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ABSTRACT

Equipping machines with knowledge, through the construction of machine-
readable knowledge bases, presents a key asset for semantic search, ma-
chine translation, question answering, and other formidable challenges in
artificial intelligence. However, human knowledge predominantly resides
in books and other natural language text forms. This means that knowl-
edge bases must be extracted and synthesized from natural language text.
When the source of text is the Web, extraction methods must cope with
ambiguity, noise, scale, and updates.

The goal of this dissertation is to develop knowledge base population
methods that address the afore mentioned characteristics of Web text. The
dissertation makes three contributions. The first contribution is a method
for mining high-quality facts at scale, through distributed constraint rea-
soning and a pattern representation model that is robust against noisy
patterns. The second contribution is a method for mining a large com-
prehensive collection of relation types beyond those commonly found in
existing knowledge bases. The third contribution is a method for extract-
ing facts from dynamic Web sources such as news articles and social media
where one of the key challenges is the constant emergence of new entities.

All methods have been evaluated through experiments involving Web-scale
text collections.
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KURZFASSUNG

Maschinenlesbare Wissensbasen sind ein zentraler Baustein für seman-
tische Suche, maschinelles Übersetzen, automatisches Beantworten von
Fragen und andere komplexe Fragestellungen der Künstlichen Intelligenz.
Allerdings findet man menschliches Wissen bis dato überwiegend in Büch-
ern und anderen natürlichsprachigen Texten. Das hat zur Folge, dass
Wissensbasen durch automatische Extraktion aus Texten erstellt werden
müssen. Bei Texten aus dem Web müssen Extraktionsmethoden mit einem
hohen Maß an Mehrdeutigkeit und Rauschen sowie mit sehr großen Daten-
volumina und häufiger Aktualisierung zurechtkommen.

Das Ziel dieser Dissertation ist, Methoden zu entwickeln, die die automa-
tische Erstellung von Wissensbasen unter den zuvor genannten Unwäg-
barkeiten von Texten aus dem Web ermöglichen. Die Dissertation leistet
dazu drei Beiträge. Der erste Beitrag ist ein skalierbar verteiltes Verfahren,
das die effiziente Extraktion hochwertiger Fakten unterstützt, indem lo-
gische Inferenzen mit robuster Textmustererkennung kombiniert werden.
Der zweite Beitrag der Arbeit ist eine Methodik zur automatischen Kon-
struktion einer umfassenden Sammlung typisierter Relationen, die weit
über die in existierenden Wissensbasen bekannten Relationen hinausgeht.
Der dritte Beitrag ist ein neuartiges Verfahren zur Extraktion von Fak-
ten aus dynamischen Webinhalten wie Nachrichtenartikeln und sozialen
Medien. Insbesondere werden Lösungen vorgestellt zur Erkennung und
Registrierung neuer Entitäten, die bislang in keiner Wissenbasis enthalten
sind.

Alle Verfahren wurden durch umfassende Experimente auf großen Text-
und Webkorpora evaluiert.
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SUMMARY

Knowledge bases are data resources that encode knowledge in machine-
readable formats. Such knowledge bases are enabling progress in seman-
tic search, machine translation, question answering and other formidable
challenges in artificial intelligence. Knowledge bases are populated by
means of information extraction techniques. This dissertation contributes
to three aspects of information extraction: fact extraction, relation extrac-
tion, and entity extraction.

Fact extraction is central to knowledge base construction. It entails find-
ing subject-predicate-object triples in text. State-of-the-art approaches com-
bine pattern-based gathering of fact candidates with logical reasoning over
feasibility constraints. However, they face challenges regarding the trade-
offs between precision, recall, and scalability. Techniques that scale well
are susceptible to noisy patterns that degrade precision, while techniques
that employ deep reasoning for high precision cannot cope with Web-scale
data. The approach presented in this dissertation aims at a scalable system
for high-quality fact extraction. For high recall, a new notion of ngram-
itemsets for richer patterns is introduced. For high precision, the method
makes use of MaxSat-based constraint reasoning on both the quality of
patterns and the validity of fact candidates. For scalability, all parts of the
approach are developed as distributed algorithms in the form of MapRe-
duce algorithms. Collectively, these components form PROSPERA, a sys-
tem which reconciles high recall, high precision, and scalability.

Relation extraction identifies phrases that denote binary relations which
are deemed interesting for fact extraction. Relations in existing knowledge
bases are mostly hand-specified and limited to around 1000 or less. On the
other hand, systems that yield a large number of relational textual patterns
do no attempt to organize these according in a meaningful scheme. This
dissertation presents PATTY, a method for extracting textual patterns that
denote binary relations. In a departure from prior work, the patterns are
semantically typed and organized into synonym sets and in a subsumption
taxonomy. In particular, the method defines an expressive family of re-
lational patterns, which combines syntactic features (S), ontological type
signatures (O), and lexical features (L). The novelty is the addition of the
ontological (semantic) dimension to patterns. PATTY also comes with effi-
cient and scalable algorithms that can infer patterns and subsumptions at
scale, based on instance-level overlaps and an ontological type hierarchy.
On the Wikipedia corpus, PATTY produced 350,569 pattern synsets with
84.7% precision.
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Entity extraction identifies noun phrases in text that define entities. Large-
scale knowledge bases are often restricted to popular entities such as fa-
mous people and locations that are found in encyclopedias such as Wi-
kipedia. Therefore, knowledge bases are never complete in the entities
they contain. However, when extracting facts from rapidly updated data
sources, such as news articles and social media, new entities emerge all
the time. Simply considering all noun phrases as entities would intro-
duce noise and make it difficult to relationships between new entities. To
overcome this limitation, this dissertation presents PEARL, a method for
enhancing previously unseen entities with type information. PEARL in-
troduces an ILP-based method for typing out-of-knowledge-base entities
that leverages type disjointness constraints. Typing new entities enables
the fact extractor to generate more accurate facts. The value of extract-
ing facts from rapidly updated sources is shown through the application of
identifying emerging stories. Prior work on story identification generate
stories as clusters of related entities, without specifying how the entities
are related. In contrast, the method presented here succinctly states how
a set of entities in a story are semantically related.
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ZUSAMMENFASSUNG

Wissensbasen sind Datenquellen, die Wissen in maschinenlesbarer Form
darstellen. Sie unterstützen damit Entwicklungen im Bereich der seman-
tischen Suche, des maschinellen Übersetzen, des automatischen Beant-
wortens von Fragen und ähnlich komplexer Fragestellungen der Künstlich-
en Intelligenz. Die Erstellung von Wissensbasen erfolgt mit Techniken der
Informationsextraktion. Diese Dissertation trägt zu den folgenden drei
Aspekten der Informationsextraktion bei: Extraktion von Fakten, von Re-
lationen und von Entitäten.

Die Extraktion von Fakten ist eine zentrale Aufgabe bei der Erstellung
von Wissensbasen. Dies beinhaltet das Auffinden von Subjekt-Prädikat-
Objekt-Tripeln in Texten. Neuere Verfahren kombinieren dazu muster-
basierte Methoden zum Auffinden von potentiellen Fakten mit logischen
Inferenzmethoden zur Sicherstellung von Konsistenzbedingungen. Allerd-
ings existieren hier Zielkonflikte bezüglich Güte, Auffindbarkeit und Skalier-
barkeit. Einerseits sind Verfahren, die sich durch eine gute Skalierbarkeit
auszeichnen, anfällig gegen Rauschen, was wiederum die Güte negativ
beeinflusst. Andererseits skalieren Methoden zumeist nicht, wenn sie Kon-
sistenzbedingungen durch logisches Schließen berücksichtigen. Der in
dieser Arbeit vorgestellte Ansatz zielt darauf ab, hochwertige Fakten zu ex-
trahieren. Um gute Auffindbarkeit zu gewährleisten, wird ein neuer Ansatz
unter dem Einsatz semantisch bedeutungsvollerer Muster auf Grundlage
von N-Grammen eingeführt. Zum Erzielen einer hohen Güte wird ein lo-
gisches Inferenzverfahren auf der Basis eines MaxSat-Approximationsalgo-
rithmus verwendet, das sowohl die Qualität der Muster als auch die Gültig-
keit der Fakten bewertet. Die Implementierung in Form verteilter Algorith-
men auf einer MapReduce-Plattform skaliert sehr gut. Die Kombination
dieser Verfahren bildet das PROSPERA-System, das sich durch ein hohes
Maß an Auffindbarkeit, Güte und Skalierbarkeit auszeichnet.

Bei der Relationsextraktion werden zunächst Phrasen identifiziert, die
als binäre Relationen für die Extraktion von Fakten interpretiert werden
können. In existierenden Wissensbasen sind diese Relationen in der Regel
manuell spezifiziert worden; daher gibt es dort typischerweise nur 1000
oder weniger Relationen. Auf der anderen Seite gibt es Systeme, die au-
tomatisch auf eine große Zahl relationaler Muster abzielen. Diese sind
jedoch nicht in der Lage, die gesammelten Muster in semantischer Weise
zu organisieren. Diese Dissertation präsentiert die PATTY-Methode zur Ex-
traktion und semantischen Organisation textueller Muster, die binäre Re-
lationen darstellen. Abweichend von früheren Arbeiten sind die hier ver-
wendeten Muster semantisch typisiert und sowohl in Synonymgruppen als
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auch in einer hierarchischen Taxonomie eingeordnet. Der hier vorgestellte
Ansatz bietet damit ausdrucksstarke relationale Muster, die syntaktische
Eigenschaften (S), ontologiebasierte Typsignaturen (O) und lexikalische
Charakteristika (L) zu SOL-Mustern kombinieren. Neuartig an PATTY ist
vor allem die Dimension einer ontologiebasierten (semantischen) Kom-
ponente für relationale Muster. Die Algorithmen zur Konstruktion der
Relationen und ihrer Synonymgruppen sind hochgradig skalierend und
basieren auf Überlappungsmaßen zwischen Instanzmengen. Auf dem Voll-
text von Wikipedia erzeugte PATTY 350,569 relationale Synonymgruppen
bei einer Güte von 84,7%.

Zur Entitätenextraktion werden zunächst Nominalphrasen in Texten iden-
tifiziert, die Entitäten beinhalten. Große Wissensbasen sind zumeist auf
populäre Entitäten wie berühmte Persönlichkeiten, Orte und Organisatio-
nen eingeschränkt, wie sie zum Beispiel in Wikipedia vorkommen. Daher
sind diese Wissensbasen inhärent unvollständig in Bezug auf die enthal-
tenen Entitäten. Wenn man Fakten aus häufig aktualisierten Webinhal-
ten wie Nachrichtenartikeln und sozialen Medien extrahiert, stößt man
ständig auf neue Entitäten. Ein denkbarer Ansatz, dem entgegenzuwirken,
wäre, jede neu auftauchende Nominalphrase als Entität zu interpretieren,
was jedoch semantisch unbefriedigend ist. Um dieses Dilemma aufzulösen,
entwickelt diese Dissertation die PEARL-Methode, die bis dato unbekannte
Entitäten mit Typinformation anreichert. PEARL basiert auf einer ganzzahlig-
linearen Optimierung, die u.a. die Disjunktheit bestimmt-er Typen berück-
sichtigt. Durch das zeitnahe Extrahieren neuer Entitäten in sich schnell än-
dernden Datenquellen werden neue Anwendungsfelder erschlossen, beispiel-
sweise das automatische Zusammenstellung von Stories aus einer Fülle
von Einzelnachrichten. Frühere Arbeiten, die sich mit Story-Konstruktion
befasst haben, haben einfach häufig zusammen auftretende Entitäten grup-
piert, ohne die Relationen zwischen den Entitäten zu interpretieren. Im
Gegensatz dazu stellt das hier vorgestellte Verfahren den semantischen
Zusammenhang einer Gruppe von Entitäten in einer Story her.
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CHAPTER

1

Introduction

BUILDING computers with human-level intelligence has been a long-standing
goal in Artificial Intelligence. Alan Turing posed a philosophical test for
assessing a machine’s ability to exhibit intelligent behavior [111]. A ma-

chine passes the Turing test if it has the ability to carry on a conservation, in nat-
ural language, well enough to be indistinguishable from a person. It is clear that
today’s computers have not reached that kind of intelligence. Researchers in Nat-
ural Language Processing (NLP) have instead focused on specific sub-challenges,
including semantic search, question answering, machine translation, and sum-
marization. Literature from these areas shows that knowledge plays a critical
role in building intelligent systems [19, 25, 35, 40, 44, 89, 108, 116]. Therefore,
it is important to capture knowledge and store it in machine-readable format —
this is the goal of knowledge base construction.

