
consumed the erroneous word xiom and thus the last consumed character is the

letter ’a’.

axiom and productions section are both read by the grammar reader that is

active until finis is encountered. Then the task of reading input is finished.

If an error was detected by a section reader, the scheduler does not activate the
next reader but causes the program to exit. Execution is also terminated if option
s§ was selected and the terminals section is over. If axiom or productions section
are encountered, there was no typename section, and the g option has value gm
or gi, then the message "Error: "TYPENAME” section missing” is emitted. If the
end of input is encountered, there was no productions section, and s§ was not
chosen, the message "Error: "PRODUCTIONS” section missing” is printed.

The described flow of control implies that grave disorder will result from
misspelling section headers or using section headers erroneously as e.g. terminal
names since then a section reader will make the attempt to read a piece of input

that is not understandable for it.

3.1.3. The options reader

The task of the options reader is to consume the options section, to interpret the
found options, and to check some of them for consistence against each other. The
tokens recognized by the options reader are space delimited words. Only their

first 32 characters are interpreted, the remainder is cut off silently.

The options reader is always activated as first section reader since the options
section has no header. Naturally, the first word of input is skipped since this
word is the name of the generator program itself (remember that the command

line is considered as part of the input).

When interpreting the found words as options, the options reader may detect

some errors and then emit messages that are listed together with the actual input
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N

line as described above. The pointer then points to the last character of the

erroneous word.

We now give a list of sample bad options and corresponding error messages that

are written beside the bad options to save space in this document.

-1 123 L+ Error: Option must start with lower case letter
X+ Error: No such option

t@ 1§ g+ Error: Invalid argument in option

c + code Error: Form of option 7c” is "c:NAME”

£x90 Error: No such format option

fm70a Error: Invalid number

fm1000 Error: Number too large

fm59 Warning: Number too small

fm39 Warning: Number too small. It is set to 40

When the options section is over, the options reader checks the options for con-
sistence. Error messages produced then are not related to the actual input line and

2

thus not introduced by a pointer *”. The various messages are

Error: Options "gC” and "e - ” are inconsistent where C € {n, t, m, i}
Error: Options "gC” and ”t- " are inconsistent where C ¢ {t, m, i}

”»

Error: Options "0+ ” and "r - " are inconsistent

due to the actual implementation of Optran
(same with oS§)

Error: With option "0+ ” or "0§”, "t§” is necessary

3.1.4. The classes reader

The task of the classes reader is to consume the classes section and to copy it

onto the scanner specification file if s+ or s§ is chosen.

The classes reader consumes its input character by character only looking for a
new section header. It does not worry about tokens or syntax and thus it is not
able to detect errors. Errors in the classes section will thus not be detected before

the scanner specification is read by POCO.

3.1.5. The terminals reader

The task of the terminals reader is to consume the terminals section, to con-
struct a list of terminal symbols for later use in the grammar reader, and with
option s+ or s§, to output the terminals section onto the scanner specification file
after having done the transformations described in chapter 2.4. Together with the

list of terminals, it stores the information whether a terminal symbol is ignorable
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or not. It may detect two kinds of error when constructing this list:

Error: Terminal declared twice

Error: Keyword used as terminal symbol

The second message is emitted if keywords like root that are not section headers

are used as names of terminal symbols.

There is an internal limit (255) for the number of terminal symbols. Exceeding
it causes the message "Stopped. Number of terminal symbols is greater than con-

stant "tzahl”” and immediate exit of the generator program.

If option s+ or s§ was selected and the lexical specification of a terminal symbol
class has been forgotten, the generator gives a warning and adds an empty specifi-
cation "= ;” to the scanner specification file. This kind of error cannot be
detected before the next terminal symbol is encountered, therefore wne message is
coming too late:

20 begin
21 end ~

Ly

+ + + + + Lexical specification missing

When reading the regular expression forming the lexical specification of a termi-
nal symbol class, the reader does not worry about syntax or meaning of this
expression; it is only looking for semicolons - indicating the end of the expression
- and exclamation-points - marking a word for renaming. It only distinguishes
quoted from free occurrences of these symbols to be able to correctly treat declara-
tions like

).

semicolon = ’;’;

7"

If a free occurrence of ’!” is encountered, the reader reads the next space delim-
ited word and looks up for it in the terminal list created so far. If the word is not
found there, its last character is omitted and it is searched again. This is repeated
until a search succeeded or until the word has shrunk up to £. In the latter case,

the message "Warning: Renaming forced by ’!’ failed” is printed.

The last two error messages are only warnings since they do not affect the work
of the parser generator. But the corresponding POCO input is then erroneous.
Even if the parser generator has not claimed any error or warning, the POCO
input may be erroneous since classes and terminals reader do not perform the

POCO syntax analysis and don’t look for POCO specific errors.

If lexical specification errors in these two sections are corrected, there is no need
for a complete run of the parser generator and tree generator generator, use option

s§. Complete new generation is only required if names and order of terminal



- 37 -

symbols up to the last ignorable one are changed.

3.1.6. The typename reader

The task of this part is to read the typename section and to store the defined
typename, “first” and "last” character somewhere. It is able to cetect three kinds

of errors concerning the typename:

Error: Keyword used as typename
Error: Ignorable terminal used as typename
Error: Typename not declared as terminal

2

It does not check that the typename was really declared as ’+’ symbol class
since the terminals reader does not provide information about the symbol class

except the distinction ignorable - not ignorable.

3.1.7. The grammar reader

The task of the grammar reader is to read the axiom and productions section
and to construct an internal representation of them, the so-called grammar graph.
Therefore it consists of a scanner, a parser, and a grammar graph constructor
working in parallel. Whereas the previous section readers are written by hand and
not divided into scanner and parser, the grammar reader was partly generated
because of its greater complexity. The scanner was generated by POCO, and the

parser by an earlier version of the generator itself from a ELL(1) grammar.

The task of the scanner is to partition the input stream into lexical tokens and
to identify the token class. It uses the terminal list constructec by the terminals
reader to distinguish between terminal and non-terminal names. Characters that
cannot belong to any token class are indicated as ”Illegal symbol” by the scanner.
Because of the great lexical variety of the tokens, only control (not directly print-
able) characters may be illegal symbols. It is possible that they are not visible in

the listing such that the error message might be looking mysteriously.

