The Specification Language
of OBSCURE
A 87/07
Thomas Lehmann and
Jacques Loeckx

Fachbereich 10 — Informatik
Universitat des Saarlandes
D — 6600 Saarbriicken

to appear

1 Introduction

The idea that abstract types may support the development of correct pro-
grams is now well-accepted. Meanwhile several methods have been proposed
for the specification of abstract types: operational specifications ([Ho 72], [Sh
81), [Li 81], [NY 83], [LG 88]), algebraic specificatons ([GTW 78], [GHM 78].
[TWW 82], [BW 82], [Eh 82], [EM 85]) and constructive specifications ([Ca
80], [KI 84], [Lo 87], [Bu 87]). While operational specifications are embed-
ded in an imperative language, algebraic specifications are more abstract in
that they make use of first-order formulas, usually equalities or Horn-clauses.
Constructive specifications offer a similar degree of abstraction but differ by
their algorithmic nature.

The design of non-trivial specifications is practicable only if it is performed
modularly. To this end specifications are embedded in a specification lan-
guage. Essentially, such a language allows the construction of specifications
out of more elementary ones. In the case of operational specifications the spec-
ification language is foreordained to be the embedding imperative language.
For algebraic specifications several specification languages have recently been
proposed: CLEAR ([Sa 84], [BG 80]), ACT-ONE and ACT-TWO ([EM 85].
[Fe 87]), OBJ2 ([FGJM 85]), PLUSS ([Gd 84], [BGM 87]), ASL ([Wi 86]).
ASF ([BHK 87]).

Even with the use of a specification language the design of non-trivial
specifications with pencil and paper is tedious and error-prone. As a solution
the specification language is embedded into an adequate environment. Such
an environment supports the interactive design of specifications as well as the
(interactive or automatic) verification of their properties. Some more or less
elaborate environments have been described or announced in the literature:
OBJ2 ([FGJM 85]), an environment for a subset of the specification language
PLUSS called ASSPEGIQUE ([BCV 85]), the environment RAP ([Hu 87]), an
environment for the specification language ACT-ONE called the ACT-System.

The specification tool discussed in this paper is called OBSCURE. It con-
sists of a specification language together with an environment for it. The
specification language is a simple language similar to Bergstra's term lan-
guage ([BHK 86]). The environment is a program consisting of a design unit
and a verification unit. The design unit allows the interactive design of spec-
ifications. More precisely, with the help of a command language the user
induces the design unit to stepwise generate syntactically correct specifica-
tions. The verification unit allows to prove properties of these specifications
and, in particular, to prove their semantical correctness. The main features by
which OBSCURE differs from the specification languages and environments
described in the literature are now briefly discussed.

First, the specification language of OBSCURE has been designed as a lan-
guage to be used in an environment, not as a language to be used with pencil

and paper. As a result the specification language has a very simple syntax and
semantics at the expense of more elaborate context conditions. These context
conditions put no burden on the user as they are checked automatically and
on-line (i.e. at each command) by the design unit. Second, the specification
language is independent from the specification method used. It even allows the
use of different (algebraic and/or constructive) specification methods within
the same specification. This is possible because OBSCURE distinguishes be-
tween the constructs inherent to the specification method — such as “data
constraints” in CLEAR — and those inherent to putting specifications to-
gether. Third, OBSCURE explicitly distinguishes between the specification
language and the command language of the design unit. This is reflected
by the fact that procedures (i.e. “parameterized specifications”) and user-
friendly macros are part of the command language, not of the specification
language. According to this philosophy parameterized specifications are no!
specifications but rather constitute a tool to construct specifications. Next.
apart from the classical operations OBSCURE provides means to explicitly
construct subalgebras and quotient algebras. Finally, OBSCURE directly ties
the design of a specification to its verification. In particular, the design unit
automatically generates formulas expressing, for instance, certain closure and
congruence conditions and transmits them for verification to the verification
unit.

The goal of the present paper is to give a formal definition of the spec-
ification language of OBSCURE . A description of the design unit and its
command language may be found in [LL 87b]. An informal introduction to
OBSCURE and an illustration of its use may be found in [LL 87a).

Section 2 briefly recalls some basic notions. Section 3 contains a descrip-
tion of the specification language; it constitutes the bulk of the paper. The
case of loose specifications and the problem of overloading is treated in Sec-
tion 4. Finally, Section 5 shortly discusses the design unit of OBSCURE and
its command language.

2 Basic notions

2.1 Algebras
This section recalls a few notions from algebra (cf. [EM 85]).

2.1.1 Syntax
A sort is an identifier. An operation is a (k + 2)-tuple, k > 0,

n:8y...8 — 8k+1

where n is an identifier, called operaiion name, and (sy,...,8k+1) is a (k+1)-
tuple of sorts, called the arity. It is called S-sorted, if S is a set of sorts with
81,...,8k+1 among its elements. By definition two operations

Nn:8y...8 ™ Sk41

m:ty...t — t4

areequal,ifn=m,k=1land s; =¢t; foralls, 1<:<k+1.
A signature is a pair (S,0) where S is a set of sorts and O a set of
operations. It is called an algebra signature if each operation of O is S-sorted.
A list of sorts and operations is a (k + I)-tuple

(81y..+,8k;01,...,01) (k=20,12>0)

where s,,...,8; are sorts and o,,...,0; operations.

Let £ = (5,0) and ¥’ = (S’,0’) be signatures. Expressions such as
L -3 or £ C Y are used to denote (S —S',0-0")or SC S’ and 0 C O’
respectively. Similarly, if no ambiguity arises one writes ¥ instead of S U O;
for instance, ¢ € T stands for ¢ € S UO. Finally, if lso = (sy,... 8k;01,...0/)
is a set of sorts and operations, we will occasionally identify lso with the

signature
({s1,---,8k}, {o1,...,01})

The following lemma is a straightforward consequence of the definitions:
Lemma 1: If £ and ¥’ are algebra signatures, then so are ZUX' and TN Y.

2.1.2 Semantics

In order to avoid the use of classes and functors we start from a set U called

untverse.
Let ¥ = (S, O) be an algebra signature. A (X)- algebrais a (total) function,
say A, which maps

(i) each sort s of S into a set A(s) C U, called the carrier set of sort s;

(ii) each operation n:s;...8; — 8k+1 (k = 0) of O into a (possibly partial)
function

A(n:sy...86 — 8p41) : A(sy) X ... X A(sk) ~ A(8k+41)-

The set of all X-algebras is denoted Algy.

Let & = (5,0) and ¥’ be algebra signatures with £ C £’ and let A be
a Y'-algebra. By definition A | ¥ denotes the X-algebra obtained by thc
restriction of the function A to the domain S U O.

2.2 Algebra modules

Intuitively, algebra modules are to represent the meaning of specifications of
abstract data types (cf. [BHK 86], [EW 85], [EW 86]). Syntactically an alge-
bra module is:characterized by an “imported” signature and an “exported”
one. In the case of non-loose specifications it is characterized semantically by
a function mapping algebras of the imported signature into algebras of the
exported one. The basic idea is that an exported algebra is an extension of
the imported one. Actually, it is possible to “forget” sorts and operations, i.e.
the sorts and operations of an imported algebra are not necessarily all “inher-
ited” by the exported one. Hence, the requirement that the exported algebra
is an extension of the imported one is replaced by the requirement that the
inherited sorts and operations are “persistent”, i.e. that their meaning in the
exported algebra is the same as in the imported algebra. To include the case
of loose specifications it is sufficient to view an algebra module as a function
mapping imported algebras into sets of exported ones. These notions are now
made more precise for the case of non-loose specifications. The treatment of
loose specifications is delayed until Section 4.2.