With much of human knowledge residing in books and other text documents,
large-scale knowledge bases have to be constructed by extracting and synthe-
sizing information from natural language text. Therefore, knowledge base con-
struction requires methods for natural language text understanding. Machine
understanding of text refers to parsing and transforming unstructured text into a
structured representation. Such a representation has no ambiguity in it — mak-
ing it suitable for machine reading and machine interpretation.

Encoding text as machine-readable knowledge requires transforming syntactic
constructs to semantic constructs. One such transformation maps names in text
to real world entities. For example, the word Apple may refer to the company Ap-
ple Inc. or to the apple fruit. Similarly, the name Madonna may refer to the popu-
lar singer or the Christian painting. Mapping names to entities requires methods
for entity disambiguation and co-reference resolution. Another transformation
towards semantic data identifies relationships between pairs of entities. For ex-
ample, simply stating that Apple Inc co-occurs a lot with Cupertino, California does
not convey any semantics about the nature of the relationship. Instead, the goal
is to explicitly state that Apple isHeadquarteredInLocation Cupertino, California.
This requires methods for fact and relation extraction. The last transformation
towards knowledge entails shifting from a document-centric view of informa-
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tion to a knowledge-centric view by constructing knowledge bases consisting of
factual assertions. These factual assertions are entities that exist and the rela-
tionships that hold among them. By assimilating relationships and entities from
several documents, a knowledge base can unveil not only direct relationships but
also complex relationships through inference. For example, a knowledge base
may reveal that the relationship between Apple Inc. and the disk drive company
Seagate Technology is that they are both headquartered in Curpertino. As basic as
it is for a human to uncover such a relationship, a document-centric view of the
data would not be able to establish such a connection.

The above-mentioned transformations are challenging due to the inherent ambi-
guity of natural language. There is ambiguity in entity names and in relational
phrases. Determining when a sentence mentions an entity or relation at all is
not trivial. Also determining which of many relations a piece of text refers to
is not simple. For example, it may not be clear if the text refers to the relation
isHeadquarteredInLocation or the relation hasOfficesInLocation. The multiplicity
of relations between entity pairs is also a challenge, Apple and Seagate may not
only be headquartered in the same location, they might also have been led by
the same executives at different time periods. Because of these factors, knowl-
edge base construction is a best-effort process. It may produce conflicting and
erroneous facts. In spite of these challenges, large-scale knowledge bases have
been constructed in academia and industry. Such knowledge bases contain mil-
lions of entities and hundreds of millions of facts about them. Example academic
projects include: opencyc.org, dbpedia.org [8], knowitall [38, 10], stat-snowball
[134], readtheweb [20], and yago-naga [108]. Industry has produced products
such as : wolframalpha.com, freebase.com, and trueknowledge.com.

Although these projects underline progress made to date, much remains to be
done. Thus, the goal of this dissertation is to move forward the state-of-the-art
in knowledge base construction research. It brings together ideas from previous
work while also proposing new ideas for better coverage and quality.

1.1 STATE-OF-THE-ART

Information extraction (IE) [104] is the technology for extracting knowledge
from text by transforming unstructured text into a structured format. The out-
put of information extraction is usually facts in the form: subject-predicate-object
triples. For example, in the triple Apple-isHeadquateredIn-Cupertino, Apple is
the subject, isHeadquateredIn is the predicate, and Cupertino is the object. In
extracting facts from text, there are two important questions to ask. The first
is: what constitutes a subject and object? In other words, which noun phrases
in text are worth extracting facts about? The second question is: which rela-
tions should be extracted? In other words, which verb phrases or other types
of phrases denote relations between entities? In answering these questions, two
paradigms of information extraction have emerged, each at a different end of the
spectrum of the conceivable answers to these questions. The two paradigms are:
Ontology-based IE [109] and Open IE [10].

In Ontology-based IE, at least one ontology is used to guide the extraction pro-
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cess. The ontology serves the purpose of providing a dictionary of entities. It also
defines relations of interest in a specific domain, such as books and their authors
or companies and their headquarters. The relations in ontologies are generally
hand-specified by either developers of the ontology [108] or by domain experts
[43]. What this means for ontology-based IE is that there is a major limitation
in the number of relations that can be populated. Open IE aims to address this
limitation by not making assumptions about the existence of entities or relations.
Instead, all noun phrases are considered to be entities. For relations, the most
open form of Open IE considers any phrase appearing between pairs of entities
to be a relation. While Open IE counters the recall issue, it is highly susceptible
to noise [70], due to the lack of tightly enforced semantics on relations and en-
tities. Evidently, each of these IE paradigms have their respective strengths and
weaknesses as outlined in more detail next.

Ontology-based IE vs. Open IE

Ontology-based IE: Pre-specified relations. The task of specifying all relations
of interest is laborious. As a result, Ontology-based IE systems have tradition-
ally only been applied to a small number of relations, typically in the order of
hundreds or less [20, 81, 109]. This leads to sparse knowledge in terms of the
relations populated. Commonly covered relations are wasBornInCity, wasBornOn-
Date, isHeadquatredIn, isMarriedTo, hasWonPrize. However there are many more
interesting relations that are usually not covered.

Ontology-based IE: Dictionary of entities. Dictionaries of entities are never
complete and often focus on popular entities. Entities in the long tail such as a
cathedral in a small french city may not be in any of the major knowledge bases.
On the other hand, Notre Dame in Paris has a high chance of being included in
all major knowledge bases. Furthermore, new entities are constantly emerging,
for example a new singer or a new hurricane. This and the issue of pre-specified
relations point to a general coverage limitation in Ontology-based IE methods.

Open IE: Unspecified relations. Instead of using a set of pre-specified relations,
Open IE systems consider every phrase appearing between a pair of entities to
denote a relation. This permissiveness addresses the coverage limitation seen in
Ontology-based IE. However, it introduces a substantial amount of noise. The is-
sue is partly addressed by recent work, which has attempted to improve precision
by restricting relations to specific part-of-speech tag sequences that are presumed
to express true relations [41]. However, this does not improve much on the front
of tighter semantics, for example, what each of the relations could mean and
what constraints apply to such relations. Such semantics and constraints are key
to accuracy in Ontology-based IE, for example, using type constraints to deter-
mine which types of entities are valid for a given relation [109].

Open IE: No noun phrase left behind. Open IE systems do not use pre-existing
dictionaries to define entities. In Open IE systems, every noun phrase is a possible
entity. This raises a number of issues. First, the system picks up noun phrases that
are not proper entities, such as “John and David" or “three girls". Second, there is
no attempt to determine which noun phrases refer to the same entity or what type
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of entity a given noun phrase is. Therefore, it is difficult to construct a consistent
knowledge base. This may, for example, result in two different birth dates for the
same person. Ontology-based IE enables entity disambiguation where each entity
is mapped to a unique identifier in the ontology. For example, Wikipedia-derived
ontologies use a short descriptive text after ambiguous names; for Michael Jor-
dan the Berkeley professor, the identifier is Michael_Jordan_(computer scientist).
Therefore the knowledge base clearly distinguishes which information is related
to which Michael Jordan.

Challenges

Given the shortcomings of the two paradigms of information extraction, the ap-
proach taken in this dissertation aims for a middle-ground. The goal is to avoid
the limitations of the two paradigms while reaping the benefits of both. Aiming
for such a middle-ground requires addressing the following limitations:

Efficiency bottleneck at Webscale. One limitation in the state-of-the art is that
high accuracy has only been attained by expensive methods that do not scale to
large data collections. In order to deal with Web-scale data collections, a scalable
architecture for high accuracy fact extraction is needed.

High accuracy only for pre-specified relations. Another limitation in the state-
of-the art is that high accuracy has only been attained for pre-specified relations
in Ontology-based IE. Overcoming this limitation means discovering and main-
taining a dynamically evolving open set of relations. This needs to go beyond
common relations such as “bornIn” or “ isHeadquarteredIn”. For example, ma-
jor knowledge bases lack potentially interesting relations such as “firedFrom” or
“hasGoddaughter”. For completeness, there is a need to automatically discover
such relations. At the same time, any approach that simply considers every phrase
to be a possible relation should be avoided. In order to boost accuracy, there must
be some semantics associated with the relations.

Static Knowledge. Another limitation is that previous methods have largely been
snapshot-based. Facts are extracted from a snapshot of a corpus and some weeks
or months later, another round of facts is extracted from a new snapshot. This
process is repeated at irregular and long intervals resulting in incomplete and
partly stale knowledge bases. For comprehensive coverage and to avoid stale-
ness, rapidly updated sources such as news and social media must be brought
into scope. One key challenge for this kind of data is that new entities are con-
stantly emerging, methods need to discover new entities as they emerge. At the
same time, resorting to treating every noun phrase as a valid entity without any
semantic information to verify their validity should be avoided.

1.2 CONTRIBUTIONS

This dissertation presents methods that, to a large extent, address the challenges
outlined above. In particular, the dissertation makes the following contributions:
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PROSPERA: Fact Extraction. The first contribution of this dissertation is a sys-
tem named PROSPERA, for high-quality knowledge harvesting at Web-scale. Fact
extraction approaches that have achieved the highest accuracy to date [109]
combine pattern-based gathering of fact candidates with constraint-based rea-
soning. However, such approaches face major challenges regarding the trade-offs
between precision, recall, and scalability. Techniques that scale well are suscepti-
ble to noisy patterns that degrade precision, while techniques that employ deep
reasoning for high precision cannot cope with Web-scale data. PROSPERA in-
troduces a new notion of n-gram-itemsets for richer patterns, and uses MaxSat-
based constraint reasoning on both the quality of patterns and the validity of fact
candidates. PROSPERA incorporates these building blocks into a scalable archi-
tecture which is implemented on top of a MapReduce-based distributed platform.
PROSPERA’s results were presented at WebDB 2010 [79] and WSDM 2011 [80].

PATTY: Relation Extraction. The second contribution of this dissertation is a
system named PATTY, for extracting patterns that denote binary relations be-
tween entities. PATTY’s output is a large resource for relational phrases. Unlike
open IE patterns, PATTY’s patterns are semantically typed and organized into a
subsumption taxonomy. The PATTY system is based on efficient algorithms for
frequent itemset mining and can process Web-scale corpora. It harnesses the
type system and entity population of large knowledge bases. PATTY extends the
state-of-the-art on lexical resources and knowledge bases in two ways. Compared
to WordNet-like resources, it provides synsets for binary-relation patterns, in an
unsupervised and open-domain manner. Compared to knowledge collections like
ReVerb or NELL, it provides much more precise pattern synsets with semantic typ-
ing, greatly reducing the noise in extracting relational-pattern instances. PATTY
is available for download and for online browsing at http://www.mpi-inf.mpg.
de/yago-naga/patty/. PATTY’s results were presented at EMNLP 2012 [81] and
VLDB 2012 [82].

PEARL: Populating Knowledge Bases in Real-time. The third contribution
of this dissertation is a system called PEARL, for real-time fact extraction from
rapidly updated data sources such as news and social media. PEARL focuses on
one of the key challenges of dynamic data — previously unseen entities. PEARL
introduces an ILP-based method for typing out-of-knowledge-base entities that
leverages type disjointness constraints. Furthermore, PEARL demonstrates the
value of fact extraction from news and social media through the application of
emerging story identification. Prior work on story identification generate stories
as clusters of related entities. The stories PEARL generates state how a set of
entities in a story are related. Some parts of the PEARL approach were presented
at AKBC-WEKEX 2012 [83].