If the parser has detected a syntax error, it prints a header essentially containing
the word ”Error”, then a list of symbols that it would expect at the error position
followed by the word "expected”. Unfortunately, the set of terminals the grammar
reader claims to expect is often different from the set of symbols which are really
legal continuations of the input in the error situation. At the error position, the
parser switches into panic mode and consumes symbols until a dot marking the

end of the actual production is encountered.

In some cases, the parser is expecting only one symbol forming a singleton sym-
bol class. The parser then makes an attempt to correct the error by inserting just

this uniquely defined expected symbol. The message is then "Error: ... inserted”.
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Such errors are not considered as fatal and do not cause the generator to exit after
reading is terminated. But the user should then be careful and check the insertion

for correctness.

The parser accepts a wider class of list descriptions than really allowed. This is
done to achieve more specific, semantics oriented error messages. It follows a list

of sample incorrect list descriptions and the corresponding error message (without

Ay

pointer ’” to save space).

{} Error: There must be something between the braces

{'op'} left Error: The description of an empty list must not be
followed by an associativity specification

{'opl' N 'op2' ... } Error: Two operators at one list description

{'op' N ... } left Error: Such a list must not be specified as left or

right associative
{N 'op' [T]..0..} left Error: Separating operator not allowed if list could
be empty
{N 'op' [T] ... } Error: List must be specified as left or right associative
if separating operator is given
{NT ..} Error: Missing operator at list description
(only error with t+ or tf§)
{'op' N1 ... N2} Warning: Second non-terminal in list description
should equal the first one
The second one is ignored
{N root 'op' [T] ...} left  Warning: "ROOT” not allowed in list description
The word ’ROOT?” is ignored

There are some more error messages of the grammar reader:

Error: Non-terminal has more than one production
Error: Typename used as terminal symbol
Error: Terminal is ignorable

Error: Implicitly constructed operator O was already defined

The last message is printed if option r+ prefix was selected, a list description
{'op' N (T) ..(0)..} is encountered, and the operator 'prefixop' to be con-
structed has already occurred directly in the input grammar. The grammar reader
does not check whether there is a direct occurrence of the constructed operator
after the list description where it was constructed. This asymmetry is caused by
technical reasons. The later occurrence may be detected by the tree conditions

checker or may even be legal if used in a context with arity 0.

Some of these errors don’t cause the generator to exit after reading has finished,

but disallow parser generation.
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Large grammars or huge regular expressions may cause the grammar reader to

overflow. The emitted error messages are

Stopped. Number of non-terminal symbols is greater than constant "nzahl”
Stopped. Number of operators is greater than constant ozahl”

Stopped. Stack overflow in grammar reader

To overcome the first two errors, the number of non-terminals resp. operators
has to be decreased. The third message is issued if the actual regular expression is
nested too deeply. The implicit constructed operators need storage, too, thus a

grammar may be accepted under option r —, but not under r + .

Superfluous pairs of parentheses are automatically removed by the grammar
reader, e.g. A (B C) is transformed into A B C, A | (B O) l (D | E) into
A l B C I D | E. This is normally not recognized by the user, but may be
important to understand error messages produced by a deparser from the grammar
graph.

If the grammar reader terminates, it gives a summary of its work:

1) If there were no errors, and option m+ was chosen: "No syntax errors”

2) If there were only syntax errors corrected by insertion: "The grammar reader

inserted n symbols. Please check these insertions for correctness”

3) If there were other syntax errors or some of the other semantic errors listed

above: "Execution stopped because of syntax errors or fatal semantic errors”

Execution is continued only in the first two cases.

3.2. The reduction checker

The reduction checker has to check those context conditions that are not yet

checked by the grammar reader. Remember the context conditions:

(CC1) Each non-terminal must have at most one production.
(CC2) Each non-terminal must have at least one production.
(CC3) Each non-terminal must be productive.

(CC4) Each non-terminal must be reachable from the axiom.

(CC5) In list descriptions, the second non-terminal must equal the first one.

(CC1) and (CC5) are checked by the grammar reader where violation of (CC1)
causes a fatal error and of (CC5) a warning. (CC2) through (CC4) are checked

now.

If m+ was chosen, positive messages are issued if the conditions are satisfied.
If a condition is violated, a list of violating non-terminal symbols is printed. Vio-
lation of (CC2) or (CC3) is a fatal error that lets the program exit, violation of

(CC4) only results in a warning. Productions of unreachable non-terminals are
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simply cut off the grammar graph, then execution may be continued as normal. If
condition (CC2) fails, (CC3) and (CC4) are not tested, if (CC3) fails, (CC4) is

checked nevertheless.

3.3. The first- and follow-set computer

If option m+ was selected, this part starts by printing the message "First- and
follow-set computation ...”. Normally, it works silently without further messages,
but the first-set computer is able to detect left recursions as side effect. It then
prints "Non-terminal N is directly left-recursive” or ”"Left recursion detected.
Involved non-terminals: N1 N2 - - -”. For each left recursive cycle, one such
message is issued. Left recursion is indicated since it disallows the automatic solv-

ing of ELL(2) conflicts because of the danger to generate infinitely looping parsers.

First- and follow-sets are computed without fixed point iteration by an efficient
algorithm described in [3].

3.4. ELL condition checker
This part first looks for ELL(1) conflicts, then tries to solve them by ELL(2)

computation, and if that fails, performs an automatic ELL(2) conflict solving
without further look-ahead. If option e- was chosen, the ELL checker is not
activated, with option e+, the automatic ELL(2) conflict solving is disabled. For
the following description, we assume option e§ such that all possible actions are

really performed.

Since an efficient look-ahead-2 computation must be done globally, information
about all found ELL(1) conflicts must be stored somewhere before ELL(2) compu-
tation is begun. If this storage is full, the remaining ELL(1) conflicts are forgotten
and not solved. Then the message "There are too many (more than 1000) LL(1)

conflicts” is issued and parser generation is disabled.

In rare cases, an overflow may occur during the look-ahead-2 computation itself.
This is indicated by the message "Stopped. There are too many LL(1) conflicts
under terminal T”. The only remedy in all these cases is to simplify the input
grammar and to try to reduce the number of ELL(1) conflicts.

