A formal description of the specification
language OBSCURE

by
Jacques Loeckx

A 85/15

Saarbriicken, November 1985

ABSTRACT

The present report gives a complete formal
definition of the specification language
OBSCURE. An informal introduction to this
language may be found in [LL 85].

-

. Introduction
i Syntactic and semantic notions

Signatures

W W

Algebras

1

2

2.1

2.2

2.3 Algebra extensions 5
2.4 Subalgebras and quotient algebras 6
3 A formal description of OBSCURE 7
3.1 The syntax 8
3.2 An informal introduction to the semantics &
3.3 Some more definitions and notations 11
3.3.1 Matching pairs T
3.3.2 The notation [1lso/lso'] 1
3:.3.3 Environments 14

The semantic functions 15

w
.
1=

The context conditicns

w

L]

(63}
[\CI]

The consistency proof

Uniting identical subspecifications

NN
v Oy

Introduction

&
~d

N =

The provenance function

[S
O

The context conditions
The consistency proof 30

Discussion 31

U s W

Two simple examples 32

*

The data type "sets of elements” 22

S oy U U LY LY D
.
-

The data type "pairs of sets of sets
of integers”

3]

Conclusions 34

~
.

References 37
Appendix A1 - AT4

1. Introduction

Recently several specification languages based on the use of
abstract data types have been proposed in the literature:
CLEAR [BG 77, Sa 84], ACT ONE [EM 85], OBJ2 [FGJM 85],

ASL [SwW 83], Extended ML [ST 85, Sa 85]. The specification
language OBSCURE differs from these languages in at least

four respects.

In the existing languages a specification is classically inter-
preted as an algebra or a theory. The specification of elaborate
abstract data types is then performed "bottom-up" by putting
algebras or theories together. Instead, a specification in
OBSCURE introduces "new" types on the basis of not yet speci-
fied - henceforth called "glcbal" - ones. More formally, an
OBSCURE specification is interpreted as a function mapping

an algebra (containing the global types) into an extension of
this algebra (containing in addition the new types). The speci-
fication of elaborate abstract data types may therefore be
performed "top-down" by "stepwise refinement": for each global
type introduced a specification is constructed which intro-

duces this type on the basis of other, more "elementary"”

(global) types. The final specification is obtained by "com-
posing" these different specifications. Take, as an example,
the development of an interpreter for a programming language.
First, the data type program is specified on the basis of

data types such as <input-data and output-data; the type

program contains, in particular, the operation Interprete
mapping programs and input data into output data. Next, the
data type Znput-data is specified, etc. The development is
completed when the remaining global types are "known" ones, for

example data types provided by a usual programming language.

Next, OBSCURE explicitly links prcgram development to program
verification. This is reflected by the fact that an OBSCURE
implementation consists cof a develcopement module and a verifi-
cation module (see Figure 9 in Section 7). This feature allows
OBSCURE to contain, for instance, language constructs for

transforming an algebra into a subalgebra or a quotient algebra.

It is well-known that such transformations make sense only if
certain (semantic) constraints are satisfied , viz. a closure
condition in the case of a subalgebra and a congruence condition
in the case of a guotient algebra (see e.g. [EM 85, MG 84]).
The verification module may then be used to prove that these

constraints are satisfied.

OBSCURE is designed for interactive use. A specification in
OBSCURE essentially consists of a sequence of elementary con-
structs. At each construct the development module of the
OBSCURE implementation automatically checks the syntactic
constraints. Moreover, it generates the theorems expressing
the semantic constraints - such as those implied by the
construct yielding a subalgebra or quotient algebra - and
transmits them to the verification module. The proof of these
theorems by the verification module is likewise performed

interactively.

Finally, by performing type inferencing OBSCURE allows a mild

form of polymorphism.

The original version of OBSCURE [Le 85] was developed for the
algorithmic specification method [Lo 81, Lo 84]. According to
this method an abstract data type is specified by a (construc-
tively defined) model. The present version of OBSCURE is more
general in that it is applicable tc any specification method
using a single model. It is, for instance, also applicable

to the initial algebra specification method.

The goal of the present paper is to give a complete formal
description of the language. An informal introduction may be
found in [LL 85]. Note that the version of OBSCURE presented
here contains no syntactic sugar. This simplifies the descrip-
tion but makes the examples look unappealing. Ideas for

syntactic sugar may be found in [Le 85].

Section 2 introduces the main syntactic and semantic notions.
Section 3 presents a formal description of OBSCURE. Section 4

proves that the definitions of Section 3 are consistent. Sec-

tion 5 allows OBSCURE to unite identical subspecifications.
Section 6 and 7 contain examples and conclusions. The proofs

of the Lemmas and Theorems are in the Appendix.

2. Syntactic and semantic notions

A sort is an identifier. An operation is a (k + 2)-tuple,
k > 0O,

n: s, ... s ==
where n is an identifier, called operation name, and where

Sqr-+-18,, S are sorts. The (k + 1)-tuple

Sy +-- Sp
is called the type of the operation. If S is a set of sorts
containing Sy reees Spr Sy then the operation is said to be
S-sorted. A set of operations is S-sorted, if its elements
are. Note that an operation is classically defined to be an
operation name characterizing univocally its operation type.

The present, more refined definition allows polymorphisu.

A set of operations is called unambiguous, it for any two

operations of the form.

n:s1 cee S - S

t
o
!

r*.

n

k =2 0O, there exists i, 1 £ i £ k, such that S5 # ti. An
unambiguous set of operations may, for instance, contain
the operations

Memberof : <Zntset int - bool

and Memberof : stringset string - bool
(take i = 1 or 1 = 2) but not
Emnptyset : - intset

and Emptyset : - gtringset

Informally, if a set of operations is unambiguous, type
inferencing allows to determine the operation for each

occurrence of an operation name in a term or a formula.

A signature is a pair & = (S5,Q) where S is a set of sorts

and @ a set of operations. If I, I' are signatures,

I ="', rczt', £ -1I',I~2I"and "I,I' are disjoint" are

meant componentwise. A signature (S, Q) is called an

algebra signature if:

(1) @ is S-sorted;

(ii) S contains the special sort bool;

(iii) & contains the special operations true : - bool and
false : -» bool;

(iv) £ is unambiguous.

Informally, the conditions (ii) and (iii) will allow the

construction of subalgebras and quotient algebras; the con-

dition (iv) allows type inferencing.

Let £ = (S,9) be an algebra signature. A (I-)algebra is a

(total) function which maps
(i) each sort s € S into a set A(s), called the carrier set

of sort s;
(ii) each operation n : s, ... g - s, k =2 O, into a (possibl
p 1) P Y
partial) function

A(n : Sq +ee Ep 7 s) s A(s1) Xeo.X A(sk) - A(s)

The set of all I-algebras is denoted Algz.

If £ = (S,2) and I' are algebra signatures with I < &', and if
A is a I'-algebra, then AlZ is an abbreviated notation for the
L-algebra A | (5UQ) (where "|" denotes the restriction of a

function).

in algebra is standard if it maps bool, true : - bool and

false : - bool into their usual meaning. Henceforth only

standard algebras are considered.

2.3_Algebra extensions

As indicated in Section 1 a specification is going to be
interpreted as a function mapping an algebra (containing
"global" sorts and operations from a signature Zg) into an
algebra obtained by adding "new" sorts and operations (from

a signature Zn). The "new" sorts and operations are those
introduced by the specification; the "global" ones are those
which have still to be specified (in the course of the
top-~down development) and which therefore are similar to
global variables in an Algol-like program. These functions
are called "algebra extensions" and are characterized

syntactically by a pair of signatures, called "extension signatures".

Formally, a pair (Zg,zn) of signatures is called an
extension signature if:

(1) Zg’ Zn are disjoint;

(ii) Zg is an algebra signature;

(iii) =z _ U L is an algebra signature.

I is called the global, Zn the new signature.

An algebra extension for the extension signature (Zg, Zn) is
a (possibly partial) function
E : Ang - AlgZ Uz
g g n
such that for each A € AlgZ i
g

either E(A) is undefined

or A < E(A).
Informally, the condition "A < E(A)" is equivalent with

(E@1) | zg)= A

and expresses$ that the algebra E(A) is an extension of the
algebra A. By defining an algebra extension as a partial
rather than a total function we will be able to account for
semantic constraints imposed by the specifications. In
fact, the main effect of such a constraint will be seen to
restrict the domain of an extension to the algebras

'satisfying the constraint (see Section 3.3).

Two constructions are recalled which yield an algebra, called
subalgebra and quotient algebra respectively. These construc-
tions which were already mentioned in Section 1,are well-

known from the literature (see e.g. [MG 84, EM 85]).

Let A be a I -algebra, £ = (S5,9), and p a family of (possibly

partial) predicates

p. : A(s) - {true, false} for each s € S.

)

The subalgebra generated by A and p is the I-algebra B defined

by:
B(s) = {c € A(s) | ps(c) = true} for each s € S
B(n : Sy --- S - s) = (A(n : Sy +e- S s)) | B(s1)X...xB(sk)
for each n : s1 ... 8, 2 S € Q, k =2 0.

Actually, this definition is consistent only if each operation
of the algebra A satisfies a closure condition. Informally, this
condition expresses that arguments from the subset lead to a

value from the subset. Formally:

for each operation n : Sy +«++ S 2 S € Q, k =2 0O:
for all (a1,...,ak) € A(s1) X...X A(sk):
if Pg (ai) = true for all i, 1 £ i £ k,
i
then pS(A(n R s)(a1, e ak)) = true

Henceforth we will only consider special families p, viz.

families such that for all sorts s the function
Py ¢ A(s) - {true, false}

yields the value "true" for any argument, except for one
distinguished sort, say t. We then speak of the subalgebra
generated by A and Py and mean the subalgebra generated

by A and p.

