Abstracts of the Talks at the Fourth
International Workshop on the Semantics

of Programming Languages in Bad Honnef
March 14 - 18, 1983

Edited by
K. Indermark (*) and J. Loeckx

March 1983

A 83/07
Fachbereich 10

Universitat des Saarlandes
D - 6600 Saarbriicken

(*) Rheinisch-Westfdlische Technische Hochschule, Aachen



The present report contains the abstracts of

the talks - in the order of their presentation -
at the Fourth International Workshop on the
Semantics of Programming Languages which took
place in Bad Honnef on March 14 - 18, 1983, in
the buildings of the Physikzentrum. The Work-
shop was sponsored by the European Association
for Theoretical Computer Science and the Ge-
sellschaft fiir Informatik and financially suppor-
ted by the Deutsche Forschungsgemeinschaft.

We are indebted to all those who assisted us in
preparing the Workshop and, in particular, to
Ursula Goltz and Herbert Klaeren for their
assistance in organizational matters and to
Claus-Werner Lermen for his assistance in
editing the report.

The editors



CONTENTS

H. A. KLAEREN (Aachen): Algebraic Software Specifi-
cation - a Toy for Theoreticians or a Tool for
Practitioners?

- H. GANZINGER (Miinchen): Modular Compiler Definitions

E.G. WAGNER (IBM Yorktown Heights): Data Types by
Example or DTs for PDLs

P. MOSSES (Edinburgh): Functional and Imperative
Abstract Semantic Algebras

E.-R. OLDEROG (Kiel & Oxford): Specification-Orien-
ted Semantics for Communicating Processes

M. BROY (Miinchen): Semantics of Communicating Pro-
cesses

M. HENNESSY (Edinburgh): Testing Equivalences for
Processes

A. BLIKLE (Warsaw): Naive Denotational Semantics

J.-J.Chr. MEYER (Amsterdam): Denotational Semantics
for Recursion with Merge

A. POIGNE (Dortmund): On "Concrete" Semantic Algebras
E.M. CLARKE (Pittsburgh): An Automatic Verifier for

Temporal Properties of Communicating Finite
State Machines

J. GOGUEN, J. MESEGUER (SRI): Initiality and Compu-
tability
J.A. GOGUEN, R.M. BURSTALL (SRI International and

University of Edinburgh): Institutions: Abstract
Model Theory for Program Specification



D.

K.

K.

[«

GOGUEN, J. MESEGUER (SRI): Programming with Para-
meterized Abstract Objects in OBJ

LIPECK (Braunschweig): Structuring the Design
of Data Abstractions

BOHM (Rome): Eliminating Recursion over Acyclic
Data Structures in Functional Programs

de ROEVER (Utrecht): Fairness in ADA - a Proof
Theoretical View

PARK (WARWICK): Remarks on Fair Iteration
Constructs

APT (Paris): Modelling the Distributed Termina-
tion Convertion of CSP

GUESSARIAN (Paris): Axiomatization of If-Then-
Else Revisited

.-P. JOUANNAUD (Nancy): Church-Rosser Properties of

Equational Term Rewriting Systems

INDERMARK (Aachen): Rational Complexity of Infi-
nite Trees

LOECKX (Saarbriicken): Verification with Abstract
Data Types, or: Correctness Proofs with Fewer
Tears

LIST OF THE PARTICIPANTS

.10

.11

.12

.12

.13

.13

.13

.14

- 40

.16



ALGEBRAIC SOFTWARE SPECIFICATION - A TOY FOR THEORETICIANS
OR A TOOL FOR PRACTITIONERS?

H.A. Klaeren (Aachen)

Algebraic software specification has become widely accepted

in the scientific community. The question is , however,

whether it is really of any practical value, which would mean
that it can be used by system and program designers in a soft-
ware development process. Experience shows that it is not

too difficult to communicate an intuitive concept of algebra

to practitioners, but it turns out that the semantics of
equations by means of a generated congruence in general is not
perspicuous at all. We propose a constructive method for
algebraic software specification, where the operations are

not implicitly specified by equations but by an explicit
recursion on the generating operations of an algebra characteri-
zing the underlying data structure. (This algebra itself may be
equationally specified since we cannot assume that all data
structures will correspond to free algebras.) This implies that
we distinguish between generating and defined operations and
that the underlying algebra has a mechanism of well-founded
decomposition w.r.t. the generating operations. We show that
the explicit specification of operations using so-called
structural recursive schemata offers advantages over purely
equational specifications, especially concerning the safeness
of enrichments, the ease of semantics description and the
separation between the underlying data structure and the oper-
ations defined on it.