The description of conflicts is controlled by the p option. If p- is chosen, only
ELL(2) conflicts are described, otherwise ELL(1) conflicts, too. A conflict descrip-
tion starts by a header that looks like

ELL(k) conflict in alternative expression in production of N
(1) (first alternative)
(2) | (second alternative)
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etc.
or

ELL(k) conflict in list description LD in production of N
between (1) entering and (2) skipping list
or

between (1) expansion and (2) end of list

Note that a minor disadvantage of this message is that the user cannot see
which alternation is conflicting in productions like N: (AIB) (A|B). But we
think that such productions are unlikely.

The list description LD and the alternatives are printed by a deparser working
on the grammar graph. Thus they are not completely equal to the original regular
subexpression in the input grammar, but re-formatted and unified with respect to
semantically equivalent external representations, e.g. keywords are always printed
upper case. More serious differences may result from the automatic removal of

superfluous parentheses.

If p+ was selected, it follows a list of three or four kinds of look-ahead sets:
first the complete look-ahead-1 sets of the various alternatives, second those subsets
that cause the ELL(1) conflict. Then for each look-ahead-1 symbol that causes a
conflict, the complete look-ahead-2 sets are listed, and at last, their subsets causing
an LL(2) conflict (if there is such a conflict). With option p -, only the conflict-
ing subsets of look-ahead-2 sets are listed. These listings of sets are preceeded by
symbolic numbers as introduced in the description header to relate them to the

various alternatives.

A special situation that one might consider as ambiguity and thus as LL(k) con-
flict for any k is already solved by the algorithm of conflict detection and thus not
listed as ELL(1) conflict. It is the matter of list constructs {N ...} without
separating terminal where the repeated non-terminal N derives ¢. Here the sym-
bol ¢ is automatically removed from the first-set of N such that the generated
parser will never reduce ¢ to N (if it did so in some contexts, it would do it for
ever and thus fall into an infinite loop).

If an ELL(2) conflict occurs, option e§ was selected, and there is no left recur-
sion, the automatic conflict solving is activated. The solution of conflicts at list
descriptions is easy: it is always decided to choose alternative (1) such that the
generated parser will stay as long as possible in a list construct. Conflicts at alter-
nations are treated more sophisticated: if the conflict arises under look-ahead-1

symbol T, the various alternatives involved in the ELL(2) conflict are divided into
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two classes: those containing T in their first-set, and the other ones (thus contain-
ing ¢ in their first-set and T in their follow-set). Then the generator decides that
the generated parser always has to select the lexical first alternative of the first
class, and if this class is empty, the lexical first one of the second class.

Take as example the first alternation in the production
N:(ac|ab|a|)(a|b)b.
There is an ELL(2) conflict under look-ahead string ’a b’. Involved alternatives
are ’a b’, ’a’, and ’ ’. ’a b’ and ’a’ form the first class, and ’ ’ the second class,
thus ’a b’ is chosen.
If the production had been written
N:(|laJab|ac)(a]|b)b.
then ’ ’, ’a’, and ’a b’ are involved, too, the first class consisting of ’a’ and ’a b’
in this order, and the second class of * ’. Then ’a’ is chosen. Naturally, the
parser generated from this grammar will not accept the full language, e.g. ’a b’
and ’a b a b’ will not be accepted.

There is an important kind of ELL(2) conflict that is correctly solved without
diminishing the language accepted by the generated parser. It is the matter of the
well-known ”dangling else” problem that makes many programming languages,
including Pascal and C, failing to satisfy the LL property. The critical production
looks like

If-statement : if Expression then Statement ( | else Statement) .

The alternation is not LL(k) decidable for any k when the look-ahead-1 symbol is
else. The automatic solver chooses the non-empty alternative no matter whether it
is written down first or not. This is the correct solution, it means that each else

part belongs to the closest previous else-less if.

3.5. Tree condition checker

For the following description, we shall call non-terminals, free operators, and list
descriptions important regular factors. Free occurrences of operators are those that
don’t appear after root or in a list description. With these notions, we can state

the first three tree conditions shorter than in chapter 2.7:

Assume the right hand side of each production has been transformed into an alter-

nation of concatenations of regular factors. Then
(TC1) Each concatenation contains at most one root-statement.
(TC2) Each concatenation contains at least one important factor.

(TC3) If there is more than one important factor in a concatenation, there must
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be a root-statement in it.

The tree condition checker does not really transform the regular expressions, it
uses an attribution with one integer-attribute for each condition as efficient simula-

tion.

If t- was selected, no condition is checked, if t+, the three conditions above
are tested, and with t§, all four conditions are checked. The fourth condition is

the arity condition, it is considered below.

The existence of a correct string-to-tree parser depends on the satisfaction of the
first three tree conditions. Thus their violation disallows generation if option gt,
gm, or gi was selected. The arity condition is only obliged if an Optran tree

grammar is to be produced (with option o + or of).

If a tree condition is violated, a header is printed (an example is given below),
then it follows a list of violations:

Production of N  (erroneous concatenations)

For each production, only the worst concatenations are printed. They are com-
bined into one expression by use of alternations of the untransformed regular

expression.

The output algorithm is to go through the expression and to print the worst
alternatives of each encountered alternation. Parentheses of alternations appear in

the output even if only one alternative of theirs is printed.

An example will show the resulting messages. Note that it does not contain any
terminal or non-terminal on the right hand side of the production, thus it is natur-
ally nonsense and violates the ELL(2) condition. On the other hand, the examples

of the previous chapter did not contain operators and violated the tree conditions.

