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Many-sorted algebras form a useful and adequate concept
which allows for a mathematical modelling of "data types".
As such, many-sorted algebras are often admitted to con-
tain empty carrier sets. While this is not a source of
problems from an algebraic, respectively a categorical
point of view, empty carrier sets are a nuisance if it
comes to logic. This has been recognized by many authors
(see e.g. [KR 71], [M 761, [GM 81]). Actually, Goguen
and Meseguer proposed in [GM 81] to attach "variable
declarations" to equations, and to extend the equational
calculus accordingly. Their solution to the "empty
carriers problem" is indeed elegant and has been widely
adopted. The appropriate extension of the equational
calculus, however, does not seem to be well understood.
In several papers Goguen and Meseguer discuss the exten-
sion of this calculus to many-sorted algebras with
possibly empty carrier sets, but most of their proposals
are misleading or incorrect. We feel that it is there-
fore justified to discuss the matter again, hoping that

this helps clarifying the situation.



Given a signature SIG = (S, OP) we write equations as
(X, L = R)
where X = (X ) is a (possibly infinite) S-sorted set

s’'sc S
of variables, and L, R € TOP(X) are SIG-terms of the same

sort built over X. Informally, ({x1,x2,...}, L = R)
stands for VX1 Xgreen - (L = R). The key problem in ex-
tending the classical equational calculus to many-sorted
algebras with possibly empty carrier sets, is to provide
rules allowing the set X of wvarZable declarations to

shrink or grow.

The following observations reflect a solution to this

problem:

(1) a set of variable declarations can always grow with-
out affecting validity, i.e.:
If the equation (X, L = R) is valid in a SIG-algebra
A, and if X < Y, then the equation (Y, L = R) is also

valid in A.

(2) the shrinking of a set of variable declarations does
not affect validity if and only if the shrinking
does not lead to a "dying-out" of sorts, i.e.:

If the equation (X, L = R) is valid in a SIG-algebra
A, if Yy < X, if L, RE TOP(Y) and, finally, if

for all s € S:
~ X, # @ implies TOP,S(Y) P (*)

then the equation (Y, L = R) is also valid in A.
Conversely, if the equations (X, L = R) and (Y, L = R)
do not satisfy the condition (*), then there is a
SIG-algebra A in which (X, L = R) is wvalid but not

(Y, L = R). Note that the condition (*) is trivially

satisfied for any sort s with YS £ Q.



These two observations lead to the following eguational
calculus for many-sorted algebras with possibly empty

carrier sets:

R1:

(reflexivity)
l_ (X, t = t)
for all t € TOP(X)
R2: - (X, t1 = t2)
(symmetry)
- (X, t2 = t1)
for all ti, t2 € TOP(X)
R3: - (X, t1 = t2) - (X, t2 = t3) (transitivity)
- (X, t1 = t3)
for all t1, t2, t3 € TOP (X)
R4: - (X, t1 = t2)
— — (substitution)
F (Y, h(t1) = h(t2))
for all t1, t2 € TOP(X)
and for all assignments h : X —»TOP(Y)
RSZ l—' (XI t1 = t2)

(replacement)

- (XU Y, h(t) = g(t))

for all t1, t2¢€ TOP(X) and t € TOP(Y)

and for all assignments h, g : Y - TOP(X u Y)
such that for all y € Y
either h(y) = gl(y)
or h(y) = t1 and g(y) = t2

Here h and § denote the unique homomorphic extensions
of h and g respectively (note, this is just an elegant
way of expressing simultaneous substitution). It is

shown in [EM 85] that this calculus is correct and complete.



The growing of the set of variable declarations is hidden
in the rule R4: Choosing Y such that X <« ¥ and h such
that h(x) = x for all x £ X, we may derive (Y, tl.= t2)
from (X, t1 t2).

The shrinking of the set of variable declarations is also
hidden in R4: Suppose t1, t2 € TOP(Y) with Y < X. Choose
h such that

_Jy if ye y
h(y) ‘{ t, 1f Y€ X-Y

where ty denotes an arbitrary term in T,._(Y) which exists

OoP
by condition (*). We then may derive (Y, t1 = t2) from

(X, t1 = t2).

Note that the rule R5 also allows the growing of the

set of variable declarations.