A module signature is a pair (Z;,X.) of algebra signatures. I; is called
the imported signature, X, the ezported one. The sorts and operations from
3, N X, are called the inherited ones.

An (algebra) module for the module signature (Z;,L.) is a (possibly par-
tial) function

M : Algs, ~ Algg,

satisfying the following persistency condition :

for each algebra A € Algy, from the domain of M:
for each inherited sort or operation ¢ € Z; N Z,:
M(A)(c) = A(c)

2.3 Logic

The main goal of this Section is to introduce the notion of formulas in the
framework of multi-sorted algebras. In order to keep the definition of OB-
SCURE institution-independent the precise syntax and semantics of these
formulas is left pending.

Let ¥ = (S,0) be an algebra signature. A (Z—) variable (of sort) is a
pair

(v:s)

where v is an identifier and s a sort from S. When s is known one writes v
instead of (v : 8). It is implicitly assumed that there exists infinitely many
variables of each sort. Formulas are built up from operations and variables.
The precise definition of the set WFF(X) of all formulas for the algebra sig-
nature ¥ is left pending. In the case of predicate logic, for instance, WFF(X)
consists of the usual (correctly typed) formulas, in the case of equational logic
WFF(X) contains equalities between terms only.

Let now A be a T-algebra. An assignment for the algebra A is a function
mapping each variable of sort s into an element of the carrier set A(s). The
meaning of the logic associates with each formula and each assignment a
value from {lrue, false}. It is usually defined as an extension of the function
A, namely

A : WFF(X) — (ASS — {true, false})

where ASS denotes the set of all assignments for the algebra A and (ASS —
{true, false}) the set of all functions on ASS with values in {true, false} (cf
[LS 87]). Again, the precise definition of this extension is left pending. In the
case of first-order predicate logic and total operations the meaning is as usual.
In case not all operations are total the meaning has to cope with undefined
values. In fact, A(w)(o) evaluates to true or false for any formula w and
assignment o, even if w contains terms with undefined values. Examples of
logics dealing with partial operations are LCF([Mi 72]) and the logic described
in Lo 87].

Let £ be an algebra signature. A formula w from WFF(X) is said to be
valid in a T-algebra A if A(w)(o) = true for all assignments o. One then
writes A = w.

These general notions suffice for a definition of OBSCURE. Actually, one
gets a more explicit definition by assuming the validity of the Coincidence The-
orem. To this effect the logic is supposed to provide a — not further specified
— notion of a free occurrence of a variable in a formula. The Coincidence
Theorem states that the value A(w)(o) of a formula w for the assignment o
depends on the value o(z) of only those variables z which occur free in w (sec
e.g. [En 72], [LS 87]). As a notational abbreviation one writes A(w) instead

of A(w)(o) whenever the formula w is closed, i.e. whenever w contains no free
occurrences of variables.

2.4 Renamings

A specification language has to allow the renaming of sorts and operations.
Such renamings may, for instance, be used to avoid “name clashes”. A renam-
ing is an operation on signatures. Essentially, it performs the simultaneous
substitution of “old” names by “new” ones. As a technical complication the
renaming of a sort also implies the renaming of its occurrences in the (arities
of the) operations. In a specification renamings are defined by pairs of lists
of sorts and operations. These different notions are now made precise. If he
wishes the reader may skip the formal details in a first reading.

2.4.1 Renamings

Let ¥ = (S5,0) be a signature. A renaming (onX) is a pair p = (ps, po)
of functions ps on S and po on O such that for each operation o = (n :
8)...8; — 8k4,) from O

p0(0) = (n' : 8, .5} — 8h4,)

with 8} = ps(si) for 1 <1<k +1.

The following Lemmata are immediate consequences of the definitions:
Lemma 2: Let p be a renaming. If ¥’ C ¥ is an algebra signature, then so
is p(Z'). o
Lemma 3: Let p be a renaming on ¥ and let £’ C X be an algebra signature.

(i) I Aisa p(¥')-algebra, then Ao (p|X') is a T'-algebra.
(i) If p is injective on I’ and if B is a £'-algebra, then Bo (p | &)~ 'isa
p(X’')-algebra. o

2.4.2 Renaming pairs

A renaming pair (on a signature) is a pair of lists of sorts and operations
from L, say

((s1,---,8%;01,---,01), (87, ---,8%;01,...,00)) (k,1 > 0)
satisfying the following conditions:
a) the sorts s,;,..., 8, are pairwise different;

b) the operations oy, ...,0; are pairwise different;

c) foreachi,1 <t <1:ifo;=(n:t;...tm = tmy1) and o} = (n' :
tfl .o -t"nl -4 t'"ll+1), m,ml Z 0, then

o m=m;

e foreach1<j7<m+1:

I—
t; =

s, ift;=s,forsomep, 1<p<k
t; otherwise .

Informally, condition c) expresses that in the arities of the new operations
the sorts have already been substituted. An example of a renaming pair is

((s, t, u; n:stuv — w), (w, s, w; Mm: wswv — w))
(provided s,t,u are pairwise different). Counterexamples are
((8; n:u—8),(v; m:u—8))

(if v # 8) and
((vy v; n:—>v),(s,¢t; n:— 8)).
A renaming pair ((sy,...,8%;01,...,0),(8},...,8%;0},...,0])) on a sig-
nature ¥ induces a renaming p on ¥ in the following straightforward way:

e for each sort s from X:

ls) = 8} ifa=s.,- forsome 5, 1<57<k
s otherwise

o for each operation o= (n:t;...ty = t;ms1), m 20, from L:

o' if 0o = 0; for some 5,1 <75 <1
p) =14 y
(n:p(t1)...p(tm) = p(tm+1)) otherwise

That p is effectively a renaming is a direct consequence from the defini-
tions.

2.5 Subalgebras, quotient algebras

Two constructions are recalled yielding subalgebras and quotient algebras
respectively. These constructions are well-known from the literature (see e.g.
(EM 85)).

Let A be a E-algebra, ¥ = (5, 0), and w a formula from WFF(X) contain-
ing free occurrences of a single variable, say (z : 8,). This formula defines a

subset, say C, of the carrier set A(s,) of sort s,, namely the set of all carriers
from A(s,) that satisfy w. Formally

C = {a € A(s,) | A(w)(o[z/a]) = true for all o € ASS}

(where o[z/a] denotes the assignment identical with o except that its value
for the argument z is a. Note, by the way, that the value of A(w)(o[z/a])
does not depend on ¢ by the Coincidence Theorem). This subset in its turn
defines a subalgebra of the algebra A, namely the X-algebra B defined by

B(s) = { 2(3) g : i'i" {80}

for each s € S;

B(o) = A(o) | (B(s1) x...x B(sk))
foreacho=(n:s;...84 = 8) €0, k>0

It is well-known that B is effectively an algebra only if the algebra A satisfies
the following closure condition:

foreacho=(n:8,...8; — 8) from O,k >0:

A(0)(B(s1) x ... x B(sx)) € B(sk+1)

Informally the condition expresses that elements from the subset are mapped
into elements from the subset. Henceforth the algebra B is said to be the
subalgebra generated by A and w.