1.3 DISSERTATION ORGANIZATION

The outline of the rest of this dissertation is as follows. Chapter 2 begins by sum-
marizing the evolution of the field of information extraction; it then defines some
of the central concepts in knowledge base construction and ends with a review of
related projects, building a case for the novelty of our methods by outlining the
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characteristics of competing methods. Chapter 3 presents PROSPERA, a system
for large scale fact extraction; it discusses how high recall, precision and scalabil-
ity are brought together in one system. Chapter 4 presents PATTY, a system for
mining a large collection of patterns that denote binary relationships between
entities; the chapter presents a thorough evaluation of PATTY, comparing it to
similar resources. Chapter 5 presents the PEARL system for populating knowl-
edge bases with rapidly update data; in particular it focuses on handling new
entities as they emerge and showcases a novel application. Chapter 6 provides
concluding remarks and puts forward possible directions for future work.
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CHAPTER

2

Background, Preliminaries, &
Related Work

Recent years have seen a growing interest in automatic knowledge base construc-
tion. However, research in information extraction, the technology for extracting
knowledge from text, spans over three decades. This chapter places the contri-
butions of this dissertation in the context of the previous body of work. It first
gives a brief history of information extraction. It then introduces concepts cen-
tral to knowledge base construction. The chapter ends by reviewing some of the
ongoing related work.

2.1 BACKGROUND

Information extraction emerged out of the natural language processing commu-
nity as a way of automatically understanding text. The past two decades have
seen it become a challenge of interest to other computer science communities in-
cluding databases, Web mining, and information retrieval. This section explains
the progression of the field from the early days, up to where it currently stands,
highlighting some of the defining works.

2.1.1 Template Filling

Early systems defined information extraction as a template filling task [28, 32, 46,
106, 133]. As in contemporary projects, these systems aimed to transform nat-
ural language text into tabular structures. Each such tabular structure, referred
to as a template, consists of slots to be filled up. Schank et al. [106] described
template filling in the context of story comprehension. They argued that stories
follow patterns, for example, stories on corporate mergers or management suc-
cessions have recurring role players. Knowing who the players are for a given
story enables understanding other stories. These ideas were implemented in the
FRUMP system [32] in the early 1980s. Also in the early 1980s, Cowie [28] de-
veloped a system for extracting templates about plants from wild flower guides.
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19 March – A bomb went off this morning near a power tower
in San Salvador leaving a large part of the city without energy,
but no casualties have been reported. According to unofficial
sources, the bomb – allegedly detonated by urban guerrilla com-
mandos – blew up a power tower in the northwestern part of San
Salvador at 0650 (1250 GMT).

Sample text:

Incident type Bombing
Date March 19
Location San Salvador
Perpetrator urban guerrilla c.
Target power tower
Effect on target destroyed
Effect on human target no injury or death
Instrument bomb

Example template:

Figure 2.1: An excerpt of a MUC-3 template filling task, adapted from
[47]. The template is filled by extracting the relevant fields from a terror-
ist attack story.

Cowie made use of pre-defined phrases which correspond to various slots of the
template being extracted. In the case of plants, the slots correspond to properties
of plants. Rules were then applied to match the pre-defined phrases to phrases
in text in order to extract values for the slots. Zarri [133] developed a system
in the early 1980s, to extract information about the roles of historical figures in
French historical documents. The template slots consisted of roles in particular
historical events, such as the appointment of a historical figure on a particular
date at a given location.

Systems based on template filling were among the first systems in the area of
information extraction.

2.1.2 Message Understanding Conferences (MUC)

The next development was the introduction of the DARPA-sponsored Message
Understanding Conferences [47, 78, 110]. The MUC conferences first started
with institutions in the US that were extracting information from naval messages.
The idea was for systems from different institutions to work on common mes-
sages as training data and then meet at the conferences to compare performance
of the different systems on unseen messages. The MUC conferences focused on
extracting domain-specific information such as ship sightings, terrorism in Latin
America, management successions, and business joint-venture information. Fig-
ure 2.1 is an example template filling task from MUC-3, pertaining to terrorist
stories [78]. For each terrorist story, systems had to extract the type of attack
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(e.g., bombing, arson, etc.), the date, location, targets, etc. Systems were com-
paratively assessed against human performance for the same task. Thus, the con-
ferences provided a means of measuring performance of language understanding
systems.

2.1.3 Pattern Learning

In the late 1990s, along with the rapid growth of the Web came the first systems
to extract information from Web sources. Among them were the DIPRE [14] and
Snowball [3] systems. These systems take as input the relations to be extracted
and a few seed example pairs for each of the relations. The goal is to then build-
up the initial set of example pairs by extracting more pairs from Web text through
pattern learning over multiple iterations. The first step is to spot the example
pairs in text and then extract the patterns they occur with as good phrases for
expressing the relations. For example, seeds like

teamHasWonTrophy(Germany, FIFA_World_Cup),

which was true in 1954, 1974 and 1990, may lead, after a few iterations, to
patterns such as

X won the final of Y

and may then pick up new facts such as

teamHasWonTrophy(Spain, FIFA_World_Cup),

which was true in 2010.

Pattern learning is a powerful technique which is still in use today. It can scale
to large data collections. The major limitation of pattern learning systems is that
they require manual specification of relations along with seed examples. This is
a laborious process, requiring human supervision. While our first contribution
makes use of pattern learning in PROSPERA (Chapter 3), our second contribu-
tion, PATTY (Chapter 4), shows how to avoid manual specification of relations by
automatically learning relations from text [81].

2.1.4 Open Relation Discovery

In an effort to overcome the limitation of pattern learning systems, work has
emerged that aims to learn relations without requiring a pre-defined set of re-
lations and their seeds. Among these is the work on preemptive IE [127] and
the TextRunner/Reverb system [10, 41]. These systems have the ability to learn
a large number of relations by considering all phrases as denoting some kind of
relation. However they do not provide any semantics with the phrases. This re-
sults in a substantial amount of noise [70]. More importantly, it is not clear how
to apply logical reasoning on the resulting output. Logical reasoning needs some
specification to reason over: without any semantics attached to the phrases such
as domain and range type constraints, the value of the data is reduced, especially
for logical reasoning purposes.

28



2.1 Background 2 BACKGROUND, PRELIMINARIES, & RELATED WORK

2.1.5 Exploiting Semi-Structured Sources

Figure 2.2: An example infobox from Barbara Liskov’s Wikipedia page

The Internet has made it possible for geographically remote humans to collabo-
rate on massive-scale projects. This phenomenon has led to the development and
growth of knowledge sharing communities such as Wikipedia and a plethora of
online forums including question answering websites such as answers.yahoo.com
and quora.com. The semi-structured nature of these sources means that knowl-
edge can be extracted with relatively higher precision compared to natural lan-
guage text. This has been shown by projects such as DBpedia [8], YAGO [108],
and Freebase [13]. These projects have transformed Wikipedia into knowledge
bases of structured data. The extractors are based on rules that extract relations
from Wikipedia infoboxes and categories. Wikipedia infoboxes and categories
follow a specific structure based on the Wiki-markup language. Thus the rules
employed by these methods are not applicable to general Web text. An example
infobox is shown in Figure 2.2 and its corresponding markup is shown in Figure
2.3.
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Figure 2.3: Wiki-markup corresponding to the infobox in Barbara Liskov’s
Wikipedia page

2.1.6 The Semantic Web

The World Wide Web Consortium (W3C) ’s Semantic Web vision aims to advance
the Web by augmenting documents with machine-readable data [12]. Towards
this end, the Semantic Web strives to develop standards that enable data publish-
ers on the Web to enrich their data with metadata. It is envisioned that by rely-
ing on common standards, Web applications can interoperate with one another
to perform complex tasks on behalf of users. In comparison to the Web of doc-
uments, the uptake of the Semantic Web has been relatively slow [105]. While
speculation as to why this is the case is beyond the scope of this dissertation,
requiring additional work from content publishers likely plays a role. Therefore,
knowledge base construction aim for semantic web capabilities from a different
perspective: develop tools to parse unstructured or semi-structured data and con-
vert it to structured data. Rather than have a uniform schema, knowledge base
construction projects have been evolving in parallel, with different knowledge
bases constructed at multiple sites each with its own schema.
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2.2 KNOWLEDGE BASE PRELIMINARIES

2.2.1 Knowledge Base

Formally, a knowledge base is a special-purpose database used for the collection
and management of knowledge in the form of logical statements. Some knowl-
edge bases are manually constructed; for example lexical knowledge bases such
as WordNet [43] are compiled by domain experts. Other manually constructed
knowledge bases include Cyc [69], health databases like MeSH and SNOMED,
and semantic search engines like Wolfram Alpha (www.wolframalpha.com). Though
manually constructed knowledge bases are of high quality, especially those au-
thored by domain experts such as WordNet, they tend to be small in size. In
this dissertation, the focus is on developing tools for automatically populating
knowledge bases.

2.2.2 Ontology

Ontology is a term borrowed from philosophy where it is defined as the study of
the nature of being, existence, or reality. In Computer Science and knowledge
representation, Gruber [48] made the first attempt at a definition. He defines
an ontology as a (logical) description of the concepts and entities that exist in
a domain and the relationships that hold among them. Different from other
kinds of knowledge bases, ontologies have the ability to reason about entities
and relationships within a domain.

To encode knowledge in ontologies, several knowledge representation languages
have emerged. Ontology languages vary in structure. Early ontology languages
were frame-based. There has also been languages based on first-order logic
such as CycL and KIF. Description logic-based languages produced the most com-
monly used ontology language today, RDFS/OWL. RDFS/OWL is a standard of
the World Wide Web Consortium (W3C). In RDFS/OWL all entities and relations
are defined as RDF resources, and identified by Uniform Resource Identifiers
(URIs). With RDF, data is stored as subject-predicate-object (SPO) triples.

Contemporary ontologies are structurally similar, even though they adapt differ-
ent ontology languages. Most ontologies consist of classes, entities and relations.

2.2.3 Classes

Each ontology defines a type system around which its entities are organized.
These classes (unary predicates) may include common types such as person,
politician, scientist, location, etc. They may also include finer grained types such
as female person, computer scientist, governor, etc. In addition, subsumption rela-
tions among classes may also be specified. Examples of subclass-superclass are:

subclassOf (governor, politician),
subclassOf (scientist, person),
subclassOf (computer scientist, scientist),
. . .
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2.2.4 Entities

Each ontology also defines individual entities. For example, it contains instances
of people, companies, and so on. Entity type information is provided in order
to specify the classes to which each of the entities belongs. For example, the
instanceOf relation may specify the following:

instanceOf (Arnold Schwarzenegger, governor),
instanceOf (Bill Clinton, politician),
instanceOf (Bill Clinton, philanthropist),
. . .

Additionally, a way of mapping names to entities is provided. Real-world entities
can have multiple names including nicknames. These are different from the en-
tity’s full name. Natural language text documents typically introduce the entity
by its full name and thereafter refers to it by a shorthand form (e.g., a person’s
last name). The official name of an entity in the ontology, is used as a canonical
representation of the entity. Therefore, names are mapped to entity identifiers
through some kind of “means" relation. For example, the “means” relation of a
given ontology may specify the following mappings of names to entities.

means ( “Bill Clinton”, William Jefferson Clinton),
means (“President Clinton”, William Jefferson Clinton),
means (“Paris”, Paris, France),
means (“Paris”, Paris Hilton),
. . .

2.2.5 Relations

Ontologies define sets of relation types that are deemed interesting. The list of
relations varies from ontology to ontology. Common relations include: hasWon-
Prize(person, award), headquarteredIn(organization, location), isMarriedTo(person,
person). The number of relations in ontologies is a well-known shortcoming.
They are typically less than 1000 relations in each ontology. There are often many
interesting relations that are not covered, for example, competedAgainst(team,
team), nominatedForPrize(person, award). As discussed in Chapter 4, the second
contribution of this dissertation, PATTY, addresses this limitation.

2.3 STORAGE AND ACCESS MANAGEMENT

Knowledge representation languages provide a conceptual description or model
of knowledge data. RDF models data as subject-predicate-object (SPO) triples.
Once the data is modeled as RDF triples, it needs to be made persistent for later
use and access.

2.3.1 Relational Databases

A relational database is a common choice for storing data. It is created using
the relational model by Codd [27]. The relational model organizes data in tables
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where rows correspond to distinct real-world entities, and columns are attributes
of the entities. For example, a company might store information about its em-
ployees in a database table where each row has information about a different
employee and each column stores a particular employee attribute (name, ad-
dress, salary, etc.).

