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1. Introduction

Algebraic specifications of abstract data types have been dis-
cussed in a large number of papers [30, 10, 12, 2, 15, 17].

While being based on a attractive idea they put a series of
difficult theoretical and practical problems such as the error
problem [11,14], the partial function problem [ 2], the problems
of consistency and sufficiently-completeness [12] and the problem
of enrichment and extension [10, 7, 3 ]; moreover, writing
specifications for a given data type is not necessarily a trivial
exercise - as is illustrated by the data type Set-of-Integers of
[12,74], one of the axioms for the function Delete removing an

element from a set is:

Delete(Insert(s, %), J) =
if © = j then Delete(s, 4)

else Insert(Delete(s, J), %) ;

the then-clause of this equation is Delete(s, J) rather than
s because an element of the data type Set-of-Integers may con-
tain duplicates; intuitively it is not directly clear why these

duplicates may occur nor where they occur.

The present paper proposes an alternative specification method
avoiding these different problems. Using continuous functions

on complete partial orders it solves the problem of partial
functions; defining the functions algorithmically it avoids the
problems of consistency and sufficiently-completeness; using a
specification to deduce a new algebra from a given one it avoids
the extension problem; finally, using a formal language - or,
more precisely, the flat complete partial order corresponding to
this language - as a domain for the functions introduced it
provides a clear answer to questions of the kind illustrated

above.

Our concern in this paper is twofold. First, we want our specifi-
cation method to have a sound theoretical basis. Second, we want
it to constitute a practical tool for the top-down development

of (modularly structured) programs and for the (modular) verifi-
cation of these programs with a verification system in the style



of, say, AFFIRM [25].

Section 2 recalls some notions concerning continuous algebras.
The principle of the algorithmic specification method is
shortly described in Section 3. The detailed description of

this method is in Sections 4 and 5; at the end of Section

5 a more convenient notation is introduced. Section 6 is con-
cerned with the verification of specifications. Properties

of abstract data types and their proofs are discussed in Section
7. The use of simultaneous fixpoint abstraction is discussed

in Section 8. Parameterized data types are introduced in Section
9. Section 10 presents some conclusions including a comparison

with similar work.



2. Continuous algebras

Let S be a set of types (or: sorts).

An S-typed signature-I is the union of disjoint sets

LG40 ..0q,0 WEth Oqsevey0,, 0 €8, n 2 0. An element
£ € go o & is called a function symbol of type 0. Instead
10-. n,
of writing
f ezl
—01.-. On, q
we write
f : Oy X 0y X.eX 0 > O
if n 21
and
f:>0
ifn=20

Let I be an S-typed signature. A (heterogeneous) L-algebra A
consists of:
(i) a set Cs for each type o € S, called the carrier of 4 of
type 0;
(ii) a function
f(A)

: C X eas X C + C
=04 =0Op =0

for each function symbol
f: 0y X e X0, > @
of I.
A I-algebra is called continuous if its carrier sets are complete
partial orders f{c.p.o.'s) and if its functions are continuous

(with respect to these c.p.o.'s) (cf. [9]).

Note that a continuous algebra may be considered as an applicative
programming language; a program of this language is a (correctly

typed) expression built up from function symbols of the algebra.



A continuous algebra is called standard if it satisfies the
following three conditions:

(i) its carrier sets are flat c.p.o.'s; L and 10 (or,

o’ =0
if no ambiguity arises, =, [ and 1) denote respectively

the equality, the partial order and the bottom element
of the carrier set 90 (see Figure I);

(ii) it contains a carrier set C {true, false, 1 }

=Bool Bool

of type Bool;

(iii) for each of its carrier sets C it contains a strict !

function
2
Eo > gBool
expressing the equality in 90 - { 10}; this function is
denoted by the infix operator "éo" or, shortly, "=",.
e1 82 e3
<
1o
FIGURE I: The flat c.p.o. (go, Eo) with
C; = {e1, e, ...} VU {io}

" A function is strict if its value is the bottom element as

soon as one of its argument is a bottom element.



It is important to distinguish between "=0" and "éo":‘the
latter is a (strict) predicate (i.e. function) of the alge-
bra; the former is a (non-continuous) predicate about the

algebra. For instance:

16 %o 1o
but
(lo o lc) = lBool
: L1} = L1} : [1] = n
(with standing for Bool ).

In the sequel only standard continuous algebras are consi-
dered.

A (new) continuous function may be defined as an expression
which is built up from variables and (existing) continuous
functions by composition, A-abstraction and minimal fixpoint
abstraction. Following the LCF-notation [23] minimal fixpoint
abstraction is expressed with the help of the operator

a : if e is an expression and M a function variable, [oM.e]
denotes the minimal fixpoint of [AM.el.

A typical definition is that of the function Factorial:

Factorial = [oM. [An € CInteger"

if n = 0 then 1 else n x M(n - 111 (1)

For more details on the theoretical background and on the no-
tation the reader is referred to [23, 24]. Note in particular
that the equality "=" in the expression (1) may be considered

as an extension of "=0 and is therefore not continuous: a defi-

nition such as Factorial = e

stands for

for all i € gInteger : Factorial(i) = Integer e(i).



