
Universität des Saarlandes

A PLATFORM-INDEPENDENT

DOMAIN-SPECIFIC MODELING LANGUAGE

FOR MULTIAGENT SYSTEMS

by

Dipl. Inform. Christian Steven Hahn

Dissertation zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften der Naturwissenschaftlich-Technischen Fakultäten der

Universität des Saarlandes
Saarbrücken, 2013

Tag des Kolloquiums: 20.12.2012

Zusammensetzung des Prüfungsausschusses:

Dekan: Herr Prof. Dr. Mark Groves
Vorsitzender des Prüfungsausschusses: Herr Prof. Dr. Joachim Weickert
Berichterstatter: Herr Prof. Dr. Jörg Siekmann

Herr Prof. Dr. Philipp Slusallek
Herr Prof. Dr. Andreas Zeller
Herr Prof. Dr. Bernhard Bauer

Akademischer Mitarbeiter: Herr Dr. Klaus Fischer

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen
oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.
Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form in einem
Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, 31.01.2013

Christian Steven Hahn

i

Short Abstract

Associated with the increasing acceptance of agent-based computing as a novel software
engineering paradigm, recently a lot of research addresses the development of suitable techniques
to support the agent-oriented software development. The state-of-the-art in agent-based software
development is to (i) design the agent systems basing on an agent-based methodology and (ii)
take the resulting design artifact as a base to manually implement the agent system using existing
agent-oriented programming languages or general purpose languages like Java. Apart from fail-
ures made when manually transform an abstract specification into a concrete implementation,
the gap between design and implementation may also result in the divergence of design and
implementation.

The framework discussed in this dissertation presents a platform-independent domain-specific
modeling language for MASs called DSML4MAS that allows modeling agent systems in a platform-
independent and graphical manner. Apart from the abstract design, DSML4MAS also allows to
automatically (i) check the generated design artifacts against a formal semantic specification to
guarantee the well-formedness of the design and (ii) translate the abstract specification into a
concrete implementation. Taking both together, DSML4MAS ensures that for any well-formed
design, an associated implementation will be generated closing the gap between design and code.

ii

iii

Kurze Zusammenfassung

Aufgrund wachsender Akzeptanz von Agentensystemen zur Behandlung komplexer Problem-
stellungen wird der Schwerpunkt auf dem Gebiet der agentenorientierten Softwareentwicklung vor
allem auf die Erforschung von geeignetem Entwicklungswerkzeugen gesetzt. Stand der Forschung
ist es dabei das Agentendesign mittels einer Agentenmethodologie zu spezifizieren und die resul-
tierenden Artefakte als Grundlage zur manuellen Programmierung zu verwenden. Fehler, die bei
dieser manuellen Überführung entstehen, machen insbesondere das abstrakte Design weniger
nützlich in Hinsicht auf die Nachhaltigkeit der entwickelten Softwareapplikation.

Das in dieser Dissertation diskutierte Rahmenwerk erörtert eine plattformunabhängige domä-
nenspezifische Modellierungssprache für Multiagentensysteme namens DSML4MAS. DSML4MAS

erlaubt es Agentensysteme auf eine plattformunabhängige und graphische Art und Weise
darzustellen. Die Modellierungssprache umfasst (i) eine abstrakte Syntax, die das Vokabular
der Sprache definiert, (ii) eine konkrete Syntax, die die graphische Darstellung spezifiziert sowie
(iii) eine formale Semantik, die dem Vokabular eine präzise Bedeutung gibt. DSML4MAS ist Be-
standteil einer (semi-automatischen) Methodologie, die es (i) erlaubt die abstrakte Spezifikation
schrittweise bis hin zur konkreten Implementierung zu konkretisieren und (ii) die Interoperabilität
zu alternativen Softwareparadigmen wie z.B. Dienstorientierte Architekturen zu gewährleisten.

iv

v

Abstract

Agent-based computing can be considered as promising approach and powerful technology
to develop applications in complex domains by designing and developing applications in terms
of autonomous software entities. Associated with the increasing acceptance of agent-based
computing as a novel software engineering paradigm, recently a lot of research addresses the
development of suitable techniques to support agent-oriented software development.

The state-of-the-art in agent-based software engineering is to (i) design the agent systems
basing on an agent-based methodology and (ii) take the resulting design artifact as a base to
manually implement the agent system using existing agent-oriented programming languages or
general purpose languages like Java. Apart from failures made when manually transform an ab-
stract specification into a concrete implementation, the gap between design and implementation
may also result in the divergence of design and implementation, which potentially makes again
the abstract design less useful when it comes to maintenance of the agent system. Furthermore,
in agent-oriented software engineering, there does not exist any unique methodology that can
be applied to any kind of problem without customization, which is one of the main reasons why
application developers omit the abstract design.

The framework discussed in this dissertation presents a platform independent domain specific
modeling language for MAS called DSML4MAS that allows modeling agent systems in a platform
independent and graphical manner. DSML4MAS is specified in accordance to the language-driven
development initiative and hence consists of (i) an abstract syntax, providing the vocabulary of
the language, (ii) a concrete syntax defining the graphical symbols of the language, and (iii) a
semantics giving the vocabulary a clear and precise meaning. To define the abstract syntax of
DSML4MAS a platform-independent metamodel for multiagent systems called PIM4AGENTS has
been developed that consists of different viewpoints necessary to develop agent applications in
an adequate manner. Apart from the language itself, DSML4MAS also allows to automatically
(i) check the generated design artifacts against a formal semantic specification to guarantee
the well-formedness of the design and (ii) translate the abstract specification into a concrete
implementation closing the gap between design and code. Taking both together, DSML4MAS

ensures that for any well-formed design, an associated implementation will be generated closing
the gap between design and code. DSML4MAS is integrated into a (semi-automatic) model-
driven methodology that (i) allows to refine the abstract design of DSML4MAS into more and
more concrete and detailed artifacts that are necessary when it comes to the execution of the
generated implementation and (ii) supports the interoperability between agents systems and other
existing software development approaches, e.g. Service-oriented Architectures. The two main
ingredients of the semi-automatic model-driven methodology are (i) the model transformation
between the interaction view and the behavior view of PIM4AGENTS. This allows that the abstract
communication between agents and groups of agents can be refined into concrete behaviors and
(ii) the model transformation between the Service-oriented Modeling Language (SoaML) proposed
by the Object Management Group and DSML4MAS.

For evaluation purposes, DSML4MAS has been applied to two industrial use case scenarios
from different domains. In the first use case, DSML4MAS has been used to describe the core
processes of the steel production at the Saarstahl AG in Völklingen. The second use case deals with
the scheduling of ships at the Statoil terminal at Mongstad, where DSML4MAS was used by the
application developers to describe the core requirements in an abstract manner and to use the
code generators to produce the initial implementation that than needs to be manually refined.

vi

vii

Zusammenfassung

Die agentenbasierte Softwareentwicklung ist ein effektiver Ansatz zur Behandlung komplexer
Problemstellungen mittels autonomen und intelligenten Softwareentitäten. Aufgrund wach-
sender Akzeptanz von Agentensystemen wird der Forschungsschwerpunkt auf dem Gebiet der
agentenorientierten Softwareentwicklung vor allem auf die Erforschung von geeignetem Entwick-
lungswerkzeugen gesetzt.

Stand der Forschung ist es dabei das Agentendesign mittels einer Agentenmethodologie zu
spezifizieren und die resultierenden Artefakte als Grundlage zur manuellen Programmierung zu
verwenden. Zu diesem Zwecke werden dann spezifische Agentenprogrammiersprachen oder
Standardprogrammiersprachen wie Java genutzt. Zwei Hauptprobleme lassen sich bei diesem
Ansatz identifizieren: Zum Einem führen die Fehler, die bei der manuellen Überführung von
Design in eine konkrete Implementierung entstehen, dazu, dass insbesondere das abstrakte
Design weniger nützlich in Hinsicht auf Nachhaltigkeit der entwickelten Softwareapplikation
wird. Zum Anderen existiert keine universelle Agentenmethodologie, die ausdrucksstark genug
ist, um alle Problemstellungen bei denen Agententechnologie zum Einsatz kommt, adäquat zu
beschreiben.

Das in dieser Dissertation diskutierte Rahmenwerk erörtert eine plattformunabhängige domä-
nenspezifische Modellierungssprache für Multiagentensysteme namens DSML4MAS. DSML4MAS

erlaubt es Agentensysteme auf eine plattformunabhängige und graphische Art und Weise
darzustellen. Die Modellierungssprache basiert auf der sprachgetriebenen Entwicklungsinitiative
(engl. Language-Driven Development) und umfasst somit (i) eine abstrakte Syntax, die das Vokab-
ular der Sprache definiert, (ii) eine konkrete Syntax, die die graphische Darstellung spezifiziert
sowie (iii) eine formale Semantik, die dem Vokabular eine präzise Bedeutung gibt. Zur Definition
der abstrakten Syntax von DSML4MAS wurde dabei ein plattformunabhängiges Metamodell für
Multiagentensysteme namens PIM4AGENTS entwickelt, welches dem Entwickler erlaubt das zu
beschreibende Multiagentensystem aus verschiedenen Sichtweisen zu formulieren. Neben Syntax
erlaubt DSML4MAS zum Einem das erstellte Design gegenüber der spezifizierten Semantik zu
überprüfen und zum Anderen die abstrakte Spezifikation basierend auf DSML4MAS automatisch
in eine konkrete Implementierung zu überführen und somit die Kluft zwischen Design und Imple-
mentierung automatisch zu schliessen. DSML4MAS ist Bestandteil einer (semi-automatischen)
Methodolgy welche (i) Teile des abstrakten Designs in konkretere Artifakte automatisiert überführt
und (ii) die Interoperabilität zwischen Agentensystemenen und alternativen Softwareparadigmen
wie z.B. Dienstorientierte Architekturen fördert.

Neben dem direkten Vergleich zwischen DSML4MAS und den meist zitierten agentenbasierten
Entwiklungsmethoden anhand eines vorgeschlagenen Analyserahmenwerks, fand DSML4MAS

in zwei industriellen Anwendungsfällen Einsatz. Im ersten Fall wurden mittels DSML4MAS die
Kernprozesse bei der Stahlproduktion der Saarstahl AG in Völklingen (Deutschland) dargestellt
und in eine ausführbare Implementierung überführt. Der zweite Anwendungsfall befasst sich
mit der Problemstellung der effizienten Disposition von Schiffen am StatoilHydro Terminal in
Mongstad (Norwegen). Dabei kam DSML4MAS zur Beschreibung der kooperativen Algorithmen
und automatisierten Codegenerierung zum Einsatz.

viii

ix

Statement on Publications

This thesis is a coherent presentation of my scientific work since June 2006. Parts of the
presented material has been previously submitted, reviewed and published in various conference
proceedings, book chapters and journals, and is the result of my collaboration with colleagues and
the supervision of a number of master and diploma students.

Part II mainly deals with the language features of DSML4MAS. Early versions of PIM4AGENTS

defining the abstract syntax of DSML4MAS has been presented in (Hahn; 2008; Hahn et al.; 2009a,
2007b; Warwas and Hahn; 2009b; Hahn et al.; 2007c). An early version of the formal semantics
appeared in (Hahn and Fischer; 2008b,a). Chapter 5 reports on the concrete syntax and graphical
editor built upon the results of the master thesis by Stefan Warwas (Warwas; 2007) and (Sadovykh et
al.; 2009; Warwas and Hahn; 2009a; Warwas et al.; 2009; Warwas and Hahn; 2008). The DSML4MAS

language (summarized in (Warwas and Hahn; 2009a)) won the best academic software award at
the eight international conference on autonomous agents and multiagent systems.

Part III mainly deals with model transformations that were partly developed during the super-
vision of master students Gründel (2009) and Raber (2009). Early versions of the code generators
appeared in (Hahn et al.; 2009a, 2007b,d). The internal model transformation between the interac-
tion and behavior viewpoints of PIM4AGENTS has been presented in (Hahn and Zinnikus; 2008;
Hahn et al.; 2009b, 2011).

Part IV deals with the evaluation of DSML4MAS. Chapter 9 reports on the industrial use case at
the Saarstahl AG, which has been previously presented in (Jacobi et al.; 2009; Hahn et al.; 2010b,c)
and (Jacobi et al.; 2010).

Other work published with collaborators not directly reported in this thesis—but conducted in
related areas—is cited where appropriate (Hahn et al.; 2008b; Zinnikus et al.; 2008a; Fischer et al.;
2006; Kahl et al.; 2007; Zinnikus et al.; 2007; Leon-Soto et al.; 2009; Hahn and Fischer; 2007; Hahn
and Slomic; 2008; Hahn et al.; 2008a, 2006c,b; Fischer et al.; 2009, 2007; Zinnikus et al.; 2008b, 2010;
Hahn et al.; 2010a; Elvesæeter et al.; 2010; Nunes et al.; 2011; Hahn et al.; 2010d).

x

xi

Acknowledgements

First of all, my research would not have been possible without the generous funding of the
European Commission in projects like ATHENA (Advanced Technologies for Interoperability of
Heterogeneous Enterprise Networks and their Applications, FP6-2002-IST-1), Interop-NoE (Inter-
operability Research for Networked Enterprises Applications and Software - Network of Excellence,
IST-2003-508011) and SHAPE (Semantically-enabled Heterogeneous Service Architecture and Plat-
forms Engineering, ICT-2007-216408), MODEST (Model-driven agents for semantic Web services)
funded by the German Ministry for Education and Research (BMB+F), and the German Research
Foundation (DFG) of funding the Socionics initiative.

I am indebted to Prof. Dr. Jörg Siekmann for his encouragement and motivation to conduct
research in artificial intelligence. Dr. Klaus Fischer provided me with the support I needed during
the ups and downs of my thesis project. He gave very constructive and illuminating feedback on
drafts of this thesis. His spirit and energy have been an inspiration to me and I am grateful for
the working environment he created. I am also grateful to Ingo Zinnikus, Stefan Warwas, Cristián
Madrigal-Mora and my other colleagues at the MAS group of DFKI for all the discussions we had. I
also thank Prof. Dr. Philipp Slusallek for letting me become a member of his research groups and I
am grateful that he accepted to review my thesis. A special thank goes to Prof. Dr. Andreas Zeller
accepting to review this thesis.

In 2006, I had the opportunity to visit the ICT research lab at SINTEF in Oslo, present my
work, and benefit from many discussions. I am grateful to Dr. Arne J. Berre and Brian Elvesæter
supporting me during my stay. On my first day, Dr. Berre introduced me into the field of Language-
Driven Development, on which this dissertation is finally based on.

I particularly enjoyed the cooperation with the project partners in the SHAPE and Socionics
projects: Dr. Arne Berre, Dr. Michael Stollberg, Brian Elvesæter, Dr. Andrey Sadovykh, Sven
Jacobi, Einar Landre, Dina Panfilenko, Dr. Michael Florian, Dr. Frank Hillebrandt, Bettina Fley, and
Daniela Spresny.

A special thank also goes to the members of the OMG’s standardization groups of SoaML and
AML, in particular Mr. James Odell and Dr. Arne Berre. We had a lot of best modeling practice
discussions giving me the possibility to further improve DSML4MAS. I am deeply grateful that I
had the opportunity to contribute parts of DSML4MAS to both OMG standards.

My supervision of the master students Rolf Schmidt, Stefan Warwas, Susanne Bölker, Torsten
Gründel, David Raber was an interesting experience that I do not want to miss. I am very grateful
for the many discussions we had and their support regarding implementing transformations part
of DSML4MAS.

Last but not least, I thank Billi and Bene for all their support and I look forward to all our future
adventures. I am also deeply grateful to my parents whose support made this dissertation possible.

Saarbrücken, January 2013

Christian Hahn

xii

Contents

Contents . xiii

List of Figures . xvii

List of Tables . xxi

Part I Introduction, Background, and Problem Statement xxv

1. Introduction . 1
1.1 Motivation . 1
1.2 Problem Statement and Research Questions . 3
1.3 Approach and Main Contributions . 7
1.4 Outline of this Thesis . 9

2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering 13
2.1 Agent-Oriented Software Engineering . 13
2.2 Model-Driven Development . 23
2.3 Bottom Line . 34

3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering 37
3.1 Language-Driven Development . 37
3.2 Domain-Specific Modeling Language for Multiagent Systems 45
3.3 Bottom Line and Summary of Approach . 57

Part II Language Features of the Domain Specific Modeling Language for Multiagent Sys-
tems 59

4. Abstract Syntax and Semantics of DSML4MAS . 61
4.1 Eight Views on Designing Multiagent Systems . 61
4.2 Multiagent System Viewpoint . 64
4.3 Agent Viewpoint . 67
4.4 Organization Viewpoint . 71
4.5 Role Viewpoint . 75
4.6 Interaction Viewpoint . 81
4.7 Behavior Viewpoint . 88
4.8 Environment Viewpoint . 104
4.9 Deployment Viewpoint . 106
4.10 Bottom Line . 110

xiv CONTENTS

5. Methodology of DSML4MAS . 113
5.1 Basic Concepts of Methodologies . 113
5.2 Tool Support: The DSML4MAS’S Development Environment 115
5.3 Models and Notation: The Concrete Syntax of DSML4MAS’S 117
5.4 Process: DSML4MAS’S (Semi-) Automatic Model-Driven Methodology 132
5.5 Bottom Line . 137

Part III Code Generation and Integration 139

6. Endogenous Transformation: From Interaction to Behaviors 141
6.1 Modeling Service Interaction Patterns using DSML4MAS 143
6.2 Comparison with the State of the Art . 151
6.3 From Agent Interaction Protocols to Behavior Descriptions 153
6.4 Bottom Line . 160

7. Vertical Transformation: From Design to Executable Code 163
7.1 Agent Programming Languages and Platforms . 164
7.2 Metamodel of Jack Intelligent Agents . 166
7.3 From DSML4MAS to JACK . 173
7.4 PSM Agent Modeling Process . 183
7.5 Bottom Line . 184

8. Agent-Based Service-Oriented Architectures . 185
8.1 Service-Oriented Architectures—An Introduction . 186
8.2 Agents and Service-oriented Architectures . 191
8.3 Service-Oriented Architecture Modeling Language . 197
8.4 Model Transformation: From SoaML to DSML4MAS 204
8.5 PIM Service-oriented Architecture Modeling Process 215
8.6 DSML4MAS as Web Service Execution Engine . 216
8.7 Bottom Line . 218

Part IV Use Case and Evaluation 219

9. DSML4MAS in Industrial Use Cases . 221
9.1 Model-Driven Integration of the Saarstahl Supply Chain 221
9.2 Scheduling Product Cargos at Statoil . 233
9.3 Bottom Line . 241

10.Comparison with State of the Art in Agent-Oriented Software Engineering 243
10.1 Evaluation Framework . 243
10.2 Agent-Based Modeling Techniques . 246
10.3 DSML4MAS and State of the Art . 267
10.4 Bottom Line . 271

Part V Conclusion & Further Work 273

11.Conclusion . 275
11.1 Contributions . 275

CONTENTS xv

11.2 Open Issues & Future Work . 279

Bibliography . 281

Index . 314

Appendix 317

A. Remaining Object-Z Specification . 319
A.1 Multiagent View . 319
A.2 Agent View . 319
A.3 Interaction View . 320
A.4 Behavioral View . 320
A.5 Environment View . 327
A.6 Deployment View . 329

xvi CONTENTS

List of Figures

1.1 The (graphical) outline of this dissertation. 10

2.1 The core MAS building blocks. 14
2.2 The MDA metamodel. 26
2.3 The abstraction levels and their different model transformations. 27
2.4 The transformation metamodel. 32

3.1 The three core components of a language. 39
3.2 An overview of a general DSL framework . 42
3.3 An overview of our framework. 45
3.4 The model transformation architecture of DSML4MAS. 52
3.5 The pluggable architecture of DSML4MAS. 54
3.6 The architecture of DSML4MAS. 56

4.1 A partial Object-Z class schema representation. 63
4.2 The partial metamodel reflecting the multiagent system viewpoint of DSML4MAS. . 65
4.3 The metamodel reflecting the agent viewpoint of PIM4AGENTS. 68
4.4 The metamodel reflecting the organization viewpoint of PIM4AGENTS. 71
4.5 The metamodel reflecting the role viewpoint of PIM4AGENTS. 76
4.6 The metamodel reflecting the interaction aspect of PIM4AGENTS. 82
4.7 The core metamodel of the behavioral viewpoint of PIM4AGENTS. 89
4.8 The specializations of a StructuredActivity . 96
4.9 The specializations of a Task in PIM4AGENTS (partial). 102
4.10 The environment viewpoint of PIM4AGENTS. 104
4.11 The metamodel reflecting the deployment viewpoint of PIM4AGENTS. 106

5.1 The notation of the agent diagram. From left to right, the notations of agent, plan,
capability, and domain role are depicted. 119

5.2 The agent diagram of the CMS scenario. 120
5.3 The notation of the organization diagram. From left to right, the notations of organi-

zation, protocol, domain role, and plan are depicted. 120
5.4 The organization diagram of the CMS scenario. 121
5.5 The notation of the collaboration diagram. From left to right, the notations of domain

role binding (illustrated as port), collaborations including actor bindings, domain
roles, and protocols are depicted. 122

5.6 The collaboration diagram of the CMS scenario. 123
5.7 The role diagram of the CMS scenario. 124

xviii LIST OF FIGURES

5.8 The notation of the interaction diagram. From left to right, the notations of actor,
including a message flow, message scope including an ACL message, and time out
are depicted. 124

5.9 The CallForPapers protocols of the CMS scenario. 125
5.10 The CallForReviews protocols of the CMS scenario. 125
5.11 The notation of the behavior diagram. From left to right, the upper row includes the

notations of begin, end, knowledge, internal task, wait, receive, and send. The lower
low presents the notations of sequence, parallel, parallel loop, loop, and decision. . 126

5.12 Behavior diagram of the SubmitPaper behavior. 127
5.13 The environment diagram of the CMS sceanrio. 128
5.14 The deployment diagram of the CMS scenario. 129
5.15 The notation of the MAS diagram. From left to right, the notations of agent, organi-

zation, domain role, message, and environment are depicted. 129
5.16 The MAS diagram of the CMS scenario. 130
5.17 The overall framework of EPF . 133
5.18 The (semi-) automatic process of DSML4MAS. 135
5.19 The EPF process of the analysis phase and architectural specification phase. 136
5.20 The EPF process of the detailed design phase. 137

6.1 Scope of this chapter: Endogenous model transformation within DSML4MAS. 142
6.2 Pattern 3: Send and Receive. 144
6.3 Pattern 4: Racing incoming messages. 145
6.4 Pattern 7: One-to-many send/receive. 146
6.5 Pattern 8: Multi-responses. 146
6.6 Pattern 9: Contingent requests. 147
6.7 Pattern 9: Alternative contingent requests. 148
6.8 Pattern 10: Atomic multicast notification. 149
6.9 Pattern 11: Request with referral. 150
6.10 Pattern 12: Relayed request. 150
6.11 Pattern 13: Dynamic Routing. 151
6.12 The Contract Net Protocol designed using DSML4MAS. 153
6.13 Conceptual model transformations between the interaction view and behavioral

view of DSML4MAS. 155
6.14 The generated SendAcceptReject plan. 159

7.1 Scope of this chapter: Model transformation between DSML4MAS and JACK and JADE.164
7.2 The agent metamodel (simplified) reflecting the agent view of the JACK framework. 167
7.3 The team metamodel (simplified) reflecting the team view in the JACK framework. . 169
7.4 The partial process metamodel reflecting the process view in the JACK framework. . 172
7.5 An overview on the model mappings from PIM4AGENTS to JackMM. 174
7.6 The generated agent view of the CMS example. 180
7.7 The generated team view of the CMS example. 181
7.8 The JACK representation of the interaction view of CMS. 181
7.9 The JACK representation of the process view of CMS. 182
7.10 The implementation phase of the DSML4MAS process. 184

8.1 The scope of this chapter: Model transformation between SOAs (i.e. SoaML) and
MASs (i.e. DSML4MAS). 186

8.2 Three generic roles of SOAs. 188

LIST OF FIGURES xix

8.3 The choreography between services. 190
8.4 The orchestration of services. 190
8.5 An overview of the SHAPE model transformation architecture and framework. 196
8.6 The basic concepts to define SOAs in accordance to SoaML. 198
8.7 The basic concepts of contracts in accordance to SoaML. 199
8.8 The abstract view on the conference management system using the ServicesArchi-

tecture concept from SoaML. 202
8.9 The abstract view on the SeniorResearcher participant architecture. 203
8.10 The abstract view on the Researcher participant architecture. 203
8.11 The concrete interaction of the CallForPaper service contract. 204
8.12 The basic mapping rules to transform SoaML specifications into PIM4AGENTS. . . . 205
8.13 The MAS diagram of the generated PIM4AGENTS CMS model. 212
8.14 The organization diagram of the generated PIM4AGENTS model. 212
8.15 The collaboration diagram of the generated PIM4AGENTS model. 213
8.16 The deployment diagram of the generated PIM4AGENTS model. 214
8.17 The behavior diagram of the generated PIM4AGENTS model. 214
8.18 The SOA-related process of DSML4MAS. 215

9.1 The partial supply chain of the Saarstahl AG. 222
9.2 The Customer participant architecture . 224
9.3 The interaction between Customer and SaarstahlArchitecture is defined through the

CustomerManufacturerNetwork service architecture. 224
9.4 The choreography between the customerActor and manufacturerActor. 225
9.5 The SaarstahlArchitecture participant architecture. 226
9.6 The PlanningDepartment participant architecture. 227
9.7 The SalesDepartment participant architecture. 227
9.8 The SFPInventory participant architecture providing the SFPInventoryServices service.228
9.9 The RollingMill participant architecture. 228
9.10 The Order participant architecture. 229
9.11 The generated PIM4AGENTS MAS diagram (part 1). 229
9.12 The generated PIM4AGENTS organization diagram (partly). 230
9.13 The postMelting collaboration of the SaarstahlArchitecture organization. 231
9.14 The generated PIM4AGENTS plan for the manufacturer. 231
9.15 The generated PIM4AGENTS environment diagram. 232
9.16 The generated PIM4AGENTS deployment diagram. 232
9.17 The PIM4AGENTS interaction diagram of the Simulated Trading Protocol. 235
9.18 The PIM4AGENTS MAS diagram. 236
9.19 The PIM4AGENTS organization diagram. 237
9.20 The PIM4AGENTS agent diagram. 237
9.21 The PIM4AGENTS behavior diagram. 238
9.22 The PIM4AGENTS deployment diagram of the Mongstad scheduling problem. 239
9.23 The team view of the generated JACK model based on the organizations in the

PIM4AGENTS model. 239
9.24 The team view of the generated JACK model is based on the agent types in the

PIM4AGENTS model. 240
9.25 The team plan of the generated JACK model. 241

10.1 The Gaia metamodel. 252
10.2 The PASSI metamodel. 254

xx LIST OF FIGURES

10.3 The ADELFE metamodel. 256
10.4 The Tropos metamodel related to the actor diagram. 258
10.5 The Tropos metamodel related to the goal diagram. 259
10.6 The O-MaSE metamodel. 261
10.7 The Prometheus metamodel (part 2). 264
10.8 The Prometheus metamodel (part 1). 265
10.9 Bar chart on the criteria main concept, methodology, and tool support of the different

AOSE approaches. 269
10.10Bar chart on the criteria semantics and interoperability of the different AOSE ap-

proaches. 270
10.11Bar chart on the overall support of the different AOSE approaches. 270

List of Tables

3.1 UML vs. metamodel for defining DSMLs . 44

6.1 Service interaction pattern support in WS-CDL, extended BPMN, Let’s Dance, and
DSML4MAS. Dynamic routing is not considered in the assessment of WS-CDL,
extended BPMN, and Let’s Dance. 152

7.1 Mapping between the PIM4AGENTS and JackMM process parts. 177

8.1 Mapping between UML Activity Diagrams of SoaML and Plans in PIM4AGENTS. . . . 210

10.1 A summary on the requirements of our evaluation framework. 245
10.2 A summary on AUML’s characteristics. 247
10.3 A summary on AORML’s characteristics. 249
10.4 A summary on AML’s characteristics. 251
10.5 A summary on Gaia’s characteristics. 253
10.6 A summary on PASSI’s characteristics. 255
10.7 A summary on ADELFE’s characteristics. 257
10.8 A summary on Tropos’s characteristics. 260
10.9 A summary on O-MaSE’s characteristics. 262
10.10A summary on INGENIAS’s characteristics. 263
10.11A summary on Prometheus’s characteristics. 266
10.12A summary on DSML4MAS’s characteristics. 268

xxii LIST OF TABLES

List of Object-Z Class Schemata

4.2.1Class schema of MultiagentSystem . 66
4.2.2Class schema of Message . 67
4.3.1Class schema of Agent . 69
4.3.2Class schema of Capability . 70
4.4.1Class schema of Organization . 73
4.4.2Class schema of Collaboration . 75
4.5.1Class Schema of Role . 78
4.5.2Class Schema of DomainRole . 80
4.5.3Class Schema of Actor . 81
4.6.1Class schema of Interaction . 83
4.6.2Class schema of Protocol . 84
4.6.3Class schema of MessageFlow . 86
4.6.4Class schema of MessageScope . 86
4.6.5Class schema of ACLMessage . 88
4.7.1Class schema of Plan . 91
4.7.2Class schema of ControlFlow . 93
4.7.3Class schema of InformationFlow . 94
4.7.4Class schema of Activity . 95
4.7.5Class schema of StructuredActivity . 98
4.7.6Class schema of Split . 98
4.7.7Class schema of Decision . 100
4.7.8Class schema of Send . 103
4.7.9Class schema of Receive . 103
4.8.1Class schema of Object . 105
4.9.1Class schema of AgentInstance . 107
4.9.2Class schema of Binding . 108
4.9.3Class schema of DomainRoleBinding . 109
4.9.4Class schema of ActorBinding . 110
A.1.1Class schema of NamedElement. 319
A.2.1Class schema of Knowledge. 319
A.3.1Class schema of TimeOut. 320
A.4.1Class schema of Behavior. 321
A.4.2Class schema of Parallel. 321
A.4.3Class schema of Sequence. 322
A.4.4Class schema of Loop. 322
A.4.5Class schema of ParallelLoop. 323
A.4.6Class schema of Task. 323
A.4.7Class schema of InternalTask. 324
A.4.8Class schema of Wait. 324

xxiv LIST OF OBJECT-Z CLASS SCHEMATA

A.4.9Class schema of Begin. 325
A.4.10Class schema of End. 326
A.4.11Class schema of Fail. 326
A.5.1Class schema of Environment. 327
A.5.2Class schema of Attribute. 328
A.5.3Class schema of Operation. 328
A.5.4Class schema of Parameter. 329
A.6.1Class schema of Membership. 330

Part I

Introduction, Background, and Problem Statement

xxvi

1. Introduction

1.1 Motivation

Software engineering is in accordance with (IEEE STD 610.12; 1990) the discipline of Computer Sci-
ence, which is concerned with the creation process of software systems. Beyond others, two com-
mon paradigms for software engineering are the object-oriented and agent-oriented paradigms.
Both share many similarities, primarily due to the fact that the agent-oriented paradigm evolved
from the object-oriented paradigm. However, especially when designing complex and distributed
software systems, agent-based computing can be considered as promising approach and powerful
technology by designing and developing software applications in terms of autonomous software
entities called agents that are situated in an environment in order to achieve their goals by cooper-
ation in a flexible manner. The coordination between agents can either be achieved by interacting
with one another in terms of high-level protocols and interaction languages or/and through
plans defining the overall agent’s behavior for achieving goals. Compared to the object-oriented
paradigm, in accordance with (Jennings; 2001) and (Parunak; 1997) the advantages of agent-based
computing are (i) the autonomy of the application components, (ii) the provision of better separa-
tion of concerns due to explicitly taking into account situatedness and modeling environmental
resources, and (iii) addressing dynamic and high-level interactions (i.e., with societal rather than
with architectural concepts).

Associated with the increasing acceptance of agent-based computing as a novel software engi-
neering paradigm, recent research addresses the identification and definition of suitable models,
methods and techniques to support the development of agent-based software systems. Agent-
Oriented Software Engineering (AOSE) (Ciancarini and Wooldridge; 2001; Wooldridge et al.; 2002;
Giunchiglia et al.; 2003; Odell et al.; 2004; Müller and Zambonelli; 2006; Padgham and Zambonelli;
2007; Luck and Padgham; 2008; Luck and Gómez-Sanz; 2009) is an established field—with its first
workshop held in 2000—that is concerned with how to engineer agent-based software systems.
AOSE as a new engineering paradigm has mainly evolved from Object-oriented Software Engineer-
ing (OOSE), where AOSE has placed greater emphasis on the autonomy, interaction, intelligence,
and proactiveness of agents, which are the outstanding variations to OOSE.

Even if the AOSE community is very active, agent-based systems and multiagent systems
(MASs) technology still face many challenges in being adopted by industry and possibly taking over
from object-oriented technology as the dominant software development technology. Especially,
the development of industrial-strength applications requires, in accordance to (Odell; 2002), the
availability of software engineering methodologies and languages that typically consist of a set
of methods, models, guidelines and techniques that facilitate a systematic agent-based software
development process, resulting in increased quality of the software product.

• One of the main reasons for not being taken over by industry might be the overly strong
emphasis on theory, as implementation and deployment of agent-based systems are still
considered secondary compared to its theoretical foundations (Gomez-Sanz et al.; 2008b).

2 1. Introduction

However, the even more essential reason might be the lack of adequate tool support provid-
ing methods that automatically guide the application developers from early analysis and
design to implementation. Even though many AOSE methodologies have been proposed so
far, few are mature or described in sufficient detail to be of real use. None of them is in fact
complete (in the sense of covering all necessary activities involved in software engineering)
and is able to fully support the industrial needs for agent-based system development (Dam
and Winikoff; 2004).

• Another reason might be, in accordance to Kuan et al. (2005), the fact that existing AOSE
methodologies are tied to a particular agent architecture from the early phases to the imple-
mentation. The resulting design is too constrained to a particular architectural paradigm.
Specifying architecture independent analysis models could increase the understandability
of domain experts and give the application developers and implementers the choice of
selecting an appropriate architecture once the requirements are properly analyzed.

• Apart from the AOSE methodology issues there are also difficulties in implementing MASs
(see (Luck et al.; 2006)). These difficulties are due to (i) a lack of specialized debugging
tools, (ii) skills needed to move the requirements from analysis and design to code, (iii)
problems associated with awareness of the specifics of different agent platforms, and (iv) in
understanding the nature of what is a new and distinct approach to systems development.
Luck et al. see the lack of mature developing and implementation methods and tools as one
reason why developing MASs currently involves higher costs than using conventional (e.g.
object-oriented) paradigms. The absence of tool support certainly reduces the change of
AOSE in getting adopted by industry.

In the context of OOSE, the Unified Modeling Language (UML1)—fathered by the Three Amigos
Grady Booch, James Rumbaugh and Ivar Jacobson—is an international standard in the Software
Engineering community declared by the Object Management Group (OMG). UML’s main objectives
is to provide an universal set of concepts independent of particular programming languages or
development processes used within an expressive visual modeling language that is widely accepted
by industry in all phases of software development, from design to code generation. Agents are—as
previously mentioned—pretty similar to objects and often implemented using object-oriented
programming languages, however, three distinguishing features make the difference in accordance
to (Tveit; 2001): Firstly, agents offer structures for representing mental components like beliefs
and commitments on which decisions are met. Secondly, agents support high-level interactions
through either using agent-communication languages based on the speech act theory (Searle;
1969; Cohen and Levesque; 1979) or complex agent interaction protocols as opposed to ad-hoc
messages sent between objects. Thirdly, objects are controlled from the outside, as opposed to
agents that have some certain degree of autonomous behavior, which cannot be directly controlled
from the outside. Even if the differences between objects and agents are not too serious, special
agent-based modeling methods are needed as existing modeling languages for OOSE like UML
do not provide the necessary vocabulary, notation elements nor methods to model all features of
agent-based systems and MASs.

Hence, similar to UML for OOSE, the goal of this dissertation is to define, specify and establish
a modeling language tailored to the domain of agents and MASs. We see the main benefit of such
a domain-specific2 modeling language for MASs (DSML4MAS) in its ability to provide abstractions
that are tailored to the specific problem domain of agent-based computing. At this, we expect
a potential increase in productivity and ease of use. Some other benefits of domain-specific

1 see the current UML 2.2 specification at http://www.omg.org/technology/documents/formal/uml.htm
2 Domain-specific software development deals with developing software systems for a specific domain. As one of the

core principles on which this thesis base, the basic ideas of domain-specific software development are clarified in Chapter 3

1.2. Problem Statement and Research Questions 3

modeling languages are the possibility to raise the level of abstraction and the ability to produce a
more precise model, since it is focused in a narrower view of the problem of defining MASs. This
leads to a more flexible and agile agent-based software product.

To realize DSML4MAS, we developed a framework for MASs in accordance to the language-
driven development principles3. With the development of this language, we pursue the following
abstract objectives:

• Provide strong concepts that allow to build practical and convincing MAS and agent applica-
tions

• Integration with non-MAS systems to ensure that non agent-based practitioner can easily
use DSML4MAS in combination with their already existing traditional software engineering
approaches

• Model-driven integration and harmonization with mainstream software engineering
• Fast application development advanced by the design notation and validation facilities of

DSML4MAS

In order to achieve these promising objectives, we carefully need to explore the general problems
we want to solve. This is done by stating the main issues with state-of-the-art AOSE, followed by
listing the key research questions related to this dissertation, we consider important to answer
and clarify to meet the previously mentioned objectives.

1.2 Problem Statement and Research Questions

The development of complex systems by applying the agent-oriented paradigm requires adequate
modeling techniques and methodologies that provide key functionalities to decrease complexity
in developing agent-based systems. This is confirmed by the recent AgentLink4 roadmap (Luck et
al.; 2005, p. 85):

Most new software technologies require supporting tools and methodologies. A fun-
damental obstacle to the take-up of agent technology is the current lack of mature
software development methodologies for agent-based systems.

To resolve the lack of mature agent-based software development methodologies, languages and
tools, we consider the following research questions necessary to investigate:

What are the most important and core building blocks of MASs?

The absence of a clearly defined vocabulary for modeling agent-based systems is certainly one
major reason not being adopted by industry. In order to build adequate agent-based mechanisms,
methodologies and tools, we believe that as a first step, we need to agree on the basic concepts
of MASs. The basic definitions of object-oriented notions of objects, like classes, generalization,
specialization, and aggregation are widely accepted by practicing professionals. However, at the
same time, the multiagent community could not reach any agreement on the core concepts of
MASs and the relationships among them. The successful and widespread deployment of complex

3 In opposite to model-driven development, language-driven development focuses on the definition of an abstract
syntax, concrete syntax and precise semantics. A precise definition of language-driven development is given in Chapter 3

4 http://www.agentlink.org/

4 1. Introduction

software systems based on MASs requires the identification of an appropriate set of agent-based
concepts that provide the baseline for defining adequate agent-based engineering methods and
tools.

While basic agent-oriented methods have commonalities, the MAS community is far from
having community-wide consensus on the majority of agent and multiagent concepts (Padgham
et al.; 2008). Even if several agent definitions are available and researchers and practitioners
use the same concepts to represent similar things, the real problem lies in the relationships of
concepts similar used in different definitions. For example, when comparing the vocabularies
provided by the three most cited agent-based methodologies ADLEFE (Bernon et al.; 2005a, 2003),
Gaia (Wooldridge et al.; 2000; Zambonelli et al.; 2003) and PASSI (Cossentino; 2005), surprisingly,
the only concept all of them have in common is the concept of an agent. A first attempt toward
the development of a unified vocabulary has been described in (Bernon et al.; 2005b). The
corresponding metamodel was developed by merging the metamodels of ADELFE, Gaia and PASSI
aiming at combining the strengths of each metamodel. Even if unifying relevant aspects from each
metamodel seems to be a promising approach. The resulting merged metamodel might work if
restricting MASs to the academic domain. However, it is still far too abstract to design complex
industrial scenarios. Moreover, approaches like SODA (Molesini et al.; 2005; Omicini; 2001),
MESSAGE (Caire et al.; 2002) or MaSE (O-MaSE) (DeLoach et al.; 2001; DeLoach; 2005) already
nicely identify the core blocks of MASs. Nevertheless, like in the case of the unified metamodel,
it is pretty unclear how to automatically derive executable code from them, as aspects like the
internal behaviors of agents or agent interactions are not covered in detail.

What is an appropriate graphical visualization and notation of a MAS language?

A second issue we see is the lack of meaningful graphical notation providing the domain experts
a clear intuition in how to use the underlying vocabulary correctly. The development of MASs
or agent-based systems, in general, is more complex and error-prone than conventional object-
oriented design. Thus, specific methods need to be developed reducing the overall complexity.
Often, for this purpose, a methodology is introduced, guiding the system developer through the
different phases and views necessary when designing MASs. In the context of OOSE, scientists
firstly agreed on the basic concepts, followed by the tool vendors agreeing on a common notation
as an appropriate graphically visualization naturally supports the scalability of the design. Even if
many AOSE research tools exist, they are mainly built from scratch and only little effort has been
undertaken to integrate them into integrated development environments (IDEs) such as Eclipse.
Luck et al. (2006) see the need of integration as main step toward reducing implementation costs.

Agent-based programming language like JADE (Java Agent DEvelopment Framework, (Bellifem-
ine and Rimassa; 2001)) or Jadex (Pokahr et al.; 2005b) typically only rely on textual representation.
In contrast, Jack Intelligent Agents (JACK Intelligent Agents; 2005) already provides visual tech-
niques for specifying code, however, only code skeletons are generated that need to be completed
by the experienced domain expert who is familiar with the syntax and semantics of the underlying
textual programming language. In (Padgham et al.; 2008), a unified notation for AOSE has been
proposed that bases on the notation of the methodologies O-Mase (García-Ojeda et al.; 2007),
Prometheus (Thangarajah et al.; 2005) and PASSI. This unified notation is a starting point for
developing the notation of DSML4MAS.

1.2. Problem Statement and Research Questions 5

What is an adequate formal semantics that support testing, validation, and code generation
issues?

The third obstacle we see is the lack of semantics in agent-oriented development approaches.
Event if a clear vocabulary and notation is provided, the generated artifacts are rarely complete
with respect to all requirements needed for full code generation. A formal semantics can increase
the domain experts’ understanding on how to model correctly in terms of ensuring that all re-
quirements are met to automatic generate code. Even when agent-based code is generated, full
testing and validation is usually required, which consumes a significant chunk of development
effort. This effort can be decreased if validation and testing facilities base on a formal semantics
and techniques such as model checking.

Several contributions exist proposing a formal approach to develop MASs. The most prominent
approach is proposed in (d’Inverno and Luck; 2001b), which is based on the specification language
Z (Spivey; 1992). However, in that approach, the development of MASs is purely restricted to the
formal specification, no graphical visualization nor automatic code generation is offered. The
authors of (Brandão et al.; 2004) propose an approach in which Object-Z (Smith; 2000) is extended
for specifying MASs. In accordance to them, AgentZ extends Object-Z with new constructs to en-
hance structuring and to accommodate new agent-oriented entities such as agents, organizations,
roles, and environments. The Agent-Z approach seems to be promising, however, the authors
only cover the static semantics, operational aspects are not considered. Another approach is
specified in (Hilaire et al.; 2000) combining Object-Z and statecharts to define MASs as the authors
consider Object-Z too weak for specifying the complex features associated with MASs. However, it
is unclear whether existing Object-Z tools (e.g. type checker) can be used for checking, validating,
and verifying the generated models. Other formal or at least semi-formal approaches exist, like for
instance, the i∗ framework proposed in (Yu; 1995). A mapping between i∗ and Z is discussed in
(Vilkomir et al.; 2004), however, again neither graphical visualization support nor full automatic
code generation is included in the framework.

How to enhance the usability of agent-based tools to ease the design made by domain experts?

A further barrier toward making MASs a mainstream paradigm is the lack of tool support. Even
if the research on MASs is a very active area, only little research has been done with respect to
the development of adequate tools to support the design of agent-based systems. In particular,
an adequate IDE support for developing MASs is rather weak, and existing agent tools do not
offer the same level of usability as state-of-the-art object-oriented IDEs (Luck et al.; 2006). Apart
from a graphical visualization, this kind of tool support should provide facilities to support the
domain experts in testing, evaluating, and executing the designed artifacts. To be of real benefit,
this should all happen in an homogeneous environment that (i) can be easily installed and used by
the application developers, and (ii) fits into the existing tool environment utilized for traditional
software engineering in order to improve the interoperability from a technical perspective between
traditional mainstream paradigms and AOSE approaches. Furthermore, as pointed out by (Luck
et al.; 2006), the inherent complexity of agent applications also demands a new generation of
computer-aided software engineering (CASE) tools to assist application designers in harnessing the
large amount of information involved. This requires to reason at appropriate levels of abstraction,
automating the design and implementation process as much as possible, and to allow for the
calibration of deployed MASs by simulation and run-time verification and control.

6 1. Introduction

Few agent-oriented design methods exist (e.g. MaSE with agentTool (DeLoach; 2001),
ROADMAP with REBEL (Juan et al.; 2002), and PASSI with PTK (Cossentino and Potts; 2002)).
However, none of them—to the best of our knowledge—provide all the described features nor offer
the same level of usability as object-oriented IDEs.

How to close the gap between agent-based design and implementation?

Despite the number of languages, frameworks, development environments, and platforms that
have been developed in the AOSE field, implementing MASs can still be considered as a complex
task (Luck et al.; 2006). In part, to manage MASs complexity, the research community has pro-
duced a number of methodologies that aim at structuring agent development. However, even
if practitioners follow such methodologies during the design phase, there are difficulties in the
implementation phase, partly due to the lack of maturity in both methodologies and programming
tools. The current state of the art in developing MASs is to design the agent systems by applying
an AOSE methodology and take the resulting design artifact as a base to manually code the agent
system with an agent-oriented programming platform. Agent-based systems can be deployed
across a number of different implementation platforms, each has its own requirements and lan-
guages. The fifth obstacle we have identified is that the separation between the core functionality
and the requirements of the deployment platform is rarely kept clean during the development of
the system. The fact that the deployment (i.e. implementation) is developed completely manually
from the requirements (i.e. design) may tend to the divergence of design and implementation
which makes again the design less useful for further work in maintenance and comprehension of
the system (Bordini et al.; 2007a).

The state of the art in mainstream OOSE is to apply the principles of model-driven software
engineering to close the gap between design and implementation. In the area of AOSE, this
trend has been recognized as several methodologies apply these principles for the same reasons.
However, the generated code is still skeleton-like that further needs to be manually completed.

How to improve the interoperability between existing standards of software applications and
MASs?

The sixth barrier for not getting accepted by industry is that the agent community has not been
sufficiently well integrated the existing agent-based methodologies, frameworks and languages
into existing standards of software engineering. For instance, bringing the key ideas from business-
oriented languages and MAS together can be considered as one of key research challenges of
AOSE.

Service-oriented architectures (SOAs) are often considered as glue that brings agents closer
to business. SOAs have emerged as a direct consequence of specific business and technology
drivers that have appeared over the past decade. From the business side, major trends such as
the outsourcing of non-core operations and the importance of business process re-engineering
are driving SOAs as important architectural approach to business information technology today
(Weerawarana et al.; 2005). From the SOA side, adequate mechanisms need to be explored to
combine business requirements and the underlying execution engines.

The agent paradigm is not the paradigm of choice of business analysts when it comes to
designing business requirements. Even if agent-based computing certainly offers advantages like
flexibility and adaptability, particular tailored languages (e.g. Business Process Modeling Notation

1.3. Approach and Main Contributions 7

(BPMN5, (Object Management Group; 2006))) are normally used for this purpose. Consequently,
only few works exist that aim at bridging the gap between business-oriented approaches and
MASs. Taveter (2004) presented an agent-based approach for business modeling, where Agent-
Object Relationship Modeling Language (AORML, (Wagner; 2003)) is used as underlying agent
modeling language. Endert et al. 2007 presented a transformation between BPMN and JIAC IV
(Java-based Intelligent Agent Componentware, (Albayrak and Wieczcorek; 1999)) to bridge the
gap between business process languages and agent-based systems. However, apart from the fact
that only a single platform is involved, the even more problematic issue of the proposed model
transformation architecture is that in most cases the gap between business languages like BPMN
and agent platforms cannot be automatically bridged. An intermediate level like represented by
SOAs is often considered as more helpful as the business requirements can stepwise be refined.

Considering these issues, the objective is to develop a modeling language for MASs aiming at
enhancing the state of the art concerning the obstacles identified. The present dissertation offers
several contributions that are highlighted in the following.

1.3 Approach and Main Contributions

This thesis advances the state of the art in agent-based computing research in several areas. The
overall objective of this dissertation is to provide a domain-specific modeling language for MASs
called DSML4MAS that can intuitively be applied by domain experts (but also non-programmers) to
design MASs in a platform independent manner. In this respect, platform independent means that
DSML4MAS itself is independent of any particular domain application or agent-based program-
ming platform. Beside an integrated development framework supporting the users in building
their particular application models, code generation facilities are offered to close the gap between
design and implementation (i.e., code generation facilities are offered for different architectural
agent programming languages). In particular, the following contributions—closely related to the
problem statement and basic research questions debated in Section 1.2—are achieved by this
dissertation.

Platform Independent Metamodel for Multiagent Systems

This thesis proposes a basic vocabulary to design MASs in an abstract manner. This vocabulary
establishes the abstract syntax of DSML4MAS by applying the principles of metamodelling (cf.
Section 2.2.3) to the domain of MASs. Apart from clearly defining the abstract syntax, the metamod-
elling approach, firstly, supports an easy integration into a model-driven framework and, secondly,
establishes the base for defining a formal semantics and graphical editor support for DSML4MAS.
The resulting metamodel called platform independent metamodel for MASs (PIM4AGENTS) in-
cludes the core building blocks aligned with the underlying concepts of agent-based computing.

5 The Business Process Management Initiative (BPMI) (http://www.bpmi.org/) developed an initial standard called
Business Process Modelling Notation (BPMN) that was adopted by the OMG and renamed to Business Process Model
and Notation (BPMN). The primary goal of BPMN is to provide a notation that is readily understandable by all business
users, from the business analysts that create the initial drafts of the processes, to the technical developers responsible for
implementing the technology that will perform those processes, and finally, to the business people who will manage and
monitor those processes. Thus, BPMN creates a standardised bridge for the gap between the business process design and
process implementation. Another goal, but no less important, is to ensure that XML languages designed for the execution
of business processes, such as BPEL4WS (Business Process Execution Language for Web Services), can be visualized with a
business-oriented notation.

8 1. Introduction

The structure of PIM4AGENTS is divided into several viewpoints each focusing on a particular
aspects of MASs. This separation allows an elegant way to extend the core of PIM4AGENTS to
reflect additional application-specific requirements.

Formal Semantics

This thesis gives the concepts of PIM4AGENTS a formal semantics. In particular, denotational and
operational semantics are introduced providing additional information and meaning to support
the domain experts in terms of the generation of test cases, their validation, as well as means for
the automatically parsing. Moreover, means are offered for (i) syntax checking to ensure that the
design conforms to the vocabulary proposed by PIM4AGENTS, (ii) well-formedness checking to
ensure that more complex statements deduced from the static semantic hold, (iii) consistency
checking to ensure that different viewpoints of PIM4AGENTS are consistent, and finally (iv) model
checking to perform dynamic analysis on finite state models to identify whether functionalities
like liveness, deadlock-freeness, fairness, or reachability hold for feasible executions of the design.
Apart the formal specification, one of the main contributions is the feature that the formal static
semantics are integrated into the graphical IDE of DSML4MAS. This enables the domain experts to
check the well-formedness of the created design and in case to correct improper parts during the
design phase to ensure that the created design can generically be translated into executable code.

Graphical Visualization

This thesis proposes a graphical visualization of the vocabulary provided by PIM4AGENTS. Thus, it
presents means to formulate the design artifacts produced by DSML4MAS in a graphical notation.
The produced graphical IDE, which is one of the cornerstone of DSML4MAS allows structuring
the generated design into separate diagrams to foster the development of highly scalable6 MASs.
Beside the graphical notation, the graphical editor is extended with (i) validation facilities that
base on the formalized static semantics and (ii) code generation facilities. The former gives
the application developers the opportunity to (i) get a better understanding of the vocabulary’s
meaning as well as (ii) validate the generated artifacts during design time to ensure that the
concepts provided by DSML4MAS have been used correctly. The latter allows transforming the
design into code artifacts. To foster the integration of DSML4MAS into existing model-driven
frameworks, the DSML4MAS editor is provided as plugin for the Eclipse IDE.

Code Generation and Model-driven Methodology

This thesis proposes translation facilities to automatically close the gap between agent-based
design done with DSML4MAS and code based on agent-oriented programming languages (AOPLs).
This is achieved through (i) a model transformation on the DSML4MAS level to automatically
transfer requirements into the detailed design and (ii) generic code generator mechanisms in
accordance to model-driven development. As the one size fits all approach to AOSE is increasingly
inappropriate, we developed code generators to different AOPLs to ensure that DSML4MAS—as a
platform independent modeling language—can be applied to different requirements of software
applications. Based on these requirements, the application developers can freely choose, which
agent-based programming language is the most adequate for execution, and freely chooses the

6 from a design perspective

1.4. Outline of this Thesis 9

particular model transformation to finally transform the design into desired code. The static
semantics part of the graphical editor ensure that (i) the generated design is rich enough to apply
the particular model transformation on it and (ii) the model transformation produces meaningful
output on the particular agent-based platform.

Combining Service-Oriented Architectures and Multiagent Systems

This thesis proposes a mechanism to reduce the interoperability barriers between MASs and
standard business languages. In particular, inspired by the research projects ATHENA7 (Advanced
Technologies for Interoperability of Heterogeneous Enterprise Networks and their Applications),
Interop-NoE8 (Interoperability Research for Networked Enterprises Applications and Software),
and SHAPE9 (Semantically-enabled Heterogeneous Service Architecture and Platforms Engineer-
ing) funded by the European Commission, we explored the opportunity to combine MASs and
SOAs in a model-driven manner. This kind of integration is an important step toward mak-
ing MASs more attractive for industrial usage as SOAs are nowadays the preferred approach to
design distributed software systems in real-world scenarios. Following the model-driven develop-
ment approach to resolve interoperability issues, the integration of SOAs and MASs is performed
through a model transformation between the Service-oriented architecture Modeling Language
(SoaML)—the new emerging standard for SOAs proposed by the OMG—and DSML4MAS. The
resulting PIM4AGENTS model can then, in a second step, be further refined in terms of agent-based
concepts and in a third and last step, translated into executable code.

Industrial Case Study

The approach presented in this dissertation has successfully been applied in various industrial
application domains (see for instance (Zinnikus et al.; 2008a; Fischer et al.; 2009; Zinnikus et al.;
2007, 2008b)). To demonstrate the usefulness of DSML4MAS in industrial settings, we indicate how
to utilize DSML4MAS in the steel and gas and oil industry. In the first industrial use case, we use
DSML4MAS for designing the main processes of the supply chain at the steel producer Saarstahl
AG. The main objectives are thereby that (i) abstract formulated business requirements can easily
be translated into a running system and (ii) existing systems holding strategic information can be
re-used within the system to keep the high product quality the Saarstahl AG currently holds. The
second industrial use case deals with the scheduling of ships at the Statoil terminal at Mongstad.

1.4 Outline of this Thesis

The structure of this dissertation is depicted in Fig. 1.1 and briefly summarized as follows:

Part I, Introduction, Background, and Problem Statement, discusses the preliminaries of this
dissertation by providing sufficient background.

Chapter 2, MD-AOSE: Model-Driven Agent-Oriented Software Engineering, reviews rel-
evant prior literature from the fields of AOSE and model-driven development. In

7 http://www.athena-ip.org
8 http://interop-vlab.eu/
9 http://www.shape-project.eu/

10 1. Introduction

Fig. 1.1: The (graphical) outline of this dissertation.

particular, this chapter discusses the basic building blocks of MASs and gives an intro-
duction into the area of model-driven development, i.e. model-driven architecture,
and metamodeling. Furthermore, model transformations and related tool support are
debated and evaluated.

Chapter 3, LD-AOSE: Language-Driven Agent-Oriented Software Engineering, similarly
reviews relevant prior literature from the fields of language-driven development and
domain-specific languages and introduces the architecture DSML4MAS.

Part II, Language Features of DSML4MAS, discusses the language features of DSML4MAS by
focusing on its abstract syntax, concrete syntax, and semantics.

1.4. Outline of this Thesis 11

Chapter 5, Abstract Syntax and Semantics of DSML4MAS, addresses the vocabulary of
DSML4MAS defined by PIM4AGENTS. Moreover, the formal semantics of PIM4AGENTS

is stated by taking advantage of the formal specification language Object-Z.

Chapter 6, Methodology of DSML4MAS, addresses the methodology framework of
DSML4MAS by focusing on the methodology’s notation, tool support, and model-
driven process guiding the design.

Part III, Code Generation and Integration, addresses the transformation from modeling to im-
plementation and illustrates how the interoperability gap between agent systems and main-
stream approaches like SOAs is bridged by the DSML4MAS framework.

Chapter 7, Horizontal Transformation: From Interaction to Behaviors, demonstrates
how to model interaction protocols using DSML4MAS and discusses a model-driven de-
velopment approach to generically transform these protocol descriptions into process-
centric models of DSML4MAS.

Chapter 8, Vertical Transformation: From PIM4AGENTS to Jack Intelligent Agents,
demonstrates how to close the gap between design and implementation in DSML4MAS

by depicting a model transformation mapping the design made with DSML4MAS into
platform-specific code of the Jack Intelligent Agents execution engine.

Chapter 9 Agent-Based Service-Oriented Architectures demonstrates how the interoper-
ability gap between business language and agent-based systems are bridged. For this
purpose, we depict a model transformation between SoaML developed by the OMG
and DSML4MAS.

Part IV, Use Cases and Evaluation, deals with the evaluation of the presented framework.

Chapter 10, DSML4MAS in Industrial Use Cases, demonstrates how the results of this the-
sis can be utilized in industrial settings like the supply chain of the Saarstahl AG. For
this purpose, we show how non-experts on AOSE can translate the business require-
ments into MASs conforming to PIM4AGENTS and execute the generated design by
applying the code generators to agent-based execution platforms.

Chapter 11, Comparison with State of the Art, illustrates the current state of the art con-
cerning modeling MASs and draws a comparison with the DSML4MAS language.

Part V, Conclusion and Future Work, summarizes the main contributions presented in this
dissertation and addresses future research directions.

Chapter 12, Conclusion, gives a summary on the main contributions of this dissertation
and describes feasible directions for future work.

12 1. Introduction

2. MD-AOSE: Model-Driven Agent-Oriented Software
Engineering

This chapter reviews literature from the areas of AOSE and Distributed Artificial Intelligence (DAI),
on the one hand, and model-driven development (MDD) on the other hand. The link between
both areas is established through listing relevant work in the domain of AOSE applying principles
from MDD.

Structure of this Chapter Section 2.1 gives an overview on the core building blocks (e.g. agent,
organization, interaction, etc.) of MASs. Section 2.2 follows by giving a brief overview on the basic
principles of MDD and describes how these principles are applied in recent works in the context
of AOSE. Section 2.3 concludes this chapter.

2.1 Agent-Oriented Software Engineering

DAI is, in accordance to (Weiss; 1999), the study, construction, and application of multiagent
systems (MASs), that is, systems in which several interacting intelligent agents pursue some
set of goals or perform some set of tasks. Two lines of research can be distinguished. Firstly,
Distributed Problem Solving (DPS) (Durfee; 1999) refers to systems in which a particular complex
problem is divided into several smaller sub-problems that are distributed among cooperative
agents who interact, plan and work together to achieve the shared goal. Secondly, MASs allow for
potentially non-cooperative forms of interaction other than those of DPS systems. In MASs, agents
are typically self-interested and do not necessarily share a common goal, but mechanisms like
negotiation allow to reach a consensus.

Although every problem can also be solved by a centralized approach, there exist several
reasons for using distributed systems. Interactions, for instance, are a necessary ingredient for
distributed systems as they pursue the purpose of making problem solving with cooperation easy,
to share expertise and knowledge, to work parallel on common and/or distributed problems, to be
developed and implemented modularly, and to be fault tolerant through redundancy. Interactions
can be distinguished between direct by acting on the environment (i.e. black board systems) and
indirect through communication with other agents. The overall aim of distributed problem solving
is to reduce the complexity and size of some problems. Three techniques are especially used in
this field, i.e. (i) programs are built as modules to reuse them as a black-box, (ii) a technique for
handling large problems is the decomposition (i.e. large problems are divided into smaller ones),
and (iii) abstraction, which is the process of defining a simpler problem by deleting details of the
original problem.

14 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

Fig. 2.1: The core MAS building blocks, in accordance to (Jennings; 2001).

2.1.1 Basic Building Blocks of Multiagent Systems

Building high quality software for complex, real world applications turns out to be a very difficult
task. So far, a wide range of software engineering paradigms have been proposed in order to reduce
the complexity of software. Object-oriented programming (OOP), for example, is such a paradigm.
Although approaches like OOP are a step in the right direction, corresponding to Jennings (1999),
they fall short in three main ways:

• The basic building blocks—i.e. the objects—are too fine grained
• The interactions between the objects are defined too rigidly
• The available mechanism for dealing with organizational structure is insufficient

Agent-oriented approaches can significantly enhance the ability to build complex (possibly dis-
tributed) software systems. Fields of application for software agents are, for instance but not
limited to, electronic markets, computer integrated manufacturing, computer supported collabo-
rative work, management, robots, electronic commerce or personal assistance.

One challenge in defining a platform independent language for MASs is to decide, which con-
cepts to include and abstract from the target execution platforms that support the architectural
style of agent-based systems. The main building blocks of MASs are depicted in Fig. 2.1. Three
abstraction levels are distinguished that are in detail discussed in, for instance, (Fischer et al.;
2005). At the organization level (i.e. macro level), mechanisms to structure agent societies are de-
scribed. The interaction level (i.e. meso level) mainly focuses on agent communication languages,
interaction protocols, and resource allocation. The agent level (i.e. micro level) addresses, for
instance, procedures for agent reasoning and learning. The building blocks of MASs are discussed
in following in more detail to deepen our understanding and to lay the foundations for further
discussions on the core concepts of the proposed DSML4MAS language.

2.1. Agent-Oriented Software Engineering 15

2.1.2 Multiagent Systems

Definition 2.1.1 (MAS, according to Bond and Gasser (1988))

The research in MAS is concerned with coordinating intelligent behavior among a collection of
(possibly pre-existing) autonomous intelligent agents and how they can coordinate their knowledge,
goals, skills, and plans jointly to take action or to solve problems. The agents of a MAS may be
working toward a single global goal, or toward separate individual goals that interact.

Bond and Gasser (1988) emphasize on the coordination of autonomous intelligent agents within a
MAS toward solving problems that may either base on a single global goal that is desirable for the
whole group or a single individual agent. Beside coordination issues, aspects like environment
and interaction are important factors to solve problems efficiently. These are addressed by Weiss
(1999) in the following definition.

Definition 2.1.2 (MAS, according to Weiss (1999))

In accordance to Weiss (1999), MASs have the following characteristics:

• Multiagent environments provide an infrastructure specifying communication and interac-
tion protocols.

• Multiagent system environments are typically open and have no centralized designer.
• Multiagent system environments contain agents that are autonomous and distributed and

may be self-interested or cooperative.

Weiss (1999) emphasizes on the MAS’s infrastructure allowing agents to cooperate for solving
problems in a distributed manner. For coordination purposes, hereby, the ability to communi-
cate using pre-defined interaction protocols is one important feature. In OOSE, objects have
a centralized organization and are more integrated to each other in a system, while agents are
loosely integrated. Bond and Gasser assume in Definition 2.1.1 that agents always cooperate.
However, especially in open MAS1, where agents can freely enter and leave the system, agents do
not necessarily cooperate nor should be considered as trustful. In OOSE, the absence of an object
will cause an exception error, while MASs would still be stable, if an agent has left the system.
Further characteristics of MASs are brought in by Jennings et al. (1998).

Definition 2.1.3 (MAS, according to Jennings et al. 1998)

A MAS is a system that has the following properties:

• Each agent in a MAS has incomplete information, or capabilities for solving the problem, thus
each agent has a limited viewpoint

• There is no centralized control
• Data is decentralized and computation is asynchronous.

Jennings et al. focus in their aforementioned definition on single agents, where each of them
has only limited capabilities to solve tasks and acts in an autonomous manner, i.e. it has its
own control. Each agent has its own beliefs about the environment that are the base for making
decisions in the environment.

Summarizing the definitions in this section, we conclude that a MAS consists of a collection of
individual agents, each of them displays a certain amount of autonomy with respect to its actions

1 see (Davidsson; 2001) for a detailed categorization of MASs

16 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

and perceptions. Overall computation is achieved by autonomous computation within each agent
and by interaction (e.g. communication) among them. The capability of the resulting MAS is an
emergent functionality that may surpass the capabilities of each individual cooperating agent.

It is a widely supported assumption in the multiagent community that the development
of robust and scalable software systems requires autonomous agents that can complete their
objectives, while situated in a dynamic and uncertain environment. These agents need to be
able to engage in rich, high-level social interactions, and operate within flexible organizational
structures (Jennings; 1999). Organizational structures institutionalize anticipated coordination,
which is especially useful for medium- and large-scale applications that require limitation of the
agents’ communication behavior. Agents acting in such structures can encapsulate the complexity
of subsystems and modularize its functionality providing the basis for rapid development and
incremental deployment. Even if the definitions given in the previous section differ slightly, each
of them naturally comprehends the notion of agent.

2.1.3 Agent

In accordance to Wooldridge (1997), an agent is an encapsulated computer system (e.g. software
program, robot) that is situated in some environment, and that is capable of flexible, autonomous
action in that environment in order to meet its design objective. Agents are persistent compu-
tational entities capable of perceiving and acting upon their environment, in an autonomous
manner. They interact and communicate with the environment and other agents and incorporate
reasoning techniques (e.g., planning, decision making, and learning) to achieve flexible rational
behavior (Wooldridge; 2000a). In the MAS literature, various definitions of the term agent exist
(e.g. (Maes; 1995; Hayes-Roth; 1995; Smith et al.; 1994; Shoham; 1997)). We selected two of the
most well-known agent definitions for further discussion.

Definition 2.1.4 (Agent, according to Russell and Norvig (1995))

An agent is anything that can be viewed as perceiving its environment through sensors and acting
upon that environment through effectors.

Russell and Norvig presumably gave the most general definition of the term agent. The definition
mainly focuses on the interaction of an agent with its environment. Thus, the agent changes the
environment through its effectors and reacts to changes through sensors. Even if the interaction
with the environment is certainly one important feature of agents, there are further facets that
need to be explored. This is done through the most cited definition used in the MAS community.

Definition 2.1.5 (Agent, according to Wooldridge and Jennings (1995b))

Autonomy Agents are able to act independently, i.e, without the intervention of human beings or
other agents and exhibit control over their internal states. Thus, the agent makes independent
decisions and actions. Furthermore, Wooldridge and Jennings assume that an autonomous
agent has its own beliefs, desires and intentions, which are not subservient of other agents.
These beliefs, desires and intentions are necessarily represented within an agent.

Reactivity Agents are able to react on changes in the dynamic environment. This is done in order to
satisfy the specific goal in time for the reaction to be useful. So, if the agents become aware
that their plans have gone awry, they do not ignore this fact and keep on trying to satisfy their
plans, but they respond by choosing an alternative course of action.

2.1. Agent-Oriented Software Engineering 17

Pro-activity Agents are able to exhibit goal-directed behavior by taking the initiative to generate
and attempt possible actions in order to reach the specific goal. Proactiveness rules out of
entirely passive agents, who never try to do anything. By trying to achieve goals and intentions,
the agents will exploit additional goals which can assist the achievement of the former goal or
being contrary.

Social Ability Agents are able to interact with other agents or human beings via some agent com-
munication language and to cooperate with other agents in order to achieve the specific
goal. The exchange of information via communication is not hard to achieve, since every
day millions of computers around the world exchange information with other computers or
human beings. The exchange of information is not really social ability. Since other agents are
also self-interested and autonomous, the agents have to negotiate and cooperate with these
agents in order to achieve their goals.

Wooldridge and Jennings consider an agent as autonomous (see (Verhagen; 2000) for a detailed
discussion on autonomy) entity that is able to communicate within the environment and other
agents in social forms like groups. They are, moreover, capable of acting in a reactive and proactive
manner. These agent’s characteristics are called the weak notion of agency. The strong notion
of agency (Shoham; 1993), further brings up notions, such as knowledge, belief, intention, and
obligation.

2.1.4 Agent Architectures

In order to act in a reactive, autonomous, social and pro-active manner, agents are typically based
on complex architectures that support the deliberation on the agent’s objectives. In this section,
we focus on different agent’s internal deliberation processes and agent’s architectures, respectively.

In accordance to Wooldridge and Jennings (1995a), three different kinds of architectures exist
in the agent community. It is interesting that none of these architectures is directly reflected by
standards.

Deliberative Architectures Deliberative architectures are based on the physical-symbol system
hypothesis (Newell and Simon; 1976), on the foundations of logic and on theorem provers. It
is therefore assumed that an agent has a model of its environment expressed through symbols,
which can be used to deduce general intelligent actions. Several different approaches exist (e.g.
Planning agents (Chapman; 1987), Mentalistic Agents) concentrating on different AI techniques
for specifying the central agent computational entity. Examples for deliberative architectures are
GRATE (Jennings et al.; 1992) and Mecca (Bauer and Stiener; 1998).

Reactive Architectures Reactive architectures result from the limitations imposed by symbolic
AI. The types of agents do not model complex reasoning, but instead they are constructed in
a way that allows them to react to a changing environment by their instincts. Hence, reactive
architectures are associated with observations of behaviors from the animal world. For instance,
an ant colony consists of different, but very simple individuals, but the colony itself exhibit more
intelligent behavior than one would expect. The subsumption architecture (Brooks; 1991, 1986,
1990) proposes a layered design of competing task accomplishment behaviors. Lower layers
exhibit more primitive kinds of behavior and have precedence over layers further up the hierarchy.
Examples for reactive architectures are, for instance, Dynamic Action Selection (Maes; 1989)

18 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

or SynthECA (White; 2000). Nevertheless, most researchers agree that reactive agents are not
well-suited for many kinds of problems.

Hybrid Architectures Hybrid architectures combine the advantages of the above mentioned
paradigms with the aim of an integrated effective and efficient agent behavior. Therefore, AI
components and reactive elements are subsumed into one design model. A well known example
is INTERRAP (Müller and Pischel; 1993; Müller; 1996), which consists of a layered world model
and an execution entity. It distinguishes between purely reactive, planned, and social behaviors.
Other well-known approaches are RAP (Firby; 1995, 1994, 1989) or AIS (Hayes-Roth; 1995) (for
more information we refer to (Wooldridge and Jennings; 1995a)).

For the design of agents with rational and flexible problem solving behavior, the belief-desire-
intention (BDI) agent architecture (Rao and Georgeff; 1991, 1995; Georgeff et al.; 1999) has been
proven successful during the last decade (Bratman; 1987). Three mental attitudes (beliefs, desires,
and intentions) allow an agent to act in and to reason about its environment in an effective manner.

Beliefs are reflections of the current state of the world that can change over time. Often, beliefs
are based on sensory information and stand for the information the agent has about the
environment it inhabits and its own current state, where these beliefs provide a domain
dependent abstraction of entities, by highlighting important properties and omitting unnec-
essary information (cf. (Braubach et al.; 2005)). Important, beliefs about the world could
be incomplete or incorrect, which may result in incorrect interpretation of the state of the
world and may lead to incorrect actions.

Goals are an other central concept, following the general idea in accordance to (Pokahr et al.;
2005b) that goals are concrete, momentary desires of an agent. For any goal it has, the agent
will perform suitable actions, until it considers the goals as being reached, unreachable, or
not wanted anymore.

Intentions stand for desires the agent has committed to achieve. Wooldridge (2000b) annotated
that the intuition is that an agent will not, in general, be able to achieve all its desires, even if
theses desires are consistent. Ultimately, an agent must therefore fix upon some subset of
its desires and commit resources to achieving them. The desires an agent has committed to
are called intentions.

Plans represent the behavioral elements of an agent. Plans are in general composed of a head and
a body part, where the head specifies the circumstances under which a plan may be selected,
e.g. by stating events or goals handled by the plan and preconditions for the execution
of the plan. Additionally, the plan head states a context condition that must be true to
continue executing the plan. The body provides a predefined course of action, given in a
procedural language. When the agent selects a plan for execution, it will execute actions
like sending messages, manipulating beliefs, sending messages, executing algorithms, or
creating subgoals that may be achieved by other agents through cooperation.

As stated by (Braubach et al.; 2004), viewed from the outside, an agent is a black box that receives
and sends messages and acts in its environment. All kinds of events, such as incoming messages
or goal events serve as input to the internal reaction and deliberation mechanism, where events
are dispatched to plans selected from the plan library. The reaction and deliberation mechanism is
the only global component of an agent. All other components are grouped into reusable modules
called capabilities (Braubach et al.; 2005).

2.1. Agent-Oriented Software Engineering 19

2.1.5 Organization

Up to now, we mainly focused on agent-centered MASs. However, a lot of research (e.g. (Schillo;
2004; Zambonelli and Parunak; 2002; Parunak and Odell; 2002; Jennings; 2000; Ferber and
Gutknecht; 1998)) has be done with respect to organization-centered MAS. Both terms should
certainly not be considered as totally separated as suggested by (Ferber et al.; 2004), but rather
overlapping as MASs need both, the single autonomous agents, as well as, a society established
through organizations or other forms of social groupings. The major advantage of social units like
organizations is that those are formed to take advantage of the synergies of its members, resulting
in a possibly intelligent entity that enables products and processes that are not possible from any
single individual. To deepen our understanding of the term organization in the domain of MASs,
we discuss two different definitions and, thereby, illustrate the core aspects of organizations, which
are an important concept in PIM4AGENTS.

Definition 2.1.6 (Organization, according to Gasser (1992))

An organization provides a framework for activity and interaction through the definition of roles,
behavioral expectations and authority relationships (e. g. control).

The definition given by Gasser is rather general, without especially focusing on the domain of
MASs. However, this definition already nicely illustrates the organizational building blocks, like
for instance, role, interaction, behavior, and authority. In the domain of organizations, roles
are of major importance as they are, in accordance to (Ferber et al.; 2004), an abstract repre-
sentation of a functional position of an agent in an organization. The functional position is
normally characterized by activities and services required to achieve social objectives. Hence, a
role is the abstract representation of a policy, service or function and they typically describe an
organizationally-sanctioned structured bundle of activity types (Gasser; 2001).

Yan et al. (2003) distinguish between two perspectives. From the conception perspective,
a role is a constraint under which an agent takes part in some interactions and evolves in a
certain way. From the implementation perspective, a role is an encapsulation of certain attributes
and behaviors of the agent it is bound to. From the society design perspective, roles provide
the building blocks of the agent systems, from the agent design perspective, roles specify the
expectations of the society with respect to the agent’s activity in the society as the agents behave
under their bound roles.

An agent may play several roles within an organization, and on the other hand, a role may be
played by several agents. In OOSE, an object class usually has a specific capability or functionality,
where an agent could play different roles in different domains or situations. Wooldridge et al.
focuses on an important aspect in their definition.

Definition 2.1.7 (Organization, according to Wooldridge et al. (2000))

We view an organisation as a collection of roles, that stand in certain relationships to one another,
and that take part in systematic institutionalised patterns of interactions with other roles.

Wooldridge et al. consider patterns of interactions as, for instance, defined by agent interaction
protocols as core part of agent-based organizations. Thus, the focus inside organizations is
mainly shifted from the internal agent architecture as described in Section 2.1.4 toward the
communication between roles and the assignment of agents to roles. However, as stated by Ferber
et al. in (Ferber et al.; 2004), the latter definition lacks a very important feature of organizations:
their partitioning, i.e., the way boundaries are placed between sub-organizations. Organizations

20 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

are normally structured into partitions that may (i) overlap and (ii) self be decomposed into
sub-partitions again. The partitioning could be done through roles.

According to Pfeffer and Salancik (2003), the key of organizational survival is the ability to ac-
quire and maintain resources. This problem would be simplified if organizations were in complete
control of all components necessary for their operation. But, as we can see in all fields where
organizations act and perform, no organization is completely self-contained. Organizations are
embedded in an environment, which will not be determined by a single organization and consists
also of other organizations. The environment regulates the performance of each organization by
prescribing norms, constraints and rules. Organizations are linked to environments by federa-
tions, associations, customer-supplier relationships, competitive relationships and a social-legal
apparatus defining and controlling the nature and limits of these relationships (Pfeffer and Salan-
cik; 2003). One view on organizations, probably the predominate and the most suitable for our
purpose, conceives organizations as rational instruments for achieving some goal or set of goals.
Goal-oriented organizations imply that the members of the organizations are also goal-oriented,
which means that they collaborate in order to achieve something that might not be accomplished
otherwise through individual action. This means that the individual members establish the orga-
nization, where each individual has an own suggestion about how the organization should look
like, according to which rules the organization should behave or which structure the organization
should take on. Consensus must be found in order to get rid of these differences, so that each
possible member could agree on to build an organization. An organizational framework that
covers all these aspects is illustrated in (Schillo; 2004; Hahn; 2004). It discusses several different
organizational structures and evaluates, which form is the most adequate for particular scenarios
and perturbations.

In accordance to Panzarasa and Jennings (2001), any organization is a MAS in which some
form of joint behavior is carried out through differentiation and coordination of tasks among the
constituent members. The problem of finding an organizational structure every agent could live
with, could be seen as such a differentiation process. However, not every MAS is an organization.
Panzarasa and Jennings also distinguish between the organization of a MAS and a MAS as organi-
zation. The former refers to the internal structure and coordination of the constituent parts of a
MAS, whereas the latter refers to a MAS that relies upon its internal structure to undertake joint
behavior.

2.1.6 Interaction

MASs define a powerful distributed computing model, enabling agents to cooperate with each
other. Thus, beside aspects like agents and organizational relationships, the interaction between
agents, as previously debated in Section 2.1.1, is considered as basic building block of MASs (see
Fig. 2.1). Actually, Odell (2002) recognized that autonomy and interactions are the two most critical
features of an agent.

In accordance to Malone and Crowston (1994), an interaction can be viewed as a formalization
of a concept of dependence between agents, no matter on whom or how they are dependent.
Coordination is a special case of interaction in which agents are aware of how they depend on
other agents and attempt to adjust their actions appropriately.

However, one of the main questions in the multiagent community is how and why autonomous
agents should cooperate with one another. As Castelfranchi (1995) pointed out, cooperation is a
paradox, since it involves giving up some autonomy in order to work cooperatively on a shared

2.1. Agent-Oriented Software Engineering 21

goal. Especially in the domains of problem- and task solving, agents need to partially give up
autonomy to cooperate mainly carried on interaction.

Definition 2.1.8 (Interaction, according to Malone and Crowston (1994))

An interaction can be viewed as a formalisation of a concept of dependence between agents, no
matter on whom or how they are dependent. Coordination is a special case of interaction in which
agents are aware how they depend on other agents and attempt to adjust their actions appropriately.

Basically, the interaction between agents is the ability to specify and possibly enforce goals,
constraints and desired properties that are not specific to a given agent, but to a group of agents.
Interaction improves the possibility of achieving the goal(s) of each single agent, it can also enable
the agents to coordinate their actions and behavior resulting in systems that are more coherent.
When agents work together in an environment to reach a single complex goal, they do not need to
solve any subproblem again and again, but can coordinate their area of responsibility in order to
save time and resources.

In accordance to Agostini (2003), coordination is the process of managing dependencies
between activities in a given context and interaction is required as a means to coordinate the
actions of the individual agents of the MAS. This is necessary to achieve overall system goals and
to improve the effectiveness of the system. Coordination can be achieved in different ways: If the
agents involved share one common goal, they cooperate by distributed or centralized planning
techniques2. Otherwise, if the involved agents are self-interested, they need to negotiate for
reaching common agreements. Negotiation is defined by Walton and Krabbe (1995) as a form of
interaction in which a group of agents, with conflicting interests and a desire to cooperate, try
to reach a mutually acceptable agreement. At this, the challenge is to design mechanisms for
effectively allocating resources (Rahwan et al.; 2007). The terms communication and interaction
are often used in a similar manner. To clarify the differences, in the following, we discuss the
definition given by Lind.

Definition 2.1.9 (Interaction, according to Lind (2001))

Interaction is the mutual adaption of the behavior of agents while preserving individual constraints.

Lind considers interaction as any kind of behavior that is related to other agents and is thus more
than communication or the exchange of message. Like in the definition given by Malone and
Crowston, interaction itself is considered as mutual adaption meaning that interacting agents
need to coordinate their behavior for the purpose of conversation.

However, undoubtedly, communication as the intentional exchange of information (Russell
and Norvig; 1995) is fundamental to achieve agent interaction. Research on agent communication
languages (ACLs) (Labrou and Finin; 2000; Labrou et al.; 1999) mainly focus on the design, formal-
ization, implementation, and verification of appropriate communication languages for agents.
The most prominent examples are FIPA-ACL (Foundation for Intelligent Physical Agents; 2002)
and Knowledge Query and Manipulation Language (KQML) (Finin et al.; 1994a,b) that both base
on early works on speech act theory of Searle (e.g. (Searle; 1969)).

Despite the importance of interactions in general, the realization is one main source of difficul-
ties during the development of a MAS. These difficulties arise from the fact that, unlike traditional
systems, MASs are usually inherently distributed and asynchronous without any central control

2 we refer to (Russell and Norvig; 1995) for an introduction on planning techniques

22 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

(Braubach and Pokahr; 2007). Research that aims at improving the agent interaction realization
can be coarsely divided in protocol-based interactions and flexible interactions.

Flexibility of interactions is achieved by using planning mechanisms to combine predefined
protocols, where the planning algorithm takes existing constraints into account and generates
a course of communication actions. This leads to more fault-tolerant and hence robust com-
munications, which are driven by the interests of the communication participants. The Hermes
methodology (Cheong and Winikoff; 2005b) proposes, for instance, the idea of goal-oriented
interaction. In this approach, an agent determines how interaction goals are achieved and plans in
which sequence messages need to be exchanged between itself and entities involved. This makes
the interaction itself more flexible and less error-prone compared to pre-defined agent interaction
protocols. A similar approach to goal interactions is presented in (Rahwan et al.; 2006).

Agent interaction protocols (AIP) (see e.g. (McBurney et al.; 2002; Schillo et al.; 2002; Xueguang
and Haigang; 2004)), on the other hand, define communication patterns between several parties
as an allowed sequence of messages between agents to form a conversation of a particular type
(Cranefiled et al.; 2002). The purpose of AIPs is to determine shared goals and common tasks,
to avoid unnecessary conflicts and to make evidence and knowledge available. The importance
of AIPs in MASs is underlined by the fact that existing methods for designing MAS like Tropos
(Susi et al.; 2005), Prometheus (Padgham et al.; 2007a), Gaia (Cernuzzi and Zambonelli; 2004), or
INGENIAS (Pavón and Jorge; 2003) already include mechanisms to express AIPs. In particular,
all of them use some sort of Agent UML diagrams (AUML) (Bauer and Odell; 2002) for defining
agent-based interactions. However, as discussed in Section 10.2.1, AUML has in its current version
some shortcomings when it comes to a broadcast-like message exchange.

2.1.7 Environment

Definition 2.1.2 given by Weiss (1999) already states that the environment plays a major role
within MAS. Miles stated: "Just take the universe, subtract from it the subset that represents the
organization, and the remainder is the environment" (Miles; 1980, p. 195). In principle, we agree
with Miles and his statement. As we do not think that it is that simple, in the following, the term
environment is discussed in more detail by stating two more definitions.

Definition 2.1.10 (Environment, according to Panzarasa and Jennings (2001))

Before a MAS comes into existence, environment is the set of resources and phenomena that can
determine whether or not the system is generated and what its structure and functioning will be.
After a MAS has been generated, environment is the set of resources and phenomena that the system,
as a cognitive entity, believes are outside its boundaries, and can affect its structure and functioning.

By referring environmental resources, the authors consider agents, physical object, cognitive
properties, techniques, norms (Hahn et al.; 2006a) and institutional values (Hahn et al.; 2007a).
In contrast, environmental phenomena are represented by the actions performed by the agents
or event posted within the environment. A slightly different point of view has been broached by
Weyns et al..

Definition 2.1.11 (Environment, according to Weyns et al. (2007))

The environment is a first-class abstraction that provides the surrounding conditions for agents to
exist and that mediates both the interaction among agents and the access to resources.

2.2. Model-Driven Development 23

Weyns et al. see the environment as first-class abstraction, i.e. the environment is an independent
building block (comparable to an agent) of a MAS. Furthermore, they stress that without an envi-
ronment, it is impossible to build MASs as the environment provides the surrounding conditions
(e.g. interaction mechanism, resource access) for agents to exist.

Due to the fact that the environment is one of the basic building blocks of MASs, the type
of environment drastically influences the performance and the architecture of the correspond-
ing agents and organizations. The environment restricts the behavior of these by specifying
constraints, norms and rules.

The next part of this chapter provides the interested reader with a detailed state-of-the-art
summary on model-driven development to set the foundations for the forthcoming context in
particular with respect to closing the gap between design and implementation in an automatically
manner. In particular, we focus in this section on metamodelling (cf. Section 2.2.3) and model
transformations (cf. Section 2.2.4).

2.2 Model-Driven Development

In accordance to (Boydens and Steegmans; 2004), in the beginning of software engineering, pro-
gramming was mainly done using low-level machine code resulting in machine-centric programs,
consisting of series of 0s and 1s. A first improvement was the introduction of assembly languages
(1950-1965). A next level of abstraction was necessary in accordance to (Boydens and Steegmans;
2004) to move away from the machine-centric way of computing toward a more application-
centric way. At this stage, procedural programming languages (3GLs) like Pascal, Fortran, and
Cobol were introduced. Now it was possible to write a program almost independently of the
processor. In the beginning of 1980s, the first object-oriented languages (C++, Smalltalk) were
presented enabling fully platform-independent solutions. Programs written on specific architec-
tures could now be ported to any other platform if the particular virtual machine is available (cf.
(Boydens and Steegmans; 2004)). In the late 1990s, the requirements of a specific program are
formulated in a graphical manner applying approaches like UML. Using UML for instance, the ap-
plication developers were able to identify the core system architecture in a graphical manner and
to take the resulting blueprint to manually define the source code that meets these architectural
requirements.

However, as the execution environment is in principle built manually, this might result in
a gap between the requirement specification often made by business analysts and the actual
system implemented by the system engineers due to the system developers’ lack of skills or
necessary domain knowledge, which possibly leads to incorrect interpretation of the problems and
requirements, or incorrect refinement to code. To reduce the chance of incorrect interpretations,
recently, the initiative of model-driven development became very popular aiming at automatically
transferring the requirements into a runnalbe implementation.

Model-driven development (MDD) (or as a synonym model-driven engineering (MDE)) is
emerging as the state of practice for developing modern enterprise applications and software
systems. MDD is in accordance to Favre (2004) a subset of system engineering, in which the
process heavily relies on the use of models and model engineering. Therefore, software solutions
are modeled independently of the underlying programming language, independently of the
underlying middleware, and independently of the underlying enterprise architecture. Tools then
provide facilities to separate concerns, i.e. making patterns available, generating code compliant
to design, modeling in a business-centric way.

24 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

In accordance to (D’Souza; 2001), MDD frameworks define a model-driven approach to soft-
ware development, in which visual modeling languages are used to integrate the huge diversity
of technologies used nowadays in the development of software systems. As such, the MDD
paradigm provides a better way of addressing and solving interoperability issues compared to ear-
lier non-modeling approaches. MDD focuses on design-time aspects of system engineering, where
specifically tailored methodologies describe how to develop and utilize mainly visual models as
guideline in the analysis, specification, design, and implementation phases of an Information and
Communications Technology (ICT) system. A system development process is model-driven if the
following requirements are fulfilled:

• the development of the system is mainly carried out using models at different levels of
abstraction and including various viewpoints on the system

• the system development process clearly distinguishes between platform independent3 and
platform specific models

• models play a fundamental role, not only in the initial development phase, but also in
maintenance, reuse and further development

• models document the relations between various models, thereby providing a precise foun-
dation for refinement as well as transformation

MDD is considered as software engineering approach that has the potential to greatly improve on
current mainstream software development practices. In accordance to Swithinbank et al. (2005)
the advantages of an MDD approach are as follows:

Increased productivity MDD reduces the costs of software development by generating code and
artifacts from models, which increases developer productivity. Even if transformations need
to be defined manually, careful planning will ensure that there is an overall cost reduction.

Maintainability MDD helps to avoid that past solutions components become stranded legacies
of previous platform technologies by leading to a maintainable architecture where changes
are made rapidly and consistently, enabling more efficient migration of components onto
new technologies. A change in the technical architecture of the implementation is made
by updating a transformation. The transformation is reapplied to the original models to
produce implementation artifacts following the new approach.