A relational database requires a schema to be defined upfront before loading the
data. The schema describes and prescribes how the data will be organized in the
database, specifically how it is divided into database tables. There are multiple
ways to organize the same data into a database. For RDF triples, the simplest
schema is to store the data in a single table, consisting of three columns, one
column for subject, one for predicate, and one for object. The problem with this
approach is that, accessing the data may be slow if the query requires multiple
self-joins on the same table. An alternative schema is to organize the data into
a wider, sparser table, containing one column for each unique predicate. So far
the dominant way of storing RDF in relational databases is the three-column-
table. The ontologies used and developed in this dissertation are typically stored
in relational databases, following a three-column-table schema.

2.3.2 NoSQL Databases

The requirement for a pre-defined schema in relational databases makes it dif-
ficult to deal with highly dynamic and unpredictable data. Data in certain do-
mains is not amenable to fixed schemas. As a result, recent years have seen a
new type of database management systems emerge — key-value oriented NoSQL
databases [90]. These types of databases are not built on tables as the rela-
tional model, consequently, they do not use SQL for data manipulation. Instead,
NoSQL databases store structured data as documents with dynamic schemas. For
example, MongoDB[9] is based on lightweight XML(JSON)-like documents with
dynamic schemas.

NoSQL databases started to gain ground in major Internet companies such as
google.com, facebook.com and twitter.com, which have to deal with huge quanti-
ties of data. NoSQL databases are specifically designed to deal with large volumes
of data as they can be seamlessly deployed on distributed hardware architectures
such as clusters of multiple machines. Data can be partitioned among different
servers. The system can easily scale out by adding more servers and failure of a
server can be managed.

We use the MongoDB[9] system to store the large number of triples produced
along with the relations extracted in Chapter 4.

2.3.3 Triplestores

Triplestores [102] are special-purpose databases designed for storing and retriev-
ing triples. Example triplestores include Apache Jena, RDF-3X and Sesame. Some
triplestores are built on top of relational databases, others have built their own
in-house database engines. For example, Freebase [13] runs on a database cre-
ated by Metaweb based on a graph model. The underlying data structures are

33



2 BACKGROUND, PRELIMINARIES, & RELATED WORK 2.4 Related Work

not based on tables, instead Freebase uses a set of nodes and a set of links that
establish relationships between the nodes. Queries to the database are made in
Metaweb Query Language (MQL).

2.4 RELATED WORK

There are many contemporary projects on knowledge base construction. Col-
lectively, our contributions aim for a Web-scale, yet high-accuracy approach to
knowledge base construction. The following characteristics set apart our ap-
proach from previous work.

1. Web-scale. For scaling to large data collections, our algorithms are devel-
oped as distributed MapReduce algorithms which scale to large data collec-
tions.

2. Canonical entities. In order to ensure consistency among the extracted
facts, we extract facts between canonical entities. This is in contrast with
approaches that extract facts between noun phrases without any attempt
to detect which noun phrases refer to the same entities and which noun
phrases refer to different entities.

3. Newly emerging entities. Because we map noun phrases to canonical en-
tities, in the event of a new entity we may not be able to process and accept
facts pertaining to such previously unseen entities. Our contributions in-
clude a method for adding type information to new entities.

4. Open set of relations. Our methods extract facts pertaining to a large set
of binary relations.

5. Dynamic knowledge. The above four characteristics enable fact extraction
from dynamically updated data sources such as news and social media.

We now discuss previous work, focusing on the degree to which they possess the
above characteristics.

2.4.1 SOFIE

SOFIE [109] is an Ontology-based IE system for fact extraction. SOFIE’s main
premise is to use logical reasoning to verify the plausibility of potential new facts
against prior knowledge already in the YAGO ontology[108]. In particular SOFIE
brings together entity-disambiguation, pattern matching and rule-based reason-
ing in one framework. For entity disambiguation SOFIE first looks up, in YAGO,
all the possible entities a noun phrase may refer to. It then determines which
of the candidate entities the noun phrase likely refers to. This is done by com-
puting similarity overlaps between the context of the noun phrase and what the
ontology knows about the entities. SOFIE has the ability to re-assess disambigua-
tion decisions if further evidence is found that contradicts the chosen entity. In
a similar vein, SOFIE can reason about the plausibility of patterns. It reasons
about the likelihood that a pattern expresses a given relation based on the pairs
of entities the pattern occurs with. SOFIE applies the pattern-fact duality [14] to
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reason about patterns. SOFIE also takes into account other background knowl-
edge, such as type constraints of relations, functional constraints on relations,
and other domain-specific rules if available.

The experiments reported in [109] dealt with 1,000’s of input documents in
about 10 hours on a single computer. Therefore, in its original form SOFIE is not
designed for Web scale. SOFIE produces fact about canonical entities. However,
it was run for a few hand-specified relations only and does not handle out-of-
knowledge base entities; thus it cannot accumulate knowledge for rapidly chang-
ing data sources. Our contribution in Chapter 3 builds on SOFIE; we compare
SOFIE with PROSPERA in some of our experiments.

2.4.2 ReadTheWeb/NELL

The ReadTheWeb project developed ensemble methods to populate its NELL on-
tology [20]. The idea behind NELL is a Never-Ending-Language-Learning system
which learns new facts 24 hours a day, 7 days a week, and corrects itself over
time as it learns to better understand natural language. NELL learns new entities
and new facts. It employs a combination of methods in an ensemble manner cou-
pled with constraints for extracting entities and facts from a large Web corpus.
Like SOFIE, NELL automatically takes into account type constraints and other
domain-specific constraints. The NELL method also learns constraint rules from
the facts that it gathers.

NELL scales to Web data as it was applied to a corpus of 500 million pages. In
addition, its architecture was deployed on a cluster of multiple machines. NELL
extracts facts between pairs of noun phrases instead of canonicalized entities. In
this sense NELL can tackle new entities as they emerge. NELL was originally
based on a fixed set of relations. It was recently extended in OntExt [77], to
automatically extract new relations (beyond the pre-specified ones) for a given
type signature of arguments. However, OntExt only learned 250 relations. It is
not clear if NELL’s set of relations can compile facts from rapidly changing sources
in a comprehensive and large-coverage manner, due to its relatively small set of
relations.

2.4.3 TextRunner/Reverb

TextRunner [130, 10] is an Open IE system which harvests facts by considering all
relationships between pairs of noun phrases. ReVerb [41] extended TextRunner
by constraining patterns to verbs or verb phrases that end with prepositions [41].
The TextRunner method is a three step process:

1. TextRunner first creates a self-supervised classifier which extracts a few facts
from the input corpus and then labels them as good or bad based on a few
hand-specified linguistic rules. This training portion of the corpus is run
through expensive linguistic processing that produces enough information
for the classifier to self-train. Example rules for determining if a fact is good
or bad include: the relation string contains a verb, or the left-hand entity is
the clause subject, etc.
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2. Second, TextRunner extracts facts from the entire corpus, using the self-
trained classifier to determine if the facts are good or bad.

3. In the third and final step, TextRunner uses frequency statistics to determine
if the fact is indeed true or not.

TextRunner is designed for Web-scale, it was applied to 9 million Web pages. Like
NELL, TextRunner extracts facts pertaining to pairs of noun phrases as opposed
to canonical entities. Also like NELL, it can tackle new entities as they emerge.
TextRunner is not restricted to pre-defined relations, therefore it can likely handle
dynamic Web content. However, it must be noted that due to its relaxation on
what constitutes an entity or relation, the output of TextRunner is relatively noisy
and makes it very difficult to apply any form of consistency reasoning on the
extracted data. This generally leads to low quality output.

2.4.4 Probase

Probase [124] is a large probabilistic taxonomy of concepts based on extracting
isA relations at Web-scale. The Probase concept taxonomy is similar to type hi-
erarchies in other knowledge bases. The main difference is that it includes both
widely used concepts such as cities, mucisians, etc, as well as highly specific con-
cepts such as renewable energy technologies, common sleep disorders, etc. Further-
more, there are probabilities attached to each isA assertion. Probase extracted
concepts from 1.68 billion Web pages, resulting in a taxonomy of 2.7 million con-
cepts.

Probase does not extract facts pertaining to relations other than the isA rela-
tion. Furthermore, Probase isA assertions pertain to noun phrases as opposed to
canonical entities.

2.4.5 WebTables

There is a line of work that extracts information from tables on the Web. One
of the early work along these lines is the WebTables system [18]. Recent work
has gone a step further to annotate data extracted from tables with semantics
[74, 112]. Venetis et al. [112] add class labels to columns and binary relation-
ships between pairs of columns. They leverage a database of entities, their types
and the relationships that hold among them. A table is assigned a class label (se-
mantic type) if a large number of the entities in that column are identified with
that label. Similarly, a pair of columns is labeled with a relationship if a large
number of pairs from the two columns occur in the facts of that relationship.

The WebTables system extracted over 100 million tables[18]. WebTables and
related work primarily focus on HTML tables and are not concerned with natural
language text. Furthermore, the output pertains to noun phrases as opposed to
canonical entities.
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2.4.6 YAGO, DBpedia, Freebase

Knowledge bases like YAGO, DBpedia, and Freebase extract facts from specific
data formats such as the Wikipedia infobox structure for YAGO and DBPedia. As
shown in Figure 2.3, the format of infoboxes is semi-structured. Therefore these
system are not meant for full-fledged natural language processing but instead
leverage domain-specific rules. In addition to extracting data from structured
sources such as Wikipedia and musicbrainz.com, Freebase also takes human up-
dates in a crowd-sourcing manner similar to the way Wikipedia is authored. Each
of the knowledge bases defines it own population of entities, which grow with
updates to the knowledge base. All the three knowledge bases are limited to
less than a 1000 relations. These limited sets of relations are not amenable to
extracting facts from rapidly changing data sources.

2.5 SUMMARY

This chapter provided a brief history of information extraction, starting with early
work on IE as a template filling task, proceeding to modern day pattern learn-
ing systems, and to even more recent work on open relation discovery. It also
presented methods that leverage semi-structured resources. The chapter then
defined central concepts in knowledge base construction, including classes, enti-
ties and relations. It then discussed some of the storage options for knowledge
bases, covering relational databases, NoQSL databases and triplestores. Lastly,
the chapter gave a discussion of related projects, comparing them to the contri-
butions of the dissertation with respect to a number of design decisions.
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CHAPTER

3

Fact Extraction with PROSPERA

Harvesting relational facts from text is a task central to automatic knowledge
base construction. Fact extraction is a formidable challenge, thus state-of-the-
art approaches still suffer from a number of limitations. In particular, there are
major challenges regarding the trade-offs between precision, recall, and scala-
bility. Techniques that scale well are susceptible to noisy patterns that degrade
precision, while techniques that employ deep reasoning for high precision cannot
cope with Web-scale data. This chapter presents this dissertation’s contribution
toward Web-scale, high-quality fact extraction — the PROSPERA system.

3.1 MOTIVATION

Frances Allen is an American computer scientist and pio-
neer in the field of optimizing compilers. In 2006, she became
the first woman to win the Turing Award. She earned an M.Sc.
degree at the University of Michigan.

Unstructured text:

Subject Predicate Object

Frances Allen isCitizenOf USA
Frances Allen researchField Computer Science
Frances Allen researchField Compilers
Frances Allen hasWonPrize Turing Award
Frances Allen graduatedFrom University of Michigan
...

Relational facts:

fact extractor

Figure 3.1: The fact extraction problem.
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The process of fact extraction, as illustrated in Figure 3.1, takes as input a corpus
of unstructured, natural language text documents, and produces structured data
in the form of subject-predicate-object triples.

The prevalent approach to fact extraction is to use pattern-based extractors. Some
methods additionally employ consistency constraint reasoning (or some form of
constraint-aware statistical learning).

Pattern-based Extractors

In a pattern-based approach (e.g., [14, 3, 10, 19]), the system starts with a few
seed facts to bootstrap the extraction process. For example the relation teamWon-
Trophy, that holds between soccer teams and trophies might have a seed fact:

teamWonTrophy(Germany, FIFA_World_Cup)

This seed fact was true in 1974 and 1990 and by finding it in text we can auto-
matically detect textual patterns like:

X won the final and became the Y champion

Such a pattern can, in turn, discover new facts such as:

teamWonTrophy(Spain, FIFA_World_Cup)

This was indeed true in 2010. While this approach is good for high recall, it
however may lead to noisy patterns and degrade precision. For example, the
same seed may lead, after a few iterations, to frequent but spurious patterns
such as:

X lost the final of Y.