Let A again be a X-algebra and w a formula in WFF(X) in which exactly
two variables of the same sort, say (z : s,) and (y : 8,), occur free. This
formula defines an equivalence relation, say ~,,, in the carrier set A(s,),
namely the least equivalence relation satisfying

for all a,b € A(s,) :
a ~g, bif A(w)(o[z/a][y/d]) = true for all c € ASS

In order to simplify the wording of the now following definitions it is useful
to provide the other carrier sets with an equivalence relation as well:

for all sorts s € S — {8,} :
a~gbiffa=0b

This family of equivalence relations defines a quotient algebra of the algebra
A, namely the X-algebra B defined by:

B(s) = {[c] | c € A(s)}!

l{c] denotes the equivalence class of c generated by ~,.

for each s € S;

B led) = { e e e dened

for each ¢, € A(s;),1 <¢ <k,
foreacho=(n:s,...8, - 8) €0,k >0.

It is well-known that B is effectively an algebra only if the algebra A satisfies
the congruence condition:

foreacho=(n:s;...s0 = s)€0, k>0:
for all a,-,b.- € A(s;) with a; ~eq b;y 1<1<k:
either A(0)(a,...,ax) and A(0)(by,...,bx) are both undefined
or A(o)(ay,...,ax) and A(0)(by,...bs) are both defined and, moreover,

A(0)(a1,-..,ax) ~o A(0)(br, ... ,br)

Informally, the condition expresses that equivalent arguments lead to equiv-
alent values. Henceforth the algebra B is said to be the quotient algebra
generated by A and w.

For a more detailed treatment the reader may consult [EM 85 or [Lo 87).

3 The specification language

The specification language of OBSCURE constitutes a mathematical nota-
tion for algebra modules. While its structure is very simple, specifications
written in it look clumsy. For this rcason OBSCURE also provides a lan-
guage which allows to draw up specifications; this language constitutes the
command language of the (design unit of the) OBSCURE environment. The
present Section is devoted to the description of the specification language.
The command language will be shortly discussed in Section 5.

Section 3.1 contains an informal introduction to the syntax and semantics
motivating the formal definitions in Section 3.2 and 3.3. The treatment of
overloading and the case of loose specifications is delayed until Section 4.

3.1 An informal overview of the language

Syntactically the specification language is a formal language, the elements of
which are called specifications. Each specification has the form of a term. In
these terms atomic specifications play the role of constants; constructs such
as “+”, “o” or “O” play the role of operators. More precisely, a specification
is either an atomic specification or it has one of the following nine forms:

(my + my), (myom,y), (lsoom,), ([lsol/ls02]m,), (m,[lso1/is02]),

({wimy), (mi{w}), (w|mi), (wram,)

where m;, m; are specifications, lso, Isol, Iso2 are lists of sorts and operations
and w is a formula. Note that the language bears strong similarities with the
term language of [BHK 86).

Following a now classical pattern ([EM 85], [Sa 84]) the semantics of the
specification language are defined in two steps:

(i) afunction S, called signature function, maps specifications into module
signatures;

(ii) afunction M, called meaning function, maps specifications into algebra
modules; for any specification m the module signature of the algebra
module M(m) is §(m).

The semantics of atomic specifications and of the different constructs of
the language are now discussed successively.

An atomic specification is a specification drawn up according to one of the
numerous specification methods known from the literature. In the description
of the specificaton language the syntax and semantics of these specifications
is left pending. It is merely assumed that each atomic specification defines
an algebra module. In practice an atomic specification usually consists of

10

a “heading” and a “specification body”. The heading fixes the imported
and exported signatures of the module signature and the specification body
defines the algebra module. In the case of the initial algebra specification
method, for instance, the specification body consists of a set of equalities and
the algebra module maps any imported algebra into its free extension. By the
way, the predicate “atomic” refers to the semantics, not to the syntax: atomic
specifications usually constitute the bulk of (the text of) a specification.

Next, the nine constructs of the specification language are discussed suc-
cessively. Most of them are illustrated graphically on Figure 1.

The construct “+” puts two specifications together. More precisely, when
applied to the specifications m; and m, the construct yields the specification
(my1+m32). The module signature §((m1+m2)) of this specification is defined
as the union of the module signatures S(m;) and $(mz) (see Figure 1(a)).
The module M((my+m3)) is defined similarly: its value is obtained by uniting
the values of the modules M(m;) and M(m;). Hence the construct “+” of
OBSCURE is similar to the construct “+” of CLEAR and “and” of ACT-
ONE. Actually, a precise definition of the semantics of this construct has to
cope with the following technical problem: the algebras accepted as arguments
by the modules M((m; + m3)), M(m;) and M(m;) have in general different
signatures. Hence the module M((m, + m;)) is defined by its value for an
arbitrary algebra A of the imported signature of the module signature $((m,+

ma)):
M((m1 + m2))(A) = M(m1)(A | Si(m1)) U M(m2)(A | Si(m2))

where §;(m;) and $;(m;) are the imported signatures of the module signa-
tures S(m;) and §(m3) respectively. Note that the restrictions A | $;(m;) and
A | $;(m2) of the algebra A to the signatures $;(m,) and §;(m;) yield algebras
of the required signatures. The right-hand side of the equality denotes the al-
gebra obtained by the union of the graphs of the algebras M(m;)(A | S;(m,))
and M(m2)(A | Si(m2)). (Remember that an algebra is a function!). Actu-
ally, the union of the graphs of two functions yields (the graph of) a relation
which is not necessarily a function. That the right-hand side of the equality
nevertheless denotes an algebra follows from “context conditions” on the spec-
ifications m; and m,. Essentially, these conditions make sure that there are
no “name clashes”. A precise formulation of these context conditions and the
pertaining proof that the definition of the module M((m; + m3)) is consistent
is to be found in Sections 3.2 and 3.3.

The construct “o” composes two specifications as illustrated by Figure
1(b). In the terminology of top-down design the specification (m; o m3) con-
stitutes a refinement of the specification m; by the specification m,. Hence
the construct is similar to the enrich-construct of CLEAR. Note that accord-
ing to Figure 1(b) the construct may be applied to specifications m; and m,

11

A \ A d
4
at et ¢ _—}C f 4 & d
][Lt
: mi : H ma E
I o™
a br ct—F¢ bT dl m a b m
\ 4 1
a b ¢ d a b
(a) m = (m; +my) (c) m = ((a,c)am,)
a c e
\ A 3
e j‘ d j‘ d e
o o o L 1 b}
my at ct df o 4 |
a, ¢} d) : ™
a bl m : m,
; [at bt te
; m2 a b
a b m m
: ; (d) m = ([(a,c)/ (e, f)lm1)
a b f g
(b) m = (ml Omg) (e) m= (mll(a) b)c)/(f)g’ g)])

FIGURE 1 Graphical illustration of a few constructs of the specification lan-
guage. In this illustration a specification is represented by a box. The arrows
entering a box represent its imported sorts and operations, those leaving a
box represent its exported sorts and operations. A dotted line represents an
inherited sort or operation. Each of the symbols a,b,..., f, g stands for a sort
or an operation.

12

only if the exported signature of m, coincides with the imported signature of
m;.