N: (root 'rl1' | ) ('opl' | ) (root 'r2a' | root 'r2b' ] ) (root 'r3' | ‘op2').
Output:

Tree condition 1 violated:

There is more than one root statement in some concatenations

Production of ”N”
(ROOT 'r1' ) ( 'opl' I EMPTY ) ( ROOT 'r2a'’ l ROOT 'r2b' )
(ROOT 'r3')

Tree condition 2 violated:

Some concatenations imply empty subtrees

Production of ”N”
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( ROOT 'ri1' | EMPTY ) ( EMPTY ) ( ROOT 'r2a' | ROOT 'r2b' | EMPTY )
( ROOT 'r3' )

Tree condition 3 violated:

Root statements are missing

Production of ”N”
( EMPTY ) ( 'opl' ) (EMPTY ) ( 'op2' )

Explanation:

There are 2-2-3-2 = 24 different concatenations, most of them violating a tree
condition. For (TC1), there are 2 concatenations without roots, 8 with 1 root, 10
with 2 roots, and 4 with even 3 roots. For the message, the worst alternatives
from each alternation are taken. It is the first alternative from the first alterna-
tion, the complete second alternation since both alternatives are equally bad (or
good in this case), etc. The result is a compact representation of the 4 concatena-
tions with 3 root-statements. The other two messages are built analogously. Note
that the output is done by a deparser converting keywords to upper case and using
EMPTY to denote empty alternatives.

The arity condition

Each occurrence of an operator in any concatenation is associated with an impli-
cit arity. The arity of an occurrence after root is the number of important factors
in the concatenation, the arity of an operator in a left or right associative list is 2,
in a non-associative list it is *, and free occurrences are associated with arity 0.
Arity * means that this operator may have an arbitrary number of children in a

generated tree.

The arity condition (TC4) then demands that all occurrences of one operator are
associated with the same arity. Arity * is considered as incompatible with all ari-

ties of a number n.

If r— was selected, the trees constructed by the generated parser do really con-
tain list operators with arbitrary arity. If r+ was chosen, they are replaced by
recursive constructs such that operators in non-associative lists get arity 2, and the
implicitly constructed end operators get arity 0. But in the generator, list opera-
tors are associated with arity * and thus incompatible with arity 2, no matter

whether r+ or r- was chosen. The purpose is to achieve the following property:

If a grammar satisfies the arity condition with option r+, then it will also
satisfy it with option r - .

The inverse implication is not true because of the implicitly constructed



- 45 -

operators.

Examples:
If-statement: if Expression then Statement ( | else Statement) root 'if-stat’'.

If this expression were transformed into an alternation of concatenations, it
would consist of two concatenations both containing an occurrence of root
'if-stat'. But one concatenation contains two important factors (Expression,
Statement), the other one three (Expression, Statement, Statement). The error

message will be:

Inconsistent use of operator 'if-stat' in production of ”If-statement”

Arity may be 2 or 3 by root statement

This kind of message always contains two arities, namely the minimum and
maximum arity implied by the different concatenations. The user could claim that
this message be too laconic, but (s)he has anyway to analyze the erroneous produc-

tion when correcting it.

A correct solution for this production would be

If-statement: if Expression then Statement
(' no-else’ I else Statement) root 'if-stat’'.
or
If-statement: if Expression then Statement

(root 'if-then' | else Statement root 'if-then-else').

Another example: A: {'list' N ...}. B: C D root 'list'.
where A, B, C, D, N being non-terminals.

Produced message:

Inconsistent use of operator 'list'
Arity + in production of "A” within the construct
{ 'list' N..N}
Arity 2 in production of ”B” within the construct
ROOT 'list'

If the list construct were declared as left or right associative, no error message
would be printed. The error may be corrected by choosing different names for the

two occurrences of 'list' .

Assume that there are four productions where the same operator occurs with

arity 2, 3, 2, and 3 in this order. Then three independent error messages
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(2#3, 3+2, 2+3) will be produced since the arity checker remembers only the last

occurrence of each operator with its arity.

An example for the difference between r— and r +:

A: {'list' N ...}. B:C Droot 'empty list'.

With r-, there is no problem, with r+empty , there is an inconsistence
between the occurrence of 'empty list' constructed at the list description (arity
0), and the occurrence in the production of B (arity 2). If the production of B
had preceeded the production of A, then the grammar would have been rejected

already by the grammar reader due to technical reasons.

3.6. Optran tree grammar computation

If the generated parser shall be used as front-end for Optran, Optran must get a
tree grammar describing the set of trees that will be submitted to Optran by the
generated parser. This tree grammar is part of a so-called Optran t-unit and may
be either written by the user or computed by the generator. Option a controls
whether scanner attributes are attached to tree productions (a+) or not (a-).
Scanner attributes are always declared as imported local attributes by our genera-
tor. They are attached to tree productions deriving an operator that has at least

one occurrence with an associated terminal [T] in the input grammar.

Optran tree grammars consist of a sequence of productions X ::=Y or
X = <op, Xy, - -+, Xy > where X, Y, X, are non-terminals, and 'op' is an
operator with arity k. Operators are written without quotes in Optran. They can
be distinguished from non-terminals since they may only occur immediately after a
left angular bracket ’<’. Trees on right hand sides of productions are given in

prefix notation, thus the example tree consists of a root marked by operator op,
and k children.

Note that in Optran, there may exist many productions with the same left hand
side. Thus a tree production in Optran corresponds to that what we have called

concatenation and consider as part of a greater production.

The implicitly defined tree grammar G” of chapter 2.7 cannot be printed
directly as Optran tree grammar since there are severe restrictions on Optran

grammars.

(1) The forms of productions given above are the only legal forms. This means
that trees on the right hand side of productions may have a depth of at most

1, and operators cannot appear as children in these trees.

(2) The second restriction is more serious: a given operator may occur only in

exactly one production.
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The second restriction implies that the real tree grammar must be modified by
additional non-terminals - to achieve an approximation that is as good as possible
- or by combining all non-terminals into one - to achieve an approximation that
is as bad as possible. Even the best approximation does in general not describe
the real tree language exactly, but a superset of it.

If option o§ was chosen, the generator computes an Optran grammar that is as
close as possible at the real grammar G”. This may be very time and space
expensive since the transformation of regular expressions of the input grammar
into alternations of concatenations must be really performed - time needed for
this may be exponentionally depend on the input grammar size — and the satis-
faction of restriction (2) can only be guaranteed by global comparison of the result-
ing concatenations - requiring to store the complete transformed grammar some-
where. Thus a storage overflow may occur indicated by the message ”Stopped.

Production of N is too huge for tree grammar computation”.

Because of the exponential time and space complexity, an option o+ is provided
that causes a simple Optran tree grammar to be computed in linear time and
space. It is the worst grammar still respecting the names of operators and their
arity. It results from combining all non-terminals into one (called S), and thus
consists of a sequence of productions S ::= <op, S, - - -, §> - one for each
operator 'op' - where the number of occurrences of S on the right hand side
equals the arity of 'op'.