Such a pattern can erroneously pick up the false positive:

teamWonTrophy(Netherlands, FIFA_World_Cup),

which was never true as of 2012.

Consistency Constraint Reasoning

Reasoning-enhanced systems (e.g., [109, 134, 20]) check the plausibility of the
extracted fact candidates by their mutual consistency based on specified logical
constraints. For example, suppose the system picked up a spurious pattern for
the hasAcademicAdvisor:

X benefitted from the deep insight of Y

The pattern may lead to the fact candidate:

hasAcademicAdvisor(Tim_Berners-Lee, Max_Planck).

A constraint-aware system can invalidate this hypothesis by using prior knowl-
edge about the birth year of Berners-Lee (1955), the death year of Max Planck
(1947) and a rule that a student must be born (or at least, say, 15 years old)
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before graduating. Similarly, type constraints can be used to eliminate false pos-
itives such as:

graduatedFrom(Tim_Berners-Lee, Real_Madrid).

This is not a plausible fact because Real_Madrid is a sports team not a university.

Consistency reasoning is expensive and faces scalability problems. The ReadTheWeb
project [20, 21] recently showed how to parallelize a constraint-aware approach,
using an ensemble-learning method over coupled pattern learners. However, this
method yields relational pairs between names of entities rather than referring to
entities themselves. For example, the result may contain instances such as:

playsInLeague(Real_Madrid_CF, Champions_League),
playsInLeague(Real_Madrid, UEFA),
playsInLeague(Real, UEFA_Champions_League).

The above three instances refer to the very same fact.

This is much lower-quality knowledge than a canonical representation that would
state the fact in terms of uniquely named entities:

playsInLeague(Real_Madrid_CF, UEFA_Champions_League).

There would then be a separate relation for capturing the synonyms of entities,
for example:

means(Real, Real_Madrid_CF).

Note that many names are ambiguous, so they appear in means facts for different
entities. For example, Wikipedia knows more than 20 soccer clubs called Real,
there are several currencies named Real, and so on.

PROSPERA builds on the SOFIE approach [109], which combines a pattern-
gathering phase with a consistency-reasoning phase. Experiments in [109] dealt
with 1,000’s of input documents and 10,000’s of hypotheses in about 10 hours
on a single computer. Clearly, this is not good enough for Web scale. Moreover,
while precision was very high, the constraint-based reasoning severely limited
recall. To increase recall, one could relax the pattern gathering and allow more
patterns and co-occurring fact candidates to enter the reasoning phase. However,
this entails two problems:

1. Efficiency: it presents the reasoner with a much larger hypotheses space
(more clauses for a Weighted-MaxSat solver [109]);

2. Quality: it introduces noisy patterns such as “X played in the qualification
round of Y” for teamWonTrophy, and sparsely occurring patterns such as
“P scored her third goal in the triumph of T” for the athletePlaysForTeam
relation, which is hardly generalizable for learning given that female players
(“ her goal") have less coverage in Web sources and “three” (goals in the same
match) is a rare feature.

In summary, Web-scale knowledge harvesting is not yet as robust and scalable as
we wish it to be. Key limitations are:

• non-canonical output: shallow and scalable methods yield pairs of (ambigu-
ous) names rather than truly entity-based facts;
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• scalability: deep methods with constraint-based reasoning do not scale and
face efficiency challenges;

• limited recall: reconciling high precision with high recall is challenging be-
cause of the need for and difficulty in dealing with noisy and sparse patterns.

3.2 CONTRIBUTION

PROSPERA overcomes, to a large extent, the above problems and shows how
to reconcile high precision, high recall, and scalability. Although PROSPERA is
based on the SOFIE framework [109], it includes major extensions along the
following lines.

For pattern-based gathering of fact candidates, we introduce a new notion of n-
gram-itemset patterns. In prior work, patterns are either consecutive substrings
from the surface text that connects two named entities in a document or words
on the path of the linkage graph that results from dependency-parsing the text.
The former is noisy, the latter entails an expensive deep-parsing step. To gather
more interesting patterns in an inexpensive way but avoid becoming even noisier,
we define a pattern to be a sequence of variable-length n-grams in the context
of two entities, and we employ algorithms for frequent-itemset mining to effi-
ciently compute pattern statistics. Moreover, we allow patterns to lift individual
parts into their corresponding part-of-speech tags (word categories); the result-
ing generalized patterns have higher support. For example, consider the lifted
n-gram-itemset:

{ scored PRP ADJ goal; match for }

The above pattern covers all sentences with the two phrases regardless of which
pronouns (PRP) or adjectives (ADJ) are used and regardless of any preceding,
following, or intermediate text such as relative clauses or appositions.

For constraint-based reasoning, PROSPERA leverages SOFIE’s Weighted-MaxSat
solver, but uses confidence measures from pattern gathering for setting clauses
weights. PROSPERA also considers negative patterns that often co-occur with
entity pairs that are not in the relation of interest. For example, we can specify
upfront a negative seed fact:

¬teamWonTrophy(Netherlands, FIFA_World_Cup).

This tells PROSPERA that the given pair is not an element of the teamWonTrophy
relation, then the system can automatically detect the negative pattern:

lost the final.

The system will in turn downgrade the weights of clauses that relate this pattern
with fact candidates. As the reasoning still prioritizes precision over recall; the
entire two-phase procedure is iterated, with re-adjusted weights, yielding much
higher recall than the original SOFIE.

Finally, to gear up for Web-scale harvesting, we have developed a new architec-
ture where tasks of all phases can be distributed across many computers and run
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in parallel. For the pattern gathering and analysis, we partition by input sources,
but ensure that the n-gram-itemset mining benefits from global statistics. For
reasoning, we employ graph-partitioning algorithms on the clauses graph and
construct parallel reasoning tasks. Tasks are mapped to distributed machines
using the Hadoop implementation of the MapReduce framework.

In summary, the chapter’s novel contributions are:

• rich and accurate patterns: a new notion of n-gram-itemsets to generalize
narrow patterns and more precisely capture noisy patterns;

• clauses weighting: using confidence and support statistics from the pattern-
based phase for carefully weighting the reasoner’s input clauses and re-
weighting them in iterations of both phases;

• distributed architecture: organizing both phases in a way that data and load
can be partitioned across parallel machines for better scalability;

• Web-scale experiments: demonstrating the run-time efficiency, high preci-
sion, and high recall of our methods by performing knowledge harvesting
on the ClueWeb09 corpus [26]—with 500 million Web pages. We compared
PROSPERA to the ReadTheWeb experiments of [20] and outperformed their
results.

All data on the experiments reported here are made available on the Web site
www.mpi-inf.mpg.de/yago-naga/prospera/.

3.3 RELATED WORK

Pattern-based Fact Gathering

Using various forms of pattern matching for fact extraction from natural-language
documents has a long history in the NLP, AI and DB communities, dating back
to the work by Hearst [56]. Hearst patterns [56] were the first part-of-speech-
enriched regular expressions (so-called lexico-syntactic patterns) which aim to
identify instances of predefined relationship types from free text. For example,
for the instanceOf relation we can automatically determine instances from noun
phrases around a syntactic pattern like:

〈class such as {NP1, NP2 . . . (and|or)}NPn〉,

where class is the plural of a semantic type such as companies or football players
and NP is the POS tag for proper noun such as Microsoft or David Beckham. Hearst
patterns are hand-crafted; for arbitrary target relations (such as hasCollaborator
or hasAcademicAdvisor) it would be difficult to come up with an exhaustive set of
expressive yet accurate patterns.

Seminal work by Brin [14] was centered around the duality of facts and pat-
terns which refers to the iterative mutual enrichment between patterns and facts,
whereby seeds can be used to find new patterns and new patterns can be used
to find more seeds. Systems based on the fact-pattern duality (e.g. [14, 3, 23,
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38, 10, 16, 129, 19]) are bootstrapped with seed facts for given relations and
automatically iterate, in an almost unsupervised manner, between collecting text
patterns that contain facts and finding new fact candidates that co-occur with
patterns. Statistical measures such as point-wise mutual information (PMI) are
used to assess the goodness of newly found facts and of characteristic patterns.
This is a powerful machinery for high recall, but it often leads to noisy patterns
and may easily drift away from the target relations.

KnowItAll [39], and Text2Onto [23] improved the statistical assessment of fact
candidates and patterns in a variety of ways, regarding robustness (lower false-
positive rate while still retaining high recall), expressiveness (e.g., by adding
part-of-speech tagging and other NLP-based features), and efficiency (lower-cost
estimates of statistical measures). The LEILA approach [107] uses dependency-
parsing-based features to boost precision, and also extends Brin’s bootstrapping
technique by incorporating both positive and negative seeds. TextRunner [130,
10] extended the pattern-fact bootstrapping paradigm to Open IE, where the har-
vesting is not focused on a particular relation but considers all relationships ex-
pressed in verbal phrases. However, this relaxation makes it very difficult to apply
any form of consistency reasoning on the extracted data.

Statistical-learning Methods

Statistical-learning methods for relational graphs (e.g. [99, 37, 24, 134, 20,
100]) aim to overcome semantic drift limitations of pattern-based fact gather-
ing methods. To this end, they incorporate probabilistically weighted rules. Such
rules couple random variables that denote whether fact candidates are true or
false. Joint inference is then applied over all fact candidates together. While such
methods yield high precision, they tend to have low recall. Such methods also
tend to have high computational costs as inference is usually based on Markov-
chain Monte-Carlo methods such as Gibbs sampling. This is particularly concern-
ing because large-scale knowledge harvesting can easily lead to situations with
hundred thousands of highly connected random variables. StatSnowball [134]
is a system for fact harvesting that makes extensive use of Markov Logic Net-
works (MLNs) and Conditional Random Fields (CRFs). The Kylin/KOG frame-
work [118, 122] applies MLNs to infer “missing infobox values” in Wikipedia.

Rule-based & Declarative Approaches

There is a line of work that explores declarative approaches to information ex-
traction. For example, System T [98], Cimple [33, 126], or SQOUT [66] organize
pattern-matching steps into execution plans which allow database-style optimiza-
tions. However, they are limited to deterministic patterns such as regular expres-
sions. Therefore, they are not suited to dealing with the inherent uncertainty of
natural language. The DBLife community portal (dblife.cs.wisc.edu) is based on
the Cimple tool suite [33, 126]. DBLife features automatically compiled super-
homepages of researchers with bibliographic data as well as facts about commu-
nity services (PC work, etc.), lectures and much more. For gathering and rec-
onciling these facts, Cimple provides a collection of DB-style extractors based on
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pattern matching and dictionary lookups. These extractors are combined into ex-
ecution plans, and periodically applied to a selected set of relevant Web sources.
Rule-based fact extraction has also been customized to Wikipedia as a knowl-
edge source, primarily to exploit the semi-structured infoboxes. DBpedia [8]
pioneered large-scale extraction of infobox facts. It uses simple, recall-oriented
techniques and places all attribute-value pairs into its knowledge base as they
are. YAGO [108], on the other hand, uses a suite of cleanly designed rules for
frequently used infobox attributes to extract and normalize the corresponding
values.

Ensemble-learning

The ReadTheWeb project [20] combines an ensemble-learning approach with cou-
pled pattern learners. In the NELL experiment [21], it produced about 230,000
facts for 123 different categories (unary relations) and 12,000 facts for 55 differ-
ent types of binary relations from a large Web corpus with 500 million pages (a
variant of the ClueWeb09 corpus).

Although this was, at the time of this study, the largest-scale experiment of this
kind in the literature, it has notable limitations. First, its recall on binary relations
- our primary focus - was rather low: only 12,000 facts after 66 days, and quite a
few of the 55 relations acquired less than 100 facts.

Note that one could retrieve the instances of unary relations (categories) much
more easily from existing knowledge bases such as DBpedia or YAGO; the real
difficulty lies in binary relations. Second, the experiment involved some human
interaction on a daily basis, after each iteration of rule learning, to manually
remove bad extraction rules. Third, the output refers to non-canonical names
rather than uniquely identified entities. The entire experiment ran more than 60
days on a large cluster. We use the ReadTheWeb results (which – thanks to the
authors – are available on the Web) as a yardstick against which we measure our
approach.

