An efficient

ELL (1) — Parser Generator

Reinhold Heckmann

Fachbereich 10

Universitat des Saarlandes
Technischer Bericht Nr. A 85/ 04

An efficient ELL (1) - Parser Generator

Reinhold Heckmann

Universitat des Saarlandes
6600 Saarbrucken
Bundesrepublik Deutschland

ABSTRACT

Extended context-free grammars also called regular right
part grammars allow for compact and readable descriptions of
the syntax of programming languages. Recursion 1in conven-
tional context-free grammars can in most cases be replaced
by iteration. Parser tables of predictive LL-parsers for
extended grammars can be generated very efficiently if the
length s of the Look-ahead is 1. The generation time is pro-
portional to the size of the parser table, that is the pro-

duct of grammar size and number of terminal symbols.

0. Introduction

Extended context-free grammars are grammars where the non-terminal
symbols produce regular expressions over terminal and non-terminal sym-
bols instead of strings. They are introduced because they are more com-
pact and more readable than conventional ones. In addition, they allow
for the replacement of some Left or right recursion (e.g. for parameter
lists in most programming languages) by a 'star expression' using the
Kleene-star "*", Left factoring - often needed to obtain an LL-grammar
- can also be done easily without introducing additional non-terminals

when regular right parts are allowed.

Predictive LL-parsers for extended grammars can be generated very
efficiently if the length s of the Look-ahead is 1. Naturally, a simpli-
fied version of this algorithm can be used to generate LL-parsers also
for conventional LL(1)-grammars more efficiently than the algorithm

given in [11].

Heilbrunner [3] used another approach; he transformed extended gram-
mars 1into conventional ones and generated the parser for the resulting
grammar. But this parser finds the complete structure of the input under
the new grammar, even though much of this structure may be unnecessary

for reconstructing the parse for the original grammar.

Purdom and Brown [6] show how to generate LR-parsers directly from
extended context-free grammars. Another less efficient algorithm to gen-

erate LL-parsers directly from extended grammars can be found in [4].

This paper is a summary of [2]; some Lless important Llemmata and
almost all proofs have been omitted here. The absence of proofs in this
paper should not suggest that the stated theorems are obvious or easy to

prove; some of the omitted proofs are very extensive.

In a predictive LL-parser, first- and follow-sets are needed to
obtain the Look-ahead entries in the parsing table. Thus in chapters 1

through 15 we investigate the computation of these sets.

The theory in chapters 1 through 9 and 15 treats the general case of
an arbitrary Look-ahead length; its main results are theorems on how the
first- and follow-sets can be deduced from each reduced extended gram-

mar, and criteria for the existence of parsers for a given grammar.

-3 -

In chapter 1, the fundamental operations occurring often in the for-

mulas later on, are introduced, and their main properties are listed.

In chapter 2 we recall the definition of regular expressions and

chapter 3 introduces extended grammars and the regular derivation.

An important tool to investigate a grammar is a graph associated with
it, vrepresenting the relations between the terminal and non-terminal
symbols and the structure of the produced regular expressions. It is
described in chapter 4; here, we also introduce some terms and abbrevia-
tions denoting diverse subsets of the vertex set of the graph and suc-

cessors of a given vertex.

In chapter 5, the first-sets are defined and it is stated that they

are least fixed points of a system of set equations.

The regular derivation of chapter 3 is not adequate to define the
follow-sets, thus 1in chapter 6 we define another kind of derivation
called K-derivation. Chapter 7 treats the relations between these two

derivations.

In contrast to first-sets which can also be computed for non-reduced
grammars, it is necessary that the grammar is reduced when the follow-
sets are computed. Therefore we state in chapter 8 how to transform a

non-reduced grammar into an equivalent reduced one.

In chapter 9, the follow-sets are defined and we see that they are

also the Least fixed point of a system of set equations.

In chapters 10 through 14 we give the efficient computation of first-
and follow=sets in Linear time relative to the product of the number of

terminals and the size of the grammar.

In chapter 10, a Lless efficient algorithm, the general goal to
improve it by eliminating the outmost iteration and the first steps in

this direction are given.

Chapter 11 gives the overall-structure of the efficient algorithm,

and chapters 12 through 14 its parts.

The real computation of first- and follow-sets in chapters 12 and 13
needs a precomputation postponed to chapter 14. It finds the non-
terminals which derive the empty word and those which derive nothing at
all at the same time; its complexity is proportional to the size of the

-4 -

grammar and it may also be used independently from the task of generat-

ing an LL-parser.

Chapter 15 treats the ELL(s) conditions guaranteeing that an LL-
parser with lLook—-ahead length s exists for a given grammar; and chapter
16 gives the structure of the ELL(1) - parser, describes how to generate
it and compares it with the conventional LL-parser in [1]J. In chapter
17, it is proved correct and we see that the time and the space the gen-
erated parser needs is linear in the length of the input the parser has

to analyze.

Finally we give a table indicating which chapters of [2] correspond
to the chapters here for readers who want to lLook there for proofs and

further details:

Chapters here: 1-4 S- 9 10 1
Chapters of [2]: 1 -4 6 - 10 13 13, 15

Chapters here: 12 13 14 15 16 17
Chapters of [2]: 15 15 14 11, 12 16 16, 17

1. Operations_on_words_and_Languages

To reason concisely about first- and follow-sets and equations
between them, we introduce the first-mapping "F'", the first-operation

lloﬂ

"o" and the first-closure "o" and "°" are the image of concatena-

. * : .
tion and Kleene=closure " ' under the first-mapping (see theorem 1.8).

Let V denote a non-empty set (the alphabet) and V* the set of words
over V and let s be a fixed natural number, the length of Look-ahead of

the future ELL-parser.

The first-function maps a word onto the substring consisting of its
first s symbols. It is simply denoted by "F" without explicitly specify-

ing the parameter s.

pefinition_(1,1):

F: v = VY, F(E) := &,
3q e aL if L

IN
(2]

F (a, ov. a,) := .
1 L a1 L N] as 1f L

v
7]

for all L ¢ M, Ayr wees a e V.

(€ denotes the empty word and M the set of natural numbers.)

The behavior of concatenation under the mapping F is described by the

partially defined first-operation "o':

Definition (1.2):

Let V° = <w € V¥ such that Iul < s}

and o: VO x vV° = v° be the operation defined by u o v = F (uv).

(Vo, 0) is a monoid with neutral element € and F is a homomorphism

from the monoid (V*, *) to (V°, o).

Now "F" and "o" can be obviously extended to languages:

Definition_(1.3):

Fe PV = P(V*) (powerset of V*),

for L C V¥: Llet F(L) = € F(w) where w € L).

o: P(VO) x POV = P(V®),

for L, M C V°, let LoM={uovwhereuélLand v e M7,

We now give the main properties of the operation "o":

For all L, M, K ¢ V° holds:
(A LoM#D iffL#0 and M £ 0;
(b) E€LoMiff E€e L and € € M;
(c) Lo {€y ={€ro L =1L;
(d Lo (MoK)=(L oM okK;

In the particular case s = 1, the operation "o" can be replaced by

conventional operations of set theory:

0 ifM=2¢0
For s = 1: LoM= L ifM# 0 and € not in L
(L-{EX) UM ifM# 0 and € in L

This Llemma implies Lo M C L UM if s = 1. Therefore, L o M contains
only words which are already in L or in M, permitting the efficient com-
putation of first- and follow-sets (see chapter 10 through 13). If s > 1
this property may not be true, e.g. s = 2 and {a) o {b} = {ab}.

In analogy to

®
=
n=0

we want to obtain a closure operator in the monoid (Vo, o).

Definition (1.6):

) N
For L C V™: LeﬂDPO(L) = {&} and P+

then let L® = |
n

) = Pn(L) olL;

I P (L).
o "

The new definition of V° is compatible with the old one

(W = (w € V¥ such that Iwl < s}).

The closure can also be obtained by a finite union:

Theorem (1.7):

o _
L® = LI P (L.

n=0
In particular for s =1, L® = (€} U L holds.

The main result of this chapter is the following theorem which
characterizes the behavior of the regular operations union, concatena-

tion and closure under the first-mapping:

Theorem_€1.8):
*
For all L, M C V:
(a) F (L UM = F(L) U F(M);
(b) F (L » M) = F(L) o F(M);
() F ¢ FL HC.

2. Reqular_expressions

In this chapter, we give a definition of regular expressions suitable

for our purposes and some further terms concerning them.

