REPORT ON THE 5TH INTERNATIONAL WORKSHOP ON
THE SEMANTICS OF PROGRAMMING LANGUAGES IN
BAD HONNEF, March 11 - 15, 1985

A 85/09

Edited by
Krzysztof Apt, Université Paris VII
Klaus Indermark, Technische Hochschule Aachen
Jacques Loeckx, Universitdt des Saarlandes

REPORT ON THE 5TH INTERNATIONAL WORKSHOP ON THE SEMANTICS
OF PROGRAMMING LANGUAGES IN BAD HONNEF

The Workshop was held in Bad Honnef, BRD, March 11 - 15, 1985,
and organized by Krzysztof Apt, Klaus Indermark and Jacques
Loeckx. There were several cool and rainy days in Bad Honnef
during that early Spring week. The conference site, the Physik-
Zentrum, provided an authentic, cozy atmosphere for contemplative
science -- pictures from the Twenties of Einstein and collabo-
rators at the "Zentrum" lined the dark corridors. Food and
accommodations can politely be called austere: certainly more
modest than at the Oberwolfach conference center, and not
comparable to the first-class. hotels where the American STOC,
FOCS and POPL meetings are typically held (at many times the

cost, of course).

Still, I had a more exciting scientific experience that week
than at any of these larger meetings, which should not have
surprised me. After all, the fun of our academic research-
oriented life-style, for me at least, comes from the chance

to trade ideas with other researchers who are deeply into the
same problems. When a talented group of active researchers are
carefully selected and brought together as they were in this

workshop, neither the weather, food, or rooms matters much.

While I love the opportunity to argue about the significance
and quality of papers, and thrive on the opportunity to button-
hole an author in the hall and learn about his work by asking
him questions about it, I've learned over the years that
listening to prepared lectures is much less useful to me. So

I rarely attend more than a couple a day, which makes me unfit
as a balanced reviewer. Having thus warned you, dear reader,
that my views are absolutely idiosyncratic, reflecting personal
interests and random attendence, I will say that I was most
interested in the on-going work reported by BERRY on real-time

programming, PLOTKIN on new foundations for domain theory,

KLOP on comparative concurrency semantics, JONES on boot-
strapping methodology, MESEGUER on equationally based pro-
gramming languages, BROOKES on matching correctness assertions
to program assertions, DERSHOWITZ and LESCANNE on rewrite

rule systems, and DE BAKKER on data flow semantics.

The abstracts below don't convey the vitality of the workshop
atmosphere, but will give a more accurate picture of the
complete activities there. I was delighted to attend and look

forward to repeating the experience.

Albert R. Meyer
Cambridge, Massachusetts
July 7, 1985

A MICROPROGRAMMING LOGIC

Werner Damm (Aachen)

We present a universal syntax-directed proof-system for the
verification of horizontal computer-architectures.

The system is based on the axiomatic architecture description
language AADL, which is sufficiently rich to allow the speci-
fication of target—-architectures while providing a concise model
for clocked microarchitectures.

For each description A € AADL of a host we show how to systemati-
cally construct a (Hoare-style) axiomatic definition of an A-
dependent high-level microprogramming-language based on S*.

The axiomatization of A's microoperations together with a power-
ful proof-rule dealing with the inherent low-level parallelism

of horizontal architectures allow for a complete axiomatic treat-
ment of the timing behaviour and dynamic conflicts of micro-

programs written in S*(a).

SPECIFICATIONS IN AN ARBITRARY INSTITUTION

Andrzej Tarlecki (Edinburgh)
(joint work with Don Sanella)

The pioneering papers on algebraic specification used many-sorted
equational logic as a logical framework in which specifications
were written and analysed. Nowadays, however, examples of logical
systems in use include first-order logic (with and without equali-
ty) , Horn-clause logic, higher-order logic, infinitary logic,
temporal logic and many others. Note that all these logical systems
may be considered with or without predicates, admitting partial
operations or not. This leads to different concepts of signature
and of model, perhaps even more obvious in examples like poly-
morphic signatures, order-sorted signatures, continuous algebras

or error algebras.

The informal notion of logical system has been formalised by
Goguen and Burstall who introduced for this purpose the notion

of Zinstitution.

The first and presumably most important application of the notion
of institution is its use in the theory of algebraic specifica-
tions. It turns out that most of the work on algebraic specifica-
tions, especially concerning specification languages, may be

done in an institution-independent way. We present a collection
of simple but very powerful specification-building operations and
give their semantics in an arbitrary institution. In this context
we outline a very simple and mathematically elegant view of the

formal development of programs from their specifications.