Let A again be a I-algebra, £ = (5,92), and q a family of

(total!) equivalence relations

g : A(s) x A(s) - {true, false} for each s € S

L
S

The quotient algebra generated by A and q is the f-algebra B
defined by:

B(s) = {[c] | ¢ € A(s)} for each s € S
B(n : Sy +-- S ° s)([c1], PO [ck])

= [A(n : Sq e+ Sy = s)(c1, e e g ck)]

for all ¢, € A(s.), 1 £ 1 £ k
i i

for all n : s1 e sy - s € Q, k=20

where [...] denotes an equivalence class. This definition

is consistent only if each operation cf the algebra A satisfies
a congruence condition. Informally, a congruence condition
expresses that equivalent arguments lead to equivalent values.
Formally:

for each operaticn n : Sq +-- Sy

for all (a1, . s 7 ak), (a!, ... , ak) € A ST) X X A(sk)
if qsi(ai, ai) = true for all i, 1 £ i £ k,
then qS(A(n Sy ... S 2 s)(a1, o i ak),

. —~ ! 1) =
A(n : Sy -+ Sy s)(a1 7 o wie ak)) true.

Henceforth we will only consider special families q, viz.

families such that for all sorts s the function
d. : Als) x A(s) - {true, false}

yields the value "true" for any argument, except for one
distinguished sort, say t. We then speak of the quotzient
algebra generated by A and Iy and mean the quotient algebra

generated by A and q.

3. A formal description of OBSCURE

OBSCURE is described by a context-free grammar (Figure 1),
by a "semantic function" & mapping specifications into
extension signatures (Figure 2), by a "semantic function"
Jd mapping specifications into algebra extensions (Figure 3)
and by context conditions (Figure 4) guaranteeing the con-
sistency of the definitions of the semantic functions. The
techniques used are inspired from the description of CLEAR
in [Sa 84] and of ASL in [sSw 83].

The description of OBSCURE leaves open which specification

method and logic are used.

The context-free syntax for OBSCURE is in Figure 1.

The distinction between csp ("composed specification") and
sp ("specification") provides the "operator" compose with
a lower priority than the other "operators". This allows

to save bracket pairs and to write, for instance
spl compose sp2 forget 1lso
instead of

spl compose (sp2 forget 1so)

The definition of m ("model") depends on the specification
method used. In the case of the initial algebra specification
method m consists of a list of egqualities. In the case of

the algorithmic specification method

m ::= constructors lo programs 1p

where lp is a list of recursive programs [Lo 84]. Similarly,
the definition of £ ("formula") depends on the logic used. In
the case of the algorithmic specification method this is the

logic of strict algebras [Lo 84].

3.2 An informal introduction to the semantics

The context-free rule (spi} of Figure 1 introduces the "new
sorts and operations listed under ncw lso by describing a
model m. The description of this model makes use of the
sorts and operations listed under global lso. Hence the rule
(sp1) "creates" an algebra extension, the global and new
signature of which are fixed by global 1lso new lso respec-
tively. The rule (sp2) transforms an algebra into a subalgebra,
s being the distinguished sort. Similarly (sp3) transforms an
algebra into a quotient algebra. By (sp4) it is possible to

drop ("hide") sorts and operations. The renaming of sorts and

Syntactic categories
pr : program
csp : composed specification
Ssp : specification
1d : 1list of declarations

lso : list of sorts and
operations

1s : list of sorts

lo : list of operations

Syntax
pr = 1d csp
1d ::= ¢ | 1d d
d = csp is proc n(lso)

csp ::= sp |

Csp compose sp

0]
e}

1lf : list of formulas

d declaration
S sort
o operation

f : formula

model

=

n : name

(1d1),

:= create new lso model m global lso |

sp subset of s by o |
sp quotient of s by o
sp forget lso |

sp rename lso as 1lso
sp axioms 1f |

(csp) |

call n(lso)

lso ::= ¢ | sorts 1s | opns lo |sorts 1ls opns lo (lsol)bis(lsod)

ls ::= s | 1lg s
io ::= 0o | lo o
£f = £ | 1f £
o :=n - s | n: 1ls » s

(1s1) .,
(lo1),
(1£1),

(o1),

FIGURE 1: The context-free syntax cf OBSCURE

(pr1)
(1d2)
(amn
(cspt)
(csp2)
(sp1)
(sp2)
(sp3)
(sp4)
(sp5)
(spb)
(sp7)
(sp8)

(1ls2)
(loZ)
(1£2)
(0f2)

operations according to (sp5) is especially useful for para-

meterized data types. The formulas introduced by (sp6) are

transmitted for proof to the verification module of the

OBSCURE system. With these formulas the user may,

for instance,

check properties of the data type introduced. Moreover, the

formulas may be used to constrain the actual parameters of a

parameterized specification.

The rule (sp8) performs a procedure call: n is the name
of the procedure, the sorts and operations of lso are

the actual parameters.

The context-free rule (csp2) "composes" the specifications
csp and sp. If some of the global sorts and operations of
csp are introduced by sp (as new sorts and operations),

the application of the rule constitutes a "refinement step"
in the top-down development: in the resulting specification
these common sorts and operations are no longer global. For
example, let s, t, u, v, w each denote a sort or operation.

If ¢° denotes a (composed) specification with s "new" and

t
t global, and DE a specification with t "new" and u global,

then

(ay

S

Ct compose Du

is a (composed) specification with s and t "new" and u

"global". More generally, if Ci v is a specification
! +
with s "new" and t, v global, and if D;'g is defined simi-
7
larly, then
o composea Dt’w
oy SELPISE v,u

is a specification with s, t, w "new" and v, u global.
Rule (d1) corresponds to a procedure declaration: csp is the
procedure body, n is the procedure name and the sorts and
operations of lso are the formal parameters. If the procedure
name n is declared by

csp is proc n(lso)
the meaning of the procedure call

call n(lsol)
is that of the procedure body csp with the sorts and opera-
tions of lso (i.e. the formal parameters) replaced by those
of 1soi(i.e. the actual parameters). The context conditions
which will be discussed in Section 3.5 require that a proce-
dure body onlv contains calls to procedures already de-
clared (in the list of declarations). This excludes, in

particular, recursive procedure calls.

While procedures with and without parameters have essentially
the same syntax and semantics, their use results from
different concerns. Procedures with parameters constitute
parameterized specifications and avoid respecifying similar
data types. Parameterless procedures allow to modularize

the design: instead of developing a big single specification
by successively composing "elementary" ones, each of these
elementary specifications may be given a name and called

at "composition time".

By the way, parameterized specifications suggest the notion

of a library and, hence, bottom-up development. Actually,

for practical reasons it is not possible to do without
parameterized specifications, even in a specification language

based on top-down development.

3.3 _Some more definitions_and notations
Before the semantics of CBSCURE can be described it is

necessary to introduce the following definitions.

Using the syntactic categories and notations of Figure 1

let 1lso be a list of sorts and operations of the form

sorts s & W opns O,...0
=== = 1 1

Sk oty stk o

with k, 1 2 0. (It is understood that the word sorts is
missing when k = 0, and similarly for 1 = 0). The list

of sorts and operations lszo is said to have no duplicates
if:

S., Sj are pairwise disjoint for all i, j with 1 < i < j

IA
e

IA
'_l

0., oj are pairwise disjoint for all i, j with 1 < i < j

Let
lso = sorts s1 cee Sy opns o1 .o ol
lso' = sorts si 5 56 si,ogns oi ... oi,

be two lists of sorts and operations, k, 1, k', 1' = O.
Assume that lso has no duplicates. Then the pair 1lso,
lso' is said to mateh if

(1) k =k'" and 1 = 1"

(ii) for all i, 1 £ i £ 1:

let o; =n; : optypei in
|] .] :
let o; =mn; : optypei in

. er s By sww g S
optypei (optypei)sll k

In this definition optype stands for the syntactical cate-
gory defined by
optype ::= > s | 1ls » s

1] ¥
)S1’ *++ 1 Sk denotes the simultaneous substitution

S.], e o o ,Sk
of the identifiers Sqyr --- 1 Sp by s!, ... , sé. Note that

this simultaneous substitution is defined because lso has

and (...

no duplicates.

An example of a matching pair is
sorts s t opns n : s u -t

sorts v VvV opns m : vV .u =V
— ce——

(1)

f——

(provided s # t). Counterexamples are

Sorts s opns n : u - s

sorts Vv opns m : U - S
(if v # s) and

sorts v v

sorts s t

Let 1lso, lso' be two lists of sorts and operations. Assume

that l1so has no duplicates and that lso, lso' match. Let

lso = sorts S S, opns o, 04
- ~ ol ol [1
1lso' = sorts) Sy opns o1 . o1 v
k, 1 > 0.

Let s be a sort. We define

s[lso/lso']=={si » if s = s, for some i, 1 <1 <k
s else.
Let
O = n : optype
be an operation. We define
ollso/1lso' 1 = { o!, if o = o, for some i, 1 <4i <1
n : (optype)z%:::::z'k else.
1 k
For example, with 1lso, 1lso' as in the example (1) of Section
3.2.1¢
(n : su->1t) [lso/lso'] =m : vu-»vV
(n' : st -»>t) [lso/lso'] =n' : vv->v
Let be
S a set of sorts
Q2 a set of operations
(S,9) a signature
(Zg,Zn) an extension signature.
We define
S[{lso/lso'] = {sl[lso/l1lso'] | s € S}
Q[lso/1s0o'] = {o[lso/lso'] | o € Q}
(s,29){1lso/1so']= (S[lso/lso'], @llso/lso'])
(Zg,zn) [1so/1ls0'] = (Zg[lso/lso'] ’ En[lso/lso'})

Finally, let
A be an algebra with signature (S,Q)

E be an algebra extension with extension signature (Zg,Zn)

We define
Allso/lso'] = {(c[lso/lso']l, A(c)) | ¢ € S U q}
E[{lso/lso'] { (A[lso/lso'], (E(A))[1lso/1lso']) |
A{lso/lso'] is an algebra }

Note that the notation [lso/lso'] does, for instance,
not respect the property of unambiguity of a set of

operations. For instance, if
= {n : s ->t, n:u->v} ,
s # u, u # v, then
Qlsorts s / sorts u]

is ambiguous. Hence, the notation [lso/lso'] applied to an
extension signature does not necessarily yield an extension
signature. A similar remark holds for algebras and algebra

extensions. Note in particular that a necessary condition for
Alsorts s t /sorts u ul

to be an algebra is A(s) = A(t). On the other hand, by its
very definition the domain of E[lso/lso'] consists only of

algebras.