Definition_(2.1):
Let M = {'(C', "', '/', '*x'} be a set of metasymbols disjoint from V.

The set RE(V) of regular expressions over the alphabet V is the least
subset of (V U M™ such that
(a) € € RE(V);
(b) V C RE(V);
(c) R, @ € RE(V) implies RQ € RE(V);
) R1, cees Rn € RE(V) where n > 1 implies (R1 /! eae / Rn) € RE(V);
(e) R & RE(V) implies (R)*x € RE(V).

Two regular expressions are called equal iff they are equal as
strings over V U M. Thus (a/b) and (b/a) are different although they

generate the same language {a, b} (see chapter 3).

bue to rules (a) and (¢) of the definition, RE(V) is a submonoid of
(v u M)*. A regular expression R is called reducible if it is the pro-

duct of two non-empty expressions:

R = Q1Q2 where Q1, 02 in RE(V) - {€).
It is called prime if it is different from € and not reducible. Then we
can prove that each non-empty expression can be written as product of

uniquely defined prime expressions.

3. Extended_grammar_and_reqular_derivation

In extended grammars, the non-terminal symbols produce regular
expressions over terminals and non-terminals instead of strings of these
symbols (see Def. 3.1). Since a grammar should generate a LlLanguage, we
must define what the language associated with a regular expression is.
This is done by introducing a derivation on regular expressions (Def.
3.2). The language generated by an expression then is the set of termi-
nal words derivable from it (Def. 3.3). Theorem (3.4) Llists the main
properties of the language mapping; it just transforms the syntactical

operations "/'", concatenation and "*" on regular expressions into the

- 8 -

regular operations union, product and closure on languages.

Definition_(3,1):

grammar) is a quadruple G = (VN, VT’ p, S).

VN: a finite non-empty set (set of non-terminal symbols)

V_: a finite non-empty set disjoint from VN (set of terminal symbols)

p: VN —> RE where RE := RE (VN U VT):
a mapping associating a regular expression with each non-terminal
symbol

S € VN: the start symbol of the grammar.

For A € VN’ p(A) is called the regular expression produced by A.

The productions may be written as a mapping because non-terminal sym-
bols not occurring on the left side of at least one production can be
omitted, and different productions with the same lLeft side can be com-

bined using alternation /",

Usually, regular expressions are introduced together with the regular
sets they denote. The elementary derivation steps induced by a produc-
tion A => R are then declared as A —=> w where w is an element of the

regular set denoted by R (see [4]).

The problem connected to this approach is that for any non-terminal
A, there may be an infinite number of strings directly derivable from A,
and that no LL-parser may be able to decide which one to select. Take

R = (a)* (b/c) as an example.

Therefore we prefer a different notion of derivation whose steps are
finer and which can be simulated by a LL-parser (if the grammar satis-

fies some conditions).

Definition (3.2):

"->" is a relation in RE called regular_derivation (shorter R-
derivation). It is recursively defined by:

(a) € = R and a = R where a € VT are always false.

(b) A€ VN: A =R iff R =p (A);

(¢) (R1 /| eee / Rn) -> R iff R = Ri for an i € {1 ,..., n};

-0 -

(d) (Q* => R iff R=8€ or R =Q (Q)*,
(e) Let Q@ = R1 ces Rn' n > 1, where all the Ri are prime.
Q@ >R iff there is an i € {1, ..., n)} such that
= '

R =Ry «uo Ri_4 R' R,

i+1
L
Ry, =-es Ri_y € Vo and R, = R'.

.ss R and
n

1 T

Note that the definition is recursive only in the Llast case, where
Ry
further recursion since R_.l is prime. The derivation is leftmost due to

- Rn -> R 1is traced back to Ri -> R' which can be decided without

- 4 1] [1}
the condition R1, cas, Ri-1 € VT .

Later, we shall see that R-derivation is suitable to define first-

sets, but we need another kind of derivation to define follow-sets (see

chapter 6).

Definition_(3.3):

Let "-*=>'" be the reflexive transitive closure of "=>". The language
generated by a regular expression in RE is defined by

L: RE => P (V); for R € RE let L(R) = {w € V] such that R -x=> w).
The language described by the whole grammar is L(S).

The following theorem states that the mapping ''generated language' of
this paper just transforms the syntactical operations on regular expres-
sions into the regular operations on languages; therefore it is the same
as the commonly defined one. Besides, we shall see that L(R) for an
expression R not containing non-terminal symbols is just the regular set

denoted by R.

(a) L(E) = {&);

(b) For a € VT: L(a) {al};

(c) For A € VN: LCA) LC p(A));

(d) L((R1 / see / Rn)) = L(R1) U... U L(Rn);
(e) L(R1 evs Rn) = L(R,) * oee ° L(Rn);

() LC (RI*) = LR ™.

1}

1

Now, we could define the first-set of an expression R as F(L(R)), but
we prefer to define the first-sets for the nodes of the grammar graph

introduced in the following chapter.

- 10 -

This chapter associates a graph with each grammar; it 1is the
representation of the grammar in the parser generator, thus first- and
follow-sets will be defined for its nodes (the idea is taken from [51).
At first, the structure of the grammar graph for a given fixed grammar G
will be described informally; then an example will follow. Finally some
notations are introduced concerning subsets of the set of nodes and suc-

cessors of nodes.

Informal description of the grammar graph:

() R=E : ST(R) = (::)
() R=a €V : ST(R) = (::)
() R=AEV, : ST(R) = (::)

() R = (Ry / wuu /R ST(R) = (:kR1 I un t Rn)j>

ST(R1) eese ST(R))
n

(e) R = R1"'Rn’ n>1: ST(R) = m

where all Ri are prime ST(R1) cas ST(Rn)
(f) R = (@)* : ST(R) = <::l>
ST(Q)

Vertices are labeled with regular expressions in cases (d), (e), and
(f) only 1in the presentation of the algorithm. The implementation only

requires labels standing for /', "<", or "*",

If v, = {A

N qe wees Ar}' the graph is created as follows:

1) Build the structure trees ST(p(A,)), ..., ST(p(Ar)).

1

2) For all A € VN: Draw an edge from each node marked by A to the root

- 11 -

of ST(p(A)).

3) Add a special node ko labeled with S and an edge from ko to the root
of ST(p(S)).

Example for a grammar graph:

VN = {S, A}; VT = {b, c};

Productions: S => (A)x b and A= S (c // A).

ko has no predecessor, the roots of the trees ST(p(A)) for A € VN
have as many predecessors as there are occurrences of A in the right
sides of the productions. ALL the other nodes have exactly one predeces-

sor.

Let K denote the set of the vertices in the grammar graph and
M: K = RE the Llabeling function such that M(k) is the regular expres-

sion k is marked by.

The cardinality of K is in the order of the size of the grammar, more
exactly IKI € IGI + 1 holds where |Gl denotes the size of the extended
context-free grammar G defined as the sum of the number of its produc-
tions and the numbers of terminals, non-terminals and metasymbols '(',

')', '/' and 'x' occurring on the right hand sides of its productions.

K can be divided into several classes:
K = {k € K: M(k) = €} "€ - nodes"

eps
Kterm = {k & K: M(k) € VT} = KT terminal nodes
Knont = {k € K: M(k) e VN} non-terminal nodes
Kalt = {k & K: M(k) = (R1/.../Rn)} "alternative nodes'
Kprod = {k € K: M(k) = R1"'Rn’ n>1, all Ri prime} '"product nodes"
KStar = {k € K: M(k) = (R)*) “star nodes'

The successors of a given node k are called su1(k), suz(k), eee from

left to right, and their number is denoted by N(k). If there is only one

- 12 -

successor (that is if k is a non-terminal or star node), the index '1!

can be omitted.

S. The_first-sets

We start with the definition of the first-sets for nodes in the gram-
mar graph. After that, theorem (5.2) gives us the equations to compute
the first-set of a node from the sets of its successors, and theorem
(5.3) tells us that the first-sets are the least solution of the system

of these equations relative to set inclusion.

The first-set of a node in the grammar graph is the set of the begin-
nings of the words in the lLanguage generated from the regular expression

the node is marked by.

Fi: K = P(V?) (powerset of Vg),
let Fi(k) = FLM(k) for all k € K.