We also show how to use the framework of an arbitrary institution
to formulate (and prove) some classical model-theoretic results
at an appropriately general level. Finally, we briefly discuss
the need for some tools for constructing new institutions and

for combining institutions ("putting institutions together").

THE ESTEREL SYNCHRONOUS PROGRAMMING LANGUAGE
AND ITS MATHEMATICAL SEMANTICS

Gérard Berry (Sophia-Antipolis)

(joint work with Laurent Cosserat)

We present the real-time programming language ESTEREL and its
mathematical semantics. Contrarily to CSP-like languages,
ESTEREL is a synchronous deterministic language based on a
multiform notion of time and where communication is done by
broadcasting signals conveying possibly values. The basic idea
is to program a conceptually infinitely fast machine which can
react instantaneously to external signals and produce itself

signals.

The mathematical semantics is a structural operational semantics
given by conditional rewrite rules in Plotkin's style, and it
characterizes completely the termporal behavior of programs. There
are indeed three semantics: a static semantics which detects

"races" in programs, a behavioral semantics which defines the

behavior of a program in a non-constructive way, and a computa-
tional semantics which is a constructive version of the behavioral

semantics using a wavefront propagation algorithm.

The ESTEREL compiler implements a translation of ESTEREL programs
into small and efficient finite control automata, using both the
mathemtical semantics and a residual algorithm similar to
Brozowski's algorithm for translating regular expressions into
finite automata. The fact that the resulting automata are (usually)

small depends critically on the synchronous nature of the language.

FAIRNESS FOR FORK-JOIN PARALLELISM

Iréne Guessarian (Paris)

We address the issue of fairness for fork-join parallelism. Fork
join parallelism models for instance a synchronous merge and
more general synchronous sets. Surprisingly, fairness turns out
to lead to problems quite different from the fairness for asyn-
chronous sets. We define a global and a local notion of fairness,
show that they are incomparable. The global notion of fairness
can be described via oracles and rational languages on infinite
words. Finally, we show that there exist no "most general"

fair behaviour for synchronous nets.

NONREGULAR PDL: A RECENT RESULT + OPEN PROBLEMS

David Harel (Rehovot/Israel)
(joint work with M. Paterson)

A specialized recurring domino problem is introduced and shown
to be highly undecidable (ﬂ}—complete). It involves tiling the
strict upper positive octant of the integer plane with a par-
ticular domino appearing in each row/column combination. This
problem, coupled with some simple number-theoretic properties

of powers of 2, is used to prove that PDL with the new program

L =f{a" | iis a power of 2} is highly undecidable (n}—complete).

The proof is based on representing the sums {2l + 27 i, j 2 o}
as the upper octant of the integer grid, and finding ways to
"reach" the upper and right-hand neighbor of points therein,

and to single out the row/column combinations.

The result, and the way its proof depends so heavily on the
exponential nature of L, seem to strengthen interest in various
open problems, notably the status of the decision problem for
P(1)

a I

PDL + {LP}, for various polynomials P, where LP = { i > o}.

(During the wdrkshop Harel and A. Pnueli showed that the result
holds for all fixed exponential programs, i.e., Vk, PDL + Lk

‘I .
is n1—complete, where Lk = {al | i a power of k}.)

SOLVING RECURSIVE EQUATIONS BY ITERATIVELY DEFINED FUCTIONALS

Corrado Boehm (Rome)

Following results contained in [1] are first illustrated: If data
systems are given as heterogeneous free(anarchic) algebras and if
second order typed lambda-calculus is accepted as a programming
language then automatic synthesis paradigms exist both for repre-
senting elements of - and total functions belonging to the class

of iteratively definable functions on - such algebras.

As examples of free algebras, Booleans, natural numbers and binary
strings are exhibited together with some simple application of

the paradigms.

MAIN RESULT. Three schemas for recursive definition of binary
functions or predicates on N x N, N x B and N x N are proposed.
They share the property that each binary operator is curried (i.
e. it is considered as a functional which applied to the first
argument produces a unary function as result) and they can be

solved once for all by a double iteration.

Many program schemas or single programs like bounded while,
conversion of integers into binary strings, generalized
numbers, primitive recursion, etc. are proved to be instances

of some of the given schemas. The descriptive power of the best

schema, due to D. Fragassi, goes beyond the primitive recursive

functions.

[1] C. Boehm and A. Berarducci "Automatic synthesis of typed
A-programs on term algebras", submitted for publication to
T.C.S.