Consistency Manually applying coding practices and architectural decisions is an error prone
activity. MDD ensures that artifacts are consistently generated.

Adaptability Adaptability is a key requirement for ICT systems. When using an MDD approach,
adding or modifying an ICT function is quite straight forward since the investment in
automation was already made.

Models as long-term assets In MDD, models are important assets that capture what the ICT
systems of an organization do. High-level models are resilient to changes at the state-of-the-
art platform level. They change only when business requirements change.

Repeatability The return on investment of MDD from developing the transformations increases
each time they are reused. The use of tested transformations increases the predictability of
developing new functions and reduces the risk since the architectural and technical issues
were already resolved.

3 A definition of these terms is given in Section 2.2.1

2.2. Model-Driven Development 25

Several approaches exist that apply the principles of MDD. In particular, these approaches are
Microsoft’s promoted Software Factories (Greenfield et al.; 2004), Model-Integrated Computing
(MIC) (Sztipanovits and Karsai; 1997), or OMG’s Model Driven Architecture initiative.

2.2.1 Model Driven Architecture

The current state of the art in MDD is much influenced by the ongoing standardization activities
around the OMG’s Model Driven Architecture (MDA) (Object Management Group; 2003a). MDA is
a special MDD approach around a set of standards—e.g. Meta Object Facility (Object Management
Group; 2004) MOF4, UML5, XML Metadata Interchange (XMI6), Common Warehouse Metamodel
(CMW7), etc.—proposed by OMG. As MDA is based on standards like UML, it is interesting for tool
vendors and research groups to implement and develop tool support (Doyle et al.; 2007).

In accordance to (Object Management Group; 2003a), MDA is an approach to system devel-
opment, which increases the power of models. It is an instance of MDD, as it provides means for
using models to direct the course of understanding, design, construction, deployment, operation,
maintenance and modification. MDA offers a practical set of standards for delivering higher return
on investment in software development. It encapsulates many important ideas—most notably the
notion that real benefits can be obtained by using visual modeling languages to integrate the huge
diversity of technologies used in the development of software systems. The three primary goals of
MDA are portability, interoperability, and reusability. MDA establishes the idea of separating the
specification of the system from the details of the way the system is implemented on a software
execution platform. Hence, means are provided for (i) specifying a system independently of the
software execution platform that supports it, (ii) specifying software execution platforms, (iii)
choosing a particular software execution platform for the system, and (iv) transforming the system
specification into particular software execution platform(s).

The metamodel8 of MDA is depicted in Fig. 2.2. A System (possibly distributed over different
computers) is described by a Model is either described as a textual description or visual presenta-
tion, or a combination of both. The architecture of the System is a specification of its parts and how
these interact through clearly defined interfaces. MDA different models for different abstraction
levels (cf. 2.2.1.1) and how they are related. A System is composed of different Views that represent
the System from the perspective of a chosen Viewpoint. In accordance to (Object Management
Group; 2003a), a Viewpoint on a System is a technique for abstraction using a selected set of
architectural concepts and structuring rules, in order to focus on particular concerns within that
System. Finally, a Platform illustrates a certain functionality necessary for the System to be provided
to meet its requirements.

4 MOF provides the standard modeling and interchange constructs that are used in MDA. These constructs are a subset
of the UML modeling constructs. This common foundation provides the basis for model interchange and interoperability.

5 UML is the de-facto standard industry language for specifying and designing software systems. UML addresses the
modeling of architecture and design aspects of software systems by providing language constructs for describing, software
components, objects, data, interfaces, interactions, activities etc.

6 XMI is a format to represent models in a structured text form. In this way, UML models and MOF metamodels may be
interchanged between different modeling tools.

7 CWM is the OMG data warehouse standard, which covers the full life cycle of designing, building and managing data
warehouse applications and supports management of the life cycle.

8 The term metamodel is formalized in Section 2.2.3.

26 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

Fig. 2.2: The MDA metamodel.

2.2.1.1 Abstraction Levels

MDA defines three main abstraction levels of a system that supports a business-driven approach
to software development. These abstraction levels are important (i) in order to achieve the
independence from the software application platform, and (ii) for reasons of longevity in the rapid
change of the requirements. Each of them is represented as model (cf. Fig. 2.2) that conforms to a
certain metamodel of the particular abstraction level.

Computational Independent Model The computational independent model (CIM) focuses on
the (i) abstract environment of the system and (ii) specific (often business) requirements
of the system. The CIM represents the computational independent viewpoint and hides
the structural and technical details related to the targeted execution platform. A CIM is
normally generated by business analysts.

Platform-Independent Model A platform independent model (PIM) is a view of the system from
a platform independent viewpoint. This viewpoint focuses on the platform-independent
details, hiding platform-specific details. The PIM is suitable for architecture modeling
on different platforms of similar types. Hence, it should be able to gather all necessary
information needed for describing the system behavior in a platform independent way. In

2.2. Model-Driven Development 27

Fig. 2.3: The abstraction levels and their different model transformations.

model transformation architecture, a CIM is transformed to a PIM and refined. The refined
PIM then represents the CIM requirements in terms of software services, behaviors and
interfaces.

Platform-Specific Model A platform specific model (PSM) is a view of the system from the
platform-specific viewpoint. In accordance to (Object Management Group; 2003a), it links
the specifications in the PIM with the details that specify how the system uses a particular
type of platform. The PSM represents the PIM taking into account the specific platform
characteristics. Thus, the PIM is further refined to a set of PSMs each of them describes the
realization of the software systems with respect to the chosen platform-specific software
technology platforms.

Implementation/Code The implementation level illustrates the textual-written representations
that can be executed on the chosen platform.

Even if these abstraction levels are clearly separated with respect to the level of platform-specific
details, it is important to note that the abstraction level is relative in the sense that for a particular
platform the model could be considered as PSM, but for another platform the model is rather a
PIM. Brown (2004) summarized this circumstance as follows: "one person’s PIM is another person’s
PSM".

2.2.1.2 MDA in AOSE

The AOSE community is highly interested in closing the gap between the (early) requirement and
implementation phases of AOSE methodologies. Therefore, the principles of MDA are considered
as valuable. Amor et al. (2004) presented the Malaca Agent Model (Amor et al.; 2004), where the

28 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

Malaca UML9 Profile provides the stereotypes and constraints necessary to create Malaca models
on UML modeling tools. The model transformation is realized from a TROPOS design model—as
PIM—to a Malaca Model—as PSM. Guessoum (2005) a MDA-based approach for MASs is proposed
by separating the application logic (described in a PIM) from the underlying technology (described
in a PSM). Basing on Meta-DIMA, a MDA-based MAS development process defines the PIMs and
PSMs by analyzing the multiagent applications, defining a library of metamodels, and designing
the transformation rules to implement a metamodel from its description. A first step has been done
by defining a PSM for the multiagent tool DIMA10 and PIMs from the PASSI and Aalaadin/PASSI
(Bernon et al.; 2005b) metamodels. In (Xiao and Greer; 2007), an agent-based MDA approach is
presented that allows transferring business models into agent-based systems. The Agent Systems
Engineering Methodology (ASEME) also applies principles in accordance to MDA by distinguishing
between CIM, PIM and PSM models. However, the corresponding models are generated by the
different process phases (i.e. requirements analysis, design and implementation phases) and are
hence not artifacts from different languages. The developers of the CAFnE toolkit (Jayatilleke
et al.; 2006) presented an MDA approach to extend the Prometheus methodology (Padgham
and Winikoff; 2002b) in terms of automatically producing an executable implementation. Some
of the just presented MDA approaches and their pros and cons are discussed and evaluated in
Chapter 10.

2.2.2 Software Factories

Microsoft’s Software Factories initiative (Greenfield et al.; 2004) shares many ideas with the OMG’s
MDA proposal. Among others, the idea of using models and model transformations plays a
fundamental role. However, in contrast to using UML as standard modeling tool, Software Factories
promote the usage of Domain-Specific Languages (DSLs11). At this, in accordance to (Greenfield et
al.; 2004), the overall aim of a Software Factory is to develop a software product line that configures
extensible tools, processes, and content using a software factory template based on a schema to
automate the development and maintenance of variants of a product by adapting, assembling,
and configuring framework-based components.

2.2.2.1 Software Factories in AOSE

Recently, several approaches (e.g. (Pe et al.; 2007; Nunes et al.; 2009)) investigated the integration of
software product lines and MASs. The overall aim of this research direction is to combine software
product lines and AOSE by incorporating their respective benefits and helping the industrial
exploitation of agent technology.

9 A UML Profile is in accordance to (Object Management Group; 1999) a predefined set of Stereotypes, TaggedValues,
Constraints, and notation icons that collectively specialize and tailor UML for a specific domain or process (e.g. Unified
Process Profile). A Profile does not extend UML by adding any new basic concepts. Instead, it provides conventions for
applying and specializing standard UML to a particular environment or domain.

10 DIMA (Guessoum and Briot; 1999) is a development and implementation platform developed in Java, where agents are
considered as a set of dedicated modules able to percept and communicate.

11 The term Domain-Specific Language is intensively discussed in Chapter 3.

2.2. Model-Driven Development 29

2.2.3 Metamodelling

Models are one of the key artifacts of MDD. The interpretation of this term strongly depends on
the domain they are used. For the domain of software engineering, we consider the definition
given by Bézivin and Gerbé as a good starting point for our discussion.

Definition 2.2.1 (Model, Bézivin and Gerbé, 2001)

A model is a simplification of a system built with an intended goal in mind. The model should be
able to answer questions in place of the actual system.

The key characteristic of a model is its ability to simplify a system as it abstracts from reality and
thus can easier be understood by human beings. The second and last definition, we are discussing
in this context already perfectly fits in our context of MDD.

Definition 2.2.2 (Model, Kleppe et al., 2003)

A model is a description of a (part of) systems written in a well-defined language. A well-defined
language is a language with a well-defined form (syntax), and meaning (semantics). Both are
required for the automated interpretation by a computer.

In accordance to Kleppe et al., a model bases on a well-defined language that provides (i) a syntax
defining how the models have to look like and (ii) some sort of semantics defining the meaning of
the corresponding models. Both, syntax and semantics, allow to interpret models by computers.
However, the level of semantics that can be expressed in a model is limited.

In the context of MDD, metamodels are used to describe the syntax of a model. In order to
understand what a metamodel is, it is useful to understand the difference between a metamodel
and a model. Although a metamodel is also a model, in accordance to (Clark et al.; 2004b), a
metamodel has two main distinguishing characteristics.

• A metamodel captures the essential features and properties of the language that is being
modeled. Thus, a metamodel should be capable to describe a language’s abstract syntax.

• A metamodel must be part of a metamodel architecture. This means that a metamodel is
again a model that conforms to another metamodel, which itself is described by another
metamodel. This allows all metamodels to be described by a single metamodel. This single
metamodel, sometimes known as a meta-metamodel, is the key of metamodeling as it
enables all modeling languages to be described in a unified way.

The real benefit of metamodeling is its ability to describe languages and models in a unified way.
This means that they can be uniformly managed and manipulated thus tackling the problem of
language diversity. For instance, mappings can be constructed between any number of languages,
as long as they are described in the same metamodeling language (i.e. on the same metamodeling
hierarchy). Another benefit is the ability to define rich languages that abstract from implementa-
tion specific technologies and focus on the problem domain. Using metamodels, many different
abstractions can be defined and combined to create new languages that are specifically tailored for
a particular application domain. How metamodels can be used to define the syntax of a language
is also addressed in detail in Chapter 3.

• The meta-metamodeling layer (M3) provides the infrastructure for a metamodeling archi-
tecture. M3 defines the language for specifying metamodels, i.e. level for defining the
definition of modeling elements. The elements of the M3 model categorize M2 elements
(e.g. meta-class, meta-association and meta-attribute).

30 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

• The metamodeling layer (M2) describes an instance of a meta-metamodel. M2 defines the
language for specifying models, i.e. level of modeling element definition. The elements
specified on the M2 layer categorize M1 elements (e.g. classes, attributes, operations,
associations, generalizations etc.)

• The model layer (M1) describes an instance of a metamodel. M1 defines a language to de-
scribe an information domain. The elements specified on the M1 layer categorize instances
at the layer M0. Each element of M0 is an instance of the M1 element.

• The instances layer (M0) describes an instance of a model and thus the level of the running
system. M0 defines a specific information domain.

MOF as part of M3 plays an important role in OMG’s metamodel hierarchy as it provides con-
cepts for the existing standards like the Software Process Engineering Metamodel (SPEM, (Object
Management Group; 2007)), Common Warehouse Metamodel (CWM, (Poole and Mellor; 2001)),
Ontology Definition Metamodel (ODM, (Object Management Group; 2005)), etc. Hence, it is the
common foundation that provides the standard modeling and interchange constructs for defining
metamodels. MOF can be divided into Essential MOF (EMOF) and Complete MOF (CMOF), where
EMOF, on the one hand, is a compromise that favors simplicity of implementation over expressive-
ness, while CMOF, on the other hand, is more expressive, but also more complicated. The Eclipse
Modeling Framework (EMF) started out as an implementation of MOF (more or less aligned on
OMG’s EMOF), but evolved from there based on the experience gained from implementing a large
set of tools using it. EMF can be thought of as a highly efficient Java implementation of a core
subset of MOF. Beside EMF, the Metadata Repository (MDR12), which is part of the NetBeans tools
platform, provides another implementation of MOF.

2.2.3.1 Metamodeling in AOSE

A first attempt of the AOSE community toward the development of a unified metamodel was
described in (Bernon et al.; 2005b). This metamodel was developed by merging the metamodels
of ADELFE, PASSI, Gaia and PASSI and thus combines the strengths of each metamodel. For
instance, the unified metamodel covers aspects like (i) cooperative behavior as described by the
ADELFE metamodel, (ii) organizational behavior as specified by the Gaia metamodel and, (iii)
FIPA-compliant communication structures as defined by the PASSI metamodel. A more recent
approach toward a unified metamodel was discussed during an AOSE Technical Forum Group
meeting in Ljubljana13.

Other metamodeling approaches in AOSE are for instance MESSAGE (Caire et al.; 2002), which
defines a methodology to specify telecom applications using agent technology or RICA (Role/In-
teraction/Communicative Action) (Serrano and Ossowski; 2004) aiming at integrating aspects
of ACLs and organizational models on three different layers: On the first layer, generic concepts
of the system (e.g. agent, role and action types) are specified, the second layer includes social
aspects like norms and institutions. The last layer specifies agent interactions via communica-
tion. Moreover, the metamodel presented in (Beydoun et al.; 2005) proposes having a basic, but
complete (w.r.t. the concepts that define MASs) metamodel, allowing the generation of systems in
different agent platforms. Other metamodel approaches are, for instance, SODA (Molesini et al.;
2005) or MEnSA (Dalpiaz et al.; 2008). Pavón et al. (2006), for instance, presented an update to

12 http://mdr.netbeans.org/
13 The attendees agreed on a smaller core part compared to the first draft. In this metamodel, the agent participates

in a communication and plays a role that has the ability to solve particular Tasks. Organizations also refer to roles. The
cognitive agent is a specialization of agent as it is represented in an environment.

2.2. Model-Driven Development 31

INGENIAS introducing the INGENIAS Development Kit (IDK), as a way to provide MDD tools for
MAS development. It presents the IDK MAS Model Editor, a graphical tool for MAS model creation,
and a modular approach adapts the editor and tools to new metamodels or target platforms.

Shortcomings All these metamodels cover important agent-related concepts. However, the
only concept that shows up in each metamodel of ADELFE, Gaia and PASSI is the concept agent.
Although agent-related aspects like interaction and behavior belong to most metamodels, different
concepts are used to express their configuration. Metamodels like RICA or the unified metamodel
neither include concepts for modeling the core building blocks of MASs nor are precise enough to
generate an executable implementation from the design. Hence, in most cases, the automatic and
generic transformation from abstract concepts to concrete code is not possible.

2.2.4 Model Transformation

For resolving interoperability issues between models and to bridge the various abstraction levels,
model transformations certainly play an important role in the MDD approach. According to
Kleppe et al. (2003), a model transformation is the automatic generation of a target model from a
source model. Thus, a model transformation can be considered as mapping of a set of models onto
another set of models or onto themselves. A mapping thereby defines correspondences between
elements or concepts in the source and target models. This is done through so-called mapping
rules that are descriptions of how one or more constructs in the source language are transformed
into one or more constructs in the target language.

The automatic generation of a target model from a source model can either be performed
horizontally or vertically, where horizontally means to define a mapping and synchronization of
models at the same level of abstraction, PIM to PIM or PSM to PSM transformations and vertically
means to generate lower-level models from higher-level models, i.e. PIM to PSM transformations.
Even if horizontal and vertical transformations are distinct, a complete transformation chain
normally combines both, as in a first step, one or more horizontally and vertically transformation
steps may precede the final code generation that optionally is merged with manually written code.
One reason why extending the generated code with manually written code might be necessary is
that no transformation is perfect nor complete and one may want to change things manually. A
second reason could be that the target model is more expressive compared to the source model.
So the application developer needs to add details that could not be expressed in the source model.

Beside the distinction between horizontal and vertical transformations, Mens et al. (2005) also
distinguish between endogenous and exogenous transformations. Endogenous transformations are
transformations between models expressed in the same metamodel. Endogenous transformations
are defined between different metamodels. Further characteristics of model transformations (e.g.
level of automation, complexity and preservation) are discussed in (Mens et al.; 2005).

In accordance to (van Deursen et al.; 2007), techniques to transform models can be categorized
into three different types: Transformations from model to code are used to implement modeling
languages. Transformations from code to models are used to extract models from (legacy) code.
Transformations from models to models are used to refactor models, to migrate models to a new
modeling language, or to map higher-level models to lower-level models. For all three types of
transformations, rules and application strategies are written in a special language, called the
transformation specification language, which can be either graphical or textual (Czarnecki and
Helsen; 2003).

32 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

Fig. 2.4: The transformation metamodel.

Fig. 2.4 depicts the metamodel for model transformations. The Transformation refers to a non-
empty set of source and target Metamodels. In the case of endogenous, the source metamodel and
the target metamodel are the same, which could be considered as a kind of specialization. Both—
Transformation and Metamodel—conform to the same Metametamodel. The Transformation
Engine executes the Transformation by reading the input source Models and writing the target
Models in accordance to the rules defined by the Transformation.

2.2.4.1 Model-to-Model Transformation

Model-to-model transformations are the key enabler for model transformation. Therefore, sev-
eral tools or model transformation engines for implementing model-to-model transformations
were proposed. Examples are Kermeta14 (Falleri et al.; 2006), Atlas Transformation Language15

(ATL, (Jouault et al.; 2008)), Bidirectional Object-oriented Transformation Language16 (BOTL,
(Marschall and Braun; 2003)), Yet Another Transformation Language17 (YATL, (Patrascoiu; 2004)),
AndroMDA18 (Mizuta and Huang; 2005), MetaEdit+ (Kelly et al.; 1996), Tefkat19 (Lawley and Steel;
2005), etc. Recently, the OMG proposed the MOF 2.0 Query/View/Transformation Specification
(QVT, (Object Management Group; 2008a)) as standard for model transformations, which allows
implementing transformations in a declarative and imperative manner. To distinguish between
different model-to-model transformation approaches, Czarnecki and Helsen (2006) distinguish
several categories of model-to-model transformation languages:

• Direct manipulation approach: This category of model transformation languages is the most
simplest form and offers the user only limited support in implementing transformations.

14 http://www.kermeta.org/
15 http://www.eclipse.org/m2m/atl/
16 http://sourceforge.net/projects/botl/
17 http://is.tm.tue.nl/staff/rdijkman/yatl4mdr.html
18 http://team.andromda.org/
19 http://tefkat.sourceforge.net/

2.2. Model-Driven Development 33

Often, the user needs to implement the mappings in a programming language like for
instance Java.

• Structure-driven approach: The languages of this category consists of two phases. In the
first phase, the structure of the output models are defined, whereas in the second phase, the
content of the source model is extracted and put on the particular place at the target model.
Example: Model Transformation Framework20 (MTF)

• Operational approach: This category of languages are similar to direct manipulation ap-
proaches. The main feature these kinds of languages offers to the user is the additional
operational support like, for instance, a query language like OCL (Object Constraint Lan-
guage21). Example: Kermeta

• Template-based approach: This language category uses a template defined by the model
transformation architect that is used to instantiate the generated format. Example: An-
droMDA22

• Relational approach: This category of languages allows defining relations between the
elements of two or more metamodels. Relationships are normally defined bi-directional,
which allows transforming models into different directions enabling roundtrip engineering.
Example: QVT23

• Graph-transformation-based approach: This category of languages operates on typed, at-
tributed, labeled graphs. A study on graph transformations is given in (Ehrig et al.; 2005).
Example: Graph Rewrite And Transformation24 (GreAT, (Gray et al.; 2006))

• Hybrid approach: This category includes languages that combine techniques from other
categories. Examples: ATL

• Other approaches: Any language category that does not fit into one of the previously pre-
sented categories. Example: Extensible Stylesheet Language Transformation25 (XSLT)

2.2.4.2 Model-to-Text Transformation

Most of the available model-to-text transformation tools can be categorized as either template-
based or visitor-based (Czarnecki and Helsen; 2003). The template-based approaches (e.g. MOF-
Script26 (Oldevik; 2006; Oldevik et al.; 2005) AndroMDA27 (Mizuta and Huang; 2005), etc.) replace
particular parts of the target document with the information extracted from the source model.
The visitor-based approach, in contrast, visits each concept in the source model and writes pre-
defined text to a text stream accordingly. The most prominent visitor-based tool is Jamda28. An
other approach is to use XSLT for implementing the model-to-text transformations. Using XMI,
the source models can be serialized as Extensible Markup Language (XML) and imported in the
particular platform.

20 http://www128.ibm.com/developerworks/views
21 http://www.omg.org/docs/ptc/03-10-14.pdf
22 http://www.andromda.org/index.php
23 http://en.wikipedia.org/wiki/QVT
24 http://www.escherinstitute.org/Plone/tools/suites/mic/great
25 http://www.w3.org/TR/xslt
26 http://www.eclipse.org/gmt/mofscript
27 http://andromda.org/
28 http://sourceforge.net/projects/jamda

34 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

2.2.4.3 Model Transformations in AOSE

Bertolini et al. (2006) demonstrated how automatic transformations can be used to convert UML
models on the various phases of the Tropos methodology (Bresciani et al.; 2004) to finally maintain
a related implementation. The model transformation is defined by using the Tefkat model trans-
formation engine. Kardas et al. (2009b) presented a model transformation to combine MASs and
semantic Web services using the ATL language. As part of the implementation phase of ASEME,
Spanoudakis and Moraitis explore the opportunity to define a model transformation between the
AMOLA language (Spanoudakis and Moraitis; 2008a) and JADE. For this purpose, Spanoudakis and
Moraitis explored the adequacy of the model transformation languages ATL and QVT. Moraitis and
Spanoudakis (2006) demonstrated how systems designed following the GAIA methodology and
its corresponding models can be converted to JADE for deployment. Analogously, the Gaia2Jade
process proposes that the implementation phase should be performed in four stages: commu-
nication protocol definition, activities refinement, JADE behavior creation, and agent classes
construction. However, the Gaia2Jade process is not provided as model transformation that auto-
matically translates Gaia models to JADE. Instead, the transformation needs to be done manually.
In (Rougemaille et al.; 2008), the authors illustrated a practical use of model transformations and
code generation part of the ADELFE v.2 methodology. In (Spanoudakis and Moraitis; 2008b), a
model transformation from capabilities to interactions is presented. Molesini et al. (2008) illustrate
how to use model transformations to integrate an agent-based methodology and infrastructure to
obtain a new software process. Another interesting approach is described in (Kardas et al.; 2009a),
which introduces platform-specific modeling and code generation tools for the model-driven
development of MASs.

Shortcomings of State of the Art Even if some of the presented approaches utilize model trans-
formation engines like Tefkat, most of them are only defined on a conceptual level. Moreover,
due to the fact that the underlying source metamodels are often too abstract, the model trans-
formations only provide skeleton code, if the model transformation is generic at all. Chapter 10
evaluates the model transformations of existing MAS design approaches in terms of how well (i.e.
automatic, manual) code generation is supported.

2.3 Bottom Line

This chapter introduces the interested reader into the areas of MAS and AOSE, on the one hand,
and model-driven development on the other hand. Both areas are important when developing a
basic vocabulary for MASs in a platform-independent manner.

In the first part of this chapter, the core building blocks of MASs are detailed, including the
concepts of agent, organization, interaction, and environment. An agent is thereby considered as
autonomous entity in the system that is able to act in a reactive and pro-active manner. Through
coordination and interaction with other agents, complex problems are solved that go beyond
the capacities of a single agent. Organizations are typically used in order to form social groups
that establish complex problem solving entities. The careful definition of these terms lay the
foundation to precisely establish a unified vocabulary for describing MASs that will form the core
of the platform-independent language to be formalized in the forthcoming chapters.

The second part gives an overview of MDD in general and Model-driven Architecture, meta-
modeling, and model transformations in particular. Both, the principles of metamodeling and the

2.3. Bottom Line 35

MDA idea to distinguish between platform-independent and platform-specific models are con-
sidered in the language development of DSML4MAS. Thereby, model transformations determine
means for combining the newly created language with already existing platforms on the different
abstract levels.

36 2. MD-AOSE: Model-Driven Agent-Oriented Software Engineering

3. LD-AOSE: Language-Driven Agent-Oriented
Software Engineering

The state of the art in designing MASs is to design agent-based systems based on existing AOSE
methodologies and take the resulting design artifacts as base to manually implement the MASs
using existing agent-oriented programming languages (AOPLs) or general purpose programming
language like Java. The resulting gap between abstract design and concrete implementation
may tend to the divergence of both, which makes again the design less useful for further work in
maintenance and comprehension of the system (Bordini et al.; 2007a). A resent trend in AOSE
is therefore to apply mechanisms from MDD (cf. Section 2.2) to close the gap between agent
design and resulting implementation. However, MDD neither provides capabilities to rapidly
design new languages and tools in a unified and interoperable manner as needed would be needed
for adequate agent-oriented software development nor offers full potential of, for instance, the
language-driven development approach, which is addressed by this chapter to propose the general
research approach of this thesis in a precise and falsifiable manner.

Structure of this Chapter Section 3.1 introduces the term language-driven development and
presents the main benefits of this software engineering approach. Section 3.2 gives an overview
of DSML4MAS by briefly illustrating its main components and architecture. Section 3.3, finally,
concludes this chapter by briefly summarizing the presented approach to lay the foundations for
the future content of this thesis.

3.1 Language-Driven Development

A significant factor behind the difficulty of developing complex software is the wide conceptual gap
between the problem and the implementation domains (France and Rumpe; 2007). The growing
complexity of software is the motivation behind work on industrializing software development.
In particular, current research in the area of MDD is primarily concerned with reducing the
gap between problem and software implementation domains through the use of technologies
that support the systematic mapping between problem-level abstractions and concrete software
implementations.

MDD aims to be a major step forward in the way that systems will be developed in the future
as it aims at capturing the enterprise modeling architecture defined on CIM level on the selected
target platform. France and Rumpe (2007), however, identifies two major challenges MDD has to
face:

• The abstraction challenge: How can one provide support for creating and manipulating
problem-level abstractions as first-class modeling elements in a language?

38 3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering

• The formality challenge: What aspects of a modeling language’s semantics need to be
formalized in order to formal support the manipulation, and how should the aspects be
formalized?

Although model transformations and in particular PIM to PSM transformations have an impor-
tant role to play in the overall system development, there is an increasing interest in the wider
application of MDD to what is termed by Clark et al. (2004b) as language-driven development
(LDD).

The core idea of LDD is to focus on the development of languages and tools that are tailored
to the special needs of the application developers to improve the system’s development practice.
LDD aims to raise the productivity of the software development process by concentrating on
powerful language abstractions and development environments that support the engineering of
languages and processes. It is fundamentally based on the ability to rapidly design languages and
their supporting tools, based on the principles of metamodeling. Hence, in accordance to (Clark
et al.; 2004a), it involves the application of MDD technologies to rapidly generate and integrate se-
mantically rich languages and tools that address specific domain modeling requirements. The aim
is to provide developers with rich modeling abstractions appropriate to their development needs
and thus enabling them to clearly focus on the problem domain in isolation from implementation
details (Clark et al.; 2004a).

Languages are an essential part of the development of systems. In this development process,
languages are either used as a high-level modeling language that abstracts from implementation
or tailored to a specific implementation platform. Beside general-purpose languages, like for
instance UML or Java, providing suitable abstractions applicable across several domains, there
exist domains that are too complex to describe with general purpose languages. In these situations,
more domain-specific languages (DSL) (Cook et al.; 2007) are needed providing a highly specialized
set of concepts clearly formalized to target a small problem domain. Apart from using languages to
design and implement systems, they typically support many different capabilities (e.g. execution,
validation, testing) that are an essential part of the development process.

LDD and MDD should not be considered as complementary approaches. Rather, LDD is a
specialization that completes the MDD philosophy, by enabling all aspects of the development
process to be captured in languages expressed by for instance (meta) models and a clear semantics.
According to LDD, the language provides a formal framework that allows to build agile abstractions
that can be changed and adapted if necessary. This in combination with the separation of PIM
and PSM made by MDA will also have beneficial effect for the whole development language.

3.1.1 What is a Language?

Independent of the purpose, any language definition comprises three main parts, i.e. the abstract
syntax, semantics, and concrete syntax. The characteristics of them are detailed in the remainder
of this section. Their relationship within a language is depicted in Fig. 3.1.

3.1.1.1 Abstract Syntax

The abstract syntax defines rules that prescribe how the language constructs (e.g. words) are
combined to more complex constructs (e.g. sentences). Such an abstract syntax is normally called
grammar (e.g. Backus-Naur form).

3.1. Language-Driven Development 39

Fig. 3.1: The three core components of a language.

Similarly, in the context of LDD, the abstract syntax of a language describes the vocabulary of
concepts provided by the language and how they are combined to create models or programs
(Evans; 2006). Apart from addressing the set of provided concepts and their relationships, the
abstract syntax may also include constraints expressed by, for instance, the Object Constraint
Language (OCL) that prescribe under which circumstances a model is well-formed. These sort
of rules are often referred to static semantics. The static semantics are especially necessary if
additional tool support (e.g. model transformations) is provided that expects the correct structure
and usage of the language in order to provide meaningful results. To ensure the models correctness,
the models must be validated beforehand with respect to the given constraints.

In terms of MDD, the abstract syntax is described by a metamodel or UML profile that defines
how the models should look like. MOF, for instance, defines the structure of UML by specifying
concepts for classes, attributes and references. Apart from addressing the structure of a language,
the abstract syntax serves as the basis for defining the (dynamic) semantics. This is illustrated in
Fig. 3.1 through the AS to S mapping.

3.1.1.2 Concrete syntax

The concrete syntax is the set of notations that facilitate the presentation and construction of the
language constructs (Evans; 2006). The concrete syntax could either be formulated in a textual or
visual manner. A textual syntax allows describing the models in a structured textual form, whereas
a visual syntax allows using a diagrammatical form. In the latter case, the notation is visualized
through graphical symbols. UML, for instance, uses nodes and edges to represent some underlying
model elements, while other languages may have different notations. One of the main benefits of
the concrete syntax is that the complexity of the abstract syntax can be hidden behind the manner
in which the graphical symbols are arranged.

3.1.1.3 Semantics

The semantics of the language define the meaning and the purpose of its elements. The semantics
definition is a very important feature of a language as it clarifies what the actual elements represent
and leaves no place for assumptions. Semantics are a key element in order to understand how
to correctly use a language. Visual modeling languages such as UML offer only little support

40 3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering

to express the language’s semantics. The semantics can, as previously mentioned, be further
distinguished into static and dynamic semantics. The static semantics thereby specifies the
structural meaning, whereas the dynamic semantics are concerned with the behavior of the
language, thus the language’s operational aspect.

In terms of MDD, even if the developers may have an understanding of the syntax of a language,
the semantics are the key to clarify the language’s and in particular the concept’s meanings. In the
context of MDD, semantics are often introduced when transforming a PIM to a specific (execution)
platform that already offers some kind of (operational) execution semantics.

3.1.2 Benefits of Language-Driven Development

As previously mentioned, LDD and MDD should not be considered as complementary approaches,
rather LDD should be considered as MDD approach. There are several benefits of LDD compared
to traditional MDD (e.g. MDA) that make LDD an interesting approach also to investigate in the
area of AOSE.

• Languages are precise and have a clear formal semantics. The formal semantics increase
the application developer’s understanding of the language and supports the execution,
evaluation and testing on the generated models.

• Languages provide an adequate graphical notation that reduces modeling complexity and
increases the application developer’s understanding of the language’s meaning.

• Languages can be combined and integrated in multiple ways through model transformations
in accordance to MDD.

• Transformations between languages can be validated, as the behavior of models or programs
written in one language can be checked against the behavior of the language it is translated
to.

Apart from these benefits, there are certainly also potential disadvantages that need to be further
discussed. First to mention is the complexity of the language design, the implementation of code
generators, the precise formalization as well as defining a suitable concrete syntax. The higher
costs for maintenance and education for the language users need to additionally be mentioned.

3.1.3 Domain-Specific (Programming) Languages

In accordance to Watt (1990), programming languages should fulfill several criteria like they (i)
must be universal (every problem must have a solution that can be programmed in the language, if
that problem can be solved at all by computer), (ii) must be implementable on a computer and (iii)
should also be reasonably natural for solving problems, at least problems within its intended do-
main. However, further distinguishing features can be proposed to group programming languages
like for instance declarative vs. imperative or functional vs. object-oriented.

The most interesting criterion for this thesis is to distinguish between general purpose and
domain-specific. General purpose languages like UML, as the most prominent representative
nowadays for designing visual software systems, were developed to solve a wide variety of problems
from scientific computing up to business processing. It is important to recognize that UML as
general purpose language is intended to be the one and only language, a universal standard by the
OMG for object-oriented software development. There are, however, domains where engineers
either do not understand UML, or the general concepts of UML are simply inappropriate for
modeling effectively in the certain domain, possibly due to the fact that they might already have

3.1. Language-Driven Development 41

their own standard languages or tools. UML as general-purpose modeling language is also rather
limited in integrating domain-specific concepts (cf. Section 3.1.4.1).

Recent articles, such as (Cook; 2004), see domain-specific languages as "...the next step towards
developing a technology for software manufacturing". Others, like (Iseger; 2005), claim that a pure
DSL-based approach consistently results in productivity increases of 500-1000%, compared to the
mere 35% found with MDA. To informally set the boundaries of the term domain-specific language,
we present two defintions that nicely frams the core ideas.

Definition 3.1.1 (Domain-Specific Language, van Deursen et al., 2000)

A domain-specific language is a programming language or executable specification language that
offers, through appropriate notations and abstractions, expressive power focused on, and usually
restricted to, a particular problem domain.

Every DSL has, in accordance to the above definition given by van Deursen et al., a well-defined
problem domain, which is the specific area of application in which the systems created with the
DSL will be used. There are several interesting challenges involved with identifying and delineating
the problem domain.

Definition 3.1.2 (Domain-Specific Language, Cook et al., 2007)

A Domain-Specific Language is a custom language that targets a small problem domain, which it
describes and validates in terms native to the domain.

As aforementioned, DSLs are explicitly tailored to a particular target domain, not to cover all
feasible problem domains. This idea is not novel, however, in former times these kinds of languages,
such as HTML etc., were called special-purpose languages or little languages (Bentley; 1984). Like
any language, a DSL could either be defined using a textual or graphical notation. For several
reasons, a graphical notation has significant advantages over a textual notation. Most important, a
graphical visualization using some sort of diagram can easily be interpreted by human beings in
contrast to a hard readable textual visualization.

The general framework of a DSL is depicted in Fig. 3.2. Two roles have to be distinguished:
The DSL developer defines an adequate level of abstraction of the domain, specifies the language
constructs, the notation used as well as code generators. The DSL can then be used by the
application developers by installing the DSL-specific IDE. The application developer then defines
the application models by using the provided notation and applies the code generation facilities
to produce code that can be afterwards manually refined. Together with the domain-specific
framework, a working application is produced.

3.1.4 Domain-Specific Modeling Language

Analogously to domain-specific programming language, a Domain-Specific Modeling Language
(DSML) is a visual modeling language designed for a specific purpose inside a certain problem
domain. A DSML is a new approach to model-based software development. Like for DSLs in
general, a domain in DSML is defined as the set of concepts and their relations within a specialized
problem field. Necessary information that describes actual business processes and entities, the
manner in which these entities interact, etc. constitutes domain knowledge that can only be
obtained from domain experts developing the DSML.

42 3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering

Fig. 3.2: An overview of a general DSL framework

A DSML gives the designer the freedom to use concepts and underlying logic that is specific to
the target application domain. Hence, the DSML is completely independent of programming
language concepts and syntax, which is a more flexible solution compared to MDA emphasizing
the importance of a single and universal modeling language (i.e. UML) at the center of the
development process. Moreover, these domain models (with appropriate visualization) are more
easily readable and usable for the domain experts compared to UML diagrams for instance.
This is certainly one of the main advantages of DSMLs, because developers usually have limited
knowledge about the application domain, which can result in inaccurate working programs.

A DSML can be realized in two ways, either by customization of pre-existing languages through
profiles or by creating a new language with a standardized meta-data architecture based on, like for
instance, MOF. The first approach through customization is achieved by marking up UML concepts
with existing stereotypes and tags to create a new domain concept. The second approach is based
on the idea to create a brand new DSML from scratch. This involves applying metamodeling
facilities and standards to create a metamodel of the DSML, which is used to generate adequate
tool support for existing platforms.

3.1.4.1 UML is not the Solution

One option is certainly to define a general-purpose modeling language and teach the domain
experts how to use it in different domains. Experience with using UML tells us that this is not
often successful. The development of the UML started during the early 1990s. It emerged as
a unification of the diagramming approaches for object-oriented systems developed by Grady

3.1. Language-Driven Development 43

Booch, James Rumbaugh, and Ivar Jacobson. First standardized in 1997, it has been through a
number of revisions, most recently the development of version 2 in 2005 and 2.21 in 2008.

UML can either be used as a means of creating informal documentation for the structure of an
object-oriented design (i.e. as a sketch) or as first-class artifacts within a (model-driven) software
development process. In the latter case, either manually or automatically, code skeletons are
produced by systematically translating a UML model into source code by utilizing existing model
transformations. Even if UML is considered as standard modeling language, several limitations
can be identified, especially for designing a DSML:

• UML bases on a very large metamodel, which makes the whole it hard to use due to com-
plexity. Most of UML usages only rely on a small subset of the entire metamodel such as
UML Class diagrams.

• UML specification falls short in providing a precise and formal semantics. In contrast to
its syntax, which is defined in an unambiguous manner, the semantics of its elements is
either missing or specified in natural language. Hence UML’s semantics tend to be not
precise enough for the purpose of formal system verification nor for the correct usage by the
application developers.

• UML concepts are often not suitable for modeling domain-specific applications as the
concepts of the particular domain are either not existing or need to be defined through
profiles.

• UML is not executable, which makes it impossible to transform a UML model using code
generators to produce executable artifacts. Especially in the case of UML profile, the code
generators need to be manually defined by the developers of the DSML.

UML started out as general purpose object-oriented modeling language. But as a consequence of
its popularity, attempts were made to tailor for more and more highly specialized uses for which
it was not originally intended. For instance, the recently emerging standards of SOA or agents
under the umbrella of OMG are good examples, where UML profiles are used to express SOA and
MAS-related concepts using basic UML vocabulary. Initially, when submitting the first proposal
of the Agent Metamodel and Profile (Object Management Group; 2009a), we started with four
different ways of modeling the core principles of agent-based systems through UML profiles. At
the same time, the concepts are expressed in a single metamodel. This already demonstrates that
finding the right UML concepts for a certain domain also in terms of semantics is sometimes a
very difficult task.

The main advantage when applying UML profiles is that any existing tool supporting UML
profiles can be used to represent the concrete syntax. This means that the usual UML notation is
applied, and stereotyped by the particular domain-specific concept. However, the new domain-
specific language is restricted to the concept provided by UML, its meaning (i.e. semantics) cannot
be changed to better fit the new language’s needs.

3.1.4.2 Metamodeling is not the Solution

Even if the principles of MDD and in particular model transformations are important towards clos-
ing the gap between design and implementation, several limitations can be identified. Especially
when it comes to defining a DSML through metamodeling:

1 Whenever we are talking of UML, we talk about version 2 or above

44 3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering

Metamodel UML

Adding new types 3 5

Adding new attributes 3 5

Adding new associations 3 5

Adding new methods 3 5

Concrete syntax 5 3

Abstract syntax 3 5

Semantics Only static Hard to refine

Tool support 5 3

Tab. 3.1: UML vs. metamodel for defining DSMLs

• MOF as a meta-metamodeling language is not rich enough to capture semantic concepts in
a platform independent way. Especially the operational semantics cannot be specified with
MOF and more formal techniques have to be used instead.

• MOF itself does not provide means for expressing the notation of a language, in particular in
a diagrammatical manner, which is necessary when defining a graphical modeling language.

• MOF itself does not provide abstractions for capturing tools in a generic fashion. This means
that either the language designer has little control over the tool that supports the language,
or these aspects must be encoded in a platform specific way.

Even if a formal semantics cannot be defined within a metamodel, at least the static semantics
can be specified using OCL. However, in contrast to the development of DSMLs conforming to
UML, where the language developer lean the domain concepts on UML concepts, the developer is
free to define the domain concepts when using the principles of metamodeling. Consequently,
attributes, types as well as associations can newly be established. However, to determine the
concrete syntax, additional tool support is necessary that allows mapping concrete syntax to
abstract syntax. Section 3.2.3 introduces tools supporting the specification of this mapping.

Table 3.1 sums up the pros and cons of metamodeling and UML profiles for the purpose
of producing a DSML. Important to mention is that UML profiles only provide little support to
change the semantics of UML for covering the special needs of the new developed language. In
contrast—and this is certainly one of the major criteria for using profiles—tool support is provided
by any existing UML tool as well as the concrete syntax can easily be specified. However as in the
case of metamodeling, when it comes to code generation, often the model transformations have to
be defined by hand. The major advantages of metamodeling is obviously that the language wanted
to develop can easily be tailored to the special needs of its domain. Consequently, the abstract
syntax can newly be created by adding new types, associations and methods. However, the tool
support automatically offered, as well as, means for defining the concrete syntax is limited. Even if
recent initiatives like the Graphical Modeling Framework (GMF) were started to resolve this lack.

Both approaches demonstrate their shortcomings for defining DSML, however, metamodeling
in combination with adequate tool support like GMF to define the concrete syntax and tool
support might be the better alternative. The real strong criterion is that a UML profile does not
allow any changes on the existing UML core, which includes adding new classes or associations.
However, especially when customizing UML for supporting agent-based systems, this would be

3.2. Domain-Specific Modeling Language for Multiagent Systems 45

necessary as agent-based systems certainly add certain functionalities that cannot be expressed
with object-oriented approaches. To add or refine the semantics of existing UML concepts is also
rather difficult, which again favors the metamodeling approach.

3.2 Domain-Specific Modeling Language for Multiagent
Systems

As mentioned earlier, the main objective of the Domain-Specific Modeling Language for Multiagent
Systems (DSML4MAS) is to produce a graphical modeling language to support the non-agent expert
in using MASs. Fig. 3.3 depicts the general idea of the DSML4MAS design.

The language developers (i.e. we) define the DSML4MAS language consisting of the three
basic ingredients abstract syntax, concrete syntax and semantics. Based on the abstract syntax
and semantics, we define model transformations to the two agent platform JACK and JADE.
Together with a graphical modeling tool, we provide a setup that can easily be installed by the
MAS developers. They create the models in accordance to DSML4MAS and apply the model
transformations to generate code, which can, if necessary, be manually refined. Together with the
respective agent platform, the MAS developers can run agent application.

Although different kinds of languages can be distinguished (i.e. modeling languages like UML
or programming languages like Java), there are some common features that any language share
and that are necessary to consider for the development of new languages. These core features of a
language are, in accordance to (Langlois et al.; 2007), the language, transformation, tool, and an
optional process. All of these ingredients are detailed in terms to DSML4MAS in the remainder of
this dissertation, a first brief overview is given in the following.

Fig. 3.3: An overview of our framework.

46 3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering

3.2.1 Language

In Section 3.1.4, we investigated two feasible options for defining a DSML in general and
DSML4MAS in particular. The first option is to define a UML profile that specifies how to model
MASs using the concepts provided by UML, the second option is to define a MOF-compliant
metamodel that directly defines the domain-related concepts.

As previously stated, we consider the second approach more appropriate for defining
DSML4MAS. The development of DSML4MAS is divided into four phases. In the first phase,
an adequate level of abstraction must be found. This implies to formally define a language model
that specifies the abstract syntax of the language. In terms of DSML4MAS, the language model
is derived from the PIM4AGENTS metamodel. In the second phase, a suitable concrete syntax is
defined, e.g. graphical symbols, which is used by users of the language. As the concrete syntax
represents the concepts in the abstract syntax, usually there is a correspondence between concrete
and abstract syntax elements. In the third and last phase, a generator is defined in accordance
to MDD that translates the modeling language into an executable representation. For this pur-
pose, the elements of the abstract syntax have to be mapped to instances of the abstract syntax,
conforming to the formal language model of the agent-based language.

3.2.1.1 Abstract Syntax of DSML4MAS

The abstract syntax of a modeling language in general expresses the structure of its vocabulary
(i.e. concepts) and the relations between them, which is supported by different metamodeling
environments like Ecore (EMF), MetaGME (GME) (Davis; 2003), or XCore (XMF Mosaic) (Clark et
al.; 2004b). Ideally, one unique meta-metamodel is defined as this enables reuse and integration
with other tools or architectures. Following this, the architecture of DSML4MAS is built around the
Ecore meta-metamodel. Ecore has been chosen, because it has proven its practical usability, as
a wide range of tools and languages are based on Ecore. Hence, to describe the abstract syntax
of DSML4MAS, we created a metamodel called PIM4AGENTS, which conforms to Ecore as meta-
metamodel. Consequently, the concepts of PIM4AGENTS are instances of the EClass metaclass,
their characteristics are described as EAttribute and, finally, their relationships are defined as
EReference.

3.2.1.2 Semantics of DSML4MAS

An abstract syntax contains only little information about what the concepts in a language actually
mean. Ecore, for instance, is not sufficiently precise to set out all relevant aspects of a specification.
Beyond straightforward constraints (e.g. association multiplicities), there exist a range of complex
and sometimes subtle restrictions that are not easily conveyed in graphical form. For instance, for
specifying the dynamic semantics of a system in UML, natural language is often used.

PIM4AGENTS already includes parts of the static semantics, however, additional information is
needed in order to capture the complete (also dynamic) semantics of a language, which is impor-
tant in order to give the language a clear representation and meaning. Otherwise, assumptions
may be made about the language that lead to its incorrect use. Even if the application developers
have an understanding of the syntax of a language, the semantics is the key to clarify the language’s
and concepts’ meanings. The semantics in the context of MDD is usually introduced when trans-
forming a PIM to a specific platform that offers some kind of execution semantics, however, our

3.2. Domain-Specific Modeling Language for Multiagent Systems 47

aim is to introduce a clear semantics already at the PIM level to ensure that the generated models
can already be validated on a more abstract level.

Benefits of Formal Languages A formal specification of DSML4MAS’S semantics can be used for
different types of analysis purposes, different situations and applications.

Syntax checking (see e.g. (Shen et al.; 2002)) can be performed against the PIM4AGENTS meta-
model to ensure that the created models conform to the PIM4AGENTS metamodel. The
syntax check is in our case enhanced by the metamodel of PIM4AGENTS and the visual
modeling tool provided by DSML4MAS that only allows creating of models that naturally fit
to PIM4AGENTS.

Well-Formedness checking (see e.g. (Shen et al.; 2002)) can be performed against more complex
statements that can be deduced from the static semantics of the PIM4AGENTS metamodel,
but are not directly part of the abstract syntax.

Consistency checking (see e.g. (Bernardi et al.; 2002; Schäfer et al.; 2001)) is performed against
different viewpoints of a system to ensure that those are consistent. This could mean that,
for instance, consistency checker guarantees that the behavior model allows to implement
the corresponding interaction models of the MAS.

Model checking (see e.g. (Kwon; 2000; Lilius and Porres Paltor; 1999a,b)) is considered as dynamic
analysis performed on the finite state models to identify whether functionalities like liveness,
deadlock, fairness, or reachability hold for feasible executions of the model.

In case of DSML4MAS, we consider all of the presented types important. The first three categories
to ensure that any model specified in accordance to PIM4AGENTS can be applied to the code
generators in order to ensure the production of meaningful output. The last category to provide
means to do further analysis on the produced PIM4AGENTS models to estimate how the system
behaves at run-time. To particularize a formal specification, a number of different semantical
forms exist.

Different Forms of Semantics The semantics of a language is a mathematical defined function
from the language’s syntax to its semantic domain (Harel and Rumpe; 2004). It expresses the
language’s computational behavior in either a static or/and dynamic manner. This mathemat-
ical function can be defined in different ways, depending on purpose of the semantics. The
mathematical function can be expressed in an either axiomatic, denotational, or operational
manner.

Axiomatic Semantics The axiomatic semantics (cf. (Hoare; 1969)) are given by means of axioms
relating expressions in the language. The axioms can be based on some underlying logic like
OCL and are often defined in terms of invariants, pre- and postconditions.

Denotational Semantics The denotational semantics (cf. (Stoy; 1977)) are given by means of
mathematical functions translating the given specification into a well-understood model
having a precise semantics.

Operational Semantics The operation semantics (cf. (Plotkin; 2004)) are given by means of
defining states and transitions between states. The operational semantics are in particular

48 3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering

used to describe the dynamic part of the language by describing the meaning of programs
in terms of their execution steps taken by an abstract machine. The operational semantics
are a necessary requirement when performing model checking on the programs.

Several options exist for giving a language a formal specification. Most of them allow the spec-
ification from an axiomatic, denotational and operational view. Selected formal specification
languages are discussed in the following.

Categorizes of Formal Languages Generally, the term formal methods refers to the use of mathe-
matical techniques in the design and analysis of computer hardware and software. These methods
may use formal specification languages to describe the architecture as well as the behavior of the
system designed and mathematically-based analysis techniques to demonstrate that particular
properties such as liveness are satisfied by the system. Two major categories of formal methods
can be distinguished as follows: One the one hand, model-oriented approaches for modeling
systems’ states and data including formal methods such as Z (Woodcock and Davies; 1996; Spivey;
1992), Alloy (Jackson; 2006), B method (Abrial; 1996), Object-Z (Smith; 2000) and, on the other
hand, process algebras for modeling system behaviors and interactions including for instance
Communicating Sequential Processes (CSP) (Hoare; 1978), LOTOS (Eijk and Diaz; 1989), π-calculus
(Milner; 1999). In the following, selected approaches are discussed in more detail focusing in par-
ticular on model-oriented approaches that are feasible candidates for formalizing the semantics
of DSML4MAS.

Z The Z language is a state-oriented formal specification language based on set theory and pred-
icate logic. A Z specification typically includes a number of state and operation schema
definitions. A state schema encapsulates variable declarations and related predicates (in-
variants). The system state is determined by values taken by variables subject to restrictions
imposed by state invariants. An operation schema defines the relationship between the
"before" and "after" states corresponding to one or more state schemata. Complex schema
definitions can be composed from the simple ones by schema calculus.

Allow Alloy is a formal object-oriented specification language based on first-order logic and a no-
tation called relational calculus that give it a mathematical notation for defining objects and
their relationships. Models generated with Allow are comparable to UML models combined
with OCL, but have a simpler syntax, type system and semantics, used for an automatic anal-
ysis. An Allow specification contains several so-called paragraphs representing signatures
(comparable to the schemata in Z) used for defining types. Each signature introduces a basic
type and a collection of relations to other signatures. As previously mentioned, UML does
not base on a formal semantics (i.e. an adequate semantic mapping for the full UML does
not exist; only textual descriptions are given.) However, for instance, in (Anastasakis et al.;
2007) a model transformation from UML and OCL to Alloy is given that allows the creation
of analyzable UML models.

Object-Z Object-Z (Smith; 2000) is an object-oriented specification language that supports fea-
tures like classes, instance, inheritance, and polymorphisms. Object-Z bases on and extends
the specification language Z with object-oriented specification support and bases on math-
ematical concepts (like for instance sets, functions, and first-order predicate logic) that
permits rigorous analysis and reasoning about the specifications. The basic construct is
the class, which encapsulates a state schema with all the operation schemata, which may

3.2. Domain-Specific Modeling Language for Multiagent Systems 49

affect its variables. A class further includes invariants that specify restrictions on the vari-
ables. Object-Z has been especially used to formalize UML. In (Mann and Klar; 1988), for
instance, the authors formalized a metamodel of object-oriented statecharts. A generic
model transformation between UML and Object-Z has been defined in (Kim et al.; 2001).
This model transformation allows mapping between UML concepts and Object-Z concepts
and thus enables the generic creation of formal UML models. A formalization of UML state
machines using Object-Z has been given in (Kim and Carrington; 2002). Apart from these
works, Object-Z is also very popular in the Semantic Web service community. In (Wang et al.;
2007a), for instance, the authors use Object-Z for the formal specification for the Semantic
Web Service Ontology (WSMO). Wang et al. (2007b) demonstrated how to utilize Object-Z to
formalizes OWL-S.

Formal Agent-based Approaches In (Lapouchnian and Lespérance; 2006), a CASL2 (short for
Cognitive Agents Specification Language) specification for i* is given that allows the formal analysis
and verification. This approach has its similarities with Formal Tropos (Fuxman et al.; 2004), which
supports the formal verification of i* models through model checking. An extension is presented
in (Decreus and Poels; 2009) to acquire correctly semantically annotated business process models.
In (Hilaire et al.; 2004), the authors describe a formal specification of a mobile robot architecture.
The most prominent approach is proposed in (d’Inverno and Luck; 2001b) that is based on the
specification language Z (Spivey; 1992). However, the development of MASs is purely restricted to
the formal specification, no graphical visualization nor automatic code generation is offered. The
authors of (Brandão et al.; 2004) propose an approach in which Object-Z is extended for specifying
MASs. The authors of (Xu and Zhang; 2005) demonstrate how to use Object-Z to formalize the role
model of their methodology.

All these approaches demonstrate that the formal specification of MASs is required in order to
make the system behavior explainable. However, the presented works solely focus on the formal
specification, without providing mechanisms for modeling, code generation, etc. This is certainly
one main advantage offered by DSML4MAS.

DSML4MAS’S Semantics Approach For formalizing the semantics of DSML4MAS, we consider
Object-Z as formal mechanism as it allows the specification in a state-based and object-oriented
manner, which is close to how PIM4AGENTS has been defined. The static semantics are defined
by formalizing the concepts’ attributes and invariants. The dynamic semantics are defined by
specifying a denotational and operational semantics. The denotational semantics are defined in
terms of introducing additional semantic variables and invariants. The operational semantics
are defined in terms of class operations and invariants restricting the operation sequences that
are specified using the timed trace notation of the timed refinement calculus (Smith and Hayes;
2000). A very similar approach, from a formal Object-Z specification into UML Class diagrams is
discussed in (Chen and Miao; 2004). To allow the integration into the graphical framework, the
resulting Object-Z specification is, in a second step, manually transformed into a corresponding
OCL formalization, which is then integrated into the DSML4MAS development environment.

2 CASL is a formal specification language that combines theories of action and mental states expressed in situation
calculus with ConGolog.

50 3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering

3.2.1.3 Concrete Syntax of DSML4MAS

The concrete syntax of DSML4MAS is defined by a notation model, which is used to store visual
information necessary for drawing DSML4MAS diagrams. It is independent from the underlying
abstract syntax and semantics model. To realize a link between concrete and abstract syntax, a
mapping was defined, which serves as input for the generation of a visual editor. This mapping is
illustrated in Fig. 3.1 by the CS to AS mapping.

3.2.2 Model Transformations

Apart from the modeling language itself, code generators are an important ingredient for any
DSML as autonomic transformations significantly reduce cost and time, which have to be spent to
offer executable code. In the remainder of this section, selected model transformation engines are
reviewed, which provide the means for implementing and running model transformations.

3.2.2.1 State of the Art on Model Transformation Engines

As previously discussed in Section 2.2.4, several model transformation engines exist to implement
model transformations. In the remainder of this section, we briefly analyze four selected model
transformation engines, in order to come to a decision which model transformation engine(s) to
incorporate into the DSML4MAS architecture.

XMF Mosaic XMF Mosaic (Xactium3) provides a model-driven development framework for
modeling, executing, constraint checking and deploying languages and tools. It is a commercial
tool platform that provides modeling and programming capabilities including full support for
MDD and most of the QVT standards. It is based on standards like UML, even if only UML
class diagrams (without compositions and aggregations) are supported. To specify complex
transformations, an OCL-like language called XOCL can be used. Due to its general purpose
framework, transformations do not dependent on any core metamodel. Furthermore, models
from other tools basing on the XMI can be imported. XMF provides a collection of classes that form
the kernel (called XCore). XCore includes class definitions for the basic types including Integer,
Boolean and String and collection types for sets and sequences of values. XCore is object-oriented
and provides basic notions of object and class. XMF Mosaic includes two types of mapping
languages, i.e. XMap is a pattern oriented mapping language expressing unidirectional mapping,
XSynch is used in bi-directional synchronizations between models.

The main shortcoming of XMF Mosaic is that models are described in an XMF Mosaic-based
format, which makes the integration of other languages very hard and reduces the language’s
interoperability.

Model Transformation Framework (MTF) As part of their involvement in the QVT standardiza-
tion, IBM has developed the Model Transformation Framework (MTF4) that mainly consists of (i)
a language to define mappings between EMF models and (ii) a transformation engine capable of
interpreting mapping definitions. MTF implements some of the QVT concepts (however, MTF is
not QVT compliant) and provides a declarative language for model transformations, along with a

3 http://albini.xactium.com/content/
4 http://www128.ibm.com/developerworks/views

3.2. Domain-Specific Modeling Language for Multiagent Systems 51

transformation engine. As plug-in for Eclipse, MTF supports the transformation of EMF models
and additionally allows the integration of Java code to extend the mapping definition language.
Beside the transformation engine, it provides a set of tools to run and debug transformations.

The main shortcoming is that MTF is not very intuitive and it is very hard to learn how to use
MFT correctly. Both issues reduce usability drastically. Moreover, the structural-driven approach
supported by MTF shows inflexibilities in implementing model-to-model transformations.

Atlas Transformation Language (ATL) The Atlas Transformation Language (ATL) aims at provid-
ing a set of transformation tools that include a transformation repository, sample transformations
and an ATL transformation engine. ATL is a hybrid language designed to express model trans-
formations as required by MDD. It has been developed as part of the Atlas Model Management
Architecture (AMMA), which is implemented on top of EMF and available as a plug-in for Eclipse. It
is based on declarative rule definitions, which define mappings between source models and target
models and supported by a set of development tools like, for instance, an editor and debugger.
Originally, ATL was designed to express model-to-model transformations, however, model-to-text
transformations can be expressed as well. ATL is similar to the QVT submission in terms of se-
mantics, but differs in syntax. It is open source, with an increasing user community, and currently
under continuous development.

MOFScript MOFScript is a model-to-text transformation language, developed to provide a code
generation tool for arbitrary metamodels. The corresponding tool, which is packaged as Eclipse
plug-in, provides the means of editing, compiling, and executing model-to-text transformations.
Similar to the ATL language, MOFScript bases on the Ecore meta-metamodel and can be utilized
with a rough understanding of Java necessary for developing mappings.

3.2.2.2 DSML4MAS’S Transformation Engines

The necessary model transformations of the DSML4MAS architecture should facilitate the auto-
mated translation of high-level models conforming to the PIM4AGENTS metamodel into more
low-level MAS representations on the PSM layer. In (Hahn et al.; 2006c), the model transformation
engines of XMF Mosaic, MTF, and ATL were evaluated in accordance to a model transformation
evaluation framework proposed by Gronmo et al. in (Gronmo et al.; 2005). Based upon this
evaluation, we decided to include the model transformation engines of the ATL language for
model-to-model transformations and the MOFScript language for model-to-text transformations.
Apart form characteristics like traceability and tool support, one major reason was that both model
transformation languages—as described in Section 3.2.2.1 and Section 3.2.2.1—conform to the
Ecore meta-metamodel, which can be considered as the de-facto standard for DSML. This easily
allows the integration of existing languages and metamodels into the tool suite and hence furthers
the interoperability of DSML4MAS.

3.2.2.3 DSML4MAS’S Model Transformation Architecture

Based on the selected model transformation engines, the model transformation architecture of
DSML4MAS (see Fig. 3.4) has been defined. It mainly consists the core language of DSML4MAS,
their relationship to the abstraction levels PIM and PSM as well as their relationship to other
languages defined through model transformations, either model-to-model or model-to-text.

52 3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering

Fig. 3.4: The model transformation architecture of DSML4MAS.

On the highest level, the service models are situated, which are represented by SoaML. This
architecture allows the realization of one of the main goals of dissertation namely to improve the
interoperability between MASs and other software development approaches like service-oriented
architectures by providing a generic approach mapping service models to MAS models, which are
then transferred to the various execution platforms.

The lowest level shows the generated PSMs and their metamodels. These PSMs will be mapped
to different technologies such as JACK and JADE to generate the executable artifacts. The archi-
tecture thus provides an integrated solution for service development that covers the life cycle of
services from business goals and requirements to platform specific models for various platforms.

In the remainder of this section, we discuss the model transformation architecture in more
detail by focusing on the abstraction levels, their core technologies, as well as, the model transfor-
mations needed. For this purpose, we distinguish between CIM to PIM transformations, PIM to
PIM transformations, PIM to PSM transformations and finally, PSM to code (i.e. Java) transforma-
tions.

PIM to PIM Transformations To enhance the interoperability between Service-oriented Archi-
tectures (SOAs) and MASs, we developed a model-to-model transformation between SoaML
and PIM4AGENTS, which automatically transfers SoaML models into PIM4AGENTS models. This
transformation was implemented using ATL. The mapping details are discussed in Section 8.4.

PIM to PSM Transformations To provide code generation facilities in DSML4MAS, model trans-
formations between PIM4AGENTS and two agent-based execution platforms are provided:

• Model transformation between PIM4AGENTS and JackMM: The model transformation be-
tween the PIM4AGENTS metamodel and the metamodel of Jack (JackMM) is presented in
Section 7.3.1.

3.2. Domain-Specific Modeling Language for Multiagent Systems 53

• Model transformation between PIM4AGENTS and JadeMM: The model transformation be-
tween the PIM4AGENTS metamodel and the metamodel of JADE (JadeMM) is presented in
(Hahn et al.; 2009a; Gründel; 2009).

PSM to Code Model Transformations As a final step of the DSML4MAS model transformation
architecture, the models in accordance to JackMM and JadeMM are mapped to executables
artifacts for which the MOFScript model-to-text language is used.

• Model transformation between JackMM and Code: The generated Jack models conforming
to the JACK metamodel (JackMM) are in a final step mapped into specific JACK code that can
be imported by the JACK IDE. For this purpose we defined a model-to-text transformation
using MOFScript which uses the generated JackMM models as input and produces the
JACK-specific Gcode. When imported, the generated Gcode can easily be transferred into
Java using the facilities provided by Jack and executed. Details are discussed in Section 7.3.2.

• Model transformation between JadeMM and Code: Like described in the case of JACK, for
JADE we also defined a model-to-model transformation using MOFScript. However, in this
case, we defined a transformation directly from JadeMM to Java code that can finally be
executed. Details are given in (Fischer et al.; 2007).

3.2.3 Tool Support for Visualizing the Design

3.2.3.1 State of the Art on Tool Support

Creating a DSML from scratch is a very difficult job. The language engineer would have to take
care of model representations, graphical editing, source code generation, and so on. To support
the software engineer in the model representations and graphical editing, several alternative
commercial and open source tools are provided, the most important ones are briefly discussed in
the following.

Graphical Modeling Framework The Eclipse Graphical Modeling Framework (GMF5) provides
a generative component and run-time infrastructure for developing graphical editors based on
EMF and the Graphical Editing Framework (GEF) of Eclipse. It aims to simplify the combination of
these two technologies by allowing GEF editors to be specified and generated using models.

XMF Mosaic XMF-Mosaic is a model-based development platform based on Eclipse (open source
IDE) and XMF. XMF stands for (eXecutable Metamodelling Facility) and is an extension of the
existing standards such as MOF, QVT or OCL, with executable metamodeling capabilities which
provide the ability to create languages with all the key features like semantics and syntax, the
ability to create metamodels which involves having a meta-architecture.

Visual Studio 2005 DSL Tools Visual Studio 2005 DSL Tools (Cook et al.; 2007) are a standard
development kit that allows developers to use Microsoft’s platform to build visual modeling tools
that run inside of VisualStudio. Microsoft’s vision is thereby to construct custom designed tools
that can be used to model a certain problem domain. The steps necessary for the created of a

5 public available at http://www.eclipse.org/gmf

54 3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering

Fig. 3.5: The pluggable architecture of DSML4MAS.

custom design tool is to (i) create the model with the domain-specific notation and (ii) generate a
running designer that is based on the domain model created.

Generic Modeling Environment The Generic Modeling Environment (GME) (Ledeczi et al.;
2001; Davis; 2003) is a meta-configurable tool that allows a DSML to be defined from a metamodel.
Any model can be created using the DSML and may be translated into source code.

3.2.3.2 DSML4MAS’S Tool Support

The DSML4MAS Development Environment (DDE) is the IDE for modeling in accordance to
DSML4MAS (cf. Fig. 3.5). It bases on the GMF, which bases again on the Ecore meta-metamodel
and allows the graphical editing and validation of the generated design. Similarly, the developed
model transformations were provided as plug-in to directly build executable code within the tool
suite.

Reduction of Complexity To reduce the complexity of MAS design is one of the main objectives
of the research area of AOSE. For this purpose, DDE offers several views on the MAS. Each
view (e.g. agent view, protocol view, deployment view, etc.) focuses on a certain aspect and
abstracts from others. Changes that affect several views are automatically propagated to the
others.

3.2. Domain-Specific Modeling Language for Multiagent Systems 55

Model validation Many design errors of a MAS can already be captured at the model level.
DSML4MAS offers a formal semantics that can be used to check the syntactic correctness
of the created models. For this purpose, constraints based on the OCL6(OCL) have been
manually derived from the formal Object-Z specification of DSML4MAS to check the static
semantics of the models. These constraints are automatically evaluated during design time
and support the developer to produce well-formed models, which is important to ensure
that the code generators finally produce meaningful output.

Reusable Components DDE allows the user to reuse components (like plans, protocols, organi-
zational structures, etc.) across several projects. This reduces development time and cost,
and increases the quality of the components.

Extensibility DDE is seamlessly integrated into the Eclipse workbench. This implies that further
extensions (e.g. transformations, views, model validation, etc.) can easily be defined and
plugged into the Eclipse workbench. DDE thereby directly benefits from new developments
around the very active Eclipse modeling project7 and other Eclipse tools.

Open source The source code of DDE is published under LGPL (GNU Lesser General Public
License) and available for download8.

3.2.4 Process

To support the development process of agent-based system, DSML4MAS provides a semi-
automatic process to build MAS applications. This process bridges the gap between the analysis
phase and the implementation phase of DSML4MAS and hence includes different abstract levels
(PIM and PSM) of the supported abstraction hierarchy. The different phases along the process
are (semi-)automatically bridged through model transformations that are either endogenous, i.e.
between viewpoints of the same abstraction level (PIM-to-PIM), or vertical i.e., between platforms
on different abstraction levels (PIM-to-PSM). The methodology process model was formalized
using the Eclipse Process Framework (EPF9) that aims at providing a customizable framework for
software process engineering. For details on the DSML4MAS methodology, we refer to Chapter 5.

3.2.5 DSML4MAS’S Architecture

The general architecture of DSML4MAS is depicted in Fig. 3.6. It consists of three main parts, i.e.,
the artifacts, the DSML4MAS Development Environment, and the model repository:

Artifacts In the DSML4MAS architecture, three sorts of artifacts are distinguished, which provide
the necessary input for the DSML4MAS Development Environment. The DSML4MAS model-
ing language, the model transformations of the model transformation architecture as well
as the agent-oriented programing languages.

The DSML4MAS language artifacts consisting of the PIM4AGENTS metamodel as abstract
syntax, the Object-Z and OCL specification as formal semantics as well as the graphical

6 http://www.omg.org/docs/ptc/03-10-14.pdf
7 http://www.eclipse.org/modeling/
8 http://sourceforge.net/projects/dsml4mas/
9 available at http://www.eclipse.org/epf/

56 3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering

Fig. 3.6: The architecture of DSML4MAS.

notation as concrete syntax. The model transformation artifacts consist of (i) the model-
to-model transformations between PIM4AGENTS on the one side and the metamodels
of JACK and JADE on the other side, (ii) the model-to-text transformations between the
metamodels of JACK and JADE and the corresponding textual representation interpreted
by the AOPLs of JACK and JADE, which establish the third kind of artifact, and (iii) the
horizontal transformations of DSML4MAS responsible for mapping viewpoints.

DSML4MAS Development Environment The DSML4MAS Development Environment provides
mechanisms for graphical editing and validation of the design and integrated the model-
driven process guiding the design as well as the model transformation engines as Eclipse
plugins.

Model Repository Finally, the model repository contains the artifacts that are produced as part
of the model-driven methodology. These artifacts includes the PIM4AGENTS models, as

3.3. Bottom Line and Summary of Approach 57

well as the generated JACK and JADE models produced when applying the PIM-to-PSM
model transformations. These artifacts can then be further imported and processed by the
particular agent-based execution platform.

3.3 Bottom Line and Summary of Approach

This chapter presented the basic principles of language-driven development (LDD), which aims at
focusing on the development of languages and tools that are tailored to the special needs of the
developers to improve the system’s development practice. The core ingredients of any language
defined in accordance to LDD are an abstract syntax defining the vocabulary of the language, a
concrete syntax defining its notations, as well as the semantics formalizing the meaning of the
language. A Domain-Specific Modeling Language (DSML) as one concrete instance of LDD is a
visual modeling language defined for a certain domain. For the purpose of realization, either UML
profiles or metamodeling facilities can be applied. The former bases on customizing the existing
UML, the latter allows building a new language from scratch. In the context of DSML4MAS due to
the reason of creating new concepts with an unambiguous semantics, we favor the second option
for building the domain-specific modeling language for MASs (DSML4MAS).

DSML4MAS is defined in accordance to LDD with the objective to close the gap between
design and code. DSML4MAS’S core components include an abstract syntax defined by the
PIM4AGENTS metamodel, a concrete syntax, and a formal semantics defined by Object-Z. The
formal semantics is used to (i) further refine DSML4MAS’S abstract syntax and (ii) formalize the
denotational and operational semantics. The syntax and semantics defined are used as a base
to develop a graphical editor that finally formulates the concrete syntax. Syntax and semantics
are expressed with OCL to guarantee that the developed models are well-formed. This is of
special importance when applying the model transformation to the specific AOPLs. Besides the
language features, the model transformation architecture of DSML4MAS includes two AOPLs,
i.e. JACK and JADE that are provided to support the seamless execution of the generated design.
The model transformation, as well as well-formedness rules are integrated into the DSML4MAS

Development Environment, which is an Eclipse plug-in that is provided for download under
http://sourceforge.net/projects/dsml4mas/.

58 3. LD-AOSE: Language-Driven Agent-Oriented Software Engineering

Part II

Language Features of the Domain Specific Modeling
Language for Multiagent Systems

60

4. Abstract Syntax and Semantics of DSML4MAS

As one of the core chapters of this dissertation, this chapter presents the abstract syntax and
semantics of DSML4MAS. For this purpose, platform independent concepts, their attributes and
semantics are discussed, which are, from a research perspective, necessary for designing MASs
in a precise, rich and expressive manner. As already stated in (Lind; 2001), probably one of the
hardest problems in developing a platform independent modeling language for MASs is to define
the scope of the proposed constructs. The concepts should neither be too specific in that it covers
only a small fraction of MAS applications, nor should they be too general, because unrelated
details make the method less useful in the specific context. Therefore, the constructs are platform
independent and base on general concepts relevant to any MAS and its models, problem-specific
concepts are avoided as much as possible. To propose platform-specific concepts, Section 2.1
reviewed literature from the areas of agent software engineering, distributed AI and cognitive
science in order to ground the adopted concepts on what other people in the agent community
think.

Structure of this Chapter This chapter is organized as follows: Section 4.1 briefly introduces
the different viewpoints we consider important in order to model MAS in a precise and adequate
manner. Section 1.2 then gives a brief introduction into Object-Z to give the base for understanding
the semantic descriptions of PIM4AGENTS. Afterwards, the abstract syntax and semantics of theses
viewpoints are formalized in Sections 4.2 to 4.9. Finally, Section 4.10 concludes this chapter.

4.1 Eight Views on Designing Multiagent Systems

As discussed in Section 3.2, the abstract syntax of DSML4MAS is defined by the PIM4AGENTS

metamodel. In order to support an evolution of PIM4AGENTS, it is structured into several views
each focusing on a specific viewpoint of a MAS. Grouping modeling concepts in this manner allows
the metamodel evolution by (i) adding new modeling concepts, (ii) extending existing modeling
concepts, or (iii) defining additional viewpoints of MASs. The idea of dividing a system into
different views is not new, even if it was revolutionized in the context of MDA (cf. Section 2.2.1).

In terms of MDA, complex systems are always seen from several different perspectives (view-
points), and their separation into different views is a powerful means to reduce complexity and
master their implementation. The viewpoint technique appears as a powerful means to address
the system’s complexity, and to organize the expertise of participants. The viewpoint technique,
moreover, provides a means to represent and support each specific focus (using views), and to
combine these focuses on models.

For information systems in general, Zachman (1987) developed a framework for enterprise
architectures consisting of different aspects like data, function, etc. This idea of structuring
architectures has also been adopted by the agent community (e.g. (Huget; 2002a; Lind; 2001)).

62 4. Abstract Syntax and Semantics of DSML4MAS

Lind, for instance, distinguished between seven views necessary for modeling MASs. These are the
system view, environment view, role view, interaction view, society view, architecture view, and
task view. In PIM4AGENTS, we propose slightly different views, which constitute the core modeling
building blocks of DSML4MAS:

Agent viewpoint defines how to model single autonomous entities, the capabilities they have to
solve tasks and the roles they play within the MAS. Moreover, the agent viewpoint defines
to which resources an agent has access to and which kind of behaviors it can use to solve
tasks—either in a reactive or proactive manner.

Organization viewpoint defines how single autonomous agents are arranged to more complex
organizations that may be defined on the base of various different structures, each of them
may be adequate for a certain problem solving scenario. Organizations in PIM4AGENTS can
be either an autonomous acting entity like an agent, or simple groups that are formed to
take advantage of the synergies of its members, resulting in an entity that enables products
and processes that are not possible for any single individual.

Role viewpoint covers the abstract representations of functional positions of autonomous entities
within an organization or other social relationships. In general, a role in PIM4AGENTS can be
considered as set of features defined over a collection of entities participating in a particular
context. The features of a role can include (but are not limited to) activities, permissions,
responsibilities, and protocols. A role is a part that is played by an entity and can, as such,
be specified in interactive contexts like collaborations.

Interaction viewpoint focuses on the exchange of messages between autonomous entities or
organizations. Thereby, two opportunities are offered: On the one hand, the exchange of
messages can be described from the internal perspective of each entity involved, or on the
other hand, from a global perspective in terms of agent interaction protocols focusing on
the global exchange of messages between entities.

Behavior viewpoint describes how the internal behavior of intelligent entities can be defined in
terms of combining simple actions to more complex control structures or plans that are
used for achieving predefined objectives or goals. The behavioral viewpoint contains basic
concepts from workflow languages as well as particular tailored concepts for describing
more agent-oriented processes.

Environment viewpoint contains any kind of entity that is situated in the environment and the
resources that are shared between agents, roles or organizations to meet their objectives.
The core environment mainly deals with how to define objects in terms of their attributes
and operations.

Multiagent viewpoint contains the core building blocks for describing MASs. In particular, the
agents situated in the MAS, the roles they play within collaborations, the kinds of behaviors
for acting in a reactive and proactive manner, and the sorts of interactions needed for
coordinating with other agents.

In addition to these core viewpoints to model and design agent-oriented software systems, the
following extensions are provided to support the deployment and integration of (Semantic) Web
services:

4.1. Eight Views on Designing Multiagent Systems 63

ClassName[generic parameters]

�visibility list

inherited classes

variable definitions

invariants

INIT

operations

composite operations

history invariants

Fig. 4.1: A partial Object-Z class schema representation.

Deployment viewpoint describes the run-time agent instances involved in the system and how
these are assigned to social structures like organizations and interactions.

Service-oriented Environment viewpoint describes how semantic services as a special kind of
objects are described in terms of preconditions, postconditions and effects. A detailed
discussion on this viewpoint is given in (Hahn et al.; 2008b).

These presented viewpoints provide a common baseline for agent-based computing to support an
expressive and precise design of MASs, rich enough for full code generation. In the remainder of
this chapter, we carefully examine the different views, their concepts and semantics.

4.1.1 A brief Introduction into Object-Z

as previously mentioned, Object-Z is an object-oriented specification language that supports
features like classes, instance, inheritance, and polymorphism.

The most important features of an Object-Z specification are class schemata (see Fig. 4.1) that
take the form of a named box with optionally a list of generic parameters. Furthermore, a class
schema includes (i) a list of visibility that restricts the access to variables and operations, (ii) a list
of inherited classes, (iii) a list of variable definitions and invariants, (iv an initial state schema INIT
that specifies the initial state of the objects of the class, (v) a list of operations that specify pre-
and post conditions, (vi) a list of composite operations of the class, as well as (vii) a set of history
invariants that constrain the order of the operations.

The state schema in Object-Z consists of the set of declared variables and the corresponding
class invariants. The operation schemata specify operations relating pre and post conditions of the
object. Input variables are annotated by a question mark (?), output variables by an exclamation
mark (!). A list marked with δ declares the set of variables that are changed by the operation.

Furthermore, Object-Z provides a set of operators that allow the combination of operations.
This list of operators include the sequence operator (op1 o

9 op2), the conjunction operator (op1∧
op2), the choice operator (op1 [] op2), the parallel operator (op1 ∥ op2), as well as the operation
enrichment (schema • op).

64 4. Abstract Syntax and Semantics of DSML4MAS

The general idea is to specify for each concept of PIM4AGENTS an Object-Z class. This class
consists of three parts: class attributes, class invariants, and class operations. The class attributes
defines the syntax of the DSML4MAS. This mainly corresponds to the information contained in
the PIM4AGENTS metamodel and defines whether a model is well-formed. For transformation
purposes, UML’s aggregation is mapped tos, whereas the UML’s composition is mapped to ©.
The class invariants define the static semantics of DSML4MAS and and thus specify whether a
model is meaningful or not. The class operation defines the dynamic semantics and declares
whether a model can be interpreted and executed.

Denotational semantics are defined by introducing additional variables (we call these semantic
variables to distinguish them from the variables that formalize the abstract syntax), which are used
to define the semantics and invariants in Object-Z classes. Operational semantics are specified
in terms of class operations (we call these operations metaoperations) and invariants restricting
the operation sequences. We use the timed trace notation of the timed refinement calculus to
define these invariants with Object-Z. With this approach, we give a mutually consistent (formal)
denotational and operational semantics of the PIM4AGENTS behavioral viewpoint.

4.2 Multiagent System Viewpoint

A MAS consists, in accordance to the discussion in Section 2.1.2, of a collection of autonomous
agents possibly situated in a dynamic and uncertain environment and able to engage in rich,
high-level social interactions by potentially building flexible organizational structures.

To meet these requirements from an engineering point of view, in PIM4AGENTS, we introduce
the multiagent system viewpoint depicted in Fig. 4.2. This viewpoint allows defining MASs on a
very abstract level by introducing the core building blocks—like for instance Agents, Interactions,
Behaviors etc.—necessary for designing and implementing MASs in precise manner. In the
remainder of this section, we carefully debate on the multiagent system viewpoint and its concepts.

4.2.1 MultiagentSystem

In accordance with Section 2.1.2, the multiagent system view of PIM4AGENTS (see Fig. 4.2) com-
prises the core concepts of MASs, i.e. Agent, Capability, and AgentInstance (from the agent view-
point, cf. Section 4.3), DomainRole (from the role viewpoint, cf. Section 4.5), Behavior (from the
behavior viewpoint, cf. Section 4.7), Interaction (from the interaction viewpoint, cf. Section 4.6),
Message and Environment (from the environment viewpoint, cf. Section 4.8). Furthermore, the
MultiagentSystem inherits the attribute name from NamedElement (cf. Section A.1.1). The abstract
syntax of MultiagentSystem is defined as follows:

Definition 4.2.1 (MultiagentSystem in PIM4AGENTS)

A MultiagentSystem is defined by a 9-tuple M = (name, agent, instance, role, behavior, interaction,
capability, environment, message), where:

• name: represents the unique identifier of the MultiagentSystem concept
• agent: represents all different kinds of Agent types situated in the MAS
• instance: represents all run-time AgentInstances available in the running system
• role: illustrates all different kinds of DomainRoles available to be played by Agents
• behavior: typifies internal Behaviors that are used by Agents for achieving goals

4.2. Multiagent System Viewpoint 65

Fig. 4.2: The partial metamodel reflecting the multiagent system viewpoint of DSML4MAS.

• interaction: typifies external behaviors (i.e. Interactions) used for the exchange of Messages
between Agents of the MAS

• capability: defines all sorts of Capabilities that can be possessed by any entity within the MAS
• environment: constitutes the collection of Environments and contained Resources that can be

accessed by any kind of entity (i.e. Agent or Organization) in the MAS
• message: represents the kind of Messages that are sent between Agents, possibly in accordance

to the Interactions referred by the interaction attribute.

Definition 4.2.1 specifies the abstract syntax of MultiagentSystem and thereby provides the minimal
requirements to conform to Definitions 2.1.1 and 2.1.2 given in Section 2.1.2. The MultiagentSystem
contains Agents that act in an autonomous manner and access capabilities for solving particular
problems. Furthermore, it includes a set of Environments providing the basic infrastructure to
allow computation and integration means for communication through the concept of Interaction.

The semantics of MultiagentSystem is expressed by Schema 4.2.1. Beside the primary variables
already introduced in Definition 4.2.1 (e.g. agent, instance, role, etc.), further invariants were given
refining the static semantics:

Invariants I1 to I8 state that all Agents, AgentInstances, Capabilities, Interactions, DomainRoles,
Behaviors, Environments and Messages are unique, meaning that any two instances of them must
be different with respect to their names, otherwise they are considered as equal. Furthermore, the
MultiagentSystem is restricted to include at least one Agent1 (cf. Invariant I9). Hence, the simplest
form of a MAS conforming to PIM4AGENTS would contain one Agent, which owns certain Behaviors
to achieve its goals. Consequently, the MultiagentSystem must not contain any Message, Capability,
Interaction, Environment nor DomainRole. Obviously, when designing complex, real-world agent
applications, these concepts are obligatory to model in an efficient and precise manner.

1 However, if only one Agent is contained by the MultiagentSystem, we would rather call it an agent system.

66 4. Abstract Syntax and Semantics of DSML4MAS

MultiagentSystem

NamedElement

agent :P ↓ Agent©; instance :PAgentInstance©; capability :PCapability© [Variables]
interaction :P ↓ Interaction©; role :PDomainRole©
behavior :P ↓ Behavior©; environment :P ↓ Environment©; message :PMessage©

∀d1,d2 : agent • d1.name = d2.name ⇒ d1 = d2 [I1]
∀ i1, i2 : instance • i1.name = i2.name ⇒ i1 = i2 [I2]
∀m1,m2 : message • m1.name = m2.name ⇒ m1 = m2 [I3]
∀c1,c2 : capability • c1.name = c2.name ∨ c1.behavior = c2.behavior ⇒ c1 = c2 [I4]
∀e1,e2 : environment • e1.name = e2.name ⇒ e1 = e2 [I5]
∀r1,r2 : role • r1.name = r2.name ⇒ r1 = r2 [I6]
∀b1,b2 : behavior • b1.name = b2.name ⇒ b1 = b2 [I7]
∀ i1, i2 : interaction • i1.name = i2.name ⇒ i1 = i2 [I8]
#agent ≥ 1 [I9]

Schema 4.2.1: Class schema of MultiagentSystem

4.2.2 Message

Messages are an essential means in MASs to describe the communication between agents. In accor-
dance to (Caire et al.; 2002), a message is an object communicated between agents. Transmission
of a message takes finite time and requires an action to be performed by the sender and also the
receiver. The attributes of a message specify the sender, receiver, a speech act (categorizing the
message in terms of the intent of the sender) and the content.

In PIM4AGENTS, we distinguish between two sorts of messages, i.e. Message and ACLMessage.
A Message can be considered as an object that is communicated between Agents within a certain
Behavior. It comprehends the particular content intended to be exchanged by the sending and
receiving AgentInstances. The actions necessary for sending (i.e. Send activity, cf. Section 4.7.14)
and receiving (i.e. Receive activity, cf. Section 4.7.14) Messages are part of the Plan’s constructs.

In contrast, an ACLMessage (cf. Section 4.6.6) is in particular used inside interactions to
describe the message between Actors, which are the generic place holders within Interactions. A
Message normally realizes an ACLMessage (cf. Section 4.6.6), however, the latter further includes the
idea of performatives (i.e. speech acts). The abstract syntax of Message is given in Definition 4.2.2.

Definition 4.2.2 (Message in PIM4AGENTS)

A Message is given by a 6-tuple M = (name, sender, receiver, content, ontology, aclMessage), where:

• name: defines the name of the Message
• sender: represents the AgentInstance that sends this particular Message
• receiver: represents the AgentInstance that receives this particular Message
• content: specifies the content of the Message
• ontology: represents the set of ontologies useful to understand the Message’s content
• aclMessage: links the Message optionally to an ACLMessage, which is realized by the Message.

The class schema of Message is depicted in Schema 4.2.2. Beside the primary variables introduced
in Definition 4.2.2, it includes four invariants: Invariant I1 ensures that any Message realizes at

4.3. Agent Viewpoint 67

most one ACLMessage. The same holds for the sender and receiver variables, meaning that at most
one sender and receiver must be defined (cf. Invariant I2).

Message

NamedElement

sender,receiver :PAgentInstance [Variables]
content :PKnowledge; ontology :POntology; aclMessage :PACLMessage

#aclMessage ≤ 1 [I1]

#sender ≤ 1∧#receiver ≤ 1 [I2]
sender∩ receiver =∅ [I3]
aclMessage 6=∅⇒ #sender = #receiver = 0 [I4]

Schema 4.2.2: Class schema of Message

Moreover, Invariant I3 states that in any case the sending and receiving AgentInstances must
be disjoint. If a Message refers to an ACLMessage, finally, the number of sending and receiving
AgentInstances is restricted to 0 as in this case the AgentInstances receiving and sending the
particular message are indirectly given through the variable instancesBound (cf. Schema 4.9.4) of
the Actor’s ActorBinding.

4.3 Agent Viewpoint

Summarizing the discussion about the definition of agent in Section 2.1.3, we can conclude that an
agent is an intelligent component that is situated in an environment able to act in an autonomous
manner and to interact with other agents. For the purpose of communicating and achieving its
design objectives, an agent has certain forms of behaviors available that are either pre-defined by
the system designer or composed at design time.

How these requirements are met in PIM4AGENTS is represented in the agent viewpoint which
is depicted in Fig. 4.3. This viewpoint includes the concepts Agent, Knowledge and Capability,
as well as AgentInstance (from the deployment viewpoint, cf. Section 4.9), Behavior (from the
behavioral viewpoint, cf. Section 4.7), DomainRole (from the role viewpoint, cf. Section 4.5), and
Resource (from the environment viewpoint, cf. Section 4.8) and thus merges the core viewpoints
of PIM4AGENTS.

The concept of Agent as type defines a classification of autonomous entities that can adapt
to and interact with their environment. It mainly specifies individual agent features such as
knowledge, behavior, roles etc. that characterize its AgentInstances. This means that the Agent
type is a metaclass for specifying physical design-level agents. An AgentInstance—the run-time
agent—is defined as the autonomous entity also known as the agent, which is situated in an
agent-based software system. It can be humans, machines, software, or any other entity that act as
in an agent-based manner. A software agent, then, is an entity that interacts with its environment
and has some degree of autonomy.

68 4. Abstract Syntax and Semantics of DSML4MAS

Fig. 4.3: The metamodel reflecting the agent viewpoint of PIM4AGENTS.