M is the marking function (Chapter 4), L the generated language (Def.
3.3), F the first-function on languages (Def. 1.3).
The first-set of a node can be computed from the first-sets of its suc-

cessors:

Theorem_(5.2): (First-equations)

(a) For k € Keps U Kterm: Fitk) = € M(k) }

The first-set of a E-node is {€), and the first-set of a terminal

node marked by 'a' is {al).
(b) For k € K : Filk) = Fi (su(k))
nont
The first-set of a non-terminal node is the same as the first-set
of its successor.

(¢c) For k € KaLt : Fi(k) = Fi (su1(k)) U.oo UFi (suN(k)(k))
The first-set of an alternative node is the union of the sets of
its successors.

(d) For k € Kprod: Fi(k) = Fi (su1(k)) O e.. O Fi (suN(k)(k))
The first-set of a product node is the first—-product (see chapter

1) of the sets of its successors.

- 13 -

(e) For k € K_,_: Fitk) = (Fi (su(k))®
star
The first-set of a star node is the first-closure of the set of

its successor.
The theorem is proved by (3.4) and (1.8).

Systems of set equations like the one of theorem (5.2) 1in general

have more than one solution.

Theorem_(5.3):
The first-sets are the least solution of the system of first-

equations relative to set inclusion.

From (5.3) we see by applying a fixed point theorem that "Fi' can be
computed by iterative applications of the first-equations starting from
the configuration where the empty set is associated with each node. 1In
chapter 10 we shall see that we can compute the first-sets more quickly

without this iteration if the Look-ahead length is 1.

6. The K-derivation

In the previous chapter we saw that the notion of R-derivation from
chapter 3 was adequate to define first-sets. Now we try to define the
follow-sets using R-derivation and show that this definition 1is inade-
quate. In the example showing this, sequences of words not consisting
of symbols, but of nodes of the grammar graph are obtained. These
sequences belonging to R-derivation paths become K-derivation paths by
definition (6.3). In definition (6.4), the languages generated by K-
derivation from words of nodes are defined, and the marking function and

the first-set mapping are extended to words of nodes.
What is the formal definition of the follow-set of a vertex?
A first approach is

Fo(k) = Il FLCQ).
S -x=> R M(k) Q

An example will show the inadequacy of this definition:

- 14 -

VT = {a, b, ¢, d}; p(S) = a (ab / be) d.

Graph: ko(:::>—-«—-———-—-——v—— a (ab/ bec) d k1
(ab / bc)

What is Fo(ks)?

The various derivations from S are S -*=> §, S -*=> a (ab/bc) d,
S-*>aabd, S-*x>abcd. Hence we obtain Fo(ks) = {d, c} by the
definition above, although only the derivation S =-*=> a a b d involves
kS and thus we want to have Fo(ks) = {d}. Additionally, these follow-
sets are hard to compute because the substring 'ab' in the word ‘'abcd'

results from k2 and k9 which are not local to kS'

To make precise the correspondence between a derivation path and the

vertices it involves, consider the following pictures:

S ¢ > ko S & —> ko
T T
a(ab/bC)dekk a(ab/bC)dr\kkk
l 2 k3 K, l 2 k3 K,
aabd ﬁ:::::::: 215 % abcd ﬁi:::::j: 2 ¥ 4

ks ko kg k k2 k9 k10 k4

277 "8 "4

The relation indicated by '€«=>' depicts the fact that the Labels of
the vertices on the right side written down consecutively result in the
expression on the left side. Here, the order of the vertices correspond-
ing to an expression 1is important, thus tuples or words of nodes are

associated with each expression. The set of all such words is K*.

- 15 -

The R-derivation path S => a (ab / bc) d => a a b d corresponds to a
sequence of words of vertices, that is

k k

o’ k

10 Ko kg ko ky kg ko k kg k

2 7 8 "4°
This sequence becomes a derivation path from ko to the terminal word
k, ko, ko k if a suitable derivation on K* is introduced. Due to this

2 7 "8 74
K-derivation we will Later obtain Fo(ks) = {d}.

To make the following definition of K-derivation more transparent, we
shall add to each case of the exact definition a supplement where a node
marked by the regular expression R is denoted by [R]. These additions
cannot replace the exact definition since there are in general many

nodes having the same marking.

pefinition_(6.3): Let ">-=" be a relation on K*, the K-derivation.

Derivations from a single node:

k € Kterm : terminal nodes do not derive anything
k € K : k >-E (€1 >-- ¢
eps
k € Knont : k >=-= su(k) CAJ >-- Cregular expression produced by A]
k € Kprod : k >=- su1(k) P suN(k)(k)
ER1 - Rn] >=- ER1] S ERn]
k € Kalt : k >=-- sui(k) for each i ¢ {1, ..., N(k)}
[(R1 / eoe / R J == ER-]
n i
k € K : k >= € and k >-- su(k) k
star

CCRY¥T >-- € or >-- [R] C(R)™]
Derivations from a word:
u >=-v iff there are t € K;, k € Kand x, w € K* such that

=tkw, v=tx wand k >- x.

Therefore u >-- v is possible only if u does not belong to KT’ at the
transition from u to v, the leftmost non-terminal component of u is

replaced by x.

Definition_(6.4);
Let '">-%-'" be the reflexive transitive closure of '">-=" and
L'() = {t € K; such that u >-*- t)} be the language generated from a

word of nodes u.

- 16 -

Extension of M and Fi to K*:

M: K¥ = RE, Let M be defined by

M(E) : €, M(k% cee kn) = M(k1) ceu M(kn).*
Fi: K = P(VT), Fidu) = FLM(u) for u € K .

Then for all u, v € K¥: L'Cu v) = L'CW) « L'G), M (uv) = MW MW
and Fi (u v) = Fi(u) o Fi(v) hold.

7. Relations_between R-_and_K-derivation

R- and K-derivation are similar but they are defined on different
domains; R-derivation on RE which is a monoid according to (2.1), but
has also a more complex structure, K-derivation on K* which 1is also a
monoid, but not more. The marking function forms a monoid homomorphism

* ., ey
from K into RE and it is a derivation homomorphism, too:

Theorem (7.1):

For all u, v € K¥, u >*= v implies M(u) —*=> M(v).

The theorem states that each K-derivation path can be transformed in
a R-path by means of the marking function M. The inverse does not hold;
take the example of chapter 6. Here M(k8) = b =%x=> M(kg) = b holds, but

k8 >=%= k9 does not.

The following theorem gives a restricted inversion of the claim of

theorem (7.1):

Theorem (7.2):

- — - - v - - - - - -

For all u € K* and R @ RE, M(u) -*=> R implies the existence of a
word v € K* such that M(v) = R and u >=*- v,

It implies that each R-derivation path starting from the marking of a
word of nodes can be simulated by a K-path starting from this word.
Theorem (7.1) and (7.2) are illustrated by diagram (6.2). Note that a

K-derivation path is in general longer than the corresponding R-path.

Languages defined by K-derivation are essentially the same as those
defined by R-derivation:

- 17 -

Theorem (7.3):
For all u € K*, LM(uw) = ML'(u) holds.
(The mapping '"M" on the right hand side of the formula is extended to

*
the powerset of K .)

Due to this theorem, the first-sets are also definable by means of
the K-derivation as Fi(k) = FML'(k).

8. Non-reduced_grammars

Up to this point, the considered grammars did not have to be reduced,
the theorems of the first-sets also hold for non-reduced grammars. But
to compute the follow-sets, the grammar must be reduced (see chapter 9).
Therefore we now treat the transformation of a non-reduced grammar into

an equivalent reduced one with respect to the generated language.

A non-extended grammar is commonly said to be reduced if all non-
terminal symbols are productive (i.e. derive terminal words) and reach-
able (i.e. occur in a sentential form derived from the start symbol).
Here, these terms are defined for nodes in the grammar graph using K-

derivation:

pefinition (8.1):

A vertex k is called wunproductive if L'(k) =0 (or equivalent
LM(k) = 0 or Fi(k) = 0).

It is K-unreachable if there are no words u, v € K* such that

kK >=%=u k v.
o

It is G-unreaghable if there is no path in the grammar graph from k°
to k.

A grammar is reduced if there are no unproductive or K-unreachable

nodes in its graph.

If a node is G-unreachable, then it 1is also K-unreachable. The

inverse does not generally hold:

- 18 -

= A B, p(A) = A, p(B) = b.