TYPES AND PARTIAL FUNCTIONS

Gordon Plotkin (Edinburgh)

We present a reformulation of Scott's theory with partial instead
of total functions.That is, we drop 1 as nontermination (which
corresponds to undefinedness instead - as in many classical
treatments, especially that of Kleene) but retain it when it
occurs as "no information". More generally elements of data

types are thought of as data and not as computations for data.
Mathematically, we treat the category of predomains (cpos less 1)
and partial continuous functions (continuous functions on

open subsets). We show this permits the usual development of
product, sum , function-space, lifting-and the solution of
recursive domain equations. Further there is a suitable metalanguage
which permits an operational semantics (at all types). This is
call-by-value but because of lifting, which enables computations
to be treated as data, call-by-name and lazy data types are
included too. The main theorem is that indeed for this language

undefinedness and nontermination coincide (at all types).

SYNCHRONIZATION TREE LOGICS

Joseph Sifakis (Grenoble)
(joint work with S. Graf)

We present a logic, called synchronization tree logic, for the

specification and proof of programs described in a simple term
language obtained from a constant Nil by using a set A of unary
operators, a binary operation + and recursion. The elements of

A represent names of actions, + represents non deterministic

choice, and Nil is the program performing no action.

The language of formulas of the logic proposed, contains the

term language used for the description of programs, i.e. programs
are formulas of the logic. This provides a uniform frame to deal
with programs and their properties as the verification of an
assertion t = f (t is a program, f is a formula) is reduced to

the proof of the validity of the formula t o f.

We propose a sound and under some conditions complete deductive
system for synchronization tree logics and discuss their relation

with modal logics used for the specification of programs.

IMPLEMENTATION PROBLEMS OF PROGRAMMING
LANGUAGES PROPER FOR HIERARCHICAL DATA TYPES

Hans Langmaack (Kiel)

A programming language proper for Hierarchical Data Types is
LOGLAN. It is an extension of SIMULA 67 and especially allows
prefixing of modules by classes at many levels. This language
construct entails semantics specification and implementation
problems. Based on the notion of static scope (ALGOL-1like)
expansion of programs induced by procedure calls, class initiali-
zations and prefix eliminations a pure static scope semantics

of LOGLAN-programs can be defined in the algebraic style of the
Paris school of Nivat-Guessarian. For implementation a new
principle of associating lists of display register numbers to
modules is introduced by means of complement modules. The number
of necessary display registers is bounded by the height of the
nesting tree of program modules. The proposed scheme of
addressing does not cause display register reloadings while
computing in one prefix chain. This pure static scope implemen-
tation of prefixing at many levels is more efficient at run

time than the existing implementation of LOGLAN with its quasi
static scope semantics because the number of necessary display

registers is given by the number of modules in a program.

AN EXPERIMENT IN PARTIAL EVALUATION:
THE GENERATION OF A COMPILER GENERATOR

Neil Jones (Copenhagen)
(joint work with Peter Sestoft, Harald Sondergaard)

A partial evaluator is a program (call it mix) written in a
programming language L, which takes as input a program p and a
known wvalue d1 of p's first input argument. It produces as out-

put a so-called residual program:

resid = L mix <p,d1>

which, if run on p's remaining input d2,...,dn , will yield the
same result as if p were run on all of its input data. (Notation:
L1 <d1""’dn> denotes the output (if any) obtained by running
L-program . on input data d1""'dn)‘

Let int be an interpreter written in L which implements another
programming language S. Futamura argued in 1971 that partial

evaluation could be used to compile from S into L:
target = L mix <int,s>

(where s is the S source program) and even to generate a compiler:
comp = L mix <mix,int>

by partially evaluating the partial evaluator itself. The logical

next step is the generation of a compiler generator by:
cocom = L mix <mix,mix>

To our knowledge these promising constructions had not been carried
out in practice prior to summer 1984, although some work in this
direction has been done by Beckman et al, Ershov, and Turchin.

This paper describes what we believe to be the first running

compiler generator ever automatically constructed by means of
partial evaluation.

The compilers produced turn out to be natural in structure,
reasonably efficient, and to produce reasonably efficient target
programs, which typically run about 20 times as fast as the inter-
preted source programs. The language L is a subset of pure Lisp,
and a program is a system of functions defined by mutual recur-
sion. A residual program consists of a set of variants of the
original equations, each specialized to certain known argument

values.

Partial evaluation is done in two stages. First, the program is
flow analyzed by a simple abstract interpretation, yielding as

output a heavily annotated version of the same program. Second,
the annotated version is transformed into a residual program by

applying rewriting rules.