Of course it is possible to explicitly express the growing
and shrinking of the set of variable declarations by

two additional rules:

R6: - (X, t1 = t2)
(abstraction)
I_' (Y, t1 = t2)
for all Y with X < Y
and for all t1, t2 € TOP(X)
S X, £ = t2) (concretion)
- (Y, t1 = t2)
for all t1, t2 € TOP(Y)
and for all Y with ¥ < X such that
for all s € S,
XS # @ implies TOP,S(Y) # @

but, as we have seen above, these rules do not add to the

expressive power of the calculus.



As an example consider the following specification SPEC:

sorts: s, bool, d

opns: T:- bool

F: - bool
C:s = bool
D:s -d
egns: ({x:s,y:s,z:d}, C(x) = T)
({x:s,y:s,2:d}, C(x) = F)

According to the rules of the equational calculus we can

derive the following equations:

el : ({x:s,y:s,z:d}, T = F)
e2 : ({x:s,z:d}, T = F)

e3 : ({y:s,z:d}, T F)

ed : ({y:s}, T = F)

but we can not derive:

e5 : ({z:d}, T = F)
e6 : (@, T = F)

Note, that e4 is derivable (from e3) since there is still
a term of sort d, namely D(y), saying that the sort d

has not died out. Accordingly e5 cannot be derived since
no term of sort s exists, while it existed in e3.

And indeed the algebra A with carrier sets

AS = ¢ ’ AbOOl = {Tl(p} 14 Ad = {6}
and operations

TA =1 , FA = ¢ , CA and DA are the empty function

is a SPEC-algebra, but does not satisfy e5. By the same

argument e6 is not derivable nor valid in A.

Coming back to the calculi given by Goguen and Meseguer,

we have the following situation.

(1) In [GM 81] a 6-rule-calculus is proposed which
implicitly assumes that the sets of variable declarations

are finite. While being correct and complete the calculus



is misleading. Having remarked that rules (1) to (4)
form a correct but incomplete calculus the authors add
two rules corresponding to abstraction and concretion
respectively. Actually it turns out that the abstraction
rule, which corresponds to our rule R6, is essentially

a special case of the authors' rule (4) (called substi-
tutivity) . The only case which is not covered by

rule (4) is the case in which variable declarations are

added to an empty set of declarations.

On the other hand, the authors' concretion rule allows
the deletion of a single variable declaration, provided
the sort in this declaration is non-void, i.e. there
exists a ground term of this sort. This rule appears to
be a strictly weaker version of our rule R7. In fact, our
condition (*) above is replaced by the strictly stronger

condition

for all s & S: (%%)

XS = Ys if s is void, i.e. TOP,s =0

On the other hand, the authors' substitutivity rule is
strong enough to allow a derivation of (an equivalent of)
our rule R7; this derivation is similar to the derivation
of R7 from R4 indicated above. The discussions and proofs
in [GM 81] and in [GM 82] suggest that this was not seen
by the authors.

As a conclusion, in order to the complete the authors'
calculus consisting of the rules (1) to (4) it is suffi-
cient to add a means for covering "abstraction" in the case

of an empty set of variable declarations.



(2) [GM 83a] and [GM 83b] essentially present the same
calculus as [GM 81] but with a different notation.

The substitutivity rule

- (X,t1=t2), I (Y¥Y,n1=n2)
‘ nl _ n2
- (UY-{x}, t1x = t2X )

- where x € X is assumed and where tz denotes the result
of the substitution of x by n in t - is incorrect:
XJY - {x} should be replaced by (X-{x})UY (consider the

case n1l = n2 = X).

To prove soundness and completeness of the calculus,

the authors present a supposingly equivalent calculus.

In this calculus the rules of substitutivity, abstraction
and concretion are replaced by two rules (4') and (5')
which essentially correspond to our rules R5 and R4
respectively. However, rule (4') is too weak since it

can not be applied iteratively. This error may be fixed
by replacing variables by terms. More importantly, the
equivalence proof of the two calculi is vague at those
points where it should be apparent that condition (**)

can not replace condition (*).

Conclusion

We have argued that an extension of the classical equa-
tional calculus for many-sorted algebras with possibly
empty carrier sets essentially has to deal with the
appropriate "growing" and "shrinking" of the set of vari-
able declarations. We have presented a set of rules

(R1T to R5) which constitutes a sound and complete cal-
culus. Finally, we have discussed the calculi proposed

by Goguen and Meseguer. Apart from two minor errors in



two of their rules, we found some of their rules mis-

leading.
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