______________ -
~— — —
ST(p(S)) ST(p(A)) ST(p(B))

(ko, k1, k3, kS) is a graph path from ko to kS' The derivations of kO
are k0 >-- k1 >-: k2 k3 >== ka k3 >=- k4 k3 >== ..e, thus there are
no words u, v € K such that k° >=%= y k5 Ve

If there are no unproductive vertices 1in the graph, G- and K-
unreachability 1is the same which allows for finding out the unreachable

nodes by graph algorithms.

We now give an algorithm to transform a grammar into an equivalent
reduced one. Starting from the original grammar, compute at first the
predicate "Fi(k) # 0" for all nodes k of the grammar graph by the algo-
rithm given 1in chapter 14. Then delete all subtrees of the structure
trees in the graph which have unproductive roots, and finally eliminate

all structure trees having unreachable roots.

The resulting graph represents a reduced grammar. At its nodes, it

has the same languages and first-sets as the original graph.

In this chapter, the follow-set of a node is defined by means of K-
derivation; theorem (9.2) gives the equations to compute the follow-set
of a vertex from the sets of its predecessors, and theorem (9.3) states

that the follow-sets are the least solution of these equations.

pefinition_€9.1):
Follow-sets Fo: K => P(V?):
For each node k € K Let Fo(k) = { x € V
that ko >-%= u k v and x € Fi(v) %,

or shortly Fo(k) = L Filv).
ko >=%= u k v

(o]

T | there are u, v € K* such

- 19 -

For the follow-rules, we need some further notations:

K
K

root

= set of roots of the structure trees (including ko),

=K -K = set of internal vertices in the trees,

int root
prs(k) for k € Kro

pr (k) for k € K,

ot set of all predecessors of k,

int the unique predecessor of k.

Theorem (9.2): (Follow—-equations)

If the considered grammar is reduced, then
(a) Fo(ko) = {€}.
The follow-set of the start node is {€}.

(b) If k € K. = {k}: Folk) = Il Fo(k').
k' € prs(k)
The follow-set of a root is the union of the sets of its prede-

oot

cessors. These are non-terminal nodes marked by the non-terminal
that produces the regular expression the root belongs to.
(c) If k € Kin and pr(k) € K : Fo(k) = Fo(pr(k)).

t alt °
The follow-set of a successor of an alternative node is the same

as the set of the node itself.

(d) 1f k € Kint and pr(k) € Kstar: Fo(k) = Fi(pr(k)) o Folpr(k)).
The follow-set of the only successor k of a star node is obtained
by the first-product "o" of the first-set and the follow-set of
the star node.

(e) If k € Kint and pr(k) € Kprod and k = sui(pr(k)):
Fo(k) = Fi(su,

1+1(pr(k))) O ees O F1(suN(pr(k))pr(k)) o Fo(pr(k)).

N)
"

Fi (rs(k))
The follow-set of a successor of a product node is the first-
product of the first-set of the right siblings of the node -
"Fi(rs(k))" - and the follow-set of the product node. Fi(rs(k))

is {€)} for the rightmost successor of the product node.

Remark:

The follow-equations do not hold in general if the grammar is not
reduced. Take the example in chapter 8. Here Fo(k3) = {€} holds, but
Fo(ks) = 0 since there are no words u, v € K* such that
ko >=%= y kS v. This is a contradiction to equation (b).

Theorem (9.3):

The follow-sets are the lLeast solution of the system of set-equations

of theorem (9.2) relative to inclusion.

20

Theorem (9.3) implies that the follow-sets can also be computed by
iterative applications of a system of set equations. There is an algo-
rithm explained in chapters 10 through 14 without this iteration if the
length of look-ahead is 1.

10. Simple_algorithms_to_compute_first-_and_follow-sets

From chapter S and chapter 9 we can derive simple algorithms to com-
pute first- and follow-sets. In this chapter we present these algorithms
and give the fundamental idea to improve them if the Look-ahead Length
is 1. In the following four chapters the improved algorithms are

explained.

In the algorithms and the comments belonging to them, we use the
expressions "Fi(k)" and '"Fo(k)" to denote the abstract first- and
fol low-set of the node k, and "FI[Ck]" and "FOCLk]" for the variables con-
taining the current values of first- and follow-sets during the algo-
rithms. If the algorithms are correct, FILk] = Fi(k) and FOCk] = Fo(k)

must hold after their termination.

Now the simple algorithms follow in a notation similar to PASCAL:

var S: set of terminals (including &);
CHANGE: boolean;
begin for all k in K do FICk] := 0; (* initialization *)

repeat CHANGE := false;
for all k in K do begin

case k is in

K : S := {MK));

term

K : S := {€);

eps

Knont: S := FICsu(k)];

Kalt : S := FIEsu1(k)] U.eea U FIEsuN(k)(k)J;
Kprod: S := FI[su1(k)g O eee O FI[suN(k)(k)J;
Kstar: S := FICsu(k)1™;

end; (x case *)
CHANGE := CHANGE or (S # FI(k]);
FICk] :=S

end (x for *)

- 21 -

until not CHANGE

end;

In the algorithm, the first-equations of theorem (5.2) are evaluated
jteratively beginning from empty sets until no further changes occur. In

the following we shall write such algorithms Llike this:

ALGORITHM (10.1): ALGORITHM (10.2):
(First-set computation) (FolLlow-set computation)
for all k in K do FICk] := 0; for all k in K do FOCk] := #;

evaluate the equations evaluate the equations
given in theorem (5.2) given in theorem (9.2)
until no further changes occur until no further changes occur

If the Length of Look-ahead is 1, we may replace the first-closure
"FICsu(k)I°" by "{€) U FICsu(k)]1'" due to theorem (1.7). The time com-
plexity of the set operations "U" and "o" then is O(IVTI) since all sets

occurring here are subsets of V_ U {€}. Thus the complexity of the for-

Loop containing the case-stateme:t is O(IKI-IVTI) and therefore the
whole algorithms need time O(c-lKI'IVTI) where c is the number of execu-
tions of the outmost lLoop. Since there are grammars where the number ¢
is about IVTI or even about IK|, the complexity of the algorithms can be
significantly reduced to O(IKI-IVTl) = O(IGI'IVTI) by removing the out-

most iteration ("fixed point iteration").

This is our goal for the remaining of this chapter and the following
ones. It is reached by eliminating the first-product "o' from the algo-
rithms so that "U'" is the only remaining operation, and traversing the

graph while observing dependencies among the sets to be united.

By Lemma (1.5), we obtain

[} ifM=0
LoM= L _ if M # 06 and € not in L
(L-{XH) UM ifM#0 and € in L

Substitution of "o" in the algorithms by the right hand side of this
law would yield equations only containing '- {€}" and union as opera-
tions, but at each node the choice which operation is to do would depend
on the current values of the operands of the former occurrences of 'o".
But to remove fixed-point iteration we need set equations merely con-

taining union and merely depending on the actual node but not on the

- 22 -

current values of first- or follow-sets. We call such equations invari-

ant (towards fixed-point iteration).

As a first step in this direction we introduce an easier operation "o'":

Definition (10.3):

Let o': P(V?) X P(Vg) -> P(V?) be the operation defined by

L if € not in L
' =
Lo M (L - {€») UM it € in L.

"o'" has the same properties as 'o" (see Prop. 1.4) except of (a).

We can now simplify the algorithms:

Theorem_(10.4):
Let the considered grammar be reduced. If in the algorithms (10.1)

and (10.2) the operation "o" 4is replaced by '"o'", they remain

correct.

Now the problem to obtain invariant follow-equations is solved since
the decision which case of definition (10.3) 1is to be chosen only
depends on the Left operand of "o'", and from the follow-equations we
see that in the follow-set computation these lLeft operands are always
first-sets. If we assume that the first-set computation is finished when
the follow-set computation is begun, we can decide for each node of the
grammar graph before the fixed-point iteration starts which case of
definition (10.3) is valid for this node. The resulting algorithm (12.2)
is given at the beginning of the next but one chapter; it will there be

further improved by eliminating the fixed point-iteration.

But we have not yet invariant first-equations since there are first-
sets being left operands of "o''" (see Alg. 10.1). They become invariant
if we precompute before first-computation starts which first-sets con-
tain € since this is just the information needed in Def. (10.3). This
precomputation is postponed until chapter 14; 1in the next but one
chapter we give the first- and follow-algorithms achieved so far and
improve them further. Chapter 11 gives the general idea of this improve-

ment.