3. The principles of the algorithmic specification method

The goal of an algorithmic specification is to extend a given

algebra with a new data type.

Let A be a I-algebra with I an S-typed signature and S a set
of types. The goal of a specification of a type o, o ¢ S, is
to add a type o to the I-algebra 4; more precisely, the speci-
fication defines (together with the algebra 4):
- the set of types 5,=8U {o};
- a §O-typed signature §0 obtained from I by adding some
function symbols;
- a ;O—algebra AO obtained by adding to 4 a carrier set Eg
and a function for each function symbol added; AO is a

standard continuous algebra if 4 is.

Essentially a specification of type o consists of a set of

"constructors" and a set of functions called "user functions".

The goal of the constructors is to define a formal language
called "term language". Syntactically, a constructor is a
function symbol (of type 0); semantically constructors are
merely building blocks of a formal language, - contrasting
with the classical interpretation of function symbols as

functions.

(L)
o
is obtained

The user functions are functions defined in a gg-algebra A
(L)
o

by adding to 4 the term language (defined by the constructors)

along the lines of Section 2.3; this algebra A

as the carrier of type o. Among the user functions is a special

function defining an equivalence relation on the term language.

Finally, considering an homomorphism mapping the term language
into its equivalence classes, one may - roughly speaking - de-
fine the algebra AO as the homomorphic image of the algebra AéL)

enriched by the user functions.



These different notions will now be explained more precisely

in the Sections 4 to 6.

While assuming that the (continuous) algebra 4 is standard
we leave open the question whether the types of 4 - except
Bool - are ground types (i.e. "given" types) or have been

introduced by previous specifications.



(L)

4, The algebra Ac

Let A be a I-algebra with I an S-typed signature.
Let 0 be a type, ¢ § S; put S, =S U {o}.

The goal of this Section is to define the algebra AéL) associated
with the algebra 4 and the type o.

4.1 Constructor sets
A constructor set (of the type o0 for the algebra A) is a set
cl[a,o0] of function symbols

with n 2 O and Oq1 +eer O € S .

As an example the constructor set of the type Set for an algebra
containing the type Integer may consist of the constructors:

emptyset : -+ Set
insert : Set x Integer =~ Set

(see Figure V)

In order to distinguish constructors from (other) function
symbols we adopt the convention that - in the examples - the
former start with a lower-case letter, the latter with a

higher-case letter.



Consider a constructor set C[A,o].

Call My s the formal language inductively defined by:
’

(i) if £ : » o is a constructor, then f € MA -
&8y

(ii) if £ 01 X «ee X0 >0, n 2 1, is a constructor and
if for all i, 1 £ i £ n,

si € MA,O when oi =g
and
- 2
s; € gci {Loi}when o, # 0
then

f(s1, sww § sn) € MA,G

The term language (of the constructor set C[A,c]) is the flat
C.P.0O. EA Y shortly, L0 - obtained by adding to M a
’ - =8y

A,
bottom element, say LéL), and providing it with a partial order,

say EéL). (see Figure II). The elements of a term language are

called terms (of type o). Examples of terms are (cf. Figure V):

emptyset
insert (insert(emptyset, 3), 1)
(L)
lSet
but not
. (L)
insert (lgop 1)
or insert (emptyset, lInteger)

4.3 Term functions

‘We now associate with the following (continuous) functions, called
the term functions (of C[A,c]):

< Sy has, strictly speaking, to be defined as a representation

of an element of Eo-’ not as the element itself.
i



L (L)
o
FIGURE II: The flat c.p.o. (Eo’ géL)) associated
with the language MA,O = {ty, tyr o0}

(i) the strict function
2
Equal-o : Eo - gBool

which expresses the syntactical equality of terms, i. e.

the equality in the formal language Eo - {ld};

(ii) the function

If-then—elseo: CBool X Eo X EO > EO:
If-then—elseo(b, s, t) = s 1if b = true
t if b = false
(L) | -
15 if b =lp o1
(iii) for each constructor f : 0y X «oe X 0 >0, n > 0,

the strict function

IS"f H EO_ > EBOO].

which expresses that the leftmost symbol of its argument
is £ ;

(iv) for each constructor f : 0y X oo X 0 >0, D 21,
the strict function

Cons-f : 51 X oo X K_ > L



Cons—f(s1,...,sn) = f(s1,...,sn)3
s . <3< . = i =
with, for each i, 1si=n: K, { Eoi if oi o
gci if o; # 0
which constructs a term;
(v) for each constructor £ : 0, x ... X 0o_ +» g0, n 21,
1 n

and each i, 1 £ i £ n, the strict function

Arg,-f : L+ K, :

- - 4
Argi-f(t) = { ti if t has the form f(t1,...,tn)

(L
15, else
i
with K, = { Eoi if o, =0
goi if o4 # 0

which extracts an "argument" of a term.