The paper contains an analysis of some rather subtle problems
which had to be solved before a running mix could be constructed.
These included developing an adequate strategy for unfolding
function calls, and an analysis of cause and effect in the compu-
tation of L mix <mix,int>, particularly as regards the size and

speed of the resulting compiler.

PRINCIPLES OF OBJ2

José Meseguer (SRI International)

The talk described joint work with K. Futatsugi, J.A. Goguen
and J.-P. Jouannaud on the OBJ2 Programming Language [1].

Besides implementing equational logic, including of course
Abstract Data Types, OBJ2 has two main new semantic ideas:
1. semantic - not just syntactic - interface specifications for

generics

= using "pushout" semantics for theories, as in CLEAR,

- which supports reliable reusability of modules, and
2. subsorts, which support

- multiple inheritance

- both compile and run time error parse error detection

- specification of partial operations

- polymorphism, and

- exception handling

Subsorts and generics give much of the syntactic flexibility
of untyped languages, in particular,

- runtime typechecking and

- polymorphism

plus all advantages of strong typing.

Besides giving an overview of OBJ2, its mathematical and opera-
tional semantics, both based on the theory of order-sorted
algebras [2], [3] were discussed. During the last part of the
talk, the languége Eqlog [4], which contains both OBJ2 and Pro-
log as sublanguages, was presented. Eqlog unifies functional
programming and Horn-clause programming in a single logical
framework (Horn-clause logic with equality). Its operational
semantics is logically complete, and allows computation of
functions (via rewrite-rules), querying of predicates (& la
Prolog, but using narrowing instead of ordinary unification),
and solution of equations (by narrowing).'quog has parameterized
user-definable abstract data types (4 la CLEAR) and inheritace,

all with a rigorous semantics.

[1] Futatsugi, K., Goguen, J-A., Jouannaud, J.P., Meseguer, J.,
"Principles of OBJ2", Proc. 1985 POPL Conference, 52 - 66, ACM

[2] J.A. Goguen, J. Mesequer, "Order-Sorted Algebra I", SRI
Tech. Report, 1985

[3] J.A. Goguen, J.-P. Jouannaud, J. Meseguer, "Operational
Semantics for Order-Sorted Algebra", to appear in ICALP '85

[4] J.A. Goguen, J. Meseguer, "Equality, Tapes, Modules, and (why
not?) Generics for Logic Programming”, J. Logic Programming,
2: 179 - 210, 1984

FUNCTIONAL DEPENDENCIES BETWEEN OBJECTS IN INTERACTIVE PROGRAMS

Harald Ganzinger (Dortmund)

Interactive programs maintain collections of objects. These
objects are not totally unrelated. Some objects may be represen-
tations of others. Updating an object requires to subsequently
update those objects which depend on the former. In many cases

these dependencies are of a functional nature. Examples include

the relation between target and source programs and the repre-
sentation of a piece of text on a display depending on an
internal text object together with formatting information. We
propose that such programs explicitly notify the system's kernel
about all currently existing dependencies. This allows the kernel
to automatically update object representations upon changes.
Such a mechanism must allow for dynamically changing the dependency
graphs. Incremental updating requires, additionally, knowledge
about the current position of complex objects (e.g. display)

into logical submits (e.g. windows). This position itself may
change in time, leeding to a multi-level model of object depen-

dencies.

AN AXIOMATIC TREATMENT OF A PARALLEL PROGRAMMING LANGUAGE

Stephen D. Brookes (Pittsburgh)

The talk described a semantically-based axiomatic treatment of a
parallel programming language with shared variable concurrency

and conditional critical regions, essentially the language dis-
cussed by Owicki and Gries. We use a structural operational se-
mantics for this language, based on work of Hennessy and Plotkin,
and we use the semantic structure to suggest a class of assertions
for expressing properties of commands. We then define syntactic
operations on assertions which correspond precisely to syntactic
constructs of the programming language; in particular, we define
sequential and parallel composition of assertions. This enables

us to design a truly compositional proof system for program pro-
perties. Our proof system is sound and relatively complete. We
examine the relationship between our proof system and the Owicki-
Gries proof system. Our assertions are more expressive than
Owicki's, and her proof outlines correspond roughly to a special
subset of our assertion language. Owicki's parallel rule can be
thought of as being based on-a slightly different form of parallel
composition of assertions; our form does not require <interference-
freedom, and our proof system is relatively complete without the
need for auxiliary variables. Connections with other work, includ-
ing the "Generalized Hoare Logic" of Lamport and Schneider, and
with the Transition Logic of Gerth, are discussed briefly.