- 23 -

11. Ideas_to_improve_the_algorithms

The previous chapter ended with algorithms to compute first- and
follow-sets using fixed-point iteration of invariant equations. For each
node there is a first- and a follow-equation containing union as the
only operation, and not depending on the current value of the sets dur-
ing the iteration. First- and follow-sets are the Least solutions of
these systems of equations which are listed at the beginning of the fol-

lowing chapter.

In this chapter and in the next two chapters, we explain how to solve
these equations without fixed-point iteration. Remember that the grammar
graph consists of structure trees linked by edges from some Leaves to
roots of trees. Therefore we can reduce the number of equations by com-
bining all equations in a tree to one equation for the root containing

only first—- and follow-sets of other roots on the right hand side.

This is done in the next chapter, and in the following one, we solve
these systems of root equations by a graph algorithm and thus obtain the
first- and follow-sets at the roots of the trees in the grammar graph.
Then it 1is easy to compute the sets at the other nodes. The resulting

algorithm for the first- and follow-set computation will be as follows:

1) Compute which first-sets contain € (chapter 14);

2) Generate the first—-equations for the roots (chapter 12);
Compute the first-sets at the roots (chapter 13);
Compute the other first-sets (chapter 13);

3) Generate the follow-equations for the roots (chapter 12);
Compute the follow-sets at the roots (chapter 13);
Compute the other follow-sets (chapter 13);

The complexity of part (1) is 0(CIKI), all the other computation steps
need time O(IVTI'IKI) = O(IVTI'IGI).

It would also be possible to apply the graph algorithm of chapter 13
used to compute the sets at the roots, directly to all equations without
having reduced their number. But this would be less efficient than the

method proposed here since the graph algorithm is rather complex.

_24—

12. Reducing_the_number_of_eguations

In this chapter we start with first- and follow-algorithms wusing
fixed-point iteration of invariant equations which were found in chapter
10. Then a common form for all equations is obtained, and the equations

in the structure trees are combined to one equation for the root.

Let Ep(k) = (B in Fi(k)) be the precomputed predicate (see chapter
14) and EPCk] the corresponding program variable. Knowing Ep(k), the
sets Fi'(k) = Fi(k) - {€) are still to compute.

(first-computation using fixed-point iteration of invariant equations;
compare with algorithm (10.1))
for all k in K do FI'Ck] := 0;

evaluate the following equations

0 if k € K
eps
FI'Ck] = Mk} if k € Kterm
FI'Csu(k)] if k € K UK
nont star

FI'Csu1(k)J U...U FI'[sun (k)] if k € K

(k) prod H Kal.t

until no further changes occur.

For alternative nodes, the number n(k) is the number of all succes-
sors of k, and for product nodes k, n(k) is a number between 1 and the
number of all successors depending on the Ep-values of the successors of

k according to the definition of "o'".

(fol low-computation using fixed-point iteration of invariant equations;
compare with theorem (9.2))

For all k in K do FOCk] := 0;

for each successor k of a product node compute the first-set of its
FiCrs(k)) - {€)} from

"

right siblings Fi(rs(k)) and derive Fi'(rs(k))
it;
evaluate the following equations

(a) FOEKOJ = {€},

(b) If k is root of a structure tree: FOLk]

N Folk'1l,
k' € prs(k)
(c) If k is successor of an alternative node k':

FOCk] = FoCk'3],

ZS

(d) If k is successor of a star node k':

FOCk] = FI'Ck'] v FOLk'],
(e) If k is successor of a product node k':
(e1) if € in Fi(rs(k)): FOCk] = Fi'(rs(k)) U FOCk'],
(e2) if E not in Fi(rs(k)): FOCk] = Fi'(rs(k))

until no further changes occur.

Now we Llook for a common form of first- and follow-equations. In all
equations, the set of a node results from some constant sets - e.g.
MY in the first-equations or the first-sets in the follow—-equations
- and the sets of some successors or predecessors of the node. If we
write "f" for "Fi'" resp. "Fo'', we obtain as common form for all equa-

tions

f(k) = g(k) U L f&k"
k' € h(k)

where g(k) denotes the constant set and h(k) is the set of those
successors/predecessors of k whose Fi'/follow-sets are united
together with the constant set to build the Fi'/follow-set of k. From
the invariant equations of algorithm (12.1) and (12.2), we obtain the
sets g(k) and h(k):

(a) From the Fi'~-equations:

gtk) = {{M(k)} if k is terminal node
0 otherwise
and
0 if k is terminal or E-node
h(k) = ¢ {su(k)} if k is non-terminal or star node

{su1(k), cve, sun(k)(k)} if k is alternative or product node

(b) From the follow-equations:

{€x in case (a)

gtk) = 0 in case (b) and (c¢)
Fi'(pr(k)) in case (d)
Fi'(rs(k)) in case (e)

and

- 26 -

0 in case (a)

h(k) = prs(k) in case (b)
{pr(k)} in case (¢), (d) and (e1)
0 in case (e2)

Now the equations for the individual nodes in the trees are combined
to one equation for the root of the tree. Thus we shall reduce the

]] + 1.
number of set equations from IK| to IKroot' IVNI 1

In the following, let T(r) be the tree associated with the root r,
that 1is the structure tree of the regular expression on the right hand

side of the production beLongjng to r.

Reducing_the_number_of_Fi'-equations:

To combine the first-equations of T(r), take equation (12.3) for the
root r and substitute f(k') in it by the right hand side of the equation
for k' if k' is not a non-terminal node. Repeat that until an equation
is obtained having only first-sets of non-terminal nodes which are
leaves of T = T(r) on the right side. Formally let T' be the subtree of
T which contains all those nodes that influence the first-set of the
root; those are the nodes k € T that are reachable from r by a path
(r = k1, k2""’ kl = k) where ki+1 € h(ki) for all 1 € i < L. Then we

obtain the equation

FitCr) = Il gk U LI Fi'(k")
1]

] L]
k €T k' € Knont and lLeaf of T

by the described combination process.

Since Fi'(k) = Fi'(su(k)) holds for non-terminal nodes k, we can sub-
stitute Fi'(k') where k' is a non-terminal leaf of T' by Fi'(r') where

r' = su(k') is a root of another structure tree. Then we obtain

Fi'(r) = G(r) U Il Fi'(r")
r' € H(r)
where G(r) = || g(k) = { Mk) | k is terminal node in T' } and
k ¢ T
H(r) = { r' €K | a predecessor of r' is leaf of T').

root

- 27 -

Equation (12.4) claims how the first-set of a root depends on the
first-sets of the other roots. Since we want to solve the resulting sys-
tem of root equations by a graph algorithm in the next chapter, we
represent it as a digraph called Fi'-graph whose vertices are the ele-

ments of Kro and which contains an edge (r, r') iff r' 1is in H(r).

ot
Each vertex r of the graph is marked by the set G(r).

The Fi'-graph can be constructed by going through T'(r) for each root

r€Koot?
the actual node belong to T'. The algorithm reaches each node at most

by Looking at the EP values we can decide which successors of

once; the union in it (to compute G(r)) has complexity O(IVTI) since

G(r) € V$ = {€Y U VT holds. Therefore the total complexity is

0(|K|+|KTI'IVTI) = O(IVTI'IKI).

The follow-equations for roots r € Kro - {ko} Look Like

ot

Fo(r) = Il Fo(k"') D)
k' € prs(r)

where the nodes k' are non-terminal nodes and lLeaves of some trees. For

all nodes except the roots, the follow—equations Look Llike

Fo(k) = g(k) (2) or Fo(k) = g(k) U Fo(pr(k)) 3).

If we substitute Fo(k') in (1) by the right hand side of the equation
for Fo(k'), we can do so until we reach an Fo(k) where k is a node whose

equation Looks Llike (2) or k is the root of the tree. Thus we obtain

Fo(r) = G(r) U Il Fo(r*)
r' € H(r)

where G(r) C V?

tions and H(r) C K ot is the set of all roots we reach. The resulting

system of equations is represented as a digraph called Fo-graph; it is

is the union of all sets g(k) obtained by the substitu-

defined Llike the Fi'-graph and can be computed by an algorithm given in

(2] whose complexity is O(IVTI'IKI).

- 28 -

13. Solving_the_root_eguations

In the previous chapter we obtained the systems of set equations
(12.4) and (12.5) implying that the first- resp. follow-set of a root r
of a structure tree in the grammar graph can be computed from the wunion
of a constant set G(r) associated with the root and the first- resp.
follow-sets of some other roots building the set H(r). If we write '"f"

for "Fi'" and '"Fo", these systems Look Llike

(13.1) f(r) = G6(r) U I f(r') for all roots r € K

r' € H(r) roet
where G(r) C V? = {€X U VT is a set of terminal symbols and
H(r) C K is a set of roots.