4.3.1 Agent

The agent viewpoint in PIM4AGENTS is centered on the concept of Agent, the type defining the
autonomous entity capable of acting in the environment. An Agent has access to a limited set
of Resources from its surrounding Environment (cf. Section 4.8). These Resources may include
information or ontologies the Agent has access to. Furthermore, it can (i) perform particular
DomainRoles that define in which specific context it is acting within an Organization and (ii) make
use of certain Behaviors that specify how particular tasks are achieved. Apart from Behaviors, the
Agent may also make use of Capabilities that are utilized to group particular Behaviors needed
in certain domains. Moreover, private Knowledge represents the information (i.e. beliefs) an
Agent could have about the world used for among others for making decisions. Finally, to support
the run-time level, certain run-time entities called AgentInstances—representing a particular
Agent type—can be introduced needed when executing the design made with DSML4MAS with
an agent-oriented programming language. The abstract syntax of the concept Agent is given by
Definition 4.3.1:

Definition 4.3.1 (Agent in PIM4AGENTS)

An Agent is given by a 6-tuple A = (name, performedRole, capability, behavior, resource, knowledge),
where:

• name: defines the name of the Agent
• performedRole: defines the DomainRoles the Agent performs in a social context like Organiza-

tions
• capability: contains different kinds of grouped Behaviors an Agent makes use of in particular

contexts
• behavior: specifies the internal behavioral elements the Agent could execute for achieving

internal goals
• resource: represents the kind of Resources, services or information the Agent makes use of
• knowledge: represents the kind of Knowledge available to an Agent for—among others—the

purpose of deliberation and reasoning.

The term agent as formalized in Definition 4.3.1 nicely corresponds to the weak notion of agency
given in Definition 2.1.5 by Wooldridge and Jennings. In PIM4AGENTS, an agent (i) may act in

4.3. Agent Viewpoint 69

an autonomous manner in its environment—represented by the resources the agent has access
to—through applying plans (i.e. behavioral elements) that do not necessarily need the intervention
of human beings, (ii) may react on changes in the environment through plans which may again
change the state of the environment on which other agents have to adapt, (iii) may act in a
proactive manner by selecting the most adequate plan for achieving a certain goal, and (iii) may
able to interact and communicate with other agents within Organizations.

Even if most of the agent-oriented metamodels, which will be discussed in Chapter 10, do not
provide any means for defining run-time instances, however, we consider the distinction between
types and instances of agents in MASs of particular importance. In PIM4AGENTS, the concept
Agent—as types defined at design time—is used as a kind of classifier to provide means to classify
AgentInstances—entities acting at run-time—by features and characteristics. This classification is
important, because it enables the definition of a set of entities that share one or more capabilities
and/or features in common (Odell et al.; 2005).

Agent

NamedElement

perfomedRole :PDomainRoles; capability :PCapabilitys [Variables]
behavior :P ↓ Behaviors; resource :P ↓ Resource; knowledge :PKnowledge©
∆ [Semantic Variables]
potentialBehaviors :P ↓ Behavior

potentialBehaviors== behavior∪∪{c : capability • c.behavior}∪
∪{c :∪{p : performedRole • p.providesBehavior+} • c.behavior} [I1]

#potentialBehaviors ≥ 1 [I2]

disjoint〈behavior,∪{c : capability • c.behavior},

∪{c :∪{p : performedRole • p.providesBehavior+} • c.behavior}〉 [I3]
∀p1,p2 : performedRole • p1.name = p2.name ⇒ p1 = p2 [I4]
∀c1,c2 : capability • c1.name = c2.name ⇒ c1 = c2 [I5]
∀b1,b2 : behavior • b1.name = b2.name ⇒ b1 = b2 [I6]
∀r1,r2 : resource • r1.name = r2.name ⇒ r1 = r2 [I7]
∀k1,k2 : knowledge • k1.name = k2.name ⇒ k1 = k2 [I8]

∀p : performedRole • p.requiresBehavior+ ⊆ behavior∪∪{c : capability • c.behavior} [I9]

Schema 4.3.1: Class schema of Agent

The semantics of the Agent concept is formalized in Schema 4.3.1. Its declarative part consists
of the variables (i.e. performedRole, capability, behavior, resource and knowledge) discussed in
Definition 4.3.1. Beside those primary variables, the semantic variable potentialBehaviors is
defined, which specifies all kinds of behaviors the AgentInstance may adopt during run-time. The
variable potentialBehaviors consists of (i) Behaviors the Agent may have direct access to through
the variable behavior, (ii) the kinds of Behaviors grouped by the Capabilities through the variable
capability, or (iii) Behaviors specific to any kind of Role the Agent performs (e.g. Capabilities a
DomainRole offers to an Agent to perform).

The reason for introducing the variable potentialBehaviors is to ensure that an Agent is
equipped with at least one behavior, expressed by the term #potentialBehaviors ≥ 1 of Invari-
ant I1. This constraint is important to ensure that any Agent designed with DSML4MAS is able—at
least on a conceptual level—to act in a reactive and/or proactive manner as requested in Defini-
tion 2.1.5. This would be impossible without having suitable behavioral elements. Moreover, the

70 4. Abstract Syntax and Semantics of DSML4MAS

potentialBehaviors are further restricted by Invariant I2 in the form that any Behavior either used
directly by the Agent, through the Capabilities or performed DomainRoles have to be different.
Moreover, the Invariants I4 to I8 assure that all DomainRoles, Capabilities, Behaviors, Resources
and Knowledges an Agent refers to are unique, meaning that any two instances of them must be
different with respect to their names. Finally, any Behavior required by a performed DomainRole
must either be provided by the Agent’s Behavior or Capabilities.

4.3.2 Capability

A Capability in PIM4AGENTS allows to group Behaviors that, conceptually, have a correspondence
with regard to what they allow a particular entity—which could either be an Agent or Role—to do.
The abstract syntax of Capability is defined as follows:

Definition 4.3.2 (Capability in PIM4AGENTS)

A Capability is given by a pair C = (name, behavior), where name defines the name of the Capability
and behavior specifies the kinds of Behaviors that are grouped by this Capability.

The class schema of the Capability concept is given below. It includes the variable behavior (as
specified in Definition 4.3.2) and refine the semantics of a Capability by Invariant I1 stating that at
least one Behavior needs to be addressed by a Capability. Moreover, any Behavior grouped by a
Capability must be different (cf. Invariant I2).

Capability

NamedElement

behavior :P1 ↓ Behaviors [Variables]

#behavior ≥ 1 [I1]
∀b1,b2 : behavior • b1.name = b2.name ⇒ b1 = b2 [I2]

Schema 4.3.2: Class schema of Capability

4.3.3 Knowledge

Knowledge is used in PIM4AGENTS to represent the agent-specific beliefs used inside plans. The
abstract syntax of an Agent’s Knowledge is defined as follows:

Definition 4.3.3 (Knowledge in PIM4AGENTS)

A Knowledge is given by a triple K = (name, type, value), where name defines the name of the
Knowledge, type defines its type and value its initial value.

A formal specification of Knowledge is given in Schema A.2.1, which mainly consists of the primary
variables given in Definition 4.3.3.

The concept of an Agent defines the autonomous entity with a MAS, however, in order to define
social units establishing a framework for interaction and cooperation, further concepts are needed.
Therefore, in PIM4AGENTS, the concept of Organization is introduced, which is together with its
related viewpoint, discussed in detail in the forthcoming section.

4.4. Organization Viewpoint 71

Fig. 4.4: The metamodel reflecting the organization viewpoint of PIM4AGENTS.

4.4 Organization Viewpoint

Section 2.1.5 debates the notion of organization in MAS. The definition given in (Wooldridge et al.;
2000) nicely summarizes this debate. Wooldridge et al. see an organization as a collection of roles,
that stand in certain relationships to each other, and that take part in systematic institutionalized
patterns of interactions with other roles.

The authors’ viewpoint nicely conforms to the manner how we see the term organization in
PIM4AGENTS. In particular, the organization viewpoint emphasizes on the concept of Organiza-
tion, which specifies the general social structure through the concept of DomainRoles. As part
of an Organization, several Collaborations then define how the particular DomainRoles finally
interact with each other. This is done by specifying how the Organization’s forms of interaction are
utilized by the DomainRoles.

The metamodel of the organization viewpoint is depicted in Fig. 4.4. Beside the concepts of
Organization and Collaboration, the metamodel of the organization viewpoint further includes the
concepts of Agent (cf. Section 4.3.1) from the agent viewpoint, DomainRole (cf. Section 4.5.2) from
the role viewpoint and Interaction (cf. Section 2.1.6) from the interaction viewpoint. Moreover,
for defining bindings between DomainRoles and Actors, the organization viewpoint contains the
concepts of DomainRoleBiding and ActorBinding from the deployment viewpoint (cf. Section 4.9).

4.4.1 Organization

In PIM4AGENTS, an Organization defines the social structure Agents can take part in and is com-
monly formed to regulate, foster, support, or facilitate the interaction between its members. In
other words, an Organization enables a purposeful and specialized domain in which Agents may
collaborate through Interactions. The structure of an Organization in terms of its scope of respon-
sibility is specified by DomainRoles. These are required by an Organization to achieve a certain set
of goals by dividing each goal into sub-goals and delegating the responsibility of achieving each
particular sub-goal to its required DomainRoles.

72 4. Abstract Syntax and Semantics of DSML4MAS

The concept of Collaboration then particularizes how the participating DomainRoles collabo-
rate. A Collaboration is characterized through Interactions that define (i) how the Organization
communicates with other Agents be them atomic Agents or complex Organizations and (ii) how
organizational members represented by the required DomainRoles are coordinated. The manner
in which AgentInstances are bound to DomainRoles is expressed through the concept of Domain-
RoleBinding, which is part of the deployment viewpoint (cf. Section 4.9). The abstract syntax of
Organization is defined as follows:

Definition 4.4.1 (Organization in PIM4AGENTS)

An Organization is given by a 9-tuple O = (name, requiredRole, interaction, organizationUse,
performedRole, capability, behavior, resource, knowledge), where:

• name: defines the name of the Organization
• requiredRole: defines the DomainRoles the Organization needs to assign in order to achieve

the intended goals
• interaction: represents the different forms of Interaction used inside the Organization to

coordinate its DomainRoles
• performedRole: defines the DomainRoles performed by the Organization
• organizationUse: refers to the Collaborations instantiating the Organization
• capability: depicts the Capabilities this organizational type applies to act in a reactive and/or

proactive manner
• behavior: includes any Plan used to orchestrate the Organization’s DomainRoles
• resource: describes all different kinds of Resources part of the Environment the Organization

has access to
• knowledge: defines the Knowledges the Organization and its members have access to.

An Organization in PIM4AGENTS can be used in two different manners: On the one hand, the Or-
ganization can be used to provide a social structure to foster the interaction of its members neither
being an autonomous entity itself nor having capabilities to behave in a reactive nor proactive
manner. On the other hand, as an Organization is a special kind of Agent, it can be considered as
an autonomous and intelligent entity that can interact with other Agents or Organizations. Hence
in the latter case, like an Agent, an Organization may perform DomainRoles to interact with other
Agents and may make use of Behaviors to act in an autonomous, proactive and/or reactive manner.
In either case, the Organization may be composed of other Organizations, providing the ability
to create hierarchies in terms of sub-organizations, sub-sub-organizations, etc. In this way, an
Organization provides building blocks that enable conceptual and social scalability.

The formal semantics of an Organization is given in Schema 4.4.1. The corresponding schema
inherits from the Agent schema and additionally includes in its declarative part the variables
requiredRole, interaction and organizationUse. The static semantic is formalized by the following
invariants:

For any kind of collaboration and interaction inside an Organization, at least two entities are
needed. If the Organization acts itself as intelligent Agent and, hence, posses any kind of Behavior
for sending and receiving messages, it can collaborate with its required DomainRoles through its
performed DomainRoles. Consequently, in this case, a single required DomainRole is sufficient to
meet the requirement of having at least two entities for collaboration.

However, if an Organization does not possess any kind of Behavior (either directly or through
the concept of Capability), it requires at least two DomainRoles for the purpose of collaboration.
This is ensured by Invariant I1. If an Organization does not possess any Behavior, we consider the

4.4. Organization Viewpoint 73

Organization

Agent

requiredRole :P1 DomainRoles; interaction :P ↓ Interactions
organizationUse :P1 Collaborations [Variables]

behavior∪∪{c : capability • c.behavior} =∅⇒ #requiredRole ≥ 2 ∧ performedRole =∅ [I1]
∀o : organizationUse • {dr : o.binding • dr.roleBinding} ⊆ requiredRole∪performedRole [I2]
∀o : organizationUse • o.interactionInstance ⊆ interaction [I3]
∀c1,c2 : organizationUse | c1 6= c2 • {dr : c1.binding • dr.roleBinding} =

{dr : c2.binding • dr.roleBinding} ⇒
∃ i : AgentInstance |

i ∈ {ai :∪{m : c1.binding • m.membership} • ai.agentInstance}∨
i ∈ {ai :∪{m : c2.binding • m.membership} • ai.agentInstance} •
i 6∈ {ai :∪{m : c1.binding • m.membership} • ai.agentInstance}∩

{ai :∪{m : c2.binding • m.membership} • ai.agentInstance} [I4]

∀o : organizationUse •∪{drb :∪{ab : o.actorBinding • ab.binding} • drb.roleBinding} ⊆
requiredRole∪performedRole [I5]

∀p : performedRole • p.requiresBehavior+ ⊆ behavior∪
∪{c : capability • c.behavior}∪
∪{r : requiredRole • r.requiresBehavior+∪ r.providesBehavior+} [I6]

Schema 4.4.1: Class schema of Organization

Organization as simple social structure like a community, where Agents only take part in for the
purpose of interaction. Hence, in this case, the Organization itself should not be considered as
intelligent entity at all, but as social space providing mechanisms for interaction.

Furthermore, Invariant I2 restricts the set of DomainRoles a Collaboration uses to the set
of either required or performed Organization’s DomainRoles. In the same manner, Invariant I3
restricts the Interactions referred to by a Collaboration to the Interactions that can be applied by its
Organization. Invariant I4 states that any two different Collaborations of an Organization, which
require the same set of DomainRoles, must at least refer to one different AgentInstance through the
Membership concept (cf. Section A.6.1). Otherwise, they are considered as equal. Moreover, the
Collaboration’s ActorBindings must only refer to DomainRoles (through the DomainRoleBindings),
which are addressed by the Organization as either performed or required (cf. Invariant I5). Finally,
Invariant I6 guarantees that any Behavior required by the provided Organization’s DomainRoles
must either be provided by its own Behaviors, Capabilities or by the provided and required Behav-
iors of its required DomainRoles. This invariant ensures that any goal assigned to an Organization
can able be achieved by the Organization itself or its members.

Even if the concept of Organization lays the foundation for social ability, it only manifests the
structure of the Organization by characterizing which DomainRoles are part and which Interactions
are used by the DomainRoles addressed. However, it does not make assumptions about which of
its DomainRoles interact in which manner in its social context. For this purpose, the concept of
Collaboration is utilized that is discussed in detail in the following.

74 4. Abstract Syntax and Semantics of DSML4MAS

4.4.2 Collaboration

In PIM4AGENTS, the concept of Collaboration defines the relationship between DomainRoles
required by an Organization and Actors of an Interaction. This means in particular that the Collab-
oration names the DomainRoles—through the DomainRoleBindings—that interact with each other
within the boundaries of a certain Interaction. An Interaction in PIM4AGENTS (cf. Section 2.1.6)
is considered as pattern guiding the communication between entities within Organizations for
coordinating their members. For the purpose of combining the organization and interaction
viewpoint, the concept of ActorBinding (cf. Section 4.9.4) of the deployment viewpoint is utilized
that assigns DomainRoles to Actors. The abstract syntax of Collaboration is defined as follows:

Definition 4.4.2 (Collaboration in PIM4AGENTS)

A Collaboration is given by a 4-tuple C = (name, binding, interactionInstance, actorBinding), where:

• name: defines the name of the Collaboration
• interactionInstance: depicts the different types of Interactions the Collaboration instantiates
• binding: defines the Collaboration’s bindings between AgentInstances and DomainRoles
• actorBinding: describes the Collaboration’s bindings between Actors of is Interactions and

DomainRoles of its Organization.

A Collaboration specifies one DomainRoleBinding for each DomainRole its Organization either
provides or requires. A DomainRoleBinding (cf. Section 4.9.3) defines the bindings between
several AgentInstances and one DomainRole. The relationship between both can thereby either
be determined at design time by explicitly assigning AgentInstances to DomainRoles or during
run-time. In the latter case, special activities are provided to allow the dynamic assignment of
AgentInstances within Plans.

The formal semantics of Collaboration is given in Schema 4.4.2. Beside the primary variables
interactionInstance, binding and actorBinding, we further refine the semantics by the following
twelve invariants.

Invariant I1 supports that all ActorBindings the Collaboration makes use of are unique; the
same is specified for DomainRoleBindings in Invariant I2. Even if not all Organization’s Domain-
Roles must be addressed by a Collaboration, at least two of them are needed for the purpose of
interaction. This is formalized by Invariant I3. In addition, Invariant I4 guarantees that the set of
Actors part of any Interaction the Collaboration makes use of (through the variable interactionIn-
stance) is equal to the Actor referred to by the Collaboration’s ActorBindings. In combination with
Invariant I5, denoting that at least one Interaction must by part of a Collaboration, it is obvious
that for any Actor of a Protocol at least one ActorBinding must be specified.

Furthermore, Invariant I6 states that the set of AgentInstances bound to Actors through the
variable instancesBound (see Section 4.9.4) acting as subactors of the same superactor are disjoint,
i.e., any AgentInstance must not be part of two or more subactors of the same superactor. This
constraint is necessary to ensure that AgentInstances bound to a subactor only receive ACLMessages
that are unambiguous, i.e. the corresponding AgentInstances know how to react on the particular
messages. Invariant I7 guarantees that if ActorBindings of subactors are specified, the AgentIn-
stances bound to the subactors are subsets of the set of AgentInstances bound to the superactor.
Further information on the concept of Actor can be found in Section 4.5.3.

In the context of a Collaboration, Invariant I8 further ensures that if two DomainRoles have a
conflict with each other (we refer to Section 4.5.1 for details on conflicts between Roles), the same

4.5. Role Viewpoint 75

Collaboration

NamedElement

interactionInstance :P ↓ Interactions,binding :PDomainRoleBinding©
actorBinding :PActorBinding© [Variables]

∀ab1,ab2 : actorBinding • ab1.name = ab2.name ⇒ ab1 = ab2 [I1]
∀b1,b2 : binding • b1.name = b2.name ⇒ b1 = b2 [I2]
#binding ≥ 2 [I3]

∪{i : interactionInstance • i.actor} =∪{a : actorBinding • a.actor} [I4]
#interactionInstance ≥ 1 [I5]
∀ab1,ab2 : actorBinding | ab1 6= ab2 • ab1.actor.superactor = ab2.actor.superactor
⇒ disjoint〈ab1.instancesBound,ab2.instancesBound〉 [I6]

∀a1,a2 : actorBinding | a2.actor ∈ a1.actor.subactor •
a2.instancesBound 6=∅⇒ a2.instancesBound ⊂ a1.instancesBound [I7]

∀b1,b2 : binding | b1 6= b2 •
b1.roleBinding ∈ b2.roleBinding.conflictsWith+∨
b2.roleBinding ∈ b1.roleBinding.conflictsWith+

⇒ {m : b1.membership • m : agentInstance}∩
{m : b2.membership • m : agentInstance} =∅ [I8]

∀a1,a2 : actorBinding | a1 6= a2 •
a1.actor ∈ b2.actor.conflictsWith+∨a2.actor ∈ b1.actor.conflictsWith+
⇒ a1.instancesBound∩a2.instancesBound =∅ [I9]

∀b1,b2 : binding | b1 6= b2 • b1.roleBinding 6= b2.roleBinding [I10]
∀a1,a2 : actorBinding | a1 6= a2 • a1.binding ∩a2.binding =∅ [I11]
∀a : actorBinding • r : a.binding ⊆ binding [I12]

Schema 4.4.2: Class schema of Collaboration

AgentInstance must not be bound to both DomainRoles at the same time. The same holds for
Actors, which is expressed in Invariant I9.

Moreover, in accordance to Invariant I10, the DomainRoles of the Collaboration’s Domain-
RoleBindings are disjoint. In other words, a DomainRole must not be addressed by two or more
DomainRoleBindings within the same Collaboration. The same holds for ActorBindings that
must not address the same DomainRoleBindings (cf. Invariant I11). Finally, Invariant I12 en-
sures that any DomainRoleBinding addressed by an ActorBinding is part of the Collaboration’s
DomainRoleBindings (i.e. expressed through the variable binding).

DomainRoles and their bindings are important concepts of a Collaboration. The abstract syntax of
DomainRoles and Actors are part of the role viewpoint presented in the next section.

4.5 Role Viewpoint

In accordance to (Dignum and Dignum; 2007), roles identify the activities and services necessary
to achieve social objectives and enable to abstract from the specific entity that will eventually
perform them. From a society design perspective, roles provide a necessary abstraction for agents
in the system, and from the agent design perspective, roles specify the expectations of the society
in terms of the agent’s behavior in the society.

76 4. Abstract Syntax and Semantics of DSML4MAS

Fig. 4.5: The metamodel reflecting the role viewpoint of PIM4AGENTS.

Roles can be considered as an abstract representation of a functional position of an agent. Roles
are normally used in the context of social groups of agents like organizations (cf. Section 2.1.5).
Correspondingly, in PIM4AGENTS, roles are used in order to (dynamically) position agents within a
social context either of the form of an Organization or Interaction. In particular, the position of an
agent within a social context is defined by the (i) characteristics of a role in terms of functionalities,
which might be offered or required and (ii) specializations, which need to be distinguished.

The metamodel of the role viewpoint is depicted in Fig. 4.5. The concept of Role has two
specializations, i.e. DomainRole and Actor. The former defines the position inside an Organization,
whereas the latter defines the position of Agents (or their run-time representatives) within an
Interaction. Beside the different kinds of roles, the role viewpoint further includes the concepts of
Capability (cf. Section 4.3.2 from the agent viewpoint) and Resource (cf. Section A.5.2 from the
environment viewpoint).

4.5.1 Role

In PIM4AGENTS, a Role is considered as an abstraction of the social and normative behavioral
repertoire of the Agent or Organization in a given social context. It defines what the entities
performing this position are expected to do. This is reflected by the particular Behaviors either
provided or required and wrapped by Capabilities. The abstract syntax of Role in PIM4AGENTS is
defined as follows:

Definition 4.5.1 (Role in PIM4AGENTS)

A Role is given by a 7-tuple R = (name, providesResource, requiresResource, providesCapability,
requiresCapability, conflictsWith, specializationOf), where:

• name: defines the name of the Role

4.5. Role Viewpoint 77

• providesResource: depicts the Resources the Role provides to the Agents performing this Role
• requiresResource: illustrates the Resources the Role requires from the Agents performing this

Role
• providesCapability: represents the Capabilities the Role provides to its performing Agent
• requiresCapability: displays the Capabilities the Role requires from its performing Agents
• conflictsWith: declares that the source Role is in conflict with the target Role, i.e., no AgentIn-

stance is bound to both Roles at the same time
• specializationOf: declares that the source Role is a specialization of the target Role with respect

to Capabilities and Resources.

Conforming to Wooldridge (2000b) and Ferber and Gutknecht (1998), a role is normally associated
with a set of capabilities defining the functionalities offered in order to fulfill its responsibilities. In
PIM4AGENTS, these Capabilities are either required or provided, where required means that the
Agents performing this Role must own certain Behaviors matching with the Role’s requirements.
Correspondingly, provided means that the Role offers certain functionalities that can be utilized
by the Agents performing this Role. Apart from Capabilities representing the functional aspects
by specifying how to comply with particular responsibilities, a Role also needs to deal with data
aspects. This is in PIM4AGENTS mainly covered through the reference to Resources either defining
which kinds of Resources are directly provided by the Role or required to be provided by the Agent
performing this Role.

In order to define role hierarchies, generalizations between Roles can be defined through the
specializationOf relationship. At this, the source Role is a specialized version of the target Role
(cf. Fig. 4.5). We consider this kind of inheritance as mechanism for incrementally design with
PIM4AGENTS. Thereby, new classes may be derived from one or more existing classes. This is
particularly significant in the effective reuse of existing specifications. This feature is used later
on as part of the endogenous model transformation that generates DomainRoles on the base of
Actors. Apart from the specializationOf relationship, under certain conditions, when two Roles
cannot be taken by an AgentInstance at the same time, we say that these two Roles have a conflict,
which is expressed through the conflictsWith relationship.

Up to now, we mainly dealt with describing the features and properties of a Role, without
considering the concept of role assignment that relates agent instances to roles in a group (Rupert
et al.; 2007). As emphasized by (Odell et al.; 2002), roles can be assigned in at least two ways, either
endogenously by self-organization or exogenously by the system designer at design time. Even
if the principles of self-organization has been previously investigated (e.g. (Hahn et al.; 2007a,
2006a; Hahn; 2004)). The focus in PIM4AGENTS is clearly on defining patterns of roles that can be
imposed at design time and filled at run-time within Organizations. The (static) role assignment is
done through the RoleBinding concept (cf. Section 4.9.2) of the deployment viewpoint.

The semantics of a Role is depicted in Schema 4.5.1. Apart from the primary variables given by
Definition 4.5.1, further secondary variables are defined:

• The variable specializationOf + constitutes the set of Roles from which this particular Role
directly or recursively inherits from (see Invariant I1)

• The variable conflictsWith+ recursively specifies all conflicting Roles (cf. Invariant I2)
• The variables requiresBehavior+ and providesBehavior+ define all kinds of Behaviors that

are either Capabilities required or provided by the Role itself, or from any other Role this
Role inherits from (Invariants I3 and I4)

• The variables providesResource+ and requiresResource+ correspondingly illustrate the inher-
ited set of provided and required Resources (cf. Invariants I5 and I6)

78 4. Abstract Syntax and Semantics of DSML4MAS

Role

NamedElement

requiresCapability,providesCapability :PCapability [Variables]
requiresResource,providesResource :P ↓ Resource; conflictsWith,specializationOf :P ↓ Role
∆ [Semantic Variables]
providesResource+,requiresResource+ :P ↓ Resource
specializationOf +,conflictsWith+ :P ↓ Role
requiresBehavior+,providesBehavior+ :P ↓ Behavior

specializationOf + == specializationOf ∪∪{s : specializationOf • s.specializationOf +} [I1]

conflictsWith+ == conflictsWith∪∪{s : specializationOf • s.conflictsWith+} [I2]

providesBehavior+ ==∪{p : providesCapability • p.behavior}∪
∪{s : specializationOf • s.providesBehavior+} [I3]

requiresBehavior+ ==∪{p : requiresCapability • p.behavior}∪
∪{s : specializationOf • s.providesBehavior+} [I4]

providesResource+ == providesResource∪∪{s : specializationOf • s.providesResource+} [I5]

requiresResource+ == requiresResource∪∪{s : specializationOf • s.requiresResource+} [I6]
requiresBehavior+∩providesBehavior+ =∅ [I7]
providesResource+∩ requiresResource+ =∅ [I8]

self 6∈ conflictsWith+∧ self 6∈ specializationOf + [I9]
∀r : specializationOf + • r 6∈ conflictsWith+ [I10]
∀r : conflictsWith+ • r 6∈ specializationOf + [I11]

Schema 4.5.1: Class Schema of Role

Moreover, the denotational semantics state that (i) the Behaviors of requiresBehavior+ and
providesBehavior+ must be disjoint (cf. Invariant I7), in the same manner as, (ii) the Resources
of providesResource+ and requiresResource+ are disjoint (cf. Invariant I8). A Role can nei-
ther be part of its overall conflicting Roles (conflictsWith+) nor part of its overall generalized
Roles (specializationOf +) (cf. Invariant I9). If a Role is part of the set of generalized Roles
(specializationOf +), it must not be in any conflict (conflictsWith+) (cf. Invariant I10). Finally,
if a Role is in any conflict with a Role (conflictsWith+), it must not be part of its set of generalized
Roles (specializationOf +) (cf. Invariant I11).

4.5.2 DomainRole

As aforementioned in Section 4.4.1, a DomainRole is, on the one hand, performed by Agents
and, on the other hand, required by Organizations. At this, the concept of DomainRole enables
grouping of atomic or composed entities to define a social structure and thus clearly define the
domain this sort of Role has expertise in with respect to the provision of functionalities to achieve
a certain objective. An informal definition of DomainRole is as follows:

Definition 4.5.2 (DomainRole in PIM4AGENTS)

A DomainRole is defined by a 9-tuple D = (name, requiresResource, providesResource, requiresCapa-
bility, providesCapability, conflictsWith, specializationOf, partOf, parts), where:

• name: defines the name of the DomainRole
• partOf: represents the Roles this DomainRole is part of
• parts: defines the aggregated set of Roles this DomainRole is composed of.

4.5. Role Viewpoint 79

The variables requiresResource, providesResource, requiresCapability, providesCapability, con-
flictsWith, and specializationOf are used in the same manner as specified by Definition 4.5.1.

The formal semantic of DomainRole is depicted in Schema 4.5.2. The class schema of Domain-
Role inherits from the Role schema. Furthermore, it includes as part of its declarative part the
variables parts and partOf to express the relationship to other DomainRoles. The semantics of
the parts and partOf relationships are now defined in terms of the DomainRoles’ provided and
required Behaviors and Resources. In addition, the secondary variables parts+ and partOf + are
defined to illustrate the complete chain of either sub- or super-roles. Their semantics are given by
the Invariant I1 and I2.

Invariants I3 and I4 ensure that any kind of sub-role provides or requires a subset of the pro-
vided and required Behaviors of its parent roles. Combining all subroles’ provided and required
Behaviors fulfills the requirements of the parent roles in terms of its provided and required behav-
iors. The same holds for the required and provided Resources (cf. Invariants I6 and I5). However,
none of the sub-roles provide or require all of the provided or required Behaviors and Resources,
respectively. Consequently, if a parent DomainRole refers to subroles, it must include at least two
DomainRoles. This circumstance is expressed by Invariant I7.

A DomainRole is, moreover, neither part of its parts+ nor partOf + sets (see Invariant I8). More-
over, Invariant I9 assures that (i) the set of parts+ and partOf + are disjoint and (ii) a DomainRole
must not inherit from any DomainRole out of partOf + (i.e. partOf + and specializationOf + are
disjoint).

Finally, Invariant I10 guarantees that any kind of Actor, as specialization of Role, is neither part
of parts+ nor partOf + and, in addition, must not be declared as super-role. Hence, even if the
concepts of DomainRole and Actors are both specializations of Role, the relationship between both
is solely expressed through the ActorBinding concept (cf. Section 4.9.4).

4.5.3 Actor

An interaction protocol is a mechanism to illustrate the conversation between agents from a global
perspective within a community. It can be more easily described using generic roles instead of
describing the interaction between the particular agent instances that take part in the conversation.
These generic roles solely act as place holders that are filled with the selected agent instances at
run-time. In PIM4AGENTS, we use the concept of an Actor as such generic placeholder that defines
in which manner the fillers are interacting.

Like a DomainRole, the Actor concept is a specialization of the Role concept (cf. Fig. 4.5.1))
and thus may provide and require particular Capabilities or Resources that are necessary for
exchanging messages within interactions. The abstract syntax of the Actor concept is given in
Definition 4.5.3.

Definition 4.5.3 (Actor in PIM4AGENTS)

An Actor is given by a 10-tuple A = (name, requiresResource, providesResource, requiresCapability,
providesCapability, conflictsWith, specializationOf, superactor, subactor, activeState), where:

• name: defines the name of the Role
• superactor: represents the super-actor of this Actor
• subactor: illustrates all sub-actors of this Actor
• activeState: determines the set of MessageFlows in which the Actor is active. The activeState

relationship is depicted in Fig. 4.6

80 4. Abstract Syntax and Semantics of DSML4MAS

DomainRole

Role

parts,partOf :PDomainRole [Variables]
∆ [Semantics Variables]
parts+,partOf + :PDomainRole

parts+ == parts∪∪{p : parts • p.parts+} [I1]

partOf + == partOf ∪∪{p : partOf • p.partOf +} [I2]

providesBehavior+ ⊆∪{p : parts • p.providesBehavior+}∧∀p : parts • p.providesBehavior+∩
providesBehavior∗ 6=∅ [I3]

requiresBehavior+ ⊆∪{p : parts • p.requiresBehavior+}∧∀p : parts • p.requiresBehavior+∩
requiresBehavior∗ 6=∅ [I4]

providesResource+ ⊆∪{p : parts • p.providesResource+}∧∀p : parts • p.providesResource+∩
providesResource∗ 6=∅ [I5]

requiresResource+ ⊆∪{p : parts • p.requiresResource+}∧∀p : parts • p.requiresResource+∩
requiresResource∗ 6=∅ [I6]

#parts ≥ 2 [I7]

self 6∈ parts+∧ self 6∈ partOf + [I8]

parts+∩partOf + =∅∧partOf +∩ specializationOf + =∅ [I9]

@a : Actor • a ∈ parts∨a ∈ partOf ∨a ∈ specializationOf + [I10]

Schema 4.5.2: Class Schema of DomainRole

The variables requiresResource, providesResource, requiresCapability, providesCapability, con-
flictsWith, and specializationOf are used in the same manner as specified by Definition 4.5.1.

Similar to a DomainRole and its parts relationship, an Actor could be further refined to express
that various interaction traces might be feasible within one Interaction. Hence, if for an Actor more
than one trace exists, the system designer has to split the Actor and its fillers in a manner that an
Actors’ trace is unique with respect to sending and receiving messages. The formal semantics of
this actor sub-actor relationship is discussed in the following in more detail.

The class schema of Actor is depicted in Schema 4.7.1. It inherits from the class schema of Role
and includes three variables, i.e. subactor, superactor, and activeState. In addition, the secondary
variable subactor+ is introduced that includes all Actors that are kind of this particular type, i.e. it
recursively unions the Actor itself and all subactor+ of its subactors (cf. Invariant I1). Correspond-
ingly, the secondary variable superactor+ recursively unions all superactors (cf. Invariant I2). In
addition, the variables messageSent and messageReceived include any ACLMessage that is either
sent or received by this Actor. The messageSent variable is defined as the set of ACLMessages
that are sent by this Actor within any active MessageFlow (Invariant I3). Correspondingly, the
messageReceived variable includes the ACLMessages received in active MessageFlows (Invariant I4).

Critically, each Actor must at most refer to one super-actor (cf. Invariant I5). As the subactor
reference should be considered as a kind of specialization, each Actor must either have no subactor
or more than one subactors (cf. Invariant I6). Furthermore, if an Actor has subactors, these
subactors refer again to the Actor as superactor (see Invariant I7). The eight invariant states that
any two subactors must have different names. Followed by Invariant I9, further ensuring that
an Actor is neither part of its own subactors (i.e. subactor+) nor part of any superactor+. Finally,
Invariant I10 restricts the set of generalized Roles to the type Actor.

4.6. Interaction Viewpoint 81

Actor

Role

subactor :PActor©; superactor :PActor; activeState :PMessageFlow [Variables]
∆ [Semantic Variables]
subactor+ :P1 Actor; superactor+ :PActor; messageSent,messageReceived :PACLMessage

subactor+ == self ∪∪{s : subactor • s.subactor+} [I1]
superactor+ == superactor∪ superactor.superactor+ [I2]

messageSent ==∪{m :∪{ms :∪{mf : activeState • mf .forkOperator} • ms.messageSplit∗} • m.message} [I3]

messageReceived ==∪{m :∪{ms :∪{mf : activeState • mf .joinOperator} • ms.messageSplit∗} • m.message}
[I4]

#superactor ≤ 1 [I5]
#subactor = 0 ∨ #subactor ≥ 2 [I6]
subactor 6=∅⇒∀a : subactor • a.superactor = self [I7]
∀sa1,sa2 ∈ subactor • sa1 = sa2 ⇒ sa1.name = sa2.name [I8]

self 6∈∪{s : subactor • s.subactor+}∧ self 6∈ superactor+ [I9]
@d : DomainRole • d ∈ specializationOf + [I10]

Schema 4.5.3: Class Schema of Actor

4.6 Interaction Viewpoint

The ability to communicate is one of the core characteristics of agents and group of agents in
MASs (cf. Section 2.1.6). Two types of interactions can thereby be distinguished: Protocol-based
interactions versus flexible interactions, where PIM4AGENTS emphasizes on the former. The
vocabulary used to express interactions in PIM4AGENTS is defined by the metamodel of the
interaction viewpoint (cf. Fig. 4.6). This interaction viewpoint includes the concepts Interaction,
Protocol, MessageFlow, MessageScope, ACLMessage, TimeOut, ExchangeMode, and Performative, as
well as, Actor (from the role viewpoint) and Message (part of the multiagent viewpoint).

4.6.1 Interaction

Even if the interaction within a MAS should not necessarily be reduced to the exchange of mes-
sages, the least common denominator of protocol-based and flexible interactions is the exchange
of messages between two or more entities. This nicely corresponds to the manner in which
Interactions are generally considered in PIM4AGENTS.

Definition 4.6.1 (Interaction in PIM4AGENTS)

An Interaction is given by a triple I = (name, message, actor), where:

• name: defines the name of the interaction
• actor: represents the entities that exchange ACLMessages in this Interaction
• message: denotes the ACLMessages exchanged by the corresponding Actors.

The class schema of Interaction is given in Schema 4.6.1. Beside the variables message and actor
brought out by Definition 4.6.1, the following invariants are formalized.

The first category of invariants deals with the issue that within an Interaction, both ACLMessages
as well as Actors must be unique (expressed by Invariant I1 and I2). This means that if either two

82 4. Abstract Syntax and Semantics of DSML4MAS

Fig. 4.6: The metamodel reflecting the interaction aspect of PIM4AGENTS.

Actors or two ACLMessages are designed having the same name, they are considered as equal. The
next category of invariants restricts the kinds of approved interactions. Invariant I3 states that at
least two Actors must be defined for any kind of interaction, which again must exchange at least
one ACLMessage. The latter invariant is already expressed through the cardinalities of the message
containment of the Interaction concept. Invariant I4 ensures that any Interaction only refers to
Actors that do not act as sub-actor for any other Actor. This is expressed by the superactor attribute
of an Actor (cf. Section 4.5.3). The reasons for restricting Interactions in this manner are that (i)
sub-actors are considered as a kind of specialization concerning its Actor’s position within the
Interaction and (ii) sub-actors are contained by their super-actors. Finally, Invariant I5 ensures
that the forward Actor of an ACLMessage is part of the Interaction’s Actors.

4.6. Interaction Viewpoint 83

Interaction

message :P1 ACLMessage©; actor :P1 Actor© [Variables]

∀m1,m2 : message • m1.name = m2.name ⇒ m1 = m2 [I1]
∀a1,a2 : actor • a1.name = a2.name ⇒ a1 = a2 [I2]
#actor ≥ 2 [I3]
∀a : actor • a.superactor =∅ [I4]
∀m : message • m.forward ⊆ actor [I5]

Schema 4.6.1: Class schema of Interaction

4.6.2 Protocol

Agent interaction protocols (AIPs) define (i) a communication pattern between several parties
as an allowed sequence of messages and (ii) the constraints of the content of these messages
to form a conversation of a particular type. Flexible interactions, on the other hand, focus on
the relaxation of the constraints that exist in using predefined protocols, potentially leading
to more fault-tolerant and hence robust communications, which are driven by the interests of
the communication participants and not by predefined sequences of message patterns. The
PIM4AGENTS metamodel allows realizing both interaction styles, even if the focus is certainly on
AIPs. Leon-Soto et al. (2009), however, demonstrate how to extend PIM4AGENTS to allow a more
flexible combination of conversations of protocols.

In accordance with Fig. 4.6, a Protocol in PIM4AGENTS refers to (i) a set of Actors that interact
within the Protocol, (ii) a set of ACLMessages exchanged by the parties concerned, (iii) a set of
TimeOuts that define the time constraints for sending and receiving ACLMessages, (iv) a set of
MessageScopes that define the ACLMessages and the order how they arrive, and (v) a set of Message-
Flows that specify how the exchange of ACLMessages is proceed. To express that AgentInstances
playing the same Actor at run-time may behave differently, the Actor can be split into sub-actors.
At this, sub-actors of an Actor are determined at design time, but normally filled with the particular
AgentInstances performing this position at run-time. The abstract syntax of Protocol is given by
Definition 4.6.2.

Definition 4.6.2 (Protocol in PIM4AGENTS)

A Protocol is given by a 6-tuple P = (name, actor, messageFlow, messages, messageScope, timeout),
where:

• name: defines the name of the Protocol
• actor: refers to Actors that are involved in this Protocol
• messageFlow: refers to MessageFlows constituting the different kinds of states the Protocol’s

Actors are involved in
• messages: defines the ACLMessages sent and received within the Protocol
• messageScope: depicts the order in which ACLMessages are sent/received within the Protocol
• timeout: specifies the latest point in time a particular or set of ACLMessages have to be sent

and received.

The class schema of Protocol is given in Schema 4.6.2. Apart from the primary variables introduced
by Definition 4.6.2, it further includes the following semantic variables:

84 4. Abstract Syntax and Semantics of DSML4MAS

Protocol

Interaction

messageFlow :P1 MessageFlow©; messageScope :PMessageScope©; timeout :PTimeOut© [Variables]
∆ [Semantic Variables]
usedTimeouts :PTimeOut; usedActors :PActor
usedMessages :PACLMessage; usedMessageScopes :PMessageScope

usedMessageScopes==∪{mf : messageFlow • mf .forkOperator.messageSplit∗}

∪∪{mf : messageFlow • mf .joinOperator.messageSplit+} = messageScope [I1]

usedTimeouts==∪{ms : usedMessageScopes • ms.forkTimeOut}∪
∪{ms : messageScope • ms.joinTimeOut} = timeout [I2]

usedActors==∪{mf : messageFlow • mf .activeactor} = actor [I3]

usedMessages==∪{m :
⋃

{ms : usedMessageScopes • ms.messageSplit∗} • m.message} = message [I4]
∀mf1,mf2 : messageFlow • mf1.name = mf2.name ⇒ mf1 = mf2 [I5]
∀ms1,ms2 : messageScope • ms1.name = ms2.name ⇒ ms1 = ms2 [I6]
∀ to1, to2 : timeout • to1.name = to2.name ⇒ to1 = to2 [I7]

∪ {m :∪{mf : messageFlow • mf .forkOperator.messageSplit∗} • m.message}

=∪{m :∪{mf : messageFlow • mf .joinOperator.messageSplit∗} • m.message} [I8]
∀mf1,mf2 : messageFlow |
∪ {m : mf1.forkOperator.messageSplit∗ • m.message}∩
∪{m : mf2.joinOperator.messageSplit∗ • m.message} 6=∅
• mf1.activeActor 6= mf2.activeActor [I9]

Schema 4.6.2: Class schema of Protocol

• The semantic variable usedTimeouts represents TimeOuts that are referred by a Mes-
sageScope through the variables joinTimeOut and forkTimeOut.

• The semantic variable usedActors depicts Actors that are referred by a MessageFlow through
the variable activeActor.

• The semantic variable usedMessages denotes ACLMessages that are referred by a Mes-
sageScope through the variable message.

• The semantic variable usedMessageScopes describes MessageScopes that are referred by a
MessageFlow through the variables forkOperator or joinOperator.

Beside these secondary variables, the following invariants refined the semantics of Protocol:

• Invariant I1 specifies that usedMessageScopes is equal to messageScope in order to ensure
that any MessageScope is actively used within the Protocol.

• The set of usedTimeouts must consist of the same elements as timeouts (i.e. the TimeOuts re-
ferred by the Protocol) expressed by Invariant I2. Consequently, this means that all Protocol’s
TimeOuts must be actively used within the Protocol.

• Like for the semantic variable usedTimeouts, Invariant 3 restricts the elements of usedActors
by stating that the set of Actors referred by the activeActor variable of MessageFlow must be
equal to the Actors defined by the Protocol (i.e. the actor variable of Interaction from which
the Protocol inherits).

• In the same way, Invariant I4 specifies that the usedMessages variable contains the same
ACLMessages as depicted by the message variable of Interaction from which Protocol concepts
inherits. This means that any ACLMessage not defined by the Interaction cannot be used in
this particular Interaction.

4.6. Interaction Viewpoint 85

Additionally, Invariant I5 specifies that two instances of a MessageFlow within a Protocol must
have different names, otherwise they are considered as equal. Invariants I6 and I7 state that in
the context of a Protocol this unique occurrence similarly holds for the set of MessageScopes (i.e.
messageScope) and TimeOuts (i.e. timeout). Invariant I8, moreover, ensures that any ACLMessage
sent through a MessageFlow’s forkOperator is also received through a MessageFlow’s joinOperator.
Finally, Invariant I9 ensures that an ACLMessage cannot be sent and received by one and the same
Actor.

4.6.3 MessageFlow

A MessageFlow in PIM4AGENTS defines the sequence in which ACLMessages are sent and received
by the Actors involved in a Protocol. It further defines time constraints (i.e. the latest point in time)
in which ACLMessages must be sent and received. The abstract syntax of a MessageFlow is defined
as follows:

Definition 4.6.3 (MessageFlow in PIM4AGENTS)

A MessageFlow is given by a 9-tuple M = (name, activeActor, forkOperator, joinOperator, forkTime-
Out, joinTimeOut, messageflow, preCondition, postCondition), where:

• name: defines the name of the MessageFlow
• activeActor: represents the Actor sending/receiving ACLMessages in this MessageFlow
• forkOperator: defines the order of incoming ACLMessages
• joinOperator: defines the order of outgoing ACLMessages
• forkTimeOut: specifies the time constraints for receiving ACLMessages
• joinTimeOut: specifies the time constraints for sending ACLMessages
• messageflow: illustrates state transitions, i.e. transitions between two MessageFlows of the

same Actor
• preCondition declares the Protocol’s state before MessageFlow execution
• postCondition declares the Protocol’s state after MessageFlow execution.

A MessageFlow can be considered as a state within a Protocol. If this state fulfills a certain precon-
dition, ACLMessages are either sent and/or received by the Actors active in this state. At this, the
MessageFlow’s fork- and joinOperators define the state transitions. The formal specification of
MessageFlow is given in Schema 4.6.3. In accordance to the abstract syntax given in Definition 4.6.3,
the declarative part includes the variables joinOperator, forkOperator, joinTimeOut, forkTimeOut,
activeActor, messageflow, preCondition, and postCondition.

Beside the declarative part, several invariants are defined: Invariant I1 states that for any
MessageFlow at most one forkOperator and joinOperator must be defined. However, either forkOp-
erator or joinOperator must be defined (see Invariant I2). A MessageFlow without any joinOperator
can be considered as start state, without forkOperator as end state, where a Protocol could own
more than one start and end state. Like in the case of the MessageScope attributes, Invariant I3
ensures that for each MessageFlow at most one forkTimeOut and one joinTimeOut is permitted,
however, other than forkOperator and joinOperator, a MessageFlow does not need to refer to any
TimeOut. Lastly, in accordance to Invariant I4, a direct transition between MessageFlows expressed
through the messageflow reference is only allowed if the activeActors of the target MessageFlow are
of the same kind as the activeActor of the source MessageFlow.

86 4. Abstract Syntax and Semantics of DSML4MAS

MessageFlow

NamedElement

joinOperator, forkOperator :PMessageScope [Variables]
joinTimeOut, forkTimeOut :PTimeOut; activeActor : Actor
messageflow :PMessageFlow; preCondition,postCondition :B

#forkOperator ≤ 1∧#joinOperator ≤ 1 [I1]
forkOperator 6=∅∨ joinOperator 6=∅ [I2]

#forkTimeOut ≤ 1∧#joinTimeOut ≤ 1 [I3]
messageflow 6=∅⇒ {m : messageflow • m.activeActor} ⊆ activeActor.subactor+∪activeActor.superactor+ [I4]

Schema 4.6.3: Class schema of MessageFlow

4.6.4 MessageScope

The previous section formalized the concept MessageFlow, which represents the Protocol’s states.
To enter and leave a MessageFlow, special kinds of transitions are offered that are called Mes-
sageScopes. These MessageScopes define the order in which ACLMessages are exchanged. For this
purpose, ACLMessages are connected via an operation defining in which manner (e.g. parallel,
sequence, etc.) the ACLMessages are sent or received, respectively. The abstract syntax is given by
Definition 4.6.4:

Definition 4.6.4 (MessageScope in PIM4AGENTS)

A MessageScope is given by a 4-tuple M = (name, message, operation, messageSplit), where:

• name: defines the name of the MessageScope
• message: refers to ACLMessages that are sent and received in the current state of the Protocol
• operation: defines in which manner ACLMessages are sent and received
• messageSplit: allows defining compositions of operations

MessageScope

NamedElement

messageSplit :PMessageScope©; operation : ExchangeMode [Variables]
message :PACLMessage; break :PBreak©
∆ [Semantic Variables]
messageSplit+ :PMessageScope; messageSplit∗ :P1 MessageScope

messageSplit+ ==messageSplit ∪ {m : messageSplit,n : MessageScope | n ∈ m.messageSplit+ • n} [I1]
messageSplit∗ == {self }∪messageSplit+ [I2]
∀ms1,ms2 : messageSplit • ms1.name = ms2.name ⇒ ms1 = ms2 [I3]
∀b1,b2 : break • b1.name = b2.name ⇒ b1 = b2 [I4]

operation = None ⇒ messageSplit =∅∧#message = 1 [I5]

operation 6= None ⇒ messageSplit 6=∅∧#message = 0 [I6]

Schema 4.6.4: Class schema of MessageScope

4.6. Interaction Viewpoint 87

The class schema of a MessageScope is given in Schema 4.6.4. It includes the variables messageSplit,
message, and operation which corresponds to literals specified by the enumeration ExchangeMode.
The different literals of ExchangeMode are discussed in more detail in Section 4.6.5.

Apart from these primary, further semantic variables are given: The variable messageSplit+
defines the transitive closure of all messageSplits the MessageScope recursively refers to (cf. In-
variant I1). Accordingly, the variable messageSplit∗ unions the messageSplit+ variable and the
MessageScope itself (cf. Invariant I2). Any MessageScope referred to by the messageSplit variable
or Break must be unique (cf. Invariant I3-I4). Moreover, Invariants I5 and I6 ensure that any
ACLMessage must only be referred to by a MessageScope of operation type None. In this case,
the MessageScope’s messageSplit is empty. Otherwise, the MessageScope must not refer to any
ACLMessage, but the messageSplit variable contains other branching MessageScopes.

4.6.5 ExchangeMode

The enumeration ExchangeMode represents the different manners of trace execution. For ordering
messages within Protocols, PIM4AGENTS distinguishes between the following alternatives:

Sequence prescribes a sequencing of traces, i.e., all ACLMessages within this Interaction are
timely ordered.

Parallel prescribes that several traces are executed concurrently within this Interaction, i.e., the
order in which the corresponding ACLMessages are displayed is not relevant.

Loop prescribes that a particular trace is executed again and again. How often this trace is finally
executed depends on either the Break condition or the MessageFlow’s postcondition, which
are both boolean expressions. The Loop is executed as long as these guards are satisfied.

Apart from these general literals, the pattern of an exclusive decision (i.e. XOR semantics) in
Protocols is supported through the messageflow attribute of MessageFlow that allows distinguishing
between exclusive states of an Actor.

4.6.6 ACLMessage

As aforementioned in Section 4.2.2, PIM4AGENTS distinguishes between two sorts of messages, i.e.
Message and ACLMessage. The former defines the kind of information that is exchanged between
two AgentInstances and the latter specifies the message exchange between Actors in Interactions.
Both concepts are linked to each other as an ACLMessage is realized by sending and receiving
Messages within a Plan. The abstract syntax of ACLMessage is indicated in Definition 4.6.5.

Definition 4.6.5 (ACLMessage in PIM4AGENTS)

An ACLMessage is given by a triple A = (name, forward, performative), where:

• name: defines the name of the ACLMessage
• forward: represents the Actor to whom the ACLMessage is forwarded
• performative: defines the Performative of the ACLMessage.

The formal semantics of ACLMessage is given in Schema 4.6.6. Beside the primary variables (cf.
Definition 4.6.5), the Invariant I1 ensures that the forward Actor does not receive this ACLMessage
through a MessageFlow and its MessageScopes.

88 4. Abstract Syntax and Semantics of DSML4MAS

ACLMessage

NamedElement

forward :PActor; performative : Performative [Variables]

disjoint〈forward, {mf : MessageFlow,me :∪{mes : mf .joinOperator.messageSplit∗ • mes.message}
| self ∈ me • mf .activeActor}〉 [I1]

Schema 4.6.5: Class schema of ACLMessage

As previously presented in Section 4.2.2, two core messaging standards are accepted in the agent
community to specify certain performatives and parameters used inside messages. The original
FIPA-ACL performatives are accept-proposal, agree, cancel, cfp, confirm, disconfirm, failure,
inform, inform-if, inform-ref, not-understood, propose, query-if, query-ref, refuse, reject-proposal,
request, request-when, request-whenever, and subscribe. A subset of them is implemented in
PIM4AGENTS through the Performative enumeration:

Performative ::= Request | Failure |Cancel |Agree |NotUnderstood |CFP |Refuse | Propose

|AcceptProposal |RejectProposal | Inform

In addition to the concepts discussed so far, the interaction viewpoint further incorporates the
concepts of Break and TimeOut. A more detailed description of the concepts’ meanings as well as
their formal semantics can be found at Appendix A.

The concepts of the interaction viewpoint mainly serve for designing the interaction between
entities (i.e. Actors) of the MAS. Hence, the interaction viewpoint mainly centers on the global
behavior, internal processes of the agent can only be defined on an abstract level in terms of
sending and receiving messages. Hence, a more expressive vocabulary for designing an agent’s
internal processes is required and given by the behavioral viewpoint.

4.7 Behavior Viewpoint

As suggested by Definition 2.1.5, behavioral elements are of particular importance to allow agents
to behave in an autonomous, reactive, pro-active and social manner. To meet these requirements,
PIM4AGENTS combines different behavioral elements in the behavioral viewpoint.

The behavioral viewpoint can be divided into two parts: the first and core part describes how
behaviors and plans are structured, whereas the second part focuses on the concrete concepts
(either of complex or atomic form) provided to define the workflow of a certain behavior. The core
part (depicted in Fig. 4.7) covers the main aspects of internal processes that are Behavior, Plan,
ControlFlow, InformationFlow, Activity, StructuredActivity, Task and Knowledge.

4.7.1 Behavior

A Behavior is an abstract class that defines the internal behavior of an Agent to achieve. The body
of a Behavior defines the order in which certain activities are executed to achieve an Agent’s overall

4.7. Behavior Viewpoint 89

Fig. 4.7: The core metamodel of the behavioral viewpoint of PIM4AGENTS.

goal. A Plan is a concrete refinement of Behavior. The Object-Z specification of Behavior is given
in Section A.4.1.

4.7.2 Plan

A plan, in accordance to (d’Inverno and Luck; 2001a), consists of six components: (i) an invocation
condition (or triggering event), (ii) an optional context (a situation formula) that defines the
pre-conditions of the plan, i.e., what must be believed by the agent for a plan to be executable,
(iii) the plan body, which is a tree representing a kind of flow-graph of actions to perform, (iv) a
maintenance condition that must be true for the plan to continue executing, (v) a set of internal
actions that are performed if the plan succeeds and finally, (vi) a set of internal actions that are
performed if the plan fails.

A Plan in PIM4AGENTS is considered as mechanism to specify an Agent’s internal processes. It
represents a super class connecting the agent viewpoint with the behavioral viewpoint. Plans are
executed by Agents in order to achieve certain predefined goals. Even if the modeling of goals is
not directly supported by the current version of PIM4AGENTS, indirectly, a Plan supports achieving
goals through performing Activities. For the purpose of combining these Activities, a workflow-like
language is provided.

In a broad sense, workflow specifications can normally be understood from a number of
different perspectives: The control flow perspective or process perspective describes activities
and their execution ordering through representing the flow of execution. Activities in elementary
form are atomic units of work, and in more complex form modularize an execution order of a set
of activities. The data perspective defines how data is processed on the control flow perspective.

90 4. Abstract Syntax and Semantics of DSML4MAS

For this purpose, information flows between activities and local variables of the workflow. The
operational perspective describes the elementary actions executed by activities.

In the style of workflow specifications, a Plan in PIM4AGENTS includes a set of Activities that
define the basic actions, ControlFlows that define the order in which Activities are executed and
InformationFlows defining the manner in which information flows between Activities. The abstract
syntax of the Plan concept is given by Definition 4.7.1.

Definition 4.7.1 (Plan in PIM4AGENTS)

A Plan is given by a 11-tuple P = (name, steps, controlFlow, messageFlow, preCondition, postCondi-
tion, outFlow, inFlow, localKnowledge, messageScope, informationFlow), where:

• name: defines the name of the Plan
• steps: defines all associated basic or more complex Activities used for achieving goals
• controlFlow: represents the set of ControlFlows connecting the Plan’s Activities
• messageFlow: denotes the MessageFlows implemented by the Plan
• preCondition: represents the state of the Plan in terms of facts holding before execution
• postCondition: represents the state of the Plan in terms of facts holding after execution
• outFlow: specifies the ControlFlow that links this source Plan with a target Activity
• inFlow: specifies the ControlFlow that links a source Activity with this target Plan
• localKnowledge: depicts all Knowledges that are global accessible in the Plan
• messageScope: depicts the MessageScopes implemented by this Plan
• informationFlow: depicts how data flows between Plans.

A Plan specifies an Agents’ internal process in terms of implicit goals that need to be achieved. For
this reason, it refers to a set of ControlFlows and InformationFlows part of the process description
and contains a set of Activities that are linked to each other via a ControlFlow to specify the
execution order. As a Plan is again a specialization of Activity (cf. Section 4.7.5), it may comprise
sub-plans that are connected with either other sub-plans or Activities through the outFlow and
inFlow references. Beside the Activities owned by a Plan, it may also contain Knowledge, which
can only be accessed within its scope and is exchanged through InformationFlows and Messages.

To provide a link between an external Protocol and internal Plan that is implementing the
interaction specified, a Plan refers to a set of MessageFlows (cf. Section 4.6.3). Having this link
supports checking whether the Plan provides all functionalities needed to fulfill the requirements
of the particular MessageFlow in terms of receiving and sending Messages. Finally, the variables pre-
Condition and postCondition set the constraints that should be fulfilled before and after execution,
respectively.

The semantics of a Plan are given in Schema 4.7.1. The corresponding class schema inherits
from the class schemata of Behavior (cf. Schema A.4.1) and Activity (cf. Schema 4.7.5). Its
declarative part consists of the primary variables declared in Definition 4.7.1.

In addition, the following semantic variables are defined used for describing the operational
semantics: These variables are startActivities, endActivities of either type Begin or End (cf. Invariant
I1 and I2 for a definition), active, entry of the type boolean, as well as steps+ of type Activity denoting
the set of all direct (i.e. steps) and indirect (i.e. any step part of the Plan’s steps etc.) contained
Activity. Hence, the steps+ variable defines the transitive closure of the step relation expressed in
Invariant I3.

In addition, the declarative part consists of several invariants: Firstly, a Plan has in accordance
to Invariant I4 exactly one start and end activity (i.e., the set of startActivities and endActivities

4.7. Behavior Viewpoint 91

Plan

Behavior,Activity

informationFlow :P InformationFlow©; steps :P ↓ Activity© [Variables]
messageFlow :PMessageFlow; preCondition,postCondition :PString
∆ [Semantic Variables]
startActivities,endActivities :P ↓ Activity; active,entry,completed :B; steps+ :P ↓ Activity

startActivities== {s : steps | s ∈ Begin} [I1]
endActivities== {s : steps | s ∈ End} [I2]
steps+ == steps∪
{s : {sa : steps | sa ∈ StructuredActivity},a : Activity | a ∈ s.steps+ • a}∪
{s : {sa : steps | sa ∈ Plan},a : Activity | a ∈ s.steps+ • a} [I3]

#startActivities = #endActivities = 1 [I4]

messageFlow 6=∅⇒∪{m :∪{ms :∪{m : messageFlow • m.forkOperator} • ms.messageSplit∗} • m.message}
⊆ {s : {a : steps+ | a ∈ Send} • s.message.aclMessage} [I5]

messageFlow 6=∅⇒∪{m :∪{ms :∪{m : messageFlow • m.joinOperator} • ms.messageSplit∗} • m.message}
⊆ {s : {a : steps+ | a ∈ Receive} • s.message.aclMessage} [I6]

entry ⇔ active∧ (head preCondition = true∨preCondition =∅) [I7]

completed ⇔ active∧ (head postCondition = true∨postCondition =∅)∧∧
s : endActivities • s.completed [I8]

#steps ≥ 3 [I9]

INIT¬active
enter
∆(active)

¬active ∧ active′

exit
∆(active)

active ∧¬active′

ExecuteEntry =̂ firstActivity.enter
InnerExit =̂∧

s : lastActivity • s.completed • s.exit
Exit =̂ InnerExit o

9 exit

〈active ∧¬entry〉; 〈active ∧ entry〉 ⊆
〈¬ExecuteEntry〉; (〈ExecuteEntry〉∪〈ExecuteEntry〉; 〈true〉) [I 5]
〈entry ∧¬completed〉; 〈entry ∧ completed〉 ⊆
〈¬Exit〉; (〈Exit〉∪〈Exit〉; 〈true〉) [I 6]

Schema 4.7.1: Class schema of Plan

has exactly one element). If a messageFlow reference is defined, the ACLMessage sent and/or
received by the corresponding MessageFlow must be sent and received through the Send and
Receive activities, respectively (cf. Invariants I5 and I6). At this, the Messages referred within a Plan
indicate the ACLMessages of the MessageFlow (cf. Section 4.2.2).

The operational semantics of a Plan are: When a Plan is entered, it becomes active meaning
that the operation enter changes the variable active from false to true. When a Plan is exited, it
becomes inactive meaning that the operation exit changes the variable active from true to false.
Initially, the variable active is set to false (see operation INIT). Furthermore, a Plan is entry if it
is active as well as the preCondition either evaluates to true or is not defined (cf. Invariant I7)
and a Plan is completed if it is active, the ending Activities (i.e. endActivities) of the contained
Activities (i.e. steps) are completed, and the postCondition either evaluates to true or is not defined
(cf. Invariant I8).

Finally, at least three Activities must be part of a Plan, i.e. the startActivities, the endActivities
(both restricted to 1), and an Activity expressing the Plan’s functionality.

92 4. Abstract Syntax and Semantics of DSML4MAS

Additionally, we define three operations ExecuteEntry, InnerExit, and Exit which are used by
the ControlFlow transitions when they enter or exit an Activity (see the Object-Z class ControlFlow).
Since executing a Plan should start with executing the startActivities), the operation ExecuteEntry
invokes the operation enter of the first activity within the Plan. This guarantees that the containing
Activities of a Plan are always active when the Plan itself is active. The Exit operation simply exits
the Plan by invoking the operations InnerExit and exit.

Finally, we define the operational sequence in terms of invariants using the timed trace no-
tation (see (Smith and Hayes; 2000)). The invariants are described in the following notation:
〈¬var〉; 〈var〉 ⊆ 〈¬op〉; (〈op〉∪ 〈op〉; 〈true〉). This term has the semantic that the operation op
occurs immediately when the variable var evaluates to true. In the Plan context, the invariant
defined by Invariant I5 states the operation sequence when a Plan is entered. The invariant ensures
that the operation ExecuteEntry occurs immediately when the Plan is active and has been entered
i.e. entry evaluates to true). In this case, the first activity of steps is executed. The invariant defined
by Invariant I6 states the operation sequence when a Plan is exited. The invariant ensures that a
Plan is only exited if the work on it has been completed. If this is the case, the operation Exit is
immediately invoked.

4.7.3 ControlFlow

Two different sorts of flows are distinguished in the behavior viewpoint: InformationFlow and
ControlFlow. The latter refers to a source and sink Activity and defines the temporal execution
dependencies between Activities, i.e. the ControlFlow transition specifies the exact order of
Activities to be executed. We assume transitivity of ControlFlow relations, but not symmetry and
reflexivity. The former, in contrast, defines how information flow from Activity to Activity through
their Knowledges (cf. Section 4.7.4). The following definition illustrates the informal specification
of ControlFlow.

Definition 4.7.2 (ControlFlow in PIM4AGENTS)

A ControlFlow is given by a 4-tuple C = (name, sink, source, condition), where:

• name: defines the name of the ControlFlow
• source: specifies the source Activity of this ControlFlow
• sink: refers to the sink Activity of this ControlFlow
• condition: defines the boolean expression denoting whether the control is transferred from the

source to the sink Activity

The semantics of ControlFlow is given in Schema 4.7.3. The class schema inherits from the class
schema of NamedElement (cf. Schema A.1.1) and additionally consists of the variables source, sink
and condition). The sink and source variables represent the Activities that are linked to each other
through the ControlFlow, where both Activities must be unequal (see Invariant I1). A ControlFlow
itself is again part of the inFlow or outFlow of the particular source and sink Activity. This is
expressed by the Invariants I2 and I3 of the corresponding class schema.

The condition is defined as a set of boolean expressions denoting in which case the control is
transfered from source to sink. Beside these primary variables, the semantic is further refined by
the following invariants. Invariant I4, for instance, states that the set of conditions is restricted to
one element, meaning that either a condition is not defined (which means in this context that the
condition is true) or exactly one condition is given, which could be a complex logical expression.

4.7. Behavior Viewpoint 93

ControlFlow

NamedElement

sink,source :↓ Activity; condition :PB [contained?]
∆ [Semantic Variables]
active,fire :B

sink 6= source [I1]
self ⊆ sink.inFlows [I2]
self ⊆ source.outFlows [I3]
#condition ≤ 1 [I4]

fire ⇔ active∧ (condition =∅∨head condition) [I5]

INIT¬active
enter
∆(active)

¬active∧active′

exit
∆(active)

active∧¬active′

ExecuteFire =̂ sink.enter

〈¬fire〉; 〈fire〉 ⊆ 〈¬ExecuteFire〉; (〈ExecuteFire〉∪〈ExecuteFire〉; 〈true〉)

Schema 4.7.2: Class schema of ControlFlow

Apart from these two primary variables, furthermore, two semantic variables of boolean type
are introduced: (i.e. active, and fire), where fire evaluates to true iff both, active and condition,
evaluate to true (see Invariant I5). In addition, four operations (i.e. enter, exit, ExecuteExit, and
ExecuteFire) are defined. When a ControlFlow is entered, it becomes active meaning that the
operation enter changes the value of active from false to true. When a ControlFlow is existed it
becomes inactive meaning that the operation exit changes the variable active from true to false.
The operation ExecuteExit guarantees that the source Activity is exited, whereas the operation
ExecuteFire guarantees that the sink Activity is entered.

The operation sequences of the ControlFlow are defined as follows: Invariant I2 states the
operation sequence when a ControlFlow is exited. The invariant ensures that the source Activity is
exited immediately after the variable active evaluates to false. Invariant I3, additionally, ensures
that the sink Activity is entered immediately after the variable fire evaluates to true.

4.7.4 InformationFlow

Unlike a ControlFlow, an InformationFlow defines how information is exchanged among the
Activities in a Plan. Thereby, it specifies a unidirectional communication path between exactly
two Activities to define how information and data is flowing between them. The information is
expressed as Knowledge (cf. Section 4.3.3), the Agent has access to inside the Plan. The abstract
syntax of the concept InformationFlow is given in Definition 4.7.3.

Definition 4.7.3 (InformationFlow in PIM4AGENTS)

An InformationFlow is given by a 4-tuple I = (name, source, sink, variable), where:

• name: defines the name of the InformationFlow
• source: specifies the source Activity of this InformationFlow
• sink: specifies the sink Activity of this InformationFlow

94 4. Abstract Syntax and Semantics of DSML4MAS

• information: represents the information passed from the source Activity to the sink Activity

InformationFlow

NamedElement

sink,source : Activity; information : Knowledge [Variables]

information ∈ sink.accessibleVariables [I1]

Schema 4.7.3: Class schema of InformationFlow

An InformationFlow specifies through the information property the data transfer between two
Activities. The class schema of InformationFlow is given in Schema 4.7.4. Invariant I1 states
that any information transmitted through an InformationFlow must be part of the sink activity’s
scope of Knowledge expressed through the secondary variable accessibleVariables defined in
Schema 4.7.5.

4.7.5 Activity

An Activity is an abstract class that defines the most common state within the behavioral aspect.
Any two Activities may be connected through a ControlFow and/or InformationFlow. Furthermore,
we distinguish between two sorts of Activities: StructuredActivities (cf. Section 4.7.6) define more
complex control structures, whereas Tasks (cf. Section 4.7.13) are mainly used to define atomic
activities. Definition 4.7.4 summarizes the abstract syntax of Activity.

Definition 4.7.4 (Activity in PIM4AGENTS)

An Activity is given by a 6-tuple A = (name, controlFlow, outFlow, inFlow, localKnowledge, inIn-
foFlow, outInfoFlow, messageScope), where:

• name: denotes the name of the Activity
• controlFlow: depicts the ControlFlows used inside the Activity
• outFlow: stands for the set of Flows that exits this Activity
• inFlow: stands for the set of Flows that enters this Activity
• localKnowledge: represents any kinds of Knowledge that can be accessed in the scope of this

Activity
• inInfoFlow: represents the ingoing InformationFlows
• outInfoFlow: represents the outgoing InformationFlows
• messageScope: depicts any kind of MessageScope that is implemented by this Activity

The formal semantics of Activity is given in Schema 4.7.5. Apart from the primary variables
introduced in Definition 4.7.4, the declarative part of the schema additionally includes the three
semantic variables, entry, completed, and accessibleVariables. The set of accessibleVariables is
defined as the union of any localKnowledge of the Activity itself and the accessibleVariables of any
Plan or StructuredActivity that recursively contains this Activity (cf. Invariant I1).

In addition, we restrict the upper bound of ControlFlows that can be defined as inFlow or
outFlow of an Activity to one (cf. Invariant I2). In accordance to Invariant I3 and I4, the source

4.7. Behavior Viewpoint 95

Activity

NamedElement

inFlow,outFlow,controlFlow :PControlFlow [Variables]
messageScope :PMessageScope; localKnowledge :PKnowledge; inInfoFlow,outInfoFlow : InformationFlow
∆ [Semantic Variables]
entry,completed :B; accessibleVariables :PKnowledge

accessibleVariables== localKnowledge

∪∪{v : {a : StructuredActivity | self ∈ a.steps} • a.accessibleVariables}

∪∪{v : {a : Plan | self ∈ a.steps} • a.accessibleVariables} [I1]
#inFlow = #outFlow ≤ 1 [I2]
∀ i : inFlow • i.sink = self [I3]
∀o : outFlow • o.source = self [I4]

entry ⇔ active∧¬completed [I5]
∀ l1, l2 : localKnowledge • l1.name = l2.name ⇒ l1 = l2 [I6]
messageScope 6=∅⇒

messageScope.operation = Parallel ⇒ self ∈ Parallel
messageScope.operation = Loop ⇒ self ∈ Loop
messageScope.operation ∈ {Sequence,None} ⇒ self ∈ {Sequence,Receive,Send} [I7]

INIT¬active
enter
∆(active)

¬active ∧ active′

exit
∆(active)

active ∧¬active′

ExecuteEntry =̂ ([self 6∈ Begin]∧InnerEntry o
9 inFlow.exit

[]

[self ∈ Begin]∧InnerEntry)

Exit =̂ ([self 6∈ End]∧OverallExit o
9 outFlow.enter

[]

[self ∈ End]∧OverallExit)

〈¬entry〉; 〈entry〉 ⊆
〈¬ExecuteEntry〉; (〈ExecuteEntry〉∪〈ExecuteEntry〉; 〈true〉)
〈¬completed〉; 〈completed〉 ⊆
〈¬Exit〉; (〈Exit〉∪〈Exit〉; 〈true〉)

Schema 4.7.4: Class schema of Activity

and sink Activities of the ingoing and outgoing ControlFlows is the Activity itself. The semantics
variable entry is defined as the conjunction of the variable active and the negation of completed
(see Invariant I5). Invariant I6 states that any Knowledge of an Activity must be different, otherwise
it is considered as equal. Finally, the Invariants I7 to I9 restricts the link between MessageScope
and Activity in that manner that if the operation of a MessageScope is ExchangeMode:Parallel, the
Activity must be of the form Parallel. If the operation is of type ExchangeMode:Loop, the Activity is
of type Loop, etc.

The operational semantics of an Activity is defined as follows: When an Activity is entered, it
becomes active meaning that the operation enter changes the variable active from false to true.
When an Activity is exited, it becomes inactive meaning that the operation exit changes the variable
active from true to false. Initially, the variables active, activityDone, and innerComplete are set to
false (see operation INIT).

96 4. Abstract Syntax and Semantics of DSML4MAS

Fig. 4.8: The specializations of a StructuredActivity

Moreover, we define the operations ExecuteEntry, Exit, and OverallExit, where the operation
ExecuteEntry invokes the InnerEntry operation possibly followed by invoking the exit operation of
the inFlow. Certainly, the inFlow is only aborted if the Activity has an ingoing ControFlow. The
operation InnerEntry is defined in the specializations of the concept Activity. The operation Exit
invokes the operation OverallExit followed by possibly invoking the next ControlFlow defined by
the outFlow variable. The operation OverallExist invokes again the operation InnerExit that is
again refined in the different specializations of an Activity (see for instance Section 4.7.13).

Finally, we define the operational sequence in terms of invariants using the timed trace no-
tation. Invariant I5 defines the operation sequence when an Activity is entered. The invariant
ensures that the operation ExecuteEntry occurs immediately when the Activity is entry. The seman-
tics defined by Invariant I6 refine the operation sequence when an Activity is exited. The invariant
ensures that an Activity is only exited if the work on the Activity has been completed. If this is the
case, the operation Exit is immediately invoked.

Section 4.7, up to now, mainly dealt with the basic functionalities of Plans used to describe the
internal behavior of Agents. Summing up, a Plan is composed of Activities that are linked through
ControlFlows and InformationFlows. As aforementioned, we distinguish between two sorts of
Activities, i.e. StructuredActivities and Tasks.

In the remaining section, we focus on the concepts of StructuredActivity and Task and their
specializations. The metamodel of the behavioral viewpoint focusing on complex activities is
depicted in Fig. 4.8. It includes the concepts StructuredActivity, Sequence, Split, Loop, Parallel,
Decision, and ParallelLoop, as well as Activity. Furthermore, this part of the behavioral metamodel
consists of the enumerations DecisionMode and SynchronizationMode.

4.7. Behavior Viewpoint 97

4.7.6 StructuredActivity

A StructuredActivity is an abstract class that introduces more complex control structures into the
behavioral viewpoint. It inherits from Activity, but additionally, includes a set of Activities. Thus,
the StructuredActivity allows structuring Activities recursively. The abstract syntax of StructuredAc-
tivity is as follows:

Definition 4.7.5 (StructuredActivity in PIM4AGENTS)

A StructuredActivity is given by a 8-tuple S = (name, steps, controlFlow, condition, localKnowledge,
inFlow, outFlow, messageScope), where:

• name: defines the name of the StructuredActivity
• steps: refers to the set of contained Activities
• condition: represents a set of boolean expressions to define the conditions under that the

StructuredActivity is executed

The variables controlFlow, localKnowledge, inFlow, outFlow, and messageScope are used in the
same manner as defined by Definition 4.7.4.

The semantics of StructuredActivity is given in Schema 4.7.5. Apart from the abstract syntax
given in Definition 4.7.5, it further introduces secondary variables like active that states that any
Activity contained by the StructuredActivity (i.e. expressed through the variable step) is active (cf.
Invariant I10). Moreover, the variables strartActivities and endActivities give the first (cf. Invariant
I1) and last Activities (cf. Invariant I2) with respect to the control flow of a StructuredActivity.
Both, the startActivities and endActivities only contain one element each (cf. Invariant I6). The
secondary variable steps+ represents all Activities contained by this StructuredActivity recursively
(cf. Invariant I3). Finally, activeControlFlows depicts all outgoing ControlFlows of a startActivity that
have either an empty condition or the condition evaluates to true (cf. Invariant I11). Moreover, the
variable completed is re-defined within the StructuredActivity, It is completed, iff all endActivities
are completed (see Invariant I12).

Other invariants are: The condition must at most consist of single logical expression (cf.
Invariant I7), and the steps (cf. Invariant I4) and controlFlows (cf. Invariant I5) are considered
as unique. In addition, Invariant I8 states that any controlFlow must only link two Activities that
are contained by the StructuredActivity. Similarly, Invariant I9 restricts the inFlow and outFlow
of a contained Activity to those ControlFlows that are part of the controlFlow variable. Finally, as
expressed by Invariant I13, a StructuredActivity contains at least three other Activities, i.e. the
startActivities, the endAtivities, and an Activity including a certain functionality.

4.7.7 Split

The concept of Sequence, as discusses in Section A.4.3, does not support the branching of control
flows. For exactly this purpose, we introduce the abstract concept of Split that is a point in the
body of a Plan, where a single thread of control splits into multiple threads of control. The abstract
syntax is defined as follows:

Definition 4.7.6 (Split in PIM4AGENTS)

A Split is given by a 10-tuple S = (name, steps, flows, condition, localKnowledge, inFlow, outFlow,
messageScope, traces, synchronizationMode), where:

• name: specifies the name of the Split

98 4. Abstract Syntax and Semantics of DSML4MAS

StructuredActivity

Activity

steps :P1 ↓ Activity©,condition :PB [Variables]
∆ [Semantic Variables]
active :B,startActivities,endActivities :P ↓ Activity
steps+ :P1 ↓ Activity; activeControlFlows :PControlFlow

startActivities== {s : steps | s ∈ Begin} [I1]
endActivities== {s : steps | s ∈ End} [I2]
steps+== steps∪ {s : {sa : steps | sa ∈ StructuredActivity},a : Activity | a ∈ s.steps+ • a} [I3]
∀s1,s2 : steps • s1.name = s2.name ⇒ s1 = s2 [I4]
∀ f1, f2 : controlFlow • f1.name = f2.name ⇒ f1 = f2 [I5]
#startActivities = #endActivities = 1 [I6]
#condition ≤ 1 [I7]
∀cf : controlFlow • cf .sink ∈ steps ∧ cf .source ∈ steps [I8]
∀s : steps • s.inFlow ⊆ controlFlow ∧ s.outFlow ⊆ controlFlow [I9]
active ⇒∃s : steps • s.active [I10]

activeControlFlows== {acf :∪{cf : startActivities • cf .outFlow} |∧
head acf .condition = true ∨ af .condition =∅} [I11]

completed ⇔∀e : endActivities • e.completed [I12]
#steps ≥ 3 [I13]

OverallExit =̂ exit
InnerEntry =̂∧

s : startActivities • s.enter

Schema 4.7.5: Class schema of StructuredActivity

• traces: defines the number of traces that must be synchronized
• synchronizationMode: defines the manner in which the threads of control are synchronized

The variables steps, flows, condition, localKnowledge, inFlow, outFlow, and messageScope are used
in the same manner as specified by Definition 4.7.5.

Split

StructuredActivity

synchronizationMode : SynchronizationMode; traces :N [Variables]

#∪{s : startActivities • s.outFlow} ≥ 2 [I1]
∀cf : (controlFlow \ activeControlFlows) • cf .condition =∅ [I2]
synchronizationMode = NofM ⇒ traces ≤ #activeControlFlows [I3]
synchronizationMode 6= NofM ⇒ traces ≥ 1 []
synchronizationMode = XOR ⇒ traces== 1 []

Schema 4.7.6: Class schema of Split

The semantics of a Split is as follows: Any concept of kind Split must have more than one outgoing
ControlFlow representing the split of execution control (cf. Invariant I1). Apart from the active-
ConotrolFlows, Invariant I2 states that any Split’s ControlFlow must have no further restrictions on
its guard. Moreover, if the synchronization mode of a Split is NoM, the number of traces must be

4.7. Behavior Viewpoint 99

smaller than the number of active ControlFlows (cf. Invariant I3). Two specializations of a Split are
distinguished, i.e., the Parallel and Decision concept.

4.7.8 Parallel

Apart from sequential execution, in some situations, it might be necessary to execute Activities in
parallel. The different execution branches are started and joined at some point in the body. Even
further, parallel processing Activities could depend on each other.

A Parallel in PIM4AGENTS is a point in a Plan, where a single thread of control splits into
multiple threads of control, which are executed in parallel at the same time, thus allowing Activities
to be executed simultaneously or in any order. The abstract syntax of Parallel is as follows:

Definition 4.7.7 (Parallel in PIM4AGENTS)

A Parallel is given by a 10-tuple P = (name, steps, flows, condition, localKnowledge, inFlow, outFlow,
messageScope, traces, synchronizationMode). The abstract syntax of these variables is given in
Definition 4.7.6.

The only restriction of a Parallel is that the condition of any startActivity’s outFlow must either be
satisfied or empty. This is expressed through Invariant I1 expressing that any outgoing ControlFlow
is active. The Object-Z specification of Parallel is given in Schema A.4.2.

4.7.9 Decision

Beside a Parallel, the concept of Decision also allows splitting of ControlFlow, where a Decision is
a specialization of StructuredActivity, which defines a location in a Plan where the ControlFlow
is split into two or more alternative branches. Based on a condition, at least one Activity of a
number of branching Activities must be chosen. Whether the Decision is exclusive–meaning that
only one of the alternative paths may be chosen or not—is expressed through the variable of the
enumeration DecisionMode.

Definition 4.7.8 (Decision in PIM4AGENTS)

A Decision is defined by a 11-tuple D = (name, steps, controlFlows condition, localKnowledge, inFlow,
outFlow, messageScope, traces, synchronizationMode, executionMode), where:

• name: represents the name of the Decision
• executionMode: defines the execution semantics of the Decision

The variables steps, controlFlows condition, localKnowledge, inFlow, outFlow, messageScope, traces,
and synchronizationMode are defined in accordance to Definition 4.7.6.

When a Decision is reached, it results in the dynamic evaluation of the conditions of its Begin’s
outgoing ControlFlows to realize a dynamic conditional branch. That is, the Decision whose
transition will be selected is chosen during the execution of the Plan. A static conditional branch
specifies that the execution path is already determined prior to the firing of the first transition.
This is contrary to a dynamic Decision where the conditions are only evaluated when the transition
to this Decision is being taken. This implies that the selection of a transition from this Decision
may depend on the Activities which have been executed up to this point.

100 4. Abstract Syntax and Semantics of DSML4MAS

If more than one of the conditions evaluates to true, a transition is selected non-
deterministically. If none of the conditions evaluates to true, the model is considered ill-formed.
A pre-defined else condition is available yielding a true value if all other transition conditions
yield false. A non-deterministic Decision can be implemented if all conditions on the outgoing
transitions have a true value.

Decision

Split

executionMode : DecisionMode [Variables]

executionMode = OR ⇒ #activeControlFlows ≥ 1 [I1]
executionMode = XOR ⇒ #activeControlFlows = 1 [I2]

Schema 4.7.7: Class schema of Decision

4.7.10 ParallelLoop

The Parallel’s branches need to be defined at design time, however, in some situations, it is
necessary to leave the number of branches open till run-time. Especially for these situations, the
construct of a ParallelLoop has been brought in. Its abstract syntax is defined as follows:

Definition 4.7.9 (ParallelLoop in PIM4AGENTS)

A ParallelLoop is defined by a 11-tuple P = (name, steps, controlFlows, condition, localKnowledge,
inFlow, outFlow, messageScope, traces, synchronizationMode, postCondition). These variables are
defined in accordance to Definition 4.7.7 and Definition A.4.2.

The semantics of ParallelLoop inherits the semantics of Loop and Parallel. The only neces-
sary refinement is that the number of activeControlFlows is restricted to 1. This is expressed
in Schema A.4.5.

The metamodel of the behavioral viewpoint covering simple atomic tasks is depicted in Fig. 4.9.
It includes the concepts Task, SendMessage, ReceiveMessage, InternalTask, InitiateProtocol, Wait,
Message, Protocol, and TimeOut (the last two were part of the interaction aspect). Furthermore,
it contains an enumeration called MessageType containing the literals Asynchronous and Syn-
chronous.

4.7.11 ExecutionMode

To choose exactly one execution path from many alternatives is certainly the simplest form of deci-
sion. However, there is a more complex case that needs to be covered by the plan vocabulary. The
enumeration ExecutionMode allows determining how the branches of a Decision in PIM4AGENTS

are executed.

ExecutionMode ::= OR |XOR

4.7. Behavior Viewpoint 101

OR mode allows choosing from one to all alternative paths at run time. Technically, it may
allow zero paths chosen, but this could be considered as an invalid situation, where the
ControlFlow stops unexpectedly.

XOR is defined as being a location in a Plan, where the flow is split into two or more exclusive
alternative paths. The pattern is exclusive in the manner that only one of the alternative
paths may be chosen for the Plan to continue.

A third alternative would be to execute the different branches in an "and" manner, where all paths
are executed at the same time. However, in this case, the concept of a Parallel would be the best
choice as it provides exactly the necessary operation semantics.

4.7.12 SynchronizationMode

The convergence of two or more threads of control into a single subsequent thread of control
requires a mechanism to specify how to synchronize the branches. In which manner to synchronize
the branches in PIM4AGENTS is expressed through the enumeration SynchronizationMode, which
offers the following opportunities of synchronization:

SynchronizationMode ::= OR |XOR |AND |NofM

OR is defined as being a location in a Split where a set of alternative paths is joined into a single
path.

XOR allows to synchronize exactly one path.

AND allows to synchronize all parallel paths. The challenge is that it will not be known ahead of
time how many paths will actually arriving (i.e. are active). Thus, in the case of an AND it
must be determined how many paths are activated, followed by synchronizing them without
waiting for any other path.

NofM allows the modeler to define how many of the incoming alternatives are necessary to con-
tinue. All remaining paths are stopped and not further needed to continue the ControlFlow.

4.7.13 Task

In PIM4AGENTS, a Task defines an abstract superclass, its specializations are considered as one-
shot behaviors in which a single action is performed. The formal definition of Task is as follows:

Definition 4.7.10 (Task in PIM4AGENTS)

A Task is defined by a 6-tuple T = (name, outFlow, inFlow, localKnowledge, messageScope, con-
trolFlow), where these variables are defined in accordance to Definition 4.7.4.

In contrast to a StructuredActivity, a Task can be considered as an atomic Activity. Thus, it does
not contain any Activity nor ControlFlow (the latter is expressed by Invariant I1 of Schema A.4.6).

102 4. Abstract Syntax and Semantics of DSML4MAS

Fig. 4.9: The specializations of a Task in PIM4AGENTS (partial).

4.7.14 Send

The order in which ACLMessages are exchanged between actors is part of the interaction viewpoint
discussed in Section 4.6. However, in order to complete the mechanism of exchanging messages,
we need to define the actions necessary for sending and receiving the particular Messages. In this
regard, the Send concept, as a specialization of Task, is a point within a Plan in which a Message is
sent. The abstract syntax of Send is given in Definition 4.7.11.

Definition 4.7.11 (Send in PIM4AGENTS)

A Send is defined by a 7-tuple S = (name, inFlow, outFlow, flows, messageScope, localKnowledge,
message, inInfoFlow, outInfoFlow), where:

• name: defines the name of the Send
• message: depicts the particular Message that is sent within this Send

The variables outFlow, inFlow, localKnowledge, messageScope, inInfoFlow, outInfoFlow, and con-
trolFlow are defined in accordance to Definition 4.7.10.

As specialization of Task, a Send is an atomic Activity that is responsible for sending the attached
Message. The formal semantic of Send is given in Schema 4.7.14. In addition to the variables
already declared in Definition 4.7.11, we specify the semantic variable messageIsSent which can be
considered as similar to completed.

4.7.15 Receive

In correspondence to the Send Activity, Receive is a specialization of a Task within a Plan in which
a Message is received.

Definition 4.7.12 (Receive in PIM4AGENTS)

A Receive is defined by a 7-tuple R = (name, inFlow, outFlow, flows, messageScope, localKnowledge,
message, inInfoFlow, outInfoFlow), where:

• name: defines the name of the Receive

4.7. Behavior Viewpoint 103

Send

Task

message : Message
∆

messageIsSent :B

completed ⇔ messageIsSent

INIT¬messageIsSent
sendMessage
∆(messageIsSent)

¬messageIsSent∧messageIsSent′

exit
∆(messageIsSent)

messageIsSent∧¬messageIsSent′

InnerEnter =̂ sendMessage
OverallExit =̂ exit

Schema 4.7.8: Class schema of Send

Receive

Task

message : Message
∆

messageIsReceived :B

completed ⇔ messageIsReceived

INIT¬messageIsReceived
receiveMessage
∆(messageIsReceived)

¬messageIsReceived∧
messageIsReceived′

exit
∆(messageIsReceived)

messageIsReceived∧¬
messageIsReceived′

InnerEnter =̂ receiveMessage
OverallExit =̂ exit

Schema 4.7.9: Class schema of Receive

• message: depicts the particular Message that is received within this Receive

The variables outFlow, inFlow, localKnowledge, messageScope, inInfoFlow, outInfoFlow and con-
trolFlow are defined in accordance to Definition 4.7.10.