3.3.3 Environments

The use of procedures requires the introduction of an environ-
ment which binds "procedure names" to "procedure bodies". Two
approaches are possible: in the operaticnal approach names

are bound to specifications, i.e. to pieces of text; in the
denotational approach names are bound to algebra extensions,
i.e. to the meaning of these pieces of text. While in most
specification languages the approach taken is essentially

the denotational one (e.g. [Sa 84, EM 85]), the approach

taken here is the operational one. As an advantage it leads

to a very simple semantics ("copy rule semantics").

Formally, let n, lso, csp be the syntactic categories of

I'igure 1. An environment is a function
@ : n » lso x csp

Informally, an environment e maps the procedure name n into
the formal parameters lso and the procedure body csp. Note

that these parameters consist of sorts and operations.

3.4_The_semantic_functions

The semanticsof OBSCURE are defined with the help of two
(families of) semantic functions. The first of these functions,
denoted $, essentially maps a specification into the signature
of an algebra extension. The second one, denoted J, maps the

specification into the algebra extension itself.

The definition of the semantic function % is in Figure 2.

The line (spl1) should be evident from the comments of Section
3.2. The lines (sp2) and (sp3) may be understood by noting
that the constructions yielding a subalgebra or a quotient
algebra leave the algebra signature unchanged. Line (sp4)
implies that only new sorts and operations may be "forgotten".
A similar remark holds for line (sp5). Line (sp8) should be
clear from the comments of Section 3.2. Line (csp2) performs
the union of the global and new signatures of csp and sp

but removes the sorts and operations camron to Zq1 and Enz

from the glokbal signature - as explained in Section 3.2.

The union in line (1d2) applies to the graphs of the functions
Sld(ld) and Ed(d). Note that the value of 5pr’ gcsp and

Ssp is defined as a pair of signatures. The role of the
context conditions which are to be given in Section 3.5 is

to make sure that these pairs of signatures are extension

signatures. A similar remark holds for the vaiue of Sld'

The semantic function J is defined in Figure 3. Most of the
equalities define an algebra extension by its value for an
arbitrary argument A. We now shortly discuss the values and

the domains of these algebra extensions.

In line (spl) the value is the union of (the graphs of) the
functions A and Hm(m)(A), the latter function being the
algebra defined by the model m. Clearly, a precise definition
of Zm(m) depends on the specification method used. In the

case of the algorithmic specification method for instance,
Em(m)(A) associates with each sort from lsol a (constructively
defined) formal language and with each operation from lsol

a (constructivelv defined) function (see [Lo 84]). The algebra

extension defined in line (spl) is total in the sense

that the algebra A is an arbitrary %, (lsoz)-algebra.

Line (sp2) of Figure 3 expresses the construction of a sub-
algebra - according to the comments in Section 3.2. This
construction restricts the domain of the extension to the
algebras satisfying the closure condition. The precise de-
finition of Zlf(lf) depends on the logic used. Similar

remarks hold for line (sp3).

The value of line (sp4) reflects the fact that the sorts and
operations from lso are "new" ones - as will be required
by the context conditions. The domain of the algebra extension

remains unchanged. Similar remarks hold for line (sp5).

The effect of line (sp6) is to restrict the domain of the
algebra extensions to those algebras for which the formulas

from 1f hold.

Line (sp8) "interpretes" the procedure body csp and then
replaces the formal parameters lsol by the actual para-
meters lso. The domain of the algebra extension E remains

unchanged - up to renaming.

The line (csp2) is best explained by Figure 4(b). Very
informally speaking, line (csp2) expresses the composition
of the algebra extensions ZCSp(csp) and ESp(sp) for those
sorts and operations which are common to an and Zg1; for

the other sorts and operations it expresses their "union".

Again, the value of the semantic function 3 as defined in
Figure 3 is not necessarily an algebra extension. Once more

it is the role of the context conditions to put it sure.

At this point it is interesting to note that the development
of specifications has to do with the values of the algebra
extensions and their verification with the domains of these
algebra extensions. In fact, each theorem to be proved during
verification expresses that a given algebra - or a given class

of algebras - belongs to the domain of a given algebra extension.

- 17 -

Spr : pr - extension signature

Spr (1d csp) = Scsp (csp)(,55ld (1d)) (pr1)
sld : 1d » environment

Sld(e) = @ (141)

Sld (1d 4) = Sld (1d) u 5d (d) (1d2)
Ed : d » environment

Sd (csp is proc n(lso)) = {(n,(lso,csp))} (d1)

csp : csp - environment - extension signature

Scsp (sp) = Ssp (sp) (csp1)
5csp (csp compose sp) (e) = (csp2)
let (Zg1’zn1) = scsp (csp) (e) in
let (ZgZ’ZnZ) = Ssp(sp)(e) Ly
((Zgq >~ Zpp) U Igp v Epq U Z55)
Ssp : sp - environment - extension signature
5Sp(create new lsol model m global 1so2) (e) (sp1)
(slso (1so02), Slso (1so1))
Ssp (sp subset of s by o) = ssp (sp) (sp2)
Ssp (sp quotient of s by o) = 5Sp (sp) (sp3)
Ssp (sp forget 1lso) (e) = (sp4)
let (I ,E)) = Ssp (sp) (e) in
(Zg, L, - 5156(180))
Ssp (sp rename lsol as 1lso2) (e) = (sp5)
let (Zg, Zn) = Ssp (sp) (e) in
(Zg, Zn[lso1/lsoz])
Ssp (sp axioms 1f) = ssp (sp) (spb)
5Sp ((csp)) = % asp (csp) (sp7)
fsp (call n(lso))(e) = (sp8)

let (lsol, csp)

let (£ _, 2) =8
_— g n csp

(Eg, Zn)[lso1/lso]

e(n) in

(csp) (e) in

1so

lso - signature

lSO(E) = (¢I ¢)

S

Sls

Slso(ogns lo) = (4, 510(10))
%

3

1s
1s

O(sorts 1ls) = (Sls(ls), o)

O(sorts ls opns 1lo) = (Sls(ls), 510(10))

ls - set-of-sorts
S5 (8) = (s}

%ls(ls s) = Sls(ls) U {s}

glo lo - set-of-operations
510(0) = {o}
510(10 o) = Slo(lo) U {o}

FIGURE 2: The family of semantic functions %

pr - algebra extension

3pr
Jpr (1d csp) = gcsp (csp)(Sld (1d4)) (pr1)
jcsp csp - environment - algebra extension
Jcsp (sp) = =p (sp) (csp1)
chp (csp compose sp) (e) (A) = (csp2)
let (Zg1’ Zn1) = 5csp (csp) (e) in
let (Zgz, an) = ssp (sp) (e) in
let B = jsp (Sp)(e)(AIZg2) in
chsp (csp) (e) ((A U B) | Zg1) U B
if both B = Jsp (sp) (e) (A | Zgz) and
) Jcsp (csp) (e) ((A U B) | Zg1) are
defined;
- undefined else.
jsp sp = environment - algebra extension
jsp (create new lsol model m global 1so2) (e) (A) = (spl)
AU jm (m) (A)
3sp (sp subset of s by o) (e) (A) = (sp2)
let ((Sg,ﬂg), (S .9.)) = 5Sp (sp) (e) in
let ps = 3 . (sp)(e) (A)(0) in

(- the subalgebra generated by 3 (sp) (e) (A) and Py

sp
if jsp (sp) (B) (A) is defined

and ZS (sp) (&) (A) satisfies the closure

p
conditions;

| - undefined else.

’]9

3sp (sp quotient of s by o) (e) (A) = (sp3)
let ((S,2,), (S.,0)) =S (sp)(e) in
let q = BSP (sp) (e) (A) (0) in
(- the quotient algebra generated by A and
dg if jsp (sp) (e) (A) is defined and
. Zsp (sp) (e) (A) satisfies the congruen-
ce conditions;
\ — undefined else.
gsp (sp forget 1lso) (e) (A) = (sp4)

let (Zg,zn) = gsp (sp) (e) in
let B = 3__ (sp)(e)(A) in

sSp
- B | (Zg u (Zn - Slso (lso))), if
jsp (sp) (e) (A) 1is defined;
- undefined else.
jsp (sp rename 1lsol as 1lso2) (e) (A) = (sp5)

let B = Hsp (sp) (e) (A) in
- Bl lso1/1s02], if 35p (sp) (e) (A) is
defined;

- undefined else.

jsp (sp axioms 1f)(e) (A) = (sp6)
- zsp (sp) (e) (A), if ESp (sp) (e) (A) is defined
and 31f (lf)(Esp(sp)(e)(A)) = true ;

- undefined else.

Hsp((csp))= jcsp (csp) (sp7)
zsp (call n(lso)) (e) = (sp8)
let (1lsol, csp) = e(n) in
let E = 3 (csp) (e) in

csp
E[l 1so1/1lso0]

FIGURE 3: The family of semantic functions 3

- 20 -

LT
l‘,ﬂ (sp) (A)

Sp

I
I
|
|
|
e cbuI'OOUO(lnn.anA

91 93
(b) iillll I plesp) ((AUB)IZ_) U B
p 91
R
] ! I
L
(; :CSP
(AUB)IZ%H.HT....‘T..r
»%4{’\?'” B = dgplep) (BlZg)
| [
| |
[|
! : sp
: !
lI....--,lI..c.,,..., AIEgz
+“”“T””“'T‘a“.’#“’ A

FIGURE 4:
(a) A schematical representation of the semantics of a specification
sp. In this Figure 991 9, are sorts and operations from the

global signature, N,y from the new one.
(b) Using the schematical representation of (a) this Figure illustrates

the semantics of the compose construct (line (csp2) of Figure 3)

The context conditions are defined as a family OK of
predicates. This family is defined along the same lines
as the semantic functions. A complete description is in

Figure 5.

It is important to note that all context conditions are
purely syntactic. Hence they may be checked automatically
by the development module of an OBSCURE implementation
(Figure 9). Moreover, being attached by their very defini-
tion to the context-free rules of the language, they

may be checked "on-line" during the development of a speci-

fication, thus emphasizing the interactive nature of OBSCURE.