Whereas this simple grammar is now completely described, we shall give some
examples to illustrate how the grammar produced with option of looks like.

Non-terminals will be written capitalized, terminals completely lower case.
A:(a | b)B | C leadsto A ::=B; A :=C;

Originally there are three concatenations and thus three tree productions. But
two of them are equal because the terminals a and b are not important. The gen-

erator compares the arising tree productions such that no production is printed

twice.

If statement: if Expression then Statement

('no__else' | else Statement) root 'if _stat'.

leads to

If _statement ::= <if stat, Expression, Statement, if stat 3>;
if _stat_ 3 ;i= <no__else>;

if stat_3 :: = Statement;

The generator must introduce an additional non-terminal if _stat 3 as third



- 48 -

child of operator 'if stat' since this child is not constant in the various concate-

nations with root 'if _stat'. The solution

If statement ::= <if stat, Expression, Statement, no__else >;

If statement ::= <if stat, Expression, Statement, Statement>;
would be a violation of both restrictions (1) and (2).

Assume you have production

Constant: (root 'sign' [addop] | )
('const__number' [number] I 'const__id"' [id] ).

in the type definition part, and production
Factor: 2 | root 'sign' [addop] Factor | v e

in the expression definition part of a specification of some Pascal-like programming

language. Without the restrictions, the resulting tree productions would be

Constant ::= <sign, const__number>;
Constant ::= <sign, const__id>;
Constant ::= <const__number>;
Constant ::= <const__id>;

Factor :: = <sign, Factor>;

Factor

The three productions containing 'sign' must be unified to one. A
non-terminal sign__ 0 is constructed as left hand side of the unified production
since the three original productions don’t have the same left hand side. In addi-
tion, a non-terminal sign__1 is needed since the three productions have different
objects on their first child position. Then there are two productions deriving
' const__number' with differing left hand sides, namely Constant and sign__ 1.
Therefore, non-terminals const _number__0 and analogously const__id__0 are con-

structed. The result is

Constant ::= sign_0;

sign_ 0 ;1= < sign, sign__1 >;
sign__1 ::= const__number__0;
const_ number_ 0 ::= < const__number >;
sign__1 ::= const__id__0;
const__id_ 0 1= < const__id >;
sign__1 :: = Factor;

Constant :1= const__number__0;



- 49 -

Constant :t= const__id__0;
Factor :r= sign_ 0;
Factor G

Note that these productions are printed with option a - to simplify them. With
a+, the second production would, for example, look like
sign_ 0 1= < sign, sign_1 >;
local scanattr: scanattrtyp;
imported scanattr;

due to the terminal addop attached to the operator 'sign'.

Associative list descriptions describe recursive trees:

A: {B 'binop' [t] ...} left. - A ::= B; A ::= <binop, A, B>;

A: {B 'binop’' [t] ...} right. = A ::= B; A ::= <binop, B, A>;
Non-associative lists must be replaced by a recursive tree construct, since actual

Optran does not allow for list operators with variable arity. An additional end

operator is constructed implicitly by the generator. With standard prefix empty ,

the resulting tree productions look like

A: {'list" B ...}. - A= <empty list>; A= <list, A, B>;

Sometimes, an additional non-terminal is needed to ”carry” the recursion:

A: {'list' B..} | C.

- A ir= list_ 0;
list_ 0 it= < empty_ list >;
list_ 0 = < list, list_ 0, B >;
A = C;

This is done to prevent C from being involved into the recursion.

The generated Optran tree grammar satisfies the two restrictions above and is
normally correct, i.e. it is accepted by Optran and describes a superset of the set

of trees built by the generated parser.

But there are some sources for errors that may cause the grammar to be
incorrect. These errors are not indicated by our generator, thus the user

him/herself is responsible to avoid them.

We shall list these possible errors for the case of option o§. Some of them are

also possible if o + is chosen.

(1) Names of non-terminals and operators in the input grammar are directly

copied into the Optran tree grammar. Thus they must be Optran names, i.e.

b b

they may consist only of letters, digits, and underscores In addition,

they must not equal Optran keywords. Terminal names of the input grammar
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Optran names.

(2) Names of non-terminals and operators are distinguished in the input grammar
by quotes surrounding operator names. In Optran, these quotes are not writ-
ten, thus it is possible that non-terminal and operator names become equal.
The user should avoid this by observing a fixed lexical strategy to build
non-terminal and operator names, e.g. capitalizing non-terminal names as in

the examples above.

(3) If names of additional non-terminals are already used in the input grammar,
an error will result that might be hard to detect. The user should therefore

’

completely avoid names with suffix °__n’, n being a number.

(4) If an operator name in the input grammar was rather long, and has eventually
still grown up by a prefix like ’empty ’, then the suffix °_ n’ of additional
non-terminals might be partly beyond the 32th position of the name. Then
the number is not read by Optran and thus different non-terminals constructed
from the same operator become equal. Thus the user should avoid operator

names longer than, say, 24 characters.

3.7. The real code generator

If the code generator is activated, and m + was selected, it issues the message
”Parser generation ...”. If code generation is disabled, either by option g - or by

an error, the message ”No parser generation” is printed.
)

The generated code is a fragment of a Pascal program and consists of a table of
symbol names and their internal codes, information to treat "holes” in program
fragments to be analyzed (only with gm or gi), a mapping associating a ”right
neighbour” to each parse state, and the parse table itself describing what actions
are to be performed in a given parse state with given look-ahead. Drivers inter-
preting these informations are not generated, but included from constant files when

the generated parser is compiled.

The parser table does not any longer look as described in [3] since many parse
states are omitted and the remaining table is optimized such that the actions of as
most states as possible are independent of the actual look-ahead. The actions
specified in the parse table serve to consume input, to build up the abstract syntax
tree, and to handle the parse stack.

The parse states correspond roughly to subexpressions of the right hand sides of
productions. The right neighbour associated with each parse state corresponds to
the next subexpression to the right in the actual production. A right neighbour
being 0 means that the end of the actual production is reached and a “reduce”
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action is to be performed.

A symbolic listing of parse states, their right neighbour, and their corresponding

regular subexpression can be got by the grammar graph printer.