For reference, see

H.A. Klaeren: A constructive method for abstract algebraic
software specification, RWTH Aachen, Schriften zur Informatik
und Angewandten Mathematik Nr. 78 (To appear in TCS)

MODULAR COMPILER DEFINITIONS

Harald Ganzinger (Minchen)

This work aims at developing a method for defining compiler
definitions that (i) exhibit a semantic processing based on



fundamental concepts of the source Tanguage; (ii) provide

for increased independency of the concrete source language;
(iii) are combinations of language-independent modules

and (iv) are subject to automatic compiler generation. The
basic idea is to view languages as combinations of projections
to the sublanguages reflecting specific language facets.
Relation symbols are used to define the syntax of the sub-
languages. This allows for also characterizing the possible
context of a syntactic construct. A compiler module is now
viewed as representing these relations in terms of relations
between semantic objects associated with the syntactic
constructs. Algebraically this is captured by a specific
notion of signature morphism. Known results about structuring
the definition of abstract data type definitions can be
extended to this case. Moreover, attribute grammars form a
subclass of such morphisms. This gives on one hand a new
algebraic view of attribute semantics and provides, on

the other hand, for an efficient implementation of the
concept.

DATA TYPES BY EXAMPLE OR DTs FOR PDLs

Eric G. Wagner (IBM Yorktown Heights)

In recent months we (ADJ & IBM) have been trying to improve
and put firm foundations under a programming design language
(a PDL) and its associated design methodology. In the past

we have been concerned with abstract data types as isomorphism
classes of total algebras, with specifications given by
equational or conditional axioms and semantics given by
initiality. However the requirements of the PDL, as to what
must be specified and as to who must be able to write and

read the specifications, have lead us to take a quite different
approach. First, in order to cope with exceptions (error
conditions) we view data types as partial, rather than total,
algebras. Second, in order to produce specifications that are
easier to read and write we present data types by means of
models (concrete algebras described using naive set theory

and assertions) rather than axiomatically. Furthermore to



gain the desired degree of abstraction we go beyond isomor-
phism classes to a notion of behavior equivalence. The result

is a notion of an abstract module as a category of behaviorally
equivalent algebras (compare Goguen-Meseguer). We further intro-

duce a subclass of abstract modules, the "stately modules",
which correspond (more closely) to state machines and provide
the necessary framework in which to refine a high level design
to a lower level design involving memory models. Lastly we
point out that the strong typing required by the design metho-
dology forces the PDL to have a fairly complex collection of
base types, but, at the same time, if we allow the use of
assertions in the definition of functions, we can start from

a rather Timited collection of operations on the base types.

FUNCTIONAL AND IMPERATIVE ABSTRACT SEMANTIC ALGEBRAS

Peter Mosses (Edinburgh)

Abstract Semantic Algebras (ASAs) are abstract data types
whose values correspond to "actions" (or computations) that
may be executed, and whose operators correspond to fundamen-
tal combinators for actions (e.g. sequential composition).
ASAs are used as the basic ingredients of a special form of
Initial Algebra (or Denotational) Semantics called "A-Seman-
tics", described in [1].

Recent work has attempted to simplify the ASAs given in [1],
the main concern being the elimination of the need for (in-
finite) indexed families of sorts and operators in signatures.
New versions of the Fun and Imp ASAs of [1] were presented,
and it was indicated how to obtain systematically many of the
laws that should hold in their combination. Non-determinism
plays a seemingly essential part in these new ASAs, which
were partly inspired by the work of Main and Benson [2].