Reasoning-based Methods with Prior Knowledge

Reasoning-based methods with prior knowledge such as SOFIE [109] leverage knowl-
edge about entities and their types. SOFIE decomposes the entire fact harvesting
into two phases:

1. Pattern-based gathering of candidates for high recall

2. Reasoning about candidates and constraints for high precision

In contrast to statistical-learning methods, there is no probabilistic interpreta-
tion over the fact candidates; instead all hypotheses are organized into a set
of propositional-logic clauses. Then a customized approximation algorithm for
Weighted-Maximum-Satisfiability (MaxSat) is employed to identify a subset of
fact candidates and characteristic patterns that together constitute “the truth”.
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Constraints include functional dependencies, inclusion dependencies, type con-
straints, and more. Type information is extremely beneficial in early pruning
of the search space of the MaxSat solver; for example, the first argument of
the teamWonTrophy relation must be of type sportsTeam, as opposed to say busi-
nessEnterprise (which immediately rules out the hypotheses that Google has won
the FIFA World Cup).

SOFIE uses the YAGO ontology [108] to map names to entities. YAGO includes
entity name synonyms gathered from the redirection pages and hyperlink anchor
texts in Wikipedia. For every name encountered, SOFIE looks it up in YAGO and
computes a disambiguation prior for all the potential entities that the name may
refer to. The disambiguation prior is assigned to each possible mapping to indi-
cate the likelihood that the name refers to each of the candidate entities. SOFIE
computes the disambiguation prior using the bag of words model. This model
computes the similarity between the text context the name was extracted from,
and the information that YAGO knows about a given candidate entity. SOFIE gen-
erates hypotheses over all the candidate entities and their disambiguation prior
weights. The entity disambiguation hypotheses are resolved in the same MaxSat
solver as the hypotheses about fact candidates.

3.4 OVERVIEW OF PROSPERA

We assume that we have an existing knowledge base with typed entities, which
more or less includes all individual entities and their types (e.g., footballPlayer).
In our experiments, we use YAGO [108] for this purpose, which provides us with
more than 2 million typed entities and a dictionary of the possible meanings of
a surface string. The YAGO means relation explicitly maps surface strings onto
individual entities. This does not yet resolve any name-entity ambiguity, though
(see below).

PROSPERA takes as input a set of binary relations and their seed examples.

Definition 3.4.1 (Binary Relations, Seeds, and Counter-seeds) We are given a
set of binary relations R1, . . . , Rm of interest, each with a type signature and a small
set of seed facts and optionally, a set of counter-seeds. The latter are entity pairs
that are asserted to be definitely not among the instances of a given relation, for
example:

¬teamWonTrophy(USA, FIFA_World_Cup).

We now consider a textual corpus, e.g., a set of Wikipedia articles, Web pages, or
news articles, as input for harvesting facts about the relations of interest. PROS-
PERA processes this data in three phases:

1. Pattern gathering: This phase identifies triples of the form (e1, p, e2) where e1
and e2 are any two entities, each occurring as a different noun phrase, and
p is a surface string that appears between e1 and e2. As sentences contain
merely names rather than entities, we determine all possible mappings using
the means relation of YAGO and then use a disambiguation heuristics based
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on context similarities. We form a text-window-based bag of words around
the name, and a bag-of-words context around each entity that the name
could possibly be mapped to. For the latter, we use the type names of the
entities in YAGO (which include names of Wikipedia categories to which the
entity belongs). The entity whose context has the highest word-level overlap
with the name’s bag of words is chosen for the name-to-entity mapping.

2. Pattern analysis: This phase generalizes the basic patterns from the previous
step by transforming them from long, overly specific phrases into sets of
n-grams succinctly reflecting the important sub-patterns. We also compute
statistics and similarity measures about patterns and use them to generate
fact candidates. The pattern analysis is further detailed in Section 3.5.

3. Reasoning: This step complements the statistical evidence of the previous
phase with logical plausibility for high precision. The fact candidates are
passed to a MaxSat-based reasoner which considers pre-specified constraints
to ensure mutual consistency of accepted facts and their compatibility with
the consistency constraints. The reasoning phase is further detailed in Sec-
tion 3.6.

Our experiments demonstrate that the disambiguation heuristic is very powerful
and fairly accurate. Employing this name-entity mapping upfront is a depar-
ture from the SOFIE architecture, where entity disambiguation was part of the
constraint-based reasoning [109] (and similar techniques were also used in other
approaches, e.g., based on Markov logic or factor graphs [37, 120]). However,
integrating name-entity mapping into consistency reasoning has high computa-
tional cost as it leads to a much larger space of clauses and Weighted MaxSat is an
NP-hard problem with inherent combinatorial complexity. PROSPERA’s stream-
lined approach is efficient and scales very well to Web proportions.

As we will explain later, each of the three phases can be parallelized on a dis-
tributed platform. Moreover, we can iterate the three phases by feeding the out-
put of the reasoner back into the pattern gathering, treating newly found facts as
additional seeds for the next iteration. While such feedback loops are well stud-
ied for knowledge-harvesting methods that are exclusively pattern-based, such
as [14, 3, 10], our approach distinguishes itself from that previous work by in-
cluding the reasoning phase in each iteration. This strengthens the choice of
next-iteration seeds and ensures that precision is kept high. The overall architec-
ture of PROSPERA is illustrated in Figure 3.2.

3.5 PATTERN ANALYSIS

Seed Patterns

The basic pattern phrases from the pattern gathering phase are fed into a frequent
n-gram-itemset mining algorithm for identifying strong patterns. For example, for
the hasAcademicAdvisor relation, the pattern gathering may yield a sentence like:

“Barbara Liskov was the first woman in the US who was honored with
the title of a doctor of philosophy (Ph.D.) from a technical department at
Stanford University”.
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Pattern Gathering

Reasoning

seed examples counter examples

fact
candidates

phrase patternsentity pairs
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n-gram-itemset
patterns

rejected
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accepted
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Figure 3.2: Architecture of the PROSPERA System.

Such a long and extremely specific phrase does not generalize for fact extrac-
tion, as there are hardly any other entity pairs with exactly the same pattern. A
standard technique would be to consider a subsequence as a better pattern, for
example, the substring:

“was honored with the title of a doctor of philosophy”.

But even this is overly specific and would occur very sparsely in the corpus.

To overcome this problem, we break down the phrases into variable-length n-
grams of successive words, i.e., multiple n-grams per phrase. Then a much better
pattern would be the n-gram-itemset consisting of three n-grams:

{ honored with; doctor of philosophy; Ph.D. }.

Definition 3.5.1 (Basic Pattern) Given a set SX(Ri) of seed examples for a rela-
tion Ri and an input set S of sentences (or, more generally, token sequences),
a basic pattern p is a sequence such that e1 p e2 occurs in S for at least one pair
(e1, e2) ∈ SX(Ri).

Definition 3.5.2 (N-gram-itemset Pattern) An n-gram itemset pattern is a set Q
for which there is at least one sequence s ∈ S that can be written as s = h e1 p e2 t
with a seed example (e1, e2) ∈ SX(Ri) such that for all q ∈ Q the length of q is at
most n words (tokens) and q is a subsequence of p. Observe that we only consider
infix patterns for p. However, even when the basic pattern is not an infix occurring
between e1 and e2, the n-gram-itemset pattern definition holds.
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A new sentence is a candidate for containing a fact if it contains all three n-
grams or at least a large subset of this n-gram-itemset. For efficiently generating
the n-gram-itemset patterns, we apply the technique of frequent itemset mining
[1, 95] which has been widely used to discover interesting relations among items
in databases. More specifically, we use the Generalized Sequential Pattern (GSP)
algorithm [95] for generalized sequence mining .

In frequent itemset mining, the task is to find sequences of words that occur in
a specified minimum number of patterns. That is, let I = a1, a2, . . . , an be the
vocabulary of words used in patterns and D = p1, p2, . . . , pn be the database of
patterns. An itemset X, where X ⊂ I, is considered frequent if support(X) ≥
minsup. The support of X, support(X), is the proportion of patterns in the
database which contain the itemset X and minsup is the minimum support re-
quired for an itemset to be considered frequent.

The GSP algorithm generates ordered frequent itemsets. The itemsets are se-
quences in this case because order of words matters. GSP works iteratively, gen-
erating k-ngrams in a bottom-up manner. In the first round, k = 1 and GSP
retrieves all frequent individual words (1-gram), in the second round 2-grams
are generated by joining pairs of 1-grams and the same procedure is followed for
subsequent values of k. This way we end up with itemset patterns, where each
pattern is a set of frequent n-grams.

Often, there is a variety of different wordings regarding pronouns or injected
adjectives that render n-grams sparse. For example, because of the variations:

“received his” and “received her”,

we may dismiss good n-grams as too infrequent (e.g., “received her” ). To over-
come this issue, we run part-of-speech (POS) tagging on each of the originally
gathered sentences, assigning word categories like nouns, verbs, pronouns, etc.
to each of the words. We tentatively replace words with their POS tags, to obtain
a more general form of n-grams that we refer to as lifted patterns.

Definition 3.5.3 (Lifted Pattern) A lifted pattern is a pattern p where words with
certain POS tags are replaced by their tags.

We focus on POS tags for pronouns, prepositions, articles, and adjectives. This
way we can generalize the above pattern into the lifted form:

“received PRP”

where PRP denotes an arbitrary pronoun.

To assess the goodness of an n-gram-itemset pattern, we compute the following
statistics about co-occurrence of patterns with seed examples and counterexam-
ples. Support captures the frequency of a pattern in conjunction with a seed fact,
whereas confidence reflects the ratio of the pattern co-occurring with seed facts
versus counter-seeds.

Definition 3.5.4 (Pattern Support and Confidence) For sets SX(Ri) and CX(Ri)

of seed examples and counterexamples and an input set S of sentences, a basic (or
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Pattern Relation Computed
confidence

{PhD dissertation at} graduatedFrom 1.0

{doctorate at the, in, with} graduatedFrom 0.57

{doctorate at the, in, with} hasAcademicAdvisor 0.43

{attended the} graduatedFrom 0.96

{dissertation supervised by} hasAcademicAdvisor 1.0

{academic career at the } facultyAt 1.0

{was awarded the, along with} hasCollaborator 0.44

{and associate} hasCollaborator 1.0

{is a fellow of} hasProfessionalAffiliation 1.0

{is a member of the } hasProfessionalAffiliation 0.33

Table 3.1: Example seed patterns with computed confidence values

n-gram-itemset) pattern q has support(q) =

|{s ∈ S|∃(e1, e2) ∈ SX(Ri) : q, e1, e2 occur in s}|
|S|

and con f idence(q) =

|{s ∈ S|∃(e1, e2) ∈ SX(Ri) : q, e1, e2 occur in s}|
|{s ∈ S|∃(e1, e2) ∈ SX(Ri) ∪ CX(Ri) : q, e1, e2 occur in s}|

Definition 3.5.5 (Seed Pattern Weight) An n-gram-itemset pattern q, for given
SX(Ri), CX(Ri), and input set S of sentences, is called a seed pattern if both
support(q) and con f idence(q) are above specified thresholds. Pattern q is associated
with a seed-pattern weight, set to

weight(q) = α× support(q) + (1− α)× con f idence(q)

In our experiments, we used only confidence values and disregarded support for
the weighting (α = 0). Table 3.1 depicts some example patterns we have learned
along with their computed confidence values, for a few selected relation types.
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Fact Candidates

The seed patterns are used to discover new fact candidates. We consider all sen-
tences s ∈ S that contain two entities (x, y) of appropriate types for Ri (e.g., a
person and a university for the hasAcademicAdvisor relation) and whose subse-
quence p in s = h x p y t in between the two entities x, y partially matches one
of the seed patterns.

Definition 3.5.6 (Subsequence-Pattern Match) The goodness of the match is quan-
tified by the Jaccard similarity

sim(p, q) =
|{n-grams ∈ p} ∩ {n-grams ∈ q}|
|n-grams ∈ p} ∪ n-grams ∈ q}|

This approximate matching of p against all seed patterns q is efficiently imple-
mented by lookups in an n-gram index constructed from the seed patterns. Op-
tionally, the n-grams can be weighted such that we compute weighted Jaccard
similarity.

We process all input sentences s = h x p y t this way, and again perform frequent-
itemset mining to concentrate on the set of patterns to those with support above
a specified threshold. The output of this step is a multi-set of weighted triples
(x, y, p)[w] where (x, y) is a fact candidate, p is an n-gram-itemset pattern, and w
is the highest pattern-matching similarity of p with any seed pattern q. Note that
it is a multi-set rather than a set because the same candidate can be encountered
several times.