3.8. The grammar graph printer

Output of the grammar graph is induced by option i+ or i§, first- and
follow-sets are listed together with each node with option i§. This part of the gen-
erator is activated at the end of execution, thus grammar graph printing will not
be performed if the input grammar was already rejected by input reader or reduc-

tion tester.

The grammar graph consists of a forest of trees, one tree for each production.
These trees are abstract syntax trees for the regular expression on the right hand
side. They are linked by additional edges between non-terminal leaves and roots

of trees produced by the non-terminals.

The output of the graph starts by a summary of the input grammar (see exam-
ple below). Then the trees are printed one by one preceeded by a list of ”prede-
cessors of the root”. These are non-terminal leaves marked by the non-terminal
on the left hand side of the production actually printed. The trees are listed in
pre-order (parents before children) according to the format:

node number (parse state — > right neighbour) indent node description

node number:

The nodes in the grammar graph are numbered from 1 on. These numbers

have no internal meaning and are produced only for the purpose of this listing.
(parse state — > right neighbour):

Some nodes (more exact: some subtrees) correspond directly to parse states in

the generated parser. For these nodes, the number of the parse state and of its

right neighbour state are given. At nodes without corresponding parse states,
white space is printed between the parentheses. If code generation was disabled

(by option g - or by errors), this information cannot be given since parse state

numbers are computed during generation. If the input grammar failed to be

ELL(1), there are look-ahead-2 states that do not correspond to nodes of the

grammar graph, thus their numbers don’t occur in this listing.
indent:

The indent consists of two strings. The first string consists of two blanks ’ ’
for nodes near the root of the tree. The second string consists of a sequence of
substrings ’| * - one for each level of depth. If the second string becomes too
large, it is reset to €. After n resets where 1 S n £ 9, the first string is 'n >’;

and after ten or more resets, it will be > >’
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node description:
A readable form of the actual node and its contents
As example, assume you have the grammar:
Statement-list: {'statement-list' Statement semicolon ...}.
Statement: while Expression do Statement-list od root 'while'
| 'variable' [id] assign Expression root 'assignment'.
Expression: {Atom 'binop' [binop] ...} left.

Atom: 'atom' [id] | 'atom' [constant] I left-par Expression right-par.

Listing of the grammar graph with option i+ after successful generation:

GRAMMAR GRAPH

Number of terminals: 10
Number of productions: 4
Number of nodes: 26
Number of operators: 6
Number of parse states: 22

Tree belonging to non-terminal ”Statement-list”

Predecessors of the root: 9

1 (1 -=> 0) List description  Operator: 'statement-list'
Associativity: none

2 (2 ->13) l Non-terminal "Statement”

3(3-> 2 | Terminal ”semicolon”

Tree belonging to non-terminal ”Statement”

Predecessors of the root: 2

4 (4 -> 0) Alternation node with 2 successors

5 ( ) | Product node with 6 successors

6 (5 -> 6) || Terminal "while”

7(6->17) | | Non-terminal ”Expression”

8 (7 -> 8) || Terminal "do”

9 (8->09) I | Non-terminal ”Statement-list”

10 (9 -> 10) || Terminal "od”

11 (10 -> 0) || ROOT 'while'

12 ( ) l Product node with 4 successors

13 (11 - > 12) | | Operator name 'variable' depending on terminal ”id”

14 (12 - > 13) | | Terminal ”assign”
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15 (18 - > 14) | | Non-terminal ”Expression”
16 (14 -> 0) | I ROOT 'assignment'

Tree belonging to non-terminal ”Expression”
Predecessors of the root: 7 15 25

17 (15 = > 0) List description  Operator: —  Associativity: left
18 (16 - > 17) | Non-terminal ”Atom”
19 (17 - > 16) l Operator name 'binop' depending on terminal "binop”

Tree belonging to non-terminal ”Atom”

Predecessors of the root: 18

20 (18 - > 0) Alternation node with 3 successors

21 ( ) | Operator name 'atom' depending on terminal ”id”

22 ( ) | Operator name 'atom' depending on terminal ”constant”
23 ( ) | Product node with 3 successors

24 (19 - > 20) | | Terminal "left-par”

25 (20 - > 21) | | Non-terminal "Expression”

26 (21 -> 0) l l Terminal ”right-par”

4. The generated parsers

4.1. Introduction

There are four different kinds of generated parsers. The g option of the genera-
tor controls which kind is generated:

gn - ’notr’ parser
This parser is able to analyze programs and to detect syntax errors. No trees are
generated.

gt - ’tree’ parser
This parser reads complete programs of the specified language and translates
them into abstract syntax trees according to the specifications of the generator
input. It may also be used as front-end for Optran.

gm - ’muen’ parser
The multi-entry parser interactively translates program fragments and schemes
into abstract syntax trees. It may be used to explore the properties of the speci-
fied string-to-tree translation such that the user can quickly check whether it is
compatible with the one (s)he had in mind when writing the generator input.

gl - ’incr’ parser

The incremental string-to-tree parser interactively maintains a forest of abstract
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syntax trees corresponding to program fragments and schemes, and performs cut

and paste operations on them.

Each kind of parser has its own parser driver (notrpas.i, treepas.i, etc.). The
generated code that is combined with the constant driver during compilation also
depends on the kind of parser it is generated for. Thus it is impossible to com-
bine the same parse table with different drivers. Four complete runs of the gen-
erator on the same input (except the g option) are needed if all four kinds of
parser shall be generated for one language. But the scanner generated by POCO
does not depend on the value of the g option; thus the same scanner table may be
included in all generated parsers. The only problem is that the name of the file
containing the scanner table is always expected to be "name .scan.i” if the name of

the generated parser is "name.p”.

4.2. Common properties of the generated parsers

All parsers may be influenced by options similar to those of the generator. The
two "batch” parsers 'notr’ and ’tree’ read options from the command line but not
from input. The two interactive parsers 'muen’ and ’incr’ don’t read the com-
mand line and provide standard values for options when started. They allow for

the interactive changing of option values by menues.

If a syntax error is encountered, the parser outputs the line where the error is

A

detected even if listing is disabled, then a line containing the character *™ pointing
to the error position followed by the message ”Error: list of terminals expected”.

There is no error recovery, and the parser stops reading at the error position.