Strictly speaking, Cons-f(s1,...,sn) = f(§1,...,gn)

i
| a representation of s; if o5 # o.

, = g i g, =
where S; f S; if o]

Strictly speaking, if t has the form f(t1,...,tn) then
Argi-f(t) = { ti if o, =0
the element represented

by t; if oy # 0



4.4 The algebra AéL)

The algebra AéL)

defined as follows:

corresponding to a constructor set C[A,c] is

- its carrier sets are those of A together with a carrier set
for o, viz. the term language L of cla,ol;

- its functions are those of 4 together with the term func-
tions of C[A,o].

Informally, AéL) is an algebra A extended with a type o; the

objects of type o are terms, i. e. words of a formal language.

The principle of structural induction ([ 4, 1]) being applicable
on the term language Ec’ it may be used in proofs properties of
the algebra AéL).

As an example suppose one has the prove:

for all s € Ec’ t € ET : g(s, t) holds (1)
where 1 # 0. Suppose moreover the constructor set C[A,o0] consists
of:

fo : > 0
f1 : 0 X p >0 with p # ©

For proving (1) it is sufficient to prove:
(1) for all t € ¢ :  q ™, t) holds
(ii) for all t € C_ : q(fy, t) holds
(iii) for all s € Eo’ t € gT, r € C_:

if for all t' € C. q(s, t') holds
then q(f1(s, r), t) holds



5. Algorithmic specifications

Let s, I, 4, o, C[A,0], Eo’ AéL)

We now indicate the form of a specification of the type 0; we

be defined as in Section 4.

then describe how this specification defines the algebra Ao’

An algorithmic specification of the type o (for the algebra A4)

consists of six sections defining respectively (cf. Figure III)

(1) the name of the type o and the names of types which are
assumed to be in S; these latter types are called the
underiying types;

(ii) the constructor set C[A,o];

(iii) a function Is.o called acceptor function S,

(iv) a function Eq.o called equivalence relation °;
(v) a set of functions called external functions;
(vi) a (possibly empty) set of functions called auxiliary

(or: hidden) functions.

The acceptor function is a strict function

Is.0 : Ly > Cpool

We put

L, = {s € L | Is.o(s) = truel} U {léL)}

and call the formal language Eé - {LéL)} the subset of the term

language defined by the acceptor function.

The equivalence relation is a strict function

. 2
Bgeo ¢ Ly~ = gBool

Do not confuse Is.oc and Eq.c with a term functions Is-f

and Equal-o.
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(1) General
Type : Stack
Underlying types : Integer, Bool
(ii) Constructors
emptystack : -+ Stack
push : Stack x Integer - Stack
(iii) Acceptor function
Is.Stack = [As € Lotack® if Depth(s) < 10
then true else false]
(iv) Equivalence relation
Eg.Stack = Equal-Stack
(v) External functions
Emptystack = emptystack
Push = [\As € Letack: [ \i € 91nteger'
if Depth (s) < 10 then Cons-push (s,i)
(L)
gise lStack 1]
Pop = [As € Letack:
if Is-push (s) then Arg1—push (s) else 1
Top = [As € Loy p-
if Is-push (s) then Argz-push (s) else 1
Isnew = [As € Lo, .
if Is-push(s) then false else truel
(vi) Auxiliary function
Depth = [oM.[Xs € Lo, ..
if Is-push (s) then M(Arg1—push(s)) + 1
else 0 1]

FIGURE III: A specification of the data type Stack for an

algebra containing (at least) the type Integer

(and Bool). Intuitively, the data type consists

(L) ]
Stack

Integer

of stacks of integers with a maximal depth of 10.




such that its restriction

Eq.o | (x) - (PhH?

is an equivalence relation in the language defined by the

acceptor function i. e. in the formal language E& - {LéL)}.

Finally the external and auxiliary functions take arguments
and values in the term language Eo and in the carrier sets of

the underlying types.

Each function of the specification is defined as a function
(L)
o}

functions of the specification. More precisely, the right-

in the algebra 4 possibly already enriched by some (other)

hand side of a function definition may contain functions of

2 (L)
o
the functions being defined in the specification, provided

(i. e. functions of 4 and/or term functions) as well as

there exists no sequence

F1, F2, eee 4 F m = 2 (C1)

m 14
of functions being defined in the specification with Fm = F1
and F,

i+1
of Fy, 1 <is<m- 1.°

occurring in the right-hand side of) the definition

The equivalence relation, the external functions and the term
function If—then—elseo are called the user functions (Zntro-

duced by the specification of type o).

Note that the external or auxiliary functions are not required
to have at least one argument or the value ranging over &0 : in
the specification of Figure III it is for instance possible to

introduce a function mapping integers into integefs.

® This condition will be relaxed in Section 8.
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If s is an element of a carrier set of the algebra AéL) let
¢(s) denote:

- s, if s € C. for any type 1 # 0;

- the equivalence class of the term s induced on the

formal language Eé - {léL)} by the equivalence relation

; "o (L), ,
Eq.0, if s € L! {LO Y

(L)

- an element denoted lo' if s = lc .