The concrete semantics of Receive is depicted by Schema 4.7.9. Beside the variables introduces in
Definition 4.7.12, moreover, we introduce the semantic variable messageIsSent that is true, iff the
Receive task has been completed and the message successively sent.

Within a Plan, particular functionality needs to be expressed that cannot be specified in a
graphical manner. For these kinds of situations, the designer may want to directly specify the
necessary code. In PIM4AGENTS, this could be achieved through the concept of InternalTask that
is formally defined in Section A.4.7. Other specializations of Task are, for instance, Wait, Begin,
Fail, and End. Details on their abstract syntax and semantics are given in the Appendix at A.

104 4. Abstract Syntax and Semantics of DSML4MAS

Fig. 4.10: The environment viewpoint of PIM4AGENTS.

4.8 Environment Viewpoint

To provide a general modeling abstraction and general modeling technique for agent-based
environments is a very complex and difficult task. The main reason is that environments for
different applications can be very different in nature as they are somehow related to the underlying
technology (Zambonelli et al.; 2003). In order to conform to the definitions given in Section 2.1.7,
we consider anything that is not directly part of an agent or organization as part of the environment.
Hence, the environment may comprehend objects that can be either used by the agents, or
information that can be perceived. To provide a general metamodel for a multiagent-based
environment, we suggest to treat the environment in terms of resources like objects and services
available to the agent society. These resources can be accessed and changed by any entity having
access to them.

4.8.1 Environment

The Environment concept of PIM4AGENTS illustrates any kind of information or resource that can
be accessed and used by agents. Even if the core Environment emphasizes on modeling objects
and information, it can be easily extended to cover the various kinds of applicational settings.
(Hahn et al.; 2008b), for instance, demonstrated one option of extending the Environment by
semantic Web services. The abstract syntax of Environment is given in the following definition.

Definition 4.8.1 (Environment in PIM4AGENTS)

An Environment is given by a pair E = (name, resource), where name defines the name of the
Environment and resource specifies the set of Resources available to the agents situated in the
Environment.

4.8. Environment Viewpoint 105

The semantics of Environment is given in Schema A.5.1. The class schema inherits from the class
schema of NamedElement and includes the variable resource (cf. Definition 4.8.1). Furthermore,
the semantics of Environment is refined by Invariant I1 stating that any two Resources must be
unique, otherwise they are considered as equal. A specialization of the abstract Resource is the
concept of an Object that is treated in the next section.

4.8.2 Object

As stated before, agents do not exist in pure isolation. Instead, agents normally interact with
objects or other agents to solve particular tasks and goals. Objects are part of the environment
viewpoint and defined as follows:

Definition 4.8.2 (Object in PIM4AGENTS)

An Object is given by a 4-tuple O = (name, inheritsFrom, attribute, method) where

• name: defines the name of the Object
• inheritsFrom: describes a taxonomic relationship between Objects
• attribute: depicts the set of Attributes the Object has available
• method: depicts the set of Operations the Object has available.

Object

Type

operation :PMethod©; attribute :PAttribute©; inheritsFrom :PObject [Variables]
∆ [Semantics Variables]
inheritsFrom+ :PObject

inheritsFrom+ == inheritsFrom∪∪{i : inheritsFrom • i.inheritsFrom+} [I1]
∀a1,a2 : attribute • a1.name = a2.name ⇒ a1 = a2 [I2]
∀o1,o2 : operation •

(o1.name = o2.name ∧ #o1.parameters = #o2.parameters
∧ #o1.type= o2.type ∧∀ i : 1..#o1.parameters •

o1.parameters(i).name = o2.parameters(i).name
∧ o1.parameters(i).type= o2.parameters(i).type)

⇒ o1 = o2 [I3]
self 6∈ inheritsFrom+ [I4]

Schema 4.8.1: Class schema of Object

An Object owns a name as well as attributes and operations. Schema 4.8.1 specifies the static
semantic of Object. Beside the primary variables introduced by Definition 4.8.2, the semantic
variable inheritsFrom+ is introduced including the set of Objects this particular Object inherits from.
This relationship is defined as the union of the Object’s generalized Objects (expressed through the
inheritsFrom variable) and the inheritsFrom+ of these Objects. In addition, the Invariants I2 and I3
ensure that neither the attributes nor the operations of one and the same Object are ambiguous.
Finally, an Object must not be a specialization of itself (see Invariant I4). The abstract syntax and
semantic of the Operation and Attribute concepts are given in Section A.5.4 and Section A.5.3.

106 4. Abstract Syntax and Semantics of DSML4MAS

Fig. 4.11: The metamodel reflecting the deployment viewpoint of PIM4AGENTS.

4.9 Deployment Viewpoint

The views discussed so far mainly dealt with the type level. In terms of MDD and object-oriented
languages like UML, instances are normally introduced on a lower level of the abstraction hierarchy
compared to its type. However, in agent systems, for certain kinds of scenarios, it is certainly
helpful to introduce the particular agent instances of an agent type already at design time. These
scenarios (i.e. often referred to as closed MAS (Davidsson; 2001)) are normally characterized by a
fixed number of run-time instances, which do not change during execution. In order to introduce
run-time entities, we introduce the deployment viewpoint that defines (i) the run-time entities
and (ii) how they are grouped into social structures defined in the organization viewpoint (cf.
Section 4.4).

The metamodel of the deployment viewpoint is depicted in Fig. 4.11. It includes the con-
cepts AgentInstance, RoleBinding, DomainRoleBinding, ActorBinding, Membership, as well as
DomainRole and Actor from the role viewpoint (cf. Section 4.5).

4.9.1 AgentInstance

General purpose programming language like Java and more agent-based platforms like JACK and
JADE have in common that when implementing systems, the programmer first defines the different
kinds of types, followed by introducing the run-time instances and assigning the instances to their
types. By using PIM4AGENTS, these three steps could already be carried on the design level.

For this purpose, the concept of an AgentInstance is introduced that specifies the autonomous,
interactive entity in the running system. The main advantages of introducing run-time instances
during design-time is to facilitate the binding between instances and roles. Hence, AgentInstances
are directly assigned to either DomainRoles or Actors as role fillers. This assignment is done through
the concept of a Membership that directly refers to a certain DomainRoleBinding to express that
the particular AgentInstance currently plays the DomainRole referred by the DomainRoleBinding.
For specifying the binding between Actor and AgentInstance, the concept of ActorBinding (see
Section 4.9.4) is utilized. The abstract syntax of an AgentInstance is given in Definition 4.9.1.

4.9. Deployment Viewpoint 107

AgentInstance

NamedElement

agentType :↓ Agent; memberOf :PMembership; members :PMembership© [Variable]

∀m1,m2 : members • m1.name = m2.name ⇒ m1 = m2 [I1]
∀m1,m2 : members • m1.agentInstance = m2.agentInstance ⇒ m1 = m2 [I2]
∀a : agentType | a 6∈ Organization • members =∅ [I3]
∀a : agentType | a ∈ Organization •
∀m : members • m.domainRoleBinding.roleBinding ∈ a.requiredRole

∀m : members • self ∈ m.memberOf∧
{mem :∪{drb :∪{co : a.organizationUse • c.binding} • drb.membership}

• mem.agentInstance} ⊆ members [I4]

Schema 4.9.1: Class schema of AgentInstance

Definition 4.9.1 (AgentInstance in PIM4AGENTS)

An AgentInstance is given by a 4-tuple A = (name, agentType, memberOf, members), where:

• name: defines the name of the AgentInstance
• agentType: depicts the Agent type represented by the AgentInstance in the running system
• memberOf: refers to the AgentInstances of type Organization to which this AgentInstance is

bound to through DomainRoleBindings
• members: refers to the AgentInstances part of this particular AgentInstance of agentType

Organization.

As an Organization is a specialization of Agent, an AgentInstance may also refer to an Organization
as its type. In this case, for each of its members (i.e. AgentInstances), the particular AgentInstance
owns a Membership instance. The members are again either of type Agent or Organization. The
Membership concept is introduced in Section A.6.1.

If an AgentInstance’s agentType is of the kind Organization, it may specify several bindings—
one for each DomainRole its Organization requires. These DomainRoleBindings define which
AgentInstances are bound to which DomainRoles. The relationship between Membership and
DomainRole can either be determined at design time by explicitly assigning AgentInstances to
DomainRoles through the Membership concept or during run-time. For the latter case, particular
properties are provided by PIM4AGENTS (see Section 4.9.2).

The semantics of an AgentInstance is given in Schema 4.9.1. It includes—as specified by Def-
inition 4.9.1—the three primary variables agentType, members, and memberOf. The first two
invariants ensure that the members of an AgentInstance are unique with respect to their names
(Invariant I1) and agentInstances included (Invariant I2). In the third invariant, the members set
is restricted to the empty set if that AgentInstance is not of type Organization. In contrast, if an
AgentInstance is of type Organization, Invariant I4 ensures that (i) the Members refer to a Domain-
Role, which is required by the Organization, (ii) any Member is part of the AgentInstance’s members
and finally, (iii) the set of Members bound through one of the Organization’s Collaborations is a
subset of all Members referring to this AgentInstance through the memberOf attribute.

108 4. Abstract Syntax and Semantics of DSML4MAS

4.9.2 RoleBinding

As mentioned earlier, the principle idea behind role assignment is to relate agent instances to roles
in any form of agent grouping. In PIM4AGENTS, any kind of role assignment is done through the
abstract concept of RoleBinding that binds, roughly spoken, AgentInstances to DomainRoles and
Actors. The abstract syntax of the concept RoleBinding is given in Definition 4.9.2:

Definition 4.9.2 (RoleBinding in PIM4AGENTS)

A RoleBinding is given by a triple R = (name, min, max), where:

• name: defines the name of the RoleBinding
• min: specifies the number of role fillers (i.e. AgentInstances) that need to be bound at least
• max: specifies the number of role fillers that need to be bound at most.

A RoleBinding can be employed to directly assign AgentInstances to Roles. However, in some cases,
often referred to as open MAS, the agent instances are primary introduced at the run-time level,
which makes the direct assignment of them during design time impossible. However, even in this
case, restricting the number of role fillers during design time might be necessary. For this purpose,
we introduce the variables min and max, which prescribe the lower and upper bound of role fillers
that can be assigned during run-time. The class schema of RoleBinding is given in Schema 4.9.2

RoleBinding

NamedElement

min,max :N [Variables]

max ≥ min [I1]

Schema 4.9.2: Class schema of Binding

Both variables min and max are natural numbers, where max is greater or equal to min (cf.
Invariant I1). Based on the concept of RoleBinding, we further distinguish between the two spe-
cializations, i.e. DomainRoleBindings binding AgentInstances to DomainRoles and ActorBindings
binding Actors to DomainRoles.

4.9.3 DomainRoleBinding

The concept of DomainRoleBinding as specialization of RoleBinding is used to assign AgentIn-
stances to DomainRoles. As a specialization of RoleBinding, it specifies which Members—
representing the certain AgentInstances—are bound to which DomainRole. An informal definition
of DomainRoleBinding is specified as follows:

Definition 4.9.3 (DomainRoleBinding in PIM4AGENTS)

A DomainRoleBinding is given by a 5-tuple D = (name, membership, roleBinding, min, max), where:

• name: defines the name of DomainRoleBinding
• membership: illustrates the set of Memberships (i.e. AgentInstances) bound to the DomainRole

referred

4.9. Deployment Viewpoint 109

• roleBinding: refers to the DomainRole the AgentInstances are bound to

The variables min and max are used in the context of a DomainRoleBinding as specified in Defini-
tion 4.9.2.

The semantics of DomainRoleBinding is given by Schema 4.9.3. It inherits from the class schema of
RoleBinding and includes the variables membership, roleBinding, as well as min and max both of
the type Integer. Critically, for all Members of memberships, it is necessary that the Agent referred to
by the AgentInstance (i.e. through the agentType association) is also able to perform the particular
DomainRoleBinding’s DomainRole. This is expressed by Invariant I1 of Schema 4.9.3.

DomainRoleBinding

RoleBinding

membership :PMembership; roleBinding : DomainRoles

∀m : membership • roleBinding ∈ m.agentInstance.agentType.performedRole [I1]
max 6= 0 ⇒ max ≥ {m : membership • m.agentInstance} ≥ min [I2]

Schema 4.9.3: Class schema of DomainRoleBinding

The number of AgentInstances bound to a certain DomainRole is furthermore restricted through
the min and max variables. For instance, if max is greater than 0, Invariant I2 states that the
number of AgentInstances is smaller or equal to max and greater or equal to min. However, if max
is equal to 0, the number of AgentInstances should be considered as arbitrary number that must
be fixed at design time.

In the same manner as AgentInstances are bound to DomainRoles through the concept of
DomainRoleBinding, the concept of ActorBinding binds DomainRoles to Actors.

4.9.4 ActorBinding

For the purpose of assigning AgentInstances to Actors, we introduce the concept of ActorBinding
that binds Actors to DomainRoles, which are again bound to AgentInstances through Domain-
RoleBindings (cf. Section 4.9.3). This consequently means that AgentInstances bound to a Domain-
Role through the DomainRoleBinding concept will finally send and receive the ACLMessages the
particular Actors exchange in their active MessageFlows. The abstract syntax of ActorBinding is
given in the following definition.

Definition 4.9.4 (ActorBinding in PIM4AGENTS)

An ActorBinding is given by a 5-tuple A = (name, actor, binding, min, max), where:

• name: defines the name of the ActorBinding
• actor: represents the Actor to which AgentInstances are bound
• binding: identifies the DomainRoleBindings used in order to extract the AgentInstances bound

to the particular DomainRole.

The variables min and max are used in the context of an ActorBinding as specified in Definition 4.9.2.

110 4. Abstract Syntax and Semantics of DSML4MAS

The formal semantic of ActorBinding is given in Schema 4.9.4. The corresponding class schema
inherits from the class schema of RoleBinding and includes in its declarative part the two variables
binding and actor.

ActorBinding

RoleBinding

binding :PDomainRoleBindings; actor : Actors [Variables]
∆ [Semantic Variables]
instancesBound :PAgentInstance

instancesBound == {me :∪{drb : b.binding • drb.membership} • me.agentInstance} [I1]
max > 0 ⇒ max ≥ #instancesBound ≥ min [I2]
∀m : actor.messageSent •
∀ i : instancesBound •
∃p : i.agentType.potentialBehaviors, t : Send | t ∈ p.steps+ •

m = t.message.aclMessage∨
∃b : actor.providesBehavior+, t : Send | t ∈ b.steps+ •

m = t.message.aclMessage [I3, providesBehavior+ bereits teil der potentionalBaheivors]
∀m : actor.messageReceived •
∀ i : instancesBound •
∃p : i.agentType.potentialBehaviors, t : Receive | t ∈ p.steps+ •

m = t.message.aclMessage∨
∃b : actor.providesBehavior+, t : Receive | t ∈ b.steps+ •

m = t.message.aclMessage [I4]
actor.conflictsWith∩ {b : binding • d.roleBinding} =∅ [I5]

actor 6∈∪{b : binding • d.roleBinding.conflictsWith} [I6]

Schema 4.9.4: Class schema of ActorBinding

Moreover, the secondary variable called instancesBound is introduced that unions all AgentIn-
stances bound to the particular Actor through the DomainRoleBinding (see Invariant I1). Addi-
tionally, if max is greater than 0, Invariant I2 states that the number of instancesBound is smaller
or equal to max and greater or equal to min. However, if max is equal to 0, the number of in-
stancesBound is an arbitrary number that must not be fixed at design time. Invariants I3 and I4
ensure that any AgentInstance bound to an Actor through the ActorBinding concept has in fact the
ability to send and receive the particular Messages of the Interaction’s Actors, respectively. Finally,
Invariants I5 and I6 ensure that any ActorBinding does not violate the confictsWith relationship
between Actors and the DomainRoles bound.

4.10 Bottom Line

In this chapter, we discussed the abstract syntax and the formal semantics of DSML4MAS. For
defining the abstract syntax, we applied the principles of metamodeling and defined a platform
independent metamodel for MASs called PIM4AGENTS. In this respect, we separated PIM4AGENTS

into several viewpoints, each focusing on a particular aspect when designing a MAS. These aspects
include viewpoints for modeling agent, organizations, roles, interactions, behaviors, environments,
and deployment of agents. The resulting PIM4AGENTS metamodel can be considered as the
cornerstone to the development of (i) model transformations between the PIM level represented

4.10. Bottom Line 111

by PIM4AGENTS and the agent-based platforms situated on the PSM level and (ii) the model-driven
integration of SOAs as detailed in Chapter 8.

The formal semantics is defined by using the formal specification language Object-Z. The
resulting specification includes the abstract syntax as well as the denotational (static) and opera-
tional (dynamic) semantics. In particular, the denotational semantics is defined by introducing
additional secondary (i.e. semantic) variables and invariants, the operational semantics is defined
in terms of operations and invariants using the timed refinement calculus. The main advantage
offered by this approach is that the syntax as well as the static and dynamic semantics can be
integrated into one Object-Z schema class. This can hardly be achieved by the combination of
UML and OCL as the latter only allows to define the static semantics. By defining the formal
semantic model of PIM4AGENTS, existing Object-Z tools can be used for checking, validating and
verifying PIM4AGENTS models. This is certainly an important language feature to minimize or
even exclude errors on the abstract modeling level.

In addition, this formal specification is further utilized to provide the application developers
a clear and detailed understanding on how to use DSML4MAS correctly. Therefore, the formal
specifications defined with Object-Z is taken and manually transformed into a corresponding OCL
specification. This specification is in a second step integrated into the graphical IDE of DSML4MAS.
How this is done in practice is illustrated in the next chapter. By integrating the OCL statements
within the graphical editor, we could provide more information to the application developers
and assure that the generated models conform to the static semantics defined with Object-Z.
Hence, the formal specification of PIM4AGENTS is further used to improve the modeling quality of
DSML4MAS.

112 4. Abstract Syntax and Semantics of DSML4MAS

5. Methodology of DSML4MAS

One of the main problems that prevent AOSE from a broad application in main stream software
development is the lack of adequate methodologies and suitable tool support. Both are necessary
to support the unexperienced user to design the system in accordance to the vocabulary and
semantics given by the language. In the software engineering domain, a methodology defines
in general a guided procedure for using the (modeling) language to build software systems in a
systematic manner. The methodology’s procedure guides all involved roles (e.g. business analysts,
system architects, engineers, developers, etc.) in using the given technologies and modeling
techniques, and allows them to obtain the maximal benefits for the engineering process that
are inherently supported by tools. The guided procedures ideally cover the complete system
engineering process from initial design to system development and maintenance along with
detailed methods for the modeling and development of specific aspects. The procedures are
normally obtained from experiences gained from already completed system engineering projects.

The purpose of this chapter is to present the DSML4MAS methodology aiming at providing
guided procedures for supporting the system engineering process of DSML4MAS by using its
modeling techniques, tools and code generators. The DSML4MAS methodology includes proper
support for all phases of the overall MAS engineering process, i.e. from the analysis stage to the
final implementation of the system.

Structure of this Chapter Section 5.1 summarizes the basic components of any methodology.
Afterwards, Section 5.2 reports on the tool support provided by DSML4MAS. Section 5.3 then
introduces the concrete syntax of DSML4MAS followed by Section 5.4 illustrating the (semi-)
automatic model-driven methodology process. Finally, Section 5.5 concludes this chapter.

5.1 Basic Concepts of Methodologies

A methodology is, in accordance to (Ghezzi et al.; 2002), a collection of methods covering and
connecting different stages in a process. The purpose of a methodology is to prescribe a certain
coherent approach to solving a problem in the context of a software process by preselecting
and putting in relation a number of methods. At this, the methodology should be understood
as collection of methods covering and connecting different stages or phases in a process. A
methodology has two important components, (i) one component that describes the process
elements of the approach, and (ii) one component that focuses on the work products and their
documentation. AOSE methodologies mainly try to suggest a clean and disciplined approach to
analyze, design and develop MASs, using specific methods and techniques that are presented in
more detail in Chapter 10, when discussing the state of the art on AOSE modeling approaches.

In this dissertation, the term methodology denotes a set or collection of methods and re-
lated artifacts needed to support the model driven engineering of MASs. Our view on the term

114 5. Methodology of DSML4MAS

methodology as a collection of methods is aligned with e.g. (Blum; 1994): "Methodology: A body
of methods, meant to support all software development phases." and with (Estefan; 2007) who
defines a methodology in the area of Model Based Systems Engineering (MBSE) as: "A MBSE
methodology can be characterized as the collection of related processes, methods, and tools used
to support the discipline of systems engineering in a model-based or model-driven context".

The main difference between an agent modeling language and an agent-oriented methodology
is that a methodology builds upon the modeling language, but provides in addition mechanisms
that support the design, analysis, and development of MASs. This means in accordance to (Bordini
et al.; 2007a) that a methodology includes the following aspects:

Concepts define the vocabulary used by the methodology. As already mentioned earlier, for
describing and modeling agent systems, a single set of basic concepts is not yet univer-
sally accepted or known. So each methodology focuses on concepts considered as most
important. The concepts used in DSML4MAS are clearly defined by the abstract syntax given
by the PIM4AGENTS metamodel (cf. Chapter 4). The vocabulary along with the viewpoint
information is the foundation for creating models and notations.

Models and Notation are the artifacts generated during the analysis and design. These models
are depicted using some notation, often graphical. To define the notation and the different
kinds of diagrams used to determine the models, the concrete syntax of DSML4MAS is given
in Section 5.3, which is based on the concepts and viewpoints given by the PIM4AGENTS

metamodel.

Techniques usually formulated as heuristics guide the use through the existing phases in order
to refine the developed design. The techniques used in DSML4MAS are given by the model
transformations of the DSML4MAS model transformation architecture. As heuristics are not
part of this architecture, parts of the design have still to be done manually, even if the model
transformation architecture supports the automatic code generation.

Tool support is an essential feature of a methodology in order to support the user during the
various design phases. Tools can range from simple drawing packages, to more sophisti-
cated design environments that provide various forms of consistency checking. To provide
adequate tool support for DSML4MAS, we developed the DSML4MAS Development Environ-
ment (DDE) that includes the concrete syntax defining the graphical visualization, the static
semantics to check the conformance of the design, as well as the code generators, which are
given in Chapter 7. Section 5.2 is devoted to present DDE.

Process defines the order in which the different software development phases are applied. Any
process comprises several phases like the analysis phase, design phase, or the implementa-
tion phase. The process of designing in accordance to DSML4MAS is mainly defined through
the model transformation architecture. A detailed discussion on the DSML4MAS process
model is given in Section 5.4.

For a successful development of any visual modeling language, three facets are needed in accor-
dance to Quatrani (2000): A notation, a process, and a tool. Quatrani claimed that "You can learn a
notation, but if you don’t know how to use it (process), you will probably fail. You may have a great
process, but if you can’t communicate the process (notation), you will probably fail. And lastly, if
you cannot document the artifacts of your work (tool), you will probably fail". In order to develop
a powerful modeling language for MASs, DSML4MAS provides all of these facets (i.e. a notation,
process and tool) that are examined in detail in the forthcoming sections of this chapter.

5.2. Tool Support: The DSML4MAS’S Development Environment 115

5.2 Tool Support: The DSML4MAS’S Development Environment

Only little research has been done with respect to the development of adequate tools to support
the design of agent-based systems, which certainly hampers the breakthrough of MASs in industry.
In particular, integrated development environment support for developing MASs is rather weak,
and existing agent tools do not offer the same level of usability as state-of-the art object-oriented
IDEs (Luck et al.; 2006). Beside a graphical visualization, adequate tool support should also provide
facilities to support the domain experts with respect to testing, evaluation, and execution of the
generated artifacts. In the present section, related work in the area of agent-based modeling tools
is capitulated before presenting the core features of the DSML4MAS Development Environment
(DDE).

5.2.1 Related Work

Several tool-supported methodologies for developing MASs exist. Examples are PASSI with the
PASSI Tool Kit (PTK) (Cossentino and Potts; 2002) and ROADMAP with REBEL (Juan et al.; 2002).
These methodologies differ in their scope, tool support, and maturity. In this section, we want to
further discuss three tool supported agent-based methodologies that we consider the closest to
the DSML4MAS approach1.

In accordance to (Bresciani et al.; 2004), Tropos is a software development methodology
founded on the key concepts of agent-oriented software development by focusing on the re-
quirements analysis, design, and on model checking. The Tropos methodology bases on the
Tropos metamodel (see Section 10.2.7 for a detailed discussion) and covers the development
phases of requirements analysis, design, and implementation. Tools for goal analysis (GR-Tool, see
(Giorgini et al.; 2005)) and model checking (T-Tool, see (Fuxman et al.; 2001)) have been separately
implemented. The eCAT tool is used for automated testing. The modeling tool of the Tropos
methodology is called TAOM4e2 and provides code generation for JADE and Jadex. TAOM4e is
based on the Eclipse Modeling Framework (EMF3) and the Graphical Editing Framework (GEF4).
One important benefit of Eclipse’s Graphical Modeling Framework (GMF) (that is used for creating
DDE) over the combination of GEF and EMF is that its tooling component allows the model-driven
creation of a graphical editor based on the underlying metamodel.

In accordance to (Padgham and Winikoff; 2002a), Prometheus is an agent-oriented software
engineering methodology. Prometheus supports the whole agent-oriented software development
process from analysis to implementation. The Prometheus Design Tool (PDT5) (Thangarajah et
al.; 2005) offers diagrams for the high-level analysis of a system, the refinement with interaction
diagrams with Agent UML (AUML, (Odell et al.; 2000)), and the specification of processes. PDT
contains a cross checking tool that covers problems like inconsistency checking, identification of
dangling model elements, type checking, etc. Moreover, PDT provides code generation for JACK. It
seems that PDT was implemented as a usual Java Swing application. There also exists a plug-in for
the Eclipse platform but the integration seems to be very weak.

1 In Chapter10, these three methodologies are further evaluated in terms of their metamodel and interoperability
support.

2 http://sra.itc.it/tools/taom4e/
3 http://www.eclipse.org/modeling/emf/
4 http://www.eclipse.org/gef/
5 http://www.cs.rmit.edu.au/agents/pdt/

116 5. Methodology of DSML4MAS

According to (Pavón and Jorge; 2003), INGENIAS is a methodology for specifying MASs on a
platform independent level. The INGENIAS metamodel covers aspects such as organizations of
agents, agent interactions, and environments of MASs. The INGENIAS methodology is supported
by the graphical modeling tool INGENIAS Development Kit (IDK) (Gomez-Sanz et al.; 2008a)
providing code generation for JADE, where the INGENIAS Code Uploader extension supports
refactoring of the generated code. INGENIAS belongs to the few approaches that also focus on
code generation and implementation.

Instead of focusing purely on the analysis and design phases as most of existing related ap-
proaches do, the aim of the DSML4MAS methodology is to cover the whole design process from
analysis to executable code. At this, PIM4AGENTS presents an expressive language that can be
used to generate most parts of a MAS implementation. In our point of view, the automatic code
generation and suitable tool support are critical for the practical application of agent-oriented
software engineering. Our contribution consists of an expressive platform independent modeling
language and adequate tool support that guides the user in designing and implementing MAS.
The core features of DDE are as follows.

5.2.2 Features of the DSML4MAS Development Environment

DDE has been implemented using GMF and is based on a plug-in architecture. Hence, DDE
inherits many useful features from GMF, such as unlimited undo and redo, auto-arrange, snap-
to-grid, modeling assistance, a graphical outline, picture export to save the design in jpeg or png
formats, and many more. The following section summarizes the core features of DDE that were
not inherited by GMF, but base on the work presented in the upcoming chapters.

Model-driven approach DDE integrates a model-driven development process to close the gap
between design and code. Hence, models in accordance to PIM4AGENTS are transformed
to platform-specific agent models of JACK and JADE. Details of the DSML4MAS to JACK
transformation are given in Section 7.3. In a second step, source code for JACK and JADE
is generated using the model-to-text transformation engine of MOFScript. Finally, the
generated source code can be edited, executed and tested.

Reduction of Complexity To reduce the complexity of the MAS design is one of the main objec-
tives of the AOSE research area. For this purpose, DDE offers several views on a MAS. Each
view (e.g. agent view, protocol view, deployment view, etc.) focuses on a certain aspect and
abstracts from others. Changes that affect several views at the same time are automatically
propagated to the others. Details on the DSML4MAS’s specific views are given in Section 5.3.

Model validation Most of the design errors made when building MASs can already be captured at
the model level. DDE integrates the static semantics of DSML4MAS (cf. Chapter 4) utilized
to check the syntactic correctness of the created models. For this purpose, constraints based
on OCL have been manually derived from the formal Object-Z specification of DSML4MAS

to check the static semantics of the created models. These constraints are automatically
evaluated during design time and support the developer to produce well-formed models.
Details on the OCL specification are given in Section 5.3.2.

Integration of Service-Oriented Architectures MASs do not exist in pure isolation. Instead, they
need to be integrated and combined with other related technologies like for instance Service-
Oriented Architectures (SOAs). Therefore, in (Hahn et al.; 2008b), we demonstrated how to

5.3. Models and Notation: The Concrete Syntax of DSML4MAS’S 117

integrate Semantic Web services into DDE. The service description can be defined at design-
time and invoked by the run-time agents. Beside Semantic Web technologies, moreover, we
provide a model-driven integration of SOAs into MAS defined in accordance to DSML4MAS.
Chapter 8 is devoted to this integration.

Reusable Components DDE allows the user to reuse components (like plans, protocols, organi-
zational structures, etc.) across several projects. This reduces development time and cost,
and increases the quality of the components.

Refinement To support developers in specifying behaviors that conform to a certain protocol,
we provide refinement functionalities that transform protocols into behaviors. This kind of
refinement is part of the overall process guiding the design with DSML4MAS and is presented
in Chapter 6.

Extensibility DDE is seamlessly integrated into the Eclipse workbench. This implies that the
community can easily develop own extensions for DDE (e.g. transformations, views, model
validation, etc.) and plug them into the Eclipse workbench. Furthermore, the DDE directly
benefits from new developments around the very active Eclipse modeling project6 and other
Eclipse tools.

Open source DDE is launched as open source project. The source code is published under LGPL
and can be downloaded7 for free.

5.3 Models and Notation: The Concrete Syntax of DSML4MAS’S

The previous chapter dealt with the abstract syntax defined by the PIM4AGENTS metamodel
and the semantics of DSML4MAS. The next step toward a graphical editor for DSML4MAS is the
specification of the concrete syntax. This section explains how the concrete syntax of DSML4MAS

is specified. After choosing the graphical notation for the concepts and relations, GMF by Eclipse
is utilized to tie the domain concepts and their notation together.

5.3.1 Role of Notation

A common misunderstanding in the modeling world is the equality between a diagram and a
model. Important to note is that a diagram is not a model. Instead a diagram is considered as a
representation of some aspect or view of the model, using visual representation like lines, boxes,
etc. According to the OMG way of thinking, the model is the whole machine-readable description
of the system. Following this way of thinking, a modeling tool should not be only about the
manipulation of a diagram, but generate a model that conforms to its metamodel. Apart from the
model and metamodel, a diagram is from a user perspective the most important artifact (Booch;
1995).

Definition 5.3.1 (Notation, according to Booch (1995)

A notation serves as the language for communicating decisions that are not obvious or cannot be
inferred from the code itself, provides rich enough semantics sufficient to capture all important
strategic and tactical decisions and offers a concrete form for humans to reason about decisions.

6 http://www.eclipse.org/modeling/
7 https://sourceforge.net/projects/dsml4mas/

118 5. Methodology of DSML4MAS

In order to determine a reasonable notation for MASs, we decided to adopt existing notations
domain experts already use wherever possible, instead of re-inventing the wheel. However, as
DSML4MAS emphasizes on the complete development process from requirement specification to
implementation, none of the existing proposals of suitable agent-based notations fits to 100 %.
Hence, we extended existing notations from the agent world and mixed it with basic notations
from UML aiming at the development of a descriptive and distinguishable representation of the
DSML4MAS elements.

5.3.2 Nine Diagrams to Design Multiagent Systems

GMF provides the possibility of creating multiple diagrams for one graphical editor. In order to
reduce complexity when modeling with DSML4MAS, we split the design into various diagrams,
i.e. for each viewpoint of PIM4AGENTS at least one diagram is created. At this, the main intention
is to make the design the most intuitive for the user by reducing the complexity of the designing
process itself and thus allowing for separation of concerns. Even if the design is split into various
diagrams, all different diagrams within one project share the same model, which is an instance of
the PIM4AGENTS metamodel. This feature has two main advantages as it allows (i) cross-checking
among the diagrams and (ii) applying model transformations on one model. To illustrate how
to model with DSML4MAS in a graphical manner, we studied a very intuitive example, i.e. the
conference management system.

5.3.2.1 Illustrative Example: Conference Management System using DSML4MAS

In order to demonstrate the notation of DSML4MAS, throughout this thesis, we want to use the
development of an agent-based conference management system (CMS, (Padgham and Luck; 2007;
Zambonelli et al.; 2001)) as example that has already been used at the AOSE workshop in 2007 to
provide a comparison between different AOSE tools and methodologies like O-MaSE (DeLoach;
2007), Tropos (Morandini et al.; 2007) and Prometheus (Padgham et al.; 2007b). Beside the good
foundation we could base on, this case study is sufficiently familiar to most scientists, who already
submitted a scientific paper to a conference or workshop.

For our purposes, the committee of a conference consists of the program committee chair, the
program committee members, the reviewers, and the authors. These entities are now engaged in
the following activities of the conference management:

• Submission phase: The program chair sends a call for papers to researchers that might
be interested to contribute to the conference. If a researcher is interested in writing a
paper, he/she has to submit his/her contributions before the submission deadline elapses.
The author then receives an acknowledgment of his/her submission together with a paper
identification number.

• Reviewing phase: Once the submission deadline has passed, the program chair partitions the
set of papers received and assigns them to the program committee members in accordance
to their particular interests (possibly expressed through a bidding on papers the PC have a
particular interest on). The members of the program committee review the papers by either
contacting referees and asking them to review a number of the papers, or by reviewing the
papers themselves.

• Paper selection and author notification: The result of the reviews is collected by the pro-
gram committee members and is sent back to the program committee chair. Based on the
reviewers’ recommendations, the chair is then responsible for making a decision, which

5.3. Models and Notation: The Concrete Syntax of DSML4MAS’S 119

Fig. 5.1: The notation of the agent diagram. From left to right, the notations of agent, plan,
capability, and domain role are depicted.

paper to accept or reject. Once the decision has been made, the corresponding authors of
the papers are informed accordingly.

• Paper revising, final submission, and printing of proceedings: Authors who got an ac-
ceptance are now in charge of preparing a camera ready version, which again has to be
submitted before the final deadline elapses. Once all camera ready versions have been
received, the chairs produce a preface and finally prepare the draft proceedings, which are
sent to the publisher for printing.

The remainder of this section is devoted to discuss the notation (i.e. concrete syntax and graphical
editor) of the different diagrams by means of the CMS example. Therefore, we give an overview on
the different diagrams followed by a detailed presentation using the CMS as example.

5.3.2.2 Agent Diagram

Modeling Constructs of the Agent Diagram The agent diagram is especially useful for modeling
single agents types (which can get quite complex), but also for getting an overview of agent types
available, which is particular useful for complex use cases. It allows modeling the different kinds of
agent types, their knowledge, plans, capabilities as well as the domain roles that are performed by
the agents. Hence, it integrates constructs from different views like the role and behavior diagram.
The notation of the agent diagram is depicted in Fig. 5.1.

Apart from the domain roles directly introduced on this diagram, it furthermore, includes any
domain role that is either instantiated in the role diagram (cf. Section 5.3.2.5), multiagent system
diagram (cf. Section 5.3.2.11) or organization diagram (cf. Section 5.3.2.3). The same holds for
plans (i.e. behavior diagram (cf. Section 5.3.2.7)), which can be opened by double-clicking on the
plan icon.

Agent Diagram for CMS In the CMS use case, we distinguish two agent types, namely Researcher
and Senior Researcher. The main difference between both is that a Researcher, in contrast to Senior
Researcher, cannot be the chair of a conference. This is expressed by the fact that the Researcher
agent cannot perform the PC Chair domain role.

Fig. 5.2 illustrates the graphical representation of the described scenario. The different roles of
the CMS are modeled as domain roles that are performed by the agent types. For example, the
Researcher agent is permitted to the PC Member, and Author domain roles, whereas the Senior
Researcher can additionally perform the PC Chair domain role.

The behavior that is required by an agent to perform a domain role is specified by plans. For
example, the Evaluate Papers plan specifies what an agent has to do to when acting as PC Chair in
order to evaluate the received papers. In contrast, the Write Paper plan defines how the Author
domain role acts when writing a paper for a conference. Beside the WritePaper plan, the Researcher

120 5. Methodology of DSML4MAS

Fig. 5.2: The agent diagram of the CMS scenario.

Fig. 5.3: The notation of the organization diagram. From left to right, the notations of organization,
protocol, domain role, and plan are depicted.

agent can additionally use the ReviewPaper plan. How the body of a plan looks like is discussed in
detail in Section 5.3.2.7.

5.3.2.3 Organization Diagram

Modeling Constructs of the Organization Diagram The organization diagram allows modeling
the different kinds of organization types, their knowledge, plans, capabilities as well as domain
roles either required or performed by the organizations. Moreover, the domain experts can addi-
tionally introduce agent interaction protocols to indicate how an organization and its members
interact. Like in the case of the agent diagram, the domain expert can also make us of any domain
role that is modeled outside the organization diagram. The notation of the organization diagram
is presented in Fig. 5.3.

5.3. Models and Notation: The Concrete Syntax of DSML4MAS’S 121

Fig. 5.4: The organization diagram of the CMS scenario.

Organization Diagram for CMS Fig. 5.4 depicts the ConferenceOrganization which is a generic
organization type for conferences or workshops. It requires the domain roles representing the
program committee chair (PC Chair), program committee members (PC Member), and Author.
The two protocols CallForPapers and CallForReview specify how the organizational members
separated into domain roles interact. The binding between domain roles of organizations and
actors of protocols is specified as part of the collaboration diagram (see Section 5.3.2.4). Beside
the ConferenceOrganization organization, we furthermore introduce the ReviewOrganization
organization that is responsible for managing the preparation of reviews in the case that the
PC Member outsources the review to external Reviewers. Hence, like the Researcher agent, the
ReviewOrganization performs the domain role of the PC Member, but additionally requires the
domain roles of Reviewer and PC Member. So, the PC Member domain role is performed but also
required by the ReviewOrganization. The ReviewAssignment protocol is used to initiate the review
process by outsourcing reviews to external reviewers.

5.3.2.4 Collaboration Diagram

Modeling Constructs of the Collaboration Diagram The collaboration diagram allows model-
ing the different kinds of collaborations inside an organization. Any collaboration is defined in
accordance to the interaction they utilize and the bindings between the interaction’s actors and
the organization’s domain roles. This is done in the collaboration diagram by firstly selecting the
interactions this collaboration utilizes and secondly, defining the bindings (i.e. actor bindings
(cf. Section 4.9.4)) between the organization’s domain roles this collaboration makes use of and

122 5. Methodology of DSML4MAS

Fig. 5.5: The notation of the collaboration diagram. From left to right, the notations of domain
role binding (illustrated as port), collaborations including actor bindings, domain roles,
and protocols are depicted.

the actors of the selected interactions. The notation of the collaboration diagram is depicted in
Fig. 5.5.

Collaboration Diagram for CMS Fig. 5.6 depicts the two collaborations ReviewCollaboration
and SubmissionCollaboration of the ConferenceOrganization. The SubmissionCollaboration speci-
fies the bindings AuthorActor and ChairActor of the CallForPapers protocol and the domain roles
Author and PC Chair of ConferenceOrganization. The bindings are expressed through utilizing the
actor bindings AuthorActorAB and ChairActorAB and the corresponding domain role bindings.
Similarly, the ReviewCollaboration defines the bindings between the actors Member and Chair
of the protocol CallForReviews and the domain roles PC Member and PC Chair of ConferenceOr-
ganization. The numbers in squared brackets of the actor bindings express constraints for the
number of role fillers that can be assigned at design time and filled during run-time. For example,
the actor binding AuthorActorAB defines that at least one author must be bound. The maximum
number is open expressed through the 0. For detailed information on these constraints, we refer
to Section 4.9.3 and Section 4.9.4. As in the case of the domain role PC Chair, one domain role can
be bound to several actors of different protocols even within the same collaboration. For example,
actor bindings can be utilized to specify that one domain role is bound to an actor in the first
protocol and to another actor in a second protocol. This implies whoever performs the domain
role of that organization has to play the according actors in these bound protocols.

5.3.2.5 Role Diagram

Modeling Constructs of the Role Diagram The role diagram allows modeling of the different
kinds of roles, either domain roles or actors defined within the interaction diagram, and how they
relate to each other. The relationship between roles could be either of the form generalization,
aggregation, or conflict. Moreover, the capabilities and knowledge a domain role has available can
be designed within this diagram. Again, any capability, domain role, or plan that is modeled as
part of this diagram is also represented in any other diagram that makes use of these concepts.

Role Diagram for CMS Fig. 5.7 shows the domain roles of the CMS scenario. The role diagram
distinguishes between the domain roles Author, PC Chair, Reviewer, and PC Member, where PC
Member is a specialization of Reviewer. The specialization relationship has the semantics (cf.
Section 4.5.1) that any agent performing the PC Member role could also act as a Reviewer. Hence,
the knowledge as well as capabilities are inherited. Apart from the generalization relationship, the
aggregation relationship has the semantics that the domain role is composed of the aggregated
domain roles. In the case of an organization, this means that the organization performs the
domain role to the outside, but internally requires the aggregated roles.

5.3. Models and Notation: The Concrete Syntax of DSML4MAS’S 123

Fig. 5.6: The collaboration diagram of the CMS scenario.

Beside the relationships between the domain roles, as part of the role diagram, the domain expert
can define which knowledge and capabilities are required and provided by the domain roles.
In the CMS scenario, the Author domain role provides a Submit Paper capability including the
Submit Paper plan, the PC Chair provides the ManageConference capability which includes the
SendCFPAction. Finally, the Reviewer domain role provides the Write Review plan through the
capability Prepare Review.

5.3.2.6 Interaction Diagram

Modeling Constructs of the Interaction Diagram The interaction diagram allows modeling of
the actors part of an interaction and the ACL messages they exchange. In case of a protocol, the
system designer can, moreover, define in which order these messages are exchanged. This is done
by modeling the message flows and its message scopes along with their exchange modes. The
notation of the interaction diagram is depicted in Fig. 5.8.

124 5. Methodology of DSML4MAS

Fig. 5.7: The role diagram of the CMS scenario.

Fig. 5.8: The notation of the interaction diagram. From left to right, the notations of actor, in-
cluding a message flow, message scope including an ACL message, and time out are
depicted.

Interaction Diagram for CMS Fig. 5.9 shows the CallForPapers protocol of the CMS example. It
describes the interaction between the ChairActor representing the program committee chair and
the AuthorActor representing potential authors. The protocol is initiated by the ChairActor actor
by sending the CallForPaper ACL message (performative CFP) to the AuthorActor. This means that
the CallForPaper is sent to all candidates that are hidden (i.e. bound) behind this actor. There
exists candidates that send a submission (represented by the Submitter actor) and candidates that
do not submit (represented by the Denier actor). The protocol terminates for all role fillers of the
Denier actor.

The PaperDeadline is the timeout between sending the CallForPaper message and receiving
the submissions expressed by the SubmitPaper message. If the timer elapses, the ChairActor sends
a RejectPaper message to all submitters that were rejected (represented by the Rejected actor) and
an AcceptPaper message to all role fillers that were accepted (represented by the Accepted actor).

5.3. Models and Notation: The Concrete Syntax of DSML4MAS’S 125

Fig. 5.9: The CallForPapers protocols of the CMS scenario.

Fig. 5.10: The CallForReviews protocols of the CMS scenario.

All role fillers that receive an acceptance notification have to submit the camera ready version
before the FinalVersionDeadline elapses.

126 5. Methodology of DSML4MAS

Fig. 5.11: The notation of the behavior diagram. From left to right, the upper row includes the
notations of begin, end, knowledge, internal task, wait, receive, and send. The lower low
presents the notations of sequence, parallel, parallel loop, loop, and decision.

Fig.5.10 illustrates the CallForReviews protocol of the CMS scenario. The purpose of this protocol
is to assign submitted papers to reviewers. Therefore, it includes the actors Chair representing
the program committee chair and Member representing the program committee members. The
protocol starts with a CallForReview ACL message, which is either rejected by the Reject actor or
accepted by the Accept actor which are both subactors of the Member actor. In the case of the
latter, the Chair assign a paper to the Accept actor, who has to send the review back within the
duration of the Deadline time out.

5.3.2.7 Behavior Diagram

Modeling Constructs of the Behavior Diagram The behavior diagram allows modeling of plans
in a workflow-like manner, i.e. the different types of activities can be combined using control as
well as information flows. To reduce the complexity of the plan’s body, the system designer may
introduce sub-plans that are used to hide information. Beside the process of a plan, moreover, the
system designer can define the pre- and post-conditions of a plan in the properties view of the
behavior diagram. The notation of the behavior diagram is depicted in Fig. 5.11.

Behavior Diagram for CMS Fig. 5.12 depicts the SubmitPaper plan, which is provided by the
Author domain role. It implements the behavior of the AuthorActor actor and its sub-actors of
the CallForPapers protocol from Fig. 5.9. In the first phase, the plan collects all CallForPaper
messages in parallel. This is expressed through the parallel loop called ReceiveRequest. The task
used to receive the message is called ReceiveCFPAction and part of ReceiveRequest. DSML4MAS

distinguishes between ACL messages that are used to specify the message sequences of a protocol
and the actual messages that are sent and received by plans. As protocols are reusable components,
ACL messages do not specify the resources that are transmitted by them. If a message should be
sent by a plan (e.g. the CFPMessage from Fig. 5.12), we have to introduce a new message that refers
to an ACL message of a protocol (here the CallForPaper) and assign some application specific
resources to it. In the CMS example, the program committee chair sends information about the
conference, the deadlines, etc.

After receiving all CallForPaper messages, the agent has to decide whether to submit a paper
or not. This is done in the SubmitPaper? decision. If the agent decides to submit a paper, at first,
the called behavior is invoked that refers to the WritePaper plan. Otherwise, the plan terminates.

The internal task WritePaper is a kind of black box behavior that is not further refined at the
model level. The behavior has to be implemented after generating the source code. For example,
one could open a dialog box for the researcher to select the paper he/she wants to submit to the
conference.

5.3. Models and Notation: The Concrete Syntax of DSML4MAS’S 127

Fig. 5.12: Behavior diagram of the SubmitPaper behavior.

Either the author submits a paper or the plan terminates. If the author submits a paper, he/she
has to wait for either a RejectMessage or an AcceptMessage from the program committee chair. The
ReceiveReject and ReceiveAccept tasks are executed in parallel with XOR semantics, which can
be set in the properties view of the parallel task. If the author receives an AcceptMessage, he/she
has to finalize the paper (FinalizePaper task) and send it back to the program committee chair
(SendFinalVersion task).

5.3.2.8 Environment Diagram

Modeling Constructs of the Environment Diagram The environment diagram allows modeling
of any kind of either inside or outside the MAS existing resources that an agent may have access to

128 5. Methodology of DSML4MAS

Fig. 5.13: The environment diagram of the CMS sceanrio.

achieve a certain task. The resources are modeled in an entity-relationship manner, where each
resource is modeled as entity that can have relations to other entities.

Environment Diagram for CMS Fig. 5.13 depicts the environment diagram of the CMS scenario.
It includes three objects, i.e. CallForPaper, Paper and Review used to store information. The
CallForPaper object, for instance, is sent within the CallForPaper message of the SubmitPaper
plan. The objects may have relations to other objects or to the primitive types Integer and String.

5.3.2.9 Deployment Diagram

The deployment diagram allows defining implementation specific information by offering means
for modeling (i) the different agent instances that represent the run-time instances when executing
the design and (ii) the way they are bound to organizations through the domain role binding and
the membership concept. The assignment to organizations is done by linking the particular agent
instance to the agent instance implementing the corresponding organization. By drawing this
link, the designer is asked, which domain roles the member agent instance should perform in this
organization instance context.

5.3.2.10 Deployment Diagram

Modeling Constructs of the Deployment Diagram The deployment view and its concepts are
optional, i.e. concepts like AgentInstance do not need to be defined for executing the model
transformations. However, there might be situations where the number of run-time instance
is already known at design time in which case these instances can directly be defined using
DSML4MAS. Details on how to use the deployment diagram are given be the process model of
DSML4MAS in Section 5.4.2.2.

5.3. Models and Notation: The Concrete Syntax of DSML4MAS’S 129

Fig. 5.14: The deployment diagram of the CMS scenario.

Deployment Diagram for CMS Fig. 5.14 shows the deployment diagram of the CMS example.
We modeled an instance of the ConferenceOrganization, called ATOP’09. Furthermore, there are
several agent instances, i.e., Klaus and Jim both of type Senior Researcher and Christian of type
Researcher. The domain role an agent instance performs in an organization instance is specified
by the membership concept which is visualized as a link.

5.3.2.11 Multiagent System Diagram

Modeling Constructs of the Multiagent System Diagram The multiagent system diagram gives
an abstract overview of the whole MAS system by allowing to model (i) the different types of
agents and organization part of the systems, (ii) the domain roles they perform or require, (iii)
the messages that can be exchanged by the entities involved as well as (iv) the environments
that can be accessed by the agents, organizations or roles. The abstract design made within the
multiagent system diagram is also available in the more concrete agent diagram (cf. Section 5.3.2.2),
organization diagram (cf. Section 5.3.2.3) and role diagram (cf. Section 5.3.2.5). The details on
the different environments can be accessed on double-clicking the particular environments icons.
The notation of the MAS diagram is depicted in Fig. 5.15.

Fig. 5.15: The notation of the MAS diagram. From left to right, the notations of agent, organization,
domain role, message, and environment are depicted.

Multiagent System Diagram for CMS Fig. 5.16 depicts the MAS diagram of CMS. It contains
an overview on the present (i) organizations ConferenceOrganization and ReviewOrganization,
(ii) the agents Researcher and SeniorResearcher and (iii) domain roles Authors, PC Member, PC

130 5. Methodology of DSML4MAS

Fig. 5.16: The MAS diagram of the CMS scenario.

Chair, and Reviewer that are either performed or required by the agents and organizations, re-
spectively. Moreover, it includes the environment ConferenceEnvironment and the messages (i.e.
Review, CallForPaper, CallForReview, Accept, PaperToReview, Reject, CameraReady, RejectPaper,
AcceptPaper, and SubmitPaper) that are exchanged between the entities involved.

5.3.3 Model Validation at Design-Time

Even if the graphical editor and the concrete syntax of DSML4MAS give the user an intuitive
impression on how to use the language correctly, the generated artifacts are rarely complete with
respect to the requirements that are needed for full code generation and the automatic execution.
As argued before, a formal semantics increase the domain experts’ understanding on how to model
correctly in terms of ensuring that all requirements are met for full automatic code generation.
Even when agent-based code is generated, mechanisms for full testing and validation are usually
required, which consume a significant chunk of development effort. This effort can be decreased
if the validation and testing facilities base on a formal semantics that can already be used at design
time to test and validate the generated design.

In order to give the notation a clear semantics, which is one of Booch’s key issues when
developing an assistant notation, we make use of the formal semantics defined with Object-Z (cf.
Chapter 4) in the graphical development environment of DDE to support validating and testing at
design time. For this purpose, we manually transform the static semantics defined by the Object-Z
specification into OCL statements that can be validated by the GMF environment at design time.
How this manual transformation is done is described in (Roe et al.; 2003). This allows us to provide
tool support for testing, evaluation, and execution of the designed artifacts. Furthermore, GMF
provides different error levels and validation modes that further improve the mechanisms for
testing and validating the design artifacts.

Error Levels For every rule in GMF, it is possible to specify an error message and an error level.
There are three levels: ERROR, WARNING, and INFO. The according messages are displayed in
the Problems View of Eclipse. Moreover, icons are displayed in the editor to highlight the
elements that violate a constraint.

5.3. Models and Notation: The Concrete Syntax of DSML4MAS’S 131

context PIM4Agents ::Agent :: Agent inv:

self.behavior

-> union(self.capability

-> collect(c | c.behavior))

-> union(self.performedRole

-> collect(r | r.providesCapability

-> collect(c | c.behavior)))

-> size() > 0

Listing 5.1: Partial semantics of the agent view

Validation Mode Two validation modes exist for constraints. Live validation means that the
constraints are always evaluated if something changes in the model. Manual validation, in
contrast, means that the developer has to manually invoke the validation procedure.

5.3.3.1 Object Constraint Language

The Object Constraint Language (OCL) is a semi-formal constraint language that allows specifying
constraints, which cannot be directly expressed within UML or metamodels. OCL gained much
interest in the research community and industry due to the fact that OCL is one light-weighted
formal method for object-oriented systems. Others are, for instance, Object-Z, Alloy, the Java Mod-
eling Language (JML, (Gary T. Leavens et al.; 1999)). Tool support exists for both run-time checking
of OCL specifications (e.g. (Demuth et al.; 2005)) as well as for static checking of metamodels
against an OCL specification (e.g. USE (UML-based Specification Environment, (Gogolla et al.;
2007), Dresden OCL Toolkit, (Demuth; 2004)). OCL was advertised with the slogan Mathematical
Foundation, But No Mathematical Symbols (Warmer and Kleppe; 2003) and is written using a
concrete syntax that is inspired by object-oriented programming languages.

OCL can be used to constraint a UML model or metamodel in five different manners: A
constraint defines a restriction on parts of the metamodel its models must conform to. An invariant
gives a constraint that must always be met by all instances of a class. A pre-condition defines a
constraint that must be true before the execution of an operation. Analogously, a post-condition
defines a constraint that must be true after the execution of an operation. Finally, a guard condition
specifies a constraint that must be true before a transition in a process model fires.

In addition to the capabilities of OCL to constraint and validate the design, it is also a building
block of model transformation languages like ATL or QVT. There, OCL is used to explore the target
and source models and to define the model mappings.

5.3.3.2 Partial OCL Specification of PIM4AGENTS

As illustrative example for demonstrating how to make use of the Object-Z specification, we
select parts of the static OCL semantics of the agent view. Invariants I1 and I2 of the Object-Z
specification of an agent require each agent to possess at least one behavior in order to act in an
autonomous manner or to react to its environment. Listing 5.1 depicts the corresponding OCL
constraint.

132 5. Methodology of DSML4MAS

5.4 Process: DSML4MAS’S (Semi-) Automatic Model-Driven
Methodology

Several definitions of the term software process exist. In this dissertation, we mainly focus on
software engineering processes. The probably most cited definition was given in (Humphrey;
1989). Humphrey (1989) defines a software engineering process "as the total set of software
engineering activities needed to transform user’s requirements into software". Hence, the process
of a methodology normally includes steps of actions that are undertaken during the development,
potentially by different users playing different roles in the complete software development process.
Any software engineering process aims at (i) facilitating and supporting the development of
high-quality software more quickly and at lower cost and (ii) analyzing, configuring, reusing, and
executing the developed software. In the remainder of this section, we start by examining basic
process models. Afterwards, built upon these categorizes, we present the model-driven software
process of DSML4MAS.

5.4.1 Basic Process Models

To give the interested reader a basic understanding of process models, in the remainder of this
section, basic approaches are explored that have been developed and applied in the (Agent-
oriented) Software Engineering community in recent years.

5.4.1.1 Waterfall Model

The Waterfall model (Royce; 1987) is the probably simplest form of a process model, as the process
itself is defined in a top-down manner, where the output of one step serves as the input of the next
step. The Waterfall model distinguishes between five phases that are executed during the software
development process: the analysis of the problem domain, designing the software system that
solves the problem, coding the design into a particular programming language, testing the code
with respect to the requirements, and finally the maintenance of the system.

Prominent AOSE methodologies based on the waterfall model are, for instance, Gaia (cf.
Section 10.2.4), Prometheus (cf. Section 10.2.10), or AOR (cf. Section 10.2.2).

5.4.1.2 Spiral Model

The Spiral model (Boehm; 1986) defines an iterative development cycle in which inner cycles
denote early system analysis and prototyping, and outer cycles represent the classic software life
cycle. Each cycle consists of four phases: In the first phase the objectives are determined, followed
by the second phase, which is responsible for evaluating the risks of the objectives. The third phase
consists of the steps of developing and verifying and, finally, the fourth phase is used to evaluate
and review the previous steps.

A prominent AOSE methodology based on the spiral model is MAS-CommonKADS (Peyravi
and Taghyareh; 2007). Other well-known process models are, for example, the evolutionary and
incremental process models of Tropos (cf. Section 10.2.7) or Ingenias (cf. Section 10.2.9).

Another process model category is the transformation model in which the software develop-
ment process is considered as a sequence of steps that are (automatically) transferred into the next

5.4. Process: DSML4MAS’S (Semi-) Automatic Model-Driven Methodology 133

Fig. 5.17: The overall framework of EPF adopted from the EPF web-site.

sequent steps. An interactive version of this process model is used to formally describe the process
model of DSML4MAS. To formally define the DSML4MAS methodology process, the Eclipse Process
Framework is exploited.

5.4.2 Model-Driven Process Model for DSML4MAS

The main difference between a methodology and a pure modeling language is the methodology’s
process that defines in which manner the model should be designed. DSML4MAS can be used
in both manners, either as pure modeling language or by applying the process provided by the
methodology. In the former case, the application developers can freely choose in which order the
different diagrams are completed. In the latter case, the semi-automatic process guides the design
by automatically generating parts of the design.

5.4.2.1 Eclipse Process Framework

The Eclipse Process Framework (EPF8) is an open method engineering platform under the umbrella
of Eclipse that provides an environment for process modeling. It implements existing OMG
standards for MDD and is continuously developed with respect to newly emerging standards. In
its current version (v. 1.5), EPF builds upon the Unified Method Architecture (UMA, (Ashbacher;
2008)), which is a UML metamodel that defines the well-established constructs related to software
engineering and methodologies. EPF mainly follows two objectives:

• To provide an extensible framework and exemplary tools for software process engineering
that include method and process authoring, library management, configuring and publish-
ing of processes.

8 http://www.eclipse.org/epf/

134 5. Methodology of DSML4MAS

• To provide exemplary and extensible process content for a range of software development
and management processes supporting iterative, agile, and incremental development, and
applicable to a broad set of development platforms and applications.

As illustrated in Fig. 5.17, the conceptual structure of the EPF framework consists of the parts
Method Content that contains the description of the static elements of engineering methodologies,
and Process that defines the elements for assembling method content elements into smaller and
larger methodologies that are defined in terms of processes. EPF defines four constructs for
defining the Method Content:

• Work Products describe the object that results from conducting a guided procedure for
methodological development; this can be an artifact or any other type of resulting object

• Roles describe the persons or positions that are involved in a software engineering process
with respect to their capabilities and duties

• Tasks are the basic element for defining methodologies, providing a detailed guided proce-
dure for creating a work product; a task defines the necessary development steps in form of
natural language, and identifies the resulting work product as well as the involved roles

• Categories are a means to categorize the method content for specific application.

In EPF Processes, the Method Content is organized into processes that define the procedures for a
software engineering process. Using descriptors for the method content, EPF distinguishes:

• Capability Patterns define partial processes that are reused in several methodologies for
actual software engineering projects. They consists of tasks and defines a process for them.

• Delivery Process describes the actual methodologies for individual software engineering
projects, consisting of tasks and capability patterns along with an overall process definition.

EPF implements the Software Process Engineering Metamodel (SPEM 2.0, (Object Management
Group; 2008c)), which typical defines concepts of a process (process, phase, role, model, etc)
that can be used to construct models that describe software engineering process in general and
model-driven methodology processes like in the case of DSML4MAS in particular. The SPEM 2.0
metamodel has been approved in April 2008 as a formal specification of the OMG.

5.4.2.2 DSML4MAS Process

In DSML4MAS, we distinguish between several artifacts that are either automatically or manually
produced during the phases of the semi-automatic process. These work products include the
PIM4AGENTS, JackMM, and JadeMM models that are used as input and output models for the
various model transformations along with the different diagram types of PIM4AGENTS (i.e. agent
diagram, organization diagram, collaboration diagram, role diagram, interaction diagram, behav-
ior diagram, environment diagram, and deployment diagram) presented in Section 5.3.2.1. These
diagrams types are instantiated during the DSML4MAS process phases, which are all modeled as
capability patterns.

The (semi-) automatic process proposed for DSML4MAS is illustrated in Fig. 5.18. The process
starts with the analysis phase, which results in the artifacts interaction diagram and environment
diagram. The interaction diagram generated by the (business) analyst is used as input for the en-
dogenous model transformation that produces initial role and behavior diagrams, further refined
in the architectural specification phase. However, this only happens, if an interaction has been
designed, otherwise, the architectural specification phase is directly performed, without executing
the endogenous model transformation. After refining the roles, the multiagent system, the agent

5.4. Process: DSML4MAS’S (Semi-) Automatic Model-Driven Methodology 135

Fig. 5.18: The (semi-) automatic process of DSML4MAS.

and organization diagrams, the DSML4MAS application developer has the option either to per-
form further analysis or to continue with the detailed design. In the latter case, the collaboration
diagram is instantiated and the behavior diagram further refined based on the skeleton generated
by the endogenous model transformation.

After the detailed design phase, the application developer could either refine the steps done in
the analysis phase and architectural specification phase or start with the implementation. This
could be done by the role of the programmer in two ways: The first option is to define a deployment
of DSML4MAS in the deployment phase, the second option is to directly go to the implementation
phase and do the deployment on one of the execution platforms. After deciding to start with the
implementation, there is no option to go back to one of the previous phases. If the architecture or
detailed design would change, this would mean that the designer has to jump into the particular
phase again, with the option to skip phases, if the design requirements of a certain diagram have
not changed.

Analysis phase The main objective of the analysis phase is to identify the actors involved in the
software system and the interaction between them to manifest the relationships among them.
This is done through the interaction diagram. Moreover, the analyst already details the kind of
environment in terms of resources the actors (i.e. agents) may apply to meet their objectives. This
is achieved by using the environment diagram. Based on the interaction defined, parts of the re-
maining phases can be generated in a semi-automatic manner by the endogenous transformation
(see Chapter 6). This transformation works on the interaction and environment viewpoints and

136 5. Methodology of DSML4MAS

(a) The details of the analysis phase (b) The details of the architectural specification
phase

Fig. 5.19: The EPF process of the analysis phase and architectural specification phase.

generates the messages part of the MAS, the domain roles of the architectural design phase, as
well as parts of the internal behaviors of the detailed design phase.

The EPP process of the analysis phase is depicted in Fig. 5.19(a). The process includes the
tasks create PIM4Agents interaction and create PIM4Agents environment that can be
performed in parallel as they are independently in terms of input and output. An interaction
(protocol) should be understood in this context as mechanism to define the abstract use case that
will be refined in the further steps. The task create PIM4Agents environment is responsible for
defining the resources (e.g. objects and services) available outside the MASs. How these resources
are used by the agents and organizations will be indicated in the architectural specification phase.

Architectural specification phase The DSML4MAS architectural specification phase involves
completing the MAS by modeling the agents and organizations. This is mainly achieved through
the agent and organization diagram. Parts of the domain roles are automatically introduced in this
stage by the endogenous transformation. Further domain roles can also be brought into the design
and linked to the already existing ones through the specializationOf relationship (cf. Section 4.5.1).
Also, any kind of resource a domain role may require and provide can be added in the role diagram.
Domain roles can also be introduced on the organization and agent diagram.

The EPF process of the architectural specification phase is depicted in Fig. 5.19(b). This pro-
cess includes the task create PIM4Agents role, create PIM4Agents multiagent system,
create PIM4Agents organization type, and create PIM4Agents agent type. The orga-
nization and agent types are introduced in the multiagent system view and later on refined in
parallel in the agent and organization diagram through the tasks create PIM4Agents agent

type and create PIM4Agents organization type, respectively.

5.5. Bottom Line 137

Fig. 5.20: The EPF process of the detailed design phase.

Detailed design phase Having finished the architectural specification phase, the developers can
now move to the next step of DSML4MAS, the detailed design phase. At this stage, as part of the
behavior diagram, the developers need to extend the generated plans with private information,
but also need to specify new plans characterizing the internal behavior, which do not depend
on any interaction. Apart from detailing the internal behaviors, the designer may specify which
actors of the interaction defined in the analysis phase is played by which domain role in a certain
organizational context. This is done through the collaboration diagram.

The EPF process of the detailed design phase is depicted in Fig. 5.20. This process includes
the tasks create PIM4Agents collaboration and create PIM4Agents behavior that are
realized in a sequential manner.

Deployment phase After the detailed design has been completed, the designer (i.e. programmer)
may instantiate the agent instances that are involved in running system along with the bindings
between them and the domain roles defined in the architectural specification phase. For this
purpose, the developer establishes in the deployment diagram (i) the membership between agent
instances and (organizational) agent instances and (ii) the domain role that is played in this
organizational context.

Implementation phase When the design made with DSML4MAS is complete, as final step, the
programmer may execute the model transformations integrated into DDE to JACK and JADE. This
generates code, which can finally be refined within the underlying agent programming language.
The details of this phase are discussed in Section 7.4.

5.5 Bottom Line

One of the main problems that prevent AOSE from a broad application in main stream software
development is the lack of methodologies and suitable tool support. In this chapter, we demon-
strated the methodology of DSML4MAS guiding the application developers through the different
phases of the design, from requirements to implementation. For this purpose, we focused in this
chapter on (i) the notation (i.e. concrete syntax) used to design with DSML4MAS in a graphical
manner and the provided tool support and (ii) the model-driven process giving procedures for
guiding the application developers from analysis to implementation.

To reduce the design complexity, the notation of DSML4MAS is split into different diagrams
based on the viewpoints of DSML4MAS. The modeling constructs of each diagram were illustrated
by using the well-known conference management system scenario. These diagrams are part

138 5. Methodology of DSML4MAS

of different phases of the methodology process that includes the phases analysis, architectural
specification, detailed design, deployment, and implementation. The process integrates three
model transformations, i.e. the endogenous transformation supports the mapping between
different views and diagrams, the vertical transformation allows transferring models between
different abstraction levels, from platform-independent to more platform-specific models. The
methodology process has been formalized using the Eclipse Process Framework.

Part III

Code Generation and Integration

140

6. Endogenous Transformation: From Interaction to
Behaviors

Modern information systems are considered as collection of independent units that interact with
each other through the exchange of messages. For coordination purposes, the interaction among
agents is of particular importance in MASs. Agent interaction protocols (AIPs), as debated in
Section 2.1.6, are one important mechanism to define agent-based interactions and hence play also
a major role within DSML4MAS. In this chapter, we illustrate how to design AIPs with DSML4MAS

and discuss a model-driven approach to use the protocol description as input to automatically
generate corresponding agent behaviors implementing the global interaction. This endogenous
model transformation is part of the model-driven process of the DSML4MAS methodology to
automatically bridge the gap between the analysis and the detailed design phase of DSML4MAS.

Scope of this Chapter MASs define a powerful distributed computing model, enabling agents to
cooperate with each other. Hence, the interaction between agents is considered as basic building
block of MASs (see (Jennings; 2001)). An interaction is thereby considered as mechanism to express
the dependence between agents (see Definition 2.1.6), where AIPs as a special case of interactions
describe how messages are exchanged and thus focus on the global perspective of interactions
between two or even more entities.

The importance of interactions in MAS is underlined by the fact that existing methods for
designing MASs like Tropos (Susi et al.; 2005), Prometheus (Padgham et al.; 2007a), Gaia (Cernuzzi
and Zambonelli; 2004), or INGENIAS (Pavón and Jorge; 2003) already include mechanisms to
express AIPs. In particular, all of them use some sort of Agent UML diagrams (AUML) (Bauer and
Odell; 2002). However, AUML in its current version has some drawbacks1 that are intended to be
resolved by the DSML4MAS approach.

Even if the design of the agents’ interactions from a global perspectives seems to be the natural
way, many popular agent programming languages and platforms do not even support modeling
of this global perspective. Instead, for modeling the interaction between agents, they normally
provide mechanisms to specify the interaction from the perspective of each entity involved. These
internal behaviors normally contain information on which messages are exchanged, in which
order these are exchanged and who is the receiver of them. Consequently, the information on
the interaction is hard-coded in the internal behaviors and hence, cannot be used as global
pattern. Even if the modeling of the global perspective is not supported by the most agent-based
programming languages and platforms, we strongly believe that a combination of both approaches
is necessary and suitable mechanisms are needed for combining them. Apart from skipping the
global perspective and directly starting with the internal behaviors, DSML4MAS offers two options
to combine both approaches when starting with a global perspective:

1 We refer the interested reader to Section 10.2.1 to get further insights on AUML’s pros and cons.

142 6. Endogenous Transformation: From Interaction to Behaviors

Fig. 6.1: Scope of this chapter: Endogenous model transformation within DSML4MAS.

• The first option is to model the particular internal behaviors by hand. In order to produce
executable code, it must be ensured that the internal agents’ behaviors conform to the AIPs
of the involved actors. As previously introduced in Chapter 5, to support the user in keeping
the design conform, constraints are specified to ensure that, for instance, the message
order described by an AIP is implemented by the internal behaviors of the corresponding
agents performing the particular protocol’s actor. These constraints are expressed by Object-
Z constraints, translated to OCL and integrated into the graphical editor to support the
designer in checking the well-formedness of the design.

• The second option is to automatically generate partial internal behaviors on the input of the
corresponding global interaction of the AIP. This can be achieved by defining an endogenous
transformation between the interaction and behavior view of DSML4MAS.

Undoubtedly, the first option is more error-prone regarding harmonizing the interaction and
behavior models. The second approach assures that the behavior conforms to the interaction
model if the interaction metamodel can be transformed in an unambiguous manner. The critical
and private information of an agent are then added to the generated plans.

However, especially in a more business-oriented context, developer often first define the
manner in which the agents interact followed by defining the behaviors that actual implement
the agreed interactions. Hence, in this chapter, we focus on the second option which is more

6.1. Modeling Service Interaction Patterns using DSML4MAS 143

appropriate from a methodology point of view (cf. Fig. 6.1). Instead of checking whether the agent’s
internal behavior implements the protocol description, we focus on a protocol-driven approach
that takes a protocol description as input and generates a corresponding behavior description
that automatically conforms to the agreed AIP. In a second step, the system designer refines the
behavior description by adding, for instance, private and critical information. Finally, in a last step,
the generated design including the manually refined behaviors and the other views and diagrams
is transformed to JACK code. This generated implementation can in combination with manually
written code (if necessary) be executed and, hence, implements the interaction defined within the
AIPs. Chapter 7 discusses the generation of JACK code.

Structure of this Chapter Section 6.1 illustrates how to design AIPs using DSML4MAS, followed
by Section 6.2 giving a comparison between the DSML4MAS approach and the sate of art of
general purpose languages for specifying global interactions. Section 6.3 presents the model
transformation between the interaction view and the behavioral view of PIM4AGENTS. Finally,
Section 6.4 summarizes the main achievements of this chapter.

6.1 Modeling Service Interaction Patterns using DSML4MAS

A lot of effort has been undertaken to identify the most common interaction scenarios from a
business perspective, which have been published by Barros et al. (2005b) as Service Interaction
Patterns. Design patterns, in general, capture the static and dynamic structures of solution that
occur repeatedly when producing applications in a particular context (Schmidt; 1995). In order
to demonstrate the strengths of the DSML4MAS approach, we take these patterns as a base and
illustrate how to use the interaction view of PIM4AGENTS to fulfill the proposed requirements. For
illustration purposes, DDE (cf. Section 5.2) is used for producing the AIPs. As these patterns were
taken as benchmark for many existing special purpose languages for modeling interactions, they
offer the nice opportunity to relate our framework of modeling AIPs with others.

To indicate the Service Interaction Patterns, Barros et al. consolidate recurrent scenarios and
abstract them in a way that provides reusable knowledge. They distinguishes between four groups
of patterns, i.e. single-transmission bilateral patterns, single-transmission multilateral patterns,
multi-transmission patterns, and routing patterns. These four groups are precisely discussed in
the following by using the DSML4MAS concrete syntax.

6.1.1 Single-transmission bilateral interaction patterns

The single-transmission bilateral interaction patterns category corresponds to elementary interac-
tions, where a party sends (receives) a message, and as a result expects a reply (sends a reply). This
group covers one-way (send and receive) and round-trip bilateral interactions (send/receive). As
both, send and receive, are part of the send/receive pattern, which is again part of the one-to-many
send/receive pattern, we focus on the latter which is discussed in Section 6.1.2.2.

144 6. Endogenous Transformation: From Interaction to Behaviors

Fig. 6.2: Pattern 3: Send and Receive.

6.1.1.1 Pattern 3: Send/receive

Description A party X engages in two causally related interactions: in the first interaction party
X sends a message to another party Y (the request), while in the second one party X receives a
message from Y (the response) (Barros et al.; 2005b).

Realization Fig. 6.2 depicts this pattern using DSML4MAS. For this purpose, two actors (i.e. X
and Y) are defined, where actor X sends a message M1 to actor Y that replies by sending message
M2. As this patterns requires the interaction between exactly two entities, the both actors X and Y
bind exactly one agent instance through the actor binding concept.

6.1.2 Single-transmission multilateral interaction patterns

The single-transmission multilateral interaction patterns category stays in the scope of non-routed
patterns, but deals with multilateral interactions. This means that a party may send or receive
multiple messages, but as part of different interaction threads dedicated to different parties. The
patterns one-to-many send (Pattern 5) and one-from-many receive (Pattern 6) are not explicitly
discussed in this evaluation, as both are part of the one-to-many send/receive pattern.

6.1.2.1 Pattern 4: Racing incoming messages

Description Party X expects to receive one message among a set of messages. These messages
may be structurally different (i.e. different types) and may come from different categories of
partners. The way a message is processed depends on its type and/or the category of partner from
which it comes (Barros et al.; 2005b).

Realization Fig. 6.3 depicts the racing incoming messages pattern using DSML4MAS. Actor Y
is divided into three subactors (i.e. Y1, Y2, and Y3). Each entity bound to one of the subactors
either sends M1, M2, or M3. Even if the actors send different messages, all of them are sent by the
particular agent instances in parallel. This is expressed through the highest message scope (i.e.

6.1. Modeling Service Interaction Patterns using DSML4MAS 145

Fig. 6.3: Pattern 4: Racing incoming messages.

MessageScope:Parallel). Depending on a certain message or category of actor, a certain answer
(i.e. M4) is sent back to the particular subactor or to all of them.

6.1.2.2 Pattern 7: One-to-many send/receive

Description Party X sends a request message to several other parties Y1,...,Yn, which may all be
identical or logically related. Responses are expected within a given timeframe. However, some
responses may not arrive within the timeframe. The interaction may complete successfully or not
depending on the set of responses gathered (Barros et al.; 2005b).

Realization Fig. 6.4 depicts the one-to-many send/receive pattern using DSML4MAS. The parties
are again modeled as actors, where this time, several agent instances Y1,...,Yn are bound to actor
Y. Sending a message to an actor means that the particular message is sent to each entity bound
to the target actor. This means that the ACL message M1 is sent to each of the Y1,...,Yn agent
instances in parallel. When receiving M1, each of them sends the corresponding answer ACL
message M2 to actor X. A timeout called TimeOut ensures that the interaction does not end up
in a deadlock. If this timeout is raised, the interaction continues with the message flow specified
by the timeout’s messageFlow reference. However, the default message flow—if the messageFlow
reference is empty—is the next message flow in the row. The messageFlow reference is illustrated
in detail in Section 6.1.3.2.

6.1.3 Multi-transmission interaction patterns

This multi-transmission interaction patterns category corresponds to interactions where a party
sends (receives) more than one message to (from) the same party.

6.1.3.1 Pattern 8: Multi-responses

Description A party X sends a request to another party Y. Subsequently, X receives any number
of responses from Y until no further responses are required. The trigger of no further responses

146 6. Endogenous Transformation: From Interaction to Behaviors

Fig. 6.4: Pattern 7: One-to-many send/receive.

Fig. 6.5: Pattern 8: Multi-responses.

can arise from a temporal condition or message content, and can arise from either X or YŠs side.
Responses are no longer expected from Y after one or a combination of the following events: (i) X
sends a notification to stop, (ii) a relative or absolute deadline indicated by X, (iii) an interval of
inactivity during which X does not receive any response from Y, or (iv) a message from Y indicating
to X that no further responses will follow. From this point on, no further messages from Y will be
accepted by X (Barros et al.; 2005b).

Realization A general visualization of this pattern using DSML4MAS is given in Fig. 6.5. The
depicted AIP starts by Y sending a couple of requests to X, which is expressed through the literal
Loop as exchange mode. The message M1 is sent to actor X until either (i) the TimeOut is raised
resulting in continuing the interaction where X sends message M2 to Y, (ii) X sends a notification

6.1. Modeling Service Interaction Patterns using DSML4MAS 147

Fig. 6.6: Pattern 9: Contingent requests.

message M2 to stop this conversation, or (iii) Y sends a notification message M1 that breaks the
Loop to stop this conversation.

6.1.3.2 Pattern 9: Contingent requests

Description A party X makes a request to another party Y. If X does not receive a response within
a certain timeframe, X alternatively sends a request to another party Z, and so on (Barros et al.;
2005b).

Realization Fig. 6.6 illustrates the contingent requests pattern designed by DSML4MAS. Overall,
three actors (i.e. X, Y, and Z) are defined, where X sends a request message M1 to Y. If Y does not
respond in a timely manner by sending message M2, the TimeOut is raised and actor X sends a
request message M4 to actor Y. When modeling this pattern in this manner, each actor consists of
exactly one agent instance, i.e. the min and max values of the actor binding is set to 1.

The just presented design of Pattern 9 is rather static as each request to another third party
(e.g. Z) needs to be explicitly modeled. In the following, an alternative representation of Pattern 9
is discussed, which is depicted in Fig. 6.7. Therefore, actor Y contains a set of entities that could be,
in principle, requested, although, in each iteration only one entity is finally asked. To represent
this, we introduce a subactor Y Selected (where Y is the superactor containing all agent instances)
that needs to fill one entity at minimum and maximum. Additionally, we introduce an actor
Y NotSelected that contains all entities that initially have not been selected. This Y NotSelected
is further divided into three actors, i.e. Y Selected, Y NotSelected, and Y Refused, where the last

148 6. Endogenous Transformation: From Interaction to Behaviors

Fig. 6.7: Pattern 9: Alternative contingent requests.

one contains any agent instance that has not responded in a timely manner before the TimeOut2
has been raised. In this case, the interaction restarts at the third message flow, where a new
agent instance is selected (i.e. removed from Y notSelected and put into Y selected). However,
the assignment of agent instances needs to be defined in X’s plan and cannot be defined in the
AIP itself. TimeOut2 is defined as a relative value depending on the time when M3 is sent. For
instance, we define the TimeOut2 as the actual time plus two minutes. Hence, each agent instance
of Y Selected has exactly two minutes for answering the request before TimeOut2 occurs.

6.1.3.3 Pattern 10: Atomic multicast notification

Description A party sends notifications to several parties such that a certain number of parties
are required to accept the notification within a certain timeframe. For example, all parties or
just one party are required to accept the notification. In general, the constraint for successful
notification applies over a range between a minimum and maximum number (Barros et al.; 2005b).

Realization Fig. 6.8 depicts the atomic multicast notification pattern using DSML4MAS. Actor X
sends a notification message Notification to actor Y that may consist of several agent instances.
Some of these entities may either accept or reject this notification, which is expressed through the
subactors Y accept and Y reject, both filled at run-time. To specify that a certain number of agent
instances should accept the notification, the min and max attributes of the actor binding concept
for Y accepted can be set accordingly.

6.1. Modeling Service Interaction Patterns using DSML4MAS 149

Fig. 6.8: Pattern 10: Atomic multicast notification.

6.1.4 Routing patterns

Routing patterns require a way to specify the intended receiver of a message, i.e. the receiver of a
response is not necessarily the sender of the request.

6.1.4.1 Pattern 11: Request with referral

Description Party X sends a request to party Y indicating that any follow-up response should
be sent to a number of other parties (Z1,...,Zn) depending on the evaluation of certain condi-
tions. While faults are sent by default to these parties, they could alternatively be sent to another
nominated party (which may be party X) (Barros et al.; 2005b).

Realization Fig. 6.9 depicts this pattern. Actor X sends a request message M1 to actor Y. If a
fault occurs at the side of actor Y, it sends a error message M3 to X, otherwise Y requests actor Z.
Afterward, actor Z informs actor X by sending the ACL message M4.

6.1.4.2 Pattern 12: Relayed request

Description Party X makes a request to party Y, which delegates the request to other parties Z
(consisting of Z1,...,Zn) that then continue interactions with party X while party Y observes a view
of the interactions including faults. The interacting parties are aware of this view (as part of the
condition to interact) (Barros et al.; 2005b).

Realization Fig. 6.10 depicts the this pattern modeled with DDE. Actor X sends a request message
M1 to actor Y. This actor then forwards this request message M2 to actor Z. This actor then sends
message M3 to X, additional, a copy is sent to Y in parallel.

150 6. Endogenous Transformation: From Interaction to Behaviors

Fig. 6.9: Pattern 11: Request with referral.

Fig. 6.10: Pattern 12: Relayed request.

6.1.4.3 Pattern 13: Dynamic routing

Description A request is required to be routed to several parties based on a routing condition.
The routing order is flexible and more than one party can be activated to receive a request. When
the parties that were issued the request have completed, the next set of parties are passed the
request. Routing can be subject to dynamic conditions based on data contained in the original
request or obtained in one of the intermediate steps (Barros et al.; 2005b).

Realization Fig. 6.11 depicts the dynamic routing pattern modeled with DSML4MAS. In this
model, an actor X sends a request message M1 to actor Y and Z in parallel. Based on message
M1, actor Y sends a M2 message to Z. Based on some predefining or dynamic conditions, Y either
sends the M3 message to Y or the M4 message to actor X. To represent this choice in the model,
we introduced two subactors of Z, i.e. Z Y and Z X. The agent instances bound to these subactors
then send the corresponding message.

6.2. Comparison with the State of the Art 151

Fig. 6.11: Pattern 13: Dynamic Routing.

6.2 Comparison with the State of the Art

Special purpose languages for describing interactions from a global perspective have been subject
of extensive research (e.g. Web Service Choreography Description Language (WS-CDL) (Kavantzas
et al.; 2005)). In the following, some of them are discussed and related to the DSML4MAS approach.
This evaluation is again based upon the Service Interaction Patterns proposed by Barros et al..

Extended Business Process Modeling Notation (BPMN) (Decker and Puhlmann; 2007) proposes
several extensions to overcome the limitations of BPMN regarding its suitability for choreography
modeling. Extended BPMN supports most of the patterns, however, it does not support atomic
multicast notification and only partly supports the contingent requests.

WS-CDL (Kavantzas et al.; 2005) is an XML-based language focusing on interactions and
their relationships. Interactions are bi-lateral and involve either one message (request-only
or response-only) or two messages (request-response). WS-CDL supports most of the service
interaction patters, however, patterns where the participating entities are only known at run-
time (i.e. one-to-many send, one-to-many send/receive, and contingent request) are not directly
supported. However, the main criticism of WS-CDL is that the integration with BPEL4WS (Louridas;
2008)—the corresponding language to define interactions from a local perspective—can only
hardly be achieved (see (Barros et al.; 2005a) for more details).

Let’s Dance (Zaha et al.; 2006a) is a visual choreography language that is not tied to any
particular execution technology. Let’s Dance supports mainly all service interaction patterns,
however, only one timeout can be specified, which makes the support of the contingent requests
pattern difficult. In (Zaha et al.; 2006b), an approach to generate local models for each actor that
is participating in a choreography is given. Currently, a model transformation between the local
models and BPEL4WS is developed to automatically generate BPEL4WS code templates.

BPEL4Chor (Decker et al.; 2007) is an extension of BPEL4WS to shift it from the orchestration
(i.e. local) to the choreography (global) layer. It directly supports the service interaction patterns
except the atomic multicast notification pattern. Furthermore, as BPEL4Chor mainly bases on
BPEL4WS an integration with the latter is possible.

152 6. Endogenous Transformation: From Interaction to Behaviors

Pattern WS-CDL ext. BPMN Let’s Dance BPEL4Chor Dsml4Mas

1 + + + + +

2 + + + + +

3 + + + + +

4 + + + + +

5 +/- + + + +

6 + + + + +

7 +/- + + + +

8 + + + + +

9 +/- +/- +/- + +/-

10 - - - - +

11 + + + + +

12 + + + + +

13 ? ? ? + +

Tab. 6.1: Service interaction pattern support in WS-CDL, extended BPMN, Let’s Dance, and
DSML4MAS. Dynamic routing is not considered in the assessment of WS-CDL, extended
BPMN, and Let’s Dance.

In the MAS community, Agent UML (AUML) is the most prominent modeling language for spec-
ifying AIPs. AUML is an extension of UML to overcome the limitations of UML with respect to
MAS development. AUML results from the cooperation between the OMG and FIPA, aiming to in-
crease acceptance of agent technology in industry. In particular, AUML specifies AIPs by providing
mechanisms to define agent roles, agent lifelines (interaction threads, which can split into several
lifelines and merge at some subsequent points using connectors like AND, OR or XOR), nested and
interleaved protocols (patterns of interaction that can be reused with guards and constraints), and
extended semantics for UML messages (for instance, to indicate the associated communicative act,
and whether messages are synchronous or not). However, AUML does not allow to express more
specialized subactors. For this purpose, in (Haugen; 2008), Haugen suggested two improvements
to the UML 2.0 sequence diagram notation in order to define multicast messages and combined-
fragment iterators over subsets. This approach share several commonalities with our approach in
DSML4MAS. However, the suggested improvements are not part of the recent version of AUML.

Even if AUML can be considered as de facto standard for modeling AIPs, tool supported is
very limited. In (Winikoff; 2005), a textual notation and graphical tool have been presented. In
(Ehrler and Cranefield; 2004), an approach is presented that automatically interprets AUML AIPs.
However, the resulting tool called Paul (Plug-in for Agent UML Linking) only supports parts of
AUML as only the alternative operator is implemented. Furthermore, the code generation is
limited to two agent lifelines and it is pretty unclear if multicast messages are supported. However,
AUML does not allow to specify the sending of multiple messages as needed in the case of Pattern
7 one-to-many send/receive.

6.3. From Agent Interaction Protocols to Behavior Descriptions 153

Fig. 6.12: The Contract Net Protocol designed using DSML4MAS.

6.3 From Agent Interaction Protocols to Behavior Descriptions

After discussing how to use DSML4MAS for designing AIPs, we now demonstrate as part of this
section how to transform AIPs to internal behaviors. Therefore, we use the contract net protocol
(CNP, (Smith; 1988)) as example and present how the model transformation (cf. Section 6.3.2)
transfers the global description of CNP to internal behaviors.

6.3.1 Illustrative Example: Contract Net Protocol

CNP belongs to the family of cooperation protocols and is the most prominent protocol in DAI as
it provides a solution for the connection problem, i.e., to find an appropriate agent to work on a
given task. It bases on the contracting mechanism used by business to govern the exchange of
goods and services and though uses a minimum of messages which makes it very efficient for task
assignment. Although CNP is one of the most used agent interaction protocols, there are some
limitations: A task may be awarded to a participant with limited capability if a better qualified
participant is busy right now. So there exists only a suboptimal solution. There might also be
reasons, why the initiator does not receive any bids. In (Knabe et al.; 2002), an extended version of
CNP is presented to overcome these limitations.

CNP defines how an initiator sends out a number of calls for proposal to a set of participants.
Depending on their free capacities, some of these participants will refuse the call, while others
may come up with a proposal. After the answers have been received from every participant or a
deadline is reached, the initiator evaluates the proposals and awards to contract to these sending

154 6. Endogenous Transformation: From Interaction to Behaviors

the most adequate bid(s), the others were rejected. After termination of the task the awarded
participant reports their results to the initiator.

For designing CNP using DSML4MAS, firstly, we introduce two actors called Initiator and
Participant. The protocol starts with the first message flow of the Initiator that is responsible
for sending the ACL message M1 of the performative type CFP. The M1 message specifies the
task as well as the conditions that can be specified within the properties view of the graphical
editor. When receiving M1, each agent instance performing the Participant decides on the base
of free resources whether to propose by sending M4 of performative type Propose or to refuse
by sending M3 of performative type Refuse. The third option is to send M2 of performative type
NotUnderstood in case either the content or the ontology of M1 could not be understood.

How the decision on free resource is implemented cannot be expressed in the protocol descrip-
tion, as private information are later on manually added to the automatically generated behavior
description. To distinguish between the alternatives, three additional actors (i.e. NotUndestood,
Propose and Refuse) are defined that are subactors of the Participant (i.e. any agent instance
performing the Participant should either perform the NotUndestood, Propose or Refuse actor).
The transitions between the message flow of the Participant and the message flows of its subactors
through the messageFlow reference underline the change of state for the agent instance performing
the Participant actor. However, the transitions are only triggered if a certain criterion is met. In
the CNP case, the criterion is that the Initiator got all replies, independent of its type (i.e. M2,
M3 or M2). The postConditions of a message flow can be defined in the properties view of the
graphical editor. The message flows within the NotUnderstood, Refuse and Propose actors are
then responsible for sending the particular messages (i.e. M2, M3 and M4).