< root

Since there is no other difference between the first-system and the
follow-system except 1in the sets G(r) and H(r), the same algorithm can
be used to solve both systems. Thus we refer in the following to one

system of set equations (13.1).

It is represented as a labeled digraph D = (V, E, G). Its vertex set

V is the set Kroot of roots of the structure trees in the grammar graph,

its edge set is E = {(r, r') | r' € H(rX C V2, and the vertices r €V

are labeled with the sets G(r).
The equations of system (13.1)

f(r) = G(r) U Il f(r")
(r, r') € E

are in general mutually recursive, thus they cannot be solved by a sin-
gle pass through V. By partitioning the digraph D into strongly con-
nected components we can find an algorithm to solve system (13.1) effi-

ciently.

Two vertices Fyr o € V are called strongly connected iff there are
paths 1in D from s to ry and from ry to rye It is easy to prove that
this is an equivalence relation. Its classes are called strongly con-

nected components of the graph D.

By compressing the components in one vertex, we obtain the digraph
D' = (V', E', G') where
V' is the set of strongly connected components of D,
E' = {(c, C") € V'2 | C#C'" and there are r € C, r' € C' such that

- 29 =

(r, r') € E} is the set of all edges between different components
and the Llabel of a component is the union of the labels of all vertices
in it: G'(C) = I G(r).
reéec
From system (13.1) we can infer that strongly connected nodes have
the same f-set. If we write f(C) for the common f-set of the nodes in

the component C, we obtain as set equations

(13.2) f() =G6'(C) U Il f(c")
(c, c') € E'

Although system (13.2) Looks Llike (13.1), there 1is an important
difference: digraph D' contains no cycles! Therefore we can solve system
(13.2) directly without fixed-point iteration if the components are con-
sidered in a suitable sequence. There is an algorithm to compute the
strongly connected components of any digraph (V, E) in time OCIVI+IED)
(see [71). 1In addition, the algorithm produces them suitably, since it
does not output a component C before all end vertices of edges beginning
in C were output in other components. The resulting algorithm is as fol-

lows:

Algorithm_(13.3):

Repeat

(a) call the graph algorithm to compute the next strongly con-

nected component C;
(b) compute G'(C) by uniting all sets G(r) of vertices r in C;

(c) compute f(C) by equation (13.2) (the sets f(C') are already

known);

(d) let f(r) = f(C) for all vertices r in C

until all components are found.

The complexity of the graph algorithm is OCIVI+|El) = °(|Kroot'+|E')’

the total number of unions in (b) is at most IVI| = 'Kr tI and in (c¢) at

00
most |E'l < |El; step (d) can be omitted if pointers are used. To each
edge (r, r') in E, there is a path in the grammar graph from the root r
to the root r'. This path must involve a non-terminal Lleaf, therefore

lEl £ IK ont! holds and IKrootl+lE| < 'Kroot|+lKnont| < 2IKl. Each

union takes time O(IVTI), thus the whole algorithm has complexity
O(IVTI~IKI).

- 30 -

When the first- resp. follow-sets at the roots are known, they are
still to be computed for the other nodes in the grammar graph. The
first-sets can be obtained by going bottom-up through each structure
tree and the follow-sets by going top-down. Both computations need time
0<IVTI-IKI), too.

14. The_computation_of_"Ep'

In this chapter, an algorithm will be given to compute which first-
sets contain the empty word €, at first informally, later formally.
This information i1s needed for the efficient computation of first-sets
given 1in the previous chapters. By a slight extension of the algorithm,
we can also compute which nodes are unproductive, that is a part of the

test whether the grammar is reduced.

The basis of the algorithm is the evaluation of the Ep-equations
given below by fixed-point iteration. If the nodes are considered in a
suitable sequence, only one iteration step is needed to obtain '"Ep'".

Therefore the complexity of the algorithm will be O0CIKI).

For the description of the algorithm Let Ep(k) = (E in Fi(k)) be the
value it must compute, and EPLk] be the actual value of a boolean vari-
able associated with k. At the beginning, let EPLk] = 'false' for all
k € K, and at the end, EP = Ep must hold if the algorithm is correct.

The algorithm we start from is as follows:

For all k in K do EP[k] := false;

evaluate the following equations

(true if k € K U K
star eps
false if k € K
term
EPLk] = ¢ EPCsu(k)] if k € Knont
EPEsu1(k))J or ... O°F EP[suN(k)(k)J if k € Kalt
LEPCsu1(k))] and ... and EPCsuN(k)(k)J if k € Kprod

until no further changes occur.

Fixed-point theory implies that the EP value of a vertex can only
change from 'false' to 'true'; if it is ever 'true' for a vertex it will

never change lLater on. In addition, the value of a node can only change

- 31 -

if the value of one of its successors has changed. Inversely, if the
value of a node has changed we must test whether the values of its
predecessors must be changed. Internal nodes have exactly one predeces-
sor, therefore the test can immediately be executed. At roots, we must
enter the predecessors in a worklist to test them one by one. This work-
list is initialized with all nodes whose first-sets are known to contain

€, namely the € and the star nodes.

In a main Loop a node is taken from the worklist as actual node. Then
an inner Loop is entered, and the EP value of the actual node is changed
to 'true'. If it is a root, its predecessors are entered into the work-
list and the inner Loop is terminated. Otherwise, we must test whether
the EP value of the only predecessor remains 'false' or has already been
'true' (then the inner Loop will be terminated) or is to be changed from
‘false' to 'true' (then the predecessor becomes the actual node and the
inner Loop will be repeated). If the inner Loop terminates, the main
loop is repeated and a new vertex is taken from the worklist. The main
loop and also the whole algorithm are terminated if the worklist is

empty.
To prove the algorithm correct and calculate its complexity, note that

1) if a node is ever taken from the worklist, it will never again be

added to it,

2) if a vertex k becomes actual node, Ep(k) is 'true', but EPCk] has

still been 'false' and is changed to 'true',

3) each node having 'true' as Ep value will become actual node at some

time.

Now we consider the decision in the inner Loop more precisely. Let k
be the actual node which is an internal node in a tree, and let k' be
its predecessor. Then k' is either an alternative or a star or a product

node. EPCk] has just changed to 'true'.

Case k' is alternative node:
Then Ep(k') = 'true' holds. If EPLk'] is already 'true', the inner
loop is terminated; if EPCk'] is still 'false', k' becomes actual

- 32 -

node and the inner Loop is repeated.

Case k' is star node:
Then k' either is still in the worklist, then EPLk'] is 'false', or
it is already taken from it, EPCk'] is 'true' and the inner Loop is
to be terminated. If EPCk'] is still 'false', we terminate it, too,

because k' is then still in the worklist.

Case k' is product node:
Since EP[k] was 'false' till now, EPLk'] is always 'false' in this
case. It has to be changed to 'true' iff the EP values of all suc-
cessors of k' are 'true'. To avoid the large-scale investigation of
the successors of k', we associate a number NFCk'] denoting the
quantity of successors having 'false' as EP value with each product
node k'. At the beginning, all EP values are 'false', therefore
NFCk'] must equal the number of all successors N[k'l. When a product
successor k is actual node, the number NFCk'] is decremented by one;
if it is still greater than 0, the inner loop is terminated, other-

wise k' becomes actual node and the inner Loop is repeated.

Now the final algorithm follows in a notation similar to PASCAL:

begin

for all k in K do begin (x This part can already be done *)
EPCk] := false; (x during the construction of the *)
if k is product node (x graph in the machine. *)
then NFCk] := N(k) (* *)
end; (x for %) (* T denotes the worklist. It is *)
T := Keps U Kstar; (* filled with € and star nodes. *)
while T # 0 do begin (* Beginning of the main loop. *)

k := arbitrary element of T; T := T - {k);
repeat EPLk] := true; (* Beginning of the inner loop. *)
if k in Kroot then begin (* 'stop' indicates whether the %)
stop := true; (* inner Loop is to be terminated.*)
T :=TUprsCk) () (x The predecessors of the root k *)

end (x are added to the worklist. *)

- 33 -

else begin k' := pr(k); (* k is internal node, *)
case k' is in (* k' its predecessor, *)
KaLt : stop := EPCk'];
Kstar: stop := true;
Kprod: begin NFCk'] := NFCk'] - 1; stop := NFCk'] > 0 end
end; (x case *)
if not stop then k := k' (* k' becomes actual node. *)
end (*x else *) (* *)
until stop (x End of the inner loop. *)
end (x while *) (x End of the main Lloop. *)

end;

Since each node becomes actual node at most once, the inner Lloop is
repeated at most IK| times. ALL operations in it are of complexity 0(1)
except the assignment (*). But each node is also added to T at most
once, therefore the total complexity of all executions of (%) is 0CIKI),

too.