Note that the notation ¢(s) is left undefined for s € EO - Eé.

We are now able to define the §O—algebra A0 defined by the
f-algebra A and the specification of type o.

The signature Eo is obtained by adding to I a function symbol
for each user function. Informally, a specification contributes
to the new algebra only by its user functions, not by its
auxiliary functions (nor by its term functions other than If-

then—elsec).

The carrier sets of the algebra Ao are the carriers sets of the
algebra A together with the carrier set Eo of type o defined by

c, = fo(s) | ser)

C, is defined as a flat c.p.o. with L_ (= o(L{"))) as its mini-
mal element. Informally, the carrier set C  consists of the
equivalence classes induced by Eq.0 on the subset of Ls defined

by the acceptor function.

Finally, the functions of the algebra Ao are the functions of

the algebra A4 together with a function F(A)

for each user
function F of the specification; more precisely, if F is an
n-ary function with arguments of type OqreeesOp and values of

type 041’ B 2 0, then

F :C x...xc —>C
9 ~n "“n+1

g (B)

(w(s1), cee g w(sn)) = w(F(s1, e g sn))



- 18 -

(7)

Informally, F is the image of F under the homomorphism ¢

mapping terms into their equivalence classes.

Note that for the definitien of F 2

to be consistent the
function F must satisfy certain conditions. Informally
speaking, F has to preserve the predicates Is.o and Eq.o:
the first condition guarantees the existence’ of the value
of F(A) by checking that F(s1,...,sn) € Eé whenever F has
values in L ; the second condition guarantees the uniqueness
of the value of F(A). The study of these conditions is the

subject of Section 6.

Note that (Eq.o)(A) is the (strict function expressing the)
equality in the carrier set 90’ i.e. the function denoted by
the infix operator "éo".

It is easy to show that Ao is again a standard continuous alge-
bra.

5.3 A_few_informal comments

The purpose of the acceptor function is to eliminate some terms
from consideration. For instance, in the data type Stack of
Figure III the attention is restricted to terms containing not
more than 10 (stacked) integers; in the data type Set of Figure V

the acceptor function eliminates the terms with duplicates.®

The purpose of the equivalence relation is to "identify" terms
which are syntactically different. In the data type Stack there
is a one-to-one correspondence between the terms and the "stacks"
of the carrier set; in the data type Set an element of the

carrier set corresponds to all terms differing only by the order

7 Remember that ¢(s) is not defined for s € L_ - L.

8 The notation used in Figure V will be introduced in Section 5.4.
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of occurrence of the integers.

In general there exist several possible algorithmic specifications
for a .given data type which are more or less "natural". These
specifications differ by the choice for the constructors and the
acceptor function. For instance we may define Is.Set in Figure V

as the strict extension of the function with the constant value true;
modifying the definition of Eqg.Set and of the external functions
accordingly leads to a specification with duplicates defining

the same data type Set (up to isomorphism).

In the example of Figure III "errors" such as stack overflow or
the "popping" of an empty stack lead to the undefined value "l1",
The use of this value has the advantage that it is automatically
"transmitted" by any (strict) function; as a drawback it does

not allow branchings because of the monotonicity of the functions:

the exXpression

if s = 1l then e1 else e2

for instance, delivers the value 1, not e, or e,. Instead of
using "1" it is also possible to use a special term, say "error-
stack" - or even several terms such as "stackoverflow" and
"poppingerror". In that case the constructor set has to be

augmented correspondingly, for instance by
errorstack: -+ Stack

More importantly, the function definitions have then to take
into account the additional case "Is-errorstack(s)"; this leads
to the annoying obligation to explicitly specify the error
transmission through all underlying data types, for instance

by defining the value of Isnew for the argument errorstack.

Our concern to be precise has led us to introduce a heavy
formalism - as illustrated by Figure III. We now introduce a
notation which usually allows to avoid the explicit use of

term functions such as Argi—f and the use of function variables

required by the oa-notation.



The notation is defined by the following rules which are
illustrated by examples rather than being defined for the
general case:
(i) (Elimination of A and explicit indication of the type
of the function values):
A definition such as
F(s : g, t: 1) : p ==e
stands for
F=1[xs €L . [At € C.. ell

provided p is the type of the values of F and e contains
no occurrences of F. Attention: do not forget the main
difference between o and the other types: s ranges over

Eo , t over QT.

(ii) (Elimination of a):
A definition such as
F (s : 0, t:T) ¢+t p=ce
stands for

F=[oM [ks € L. [\t € C_. e

p 111
provided p is the type of the values of F, e contains at
least one occurrence of F and e? is the result of substi-
tuting M for F in e. Attention: do not forget that the

equality "hides" a minimal fixpoint abstraction.

(iii) (Elimination of the term function Cons-f):

An expression such as

f(e1,...,en)

where €4s ... , €, are expressions, stands for
Cons-f (e1,...,en)

Attention: f(..., 1, ...) stands for 1, not for the

word f£(..., L, ...).