The next construct allows to forget sorts and operations. More precisly,
if m, is a specification and lso a list of sorts and operations the specification
(Isoom,) denotes the module obtained from m, by deleting from its exported
signature the sorts and operations of lso (see Figure 1(c)). Note that the
imported signature remains unchanged. The construct allows, in particular,
to get rid of auxiliary (i.e. “hidden”) sorts and operations. More importantly,
it allows to remove those sorts and operations fail to comply with the closure
or congruence conditions of subsequent subset or quotient constructs.

If m, is a specification and (Isol,ls02) a renaming pair then the speci-
fication ([lso1/lso2]m,) denotes the module obtained from m; by renaming
its exported signature according to (lsol,ls02) (see Figure 1(d)). Again, the
imported signature remains unchanged. In particular, if an inherited sort or
operation is renamed, only its occurrences in the exported signature are mod-
ified. The construct may, for instance, be used to avoid name clashes resulting
from a subsequent “+”-construct.

Let m, and (Isol,!s02) be defined as above. The specification (m;[lsol/ls02])
performs a renaming of the imported signature (see Figure 1(e)). Contrasting
with the previous construct the renaming of an inherited sort or operation
modifies its occurrences in both the imported and exported signature. The
construct allows in particular to simulate the parameter passing mechanism
used in the command language: the formal parameters lsol are renamed into
actual parameters /802 — as will be explained in Section 5.

Let m be a specification and w a formula. The effect of the specification
({w}m) is to make sure that the formula w is valid in the algebra M(m)(A).
The signatures remain unchanged. The construct may be used to express that
the data type specified by m satisfies the property denoted by w. Formally,
the effect of the construct ({w}m) is to restrict the domain of the module
M(m) to those algebras A for which the formula w is valid in the algebra

M(m)(A), i.e. for which
M(m)(4) = w (1)

In practice the user has to prove that (1) holds for all “intended” algebras
A. To this end he may make use of the verification unit of the OBSCURE
environment.

The specification (m{w}) is similar to the previous one but now the for-
mula w expresses a property of the imported algebra. The construct may be
used to explicitly restrict the domain of the module. It will be used in Section
5 to express semantic constraints on the formal parameters of a procedure.

Let m be a specification and w a formula with free occurrences of a singlc
variable. The specification (w | m) performs a subalgebra construct. More
precisely, M((w | m))(A) is the subalgebra gencrated by the algebra M(m)(A)
and the formula w (see Section 2.5). The proof that the closure condition is

13

satisfied is left to the user. Again, he may make use of the verification unit
of the OBSCURE environment. Note that the module signature remains
unchanged but that the meaning of the sort of the variable occurring free in
w is “overwritten”. The subalgebra construct may, for instance, be used to
transform a specification of multisets into a specification of sets by eliminating
the multisets containing duplicates. Subalgebra constructs are essential in the
algorithmic specification method ([Lo 87]). Algebraic specifications may do
without subalgebra constructs but their use may make specifications more
transparent and modular.

Finally, the specification (w b4 m) performs a quotient algebra construct
along the same lines as the subalgebra construct. Again, the user has to prove
that the congruence condition of Section 2.5 is satisfied. A quotient algebra
may, for instance, be used to transform a specification of lists into a specifica-
tion of multisets by identifying lists which differ by the order of occurrence of
their elements only. The remarks on the necessity of the subalgebra construct
carry over.

After this informal overview we now proceed with a formal definition of the
syntax and the semantical functions § and M of the specification language.
The syntax, $ and M are defined inductively. The syntax and the semantical
function § are defined by simultaneous induction and are treated first.

3.2 The syntax and the semantical function §
The goal of this Section is to define
e a formal language SPEC of specifications;

¢ a function S mapping any specification of SPEC into a module signa-
ture.

To this end we start from an algebra signature ¥ and a set AtSPEC,
the elements of which are called atomic specifications. It is assumed that a
module signature $,(am) C T2 is associated with each specification am from
AtSPEC.

The set SPEC and the function S are now defined by simultaneous induc-
tion. In this definition § is defined as a function mapping each specification
from SPEC into a pair of signatures. That these pairs of signatures are
module signatures, i.e. pairs of algebra signatures, is proved in Theorem 4.

Each step in the now following definition is accompanied by conditions de-
noted (?), (¢1),.... These conditions are called contezt conditions. The name
stems from the fact that these conditions define a subset of the context-frec
language implicitly introduced by the informal definition of the syntax in Sec-
tion 3.1. The aim of these context conditions is to guarantee the consistency
of the definitions of the semantical functions S and M, i.e. to make the proofs
of Theorem 4 and Theorem 5 feasible.

14

Most of the formal definitions now following may be clear from the informal
description of Section 3.1. Some of the “difficult” context conditions will be
shortly discussed after the formal definition. The reader should remember
the notations introduced in Section 2.1.1. Moreover, for each specification m
Si(m) and S.(m) denote the imported and exported signature of the module
m. Hence

$(m) = (Si(m), Se(m))

Definition (The formal language SPEC and the semantical function §)
(Induction basis) If am € AtSPEC then:

e am € SPEC
e S(am) = S,(am)

(Induction step) If lso,lso0l,ls02 are lists of sorts and operations from X, if
w € WFF(X) and if m,m;,m,; € SPEC then:

1) if
() Se(m1) N Se(m2) € Si(ma) N Si(me)
(28) Se(my1) N Si(m2) C Si(my)
(uz) S,(mz) n S,-(ml) - s;(mz)

then

e (my +my) € SPEC
o S((m1+mg)) = S(m1) U §(m2)
(2) if
(2) Se(ma) = Si(m1)
(12) Si(m2) N Se(my) C Si(m1)
then
o (my0my) € SPEC
o §((m10mg2)) = (8i(m2), Se(m.1))
(3) if
(?) Se(m)\ lso is an algebra signature
then

o (Isoam) € SPEC
e S((lsomm)) = (Si(m), Se(m)\lso)

15

(5)

(6)

if
(i) (lsol,ls02) is a renaming pair; call p the induced renaming
(i7) the renaming p is injective on S.(m)

(i4%) none of the sorts and operations of ls02 are from $;(m)

then

o ([lsol/lso2)m) € SPEC
o $(([Is01/1s02)m)) = (Si(m), p(Se(m)))

if

(i) (lsol,ls02) is a renaming pair; call p the induced renaming

(%) the renaming p is injective on the operations of S¢(m)\ §;(m)
(#17) the sorts and operations of lsol are all from S;(m)

(iv) p(s0) & p(Se(m) \ Si(m)) for each sort or operation so of §;(m)

then

e (m[lsol/lso2]) € SPEC
o S((mlisol/ls02])) = p(S(m))

if

() w € WFF(S,(m))

then

o ({w}m) € SPEC
o $(({w}m)) = S(m)

if

(2) w € WFF(S:(m))
then
o (m{w}) € SPEC
o S((m{w})) = S(m)
if
(*) w € WFF(S.(m))

(1) w contains free occurrences of a single variable; call s the sort of
this variable

16

(#17) s is not a sort from $,(m)
then

e (w|m) € SPEC
e S((w|m)) = §(m)

(9 if
(*) w € WFF(S.(m))

(37) w contains free occurrences of exactly two variables; these vari-
ables have the same sort; call s this sort