By a slight extension of the algorithm we can also compute the 'non-
empty' predicate Ne(k) = (Fi(k) # 8) needed for the test whether the
grammar is reduced. "Ne" is the least fixed point of some Ne-equations
equal to the Ep-equations except Ne(k) = ‘true' for terminal nodes. In
addition, Ep < Ne holds since &€ € Fi(k) implies Fi(k) # 0. Therefore we
can compute "Ep' together with a part of "Ne". If the worklist is empty,
it is refilled by the set of terminal nodes and the algorithm is started

again to compute the remainder of 'Ne'.

15. The_ELL(s) conditions

After having discussed in the previous chapters how the first- and
follow-sets can be efficiently computed if the lLength of look-ahead is
1, we now consider the ELL(s) conditions for general lLook-ahead length s

before introducing a predictive ELL(1) parser in the next chapter.

As in conventional grammars, we must distinguish between weak and
strong ELL(s) conditions. In addition, we can define ELL(s) either by R-

or by K-derivation. Hence, many different ELL(s) classes result.

In this thesis, we restrict ourselves to the KELL(s) and the strong
KELL(s) property; for "very strong' KELL(s) conditions and RELL(s) and

- 34 -

strong RELL(s) properties and the relations between them, we refer to
£21.

pefinition (15.1): (KELL(s) and SKELL(s))

>==u v1 W

ko >=%x= u k w and Vq £ vy implies
>==u v2 w

F'i(v1 W) and F1'(v2 w) are disjoint.

. *
if for all Ugsr Uss Vqs Vop We, W, e K and k € K
>=k= uy k Wy >== Uy Vq Wy
k0 et K e e e e and Vq $ Vo implies
2 2 2 2 "2

F'i(v1 w1) and Fi(v2 ”2) are disjoint.

Theorem_€15.2):

Each SKELL(s) grammar is KELL(s). The inverse implication is not gen-
erally true if s > 1, but KELL(1) and SKELL(1) are equivalent.

The example showing the inverse is not true for s = 2 is essentially the

same as the one showing LL(2) # SLL(2) for conventional grammars.

There is a local criterion for SKELL(s) using first- and follow-sets:

Theorem (15.3): A reduced grammar has the SKELL(s) property iff

(a) for all k € Kalt’ i, 5 €{1, ..., Nk} where i#j,
Fi(sui(k)) o Fo(k) and Fi(suj(k)) o Fo(k) are disjoint and

(b) for all k € Kstar’ Fi(sulk) k) o Fo(k) and Fo(k) are disjoint.
If s =1, (b) can be replaced by:

(b') For all k € Kstar’ Fi(su(k)) and Fo(k) are disjoint and Fi(su(k))

does not contain E.

Alternative and star nodes are the only nodes that are able to derive
more than one word of nodes (see definition 6.3). An alternative node k

may derive each of its successors su1(k), suz(k),... and the successor

- 35 -

sui(k) is to be chosen if the Llook-ahead is in the set
Fi(sui(k)) o Fo(k). A star node k may either derive € or su(k) k. The
derivation to € is to be selected if the Look-ahead is in the follow-set
of k, and the other if it is in the first-set Fi(su(k)) of the successor
of k.

Finally we introduce some kind of unambiguity. Other kinds can be
found in [2].

Definition (15.4):

A grammar is called "strongly K-unambiguous' or SKUA iff

*
>== uy >=k— t1 € KT

kO >=%=- U . where uy t u, implies M(t1) £ M(tz).
>== u2 >=k= t2 (S KT

KELL(s) implies SKUA, and this unambiguity implies that there is
exactly one K-derivation path from ko to a terminal word of nodes marked
by a given word in the language of the grammar. This path is the one

found by the ELL(1)-parser of the following chapter.

Summary of chapter 15: (for reduced grammars)

criterion (15.3 a and b) ==> SKELL(s) ==> KELL(s)
==> SKUA
criterion (15.3 a and b') <==> SKELL(1) <==> KELL(1)

16. The_ ELL(1) -_parser

In this chapter, we first describe by means of an example how the
ELL(1) parser works, then list its possible actions. It follows an algo-
rithm to generate the parser. Then we give an example for a parser table
and finally compare our parser with the predictive LL-parser in [1]. 1In
chapter 17, the generated parser is proved correct and its time and

space complexity is considered.

The parser finds a K-derivation path from ko to a terminal word of
nodes whose marking is the word to be analyzed by the parser (if such a

path exists).

- 35 -

Let w be this word. We shall write u.v# to denote the parsing situa-
tion where w = u v, u is already consumed by the parser and the first
symbol of v# is the look-ahead symbol; # is a pseudo terminal symbol

indicating the end of the input.

This situation can be represented by an item t.xk# where t is a ter-
minal word of nodes in K; and x is a word in K* such that M(t) = u and
ko >-%- t x. k# is a pseudo node not belonging to K considered as ter-
minal node marked by #, thus its first-set is {#}. The parser does not
contain the word t, but it has stored the word xk# in its stack. A simi-
lar parser for conventional grammars 1is the predictive LL(1)-parser

given in [1].

Since we introduced # and k#, we must replace € in the follow-sets by

#. In the first-sets, € remains E.

An example will show the working of the parser:

Example_(16.1): Let Vy = {suml}, Vi = {smd, +, =} ("smd" = "summand") and
p(sum) = smd ((+/-) smd)=*. The parser shall analyze the input
string 'smd + smd'.

Grammar graph: _ —-“Asmd (¢ (+/-) smd)E) k1

_ _
@ko Ky @ Q (+/-) smdQ kg
(+/-) smd kA

In the example, we shall write a node marked by R as [R] (but note

that there are two different nodes [smd] in our example!).

-37 -

input stack executed action
top = actual node tail
ST CTOP] ceu STC1] sTvCod
.smd + smd # Csum] C[#] expansion
.smd + smd # Csmd ¢ (+/-) smd)*] [#] product expans.
.smd + smd # Csmdl CC (+#/-) smd)*] [#] shift
smd.+ smd # CC (+/-) smd)*] ([#] star expansion
smd.+ smd # C(+/=) smd]l CC (+/-) smd)*] (#]) product expans.
smd.+ smd # ([(+/-)]1 C[smdl C[(C (+/-) smd)*] ([#] select
smd.+ smd # £+ COsmdl C[C (+#/-) smd)*1 ([#1 shift
smd +.smd # Csmdl CC (+#/-) smd)*]1 ([#] shift
smd + smd.# CC (+#/-) smd)*] [#] E-shift
smd + smd.# [#1 accept

smd + smd #.

The nodes stored in the stack will be represented by integers; thus
the stack ST is an array of integers. Let TOP be the index of the top of

stack.

The parser action table associates an action code and at most one
integer parameter with each pair of node number and Look-ahead symbol.
We now enumerate the possible parser actions and describe how the parser

executes them.

Expansion and select both with parameter J:

The actual node is changed to J.

begin ST [TOP] := J end;

The scanner reads a new look-ahead symbol and the actual node is
popped from the stack.

begin SCAN; TOP := TOP - 1 end;

No symbol is read and the actual node is popped.

begin TOP := TOP - 1 end;

The node J is pushed onto the stack.

begin TOP := TOP + 1; ST [(TOP] := J end;

- 38 -

Product_expansion with parameter N:

The actual node is a product node which shall be replaced by the List
of its successors. To avoid the necessity of more than one parameter,
the numbers are given to the nodes in such a manner that if a product
node k has number j, its successors have the following numbers
j +1, eee, § + N(k). This is possible since all successors of pro-
duct nodes have prime markings and thus are never again product
nodes. The number of successors N(k) then is the parameter of product
expansion.
var I, J: integer;
begin J := ST [TOP];

for I :=0 to N-1do ST LTOP + I] :=J + N - I;

TOP := TOP + N - 1

end;

There still are two further actions, namely '"accept" and ‘"error",
both without parameters. The action "accept'" can be considered as a spe-
cial kind of "shift" involving # and k#.