(iv) (Elimination of the term functions Is-f and Argi—f by the
use of the case construction and the introduction of
additional variables)

Assume the constructor set C[A,0] consists of:
fo : > Q

f1 Tt OXp*+O with p # o

f2 : 00X 0 >0



(1) General
Type :: Stack
Underlying types: +Integer, Bool
(ii) Constructors
emptystack : =+ Stack
push : Stack x Integer -+ Stack
(iii) Acceptor function
Is.Stack (s : Stack) : Bool
= if Depth(s) < 10 then true else false

(iv) Equivalence relation
Eqg.Stack (s1 : Stack, S, Stack) : Bool
= Equal-Stack (s1, 52)

(v) External functions
Emptystack ( ) : Stack = emptystack
Push (s : Stack, i : Integer) : Stack
= if Depth(s) < 10 then push(s, i) else 1
Pop (s : Stack) : Stack

= case
s = emptystack : 1
s = push (s', i) : s'
esac

Top (s : Stack) : Integer

= case
s = emptystack : 1
s = push (s', i) : i
esac

Isnew (s : Stack) : Bool

= case
s = emptystack : true
s = push (s', i) : false
esac
(vi) Auxiliary function

Depth (s : Stack) : Integer

= case
s = emptystack : O
s = push (s', i) : Depth (s') + 1
esac

Figure IV: The specification of Figure III in the notation of

Section 5.4.
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An expression such as

case
s = fO : eO
_— l [J
s = f1(s , ¥) o e,
— (] Ty,
s = f2(s 'S ) e,
esac

stands for
o - ]
if Is fo(s) then e 0
else if Is-f,(s) then e',
else if Is-fz(s) then

else

- s', s'"', s'"'"'", r are "new" variables;

- e', is obtained from e4 by replacing the occurrences
of s' by Arg1—f1(s) and r by Argz—f1(s);

- e'2 is obtained from e, in a similar way.

As an example the reader may compare the Figures III and IV;

see also Figure V..



DB =

(1) General

Type : Set

Underlying types : Integer, Bool
(ii) <Constructors

emptyset : Set

insert : Set x Integer - Set
(iii) Acceptor function

Is.Set(s : Set) : Bool

= case
s = emptyset : true
s = insert (s', i) :
if Memberof (s', i) then false
else Is.Set (s')
esac

(iv) Equivalence relation
Eq.Set (s1 : Set, s, : Set) : Bool
= if Subset (s1, sz) then Subset (52’ s1) else false

(v) External functions
Emptyset( ) : Set = emptyset
Insert (s : Set, i : Integer) : Set
= if Memberof (s, i) then s else insert (s, i)
Delete (s : Set, 1 : Integer) : Set

= gase
s = emptyset : s
s = insert (s', i') :
if i' = i then s' else insert (Delete(s', i), i')
E5a0

Memberof (s : Set, i : Integer) : Bool

= case
s = emptyset : false
s = insert (s', i') :
if i' = i then true else Memberof (s', i)
esac
Subset (s1 : Set, S, ¢ Set). : Bool
= case

g = emptyset : true
S, = push (s{, i)
if Memberof (52, i) then Subset (s1', SZ)

else false

esac
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FIGURE V: A specification of the data type Set. Note that
Is.Set avoids the occurrence of duplicates in the
term language and that Eg.Set identifies terms
which differ only by the order of occurrence of
their elements.,
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6. The verification of specifications

The verification of a specification consists in verifying for
it the consistenay of the definition of the algebra A0 (see
Section 5.2). The verification of a specification does not
include a proof of the syntactical correctness which should,
among other things, make sure that the right-hand sides of the
function definitions are correctly typed. It is also different
from a (semantical) "correctness proof" checking that the data
type defined corresponds to the "intended" one - whatever

this means.

6.2 The verification conditions

The definition of the algebra AO defined by a specification of

type o for the algebra A is consistent if the specification

satisfies the following conditions:

(i) Is.oc and Eq.0 are strict functions;

(ii) Egq.0 is an equivalence relation in Eé, i.e. Eq.0 is a
total, reflexive, symmetric and transitive relation;
this condition has to be verified because the definition
of Eq.0 merely guarantees that it is a (possibly partial)
function with values of type Bool;

(iii) each user function with values in Ed preserves the pro-
perty Is.o, i.e. the function value satisfies Is.o if
the arguments do:;

(iv) each user function preserves the equivalence relation

Eq.0, i. e. equivalent arguments lead to equivalent values.