The use of a commutative operator in Fun helps the

a a,'
1° 92
relationship between Fun and Imp to be shown. Models (deno-
tational and operational) for these new ASAs are currently
being investigated to indicate the soundness and completeness

of the equational specifications given.



[1] Mosses, P.D.: "Abstract semantic algebras!", in Proc.
IFIP TC2 Work. Conf. on Formal Description of Programming
Concepts II, Garmisch, June 1982, North-Holland (to
appear).

[2] Main, M.G. and Benson, D.B.: "An algebra for non-determini-
stic distributed processes", Tech. Rep. CS-82-087, Washing-
ton State Univ.

SPECIFICATION-ORIENTED SEMANTICS FOR COMMUNICATING PROCESSES

E.-R. Olderog (Kiel & Oxford)
(joint work with C.A.R. Hoare)

Specification-oriented semantics attempts to unify the various
semantical models proposed for Communicating Processes. The
main guideline for its development is the following simple
concept of process correctness: a process P is called correct
w.r.t. a given specification S, abbreviated by P sat S, if
every observation we can make about the behaviour of P satis-
fies S.

To realize this idea, we start from a set Obs of observations
and define the space Spec of specifications S as a certain
family of subsets of Obs. A specification-oriented semantics
[[-]] assigns then denotationally to every process P a speci-
fication [[P]] such that P sat S holds if [[Pllc S is true.
Technically, Spec is a complete partial order, and [[-]] maps
every syntactic constructor of Communicating Processes onto

a continuous operator on specifications. We derive general
theorems for constructing and representing such continuous
operators.

We then apply these methods to discuss three semantical models
for Communicating Processes. These models differ in the struc-
ture of their observations which influences both the number

of representable operators and the notion of correctness. In
particular, both safety properties and liveness properties of
processes can be described by P sat S.



SEMANTICS OF COMMUNICATING PROCESSES

Manfred Broy (Minchen)

The semantics of a simple language for describing tightly
coupled "synchronous" systems is defined. An operational
semantics is given by term rewriting rules and a consistent
fully abstract denotational semantics is defined based on
the concept of observable behavior and advanced fixed point
theory. Particular properties of the language are analysed
and especially algebraic laws of the language are discussed.
Finally particular aspects and problems of the formal de-
finition of the semantics of such a language are treated
also looking at other approaches found in the literature.

TESTING EQUIVALENCES FOR PROCESSES

M. Hennessy (Edinburgh)

We define a language for processes in which there are two
methods of synchronising sub-processes called loose synchroni-
sation and tight synchronisation. A notion of experimenting
on processes is introduced which leads to definitions of when
a process may pass an experiment and when it must pass an
experiment. By connecting the experimenter to the process
using the tight synchronisation we then define three pre-
orders on processes called the synchronous pre-orders. By
using the loose synchronisation primitive the asynchronous
pre-orders are defined. For each of these pre-orders we

prove that there exists a fully-abstract model in the sense
of Scott. These models are defined using sets of equations
and lead automatically to complete proof systems.

NAIVE DENOTATIONAL SEMANTICS

A. Blikle (Warsaw)
(joitned work with A. Tarleck<)

The sophisticated mathematical framework of denotational seman-
tics (Scott's reflexive domains and continuations) is not only
discouraging for many practitioners but also leads to several



technical problems in applications. In this paper we investi-
gate the possibility of developing denotational semantics

where semantic domains are just sets and where states rather
than continuations are transformed by the program's components.
We show that a full mechanism of goto's may be described with-
out continuations and that some procedural mechanisms (e.g.
static binding with a hierarchy of procedural parameters - Tike
in PASCAL) do not require reflexive domains. We show further,
that if we relax the denotational principle and adopt a copy-
rule semantics of procedures, then any procedural mechanism can
be described in our framework.

DENOTATIONAL SEMANTICS FOR RECURSION WITH MERGE

J.-J. Chr. Meyer (Amsterdam)
(joined work with J.W. de Bakker, J.A. Bergstra, J.W. Klop)

First two ways were considered of assigning meaning to a class
of statements built from a set of atomic actions (the alphabet'),
by means of sequential composition, nondeterministic choice,
recursion (u-constructs) and merge (arbitrary interleaving).