Definition 3.5.7 (Fact-pattern Candidate Multi-set) For given input set S and
seed-pattern set Q, the fact-pattern candidate multi-set C(S, Q) is:
C(S, Q) = {(x, y, p)[w] | ∃s ∈ S : s contains x, y, p ∧

w = max{sim(p, q)× weight(q)|q ∈ Q}}

Finally, we can aggregate the fact-pattern candidates in C, grouping them either
by fact candidates, to compute a strength measure of the potentially new fact, or
by patterns, to quantify the goodness of a pattern.

Definition 3.5.8 (Fact Candidate Weight) For a fact candidate (x, y), the aggre-
gated weight is given by: weight(x, y) = ∑{w|(x, y, p)[w] ∈ C}.

Definition 3.5.9 (N-gram-itemset Pattern Weight) For an n-gram-itemset pat-
tern p, the aggregated weight is: weight(p) = ∑{w|(x, y, p)[w] ∈ C}.

We can interpret these weights as the (statistical) evidence that (x, y) is a valid
fact and p is a good pattern for further extraction steps for Ri. Note that the two
weights are quite different, as the aggregations are computed over different sets.
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3.6 REASONING

Following the work on SOFIE [109], the PROSPERA system also uses constraints
on hypotheses to prune false positives and improve precision. In contrast to
[20, 21], we include constraints on the duality of patterns and facts, and we
harness the rich knowledge about entity types provided by YAGO. In addition,
we specify functional dependencies, inclusion dependencies, relation properties
such as symmetry, antisymmetry, or inverse relations, as well as domain-specific
constraints whenever possible. The constraints are manually specified upfront,
but in all our experiments this was merely a matter of a few minutes. Typical
constraints look as follows, with variables p, e1, e2, e3 for patterns and entities
and given relations R, S, T:

occurs(p, e1, e2) ∧ type(e1, dom(R))
∧type(e2, range(R)) ∧ expresses(p, R)⇒ R(e1, e2) //pattern-fact duality

occurs(p, e1, e2) ∧ type(e1, dom(R))
∧type(e2, range(R)) ∧ R(e1, e2)⇒ expresses(p, R) //pattern-fact duality

R(e1, e2) ∧ type(R, f unction) ∧ di f f erent(e2, e3)
⇒ ¬R(e1, e3) //functional dependency

R(e1, e2) ∧ sub(R, S)⇒ S(e1, e2) //inclusion dependency

R(e1, e2) ∧ inv(R, T)⇒ T(e2, e1) //inverse relations

T(e1, e2) ∧ inv(R, T)⇒ R(e2, e1) //inverse relations

For the actual reasoning procedure, the constraints are grounded to produce
clauses.

Definition 3.6.1 (Grounded Constraints and Clauses) A constraint is a first-order
logic formula of the form ∀x1 ∀x2 ... ∀xk f (x1, ..., xk). Constraints are grounded by
substituting all meaningful constants – concrete patterns and entities – into the con-
straint formulas, thus providing us with a set of propositional-logic clauses. Con-
verting the resulting propositional logical formulas into conjunctive normal form
provides us with clauses of the form: P1 ∨ P2 ... Pk, where each Pi is a positive or
negative literal consisting of a predicate with constants as arguments.

We can handle clauses with several negative literals, whereas rule-induction
methods (e.g., the one used in [20, 21]), are typically restricted to Horn clauses.
For example, for the graduatedFrom relation (assuming that it were a function: it
refers only to Ph.D. degrees and one can obtain a Ph.D. only from one university),
the grounding procedure generates clauses such as:
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occurs( and PRP alma mater, Barbara_Liskov, Stanford_University )

∧expresses( and PRP alma mater, graduatedFrom )

⇒ graduatedFrom( Barbara_Liskov, Stanford_University )

graduatedFrom( Barbara_Liskov, Stanford_University )

⇒ ¬graduatedFrom( Barbara_Liskov, UC_Berkeley )

graduatedFrom( Barbara_Liskov, UC_Berkeley )

⇒ ¬graduatedFrom( Barbara_Liskov, Stanford_University )

Note that the grounding already evaluates predicates whose truth value can be
decided directly. For example, the different predicate between two entities is
directly set to true or false, thus simplifying the resulting clauses. Most impor-
tantly, the type predicates are evaluated at this stage, too. For entities that do
not obey the type signature of the relation at hand, the antecedent of the clause
evaluates to false so that the entire clause can be eliminated. This massive prun-
ing of clauses from the hypotheses space greatly reduces the reasoner’s load.
The efficiency gain is possible because of the rich type information about enti-
ties that YAGO provides. Such optimizations were not possible in earlier work on
reasoning-based information extraction such as [37]. The recent work of [20, 21]
considered type information, too, by coupling the pattern-based learners for bi-
nary relations with those of unary ones. Note, however, that this was at the
level of non-canonical (often ambiguous) names rather than uniquely identified
entities; so it is not as clean and powerful as our rigorous typing at the entity
level.

The grounded clauses are weighted, and then we finally run the Weighted-MaxSat
reasoner of [109]. This computes truth values for all hypotheses on the expresses
and R predicates for all relations R and all instantiated constants (patterns and
entities), such that the total weight of the clauses that are satisfied by this truth-
value-assignment becomes as large as possible. The algorithm can only approxi-
mate the maximum of this objective function, given that MaxSat is NP-hard and
our algorithm runs on hundred thousands of clauses with ten thousands of vari-
ables.

The weights of clauses are derived from the pattern-confidence measures com-
puted in the pattern analysis phase. This is a major departure from earlier work
on reasoning-based information extraction: SOFIE used uniform weights except
for entity disambiguation [109] and the work with Markov logic networks advo-
cated setting weights by frequency analysis of the fact candidates (the “uncertain
database”) [37].

Definition 3.6.2 (Clause Weight) In PROSPERA, we associate the antecedent of
a clause with a confidence weight about its constituent literals (elementary logical
atoms). Specifically, for clauses of the form:

occurs(p, e1, e2) ∧ expresses(p, R)⇒ R(e1, e2),

we use the confidence weight of the pattern p as the weight of the entire clause. For
clauses of the form
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occurs(p, e1, e2) ∧ R(e1, e2)⇒ expresses(p, e1, w2),

we analogously use the confidence weight of the fact candidate R(e1, e2) . The
frequency of observing p, e1, e2 together (the occurs predicate) is irrelevant, as this
would unduly boost frequent observations regardless of their quality.

Our experiments show that the reasoner becomes much more robust by using
the above weights, which are essentially dependent on seed facts (and the de-
rived seed patterns). Clauses derived from functional dependencies, relational
properties, or domain-specific consistency rules are given uniform weights.

3.7 DISTRIBUTED IMPLEMENTATION

To scale out our knowledge-harvesting system, we adopted the MapReduce pro-
gramming model [31, 121] based on the abstractions of mappers and reducers.
Mappers specify the computation to be performed on each input record. Reducers
specify how the output of the mappers is aggregated to generate the final results.
MapReduce computations are based on key-value pairs. Mappers work on input
key-value pairs and generate intermediate key-value pairs. Reducers consume
intermediate pairs, with the same intermediate keys being passed to the same
reducer. Reducers aggregate intermediate keys to emit output key-value pairs.

We have developed MapReduce algorithms for the three main phases of our archi-
tecture. We used the Hadoop open source implementation [121] and the HDFS
distributed filesystem [128].

Pattern Gathering

Parsing documents for pattern gathering is trivially parallelizable as each docu-
ment is scanned independently. No coordination is required between concurrent
worker tasks. The input to the mappers are document identifiers (keys) and the
corresponding document contents (values).

The mapper performs checks on the sentences of the document, emitting triples
of the form (e1, p, e2) for any pair of interesting entities e1 and e2. Additional
processing of sentences, such as generating part-of-speech tags, is also performed
in the mapper. Here the reducer merely serves the purpose of sorting and aggre-
gating the emitted triples.

Pattern Analysis

The pattern analysis phase computes statistical measures for seed patterns and
uses these to generate fact candidates. The results of the pattern analysis phase
are accomplished by a sequence of MapReduce algorithms; here we focus on the
major tasks and how to distribute/parallelize them.

Generate N-gram-itemset Patterns. The n-gram-itemset patterns are the pri-
mary representation on which pattern-similarity computation is based. Thus, the
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1. FUNCTION map(i, Pi)
2. List N ← generateNgrams(Pi)
3. FOR ni ∈ N DO
4. emit(ni,1)

1. FUNCTION reduce(ni, [v1, v2, v3, ...])
2. support← 0
3. FOR vi ∈ [v1, v2, v3, ...] DO
4. support← support + vi
5. IF support ≥ MINSUPPORT
6. emit(ni, support)

Figure 3.3: MapReduce pseudo-code for frequent n-gram-itemset mining

first task is to convert the previously collected raw patterns into this format. This
entails identifying frequently co-occurring n-grams within the basic patterns via
frequent-itemset mining [1]. To reduce the size of the input data to subsequent
algorithms, we introduce a preprocessing step to perform dictionary encoding by
replacing words and patterns with integer identifiers.

The pseudo-code for computing frequent itemsets is shown in Figure 3.3. The in-
put to the mapper consists of the key-value pair of the pattern identifier (key) and
the pattern itself (value). For each input pattern, mappers generate constituent
n-grams and emit, for each n-gram, an intermediate key-value pair consisting of
the (dictionary-compressed) n-gram as the key and a support of 1 as the value.
The reducers gather support counts for any given n-gram and sum them up to
obtain the final support counts. Only those n-grams whose support is above the
specified values are emitted. Note that sequential algorithms for frequent-itemset
mining are typically optimized to eliminate non-frequent itemsets as early as pos-
sible. When generating frequent itemsets of cardinality (or length in our case)
k, the algorithm first prunes all infrequent (k-1)-grams. In contrast, our MapRe-
duce algorithm greedily generates all itemsets and does batch pruning in the
reducers. This is advantageous because 1) we are only interested in relatively
short n-grams, typically 3-grams, and 2) the MapReduce paradigm is designed
for batch processing and works best if coordination and communication across
worker tasks is kept to a minimum.

Once we have the frequent n-gram itemsets, a second MapReduce algorithm (not
shown here), is used to rewrite patterns into a form with frequent n-grams only,
disregarding infrequent ones. This way we end up with n-gram-itemset patterns.

Compute Seed Pattern Confidence Values. Once all the patterns are in n-gram-
itemset representation, we need to identify the seed patterns and compute their
confidence values. To this end, we need to determine how often the pattern co-
occurs with seed facts and how often it co-occurs with counter-seeds. We have
developed two MapReduce algorithms for this purpose. The first one, shown in
Figure 3.4, identifies seed patterns and tracks pattern-occurrence information. In
each mapper, the (e1, p, e2) triples from the pattern-gathering phase are processed
to test if p is a seed pattern. The mappers emit intermediate key-value pairs
with the pattern identifier as the key and the seed occurrence as the value. The
reducers combine all seed occurrences belonging to one pattern and emit all seed
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1. FUNCTION map(i, [e1, p,e2])
2. IF isSeedPattern(p)
3. FOR r ∈ R DO
4. SeedOccurrence O← [r, e1,e2]
5. emit(p.id, O)

1. FUNCTION reduce(p.id, [O1, O2, O3, ...])
2. List L← { }
3. FOR O ∈ [O1, O2, O3, ...] DO
4. L.append(O)
5. emit(p.id, L)

Figure 3.4: MapReduce pseudo-code for seed pattern confidence

occurrences of every seed pattern. A second MapReduce algorithm (not shown
here) uses this data to compute pattern confidence values.

Generate Fact Candidates. The large majority of the [e1, p,e2] triples from the
pattern gathering have patterns p that do not precisely match any seed pattern.
To identify new fact candidates and quantify their statistical evidence, we con-
ceptually compute the similarity of p with all partially matching seed patterns q
based on the Jaccard coefficient of the corresponding n-gram sets (see Section
3.5)

The easiest implementation would be an exhaustive algorithm where a mapper
computes the similarity of a given pattern with all seed patterns and then emits
the best (partial) match. However, this would have high computational costs
because of many unnecessary comparisons. To accelerate the computation, we
first build an inverted index on the n-grams of the seed patterns and use it to
compute similarity scores more efficiently. For building the index, we follow
standard MapReduce practice [31]. The optimized algorithm is shown in Figure
3.5.