(¥32) s is not a sort from S;(m)
then

¢ (wpam) e SPEC
o S((wam)) = S(m) o

Before proceeding we shortly comment on the intuitive meaning of the
most “difficult” context conditions. The full significance of these context
conditions will become clear in the proofs of Theorem 4 and 5. The con-
text condition (1)(7) expresses that a sort or operation exported by both m,
and m, is an inherited one of m; and m;. The condition (1)(3?) expresses
that a sort or operation exported by m; and imported by m;, is inherited
by m;. The condition (1)(i#1) is similar. The condition (2)(it) expresses
that a sort or operation exported by m; and imported by m, is an inherited
one. The condition (4)(2%) avoids name clashes within the exported signa-
ture. Similarly, (4)(¢7%) avoids clashes between the new exported names and
the imported ones. The condition (5)(:%7) allows to rename only imported
sorts and operations. Note that contrasting with the preceding construct the
renaming has not to be injective on §;(m), i.e. different names may be given
the same new name; the utility of this possibility will become clear during
the discussion of the parameter passing mechanism: it must be possible that
different formal parameters get the same actual value. The condition (5)(iv)
avoids clashes between the new imported names and the (new) non-inherited
exported ones. Finally, the condition (5)(i%) expresses that the renaming
does not lead to name clashes between the non-inherited exported operations.
(Remember that the renaming of an imported sort may modify the arity of a
non-inherited exported operation). The conditions (8)(:7) and (9)(3%) refer to
the construction of subalgebras and quotient algebras in Section 2.5.

We now prove that § is the desired semantical function, i.e. that the values
of § are module signatures.

Theorem 4. §(m) is a module signature for each specification m € SPEC.

17

Proof

$(m) has been defined as a pair of signatures. According to the definition of
a module signature in Section 2.2 it is sufficient to prove that both signatures
are algebra signatures. The proof is by induction on the structure of m and
refers to the above Definition.

(Induction basis)

S(am) = S,(am) is a module signature by assumption.

(Induction step)

(1) $(my) U §(mz) = (Si(m1) U Si(mz), Se(m1) U Se(m2)) is a module sig-
nature by induction hypothesis and Lemma 1.

(2) By induction hypothesis.
(3) By the context condition (3)(7) and the induction hypothesis.

(4) and (5) By induction hypothesis, Lemma 2 and context conditions (4)(z)
and (5)(%) respectively.

(6) to (9) By induction hypothesis. o

3.3 The semantical function M

Let the signature X, the set of atomic specifications AtSPEC and the se-
mantical function S, on AtSPEC be given as above. Let moreover SPEC
and § be defined as indicated in Section 3.2. The goal of the present Section
is to define a function M mapping any specification of SPEC, say m, into an
algebra module with module signature §(m). To this end it is assumed that
an algebra module M,(am) with module signature S,(am) is associated with
each atomic specification am from AtSPEC.

The function M is now defined by its value M(m)(A) for an arbitrary
specification m € SPEC and an arbitrary algebra A of the imported signature
Si(m) of m. That M(m) is effectively an algebra module will be proved in
Theorem 5. The basis of this proof is constituted by the context conditions
of the definition of SPEC. Hence the comments on these context conditions
at the end of Section 3.2 — together with the informal description of the
language in Section 3.1 — may help the reader to understand the formal
definitions now following.

An algebra module is a partial function. Hence a value M(m)(A) of M(m)
is not necessarily defined. In fact the last four constructs of the language
SPEC may introduce partiality, even if the “atomic specifications” M,(am)
are all total — as will become clear below.

The formal definition of the semantical function M is by structural induc-
tion on its argument m. Hence it closely follows the structure of the inductive
definition of SPEC in Section 3.1.

18

Definition (The semantical function M) Writing
“M(z)(A) = Eiff C”
as a shorthand for

“for all algebras A € Algg,(q) :
M(z)(A) is defined iff C holds; in that case its value is E”

one defines:
(Induction basis)
M(am)(A) = M,(am)(A)

iff M,(am)(A) is defined
(Induction step)

(1)
M((m1 +m2))(A) = M(m1)(A | Si(m1)) U M(m2)(A | Si(m2))
iff M(m1)(A | Si(m1)) and M(m2)(A | Si(mz2)) are both defined
(2)
M((my 0 m2))(4) = M(m1)(M(m2)(A))
iff M(m2)(A) and M(m,)(M(m2)(A)) are both defined
(3)
M((lsoom))(A4) = M(m)(A) | (Se(m) \ lso)
iff M(m)(A) is defined
(4)
M(([ts01/1s02]m))(A) = (M(m)(A)) o (p | Se(m))~*
iff M(m)(A) is defined
where p is the renaming induced by (lsol, ls02)
(5)

M((m[iso1/ls02]))(A) = {(s0, (M(m)(Ac(p | Si(m)))(s0")) | s0 = p(s0'), 50" € Se(m)}
iff M(m)(Ao (p]| Si(m))) is defined

where p is the renaming induced by (lsol, ls02)

19

M(({w}m))(4) = M(m)(4)
iff M(m)(A) is defined and M(m)(4) = w

(7)
M((m{w}))(4) = M(m)(A)
iff M(m)(A) is defined and A = w
(8)
M((w | m))(A) = the subalgebra generated by M(m)(A) and w
iff M(m)(A) is defined and M(m)(A) satisfies the closure condition
(9)

M((w pam))(A) = the quotient algebra generated by M(m)(A) and w

iff M(m)(A) is defined
and M(m)(A) satisfies the congruence condition

m]

Theorem 5. The definition of the semantical function M is consistent, i.e. for
each specification m € SPEC it is the case that M(m) is an algebra module
with module signature §(m).
Proof

The proof is by induction on the structure of m. To this end it is sufficient
to successively consider the defining equalities of the form

M(z)(A)=Eiff C
and to prove:

(I) whenever C holds the expression E yields an algebra of signature S, (z)
as its value;

() M(z) satisfies the persistency condition, i.e. for each inherited sort or
operation so from S;(z) N S.(z):

M(z)(A)(s0) = A(s0)

The proposition (I) may be replaced by the following three propositions:

20

(Ia.) whenever C holds the value of the expression F is defined;

(Ib) whenever C holds the value of the expression E is a function;

(Ic) this function is an algebra (over S.(z)).

In the now following proof the application of the induction hypothesis is not
always explicitly mentioned.
(Induction basts)

The theorem follows from the assumption that M,(am) is an algebra module.

(Induction step)

(1)

M((m1 +m2))(A)

As A is an algebra of signature S;(m;)US;(mz), A | S;(m,) is an algebra
of signature S;(m;). Hence the value M(m)(A | Si(m1)) is well-defined.
A similar remark holds for M(m3)(A | $;(m2)). This proves (Ia).

To prove (Ib) it is sufficient to prove that any sort or operation so €
Se(my) N Se(m2) has the same meaning in the algebras M(m;)(A |
Si(m1)) and M(my)(A | Si(m2)), i.e.

M(mi)(4 | Si(m1))(s0) = M(m2)(4 | Si(m2))(s0)

By context condition (7) one obtains so € S;(m;) N S;(m2). Hence so
is an inherited sort of both m; and m,. By induction hypothesis one
obtains

M(my)(A | Si(m1))(s0) = (A] Si(m.1))(s0)
= A(so)

and a similar equality for m,. This concludes the proof of (Ib).

(Ic) is a direct consequence of the fact that M(m)(A | Si(m;)) and
M(m)(A | Si(m;)) are algebras.