After the deadline expired (defined by the TimeOut) or all answers sent by the agent instances
performing the Participant actor are received, the Initiator evaluates the proposals in accordance
to a certain selection function, chooses the best bid(s) and finally assigns the actors Accepted and
Rejected accordingly. Again, the selection function is not part of the protocol, but can be defined
later on in the corresponding plan. Both, the Accepted and Rejected actors, are again subactors of
the Propose actor. The Initiator sends the message M6 with the performative type AcceptProposal
to the Accepted actor and a message M5 with the performative type RejectProposal message to the
Rejected actor in parallel.

6.3.2 Model-to-Model Transformation: From Interactions to Behaviors

In the following, the most important mapping rules—visualized in Fig. 6.13—for transferring AIPs
to internal behaviors in DSML4MAS are discussed. The general idea of this model transforma-
tion is to initiate one plan for each actor not contained by any other actor inside an AIP. The
generated plan expresses how the exchange of messages is proceed from the perspective of the
individual actor and hence for any agent instance bound through the concepts of actor bindings
(cf. Section 4.9.4) and domain role bindings (cf. Section 4.9.3).

The first mapping rule, generates a plan for each actor of the input protocol. The message
flows this actors and its sub-actors are active are transformed to actions in the plan responsible
for sending and receiving ACL messages. The details of the mapping between actor and plan is
depicted by Mapping Rule 6.1.

6.3. From Agent Interaction Protocols to Behavior Descriptions 155

Fig. 6.13: Conceptual model transformations between the interaction view and behavioral view of
DSML4MAS.

Mapping Rule 6.1: Actor → Plan

• name: name of the Actor’s Protocol plus the name of the particular Actor
• steps: collection of Send and Receive tasks (cf. Mapping Rule 6.5 and 6.6) as

well as the collection of Parallel, Sequence, and Loop activities (cf. Mapping
Rules 6.2-6.4) that are generated on the base of the Actor’s MessageFlows

• controlFlow: collection of ControlFlows, which are introduced for the pur-
pose of combining the generated Activities

Mapping Rule 6.1 generates the plan itself, the body of the plan, in contrast, is generated by any
subsequent active message flow and further relevant information with respect to (i) the kinds of
message scopes used by its message flows and (ii) potential time outs are collected and transfered
to the corresponding target concept of the behavior view. To generate the plan-specific structure,
depending on the particular input element, the Mapping Rules 6.2 to 6.8 are invoked.

The generated concepts are collected by the steps variable. The generated control flows
necessary to indicate the business logic are included in the controlFlow variable. Further variables
of the plan like informationFlow, localKnowlegde, etc. are not instantiated as the AIP does not
provide any adequate information on them.

156 6. Endogenous Transformation: From Interaction to Behaviors

The generated plan body hence consists of a number of send/receive actions expressed by the
corresponding send and receive tasks generated by either invoking Mapping Rule 6.6 or Mapping
Rule 6.5. Likewise, depending on exchange mode’s type of an actor’s message flow the activities
MessageScope, Parallel, Sequence, and Loop are introduced. This means, that a Parallel operation
is mapped to a Parallel activity, a Sequence operation is mapped to a Sequence activity, and finally
a Loop operation is mapped to a Loop activity. This is formalized in more detail by the Mapping
Rules 6.2 to 6.4. A message flow is also the source for generating Decision activities. However, the
types of message flows coming into consideration is restricted to those that have a non-empty
messageflow reference. The interpretation of this is that any agent instance bound to this actor
could behave differently in the actual state (i.e. MessageFlow) and will hence be situated in different
states in the course of the protocol.

Last but not least, the Begin and End tasks are automatically introduced. Apart from the parts
of a plan that can be automatically generated, missing concepts like InformationFlow as well as
Knowledge, which are necessary for executing the plan, have to be manually added by the system
developer in the detailed design phase.

Any plan generated in this manner is encapsulated as actor’s provided capabilities, which are
part of the potentialBehaviors (see Section 4.3.1) an agent bound to the corresponding actor has
access to.

Mapping Rule 6.2: ExchangeMode:Parallel → Parallel

• name: name of the ExchangeMode’s MessageScope plus the extension Paral-
lel

• flows: collection of ControlFlows necessary for linking the generated Activi-
ties

• steps: collection of MessageScopes part of the MessageScope’s messageSplit
reference. Depending on the MessageScope’s type, one of the Mapping
Rules 6.2 to 6.6 is invoked

For any kind of MessageScope contained by another MessageScope of type ExecutionMode:Parallel,
a unique trace within the newly formed Parallel activity is reserved, where each trace may again
consist of any other combination of complex (e.g. Sequence) or simple (e.g. Send, Receive) control
structures. The structure of this trace certainly depends again on the operations of its children of
type MessageScope. Any MessageScope of operation types ExchangeMode:Sequence is mapped in
a nearly similar manner, which is expressed by Mapping Rule 6.3.

Mapping Rule 6.3: ExchangeMode:Sequence → Sequence

• name: name of the ExchangeMode’s MessageScope plus the extension Se-
quence

• flows: collection of ControlFlows, which are instantiated when linking the
generated Activities included by the steps variable

• steps: collection of MessageScopes part of the MessageScope’s messageS-
plit variable. Depending on the MessageScope’s type, one of the Mapping
Rules 6.2 to 6.6 is invoked

6.3. From Agent Interaction Protocols to Behavior Descriptions 157

In contrast to ExchangeMode:Parallel, in the case of an ExchangeMode:Sequence, a unique trace is
defined. The order in which the contained activities are arranged is deduced from the order (from
top to bottom) of the contained message scopes. The other parallel’s variables like synchroniza-
tionMode are not automatically instantiated and need to be filled by hand. Like in the previous
mapping rule, in the case of ExchangeMode:Loop, only a single trace is generated. However, this
trace is executed in a loop manner. The details are given in Mapping Rule 6.4.

Mapping Rule 6.4: ExchangeMode:Loop → Loop

• name: name of the ExchangeMode’s MessageScope plus the extension Loop
• flows: collection of ControlFlows that are introduced when linking the gen-

erated Activities
• steps: collection of MessageScopes part of the MessageScope’s messageSplit

reference. Depending on the MessageScope’s type, one of the Mapping
Rules 6.2 to 6.6 is invoked

The unique trace includes again a number of activities, where the order of them is deduced from
the ordering of the contained message scopes expressed by the messageSplit reference. In contrast
to the cases previously debated, a ExchangeMode:None refers to exactly one ACL message. For
this case, a further splitting into message scopes through the variable messageSplit is forbidden.
Hence, the ACL message referred to by the message scope is either sent or received, which means
that the particular message scope is either mapped to a receive or send task. The type of the task
introduced finally depends on whether the corresponding message flow sends (i.e. as part of the
forkOperator variable) or receives (i.e. as part of the joinOperator variable) the particular ACL
message. If the message scope is part of a message flow’s forkOperator, Mapping Rule 6.5 will be
applied.

Mapping Rule 6.5: ExchangeMode:None → Send

• name: name of the ExchangeMode’s MessageScope plus the extension Send
• message: reference to the transformed ACLMessage (cf. Mapping Rule 6.7)

that is referred by the ExchangeMode’s MessageScope

Otherwise, if the message scope is part of any message flow’s joinOperator, Mapping Rule 6.6 is
invoked.

Mapping Rule 6.6: ExchangeMode:None → Receive

• name: name of the ExchangeMode’s MessageScope plus the extension Re-
ceive

• message: reference to the transformed ACLMessage (cf. Mapping Rule 6.7)
that is referred by the ExchangeMode’s MessageScope

158 6. Endogenous Transformation: From Interaction to Behaviors

Both, the send and receive activities, generated by the Mapping Rules 6.5 and 6.6 refer to a message
that is generated by applying Mapping Rule 6.7. At this, the ACL message referred to by the source
message scope serves as input. Due to the fact that multiple agent instances might be bound to one
actor, the send and receive tasks are both integrated into a parallel loop activity (cf. Section 4.7.10).
This integration allows the iteration over the entire set of agent instances bound. This allows
keeping a plan as generic as possible, as the information how many entities are finally playing the
particular actors does not need to be known at design time.

The next mapping rule deals with the mapping between the two different kinds of messages.
Within a protocol, ACL messages are used to illustrate how the exchange of information is pro-
ceeded. Whereas, "normal" messages that are defined as part of the environment are used within
plans to represent the exchange of process-dependent information. One of the main difference
between the two notions is that a message is globally accessible, i.e. any agent can use them inside
its plans, whereas an ACL message is only visible inside a specific interaction. Mapping Rule 6.7
illustrates the details when mapping an ACL message to a message.

Mapping Rule 6.7: AclMessage → Message

• name: name of the ACLMessage plus the extension Message
• aclMessage: reference to the target ACLMessage

Mapping Rule 6.7 mainly defines the type of the message that is referred by the send and receive
activities. However, as the protocol does not provide any information concerning the message’s
content that is exchanged, the content slot needs to be filled manually with process-dependent
information. The same holds for the sender and receiver slot, as the information on the concrete
agent instance sending and receiving the message is—at least in the most cases—not available
during design-time, but most properly appointed at run time.

Finally, the last basic rule deals with the mapping of time outs. For this purpose, each time out
is mapped in the manner that a wait activity is introduced and integrated into a parallel activity
consisting of two paths. One path includes the wait activity, the other one includes the activities
responsible for sending and receiving messages within the given time frame.

Mapping Rule 6.8: TimeOut → Wait

• name: name of the TimeOut plus the string extension Wait
• timeout: reference to the target TimeOut

The mapping between time out and wait activities is straight forward as all necessary information
to instantiate the wait (e.g. time to wait) are already available within the time out. As an example,
the mapping rules presented in this section are now applied to CNP.

6.3.3 Applying the Model Transformations: CNP’s Behaviors

Section 6.3.1 presented the CNP as example of a complex agent-based interaction protocol. Now,
the CNP is used as input for the endogenous model transformation bridging the analysis phase
and detailed design phase of the DSML4MAS methodolgy process.

6.3. From Agent Interaction Protocols to Behavior Descriptions 159

Fig. 6.14: The generated SendAcceptReject plan.

Fig. 6.14 depicts the generated Initiator’s plan for collecting the initial responses from the
Participant’s side and sending of accept and reject messages. It bases on the message flows
responsible for receiving the messages M2, M3 and M4 typed by the performatives NotUndestood,
Refuse, and Propose, respectively. The plan mainly consists of two major parts, i.e. issuing of call
for proposal messages and collecting the associated answers as well as awarding the contract to
those that offer the bases conditions.

In the first phase, the CollectResponses parallel is triggered that has two traces, one responsible
for waiting until the particular TimeOut is raised and one for issuing the call for proposals and
collecting the responses. The execution mode of this parallel statement is XOR, meaning that the
statement can be left after all messages were received or a certain time—which is defined by the
wait statement TimeOutWait—has been waited. The execution mode of a parallel statement can
be selected within the properties view of the graphical editor. This is also the case for messages
referred to by the send and receive activities and time outs referred to by the wait task.

After issuing the call for proposals by sending the generated M1Message message to all agent
instances bound to the Participant actor inside the parallel loop, the answer messages (either

160 6. Endogenous Transformation: From Interaction to Behaviors

M2Message, M3Message, or M4Message) are collected inside the parallel loop statement iterating
over all agent instances the M1Message was sent. The execution mode of this parallel loop is AND
meaning that for each agent instance bound to the Participant actor one trace is defined.

The messages are collected inside a ParallelLoop called CollectResponsesParallelLoop. For
each entity bound to the Participant actor, either a plan ReceiveResponse or a plan ReceiveRefuse
is executed. These plans are responsible for updating the Initiator’s knowledge base which is later
on utilized for selecting the most adequate bidder(s).

In the second phase, the SelectBestBidder plan is triggered which needs to be added manually
as the information according to which criteria the best bidders are selected is not part of the proto-
col description. After an allocation has been evaluated, in the last phase, the agent instances are
assigned to the corresponding actors BestBidder and RemainingBidder and informed accordingly.
This is done in the SendAcceptReject parallel, where the Reject and Accept messages are sent to
the RemainingBidder and BestBidder concurrently. Again, the send tasks are integrated into a
parallel loop activity specifying that for each agent instance bound to one of the actors either the
message Accept or Reject is sent.

6.4 Bottom Line

This chapter centered around agent-based interactions in DSML4MAS. For this purpose, we
demonstrated how to use DSML4MAS to model the well-known Service Interaction Patterns
proposed by Barros et al.. The main result of this first evaluation (summarized in Table 6.1) is
that nearly each pattern—in contrast to other proposed standards—can nicely be described using
the interaction view of PIM4AGENTS. This is an astonishing result, as special tailored interaction
languages (e.g. WS-CDL, BPMN) lack this expressiveness. Moreover, we demonstrated that the
Contract Net Protocol, as the most well-known AIP of the MAS community, can nicely be described
using DSML4MAS. The main reason for this is that one-to-many interactions, as well as the
differentiation between subactors of the same actor is naturally supported by the interaction view
of PIM4AGENTS. This is a very interesting result as the most used modeling language for agents, i.e.
AUML, lacks this kind of expressiveness.

Beside demonstrating how to model AIPs using DSML4MAS furthermore, we discussed how to
transform AIPs to executable behaviors by applying principles of MDD. This model transformation
is part of the DSML4MAS methodology and comprises the instantiation of messages and domain
roles. For transforming the protocol description into the process-centric models of DSML4MAS,
mappings between concepts of the interaction and behavioral views were defined. This was mainly
done in an one-to-one manner. However, private information that are not part of the protocol
description has to be manually integrated in the agents’internal behaviors to make each agent’s
behavior complete regarding execution. In a next and final step, the DSML4MAS model, which
comprehends all necessary information including the generated behavioral model, is mapped
to one of the supported agent-based programming language. This mapping finally allows to
execute the protocol description. Chapter 7 of this dissertation is devoted to this PIM to PSM
transformation.

For describing the interaction between agents in DSML4MAS, we mainly focus on AIPs. How-
ever, we also examined how to extend DSML4MAS to allow the modeling of flexible interactions. As
a first step, we defined a library of AIPs that can be used to flexibly integrate any AIP into the design.
Using this extension, the designer is able to specify pre- and postconditions that should hold in a
particular AIP. The model transformations generate a corresponding execution model in which

6.4. Bottom Line 161

the particular agent selects the most adequate AIP from the library satisfying these conditions
at run-time. This extension leads to a more flexible protocol selection and thus improves the
robustness of communication. We refer to (Leon-Soto et al.; 2009) for a detailed discussion on
these extensions.

162 6. Endogenous Transformation: From Interaction to Behaviors

7. Vertical Transformation: From Design to
Executable Code

As stated before, even if agent-based computing can be considered as promising approach to
develop complex software systems, there are difficulties in implementing MAS due to the skills
needed to move from analysis and design to code. To close the general gap between analysis and
design, the MDD initiative offers suitable mechanisms that could also be utilized in the context of
AOSE and DSML4MAS in particular.

In this chapter, we illustrate how to make use of the principles of MDD in the AOSE context by
defining a model transformation between DSML4MAS and the agent-platform JACK. In particular,
we define (i) a model-to-model transformation between the PIM4AGENTS metamodel and the
metamodel of JACK called JackMM and (ii) a model-to-text transformation between JackMM and
an XML-like structure to allow the import of the generated documents into the development
environment of JACK.

Scope of this Chapter A strong distinction has traditionally been made between modeling lan-
guages and programming languages. One reason for this is that modeling languages have been
traditionally viewed as having an informal and abstract semantics, whereas programming lan-
guages are significantly more concrete (in terms of providing an operational semantics) due to
their need to be executable.

As noted by Oluyomi (2006), on the one hand, various cases of MAS development were doc-
umented ending with the analysis and design stages, on the other hand, others only focus on
the implementation of MASs. But, there are not many documented examples of complete MAS
development from requirements gathering to deployed systems. Consequently, the current state
of the art in developing MASs is to design the agent systems basing on an AOSE methodology
and take the resulting design artifact as a base to manually code the agent system using existing
agent-oriented programming languages (AOPLs) or general purpose languages like Java. The
resulting gap between design and code may tend to the divergence of design and implementation,
which makes again the design less useful for further work in maintenance and comprehension of
the system (Bordini et al.; 2007a).

In the DSML4MAS context, instead, we developed model transformations to two target AOPLs
(i.e. JACK and JADE) and currently investigate a model transformation between PIM4AGENTS and
Jadex. The main motivation for choosing the mentioned AOPLs is their different view on agent
systems. JACK and Jadex, for instance, base on principles of the BDI architecture presented in Sec-
tion 2.1.4, whereas JADE focuses on the compliance with the FIPA1 specifications for interoperable
intelligent MASs and thus concentrates on interaction aspects.

1 http://www.fipa.org

164 7. Vertical Transformation: From Design to Executable Code

Fig. 7.1: Scope of this chapter: Model transformation between DSML4MAS and JACK and JADE.

A mapping from the PIM4AGENT’S concepts to the concepts of the different execution platform
further demonstrates that the vocabulary of PIM4AGENTS can be considered as platform inde-
pendent and detailed enough for code execution. In this chapter, we exemplarily focus on the
DSML4MAS to JACK transformation. For detailed information regarding the DSML4MAS to JADE
transformation, we refer to (Hahn et al.; 2009a) and (Gründel; 2009).

Structure of this Chapter The remainder of this chapter is organized as follows: Section 7.1
briefly presents the current state of the art on agent platforms and agent programming languages.
Followed by Section 7.2 giving an overview of the agent platform JACK and introducing the meta-
model of JACK. Section 7.3 then discusses the model transformation between DSML4MAS and
JACK and Section 7.5 illustrates the implementation made by the model transformation applied on
the conference management system introduced in Section 5.3.2.1. Finally, Section 7.5 concludes
this chapter by summarizing the DSML4MAS model-driven approach to close the gap between
design and implementation.

7.1 Agent Programming Languages and Platforms

In order allow the implementation of MASs and agent-based applications in general, nowadays,
several MAS and agent platforms have been developed. The development of MASs is specially
challenging, because it encompasses multiple and complex concerns such as distribution and
concurrency. The main objective of AOPLs is to provide an infrastructure that supports the
agent-based development by making these concerns transparent. Agent-oriented development
frameworks provide combinations of agent-oriented programming languages and execution
platforms (Bordini et al.; 2006). These languages support expressing application logic with agent-
oriented concepts to provide a middleware layer between agent requirements and final realization.

7.1. Agent Programming Languages and Platforms 165

AOPLs can be distinguished into three categorizations: Declarative, imperative and hybrid. In the
remainder of this section, we briefly give an introduction into the area of agent-based programming
by discussing the most sophisticated agent platforms and programming languages.

AgentSpeak AgentSpeak (Rao; 1996) is a BDI-based programming language, based on the Proce-
dural Reasoning System (PRS) and the Distributed Multi-Agent Reasoning System (dMARS)
(d’Inverno et al.; 2004), which determines the behavior of the agents it implements. Several
extensions to AgentSpeak were provided: Jason2 (Bordini et al.; 2007b), for instance, is
an interpreter for an improved version of AgentSpeak, including speech-act based agent
communication. In (Meneguzzi and Luck; 2008), AgentSpeak(PL) is proposed, which is
an extended AgentSpeak(L) interpreter including a planning component to reason about
declarative goals.

Java Agent DEvelopment Framework3 Java Agent DEvelopment Framework (JADE) (Bellifemine
and Rimassa; 2001) is a platform providing all necessary communication infrastructure to
comply to the FIPA specification. It intentionally leaves open the internal agent architecture
and necessary concepts. Instead, JADE focuses on communication performed through
message passing, where each agent is equipped with an incoming message box. Standard
interaction protocols specified by FIPA such as FIPA-request or FIPA-query can be used
as standard templates to build an agent conversation. The protocols themselves, however,
cannot be defined on a centralized view, only from the perspective of each agent involved.

Jadex4 Jadex (Pokahr et al.; 2005a; Braubach and Pokahr; 2007; Pokahr et al.; 2005b)—as an exten-
sion of JADE—is a FIPA-compliant agent environment based on Java. It aims at modeling
goal-oriented agents toward the principles of BDI. It thus combines BDI-style reasoning
and FIPA-compliant communication. The Jadex engine executes the internal life cycle of an
agent by keeping track of the agent’s goals, while continuously selecting and executing plan
steps, based on internal and external events.

Abstract Agent Programming Language5 (3APL) 3APL (Dastani et al.; 2003; Hindriks et al.; 1999)
is a cognitive agent programming language that includes reasoning features based on the
principles of BDI. The 3APL IDE allows developers to edit 3APL programs that implement
single agents, a Java-based interpreter then allows executing the 3APL programmed agents.

JACK Intelligent Agents6 JACK (Java Agent Compiler & Kernel) is an agent-based development
environment developed by the Agent-Oriented Software Group at Melbourne. Like other
AOSE programming languages (e.g. Jadex or 3APL) or methodologies (Padgham and Winikoff;
2002a; Bresciani et al.; 2004; Cervenka et al.; 2004; Bauer et al.; 2001; Cheong and Winikoff;
2005a), JACK has been developed to foster the software-based development of BDI agent
architectures. Thus, JACK provides programming constructs and concepts for developing
complex agent-oriented applications. It bases on previous practical implementations of
such systems (see Huber (1999)). In contrast to Jadex and JADE, JACK is commercially
available, however, a demonstration license can be obtained at the official Web site7.

The JACK Agent language was defined as an extension to Java to cover agent-based concepts.
The JACK compiler allows debugging and compiling the JACK Agent Language to pure Java
that can be executed on any Java platform. Last but not least, the JACK Agent Kernel provides
the underlying run-time engine supporting the execution of the agent-based program.

2 http://jason.sourceforge.net/JasonWebSite/Jason%20Home.php
7 http://agent-software.com/

166 7. Vertical Transformation: From Design to Executable Code

Beside language, compiler and kernel, JACK provides a UML-like graphical modeling
environment—the so-called JACK Development Environment (JDE)—that allows modeling
of MASs on a more abstract level. JDE provides graphical tools for defining agents, link them
to (i) events that allow to send and handle messages and (ii) plans they are using to reach
their goals. The internals of plans can be graphically defined in a workflow-like manner.

The deliberation process of a JACK agent normally consists of four steps. In the first step,
the agent receives an event either internally triggered by an owned plan or from the outside
(i.e. from another agent) by so-called message events. Based on the event type, the agent
evaluates the set of relevant plans to handle the particular event instance. In the third step,
the agent selects applicable plans from the set of relevant plans. Finally, in the fourth step,
one of the applicable plan instances is selected by the agent and executed.

Beside the just mentioned platforms, further languages have been proposed, like for instance,
Agent Development Kit8 (Xu and Shatz; 2003), Living Systems Technology Suite (LS/TS9) (Rimassa
et al.; 2006), Cougaar10 (Gracanin et al.; 2005), Cybele11, April Agent Platform12, FIPA-OS 13

(Poslad et al.; 2000; Laukkanen et al.; 2002), Nuin14 (Dickinson and Wooldridge; 2003), and ZEUS15

(Hyacinth et al.; 1999).

To conclude, we can say that several different forms of AOPLs exist, however, as Leszczyna
(2004) pointed out, only few, e.g. Agent Development Kit, JADE and JACK Intelligent Agents,
are still maintained. Additional information on the implementation platforms can be found in
(Bordini et al.; 2006) and (Bordini et al.; 2009). To demonstrate the usefulness of the DSML4MAS

model-driven approach, we focus in the remainder of this chapter on the JACK Intelligent Agents
platform.

7.2 Metamodel of Jack Intelligent Agents

In order to integrate JACK into our model-driven methodology, we specified a metamodel for
JACK based on the documentation we found in (JACK Intelligent Agents; 2005) and other related
approaches (e.g. (Papasimeon and Heinze; 2001)). The metamodel of JACK called JackMM—firstly
presented in (Fischer et al.; 2006; Hahn et al.; 2006b)—conforms to the Ecore meta-metamodel.
It is structured into three main views, i.e. the agent view, the team view, and the process view.
To form the base for the model transformation between DSML4MAS and JACK, the definitions of
these three viewpoints are given in the remainder of this section.

7.2.1 Agent View

The agent view specifies the structure of the autonomous entities formed to achieve a set of desired
objectives. A subset of the metamodel for this view is presented in Fig. 7.2. The core concept is the

8 http://edocs.beasys.com/manager/mgr20/pguide/overview.htm
9 http://www.whitestein.com/

10 http://www.cougaar.org/
11 http://products.i-a-i.com/index.shtml
12 http://sourceforge.net/projects/networkagent
13 http://sourceforge.net/projects/fipa-os
14 http://www.nuin.org/
15 http://www.labs.bt.com/projects/agents/zeus/

7.2. Metamodel of Jack Intelligent Agents 167

Fig. 7.2: The agent metamodel (simplified) reflecting the agent view of the JACK framework.

concept of an Agent that owns Plans to (i) handle and send Events and (ii) achieve goals, which are
not explicitly represented as concept. A more detailed description on each single concept of the
agent view is given in the following.

7.2.1.1 Agent

An Agent is a component that can exhibit reasoning behavior under both proactive (i.e. goal-
directed) and reactive (event-driven) stimuli. When an Agent is instantiated, it waits until a certain
goal is instantiated or it handles an Event that it must respond to by activating a Plan. Hence,
when such a goal or Event arises, the Agent determines what course of action it will take. The
abstract syntax of the Agent concept in JackMM is defined as follows:

Definition 7.2.1 (Agent in JACK)

An Agent is a 4-tuple Agent = (name, sends, handles, uses), where name defines the name of the
agent, sends specifies the events that the agent sends externally to other agents, handles defines the
events that the agent will respond to if they arise by executing a plan, and uses defines the plans that
the agent potentially executes in reaction to an event.

The actions or activities an Agent performs are defined by so-called Plans that are specified to
achieve certain goals. Any Plan must at least handle a single Event and may post/send several
Events, which are either of the form message or goal event.

7.2.1.2 Plan

A Plan models procedural descriptions of what an Agent does to handle a given Event. Similar to
plans in PIM4AGENTS, a Plan in JackMM can be considered as a sequence of activities an Agent
executes in order to handle an Event or achieve a certain goal. Thus, a Plan describes a set of steps
that are to be followed in order to accomplish a task. If a plan is applicable for certain situations is

168 7. Vertical Transformation: From Design to Executable Code

defined through a so-called context condition. When an Agent receives an Event, the Agent may
consider a set of relevant and applicable Plans. The relevance check is performed by considering
the context of the Event, whereas the applicability check is achieved by considering the agent’s
current state. Thus, the beliefset constellation and the Event context can be considered to further
filtering the set of feasible Plans. In the BDI architecture, this corresponds to the selection of
different alternatives to achieve a goal. Apart from simple Plans, moreover, meta-plans can be
defined that allow selecting the most useful applicable Plan. Informally, a Plan in JACK is defined
as follows:

Definition 7.2.2 (Plan in JACK)

A Plan in JACK is a 4-tuple Plan = (name, reasoningmethod, handles, posts), where name defines
the name of the plan, reasoningmethod defines methods that an Agent may execute when it runs
this Plan, handles specifies the Events triggering the execution of the Plan, and posts defines the
Events that are posted by this Plan.

Reasoning methods part of a Plan used for implementation issues are, in general, different from
normal Java methods in that they execute as finite state machines, and may succeed or fail,
depending on whether the Agent can complete each statement contained. The top-level reasoning
method is called body, which contains a Process that concretely specifies how the Agent wants to
achieve a certain goal. Details on the Process and its constructs are given in Section 7.2.3.1.

7.2.1.3 Event

An Event presets the type of stimuli Agents, Teams, Roles, or TeamPlans react to or send by taking
the information carried by the event instance into account. Events are, in general, an import
construct in agent-oriented systems as those are responsible to trigger any kind of activity within
an agent. JACK distinguishes between (i) internal stimuli that are Events the Agent or Team posts
to itself within plans, (ii) external stimuli that are messages from other Agents, and (iii) motivations
such as goals the Agent may have. Hence, the concept of an Event can be used for both modeling
intentions and modeling communication between Agents. Definition 7.2.3 states the abstract
syntax of Event.

Definition 7.2.3 (Event in JACK)

An Event in JACK is a triple Event = (name, eventFields, postingMehtods), where name defines the
name of the Event, eventFields specifies the set of attributes that are defined within the Event and
postingMethods all kinds of methods that can be invoked using the Event.

The eventFields allow specifying the information that is sent either internally or externally as part
of an Event. The postingMethods enables the designer to use different instances of an Event, i.e.
by defining different posting methods, the designer can specify, which kind of information is
exchanged in a certain situation by sending the same Event type.

7.2.1.4 Capability

A Capability in JACK can be understood to have a capability to reach a desired goals. In principle,
a Capability allows grouping behaviors (i.e. Plans) that are necessary for providing certain
functionalities. The concept Capability furthermore allows for code reuse, encapsulation of

7.2. Metamodel of Jack Intelligent Agents 169

Fig. 7.3: The team metamodel (simplified) reflecting the team view in the JACK framework.

functionality, and simplification of the design process. By code reuse, we mean that different
Agents may reuse the same capability or functionality, sharing Capabilities from a common library.
Encapsulation means that all components that make up a Capability are grouped together inside
the capability construct. The building of capability hierarchies is also supported by JACK.

Definition 7.2.4 (Capability in JACK)

A Capability in JACK is a 6-tuple Capability = (name, plans, handles, posts, sends, subCapabilities),
where name defines the name of the Capability, plans refers to the set of Plans grouped by the
Capability, handles specifies the Event that triggers the Plan, whereas posts and sends indicate
those Events that are either internally posted or externally sent. Finally, the attribute subCapabiliies
refers to the Capabilities recursively grouped by this Capability to allow the building of hierarchies.

A Capability can be considered as little agent as it similarly owns Plans that handle and send Events
and allow achieving goals. They are normally used to structure certain Plans an Agent can make
use of for certain situations. Further concepts of the agent view that are not used in the model
transformation are, for instance, the concept of a Beliefset that represents any kind of logical
knowledge about the world or the agent’s own state.

7.2.2 Team View

Grouping agents into social structures like organizations and communities is an important concept
to structure MASs (cf. Section 2.1.5). In order to allow the grouping of agents in JACK, the agent
view has been extended. In the team view, JACK facilitates the collaboration among teams to
achieve a common goal. The main concept is, therefore, the concept of Team consisting of other
autonomous entities (i.e. Teams) that are coordinated with so-called TeamPlans (extending simple
Plans). Similarly to Plans, a TeamPlan owns conditions and a body that again consists of a Process
(cf. Section 7.2.3.1).

7.2.2.1 Team

As depicted in Fig. 7.2.3.1, a Team is a specialization of the Agent concept that is a distinct reasoning
entity. It is characterized by the Roles it performs (i.e. to play Roles in other Teams as well) and/or

170 7. Vertical Transformation: From Design to Executable Code

the Roles it requires other Teams to perform. The formation of a given Team is achieved by attaching
sub-teams capable of performing the Roles required by the Team to achieve a common goal. By
filling the required Roles, a Team can delegate tasks to its team members through TeamPlans using
concepts like TeamAchieveNode. The abstract syntax of a Team is defined as follows:

Definition 7.2.5 (Team in JACK)

A Team is a 6-tuple Team = (name, uses, sends, handles, performs, requires), where name defines the
name of the Team, uses defines the TeamPlans that the Team can execute in reaction to an Event,
sends specifies the Events the Team sends externally to other Teams, handles defines the Events that
the Team will attempt to respond to if they arise by executing a TeamPlan, performs specifies the
Role the Team performs itself to the outside, and requires defines the NamedRoles the Team requires
in order to solve tasks requested by the outside.

For establishing complex Teams, they can be nested (i.e. a Team can consists of other Teams etc.).
The sort of nesting is, however, not done explicitly by defining Teams containing other Teams.
Rather, a Team requires a set of NamedRoles that are performed through other Teams. Hence, any
Team owning the certain NamedRole is not explicitly bound to a unique Team, but may perform
one and the same role in different team contexts. This gives the Team more flexibility, as the Team
performing the certain NamedRole can be flexible bound during run-time. For coordinating team
members, special activities are offered by a TeamPlan extending ordinary Plans (cf. Fig. 7.3).

7.2.2.2 TeamPlan

A TeamPlan specifies the behavior of a Team in reaction to a specific Event. As a specialization
of Plan, a TeamPlan also defines a set of activities specifying how a particular task is achieved
by particular Roles. Thus a TeamPlan defines how a task is achieved in terms of Roles. In order
to coordinate the Team’s behavior, a TeamPlan provides additional constructs like the SendNode
and TeamAchieveNode. Section 7.2.3 gives a detailed overview on the main constructs within a
TeamPlan’s body.

Definition 7.2.6 (TeamPlan in JACK)

A TeamPlan in JACK is a 5-tuple TeamPlan = (name, reasoningmethod, handles, posts, uses), where
name defines the name of the plan, reasoningmethod defines the methods a Team may execute
when it runs this TeamPlan, handles specifies the Event triggering the execution of the TeamPlan,
posts defines the Events posted by the TeamPlan, and uses defines the NamedRoles that are needed
by the TeamPlan for the purpose of assigning tasks to the Teams filling this role.

The main difference to a Plan is that a TeamPlan additionally requires a set of NamedRoles that
represent interfaces to their members. Using these interfaces, the Team can assign adequate
subgoals to its members through a TeamPlan, where adequate means that the sub-teams should
have TeamPlans available that allow them to achieve the requested goals. Hence, a TeamPlan is
used like a normal Plan to achieve goals, but it can, furthermore, be used to coordinate the Team’s
members to achieve complex goals that go beyond the functionalities and capabilities of a single
Agent.

7.2.2.3 Role

A Role in JACK defines a relationship between a role tenderer (which could be a Team) and a
role filler (sub-team), specifying the goals that both participants must achieve. Roles are a very

7.2. Metamodel of Jack Intelligent Agents 171

important concept to define Teams in JACK as those specify which messages—which are rather
Events—the role fillers are able to react to and which messages they are likely to send. The abstract
syntax of a Role in JACK is defined as follows:

Definition 7.2.7 (Role in JACK)

A Role in JACK is a 4-tuple Role = (name, handles, posts, sends), where name defines the name of the
Role, handles specifies the Events the Role should be able to handle, posts illustrates the Events the
Role should be able to internally post and finally, sends depicts the Events the Role should be able to
send to other Roles.

Even if the concepts of a Role in JackMM and a DomainRole in PIM4AGENTS seem to be very similar,
the main difference is that a Role in JackMM does not refer to TeamPlans, neither it provides nor
requires any certain behavioral descriptions. In fact, as previously mentioned, a Role in JACK
should be more considered as interface, providing certain communication channels through
which any Team can interact with.

7.2.2.4 NamedRole

NamedRoles are used within JACK whenever a Team requires a certain functionality. This could
either happen within the Team itself or as part of a TeamPlan when a task/goal is assigned.
Definition 7.2.8 gives a more precise definition.

Definition 7.2.8 (NamedRole in JACK)

A NamedRole in JACK is a tuple Role = (name, type), where name defines the name of the NamedRole
and type names the Role that the NamedRole represents.

Beside the NamedRole itself, within a TeamPlan, the system designer can define how many Name-
dRoles are necessary at least and most to achieve the certain functionality. Important to mention
is that a NamedRole can be considered as placeholder for a Role in a Team context. For which role
the placeholder is finally used is expressed by the NamesRole’s type.

7.2.3 Process View

For BDI architectures, plans represent the behavioral elements of an agent and are composed
of a head and a body part (cf. Section 2.1.4). The process view of JackMM focuses on the Plan
(or TeamPlan) body in JackMM and its constructs to allow providing a predefined course of
action, given in a procedural language. This course of actions or process is to be executed by the
Agent (or Team), when the Plan (or TeamPlan) is selected for execution, and may contain actions
like sending messages, manipulating beliefs, or creating subgoals. The Process is included by a
ReasoningMethod that includes the sequence of activities executed by the Agent (or Team) and a
set of LocalVariables that can be accessed and changed within a Process. The metamodel of the
process view is depicted in Fig. 7.4.

172 7. Vertical Transformation: From Design to Executable Code

Fig. 7.4: The partial process metamodel reflecting the process view in the JACK framework.

7.2.3.1 Process

A Process in JackMM defines the set of activities—the so-called NodeBases—that are necessary for
achieving a particular goal and a set of Flows that connect the determined NodeBases. The so-
called LocalVariables allow defining how information flow between the NodeBases. The abstract
syntax of NodeBase is as follows:

Definition 7.2.9 (Process in JACK)

A Process in JACK is a triple Process = (start, subprocesses, flows), where start refers to the first
NodeBase, subprocesses contains all NodeBases except the starting node that are necessary for
achieving the overall goal, and flows defines the set of Flows that connect the contained NodeBases.

7.2.3.2 NodeBase

A NodeBase is an abstract class that provides the common attributes for further specializations.
This concept has several specializations that are discussed in the remainder of this section.

Definition 7.2.10 (NodeBase in JACK)

A NodeBase in JACK is a tuple NodeBase = (name), where name defines the name of the NodeBase.

As mentioned before, a NodeBase is an abstract class that is the specialization of several activities
within a Process. In the following, we briefly introduce the main concepts necessary to adequate
implement the model transformation between design and implementation.

• ForkNode is an abstract class that extends NodeBase for the support of alternative outputs,
where alternativeFlow indicates an alternative following node in execution, with defaultFlow
being the default one.

• ParallelNode represents the parallel statement node, where parallelTasks refers to a collec-
tion of tasks or processes that must be executed in parallel.

• ParallelTask represents a parallel process inside the ParallelNode, where label refers to an
identifier for execution and exception handling within the ParallelNode.

• PostNode posts an Event to a Role, where the attribute event refers to the Event to be posted.

7.3. From DSML4MAS to JACK 173

• SendNode sends an Event to a Role, where the attribute targetAgent refers to the name of
the recipient Agent for the sent Event.

• ReplyNode replies to an Event received by the Agent, where originalMessage refers to the
Event to which the reply responds.

• CodeNode executes Java code within the Plan, where the attribute code defines the Java
code to be executed.

• DecisionNode represents an if-else decision, where the condition represents the boolean
expression to be evaluated in the decision.

• TeamAchieveNode delegates a task or goal to a subteam of the given Team, where the
variable roleInstanceLocalReference refers to the role container that should handle the goal
and eventInstance defines the Event describing the goal that the subteam must try to achieve.

• WaitForNode causes the Agent to wait for a given condition to be true. This condition could
either be a logical variable or integer defining a certain time value.

The presented concepts are only a selection of the most important ones for our purposes. The
complete list of process activities is given in the JACK documentation (JACK Intelligent Agents;
2005). Similar to the behavior viewpoint in PIM4AGENTS, in order to connect these NodeBases and
hence to define the process logic, the concept of Flow is utilized that is defined in the following.

7.2.3.3 Flow

A Process in JacKMM is as mentioned earlier a workflow-like sequence of activities (i.e. NodeBases).
Similar to the ControlFlow in PIM4AGENTS, which connects two Activities, in order to define the
execution order within a Process in JackMM, the concept of a Flow is introduced connecting
two NodeBases that are executed in a sequential manner. Definition 7.2.11 gives the formal
specification.

Definition 7.2.11 (Flow in JACK)

A Flow in JACK is a tuple Flow = (name, source, sink), where name refers to the name of the Flow,
source the source NodeBase and sink the sink NodeBase.

Hence, like the concept of a ControlFlow in PIM4AGENTS, a Flow in JackMM is a directed link
between two NodeBases, i.e., the sink and source. The abstract syntax of the JACK metamodel is, in
the following section, used to depict the core mappings of model-driven methodology process
between DSML4MAS on the PIM level and JACK on the PSM level.

7.3 From DSML4MAS to JACK

In this section, we illustrate our model-driven approach to connect the design and the implementa-
tion in DSML4MAS. Therefore, we apply the principles of MDD by defining a model transformation
between DSML4MAS and JACK. In accordance to the DSML4MAS model transformation architec-
ture (Section 3.2.2.3), this model transformation consists of (i) a model-to-model transformation
between PIM4AGENTS and JackMM (cf. Section 7.3.1) and (ii) a model-to-text transformation
between JackMM and GCode (cf. Section 7.3.2), which generates an XML-like document that can
be imported into the JDE.

174 7. Vertical Transformation: From Design to Executable Code

Fig. 7.5: An overview on the model mappings from PIM4AGENTS to JackMM.

7.3.1 Model to Model Transformation: From PIM4AGENTS to JackMM

In this section, we bring together the metamodels of PIM4AGENTS and JackMM. Therefore, several
basic mapping rules were defined (cf. Fig. 7.5) that are listed in the remainder of this section. Again,
these mapping rules consist of (i) a head that defines which concepts from the source metamodel
PIM4AGENTS are mapped to which concepts of the target metamodel JackMM and (ii) a body that
defines how the attribute’s information of the target metamodel is derived.

The first mapping rule of the model-to-model transformation covers the mapping from the
organization view of PIM4AGENTS to the team view of JackMM. The concrete mappings are
expressed in Mapping Rule 7.1.

Mapping Rule 7.1: PIM4Agents:Organization → JackMM:Team

• performs: collection of DomainRoles performed by the Organization (cf.
Mapping Rule 7.6)

• requires: collection of DomainRoles performed by the Organization’s mem-
bers (cf. Mapping Rule 7.5)

• handles: collection of Messages referred to by a Receive in any Plan the
Organization has access to (Mapping Rule 7.4)

• sends: collection of Messages referred to by a Send in any Plan the Organi-
zation has access to (cf. Mapping Rule 7.4)

• uses: collection of Plans the Organization has access to (cf. Mapping
Rule 7.3)

7.3. From DSML4MAS to JACK 175

The source and target concepts of Mapping Rule 7.1 nicely corresponds to each other as both,
the Organization and Team, (i) make use of a process that specifies how their members are
coordinated or a certain functionality is provided and (ii) require and perform roles16. The main
difference between both concepts is the manner in which interactions are defined. The interaction
in PIM4AGENTS is mainly defined through AIPs, whereas JackMM favors an event-driven approach
without explicitly specifying AIPs, but only the Events and the Plans handling and sending them.
However, as the endogenous transformation depicted in Chapter 6.3 transforms any Protocol
description into corresponding Plans of PIM4AGENTS, we do not need to handle Protocols in the
vertical transformation at all and can mainly focus on the transformation of either generated or
manually defined Plans in PIM4AGENTS. Hence, any Plan used by an Organization is mapped to a
set of TeamPlans the created Team makes use of.

The set of Plans an Organization as a specialization of an Agents can adopt is the union of (i) the
set of Plans the Organization refers to through its behavior attribute, (ii) the set of Plans contained
by the Capabilities the Organization might apply and (iii) the kinds of Plans contained by any
Capability the Organization’s DomainRole provides. The complete list of Plans an Organization
may use is defined through the secondary variable potentialBehaviors declared in the Agent
Schema (cf. Schema 4.3.1). As any plan in JACK handles an Event, a Plan in PIM4AGENTS is split
into sequences that have all in common that they start with a Send task. Plans that do not react on
an incoming Message are directly transformed. How this is done is detailed by Mapping Rule 7.3.
The Events a Team sends or handles are, moreover, extracted from the Messages referred to by a
Send or Receive statement. Finally, the Team performs and requires Roles that are extracted from
the Organization’s provided and required DomainRoles.

The second transformation rule deals with the mapping from the agent view of PIM4AGENTS

to the team view in JackMM. The corresponding mapping is expressed by Mapping Rule 7.2.

Mapping Rule 7.2: PIM4Agents:Agent → JackMM:Team

• performs: collection of DomainRoles performed by the particular Agent (cf.
Mapping Rule 7.5)

• handles: collection of Messages received in any Plan the Agent has access to
through the Receive activity (cf. Mapping Rule 7.4)

• sends: collection of Messages received in any Plan the Agent has access
through the Send activity (cf. Mapping Rule 7.4)

• uses: collection of Plans either (i) contained in the Agent’s behaviors, (ii)
contained in the Agent’s capabilities or (iii) provided by any Role the Agent is
performing through the providesCapability variable (cf. Mapping Rule 7.3)

At a first glance, the concept Agent of JackMM seems to be the best match for an Agent in
PIM4AGENTS, but as the latter performs DomainRoles, it is recommended to assign an Agent
in PIM4AGENTS to a Team in JackMM as an Agent in JackMM does not refer to any Roles (see
Fig. 7.2). The main difference between Mapping Rule 7.2 and Mapping Rule 7.1 is the fact that,
when mapping an Agent to a Team, we instantiate an atomic Team meaning that the Team does
not require any NamedRole (i.e. sub-team) to which tasks are assigned in TeamPlans. When
mapping an Organization, the initiated Team requires a set of NamedRoles that are performed by
its members (which are again of type Team).

16 in case of PIM4AGENTS these are DomainRoles

176 7. Vertical Transformation: From Design to Executable Code

The mapping of the remaining variables is done as follows: The Plans used by the Agent
in PIM4AGENTS are mapped to a set of TeamPlans the corresponding Team makes us of. The
Messages sent and received by the Agent are mapped to Events that are either sent or handled by
the Team. Lastly, the Team performs the Roles that are generated based on the input of the Agent’s
DomainRoles.

After demonstrating how to map the autonomous entities (i.e. Agent and Organization), we
now illustrate how to transform Plans in PIM4AGENTS facilitating autonomous entities to behave
in an autonomous manner. Hence, the third mapping rule covers the mapping between the
behavioral view of PIM4AGENTS and the process view of JackMM.

Mapping Rule 7.3: PIM4Agents:Plan → JackMM:TeamPlan

• uses: collection of DomainRoles required by the Organization using this
Plan. If an Agent uses this Plan, no NamedRoles are instantiated (cf. Map-
ping Rule 7.5)

• sent: collection of Messages sent within the Plan, i.e. Messages referred to by
the Plan’s Send activities (cf. Mapping Rule 7.4)

• handles: collection of Messages received within the Plan, i.e. Messages
referred to by the Plan’s Receive activities (cf. Mapping Rule 7.4)

• body: direct mapping between the Activities of PIM4AGENTS and NodeBases
of JackMM

• relevanceCondition: the preCondition of the Plan in PIM4AGENTS

As previously presented, a TeamPlan requires a set of NamedRoles, which are extracted from the
DomainRole an Organization in PIM4AGENTS requires. The kind of Events either handled or sent
can easily be deduced from the Messages received or sent, respectively.

As specified in Definition 4.7.1, a Plan in PIM4AGENTS consists of several Activities, which are con-
nected through a ControlFlow and possibly InformationFlow. A Plan unions StructuredActivities
that define more complex control structures and atomic Tasks. Any kind of Activity refers to exactly
one incoming and outgoing ControlFlow. How to map the particular concepts of PIM4AGENTS is
illustrated in Table 7.1.

The body of the corresponding TeamPlan is generated in an one-to-one manner at least for
those Activities in PIM4AGENTS that were directly supported by JackMM. An example is the Send
activity, which is transformed to a SendNode in JackMM. The Message a Send refers to is directly
transformed to the corresponding Event.

As a TeamPlan automatically handles an Event, we do not need to directly transfer Receive
activities to related concepts in JackMM. However, as Plans in PIM4AGENTS base on MessageFlows,
which clearly describe which ACLMessages are received and sent, we can easily generate the
TeamPlan-specific structure.

Concepts like Parallel, Decision, and Wait can also be mapped in an one-to-one fashion as
illustrated in Table 7.1. In the contrast to concepts like Loop, ParallelLoop, and Sequence, which
are not directly supported by JackMM. In the case of Sequences this can easily be compensated
by connecting the predecessor of a Sequence with the first Activity of the Sequence and the last
Activity of a Sequence with its successor. For the concepts of Loop and ParallelLoop, we define

7.3. From DSML4MAS to JACK 177

Process mappings

Source Target Explanations

Process Plan the subprocesses and flows in JackMM are repre-
sented by the Plan’s Activities and ControlFlows.

Flow ControlFlow by connecting the NodeBases using Flows Se-
quences of PIM4AGENTS can be represented

ParallelNode Parallel depending on the execution type (XOR, AND), we
set the condition of the ParalledNode to ANY or
ALL

SendNode Send the Event that is sent in the SendNode is used
to instantiate the corresponding Message in
PIM4AGENTS

CodeNode InternalTask statements inside an InternalTask are trans-
formed to CodeNode

DecisionNode Decision the condition in PIM4AGENTS is mapped to the
condition in JackMM

Tab. 7.1: Mapping between the PIM4AGENTS and JackMM process parts.

templates consisting of several activities (e.g. Decision concept used for looping purpose) and
filled with the Activities contained by the source concepts (i.e. Parallel and ParallelLoop).

The fourth mapping rule defines how to map the interaction aspect of the PIM4AGENTS that
describes how to specify the interaction in a protocol-driven manner to an event-driven manner
as it is supported by JACK. Particularly, Mapping Rule 7.4 depicts how Events are instantiated in
order to be handled and sent within Plans.

Mapping Rule 7.4: PIM4Agents:Message → JackMM:Event

• name: name of the Message
• eventFields: the types of variables used to exchange information. For each

content of a Message one variable is instantiated
• postingMethods: a default operation that allows assigning the necessary

content

As mentioned in Section 7.2, JACK distinguishes between several different types of Events. Though,
Mapping Rule 7.4 is restricted to MessageEvents, i.e. goal events are not covered as the core of
PIM4AGENTS does not yet include any goal-oriented concepts. Thus, each Message defined as part
of the Environment and used within the Send or Receive activity is mapped to an Event in JackMM.
This is done independent of its type, i.e. whether the Message is sent/received in an asynchronous
or synchronous manner.

The next mapping rule deals with the generation of Roles in JackMM. In PIM4AGENTS, two
different role types are distinguished. The DomainRole focuses on the role an Agent or Organiza-
tion is able to play within a certain domain. The Actor can be considered as a generic role used to
express between which parties the exchange of messages is proceeded. However, both kinds of
Roles are linked through the ActorBinding concept. This concepts defines, which DomainRole is

178 7. Vertical Transformation: From Design to Executable Code

representing which Actor in the context of a certain Collaboration. As JACK does not provide any
mechanisms to define protocols and due to the fact that the interaction to behavior transformation
already extracts the necessary information from the Actor and assigns it to the DomainRole, for
deriving the necessary Roles in JACK, the DomainRole concept is sufficient.

Mapping Rule 7.5: PIM4Agents:DomainRole → JackMM:Role

• name: name of the DomainRole
• handles: collection of Messages that are received within any Plan contained

in the Capabilities either required or provided by the Role (cf. Mapping
Rule 7.4)

• sends: collection of Messages that are sent within any Plan contained in the
Capabilities either required or provided by the Role (cf. Mapping Rule 7.4)

As Mapping Rule 7.5 nicely demonstrates, the attributes a Role in JackMM requires can easily
derived from the properties a DomainRole offers. The Plans that are part of a DomainRole’s
required and provided Capabilities are given to the Teams that finally behave in accordance to this
particular Role.

The next mapping rule deals with the generation of NamedRoles in JackMM. As previously
discussed, NamedRoles are required by Teams and used inside TeamPlans to assign tasks and
responsibilities across team members. At this, the NamedRoles define role container objects that
include agent instances as role fillers at run-time.

Mapping Rule 7.6: PIM4Agents.DomainRole → JackMM.NamedRole

• name: name of the DomainRole plus the string NamedRole
• type: refer to the Role that was generated by applying Mapping Rule 7.5

Beside the Roles that are generated on the base of DomainRoles, we additionally instantiate
NamedRoles with Mapping Rule 7.6. The only difference is that only DomainRoles are applied
to this rule that are required by any Organization in PIM4AGENTS since only Teams that are not
atomic can refer to NamedRoles.

The last fundamental mapping rule of the model-to-model transformation transforms the
information model described in PIM4AGENTS into the corresponding information model of Jack.
For this purpose, we instantiate the so-called NamedData.

Mapping Rule 7.7: PIM4Agents:Resource → JackMM:NamedData

Resources an Agent has access to in PIM4AGENTS are mapped to NamedData an
Agent or Team uses. The NamedData concepts refers to so-called external classes
that are specified in e.g. Java.

7.3. From DSML4MAS to JACK 179

texttransformation jackMM2gcode_Event (in e:"http :// dfki/jackMM.ecore "){

e.Event:: event2gcode () {

file ("jack/" + self.name + ". gevent ")

<%<BAPI_Event

:superclass "%> self._getFeature (" extends ") <%"

:doc

<BAPI_Text

:name "%> self.name <%"

:filename "%>self.name <%.gevent"

:type "aos.jack.ed.Event"

:java

%> if (self.eventFields.evfields.size() > 0) {<%

:evfields

(

%> self.eventFields.evfields ->forEach(field:e.Evfield) {<%

<BAPI_EventField

:name "%> field.name <%"

:type "%> field.type <%"

>

%> } <%)

Listing 7.1: Partial MOFScript template to generate events

7.3.2 Model to Text Transformation: From JackMM to GCode

Section 7.3 presented the model-to-model transformation between PIM4AGENTS and JackMM,
which takes the models conforming to PIM4AGENTS as input and introduces a corresponding
representation conforming to the JACK metamodel. In this section, we now concentrate on how
the information inside the JackMM models is extracted to generate executable JACK code. Thus,
we focus in this section on the model-to-text transformation that involves serializing the JackMM
models into GCode, which is used by JACK for internal representation.

In MOFScript, several serialization rules (i.e., templates) are created following the structure
of the source MOF-based metamodel of JackMM. This means that the information regarding
the concept itself as well as the references to other concepts are extracted and assigned to the
template’s attributes. For the serialization of JackMM models, we create a template for the concepts
Event, Role, NamedRole, Agent, Plan, Team, and TeamPlan. For each instance of the mentioned
concepts in the JackMM model, a new file is generated. Apart from serializing the main concepts,
additionally, a template is created that generates a project file that contains a reference to all newly
created JACK files. By importing the project file into JDE, all other JACK files are automatically
imported. The imported artifacts can, in an final step, be refined if necessary and compiled to
generate Java code representing the implementation.

To provide the reader with a feeling of how the MOFScript templates are defined, Listing 7.1
presents a segment of the template that serializes an Event from JackMM. For additional details
on the MOFScript syntax, please refer to the official documentation that can be found at the
MOFscript web page at http://www.eclipse.org/gmt/mofscript/.

180 7. Vertical Transformation: From Design to Executable Code

Fig. 7.6: The generated agent view of the CMS example.

7.3.3 Illustrative Example: Conference Management in JACK

In the remainder of this section, the model transformations presented in the previous section are
illustratively discussed. The generated JackMM models bases on the PIM4AGENTS’S-based CMS
example from Section 5.3.2.1.

7.3.3.1 Agent View of CMS in JACK

The generated agent view of the JackMM-based CMS example is illustrated in Fig. 7.6. Mapping
Rule 7.2 instantiated two teams, i.e., the Researcher and SeniorResearcher team. Similar to the
PIM4AGENTS’S-based CMS example, the Researcher performs the Author and PCMember roles, the
SeniorResearcher performs the Author, PCMember, and PCChair roles. All roles are instantiated
by Mapping Rule 7.5. Furthermore, a set of team plans, i.e., EvaluatePapers, WritePaper, and
ReviewPaper, are created by Mapping Rule 7.3 that are used by the SeniorResearcher and Researcher
teams.

7.3.3.2 Team View of CMS in JACK

The generated JACK team view is depicted in Fig. 7.7. Apart from the agent concept in PIM4AGENTS,
Mapping Rule 7.1 creates non-atomic teams for any organization in PIM4AGENTS. Hence, the
teams ConferenceOrganization and ReviewOrganization are generated. The ConferenceOrgan-
zation requires the AuthorNamedRole, PCChairNamedRole, and the PCMemberNamedRole. The
latter is also required by the ReviewOrganization, in addition to the ReviewerNamedRole. All
named roles result from applying Mapping Rule 7.6. Lastly, the ReviewerOrganization performs
the PCMember role that is again produced by Mapping Rule 7.5.

7.3. From DSML4MAS to JACK 181

Fig. 7.7: The generated team view of the CMS example.

Fig. 7.8: The JACK representation of the interaction view of CMS.

7.3.3.3 Interaction View of CMS in JACK

JACK does not naturally allow to model AIPs as the order in which events are sent and handled can
only be specified within plans. The abstract modeling is, in contrast, supported through designing
the involved roles in the interaction and events exchanged by them. The abstract view on the
PIM4AGENTS-based CallForReviews protocol is depicted in Fig. 7.8. This view includes the roles

182 7. Vertical Transformation: From Design to Executable Code

Fig. 7.9: The JACK representation of the process view of CMS.

PCChair and PCMember that either handle or refuse the produced events CallForReview, Reject,
Accept, PaperToReview, and Review. These events are generated by Mapping Rule 7.4.

7.4. PSM Agent Modeling Process 183

7.3.3.4 Process View of CMS in JACK

One of the generated process models of the CMS example is illustrated in Fig. 7.9. The team plan
shown bases on the SubmitPaper behavior illustrated in Fig. 5.12. The SubmitPaperTeamPlan
handles the CallForPaper event. The team plan itself consists of two parts. In the first part the
team decides whether to submit a paper or not. The decision is directly derived from the decision
in the SubmitPaper plan. If the decision evaluates to true the paper is written in the code node
CalledBehavior within the time frame Wait1. After writing the papers, they are submitted in
parallel using the parallel construct in JACK to all potential entities playing the ChairActor. If the
PaperDeadline expires, the ChairActor evaluated the papers received and selected the best of them
for presentation at the conference. The according authors get the AcceptsPaper event, the others
receive a RejectPaper event. These events are handled outside the SubmitPaperTeamPlan. For
each of the accepted papers, the AuthorActor prepares the final versions and sends them to the
ChairActor.

7.4 PSM Agent Modeling Process

In Section 5.4.2.2, the DSML4MAS’S methodology process model was presented. In this process
model, the execution platforms of JACK and JADE are considered as platform-specific and thus
related modeling is part of the implementation phase. The idea of combining the development
process of abstract modeling languages and agent-based infrastructures is not new (e.g. (Molesini
et al.; 2009)). However, in the DSML4MAS methodology, this is done in an automatic manner
utilizing the model transformation between DSML4MAS on the PIM level and JACK and JADE on
the PSM level.

The process model of the implementation phase is depicted in Fig. 7.10. The process takes
the design (possibly including the deployment) made with DSML4MAS and starts by the decision
whether to choose JACK or JADE as execution platform for the DSML4MAS design. Which agent
platform to choose mainly depends on the requirements the generated implementation should
fulfill, i.e., autonomous reasoning facilities provided by the intelligent entities or fast message
exchange. In either case, the model transformation between DSML4MAS and the chosen execution
platform is executed. For detailed information on the model transformation between DSML4MAS

and JADE, we refer the interested reader to (Gründel; 2009; Hahn et al.; 2009a).

As a next step, the generated design is either refined and/or completed. As neither JACK
nor JADE offers guidelines or a development process detailing how to get an executable imple-
mentation, the different tasks (e.g. create JACK team, create JACK role, etc.) are arranged
in parallel. After finalizing the implementation phase, the design can be compiled, and finally,
executed in a last step. This means that the design made with DSML4MAS is guided through
three model transformations: The first one allows to transfer parts of the analysis phase into an
architectural specification, the second and third then use the design made with DSML4MAS to
generate an implementation that could—if necessary—be further refined on the different AOPLs.

184 7. Vertical Transformation: From Design to Executable Code

Fig. 7.10: The implementation phase of the DSML4MAS process.

7.5 Bottom Line

The current state of the art in developing MASs is to design agent systems by applying an AOSE
methodology and take the resulting design artifact as a base to manually code the agent system with
some agent-oriented programming platform. The fact that agent implementation is developed
completely manually from the design may tend to the divergence of design and implementation.

To close the gap between design and implementation, this chapter is devoted to the implemen-
tation phase of the DSML4MAS methodology’s process model with special emphasis on the model
transformation between DSML4MAS and the AOPL of JACK. This transformation aims at closing
the gap between design and implementation in AOSE. For this purpose, we firstly illustrated the
metamodel of JACK (JackMM) and secondly defined a vertical model transformation consisting of
(i) a model-to-model transformation between PIM4AGENTS and JackMM and (ii) a model-to-text
transformation from JackMM to JACK GCode, an XML-like structured file that can be imported
into the Jack IDE. The conference management system served as base to demonstrate how the
model transformations work in practice.

8. Agent-Based Service-Oriented Architectures

To reduce the interoperability barrier between MASs and existing mainstream software engineer-
ing approaches is one of the main objectives of this dissertation. This is, in our view, of particular
importance to get agent-based system design adopted by industry. Service-orientation has be-
come the leading paradigm for modern IT system design and development as service-oriented
system design has great potential for improving the efficiency and quality of the IT systems. The
idea behind Service-Oriented Architectures (SOAs) is to promote services as the basic building
blocks, which provide access to any type of problem solving facility regardless of its technical
realization via a standardized interface (Alonso et al.; 2003). This facilitates the interoperability
among heterogeneous components and resources, enables the seamless integration of previously
separated systems, and supports the reuse and substitution of system components by decoupling
the usage of IT facilities from their actual implementation (Erl; 2005).

As previously discussed, for achieving interoperability between two modeling tools in terms of
transparent model exchange, current best practices (cf. (Tratt; 2005)) comprise creating model
transformations based on mappings between concepts of the different metamodels. Therefore,
to reduce the interoperability gap between SOA and MASs, we select an MDD approach and
accordingly developed a generic model transformation between SoaML—the new standard for
modeling SOAs proposed by the OMG—and DSML4MAS.

Scope of this Chapter SOAs as an approach to design and implement modern information
systems aim to support business process management within an organization and across orga-
nizational borders. At this, services are employed to perform tasks within these processes and
processes themselves can again be exposed as services. SOAs as an architectural style for dis-
tributed systems are nowadays considered as mainstream in enterprise computing. Compared to
earlier approaches, SOAs put a stronger emphasis on loose coupling between the participating
entities in a distributed system.

Web Services are the technology that is most often used for implementing SOAs. They are a
standard-based stack of specifications that enable interoperable interactions between applications
that use the Web as a technical foundation (Booth et al.; 2004). The emphasis on loose coupling
also means that the same degree of independence can be found between the organizations that
build the different parts of an SOA. The involved teams only have to agree on service descriptions
and policies at the level of abstraction prescribed by the different Web Service standards. As
various kinds of systems can be used to implement SOAs, the recent trend is to apply principles
of MDD by (i) modeling SOAs in an abstract manner and (ii) providing model transformations
between this abstract specification and the underlying platform-specific systems. As such, MASs
became very popular as both, SOAs and MASs, share several commonalities.

In this respect, the goal of this chapter is to develop a model-driven process to automatically
translate any service description made with an underlying modeling language for services into
DSML4MAS. Fig. 8.1 graphically illustrates the underlying approach. Starting with defining the

186 8. Agent-Based Service-Oriented Architectures

Fig. 8.1: The scope of this chapter: Model transformation between SOAs (i.e. SoaML) and MASs
(i.e. DSML4MAS).

SOA using the Service-Oriented Architecture Modeling Language (SoaML), the developer takes
the service-oriented design and applies the model transformation that automatically produces
the corresponding agent-based description conforming to PIM4AGENTS. Afterwards, the agent-
related design can be refined and used to produce AOPL-based code out of it. Therefore, the
domain experts either apply the model transformation to JACK or JADE. After final refinements
and adjustments, the design can be executed within the selected execution platform.

Structure of this Chapter Section 8.1 introduces the core principles of SOAs. In Section 8.2,
we debate on the role of agents in SOAs and give reasons why agents are a necessary ingredient
for SOAs. Subsequent, Section 8.3 introduces the new emerging standard for modeling SOA
called SoaML developed under the umbrella of OMG, followed by Section 8.4 giving the abstract
mapping between SoaML and PIM4AGENTS, which is the DSML4MAS’s approach to abolish the
technical interoperability barrier between SOAs and MASs. In Section 8.5, the process model of
the DSML4MAS methodology is refined to further include SOA modeling. Section 8.6 then names
the advantages when employing DSML4MAS as SOA execution engine and Section 8.7 concludes
this chapter.

8.1 Service-Oriented Architectures—An Introduction

Industry is increasingly interested in executing business processes that span multiple applications.
This demands high-levels of interoperability and a flexible and adaptive business process man-
agement. The general trend in this context is to have systems assembled from a loosely coupled
collection of services. SOAs appear to be a natural environment in which agent technology can

8.1. Service-Oriented Architectures—An Introduction 187

be exploited with significant advantages. The remainder of this section intends to give a brief
introduction on the terms SOAs and services and discuss their benefits.

The literature in the SOA field provides divers definitions of the term software architecture.
For our purposes, the definition given in (Blanke et al.; 2004) of the term software architecture
fits best. In accordance to Blanke et al., a software architecture "... is a set of statements that
describe software components and assigns the functionality of the system to these components.
It describes the technical structure, constraints, and characteristics of the components and the
interface between them. The architecture is the blueprint for the system and therefore the implicit
high-level plan for its construction." Two definitions of a service-based software architecture are
given in the following.

Definition 8.1.1 (SOA, according to IBM)

A service-oriented architecture (SOA) is an application framework that takes everyday business
applications and breaks them down into individual business functions and processes, called services.
An SOA lets you build, deploy and integrate these services independent of applications and the
computing platforms on which they run.

The most important statement of Definition 8.1.1 is that an SOA is an abstract specification of the
service architecture that does not make any assumption about the underlying execution platform.
Thus, techniques are needed to ensure that the abstract specification can be transferred to the
underlying more execution-oriented platforms. MDD seams to naturally offer an environment for
generating code based on the SOA description. Especially in distributed systems, like in the case
of MASs, the exchange of messages is an important mechanism to coordinate the entities involved.
How to interact in SOAs is often defined through the entities’ interfaces, which can be used, in
accordance to Definition 8.1.2, in different manners.

Definition 8.1.2 (SOA, according to Worldwide Web Consortium (2004))

A set of components which can be invoked, and whose interface descriptions can be published,
discovered and invoked over a network.

SOA aims to promote software development in a way that leverages the construction of dynamic
systems that can easily adapt to volatile environments and be easily maintained. The decoupling
of the systems’ parts enables the re-configuration of the system components according to the users
needs and the systems environment. Service-oriented computing emerged as an evolution of the
component-based development with the aim to support the loose coupling of system parts in a
better way than existing component-based technologies. In the course of globalization, services
are in particular used to provide certain (business) features to the outside that can be combined to
services to support new business models.

Any service-oriented environment is expected to support several basic activities like the cre-
ation, discovery, invocation, and binding of service. In addition to these basic activities there are
other activities that need to take place in order to take full advantage of SOAs. These activities
include service composition, management and monitoring, billing, and security. To fulfill these
basic activities, three generic roles normally interact in an SOA:

Service provider A service provider is the party in the SOA that provides software applications for
specific needs as services. Service providers publish, unpublish, and update their services
so that they are available on the Internet. The service provider is in general the owner of the
service and thus holds the implementation of the service.

188 8. Agent-Based Service-Oriented Architectures

Fig. 8.2: Three generic roles of SOAs.

Service requester A requester is the party that has a need that can be fulfilled by a service available
on the Web provided by the service provider. A requester could be anything, a human user
accessing the service through an interface (i.e. web browser). The service could either offer a
very simple functionality or complex functionalities that include other services. Optionally,
if the service is not known to the requester, it finds the required services via a service broker
and binds to services via the service provider.

Service broker A service broker provides a repository of service descriptions, where service
providers publish their services and service requesters find services and obtain binding
information for these services. The most well-known example of a service broker is UDDI
(Universal Description, Discovery, and Integration). For our needs, the role of the service
broker is not necessary.

8.1.1 Service

The composing of services allows presenting the logic of different levels of granularity and pro-
motes re-usability and the creation of abstraction layers. The following definition takes some of
the basic ideas of services into account.

Definition 8.1.3 (Service, according to Papazoglou and Georgakopoulos, 2003)

Services are self-describing, open components that support rapid, low-cost composition of dis-
tributed applications. Services are offered by service providers—organizations that procure the
service implementations, supply their service descriptions, and provider related technical and
related support.

In general, a service can be considered as mechanism to enable the access of certain capabilities.
Hence, it is normally open and described through so-called service descriptions that define the
capabilities provided and the information needed for access. This access is normally done through
the service interfaces. A further characteristic of a service is underlined by the following definition.

Definition 8.1.4 (Service, according to Bennett et al. (2002))

A service is an application function packaged as a reusable component for use in a business process.
It either provides information or facilitates a change to business data from one valid and consistent
state to another.

The main characteristic of services given by Definition 8.1.4 is that they are reusable. One further
important characteristic of a service, which makes it different to agents, is that services are in

8.1. Service-Oriented Architectures—An Introduction 189

general stateless, whereas agents are considered as stateful. This means that services should not
be used to manage state information, rather to provide loosely coupled software systems. However,
like agents, they abstract from the underlying logic. The only part of a service that is visible to the
outside world is what is exposed via the service’s description and formal contract. The underlying
logic (beyond what is expressed in the description and formal contract) is invisible and irrelevant
to service requesters. Section 8.2 is devoted to discuss the differences between services and agents
in more detail.

Services are loosely coupled, dynamically locatable software pieces, which provide a common
platform-independent framework that simplifies heterogeneous application integration. Services
base on a SOA and communicate by exchanging messages based on XML. Some function-oriented
approaches like WSLD1 (Web Services Description Language) and BPEL4WS2 (Business Process
Execution Language for Web Services) have provided guidelines for defining service compositions
(see (Koehler and Srivastava; 2003; Casati and Shan; 2001). However, the technology to compose
services has not kept pace with the rapid growth and volatility of available opportunities (cf. (Sheng
et al.; 2002)). While the composition of services requires considerable efforts, its benefits can be
short-lived and may only support short-term partnerships that are formed during execution and
disbanded on completion (cf. Sheng et al. (2002)).

Service composition can be conceived as two-phase procedure, involving planning and execu-
tion (cf. (McIlraith and Son; 2002)). The planning phase includes determining series of operations
that are needed for accomplishing the desired goals from a user query, customizing services,
scheduling execution of composed services and constructing a concrete and unambiguously
defined composition of services ready to be executed. The execution phase involves processes of
collaborating with other services to achieved desirable goals of the composed services.

8.1.2 Service Composition

Services utilized within a SOA may be provided by different organizations or partners. Often, a
service provided by one organization may be constructed by aggregating services provided by
other organizations. This is especially for Business-to-Business (B2B) and Business-to-Customer
(B2C) transactions very common. Two styles of composing a single service from multiple services
can be distinguished:

Choreography In accordance to Barros et al. (2005a), a choreography describes how a collection
of services collaborate in order to achieve a common objective. It therefore describes from a
global perspective how the involved services interact in terms of message exchange, time
constraints and data flow. Hence, a choreography emphasizes on the interaction (i.e. the
global process), but does not make any assumption on internal actions of the services. Any
global process is characterized by the facts that (i) the participating services are treated
equally and (ii) the control is shared among the participating partners.

Fig. 8.3 depicts a simple choreography between three services, where Service1 invokes
Service2 and Service3 by sending a message.

Orchestration In accordance to Barros et al. (2005a), an orchestration model describes both the
communication actions and the internal processes in which a service engages. However,
normally the orchestration is defined, in contrast to a choreography, from the perspective of

1 http://www.w3.org/TR/wsdl
2 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel

190 8. Agent-Based Service-Oriented Architectures

Fig. 8.3: The choreography between services.

Fig. 8.4: The orchestration of services.

a single service provider. The internal processes include any related activity like invoking
external legacy systems as well as information passing. In contrast to choreographies, orches-
trations are executable process since they are intended to be executed by an orchestration
engine like BPEL4WS.

Fig 8.4 depicts a typical orchestration of two services (i.e. Service2 and Service3). At this,
Service1 requests the Orchestrator for a certain service. As such a service description is not
available to the Orchestrator, it combines the capabilities of Service2 and Service3 by direct
invocation. The result is returned to Service1.

Even if orchestration and choreography are normally exclusive high-level process management
patterns, it is important to note that a real-life system may use a combination of both. For example,
it is common for choreographed services to consist of orchestrated participants. In this setting,
the global business process is defined by the choreographed interaction, but each participant may
define an internal business process through orchestration.

8.1.3 Benefits of Service-Oriented Architectures

As previously mentioned, SOAs are increasingly utilized in industry as services are employed
for designing the enterprise and its ICT support. In this section, we explore the benefits of
SOA compared to object-orientation, component-based development, and business process
engineering. We furthermore investigate how agent technologies can support the efficient service-
oriented computing.

Flexibility Services orientation offers a level of flexibility exceeding that of, for instance, object-
oriented development. Flexibility is in particular improved due to the fact that services
are dynamically invoked. This allows the service providers to continuously improve the
service’s functionality. Moreover, due to the fact that the service description is offered to the

8.2. Agents and Service-oriented Architectures 191

outside, the end users can search for the particular service that fits best into their needs and
requirements. Similar to SOAs, one of the main characteristics of MASs is flexibility, which is
achieved due to features like self-management. For instance, in case of errors during the
composition or invocation of services, the BDI paradigm allows the agents to flexibly adapt
to changes in the surrounding environment, i.e. the "best" service providers can be chosen
to dynamically recover the service composition and to finally achieve the goal achievement.

Complexity reduction Services reduce complexity by encapsulation, which means that a service
may be the aggregation of a number of other services through service composition. For the
purpose of invocation, the service provider only needs to know the interface of the combined
service, but not the implementation of how their behavior is coordinated. Encapsulation
is the key to cope with complexity, flexibility, scalability, and extensibility. To reduce the
complexity of MASs, social structures (e.g. concepts like role, institution, organization, etc.)
are utilized. This has been applied, for instance, by Schillo in (Schillo; 2004) demonstrating
how holonic3 organizations improve the robustness (e.g. scalability, flexibility, etc.) of the
whole MAS.

Interoperability Services promote interoperability by minimizing the requirements for shared
understanding, i.e. a service description and a collaboration and negotiation protocol
are the minimal requirements for shared understanding between a service provider and
a service user. Moreover, by allowing legacy applications to be exposed as services, SOAs
greatly facilitate a seamless integration between heterogeneous systems. New services
can be created and dynamically published and discovered without disrupting the existing
environment.

Loose coupling SOAs accomplish loose coupling through the use of contracts and bindings. The
service requester requests the service broker for information about the type of service
wanted to use. The broker returns all services it has available that match the requesterŠs
criteria. The requester then selects the service provider fitting best its requirements. The
idea of loose coupling is also realized in the context of MASs. Therefore, often the concept
of a role is used that is performed by the agents. At run-time, only a subset of the agents
that could potentially perform the role is actually playing it. Which agent is finally bound
to the role is determined during run-time in accordance to some pre-defined evaluation
criteria. The contract net protocol is a good example for this kind of late binding as the
agents performing the participant role are dynamically allocated.

Even if SOAs and MASs share similar benefits, the agent community has lively but also wide-
ranging discussion on the relationship between agents and services. The forthcoming section
gives an overview on this debate.

8.2 Agents and Service-oriented Architectures

The previous section demonstrated that SOAs and MASs share several benefits, which is certainly
a necessary requirement for combining both paradigms. However, up to now, it is rather unclear
how both approaches fit together. The remainder of this section firstly, examines the relationship
between agents and services followed by secondly, addressing how agents might improve service-
based computing.

3 see (Koestler; 1967) for a detailed description on the term holon

192 8. Agent-Based Service-Oriented Architectures

8.2.1 Relationship between Agents and (Web) Services

Even if the similarities between agent architectures and SOAs have already been recognized (Singh
and Huhns; 2005). However, there is still an ongoing discussion about the relation between
Web services and agents though. Dickinson and Wooldridge (2005) proposes three relationships
between agents and services: no conceptual distinction, bi-directional integration, and agents
invoke Web services. However, in our view, only the two last paradigms can actually be kept,
as Payne (2008) pointed out fundamental differences between both paradigms, making the first
relationship indefensible.

Flexibility and Robustness The approaches used to engineer agents and Web services are fun-
damentally different to the development of Web services. Typically, when designing the
latter, the work flow to reach a goal is well defined at the design time and any changes in the
environment under run-time could cause failure in the work flow resulting in the circum-
stance that the overall goal will not be reached. Since agents are reactive, flexible, social and
interact with the environment, they would adopt to changing contexts and environments
and either choose an alternative plan or delegate the task to other agents.

Proactiveness Since agents are communicative and social, they respond to both, messages from
other agents and changes in the environment, triggering their intention to achieve some goal.
This results in proactive behavior as necessary to flexibly react to changes in its surroundings.
Web services are typically just reactive as they have to be triggered by some message.

Goal orientation Typically Web services are used to provide access to some resources or facilitate
trading across organizations. Hence, Web services are more task-oriented, and will generally
perform the task immediately in contrast to agents, which are more goal-oriented. When an
agent receives a request, in order to maximize some utility through rational behavior, it can
refuse to execute the task if it does not give any gain to reach its overall goal.

Autonomy In the same way as objects, Web services need to be invoked or triggered by some
external parties to provide a desired behavior. As we already pointed out, an agent can
evolve its own behaviors without direction from its owner or user.

These differences can mainly be attributed to the properties of the notions of agency discussed
in Definition 2.1.5. Combining these findings, we can conclude that agents are stateful, meaning
that they base on a kind of life cycle (potentially BDI-driven) that drives their behavior and goal
achievement. In contrast, services are in general stateless. They are invoked, perform some kind
of computation, and pass back the result.

Basically, we agree on the last two relationships between agents and services, however, in a
model-driven context, where service are defined on a platform-independent level, we certainly
prefer and support the last relationship, i.e. agents invoke the Web services defined with a service-
oriented modeling language.

8.2.2 Agents in Service-Oriented Architectures

The main message from the last section is that agents and Web service share some commonalities,
however, their underlying principles are different. The question now arises which kind of roles
agents should take care in SOAs. In accordance to (Odell; 2007), the core features of agent-based

8.2. Agents and Service-oriented Architectures 193

computing (e.g. flexibility and robustness, proactiveness, goal orientation, and autonomy) can be
utilized in the following SOA-based core activities.

Resource provision and request In most of the Web Services Architectures (WSA), the actual
service requester and provider will agree on the service description and potentially semantics
that will govern the interaction between the requester and provider agents. The agents will
then automatically perform services on behalf of the actual requesters and providers. The
agents can choose the smartest and most efficient way to accomplish a task by coordinating
different agents in the service provision.

Processing support For complex processes, agents can be used to orchestrate and coordinate
software processes to solve problems collaboratively or compete intelligently. The provider
agents determine the value proposition for the consumer agents and then identify and
assemble the services that will form a virtual service for the end consumer. The concept of
self-organization is of particular importance in this context, as autonomous service agents
can freely decide to form organizations to better cope with the requirements of the service
requester.

Resource discovery Dynamic service selection is increasingly common as organizations recog-
nize the benefits of its flexibility. If an agent has flexibility in choosing its business partners,
it can select them to optimize any kind of quality-of-service criteria, including performance,
availability, reliability, and trustworthiness. A requester agent can be assigned to do this, but
specialized service-discovery agents are sometimes useful for facilitating this. The idea of
late binding is of particular importance as partner services are defined at design-time, but
the actual service endpoint for a partner might be fixed at run-time, as long as the service
complies with the structure defined at design time. This means that the service endpoint
needs to be set at the latest point in time when the actual call to the service is done.

Middleware support Within SOA middleware, agents should be used for functions that require
flexibility, autonomy, and robustness. For example, managing application-level fault tol-
erance, security, performance, and QoS are common uses for agents. In addition, agents
can be used as a more intelligent way of handling and propagating changes in ontology and
dealing with incompatibilities in vocabularies, semantics, and pragmatics among service
providers, brokers, and requesters.

From our perspective, considering their special features, the central role that agents should play in
a SOA scenario is to efficiently support distributed computing and to allow the dynamic composi-
tion of services. This means that agents should orchestrate services in an intelligent manner and
provide (re-)planning mechanisms that allow to efficiently react to changes or perturbations in
the SOA.

8.2.3 Related Work on Combining Agents and Service-Oriented
Architectures

The concepts of an agent are nowadays often used in the context of SOAs. Especially, in a business
context, agents are integrated in service-oriented environments, where agents mainly provide and
invoke services. While the traditional workflow systems have been designed for routine tasks, e.g.,
administrative office processes, more flexibility is needed in business processes that comprise
actions performed by customers, or that span multiple companies. Here, agent- and rule-based

194 8. Agent-Based Service-Oriented Architectures

approaches may be more adequate. The most flexibility is probably needed in very knowledge-
intensive tasks (e.g., decision making), which can only be coarsely modeled in traditional workflow
systems, resulting in a low level of system support. In the following, related work in this respect is
given.

Nguyen and Kowalczyk (2006) presented a framework called WS2JADE that allows integrating
Web services on the agent-platform JADE. The integration is performed through representing
a Web service by a gateway agent. The WS2JADE approach allows deploying, composing, and
controlling Web services as agent services at run-time.

Padgham and Liu (2007) discuss an agent-based approach to the service composition as a
loose form of teamwork in JACK. In particular, this is done by incorporate Web services as team
members in JACK providing the execution engine for the composite services developed. The BDI
architecture of JACK further supports a failure recovery mechanism that enables failing team
members to be replaced.

Jennings et al. (2000) propose ADEPT to develop agent-technology for business processes.
It provides the conceptualization and implementation of an agent-based system for managing
corporate-wide business processes. The ADEPT philosophy was founded upon two key notions:
(i) developing responsibility for provisioning and managing the business, and (ii) making the
problem-solving components reactive and proactive so they can respond to unexpected situations.

Kinny (1999) proposes the Agentis framework. In this framework, a service agent receives a
service request, is tasked with achieving the service objectives and keeps track of its environment
in terms of the service context. The agents use a library of sub-processes, each described with its
process objectives, process context and process logic. The sub-process logic itself is similar to
standard workflow systems, and is described using an extension of UML activity diagrams.

Nissen (2000) proposes a design of a set of agents to perform activities associated with the
supply chain process in the area of E-Commerce. In (Stormer and Knorr; 2001), the agents have
been used as part of the infrastructure associated with the workflow management system itself in
order to create an agent-enhanced workflow management system (WfMS).

Zeng et al. (2001) propose an approach that combines agents with workflows to effectively
integrate cross-enterprise workflows. Agents are used to encapsulate (i.e., wrap) services which
are able to execute workflow tasks. Based on the requirements of tasks, the system searches for
agents with matching capabilities. The relevant agents are used to execute the tasks, which are
dynamically composed by the system in order to provide the whole service.

Savarimuthu et al. (2005) discuss how an agent-based architecture can be used to bind and
access Web services in the context of executing a workflow process model. They use an example
from the diamond processing industry to show how an agent architecture can be used to integrate
Web services with WfMS.

Blake and Gomaa (2005) describe an adaptation of software agents as a possible solution for
the composition and enactment of cross-organizational services. Their approach details design
aspects of an architecture that would support this evolvable service-based workflow composition.
The internal coordination and control aspects of such an architecture is addressed. These agent
developmental processes are aligned with industry-standard software engineering processes.

8.2. Agents and Service-oriented Architectures 195

8.2.4 Model-Driven Integration of Agents and Service-Oriented
Architectures

Apart from the wealth of literature about business process modeling, enterprise application
integration and SOAs, to our knowledge, a model-driven approach for the integration of MASs
and SOAs has not been investigated so far. Cabri et al. (2007) provide an overview of agent-based
modeling approaches for enterprises. Penserini et al. (2006) describe the Tropos4 methodology
for a model-driven design of agent-based software systems. However, the problems related to the
integration of agent platforms and SOAs are beyond their focus. Endert et al. (2007) map BPMN
models to BDI agents, but do not consider a model-driven integration of agents and Web services.
In recent years, we investigated in two EU projects the model-driven integration of SOAs and
(BDI-) agents. The details of these approaches are given in the remainder of this section.

8.2.4.1 The ATHENA project

In the context of the integrated EU FP6 project ATHENA, we developed a model-driven approach
for BDI agents based on the JACK development environment. One of the main ideas of ATHENA
was to demonstrate how models, which were defined according to the platform independent
metamodel for SOAs (called PIM4SOA, (Benguria et al.; 2007)) can be transformed into models that
can be compiled into executable code using the metamodel definition for JACK (see (Fischer et
al.; 2007; Hahn et al.; 2006b) for a detail discussion of the transformations between PIM4SOA and
JackMM). Furthermore, in order to use a Web service within plans of JACK agents, we defined a
second transformation that maps the concepts of a metamodel for WSDL (Web service description
language) to particular concepts of the JACK metamodel (e.g. Capability). Detailed information
on the model-driven framework for the integration of services into agent systems can be found in
(Zinnikus et al.; 2007).

The PIM4SOA metamodel was one of the first attempts toward a metamodel for SOAs on a
more abstract or platform independent level. However, its expressiveness is limited to the design
of rather simple SOA-based scenarios. The PIM4SOA metamodel defines modeling concepts that
can be used to model four different aspects of SOAs: services, information, processes and non-
functional aspects. The definition of these aspects has been influenced by ongoing standardization
initiatives in the area of Web services, standards of SOAs were not considered.

8.2.4.2 The SHAPE Project

SHAPE (short for Semantically-enabled Heterogeneous Service Architecture and Platforms Engi-
neering) was a European Research Project under the 7th Framework Program that develops an
infrastructure for the model-driven engineering of service-oriented landscapes with support for
various technology platforms and extensions for advanced service provision and consumption
techniques. For this, the project defined the necessary metamodels for describing services and
related aspects in heterogeneous technology landscapes, developed an integrated tool suite for
modeling and deployment, and provided a comprehensive methodology for guiding software
engineers and architects through the engineering process of heterogeneous service-based systems.
This brought together the world of MDD with the SOA paradigm and integrated other technologies
like agents, Semantic Web, Grid, and P2P, combining their respective advantages for the effective
development and maintenance of high quality integrated IT systems.

4 Section 10.2.7 gives further details on the Tropos metamodel and methodology.

196 8. Agent-Based Service-Oriented Architectures

Fig. 8.5: An overview of the SHAPE model transformation architecture and framework.

A central part of the SHAPE technology are model transformations that define the basis for (semi-)
automated transformations among several model types, and in particular enable the MDD-based
approach for integrated top-down modeling from the CIM level to the PSM level.

The model transformation architecture of SHAPE (cf. Fig. 8.5) illustrates the core language
used, their relationship to the abstraction levels CIM, PIM and PSM as well as their relationship
to other languages defined through model transformations, either model-to-model or model-
to-text. On the highest level, business models encompass business rules, processes, services
and other issues such as contracts involving humans and organizations to achieve business
goals. These conform to the metamodel of CIMFlex5 (Hahn et al.; 2010d; Sadovykh et al.; 2009;
Elvesæeter et al.; 2010). The middle layer contains the extended SOA models, i.e., the standardized
SoaML and extensions for semantically-enabled heterogeneous architectures (ShaML). This model
transformation architecture allows the realization of one of the main goals of SHAPE namely to
provide a transformation engine that maps business models to SOA/SHA models, which are then
transferred to the various execution platforms. Apart from the model transformations available
in the DSML4MAS methodology, the model transformation architecture of SHAPE supports the
following model transformations:

CIM to PIM transformation: Model transformation between CIMFlex and SoaML The chal-
lenge in transforming CIMFlex models to SoaML is to generate the appropriate system
relevant constructs for SoaML according to the generic business context on CIM level.
CIMFlex supports the model-to-model transformation by making use of ATL.

PIM to PIM transformation: Model transformation between SoaML and Web Services
Transferring SoaML models into Web Service models is done through a model-to-
model transformation. This transformation produces three kinds of models from a single
SoaML model, i.e., it produces an XML schema for information description, WSDL files

5 CIMFlex is a modeling tool that facilitates modeling of Event-Driven Process Chains (EPCs) (Mendling; 2009) of ARIS
and BPMN.

8.3. Service-Oriented Architecture Modeling Language 197

for interface description, and finally BPEL4WS files for behavioral (i.e. orchestration)
specification.

PIM to PSM transformation: Model transformation between SoaML and WSMO The model
transformation between the metamodel of SoaML and the Web Service Modeling Ontology
(WSMO) is specified through a model-to-text transformation using the MOFScript engine.

8.3 Service-Oriented Architecture Modeling Language

Similar to the PIM4SOA metamodel, in recent years, several metamodels and UML profiles for
SOAs were developed. For example, in (Johnston; 2006), a UML profile for software services
is described, which mainly focuses on the structural aspects of service modeling. In contrast,
UML4SOA (Mayer et al.; 2008) as UML extension, mainly focuses on service orchestration and
thus on the process modeling. Moreover, independent organizations like W3C (World Wide Web
Consortium) or OASIS have worked on a common definition of SOAs. W3C, for instance, defined
the Web Service Architecture (WSA6), which intends to provide a common definition of a Web
service. The OASIS Reference Model for Service Oriented Architecture7 is, in opposition, an
abstract framework for understanding significant entities and relationships between these entities
within a service-oriented environment.