Now an algorithm follows to generate the parser action table from the
grammar graph and the first- and follow-sets. The table 1is here
represented by a two-dimensional array

T: array [0 .. IKI, {#3 U VT] of (action, parameter).

Naturally, it is also possible to implement the table by nested case-

statements and the action codes by procedure calls.

Initialize the table by 'error' at each place.

Let at first TCIKI|, #) = (accept). (Let |IK| be the number of k#.)
Then pass through the grammar graph. Let k be the actual node and i
its number; in addition, Llet j be the number of su(k) for non-
terminal and star nodes, and jr the number of sur(k) for alternative
nodes.

T(i, ch) = (expansion, j) for all ch € Fi(k) o Fo(k).
Case_k_is_terminal_node; T(i, M(k)) = (shift).

T(i, ch) = (E-shift) for all ch € Fi(k) o Fo(k) = Fo(k).

T(i, ch) = (product expansion, N(k)) for all ch € Fi(k) o Fo(k).

The
STC
TOP
rep

unt

As

exa

-39 -

For r :=1 to N(k) do T(i, ch) = (select, jr) for all

ch € Fi(sur(k)) o Fo(k). If a conflict arises at this, the grammar
is not ELL(1).

Case_k_is_star_node:
Let T(i, ch) = (star expansion, j) for all ch € Fi(su(k)) and
T(i, ch) = (B-shift) for all ch € Fo(k). If a conflict arises at
this or if € is in Fi(su(k)), the grammar is not ELL(1).

parser driver works as follows:
0] := IKI; (x The stack is initialized by k° k#;
:=1; STC1] :=0; (x K| is the number of k#, 0 the number of ko *)
eat execute the action of T (ST [TOP], Look-ahead symbol)

*)

il 'accept' or 'error' are called.

an example we give now the parser table belonging to the grammar of
mple (16.1).

At first some information about the nodes in the grammar graph:

number | marking I class | first-set | follow-set |
-------- ot R B s
0 | sum | non-terminal | {smd} I {#} l
1 | smd ((+/-) smd)* | product | {smd} I {#) |
2 | smd | terminal | {smd} | {+, -, #Y |
3 I ((+/=) smd)* | star I {+, -, €Y | {#) |
4 | (+/-) smd | product I {+, -} I {+, -, # |
5 I (+/=) | alternative | {+, =) | {smd} |
6 | smd | terminal | {smd} | {+, -, #) |
7 |+ | terminal | {+) | {smd} |
8 | - | terminal I {3 | {smd} |
9 | # | pseudo I {#) | |

- 40 -

Parser table:

| smd | + | - | # |
B Dttt R e L LT e B ittt S +
0 | Expansion 11 Error | Error | Error |
1 | Product exp. 2 | Error | Error | Error |
2 | shift | Error | Error | Error |
3 | Error | Star exp. 4 | Star exp. 4 | E-shift |
4 | Error | Product exp. 2 | Product exp. 2 | Error |
S | Error | Select 7 | Select 8 | Error |
6 | Shift | Error | Error | Error |
7 | Error | sShift | Error | Error |
8 | Error | Error | Shift | Error |
9 | Error | Error | Error | Accept |

If a conventional grammar were directly written as extended grammar,
all productions from a non-terminal would be combined into one whose

structure tree would generally Look as follows:

alternative node

product node o o o product node

terminal or non-terminal nodes

The parser of Aho and Ullman in [1] has only two actions: 'shift' and
‘expand'. While their action 'shift' is Llike ours, their action
'expand' starts from a non-terminal, pops it from the stack, selects the
correct production by Llook-ahead and then pushes the produced string
onto the stack. This would be done by our parser in three actions:
'expansion', 'select' and 'product expansion'. This splitting is inevit-
able because alternative expressions may be involved in other alterna-

tives.

Since only strings of terminals and non-terminals are pushed on the
stack of Aho and Ullman, their parser table entries need only be simple
symbols while our entries are numbers denoting nodes standing for regu-
lar expressions. Thus our table directly produced from an extended
grammar, is greater than the table of Aho and UlLlman. On the other hand

extended grammars are usually easier to construct and comprehend.

- 41 -

17. The_correctness_and_complexity_of the ELL(1) parser

At first, we prove that the generated ELL(1)-parser works correct,
and then we consider the time and space complexity of this parser.

Theorem_(17.1):
Let G be a reduced KELL(1) grammar. Then the parser generated from G
is correct, i.e. it always terminates and accepts a word if and only

if it is in L(G).

Proof: If an input word w belongs to L(G), there 1is a unique K-
derivation path from k° to a word of nodes u such that M(u) = w
since w € L(G) = L(S) = LM(ko) = ML'(ko) (see chapter 7). The
parser then executes as many actions as the length of this

derivation path and accepts w at the end.

If w is not in L(G), it can be written as w# W, t W where W
is a prefix of a word in L(G) and t is a terminal (or #) such
that Wy t is not a valid prefix. The parser reads Wy and then
has a node k on the top of its stack whose lLook-ahead set
Fi(k) o Fo(k) does not contain the next input symbol t. The

analysis terminates since 'error' is called in this situation.

Now we shall see that the time and the space the parser needs to
analyze an input 1is linear in the Length of this input. At first, we

define these terms exactly:

Definition €17.2):
(a) Let the time for the product expansion of a node k be N(k) and
the time for any other action be 1. The time the parser needs to
analyze an input is the sum of the times of the actions it must exe-
cute until ‘'accept' or 'error' are called.

(b) The space it needs is the maximal number of stack components

occupied during the parsing.

Theorem_(17.3):
The parser generated for the grammar G needs time O(c+n) and space
0(IGl*n) to analyze an input word of n symbols where ¢ depends only

on G but is not in any polynomial relation to |Gl.

- 42 -

Acknowledgements:

I would like to thank Reinhard Wilhelm who made the proposal to
investigate the LL-parsing of extended grammars; I also wish to thank
Dieter Maurer for many valuable discussions; in particular, he stimu-
Lated me to remove the fixed-point iteration from the computation of
first- and follow-sets. Franz Geiselbrechtinger then read a prelim-
inary version of this text, corrected it and told me how to make it

clearer and more understandable.

References:

Aho, A., Ullman, J.: Principles of Compiler Design, Addison-
Wesley, (1979), Chapter S.5

Heckmann, R.: ELL(k) - Parsing and Efficient ELL(1) - Parser Gen-
eration, Diplomarbeit, Universitat Saarbricken (1984).

Heilbrunner, S.: On the definition of ELR(k) and ELL(k) grammars,
Acta Informatica 11, 169 - 176 (1979).

Lewi, J., de Vlaminck, K., Huens, J., Steegmans, E.: A program-

ming methodology in compiler construction, North-Holland (1982).

Moncke, U., Wilhelm, R.: Iterative algorithms on grammar graphs,
Proceedings of the 8th conference on graphtheoretic concepts in
computer science, 177 - 194, Hanser (1982).

Purdom, P. W., Brown, C. A.: Parsing extended LR(k) grammars,
Acta Informatica 15, 115 - 127 (1981).

Tarjan, R.: Depth-first search and linear graph algorithms, SIAM
J. Comput., Vol. 1, 146 - 160 (1972).

	fb1985-04_0001
	fb1985-04_0002
	fb1985-04_0003
	fb1985-04_0004
	fb1985-04_0005
	fb1985-04_0006
	fb1985-04_0007
	fb1985-04_0008
	fb1985-04_0009
	fb1985-04_0010
	fb1985-04_0011
	fb1985-04_0012
	fb1985-04_0013
	fb1985-04_0014
	fb1985-04_0015
	fb1985-04_0016
	fb1985-04_0017
	fb1985-04_0018
	fb1985-04_0019
	fb1985-04_0020
	fb1985-04_0021
	fb1985-04_0022
	fb1985-04_0023
	fb1985-04_0024
	fb1985-04_0025
	fb1985-04_0026
	fb1985-04_0027
	fb1985-04_0028
	fb1985-04_0029
	fb1985-04_0030
	fb1985-04_0031
	fb1985-04_0032
	fb1985-04_0033
	fb1985-04_0034
	fb1985-04_0035
	fb1985-04_0036
	fb1985-04_0037
	fb1985-04_0038
	fb1985-04_0039
	fb1985-04_0040
	fb1985-04_0041
	fb1985-04_0042
	fb1985-04_0043