When a parser is reading from a terminal, the end of input must be indicated
by hitting the Unix-EOF-character "D (control-D) at the beginning of a new line
without following ’return’ or ’line-feed’. If a syntax error was found, the parser
stops reading immediately, thus "D need not be hit in this situation (but an

accidental hit is tolerated by the parser).

Abstract syntax trees are listed in readable form if the user wants this. The
nodes are listed in pre-order, i.e. parents before children. For each node, the
operator labeling it is printed, followed eventually by a scanner attribute. This is
an instance of a terminal T bound to this operator by the construct 'op' [T] in
the generator input. First the terminal symbol class of the instance is printed. If
the instance belongs to an infinite terminal symbol class, the scanner generated by
POCO is able to decode the internal code of the instance into its external form,

)

and this form is printed surrounded by double quotes Unfortunately,
instances of fixed finite symbol classes cannot be decoded by the POCO generated

scanner, then the parser prints the pair class code - relative code enclosed by
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parentheses, and the user must do the decoding him/herself.
The various kinds of terminal symbol classes and the internal codes of instances of

terminal symbols are explained in chapter 2.4.

The syntax trees are listed with indent consisting of two strings, the second
string being a sequence of ’| > substrings, one for each level of depth. If it has

) )

become too large, it is reset to €. The first string is without resets, >> ’ after

one reset, ’> >’ after two or more resets.

It is possible to force the syntax tree to be printed even after a syntax error.
The tree is then incomplete, the error position corresponds to the right most leaf of
the tree fragment. Some nodes on the path from this leaf to the root may be
already created, but not yet marked by an operator; they are listed with the
pseudo operator ’NOT YET DEFINED”.

4.3. The ’notr’ parser

This kind of parser reads options from command line, a complete program to be
analyzed from input, and prints eventual syntax error messages and on termination

either "Accepted” or "Not accepted”. Possible options are

1- : no listing of input

1+ : listing enabled

m - : message "Accepted” is suppressed

m + : it is printed

fmnumber : maximum line length for syntax error messages

Defaults are 1+, m+, fm80. Called with l- and m -, the parser will output
nothing if the parsed program is correct. The messages due to option errors are
analogous to those of the generator (see chapter 2.2), but they are not introduced
by a pointer line since the command line is not listed. An additional message is

”Error: Option ”x” is given twice”.

4.4. The ’tree’ parser

This kind of parser also reads options from command line and a complete pro-
gram from input. The program is translated into an abstract syntax tree that may
be listed in readable form on output or in coded form on a file to be read by

Optran.

Optran needs two input files if it shall work on an abstract syntax tree. Both
files may have arbitrary names, but Optran assumes the names “decfile” and
”infile” by default. Thus these names are also default names for the output of our

parser.

The ”decfile” contains a list of operator names and of instances of terminal
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symbols encountered in the translated program together with their internal codes.
Optran expects the list to be in a special order that looks strange for human
readers, but shall make the file easier to read for Optran since the order fits into
the data structure Optran is using internally. A procedure computing this special
order was provided by B. Weisgerber — a member of the Optran group - and is
included in our parser during compilation. The ”infile” contains the abstract syn-
tax tree itself and is written in Optran code. It is not a textfile and thus neither

directly readable for users nor safely portable to other computers.

Options for the ’tree’ parser are:

I- : no listing of input

1+ : input is listed

Default 1+

m - : no output of readable syntax tree

m + : output of readable tree iff program is correct

m§ : tree is printed even if the program was erroneous
Default ! m+

fmnumber : Maximum line length for error messages and tree listing
Default : fm80

o- : "infile” is not created

o+ : "infile” is created

0 + name : ”infile” is created and called name

d- : "decfile” is not created

d+ : "decfile” is created

d + name : "decfile” is created and called name

Defaults : if neither o nor d is set explicitly, they are both set to ’ -’, if one

of them is defined to be ’ +’, the other one is also set to ’ +’

If the parser was generated with option r -, non-associative list constructs are
translated into flat “iterative” trees. If the generation was done with r+, the
parser is able to produce likewise ”iterative” and "recursive” trees from those list

constructs. Then there is an additional option:

r—- : produce "iterative” trees
r+ : produce "recursive” trees
Default is then r +.

Summarized, this means: generation with r - implies parser working with r -,
and r+ is impossible; generation with r+ implies parser works by default with

r+, but is also able to work with r-.

Note that actual Optran does not accept "iterative” trees, thus d+/o+ and r-

are incompatible with each other. Therefore a parser generated with r- can
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never be used as front-end for Optran.

4.5. The ’muen’ parser

The ’multi-entry’ parser is able to read program fragments and schemes, and to
translate them into abstract syntax trees. Thus it is a tool for interactive exploring

the string-to-tree mapping specified in the generator input.

The ’base state’ of the parser is a cycle starting with the message ”Please give
type name (Empty input means previous type name, "D - > menue)”. The user
may then enter a type name, that is essentially a non-terminal name, in the lexical
form specified in the typename section of the generator input. See chapter 2.5 for
the relation between non-terminal names and type names. If the user gives an
empty input, i.e. only hits the ’return’ or ’line-feed’ key, the parser takes the type
name used in the previous repetition of the cycle. If the parser has just begun to

work, this previous type name is always the axiom of the input grammar.

When a type name has been chosen by the user, the parser demands for a con-
struct derived by this type, printing the message ”Please give chosen type name”.
The user may then enter a program fragment or scheme of the selected type. This
input may consist of many input lines and is normally ended by hitting "D at the
beginning of a new line. It may contain "holes”, i.e. subconstructs left unspeci-

fied. These holes must be typed by an appropriate type name.

After having analyzed the program fragment, the parser lists a readable form of
the corresponding abstract syntax tree, then a new repetition of the base cycle

starts.

If the user hits "D instead of entering a type name, the base cycle is left and a
menue state is entered where values of options may be changed interactively. The
parser does not read options from command line, and assumes default values at
the beginning of its work. When the menue is printed the first time, it looks like

(if the parser was generated with option r +):

(p)  Print previous tree again, then return to base state

(r)  List nodes: recursive — > iterative
(Y Maximum line length: 80 - > new value
()  Listing of input: no - > yes

(m) Trees are shown after syntax errors: no - > yes
(o)  All settings okay; return to base state
(@) Exit program

If ’r’, ’’, ’m’ is entered, the values around the arrow ’ - >’ are interchanged.