However, although there are several recent and ongoing activities on developing MDD-based
techniques for supporting the design, development, and maintenance of SOAs (e.g. (Bell; 2008)),
there does not exist a standardized metamodel for describing services along with the relevant
aspects on their provision and usage in a service-oriented system landscape.

In 2006, the OMG started the standardization process for SOA by issuing a request for proposal
for an UML Profile and Metamodel for Services (UPMS). The main objectives of this new standard
for services is to (i) enable interoperability and integration at the model level, (ii) enable SOAs on
existing platforms through MDA, and (iii) allow for flexible platform choices.

The resulting Service-Oriented Architecture Modeling Language8 (Object Management Group;
2009b)—a revised submission currently under review—is based on the UML 2.0 metamodel and
provides minimal extensions to UML, only where absolutely necessary to accomplish the goals
and requirements of service modeling. Like any UML profile, SoaML provides a UML specific
version of the metamodel that can be incorporated into standard UML modeling tools.

8.3.1 Modeling Concepts of SoaML

SoaML addresses the conceptual and technological interoperability barrier. It aims at defining
platform independent modeling language constructs that can be used to design, re-architect
and integrate ICT infrastructure technologies supporting SOA. In the SHAPE project, SoaML is in
particular used to achieve the following two objectives:

• SoaML should bridge the gap between the business analysts and the IT developers and
support mapping and alignment between enterprise and IT models.

6 http://www.w3.org/TR/ws-arch/wsa.pdf
7 http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
8 http://www.omg.org/docs/ad/08-05-03.pdf

198 8. Agent-Based Service-Oriented Architectures

Fig. 8.6: The basic concepts to define SOAs in accordance to SoaML.

• SoaML should define a platform independent abstraction that can be used to integrate and
define mappings to Web services, agents, Semantic Web services, peer-to-peer (P2P) and
Grid execution platforms.

As aforementioned, SOAs are a way of organizing and understanding organizations, communities
and systems to maximize agility, scale and interoperability. SoaML claims to be very flexible in
order to support activities of service modeling and design, and to fit into an overall MDD approach.
It supports three different perspectives: (i) from the service consumer requesting the service, (ii)
service provider advertising a service to those who are interested and qualified to use it and (iii)
from a system design describing how consumers and providers will interact to achieve overall
objectives.

Moreover, SoaML can be used for both, bottom-up as well as top-down architecture designs
of services (Berre; 2008). For bottom-up definition, services can be considered as atomic and
are combined on a low level. In the latter case, the services are very complex and hide necessary
functionalities from more atomic services. Fig. 8.6 depicts the core concepts of SoaML.

Even if SoaML provides core concepts for modeling services, neither it specifies any methodology
for service design nor makes any assumption about brokering, publishing, discovery, addressing

8.3. Service-Oriented Architecture Modeling Language 199

Fig. 8.7: The basic concepts of contracts in accordance to SoaML.

of services or any service runtime, configuration and deployment (e.g. dynamic binding etc.). In
the remainder of this section, we discuss the core concepts of SoaML in more detail and illustrate
their usage in a small illustrative example.

8.3.1.1 Participant

The key concept of a service is a capability offered by one entity or entities to others through
well-defined interfaces. Those entities may be people, organizations or systems and are called
Participants. In SoaML, capabilities are provided or required by Participants through the interac-
tion points, i.e. the UML Ports. To express that a Participant acts as service provider, the certain
UML Port is stereotyped as Service. In contrast, if the capabilities are required by the Participant,
meaning that the it acts as service requester, the UML Port is stereotyped as Request.

The Service port is the interaction point where requesters of the service use that particular
service. Hence, the Request port is the interaction point where the service is consumed. In either
case, the port has a type, which describes how to use that service that may be either a UML
Interface (for very simple services) or a ServiceInterface (see Section 8.3.1.2). The type of the service
port specifies, directly or indirectly, everything that is needed to interact with that service. This
means that it describes the contract between the providers and requesters of that service. The
Request port is the conjugate of a Service port in which it defines the use of a service.

The Participant stereotype in SoaML is inheriting from the UML Component classifier, and
is mainly used to represent software components, organizations, actors or individuals within
SOAs. Any Participant is defined by the roles it is playing in the various ServicesArchitectures (cf.
Section 8.3.1.2) and the Capabilities (cf. Section 8.3.1.8) it is providing to and requesting from
other Participants.

200 8. Agent-Based Service-Oriented Architectures

8.3.1.2 ServiceInterface

The capabilities and needs of a Service or Request port are defined through its type, ServiceInterface
or UML Interface. In accordance to (Object Management Group; 2008b), the ServiceInterface
stereotype is like an interface, but has the additional feature that it can specify a bi-directional
service, where both, the provider and consumer, have responsibilities to send and receive messages.
The ServiceInterface is defined from the perspective of the service provider, having three primary
parts (cf. (Object Management Group; 2008b)):

Interfaces are standard UML Interfaces that are either realized or used by the ServiceInterface. The
realized UML Interface specifies the provided capabilities, the messages that will be received
by the provider (and correspondingly sent by the requester). The UML Interface used by
the ServiceInterface defines the required capabilities, the messages or events that will be
received by the requester (and correspondingly sent by the provider). For basic services,
i.e., services that are not defined through a contract, two specialized UML Interfaces are
utilized (see Fig. 8.6). The ServicePoint defines the place, where a service is provided, the
RequestPoint defines the place of a Participant, where the service is requested.

ServiceInterface specifies the roles that are performed by the involved entities. They are neces-
sary to define who is providing or requesting a certain service. Hence, the role that is typed
by the realized UML Interface is played by the service provider, the role that is typed by used
UML Interface is played by the service requester.

Behavior specifies the interaction between service provider and requester. This is done by any
form of interaction protocol that establishes the contract between the roles involved without
specifying the internal and private processes. Any UML Behavior can be used for specifying
the interaction protocol, however, the UML activity diagrams are the most common as they
offer both, describing a behavior from the perspective of a single entity (i.e. orchestration)
as well as from the perspective of several entities (i.e. choreography) through partitions.

8.3.1.3 Service Contract

In accordance to (Object Management Group; 2008b), a key part of a service is the ServiceContract
that defines the terms, conditions, interfaces, and choreography that interacting Participants must
agree to for the service to be enacted. Beside non-functional criteria, the ServiceContract is the
full specification of a service, which includes all the information, choreography and any other
characteristics of the service.

Due to the fact that a ServiceContract is stereotyped by UML Collaboration, it defines well-
defined roles for the service provider and requester. A Participant plays a role in the larger scope
of a ServicesArchitecture and, consequently, also either plays the provider or requester role within
the contained ServiceContracts. The role of a service broker is normally not modeled in SoaML. In
terms of UML, a UML Collaboration is a type of structured classifier in which roles and attributes
cooperate to define the internal structure of a classifier.

A choreography is certainly an important part of a ServiceContract to specify how the roles of
the contract exchange information through messages. Important to note is that the choreography
defines the message exchange between the provider and requester participants without defining
their internal processes. However, the internal process of any entity has to be compatible with the

8.3. Service-Oriented Architecture Modeling Language 201

entity’s role within the ServiceContract. The choreography of a ServiceContract is defined by its
ownedBehaviors attribute which refer to, for instance, an UML activity diagram.

Similar to the manner CollaborationUses are used for collaborations in UML, the concept of
a CollaborationUse in SoaML allows to define the structure and behavior of the contained parts
playing roles in a specific context of ServicesArchitectures and ServiceContracts. Thus, it exactly
represents one particular use of a UML Collaboration by specifying the role bindings that binds
each role of its Collaboration to a part.

8.3.1.4 Services Architecture

A ServicesArchitecture provides a top-down view on the composed service. In accordance to
(Berre; 2008), the ServicesArchitecture is a network of participant roles providing and requesting
services to fulfill a purpose. It defines the requirements for the types of Participants and service
realizations that fulfill those roles. As depicted in Fig. 8.7, the ServicesArchitecture is defined
as UML Collaboration to specify the set of roles collaborating under certain conditions. In the
context of SoaML, the roles are normally filled with Participants playing a certain position in
this ServicesArchitecture. A role defines how entities are involved in that collaboration (how
and why they collaborate) without depending on what kind of entity is involved (e.g. a person,
organization or system). Each use of a service in a ServicesArchitecture is represented by the use of
a ServiceContract bound to the roles of participants in that architecture. Both service contracts
and participants can be reused when composing different services in other ServicesArchitectures.

8.3.1.5 Participant Architecture

The concept of ParticipantArchitecture is the high-level services architecture of a participant. It
defines how a set of internal and external Participants or Agents use services to implement the
responsibilities of the corresponding ParticipantArchitecture. Any ParticipantArchitecture is imple-
mented by a Participant or Agent. In contrast to a ServicesArchitecture, a ParticipantArchitecture
provides and requires services through the ServicePoint and RequestPoint, respectively.

8.3.1.6 Agent

In SoaML, the Agent concept extends Participant with the ability to be active, participating
components of a system. Agents in SoaML are specialized as they (i) possess the capability to
offer and request services and (ii) can have an internal structure and ports. They collaborate and
interact with their environment. An Agent’s behavior is treated as its own tread of control, life-cycle,
or what defines its emergent or adaptive behavior.

8.3.1.7 Message Type

As previously mentioned, for the purpose of defining choreographies, SoaML provides UML be-
haviors like activity or sequence diagrams to specify the message exchange between requesters
and providers. The kind of information that is exchanged between the partners is defined in the
message diagram using the MessageType concept. Hence, a MessageType as a kind of ValueOb-
ject9 is mainly used to explicitly identify the data and information to be exchanged through a

9 A ValueObject is a classifier that can be freely interchanged between participants.

202 8. Agent-Based Service-Oriented Architectures

Fig. 8.8: The abstract view on the conference management system using the ServicesArchitecture
concept from SoaML.

service. A MessageType describes domain or service-specific content and does not include any
protocol-specific information. A MessageType is stereotyped as a UML DataType and thus can
have associations (i.e. aggregation, composition) with other MessageTypes or DataTypes to define
complex objects.

8.3.1.8 Service Capability

As aforementioned, SoaML offers two opportunities to describe services: from a global perspective
using ServicesArchitectures and from a local perspective through ParticipantArchitectures. A third
option is to describe a combined service on a more abstract level, regardless of whether the service
is provided or requested. This can be expressed through the concept of a ServiceCapability, which
is stereotyped by UML Class. The ServiceCapability allows organizing functionalities needed to
provide, i.e., a ServiceCapability may use other ServiceCapabilities, which define the functionalities
needed by the super ServiceCapability. For describing the functionalities, a ServiceCapability
may have any kind of UML Behaviors defining the methods of its provided operations and are
linked to Participants or ParticipantArchitectures that provide the certain capability through UML
Realizations.

8.3.2 Illustrative Example: Conference Management System using SoaML

To illustrate the concrete usage of SoaML we again apply the conference management system
(CMS) as example. The CMS already served as example when discussing the concrete syntax of
DSML4MAS in Section 5.3.2.1 and demonstrating the mappings between DSML4MAS and JACK in
Section 7.3.3. Hence, the reader is already familiar with the basic architectural requirements of
this scenario and can focus on how these requirements are designed when applying the service-
oriented approach of SoaML. In order to model the CMS example with SoaML, we used the Modelio

8.3. Service-Oriented Architecture Modeling Language 203

Fig. 8.9: The abstract view on the SeniorResearcher participant architecture.

Fig. 8.10: The abstract view on the Researcher participant architecture.

tool suite also supporting SoaML. Modelio is a commercial product of the French company
SOFTEAM10

In order to model the relationship between all entities involved, we choose the concept of Service-
sArchitecture as it allows defining how kinds of entities work together for some purpose. Fig. 8.8
depicts the ConferenceOrganization defined as services architecture.

The collaboration roles (i.e. PCChair, Author, and PCMember) act as placeholder for the par-
ticipants that realize the services architecture. They define how the entities inside the services
architecture interact. For this purpose, two collaboration uses (i.e. CallForPaperUse and Call-
ForReviewUse) are defined. Those refer to their particular service contract (i.e. CallForPaper and
CallForReview) defining their type (cf. Fig. 8.8).

The concrete entities performing the author, pcChair, etc. roles are specified using the Partici-
pantArchitecture concept of SoaML. This means that, as depicted in Fig. 8.9 and Fig. 8.10, both
the SeniorResearcher and the Researcher are modeled as ParticipantArchitectures. The Senior-
Researcher offers the SeniorResearcherServices service that includes the PCMember, Author, and
PCChair interfaces. The Researcher, on the other hand, offers the ResearcherServices service that

10 SOFTEAM is one of the most renowned specialists in modeling techniques in Europe, http://www.softeam.com/

204 8. Agent-Based Service-Oriented Architectures

Fig. 8.11: The concrete interaction of the CallForPaper service contract.

includes the PCMember and Author interfaces. The SeniorReseacher is implemented by the agent
Klaus, the Researcher is implemented by the agent Christian.

The concrete interaction between the author and pcChair roles is depicted in Fig. 8.11. The
activity diagram describes how a "call for paper" request is sent by the author role through
the SendCFP action. The request is received by the pcChair role and evaluated. Based on the
evaluation, either the request is rejected by the SendReject action, or proposed by the SendPropose
action. After getting the accept message through the ReceiveAccept action, a camera ready version
is generated by the SendCameraReadyVersion action. Otherwise, if the author receives a reject, the
interaction process stops.

8.4 Model Transformation: From SoaML to DSML4MAS

In Chapter 7, we presented how to derive code from a DSML4MAS design by depicting the model
transformations between DSML4MAS and JACK. However, as MASs do not exist in pure isolation,
mechanisms need to be explored how to combine MASs with other available software engineering
approaches. As SOAs and their corresponding modeling language SoaML describes IT system in
a very abstract manner, they provide a nice opportunity to illustrate how to utilize agent-based
computing in service-oriented environments.

8.4. Model Transformation: From SoaML to DSML4MAS 205

Fig. 8.12: The basic mapping rules to transform SoaML specifications into PIM4AGENTS.

8.4.1 Model-to-Model Transformation: From SoaML to PIM4AGENTS

Similar to the code generation techniques presented so far, the approach chosen for combining
SOAs and MASs bases on the principles of MDD. In this particular case, this is done through a
generic model transformation between the SoaML profile and PIM4AGENTS. By comparing SoaML
and PIM4AGENTS, we derive a set of basic mapping rules, which are depicted in Fig. 8.12 and
precisely examined in the remainder of this section.

The first mapping rule investigates the mapping between the concepts of ServicesArchitecture
in SoaML and Organization in PIM4AGENTS.

Mapping Rule 8.1: SoaML:ServicesArchitecture → Organization

• name: name of the ServicesArchitecture
• requiredRole: collection of roles part of the ServicesArchitecture
• interaction: UML Activity diagrams used by the ServicesArchitecture’s Ser-

viceContracts to specify he interactions between the entities involved
• organizationUse: any CollaborationUse defining how the involved roles

collaborate

206 8. Agent-Based Service-Oriented Architectures

As Mapping Rule 8.1 illustrates, the concept of a ServicesArchitecture nicely corresponds to the
concept of an Organization in PIM4AGENTS as both refer to roles that interact in accordance to
some predefined processes. However, and this is the main differences between both constructs,
a ServicesArchitecture does not perform any role to the outside, which is the case for Organiza-
tions. Hence, the Organizations generated on the base of the ServicesArchitectures are utilized
as a social structures providing the space for interaction. In consequence this means that the
generated Organizations do neither own Plans nor perform DomainRoles to the outside. Thus,
the Organizations are not autonomous entities in the service-oriented MAS, but should rather be
considered as a form of grouping the necessary autonomous entities to fulfill service. Likewise,
the resulting Organizations do not own any kind of knowledge, capability, nor resource.

In the same way as a ServicesArchitecture specifies the top-down view on a service, applying
service choreographies to describe the interaction between its roles, a ParticipantArchitecture
defines how a service is orchestrated. Since an Organization in PIM4AGENTS offers mechanisms to
describe the interaction from a global but also from a local perspective, an Organization is also
the best match for a ParticipantArchitecture as expressed by Mapping Rule 8.2. One might think
that a Participant’s perfect match would be the Agent concept on the PIM4AGENTS side. However,
the semantics of both terms is different, as the ParticipantArchitecture requires roles as parts,
the Agent concept in PIM4AGENTS, in contrast, only performs roles to the outside, but does not
require any role (cf. Section 4.3.1). Nevertheless, as an Organization in PIM4AGENTS is defined as
specialization of Agent, we do not loose any expressiveness when using the Organization concept
as target instead.

Mapping Rule 8.2: SoaML:ParticipantArchitecture → Organization

• name: name of the ParticipantArchitecture
• requiredRole: collection of roles the ParticipantArchitecture makes use of
• interaction: any UML Activity diagram used within the Participant’s Ser-

viceContracts (cf. Mapping Rule 8.3)
• organizationUse: collection of CollaborationUses utilized within the Partic-

ipantArchitecture (cf. Mapping Rule 8.5)
• performedRole: collection of roles the ParticipantArchitecture is bound to

within any ServiceContract, ServicesArchitecture, or ParticipantArchitecture
outside its own boundaries

• capability: any UML Operation provided by its Service port (cf. Mapping
Rule 8.8)

• behavior: collection of UML Behaviors constraining the ParticipantArchi-
tecture’s behavior (cf. Mapping Rule 8.7)

• knowledge: collection of UML Classes (expressed through the ownedAt-
tribute attribute) the ParticipantArchitecture makes use of (cf. Mapping
Rules 8.11 and 8.10)

In contrast to a ServicesArchitecture, a ParticipantArchitecture depicts a concrete entity in the sys-
tem described. Thus, the target Organization may perform a DomainRole, which is either required

8.4. Model Transformation: From SoaML to DSML4MAS 207

inside any ServicesArchitecture or ServiceContract or even in other ParticipantArchitectures. More-
over, the Organization may own certain knowledge used by the source ParticipantArchitecture.

As previously mentioned in Section 8.3.1.3, the main purpose of a ServiceContract is to define
the roles that agree on the contract and how they interact with each other which is expressed
through any kind of UML Behavior11. Hence, for adequately representing a ServiceContract in
PIM4AGENTS, the right choice is a Collaboration. This generated Collaboration defines how the
DomainRoles of its Organization are bound to Actors of Interactions.

Mapping Rule 8.3: SoaML:ServiceContract → Interaction

• name: name of the ServiceContract
• actor: collection of the ServiceContract’s collaborationRoles12

Apart from ServiceContracts, we also apply Mapping Rule 8.3 when transforming a SoaML Collabo-
ration, as a Collaboration is the generalization of a ServiceContract (cf. Fig. 8.7). For instantiating
Interactions, Mapping Rule 8.3 only introduces Actors and doe not make any assumption about
the ACLMessages exchanged by the involved Actors. However, as SoaML does not use a similar
concept to ACLMessage, only simple Messages are produced by Mapping Rule 8.9.

Mapping Rule 8.4: SoaML:ServiceInterface → Collaboration

• name: name of the ServiceInterface
• interactionInstance: collection of UML Activity diagrams specifying how

UML Interfaces interact with each other (cf. Mapping Rule 8.8)
• binding: collection of UML Interfaces either realized or used by the Servi-

ceInterface
• actorBinding: collection of UML ActivityPartitions describing the ServiceIn-

terface ownedBehaviors

A CollaborationUse in SoaML defines how to use a ServiceContract in terms of role bindings. Hence,
it defines which roles of a ServicesArchitecture are bound to which roles of the particular Service-
Contracts. In Section 4.9.4, a similar concept has been introduced for PIM4AGENTS, namely the
concept of an ActorBinding defining which DomainRole is bound to which Actor of an Interaction.
As the ActorBindings are contained by Collaborations, we map the CollaborationUse as follows:

11 UML Behaviors can be described in four different ways: Activity UML Diagram, Use Case UML Diagram, Interaction
UML diagram, and State Machine UML diagram

208 8. Agent-Based Service-Oriented Architectures

Mapping Rule 8.5: SoaML:CollaborationUse → Collaboration

• name: name of the CollaborationUse
• interactionInstance: collection of UML Activity diagrams of the Collab-

orationUses’s type (i.e. ServicesArchitecture or ServiceContract) expressed
through the ownedBehavior association (cf. Mapping Rule 8.8)

• binding: collection of roles assignments expressed through the roleBinding
associations used to instantiate the particular DomainRoleBindigs

• actorBinding: for each roleBinding association one unique ActorBiding is
instantiated

The semantics of CollaborationUse (SoaML) and Collaboration (PIM4AGENTS) nicely correspond
to each other, as both are used to describe how a grouping of entities (ServiceContract in the case
of SoaML and Organization of PIM4AGENTS) are used for a specific purpose. Therefore, Mapping
Rule 8.5 defines how the bindings are mapped from a CollaborationUse to a Collaboration. Beside
the DomainRoleBindings and ActorBindings, moreover, a link between these generated Bindings is
introduced to specify that the AgentInstance performing the DomainRole is playing the particular
Actor in the Interaction defined by the CollaborationUse’s Collaboration (see Mapping Rule 8.3).

Mapping Rule 8.6: SoaML:Participant, SoaML:Agent → AgentInstance

• name: name of the Participant
• agentType: ParticipantArchitecture realized by the Participant or Agent (cf.

Mapping Rule 8.2)
• memberOf: any Participant or Agent instantiating any parent ParticipantAr-

chitecture
• members: any Participant or Agent contained by the Agent’s or Participant’s

ParticipantArchitecture

For modeling any kind of service composition (i.e. choreography or orchestration), UML Activity
Diagrams are used in SoaML as they allow to model a process from the perspective of a single
entity, but also offer the concept of a partition to describe how several entities interact with each
other. As detailed by Mapping Rule 8.7, for mapping UML Activity Diagrams, we instantiate a
number of Plans in PIM4AGENTS. The actual number of them depends on whether the activity
diagram is partitioned through the UML ActivityPartition concept (i.e. choreography) or not (i.e.
orchestration). In case of the former, for each partition, one Plan is generated, which defines
the local view of each entity of the Protocol. In case of the latter, only a single Plan is generated
describing how services and agents are orchestrated.

8.4. Model Transformation: From SoaML to DSML4MAS 209

Mapping Rule 8.7: UML:Activity → Plan

• name: name of the UML Activity
• flows: collection of UML ActivityEdge of type UML ControlFlow
• steps: collection of UML ActivityNode (cf. Table 8.1 for details on the partic-

ular mappings)
• preCondition: precondition attribute of a UML Behavior
• postCondition: postcondition attribute of a UML Behavior
• informationFlow: collection of UML ActivityEdge of type UML ObjectFlow
• localKnowledge: ownedParameter attributes of the UML Activity

Mapping Rule 8.7 specifies which kind of information from UML Activity Diagrams is extracted to
fill the body of a Plan. Table 8.1 roughly illustrates how the different types of UML ActivityNodes
are grounded into Activities of the PIM4AGENTS behavior view.

In general, a UML Interface defines a collection of operations and/or attributes that ideally
define a set of processes. In order to represent this in an adequate manner in PIM4AGENTS, the
concept of a Capability depicts the perfect match, as both, operations as well as attributes can be
included into the Capability’s Plans. The concrete mapping rule is defined as follows:

Mapping Rule 8.8: UML:Interface → Capability

• name: name of the UML Interface
• behavior: for each UML Operation part of a UML Interface one Plan is

defined that implements the UML Operation and makes use of the UML
Attributes part of the UML Interface

Beside the Capabilities instantiated by Mapping Rule 8.8, furthermore, a DomainRole for each UML
Interface is established. Hence, any Organization produced by Mapping Rule 8.2, may (i) perform
DomainRoles if its corresponding ParticipantArchitecture offers services through ServicePoints and
(ii) requires DomainRoles if its corresponding ParticipantArchitecture request services through
RequestPoints.

As depicted in Table 8.1, any message exchanged between agents and organizations in
PIM4AGENTS are derived from UML ControlFlows modeled across partitions of UML Activity
Diagrams. This is expressed by Mapping Rule 8.9.

Mapping Rule 8.9: UML:ControlFlow → Message

• name: name of the UML ControlFlow’s source UML Action
• content: type of the UML ObjectFlow’s source pin (by applying Mapping

Rule 8.10 or Mapping Rule 8.11)

In SoaML, UML Class Diagrams are used to represent any kind of information accessed by the
entities in the SOA. UML Classes and their attributes serve as input parameters to invoke services.

210 8. Agent-Based Service-Oriented Architectures

Process mappings

Source Target Explanations

UML Activity Dia-
gram (Partition)

Plan in case of partitions, the particular information
from each partition is used as input for Map-
ping Rule 8.7

UML ControlFlow ControlFlow one-to-one mapping, UML ControlFlows
across partitions are used to identify the
exchange of messages

UML ObjectFlow InformationFlow one-to-one mapping
UML ForkNode,
UML JoinNode

Parallel any UML Activity between the ForkNode and
JoinNode is transformed and integrated into
the Parallel activity of PIM4AGENTS

— ParallelLoop no direct support on SoaML/UML; Send/Re-
ceive activities are integrated into a Parallel-
Loop

— Loop no direct support on SoaML/UML; need
to be defined though UML ControlFlows;
model transformation detects cycles and au-
tomatically instantiates a Loop activity of
PIM4AGENTS

UML DecisionNode,
UML MergeNode

Decision any UML Activity between the DecisionNode
and MergeNode is transformed and integrated
into the Decision activity of PIM4AGENTS

— Sequence UML Activities connected through UML Con-
trolFlows are transformed and integrated into
the Sequence activity of PIM4AGENTS

UML Activity Send any UML Activity that owns an outgoing Con-
trolFlow crossing a UML ActivityPartition

UML Activity Receive any UML Activity that owns an ingoing Con-
trolFlow crossing a UML ActivityPartition

UML InitialNode Begin one-to-one mapping
UML FinalNode End one-to-one mapping
UML OpaqueAc-
tion13

InternalTask one-to-one mapping

Tab. 8.1: Mapping between UML Activity Diagrams of SoaML and Plans in PIM4AGENTS.

To represent this in an adequate manner in PIM4AGENTS, the information contained by a UML
Class is utilized to generate Objects containing the necessary information used by Agents (i.e.
Organization) or Roles.

Mapping Rules 8.11 and 8.10 define how the information used by ParticipantArchitectures is
transformed to Knowledge the corresponding Organization in PIM4AGENTS has access to.

Mapping Rule 8.10: SoaML:MessageType → Object

• name: name of the MessageType

8.4. Model Transformation: From SoaML to DSML4MAS 211

• attribute: collection of UML Attributes of the UML Class

A MessageType in SoaML represents a special mechanism to define documents sent between the
parties of, for instance, a choreography. In PIM4AGENTS, we do not distinguish between different
kinds of attachment, i.e. any kind of Knowledge can be defined as the Message’s content. Apart
from a MessageType, any general UML Class can be attached to a Message as its content.

Mapping Rule 8.11: UML:Class → Object

• name: name of the UML Class
• attribute: collection of UML Attributes of the particular UML Class

The mapping rules presented in this section define a generic transformation path from SoaML
to DSML4MAS. In the remainder of this section, we demonstrate for the CMS SoaML model
depicted in Section 8.3.2 how these mappings rules work in practice to generate a corresponding
PIM4AGENTS model, which can be further used as input for the vertical transformations to JACK
or JADE.

8.4.2 Illustrative Examples: Conference Management System in DSML4MAS

Section 8.3.2 focuses on the conference management system design using SoaML. Now, we fo-
cus on the generated PIM4AGENTS CMS model. Therefore, we illustrate the main diagrams of
PIM4AGENTS and how they evolve from the model transformation and the underlying SoaML
design.

8.4.2.1 Multiagent System Diagram

The generated MAS diagram is depicted in Fig. 8.13. It includes an abstract view on the generated
MAS. Apart from the involved organizations (i.e. ConferenceOrganization, SeniorResearcher, and
Researcher) and domain roles (i.e. Author, PCMember, and PCChair) that are detailed in the
organization diagram (cf. Section 8.4.2.2), it further includes an environment called CMS that
includes all necessary resources created by either Mapping Rule 8.10 or Mapping Rule 8.11.

8.4.2.2 Organization Diagram

The generated organization diagram is depicted by Fig. 8.14. This content of this diagram bases on
the results produced by (i) Mapping Rule 8.1 that generates the ConferenceOrganization organiza-
tion from the ConferenceOrganization services architecture and (ii) Mapping Rule 8.2 producing
the SeniorResearcher and Researcher organization. The organizations have access to the capabili-
ties Author, PCMember, and PCChair that were instantiated by Mapping Rule 8.8. To define how
the organization coordinate its members, the domain roles Author, PCMember, and PCChair were
introduced that are either required or performed by the organizations. The interaction protocols
CallForReview and CallForPaper are utilized by the ConferenceOrganization to coordinate its

212 8. Agent-Based Service-Oriented Architectures

Fig. 8.13: The MAS diagram of the generated PIM4AGENTS CMS model.

Fig. 8.14: The organization diagram of the generated PIM4AGENTS model.

8.4. Model Transformation: From SoaML to DSML4MAS 213

associated members. These protocols were instantiated by applying Mapping Rule 8.3 on the
service contracts depicted in Fig. 8.8.

8.4.2.3 Collaboration Diagram

The generated collaboration diagram is depicted by Fig. 8.15. The digram includes the coop-
erations of the ConferenceOrganization organization. Both cooperations, i.e. callForPaper and
callForReview, were instantiated by Mapping Rule 8.5. For each of the domain roles a collaboration
uses, a unique domain role binding is instantiated. Each of them is linked to the actors of the
collaboration’s interaction through the actor binding.

Fig. 8.15: The collaboration diagram of the generated PIM4AGENTS model.

8.4.2.4 Deployment Diagram

The generated deployment diagram is depicted by Fig. 8.16. The deployment is based on Mapping
Rule 8.6 that transforms the agents Christian (see Fig. 8.10) and Klaus (see Fig. 8.9) from the
SoaML CMS specification to the agent instances of PIM4AGENTS. The memberships of these agent
instances are deduced from the collaborations and service contracts in which the particular agents
in SoaML participate.

8.4.2.5 Plan Diagram

Fig. 8.17 depicts the behavior diagram of the PCChair’s plan to interact with the Authors. It is
based on the pcChair’s part of the choreography of the CallForPaper service contract depicted in
Fig. 8.11. It starts with sending the SendCFP message to any agent instance playing the author

214 8. Agent-Based Service-Oriented Architectures

Fig. 8.16: The deployment diagram of the generated PIM4AGENTS model.

Fig. 8.17: The behavior diagram of the generated PIM4AGENTS model.

actor. When receiving the answers by the ReceiveReject and ReceivePropose activities, the PCChair
decides based upon the reviews of the PCMembers, which papers are accepted and rejected.
Accordingly, the Author submitted a paper either gets a SendAccept or SendReject message sent

8.5. PIM Service-oriented Architecture Modeling Process 215

Fig. 8.18: The SOA-related process of DSML4MAS.

by the SendAccept and SendReject activities, respectively. Afterward, the PCChair waits for the
SendCameraReadyVersion message received by the ReceiveCameraReadyVersion activity.

8.5 PIM Service-oriented Architecture Modeling Process

When embedding MASs in a service-oriented setting, the methodology process proposed in Sec-
tion 5.4.2.2 needs to be slightly adapted as the model-driven transformation between SoaML and
DSML4MAS now guides to a large extend the agent-based design. The adapted SOA-related pro-
cess model is depicted in Fig. 8.18. Comparing this with the DSML4MAS methodology previously
presented in Fig. 5.18, the main change is the SoaML modeling phase on the PIM level and the
mapping to DSML4MASṪhe DSML4MAS process activities, as well as, the model transformation
between DSML4MAS and JACK/JADE on the PSM level remain untouched.

216 8. Agent-Based Service-Oriented Architectures

Analysis phase Instead of specifying the system requirements using DSML4MAS, in the SOA-
related setting, the analysis already starts using SoaML or even on a more computational-
independent level using business languages like BPMN. If SoaML is used to analyze the
scenario, normally, the system designer disposes use case diagrams and sequence diagrams
to define the interaction across the actors specified in the use case diagram. These are then
used inside service contracts of either services architectures or participants architectures.
UML diagrams serve as design method to define the information model used by the service
requesters and providers.

Architectural specification phase Similar to the analysis phase, the architectural specification
phase is mainly influenced by SoaML and its collaboration and contract modelings. The
architecture is further refined in terms of service architectures and participant architectures
utilizing the design made on the analysis phase. In addition, the internal behaviors of
the participant architectures are declared in this phase. The generated SoaML design is
then translated into DSML4MAS concepts that might be further refined in terms of the
agent-based computing paradigm.

Detailed design phase After refining the service-based design in terms of agent concepts, the
generated plans are completed and the bindings between actors and domain roles are
created. Parts of the detailed design phase like the behaviors of the participants are either
done on the SoaML level or completed by the model-to-model transformation. Even if most
of the design is already in place in this phase, the developing process can be further detailed
by refining the design using DSML4MAS constructs and design mechanisms of the analysis
phase.

Implementation phase As a last step, the generated agent instances are further refined in the
implementation phase in terms of adding their memberships. Afterwards, the model trans-
formations to JACK and JADE are applied. Potentially, the code is further refined to execute
the design made.

This extended DSML4MAS methodology allows to automatically close the gap between SOAs
and MASs. At this, the SOA design is used as an abstract design that is as part of the original
DSML4MAS methodology process further refined in terms of agent-based concepts. As debated in
the forthcoming section, this agent-based SOA has several benefits compared to traditional Web
service-based SOAs.

8.6 DSML4MAS as Web Service Execution Engine

MASs are normally not considered as the standard execution technique for SOAs. Standard
Web service description formats like WSDL and orchestration engines like BPEL might be more
appropriate. However, the overall SHAPE model transformation architecture, as proposed in
Section 8.2.4.2, proofs that MASs and in particular DSML4MAS is an interesting option when
executing abstract service description as agent systems in general offer valuable features that are
worth to investigate in the SOA context.

For this reason, we presented in this chapter a feasible integration between SOAs and MASs.
Therefore, we apply a model-driven approach in order to automatically transfer a service de-
scription into an abstract MAS that can be further transformed to generate executable code

8.6. DSML4MAS as Web Service Execution Engine 217

implementing the abstract service architecture. In particular, we provided a link between SoaML—
the new standard for SOAs by the OMG—and PIM4AGENTS by grounding the concepts of SoaML
into PIM4AGENTS. This generic model mapping can be realized as PIM4AGENTS is more expres-
sive with respect to defining interactions and behavior necessary to represent orchestration and
choreography in an adequate manner. Based on the generated PIM4AGENTS models, the vertical
transformations to the agent implementation platforms can be applied, to execute the business
description made with SoaML in an intelligent manner using agent systems. From a research
transfer point of view, the following lessons could be learned:

• Evidently, MDD is a necessary ingredient for SOAs, in particular, a model-driven, agent-
based approach offers additional flexibility and advantages when agents are tightly inte-
grated into a service-oriented framework.

• The SoaML profile supports the range of modeling requirements for SOAs, including the
specification of systems of services, the specification of individual service interfaces, and
the specification of service implementations. SoaML allows designing services top down
through the concepts of ServicesArchitectures and ServiceContracts as well as bottom up by
designing the service architecture by the concepts of ParticipantArchitectures and Service-
Capabilities.

• The agent paradigm is not new to SOAs, however, the presented approach establishes
one of the first proposals combining SOAs and the agent world through a generic model
transformation. This allows to automatically transform the business requirements during IT
design and development to a MAS that captures the business requirements, but additionally
supports the execution in an intelligent manner.

• Evidently, a model based approach is a step in the right direction as design-time tasks are
separated from run-time tasks, which allows performing them graphically. Moreover, it is
easier to react to changes of the different interacting partners as only the models have to be
adapted but not the run-time environment. The service-oriented design built upon SoaML
can be detailed and refined using more agent-oriented concepts provided by DSML4MAS

and finally enhanced in terms of platform-specific implementation details.
• The PIM4AGENTS metamodel is expressive enough to support a generic mapping between

SoaML and necessary parts of UML—in particular UML Activity diagrams—on the one
hand and PIM4AGENTS on the other hand. Most notably, the service choreography and
orchestration described by SoaML can nicely be mapped to PIM4AGENTS, which allows
representing service architectures from an external and internal perspective. This is not
supported by the most known Web service orchestration engine BPEL4WS.

• In its current version, SoaML offers only a kind of semantics expressed in natural language.
Through the model transformation to DSML4MAS, the modeling constructs are grounded
into analog concepts of PIM4AGENTSwhose semantics are clearly defined through the formal
Object-Z specification.

The presented model-driven framework to specify agent-oriented applications represents a nec-
essary step in order to build interoperable agent systems on the PIM level. This is an important
step towards bringing MASs into industry as any service description built upon SoaML can be
automatically transformed to make use of the advantages the supported agent platforms offer.
Moreover, especially for the composition of services, agent systems further bring in the following
characteristics.

• Agents improve flexibility and robustness as they are reactive, flexible, social and interact
with the environment. Consequently, they would adopt to changing contexts and environ-
ments and either choose alternative plans or delegate the tasks to other agents.

218 8. Agent-Based Service-Oriented Architectures

• Agents add proavtiveness as they are communicative and social. They typically respond to
both, messages from other agents and changes in the environment. This results in proactive
behavior, whereas Web services are typically just reactive.

• Agents add goal orientation. Web services for instance are task-oriented as they exist to
provide access to some resources. Agents, in contrast, are goal-oriented, which allow them
to execute tasks in a more flexible manner. This is of particular importance in the case of
failure recovery. This means that if a plan to achieve an agent’s goal fails, it might apply other
available plans to achieve this goal.

8.7 Bottom Line

In this chapter, the DSML4MAS approach to the integration of SOAs and MASs has been discussed.
For this purpose, the basic concepts of SOAs and services and their core characteristics and
benefits were discussed. In the same manner, we also debated the differences between the MAS
and SOA paradigms. Summarizing this debate, we can conclude that agents are stateful, whereas
services are in general stateless. To establish the interoperability between SOAs and MASs, we
utilize the recently standardized Service-oriented Architecture Modeling Language (SoaML) and
define a model transformation between SoaML and PIM4AGENTS. This model transformation
enables the generic mapping between SOA-based concepts into the agent-based vocabulary given
by the abstract syntax of DSML4MAS.

Even if services and agents are to some degree different, this model transformation is feasible
due to the fact that SOAs and MASs share the same benefits and characteristics like flexibility,
loose coupling, etc. and use similar views to describe the design (e.g. the concept of an agent
is part of both SoaML and PIM4AGENTS). On the one hand, the presented MDD approach to
reduce the interoperability barriers between MASs and standard business languages like SOA is an
important step toward making MASs more attractive for industrial usage as SOAs are nowadays
the preferred approach to design distributed software systems in real-world scenarios. On the
other hand, agent-based computing offers several features and characteristics that enable a more
intelligent way of executing and composing Web services, i.e. improving flexibility and robustness,
adding proactiveness and goal-orientation. Section 9.1 illustrates how to apply SoaML and the
model transformations to DSML4MAS in an industrial use case to model the supply chain of the
Saarstahl AG.

Part IV

Use Case and Evaluation

220

9. DSML4MAS in Industrial Use Cases

In this chapter, we demonstrate how to apply the contributions of this dissertation in two industrial
use case scenarios. For this purpose, we firstly investigate a real-world scenarios from the steel
industry at the Saarstahl AG and secondly describe how the DSML4MAS approach can be utilized
in the oil domain of Statoil. Due to its nature, the first use case emphasizes on the Saarstahl’s
service architecture expressed by SoaML and DSML4MAS, the second use case concentrates on
DSML4MAS itself and on the code generation for JACK.

Structure of this Chapter In Section 9.1, the supply chain of the Saarstahl AG is introduced
by depicting (i) the SOA-based supply chain and (ii) the automatically produced agent-based
supply chain of the Saarstahl AG. Section 9.2 then focuses on the Mongstad terminal of Statoil and
illustrates how to model its requirements using DSML4MAS. Finally, Section 9.3 concludes this
chapter.

9.1 Model-Driven Integration of the Saarstahl Supply Chain

Saarstahl AG, with its locations in Völklingen, Burbach and Neunkirchen, is a German steel
manufacturing company with global presence on the steel production market. In particular,
Saarstahl AG specializes in the production of wire rod, steel bars, and semi-finished products of
various grades as well as constructional steel and broad flanged beams.

Saarstahl AG has grown historically, meaning that the existing IT infrastructure has grown over
the last decades, and currently consists of several loosely integrated systems. This consequently
means that the main challenge when describing the complete supply chain of Saarstahl is to enable
the interaction between new components like the agent-based planning system of the steelworks
MasDISPO (Jacobi et al.; 2007) and older solutions like the semi-finished product management
system implemented in Cobol.

In order to improve the intra-organizational interoperability, Saarstahl focuses on integrating
the existing systems into a system architecture on organization level, along with the introduction
of new technologies such as MASs. To solve these interoperability issues, Saarstahl sees the
combination of SOAs and MASs as a key success factor.

9.1.1 Supply Chain of the Saarstahl AG

The use case scenario of the Saarstahl AG is a proof of concept for designing the main processes
within the Saarstahl’s supply chain based on the results of DSML4MAS. Several challenges have
to be addressed when it comes to a service-oriented design of the complete supply chain. From
the viewpoint of Saarstahl it is fundamental that (i) business requirements that are specified by

222 9. DSML4MAS in Industrial Use Cases

Fig. 9.1: The partial supply chain of the Saarstahl AG.

Saarstahl can easily be translated into a running system and (ii) existing systems holding strategic
information (e.g. data bases) can be re-used within the SOA to keep the high product quality they
currently hold. Both requirements are naturally supported by the DSML4MAS approach:

• The DSML4MAS methodology provides a full transformation path from the service level
to MASs through MDD and thus allows Saarstahl to define executable artifacts in a very
abstract manner on the SOA level.

• The DSML4MAS methodology supports the integration of existing legacy systems that are
situated at different locations (e.g. Völklingen, Burbach and Neunkirchen) through a combi-
nation of Web services and agent-based systems. Using MASs offers various advantages that
allow increasing efficiency during run-time.

The central benefit of introducing a service-oriented landscape is a higher degree of integration
and interoperability among the separated systems: the legacy systems can be wrapped beyond
service interfaces, so that information can be exchanged more easily and with less need for
human intervention. Another benefit is that old systems can be replaced by new implementations
without interrupting the production process. The need for integrating SOAs and MASs makes the
framework presented in this thesis an interesting approach.

The core components of Saarstahl’s supply chain are depicted in Fig. 9.1. The steel works
in Völklingen is of central relevance to the complete supply chain of Saarstahl as it, on the one
hand, receives orders from customers and, on the other hand, is the starting point for producing
the requested goods. Furthermore, the efficiency of the supply chain, i.e. the time needed for
achieving the requested product, strongly affects the order that can be produced within a certain
time slot.

Given a working plan, the planning system schedules the execution of each order along the
production chain. It monitors production on a rough (weeks) and detailed (days and hours) level,
and executes an online detailed planning and scheduling for the different manufacturing phases. It
has to detect problems in the production and handle them in order to return to normal production.
The rough working plan for each manufacturing phase is calculated on demand, before final order
commitment. Depending on delivery date, order size and vertical integration certain capacities at
specified aggregates have to be roughly allocated. The overall objective of Saarstahl’s production is

9.1. Model-Driven Integration of the Saarstahl Supply Chain 223

to provide the right amount the intermediated product close to but not later than the time that
it was requested. Derived from customer’s orders, each order has a fixed finishing date on each
processing level. In the rolling mills, the duration of a rolling group, which are heats of kind and
equal format that are to be casted in a single and uninterrupted casting session at a specific casting
aggregate, lies between several hours up to several days, depending on the stock of orders. A heat
may thereby contain several order positions of similar quality, but equal format.

The Saarstahl AG expects that utilizing DSML4MAS helps to ensure the necessary vertical
integration of detailed and rough planning concerning one station and the horizontal integration
for the exchange among several partners. Rough planning inside a rolling mill influences the
detailed planning inside the steelwork and vice versa. Furthermore, the increase of transparency
and better support for the necessary data exchange to improve the overall planning is expected
using the DSML4MAS approach.

9.1.2 Service-oriented Supply Chain of the Saarstahl AG

This section gives the reader are detailed overview on how to design the Saarstahl’s supply chain
using SoaML. To bring the relationship between customer orders and production closer together,
we focus on the steel work and in particular on the processes within the supply chain (depicted in
Fig 9.1). For this purpose, we need to take any production critical aspect into account and model
the corresponding internal as well as external processes. Saarstahl expects by the use of SOAs a
better information exchange and hence an increased transparency along the supply chain. The
supply chain of Saarstahl is again designed with the Modelio tool suite.

The overall SOA architecture of the Saarstahl AG is as follows: All actors except the costumer
belong to the Saarstahl system. The costumer is able to purchase products of Saarstahl by filling
a purchase order form which is transfered to the sales department. The sales department then
registers the order in the Saarstahl system, which produces a production schedule for the order.
Scheduling is done by the planning department, the central actor in this scenario. However,
before any resource is allocated for the order, the planning department validates its feasibility
of production with the support of the technical inspection. The result is then reported to the
sales department, which informs the costumer accordingly. If the order is feasible, the planning
department activates the processing on the scheduled date. The first step of processing is to search
the inventory for available material fitting the order’s requirements. Available material is then
assigned to the order. If there is not enough material available, the planning department schedules
a melting job at the steelworks. For every completed melting job, the steelworks sends data on
quality and quantity to the semi-finished product inventory. After material has been produced for
the order, the planning department validates the quality requirements and releases the material, if
they are not satisfied. This material is then marked as available in the inventory. When the order
quantity is completely allocated, the order is transfered to the rolling mills management system.
This represents the final step of the investigated use case of Saarstahl.

9.1.2.1 Customer

The costumer interacts with Saarstahl in order to purchase some product. The resulting SoaML
model hence contains a SoaML participant representing the Costumer entity and a participant
representing the Saarstahl AG. Fig. 9.2 depicts the participant architecture representing a generic
Costumer. The ParticipantArchitecture stereotype is used in order to emphasize that this model
is rather a specification of a participant, instead of a specific instance. The specific instance is

224 9. DSML4MAS in Industrial Use Cases

Fig. 9.2: The Customer participant architecture

Fig. 9.3: The interaction between Customer and SaarstahlArchitecture is defined through the
CustomerManufacturerNetwork service architecture.

represented by the CostumerImpl that realizes the abstract costumer specification. The Costumer
participant architecture provides a single respond service, which is part of the CostumerServices
interface provided through the responding service point.

The collaboration between costumer and Saarstahl is modeled by the service architecture
depicted in Fig. 9.3. The CustomerManufacturerNetwork services architecture includes two roles,
i.e., costumerPart and manufacturerPart, which are typed by Costumer and SaarstahlArchitecture,
respectively. Both interaction partners have to agree to the contract specified by the Purchase-
OrderContract service contract. This service contract names the roles that are part of the contract
and specifies how these roles interact with each other through exchanging messages. The concrete
order of these message is given by the activity diagram PurchasingProcess depicted in Fig. 9.4.

The PurchasingProcess consists of two roles, i.e. costumerRole and manufacturerRole that are
bound by the costumerPart and the manufacturerPart, respectively. The process starts with the ac-
tion send purchase order by the customerRole requesting a new order from the manufacturerRole.

9.1. Model-Driven Integration of the Saarstahl Supply Chain 225

Fig. 9.4: The choreography between the customerActor and manufacturerActor.

The call operation action process purchase order of the manufacturerRole evaluates the request
and sends the result of this evaluation back to the costumerRole. The result is then received by this
role in the receive reply action.

9.1.2.2 Saarstahl Architecture

As previously mentioned, the SaarstahlArchitecture (see Fig. 9.5) includes any actor of the Saarstahl
AG supply chain. This means that the SaarstahlArchitecture includes the participant architec-
tures SalesDepartment, PlanningDepartment, Steelwork, Order, RollingMill, SFProductInventory,
and TechInspection. The internal communication between these parties is done through service
contracts, e.g. SchedulingContract, MeltingContract, SendReportContract, ActivateOrderContract,
ReleasMaterialContract, PostMeltingContract, CheckFeasibilityContract, and AllocateMaterialCon-
tract. To the outside, the SaarstahlArchitecture offers the purchasing service through the interface
ManufacturerService. The concrete implementation is done through the SaarstahlImpl agent.

9.1.2.3 Planning Department

The planning system of the steelworks (see Fig. 9.6) is a collection of software components like
MasDispo (Jacobi et al.; 2007) with the purpose of long-term and short-term planning and schedul-
ing inside the melting shop in the production lifecycle of an order. The production data of heats is
sent to the semi-finished product management system after melting job completion. Furthermore,
this system interacts with the order management system to retrieve production rules for orders
and to provide production progress data.

The PlanningDepartment modeled as participant architecture offers the service PlanningDe-
partmentServices to the outside including the methods registerOrder, requestCommitment, and
determineLMST. The concrete implementation of the PlanningDepartment participant architec-
ture is done through the PlanningDepartmentImpl agent.

226 9. DSML4MAS in Industrial Use Cases

Fig. 9.5: The SaarstahlArchitecture participant architecture.

9.1.2.4 Sales Department

The sales department of the Saarstahl AG triggers the purchase process of customers. Therefore,
it registers the order in the Saarstahl system, produces a production schedule for the order, and
evaluates if the order can be produced by Saarstahl. The SalesDepartment participant architecture
is depicted in Fig. 9.7. It offers the purchasing and sdService services through the interfaces Manu-
facturerServices and SalesDepartmentServices, respectively. The SalesDeptImpl agent implements
the abstract SalesDepartment.

9.1.2.5 Semi-finished Product Inventory

The semi-finished product component manages the inventory for semi-finished products. When a
new order is ready for production, this component is used for querying the inventory for available
semi-finished products that fit to the order’s requirements. The corresponding database contains
the data of all semi-finished products and the assignments between physical material and concrete

9.1. Model-Driven Integration of the Saarstahl Supply Chain 227

Fig. 9.6: The PlanningDepartment participant architecture.

Fig. 9.7: The SalesDepartment participant architecture.

orders that have not yet been allocated. If an order is completely assigned, its data is removed and
is transmitted to (i) the rolling mills management system for further processing and (ii) the order
management system. In the Saarstahl use case, the semi-finished product component is realized
as SoaML participant architecture called SFProductInventory (cf. Fig. 9.8). To query the inventory
for available semi-finished products, this participant provides the SFPInventoryServices service to
the outside. The SFProductInventory is implemented through the SFProductInventoryImpl agent.

9.1.2.6 Rolling Mills

The rolling management system is used to plan and schedule the rolling campaigns. Rolling is the
first production step to be determined, because the rolling date is used to compute deadlines for
all other production steps. This system provides information to the order management system
and activates orders in the order queue when necessary. Rolling campaign data is stored in the
rolling plan database. Fig. 9.9 depicts the RollingMill realized as participant architecture in SoaML.
The RollingMill participant architecture provides the service RollingMillServices to the outside
and is implemented by the RollingMillImpl agent.

228 9. DSML4MAS in Industrial Use Cases

Fig. 9.8: The SFPInventory participant architecture providing the SFPInventoryServices service.

Fig. 9.9: The RollingMill participant architecture.

9.1.2.7 Order

Order transparency and tracking within the complete lifecycle of an order from order entry until
invoicing is achieved with the help of the order management system, which uses the order database
to access the complete data of an order. Fig. 9.10 depicts the Order entity realized as participant
architecture in SoaML. The Order includes the attributes compolo of type Compolo, rollingDate
of type SAGDate, eventQueue of type ProductionEventQueue, and Lmst of type SAGDate. These
different kinds of information are modeled as UML classes. Additionally, the Order offers the
orderServices services through the OrderServices interface.

9.1.3 DSML4MAS-Based Supply Chain of the Saarstahl AG

The first abstract service description of the Saarstahl supply chain has been done using SoaML.
This description includes the involved entities, the cooperation structures, as well as, the services

9.1. Model-Driven Integration of the Saarstahl Supply Chain 229

Fig. 9.10: The Order participant architecture.

Fig. 9.11: The generated PIM4AGENTS MAS diagram (part 1).

that are requested and provided. Based on the SOA description, the model transformations of the
DSML4MAS methodology are applied to generate an agent-based design of the supply chain.

In this next step of the DSML4MAS methodology, based on the developed SoaML model, the
model transformation between SoaML and DSML4MAS is utilized. This transformation automati-
cally generates a number of diagrams that are discussed in the following.

9.1.3.1 Multiagent Diagram

The generated MAS diagram is depicted in Fig. 9.11. Mapping Rule 8.2 generates the organizations
Customer, SaarstahlArchitecture, Steelwork, PlanningDepartment, SFProductInventory, SalesDe-
partment, Order, and RollingMill. The details of these generated organizations are further refined
in the organization diagram in Section 9.1.3.2. Mapping Rule 8.1 generates the CustomerManufac-
turerNetwork that requires the domain roles CostumerServices Role and ManufacturerServices Role.
Further domain roles are instantiated, e.g. RollingMillServices Role, SteelworkService Role,
PlanningDepartmentService Role, SPFInventoryServices Role, SalesDepartmentServices Role, and
OrderServices Role.

230 9. DSML4MAS in Industrial Use Cases

Fig. 9.12: The generated PIM4AGENTS organization diagram (partly).

9.1.3.2 Organization Diagram

The partial generated organization diagram is depicted in Fig. 9.12. For space rea-
sons, we focus in the SaarstahlArchitecture and its characteristics. It requires the
domain roles of SteelworksServices Role, SFPInventoryServies Role, OrderServies Role,
SalesDepartmentServices Role, TechInspectionServices Role, PlanningDepartmentServices Role,
and ManufacturerServices Role and performs the ManufacturerServices Role. The UML Interfaces
are the source for these generated DomainRoles. The skeleton of the interaction protocols
MeltingContract, AllocateMaterialContract, PostMeltingContract, etc. are generated by Mapping
Rule 8.3. This means that, for instance, in the case of the PostMeltingContract, only the actors
orderActor, stwActor, and inventoryActor are generated by Mapping Rule 8.3. The order in which
messages are exchanged by these tree actors is only described by the internal behaviors of the
autonomous entities bound to these actors.

An example of such an internal behavior is given in Section 9.1.3.4, discussing the body of the
SaarstahlArchitecture’s manufacturerActor PurchasingProcessPlan plan.

9.1.3.3 Collaboration Diagram

The organization SaarstahlArchitecture includes several collaborations, in accordance to Mapping
Rule 8.5, one for each collaboration use the source participant architecture makes use of. In the
remainder of this section, we emphasize on the postMelting collaboration.

This collaboration defines in which manner the actors of the PostMeltingContract are
bound to the domain roles the SaarstahlArchitecture either performs or requires. In this
case, the OrderServices Role is bound to the orderActor through the domain role binding
orderActor ActorBinding, the SFPInventoryServices Role is bound to the stwActor actor through
the domain role binding inventoryActor ActorBinding, etc.

9.1.3.4 Behavior Diagram

Mapping Rule 8.7 generates a list of plans based on the activity diagrams of the Saarstahl supply
chain. Fig. 9.14 illustrates the generated plan based on the activity diagram of Fig. 9.4. The plan

9.1. Model-Driven Integration of the Saarstahl Supply Chain 231

Fig. 9.13: The postMelting collaboration of the SaarstahlArchitecture organization.

Fig. 9.14: The generated PIM4AGENTS plan for the manufacturer.

represents the view of the manufacturer and includes the activities for receiving the order from
the customer and sending the corresponding answer.

9.1.3.5 Environment Diagram

Fig. 9.15 depicts the generated environment diagram. It includes all information and data modeled
on SoaML level through UML class diagrams. For this purpose, Mapping Rule 8.11 takes any
UML Class of SoaML and transfers the information contained into objects (e.g. ProductionEvent,
Material, Compolo, etc.). Apart introducing objects, the primitive types String, Boolean, ,and
Integer are automatically introduced.

232 9. DSML4MAS in Industrial Use Cases

Fig. 9.15: The generated PIM4AGENTS environment diagram.

Fig. 9.16: The generated PIM4AGENTS deployment diagram.

9.1.3.6 Deployment Diagram

The generated deployment diagram is depicted in Fig. 9.16. Mapping Rule 8.6 generates for
any participant and agent of the SoaML specification, one particular agent instance. At this, for
any instance of a participant architecture that is part of another participant architecture, one
membership is instantiated.

9.1.4 Relevance for Saarstahl

Saarstahl AG identified two major benefits by applying the DSML4MAS approach. Firstly, interop-
erability of existing IT-solutions supporting specified problems like a short term planning for a
steelwork, a detailed planning system for a rolling mill, or some inventory management systems
in between is improved. Secondly, there is a possibility of wrapping existing legacy systems of
Saarstahl behind participants of the Saarstahl SOA. Thus, a SOA is created on top of the legacy
systems, the generated MAS allows the flexible orchestration of Web services representing these
legacy systems. The implemented system, moreover, eases the replacement of legacy systems, as
new IT-solutions can be tested in parallel to legacy systems for a period of time. Agents encap-
sulating a legacy system are able to forward requests to the legacy system, as well as, to the new
systems.

9.2. Scheduling Product Cargos at Statoil 233

The resulting DSML4MAS design can be further extended in accordance to the DSML4MAS

methodology and translated into code. For this purpose, in the case of Saarstahl’s supply chain,
we applied the model transformations from DSML4MAS to JADE. The reasons are twofold. Firstly,
in the described settings, there is no need to provide the agents with BDI reasoning capabilities as
the decisions the agents have to make a rather simple. Secondly, Saarstahl is in favor of an open
source solution that could later on be internally used without additional costs.

9.2 Scheduling Product Cargos at Statoil

Statoil, a Norwegian integrated oil and gas company, is the leading operator on the Norwegian
continental shelf and are also experiencing strong growth in its international production. In 2007,
Statoil merged with Norsk Hydro’s oil and gas division and counts now 29,000 employees and
operates in 40 countries. Production in 2009 was approximately 2 million barrels oil equivalents
per day. Statoil is one of the world’s largest sellers of crude oil and a substantial supplier of natural
gas to the European market. It has substantial industrial activity and operates 1,803 service stations
in Scandinavia, Poland, the Baltic states and Russia.

9.2.1 The Scheduling Problem

The Mongstad refinery and terminal faces an intricate scheduling problem related to blending and
loading of refined product cargos, which represents a defined volume of a product quality sold to
a customer for delivery on a ship. Mongstad uses a two stage production process: The refinery
produces components first, some of them are at second blended into a product according to some
blending formula for shipment. The blending is mostly directly done onto ships, although there
are some product storage tanks. This is due to the high number of different specifications and
their dynamic nature.

Production of product cargoes thus depends on the availability of components, the physical
constraints of the blenders, availability of appropriate jetties and the estimated arrival time of the
ships to load the cargo. The main challenge at the Mongstad terminal is to optimally schedule the
loading and unloading of the many ships that’s arriving on an almost daily basis. The capacity of
the terminal in terms of the number of ships per day is limited by a number of factors.

Firstly there are a limited number of jetties available, and each jetty has size limitations in
terms of the size of the ships, particularly length and depth, and also restrictions on what products
it can deliver to the ships. For product cargoes, Mongstad has four available jetties, where jetty
number 2 has the largest capacity, and is the default for all cargoes if it is free. Jetty number 3 is the
only jetty capable of exporting colored gasoil for the Norwegian home market. Jetty 8 and 9 are the
same as jetty 2 with some capacity limitations. Serving all four jetties are the product blenders.
There are two blending stations that both can blend gasoline or gasoil. This means that at most
two ships can be loaded at a time. As already mentioned, most of the blending is directly on the
ship, and the process includes sampling the blend at regular intervals to make sure the product is
on-spec. If the blend is off-spec, it can be adjusted by adding more of one component

The components that make up the final product are perhaps the most important part. To
be able to deliver a cargo, all the required components for the product must be available in the
require quantity. Having the correct amounts of the correct components is a big part of getting the
scheduling of the ships optimized. Sometimes when a blend goes off-spec and cannot be saved

234 9. DSML4MAS in Industrial Use Cases

it has to be pumped off the ship and recovered for reprocessing in the refinery, a process called
slopsing. Whenever this happens, there is a risk to run short on one or more of the components,
which creates a possible scheduling conflict for the planned cargoes and arriving ships. The
planners responsible for the scheduling of cargoes work with product traders in the trading
organization to work out a monthly lifting program based on the market. They then work with
the refinery to plan what components are required to fulfill this lifting program, and also with
crude oil traders to supply the required crude oil to the refinery. Assigning ships to handle the
cargoes are handled by the operations staff in the trading organization, and the schedulers at the
Mongstad refinery receives an advance notice of the estimated arrival time (ETA) of each ship 72,
48 and 24 hours prior to the estimated arrival time. The ultimate goal of the scheduling is to load
the ships with the specified cargo within the lay-time window assigned to the ship. The cargoes on
the lifting program are initially scheduled with a pretty wide five day lay-time window, which as
the ETA approaches is narrowed into a three day window. Demurrage is the cost for delaying a
ship beyond its assigned lay-time window and can be quite expensive. On the other hand, if the
ship misses its lay-time window, the terminal operators is not required to prioritize the ship.

If we step back and take a look at this, what it boils down to is two scheduling problems inter-
locking with each other. The first scheduling problem is optimization of ships and cargoes based
on the lifting schedule, leading to a need for certain quantities of components. The second is the
optimization of the refinery production, basically determining the required crude oil qualities and
quantities for producing the specified components. Combined, these two scheduling problems
touch a large part of the wet supply chain.

9.2.2 DSML4MAS-Based Scheduling Product Cargos at Statoil

In this section, the application domain of the Mongstad refinery process is described and analyzed
using DSML4MAS. The domain is highly dynamic, and decisions have to be made that under a high
degree of uncertainty and incompleteness. Cooperation and coordination are two very important
processes that may help to overcome these problems. Corresponding to the physical entities in
the domain, there exist several autonomous artificial entities in the MASs (e.g. refinery, jetties,
etc.) that can communicate with each other in accordance to pre-defined protocols.

To adequately describe the Mongstad scheduling problem, we apply the DSML4MAS method-
ology process discussed in Chapter 5. Therefore, we start with the analyze phase by modeling the
core interaction between the entities involved in the Mongstad scenario. Afterwards, we apply the
endogenous model transformations to derive part of the remaining phases.

9.2.2.1 Interaction View of Statoil

Although the CNP, previously presented in Section 6.3.1, is a powerful and popular task assignment
mechanism, one cannot ignore the fact that the solutions CNP produces are sometime quite
far from an optimal solution. The reason for this is that, although each of the individual task
assignments in the CNP is a centralized optimal decision based on the current situation, a sequence
of such decision is as a whole not optimal and can in some case actually turn out to be rather
poor. The reason for this is that once a decision is done it is never reconsidered even when the
situation changes by newly incoming orders. To overcome this problem of the CNP we adopted the
Simulated Trading (ST) (Bachem et al.; 1993) procedure. ST can be used for two different purposes:

9.2. Scheduling Product Cargos at Statoil 235

Fig. 9.17: The PIM4AGENTS interaction diagram of the Simulated Trading Protocol.

• Dynamic re-planning: If a participant realizes that it cannot satisfy the time constraints of
an order because of unforeseen problems, it can initiate an ST process leading to an order
reallocation satisfying the time constraints.

• Iterative optimization: Starting from the initial CNP solution, ST may be initiated to yield a
better order allocation.

In (Bachem et al.; 1992), Bachem et al. present a parallel improvement heuristic for solving routing
problems with side constraints. Their approach deals with the problem that n customers order
different amounts of goods which are located at a central depot. The task of the dispatcher is to
cluster the orders and to attach the different clusters to trucks which then in turn determine a tour
to deliver the cluster allocated to them.

In a similar manner, we use STP to schedule ships at the Mongstad terminal. The overall
procedure starts with a set of feasible schedules, which are obtained by CNP. The schedules are
represented as an ordered list of orders that have to be produced. To guide the improvement of the
initial solution, an additional processor, a market is added to the system. The task of the market is
to coordinate the exchange of costumers orders between the different jetties. To do this, it collects
offers for buying and selling orders coming from the jetties in the system.

The main idea is to let STP simulate a stock exchange, where the jetties can offer their current
orders at some specific "saving price" and may buy orders at an "insert price". While getting sell
and buy offers the market maintains the trading graph and tries to find an order exchange that
optimizes the global solution.

Fig. 9.17 depicts the ST protocol in DSML4MAS notation. Like the CNP, it can be described in a nice
manner using DSML4MAS. For this purpose, we introduce five actors, i.e. Market, Participant, Buy,

236 9. DSML4MAS in Industrial Use Cases

Fig. 9.18: The PIM4AGENTS MAS diagram.

Sell, and NoOp. The latter three are subactors of the Participant actor. The exchange of messages
is as follows: The Market starts by informing the Participants about new orders that need to be
assigned. This is done through the Publish ACL message. Based on the requested components, the
Participants start to register. After receiving the Request message, based on their current situation,
they start to send out either Buy, Sell, or NoOp messages.

9.2.2.2 Multiagent View of Statoil

Fig. 9.18 depicts the MAS diagram of the Statoil Mongstad scenario. It includes the basic au-
tonomous entities like the organizations OrderManagement, RefineryOrganization, and Customer-
ManufacturerOrganization, and the agents Refinery, Order, Statoil, Ship, Inventory, Jetty, and
Blender. Moreover, the domain roles from the role view are utilized in the sense that these are
either declared as performed or required by the autonomous entities. The domain roles Refin-
eryRole, for instance, is required by the CustomerManufacturerOrganization organization and
performed by the Refinery agent.

9.2.2.3 Organization View of Statoil

Fig. 9.19 depicts the three core organizations OrderManagement, RefineryOrganization, Customer-
ManufacturerOrganization and their required and performed domain roles. Moreover, the diagram
represents the interaction protocols used by these organizations to coordinate their members.
The CustomerManufacturerOrganization, for instance, uses the SimulatedTradingProtocol and the
NoticeProtocol to instantiate and schedule the customers orders. The SimulatedTradingProtocol is

9.2. Scheduling Product Cargos at Statoil 237

Fig. 9.19: The PIM4AGENTS organization diagram.

Fig. 9.20: The PIM4AGENTS agent diagram.

also used in combination with the ContractNetProtocol to schedule the orders assigned to the Jetty
agents.

9.2.2.4 Agent View of Statoil

The agents of the Mongstad case are depicted in Fig. 9.20. These are the agents Refinery, Jetty,
Inventory, Blender, Statoil, Ship, and Order. In addition, the agent diagram illustrates the agents’
performed roles RefineryRole, JettyRole, InventoryRole, BlendingRole, ManufacturerRole, Customer-
Role, and OrderRole.

9.2.2.5 Behavior View of Statoil

Fig. 9.21 depicts the plan for any participant of the Simulated Trading protocol produced by
the endogenous model transformation of the DSML4MAS process model. The plan starts with

238 9. DSML4MAS in Industrial Use Cases

Fig. 9.21: The PIM4AGENTS behavior diagram.

receiving the SimulatedTradingProtocolPublish in the ReceiveSimulatedTradingProtocolPublish
task and sending the corresponding answer SimulatedTradingProtocolRegister message in the
SendSimulatedTradingProtocolRegister task. This is done in a parallel loop manner expressing that
more than one message could be received and sent, depending on the number of agent instances
bound to the Market actor, which is normally one in the case of the Simulated Trading protocol.
After receiving the SimulatedTradingProtocolRequest message in the ReceiveSimulatedTrading-
ProtocolRequest, the next steps are computed in the internal task ComputeNextStep. Depending
on this evaluation, either the SimulatedTradingProtocolBuy, SimulatedTradingProtocolSell, or
SimulatedTradingProtocolNoOp message is sent in the corresponding send activity.

9.2.2.6 Deployment View of Statoil

Even if the scenario to be described is rather dynamic with ships arriving at and leaving the
Mongstad terminal, all involved agent instances are introduced during design time in the deploy-
ment view (cf. Fig. 9.22). The deployment of the Statoil case includes the agent instances Jetty9,
Jetty8, Jetty3, Jetty2 of type Jetty as well as the agent instances Blender1 and Blender2 of agent
type Blender. The agent instance ShipManagement of type CustomerManufacturerOrganization
integrates the agent instances Ship1, Ship2, Ship3 all of type Customer, Statoil of type Statoil, the
Refinery of type Refinery, etc.

9.2.3 JACK-Based Scheduling Product Cargos at Statoil

In accordance to the DSML4MAS process model, in order to generate code, either the JACK or JADE
platforms and their corresponding model transformations can be selected. In the Statoil scenario,
the model transformation to JACK is the preferred choice. In the following, the generated team
and process views of JACK are given.

9.2. Scheduling Product Cargos at Statoil 239

Fig. 9.22: The PIM4AGENTS deployment diagram of the Mongstad scheduling problem.

Fig. 9.23: The team view of the generated JACK model based on the organizations in the
PIM4AGENTS model.

9.2.3.1 Team View of Statoil

The corresponding team view of the generated JACK model is depicted in Fig. 9.23. It illustrates
the teams RefineryOrganizationTeam, CustomerManufacturerTeam, and OrderManagementTeam
produced by Mapping Rule 7.1. Moreover, the named roles InventoryRoleNamedRole, Refinery-
RoleNamedRole, OrderRoleNamedRole, ManufacturerRoleNamedRole, CustomerRoleNamedRole,
JettyRoleNamedRole, and BlendingRoleNamedRole.

Any team generated on the base of an agent in the PIM4AGENTS model is depicted by Fig. 9.24.
Consequently, Mapping Rule 7.3 produces the teams Refinery, Jetty, Inventory, Blender, Statoil,

240 9. DSML4MAS in Industrial Use Cases

Fig. 9.24: The team view of the generated JACK model is based on the agent types in the
PIM4AGENTS model.

Ship, and Order. Moreover, these teams perform the roles generated by Mapping Rule 7.5. These
are RefineryRoleRole, JettyRoleRole, InventoryRoleRole, ManufacturerRoleRole, CustomerRoleRole,
and OrderRoleRole.

9.2.3.2 Process View of Statoil

Fig. 9.25 illustrates parts of the team plan produced by Mapping Rule 7.3 on the input given in
Fig. 9.21. The team plan starts with receiving the RequestEvent by the Market agent(s). When
handling this event, the participant agent(s) starts to decide based on a pre-defined cost function
whether to buy, sell, or perform no operation. The particular event produced by Mapping Rule 7.4
(e.g. SellEvent, BuyEvent) is then sent to the Market. If a good solution has been found, this process
stops, otherwise the Market again requests operations.

9.2.4 Relevance for Statoil

The overall objective of Statoil is to increase the support for flexible event and action management.
At this, Statoil is interested in an improved scheduling algorithms for future IT implementations at
Mongstad and hence reduced costs at the Mongstad terminal.

By using DSML4MAS, Statoil was able to model the basic architecture of the Mongstad terminal
case study. The produced design could then transferred into a corresponding PIM4AGENTS model,
which was then further refined in terms of the distributed algorithms. For this purpose, the agent
interaction protocols Contract Net Protocol and the Simulated Trading Protocol were utilized.
The refined design was translated to the agent platform JACK, and further refined in terms of an
adequate cost function. Apart from the manual refinements, the code generator for JACK nearly
produces executable code.

9.3. Bottom Line 241

Fig. 9.25: The team plan of the generated JACK model.

9.3 Bottom Line

To demonstrate the practical usefulness of DSML4MAS and how this may increase the possibility
of AOSE in being adopted by industry, in this chapter, we indicated how to utilize DSML4MAS in
two real-world industrial scenarios.

The first use case deals with the production chain of the Saarstahl AG, which consists of a multi-
tude of specialized and complex metallurgical manufacturing processes with several dependencies
among them. The use case execution includes (i) the service-oriented modeling of the Saarstahl
AG supply chain using SoaML, (ii) the model transformation between SoaML and DSML4MAS and
(iii) the generated design on the DSML4MAS level. In a last step, the generated DSML4MAS model
is then transformed to an executable JADE implementation. The main advantage, Saarstahl sees
in the presented approach is to improve the interoperability of the existing legacy systems along
the supply chain. The interaction between them can easily be described on an abstract level and
stepwise transformed to an executable implementation.

The second use case deals with the requirements of the Statoil terminal at Mongstad. For
the specification of this use case scenario, we apply the DSML4MAS methodology by starting
with analyzing the problem domain using interaction protocols provided by DSML4MAS. These
specifications are mapped to corresponding concepts of the remaining diagrams, which are in a
second step further refined to meet the detailed requirements. Finally, the generated DSML4MAS

model is transformed to JACK.

242 9. DSML4MAS in Industrial Use Cases

10. Comparison with State of the Art in
Agent-Oriented Software Engineering

This chapter aims at providing the reader with a systematic and comprehensive evaluation of
agent-based design methods. Hence, the emphasis of this chapter is to explore and analyze the sim-
ilarities and differences between DSML4MAS and ten of the most cited AOSE methodologies and
modeling languages. Ideally, such an analysis is based on a comprehensive evaluation framework,
which allows to clearly identify the strengths and weakness of the chosen agent methodologies.
The presented study is therefore based on a feature analysis approach and is inspired by the work
done by Tran and Low (Tran and Low; 2005). Our feature analysis approach bases on 19 criteria,
grouped by five categories. While some of these criteria base on the work of Tran and Low, others
have been purposefully introduced to emphasize on the evaluation of complex systems related
features (e.g. notation, viewpoints, etc.).

Structure of this Chapter In Section 10.1, the evaluation framework used in this chapter to
compare DSML4MAS with existing agent-based design approaches is proposed. Afterwards, Sec-
tion 10.2 discusses the most interesting and well-known agent-oriented software engineering
methodologies and modeling languages and names the advantages and disadvantages of each
single approach with respect to our evaluation framework. Section 10.3 compares the results of
this evaluation with the characteristics and features of DSML4MAS. Finally, Section 10.4 concludes
this chapter.

10.1 Evaluation Framework

Several evaluation frameworks have been proposed to adequately evaluate and compare existing
agent-based methodologies or other approaches to model MASs. Examples are for instance the
evaluation frameworks presented in (Cuesta et al.; 2003; Sudeikat et al.; 2004; Cernuzzi and Zam-
bonelli; 2008; Shehory and Sturm; 2001; Lin et al.; 2007; Cossentino et al.; 2009). In the introduction
of this thesis, we previously argued that agent technology still faces many challenges in being
adopted by industry and possibly taking over from objects technology as the dominant software
development technology. We, furthermore, presented several obstacles, we consider important to
solve in order to provide mature development methodologies for agent-based systems. In order to
evaluate existing approaches and compare them with DSML4MAS, we therefore propose a com-
parison framework that is built upon the obstacles we have identified and properties derived from
a number of related surveys on comparing AOSE methodologies. These obstacles and evaluation
properties are as follows:

244 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Main Concepts Agent-based systems and MASs in particular differ from normal object-oriented
languages as agents are considered as autonomous, proactive, reactive and offer a certain
degree of social ability (cf. Definition 2.1.5). Consequently, the vocabulary of any agent-
based design approach should provide mechanisms to express these characteristics and
hence approve the following questions:

• Does the design approach allow modeling of agents?
• Does the design approach allow modeling of organizations or other social structures?
• Does the design approach provide techniques for modeling goals?
• Does the design approach provide representations detailing plans and their bodies to

describe how an agent accomplishes its goals or responds to external events?
• Does the design approach support the modeling of the agents’ environment?
• Does the design approach provide techniques to define interaction protocols?

Methodology The vocabulary of the modeling language is certainly considered as a crucial part
of any software method. However, in order to design MASs, certain functionalities are
necessary to provide. In particular, if the language contains concepts that are normally used
on different abstraction layers. To assist the developers in efficiently designing the MAS,
usually a process is offered that guides the developer through the different development
phases. Quality characteristics of a good and adequate methodology process are as follows:

• Does the process model cover the whole life-cycle?
• Does the process support the deployment?
• Does the methodology allow modeling of the MAS from different viewpoints?
• Does the methodology support a seamless transfer from more abstract phases to more

concrete ones?
• Does the process allow automatically transferring one phase into another?
• Can the modeling technique be used from scratch, without having to walk through the

entire phases?

Tool Support Apart from the language’s vocabulary and its methodology, adequate tool support in
terms of a good graphical modeling notation, consistency checks as well as integrated code
generators eases the complex tasks of requirement analysis, design, and implementation.
However, as pointed out in (Sudeikat et al.; 2004), evaluating tool support is somehow a
difficult task as the their usability is influenced by many aspects. To evaluate the tool support
provided by the chosen modeling approaches in a proper manner, we measure the kind of
support with the help of the following questions.

• Does the modeling tool allow the design of the MAS from different viewpoints?
• Does the modeling tool support the validation of the design?
• Does the modeling tool provide mechanisms for automatic code generation?
• Is the modeling tool integrated in a generic modeling environment?

Formal Semantics Existing agent-based modeling approaches mainly focus on the process guid-
ing the developer through the different development phases. However, in order to ensure
that the design is consistent across the different phases, the precise language’s semantics is
needed that go beyond the information part of the metamodel or UML profile. In particular,
we consider both important, the static semantics as well as the dynamic semantics. This is
also reflected by the following properties.

• Does the language offer a static semantic?
• Does the language offer a dynamic semantic?

10.1. Evaluation Framework 245

Weight Scale

Main Concepts

Agents 3
0 = No Support, 1 = Low, 2 =
Medium, 3 = Large

Organizations 2
0 = No Support, 1 = Low, 2 =
Medium, 3 = Large

Goals 2
0 = No Support, 1 = Low, 2 =
Medium, 3 = Large

Plans 2
0 = No Support, 1 = Low, 2 =
Medium, 3 = Large

Environment 2
0 = No Support, 1 = Low, 2 =
Medium, 3 = Large

AIP 2
0 = No Support, 1 = Low, 2 =
Medium, 3 = Large

Methodology

Whole Lifecycle 2 0 = No Support, 1 = Partial, 2 = Full
Deployment 1 0 = No Support, 1 = Support
Model-driven 1 0 = No Support, 1 = Support
Modeling Language 2 0 = No Support, 1 = Support

Tool Support

Viewpoints 1 0 = No Support, 1 = Support
Validation 2 0 = No Support, 1 = Support
Code Generation 2 0 = No Support, 1 = Support
Generic Modeling
Environment

1 0 = No Support, 1 = Support

Semantics
Static Semantics 3 0 = No Support, 1 = Support
Dynamic Semantics 2 0 = No Support, 1 = Support

Interoperability

Executable Imple-
mentation

3
0 = No Support, 1 = Manual, 2 =
Skeleton, 3 = Full

Platform Support 2
0 = No Support, 1 = One Platform,
2 = Various Platforms

Interoperability 2 0 = No Support, 1 = Support

Tab. 10.1: A summary on the requirements of our evaluation framework.

Code Generation and Interoperability In these days, the importance of automatically generating
code is increasing. Especially in the area of AOSE, the implementation is often too complex to
understand for non experts. This issue certainly hampers the break through of agent-based
computing in industry, which could be compensated by automatic code generators defined
in accordance to MDD. Moreover, (modeling) languages do not exist in pure isolation,
instead and in particular in industrial settings, there are plenty of more business-oriented
languages available that need to be integrated with the MAS and the corresponding language
when aiming at bringing MASs to industry. Based on these facts, we consider the following
features necessary to be offered by agent-oriented design approaches.

• Does the approach allow the automatically generation of executable code?
• Does the approach provide code generators for different agent-based platforms?
• Does the approach provide mechanisms to combine with other languages?

The criteria just presented are summarized in Table 10.1. As some of the criteria are more important
than others, we also establish a weight of each requirement, as well as a certain scale in terms of

246 10. Comparison with State of the Art in Agent-Oriented Software Engineering

measured characteristics. The weight is a number between 1 (lowest importance) and 3 (highest
importance) expressing if the requirement is mandatory or optional. Scale, on the other hand,
explains the different levels of support. It is important that the scale is precisely defined to easily
evaluate the target language. The importance level indicated by the weight is subjective, however,
these weights are critical to ensure that evaluated languages are ranked higher if they fulfill the
most important requirements.

10.2 Agent-Based Modeling Techniques

AOSE design approaches mainly try to suggest a clean and disciplined approach to analyze, design,
and develop MASs, using specific methods and techniques. They typically start from a metamodel
or UML profile that identifies the basic abstractions to be exploited in agent-based development.
On the base of this, they exploit and organize these abstractions to define guidelines on how
to model correctly. These design approaches are either agent-based modeling languages (e.g.
Agent Modeling Language (AMOLA, (Spanoudakis and Moraitis; 2008a))) or methodologies (e.g.
AALAADIN (Ferber and Gutknecht; 1998), MESSAGE (Caire et al.; 2002), Nemo (Huget; 2002a),
ROADMAP (Juan and Sterling; 2003), ASEME (Spanoudakis and Moraitis; 2007), or SODA (Omicini;
2001)).

In the remainder of this section, the most prominent agent-based modeling and design ap-
proaches are presented and discussed in terms of their main concepts, provided tool support,
specified semantics, as well as code generation facilities.

10.2.1 Agent UML

Agent UML (AUML) (Odell et al.; 2000; Bauer et al.; 2001; Huget and Odell; 2004) is an extension
of UML to overcome the limitations of UML with respect to the development of MASs. AUML
results from the cooperation between the OMG and FIPA) aiming at increasing acceptance of
agent technology in industry. AUML and in particular the AUML interaction diagram is considered
as de facto standard to model agent interactions. It is used as add-on by various agent-oriented
methodologies like for instance Prometheus (see Section 10.2.10), Tropos (see Section 10.2.7), or
INGENIAS (see Section 10.2.9).

Main Concepts The main parts of the AUML’s modeling language are the agent class diagram
and the agent interaction protocol diagram that extend UML’s state and sequence diagrams.
In the agent class diagram, agents are specified by extending UML classes with an agent
stereotype. A role thereby defines the behavior of an agent within the society, where an agent
can have multiple roles or it can change its role(s) during the execution. Agents evolving in
MASs, finally, belong to one or several organizations that define the agents’ roles and the
relationships between them. Furthermore, classes exist that model capabilities, services
and protocols. The protocol diagram combines the notation of the sequence diagram and
the state diagram for the specification of AIPs. In UML, the concept of a role is an instance
focused term, whereas in AUML, a role defines a set of agents satisfying distinguished
properties, interfaces, service descriptions or having a distinguished behavior. Agents can
perform various roles within one interaction protocol.

Even if the interaction part of AUML is applied by many other agent methodologies, its
expressiveness is limited. The main reason for this is that the AIPs of AUML strongly base

10.2. Agent-Based Modeling Techniques 247

on UML sequence diagrams, which does not allow to describe the interaction between
one-to-many entities like this is needed for modeling complex interactions (e.g. CNP).
Likewise, AUML does not allow representing the agent’s knowledge about the environment’s
status (Juneidi and Vouros; 2004), which makes the agent adapt to changes in the dynamic
environment difficult.

Methodology AUML originally serves as a pure modeling language. An extension of AUML has
been presented in (de Cerqueira Gatti et al.; 2007) in the sense of a methodology for AUML
called AUML-BP. An AUML-BP iteration includes the phases requirements, analysis and
design, and implementation and tests. However, the implementation seems to be done
manually as, for instance, generic model transformations between AUML and JADE do not
exist.

Tool Support AUML does not provide any graphical tool support (Peres and Bergmann; 2005).
However, as AUML is based upon UML through profiles, any UML-capable tool can be
used for this purpose. In (Winikoff; 2005), Winikoff presented a textual notation for AUML
interaction protocols, which takes AUML protocols in a textual format and produces a
graphical representation.

Weight Scale

Main Concepts

Agents 2 2
Organizations 2 1.33
Goals 0 0
Plans 1 0.66
Environment 0 0
AIP 2 1.33

Methodology

Whole Lifecycle 2 2
Deployment 0 0
Model-driven 0 0
Modeling Language 1 2

Tool Support

Viewpoints 1 1
Validation 0 0
Code Generation 0 0
Generic Modeling Environment 0 0

Semantics
Static Semantics 0.5 1.5
Dynamic Semantics 0.5 1

Interoperability
Executable Implementation 0 0
Platform Support 0 0
Interoperability 0 0

12 12.83

Tab. 10.2: A summary on AUML’s characteristics.

Formal Semantics Huget (2002d) validated AUML protocol diagrams using Promela1 (del
Mar Gallardo and Merino; 1999) and Spin2 (Ben-Ari; 2008) and proposed a description

1 PROMELA is a non-deterministic language, loosely based on Dijkstra’s guarded command language notation and
borrowing the notation for I/O operations from Hoare’s CSP language.

2 Spin is a model checker used for the formal verification of distributed software systems.

248 10. Comparison with State of the Art in Agent-Oriented Software Engineering

language called AXF, which allows to represent textually protocol diagrams (Huget; 2002c).
Similarly, Mokhati et al. (2007) propose the verification of AUML’s interaction protocols
using Maude’s model checker (Eker et al.; 2002), whereas Cabac and Moldt (2004) describe
the formal semantics of AUML’s interaction protocols using Petri nets. Hence, a rich set of
formal specifications is available for AUML, however, these specifications mainly focus on
the interaction part, the semantics of the agent class diagrams are often not considered.
This limitation certainly hampers the usefulness of the formal specification.

Interoperability In (Ehrler and Cranefield; 2004), the Plug-in for AUML Linking (PAUL) is pre-
sented that allows the automatic interpretation of AUML interaction protocols. This is
mainly achieved by building an AUML interpreter and integrating application-specific code
using Java. However, in its current version, PAUL only supports agent interaction protocols.

Further code generation approaches are described in (Quenum et al.; 2006; Huget; 2002b;
Dinkloh and Nimis; 2003; Doi et al.; 2005). Like in the case of the formal semantics, the
presented approaches mainly deal with AIPs. Consequently, only skeleton code can be
generated as the remaining design is missing (e.g. agents, organization, etc.) in order to
produce fully executable code.

Table 10.2 summarizes the core characteristics of AUML in accordance to our evaluation frame-
work. AUML is one of the first approaches taking UML as base and extending it for modeling
agents and MASs. Even if the main concepts of agent-based system development are covered
in a manner that precisely allows designing MASs, the semantics of the initial version is—like
for any UML profile—not formally defined. AUML’s formal semantics only focus on AIPs. In
terms of methodology support, originally, AUML was developed as pure modeling language. A
methodology process was later on built on top of AUML covering all important phases including
an implementation phase, which unfortunately does not allow to automatically produce code.
The overall score of AUML is 12.83.

10.2.2 Agent-Object-Relationship Modeling Language

The Agent-Object-Relationship Modeling Language (AORML) (Wagner; 2003, 2002) is a model-
ing language for MASs that is mainly inspired by the Agent-Oriented Programming proposal of
(Shoham; 1993). A UML profile for AORML is defined in (Wagner; 2002).

Main Concepts The main concept of AORML is the AgentType which is in the AORML sense an
entity like an event, an action, a claim, a commitment, or an ordinary object. Agents and
objects, respectively, form the active and passive entities, while actions and events are the
dynamic entities of the system model. Commitments and claims establish a special type
of relationship between agents. These concepts are fundamental components of social
interaction processes and can explicitly used to achieve coherent behavior. Beside the
simple agents, AORML also models institutional agents, which are usually composed of
other (institutional) agents that act on its behalf. The interaction between agents is, like in
the case of AUML, restricted to two agents. This means that sending message to multiple
agent instances is, like in the AUML case, not supported. Moreover, in its current version,
AORML does neither include concepts to model mental concepts like goals nor proactive
behaviors of agents (Wagner; 2003). Additionally, as pointed out in (Xiao and Greer; 2005;
da Silva et al.; 2004), the manner in which agents, objects and rules interplay together is not
adequately described.

10.2. Agent-Based Modeling Techniques 249

Weight Scale

Main Concepts

Agents 2 2
Organizations 2 1.33
Goals 0 0
Plans 0 0
Environment 1 0.66
AIP 2 1.33

Methodology

Whole Lifecycle 1 1
Deployment 0 0
Model-driven 0 0
Modeling Language 1 2

Tool Support

Viewpoints 1 1
Validation 0 0
Code Generation 0 0
Generic Modeling Environment 0 0

Semantics
Static Semantics 0 0
Dynamic Semantics 0 0

Interoperability
Executable Implementation 1 1
Platform Support 1 1
Interoperability 1 2

13 13.33

Tab. 10.3: A summary on AORML’s characteristics.

Methodology AORML is rather a modeling language than a methodology. Though some method-
ological directions on how to use AORML for software development have been identified in
(Wagner and Taveter; 2004). In the analysis phase of the corresponding RAP/AOR method-
ology, the interaction between agents is specified that is then transformed to the agents’
internal perspectives supporting the specified requirements. These internal AOR models
are afterward refined into an implementation model of the particular target language (e.g.
Java). An external AOR model may comprise (i) the agent diagram focusing on the agents of
the domain, certain relevant objects, and the relationships among them, (ii) the interaction
frame diagram, which depicts the action event types and commitment/claim types that
determine the feasible interactions between two agents, (iii) the interaction sequence dia-
gram focuses on instances of interaction processes and finally, (iv) the interaction pattern
diagram depicts the interaction patterns expressed by defining reaction rules illustrating an
interaction process type.

Tool Support A Microsoft Visio template exist for AOR modeling (Wagner; 2003), providing the
specific graphical shapes of the AOR modeling elements.