To prove (II) let so be an inherited sort or operation of (m; + m3), i.e.
50 € (Si(m1) U Si(m2)) N (Se(m1) U Se(m2))

It has to be proved that so has the same meaning in A and M((m; +
m3))(A). This follows directly from the induction hypothesis using the
inclusion

(8i(m1)uSi(m2))N(Se(m1)USe(m2)) € (Si(m1)NSe(m1))U(Si(m2)NSe(1n2))

which can be deduced from context conditions (¢7) and (#41).

21

(2)

(3)

(4)

M((m1 0 m2))(A)
(Ta) directly follows from context condition (z).
The proofs of (Ib) and (Ic) are immediate with context condition (7).

Let so be an inherited sort or operation of (m; o m;). Hence so €
Si(m2) N Se(m1). By context condition (:7) one obtains so € §;(m;) N
Si(m2). Hence (II) holds.

M((lsoom))(A)

The proofs of (Ia), (Ib) and (Ic) are immediate.

An inherited sort or operation of (lsoom) is an inherited one in m.
This proves (II).

M(([Iso1/ls02]m))(A)

The renaming p is well-defined by context condition (). The inverse
function (p | Se(m))~? : p(Se(m)) — S.(m) is well-defined by context
condition (i7). Hence (Ia), (Ib) and (Ic) follow from Lemma 3(:7). In
particular, the signature of the algebra

(M(m)(A)) o (p | Se(m))™*

is clearly p(S.(m)).
In order to prove (II) it suffices to show
$i(m) N p(Se(m)) C Se(m) (a)
and
p(so) =80 for so€ S;(m)N p(Se(m)) (b)
In fact we can deduce the validity of (II) from (a) and (b) as follows:

For so € §i(m) N p(S.(m)) we have by (a) :
so € S;(m) N S.(m)
and therefore, with (b) and the induction hypothesis:
(M(m)(A) o (p | Se(m))~")(s0) = (M(m)(A) o (p | Se(m))~*)(p(s0))
= M(m)(A)(s0) = A(s0)
yielding (II).

It remains to prove (a) and (b).

Let so be a sort or operation from $;(m) N p(S.(m)). By context condi-
tion (i11) so ¢ lso2. Let so’' € S.(m) be the sort for which p(so') = so.

22

(5)

Then so’ cannot be an element of Isol. (because p(so’) & ls02). If so
and so’ are sorts, it directly follows

so’' = p(s0’) = so
proving (a) and (b) for sorts.
If so and so’ are operations one has

so= (n:8;...8 — Sk41)

so'= (n:s}...sp = sp,,) (k20)

with p(s}) = s; (1 <7 < k+1) by the very definition of renaming. Since
Se(m) and, by Lemma 1, S;(m) N p(S.(m)) are algebra signatures we

have o € 5.(m)
and s € S;(m)Np(S.(m)) (A1<i<Lk+1).

By context condition (i1%) s; & lso2 U S;(m) = 0, hence
s;¢lsol (1<i<k+1).
Hence
si=p(sl) =9 (1<i<k+1).
This yields so = so’ proving (a) and (b) for operations.
M((mllso1/iso2])(A)
Let us first prove (Ia). Clearly, p | S;(m) is a function mapping S;(m)
into p(S;(m)). By assumption A is an algebra with signature p(S;(m)).
Hence
Ao (p| Si(m))

is an algebra with signature S;(m) (see Lemma 3(i)). As M(m) is a
module with signature (S;(m), S.(m)), it accepts Ao (p | Si(m)) as an
argument and yields an algebra M(m)(A o (p | $(m))) with signaturc
Se(m). This algebra accepts so’ as an argument. Hence the relation
denoted by the righthand side of the equality is well-defined.

To prove (Ib) we prove that this relation is a function. In order to
shorten the notation we put B = M(m)(A o (p | Si(m))). Let so’,s0" €
Se(m), so’ # so", be sorts or operations such that

p(s0") = p(s0") (o)
It is sufficient to prove that

B(so') = B(so'")

We distinguish three cases:

23

e 50’ and so” are both inherited in m. In that case
B(so') = (Ao (p]| Si(m)))(so’) by persistency
= A(p(s0'))

and similarly for so”. Hence the property results from (c).

e s0' is inherited in m but so” is not. Hence so’ € §;(m) and s0” €
Se(m)\ Si(m). By context condition (iv), p(s0') & p(Se(m)\ Si(m)).
Hence p(s0') # p(s0") which contradicts (c).

e neither so’ nor so” are inherited in m, i.e. so’ and so’ are both
from S.(m)\ Si(m). If so’,s0" are sorts, then p(so’) = so’ and
p(so") = so" by context condition (731). Hence p(so’) # p(s0”)
which contradicts (c). If so’, 80" are operations then context con-
dition (i7) implies p(so’) # p(s0") contradicting (c).

To prove (Ic) put C = M((m]lso1/ls02]))(A). We have to show that
for any operation o = (n : 81...8x — 8k+1) € p(Se(m)), (k2 0),
it is the case that:

a) The domain of C(o) is contained in C(s1) X ... X C(8x)

ﬁ) C(o)(C(sl) X... X C(Sk)) C C(3k+1)~
By definition of C' (and B) we have:

C(so) = B(s0')
for all so € p(S.(m)) and so’ € S.(m) with so = p(so’). Let

o' = (n':8)...8, — si,,) € Se(m) be such that p(o’) = 0. Note
that

p(si)=s; (1<i<k+1) (@)
The domains of C(0) and B(o') coincide by definition. They arc
contained in B(s}) X ...x B(s},) because B is a S.(m)-algebra. By

(d) and the definition of C' we obtain
Cls)=B(s}) (1<i<k+1)
proving &). A similar argument shows the validity of 8).

Finally, we prove (II). Let

s0 € p(Si(m)) N p(Se(m))
be a sort or operation. We have to prove that
A(s0) = (M(m)(A o (p | Si(m))))(sc') (e)

for a sort or operation so' € §.(m) satisfying so = p(so’). Now we have
the obvious inclusion

p(Si(m)) N p(Se(m)) € p(Se(m)) = p(Se(m) N Si(m)) Up(Se(m)\ Si(m)).

24

(6)

(7)

(8)

(9)

By context condition (iv)
p(Si(m)) N p(Se(m) \ Si(m)) = 8
yielding
p(Si(m)) N p(Se(m)) S p(Se(m) N Si(m)).
Hence it is possible to choose so’' from §.(m) N $;(m) and
M(m)(A e (p] Si(m)))(so') = (Ao (p] Si(m)))(s0')
= A(p(s0")) = A(so)
by persistency of M(m) yielding (e).
M(({w}m))(4)
M(m)(A) = w is well-defined by context condition (:). This proves (Ia).
The proofs of (Ib), (Ic) and (II) are immediate.
M((m{w}))(4)
As for (6).

M((w | m))(4)

The subalgebra generated by M(m)(A) and w is well-defined by the
context conditions (z) and (#7) (and by the fact that the closure condition
is satisfied). This proves (Ia), (Ib) and (Ic).

Let so be an inherited sort or operation of (w | m). If it is a sort it
cannot be s by context condition (i77). If it is an operation the sort s
cannot occur in its arity — again by context condition (i¢1) and because
Si(m) is an algebra signature. Hence the meaning of so is not modified
by the subalgebra construction. This proves (II).