COMPOSITIONAL SEMANTICS FOR REAL-TIME DISTRIBUTED COMPUTING

Willem P. de Roever (Nijmegen, Utrecht)

A compositional denotational semantics for a real-time distributed
language is given, based on linear history semantics. Concurrent
execution ist not modelled by interleaving but by an extension of
the maximal parallelism model of Saluschi's, that allows for

the modelling of transmission time for communications. The impor-
tance of constructing a compositional semantics (and in general

a compositional proof theory) is stressed from the point of view
of layered top-down design of real-time programs, since the
connection between a compositional semantics and a compositional
proof theory is a close one, as argumented in the work of

Soundararajan.

A SEMANTIC ALGEBRA FOR PASCAL

Peter Mosses (Aarhus)
(joint work with David Watt)

Existing standards and reference manuals for programming languages
usually give formal (=mathematically-precise) specifications of
syntax, but semantics is specified informally, in natural language.
Why are language designers and standardizers so reluctant to

use formal semantics - in particular, denotational semantics?
Perhaps because the emphasis in the development of denotational
semantics has been on obtaining the "right" denotations, regard-
less of the notation used to specify them. It is not easy for

the reader of a denotational description to deduce the operational
properties of constructs (e.g. order of evaluation, scope rules)
from their denotations. Moreover, there are some pragmatic diffi-

culties concerning modifiability and modularity.

We advocate the use of semantic algebras to improve the pragmatic
aspects of denotational semantics. A semantic algebra is just an
abstract data type whose values include "actions" (as well as
ordinary data), and whose operations include “conbinatoré"

corresponding to simple ways of putting actions together (e.qg.

sequentially). It is possible to obtain semantic algebras with
actions by systematic combination of standard semantic algebras

with purely functional, imperative and declarative actions.

We have obtained a semantic algebra with actions that correspond
to the statements, expressions, declarations, etc. of PASCAL.
(There are about 30 action combinators and constants, which is
not so bad!). We are currently fomulating semantic equations for
PASCAL, with the aim of demonstrating that the essence of the
recent ISO Standard can be captured in a comprehensible, formal

specification.

COMPLETENESS OF COMPLETION

Nachum Dershowitz (Urbana)

(joint work with Leo Marcus, Andrzej Tarleckt)

We mention some problems concerning the construction of term
rewriting systems, specifically by the Knuth-Bendix completion
procedure, and their connection with equational theories. We

look for conditions that might ensure the existence of a finite
canonical rewriting system for a given equational theory and that
might guarantee that the completion procedure will find it. We
examine uniqueness of term-rewriting systems and the need for

backtracking in implementing Knuth-Bendix.

THE NOTIONS OF SYMMETRY AND GENERICITY:
THEIR APPLICATION TO CSP DISTRIBUTED SYSTEMS

Luec Bougé (Paris)

What criteria are to be considered for assessing quality of a given
distributed system? Traditionally, efficiency as measured by
bit/message complexity is required almost exclusively. We propose

here another family of criteria: knowledge-based criteria. Those

criteria analyse distributed systems in terms of knowledge.
Initially, each process has some piece of knowledge. A process
may increase its knowledge only through explicit interactions with

its environment, namely exchanges of message.

Symmetry expresses that knowledge transfers within the system
are isotrope. If some direction is privileged by some compu-
tation then some other direction could be privileged as well

by some other computation. Previous definitions of symmetry
were syntactical and suffer thus several flaws. We propose a
semantical definition in the framework of CSP. We have studied
the existence of symmetric electoral system and we have obtained
several positive and negative results. Symmetry is preserved by
"layer" composition. We show that if its communication graph
admits a symmetric electoral system then an algorithm can be
transformed into a symmetric equivalent one. Several methods

of symmetrization can be described: differed allocation,

superposition, cooperation.

Genericity expresses that processes have initially no knowledge
of their global environment. In other words, processes may adapt
themselves to various environments in various systems. Systems

of a generic family of systems are thus made up of standard
"chips" (processes) plugged in their communication graph. - We

give a syntactial definition of genericity for family of
distributed systems. Genericity is preserved by "layer" composi-
tion. We consider families where processes differ only by expli-
cit assignment of communication graphs to some variable (explicit
knowledge) . Such families can be transformed into equivalent

generic ones. Genericization is possible thanks to the existence

of a (symmetric) generic solution to the Graph Exploration problem:
this solution is then used to let processes learn their global

environment.