The first was linear time semantics (LT), in which trace sets
were considered as the meaning of a statement. The second

was branching time semantics (BT), as introduced by de Bakker
and Zucker, in which the semantic domain is the metric
completion of the collection of finite processes. For LT we

have continuity of the operators composition and merge, which in
fact can be proved in a direct, combinational way.

Next we saw a connection between LT and BT by means of an
operation trace which assigns to a process its trace set,

of which it can be proved that it is closed in case we have

a finite alphabet. Furthermore, trace appears to be conti-
nuous.

Finally an algebraic approach as taken by Bergstra & Klop,

was presented : first the basic process algebra for composition,
union and merge, and then an extension of this to deal with
communication.



ON "CONCRETE" SEMANTIC ALGEBRAS

A. Poigné (Dortmund)

Because of the complexity of denotational definitions of
programming languages there is a need to develop specifi-
cation techniques, which allow to modularize the semantic
definitions. To achieve modularization the basic idea is to
use the methods of abstract data type theory. But in contrast
to the work of Mosses our approach is on classical denota-
tional semantics.

We first extend a specification of basic data types by pro-
ducts, disjoint sums, function spaces, fixpoint operators

and domain equations. Technically we give an algebraic spe-
cification of a cartesian closed category with additional
properties. We show that an extended typed A-calculus provides
an initial model with respect to this specification. It is
discussed how "concrete" semantic algebras may be obtained

by restriction at the model, and how "concrete" semantic
algebras can be manipulated.

Especially we investigate implementation as a specific modu-
larization technique. Our notion of implementation is a
restricted one in the sense of abstract data types, as we
only allow to implement sorts by recursive domains and
operations by recursive procedures. We prove that composition
of correct implementations is correct if the composed imple-
mentation preserves termination, i.e. each term is implemen-
ted by a "finite" (fixpoint-operator-free) term. We give
sufficient syntactical criteria to ensure correctness at
composed implementations.

AN AUTOMATIC VERIFIER FOR TEMPORAL PROPERTIES OF COMMUNICATING
FINITE STATE MACHINES

E.M. Clarke (Pittsburgh)

We give an efficient procedure for verifying that a finite
state concurrent system meets a specification expressed in a
(propositional) branching-time temporal logic. Our algorithm
has complexity linear in both the size of the specification and



the size of the global transition graph for the concurrent
system. We also show how the logic and our algorithm can be
modified to handle faiZrness. We argue that this technique

can provide a practical alternative to manual proof construc-
tion or use of a mechanical theorem prover for verifying many
finite state concurrent systems.

INITIALITY AND COMPUTABILITY

J. Goguen and J. Meseguer (SRI)

A survey of results on initiality and computability was
given, including several applications in computer science.
In particular, the following were discussed: a software
engineer motivation for an initial algebra approach to
abstract data types (ADTs); many-sorted equational logic;
generalized Peano axioms for ADTs; abstract syntax; deno-
tational and fully abstract semantics; initial and final
realizations of software modules; computable algebras;
the relation of Godel numberings to initiality; rewrite
rules; and criteria for computable realizations of soft-
ware modules to exist.

INSTITUTIONS: ABSTRACT MODEL THEORY FOR PROGRAM SPECIFICATION

J.A. Goguen and R.M. Burstall
(SRI International and University of Edinburgh)

There is a population explosion among the logical systems used
in computer science. Examples include first order logic (with
and without equality), equational logic, Horn clause logic, se-
cond order logic, higher order logic, infinitary logic, dynamic
logic, process logic, temporal logic, and modal logic; more-
over, there is a tendency for each theorem prover to have its
own idiosyncratic logical systems. Yet it is usual to give many
of the same results and applications for each logical system: of
course, this is natural in so far as there are basic results in
computer science that are independent of the logical system in
which they happen to be expressed. But we should not have to do



the same things over and over again; instead, we should
generalize, and do the essential things once and for all!
Also, we should ask what are the relationships among all
these different logical systems. This paper shows how some
parts of computer science can be done in any suitable logi-
cal system by introducing the notion of an institution as