Formal Semantics -

Interoperability In (Taveter and Wagner; 2008), a conceptual mapping between AORML and
JADE is presented, however, model transformations automatically generating code are not
given. To leverage the advantages of both agent-oriented design techniques, a manual
mapping between Tropos and AORML is discussed in (Guizzardi-Silva Souza et al.; 2003).

250 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Table 10.3 summarizes the core characteristics of AORML. The main advantage of AORML is cer-
tainly the provided modeling capabilities. However, the generated design cannot be automatically
transferred into an agent implementation. In addition, the provided tool support is rather weak, a
formal semantics is lacking, too. The overall score of AORML is 13.33.

10.2.3 Agent Modeling Language

The Agent Modeling Language (AML) (Cervenka et al.; 2004; Ivan et al.; 2006) was designed to
address the specific qualities offered by MASs that are difficult, or impossible, to model with
object-oriented modeling languages like UML. Aspects provided by AML to model MAS include
constructs for modeling (i) architectural aspects of MASs like, for instance, ontologies and social
aspects (i.e. organizational units), (ii) global aspects like MAS behaviors in terms of communicative
interactions modeled within protocols, and (iii) mental aspects of agents like beliefs, goals, and
plans. For an adequate representation of AML’s concepts, a UML profile was developed, concepts
further extending the vocabulary of UML are provided as metamodel.

Main Concepts The agent type is used to specify the type of agents, i.e. self-contained entities
that are capable of interactions, observations and autonomous behavior within their envi-
ronment. The environmental type is used to model the type of a system’s inner environment.
Moreover, the resource type is used to model the type of resources within the system, which
are either physical or informational entities. To accommodate the special needs for mod-
eling social structures, social behavior and social attitudes, AML provides the following
entities: The organizational units are used to model social entities that can evolve in the
system. The role type is used to model capabilities, behaviors, observations, relationships,
participation in interactions, and offered services. To support modeling of interactions,
AML provides different kinds of UML extensions. These can be subdivided into (i) generic
extensions to UML interactions, (ii) speech act based extensions to UML interactions, (iii)
observations and effecting interactions, and (iv) services (see (Trencansky and Cervenka;
2005)). AML furthermore extends the capacity concept of UML to abstract and decompose
behavior by two modeling elements: capability and behavior fragments. The concept of
capability is defined as abstract specification of a behavior, which allows reasoning about
and operations on that specification. The behavior fragment is a specialized behaviored
semi-entity type used to model a coherent re-usable fragment of behavior and related struc-
tural and behavioral features. It enables the decomposition of a complex behavior into
simpler and (possibly) concurrently executable fragments. Finally, for modeling mental
concepts, AML provides, among others, the concepts of goals and plans. The former is a
specialized UML class used to model conditions or states of affairs, the latter is a specialized
UML activity used to model either predefined plans, or fragments of behavior from which
plans can be composed.

Methodology -

Tool Support AML provides a rich set of modeling constructs that allow to model the most im-
portant aspects of MASs like social relationships, organizational units or interactions. As
AML bases on UML through profiles, the notation is geared to the notation used by UML 2.0.
Hence, any UML-capable tool is able to import the AML design.

Formal Semantics The static semantics of AML have been described in (Cervenka and Trencan-
sky; 2004) using OCL. Danc̆ 2008, moreover, demonstrated the use of Object-Z to formally

10.2. Agent-Based Modeling Techniques 251

Weight Scale

Main Concepts

Agents 3 3
Organizations 2 1.33
Goals 3 2
Plans 2 1.33
Environment 2 1.33
AIP 2 1.33

Methodology

Whole Lifecycle 0 0
Deployment 0 0
Model-driven 0 0
Modeling Language 1 2

Tool Support

Viewpoints 1 1
Validation 0 (?) 0
Code Generation 2 2
Generic Modeling Environment 1 1

Semantics
Static Semantics 1 3
Dynamic Semantics 0 0

Interoperability
Executable Implementation 2 2
Platform Support 1 1
Interoperability 0 0

23 22.33

Tab. 10.4: A summary on AML’s characteristics.

define the semantics. However, the operational semantics has not been dealt with, since the
authors consider the dynamic semantics as a dependency of the specific execution platform
(cf. (Cervenka et al.; 2004)).

Interoperability In (Cervenka et al.; 2006), code generators were defined based on a CASE mod-
eling tool that translate the AML specification into code of the Living Systems Technology
Suite (LS/TS) (Rimassa et al.; 2006), which is a development environment for producing
applications based on software agent technology based on Java.

Table 10.4 summarizes the core characteristics of AML in accordance to our evaluation framework.
All in all, the AML language offers important features to develop MASs, like (i) a static semantics
based on Object-Z and (ii) a code generator for LS/TS. The only real meaningful shortcoming is
the insufficient tool support to integrate the just mentioned features. The overall score of AML is
22.33.

10.2.4 Generic Architecture for Information Availability

The Generic Architecture for Information Availability (Gaia) (Zambonelli et al.; 2003; Wooldridge
et al.; 2000) has been designed to explicitly model and represent the social aspects of open agent
systems, with particular attention to social goals, social tasks or organizational rules. In the course
of time, Gaia has further been improved, the ROADMAP methodology is only one representative
for this permanent modernization.

252 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Fig. 10.1: The Gaia metamodel, in accordance to (Bernon et al.; 2005b).

Main Concepts The metamodel of Gaia is depicted in Fig. 10.1. The main concept of Gaia is
AgentType, which is part of an Organization, collaborates with other AgentTypes, provides
Services—having post-conditions, pre-condition, outputs and inputs—and plays several
Roles. The concept of Role refers to certain Activities, has Responsibilities and are used within
Communications that specify Protocols. The Environment contains Resources that interact
with Roles. The ROADMAP (Juan and Sterling; 2003) metamodel extends Gaia in terms of a
formal environment, knowledge models, as well as a dynamic role hierarchy to constrain
the behavior of agents in organizations.

Methodology The development process of Gaia mainly consists of two phases. In the analysis
phase, the characteristics of the MAS are analyzed to identify the necessary roles and their
interactions. The generated work products include role and interaction models, as well as,
a model representing social laws. In the design phase, the agent and service models are
detailed, as well as, rough behavior descriptions for the cooperation between agents are
produced.

Tool Support -

10.2. Agent-Based Modeling Techniques 253

Weight Scale

Main Concepts

Agents 3 3
Organizations 2 1.33
Goals 0 0
Plans 1 0.66
Environment 2 1.33
AIP 1 0.66

Methodology

Whole Lifecycle 1 1
Deployment 0 0
Model-driven 0 0
Modeling Language 0 0

Tool Support

Viewpoints 1 1
Validation 0 0
Code Generation 0 0
Generic Modeling Environment 0 0

Semantics
Static Semantics 1 3
Dynamic Semantics 1 2

Interoperability
Executable Implementation 2 2
Platform Support 1 1
Interoperability 0 0

16 17

Tab. 10.5: A summary on Gaia’s characteristics.

Formal Semantics Miller and McBurney presented a formal semantics for Gaia liveness expres-
sions and liveness rules, and discussed a sound and complete axiom system for them.

Interoperability In (Moraitis and Spanoudakis; 2004), conceptual mappings between Gaia and
JADE have been presented. However, the model mappings have not been implemented
and hence the MAS developers still need to manually convert the design made with Gaia
into code. The Gaia2Jade process (Moraitis and Spanoudakis; 2006) proposes to perform
the implementation phase in four stages: communication protocol definition, activities
refinement, JADE behavior creation, and agent classes construction. One relevant detail
in the behavior creation is that Gaia roles are transformed to high level JADE behaviors. In
(Spanoudakis and Moraitis; 2009), the concrete model transformations were presented.

Table 10.5 summarizes the core characteristics of Gaia in accordance to the evaluation framework.
Gaia is one of the first agent-based methodologies that has been further improved over the years.
Recently, a model transformation in accordance to MDD has been presented, which provides an
automatic link to JADE as execution platform. The main shortcoming of Gaia is the non-existing
tool support, which limits Gaia’s usability in complex scenarios. The overall score of Gaia is 17.

10.2.5 Process for Agent Societies Specification and Implementation

The Process for Agent Societies Specification and Implementation (PASSI) (Cossentino; 2005) is
an agent-based methodology to design MASs. PASSI conciliates classical software engineering
concepts like problem and solution domain with the potentiality of the agent-based approach

254 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Fig. 10.2: The PASSI metamodel, in accordance to (Bernon et al.; 2005b).

by integrating design models and concepts from both OOSE and AOSE using UML notation.
The convergence between agents and traditional issues of software engineering is obtained by
introducing an abstraction layer called agency domain. The communication and implementation
are FIPA-based. An extension to PASSI called Agile PASSI has been presented in (Chella et al.; 2004b)
that leads to a faster development process mainly oriented toward the code generation. Recently,
HoloPASSI (Cossentino et al.; 2007) has been proposed extending PASSI with the capability of
modeling holonic MASs.

Main Concepts The PASSI metamodel covers the FIPA-Platform Agent concept that contains sev-
eral FIPA-Platform Tasks. Any Agent is represented by a FIPA-Platform Agent and performs a
set of Roles providing Services to solve Tasks. In addition, the Role concept is represented in
Communications to establish AIPs and specify Messages. In addition to performing Roles, an
Agent refers to Resource, Non Functional Aspects and Requirements. A plan in PASSI can only
be represented as algorithm, no graphical support to visualize the workflow is provided. The
environment agents are situated can neither be modeled.

Methodology The software development process of PASSI bases on five phases (Chella et al.;
2004a). In the system requirements phase, a use-case based description of the functionalities
and an initial decomposition of them is produced. The agent society phase is used to
compose a model of domain ontology, social interactions and dependencies among the
agents. In the agent implementation phase, the solution architecture is modeled in terms
of agents required, classes and methods. It includes a structural definition, as well as,
behavior descriptions of the whole system. The code phase aims to model a solution at
the code level. It is largely supported by patterns reuse and automatic code generation. In
the deployment phase, the distribution of the system parts across a distributed platform is
modeled. Furthermore, facilities are provided for testing single agents, as well as, the whole
society of the MAS after deployment.

Tool Support The PASSI Tool Kit (PTK) (Cossentino and Potts; 2002) is a graphical agent-based
CASE (Computer-Aided Software Engineering) tool that bases on IBM’s Rational Rose 3. The

3 http://www-01.ibm.com/software/awdtools/developer/rose/

10.2. Agent-Based Modeling Techniques 255

Weight Scale

Main Concepts

Agents 3 3
Organizations 1 0.66
Goals 1 0.66
Plans 1 0.66
Environment 2 1.33
AIP 2 1.33

Methodology

Whole Lifecycle 2 2
Deployment 1 1
Model-driven 0 0
Modeling Language 0 0

Tool Support

Viewpoints 1 1
Validation 0 0
Code Generation 1 2
Generic Modeling Environment 1 1

Semantics
Static Semantics 0 0
Dynamic Semantics 0 0

Interoperability
Executable Implementation 2 2
Platform Support 2 2
Interoperability 0 0

19 18.66

Tab. 10.6: A summary on PASSI’s characteristics.

diagrams offered by PTK are either totally dependent by the designer, some are automatically
built by the tool and others are partially composed by the tool and then completed by the
designer (Chella et al.; 2004a).

Formal Semantics —

Interoperability The AgentFactory (Collier et al.; 2004) tool allows the automatically generation
of pattern code in accordance to PASSI. The generated code for the target platforms FIPA-OS
and JADE needs final completion.

Table 10.6 summarizes the main features of the PASSI methodology in accordance to the pro-
posed evaluation framework. PASSI does not originally allow modeling of organizations (only the
modeling of roles is supported), goals can only be expressed through tasks. Adequate support
for modeling plans is missing, which is compensated by the service concept used to wrap basic,
simple operations. The main advantage of PASSI is the model-driven support for various platforms
even if only code skeletons are produced. The generation of the remaining code parts (i.e. the
inner parts of the methods) is delegated to a repository including several patterns of agents and
behaviors. The main drawback of PASSI is the missing formal semantics. The overall score of PASSI
is 18.66.

10.2.6 Atelier de Développement de Logiciels à Fonctionnalité Emergente

The Atelier de Développement de Logiciels à Fonctionnalité Emergente (ADELFE) (Bernon et
al.; 2003, 2005a; Picard and Gleizes; 2004) specifies a methodology to develop adaptive MASs by

256 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Fig. 10.3: The ADELFE metamodel.

concentrating on cooperative behavior. ADELFE is based on adaptive MAS (AMAS) and therefore
a great effort is done in order to study all feasible situations that could enable or inhibit the
cooperation among agents. The cognitive and behavioral representations of an agent are given in
terms of its attitudes, skills and characteristics. The interaction among the intelligent entities is
either realized through direct communication or via the environment. In version 2 of ADELFE, the
developers take the ideas of MDD into consideration. The respective methodology is built upon a
domain-specific modeling language for Adaptive Multi-Agent Systems called (AMAS-ML) as PIM
and µADL (micro-Architecture Description Language) as PSM.

Main Concepts The metamodel of AMAS-ML is depicted in Fig. 10.3. The metamodel is centered
around the concept of Agent that has perceptions (through the PerceptionModule) in forms
of CommunicationPerception, Sensor and Perception. Moreover, the Agent has certain
Knowledge available, which is either of the kind Characteristics, Representations and Skills,
or Aptitudes. In order to behave in a reactive, social and proactive manner, the Agent uses
ActionModules that are either CommunicationActions or simple Actions.

Methodology The development process of ADELFE is divided into five phases: In the preliminary
requirements phase, the user requirements are defined and validated. The final require-
ments phase characterizes the environment and determines the use case. Furthermore,
the developed prototype is elaborated and validated. In the analysis phase, the domain
is analyzed, the agents are identified, and the interaction between the involved entities is
studied. Followed by the design phase in which the detailed architecture and the MAS model
is studied. Finally, the implementation phase deals with the model-driven transfer of the
design into code.

10.2. Agent-Based Modeling Techniques 257

Weight Scale

Main Concepts

Agents 2 2
Organizations 0 0
Goals 0 0
Plans 1 0.66
Environment 1 0.66
AIP 2 1.33

Methodology

Whole Lifecycle 2 2
Deployment 0 0
Model-driven 0 0
Modeling Language 0 0

Tool Support

Viewpoints 1 1
Validation 0 0
Code Generation 0 0
Generic Modeling Environment 1 1

Semantics
Static Semantics 0 0
Dynamic Semantics 0 0

Interoperability
Executable Implementation 2 2
Platform Support 1 1
Interoperability 0 0

13 11.66

Tab. 10.7: A summary on ADELFE’s characteristics.

Tool Support UML diagrams are used by ALDELFE for visualization purposes, i.e., UML sequence
diagrams and AUML are used, for instance, to model the agent interaction. Other diagrams
of ADELFE, like the agent diagram or the behavioral rules diagrams, are oriented toward
UML class diagrams.

Formal Semantics -

Interoperability A model-driven approach is presented in (Rougemaille et al.; 2008) that trans-
forms the design made with ADELFE v.2 methodology into the platform-specific µADL. The
architectural style of the micro-component assembly and a special tool called MAY (Make
your Agents Yourself)—a kind of abstract agent machine—is generated. Both can be used
by the developer as an abstract layer to implement the behavior of the generated agents.
However, from the behavioral rules expressed in the design phase with AMAS-ML, only code
skeleton is automatically produced, which needs considerable manual effort to produce an
executable implementation.

Table 10.7 summarizes the core characteristics and features of ADELFE in accordance to the
evaluation framework proposed in Section 10.1. The main benefit of ADELFE is the automatic
code generation, even if only skeletons are produced for agents’ behaviors. The main drawbacks
are (i) the missing semantics, (ii) the weak tool support, and (iii) the missing design patterns for
modeling organizations. The overall score of ADELFE amounts to 11.66.

258 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Fig. 10.4: The Tropos metamodel related to the actor diagram, in accordance to (Susi et al.; 2005).

10.2.7 Tropos

Tropos (Bresciani et al.; 2004) is an agent-oriented methodology based on the concepts of actor
and goal. It bases on the i* framework (Yu; 1995), which was originally developed for modeling
and reasoning about organizational environments and their information systems.

Main Concepts The concepts related to the Tropos actor diagram are depicted in Fig. 10.4. The
core concept of the related metamodel is the concept of Actor and its specializations Position,
Agent and Role. A Position covers at least one Role and an Agent may play Roles and may
occupy Positions. An Agent may in addition want Goals to achieve that are either HardGoals
or SoftGoals. A Dependency defines a relationship between a depender (i.e. Actor), dependee
(i.e. Actor) and a dependum (i.e. Goal, Plan or Resource).

The concepts related to the Tropos goal diagram are depicted in Fig. 10.6. The core concept
of the related metamodel is the concept of a Goal that can be analyzed by an Actor using
Means-End Analysis, Boolean Decomposition and Contribution. The Means-End Analysis
defines a relationship among the Actor (whose point of view is presented in the analysis),
a Goal (the end) and feasible Plans and Resources (the means). The Contribution defines
a relationship among the Actor (whose point of view is presented in the analysis) and two
Goals to identify Goals that can positively or negatively affect other goals. Decomposition
defines a relationship for a generic boolean decomposition of a root Goal into subgoals,
either in an AND- or OR manner through the attribute type in a Boolean Decomposition.

The modeling of social groupings like organizations nor adequate concepts to describe the
agent’s environment are neither provided by the actor nor goal diagram.

10.2. Agent-Based Modeling Techniques 259

Fig. 10.5: The Tropos metamodel related to the goal diagram, in accordance to (Susi et al.; 2005).

Methodology The Tropos methodology consists of five phases (Giorgini et al.; 2001). The early
requirements phase deals with the problem understanding by studying the existing organi-
zational setting. The output of this phase is an organizational model that defines relevant
actors and their respective dependencies. The late requirements phase deals with describing
how the system should be within its operational environment, along with relevant functions
and qualities. The output of this phase is a (small) number of actors, which have a number
of dependencies with actors in their environment. The architectural design phase deals with
the definition of the system’s global architecture, i.e. subsystems, interconnected through
data and control flows. The detailed design phase deals with the definition of each architec-
tural component in further detail in terms of inputs, outputs, control, and other relevant
information. Tropos thereby adopts elements from AUML (see Section 10.2.1). Finally, the
implementation phase deals with the implementation of the system mainly done through
JADE.

Tool Support The modeling tool of the Tropos methodology is called TAOM4E4. It bases on EMF
and GEF, however, only a fragment of the Tropos metamodel is implemented by TAOM4E.
As an example, in TAOM4E, only the concept of Actor is implemented. Its specialization
of Position, Agent and Role and their relationships cannot be applied to the design. In
this respect, one of the main advantages of GMF in contrast to GEF is the model-driven
creation of the graphical editor based on the underlying metamodel. Hence, the concepts
of the metamodel do not have to be manually realized, rather they are implemented in an
automatic manner based on the metamodel.

4 http://sra.itc.it/tools/taom4e/

260 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Weight Scale

Main Concepts

Agents 3 3
Organizations 1 (roles) 0.66
Goals 3 2
Plans 2 1.33
Environment 0 0
AIP 2 1.33

Methodology

Whole Lifecycle 2 2
Deployment 0 0
Model-driven 1 1
Modeling Language 0 0

Tool Support

Viewpoints 1 1
Validation 1 2
Code Generation 1 2
Generic Modeling Environment 0.5 0.5

Semantics
Static Semantics 1 3
Dynamic Semantics 0 0

Interoperability
Executable Implementation 2 2
Platform Support 2 2
Interoperability 0 0

22.5 24.83

Tab. 10.8: A summary on Tropos’s characteristics.

Formal Semantics Tropos provides tool support for goal analysis (GR-Tool, see (Giorgini et al.;
2005)) and model checking (T-Tool, see (Fuxman et al.; 2001)). The eCAT tool (Nguyen et al.;
2008) generates test case skeletons from goal analysis diagrams produced using TAOM4E.

Interoperability For the purpose of code generation, TAOM4E includes a suite of code generators
in accordance to the MDA philosophy (cf. (Perini and Susi; 2005)). These generators are
UML2JADE, t2x and Tropos2UML that produce code skeletons for either JADE or Jadex
agents. However, in contrast to the DSML4MAS approach, Tropos utilizes UML as middle
layer between Tropos itself and the execution engines of JADE and Jadex. The model trans-
formation approach (Penserini et al.; 2007) consequently consists of two transformations,
i.e. (i) Tropos2UML transformation that generates UML activities diagrams from Tropos
goal models and (ii) UML2JADE transformation that generates JADE agent code skeletons
from UML activity and sequence diagrams. However, as previously mentioned, UML lacks
expressiveness to adequately model agent systems. Consequently, the expressiveness is lost
during the two model transformations.

Table 10.8 summarizes the core characteristics of Tropos. It provides a clear process model covering
all necessary steps to develop MASs in combination with code generators producing a skeleton
JADE implementation. The design made with Tropos can be evaluated by means of a static
semantics and testing facilities. The main drawback of Tropos is the lack of support regarding
organizational modeling. The overall score of Tropos amounts to 24.83.

10.2. Agent-Based Modeling Techniques 261

Fig. 10.6: The O-MaSE metamodel, in accordance to (DeLoach and Valenzuela; 2006).

10.2.8 Organization-based Multiagent System Engineering

The Organization-based Multiagent System Engineering (O-MaSE, (García-Ojeda et al.; 2007))
methodology was originally developed to improve the MaSE (Multiagent Systems Engineering,
(Wood and DeLoach; 2001)) methodology and its limitations. O-MaSE aims at allowing MAS
designers to construct agent-oriented methodologies based on method fragments conforming to
a common metamodel.

Main Concepts The metamodel of O-MaSE is centered around the concept of Organization,
which is composed of Goals, Roles, Agents, Domain Model, and Policies. A Goal defines the
overall function of the Organization and a Role defines a position within an Organization
whose behavior is expected to achieve particular Goal(s). An Agent owns certain Capabilities
to act in the environment and plays Roles inside Organizations. Capabilities are algorithms
or plans that capture algorithms used by Agents to carry out specific tasks, while Actions
are used to interact with environmental objects. The environment is modeled in terms of
a Domain Model, which defines the types of objects in the environment and the relations
between them. Policies normally constraint Organizations to behave in certain situations in
a pre-defined manner. Finally, Protocols define how to interact either internally or externally.

Methodology The O-MaSE methodology consists of three phases: In the requirement engineering
phase the goal hierarchies are defined, the analysis phase includes modeling the (i) orga-
nizational interfaces, (ii) roles, and (iii) domain using UML. Finally, in the design phase,
the system designers specifies the agent, protocol, plan, policies, capabilities, action and
service models. O-MaSE assumes an iterative cycle across all three phases with the intent

262 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Weight Scale

Main Concepts

Agents 3 3
Organizations 2 1.33
Goals 2 1.33
Plans 2 1.33
Environment 2 1.33
AIP 2 1.33

Methodology

Whole Lifecycle 2 2
Deployment 0 0
Model-driven 0 0
Modeling Language 0 0

Tool Support

Viewpoints 1 1
Validation 1 2
Code Generation 1 2
Generic Modeling Environment 1 1

Semantics
Static Semantics 1 3
Dynamic Semantics 0 0

Interoperability
Executable Implementation 3 3
Platform Support 1 1
Interoperability 0 0

26 24.66

Tab. 10.9: A summary on O-MaSE’s characteristics.

that successive iterations will add details to the models until a complete design is produced
(García-Ojeda et al.; 2007).

Tool Support The O-MaSE methodology is supported by the agentTool III (aT3) development
environment, which is based on the first two versions of agentTool supporting the original
MaSE methodology. agentTool III was developed using Java and is provided as an Eclipse
plug-in.

Formal Semantics As part of aT3, the designer has the opportunity to apply a verification frame-
work to check the consistency between the different models defined (cf. (Garcia-Ojeda et
al.; 2009)). The verification framework consists of a set of static rules that can be turned on
and off. However, in its current version, aT3 does not support automatic verification of the
correct implementation of protocols within plans (DeLoach et al.; 2009).

Interoperability Like the verification framework, aT3 also includes code generators for one agent-
based execution platform. In the aT3 case, the authors of (Garcia-Ojeda et al.; 2009) claim to
have a 100% code generation of JADE code. In (Radziah et al.; 2006), conceptual mappings
between MaSE and Jadex have been explored based on concetual mappings.

Table 10.9 summarizes the evaluation of O-MaSE in terms of our evaluation framework. O-MaSE
offers a (i) comprehensive vocabulary to model MASs, (ii) static semantics integrated in the
provided modeling tool, and (iii) complete automatic model transformation to JADE. The overall
score of O-MaSE is 24.66.

10.2. Agent-Based Modeling Techniques 263

Weight Scale

Main Concepts

Agents 3 3
Organizations 2 1.33
Goals 3 2
Plans 0 0
Environment 2 1.33
AIP 2 1.33

Methodology

Whole Lifecycle 2 2
Deployment 1 1
Model-driven 0 0
Modeling Language 1 2

Tool Support

Viewpoints 1 1
Validation 0 0
Code Generation 1 2
Generic Modeling Environment 0.5 0.5

Semantics
Static Semantics 0 0
Dynamic Semantics 0 0

Interoperability
Executable Implementation 3 3
Platform Support 1 1
Interoperability 0 0

22.5 21.5

Tab. 10.10: A summary on INGENIAS’s characteristics.

10.2.9 INGENIAS

INGENIAS (Pavón and Jorge; 2003) is a methodology for specifying MASs on a platform inde-
pendent level. It builds upon the MESSAGE methodology (Caire et al.; 2002) by proposing a
notation for the specification of MAS by extending UML with agent-related concepts such as agent,
organization, role, goals and tasks.

Main Concepts The metamodel of INGENIAS (Pavón et al.; 2005), which is based on the Ecore
meta-metamodel is split up in several metamodels each covering important aspects to
model MASs. In particular, concepts for modeling agents, organizations of agents, the
environment in which agents and organizations are situated, goals and tasks and, finally,
interactions in which two or more agents are interacting. The agent viewpoint describes
the agentŠs behavior in terms of the agent’s mental state, a set of goals and beliefs, as well
as, the roles the agent is able to play. However, a vocabulary for describing how an agent
achieves a certain goal is not given. The goals and tasks viewpoint describes the relationship
between goals and task, i.e., goals for agents could be further refined into simpler goals
up to a level where it is possible to identify specific tasks to satisfy them. For modeling
interactions, AUML is utilized.

Methodology The INGENIAS methodology includes the core phases from requirements to testing.
In (García-Magariño et al.; 2009), a similar approach to DSML4MAS is presented, i.e. the
authors present a model-driven development process that allows to automatically generate
role definitions, interactions from the agent workflow, and agent deployments.

264 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Fig. 10.7: The Prometheus metamodel (part 2), in accordance to (Dam et al.; 2006). For association
ends that do not have a multiplicity, it should be interpreted that their multiplicity is
zero or many (0..*).

Tool Support The INGENIAS methodology is supported by the INGENIAS Development Kit (IDK)
(Gomez-Sanz et al.; 2008a), which is a graphical modeling tool based on Java. It facilitates
means to transform the design into code, however, IDK does not provide validation and
verification mechanisms.

Formal Semantics -

Interoperability INGENIAS adopts the ideas of MDD and, thereby, provides a general process
for transforming the design into code. In particular, the code generation is targeting JADE.
Moreover, the INGENIAS Code Uploader extension supports refactoring of JADE code. In
contrast to DSML4MAS, INGENIAS only provide model transformations to a single agent
platform. In (Gascue and Fernández-Caballero; 2009), the authors describe how to combine
and integrate INGENIAS and Prometheus based on conceptual mappings.

Table 10.10 depicts an overview on the basic characteristics of INGENIAS. Like DSML4MAS, INGE-
NIAS provides a model transformation to JADE that allows generating most of the code fragments.
The major shortcoming of INGENIAS is the lack of formal semantics. The overall score of INGE-
NIAS is 21.5.

10.2.10 Prometheus

In accordance to Padgham and Winikoff (2002a), Prometheus is an AOSE methodology that is
detailed and complete in the sense of covering all activities required in developing intelligent
agent systems. Furthermore, the authors argue that it is a generic modeling language that can be
used for any MAS architecture and environment, even if it has mainly been used for designing BDI
agents.

Main Concepts The metamodel of Prometheus is divided into two parts. Fig. 10.8 depicts the con-
cepts needed within the system specification phase, whereas Fig. 10.7 depicts the concepts

10.2. Agent-Based Modeling Techniques 265

Fig. 10.8: The Prometheus metamodel (part 1), in accordance to (Dam et al.; 2006). For association
ends that do not have a multiplicity, it should be interpreted that their multiplicity is
zero or many (0..*).

needed within the detailed design phase. Prometheus distinguishes between two sorts of
Goals, namely AbstractGoal and ConcreteGoal (see Fig. 10.8). The main difference between
both is that the AbstractGoal has children, which are again Goals. A Scenario consists of
a set of concepts called StepOfScenario, which is the parent class for the specializations
ScenarioStep, GoalStep, ActionStep and PerceptStep. A Role could achieve Goals, has access
to Data and has to handle Percepts. The core concept of the detailed design phase is the
concept of an Agent (see Fig. 10.7). An Agent may have access to a set of Capabilities, owns a
set of Plans, and plays Roles. Additionally, the Agent may either be participant or initiator
of a Protocol/Interaction, which again refers to ExternalMsg that is like the InternalMsg a
specialization of Message. Interaction Protocols are realized through AUML. Prometheus
does not support the modeling of organizational structures.

Methodology The Prometheus methodology consists of three phases (Padgham and Winikoff;
2002b). The system specification phase is used for specifying goals and scenarios. The
system’s interface to its environment is described in terms of actions, percepts and external
data. Furthermore, functionalities are defined in this phase. The architectural design phase
is used for identifying agent types. The system’s overall structure is captured in a system
overview diagram. Scenarios are developed into interaction protocols. Finally, the detailed
design phase is used for developing the details of each agent’s internals that are defined in
terms of capabilities, data and events.

Tool Support The Prometheus Design Tool (PDT5) (Thangarajah et al.; 2005) offers diagrams for
the high-level analysis of a system, the refinement with interaction diagrams with AUML,

5 http://www.cs.rmit.edu.au/agents/pdt/

266 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Weight Scale

Main Concepts

Agents 3 3
Organizations 1 0.66
Goals 3 2
Plans 1 0.66
Environment 1 0.66
AIP 2 1.33

Methodology

Whole Lifecycle 2 2
Deployment 0 0
Model-driven 0 0
Modeling Language 2 2

Tool Support

Viewpoints 1 1
Validation 1 2
Code Generation 1 2
Generic Modeling Environment 0 0

Semantics
Static Semantics 1 3
Dynamic Semantics 0 0

Interoperability
Executable Implementation 2 2
Platform Support 1 1
Interoperability 0 0

22 23.33

Tab. 10.11: A summary on Prometheus’s characteristics.

and the specification of processes. PDT contains a cross checking tool that detects problems
like inconsistency checking, identification of dangling model elements, type checking, etc.
Moreover, PDT provides code generation for JACK. It seems that PDT was implemented as a
usual Java Swing application. There also exists a plug-in for the Eclipse platform, but the
integration seems to be rather weak.

Formal Semantics As aforementioned, PDT includes tools for verifying and validating the design
made based on the metamodel. These consistency rules include (i) reference to non-existent
entities, (ii) internal design consistency, (iii) errors such as incorrect relationships between
entity types, and (iv) violations of interface declarations (Padgham et al.; 2007b). Similar to
our approach, OCL has been used to specify these consistency rules (see (Dam et al.; 2006)
for details).

Interoperability PDT provides a code generation feature generating skeleton code that can be
imported into the JACK IDE. In (Jayatilleke et al.; 2006), the CAFnE toolkit is presented, which
extends Prometheus in terms of automatically producing an executable implementation.

Table 10.11 summarizes the characteristics of Prometheus. It provides a rich set of concepts to
model MAS and integrates these into the graphical editing framework. The static semantics are
used to validate the models at design time. The code generation is based on MDD and allows
producing JACK code that needs to be manually completed. The overall score of Prometheus is
23.33.

10.3. DSML4MAS and State of the Art 267

10.3 DSML4MAS and State of the Art

In this section, we directly compare DSML4MAS with the modeling techniques presented in the
previous section. The evaluation framework proposed in Section 10.1 gives us again the base for
performing this evaluation.

10.3.1 Evaluation of DSML4MAS

To directly compare DSML4MAS with the state of the art on AOSE design frameworks, we firstly
need to examine how well DSML4MAS supports the main criteria of our evaluation framework, i.e.
main concepts, methodology, tool support, semantics, and interoperability.

Main Concepts DSML4MAS provides a detailed vocabulary to design MASs in an abstract (i.e.
platform-independent) manner. In particular, the modeling of the following core concepts
is supported:

• agents in terms of (i) knowledge (i.e. beliefs) used for reasoning purposes, (ii) plans
used to act in a proactive, reactive, autonomous and social manner, and (iii) capabili-
ties.

• organizations in terms of (i) interactions used to delegated members, and (ii) collabo-
rations to define in which manner domain roles and actors are bound.

• interactions and protocols in terms of how abstract entities (i.e. actors), potentially
representing more the one concrete agent instance, are exchanging messages.

• environments in terms of objects and service located outside and/or inside the MAS.
• plans in terms of complex workflow-like process structures.

In the current version of PIM4AGENTS goals can only be indirectly expressed through the
concept of task. However, the next version of PIM4AGENTS will include a more precise goal
modeling aspect as further viewpoint.

Methodology DSML4MAS covers the whole lifecycle from analysis to deployment and imple-
mentation. Parts of the phases can be semi-automatically produced. In particular, the
model transformation from agent interaction protocols to internal behaviors is part of this
model-driven methodology. Apart from the methodology, DSML4MAS can be used as simple
modeling language.

Tool Support The DSML4MAS Development Environment is based on GMF and integrates the
model transformations as well as the statics semantics of DSML4MAS expressed with OCL.
Mechanisms for testing have not been yet integrated. The static and dynamic semantics of
DSML4MAS is defined using Object-Z, the static semantics have been manually transformed
to OCL.

Interoperability The model transformations from PIM4AGENTS to the metamodels of JACK and
JADE produce nearly executable code. In complex scenarios, the system designer needs to
manually add and refine the generated code. The model transformation between SoaML
and PIM4AGENTS furthers the integration of agents into service-oriented environments and
thus enables interoperability between both paradigms.

Table 10.12 depicts an overview on the basic characteristics of DSML4MAS. The overall score of
DSML4MAS is 35.

268 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Weight Scale

Main Concepts

Agents 3 3
Organizations 3 2
Goals 1 0.66
Plans 3 2
Environment 2 1.33
AIP 3 2

Methodology

Whole Lifecycle 2 2
Deployment 1 1
Model-driven 1 1
Modeling Language 1 2

Tool Support

Viewpoints 1 1
Validation 1 2
Code Generation 1 2
Generic Modeling Environment 1 1

Semantics
Static Semantics 1 3
Dynamic Semantics 1 2

Interoperability
Executable Implementation 3 3
Platform Support 2 2
Interoperability 2 2

33 35

Tab. 10.12: A summary on DSML4MAS’s characteristics.

10.3.2 Comparison with State of the Art

Based on the evaluation in the previous section, we now directly compare DSML4MAS and the
modeling approaches discussed in Section 10.2. The comparison is structured in accordance to
the main criteria of the evaluation framework.

10.3.2.1 Main Concepts

As depicted in Fig. 10.9, with respect to the main agent-based concepts, DSML4MAS scores best,
followed by the modeling language of AML and the methodologies O-MaSE and INGENIAS. The
fewest core concepts are provided by PASSI, AUML, and AORML. The high score of DSML4MAS

mainly results from the fact that agents, organizational structures, plans and interaction protocols
are well supported. Only the support of goals needs to be further improved.

10.3.2.2 Methodology

As depicted in Fig. 10.9, DSML4MAS offers the best methodology support. Apart from the model-
driven support of the whole lifecycle, the option to either apply the DSML4MAS methodology
process or to use it as pure modeling language has certainly advantages over other approach that
exclusively support the one or the other option. The next best approaches are INGENIAS and
Prometheus.

10.3. DSML4MAS and State of the Art 269

Fig. 10.9: Bar chart on the criteria main concept, methodology, and tool support of the different
AOSE approaches.

10.3.2.3 Tool Support

The support of adequate tools differs among the evaluated approaches (cf. Fig. 10.9). Some of
them nearly offer no support at all (e.g. AUML, AORML, Gaia), while others allow the graphical
editing and validation of the design. Together with O-MaSE, DSML4MAS scores best, followed
by INGENIAS, Tropos, and Prometheus. In the case of DSML4MAS, the generic development
environment based on GMF thereby allows to make use of any editing capability of Eclipse and
supports the integration of any add-on (i.e. model transformation, code generation), which is
based on Ecore. In contrast, other approaches use standard GUI development languages like Java,
where any of these editing capabilities needs to be manually implemented.

10.3.2.4 Semantics

Only few AOSE design approaches support the full range of a semantic specification (cf. Fig. 10.10).
Approaches like Tropos, Prometheus, and O-MaSE only provide a static semantics, which is
integrated into the graphical IDE to validate the correctness of the created model at design time.
In contrast, Gaia and DSML4MAS provide a dynamic semantic, which is the base for performing
model checking of the design.

10.3.2.5 Interoperability

The main differences between DSML4MAS and the other agent-based design approaches can be
determined in the area of interoperability (see Fig. 10.10). The reason is that DSML4MAS offers an
executable implementation for two standard AOPLs. The code generation is thereby automatic
with only minor human intervention. Other approaches (e.g. Tropos, Prometheus) only support a

270 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Fig. 10.10: Bar chart on the criteria semantics and interoperability of the different AOSE ap-
proaches.

Fig. 10.11: Bar chart on the overall support of the different AOSE approaches.

single execution platform and the underlying model transformations only produce skeleton code
that needs to be manually completed.

Beside code generation issues, only AORML supports the integration of other, perhaps more
business-oriented, languages into their agent-based framework. The other approaches assume
that the complete design is done with the own language, which is especially not the case in more
business-oriented scenarios.

10.4. Bottom Line 271

10.3.2.6 Overall

Fig. 10.11 presents the overall result when combining the scores of each criteria of our evalua-
tion framework. As DSML4MAS performs best in each single category, it is not astonishing that
DSML4MAS performs also best in the overall evaluation. The DSML4MAS framework achieves
95% of the maximal scores to obtain (i.e. 37). The second best AOSE design approach is Tropos
followed by O-MaSE. The worst performing approaches are ADELFE, AUML and AORML.

10.4 Bottom Line

In this chapter, the DSML4MAS framework is compared with the state of the art on AOSE design
approaches, i.e., pure modeling languages and methodologies. For this purpose, we defined an
evaluation framework focusing on the key areas of main concepts, methodology, tool support,
formal semantics and interoperability. The most well-known agent-based design approaches and
DSML4MAS are then evaluated in accordance to these criteria to have a common foundation for
comparison.

This comparison showed that DSML4MAS performs best in each category of the evaluation
framework. Consequently, DSML4MAS offers the richest set of modeling concepts, a complete
methodology process, the best agent-based tool support, static and dynamic semantics, and a well
explored MDD process to enhance the interoperability between DSML4MAS and other languages.
A second interesting result is that there is no single second best design approach. AML and O-
MaSE, for instance, both provide a rich set of modeling concepts, their methodology support is
however rather limited. In contrast, INGENIAS supports all phases of the development process,
but the support of modeling concepts lacks.

272 10. Comparison with State of the Art in Agent-Oriented Software Engineering

Part V

Conclusion & Further Work

274

11. Conclusion

In recent years, agent-oriented software engineering (AOSE) as a new software engineering disci-
pline has emerged. The overall objective of AOSE is to provide approaches for the development of
open, distributed, robust and intelligent systems. A particular interest is thereby the development
of agent-based modeling frameworks that provide the software engineer with adequate means to
support the development of MASs. This thesis and the presented DSML4MAS language contributes
to the development of agent-based modeling approaches.

Structure of this Chapter In Section 11.1, this final chapter discusses the main contributions of
this dissertation project and points areas for future research in Section 11.2.

11.1 Contributions

This dissertation focused on the development of a platform independent modeling language
for the domain of MASs called DSML4MAS. The motivation for this domain-specific modeling
language came forth from the need of AOSE to:

• specify a unified metamodel to define basic constructs to model agent, organization, inter-
action, behavior, environment and mental concepts

• provide code generators that allow transferring the abstract design into an executable
implementation

• define a formal semantics and concrete syntax
• define a mature methodology
• enhance the interoperability with other software engineering approaches

The approach presented in this dissertation addresses these needs through a platform-
independent modeling language for the domain of MASs. The remainder of this section lists
the main scientific contributions of this thesis.

11.1.1 Core Contributions

Platform-Independent Vocabulary for Designing Multiagent Systems In order to define MASs
in a platform independent manner, the core concepts of MASs were identified to define
agent-based systems in an abstract manner. These concepts were defined through the
so-called platform-independent metamodel for MAS (PIM4AGENTS). The concepts are,
on the one hand, sufficient enough to generate executable code and, on the other hand,
platform-independent as code generators for two platforms exist. To separate concerns,
different viewpoints were indicated, each of them focus on a particular aspect of MASs.
These viewpoints comprises the multiagent system, agent, organization, role, interaction,
behavior, environment, and deployment viewpoint.

276 11. Conclusion

Formal Semantics Apart from the syntax formed through the PIM4AGENTS metamodel, the se-
mantics of DSML4MAS are formalized through the specification language of Object-Z. For
this purpose, for each concepts, the static and dynamic (if applicable) semantics are charac-
terized through invariants. The static semantics have been further manually translated to
OCL, which allow the integration into the graphical development environment. This gives
the application developers the opportunity to test the produced models at design time and
to correct errors if needed before code generators are applied.

Generic Code Generation The code generation within DSML4MAS is achieved through model
transformations in accordance to the principles of MDD. Based on code generation tem-
plates, the designed MAS is transformed to executable code that may optionally be merged
with manually written code. We developed model transformations to the agent-based execu-
tion platforms of JACK and JADE. The implementation of model-to-model transformations
is done using ATL that transfers the PIM4AGENTS models to a model conforming to the
metamodel of JACK (i.e. JackMM) or JADE (i.e. JadeMM). On this models, a model-to-text
transformation is applied based on MOFScript that finally transfers models conforming
to either JackMM or JadeMM to code that can be compiled and executed. The two code
generators allow the application developer to (i) define the MASs on an abstract level by
utilizing the vocabulary provided by PIM4AGENTS and (ii) transform it either to JACK or
JADE depending on the requirements he/she has.

Model-Driven Integration of Service-Oriented Architectures into Multiagent Systems As
MASs do not exist in pure isolation, it is important to provide means for the integration with
existing standard software engineering approaches. In the DSML4MAS architecture, this in-
tegration has been exemplarily realized by linking MASs and service-oriented architectures
(SOAs), which are nowadays one of the favorite approaches to realize distributed software
landscapes. The integration has been done in a model-driven manner by implementing
a model transformation between the service-oriented architecture modeling language
(SoaML) and PIM4AGENTS. SoaML was proposed by the OMG as standard modeling
language for SOAs and is thus a good candidate to establish this model-driven relationship
as industry will more and more base their software systems on this standard. An automatic
transformation to DSML4MAS might further increase the acceptance of MASs in industry.

Integrated Development Environment The DSML4MAS Development Environment is a model-
driven framework for the development of MASs. It bases on the abstract syntax of
DSML4MAS, which is given by PIM4AGENTS. The functionality of DDE encompasses (i)
the platform independent specification of MASs, (ii) model validation, (iii) model trans-
formations and code generation, and (iv) execution of generated source code. The code
generation facilities support the agent execution environments JACK and JADE. The features
of DDE include (i) reduction of complexity by separation into diagrams, (ii) model validation
by integrating the static semantics described by OCL, (iii) reusable components, and (iv)
extensibility.

Model-Driven Methodology This thesis defines a (semi-) automatic model-driven methodology
process including endogenous—on the PIM level—and vertical transformations between
the PIM and PSM levels. The endogenous transformation supports the (semi-) automatic
transfer of agent-based interaction protocols to (i) internal behaviors used by agents to
execute the global interaction descriptions and (ii) MAS and role views. The overall process
has been formalized using the Eclipse Process Framework. This specification guides the

11.1. Contributions 277

MAS developer through the different phases, beginning with the analysis phase, to the archi-
tectural specification and detailed design phase up to the deployment and implementation
phase on the PSM level. Apart from the model-driven methodology process, experienced
users may apply DSML4MAS as pure modeling language, without using the endogenous
transformation.

Theoretical Evaluation In order to evaluate DSML4MAS from a scientific perspective, a compre-
hensive evaluation framework has been proposed. Ten of the most known agent design
approaches and frameworks have been presented and evaluated in accordance to the pro-
posed evaluation framework. The comparison between them and DSML4MAS demonstrates
that DSML4MAS offers a rich set of modeling concepts, as well as, a formal semantics. Fur-
thermore, tool support is provided that integrates validation facilities and code generators.
A model-driven methodology process, as well as, the integration with standard software ap-
proaches like SOAs is given. Compared to other agent-based design approaches, DSML4MAS

scores best in accordance to our evaluation framework.

Practical Evaluation DSML4MAS has firstly been evaluated in a number of European (e.g.
SHAPE1, Coin2) and national (e.g. MODEST3) projects. Secondly, a list of examples like the
conference management system have been defined to evaluate the usefulness of DSML4MAS.
Finally, DSML4MAS has been applied to two industrial use cases to evaluate its practicability
under real-word conditions in industrial settings.

Standardization Activities around DSML4MAS An important means of disseminating the ideas
of DSML4MAS in the AOSE community was the participation in international standardiza-
tions activities. Our active involvement in the standardization activities around the OMG’s
open source projects Service-oriented architecture Modeling Language (SoaML) and Agent
Metamodel and Profile (AMP) allows us to (i) bring the DSML4MAS ideas into standardized
approaches for SOA and MASs and (ii) gather valuable feedback that was taken into account
when iteratively improving DSML4MAS and its features.

Integration of Semantic Web services to express the dynamics of the system How to express
the dynamics of the MAS at design time is still considered as open issue. For DSML4MAS,
two mechanisms are provided to solve this issue. Firstly, tasks in a plan are defined that allow
to specify the dynamic binding of agent instance to domain roles, where the actual binding
is done on the PSM level. Secondly, by integrating Semantic Web services and match making
facilities, we enable the search for feasible services at run-time in accordance to certain
pre- and post-conditions specified at design time. This allows the dynamic model-driven
integration of services. For details on the integration of Semantic Web services, we refer to
(Hahn et al.; 2008a,b).

11.1.2 Core Characteristics of DSML4MAS

Several requirements are necessary to make a DSL successful in terms of usage for the particu-
lar domain. Basically, the requirements and principles for DSLs do not differ to requirements
for designing general purpose languages (Deursen and Klint; 1997) or programming languages
(Hoare; 1973), however, the weighting might be different. In the following, we review the basic

1 http://www.shape-project.eu/
2 http://www.coin-ip.eu/
3 http://www-ags.dfki.uni-sb.de/ klusch/modest/index.html

278 11. Conclusion

requirements of DSLs proposed by Kolovos et al. in (Kolovos et al.; 2006) and related them to
DSML4MAS.

Conformity The language constructs of any DSL must correspond to important domain concepts.
The abstract syntax of DSML4MAS is defined through a metamodel called PIM4AGENTS that
provides abstract agent-based constructs that correspond to the core building blocks of MAS
(cf. Section 2.1.1). This allows modeling MASs in a comfortable manner, also for non experts
on agent theory.

Orthogonality Each construct in DSML4MAS is used to represent exactly one distinct concept in
the domain. The notation (i.e. concrete syntax), moreover, is defined in an unambiguous
manner.

Supportability DDE provides tool support for typical model and program management, e.g.,
creating, deleting, editing, debugging, transforming. This is enabled through basing DDE on
GMF, which naturally supports the domain expert with model management facilities like
editing and deleting. Furthermore, as part of the IDE, model transformations to agent-based
execution platforms are given.

Integrability The DSML4MAS language, in our case, can be used in the concert with other ap-
proaches and corresponding languages for software engineering. Semantic Web services
and SOAs are two examples that are integrated into DSML4MAS in a model-driven manner,
which makes the whole language applicable in other domains.

Longevity Any DSL should be used and useful for a non-trivial period of time in order to ensure
tool support, and to make it possible to quantify to the DSL stakeholders the payoff obtained
from using the DSL. There is, of course, an assumption with this requirement (and with
the use of DSLs in general) that the domain under consideration persists for a sufficiently
lengthy period of time to justify the cost of building a DSL and supporting tools. DSML4MAS

provides constructs for the domain of MASs, which has grown over years and is thus a very
stable area. If needed, DSML4MAS can easily be extended to support new concepts and
views. This could easily be achieved by extending the PIM4AGENTS metamodel and its
transformations to the supported execution environments.

Simplicity A language should, in general, be as simple as possible in order to express the concepts
of interest and to support its users and stakeholders in their preferred ways of working.
Through basing the development environment of DSML4MAS on Eclipse, which is one of the
most used IDEs for developing software, most potential users and stakeholders need less
time to get in touch with DSML4MAS and to use it in an efficient manner. This also allows
non agent-specialists to use DSML4MAS in an intuitive manner. The static semantics allow
then to validate the design made.

Scalability A language should provide constructs to help managing large-scale descriptions. This
is of particular importance when building complex potentially distributed architectures.
DSML4MAS and its constructs and the provided IDE support scalability. On the language side,
this is mainly achieved through various abstraction levels, like the agent-based design and
deployment. On the IDE side, features like zoom-in or zoom-out and the various diagrams
that allow building the MAS from different viewpoints provide adequate mechanisms to
build complex MASs.

11.2. Open Issues & Future Work 279

Quality Any language in accordance to LDD shall provide general mechanisms for building quality
systems. This may include (but is not limited to) language constructs for improving reliability
(e.g., pre- and postconditions), security, safety, etc. The formally specified semantics support
the stakeholders and users building qualitative software as the software’s characteristics
could easily be validated and checked to ensure that the generated design behaves in
accordance to the requirements specified on more abstract levels.

11.2 Open Issues & Future Work

In future work, we would naturally like to extend DSML4MAS with respect to the following list of
open issues.

Goal Modeling To achieve full pro-active behavior, the agents need to have goals that they can
pursuit. In the current version of PIM4AGENTS, goals are represented implicitly inside the
agent’s plan. In order to provide full support, a new viewpoint has to be introduced, which
allows both the abstract and concrete goal modeling. However, this viewpoint should be
considered as optional, as not all of the supported agent-based platforms provide mecha-
nisms to deliberate on goals. In (Madrigal-Mora et al.; 2008), an extension of PIM4AGENTS

has been presented that allows goal modeling in DDE.

Norm Modeling Norms and institutions are considered as an important mechanism of the envi-
ronment to regulate the overall behavior of the MASs. Previous research (e.g. (Hahn et al.;
2007a, 2006a, 2005)) in the Socionics initiative funded by the Deutsche Forschungsgemein-
schaft lay the foundations for future research on how to bring norms and institutions into
PIM4AGENTS. This enables restricting the run-time behavior of the autonomous entities in
DSML4MAS at design time.

Model-Driven Model Checking The formal semantics of DSML4MAS in principle allows a model-
checking on the PIM level. However, it would be very interesting to investigate a model-
driven approach to transfer the created PIM4AGENTS models, as well as, the formal semantics
to, for instance, timed automata. This would enable the model checking on the design in
order to detect dead locks, etc.

Architecture-Driven Modernization To realize round-trip engineering, a future version of
DSML4MAS will implement reverse engineering mechanisms in accordance to the
Architecture-Driven Modernization (ADM) initiative (Newcomb; 2005). In particular, model
transformations will be developed that transfer models on the PSM level including the
agent-based execution platforms of JACK and JADE to PIM4AGENTS. These transformations
offer developers a full round-trip engineering approach from DSML4MAS to JACK and JADE
to DSML4MAS.

280 11. Conclusion

Bibliography

Abrial, J.-R. (1996). The B-book: assigning programs to meanings, Cambridge University Press, New
York, NY, USA.

Agostini, A. (2003). Cooperation = coordination + solvability, Technical report, ITC-IRST Trento.

Albayrak, S. and Wieczcorek, D. (1999). JIAC - a toolkit for telecommunication applications,
Proceedings of the Third International Workshop on Intelligent Agents for Telecommunication
Applications (IATA ’99), Springer Verlag, London, pp. 1–18.

Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2003). Web Services: Concepts, Architectures and
Applications, Springer Verlag, Berlin et al.

Amor, M., Fuentes, L. and Vallecillo, A. (2004). Bridging the gap between agent-oriented design
and implementation using MDA, in J. Odell, P. Giorgini and J. P. Müller (eds), Agent-Oriented
Software Engineering (AOSE-2004), Vol. 3382 of Lecture Notes in Computer Science, Springer
Verlag, Berlin et al., pp. 93–108.

Anastasakis, K., Bordbar, B., Georg, G. and Ray, I. (2007). UML2Alloy: A challenging model trans-
formation, in G. Engels, B. Opdyke, D. C. Schmidt and F. Weil (eds), Model Driven Engineering
Languages and Systems, 10th International Conference, MoDELS 2007, Nashville, USA, Proceed-
ings, Vol. 4735 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 436–450.

Ashbacher, C. (2008). IBM rational unified process reference and certification guide solution
designer, Journal of Object Technology 7(6): 53–54.

Bachem, A., Hochstättler, W. and Malich, M. (1992). Simulated trading: A new approach for solving
vehicle routing problems, Technical Report 92.125, Mathematisches Institut der Universität zu
Köln.

Bachem, A., Hochstättler, W. and Malich, M. (1993). The simulated trading heuristic for solving
vehicle routing problems, Technical Report 93.139, Mathematisches Institut der Universität zu
Köln.

Barros, A., Dumas, M. and Oaks, P. (2005a). A critical overview of the web services choreography
description language (WS-CDL), BPTrends Newsletter 3.

Barros, A. P., Dumas, M. and ter Hofstede, A. H. M. (2005b). Service interaction patterns, in W. M. P.
van der Aalst, B. Benatallah, F. Casati and F. Curbera (eds), Proceedings of the 3rd International
Conference on Business Process Management, 5-8 September 2005, Nancy, France, Vol. 3649,
Springer Verlag, New York, pp. 302–318.

Bauer, B. and Odell, J. (2002). UML 2.0 and agents: How to build agent-based systems with the
new UML standard, Journal of Engineering Applications of Artificial Intelligence 18(2): 141–157.

282 BIBLIOGRAPHY

Bauer, B. and Stiener, D. (1998). MECCA-System Reference Model, Siemens, Munich.

Bauer, B., Müller, J. P. and Odell, J. (2001). Agent UML: A formalism for specifying multiagent
software systems, in P. Ciancarini and M. Wooldridge (eds), Agent-Oriented Software Engineering,
First International Workshop, AOSE 2000, Limerick, Ireland, June 10, 2000, Revised Papers, Vol.
1957 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 91–103.

Bell, M. (2008). Service-Oriented Modeling: Service Analysis, Design, and Architecture, Wiley
Publishing.

Bellifemine, F. and Rimassa, G. (2001). Developing multi-agent systems with a FIPA-compliant
agent framework, Software Practical Experience 31(2): 103–128.

Ben-Ari, M. (2008). Principles of the Spin Model Checker, Springer Verlag, Berlin et al.

Benguria, G., Larrucea, X., Elvesæter, B., Neple, T., Beardsmore, A. and Friess, M. (2007). A platform
independent model for service oriented architectures, in G. Doumeingts, J. Müller, G. Morel and
B. Vallespir (eds), Enterprise Interoperability New Challenges and Approaches, Springer Verlag,
London, pp. 23–32.

Bennett, K., Gold, N., Munro, M., Xu, J., Layzell, P., Nehandjiev, N., Budgen, D. and Brereton, P.
(2002). Prototype implementations of an architectural model for service-based flexible software,
Proceedings of the 35th Hawaii International Conference on System Sciences (HICSS-35), 7-10
January 2002, IEEE Computer Society, Washington, DC, USA, p. 76.2.

Bentley, J. L. (1984). Programming perls, Communications of the ACM 27(1): 12–13.

Bernardi, S., Donatelli, S. and Merseguer, J. (2002). From UML sequence diagrams and statecharts
to analysable petri net models, Proceedings of the 3rd international Workshop on Software and
Performance (WOSP ’02), ACM Press, New York, NY, USA, pp. 35–45.

Bernon, C., Camps, V., Gleizes, M.-P. and Picard, G. (2005a). Engineering adaptive multi-agent sys-
tems: The ADELFE methodology, in B. Henderson-Sellers and P. Giorgini (eds), Agent-Oriented
Methodologies, Idea Group Pub, NY, USA, pp. 172–202.

Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P. and Zambonelli, F. (2005b). A study of some
multi-agent meta-models, in J. Odell, P. Giorgini and J. Müller (eds), Proceedings of the 5th
International Workshop on Agent-Oriented Software Engineering (AOSE 2004), number 3382 in
Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 62–77.

Bernon, C., Gleizes, M. P., Peyruqueou, S. and Picard, G. (2003). ADELFE: A methodology for
adaptive multi-agent systems engineering, Engineering Societies in the Agents World III (ESAW
2002), Vol. 2257 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 156–169.

Berre, A. J. (2008). UPMS - UML profile and metamodel for services - an emerging standard, Pro-
ceedings of the 2008 12th International IEEE Enterprise Distributed Object Computing Conference
(EDOC ’08), IEEE Computer Society, Washington, DC, USA, p. xxx.

Bertolini, D., Delpero, L., Mylopoulos, J., Novikau, A., Orler, A., Penserini, L., Perini, A., Susi, A.
and Tomasi, B. (2006). A Tropos model-driven development environment, in N. Boudjlida,
D. Cheng and N. Guelfi (eds), Proceedings of the 18th Conference on Advanced Information
Systems Engineering (CAiSE ’06), Forum Proceedings, Theme: Trusted Information Systems,
Luxembourg, June 5-9, 2006, Vol. 231 of CEUR Workshop Proceedings, CEUR-WS.org.

BIBLIOGRAPHY 283

Beydoun, G., Gonzalez-Perez, C., Low, G. and Henderson-Sellers, B. (2005). Synthesis of a generic
MAS metamodel, Proceedings of the fourth international Workshop on Software Engineering for
large-scale Multi-agent Systems (SELMAS ’05), ACM Press, New York, NY, USA, pp. 1–5.

Bézivin, J. and Gerbé, O. (2001). Towards a precise definition of the OMG/MDA framework,
Proceedings of the 16th IEEE International Conference on Automated Software Engineering (ASE
’01), IEEE Computer Society, Washington, DC, USA, p. 273.

Blake, M. B. and Gomaa, H. (2005). Agent-oriented compositional approaches to services-based
cross-organizational workflow, Decision Support System 40(1): 31–50.

Blanke, K., Krafzig, D. and Slama, D. (2004). Enterprise SOA: Service Oriented Architecture Best
Practices, Prentice Hall, Upper Saddle River, NJ, USA.

Blum, B. I. (1994). A taxonomy of software development methods, Communications of the ACM
37(11): 82–94.

Boehm, B. (1986). A spiral model of software development and enhancement, SIGSOFT Software
Engineering Notes 11(4): 14–24.

Bond, A. H. and Gasser, L. (1988). Readings in Distributed Artificial Intelligence, Morgan Kaufmann,
San Mateo, CA, USA.

Booch, G. (1995). Object solutions: managing the object-oriented project, Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA.

Booth, D., Haas, H., Mccabe, F., Newcomer, E., Champion, M., Ferris, C. and Orchard, D. (2004).
Web Services Architecture, Technical report, World Wide Web Consortium.

Bordini, R., Braubach, L., Dastani, M., Seghrouchni, A. E. F., Gomez-Sanz, J., Leite, J., O’Hare,
G., Pokahr, A. and Ricci, A. (2006). A survey of programming languages and platforms for
multi-agent systems, Informatica 30: 33–44.

Bordini, R. H., Dastani, M. and Winikoff, M. (2007a). Current issues in multi-agent systems
development (invited paper), in G. M. P. O’Hare, A. Ricci, M. J. O’Grady and O. Dikenelli (eds),
Engineering Societies in the Agents World VII, 7th International Workshop, ESAW 2006 Dublin,
Ireland, September 6-8, 2006 Revised Selected and Invited Papers, Vol. 4457 of Lecture Notes in
Artificial Intelligence, Springer Verlag, Berlin et al., pp. 38–61.

Bordini, R. H., Dastani, M., Dix, J. and Seghrouchni, A. E. F. (2009). Multi-Agent Programming:
Languages, Tools and Applications, Springer Verlag, Berlin et al.

Bordini, R. H., Wooldridge, M. and Hübner, J. F. (2007b). Programming Multi-Agent Systems in
AgentSpeak using Jason, John Wiley & Sons, Inc.

Boydens, J. and Steegmans, E. (2004). Model Driven Architecture: The next abstraction level in
programming, in L. De Backer (ed.), Proceedings of the First European Conference on the Use of
Modern Information and Communication Technologies, pp. 97–104.

Brandão, A., Alencar, P. S. C. and de Lucena, C. J. P. (2004). AgentZ: Extending Object-Z for
multi-agent systems specification, in P. Bresciani, P. Giorgini, B. Henderson-Sellers, G. Low
and M. Winikoff (eds), Agent-Oriented Information Systems II, 6th International Bi-Conference
Workshop, AOIS 2004, Riga, Latvia, June 8, 2004 and New York, NY, USA, July 20, 2004, Revised
Selected Papers, Vol. 3508 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al.,
pp. 125–139.

284 BIBLIOGRAPHY

Bratman, M. E. (1987). Intentions, Plans, and Practical Reason, Harvard University Press, Cam-
bridge, MA.

Braubach, L. and Pokahr, A. (2007). Goal-oriented interaction protocols, in P. Petta, J. P. Müller,
M. Klusch and M. P. Georgeff (eds), Proceedings of the Fifth German Conference on Multi-Agent
System TEchnologieS (MATES-2007), Vol. 4687 of Lecture Notes in Computer Science, Springer
Verlag, Berlin and Heidelberg, pp. 85–97.

Braubach, L., Pokahr, A. and Lamersdorf, W. (2004). Jadex: A short overview, Main Conference
Net.ObjectDays 2004, pp. 195–207.

Braubach, L., Pokahr, A. and Lamersdorf, W. (2005). Jadex: A BDI-agent system combining
middleware and reasoning, in M. Calisti, M. Walliser, S. Brantschen, M. Herbstritt, R. Unland,
M. Calisti and M. Klusch (eds), Software Agent-Based Applications, Platforms and Development
Kits, Whitestein Series in Software Agent Technologies and Autonomic Computing, Birkhäuser
Basel, pp. 143–168. Book chapter.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. and Mylopoulos, J. (2004). Tropos: An Agent-
Oriented Software Development Methodology, International Journal on Autonomous Agents
and Multiagent Systems (JAAMAS) 8(3): 203–236.

Brooks, R. (1991). Intelligence without reason, Proceedings of the 12th International Joint Con-
ference on Artifical Intelligence, ICAI-91, Morgan Kaufmann Publishers, San Mateo, CA, USA,
pp. 569–595.

Brooks, R. A. (1986). A robust layered control system for a mobile robot, IEEE Journal Of Robotics
And Automation RA-2: 14–23.

Brooks, R. A. (1990). The behavior language: User’s guide, Technical Report AIM-1227, MIT Artificial
Intelligence Laboratory.

Brown, A. W. (2004). Model driven architecture: Principles and practice, Software and System
Modeling 3(4): 314–327.

Cabac, L. and Moldt, D. (2004). Formal semantics for AUML agent interaction protocol diagrams, in
J. Odell, P. Giorgini and J. P. Müller (eds), Agent-Oriented Software Engineering V, 5th International
Workshop, AOSE 2004, New York, NY, USA, July 19, 2004, Revised Selected Papers, Vol. 3382 of
Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 47–61.

Cabri, G., Leonardi, L. and Puviani, M. (2007). Service-oriented agent methodologies, Proceedings
of the 16th IEEE International Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE ’07), IEEE Computer Society, Washington, DC, USA, pp. 24–29.

Caire, G., Coulier, W., Garijo, F. J., Gomez, J., Pavón, J., Leal, F., Chainho, P., Kearney, P. E., Stark,
J., Evans, R. and Massonet, P. (2002). Agent oriented analysis using Message/UML, Revised
Papers and Invited Contributions from the Second International Workshop on Agent-Oriented
Software Engineering II (AOSE ’01), Vol. 2222 of Lecture Notes in Computer Science, Springer
Verlag, London, UK, pp. 119–135.

Casati, F. and Shan, M. (2001). Dynamic and adaptive composition of e-services, Information
Systems 26: 143–163.

BIBLIOGRAPHY 285

Castelfranchi, C. (1995). Guarantees for autonomy in cognitive agent architecture, in
M. Wooldridge and N. Jennings (eds), Working Notes of the IJCAI-95 Workshop on Agent Theories,
Architectures, and Languages, Vol. 890 of Lecture Nodes in Artificial Intelligence, Springer Verlag,
Berlin, Heidelberg, New York, pp. 56–70.

Cernuzzi, L. and Zambonelli, F. (2004). Experiencing AUML in the GAIA methodology, Proceedings
of the 6th International Conference on Enterprise Information Systems, Porto, Portugal, April
14-17, 2004, pp. 283–288.

Cernuzzi, L. and Zambonelli, F. (2008). Profile based comparative analysis for AOSE methodologies
evaluation, Proceedings of the 2008 ACM symposium on Applied computing (SAC ’08), ACM Press,
New York, NY, USA, pp. 60–65.

Cervenka, R. and Trencansky, I. (2004). Agent modeling language specification, version 0.9,
Technical report, Whitestein Technologies AG.

Cervenka, R., Greenwood, D. and Trencansky, I. (2006). The AML approach to modeling autonomic
systems, Proceedings of the International Conference on Autonomic and Autonomous Systems
(ICAS ’06), IEEE Computer Society, Washington, DC, USA, p. 29.

Cervenka, R., Trencanský, I., Calisti, M. and Greenwood, D. A. P. (2004). AML: Agent modeling
language toward industry-grade agent-based modeling, in J. Odell, P. Giorgini and J. P. Müller
(eds), Agent-Oriented Software Engineering V, 5th International Workshop, AOSE 2004, New York,
NY, USA, July 19, 2004. Revised Selected Papers, Vol. 3382 of Lecture Notes in Computer Science
3382, Springer Verlag, Berlin et al., pp. 31–46.

Chapman, D. (1987). Planning for conjunctive goals, Artificial Intelligence 32(3): 333–337.

Chella, A., Cossentino, M. and Sabatucci, L. (2004a). Tools and patterns in designing multi-agent
systems with PASSI, 3(1): 352–358.

Chella, A., Cossentino, M., Sabatucci, L. and Seidita, V. (2004b). From PASSI to Agile PASSI:
Tailoring a design process to meet new needs, IAT ’04: Proceedings of the Intelligent Agent
Technology, IEEE/WIC/ACM International Conference, IEEE Computer Society, Washington, DC,
USA, pp. 471–474.

Chen, Y. and Miao, H. (2004). From an abstract Object-Z specification to UML diagram, Journal of
Information & Computational Science 1(2): 319–324.

Cheong, C. and Winikoff, M. (2005a). Hermes: A methodology for goal oriented agent interactions.,
International Conference on Autonomous Agents and Mulitagent Systems (AAMAS-05), ACM
Press, New York, NY, USA, pp. 1121–1122.

Cheong, C. and Winikoff, M. (2005b). Hermes: Implementing goal-oriented agent interactions, in
R. H. Bordini, M. Dastani, J. Dix and A. E. Fallah-Seghrouchni (eds), Programming Multi-Agent
Systems, Third International Workshop, ProMAS 2005, Utrecht, The Netherlands, July 26, 2005,
Revised and Invited Papers, Vol. 3862 of Lecture Notes in Computer Science, Springer Verlag,
Berlin et al., pp. 168–183.

Ciancarini, P. and Wooldridge, M. J. (eds) (2001). Agent-Oriented Software Engineering. First
International Workshop, AOSE-2000, Limerick, Ireland, June 10, 2000, Vol. 1957 of Lecture Notes
in Computer Science, Springer Verlag, Berlin et al.

286 BIBLIOGRAPHY

Clark, T., Evans, A., Sammut, P. and Willans, J. (2004a). An eXecutable metamodelling facility for
domain specific language design, Proceedings of he 4th OOPSLA Workshop on Domain-Specific
Modeling.

Clark, T., Evans, A., Smmut, P. and Willans, J. (2004b). Applied Metamodelling: A Foundation for
Language Driven Development, Xactium.

Cohen, P. R. and Levesque, H. J. (1979). Elements of a plan based theory of speech acts, Cognitive
Science 3: 177–212.

Collier, R. W., O’Hare, G. M. P. and Rooney, C. (2004). A uml-based software engineering method-
ology for agent factory, in F. Maurer and G. Ruhe (eds), Proceedings of the Sixteenth Interna-
tional Conference on Software Engineering & Knowledge Engineering (SEKE’2004), Banff, Alberta,
Canada, June 20-24, 2004, pp. 25–30.

Cook, S. (2004). Domain-specific modeling and model-driven architecture, The MDA Journal:
Model Driven Architecture Straight from the Masters, Chap. 3, Electronic journal available at
http://www.bptrends.com/.

Cook, S., Jones, G., Kent, S. and Wills, A. C. (2007). Domain-Specific Development with Visual
Studio DSL Tools, Addison-Wesley Professional; 1 edition.

Cossentino, M. (2005). From requirements to code with the PASSI methodology, in B. Henderson-
Sellers and P. Giorgini (eds), Agent-Oriented Methodologies, Idea Group Inc., Hershey, PA, USA.

Cossentino, M. and Potts, C. (2002). A case tool supported methodology for the design of multi-
agent systems, Proceedings of the International Conference on Software Engineering Research
and Practice (SERP).

Cossentino, M., Gaud, N., Galland, S., Hilaire, V. and Koukam, A. (2007). A holonic metamodel
for agent-oriented analysis and design, Proceedings of the 3rd International Conference on
Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS ’07), Springer Verlag,
Berlin, Heidelberg, pp. 237–246.

Cossentino, M., Gaud, N., Hilaire, V., Galland, S. and Koukam, A. (2009). ASPECS: an agent-oriented
software process for engineering complex systems, International Journal on Autonomous Agents
and Multiagent Systems (JAAMAS) 20(2): 260–302.

Cranefiled, S., Purvis, M., Nowostawski, M. and Hwang, P. (2002). Ontologies for interaction
protocols, Proceedings of the Workshop on Ontologies in Agent Systems, 1st International Joint
Conference on Autonomous Agents and Multi-Agent Systems, Bologna, Italy.

Cuesta, P., Gómez, A., González, J. and Rodríguez, F. A. (2003). Framework for evaluation of agent
oriented methodologies, Actas del Taller de Agentes Inteligentes en el tercer milenio (CAEPIA’2003),
San Sebastián (Spain), November 2003.

Czarnecki, K. and Helsen, S. (2003). Classification of model transformation approaches, in J. Bettin,
G. van Emde Boas, A. Agrawal, E. Willink and J. Bezivin (eds), Proceedings of the OOPSLA’03
Workshop on Generative Techniques in the Context of Model-Driven Architecture.

Czarnecki, K. and Helsen, S. (2006). Feature-based survey of model transformation approaches,
IBM Systems Journal 45(3): 621–645.

BIBLIOGRAPHY 287

da Silva, V. T., Choren, R. and de Lucena, C. J. P. (2004). A UML based approach for modeling and
implementing multi-agent systems, Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’04), IEEE Computer Society, Washington,
DC, USA, pp. 914–921.

Dalpiaz, F., Molesini, A., Puviani, M. and Seidita, V. (2008). Towards filling the gap between AOSE
methodologies and infrastructures: requirements and meta-model, Proceedings of WOA08,
Evolution of Agent Development: Methodologies, Tools, Platforms and Languages. WOA - Nona
Edizione. Palermo, Italy. 17-18 September, pp. 115–121.

Dam, K. H. and Winikoff, M. (2004). Comparing agent-oriented methodologies, Proceedings
of 5th International Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS),
Melbourne, Australia, 2003, Vol. 3030 of Lecture Notes in Computer Science, Springer Verlag,
Berlin et al., pp. 78–93.

Dam, K. H., Winikoff, M. and Padgham, L. (2006). An agent-oriented approach to change propaga-
tion in software evolution, Proceedings of the 17th Australian Software Engineering Conference
(ASWEC 2006), 18-21 April 2006, Sydney, Australia, IEEE Computer Society, Washington, DC,
USA, pp. 309–318.

Danc̆, J. (2008). Formal specification of AML, Master’s thesis, Department of Computer Science
Faculty of Mathematics, Physics and Informatics, Comenius University.

Dastani, M., de Boer, F. S., Dignum, F. and Meyer, J.-J. C. (2003). Programming agent delibera-
tion: an approach illustrated using the 3APL language, Proceeding of the Second International
Joint Conference on Autonomous Agents & Multiagent Systems, AAMAS 2003, July 14-18, 2003,
Melbourne, Victoria, Australia, ACM Press, New York, NY, USA, pp. 97–104.

Davidsson, P. (2001). Categories of artificial societies, Engineering Societies in the Agents World II,
Vol. 2203 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 1–9.

Davis, J. (2003). GME: the generic modeling environment, Companion of the 18th annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA ’03), ACM Press, New York, NY, USA, pp. 82–83.

de Cerqueira Gatti, M. A., von Staa, A. and de Lucena, C. J. P. (2007). AUML-BP: A basic agent
oriented software development process model using AUML, Technical Report 21/07, Laboratório
de Engenharia de Software–LES.

Decker, G. and Puhlmann, F. (2007). Extending BPMN for modeling complex choreographies, in
R. Meersman and Z. Tari (eds), On the Move to Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA, and IS, OTM Confederated International Conferences CoopIS, DOA, ODBASE,
GADA, and IS 2007, Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part I, Vol. 4803 of
Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 24–40.

Decker, G., Kopp, O., Leymann, F. and Weske, M. (2007). BPEL4Chor: extending BPEL for modeling
choreographies, Proceedings of the International Conference on Web Services (ICWS 2007), IEEE
Computer Society, Washington, DC, USA, pp. 296–303.

Decreus, K. and Poels, G. (2009). Mapping semantically enriched formal Tropos to business process
models, Proceedings of the 2009 ACM symposium on Applied Computing (SAC ’09), ACM Press,
New York, NY, USA, pp. 371–376.

288 BIBLIOGRAPHY

del Mar Gallardo, M. and Merino, P. (1999). A framework for automatic construction of abstract
Promela models, in D. Dams, R. Gerth, S. Leue and M. Massink (eds), Proceedings of Theoretical
and Practical Aspects of SPIN Model Checking, 5th and 6th International SPIN Workshops, Trento,
Italy, July 5, 1999, Toulouse, France, September 21 and 24 1999, Vol. 1680 of Lecture Notes in
Computer Science, Springer Verlag, Berlin et al., pp. 184–199.

DeLoach, S. A. (2001). Analysis and design using MaSE and agentTool, Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS).

DeLoach, S. A. (2005). Multiagent systems engineering of organization-based multiagent systems,
SIGSOFT Software Engineering Notes 30(4): 1–7.

DeLoach, S. A. (2007). Developing a multiagent conference management system using the O-
MaSE process framework, in M. Luck and L. Padgham (eds), Proceedings of the 8th International
Workshop on Agent-Oriented Software Engineering VIII, AOSE 2007, Honolulu, HI, USA, May 14,
2007, Revised Selected Papers, Vol. 4951 of Lecture Notes in Computer Science, Springer Verlag,
Berlin et al., pp. 168–181.

DeLoach, S. A. and Valenzuela, J. L. (2006). An agent-environment interaction model, in
L. Padgham and F. Zambonelli (eds), Agent-Oriented Software Engineering VII, 7th Interna-
tional Workshop, AOSE 2006, Hakodate, Japan, May 8, 2006, Revised and Invited Papers, Vol.
4405 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 1–18.

DeLoach, S. A., Padgham, L., Perini, A., Susi, A. and Thangarajah, J. (2009). Using three AOSE toolk-
its to develop a sample design, International Journal on Agent-Oriented Software Engineering
(IJAOSE) 3(4): 416–476.

DeLoach, S. A., Wood, M. F. and Sparkman, C. H. (2001). Multiagent systems engineering, The
International Journal of Software Engineering and Knowledge Engineering 11(3): 231–258.

Demuth, B. (2004). The Dresden OCL toolkit and its role in information systems development, 13th
International Conference on Information Systems Development: Methods and Tools, Theory and
Practice Conference, Advances in Theory, Practice and Education (ISD’2004), Vilnius, Lithuania,
9-11 September.

Demuth, B., Hussmann, H. and Konermann, A. (2005). Generation of an OCL 2.0 parser, in
T. Baar (ed.), Proceedings of the MoDELS’05 Conference Workshop on Tool Support for OCL and
Related Formalisms - Needs and Trends, Montego Bay, Jamaica, October 4, 2005, Technical Report
LGL-REPORT-2005-001, EPFL, pp. 38–52.

Deursen, A. V. and Klint, P. (1997). Little languages: Little maintenance?, Journal of Software
Maintenance 10: 10–75.

Dickinson, I. and Wooldridge, M. (2003). Towards practical reasoning agents for the Semantic Web,
Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS ’03), ACM Press, New York, NY, USA, pp. 827–834.

Dickinson, I. and Wooldridge, M. (2005). Agents are not (just) Web services: Considering BDI
agents and Web services, Proceedings of the Workshop on Service-Oriented Computing and
Agent-Based Engineering (SOCABE ’2005), Utrecht, The Netherlands, July 2005.

BIBLIOGRAPHY 289

Dignum, V. and Dignum, F. (2007). Coordinating tasks in agent organizations, Coordination, Orga-
nizations, Institutions, and Norms in Agent Systems II: AAMAS 2006 and ECAI 2006 International
Workshops, COIN 2006 Hakodate, Japan, May 9, 2006 Riva del Garda, Italy, August 28, 2006.
Revised Selected Papers, Vol. 4386/2007 of Lecture Notes in Artificial Intelligence, Springer Verlag,
Berlin, Heidelberg, pp. 32–47.

Dinkloh, M. and Nimis, J. (2003). A tool for integrated design and implementation of conversations
in multiagent systems, in M. Dastani, J. Dix and A. E. Fallah-Seghrouchni (eds), Programming
Multi-Agent Systems, First International Workshop, PROMAS 2003, Melbourne, Australia, July
15, 2003, Selected Revised and Invited Papers, Vol. 3067 of Lecture Notes in Computer Science,
Springer Verlag, Berlin et al., pp. 187–200.

d’Inverno, M. and Luck, M. (2001a). Formal agent development: Framework to system, Formal
Approaches to Agent-Based Systems: First International Workshop, FAABS 2000 pp. 133–147.

d’Inverno, M. and Luck, M. (2001b). Understanding agent systems, Springer Verlag, New York.

d’Inverno, M., Luck, M., Georgeff, M., Kinny, D. and Wooldridge, M. (2004). The dMARS architec-
ture: A specification of the distributed multi-agent reasoning system, International Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS) 9(1-2): 5–53.

Doi, T., Tahara, Y. and Honiden, S. (2005). IOM/T: an interaction description language for multi-
agent systems, Proceedings of the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS ’05), ACM Press, New York, NY, USA, pp. 778–785.

Doyle, D., Geers, H., Graaf, B. and van Deursen, A. (2007). Migrating a domain-specific modeling
infrastructure to MDA technology, in J.-M. Favre, D. GaŽevic, R. Lämmel and A. Winter (eds), Pro-
ceedings of the 3rd International Workshop on Metamodels, Schemas, Grammars and Ontologies,
Vol. 4364 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 52–55.

D’Souza, D. (2001). Model-driven architecture and integration - opportunities and challenges,
Version 1.1, Kineticum.

Durfee, E. H. (1999). Distributed problem solving and planning, in G. Weiss (ed.), Multiagent
Systems: A Modern Approach to Distributed Artificial Intelligence, MIT Press, Cambridge, MA,
USA, pp. 121–164.

Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T., Prange, U., Taentzer, G., Varró, D.
and Gyapay, S. V. (2005). Model transformation by graph transformation: A comparative study,
Proceedings of the International Workshop on Model Transformations in Practice (MTiP ’05) at
MoDELS Conference, Montego Bay, Jamaica.

Ehrler, L. and Cranefield, S. (2004). Executing Agent UML diagrams, Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 04),
Vol. 2, IEEE Computer Society, Washington, DC, USA, pp. 906–913.

Eijk, P. V. and Diaz, M. (eds) (1989). Formal Description Technique Lotos: Results of the Esprit Sedos
Project, Elsevier Science Inc., New York, NY, USA.

Eker, S., Meseguer, J. and Sridharanarayanan, A. (2002). The Maude LTL model checker, in
F. Gadducci and U. Montanari (eds), Fourth Workshop on Rewriting Logic and its Applications,
WRLA ’02, Vol. 71 of Electronic Notes in Theoretical Computer Science, Elsevier, p. 27.

290 BIBLIOGRAPHY

Elvesæeter, B., Panfilenko, D., Jacobi, S. and Hahn, C. (2010). Aligning business and IT models in
service-oriented architectures using BPMN and SoaML, Proceedings of the First International
Workshop on Model-Drive Interoperability, MDI ’10, ACM, New York, NY, USA, pp. 61–68.

Endert, H., Hirsch, B., Küster, T. and Albayrak, S. (2007). Towards a mapping from BPMN to agents,
in J. Huang, R. Kowalczyk, Z. Maamar, D. L. Martin, I. Müller, S. Stoutenburg and K. P. Sycara
(eds), Proceedings on the Internal Workshop on Service-Oriented Computing: Agents, Semantics,
and Engineering (SOCASE 2007), AAMAS 2007 Honolulu, HI, USA, May 14, 2007, Vol. 4504 of
Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 92–106.

Erl, T. (2005). Service-Oriented Architecture : Concepts, Technology, and Design, Prentice Hall PTR,
Upper Saddle River, NJ, USA.

Estefan, J. A. (2007). Survey of model-based systems engineering (MBSE) methodologies, Technical
report, INCOSE MBSE Focus Group.

Evans, A. (2006). Domain specific languages and MDA, Technical report, Xactium Limited.

Falleri, J., Huchard, M. and Nebut, C. (2006). Towards a traceability framework for model trans-
formations in kermeta, in J. Aagedal, T. Neple and J. Oldevik (eds), Proceedings of the ECMDA
Traceability Workshop (ECMDA-TW’06) Bilbao, Spain, pp. 31–40.

Favre, J.-M. (2004). Foundations of model (driven) (reverse) engineering - episode i: Story of the
fidus papyrus and the solarus, Post-proceedings of Dagsthul Seminar on Model Driven Reverse
Engineering.

Ferber, J. and Gutknecht, O. (1998). Aalaadin: a meta-model for the analysis and design of
organizations in multi-agent systems, Third International Conference on Multi-Agent Systems
(ICMAS), Paris, 1998, IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 128–135.

Ferber, J., Gutknecht, O. and Michel, F. (2004). From agents to organizations: an organizational
view of multi-agent systems, in P. Giorgini, J. Müller and J. Odell (eds), Agent-Oriented Software
Engineering (AOSE) IV,, Vol. 2935 of Lecture Notes in Computer Science, Springer Verlag, Berlin et
al., pp. 214–230.

Finin, T., Fritzson, R., McKay, D. and McEntire, R. (1994a). KQML - a language and protocol
for knowledge and information exchange, Technical Report CS-94-02, Computer Science De-
partment, University of Maryland and Valley Forge Engineering Center, Unisys Corporation,
Computer Science Department, University of Maryland, UMBC Baltimore MD 21228.

Finin, T., Fritzson, R., McKay, D. and McEntire, R. (1994b). KQML as an agent communication
language, Proceedings of the Third International Conference on Information and Knowledge
Management, ACM Press, New York, NY, USA, pp. 456–463.

Firby, J. (1989). Adaptive Execution in Complex Dynamic Domains, PhD thesis, Yale University.

Firby, J. R. (1994). Task networks for controlling continuous processes, Proceedings of the Second
International Conference on AI Planning Systems, Chicago, Illinois, pp. 49–54.

Firby, J. R. (1995). The RAP Language Manual, Technical Report Animate Agent Project Working
Note APP-6, University of Chicago.

BIBLIOGRAPHY 291

Fischer, K., Elvesæter, B., Berre, A.-J., Hahn, C., Madrigal-Mora, C. and Zinnikus, I. (2006). Model-
driven design of interoperable agents, Proceedings of the 2nd Workshop on Web Service Inter-
operability (WSI 2006), Bordeaux, France, 2006, Interoperability for Enterprise Software and
Applications, ISTE Ltd., pp. 119–130.

Fischer, K., Florian, M. and Malsch, T. (eds) (2005). Socionics - Scalability of Complex Social Systems,
Vol. 3413 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al.

Fischer, K., Hahn, C. and Madrigal-Mora, C. (2007). Agent-oriented software engineering: a model-
driven approach, International Journal on Agent-oriented Engineering (IJAOSE) 1(3/4): 334–369.

Fischer, K., Hahn, C. and Warwas, S. (2009). Modeling teletruck: A case study, Engineering Societies
in the Agents World IX: 9th International Workshop, ESAW 2008, Saint-Etienne, France, September
24-26, 2008, Revised Selected Papers, Springer Verlag, Berlin, Heidelberg, pp. 1–26.

Foundation for Intelligent Physical Agents (2002). FIPA communicative act library specification,
version j, http://www.fipa.org/specs/fipa00037/.

France, R. and Rumpe, B. (2007). Model-driven development of complex software: A research
roadmap, 2007 Future of Software Engineering (FOSE ’07), IEEE Computer Society, Washington,
DC, USA, pp. 37–54.

Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M. and Traverso, P. (2004). Specifying and
analyzing early requirements in Tropos, Requirements Engineering 9(2): 132–150.

Fuxman, A., Pistore, M., Mylopoulos, J. and Traverso, P. (2001). Model checking early requirements
specifications in Tropos, Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering (RE’01), IEEE Computer Society, Washington, DC, USA, pp. 174–181.

García-Magariño, I., Fuentes-Fernández, R. and Gómez-Sanz, J. J. (2009). INGENIAS development
process assisted with chains of transformations, in J. Cabestany, F. Sandoval, A. Prieto and
J. M. Corchado (eds), Bio-Inspired Systems: Computational and Ambient Intelligence, 10th
International Work-Conference on Artificial Neural Networks, IWANN 2009, Salamanca, Spain,
June 10-12, 2009. Proceedings, Part I, Vol. 5517 of Lecture Notes in Computer Science, Springer
Verlag, Berlin et al., pp. 514–521.

Garcia-Ojeda, J. C., DeLoach, S. A. and Robby (2009). agentTool III: from process definition
to code generation, in C. Sierra, C. Castelfranchi, K. S. Decker and J. S. Sichman (eds), 8th
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Budapest, Hungary, May 10-15, 2009, Volume 2, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, pp. 1393–1394.

García-Ojeda, J. C., DeLoach, S. A., Robby, Oyenan, W. H. and Valenzuela, J. (2007). O-MaSE:
A customizable approach to developing multiagent development processes, in M. Luck and
L. Padgham (eds), Agent-Oriented Software Engineering VIII, 8th International Workshop, AOSE
2007, Honolulu, HI, USA, May 14, 2007, Revised Selected Papers, Vol. 4951 of Lecture Notes in
Computer Science, Springer Verlag, Berlin et al., pp. 1–15.

Gary T. Leavens, G. T., Baker, A. L. and Ruby, C. (1999). JML: A notation for detailed design, in
H. Kilov, B. Rumpe and I. Simmonds (eds), Behavioral Specifications of Businesses and Systems,
Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 175–188.

292 BIBLIOGRAPHY

Gascue na, J. M. and Fernández-Caballero, A. (2009). Prometheus and INGENIAS agent method-
ologies: A complementary approach, Agent-Oriented Software Engineering IX: 9th International
Workshop, AOSE 2008 Estoril, Portugal, May 12-13, 2008 Revised Selected Papers, Springer Verlag,
Berlin, Heidelberg, pp. 131–144.

Gasser, L. (1992). An overview of DAI, in L. Gasser and N. Avouris (eds), Distributed Artificial
Intelligence: Theory and Praxis, Kluwer Academic Publishers, Norwell, MA, USA, pp. 9–30.

Gasser, L. (2001). Perspectives on organizations in multi-agent systems, Multi-agents systems and
applications, Springer Verlag, New York, NY, USA, pp. 1–16.

Georgeff, M. P., Pell, B., Pollack, M. E., Tambe, M. and Wooldridge, M. (1999). The Belief-Desire-
Intention model of agency, Proceedings of the 5th International Workshop on Intelligent Agents V,
Agent Theories, Architectures, and Languages (ATAL ’98), Springer Verlag, London, UK, pp. 1–10.

Ghezzi, C., Jazayeri, M. and Mandrioli, D. (2002). Fundamentals of Software Engineering, Prentice
Hall PTR, Upper Saddle River, NJ, USA.

Giorgini, P., Mylopoulos, J. and Sebastiani, R. (2005). Goal-oriented requirements analysis and rea-
soning in the Tropos methodology, Engineering Applications of Artificial Intelligence 18(2): 159–
171.