More precisely, the verification conditions of the specification
of data type o are:
(i) (a) Is.o(l) =1

(b) For all s € Lyt

if Is.o(s) = true
then Eq.o (s,lL) = Eq.o(L, s) =L °

® Eq.o(L,1) = L has not to be checked because it results from

the cordition (i) (b) by monotonicity.
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(ii) For all s, Sqr Syr Sy € Eo :
if Is.o(s) = Is.o(s1) = Is.o(sz) = Is.c(s3) = true
then
(a) either Eq.o (s1, 52) = true or Eq.c(s1, 52) = false
(b) Eqg.o(s, s) = true
(c) Eq.o(s1, sz) = Eq.c(sz, s1)
(d) if Eq.o(sy, s,) = Eq.o(s,, s;) = true
then Eq.o(s1, s3) = true
(iii) For each external function
F(s1 P 0qs eee 4 S, 2 O ) = o , N

n n
(with values in LO) one has:

v
o

for all s, € L, with either Is.c(si)= true or s;=L, if 04=07 1<i<n,

and for all sS4 € Eo- 3 G os # 0, 1 <1 <n :
i
{ either Is.o(F(s;,...,s,)) = true

or F(s1,...,sn) = 1

(iv) For each external function

\Y
o

F(s1 : 01”"’Sn : on) : On + 1 ’ n
one has:
for all si,si' € Lb withreither Is.o(si) = Is.o(s'i) = true
and Eq.O(si, s'i) = true

or s, =s', =1,
i i

' g = il ) : :
and for all s;, s'; € ggi with s, =s',, 1f o, #0, 1<i<n

either Eq.o(F(s1,...,sn), F(s'1,...,s'n)) = true
{ or F(s1,...,sn) . F(s‘1,...,s'n) f 1
and tf‘0n+1 =0
- ' ' 2 Al —
F(s1,...,sn) = F(s qre--1S n) , 7f'on+1 o

Note that for all types ¢ the user function If-—then—elseo
satisfies the conditions (iii) and (iv) and has therefore
not to be checked; a similar remark holds for the equivalence

relation Eq.c and the condition (iv).

It is interesting to note that these verification conditions are

very similar to those of [13].
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As an example the verification conditions (iii) and (iv) for

the data type Set of Figure V are:

(iii) for all s ELSet and all i € EInteger:
if: Is.Set(s) = true or s =1
then: (a) Is.Set(Insert(s, i)) = true
or Insert (s, i) = 1
(b) Is.Set(Delete(s, i)) = true
or Delete (s, i) = 1
(iv) for all Sqr Syr S3s S, € Loet and all i € EInteger:
if: Is.Set(s1) = Is.Set(sz) = Eq.Set(s1, sz) = true
or s, =s, =1
and Is.Set(s3) = Is.Set(s4) = Eq.Set(sB,s4) = true
or s3 = s, =1
then
(a) Eq.Set(Insert(s1, i), Insert(sz, i)) = true
or Insert(s1, i) = Insert(sz, i) = 1
(b) Eq.Set(Delete(s1, i), Delete(sz, i)) = true
or Delete(s1, i) = Delete(sz, i) = 1
(c) Memberof(s1, i) = Memberof(sz, i)
(d) Subset(s1, s3) = Subset(sz, s4).

The proof of the verification conditions for the data type Set
of Figure V has been performed mechanically by the AFFIRM-System
[25,27] and may be found in [19]. Essentially these proofs are
based on the use of structural induction as discussed in Section
4.5 and on the use of the fixpoint property’'?; see also Section
T

10 j.e. the property that the minimal fixpoint is a fixpoint.
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7. Properties of abstract data types and their proofs

Let S, 4, o, §0’ Ao be defined as in Section 4.

7.1 Formulas

Let e,
functions of the algebra Ao and (typed) variables, each variable

and e, be (correctly typed) expressions built up from

of type 1 € go ranging over the carrier set gT. If the values

of the expressions e and e, are of the same type, say 71, then

1

€1 "1 €
or, shortly

1

is called a formula of the algebra AO1 . A proof of such a

formula is a proof of its wvalidity in the algebra AO.

In the sequel we consider properties which may be expressed
as formulas. An example of such a property is

if g = true

then e, = e,
which is equivalent to the formula

(if g then e, else 1) = (if g then e, else 1)

1

1" Note that in LCF [23] a formula is defined with "[" instead
of "=". Actually the use of "=" constitutes no restriction as

e, L e,

1
may be defined as

(iﬁ e1 = e1 then e1 else 1) = (iﬁ e1 = e1 then e2 else 1)
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7.2 A theorem

Let e, = e, (1)

be a formula of the algebra AG. Let now e'1 and e'2 be the ex-
pressions which are deduced from respectively ey and e, in the
following way:

(A)

- each function F which corresponds to a user function F of

the specification of o is replaced by this user function F;
similarly, lo is replaced by LéL);

- each variable of type ¢ is made to range over Eé rather than
over C .

In order to prove (1) it is then sufficient to prove

e'1 =e'2 (2)

A proof of this theorem is by structural induction on e'.I and

e'g; it is directly based on the definition of the functions
(A)
F

proof are left to the reader.

and on the verification conditions. The details of the

A proof of the formula (2) is a proof of its validity in the
algebra AéL) and is similar to a proof of a verification con-
dition. Again such a proof may in most cases be performed by
using structural induction and the fixpoint property; cases in
which a more powerful induction principle - such as fixpoint
induction or computational induction - is required, are dis-—

cussed in [22].