a precise generalization of the informal notion of logical
system. A first main result shows that if an institution is
such that interface declations expressed in it can be glued
together, then theories (which are just sets of sentences)

in that institution can also be glued together. A second
result gives conditions under which a theorem prover for one
institution may be validly used on theories from another;
this uses the notion of an institution morphism.'Another result
is that institution admitting free models can be extended to
institutions whose theories may include, in addition to the
original sentences, various kinds of constraints on inter-
pretations; such constraints are useful for defining abstract
data types, and include so-called 'data', 'hierarchy', and
'generating' constraints. Further results show how to define
institutions that mix sentences from one institution with
constraints from another, and even mix sentences and (various
kinds of) constraints from several different institutions. It
is noted that general results about institutions apply to
such 'polyplex' institutions, including that mentioned above
on gluing together theories. This paper also discusses appli-
cations of these results to specification languages, showing
that much of this subject is independent of the institution
used.

PROGRAMMING WITH PARAMETERIZED ABSTRACT OBJECTS IN 0BJ-

J. Goguen, J. Meseguer (SRI)
(joined work with D. Platsted, Illinotis)

0BJ is a logic based ultra-high level programming language that

has been strongly influenced by modern programming methodology.



- 10 -

In particular, it provides facilities for user definable
abstract data types, parameterized abstract objects, inter-
active programming (when the system detects errors, it pro-
vides suitable error messages and puts the user into an edit
mode such that execution resumes when editing is completed),
libraries, and other features. OBJ is based on equational
logic, rather than on first order logic; because equations
can be interpreted directly as rewrite rules, it is easy to
see their computational significance as well as their logi-
cal significance. 0BJ is so high level that we originally
thought of it as a specification language. However, it now
seems clear that data flow and other innovative architectures
will support very efficient implementations of rewrite rules.
This paper describes some experiences with an experimental
0BJ implementation in LISP; in general, this experience
courages our belief that equational logic based languages

are a promising research direction that could have signifi-
cant practical impact.

STRUCTURING THE DESIGN OF DATA ABSTRACTIONS '

Udo Lipeck (Braunschweig)

This talk presents results of the thesis [1]: An algebraic
calculus 1is introduced to structure a software design into

a hierarchy of modules and implementations. Thus, a semantic
basis for algebraic specification and design languages is
provided.

Modules are assumed to be parametric abstract data types
(padts) describing functorial type constructors between
classes of algebras. Basic operations to construct padts
from padts are the "parametric application” and the "re-
duction"; abstraction between padts is expressed by the
“realization" relation. Then, the "implementation" of a "tar-
get" padt by a set of "base" padts is defined to be a term
of construction operations such that the target is realized
by the construction on the base. Related approaches may be



- 11 -

classified into special cases of this definition.

The analysis centres upon mutual compatibilities of the
calculus operations and relations. Interchanging parametric
applications and reductions leads to a normal form of
construction terms. In the main theorem, the compatibilities
of realizations are classified, especially those with para-
metric applications. The results permit of composing imple-
mentations constructively, i.e. by term substitution, if
specific restrictions hold or typical situations are con-
sidered.

[1] U. Lipeck: Ein algebraischer Kalkiil fiir einen strukturierten

Entwurf von Datenabstraktionen. Dissertation/Bericht Nr. 148,
Abteilung Informatik, Universitdt Dortmund, 1983

ELIMINATING RECURSION OVER ACYCLIC DATA STRUCTURES IN FUNC-
TIONAL PROGRAMS

C. B&hm (Rome)

(joined work with D. Kozen, IBM -Yorktown Heights)

Acyclic data structures mean here naturals, lists or strings
(sequences), trees and dags. A1l these structures are defined
by struct. induction. A1l total functions over these data
based on struct. inductive definitions, like primitive
recursion for naturals, tail-recursion for lists and tree-
iteration for trees may be described by straight line programs
without conditionals and/or loops.

The key idea is to represent each data structure as a functional
which can be applied to other objects. In order to compute

a function f recursively on the data structure d, d is applied
as an operator to some "simpler" function f'. A1l the necessary
recursion is contained in the structural definition of d,

which is done once and for all at the beginning, independent

of f'. The method becomes specially perspicuous by using a
function programming style founded on combinators.