M((w 2 m))(4)
As for (8). o

25

4 Two Generalizations

4.1 Overloading

An operation has been defined as consisting of its name together with its arity.
Actually, in terms or formulas it is usual to denote an operation by its name
only. This postulates that it is possible to distinguish between operations
with the same operation name. This disambiguation is classically performed
by type inferencing. To be applicable type inferencing requires that any two
operations with the same operation name differ by the number or the sort of
their arguments. These notions are now made more precise.
A signature is called unambiguous if for any two different operations

n: 81...8g — 8k41
n: ty...tg =tk

k > 0, with the same operation name n and the same number k of arguments
there exists ¢, 1 < ¢ < k, such that s; # ¢;. An unambiguous signature may
for instance contain the operations

n:st—u
n:st - u

(provided t # t') but not

n:—u
n:—1t

It is easy to adapt the definition of the specification language of Section
3 to algebras with unambiguous signatures. While the definitions of the se-
mantical functions S and M remain unchanged the formal language SPEC
is slightly restricted by additional context conditions. More precisely, each of
the constructs
(m1 + MQ)

(ml o mz)
([lso1/lso2]m)
(m[lso1/lso2])

is provided with additional context conditions expressing that the resulting
module signature consists of a pair of unambiguous signatures. For instance.
the additional context conditions for the construct (m; + m3) are:

() Si(my) U S;(m2) is unambiguous
(v) Se(my)U Se(mgz) is unambiguous

Clearly, these restrictions do not affect the validity of the Theorems 4 and 5.

26

4.2 Loose specifications

The specification language described in Section 3 is not able to handle loose
specifications. In fact, it was assumed that any atomic specification has a
unique model (up to isomorphism). To handle loose specifications it is neces-
sary to generalize the notion of an algebra module and to modify the seman-
tics of the specification language accordingly. These generalizations are now
shortly described.

A loose (algebra) module for the module signature (X;,X.) is a total func-
tion

M : Algs, — P(Algs,)

(where P(Algs,) denotes the power set of Algy,) satisfying the following
persistency condition:

for each algebra A € Algy;:
for each algebra B € M(A):
for each inherited sort or operation c € ; N Z.:
B(c) = A(c).

Informally, a loose module maps any imported algebra into a set of exported
ones. Note that loose modules are total functions while — according to Section
2.2 — non-loose ones are partial. The reason is that in loose modules the
undefined value is “simulated” by the empty set.

The generalization of the specification language of Section 3 for loose spec-
ifications is straightforward. The definition of the formal language SPEC and
the semantical function § remain unchanged. On the other hand M, now as-
signs a loose module M,(am) to each atomic specification am € AtSPEC.
The definition of the semantical function M is generalized by componentwise
application. More precisely, the definition of Section 3.3 is replaced by:
(Induction basts)

M(am)(A) = M,(am)(A)

(Induction step)

(1) M((m1+m2))(A) =
{BUC | Be M(m1)(A| Si(m1)),C € M(m2)(A | Si(m2))}

(2) M((m1om2))(4) = U{M(m1)(B) | B € M(m2)(A)}
(3) M((lsoam))(A) = {B|(S.(m)\ls0) | B € M(m)(A)}
(4) M(([ls01/Is02]m))(A4) = {Bo (e S.(m))~* | B € M(m)(A)}

— where g is the renaming induced by (lsol,ls02)

(5) M((m[lso1/ls02]))(A) =
{{(s0, B(s0")) | s0 = g(s0'), 50" € S.(m)} | B € M(m)(A o (e]| Si(m)))}

— where p is the renaming induced by (lsol,!802)

27

©) M({wIm))(4) = {B € M(m)(4) | B |= v}
1) Mm@ = { g TAEY

(8)

M((w | m))(A) =
{the subalgebra generated by B and w | B € M(m)(A)}

M((w > m))(4) =
{the quotient algebra generated by B and w | B € M(m)(A)}.

The proof of Theorem 5 carries over without any difficulty (see [Kn 87]).

It is interesting to note that a user of OBSCURE has not to explicitly
indicate which of the two definitions of M he uses. If some of his atomic
specifications are loose the relevant definition of M is of course the present
one. If none are loose both the present definition and the definition of Section
3.3 apply.

28

5 The command language

While the specification language described in Section 3 and 4 has a clear
mathematical structure it is difficult to write specifications in it using pen-
cil and paper. This difficulty stems from the clumsy notation, the elaborate
context conditions and the primitivity of the constructs. To overcome this
difficulty OBSCURE provides an environment. The design unit of this envi-
ronment supports the user in the development of specifications written in the
specification language. To control this design unit the specifier makes use of
a command language. This command language may be viewed as yet another
specification language. As such it differs from the specification language de-
scribed in Section 3 by its syntax, by additional powerful language constructs
(“macros”) and by the possibility to draw up parameterized specifications.
Alternatively, the command language may be viewed as a programming lan-
guage. A program written in this language generates a specification of the
specification language, i.e. yields a specification of SPEC as its value. We
here adopt the former viewpoint.

The goal of the present Section is to roughly describe the main features by
which the command language differs from the specification language. To this
end we successively discuss the syntax, the parameterization mechanism and
the macros of the command language. A complete and formal description of
the command language may be found in [LL 87b]. An illustration of its use
in the form of a protocol of a session with the design unit is in [LL 87a).

Syntactically, a specification in the command language consists of a se-
quence of commands. The language contains, in particular, a command for
each construct of the specification language. This linear structure of the
command language allows the incremental design of specifications. More pre-
cisely, after each command the design unit automatically checks some context
conditions and displays the current module signature. In the case of the com-
mands for the constructs of the specification language the context conditions
are essentially those of Section 3.2. For a command yielding a subalgebra or a
quotient algebra the design unit moreover automatically generates a formula
expressing respectively the closure or the congruence condition.

Parameterization is realized with the help of two commands called proce-
dure declaration and procedure call. A procedure declaration has the form

is proc n(lso)

where n is an (arbitrarily chosen) name and lso a list of sorts and opera-
tions from the (current) imported signature. Its effect is to turn the current
specification, i.e. the specification drawn up so far, into a procedure. More
precisely, n is the name of the procedure, the sorts and operations from lso arc
its formal parameters, and the current specification constitutes the procedure

29

body. A procedure call has the form
call n(lso')

where n is the name of a — previously declared — procedure and lso’ a list of
sorts and operations constituting the actual parameters. Its effect is to create
the specification

(m[lso/lso'])

where m is the procedure body and lso are the formal parameters of the
procedure n; it is understood that (m[lso/lso']) is the construct of Section 3.
As a grossly simplified example a specification for the sort set (of elements)
with the sort element among its imported sorts is turned into a procedure
with name SET by the command

is proc SET(element)
The procedure call
call SET(integer)

yields a specification with integer instead of element among its imported sorts.
The carriers of the exported sort set are now sets of integers rather than sets
of elements.

A macro is essentially a shorthand for a sequence of commands. The role of
the macros is to simplify the design of a specification. The command language
contains, for instance, a macro performing “generalized composition”. Its
effect is similar to that of the construct (m; o mz) but it circumvents the
stringent context condition (2)(7) if Section 3.2.

An implementation of the command language in the form of a design unit
should of course offer additional facilities for editing, error correction or rapid
prototyping. Details on such an implementation may be found in [FH 87].