Suppose one has to prove (cf. Figure V):

for all t € ESet , 1 € EInteger:

if t# Lgge v 17 Lijieger } an

then Memberof(A)(Delete(A) (t, 1), i) = false

Taking o = Set it is sufficient to prove:

] o
for all s € ESet , 1 € glnteger'

. (L) ; 1
if s # J'Set P 17 lInteger (2%
then Memberof (Delete (s, i), i) = false



- 30 -

or, equivalently:
for all s € L , 1 €C

=Set —Integer:
if Is.Set(s) = true and i # 1 (3")
then Memberof (Delete (s, i), 1) = false

The proof of (3') is by structural induction on s.
(i) Base step'?: s = emptyset
Memberof (Delete (emptyset, i), i)
= Memberof (emptyset, i)
by the fixpoint property applied to Delete

= false

by the fixpoint property applied to Memberof
(ii) Induction step: s = insert (s', j)
(a) First case : (i = j) = true
Memberof (Delete (insert (s', j), i), 1)
= Memberof (s', 1)

by the fixpoint property applied to Delete

= Memberof (s', j) because i = j
= false
because Is.Set(s) = true
i.e. Is.Set(insert(s', j)) = true
hence Memberof (s', j) = false by the
fixpoint property applied to Is.Set.
(b) Second case : (i - j) = false

Memberof (Delete (insert (s', j), i), 1)

Memberof (insert (Delete (s', i), j), i)

by the fixpoint property applied to Delete
Memberof (Delete (s', i), 1)

Il

by the fixpoint property applied to Memberof

false

by the induction hypothesis

(L) has not to be considered
Set

because of the assumption Is.Set(s) = true.

12 Note that the base step s = 1



(c) Third case : (i = j) = 1
This case does not occur because
- i # 1 by hypothesis;

- j # L by the definition of L (see Section 4.2). [X

Set



8. Simultaneous fixpoint abstraction and simultaneous

specifications

Simultaneous fixpoint abstraction allows to define an m-tuple

(F1""’Fm) of functions, m > 2. It is expressed by writing
(F1""’Fm) = [uM1.[aM2.[...[aMm.(e1, e2,...,em)]]...] (1)

where e,,...,e_ are expressions.
1 m

Adopting a notational convention similar to that of Section

5.4 we replace (1) by m equations

where e'i is deduced from e, by replacing each Mj by Fj’

1< 3j<m, 1<1i<n.

As an example the functions ValP and ValS in Figure VI are

defined by simultaneous fixpoint abstraction.

Actually, it is convenient to systematically consider that all
the functions of a specification are defined by simultaneous
fixpoint abstraction; in fact, simultaneous fixpoint abstraction
reduces to (normal) fixpoint abstraction whenever the condition

(C1) of Section 5.1 is satisfied.

8.2 Simultaneous specifications
One may be induced to introduce data types OqresesOp, M > 2,
the constructors of which are mutually recursive; more precisely,

the specification of o5 contains a constructor

gss & ewe X O, X ee. > O,
i+1 01

for all i, 1 £ i <m - 1, and the specification of O contains
a constructor

cee 2 eee X 04 X vee > O
1 m

In that case the data types may be specified "simultaneously" -
as illustrated by Figure VI. The reader should have no difficul-
ties in generalizing the definitions of Section 5 for the case

of simultaneous specifications.



(i)

(ii)

(iii)

(iv)

(v)

General
Types : Program, Stat
Underlying types : Conf, Name, Expr, Boolexpr, Bool

‘Constructors

emptyprogram : > Program
semicolon : Stat x Program - Program
assign : Name x Expr - Stat
ifthenelse : Boolexpr x Program x Program =+ Stat
while : Boolexpr x Program - Stat
The acceptor functions |
Is.Program (p : Program) : Bool = Equal-Program (p, p)
Is.Stat (s : Stat) : Bool = Equal-Stat (s, s)
The equivalence relations
Eg.Program (p1: Program, Py Program) : Bool
= Equal-Program (p1, p2)
Eg.Stat (s1: Stat, S,: Stat) : Bool = Equal—Stat(s1,sz)
External functions

valP (p : Program, c : Conf) : Conf

= case
p = emptyprogram : cC
p = sémicolon (st, p') : valp (p', Vals (st, c))
esac
valS (s : Stat, c : Conf) : Conf
= case
s = assign (n, e) : Assign (n, e, c)

s = ifthenelse (e, p1, p2) :

if valB (e,c) then valP (p1,c) else ValP (p2,c)
s = while (e, p) :

if valB (e,c) then Vvals (s, ValP (p, c)) else c

esac

FIGURE VI: The simultaneous specification of the data types

Program and Stat. Program is the data type constituted
by a simple while-programming language, Stat repre-
sents its statements and Conf appropriate configu-
rations. Note that the acceptor functions are (strict)
functions with the constant value true; the equivalence

relations express the syntactical equality.




9. Parameterized data types

Parameterized data types have been introduced in e. g. [29,8,28].
Essentially, a parameter ranges either over the carrier set of
a data type or over the set of all types. Both cases are

considered sucessively.