Note that, while global sorts and operations are "used" be-
fore being specified (i.e. before being "created"), proce-
dure names may only be "used" after having been declared.
This restriction stems from the requirement that all context

conditions may be checked "on-line".

By the way, a procedure call can not be simulated by "com-
posing" and "renaming" - with global sorts and operations
instead of formal parameters and with formal parameters
renamed into actual ones.The main reason is that formal
parameters are global sorts and operations while renaming

only applies to "new" ones.

4. The consistency proof

The goal of this section is to prove that the context con-
ditions of Section 3.5 suffice to guarantee the consistency
of the definitions of the semantic functions $ and 3. The
proofs of the Lemmas and Theorems may be found in the

Appendix.

- Py -

OKpr : pr - {true, false}

OKpr (1d csp) = OKqy4 (1d) A OKCSp (CSp)(Sld(ld)) (pr1)
OKld : 1d - {true, false}
OKld(e) = true (1d41)
OKld (1lda 4) = OKld (1d) A OKd (d)(Sld (1d)) (1d2)
OKd : d - environment - {true, false}
OKd (csp is proc n(lso)Xe) = OKcsp (csp) (e) A (a1)
(1) lso has no duplicates;
(11) let (z_,z)) = & ., (csp) 1in
$1s0 (180) < Zg ;
(iii) let (S,Q) = Slso (1lso) in
bool € S, true : - bool € @, false : - bool & Q ;

(iv) e(n) is undefined.

OKCsp : csp - environment - {true, false}

OKCSp (sp) = OKSp (sp) (cspl)
CH(CSp(csp canpose sp) (e) = OKCSp(csp)(e).A OKSp(sp)(e) A (csp2)

= 5 i
1T = Son (esp) in

let (I
S g1
let (= b =8 s in
(Ig,08,,) = 8 (sp) in
(i) ., L are disjoint ;
g2 ni
(ii) let (S',Q') = Zg1 ~ an in
Q' is S'-sorted;
(iii) Zn1’ an are disjoint ;
(iv) let (5,Q) =2 Uz U z uz in
— g1 g2 n1 n —
2 1s unambiguous.

OKSp : sp - environment - {true, false}
OKSp (create new lsol model m global 1lso2) (e) = _(spl)
let (Sg,Qg) = Slso (1so2) in
let (Sn,ﬂn) = 5130 (1sol1) in

(1) bool € Sg , true : - bool € Qg’ false : - bool € Qg ;

(ii) Q 1is S -sorted ;
g g

(1ii) Slso (1so02), Slso (1lso1) are disjoint ;
(iv) @ 1is (S_ U S_)-sorted ;

“n g n
(v) Qg U Qn is unambiguous ;

(vi) m associates to each sort from Sn a carrier set
and to each operation from e, a function (of

the corresponding arity).

OKsp (sp subset of s by o) (e) = OK (sp) (e) A (sp2)
let (Zg,zn) Ssp (sp) (e) in
let (S_,Q) = I in
—_— n’"n n —

(1) s € Sn.and o € Qn :

(ii) there is a name n such that o = n : s - bool ;

OK (sp quotient of s by o) (e) = OK (sp) (e) A (sp3)

sp Sp
let (Zg,zn) = ssp (sp) (e) in
let (S_,Q.) = ¢ in
n’"n n —-—
(i) s € Sn and o € Qn ;
(ii) there is a name n such that o = n : s x s - bool ;
OKSp (sp forget 1so) (e) = OKSp (sp) (e) A (sp4)
let (Zg,zn) = 5sp (sp) (e) in
i let (S _,Q = I i
(1) let (g g g 2
T oy — - ¢ :
let (Sn,Qn) = L 1s0 (1so) in
Q' is (S_. U S')-sorted ;
n g n
(ii) glso (1so) < Zn

OK (sp rename 1lsol as lso2) (e) = OK (sp) (e) A (sp5)

sp Sp
let (zg,zn) = Ssp (sp) (e) in
(i) 1sol1l has no duplicates ;
(ii) slso (lsol) < Zn ;
(iii) 1lsol1, 1lso2 match ;
(iv) 1so2 has no duplicates ;
(v) Zg, Slso (1so2) are disjoint ;
(vi) Zn - 5180 (1lso1), Slso (lso2) are disjoint ;

(vii) 1let (S?,Qg) = Eg in |
let (S),8)) r [1so1/1so2] in

Q U @' is unambiguous.
g n

OKsp (sp axioms 1f) (e) = OKSp (sp) (e) (sp6)

OKSp ((csp)) = OKCsp (csp) (sp7)

OKsp (call n (lso)) (e) = (sp8)
' (i) e(n) is defined ;
let (lsol, csp) = e(n) in
let (zg,zn) = Scsp (csp)(e) in
(ii) lso1, lso match ;
(iii) Zg[lso1/lso], Zn[lso1/lso] are disjocint ;
(iv) let (Sn,ﬁn) = Zn in

for any two operations o, o' € Qn’
o # o' implies o[lso/lso'] # o'[1lso/1lso']

(v) let (Sg,Qg)

let (Sn,Qn)
Qg[lso1/lso] U Qn[lso1/lso] is unambiguous.

z in
g‘ —

T in
n ——

FIGURE 5: The family of the functions OK expressing the

context conditions.

Informally speaking, the first Lemma shows that substitution

respects the property of being "sorted".

LEMMA 1: Let lso, 1so' be lists of sorts and operations such
that 1lso has no duplicates and 1lso, lso' match. Let moreover
S be a set cf scrts and Q@ a set of operations. If Q is

S-sorted, then @[lso/lso'] is S[lso/lso']-sorted.

The next two Lemmas indicate conditions under which substitution

respects algebras and algebra extensions.

LEMMA 2: Let lso, lso' be as in Lemma 1. Let A be a I-algebra

with z = (S,9Q). If
(i) [1so/1ls0'] is an algebra signature,
(ii) l1seo' has no duplicates,

(iii) z - % (lso), S (1so') are disjoint,

“1so ~“1so
then A[1so/lso'] is an algebra.

LEMMA 3: Let E be an algebra extension with extension signature
(Zg,zn). Let 1lso, 1s0' be lists of sorts and operations satisfying

the following conditions:

(i) lso has no duplicates ;
(ii) 1so, lso' match ;
(iii) (Zg,zn)[lso/lso'] is an extension signature ;
(iv) 5150 (1lso) < Zg :
(v) let (s ,a) =I_ in
for any two operations o, o' € Qn:
o # o' implies o[lso/lso'] # o'l[lso/lso']

Then E[1so/l1so'] is an algebra extension.

Note that in Lemma 2 the condition (i) implies, in par-
ticular, that lso does not contain bool. Note also that

in Lemma 3 lso' may have duplicates.

The next theorem proves that the definitions of the semantic
functions SS and 5csp are consistent. First it is necessary
to introduce one more definition.

An environment e is called correct, if for each name n, for
which the value e(n) is defined, one has:
let (lso, csp) = e(n) in
(1) lso has no duplicates ;
(ii) let (5,9) = 5150
bool € S, true : - bool € @, false : - bool & @

(1so) in

(iid) 5csp (csp) (e) is an extension signature
(iv) let (Zg,zn) e scsp (csp) (e) in
slso (1lso) < Zg
(v) jcsp (csp) (e) is an algebra extension with
extension signature 5csp (csp) (e) =

THEOREM 1: Let sp, csp be a specification and a composed
specification respectively. Let moreover e be a correct

environment.

(1) If OKsp (sp) (e) = true, then gsp (sp) (e) is an ex-
tension signature.
(ii) If OKCSp (csp) (e) = true, then 5csp (csp) (e) is an

extension signature.

The following theorem proves that the definition of the

semantic functions 3 and 3 is consistent.
sp csp

THEOREM 2: Let sp, csp be a specification and a composed
specification. Let moreover e be a correct environment.
(i) If OKSp (sp) (e) = true, then jsp (sp) (e) is an
algebra extension with extension signature

Ssp (sp) (e).
(ii) 1If OKcsp (csp) (e) = true, then 3csp (csp) (e)
is an algebra extension with extension signature

5csp (csp) (e).
It is now proved that declarations lead to correct envi-

ronments.

THEOREM 3. Let 1d be a list of declarations. If
OKld (1d) = true, then Sld (1d) is a correct environment.

The consistency proof of the definitions of the semantic

functions % and 3 now culminates in the following Theorem.

THEOREM 4. Let pr be a program. If OKpr (pr) = true, then:
(i) %pr (pr) is an extension signature ;
(ii) 3pr (pr) is an algebra extension with extension
signature Spr (pr) .

5. Uniting identical subspecifications

5.1_Introduction
The context condition (iii) of (csp2) requires that the
new signatures Zn1 and an of the operands of a compose
construct be disjoint (see Figure 5). This condition is
a stringent one in that it disallows the union of iden-
tical data types - as illustrated by the following example.
Let s, t, u each denote a sort or operation. Let AS "

14
denote a procedure call with s and t "new", Bs a procedure
call with s "new" and t global, and Ct a procedure call

with t "new". Then the specification

s t
As,t compose Bt compose C (1)

satisfies the context condition mentioned above but the

"equivalent" specification

t S t
As,t compose C compose (Bt compose C) (2)

does not. Now, while one may argue that top-down development
leads to (1) rather than (2), it seems not reasonable to
forbid (2). Hence the context condition mentioned above
should be relaxed +to allow the union of identical sorts

and operations. Note that the same problem occurs for
similar reasons in specification languages designed for

bottom-up development (see e.g. [Sa 84]).

The idea of the solution to be presented in the next
Sections is to attach a "provenance label" to each sort
and operation introduced by a procedure call. As sorts
and operations introduced by identical procedure calls
are themselves identical (syntactically and semantically),
such a label should contain the procedure name and the
actual parameters. The context condition (iii) of (csp2)

may then be relaxed: the new signatures Zn and Zn may

have sorts and operations in common, provi;ed each such

sort or operation has the same provenance label. In the
formal treatment of the next Sections a family } of functions
called "provenance function" will attach the labels to the
sorts and operations. In an OBSCURE implementation these
labels may be stored in a table and automatically updated

during the development of the specification.