TIME, KNOWLEDGE, BELIEF AND THE LOGICS OF PERSISTENCE

Daniel Lehmann (Hebrew University/Israel)

The logics of time and knowledge were studied in a previous paper
(P.O.D.C. 84).

The notion of belief should play an important role in the des-

cription of many A.I. systems. Somebody believes formula b if

he is ready to act on the assumption that b is true. A logical
system for belief and knowledge (without time) is proposed.

Questions concerning the persistence of beliefs are raised.

TERMINATION PROBLEMS IN REWRITING SYSTEMS

Pierre Lescanne (Nancy)

Termination (sometimes called uniform termination) is essential
for proving total correctness of rewriting programs but also
for deriving confluence or Church-Rosser property from local
confluence. In this talk we present works done at Nancy with
Alhem Bencheriffa and Isabelle Gnaedig on tractable procedures
for proving termination of rewriting systems. One is based

on a polynamial interpretation and another one on an auxiliary
rewriting system. These methods are illustrated by running the

Knuth-Bendix completion procedure on the three axioms

(An) (x +y) +2z2=x+ (y + 2)
(C) X +y=y + X
(E) f(x) + £(y) = £(x + vy)

or only on (A) + (E). They are indeed really sensible to the

ordering that is used to prove the termination.

A PARTIAL CORRECTNESS LOGIC FOR PROCEDURES

Kurt Sieber (Saarbriicken)

We extend Hoare's logic by allowing quantifiers and other logi-
cal connectives to be used on the level of Hoare formulas. This
leads to a logic in which partial correctness properties of
procedures (and not only of statements) can be formulated ad-
equately. In particular it is possible to argue about free
procedures, i.e. procedures which are not bound by a declaration
but only "specified" semantically. This property of our logic
(and of the corresponding calculus) is important from both a

practical and a theoretical point of view, namely:

- Formal proofs of programs can be written in the style of
stepwise refinement.

- Procedures on parameter position can be handled adequately,
so that some sophisticated programs can be verified, which

are beyond the power of other calculi.

Our approach is presented more precisely in: A partial correct-
ness logic for procedures, Internal Report A 84/13, Fachbereich

Informatik, Universitdt Saarbriicken, 1984

A COMPOSITIONAL MODEL FOR BIDIRECTIONAL CIRCUITS

Glynn Winskel (Edinburgh)

Languages and semantics are presented for static and dynamic
circuits. The languages include a parallel composition - connect-
ing circuits at common connections - and restriction - hiding,
or insulating, from the environment all connections not in a
set of connections. The model explains the behaviour of a
compound circuit in terms of the behaviour of its constituents.
It captures the bidirectional nature of circuits and works for
a variety of voltage and conduction strengths. A static cir-
cuit is modelled as the set of static configurations it can
settle into. The language for dynamic circuits is a variant of
Milner's SCCS. Its monoid of actions consists of the static
configurations with a binary composition. The language and its
model provide a foundation for the construction of simulators
and proof systems for circuits, and the relation of models at

different levels of approximation.

ISSUES IN THE SEMANTICS OF VARIOUS CONCURRENT MODELS

Amir Pnueli (Rehovot/Israel)

Different features of computational models for concurrency are
considered, with an evaluation of their effect on the resulting
temporal semantics. A simple language of nonterminating programs

is presented with its associated temporal semantics. The semantics

is simple, continuous, compositional, fair but not fully abstract.
The temporal semantics leads to a compositional proof system

that uses maximal fixpoint induction to handle recursion.

FAILURE SEMANTICS WITH FAIR ABSTRACTION

J.W. Klop (Amsterdam)
(joint work with J. A. Bergstra, E. R. Olderog)

We investigate different treatments of divergence in some well-
known semantics for processes, notably bisimulation semantics
and failure semantics. Abstraction from divergence in some pro-
cess algebra means that a given process expression which entails
divergence, such as x = ix + a where i is an internal step,

is equal to an expression without divergence (after hiding i).
'Fair' refers to the assumption that not always the internal

option i is chosen.

While in bisimulation semantics abstraction from divergence is
easy, it is more problematic in failure semantics and some authors
even adopt the principle of "catastrophic divergence" which de-
clares every process with an immediate divergence possibility
equal to CHAOS. Indeed, adoption of the abstraction principle
KFAR (valid in bisimulation semantics) would lead in failure
semantics at once to inconsistency, understood here as the iden-
tification of processes with different deadlock behaviour. However,
there is an intermediate possibility (between KFAR and CHAOS),
namely abstraction from 'unstable divergence', where a divergence
is unstable if one of its exit options starts with an initial
1-step (as in x = ix + ta). Thus we arrive at three main theories
whose difference in the treatment of divergence can be concisely
described by means of a divergence or delay operatQr A : (i)

A = 1t in bisimulation semantics yields fair abstraction from
divergence with periodically recurring exit options; (ii) in
failure semantics At = 1 leads to abstraction from unstable diver-
gence; (iii) in failure semantics AS = § leads to catastrophic
divergence. Here '71' is Milner's silent move and ¢ is deadlock.