An example of such a data type is Stack [n : Integer] or,

shortly, Stack [n] representing a stack with maximal depth n.

A specification of such a data type is a specification scheme
rather than a single specification. Alternatively, adopting
the notation of Section 4 one may define

5, = S U {Stack (n) | n € EInteger} ;

similarly, A _ is obtained by adding for each n € C
(o] =Integer
a carrier set and a set of functions according to the definitions

of Section 5.2.

An example (combined with a type parameter) is in Figure VII.

An example of such a data type is Stack [1 : Typel or, shortly,
Stack [T] representing a stack of elements of type T; in this
notation Type is to be considered as an additional key-word.
Intuitively T ranges over all types of the algebra 4 as well as
over the type being specified; the latter feature leads for
instance to the introduction of stacks the elements of which

are stacks of integers.

More precisely, the set of types §G is now defined as (the
smallest set satisfying):

(i) if p € S, then p € §0;

(ii) if p € §o’ then Stack [p] € §c'

The algebra Ac is defined as in Section 9.1.



An example is in Figure VII; note that if one wants to stick

to the principle of strong typing it is necessary to provide

also the function symbols such as Is.Stack or Push with an
index [n,T].
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(1) General
Type : Stack [n : Integer, 1 : Typel
Underlying types : Integer, Bool
(ii) Constructors
emptystack : - Stack [n, Tt]
push : Stack [n, 1] x 7T »> Stack [n, Tl
(iii) Acceptor function
Is.Stack(s : Stack [n, T]) : Bool

= if Depth(s) < n then true else false

(iv) Equivalence relation
Eq.Stack (s1:Stack [n, T1, SZ:Stack [n, T]) : Bool
= Equal-Stack (s1, 52)
(v) External functions
Emptystack = emptystack
Push (s : Stack [n, 1], e : 1) : Stack [n, T1]
= if Depth(s) < n then push (s, e) else 1
Pop (s : Stack [n, t]1) : Stack [n, Tt]
=, Sase
s = emptystack : 1

s = push (s', e) : s'
Top (s : Stack [n, 1]) : <t

s = emptystack : 1

s = push (s', e) : e

esac
Isnew (s : Stack [n, 1]) : Bool
= case
s = emptystack : true
s = push (s', e) : false
E=ac

(vi) Auxiliary function -
Depth (s : Stack [n, t]) : Integer

= case

s emptystack : O

push (s', e): Depth (s') + 1

Il

S

esac

FIGURE VII: A specification of the parameterized data type

Stack [n : Integer, 1 : Typel]. Informally, n is
the maximum depth of the stack, 1T is the type
of the elements stacked.




10. Conclusions

By defining functions algorithmically rather than axiomatically
the specification method proposed avoids the problems of con-
sistency and sufficiently-completeness. Using implicitly the
constructs of LCF for the definition of new functions the method
allows the specification of any data type consisting of a
recursively enumerable carrier set and (partial) computable func-
tions (cf. [22]). Using a specification to deduce a new algebra
from a given one, the method solves the extension problem, and,
moreover, avoids to start from "scratch". Finally, solutions to

the error problem have been proposed in Section 5.3.

As shown in [21] algorithmic specifications moreover lead to a
simple definition of the implementation of abstract data types.

The correctness proof of such an implementation may again be
(L)
o

the help of the same verification system; an example treated

with AFFIRM is in [19].

formulated in terms of the algebra A and may be proved with

In [21] it is shown that algorithmic specifications may also
be used for the definition of programming languages and for the

verification of their compilers.

As an additional advantage it is possible to prove algorithmic
.specifications "correct" by proving that they satisfy the axioms
of a - not necessarily sufficiently-complete - algebraic speci-

fication of the same data type.

The price paid for these different advantages is a potential
danger of "overspecification"; for instance, it is not possible
to leave certain function values unspecified or to use quanti-
fiers. Whether this shortcoming is relevant for the practice

is not clear to the author. First, arbitrary choices in a func-
tion definition - such as innermost-to-outermost rather than
outermost-to-innermost recursion - do not preclude different
choices of the implementation: they at most make the correct-
ness proof of the implementation more complex. Second, the

striking similarities of our results with, for instance, those



of [13] and the fact that is was possible to use the AFFIRM-
system for proving properties of algorithmic specifications
suggest that the basic ideas of the algorithmic specification
method were implicitly present in several works on algebraic

specifications.

Similar works are described in [16, 6]. The specification method
proposed in the former paper allows the introduction of primitive
recursive functions only; the latter paper has stronger simila-
rities with the approach discussed here but seems to have not

been completely worked out. By their constructive nature operational
specifications [e. g. 18, 29, 26] also present analogies;

as a main difference they make use of an Algol-like language

rather than of a (freely chosen) term language together with

the constructs of composition, A-abstraction and fixpoint abstrac-

tion.

Further work on algorithmic specifications includes the top-down
development of a real-life program and its verification, the
choice and/or development of an appropriate verification

system and the design of a "metalanguage" in the style of

CLEAR [ 51].
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