The family ' of provenance functions is defined in Figure
6 along the same lines as the semantic functions. These
functions are essentially partial: their value is defined
for at most those "new" sorts and operations which result
from a procedure call. Informally, line (sp8) of Figure

6 issues the provenance labels. These labels are then

sent through the different constructs. In line (sp4)

some labels are removed according to the forget con-

struct. Line (sp5) expresses that renaming also removes
labels. Line (csp2) keeps only those labels for which

Ll & 3 and thus implies a genuine weakening of the prin-
ciple stated in Section 5.1. This weakening which is
essential in the consistency proof (Section 5.4) will

be discussed in Section 5.5.

Note that the provenance function is defined in Figure 6
as a relation. It will be shown in Section 5.3 that this

relation is a function.

5.3 The context conditions

Let OK' be the function obtained by replacing in the

definition of OK in Figure 5 the context condition (iii)

of (csp2) by:

cay _ .
(iidi'") let (S,Q) = Zn1 n an in

for each ¢ € S U Q:
there exists p such that

(c, p) € ﬂcsp (csp) (e) N ¥sp (sp) (e)

Informally, this condition expresses that each sort or
operations c occurring in both Zn1 and Zn has the same
provenance label p. Note that this condition does not
assume that § is a function. Instead, this property is

proved in the following Lemma.

LEMMA 4: Let sp, csp, e be a specification, a composed
specification and a correct environment respectively.
(i) If OKép (sp) (e) = true, then psp (sp) (e) is a function.

L , _ . .
(ii) If OKcsp (csp) (e) = true, then ncsp (csp) (e) is a function.

By Lemma 4 it is possible to replace the condition (iii') by:

= PG =

gcsp : ¢Csp » e =»s0o =»n x lso
ﬂcsp (sp) = ﬁsp (sp) (csp1)
ncsp (csp compose sp)(e) = (csp2)
let (zg,zn) = scsp (csp compose sp)(e) in

{(c,(n,1s0)) € ﬂcsp(CSp)(e) U ﬂngSp)(e) l Zé ggzg where
(Zé,zﬁ) = Ssp(call n(lso)) (e)}

nsp : Sp »e - s0 -»n x lso
nsp (create new lsol model m global 1lso2) (e) = & (spl)
rsp (sp subset of s by o) (e) (c) = (sp2)
¥ (sp) (e)(c) , if c is a sort different from s, or

Sp
{ c is an operation in which s does not occur;

undefined else.

psp (sp quotient of s by o) (e) (c) = (sp3)
I (sp)(e)(c) , if c is a sort di fferent from s, or

sp
{ c is an operation in which s does not occur;

undefined else.

¥gp (sp forget lso) (e) = (sp4)
Let (Zg,Zn) = Ssp (sp) (e) in
let (Sﬂ’ﬂn) = En - slso (1so) in
?sp (sp) (e) | (sp U al)
ﬁsp (sp rename lsol as 1lso2) (e) = (sp5)
let (Zg,Zn) = Ssp (sp) (e) in
let (SH,QA) = Zn - 5150 (1sol) in
ﬂsp (sp) (e) | (s' vua')
ysp (sp axioms 1f) = ysp (sp) (sp6)
ﬂsp ((csp)) = vcsp (csp) (sp7)
nsp (call n(lso)) (e) = (sp8)
let (Zé,zﬁ) = Ssp (call n(lso))(e) in
let (S',Q') = 1! in
_— n’'"n n =

{(c, (n,1so)) | c € Sﬁ U QA}

FIGURE 6: The family J of provenance functions. The syn-
tactic category so is defined by
so ::=s | o ;
the other syntactic categories are those of

Figure 1

- B0 =

(1ii"™) let (S,Q) = & nz in
for each ¢ € S U @
pcsp (csp) (e) (c) is defined, and
nsp (sp) (e) (c) is defined, and
?csp (csp(e) (c) = ﬂsp (sp) (e) (c)

Let OK" be the function obtained by replacing in the
definition of OK in Figure 5 the condition (iii) of (csp2)
by (iii"). The goal is now to prove Theorem 4 with OK

replaced by OK".

As indicated in the proof of Theorem 4, Theorem 1 holds
with OK replaced by OK'because its proof does not make
use of the context condition (iii) of (csp2). The proof
of Theorem 2 with OK replaced by OK"requires two proper-
ties of the provenance function. They both base on the
restriction implied by line (csp2) of Figure 6. The first
property is syntactic and is expressed by the following

Lemma.

LEMMA 5. Let sp, ¢Csp and e be a specification, a composed

specification and a correct environment respectively.

(1) Let (Zg,zn) = Scsp (csp) (e) . For each
(c , (n, 1s0)) € ncsp (csp) (e)
one has ' « ¢ where (',Zz') =% (call n (1lso)) (e)
g — g g n sp —

(ii) Similar to (i) with sp instead of csp.

The second property essentially expresses that the meaning
of the "new" sorts and operations resulting from a proce-
dure call does not change. This property is proved together

with a revised version of Theorem 2.

LEMMA 6. Let sp, csp, e be as in Lemma 5.
(i) If OKcsp (csp) (e) = true, then

(10) for each algebra A such that jcsp (csp) (e) (A) is

defined and for each sort or operation c, name n
and list of sorts and operations lso such that

ﬂcsp (csp) (e) (¢) = (n,1s0)

it is the case that
3csp (csp) (e) (B) (c) = ESp(call n(lso)) (e) (Alzé) (c)

where (Zé,zﬁ) = Ssp (call n(lso))(e)

(2°) jcsp (csp) (e) is an algebra extension with extension

signature Scsp (csp) (e).

(ii) Similar to (i) with sp instead of csp.

Finally we are able to state the version of Theorem 4 with

OK" instead of OK.

THEOREM 5. Let pr be a program. If OKE)r (pr) = true,

then:

(1) spr (pr) is an extension signature ;

(ii) jpr (pr) is an algebra extension with extension signature
Spr (pr) .

5.5 Discussion

As indicated above the line (csp2) of Figure 6 departs from
the principle stated in Section 5.1 in that it keeps only
certain labels, namely those for which the global sorts and
operations of the procedure call are already global in the
specification containing this call. Informally, this re-
striction is necessary because otherwise these sorts and
operations could be dropped or renamed, and subsequently

be reintroduced (as "new" sorts and operations) with different
semantics. Removing this restriction is in principle possible
at the price of a more complex provenance function able to

keep track of these droppings and renamings.

It is interesting to note that - contrasting with, for
instance, CLEAR [Sa 84] - the solution for uniting identical
data types proposed here keeps the syntax and semantics of
the specification language unchanged. Instead, it merely

relaxes one of the context conditions.

By the way, the reason for introducing the provenance function

was to relax one of the context conditions. A similar function

able to keep track of renamings could provide OBSCURE
with an interesting aliasing feature - and thus enrich
the specification language. It might be interesting to

investigate this possibility.

6. Two simple examples

Figure 7 shows a specification of the data type "sets of
elements". It contains redundant information which could
easily be removed by adding syntactic sugar to the language
(cf [Le 85]). The model of the create construct is defined
with the algorithmic specification method [Lo 81, Lo 84].
According to this method - which, by the way, is very similar
to the one proposed in Standard ML [Mi 84] - the carrier set
of sort set is the term language generated by the operations
which are declarated to be constructors. Hence, it contains
words such as Emptyset and App(Emptyset, O). The interpre-
tation of the operations which are constructors is the
Herbrand interpretation. Hence the value of the operation
App for the arguments Emptyset and O is the word

App (Emptyset, O). The other operations are defined as
recursive programs in the sense of [Ma 74, LS 84]; a precise
syntax and semantics may be found in [Lo 84]. It is important
to note that after execution of the create construct the
elements of the carrier set may be accessed through the ("new")
operations only. The formulas in the axioms construct have
to be formulated in an appropriate logic, for instance in
the logic of strict algebras proposed in [Lo 84]. The
forget construct is necessary because the operation App does
not satisfy the closure condition implied by the subsequent
subset construct. This latter construct eliminates the
carriers containing duplicates. The quotient construct iden-
tifies carriers differing only by the order of occurrence

of their elements. Note that it is possible to do without
the subset construct by making the quotient construct also
identify carriers differing only by duplicates.

- 33 -

create

new sorts set

opns Emptyset : - set

App : set el - set
Insert : set el - set
Memberof : set el - bool
Subset : set set - bool
Nodup : set - bool

Eq : set set - bool

model

constructors Emptyset : - set

App : set el - set
programs

Insert(s,e) « if Memberof(s,e) then s else App(s,e)

Memberof (s,e) <« case s of
Emptyset : s
App(s',e') : if Equal(e,e') then true else Memberof(s',e)

Subset(s1,52) «= case s, of

Emptyset : true

App(si,e) : if Memberof(sz,e) then Subset(si,sz) else false
Nodup(s) « case s of

Emptyset : true

App(s',e):if Memberof(s',e) then false else Nodup(s')

Eq(s1,sz)“_i£ Subset(s1,52) then Subset(sz,s1) else false
global sorts el bool

opns Equal : el el - bool
true : - bool false : = bool
axioms formulas expressing that Equal : el el - bool is
an equivalence relation

forget opns App : set el - set

subset of set by Nodup : set - bool
quotient of set by Eq : set set - bool

FIGURE 7: An example of a specification introducing the
data type "sets of elements". The global sorts
and operations of the extension signature defined
by this specification are those listed above under
global, the new sorts and operations are those
listed under new, except for the operation

App : set el - set (See Section 6.1 for camments).