- 12 -

FAIRNESS IN ADA - A PROOF THEORETICAL VIEW

W.P. de Roever (Univ. of Utrecht ,/ Nijmegen Univ.)

(joined work with Amir Pnueli (Weizmann Inst. / Harvard Univ.))

A fragment of ADA abstracting the communication and synchro-

nization part is studied. An operational semantics for this

fragment is given, emphasizing the justice and fairness

aspects of the selection mechanisms.

An approximate notion of fairness is shown to be equivalent

to the explicit entry-queues proposed in the reference manual.

Proof rules for invariance and liveness properties are given

and illustrated on an example. The proof rules are based on

temporal logic.

1.

REMARKS ON FAIR ITERATION CONSTRUCTS

David Park (Warwick University)

A predicate transformer for weak fair iteration is
specifiable by

wp(WDO,R) = pX.((A 1 B;

: £ A R) A VE(X))

i i
where Gi(X) = ﬁY.(Bi A wp(Ci,X)
AN (B, = wp(C.,X v Y)))
j J J
and WDO: wdo B, - ¢,d...08, - C, od

is the construct to be interpreted fairly. [u, d are
minimal, maximal fixpoint operators, respectively].

Unbounded nondeterminism, strong and weak fairness are
interderivable, and require specifications with fixpoints
of monotone, non-continuous functions.

A result of Paterson and M. Fischer has established that
"queuing" is essential to implementing strong fairness.
Automata corresponding to schedulers for strong/weak
fairness require at least n!, n states respectively.



- 13 -

MODELLING THE DISTIRIBUTED TERMINATION CONVERTION OF CSP

Krzysztof R. Apt (Paris)

It is shown how the distributed termination convention of
CSP repetitive commands can be modelled using other CSP
constructs. The presented transformation suggests a simple
implementation of this convention. We argue that this
convention should be used as a compiler option.

AXIOMATIZATION OF IF-THEN-ELSE
- REVISITED

Iréne Guessarian (Paris)

We introduce classes of interpretations. We characterize the
free and Herbrand interpretations for a class. We define the
equational and relational classes of interpretations, study
their properties and relate them to the literature. We apply
this study to derive complete proof systems for deducing (in
some (in)equational logic) all (in)equalitions valid in a
class. We also apply this study to derive a complete equa-
tional specification of the tests, i.e. "IF...THEN...ELSE..."
in various classes of algebras.

CHURCH-ROSSER PROPERTIES OF EQUATIONAL TERM REWRITING SYSTEMS

Jean-Pierre Jouannaud (Nancy)

The well known Knuth and Bendix completion procedure computes
a convergent (both confluent and terminating) Term Rewriting
System from a given set of equational axioms. This procedure
was extended [L&B,77] [HUE,80] [R&S,81]1 [PAD,82] to handle
Equational Term Rewriting Systems (ETRS in short), that is
mixed sets of rules R and equations E in order to deal with
the case where some axioms cannot be used as rewrite rules
without loosing termination.

The first technique we develope [JOU,83]1 both unifies and
extends Huet's, Lankford and Ballantyne's and Peterson

and Stickel's results by describing a model of computation
for ETRS at a more abstract level. As in the previous works,



- 14 -

a complete unification algorithm is required together with
the so called E-termination property € (termination of R
modulo E). Moreover, we show that complete sets of E-critical
paths are required only when non linear rules are involved,
providing a new powerful and efficient E-completion algo-
rithm for such theories [J&K,83].

The second technique we develop [JKR,83] deals with ETRS
that do not satisfy E-termination, which arises for example
when E contains an idempotent axiom. As previously, an
abstract model of computation for such ETRS is described
which only requires termination of R, yet provides a simpli-
fied and generalized version of Padawitz's results.

[HUE,80] HUET, G.: "Confluent reductions: Abstract properties
and application to Term Rewriting Systems", JACM 27-4.