All three theories are mutually inconsistent.

MODAL LOGICS FOR APPLICATIVE PROGRAMS

Peter Pepper (Minchen)

We consider the suitability of various modal calculi for reasoning

about applicative programs.

With "positional logic" we can talk about properties holding at
specific points of a program (thus obtaining an analogue of
Hoare-style logic). The resulting formalism has important appli-

cations in particular in connection with program transformations.

By combining ideas from "positional” and from "temporal" logic,

we arrive at a system that allows us to reason about the operational
behaviour of applicative programs. This leads in particular to

a formalism for specifying and verifying applicative communicating

processes ("stream-processing functions").

Finally one can add the "choice modalities" possibly and necessarily
in order to cope with nondeterminism. By combining this logic
with (linear-time) temporal logic we obtain the calculus of

"branching-time logic".

The presentation concentrates on the model-theoretic foundations
rather than on the calculi themselves and their meta-logical

properties.

ALGEBRAIC CHARACTERIZATION OF MODELS FOR A-CALCULUS

Manfred Broy (Passau)

Churchs A-calculus is specified by a partial heterogeneous hierar-
chical abstract type. Then a model of A-calculus is a partial
heterogeneous algebra fulfilling the basic axioms and the
hierarchy-constraints. Basically the existence of such an algebra
follows from general theorems about models of partial abstract |
types. Therefore a model-theoretic treatment of A-calculus is
possible without looking at monotonicity or continuity proper-

ties nor solving the problem of reflexive domains.

REAL TIME CLOCKS VERSUS VIRTUAL CLOCKS

Krzysatof R. Apt (Paris)

The problem of detection of termination in a distributed environ-
ment is one of the classical issues in the area of distributed
computing. It has been first posed and solved by Francez in the
context of CSP programs and soon after rediscovered in an abstract
setting by Dijkstra and Scholten. The solutions presented in the
literature assume an existence of a single process which is supposed
to detect termination of the system. In some situations this

assumption can be unsatisfactory.

The aim of this talk is to systematically develop symmetric
solutions to the problem. The initially used global real time
clock is eventually replaced by local virtual clocks. A depen-
dence between the degree of clock synchronization and the effi-
ciency of the solutions is indicated. The development of the algo-
rithm shows how the initial assumption of an existence of a global
real time clock can simplify the task of designing distributed

programs.

BRINGING COLOR INTO THE SEMANTICS OF NONDETERMINISTIC DATAFLOW

J. W. de Bakker (Amsterdam)
(joint work with J. J. CH. Metjer, J.I, Zucker)

Ever since the introduction of Kahn's highly successful model of
deterministic dataflow computation attempts have been made at gene-
ralizing his ideas to a nondeterministic setting. References in-
clude KELLER, BROCK & ACKERMAN, ARNOLD, BOUSSINOT, ABRAMSKY,
'KOSINSKI, PARK, PRATT, BROY, FAUSTINI, BACK & MANNILA, BERGSTRA &
KLOP and STAPLES & NGUYEN. Our paper presents a new approach, based
on a denotational model incorporating the notion of coloring the
data ("tokens") which flow around in a dataflow net, in the sense
as described in DENNIS or WATSON & GURD. In an operational frame-
work, different colors are used to distinguish the data caused by
different, in particular nested, iterations. (There are more

reasons for using color in actual implementations which need not

concern us here.) Denotationally, we exploit this idea by using
different bottom elements, viz. as many as there are different
iteration (or, rather, recursion) constructs in a given net. The
presence of different bottom elements induces a corresponding
variety of associated denotational not;on. That is, color is used
as a parameter in each of the usual concepts constituting the
model. Thus, ordering, complete partially ordered set (cpo),
closedness etc. are all defined with respect to a given color.

It was a pleasant surprise for us to discover that this approach
is not only natural in sofar as it derives from actual operational
considerations, but also allows us to overcome the various substan-
tial problems present in the design of a natural model for non-

deterministic dataflow.

A second technical tool is the notion of c-prolongation of a
function which throws out operationally undesirable elements.
The main technical result is the equivalence of simultaneous vs.
iterated least fixed points in the setting with colors and

c-prolongation.