Figure 8 introduces the data type "pairs of sets of sets
of integers". Line (1) turns the specification of Figure
7 into a procedure. Line (2) to (5) introduce the sort
setofsetofint and the pertaining operations. According to
the top-down development principle this sort is intro-
duced by making use of the global sort setofint and
the pertaining operations; these are specified in lines
(4) to (5). Note that at least one of the renamings of
line (3) and (5) is necessary in order to avoid name
collisions and ambiguity at the execution of the compose
construct. In line (6) the specification is sent into
the environment as a parameterless procedure. The exact
definition of the model in line (7) is dispensed with.
The "new" sorts introduced by the program of Figure 9 are
pair, setofint and setofsetofint (but not set). "New"
operations are for instance

Insert : setofsetofint setofint - setofsetofint
and Insert : setofint int - setofint
The global sorts are i<nt and bool, the global operations
Equal : Znt int - bool, true : - bool and false : - bool.
The reader who has difficulties in keeping track of all
these global and new sorts and operations should remember
that OBSCURE is a language for interactive use and that an
OBSCURE implementation automatically updates and displays

the current global and new sorts and operations.

7. Conclusions

While providing essentially the same expressive power

as specification languages such as CLEAR Or ACT ONE, the
specification language OBSCURE appears to have a very
simple formal description. In particular, the use of
operational rather than denotational semantics provides

a transparent parameterization concept. The union of

- 35 -

create

Figure 7
quotient of set by Eq : set set - bool
is proc SET (sorts el opns Equal : el el - bool) (M

call SET (sorts setofint opns Eq : setofint setofin -bool) (2)
rename sorts set opns Emptyset : - set
as sorts setofsetofint opns Emptysetofsetofint :- setofsetofint

compose
call SET (sorts <nt opns Equal : iZnt int - bool) (4)

rename sorts set opns Emptyset : - set
as sorts setofint opns Emptysetofint : - setofint (5)
is proc SETOFSETOFINT() (6)

create (model introducing the sort pazr and the operations
Pair : ell el2 - pair, First : pair -ell, Second : pair - el2)

is proc PAIR (sorts ell el2)

call PATR (sorts setofsetofint setofsetofint)

canpose
call SETOFSETOFINT()

FIGURE 8: An OBSCURE program introducing the data type "pairs
of sets of sets of integers" (see Section 6.2 for

camments)

(2}

(7)

identical data types was realized without modifying

the language.

OBSCURE differs from the existing specification languages

by several features which we believe to be of practical
value. First, by interpreting a specification as an algebra
extension rather than as an algebra or a theory, the
specification language OBSCURE suggests top-down rather

than bottom-up development. Second, OBSCURE is designed
for interactive, on-line development of specifications.
Next, in its design as well as in its implementation

OBSCURE is concerned with both the development and the veri-
fication of specifications. Finally, OBSCURE allows a mild

form of pclymorphism on the basis of type inferencing.

Two future developments of OBSCURE are a generalization
of the language for loose specifications and the inclusion
of a construct expressing implementation (of a data type

by another one).

An implementation of OBSCURE based on [Le 85] is under
development (Figure 9). The program development module
will be completed before the end of 1985. The program
verification module is inspired from the AFFIRM-system

[Th 79, Mu 80, Lo 80].

Acknowledgments
We are especially indebted to Rod Burstall and Don Sannella

for several helpful discussions.

- 87 =«

User interface

' T

Program development] Y Program verification
—| Syntactic conditions Proof methads
— Semantic conditions —| simplification
—3 Rapid prototyping —{ Arithmetic

FIGURE 9: A rough scheme of the OBSCURE implementation under

construction

References

[BG 77] Burstall, R.M., Goguen, J.A., Putting theories
together to make specifications, Proe. 5th Joint Conf.
on Art. Int., Cambridge, pp. 1045 - 1058 (1977)

[EM 85] Ehrig, H., Mahr, B., Fundamentals of Algebraic
Specification, Springer-Verlag, 1985

[FGOM 85] Futatsugi, K., Goguen, J., Jouannaud, J.-P.,
Mesegquer, J., Principles of OBJ2, Proe. 12th POPL
Conf., pp. 52 - 66 (1985)

[Le 85] Lermen, C.W., The specification language OBSCURE,
Int. Rep. A85/11, Univ. Saarbriicken (1985)

[LL 85] Lermen, C.W., Loeckx, J., OBSCURE: A language
for interactive top-down specification, Int. Rep. A85/16,

Univ. Saarbriicken (November 1985)

- 38 =

[Lo 80] Loeckx, J., Proving properties of algorithmic
specifications of abstract data types in AFFIRM.
AFFIRM-Memo-29-JL, USC-ISI, Marina del Rey, 1980

[Lo 81] Loeckx, J., Algorithmic specifications of
abstract data types, Proc. ICALP 81, LNCS 115 (1981),

129 - 147

[Lo 84] Loeckx, J., Algorithmic specifications: A
constructive specification method for abstract data
types. Int. Rep. A84/03, Univ. Saarbriicken (1984).
To appear in TOPLAS

[LS 84] Loeckx, J., Sieber, K., The Foundations of
Program Verification, J.Wiley/Teubner-Verlag,
New York/Stuttgart (1984)

[Ma 74] Manna, Z., Mathematical Theory of Computation,
McGraw-Hill (1974)

[MG 84] Meseguer, J., Goguen, J.A., Initiality, Induction
and Computability in Nivat, M., Reynolds, J. (Eds.),
Algebraic Methods in Semantics, Cambridge Univ. Press, 1984

[Mi 84] Milner, R., The Standard ML Core Language.
Int. Rep. CSR-168-84, Univ. Edinburgh (1984)

[Mu 80] Musser , D.R., Abstract data type specification
in the AFFIRM System, IEEE Trans. on Softw. FEng.
SE-6, pp. 24 - 32 (1980)

[Sa 84] sannella, D., A set-theoretic semantics for
CLEAR, Acta Inform. 21, 5, 443 - 172 (1984)

[Sa 85] Sannella, D., The semantics of Extended ML,
draft (May 1985)

[ST 85] Sannella, D., Tarlecki, A., Program specification
and development in standard ML, Proc. 12tk POPL Conf.,
pp. 67 = 77 (1985)

- 39 -

[Sw 83] Sannella, D., Wirsing, M., A kernel language for
algebraic specification and implementation, Proc. Int.
Coll. FCT, LNCS 158, 413 - 427, 1983

[Th 79] Thompson, D.H. (Ed.), AFFIRM Reference Manual.
Internal Report, USC-ISI, Marina del Rey (1979)

APPENDIX

LEMMA 1: Let 1lso, lso' be lists of sorts and operations such
that lso has no duplicates and lso, lso' match. Let moreover
S be a set of sorts and @ a set of operations. If Q is
S-sorted, then Q[lso/lso'] is S[1lso/lso']l-sorted.

Proof

Let £ = (S5,9).

By definition the elements of Q[lso/lso'] are of the form
o[l 1so/1lso'], o € q.

Consider now an arbitrary element o 1lso/lso'] of

9[lso/lso']. By definition

o[1lso/1lso0'] = o! if o = o, for some o, of 1lso (1)
igh o i
(o)Z1"° """k else (2)
Sqre--rSp .

(using the notation of Section 3.3)

Incase (2) the lemma directly follows from the definition
of S[1lso/lso'] and the fact that @ is S-sorted. In case
(1) the lemma follows moreover from the condition (ii)

in the definition of matching. e

LEMMA 2: Let lso, lso' be as in Lemma 1. Let A be a

I-algebra with z = (S,Q). If
(1) r[1so/1lso'] is an algebra signature,
(ii) 1so' has no duplicates,
(iidi) r - 5150 (1so), glso (1so') are disjoint,

then Al 1so/lso'] is an algebra.

Proof
It is sufficient to prove that, for any ¢, d € S U @,
c[1so/1so'] = d[1so/1lso'] implies ¢ = 4

This directly follows from (ii) and (iii). R

- A2 -

LEMMA 3: Let E be an algebra extension with extension
signature (Zg,zn). Let lso, 1lso' be lists of sorts and

operations satisfying the following conditions:

(1) 1so has no duplicates ;

(ii) lso, 1lso' match ;

(iii) (Xg,zn)[lso/lso'] is an extension signature ;
(iv) Slso (1so) < Zg ?

(v) let (Sn,ﬂn) = Zn i

for any two operations o, o' € Q¢
o # o' implies o[lsoflso']l # o'[lso/lso']

Then E[1so/lso'] is an algebra extension.

Proof

By definition
E[1lso/l1lso'] = {(Al 1so/1lso'], B[lso/lso']) |
(A,B) € E, Allso/l1lso'] is a Zg[lso/lso']—algebra}
It must be proved that:
(a) E[lso/lso'] is a function (rather than merely a relation);
(b) a value of E[lso/lso'] is an extension of its argument;

(c) the values of E[1lso/lso'] are algebras .

Ad (a):

Let A, A'EﬁAlgz be such that Al 1so/lso'] = A'[1so/lso']. It

g
must be proved that

(E(A))[1so/1ls0o'] = (E(A'"))[1so/1s0']

Of course, it is sufficient to prove that A = A'.

Let ¢ be an arbitrary sort or operation from Zg. It is
sufficient to prove that A(c) = A'(c). By definition
of the notation A[1lso/lso’']

(c[lso/1lso'] , A(c)) € Allso/lso']

(c[1lso/1ls0'] , A'(c)) € A'[1lso/1lso']
As Al 1so/l1lso'] = A'[1so/1lso'] , A(c) = A'(c).

- A3 -

Ad (b):

We now prove that
Al 1so/1lso'] < (E[1so/1so']) (Al 1lso/1s0"'])

for any A € Algz
g

As E is an extension,
A < E(A)
Hence, by definition of the notation [1lso/lso'] applied
to algebras:
Al 1so/lso'] = (E(A))[1so/1lso']
or, by definition of the notation E[1so/lso']:
Allso/lso'] < (E[1so/1so0']) (Al 1so/1ls0']) .

Ad (c):

By (b) it is sufficient to prove that

(E[1so/1s0']) (Al 1so/1lso'])
is a function. By definition of the notation [1so/lso']
applied to algebra extensions:

(E[1so/1so0']) (Al 1so/1lso']) = (E(A))[1lso/1lso'] (1)
and by definition of the notation [1lso/lso'] applied to
algebra extensions the elements of (E(A))[1so/1lso'] are
of the form

(c[1so/1lso'], E(A) (c)) (2)
Hence, let c,d € Zg U Zn. It is sufficient to show
that c[lso/lso'] = d[1lso/lso'] implies E(A) (¢c) = E(A) (4).