Giorgini, P., Perini, A., Mylopoulos, J., Giunchiglia, F. and Bresciani, P. (2001). Agent-oriented
software development: A case study, in S. Sen, J. P. Müller, E. Andre and C. Frassen (eds),
Proceedings of the Thirteenth International Conference on Software Engineering & Knowledge
Engineering (SEKE’2001), Sheraton Buenos Aires Hotel, Buenos Aires, Argentina, June 13-15, 2001,
pp. 283–290.

Giunchiglia, F., Odell, J. and Weiß, G. (eds) (2003). Agent-Oriented Software Engineering III, Third
International Workshop, AOSE 2002, Bologna, Italy, July 15, 2002, Revised Papers and Invited
Contributions, Vol. 2585 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al.

Gogolla, M., Büttner, F. and Richters, M. (2007). USE: A UML-based specification environment for
validating UML and OCL, Science of Computer Programming 69(1-3): 27–34.

Gomez-Sanz, J. J., Fuentes, R., Pavón, J. and García-Magariño, I. (2008a). INGENIAS development
kit: a visual multi-agent system development environment, Proceedings of the 7th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS ’08), International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp. 1675–1676.

Gomez-Sanz, J. J., Michel, F., Platon, E. and Ricci, A. (2008b). Towards an agent-oriented paradigm,
in D. Weyns (ed.), Position Statement for FOSE-MAS at AAMAS 2008.

Gracanin, D., Singh, H. L., Hinchey, M. G., Eltoweissy, M. and Bohner, S. A. (2005). A CSP-based
agent modeling framework for the Cougaar agent-based architecture, Proceedings of the 12th
IEEE International Conference and Workshops on Engineering of Computer-Based Systems (ECBS
’05), IEEE Computer Society, Washington, DC, USA, pp. 255–262.

Gray, J., Lin, Y. and Zhang, J. (2006). Automating change evolution in model-driven engineering,
Computer 39(2): 51–58.

Greenfield, J., Short, K., Cook, S. and Kent, S. (2004). Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools, John Wiley and Sons, Inc., New York, NY, USA.

BIBLIOGRAPHY 293

Gronmo, R., Belaunde, M., Aagedal, J., Engel, K.-D., Faugere, M. and Solheim, I. (2005). Evalua-
tion of the proposed QVTMerge language for model transformations, in S. Bevinakoppa, L. F.
Pires and S. Hammoudi (eds), Web Services and Model-Driven Enterprise Information Services,
Proceedings of the Joint Workshop on Web Services and Model-Driven Enterprise Information
Services, WSMDEIS 2005, In conjunction with ICEIS 2005, Miami, USA, May 2005, INSTICC Press,
pp. 65–74.

Gründel, T. (2009). Eine generische Transformation zur Überbrückung von Design und Implemen-
tierung von Multiagenten Systemen, Master’s thesis, Universität des Saarlandes.

Guessoum, Z. (2005). MAS Meta-Models and MDA, AgentLink III AOSE TFG2. Online at:
http://www.pa.icar.cnr.it/c̃ossentino/al3tf2/docs/zahia slovenia.pdf.

Guessoum, Z. and Briot, J. (1999). From active object to autonomous agents, IEEE Concurrency
7(3): 68–78.

Guizzardi-Silva Souza, R., Perini, A. and Dignum, V. (2003). Using intentional analysis to model
knowledge management requirements in communities of practice, Technical Report TR-CTIT-
03-53, Centre for Telematics and Information Technology, University of Twente, Enschede.

Hahn, C. (2004). A detailed analysis of holonic multiagent systems, Master’s thesis, Universität des
Saarlandes.

Hahn, C. (2008). A domain specific modeling language for multiagent systems, in L. Padgham, D. C.
Parkes, J. Müller and S. Parsons (eds), Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal, May 12-16, 2008,
Vol. 1, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC,
pp. 233–240.

Hahn, C. and Fischer, K. (2007). Service composition in holonic multiagent systems: Model-driven
choreography and orchestration, in V. Mavrík, V. Vyatkin and A. W. Colombo (eds), Proceedings
of the Third International Conference on Industrial Applications of Holonic and Multi-Agent
Systems (HoloMAS 2007), Regensburg, Germany, September 3-5, 2007, Proceedings, Vol. 4659 of
Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 47–58.

Hahn, C. and Fischer, K. (2008a). The dynamic semantics of the domain specific modeling
language for multiagent systems, Proceedings of the Agent-based Technologies and Applications
for Enterprise InterOPerability (ATOP 2008). Workshop at AAMAS’08, Estoril, Portugal, 13.5.2008,
pp. 25–38.

Hahn, C. and Fischer, K. (2008b). The formal semantics of the domain specific modeling language
for multiagent systems, in M. Luck and J. J. Gómez-Sanz (eds), Proceedings of the 9th Inter-
national Workshop Agent-Oriented Software Engineering IX (AOSE ’08), Estoril, Portugal, May
12-13, 2008, Revised Selected Papers, Vol. 5386 of Lecture Notes in Computer Science, Springer
Verlag, pp. 145–158.

Hahn, C. and Slomic, I. (2008). Agent-based extensions for the UML profile and metamodel for
service-oriented architectures, Proceedings of the 12th Enterprise Distributed Object Computing
Conference (EDOCW ’08), Third International Workshop on Modeling, Design, and Analysis for
Service-oriented Architectures (2008), IEEE Computer Society, Los Alamitos, CA, USA, pp. 309–
316.

294 BIBLIOGRAPHY

Hahn, C. and Zinnikus, I. (2008). Modeling and executing service interactions using an agent-
oriented modeling language, in Z. Bellahsene, C. Woo, E. Hunt, X. Franch and R. Coletta (eds),
Proceedings of the Forum at the CAiSE’08 Conference, Montpellier, France, June 18-20, 2008, Vol.
344 of CEUR Workshop Proceedings, CEUR-WS.org, pp. 37–40.

Hahn, C., Dmytro, P. and Fischer, K. (2010a). A model-driven approach to close the gap be-
tween business requirements and agent-based execution, Proceedings of the 4th Workshop on
Agent-based Technologies and Applications for Enterprise Interoperability (ATOP 2010) held in
conjunction with AAMAS 2010, Toronto, Canada, June, 10th.

Hahn, C., Fley, B. and Florian, M. (2005). A framework for the design of self-regulation of open
agent-based electronic marketplaces, Proceedings of the Symposium on Normative Multi-Agent
Systems, NORMAS 2005, part of the SSAISB 2005 Convention, University of Hertfordshire, Hatfield,
UK, 12-15 April 2005, pp. 8–23.

Hahn, C., Fley, B. and Florian, M. (2006a). Self-regulation through social institutions: A framework
for the design of open agent-based electronic marketplaces, Computational and Mathematical
Organization Theory 12(2-3): 181–204.

Hahn, C., Fley, B., Florian, M., Spresny, D. and Fischer, K. (2007a). Social reputation: a mecha-
nism for flexible self-regulation of multiagent systems, Journal of Artificial Societies and Social
Simulation 10(1): 2.

Hahn, C., Jacobi, S. and Raber, D. (2010b). Enhancing the interoperability between multiagent
systems and service-oriented architectures through a model-driven approach, in J. Dix and
C. Witteveen (eds), Multiagent System Technologies, 8th German Conference, MATES 2010,
Leipzig, Germany, September 27-29, 2010. Proceedings, Vol. 6251 of Lecture Notes in Computer
Science, Springer Verlag, Berlin et al., pp. 88–99.

Hahn, C., Jacobi, S. and Raber, D. (2010c). Enhancing the interoperability between multiagent
systems and service-oriented architectures through a model-driven approach, in J. X. Huang,
A. A. Ghorbani, M.-S. Hacid and T. Yamaguchi (eds), Proceedings of the 2010 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, IAT 2010, Toronto, Canada, August 31 -
September 3, 2010, IEEE Computer Society Press, Washington, DC, USA, pp. 415–422.

Hahn, C., Madrigal-Mora, C. and Fischer, K. (2007b). Interoperability through a platform-
independent model for agents, in R. J. Goncalves, J. Müller, K. Mertins and M. Zelm (eds),
Enterprise Interoperability II - New Challenges and Approaches, Springer Verlag, Berlin et al.,
pp. 195–206.

Hahn, C., Madrigal-Mora, C. and Fischer, K. (2007c). Interoperability through a platform-
independent model for agents, in K. M. Ricardo J. Gonçalves, Jörg P. Müller and M. Zelm
(eds), Enterprise Interoperability II, New Challenges and Approaches, Proceedings of the third
International Conference on Interoperability for Enterprise Software and Applications (I-ESA),
Springer Verlag, London, pp. 195–206.

Hahn, C., Madrigal-Mora, C. and Fischer, K. (2007d). A platform-independent model for agents,
Technical Report RR-07-01, German Research Center for Artificial Intelligence.

Hahn, C., Madrigal-Mora, C. and Fischer, K. (2009a). A platform-independent metamodel for
multiagent systems, International Journal on Autonomous Agents and Multi-Agent Systems
(JAAMAS) 18(2): 239–266.

BIBLIOGRAPHY 295

Hahn, C., Madrigal-Mora, C., Fischer, K., Elvesæter, B., Berre, A.-J. and Zinnikus, I. (2006b). Meta-
models, models, and model transformations: Towards interoperable agents, in K. Fischer, I. J.
Timm, E. André and N. Zhong (eds), Proceedings of the 4th German Conference on Multiagent
System Technologies (MATES) 2006, Erfurt, Germany, September 19-20, 2006, Vol. 4196 of Lecture
Notes in Computer Science, Springer Verlag, Berlin et al., pp. 123–134.

Hahn, C., Neple, T. and Limyr, A. (2006c). Comparing model transformation approaches, Proceed-
ings of the 7th Working Conference on Virtual Enterprises (PRO-VE’06), Helsinki, Finland, 25-27
September 2006.

Hahn, C., Nesbigall, S., Warwas, S., Fischer, K. and Klusch, M. (2008a). Model-driven approach
to the integration of multiagent systems and semantic Web services, Proceedings of the 12th
Enterprise Distributed Object Computing Conference (EDOCW ’08), Third International Workshop
on Modeling, Design, and Analysis for Service-oriented Architectures (1008), IEEE Computer
Society, Los Alamitos, CA, USA, pp. 317–324.

Hahn, C., Nesbigall, S., Warwas, S., Zinnikus, I., Fischer, K. and Klusch, M. (2008b). Integration of
multiagent systems and Semantic Web Services on a platform independent level, Proceedings of
the 2008 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, Sydney, NSW,
Australia, December 9-12, 2008, IEEE Computer Society, Los Alamitos, CA, USA, pp. 200–206.

Hahn, C., Panfilenko, D. and Fischer, K. (2010d). A model-driven approach to close the gap between
business requirements and agent-based execution, 4th Workshop on Agent-based Technologies
and applications for enterprise interoperability. International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-10), May 10-14, Toronto, Canada, ASR, pp. 13–24.

Hahn, C., Zinnikus, I., Warwas, S. and Fischer, K. (2009b). From agent interaction protocols to
executable code: a model-driven approach, in C. Sierra, C. Castelfranchi, K. S. Decker and J. S.
Sichman (eds), Proceedings of the 8th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2009), Budapest, Hungary, May 10-15, 2009, Vol. 2, IFAAMAS,
Richland, SC, pp. 1199–1200.

Hahn, C., Zinnikus, I., Warwas, S. and Fischer, K. (2011). Automatic generation of executable be-
havior: A protocol-driven approach, in M.-P. Gleizes and J. J. Gomez-Sanz (eds), Agent-Oriented
Software Engineering X - 10th International Workshop, AOSE 2009, Budapest, Hungary, May 11-
12, 2009, Revised Selected Papers, Vol. 6038 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin et al., pp. 110–124.

Harel, D. and Rumpe, B. (2004). Meaningful modeling: What’s the semantics of "semantics"?,
Computer 37(10): 64–72.

Haugen, O. (2008). Challenges to UML 2 to describe FIPA Agent Protocol, Proceedings of Agent-
based Technologies and Applications for Enterprise interOPerability (ATOP 2008). Workshop
held at the Seventh International Joint Conference on Autonomous Agents & Multiagent Systems,
pp. 37–46.

Hayes-Roth, B. (1995). An architecture for adaptive intelligent systems, Artifical Intelligence:
Special Issue in Agent and Interactivity 72(1-2): 329–365.

Hilaire, v., Koukam, A., Gruer, P. and Müller, J.-P. (2000). Formal specification and prototyping of
MAS, in A. Omicini, R. Tolksdorf and F. Zambonelli (eds), Engineering Societies in the Agents
World, Vol. 1972 of Lecture Notes in Artificial Intelligence, Springer Verlag, Berlin et al., pp. 114–
127.

296 BIBLIOGRAPHY

Hilaire, V., Simonin, O., Koukam, A. and Ferber, J. (2004). A formal approach to design and reuse
agent and multiagent models, in J. Odell, P. Giorgini and J. P. Müller (eds), Agent-Oriented
Software Engineering V, 5th International Workshop, AOSE 2004, New York, NY, USA, July 19,
2004, Revised Selected Papers, Vol. 3382 of Lecture Notes in Computer Science, Springer Verlag,
Berlin et al., pp. 142–157.

Hindriks, K. V., de Boer, F. S., van der Hoek, W. and Meyer, J.-J. C. (1999). Agent programming in
3APL, International Journal on Autonomous Agents and Multi-Agent Systems (JAAMAS) 2(4): 357–
401.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming, Communication of the ACM
12(10): 576–580.

Hoare, C. A. R. (1973). Hints on programming language design, Technical report, Stanford Univer-
sity, Stanford, CA, USA.

Hoare, C. A. R. (1978). Communicating sequential processes, Communication of the ACM
21(8): 666–677.

Huber, M. J. (1999). JAM: a BDI-theoretic mobile agent architecture, Proceedings of the Third
International Conference on Autonomous Agents (Agents’99), ACM Press, New York, NY, USA,
pp. 236–243.

Huget, M. (2002a). Nemo: An agent-oriented software engineering methodology, in J. Deben-
ham, B. Henderson-Sellers, N. Jennings and J. Odell (eds), Proceedings of the Agent Oriented
Methodologies Workshop at OOPSLA 2002, Seattle - USA, November 2002, p. 41Ű53.

Huget, M.-P. (2002b). Generating code for Agent UML sequence diagrams, Technical Report
ULCS-02-020, Department of computer science, University of Liverpool.

Huget, M.-P. (2002c). A language for exchanging agent UML protocol diagrams, Technical Report
ULCS-02-009, Department of Computer Science, University of Liverpool.

Huget, M.-P. (2002d). Model checking Agent UML protocol diagrams, Technical Report ULCS-02-
012, Department of Computer Science, University of Liverpool.

Huget, M.-P. and Odell, J. (2004). Representing agent interaction protocols with Agent UML,
AAMAS ’04: Proceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, IEEE Computer Society, Washington, DC, USA, pp. 1244–1245.

Humphrey, W. S. (1989). The software engineering process: definition and scope, SIGSOFT Software
Engineering Notes 14(4): 82–83.

Hyacinth, S. N., Ndumu, D. T., Lee, L. C., Collis, J. C. and Re, I. I. (1999). ZEUS: A tool-kit for building
distributed multi-agent systems, Applied Artificial Intelligence Journal 13: 129–186.

IEEE STD 610.12 (1990). Standard glossary of software engineering terminology, IEEE, May, ISBN:
155937067x.

Iseger, M. (2005). Domain-specific modeling for generative software development, ITarchitect.

Ivan, T., Cervenka, R. and Greenwood, D. (2006). Applying a UML-based agent modeling language
to the autonomic computing domain, Conference on Object Oriented Programming Systems
Languages and Applications, ACM Press, New York, NY, USA, pp. 521–529.

BIBLIOGRAPHY 297

JACK Intelligent Agents (2005). User Manual Release 5, Agent Oriented Software Pty. Ltd, June
2005, http://www.agent-software.com/shared/demosNdocs/Agent ManualWEB/index.html.

Jackson, D. (2006). Software Abstractions: Logic, Language, and Analysis, The MIT Press, New York,
NY, USA.

Jacobi, S., Hahn, C. and Raber, D. (2009). MasDISPO xt - process optimisation by use of integrated,
agentbased manufacturing execution systems inside the supply chain of steel production, in
J. Cordeiro and J. Filipe (eds), Proceedings of the 11th International Conference on Enterprise
Information Systems (ICEIS 2009), Volume AIDSS, Milan, Italy, May 6-10, 2009, pp. 347–350.

Jacobi, S., Hahn, C. and Raber, D. (2010). Integration of multiagent systems and service oriented
architectures in the steel industry, in J. X. Huang, A. A. Ghorbani, M.-S. Hacid and T. Yamaguchi
(eds), Proceedings of the 2010 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, IAT 2010, Toronto, Canada, August 31 - September 3, 2010, IEEE Computer Society
Press, Washington, DC, USA, pp. 479–482.

Jacobi, S., León-Soto, E., Madrigal-Mora, C. and Fischer, K. (2007). MasDISPO: a multiagent
decision support system for steel production and control, Proceedings of the 19th national
conference on Innovative applications of artificial intelligence (IAAI’07), AAAI Press, pp. 1707–
1714.

Jayatilleke, G., Thangarajah, J., Padgham, L. and Winikoff, M. (2006). Component agent framework
for domain-experts (CAFnE) toolkit, Proceedings of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS ’06), ACM Press, New York, NY, USA,
pp. 1465–1466.

Jennings, N. (2000). On agent-based software engineering, Artificial Intelligence 177(2): 277–296.

Jennings, N. (2001). An agent-based approach for building complex software systems, Communi-
cations of the ACM 44(4): 35–41.

Jennings, N. R. (1999). Agent-based computing: Promise and perils, Proceedings of the 16th
International Joint Conference on Artificial Intelligence, Morgan Kaufmann, San Mateo, CA, USA,
pp. 1429–1439.

Jennings, N. R., Faratin, P., Norman, T. J., O’Brien, P., Odgers, B. and Alty, J. L. (2000). Implementing
a business process management system using ADEPT: A real-world case study, International
Journal of Applied Artificial Intelligence 14(5): 421–465.

Jennings, N. R., Mamdani, E. H., Laresgoiti, I., Perez, J. and Corera, J. (1992). GRATE: A general
framework for cooperative problem solving, IEE-BCS Journal of Intelligent Systems Engineering
1(2): 102–114.

Jennings, N. R., Sycara, K. and Wooldridge, M. (1998). A roadmap of agent research and de-
velopment, International Journal on Autonomous Agents and Multi-Agent Systems (JAAMAS)
1(1): 7–38.

Johnston, S. (2006). UML 2.0 profile for software services, Technical report, OMG. submitted to
OMG ABSIG on SOA at 4/15 meeting in St. Louis.

Jouault, F., Allilaire, F., Bézivin, J. and Kurtev, I. (2008). ATL: A model transformation tool, Science of
Computer Programming 72(1-2): 31–39.

298 BIBLIOGRAPHY

Juan, T. and Sterling, L. (2003). A meta-model for intelligent adaptive multi-agent systems in open
environments, Proceedings of the second international joint conference on Autonomous agents
and multiagent systems (AAMAS ’03), ACM Press, New York, NY, USA, pp. 1024–1025.

Juan, T., Pearce, A. and Sterling, L. (2002). ROADMAP: Extending the Gaia methodology for complex
open systems, Proceedings of the First International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), ACM Press, New York, NY, USA, pp. 3–10.

Juneidi, S. J. and Vouros, G. A. (2004). Evaluation of agent oriented software engineering main
approaches, Proceedings of the IASTED International Conference on Software Engineering (SE
2004), Innsbruck, Austria.

Kahl, T., Zinnikus, I., Roser, S., Hahn, C., Ziemann, J., Müller, J. and Fischer, K. (2007). Architecture
for the design and agent-based implementation of cross-organizational business processes,
in R. J. Goncalves, J. Müller, K. Mertins and M. Zelm (eds), Enterprise Interoperability II - New
Challenges and Approaches, Springer Verlag, Berlin et al., pp. 207–218.

Kardas, G., Ekinci, E. E., Afsar, B., Dikenelli, O. and Topaloglu, Y. N. (2009a). Modeling tools for
platform specific design of multi-agent systems, Proceedings of the 7th German Conference,
MATES 2009, Hamburg, Germany, September 9-11, 2009, Lecture Notes in Computer Science,
Springer Verlag, Berlin et al., pp. 202–207.

Kardas, G., Goknil, A., Dikenelli, O. and Topaloglu, N. Y. (2009b). Model driven development of
Semantic Web enabled multi-agent systems, International Journal on Cooperative Information
Systems 18(2): 261–308.

Kavantzas, N., Burdett, D., Ritzinger, G. and Lafon, Y. (2005). Web services choreogra-
phy description language version 1.0, W3C candidate recommendation, november 2005.
http://www.w3.org/tr/ws-cdl-10.

Kelly, S., Lyytinen, K. and Rossi, M. (1996). MetaEdit+: A fully configurable multi-user and multi-
tool CASE environment, Proceedings of the 8th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE’96), Vol. 1080 of Lecture Notes in Computer Science, Springer
Verlag, Berlin et al., pp. 1–21.

Kim, S.-K. and Carrington, D. (2002). A formal model of the UML metamodel: The UML state
machine and its integrity constraints, Proceedings of the 2nd International Conference of B and
Z Users Grenoble, France, January 23-25, 2002, Vol. 2272/2002 of Lecture Notes in Computer
Science, Springer Verlag, Berlin et al., pp. 101–114.

Kim, S.-K., Carrington, D. and Duke, R. (2001). A metamodel-based transformation between UML
and Object-Z, Proceedings of the IEEE 2001 Symposia on Human Centric Computing Languages
and Environments (HCC’01), IEEE Computer Society, Washington, DC, USA, p. 112.

Kinny, D. (1999). The Agentis agent interaction model, Proceedings of the 5th International
Workshop on Intelligent Agents V, Agent Theories, Architectures, and Languages (ATAL ’98),
Springer Verlag, London, UK, pp. 331–344.

Kleppe, A., Warmer, J. and Bast, W. (2003). MDA Explained, The Model-Driven Architecture: Practice
and Promise, Addison Wesley.

Knabe, T., Schillo, M. and Fischer, K. (2002). Improvements to the FIPA contract net protocol
for performance increase and cascading applications, International Workshop for Multi-Agent
Interoperability at the German Conference on AI (KI-2002).

BIBLIOGRAPHY 299

Koehler, J. and Srivastava, B. (2003). Web service composition: Current solutions and open
problems, ICAPS 2003 Workshop on Planning for Web Services.

Koestler, A. (1967). The Ghost in the Machine, Hutchinson, London.

Kolovos, D. S., Paige, R. F., Kelly, T. and Polack, F. A. (2006). Requirements for domain-specific
languages, Proceedings of the 1st ECOOP Workshop on Domain-Specific Program Development
(DSPD 2006), Nantes, France, July 2006.

Kuan, P. P., Rarunasekera, S. and Sterling, L. (2005). Improving goal and role oriented analysis for
agent based systems, Proceedings of the 2005 Australian conference on Software Engineering
(ASWEC ’05), IEEE Computer Society, Washington, DC, USA, pp. 40–47.

Kwon, G. (2000). Rewrite rules and operational semantics for model checking UML state charts,
Proceedings of the 3rd International Conference on the Unified Modeling Language (UML 2000),
Vol. 1939 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 528–540.

Labrou, Y. K. and Finin, T. (2000). History, state of the art and challenges for Agent Communication
Languages, Informatik/Informatique.

Labrou, Y. K., Finin, T. and Peng, Y. (1999). The current landscape of agent communication
languages, IEEE Intelligent Systems.

Langlois, B., Jitia, C. E. and Jouenne, E. (2007). DSL classification, Proceedings of the 7th OOPSLA
Workshop on Domain-Specific Modeling, pp. 28–38.

Lapouchnian, A. and Lespérance, Y. (2006). Modeling mental states in the analysis of multiagent
systems requirements, Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’06), ACM Press, New York, NY, USA, pp. 241–243.

Laukkanen, M., Tarkoma, S. and Leinonen, J. (2002). FIPA-OS agent platform for small-footprint
devices, Revised Papers from the 8th International Workshop on Intelligent Agents VIII (ATAL ’01),
Springer Verlag, London, UK, pp. 447–460.

Lawley, M. and Steel, J. (2005). Practical declarative model transformation with tefkat, in J.-M. Bruel
(ed.), Satellite Events at the MoDELS 2005 Conference, MoDELS 2005 International Workshops,
Doctoral Symposium, Educators Symposium, Montego Bay, Jamaica, October 2-7, 2005, Revised
Selected Papers, Vol. 3844 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al.,
pp. 139–150.

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G., Sprinkle,
J. and Volgyesi, P. (2001). The Generic Modeling Environment, Workshop on Intelligent Signal
Processing, Budapest, Hungary, Vol. 17.

Leon-Soto, E., Madrigal-Mora, C., Hahn, C., Warwas, S. and Fischer, K. (2009). A modular proto-
col model for PIM4Agents, Proceedings of the Agent-based Technologies and Applications for
Enterprise InterOPerability (ATOP 2009) at AAMAS 2009.

Leszczyna, R. (2004). Evaluation of agent platforms, Technical report, European Commission, Joint
Research Centre, Institute for the Protection and security of the citizen, Ispra, Italy.

Lilius, J. and Porres Paltor, I. (1999a). Formalising UML state machines for model checking,
Proceedings of the Unified Modeling Language (UML’99), Vol. 1723 of Lecture Notes in Computer
Science, Springer Verlag, Berlin et al., pp. 430–445.

300 BIBLIOGRAPHY

Lilius, J. and Porres Paltor, I. (1999b). vUML: A tool for verifying UML models, Proceedings of
the 14th IEEE International Conference on Automated Software Engineering (ASE’99), IEEE
Computer Society, pp. 255–258.

Lin, C.-E., Kavi, K. M., Sheldon, F. T., Daley, K. M. and Abercrombie, R. K. (2007). A methodology to
evaluate agent oriented software engineering techniques, Proceedings of the 40th Annual Hawaii
International Conference on System Sciences (HICSS ’07), IEEE Computer Society, Washington,
DC, USA, p. 60.

Lind, J. (2001). Iterative Software Engineering for Multiagent Systems - The Massive Method, Vol.
1994 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al.

Louridas, P. (2008). Orchestrating Web services with BPEL, IEEE Software 25: 85–87.

Luck, M. and Gómez-Sanz, J. J. (eds) (2009). Agent-Oriented Software Engineering IX, 9th Inter-
national Workshop, AOSE 2008, Estoril, Portugal, May 12-13, 2008, Revised Selected Papers, Vol.
5386 of Lecture Notes in Computer Science, Springer Verlag.

Luck, M. and Padgham, L. (eds) (2008). Agent-Oriented Software Engineering VIII, 8th International
Workshop, AOSE 2007, Honolulu, HI, USA, May 14, 2007, Revised Selected Papers, Vol. 4951 of
Lecture Notes in Computer Science, Springer Verlag, Berlin et al.

Luck, M., McBurney, P. and Gonzalez-Palacios, J. (2006). Agent-based computing and program-
ming of agent systems, Proceedings of Programming Multi-Agent Systems, Third International
Workshop, ProMAS 2005, Utrecht, The Netherlands, July 26, 2005, Revised and Invited Papers, Vol.
3862 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 23–37.

Luck, M., P, M., Shehory, O. and Willmott, S. (2005). Agent Technology Roadmap:
A Roadmap for Agent Based Computing, AgentLink. Electronically available,
http://www.agentlink.org/roadmap/al3rm.pdf.

Madrigal-Mora, C., León-Soto, E. and Fischer, K. (2008). Implementing organisations in JADE,
in R. Bergmann, G. Lindemann, S. Kirn and M. Pechoucek (eds), In Proceedings of Multiagent
System Technologies, 6th German Conference, MATES 2008, Kaiserslautern, Germany, September
23-26, 2008, Vol. 5244 of Lecture Notes in Computer Science, Springer Verlag, pp. 135–146.

Maes, P. (1989). The dynamics of action selection, Proceedings of the 11th International Joint
Conference on Artificial Intelligence, Morgan Kaufmann Publishers, San Mateo, CA, USA, pp. 991–
997.

Maes, P. (1995). Artificial life meets entertainment: Life like autonomous agents, Communication
of the ACM 38(38): 108–114.

Malone, T. and Crowston, K. (1994). The interdisciplinary study of coordination, ACM Computing
Surveys 26(1): 87–119.

Mann, S. and Klar, M. (1988). A metamodel for object-oriented statecharts, Proceedings of the 2nd
Workshop on Rigorous Object-Oriented Methods, ROOM 2, University of Bradford, May 1998.

Marschall, F. and Braun, P. (2003). The bi-directional object-oriented transformation language,
Technical Report TUM-I0307, Technische Universität München, München, Germany.

BIBLIOGRAPHY 301

Mayer, P., Schroeder, A. and Koch, N. (2008). MDD4SOA: Model-driven service orchestration,
Enterprise Distributed Object Computing Conference, IEEE International, IEEE Computer Society,
Los Alamitos, CA, USA, pp. 203–212.

McBurney, P., Parsons, S. and Wooldridge, M. (2002). Desiderata for agent argumentation protocols,
Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS ’02), ACM Press, New York, NY, USA, pp. 402–409.

McIlraith, S. and Son, T. (2002). Adopting golog for composition of semantic web services, Pro-
ceedings of the International Conference on knowledge representation and Reasoning (KR2002),
pp. 482–493.

Mendling, J. (2009). Event-driven process chains (epc), Metrics for Process Models, Vol. 6 of Lecture
Notes in Business Information Processing, Springer Verlag, Heidelberg, pp. 17–57.

Meneguzzi, F. R. and Luck, M. (2008). Leveraging new plans in agentspeak(pl), in M. Baldoni, T. C.
Son, M. B. van Riemsdijk and M. Winikoff (eds), Declarative Agent Languages and Technologies
VI, 6th International Workshop, DALT 2008, Estoril, Portugal, May 12, 2008, Revised Selected
and Invited Papers, Vol. 5397 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al.,
pp. 111–127.

Mens, T., Czarnecki, K. and Gorp, P. V. (2005). A taxonomy of model transformations, in J. Bezivin
and R. Heckel (eds), Language Engineering for Model-Driven Software Development, number
04101 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany.

Miles, R. H. (1980). Macro Organizational Behavior, Goodyear Publishing, Santa Monica, CA.

Miller, T. and McBurney, P. (2007). A formal semantics for Gaia liveness rules and expressions,
International Journal on Agent-Oriented Software Engineering (IJAOSE) 1(3/4): 435–476.

Milner, R. (1999). Communicating and Mobile Systems: the Pi-Calculus, Cambridge University
Press, Cambridge, England.

Mizuta, S. and Huang, R. (2005). Automation of grid service code generation with AndroMDA for
GT3, Proceedings of the 19th International Conference on Advanced Information Networking and
Applications (AINA ’05), IEEE Computer Society, Washington, DC, USA, pp. 417–420.

Mokhati, F., Boudiaf, N., Badri, M. and Badri, L. (2007). Translating AUML diagrams into Maude
specifications: A formal verification of agents interaction protocols, Journal of Object Technology
6(4): 77–102.

Molesini, A., Denti, E. and Omicini, A. (2005). MAS meta-models on test: UML vs. OPM in the
SODA case study, in M. Puechouucek, P. Petta and L. Z. Varga (eds), Proceedings of the 4th
International Central and Eastern European Conference on Multi-Agent Systems (CEEMAS’05),
Budapest, Hungary, 15–17, Vol. 3690 of Lecture Notes in Artificial Intelligence, Springer Verlag,
Berlin et al., pp. 163–172.

Molesini, A., Denti, E. and Omicini, A. (2008). From AO methodologies to MAS infrastructures:
The SODA case study, Engineering Societies in the Agents World VIII: 8th International Workshop,
ESAW 2007, Athens, Greece, October 22-24, 2007, Revised Selected Papers, Springer Verlag, Berlin,
Heidelberg, pp. 300–317.

302 BIBLIOGRAPHY

Molesini, A., Denti, E., Nardini, E. and Omicini, A. (2009). Situated process engineering for
integrating processes from methodologies to infrastructures, Proceedings of the 2009 ACM
symposium on Applied Computing (SAC ’09), ACM Press, New York, NY, USA, pp. 699–706.

Moraitis, P. and Spanoudakis, N. (2004). Combining Gaia and JADE for multi-agent systems
development, Proceedings of the 17th European Meeting on Cybernetics and Systems Research
(EMCSR 2004), Vienna, Austria, April 13 - 16.

Moraitis, P. and Spanoudakis, N. I. (2006). The Gaia2Jade Process for Multi-Agent Systems Devel-
opment., Applied Artificial Intelligence 20(2-4): 251–273.

Morandini, M., Nguyen, D. C., Perini, A., Siena, A. and Susi, A. (2007). Tool-supported development
with Tropos: The conference management system case study, in M. Luck and L. Padgham (eds),
Proceedings of the 8th International Workshop on Agent-Oriented Software Engineering VIII,
AOSE 2007, Honolulu, HI, USA, May 14, 2007, Revised Selected Papers, Vol. 4951 of Lecture Notes
in Computer Science, Springer Verlag, Berlin et al., pp. 182–196.

Müller, J. (1996). The Design of Intelligent Agents: A Layered Approach, Vol. 1177 of Lecture Notes in
Artificial Intelligence, Springer Verlag, Berlin, Heidelberg, New York.

Müller, J. and Pischel, M. (1993). The Agent Architecture InteRRaP: Concept and Application,
Technical Report RR-93-26, DFKI Saarbrücken.

Müller, J. P. and Zambonelli, F. (eds) (2006). Agent-Oriented Software Engineering VI, 6th Interna-
tional Workshop, AOSE 2005, Utrecht, The Netherlands, July 25, 2005. Revised and Invited Papers,
Vol. 3950 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al.

Newcomb, P. (2005). Architecture-driven modernization (ADM), Proceedings of the 12th Working
Conference on Reverse Engineering (WCRE ’05), IEEE Computer Society, Washington, DC, USA,
p. 237.

Newell, A. and Simon, H. (1976). Computer science as empirical enquiry, Communications of the
ACM 19(3): 112–126.

Nguyen, C. D., Perini, A. and Tonella, P. (2008). ecat: a tool for automating test cases generation and
execution in testing multi-agent systems, In Proceedings of the 7th international joint conference
on Autonomous agents and multiagent systems (AAMAS ’08), International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC, pp. 1669–1670.

Nguyen, X. T. and Kowalczyk, R. (2006). WS2JADE: Integrating Web Service with Jade agents,
Technical Report SUTICT-TR2005.03, Faculty of Information and Communication Technologies
Centre for Intelligent Agents and Multi-Agent Systems.

Nissen, M. E. (2000). Supply chain process and agent design for e-commerce, 33rd Hawaii
International Conference on System Sciences 6: 6021.

Nunes, I., Cirilo, E., de Lucena, C. J. P., Sudeikat, J., Hahn, C. and Gomez-Sanz, J. J. (2011). A
survey on the translation from agent oriented specifications to code, in M.-P. Gleizes and J. J.
Gomez-Sanz (eds), Agent-Oriented Software Engineering X: 10th International Workshop, AOSE
2009, Budapest, Hungary, May 11-12, 2009, Revised Selected Papers, Vol. 6038 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin et al., pp. 169–179.

BIBLIOGRAPHY 303

Nunes, I., Kulesza, U., Nunes, C. and de Lucena, C. J. P. (2009). A domain engineering process for
developing multi-agent systems product lines, in C. Sierra, C. Castelfranchi, K. S. Decker and
J. S. Sichman (eds), 8th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2009), Budapest, Hungary, May 10-15, 2009, Volume 2, IFAAMAS, Richland, SC,
pp. 1339–1340.

Object Management Group (1999). Requirements for UML Profiles, 1.0 edn.

Object Management Group (2003a). MDA Guide Version 1.0.1, Document omg/03-06-01, June
2003, http://www.omg.org/docs/omg/03-06-01.pdf.

Object Management Group (2003b). UML 2.0 Superstructure Specification, Document ptc/03-08-
02, August 2003, http://www.omg.org/docs/ptc/03-08-02.pdf.

Object Management Group (2004). Meta Object Facility (MOF) 2.0 Core Specification, Document
ptc/04-10-15, October 2004, http://www.omg.org/docs/ptc/04-10-15.pdf.

Object Management Group (2005). Ontology Definition Metamodel Third Revised Submission to
OMG/ RFP ad/2003-03-40, Object Modeling Group.

Object Management Group (2006). Business process modeling notation specification, OMG final
adopted specification.

Object Management Group (2007). Software & systems process engineering meta-model, v2.0
(spem 2.0), Technical report, Object Management Group (OMG).

Object Management Group (2008a). Meta Object Facility (MOF) 2.0 Query/View/Transformation,
Specification Version 1.0, Object Management Group.

Object Management Group (2008b). Service oriented architecture Modeling Language (SoaML)–
Specification for the UML Profile and Metamodel for Services (UPMS). Revised Submis-
sion, Finalization Task Force beta 2 document, OMG document ad/2008-11-01; available at:
http://www.omg.org/spec/SoaML/20091101.

Object Management Group (2008c). Software & systems process engineering meta-model spec-
ification, version 2.0 (SPEM 2.0). OMG document number formal/2008-04-01, available at:
http://www.omg.org/spec/spem/2.0/pdf.

Object Management Group (2009a). Agent Metamodel and Profile (AMP), OMG Initial Submission,
OMG document: ad/2009-08-04.

Object Management Group (2009b). Service oriented architecture Modeling Language (SoaML)–
Specification for the UML Profile and Metamodel for Services (UPMS). OMG Adopted Speci-
fication, Finalization Task Force beta 2 document, OMG document number: ptc/2009-12-09;
available at: http://www.omg.org/spec/SoaML/20091101.

Odell, J. (2002). Objects and agents compared, Journal of Object Technology 1(2): 41–53.

Odell, J. (2007). Agents: A necessary ingredient in today’s highly collaborative world, Business
Technology Trends & Impacts, Council Opinion.

Odell, J., Giorgini, P. and Müller, J. P. (eds) (2004). Agent-Oriented Software Engineering V, 5th
International Workshop, AOSE 2004, New York, NY, USA, July 19, 2004, Revised Selected Papers,
Vol. 3382 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al.

304 BIBLIOGRAPHY

Odell, J., Nodine, M. H. and Levy, R. (2005). A metamodel for agents, roles, and groups, in J. Odell,
P. Giorgini and J. P. Müller (eds), Proceedings of the 5th International Workshop on Agent-Oriented
Software Engineering (AOSE ’04), Vol. 3382 of Lecture Notes in Computer Science, Springer Verlag,
Berlin et al., pp. 78–92.

Odell, J., Parunak, H. and Bauer, B. (2000). Extending UML for agents, in G. Wagner, I. Lesperance
and E. Yu (eds), Proceedings of the Agent-Oriented Information Systems Workshop at the 17th
National conference on Artificial Intelligence, pp. 3–17.

Odell, J., Parunak, H. V. D. and Fleischer, M. (2002). The role of roles in designing effective
agent organizations, in A. F. Garcia, C. J. P. de Lucena, F. Zambonelli, A. Omicini and J. Castro
(eds), Software Engineering for Large-Scale Multi-Agent Systems, Research Issues and Practical
Applications, pp. 27–38.

Oldevik, J. (2006). MOFScript Eclipse plug-in: Metamodel-based code generation, Eclipse Technol-
ogy eXchange workshop (eTX) at the 20th European Conference on Object-Oriented Programming
(ECOOP 2006).

Oldevik, J., Neple, T., Gronmo, R., Aagedal, J. O. and Berre, A.-J. (2005). Toward standardised model
to text transformations, in A. Hartman and D. Kreische (eds), Model Driven Architecture - Foun-
dations and Applications, First European Conference, ECMDA-FA 2005, Nuremberg, Germany,
November 7-10, 2005, Proceedings, Vol. 3748 of Lecture Notes in Computer Science, Springer
Verlag, Berlin et al., pp. 239–253.

Oluyomi, A. (2006). Patterns and protocols for agent oriented software development, PhD thesis,
The University of Melbourne.

Omicini, A. (2001). SODA: societies and infrastructures in the analysis and design of agent-
based systems, First International Workshop on Agent-oriented Software Engineering (AOSE ’00),
Springer Verlag, Secaucus, NJ, USA, pp. 185–193.

Padgham, L. and Liu, W. (2007). Internet collaboration and service composition as a loose form of
teamwork, Journal of Network and Computer Applications 30(3): 1116–1135.

Padgham, L. and Luck, M. (2007). Introduction to AOSE tools for the conference management
system, in M. Luck and L. Padgham (eds), Proceedings of the 8th International Workshop on
Agent-Oriented Software Engineering VIII, AOSE 2007, Honolulu, HI, USA, May 14, 2007, Revised
Selected Papers, Vol. 4951 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al.,
pp. 164–167.

Padgham, L. and Winikoff, M. (2002a). Prometheus: a methodology for developing intelligent
agents, Proceedings of the First International Joint Conference on Autonomous Agents & Multi-
agent Systems, AAMAS 2002, July 15-19, 2002, Bologna, Italy,, ACM Press, New York, NY, USA,
pp. 37–38.

Padgham, L. and Winikoff, M. (2002b). Prometheus: a pragmatic methodology for engineering
intelligent agents, Proceedings of the OOPSLA 2002 Workshop on Agent-Oriented Methodologies,
pp. 97–108.

Padgham, L. and Zambonelli, F. (eds) (2007). Agent-Oriented Software Engineering VII, 7th Inter-
national Workshop, AOSE 2006, Hakodate, Japan, May 8, 2006, Revised and Invited Papers, Vol.
4405 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al.

BIBLIOGRAPHY 305

Padgham, L., Thangarajah, J. and Winikoff, M. (2007a). AUML protocols and code generation in the
Prometheus design tool, Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’07), ACM Press, New York, pp. 1–2.

Padgham, L., Thangarajah, J. and Winikoff, M. (2007b). The Prometheus design tool - a conference
management system case study, in M. Luck and L. Padgham (eds), Proceedings of the 8th
International Workshop on Agent-Oriented Software Engineering VIII, AOSE 2007, Honolulu,
HI, USA, May 14, 2007, Revised Selected Papers, Vol. 4951 of Lecture Notes in Computer Science,
Springer Verlag, Berlin et al., pp. 197–211.

Padgham, L., Winikoff, M., DeLoach, S. and Cossentino, M. (2008). A unified graphical notation for
AOSE, in M. Luck and J. Gomez-Sanz (eds), Proceedings of the Ninth International Workshop on
Agent-Oriented Software Engineering (AOSE-2008) at the Seventh International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS 2008), Estoril, Portugal. May, 2008,
pp. 116–130.

Panzarasa, P. and Jennings, N. (2001). The organization of sociality: A manifest for a new science of
multi-agent systems, Proceedings of the 10th Workshop on Multi-agent Systems (MAAMAW’01),
Annecy, France, Lecture Notes in Artificial Intelligence, Springer Verlag, Berlin et al.

Papasimeon, M. and Heinze, C. (2001). Extending the UML for designing JACK agents, Proceedings
of the 13th Australian Software Engineering Conference (ASWEC 01), IEEE Computer Society,
Washington, DC, USA, p. 89.

Papazoglou, M. and Georgakopoulos, D. (2003). Service-oriented computing, Communications of
the ACM 46(10): 25–28.

Parunak, H. and Odell, J. (2002). Representing social structure in UML, Agent-Oriented Software
Engineering II, Vol. 2222/2002 of Lecture Notes in Computer Science, Springer Verlag, Berlin et
al., pp. 1–16.

Parunak, H. V. D. (1997). Go to the ant: Engineering principles from natural agent systems, Annals
of Operations Research 75: 69–101.

Patrascoiu, O. (2004). YATL: Yet another transformation language, Proceedings of First European
Workshop MDA (MDA-IA), University of Twente, the Nederlands, January 2004, pp. 83–90.

Pavón, J., Gómez-Sanz, J. J. and Fuentes-Fernández, R. (2005). The INGENIAS methodology and
tools, in B. Henderson-Sellers and P. Giorgini (eds), Agent-Oriented Methodologies, Idea Group
Publishing, article IX, pp. 236–276.

Pavón, J. and Jorge (2003). Agent oriented software engineering with INGENIAS, in V. Marik,
J. Müller and M. Pechoucek (eds), Multi-Agent Systems and Applications III, Vol. 2691 of Lecture
Notes in Computer Science, Springer Verlag, Berlin et al., pp. 394–403.

Pavón, J., Gómez-Sanz, J. J. and Fuentes, R. (2006). Model driven development of multi-agent
systems, in A. Rensink and J. Warmer (eds), Model Driven Architecture - Foundations and
Applications, Second European Conference, ECMDA-FA 2006, Bilbao, Spain, July 10-13, 2006,
Proceedings, Vol. 4066 of Lecture Notes in Computer Science, Springer Verlag, pp. 284–298.

Payne, T. R. (2008). Web Services from an agent perspective, IEEE Intelligent Systems 23(2): 12–14.

Pe na, J., Hinchey, M. G., Resinas, M., Sterritt, R. and Rash, J. L. (2007). Designing and managing
evolving systems using a MAS product line approach, Sci. Comput. Program. 66(1): 71–86.

306 BIBLIOGRAPHY

Penserini, L., Perini, A., Susi, A. and Mylopoulos, J. (2006). From stakeholder intentions to software
agent implementations, in E. Dubois and K. Pohl (eds), Proceedings of the Advanced Information
Systems Engineering, 18th International Conference (CAiSE’06), Vol. 4001 of Lecture Notes in
Computer Science, Springer Verlag, Berlin et al., pp. 465–479.

Penserini, L., Perini, A., Susi, A. and Mylopoulos, J. (2007). High variability design for software
agents: Extending Tropos, ACM Transactions on Autonomous and Adaptive Systems (TAAS)
2(4): 16.

Peres, J. and Bergmann, U. (2005). Experiencing AUML for MAS modeling: A critical view, Proceed-
ings of Software Engineering for Agent-Oriented Systems (SEAS), pp. 11–20.

Perini, A. and Susi, A. (2005). Automating Model Transformations in Agent-Oriented modelling,
Agent-Oriented Software Engineering (AOSE-2005), Springer Verlag, Berlin et al., pp. 167–178.

Peyravi, F. and Taghyareh, F. (2007). Applying MAS-CommonKADS methodology in knowledge
management problem in call centers, Proceedings of the 25th conference on IASTED International
Multi-Conference (SE’07), ACTA Press, Anaheim, CA, USA, pp. 99–104.

Pfeffer, J. and Salancik, G. (2003). The External Control of Organizations: A Resource Dependence
Perspective, new edition edn, Stanford Business Books, Stanford, CA.

Picard, G. and Gleizes, M.-P. (2004). The ADELFE methodology, in F. Bergenti, M.-P. Gleizes
and F. Zambonelli (eds), Methodologies and Software Engineering for Agent Systems, Kluwer
Academic Press, pp. 157–176.

Plotkin, G. (2004). The origins of structural operational semantics, Journal of Logic and Algebraic
Programming 60–61: 3–15.

Pokahr, A., Braubach, L. and Lamersdorf, W. (2005a). A BDI architecture for goal deliberation, in
F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh and Wooldridge (eds), Proceedings of the
4th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’05),
ACM Press, New York, NY, USA, pp. 1295–1296.

Pokahr, A., Braubach, L. and Lamersdorf, W. (2005b). Jadex: A BDI reasoning engine, in R. Bordini,
M. Dastani, D. J. and A. El Fallah Seghrouchni (eds), Multi-Agent Programming: Languages,
Platforms and Applications, Vol. 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, Springer Verlag, Berlin, pp. 149–174.

Poole, J. and Mellor, D. (2001). Common Warehouse Metamodel: An Introduction to the Standard
for Data Warehouse Integration, John Wiley & Sons, Inc., New York, NY, USA.

Poslad, S., Buckle, P. and Hadingham, R. (2000). The FIPA-OS agent platform: Open source for
open standards, Proceedings of the 5th International Conference and Exhibition on the Practical
Application of Intelligent Agents and Multi-Agents, pp. 355–368.

Quatrani, T. (2000). Visual modeling with Rational Rose 2000 and UML (2nd ed.), Addison-Wesley
Longman Ltd., Essex, UK, UK.

Quenum, J. G., Aknine, S., Briot, J.-P. and Honiden, S. (2006). A modeling framework for generic
agent interaction protocols, Declarative Agent Languages and Technologies IV, Vol. 4327 of
Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 207–224.

BIBLIOGRAPHY 307

Raber, D. (2009). A model-driven approach for the integration of multiagent systems and service-
oriented architectures in the steel industry, Master’s thesis, Universität des Saarlandes.

Radziah, M., Safaai, D. and Hany, A. H. (2006). MaSE2Jadex: a roadmap to engineer JADEX
agents from MaSE methodology, International Journal of Intelligent Systems and Technologies
1(3): 245–251.

Rahwan, I., Juan, T. and Sterling, L. (2006). Integrating social modelling and agent interaction
through goal-oriented analysis, Computer Systems Science Engineering.

Rahwan, I., Sonenburg, L., Jennings, N. and McBurney, P. (2007). Stratum: A methodology for
designing heuristic agent negotiation strategies., International Journal of Applied Artificial
Intelligence 21(6): 489–527.

Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language, Proceed-
ings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW ’96), Lecture Notes in Physics, Springer Verlag, Secaucus, NJ, USA, pp. 42–55.

Rao, A. S. and Georgeff, M. P. (1991). Modeling agents within a BDI-architecture, in R. Fikes and
E. Sandewall (eds), KR’91, Morgan Kaufmann, Cambridge, Mass., pp. 473–484.

Rao, A. S. and Georgeff, M. P. (1995). BDI-agents: from theory to practice, in V. Lesser (ed.),
Proceedings of the First Intl. Conference on Multiagent Systems, AAAI Press/The MIT Press, San
Francisco, pp. 312–319.

Rimassa, G., Greenwood, D. and Kernland, M. E. (2006). The Living Systems Technology Suite: An
autonomous middleware for autonomic computing, Proceedings of the International Conference
on Autonomic and Autonomous Systems (ICAS ’06), 16-21 July 2006, Silicon Valley, California,
USA, IEEE Computer Society, Washington, DC, USA, p. 33.

Roe, D., Broda, K., Russo, A. and Russo, R. (2003). Mapping UML models incorporating OCL
constraints into Object-Z, Technical Report 2003/9, Imperial College, 180 Queen’s Gate, London,
2002.

Rougemaille, S., Arcangeli, J.-P., Gleizes, M.-P. and Migeon, F. (2008). ADELFE design, AMAS-
ML in action, International Workshop on Engineering Societies in the Agents World (ESAW),
Saint-Etienne, Springer Verlag, Berlin et al., p. electronic medium.

Royce, W. W. (1987). Managing the development of large software systems: concepts and tech-
niques, Proceedings of the 9th international conference on Software Engineering (ICSE ’87), IEEE
Computer Society Press, Los Alamitos, CA, USA, pp. 328–338.

Rupert, M., Hassas, S., Li, C. and Sherwood, J. (2007). Simulation of online communities using MAS
social and spatial organisations, International Journal of Information Technology 4(3): 183–188.

Russell, S. and Norvig, P. (1995). Artificial Intelligence, A Modern Approach, 1st edn, Prentice Hall,
Englewood Cliffs, New Jersey.

Sadovykh, A., Hahn, C., Panfilenko, D., Shafiq, O. and Limyr, A. (2009). SOA and SHA tools
developed in SHAPE project, in R. Vogel (ed.), Fifth European Conference on Model-Driven
Architecture Foundations and Applications: Proceedings of the Tools and Consultancy Track.
European Conference on Model-Driven Architecture (ECMDA-09), in Conjunction with Fifth
European Conference on Model-Driven Architecture Foundations and Applications, June 23-
26, Enschede, Netherlands, Vol. 09-12 of CTIT Proceedings Series, WP, University of Twente,
Enschede, University of Twente, Enschede, The Netherlands, p. 113.

308 BIBLIOGRAPHY

Savarimuthu, B., Purvis, M., Purvis, M. and Cranefield, S. (2005). Integrating Web services with
agent based workflow management system (WfMS), IEEE/WIC/ACM International Conference
on Web Intelligence, IEEE Computer Society, Washington, DC, USA, pp. 471–474.

Schäfer, T., Knapp, A. and Merz, S. (2001). Model checking UML state machines and collaborations,
Electronic Notes in Theoretical Computer Science 55(3): 357–369.

Schillo, M. (2004). Multiagent Robustness: Autonomy vs. Organisation, PhD thesis, Universität des
Saarlandes.

Schillo, M., Kray, C. and Fischer, K. (2002). The eager bidder problem: a fundamental problem of
DAI and selected solutions, Proceedings of the first international joint conference on Autonomous
agents and multiagent systems (AAMAS ’02), ACM Press, New York, NY, USA, pp. 599–606.

Schmidt, D. (1995). Using design patterns to develop reusable object-oriented communication
software, Communications of the ACM 38(10): 65–74.

Searle, J. R. (1969). Speech Acts: An Essay in the Philosophy of Language, Cambridge University
Press, Cambridge.

Serrano, J. M. and Ossowski, S. (2004). On the impact of Agent Communication Languages on the
implementation of agent systems, Proceedings of the Eight International Workshop CIA 2004 on
Cooperative Information Agents, Vol. 3191 of Lecture Notes in Computer Science, Springer Verlag,
Berlin et al., pp. 92–106.

Shehory, O. and Sturm, A. (2001). Evaluation of modeling techniques for agent-based systems,
Proceedings of the fifth international conference on Autonomous agents (AGENTS ’01), ACM Press,
New York, NY, USA, pp. 624–631.

Shen, W., Compton, K. and Huggins, J. K. (2002). A toolset for supporting UML static and dynamic
model checking, Proceedings of the 26th International Computer Software and Applications
Conference (COMPSAC 2002), IEEE Computer Society, Los Alamitos, CA, USA, pp. 147–152.

Sheng, Q., Benatallah, B., Dumas, M. and Mak, E. (2002). Self-serv: A platform for rapid com-
position of Web services in a peer-to-peer environment, Proceedings of the 28th International
Conference on Very Large Databases, pp. 1051–1054.

Shoham, Y. (1993). Agent-oriented programming, Artificial Intelligence 60(1): 51–92.

Shoham, Y. (1997). An overview of agent-oriented programming, Software agents, MIT Press,
Cambridge, MA, USA, pp. 271–290.

Singh, M. and Huhns, M. (2005). Service Oriented Architecture: Semantics, Processes, Agents, Wiley
John & Sons, Inc., Chichster, West Sussex, UK.

Smith, D. C., Cypher, A. and Spohrer, J. (1994). KidSim: Programming agents without a program-
ming language, Communications of the ACM 37(3): 55–67.

Smith, G. (2000). The Object-Z Specification Language, Vol. 1 of Advances in Formal Methods,
Kluwer Academic Publishers, Norwell, MA, USA.

Smith, G. and Hayes, I. J. (2000). Structuring real-time Object-Z specifications, Proceedings of the
Second International Conference on Integrated Formal Methods, Vol. 1945 of Lecture Notes In
Computer Science, Springer Verlag, London, pp. 97–115.

BIBLIOGRAPHY 309

Smith, R. G. (1988). The contract net protocol: high-level communication and control in a
distributed problem solver, Distributed Artificial Intelligence, Morgan Kaufmann Publishers,
San Mateo, CA, USA, pp. 357–366.

Spanoudakis, N. and Moraitis, P. (2007). The Agent SystEms MEthodology (ASEME): A prelimi-
nary report, Proceedings of the 5th European Workshop on Multi-Agent Systems (EUMAS’07),
Hammamet, Tunisia, 2007.

Spanoudakis, N. and Moraitis, P. (2009). Gaia agents implementation through models transforma-
tion, Principles of Practice in Multi-Agent Systems, 12th International Conference on Principles
of Practice in Multi-Agent Systems (PRIMA’09), Nagoya, Japan, 2009, Vol. 5925/2009 of Lecture
Notes in Computer Science, Berlin et al., pp. 127–142.

Spanoudakis, N. I. and Moraitis, P. (2008a). The agent modeling language (AMOLA), in D. Dochev,
M. Pistore and P. Traverso (eds), Proceedings of the Artificial Intelligence: Methodology, Systems,
and Applications, 13th International Conference, AIMSA 2008, Varna, Bulgaria, September 4-6,
2008, Vol. 5253 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 32–44.

Spanoudakis, N. I. and Moraitis, P. (2008b). An agent modeling language implementing protocols
through capabilities, Proceedings of the 2008 IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology, Sydney, NSW, Australia, December 9-12, 2008, IEEE Computer Society,
Washington, DC, USA, pp. 578–582.

Spivey, J. M. (1992). The Z Notation: A Reference Manual, 2nd edn, Prentice Hall International
Series in Computer Science.

Stormer, H. and Knorr, K. (2001). AWA - Eine Architektur eines agenten-basierten Workflow-
Systems, in H. H. Buhl, A. Huther and B. Reitwiesner (eds), Tagungsband 5. Internationale
Tagung Wirtschaftsinformatik (WI 2001), pp. 147–160.

Stoy, J. E. (1977). Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory, MIT Press, Cambridge, MA, USA.

Sudeikat, J., Braubach, L., Pokahr, A. and Lamersdorf, W. (2004). Evaluation of agent-oriented soft-
ware methodologies - examination of the gap between modeling and platform, in P. Giorgini, J. P.
Müller and J. Odell (eds), Agent-Oriented Software Engineering V, Fifth International Workshop
AOSE 2004, Springer Verlag, Berlin et al., pp. 126–141.

Susi, A., Perini, A., Giorgini, P. and Mylopoulos, J. (2005). The Tropos metamodel and its use,
Informatica 29(4): 401–408.

Swithinbank, P., Chessell, M., Gardner, T., Griffin, C., Man, J., Wylie, H. and Yusuf, L. (2005). Patterns:
Model-Driven Development Using IBM Rational Software Architect, IBM Corp., Riverton, NJ,
USA.

Sztipanovits, J. and Karsai, G. (1997). Model-integrated computing, Computer 30(4): 110–111.

Taveter, K. A. (2004). A Multi-Perspective Methodology for Agent-. Oriented Business Modelling and
Simulation, PhD thesis, Tallinn University of Technology.

Taveter, K. and Wagner, G. (2008). Agent-oriented modeling and simulation of distributed manufac-
turing, in J. Rennard (ed.), Handbook of Research on Nature-Inspired Computing for Economics
and Management, Idea Group Reference, pp. 527–540.

310 BIBLIOGRAPHY

Thangarajah, J., Padgham, L. and Winikoff, M. (2005). Prometheus design tool, Proceedings of the
Fourth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
ACM Press, New York, NY, USA, pp. 127–128.

Tran, Q.-N. N. and Low, G. C. (2005). Comparison of ten agent-oriented methodologies, Agent-
Oriented Methodologies, Idea Group, chapter XII, pp. 341–367.

Tratt, L. (2005). Model transformations and tool integration, Software and System Modeling
2(4): 112–122.

Trencansky, I. and Cervenka, R. (2005). Agent modeling language (AML): A comprehensive ap-
proach to modeling MAS, Informatica 29(4): 391–400.

Tveit, A. (2001). A survey of agent-oriented software engineering, Proceedings of the first NTNU
Computer Science Graduate Student (CSGS) Conference (http://www.amundt.org).

van Deursen, A., Klint, P. and Visser, J. (2000). Domain-specific languages: an annotated bibliogra-
phy, SIGPLAN Not. 35(6): 26–36.

van Deursen, A., Visser, E. and Warmer, J. (2007). Model-driven software evolution: A research
agenda, Technical Report TUD-SERG-2007-006, Delft University of Technology, Software Engi-
neering Research Group.

Verhagen, H. (2000). Norm Autonomous Agents, PhD thesis, Stockholm University.

Vilkomir, S., Ghose, A. and Krishna, A. (2004). Combining agent-oriented conceptual modeling
with formal methods, Proceedings of the Australian Software Engineering Conference (2004),
pp. 147–155.

Wagner, G. (2002). A UML profile for external AOR models, in F. Giunchiglia, J. Odell and G. Weiß
(eds), Agent-Oriented Software Engineering III, Third International Workshop, AOSE 2002,
Bologna, Italy, July 15, 2002, Revised Papers and Invited Contributions, Vol. 2585 of Lecture
Notes in Computer Science, Springer Verlag, Berlin et al., pp. 138–149.

Wagner, G. (2003). The Agent-Object-Relationship meta-model: Towards a unified view of state
and behavior, Information Systems 28(5): 475–504.

Wagner, G. and Taveter, K. (2004). Towards radical agent-oriented software engineering processes
based on AOR modeling, Proceedings of the IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology (IAT ’04), IEEE Computer Society, Los Alamitos, CA, USA, pp. 509–512.

Walton, D. N. and Krabbe, E. C. W. (1995). Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning, SUNY Press, Albany NY, USA.

Wang, H. H., Gibbins, N., Payne, T., Saleh, A. and Sun, J. (2007a). A formal semantic model
of the Semantic Web Service Ontology (WSMO), in J. S. Dong and J. Sun (eds), Twelfth IEEE
International Conference on Engineering of Complex Computer Systems, IEEE Computer Society
Press, Washington, DC, USA, pp. 111–120.

Wang, H. H., Saleh, A., Payne, T. and Gibbins, N. (2007b). Formal specification of OWL-S with
Object-Z: the static aspect, Proceedings of the IEEE/WIC/ACM International Conference on Web
Intelligence (WI ’07), IEEE Publisher Society, Washington, DC, USA, pp. 431–434.

BIBLIOGRAPHY 311

Warmer, J. and Kleppe, A. (2003). The Object Constraint Language: Getting Your Models Ready for
MDA, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Warwas, S. (2007). Model-driven approach for the integration of service-oriented architectures with
agent technology, Master’s thesis, Universität des Saarlandes.

Warwas, S. and Hahn, C. (2008). The concrete syntax of the platform independent modeling
language for multiagent systems, Proceedings of the Agent-based Technologies and Applications
for Enterprise InterOPerability (ATOP 2008) at AAMAS 2008.

Warwas, S. and Hahn, C. (2009a). The DSML4MAS development environment, in C. Sierra,
C. Castelfranchi, K. S. Decker and J. S. Sichman (eds), Proceedings of the 8th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary,
May 10-15, 2009, Vol. 2, IFAAMAS, Richland, SC, pp. 1379–1380.

Warwas, S. and Hahn, C. (2009b). The platform independent modeling language for multiagent
systems, Agent-Based Technologies and Applications for Enterprise Interoperability, Vol. 25 of
Lecture Notes in Business Information Processing, Springer Verlag, Berlin et al., pp. 129–153.

Warwas, S., Hahn, C. and Fischer, K. (2009). A visual development environment for Jade, in C. Sierra,
C. Castelfranchi, K. S. Decker and J. S. Sichman (eds), Proceedings of the 8th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary,
May 10-15, 2009, Vol. 2, IFAAMAS, Richland, SC, pp. 1349–1350.

Watt, D. A. (1990). Programming language concepts and paradigms, Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

Weerawarana, S., Curbera, F., Leymann, F., Storey, T. and Ferguson, D. F. (2005). Web Service Plat-
form Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging,
and More, Prentice Hall PTR, Upper Saddle River, NJ, USA.

Weiss, G. (ed.) (1999). Multiagent systems: A modern approach to distributed artificial intelligence,
MIT Press, Cambridge, MA, USA.

Weyns, D., Omicini, A. and Odell, J. (2007). Environment as a first class abstraction in multia-
gent systems, International Journal on Autonomous Agents and Multi-Agent Systems (JAAMAS)
14(1): 5–30.

White, T. (2000). SynthECA: A Synthetic Ecology of Chemical Agents, PhD thesis, Carleton University.

Winikoff, M. (2005). Towards making Agent UML practical: A textual notation and a tool, Proceed-
ings of the Fifth International Conference on Quality Software (QSIC ’05), IEEE Computer Society,
Washington, DC, USA, pp. 401–412.

Wood, M. F. and DeLoach, S. A. (2001). An overview of the multiagent systems engineering
methodology, First International Workshop on Agent-oriented Software Engineering (AOSE 2000),
Springer Verlag, Berlin et al., pp. 207–221.

Woodcock, J. and Davies, J. (1996). Using Z: Specification, Refinement, and Proof, Prentice-Hall
International, Upper Saddle River, NJ, USA.

Wooldridge, M. (1997). Agent-based software engineering, IEEE Proc Software Engineering
144(1): 26–37.

312 BIBLIOGRAPHY

Wooldridge, M. (2000a). Intelligent agents, in G. Weiss (ed.), Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence, MIT Press, pp. 27–77.

Wooldridge, M. (2000b). Reasoning about Rational Agents, MIT Press, Cambridge, Massachusetts.

Wooldridge, M. and Jennings, N. (1995a). Agent theories, architectures, and languages: A survey,
in M. Wooldridge and N. Jennings (eds), Intelligent Agents, Vol. 890 of Lecture Notes in Computer
Science, Springer Verlag, Berlin et al., pp. 1–39.

Wooldridge, M. J. and Jennings, N. R. (1995b). Intelligent Agents: Theory and Practice, Knowledge
Engineering Review 10(2): 115–152.

Wooldridge, M. J., Weiss, G. and Ciancarini, P. (eds) (2002). Agent-Oriented Software Engineering II,
Second International Workshop, AOSE 2001, Montreal, Canada, May 29, 2001, Revised Papers and
Invited Contributions, Vol. 2222 of Lecture Notes in Computer Science, Springer Verlag, Berlin et
al.

Wooldridge, M., Jennings, N. and Kinny, D. (2000). The Gaia methodology for agent-oriented
analysis and design, International Journal on Autonomous Agents and Multi-Agent Systems
(JAAMAS) 3(3): 285–312.

Worldwide Web Consortium (2004). Standard glossary of software engineering.

Xiao, L. and Greer, D. (2005). Modeling, auto-generation and adaptation of multi-agent systems,
in T. Halpin, K. Siau and J. Krogstie (eds), Proceedings of the Workshop on Evaluating Modeling
Methods for Systems Analysis and Design (EMMSAD’05), held in conjunction with the 17th
Conference on Advanced Information Systems (CAiSE’05), Porto, Portugal, EU, FEUP, Porto,
Portugal, pp. 605–616.

Xiao, L. and Greer, D. (2007). Towards agent-oriented model-driven architecture, European Journal
of Information Systems 16(4): 390–406.

Xu, H. and Shatz, S. M. (2003). ADK: An agent development kit based on a formal design model for
multi-agent systems, Automated Software Engineering 10(4): 337–365.

Xu, H. and Zhang, X. (2005). A methodology for role-based modeling of open multi-agent software
systems, in C.-S. Chen, J. Filipe, I. Seruca and J. Cordeiro (eds), ICEIS 2005, Proceedings of the
Seventh International Conference on Enterprise Information Systems, Miami, USA, May 25-28,
2005, pp. 246–253.

Xueguang, C. and Haigang, S. (2004). Further extensions of FIPA contract net protocol: threshold
plus DoA, Proceedings of the 2004 ACM symposium on Applied computing (SAC ’04), ACM Press,
New York, NY, USA, pp. 45–51.

Yan, Q., jun Shan, L., jun Mao, X. and chang Qi, Z. (2003). RoMAS: A role-based modeling method
for multi-agent system, in J. P. Li, J. Zhao, J. Liu and N. Z. J. Yen (eds), Proceedings of International
Conference on Active Media Technology 2003, World Scientific Publishing, pp. 156–161.

Yu, E. (1995). Modeling Strategic Relationships for Process Reengineering, PhD thesis, Department
of Computer Science, University of Toronto.

Zachman, J. A. (1987). A framework for information systems architecture, IBM Systems Journal
26(3): 277–293.

BIBLIOGRAPHY 313

Zaha, J. M., Barros, A. P., Dumas, M. and ter Hofstede, A. H. M. (2006a). Let’s Dance: A language for
service behavior modeling, in R. Meersman and Z. Tari (eds), On the Move to Meaningful Internet
Systems 2006: CoopIS, DOA, GADA, and ODBASE, OTM Confederated International Conferences,
CoopIS, DOA, GADA, and ODBASE 2006, Montpellier, France, October 29 - November 3, 2006.
Proceedings, Part I, Vol. 4275 of Lecture Notes in Computer Science, Springer Verlag, Berlin et al.,
pp. 145–162.

Zaha, J. M., Dumas, M., ter Hofstede, A., Barros, A. and Decker, G. (2006b). Service interaction
modeling: Bridging global and local views, Proceedings of the Tenth IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2006), 16-20 October 2006, Hong Kong, China,
IEEE Computer Society, Washington, DC, USA, pp. 45–55.

Zambonelli, F. and Parunak, H. (2002). From design to intentions: Signs of a revolution, First
International Joint Conference on Autonomous Agents & Multiagent Systems, AAMAS 2002, July
15-19, 2002, Bologna, Italy, ACM Press, New York, NY, USA, pp. 455–456.

Zambonelli, F., Jennings, N. and Wooldridge, M. (2003). Developing multiagent systems: the Gaia
methodology, ACM Transactions on Software Engineering and Methodology 12(3): 417–470.

Zambonelli, F., Jennings, N. R. and Wooldridge, M. (2001). Organisational rules as an abstraction
for the analysis and design of multi-agent systems, International Journal of Software Engineering
and Knowledge Engineering 11(3): 303–328.

Zeng, L., Ngu, A., Benatallah, B. and O’Dell, M. (2001). An agent-based approach for supporting
cross-enterprise workflows, Proceedings of the 12th Australasian Database Conference (Gold
Coast, Queensland, Australia, January 29 - February 01, 2001). ACM International Conference
Proceeding Series, Vol. 10, IEEE Computer Society, Washington, DC, pp. 123–130.

Zinnikus, I., Hahn, C. and Fischer, K. (2008a). A model-driven, agent-based approach for a
rapid integration of interoperable services, in K. Mertins, R. Ruggaber, K. Popplewell and X. Xu
(eds), Enterprise Interoperability III. New Challenges and Approaches, Springer Verlag, London,
pp. 651–663.

Zinnikus, I., Hahn, C. and Fischer, K. (2008b). A model-driven, agent-based approach for the
integration of services into a collaborative business process, in L. Padgham, D. C. Parkes, J. Müller
and S. Parsons (eds), Proceedings of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2008), Estoril, Portugal, May 12-16, 2008, Vol. 1, International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp. 241–248.

Zinnikus, I., Hahn, C. and Fischer, K. (2010). Agent-driven semantic interoperability for cross-
organisational business processes, in G. Mentzas and A. Friesen (eds), Semantic Enterprise
Application Integration for Business Processes: Service-Oriented Frameworks, IGI Global, pp. 61–
89.

Zinnikus, I., Hahn, C., Klein, M. and Fischer, K. (2007). An agent-based, model-driven approach
for enabling interoperability in the area of multi-brand vehicle configuration, in B. J. Krämer,
K.-J. Lin and P. Narasimhan (eds), Service-Oriented Computing - ICSOC 2007, Fifth International
Conference, Vienna, Austria, September 17-20, 2007, Proceedings, Vol. 4749 of Lecture Notes in
Computer Science, Springer Verlag, Berlin, pp. 330–341.

Index

DSML4MAS Diagram
Agent Diagram, 119
Agent Viewpoint, 67
Behavior Diagram, 126
Behavior Viewpoint, 88
Collaboration Diagram, 121
Deployment Diagram, 128
Deployment Viewpoint, 106
Environment Diagram, 127
Environment Viewpoint, 104
Interaction Diagram, 123
Interaction Viewpoint, 81
Multiagent System Diagram, 129
Multiagent System Viewpoint, 64
Organization Diagram, 120
Organization Viewpoint, 71
Role Diagram, 122
Role Viewpoint, 75

Abstraction Levels, 26
Computational Independent Model, 26
Platform Independent Model, 26
Platform Specific Model, 27

Agent Architectures, 17
BDI, 18
Deliberate Architectures, 17
Hybrid Architectures, 18
Reactive Architectures, 17

Building Blocks of MAS, 14
Agent, 16
Environment, 22
Interaction, 20
Multiagent System, 15
Organization, 19

Jack Intelligent Agent
Agent View, 166

Agent, 167
Capability, 168

Event, 168
Plan, 167

Metamodel, 166
Process View, 171

Flow, 173
Node Base, 172
Process, 172

Team View, 169
Named Role, 171
Role, 170
Team, 169
Team Plan, 170

Language-Driven Development, 37
Abstract Syntax, 38
Concrete Syntax, 39
Domain-Specific Languages, 40
Domain-Specific Modeling Languages, 41
Semantics, 39

Meta-Metamodel, 30
Metamodel, 30
Metamodelling, 29
Model, 30
Model Transformation, 31

Horizontal Transformation, 31
Model-to-Model Transformation, 32
Model-to-Text Transformation, 33
Vertical Transformation, 31

Model-Driven Development, 23
Model Driven Architecture, 25
Software Factories, 28

Service-Oriented Architectures, 186
SoaML, 197

Agent, 201
Message Type, 201
Participant, 199
Participant Architecture, 201
Service Capability, 202

314

INDEX 315

Service Contract, 200
Services Architecture, 201

View, 25
Viewpoint, 25

316 INDEX

Appendix

318

A. Remaining Object-Z Specification

A.1 Multiagent View

A.1.1 NamedElement

The concept of NamedElement (see Fig. 4.2) includes a single attribute called name to define
the name of the concepts that inherits from NamedElement like Agent, Interactions, Cooperation,
Environment etc.

The Object-Z class schema of NamedElement is given in Schema A.1.1. This class schema is
rather simple as it only consists of a single variable called name.

NamedElement

name : String [Variables]

Schema A.1.1: Class schema of NamedElement.

A.2 Agent View

A.2.1 Knowledge

The abstract syntax of Knowledge was given in Definition 4.3.3 in Section 4.3.3. The semantics of
Knowledge is given in Schema A.2.1.

Knowledge

NamedElement

value : String; type :↓ Type [Variables]

Schema A.2.1: Class schema of Knowledge.

320 A. Remaining Object-Z Specification

A.3 Interaction View

A.3.1 Break

The Break concept can be used to leave a Loop interaction even if the condition for its end is not
fulfilled. A common application is to prematurely end an infinite loop or end a conditional loop
before its natural end.

Definition A.3.1 (Break in PIM4AGENTS)

A Break refers to a messageFlow that indicates the MessageFlow that needs to be triggered in the case
of this Break.

When a Break is reached, the current execution immediately exits its innermost surrounding Loop
operation and the execution is continued at the MessageFlow the Break refers to.

A.3.2 TimeOut

The class schema of TimeOut is depicted in Schema A.3.2. It includes the variables mode, and
messageFlow. We define the type of Mode as follows.

Mode ::= duration | absolute | relative

TimeOut

mode : Mode; messageFlow :PMessageFlow [Variables]

Schema A.3.1: Class schema of TimeOut.

A.4 Behavioral View

A.4.1 Behavior

The semantics if Behavior is defined through the Object-Z class given in Schema A.4.1.

A.4.2 Parallel

Definition 4.7.7 specifies the abstract syntax of the Parallel concepts, its semantics is given in
Schema A.4.2.

A.4. Behavioral View 321

Behavior

NamedElement

agent :P1 Agent [Variables]

Schema A.4.1: Class schema of Behavior.

Parallel

Split

[Variables]

activeControlFlow =∪{s : startActivities • s.outFlows} [I1]

Schema A.4.2: Class schema of Parallel.

A.4.3 Sequence

A Sequence as a specialization of a StructuredActivity denotes a list of Activities to be executed in a
sequential manner as defined by contained ControlFlows through their sink and source attributes.
Beside using the concept of a Sequence to model the execution of Activities in a sequential manner,
the particular Activities can be linked directly through the ControlFlow concept. However, the
concept of Sequence allows to hide the concrete trace which might be important in the case of very
complex Plans. The abstract syntax is given in Definition A.4.1.

Definition A.4.1 (Sequence in PIM4AGENTS)

A Sequence is given by a 8-tuple S = (name, steps, flows, condition, localKnowledge, inFlow, outFlow,
messageScope)

A Sequence is a StructuredActivity that executes its contained Activities in order. A Sequence like
any other Activity has its own visibility scope. That means that Knowledge related to this Activity
cannot be accessed from the outside of this Sequence.

The construct of Sequence allows to explicitly represent the sequential ordering of Activities. Its
main advantage compared to the direct linking of the Activities through ControlFlows—which
would have the same meaning—is that the information contained within the Sequence can be
hidden which would make sense in case of complex Plans.

In accordance to Schema A.4.3, for any Sequence it must hold that its startActivities have exactly
one outgoing ControlFlow—in other words, branching within a Sequence is forbidden.

A.4.4 Loop

In PIM4AGENTS, a Loop is a point in a Plan where a set of Activities are executed repeatedly until a
certain pre-defined condition evaluates to false. The Loop pattern is a mechanism for allowing

322 A. Remaining Object-Z Specification

Sequence

StructuredActivity

[Variables]

#{cf :∪{s : startActivities • s.outFlow} | cf ∈ ControlFlow} = 1 []
∀ f : flows | f ∈ ControlFlow • f .condition []
condition =∅ []

Schema A.4.3: Class schema of Sequence.

sections of a Plan to be repeated. Is allows looping that is block structured, i.e. pattern may allow
one entry and exit point.

Definition A.4.2 (Loop in PIM4AGENTS)

A Loop is defined by a 9-tuple L = (name, steps, flows, condition, localKnowledge, inFlow, outFlow,
messageScope, postCondition), where:

• postCondition: defines the condition

Loop

StructuredActivity

postCondition :PB [Variables]

#{cf :∪{s : startActivities • s.outFlow} | cf ∈ ControlFlow} = 1 []
condition 6=∅∨ postCondition 6=∅ []
completed ⇔ (∀e : endActivities • e.completed) ∧ condition ∧ postCondition []
∀cf : flows | cf ∈ ControlFlow • cf .condition []

Schema A.4.4: Class schema of Loop.

A.4.5 ParallelLoop

The abstract syntax of ParallelLoop is given by Definition 4.7.9. Its corresponding semantics is
expressed through Schema A.4.5.

A.4.6 Task

The semantics of Task is expressed in Schema A.4.6.

A.4. Behavioral View 323

ParallelLoop

Split

[Variables]

#∪{s : startActivities • s.outFlow} = activeControlFlows = 1 [I1]

Schema A.4.5: Class schema of ParallelLoop.

Task

Activity

[Variables]

controlFlow =∅ [I1]

Schema A.4.6: Class schema of Task.

A.4.7 InternalTask

An InternalTask in PIM4AGENTS is used to define platform-specific information on the PIM level.
For this purpose, the domain designer may want to specify code inside the PIM design that is
translated in an one-to-one fashion between PIM and PSM. The abstract syntax of InternalTask is
given as follows:

Definition A.4.3 (InternalTask in PIM4AGENTS)

An InternalTask is defined by a 8-tuple I = (name, outFlow, inFlow, localKowledge, messageScope,
controlFlow, text, code), where:

• name: defines the name of the InternalTask
• code: reflects the piece of code that is executed within this InternalTask
• text: specifies the piece of text that is given to the outside

The variables outFlow, inFlow, localKnowledge, messageScope, and controlFlow are defined in
accordance to Definition 4.7.10.

The Object-Z class schema of InternalTask is given in Schema A.4.7. Beside the variables formalized
by Definition A.4.3, furthermore, the semantics are restricted by Invariant I1 stating that either code
or text must be specified by the system designer. The InternalTask is completed iff the code/text
has been executed (see Invariant I2) which is expressed by the semantic variable codeExecuted.

A.4.8 Wait

The Wait concept can be used for synchronization of parallel paths. It is formally defined as
follows:

324 A. Remaining Object-Z Specification

InternalTask

Task

code, text :P1 String [Variables]
∆

codeExecuted :B

#code+#text = 1 [I1]
completed ⇔ codeExecuted [I2]

INIT¬codeExecuted
executeCode
∆(codeExecuted)

¬codeExecuted∧codeExecuted′

exit
∆(codeExecuted)

codeExecuted∧¬codeExecuted′

InnerEntry =̂ executeCode
OverallExit =̂ exit

Schema A.4.7: Class schema of InternalTask.

Wait

Task

time :PN; timeout :PTimeOut [Variables]

#timeOut ≤ 1∧#time ≤ 1 [I1]
#time+#timeOut = 1 [I2]

Schema A.4.8: Class schema of Wait.

Definition A.4.4 (Wait in PIM4AGENTS)

A Wait is defined by a 8-tuple W = (name, outFlow, inFlow, localVariable, messageScope, controlFlow,
time, timeOut), where:

• name: defines the name of the Wait
• time: refers to an absolute point in time
• timeOut: refers to a Protocol’s TimeOut that defines the time constraints for this Wait

The variables outFlow, inFlow, localKnowledge, messageScope, and controlFlow are used as specified
in Definition 4.7.10.

The semantics of Wait is given in Schema A.4.8. Invariant I1 ensures that both variables, timeOut
and time, consist of at most of one element. Moreover, the sum of both values is set, in Invariant
I2, to 1, meaning that either a time is defined by the Wait concepts or given by the time variable of
TimeOut.

A.4. Behavioral View 325

A.4.9 Begin

A Begin activity in PIM4AGENTS is used to indicate the begin of a Plan or StructuredActivity. All Ac-
tivities following the Begin activity are immediately instantiated. A Plan or StructuredActivity must
contain only one Begin activity and must not have any incoming ControlFlow or InformationFlow.

Definition A.4.5 (Begin in PIM4AGENTS)

A Begin is defined by a 6-tuple B = (name, inFlow, outFlow, flows, localKnowledge, messageScope)

The formal semantics of Begin is expressed in Schema A.4.9.

Begin

Task

[Variables]
∆ [Semantics Variables]
parentActivity :↓ Activity
activePaths :PControlFlow

activePaths = {o : outFlow | o ∈ ControlFlow ∧ (o.condition ∨ o.condition =∅} []
parentActivity = {a : Activity | self ∈ a.steps} []
inFlow =∅ []
parentActivity ∈ Decision ∧ parentActivity.executionMode = XOR ⇒ #activePaths = 1 []

OverallExit =̂ exit

Schema A.4.9: Class schema of Begin.

A.4.10 End

In analogy with Begin, the End activity marks the end of a Plan or StructuredActivity. The abstract
syntax of End is given in Definition A.4.6.

Definition A.4.6 (End in PIM4AGENTS)

An End is defined by a 6-tuple E = (name, inFlow, outFlow, flows, localKnowledge, messageScope)

The semantics of End is given in Schema A.4.10. The class schema of End inherits from the schema
of Task. Furthermore, it includes the semantic variables

The End activity can only be used in the context of an Plan and StructuredActivity that both
are of the kind Activity and additional containing further Activities. The execution within these
concepts is finalized after invoking the End activity and the execution is returned to the containing
state or invoking Plan. The calling or owning Plan itself is not terminated.

A.4.11 Fail

Apart from the concepts Begin and End, a Fail characterizes an unwanted trace within a Plan
that denoted which actions (e.g. Plan, Activity) to take next. The semantics of Fail is given in
Schema A.4.11.

326 A. Remaining Object-Z Specification

End

Task

[Variables]
∆ [Semantics Variables]
count,synchronizationPaths :N,readyForFinalization :B
parentActivity :↓ Activity; activePaths =P ↓ Activity

outFlow =∅ []
parentActivity = {a : Activity | self ∈ a.steps} []

activePaths = {a : {acf :∪{cf : parentActivity.startActivities • c.outFlows} |
acf ∈ ControlFlow ∧ acf .condition} • a.sink} []

parentActivity ∈ {Plan,Sequence,Loop,ParallelLoop} ⇒ synchronizationPaths = 1
parentActivity∈ {Split} ∧ parentActicity.synchronizationMode = AND

⇒ synchronizationPaths = #activePaths []
parentActivity∈ {Split} ∧ parentActicity.synchronizationMode = NofM

⇒ synchronizationPaths = n []
readyForFinalization ⇔ count = synchronizationPaths []
activityDone ⇔ readyForFinalization []

INIT
count = 0

enter
∆(count)

count′ = count +1

InnerEntry =̂
OverallExit =̂ exit

Schema A.4.10: Class schema of End.

Fail

Task

[Variables]

InnerEntry =̂
OverallExit =̂ exit

Schema A.4.11: Class schema of Fail.

A.5. Environment View 327

A.5 Environment View

A.5.1 Environment

The concept of Environment is the core concept of the environment view as each kind of Resource
(e.g. Object) is part of it. The abstract syntax of Environment is given in Definition 4.8.1. Its
semantics is defined through Schema A.5.1.

Environment

NamedElement

resource :P1 ↓ Resource©

∀r1,r2 : resource • r1.name = r2.name ⇒ r1 = r2 [I1]

Schema A.5.1: Class schema of Environment.

A.5.2 Resource

Resources are the main component of the Environment and are used to represent any non-
autonomous entity that is part of the Environment such as Ontologies, Services, or Objects used in
any form by the Agents and Roles. A Resource is defined as follows:

Definition A.5.1 (Resource in PIM4AGENTS)

A Resource is an abstract concept given by its name.

A.5.3 Attribute

As we have seen in the previous section, Attributes in PIM4AGENTS present the kind of data and
information an Object has available. The abstract syntax of Attribute is given in Definition A.5.2.

Definition A.5.2 (Attribute in PIM4AGENTS)

An Attribute is given by a 5-tuple A = (name, value, type, multiplicities, typeRelationship), where

• name: depicts the name of the Attribute
• value: defines the current value of the Attribute
• type: illustrates the Type the Attribute conforms to
• typeRelationship: defines the type of relationship the Attribute has with other Attributes
• multiplicities: describes the multiplicity of these relationships

Each Attribute is characterized by a unique name, a type and a value. Furthermore, a relation to
other Objects called typeRelationship of enumeration type TypeRelationship is defined. This kind
of relationship between Objects can be a common reference relationship (i.e. Association), shared
containment (i.e. Aggregation) and unshared containment (i.e. Composition)

TypeRelationship ::= Association |Aggregation |Composition

328 A. Remaining Object-Z Specification

Beside the type of relationship, the system designer may also define the multiplicity of the rela-
tionship. Three variants are in general feasible:

Multiplicities ::= 0..1 | 1..∗ |∗

The type of an Attribute can either be again the type of a complex Object or of the form Primi-
tiveType that is defined as follows:

PrimitiveTag ::= int | boolean | string

Attribute

NamedElement

multiplicities : Multiplicities [Variables]
typeRelationship : TypeRelationship; type :↓ Type; value : String

Schema A.5.2: Class schema of Attribute.

A.5.4 Operation

An Operation in PIM4AGENTS describes the behavior of an Object and thus define the potential
changes in state that an Object may undergo during its lifetime. The abstract syntax of Object is
given in Definition A.5.3.

Definition A.5.3 (Operation in PIM4AGENTS)

An Operation is given by a triple O = (name, type, parameter), where:

• name: defines the type of the Operation
• type: represents the return type of the Operation
• parameter: illustrates the input parameters of the Operation

Operation

NamedElement

parameter :PParameter©; type :↓ Type [Variables]

∀p1,p2 : ranparameter • p1.name = p2.name ⇒ p1 = p2 [I1]

Schema A.5.3: Class schema of Operation.

Schema A.5.3 defines the semantics of Operation. Beside inheriting from the class schema of
NamedElement (cf. Schema A.1.1) and including the variables parameter and type we defined
Invariant I1 stating that within an Operation, the parameter names should be unique. The formal
definition of Parameter is given is Appendix A.5.5.

A.6. Deployment View 329

A.5.5 Parameter

A Parameter is considered as the input variables of an Operation. Its abstract syntax is given by
Definition A.5.4.

Definition A.5.4 (Parameter in PIM4AGENTS)

A Parameter is given by a tuple P = (name, type), where name defines the name of the Parameter
and type defining the Type of the Parameter.

Parameter

NamedElement

type :↓ Type [Variables]

Schema A.5.4: Class schema of Parameter.

A.6 Deployment View

A.6.1 Membership

The Membership concept of PIM4AGENTS defines the AgentInstances being member in other
AgentInstances. However, only AgentInstances of type Organization contain such Memberships.
Each Membership encapsulates exactly one AgentInstance and additionally defines to which
AgentInstance (of type Organization) it actually belongs to. A Membership is informally defined as
follows:

Definition A.6.1 (Membership in PIM4AGENTS)

A Membership is given by a triple Membership = (name, domainRoleBinding, agentInstance), where:

• name: defines the name of the this Membership
• domainRoleBinding: relates to the kinds of DomainRoleBindings that establish the role

bindings of this member
• agentInstance: denotes the particular AgentInstance which is represented by this Membership

A Membership may refer to different DomainRoleBindings through the variable domainRoleBinding
to allow the particular AgentInstances (i.e. referred by agentInstance) playing several DomainRoles
at the same time within one and the same Organization. The formal semantics of Membership is
expressed by Schema A.6.1.

330 A. Remaining Object-Z Specification

Membership

NamedElement

domainRoleBinding :PDomainRoleBinding; agentInstance : AgentInstance [Variable]

∀d1,d2 : domainRoleBinding | d1 6= d2 •
d2.roleBinding 6∈ d1.roleBinding.conflictsWith∧d1 6∈ d2.conflictsWith [I3]

Schema A.6.1: Class schema of Membership.