[JOU,83] JOUANNAUD, J.P.:"Confluent and Coherent Equational
Term Rewriting Systems. Application to proofs in
Data Types", CAAP-83, to appear in LNCS

[J&K,83] JOUANNAUD, J.P., KIRCHNER, H.: "An efficient comple-
tion procedure for Equational Term Rewriting Systems",
draft

[JKR,83] JOUANNAUD, J.P., KIRCHNER, H., REMY, J.L.: "Church-
Rosser Properties of weakly terminating Equational
Term Rewriting Systems", submitted

[(L&B,77] LANKFORD, D.S., BALLANTYNE, A.M.: "Decision procedures
for simple equational theories with permutative
axioms: complete sets of permutative reductions",
Report, Univ. of Texas at Austin

[R&S,81] PETERSON, G.E., STICKEL, M.E.: "Complete sets of
reductions for equational theories with complete
unification algorithms", JACM 28-2

[PAD,82] PADAWITZ, P.: "Equational data type specification
and recursive program scheme", in "Formal Description
of Programming Concepts 2", D. BJURNER Ed., North-
Holland

RATIONAL COMPLEXITY OF INFINITE TREEES

K. Indermark (Aachen)

Rational schemes interpreted over rank-free derived algebras
permit a simple algebraic analysis of higher type recursion.
Their equivalence is characterized by infinite trees. Measuring
their complexity by the size of finite subtrees we obtain a
direct proof of Damm's recursion hierarchy theorem.



= 15 =

VERIFICATION WITH ABSTRACT DATA TYPES, OR: CORRECTNESS PROOFS
WITH FEWER TEARS

Jacques Loeckx (Saarbriicken)

It is claimed that a top-down programming system based on
algorithmic specifications (see e.g. [1]) leads to easy correct-
ness proofs. More precisely, structural induction on the data
together with unfolding allows to prove "most" properties.

The claim is first illustrated with the help of the iterative
program counting the tips of a binary tree which is classically
used to illustrate the intermittent assertions method [2]. A
formal proof of total correctness of this program takes about
half a page and may be performed by an AFFIRM-Tike system

(cf. [31).

The proof methodology applied is shortly discussed. It is

shown to be applicable whenever the property to be proved
contains assertions about defined values only.

[1] J. Loeckx, Algorithmic specifications of abstract data
types, Proc. ICALP 81 (Acre), LNCS 115, pp. 129-147, 1981

[2] R.M. Burstall, Program proving as hand simulation with a
little induction, Proc. IFIP Congress 74, pp. 309-312, 1974

[3] J. Loeckx, Proving properties of algorithmic specifications
of abstract data types in AFFIRM, AFFIRM-MEM0-29-JL,
USC - ISI, Marina del Rey, 1980



PARTICIPANTS

K.

=]

=

e 4

R.

.A.

.P.

Apt / LITP / Université Paris 7 / 2, place Jussieu /
F - 75251 Paris Cedex 05

Blikle / Institute of Computer Science / Polish Academy
of Sciences / P.0. Box 22 / 00-901 Warsaw PKiN / Poland

Bohm / Via S. Crescenziano 20 / I-00199 Roma / Italy

Broy / Institut filir Informatik der Technischen Universitat
Miinchen / Postfach 20 24 20 / 8000 Miinchen 2

Burstall / Department of Computer Science / James Clerk
Maxwell Building / The King's Buildings / Mayfield Road /
GB - Edinburgh EH9 3JZ

Clarke / Department of Computer Science / Schenley Park /
Carnegie-Mellon University / Pittsburgh, Pennsylvania
15213 / USA

Cousineau / LITP / Université Paris 7 / 2, place Jussieu /
F - 75230 Paris Cedex 05

Ganzinger / Institut fiir Informatik der Technischen Uni-
versitdt Miinchen / Postfach 20 24 20 / 8000 Miinchen 2

Goguen / SRI International / Menlo Park, CA 94025 / USA

Guessarian / LITP / Université Paris 7 / 2, place Jussieu /
F - 75251 Paris Cedex 05

Hennessy / Department of Computer Science / James Clerk Max-
well Building / The King's Buildings, Mayfield Road /
GB - Edinburgh EH9 3JZ