We consider three cases:
o
(17) c,d € Zg

By (b) we have:
(E[lso/lso'])(A[lso/lso'])(c[lso/lso‘])=(A[lso/lso'])kilawlsoﬂ)
hence, by (1):
((E(A))[1lso/1lso']) (c[1so/1lso'])=(Al[lso/1lso']) (c[1lso/1s0'])
hence, by (2):
E(A) (c) = (Al 1lso/1lso']) (c[1so/1so'])

- A4 -

Similarly,

E(A) (d) = (Al 1so/lso']) (d[1so/1lso'])
Hence E(A)(c) = E(A) (d). Note that we implicitly used
the property that A[lso/lso'] is an algebra.

(2°

) cezr , dez_.

g n
In that case c[lso/lso'] = d[1lso/lso'] is impossible
by the condition (iii) of the Lemma.

(3°

) c, d € Zn.
By the conditions (iv) and (v), c[lso/lso'] = d[1lso/lso']

implies c = d. R

THEOREM 1: Let sp, csp be a specification and a composed

specification respectively. Let moreover e be a correct

environment.

(1) If OKSp (sp) (e) = true, then Ssp (sp) (e) is an ex-
tension signature.

(ii) If OKC (csp) (e) = true, then Scsp (csp) (e) is an

sSp
extension signature.

Proof

The values assigned to ssp (sp) (e) and 5csp (csp) (e) by

Figure 2 are pairs of signatures. It is necessary to show

that the notations used to represent these pairs of signatures
(such as ...[1lso/lso']) make sense and that these pairs

of signatures are extension signatures. Remember that by

its definition in Section 2.3 an extension signature is

a pair of signatures

((Sgr95) s (S ,9))

satisfying the following five properties:

(E1) bool € Sg’ true :- bool € Qg, false :- bool € Qg;
(E2) Qg is Sg—sorted;

(E3) (Sg,Qg), (Sn,Qn) are disjoint;

(E4) Qn is (Sg U Sn)—sorted;

(E5) Qg u e, is unambiguous.

- BB

The parts (i) and (ii) of the Theorem are proved by
simultaneous structural induction. The notations used
refer to those of Figures 2 and 3. The context conditions

referred to are those of Figure 5.

(cspl) The theorem follows from the induction hypothesis.
Note in this respect that the induction is on the structure
induced by the context-free grammar, not on the length of

the string (cf. [LS 84], p. 16, Exercise 1.2-5).

(csp2) Condition (E1) is satisfied because ZgZ satisfies
(E1) by induction hypothesis. (E2) follows from the context
condition (ii) (and from the induction hypothesis). (E3)
follows from the context condition (i) (and, again, from
the induction hypothesis). (E4) results from the induction
hypothesis. Finally, (E5) results from the context condi-

tion (iv).

(sp1) Conditions (E1) to (E5) directly result from the

context conditions (i) to (v) respectively.
(sp2), (sp3), (sp6), (sp7) hold by induction hypothesis.

(sp4) The notation = -Slso(lso) makes sense by the context
condition (ii). Conditions (E1) to (E3) and (E5) follow
from the induction hypothesis. Condition (E4) follows from

the context condition (i).

(sp5) The notation Zn[lso1/1502] makes sense because 1lsol
has no duplicates (see context condition (i)) and lsoi,

1lso2 match (see context condition (iii)). Conditions (E1)
and (E2) hold by induction hypothesis, Condition (E3)
follows from the context condition (v) (and from the
induction hypothesis). As Zg = Eg[lso1/lsoZ] by the context
condition (ii) and by induction hypothesis, condition (E4)
follows from Lemma 1. Condition (E5) results from the

context condition (vii).

- AB =

(sp8) First note that the value e(n) is defined thanks
to the context condition (i) . The notation (Zg,zn)[lso1/lso]

makes sense because 1lsol has no duplicates (as e is correct)

and lsol, lso match (by the context condition (ii)). Condition

(E1) follows from the fact that e is correct: (zg,zn) is an
extension signature and bool, true : - bool, false : - bool
are not in lsol. Condition (E2) and (E4) follow from Lemma
1. Condition (E3) and (E5) directly follow from the context

conditions (iii) and (v).

THEOREM 2: Let sp, csp be a specification and a composed
specification. Let moreover e be a correct environment.
(1) If OKsp (sp) (e) = true, then jsp (sp) (e) is an

algebra extension with extension signature

5Sp (sp) (e).

(ii) If OKcsp (csp) (e) = true, then gcsp (csp) (e)
is an algebra extension with extension signature
Scsp (csp) (e) .

Proof

As in Theorem 1 it will be necessary to show that the
notations used in Figure 3 make sense and that the

values assigned to jsp (sp) (e) and 3csp (csp) (e) are alge-
bra extensions. In the case in which these values are
defined by E(A), one has to check the following two
properties:

(A1) E(A) is a function;

(A2) E(A) < A

(cf. the definition of an algebra extension in Section 2.3).

The proof follows the same pattern as that of Theorem 1.
(csp1l) The proof follows from the induction hypothesis.

(csp2) First, it is necessary to show that the algebras
occurring in the expression of gcsp have the right signature
The signature of A is (Zg1 ~ an) U Zg2 and, hence, the no-
tation A | ng makes sense. The signature of the argument

of gsp (sp) (e) is Zg2 and that of its value is Zg2 u zn2'

= BT =

Hence the signature of

AU Hsp (sp) (e) (A | ZgZ) =AUB
is
z Uz z =
g2 n2 Y (g1 ~ znz) U ZgZ zg1 U Zg2 vz,
As this signature contains 2g1 the notation
(A U B) | 291
makes sense. Note that the signature of the value of
3csp (csp compose sp)(e) (A) 1is
Zg1 U zgz U 2n1 U an

- as required by Figure 2.

In order to prove Condition (A1) we first prove that

A UB

is a function. By induction hypothesis B = ZSp(sp)(e)(Alzgz)

is. Hence it is sufficient to prove that for each sort

or operation c from

(Zgz U an) n ((Zg1 ~ an) U Zgz)
one has
B(c) = A(c)
As Zgz and an are disjoint, (1) becomes
zg2 n ((zg1 NI, U zgz)
i.e. T

g2
As by induction hypothesis Condition (A2) holds for the

left member of (2), (2) becomes
A(c) = A(c)
By induction hypothesis

zcsp (csp) (e) ((A U B) | zg1)

and

B =3 (sp)(e)(A | £

sp)

g2

(1)

(2)

- BB =

are functions. Hence, in order to prove Condition
(A1) it is sufficient to prove that the union of these
two functions is a function, i.e. for each sort or

operation ¢ from

(z U zn1) n (zg2 U an) (3)

gl
one has

3CSP(CSP)(e)((AUB) I Zg1)(c) = B(c) (4)

Because of the context conditions (i) and (iii) one may

replace (3) by

n (c Uz (5)

L g2 n2)

gl
Consider first the case in which c¢ is from Zg1 n Zgz. As
by induction hypothesis Condition (A2) holds for each member

of (4), (4) becomes

(A U B)(c) = A(c)
i.e. A(c) = A(c)
Consider now the case in which ¢ is from Zg1 n an. Again,
(4) becomes
(A U B) (c) = B(c)
i.e. B(c) = B(c)

Finally, it is necessary to prove Condition (A2). Remember
that the signature of A is (I ~2Z ,) Uz .. Each sort

gl n2 g2
or operation from Zg1 ~ I, belongs to (A U B) | Zg1
and, by induction hypothesis, to

3csp (csp) (e) ((A U B) | zg1)

Each sort or operation from Zgz belongs to A | Zgz and,

by induction hypothesis, to

B = HSP (sp) (e) (A | Zg2)
(sp1) Condition (A1) results from the context condition (vi).
Condition (A2) directly results from the fact that the

expression of 3 is AU
Sp

(sp2) The consistency of the definition follows from the
context condition (ii) and from the validity of the closure
conditions.Condition (A1) follows from the very definition
of a subalgebra. Condition (A2) follows from the context

condition (i) and from the definition of the functions

Py t # s.

(sp3) As for (sp2)

(sp4) As 5sp (sp forget 1so) (e) (Zg, Zn - 5150 (1so0))
it is the case that z_ U (Zn - Slso(lso)) is an algebra signature.
As, moreover, the signature of Zsp (sp forget 1so) (e) (A) is

LI U IZ_ the notation

g n

-«

3gp (8P (@) (B) | (I U (3, - %), (150)))
makes sense. Condition (A1) is verified trivially. Condition
(A2) results from the induction hypothesis and the fact

that the signature of A is Zg

(sp5) Condition (A1) follows from Lemma 2. That this
lemma is applicable results from the following arguments:
1sol has no duplicates and lsol, lso2 match by the context
condition (iii); the condition (i) of Lemma 2 results from
Theorem 1 (and from the context condition (ii) implying
that

(Zg,zn[lso1/lso2]) = (Zg,zn)[lso1/lso2]) ;

the condition (ii) of Lemma 2 results from the context
condition (iv); the condition (iii) of Lemma 2 results
from the context conditions (v) and (vi). Condition (A2)
results from the induction hypothesis and from the context

condition (v) implying

(B[1so/1so0']) | Zg = B | Zg

(sp6) and (sp7) result from the induction hypothesis.

(sp8) By the context condition (i), e(n) is defined. As

e 1s correct, chp (csp) (e) is an algebra extension. The
property now follows from Lemma 3. The applicability of

this Lemma results from the following arguments. The
conditions (i) and (iv) of the Lemma follow from the fact
that e is correct. The conditions (ii) and (v) of the Lemma
follow from the context conditions (ii) and (iv) respectively.

The condition (iii) of the Lemma follows from Theorem 1. R

A9

THEOREM 3. Let 1d be a list of declarations. If OKld(ld) =

then %, .(1d) is a correct environment.

1d
Proof

The proof is by induction on 1d.
If 1d = € the theorem holds trivially.