The value before the arrow means the actual value, the one after the arrow means
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the value becoming valid if this row is chosen by the user. Listing of input lines
is turned off by default since it looks ugly when the input is coming from a termi-
nal. If ’f is chosen, the parser aks for the new maximum line length by the mes-
sage "Please give new value”. Choosing 'r’, 'I’, 'm’, or ’f does not terminate the
menue state, the menue is printed again. The menue state may be left by ’p’
where first the actual tree is printed again, by ’o’ where the base state is entered

immediately, or by '@’ where the parser program is terminated.

Note that the actual tree is not affected by changing the value of the r option.
If you want to compare “recursive” and ”iterative” tree of the same program frag-

ment, you have to enter this fragment twice.

If the parser was generated with option r -, it is only able to construct ”itera-

tive” trees. The menue then looks like

(p)  Print previous tree again, then return to base state

--- List nodes: iterative (no change possible)
® Maximum line length: 80 - > new value
) Listing of input: no - > yes

(m) Trees are shown after syntax errors: no - > yes
(o)  All settings okay; return to base state
(@) Exit program

4.6. The ’incr’ parser

The incremental parser shall maintain a forest of abstract syntax trees and per-
form cut and paste operations on them. For the time being, cut and paste are not
yet implemented, thus this kind of parser is still a less comfortable version of the
’muen’ parser. Furthermore, it is more likely to work erroneously since it is not

yet tested thoroughly.
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Appendix A: Summary of the syntax of the generator input
We shall use a regular right part grammar with the following meta-symbols:
::= ”produces”
| alternative

* Kleene-star: zero or more repetitions

* one or more repetitions
€ empty string

() meta-parentheses for grouping

character to improve readability (see below)

If two alternatives are semantically equivalent, we shall write or instead of I
Non-terminals and terminals of the meta-grammar will be written in italics, the
non-terminals capitalized. Keywords and characters directly occurring in the input
are written in Roman font as they are except blanks written as BL, tabs written as

TA, and newline characters written as NL. Sometimes, characters are enclosed

by round quotes ’ to distinguish them from meta-symbols, e.g. ’I’, C, ).
character means any arbitrary character,

visible -char means any character except BL, TA, and NL,
char-except -quote means any character except quote '.

Tokens of the generator input

Some of these tokens are used in the real meta-grammar below, they are marked
by an arrow. Other tokens are only used as parts of other tokens.

letter = a|b|c etc. IAIBlC etc.
ol1]2|3|4]|5|6]7]|8]9
letter | digit |' | @ |S|8| % |"| &

digit

usable -char

|1 =T+1=1"1 "INl <>1 02
-+ POCO-char ::= ' char-except-quote ' | e
~ string ::m (' char-except-quote * ' ) t
- word = visible-char *
-~ number w= digit t
- option = 1- |1+ |m=- | m+ |i- |i+ [|iS§

le- e+ |es|p-|p+ [t=|t+ |tS
|8'|Sn|8t|gm|gi|c:word

| s- | s+ IsS|s+word | ssword
|o— |o+ |o§|o+word|o§word
|a— |a+ Ir- |r+ |r+word

| fmnumber I fgnumber | fonumber

- POCO-name ::=  Jetter ( letter | digit l _)*



symbol -name
- terminal
- non-terminal

- operator

Ignorable tokens:

space

comment

Meta-grammar for the input:
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usable -char
symbol -name

symbol -name

usable-char *

(BL| TA|NL)*
(> character * ’s)

The sequence of characters must not contain ’+)’

The meta-grammar defines sequences of tokens that may form the generator

input. Ignorable tokens may be interspersed everywhere among these tokens. The

word at the beginning of the input is the name of the called generator program

that is always ignored. It is automatically part of the input since the command

line is considered as first line of input.

Input

Options -section

Classes -section
Char -class -definition
Char -class-def

Char-class

Terminals -section

Symbol -class -definition ::

Symbol -class -mode

Lexical -specification

POCO -expression
POCO-factor

Alternation

Equivalence

word
Options-section Classes-section Terminals-section

Typename -section Axiom -section Productions-section

option *

€ | ( CLASSES or classes ) Char-class-definition *
(- | €) POCO-name = Char-class-def ;
Char-class ( , Char-class ) *

POCO-char | POCO-char - POCO-char

¢ | ( TERMINALS or terminals )
Symbol -class -de finition *

Symbol-class-mode terminal Lexical-specification

clw o] -

e | = | = POCO-expression ;

POCO-factor *

'V terminal | POCO-name | POCO-char | string
| Alternation | Equivalence

| Iteration I Allbut -expression

' POCO-Expression (’|” POCO-expression )* ’)
' POCO-Expression ( , POCO-expression )* ’)
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Iteration ::= [ POCO-expression } I ¢ Range [ POCO -expression |
Range i@ npumber - number | number - | - number | ¢
Allbut -expression = allbut (" POCO-expression ')

Most of the productions above are taken from the POCO-manual [1] and only
modified by minor changes and corrections.

Typename -section 2@ ¢ | ( TYPENAME or typename ) terminal
( ¢ | (FIRSTCHAR or firstchar ) visible-char )
(¢ I ( LASTCHAR or lastchar ) visible-char )

Axiom -section ¢ | (AXIOM or axiom ) non-terminal

¢ | (PRODUCTIONS or productions )
Production * ( FINIS or finis )

Productions -section

Production
Regular -expression ::= Regular-term ( (’|’ or’/’ ) Regular-term ) *
Regular-factor

non-terminal : Regular-expression

' Regular-expression ’)’

I EMPTY or empty I non -terminal

I terminal | Node-description

| ( ROOT or root ) Node -description

I List -description

Node -description ::= operator | operator [ terminal |

List -description ::= { operator }

| { (operator | ¢ ) non-terminal ( terminal | ¢ )
(..or..|.0..0r..0..) ( non-terminal or ¢ ) }

| { non-terminal operator ([ terminal || ¢ )
(..or..) (non-terminal or € ) } Assoc-spec

Assoc-spec ::@ LEFT orleft | RIGHT or right
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