PARALLEL DECOMPOSITION OF SPECIFICATIONS

E.-R. Olderog (KZel)

We are aiming at a methodology for the construction of concurrent
processes from their specifications. As known from sequential
programming, this construction should proceed by a systematic appli-
cation of transformation rules. But for concurrent programming

a new type of transformation is important: the decomposition of

specifications into parallel components.

We present our ideas in the framework of TCSP, a simple kernel
language for concurrency. Our specifications describe both safety

and liveness properties.

A key point in our approach is to allow a free mixture of specifi-
cations with the pregramming notation of TCSP. This enables a
smooth formulation of our transformaétion rules which deal with
initial communication, parallel decomposition and hiding. The

strategy in applying these transformations is to derive a system

- 20 -

of recursive implications from the initial specification, which

finally yields a recursive TCSP program.

In the talk we concentrate on parallel decomposition and demon-
strate its power in constructing increasingly complex schedulers
for systems of readers and writers. Our approach is described

more fully in:

E.-R. Olderog, Specification-oriented programming in TCSP, Bericht
Nr. 8411, Institut fiir Informatik u. Prakt. Math., Univ. Kiel, 1984

SAFETY AND LIVENESS PROPERTIES IN PTL:
CHARACTERIZATION AND DECIDABILITY

W. Thomas (Aachen)

In [1], formulas of propositional temporal logic (PTL) including
operators for the past are considered, and such a formula is

said to represent a safety property if it is equivalent to some
formula og where g only speaks about the past. Liveness proper-
ties are defined similarly in terms of formulas ¢q, 0¢gq, ¢0Oq.

We characterize these properties of PTL-formulas, e.g. by counter-
free w-automata with appropriate acceptance conditions (as intro-
duced by Landweber). Combining this with a decidability result

of Perrin which implies that PTL-definability is decidable for
w-regular sequence sets, the above safety and liveness properties

are shown to be decidable for PTL-formulas.

[1] O. Lichtenstein, A. Pnueli, L. Zuck, The glory of the past,
Logics of Programs Conf. 1985

COMPLEXITY OF PROGRAM FLOW-ANALYSIS FOR STRICTNESS:
APPLICATION OF A FUNDAMENTAL THEOREM OF DENOTATIONAL SEMANTICS

Albert R. Meyer (Massachusetts Institute of Technology)

Call-by-value strategy specifies that evaluation of the following

functional expression would not terminate.

LETREC
f(x,y,2z) = IF x<0O THEN y ELSE f(x-1,z,y) FI
AND
g(z) = g(z)+1
IN
£(2*2,1,9(0))
END

The source of the trouble is the divergent argument g(0). In
contrast, call-by-need strategy postpones evaluation of g (O0)
until it is needed in evaluating the body of f -- which it
isn't -- and ultimately terminates with the value 1. A function
is OPERATIONALLY STRICT in its kth argument if its CALL-BY-NEED
application to some arguments fails to terminate whenever
evaluation of the actual kth argument fails to terminate. It is
OK to evaluate operationally strict arguments at "apply time"
according to call-by-value strategy, even when call-by-need
semantics is specified. The f above is NOT operationally strict

in its third or second arguments, but is in its first.

Call-by-need yields a mathematically more attractive semantics,
but call-by-value is generally more efficient. This motivates

the question of analyzing declarations to determine which argu-
ments are strict. We discuss the possibility of carrying out

an abstract "strictness flow-analysis" of functional programs,
pointing out undecidability and complexity results. The
investigation provides a case study of how denotational semantics
yields an algorithmic solution to an operationally specified

program optimization problem.

- 22 -

In the finitely typed case without any interpreted functions
(including conditional), the problem is decidable but of
iterated exponential complexity. Strictness analysis for
first-order declarations (like f above) turns out to be

complete in deterministic exponential time.

	fb1985-09_0001
	fb1985-09_0002
	fb1985-09_0003
	fb1985-09_0004
	fb1985-09_0005
	fb1985-09_0006
	fb1985-09_0007
	fb1985-09_0008
	fb1985-09_0009
	fb1985-09_0010
	fb1985-09_0011
	fb1985-09_0012
	fb1985-09_0013
	fb1985-09_0014
	fb1985-09_0015
	fb1985-09_0016
	fb1985-09_0017
	fb1985-09_0018
	fb1985-09_0019
	fb1985-09_0020
	fb1985-09_0021
	fb1985-09_0022
	fb1985-09_0023
	fb1985-09_0024
	fb1985-09_0025