Assume the theorem holds for 5ld(ld). We now prove that
it holds for
5ld(ld d) = 5ld(ld) u Ed(d)

Note first that Sld(ld d) is an environment by the context
condition (iv) and by the induction hypothesis. The con-

ditions (i), (ii) and (iv) in the definition of a correct

environment (see Section 4) correspond to the context con-

ditions (i), (iii) and (ii) of {d1) respectively. The con-
ditions (iii) and (v) in the definition of a correct
environment hold by Theorem 1 and 2; note that the
environment e of these Theorems is Sld(ld) and is correct

by induction hypothesis.

THEOREM 4. Let pr be a program. If OKpr(pr) = true, then:
(1) Spr(pr) is an extension signature ;
(ii) 3 __(pr) is an algebra extension with extension

pr
signature Spr(pr).

Proof
Direct from Theorem 1,2 and 3

LEMMA 4. Let sp, csp, e be a specification, a composed
specification and a correct environment respectively.
(1) If OKép(sp)(e) = true, then ?sp(sp)(e) is a function.

. ; _ ”
(ii) If OKCSp(csp)(e) true, then T

true,

sp(csp)(e) is a functhn.

- A10 -

Proof

The proof is again by simultaneous structural induction.

First note that Theorem 1 holds with OK replaced by OK'.
The reason is that the proof of Theorem 1 does not make
use of the context condition (iii) of (csp2). Hence the
expressions % __(...) (e) occurring in Figure 6 make sense

sp
(and represent extension signatures).

The proof of the Lemma for the cases (spl) and (sp8) is trivial.

The proof for the cases (cspl), (sp2), (sp3), (sp4d), (sp5),
(sp6) and (sp7) directly follows from the induction hypothesis.

The proof for the case (csp2) follows from the condition

(iii') and from the induction hypothesis.

LEMMA 5. Let sp, csp and e be a specification, a composed
specification and a correct environment respectively.
(i) Let (Zg,zn) — 5csp(csp)(e). For each
(c, (n, 1lso)) € vcsp(csp)(e)
one has ' < & _where (£',I!) =9 call n (lso e
n § S I (zhoh) = 8 ((1s0)) (e)

(ii) Similar to (i) with sp instead of csp.

Proof

The proof is by simultaneous induction as usual.

The cases (cspl), (sp2), (sp3), (sp4), (sp5), (sp6), (sp7)

- A11 -

hold by induction hypothesis.
The cases (csp2) and (sp8) hold by construction.

The case (spl) holdstrivially.

LEMMA 6. Let sp, csp, e be as in Lemma 5.
(1) If OKgsp(csp)(e) = true, then
(10) for each algebra A such that Ecsp(csp)(e)(A) is
defined and for each sort or operation ¢, name n

and Iist of sorts and operations lso such that

?csp(CSP)(e)(C) = (n,1s0)
it is the case that
csp(CSP)(e)(A)(C) = JSp(call n(lso))(e)(AlZé)(c)
where (Zé’zn) = -sp(call n(lso)) (e)
(20) 3csp(csp)(e) is an algebra extension with extension
signature Scsp(csp)(e).

(ii) Similar to (i) with sp instead of csp.
Proof

The proof is by simultaneous induction of the four properties.
Note that the proof of (i)(20) and (ii)(20) must only be given
for the case (csp2): for the other cases the proof of Theorem
2 does not make use of the context condition (iii) of (csp2)
and therefore remains valid. Note also that by Lemma 5 the
argument Alzé of 3 (call n(lso))(e) in the rlght hand
member of the equallty in (i) (1) (and in (11)(2)) makes

sense.

(csp1l) The Lemma follows from the induction hypothesis.

(csp2) Let us first prove (ii)(1o). Assume A, c, n, lso

such that

- 3 (csp compose sp) (e) (A) is defined (1)
- ? (csp compose sp) (e) (¢c) = (n, 1so) (I1)

It must be proved that
csp(csp camnpose sp) (e) (8) (¢) = 3 (call n(lso))(e)(AIZé)(c) (I11)
where (Zé’zn) Sp(call n(1lso)) (e)

- Al2 -

Fran (I) one deduces by definition of jcsp (see Figure 3):

- JCSP(CSp)(e)((A U B) | Zg1) is defined (Ia)

- B = Bsp(sp)(e)(A [Zgz) is defined (Ib)
From (II) one deduces by definition of ﬂcsp (see Figure 5):

- either vcsp(csp)(e)(c) = (n, 1lso) (ITa)

- or vsp(sp)(e)(C) = (n, lso) (IIb)

- or both

From (III) one deduces by definition of 3csp (see Figure 3) that
it is sufficient to prove
- either Jcsp(csp)(e)((A U B) | Zg1)(c)
= ZSp(call n(lso)) (e) (A | Zé)(c) (IIIa)
- or B(c) = JSp(call n(lso)) (e) (A | Zé)(c) (IIIb)

Let us distinguish the cases (IIa) and (IIb). Let us first

consider the case (IIb). By (Ib) the induction hypothesis is:

B(c) = Hsp(call n(lso)) (e) (A | Zgz | Zé)(c) (IV)
But by Lemma 5 (and the definition of Scsp) :
Ig S (zg1 NI UL, (V)
hence
A % 5! = A !
| g2 | g l g

and (IV) reduces to (IIIb). Let us now consider the case (IIa).

By (Ia) the induction hypothesis is:

BCsp(csp)(e)((A u B) | zg1)(c)

= Hsp(call n(lso))(e) ((A U B) | ¢ | Zé)(c) (VI)

gl
Again, by (V)

(AUB) | I | ' = (A UB) | I' (VII)

gl g g
Now, by assumption A is a ((Zg1 ~ Enz) U Zgz)—algebra.
By (V) (and by the induction hypothesis that A U B is an
algebra):
A UB I' = A ! VIII
() | g I g ()

(VI), (VII) and (VIII) reduce to (IIIa).

Let us now prove (ii)(2o). In the proof of Theorem 2 the

context condition (iii) of (csp2) was only used to transform

= Ald =

(zg1 §] zn1) n (zg2 U an) £3)
into
zg1 n (zg2 U an) (5)
In the present case (3) can merely be transformed into
1
Zg1 n (Zg2 U an) U Zn1 n an (5")

Hence the proof of Theorem 2 carries over provided one

also considers the extra case

c € Zn1 n an

For this case it must be proved that

ZCSP(CSP)(e)((A u B) | 291)(0)
= B(c) (IX)

By the context condition (iii') of (csp2) (see Section
5.3) and by induction hypothesis (and by the implicit

assumption in the proof of Theorem 2 that Hcsp(...)...
and B = ZSP(...)... are defined) one may write (IX) as:
Jsp(call n(lso))(e) ((A U B) | Zg1 | Zé)(c)

= Hsp(call n(lso))(e)(A | I | Zé)(c) (X)

g2
where (n, lso)==ﬂcsp(csp)(e)(c) = psp(sp)(e)(c) and
where Zé is defined as usual. By the same arguments as in the

proof of (ii)(1o) both members of (X) may be reduced to
1
HSp(call n(lso)) (e) (A | Zg)(c)

This concludes the proof of the case (csp2).
(sp1) The part (ii) (1°) of the Lemma holds trivially.

(sp2) The part (ii)(1°) of the Lemma follows from the
induction hypothesis. In fact, the construction of the
subalgebra keeps the carrier sets of the sorts different
from s unchanged; a similar remark holds for the operations

in which s does not occur.

(sp3) As for (sp2). Note that, strictly speaking, a
carrier of a sort different from s is transformed into

the equivalence class containing this carrier as its single
element. It is no great sin to identify such an equiva-

lence class with its element.

- A14 -

(spd4) through (sp7). Use the induction hypothesis.

(sp8) The proof of (ii) (1°) is direct.

R

THEOREM 5. Let pr be a program. If OKgr(pr) = true,

then:

(i) Spr(pr) is an extension signature ;

(ii) Zpr(pr) is an algebra extension with extension signature
5pr(pr).

Proof

The theorem directly results from Theorem 4 (which

is also valid with OK" instead of OK), Lemma 5 and Lemma 6.

	fb1985-15-0001_fertig
	fb1985-15-0002_fertig
	fb1985-15-0003_fertig
	fb1985-15-0004_fertig
	fb1985-15-0005_fertig
	fb1985-15-0006_fertig
	fb1985-15-0007_fertig
	fb1985-15-0008_fertig
	fb1985-15-0009_fertig
	fb1985-15-0010_fertig
	fb1985-15-0011_fertig
	fb1985-15-0012_fertig
	fb1985-15-0013_fertig
	fb1985-15-0014_fertig
	fb1985-15-0015_fertig
	fb1985-15-0016_fertig
	fb1985-15-0017_fertig
	fb1985-15-0018_fertig
	fb1985-15-0019_fertig
	fb1985-15-0020_fertig
	fb1985-15-0021_fertig
	fb1985-15-0022_fertig
	fb1985-15-0023_fertig
	fb1985-15-0024_fertig
	fb1985-15-0025_fertig
	fb1985-15-0026_fertig
	fb1985-15-0027_fertig
	fb1985-15-0028_fertig
	fb1985-15-0029_fertig
	fb1985-15-0030_fertig
	fb1985-15-0031_fertig
	fb1985-15-0032_fertig
	fb1985-15-0033_fertig
	fb1985-15-0034_fertig
	fb1985-15-0035_fertig
	fb1985-15-0036_fertig
	fb1985-15-0037_fertig
	fb1985-15-0038_fertig
	fb1985-15-0039_fertig
	fb1985-15-0040_fertig
	fb1985-15-0041_fertig
	fb1985-15-0042_fertig
	fb1985-15-0043_fertig
	fb1985-15-0044_fertig
	fb1985-15-0045_fertig
	fb1985-15-0046_fertig
	fb1985-15-0047_fertig
	fb1985-15-0048_fertig
	fb1985-15-0049_fertig
	fb1985-15-0050_fertig
	fb1985-15-0051_fertig
	fb1985-15-0052_fertig
	fb1985-15-0053_fertig
	fb1985-15-0054_fertig
	fb1985-15-0055_fertig
	fb1985-15-0056_fertig
	fb1985-15-0057_fertig