30

References

[BCV 85] Bidoit, M., Choppy, C., Voisin, F., “The ASSPEGIQUE specifica-
tion environment — Motivations and design”, Int. Rep., Univ. Paris-
Sud (Oct. 1985)

[BG 80] Burstall, R.M., Goguen, J.A., “The semantics of Clear, a specifi-
cation language”, Proc. 1979 Copenhagen Winter School, LNCS 86
(1980), pp. 292 - 332

[BGM 87] Bidoit, M., Gaudel, M.C., Mauboussin, A., “How to make alge-

braic specifications more understandable? — An experiment with the
PLUSS specification language”, Int. Rep. 948, Univ. Paris-Sud (Apr.
1987)

[BHK 86] Bergstra, J.A., Heering, J., Klint, P., “Module Algebra”, Report
CS-RXXX, Centre for Math. and Comp. Sc., Amsterdam (1986), sub-
mitted for publication

[BHK 87] Bergstra, J.A., Heering, J., Klint, P., “ASF — An algebraic spec-
ification formalism”, Report CS-R 8705, Centre for Math. and Comp.
Sc., Amsterdam (1987)

[Bu 87] Burstall, R.M., “Inductively Defined Functions in Functional Pro-
gramming Languages”, Int. Rep. ECS-LFCS-87-25, Univ. Edinburgh
(April 1987)

[BW 82] Broy, M., Wirsing, M., “Partial abstract types”, Acta Inform. 18
(1982), pp. 47 - 64

[Ca 80] Cartwright, R., “A constructive alternative to abstract data type
definitions”, Proc. 1980 LISP Conf., Stanford Unsv. (1980), pp. 46 —
55

(Eh 82] Ehrich, H.D., “On the theory of specifications, implementation and
parameterization of abstract data types”, Journal ACM 29 (1982), pp.
206 - 227

(En 72] Enderton, H.B., “A Mathematical Introduction to Logic”, Academic
Press (1972)

[EM 85] Ehrig, H., Mahr, B., “Fundamentals of Algebraic Specification”,
Springer- Verlag (1985)

[EW 85] Ehrig, H., Weber, H., “Algebraic Specification of Modules”, in “For-
mal Models in Programming”, Proc. of the IFIP TC2 Work. Conf. on
the Role of Abstr. Models in Inform. Process. (ed. E.J. Neuhold and
G. Chroust), North-Holland (1985)

31

[EW 86] Ehrig, H., Weber, H., “Programming in the Large with Algebraic
Module Specifications”, Invited Paper for IFIP-Congress, Dublin (1986)

[Fe 87] Fey, W., “Concepts, syntax and semantics of ACT-TWO”, presented
at the 5th Workshop on Specification of Abstract Data Types, Edinburgh
(Sept. 1987)

[FGIM 85] Futatsugi, K., Goguen, J., Jouannaud, J.P., Meseguer, J., “Prin-
ciples of OBJ2”, Proc. POPL 85 (1985), pp. 52 — 66

[FH 87] Fuchs, J., Hoffmann, A., Loeckx, J., Meiss, L., Philippi, J., Zeyer,
J., “Benutzerhandbuch des OBSCURE-Systems — Teil 1: Der Editor”,
Int. Rep., Univ. Saarbriicken (1987)

[Gd 84] Gaudel, M.C., “A first introduction to PLUSS”, Int. Rep., Univ.
Paris-Sud (Dec. 1984)

[GHM 78] Guttag, J.V., Horowitz, E., Musser, D.R., “Abstract data types
and software validation”, Comm. ACM 21 (1978), pp. 1048 — 1069

[(GTW 78] Goguen, J.A., Thatcher, J.W., Wagner, E.G., “An initial alge-
bra approach to the specification, correctness and implementation of
abstract data types”, Current Trends in Programming Methodology IV
(Yeh, R., ed.), Prentice-Hall (1978), pp. 80 — 149

[Ho 72] Hoare, C.A.R., “Proof of correctness of data representations”, Acta
Inf. 1, 4 (1972), pp. 271 — 281

[Hu 87] Hussmann, H., “Rapid Prototyping for Algebraic Specifications —
RAP System User’s Manual” (Revised edition), Int. Rep. MIP-8504,
Univ. Passau (1987)

[KI 84] Klaeren, H.A., “A constructive method for abstract algebraic softwarc
specification”, Theor. Comp. Sc. 30, 2 (1984), pp. 139 - 204

[Kn 87] Klein, B., “Zwei Erweiterungen von OBSCURE”, Diplomarbeit, FB
10, Univ. Saarbriicken (1987)

[LG 86] Liskov, B., Guttag, J., “Abstraction and specification in program de-
velopment”, The MIT Electrical Engin. and Comp. Sc. Series, McGraw-
Hill (1986)

(Li 81] Liskov, B., et al, “CLU Reference Manual”, LNCS 114 (1981)

[LL 87a] Lehmann, T., Loeckx, J., “OBSCURE: A specification environment
for abstract data types”, Int. Rep. A06/87, Univ. Saarbriicken, sub-
mitted for publication (1987)

32

[LL 87b] Lehmann, T., Loeckx, J., “The design of specifications in OBSCURL",
Int. Rep., Univ. Saarbriicken (1987)

[Lo 87] Loeckx, J., “Algorithmic Specifications: A Constructive Specification
Method for Abstract Data Types”, to appear in TOPLAS (Oct. 1987)

[LS 87] Loeckx, J., Sieber, K., “The Foundations of Program Verification”
(Second edition), Wiley/Teubner (1987)

[Mi 72] Milner, R., “Logic for computable functions: description of a machine
implementation”, SIGPLAN NOTICES 7 (1972), pp. 1- 6

[NY 83] Nakajima, R., Yuasa, T., “The IOTA Programming System”, LNCS
160 (1983)

[Sa 84] Sannella, D., “A set-theoretic semantics for Clear”, Acta Informaticu
21, 5 (1984), pp. 443 — 472

[Sh 81] Shaw, M., “ALPHARD, Form and Content”, Springer- Verlag (1981)

[TWW 82] Thatcher, J.W., Wagner, E.G., Wright, J.B., “Data type speci-
fication: Parameterization and the power of specification techniques”,
TOPLAS 4 (1982), pp. 711 - 732

[Wi 86] Wirsing, M., “Structured algebraic specifications: A kernel language”,
Theor. Comp. Sc. 42, 2 (1986), pp. 124 — 249

33

	fb1987-07-0001
	fb1987-07-0002
	fb1987-07-0003
	fb1987-07-0004
	fb1987-07-0005
	fb1987-07-0006
	fb1987-07-0007
	fb1987-07-0008
	fb1987-07-0009
	fb1987-07-0010
	fb1987-07-0011
	fb1987-07-0012
	fb1987-07-0013
	fb1987-07-0014
	fb1987-07-0015
	fb1987-07-0016
	fb1987-07-0017
	fb1987-07-0018
	fb1987-07-0019
	fb1987-07-0020
	fb1987-07-0021
	fb1987-07-0022
	fb1987-07-0023
	fb1987-07-0024
	fb1987-07-0025
	fb1987-07-0026
	fb1987-07-0027
	fb1987-07-0028
	fb1987-07-0029
	fb1987-07-0030
	fb1987-07-0031
	fb1987-07-0032
	fb1987-07-0033
	fb1987-07-0034