Huet / INRIA / Domaine de Voluceau / Rocquencourt / B.P.
105 / F - 78150 Le Chesnay

Indermark / Lehrstuhl Informatik II / Rheinisch Westfdlische
Technische Hochschule / Biichel 29 - 31 / 5100 Aachen

Jouannaud / CRIN / Université de Nancy I / C.0. 140 /
F - 54037 Nancy Cedex

Klaeren / Lehrstuhl fiir Informatik II / Rheinisch Westfalische
Technische Hochschule / Biichel 29 - 31 / 5100 Aachen



- 17 -

H. Langmaack / Institut fiir Informatik / Christian-Albrecht-
Universitdt / Olshausenstr. 40 - 60 / 2300 Kiel 1

U. Lipeck / Institut filir Theoretische und Praktische Infor-
matik / Technische Universitdt / Postfach 3329 / 3300
_Braunschweig

J. Loeckx / Fachbereich 10 - Angewandte Mathematik und Infor-
matik / Universitdt des Saarlandes / 6600 Saarbriicken

J. Meseguer / SRI International / 333 Ravenswood Avenue /
Menlo Park, CA 94025 / USA

J.-J.Ch. Meyer / Free University Amsterdam / Math. Department /
De Boelelaan 1081 / 1081 HV Amsterdam / The Netherlands

P. Mosses / University of Edinburgh / The King's Buildings,
JCMB / GB - Edinburgh EH9 3JZ

E.-R. Olderog / Oxford University Computing Laboratory /
Programming Research Group / 8 - 11 Keble Road / Oxford
0X1 3QD /England

D. Park / University of Warwick-Coventry / Warwickshire CV4 7AL /
Great Britain

A. Poigné / Lehrstuhl fiir Informatik / Universitdt Dortmund /
Postfach 500 500 / 4600 Dortmund 50

W. de Roever / Department of Computer Science / University
of Utrecht / Budapestlaan 8 / P.B. 80012 / 3508 TA Utrecht /
The Netherlands

W. Thomas / Lehrstuhl Informatik II / Rheinisch Westfdlische
Technische Hochschule / Biichel 29 - 31 / 5100 Aachen

E.G. Wagner / Mathematical Sciences Department / IBM / Thomas
J. Watson Research Center / Box 218 / Yorktown Heights,
N.Y. 10598 / USA

Observers

W. Damm / Lehrstuhl Informatik II / Rheinisch Westfdlische
Technische Hochschule / Biichel 29 - 31 / 5100 Aachen

E. Fehr / Lehrstuhl Informatik II / Rheinisch Westfdlische

Technische Hochschule / Biichel 29 - 31 / 5100 Aachen

R. Gerth / Rijksuniversiteit Utrecht / Vakgroep informatica /

Princetonplein 5 / Postbus 80.002 / 3508 TA Utrecht /
The Netherlands



- 18 -

U. Goltz / Lehrstuhl Informatik II / Rheinisch Westfdlische
Technische Hochschule / Biichel 29 - 31 / 5100 Aachen

B. Josko / Lehrstuhl Informatik II / Rheinisch Westfalische
Technische Hochschule / Biichel 29 - 31 / 5100 Aachen

C.-W. Lermen / Fachbereich 10 - Angewandte Mathematik und
Informatik / Universitdat des Saarlandes / 6600 Saarbriicken

W. Reisig / Lehrstuhl Informatik II / Rheinisch Westfalische
Technische Hochschule / Biichel 29 - 31 / 5100 Aachen



	fb1983-07_0001
	fb1983-07_0002
	fb1983-07_0003
	fb1983-07_0004
	fb1983-07_0005
	fb1983-07_0006
	fb1983-07_0007
	fb1983-07_0008
	fb1983-07_0009
	fb1983-07_0010
	fb1983-07_0011
	fb1983-07_0012
	fb1983-07_0013
	fb1983-07_0014
	fb1983-07_0015
	fb1983-07_0016
	fb1983-07_0017
	fb1983-07_0018
	fb1983-07_0019
	fb1983-07_0020
	fb1983-07_0021
	fb1983-07_0022