The mappers consume non-seed patterns, with the pattern identifier as the key
and the n-gram-itemset as the value. Each mapper first loads its relevant partition
of the seed n-gram index and pattern confidence values into memory. Hadoop
allows mappers to preserve state across different input pairs, therefore this infor-
mation is loaded only once during the Hadoop job initialization. The mapper uses
the index to compute matches between seed patterns and non-seed patterns. For
each such match, the similarity score between the seed pattern and the non-seed
pattern pi is computed and added to a priority queue. The mapper then emits an
output key-value pair consisting of the pattern identifier and the best matching
seed pattern. This information is then passed down to the reasoner which makes
the final decision on the goodness of the patterns during a given iteration.

Reasoning

To parallelize the MaxSat-based reasoning, the hypotheses about fact candidates
and pattern goodness are formulated as a graph.
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1. FUNCTION map(i, pi)
2. I ← loadSeedNgramIndex()
3. C ← loadSeedPatternConfidenceValues()
4. PriorityQueue Q← { }
5. List H ← computeHits(p, I, C)
6. FOR h ∈ H DO
7. h.similarity = computeSimilarity(pi, h.seedPattern)
8. Q.insert(h, h.similary)
9. emit(Q.removeMin())

Figure 3.5: Mapper pseudo-code for pattern similarity and fact-candidate
extraction.

Definition 3.7.1 (Hypotheses Graph) A hypotheses graph G = (V,E), for a set of
propositional logic clauses, is an undirected graph consisting of a node set V repre-
senting fact candidates and patterns and an edge set E representing edges between
two nodes if they appear in a joint clause.

Definition 3.7.2 (K-cut Graph Partitioning) A k-cut partitioning of a hypotheses
graph is a partitioning into k sub-graphs (of approximately equal size), such that
the number of edges that connect vertices in different partitions is minimized.

Note that partitioning the graph may now disregard some constraints, but as
MaxSat is an NP-hard problem our solution is approximate anyway. The fewer
cross-partition edges are cut, the more constraints are preserved by the paral-
lelized reasoning. Generating the graph is specified as a MapReduce job, the
graph is then partitioned into k partitions, and the partitions are processed in
parallel by reasoners on different compute nodes of the distributed platform.

The minimum-cut graph partitioning problem is also NP-complete and there is
a plethora of approximate algorithms for it. We employed a randomized, two-
phase graph partitioning algorithm, based on methods by [62] and [63].

Graph Partitioning Phase 1. Phase one coarsens the graph into a smaller graph
that is a good representation of the original graph. The coarsening reduces the
size of graph by edge contraction until the graph is small enough. The basic
technique is to pick an edge connecting vertices u and v and collapse the two
vertices: a new vertex w replaces u and v. Edges previously linking u and v to
other vertices are updated to point to the new vertex w. If both u and v have
edges to another vertex z, then the weight of the edge from w to z is the sum of
the weights of the two edges. This helps to ensure that a balanced partitioning
of the smaller graph is also an approximately balanced partitioning in the orig-
inal graph. In picking the edges to contract, we heuristically favor edges that
contribute more to the overall min-cut objective function. These are the heavy
edges in the coarsened graph. Initially, all edges have the same uniform weight,
but as vertices are collapsed, some edges obtain higher weights. In each step,
we randomly select a vertex and then choose its incident edge with the highest
weight for contraction. This guards the edge from being cut in the second phase
of the overall algorithm.
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Graph Partitioning Phase 2. Phase two partitions the coarser graph and projects
the resulting partitions back into the original graph. Once a coarsened graph with
a specified maximum number of vertices is obtained, it is then directly partitioned
into k partitions. We use graph-growing heuristics [63] to derive k partitions from
the coarsened graph. For each k, we randomly select a vertex and grow a region
around it until |V|/k vertices are included, picking vertices that lead to smaller
increase in the weight of the edges that are cut.

In our experiments, partitioning the graph this way did not notably affect the
output quality of the Weighted-MaxSat solver, which is only an approximation
algorithm anyway. The time for graph partitioning was short, usually 5 minutes
at most for graphs with several 100,000’s of vertices.

3.8 EVALUATION

We carried out experiments to evaluate both the single machine version of PROS-
PERA and the distributed version.

Small-Scale Experiments

In the small scale experiments, we aimed to evaluate PROSPERA’s performance
with respect to the improvements it makes on the SOFIE framework on which
it is based. We carried out experiments to extract academia-related information.
The corpus was generated by crawling the homepages of the most prolific authors
from DBLP, then augmenting these with articles of scientists from Wikipedia. Ad-
ditionally, names of scientists were used to query Google for further documents.
The resulting corpus consists of 87,470 documents. The knowledge base used in
the experiments is the YAGO [108] ontology.

To quantify how the various aspects of PROSPERA affect performance, we evalu-
ated the hasAvademicAdvisor relation. Table 3.2 shows the results.

PROSPERA has the highest recall at high precision. SOFIE produced many extrac-
tions but with low precision. The hasAcademicAdvisor relation is not straightfor-
ward to extract because it can be expressed by patterns that may be misleading.
For example, the pattern, “x worked with y” may or may not indicate that y was
the doctoral advisor of x. These misled SOFIE but PROSPERA withstood them as
it identifies these cases through pattern occurrence statistics. The two systems
extracted more or less the same facts; however each system also extracted some
tuples the other did not. For example both systems extracted the pair (Jeffrey
Shallit, Manuel Blum), but only PROSPERA extracted the pair (Serge Lang, Emil
Artin), whereas only SOFIE extracted the pair (Ravi Sethi, Jeffrey Ullman).

Consistency checking plays a significant role in ensuring high precision as re-
flected in the results of the PROSPERA-NoReasoner method. The reasoner thus
acts as a well-placed filter, performing type checking as well as ensuring that
the logical rules are upheld. The PROSPERA-NoCounterExamples method shows
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Method # extractions Precision

SOFIE 1,845 22%
PROSPERA 372 83%
PROSPERA-NoReasoner 22,340 1.9%
PROSPERA-NoCounterExamples 404 79%
PROSPERA-Unweighted 338 83%

Method # fact candidates Runtime (min)

SOFIE 105,016 122
PROSPERA 22,340 35
PROSPERA-NoReasoner n/a 22
PROSPERA-NoCounterExamples 24,328 35
PROSPERA-Unweighted 24,328 35

Table 3.2: Performance for the hasAcademicAdvisor relation

the impact of counter-examples. Without the counter-examples, even weak pat-
terns may lead to extractions; this degrades precision slightly. The PROSPERA-
Unweighted method shows the impact of the weights. Disregarding pattern
weights altogether results in slightly reduced recall. This is attributed to the fact
that the weights guide the reasoner to the correct answer. Without the weights
there may be misleading cases, causing the reasoner to reject facts that might be
true. The number of fact candidates indicates the number of candidates passed
on to the reasoner. It can be seen in Table 3.2 that all variations of PROSPERA
provide considerable pruning of fact candidates and this results in shorter execu-
tion times compared to SOFIE.

Comparisons were also carried out using various other relations, the results
are shown in Table 3.3. PROSPERA has high precision across all the relations
whereas SOFIE’s precision varies widely across relations. Furthermore, for the
hasCollaborator and hasProfessionalAffiliation relations, PROSPERA has much higher
recall. This is because these two relations had the fewest number of seeds and
the generalization capability of patterns in PROSPERA enabled further instances
to be discovered without requiring exact matches between patterns. For the grad-
uatedFrom and facultyAt relations, SOFIE’s recall suffers because these two rela-
tions have overlapping instances, since people can be faculty remembers at the
institutions where they graduated from. Here again PROSPERA is robust to this
scenario. PROSPERA has the same precision as SOFIE for the hasWonPrize rela-
tion. This is because this relation is typically expressed with the same patterns,
hence the exact pattern matching in SOFIE works well. PROSPERA has a slightly
lower recall than SOFIE for this relation, primarily because weak seed patterns
that do not meet the requirements in PROSPERA were dropped.

To quantify the impact of the number of seeds used, we evaluated PROSPERA and
SOFIE’s performance for the hasAcademicAdvisor for varying numbers of seeds.
Table 3.4 shows the results.

PROSPERA has high precision and decent recall even when only a small number
of seeds are used. SOFIE, on the other hand has high precision when only a
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Relation # Precision
extractions

hasAcademicAdvisor 372 83%
(person, person)

hasCollaborator 122 91%
(person, person)

facultyAt 1,274 94%
(person, university)

PROS- graduatedFrom 1,310 89%
PERA (person, university)

hasProfessionalAffiliation 107 90%
(person, organization)

hasWonPrize 1,309 99%
(person, award)

hasAcademicAdvisor 1,845 22%
(person, person)

hasCollaborator 8 100%
(person, person)

facultyAt 3,147 49%
(person, university)

SOFIE graduatedFrom 5,088 56%
(person, university)

hasProfessionalAffiliation 7 100%
(person, organization)

hasWonPrize 1,553 99%
(person, award)

Table 3.3: Performance for all relations

few seeds are used but has very low recall in these cases. When many seeds are
used, there is a high chance of noisy patterns occurring with a few instances.
For example, for the hasAcademicAdvisor relation, SOFIE’s precision degrades,
PROSPERA still yields high precision.

We also compared PROSPERA to the SNOWBALL[3] system, using one of their
experiments (for which a non-copyright-protected part of the data was available[108]).
In this test run, with the goal of extracting the headquarters of companies, PROS-
PERA reached 85% for a recall of 42 newly extracted, correct facts, SOFIE also
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# seeds # extractions Precision
15 48 89%

PROSPERA 50 115 81%
212 372 83%
15 4 100%

SOFIE 50 131 31%
212 1,845 22%

Table 3.4: Precision and recall for the hasAcademicAdvisor relation for
varying numbers of seeds

extracted 42 correct facts with 91% precision, whereas the original SNOWBALL
reached 57% precision with 37 correct facts.

In general, not many information-extraction systems are publicly available for
comparative experiments. Moreover, many results in the literature cannot be re-
produced in a full experiment because the publications do not disclose sufficient
details about their experiments (e.g., the datasets and chosen seeds). Therefore,
we cannot present a broader set of comparisons with other systems. Full details of
our experiments were published at www.mpi-inf.mpg.de/yago-naga/prospera/.

Large-Scale Experiments

Setup

Large-scale experiments were carried out on the English part of the ClueWeb09
corpus [26], which consists of 500 million English-language Web pages. Evalua-
tions reported here were restricted to binary relations between entity pairs. We
focused on two domains: 9 relations from the sports domain and 5 relations from
the domain of academic relationships.

The sports domain was chosen in order to compare PROSPERA to the results
of the NELL (Never Ending Language Learning) experiment reported in [20],
which had strong coverage of the sports relations and – very laudably – made all
relevant data available on the ReadTheWeb site. To our knowledge, NELL is so
far the largest and most ambitious experiment along these lines, with online data
against which we could meaningfully compare our approach. We used the very
same input as NELL: 10–15 seed facts and 5 counter-examples for each relation.
In contrast to NELL, we did not have any human intervention during our runs.
Also, NELL allowed 5 manually specified seed patterns as a-priori input, whereas
PROSPERA used only seed facts and determined patterns autonomously.

The sports domain has no constraints other than type constraints; there are not
even any functional dependencies. The academic domain, on the other hand,
is an interesting choice as it has sophisticated constraints posing a stress-test to
the reasoning phase in our PROSPERA system. For the academic relations, we
used seeds obtained from the YAGO ontology. All instances for a given relation
already in the ontology were treated as seeds. Counter-seeds were derived from
instances of other relations in YAGO.
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Relation # Extractions

PROSPERA-6 NELL-6 NELL-66
AthletePlaysForTeam 14,685 29 456
CoachCoachesTeam 1,013 57 329
TeamPlaysAgainstTeam 15,170 83 1,068
TeamWonTrophy 98 29 397

AthletePlaysInLeague 3,920 2 641
TeamPlaysInLeague 1,920 62 288

AthleteWonTrophy 10 n/a n/a
CoachCoachesInLeague 676 n/a n/a
TeamMate 19,666 n/a n/a

Table 3.5: Performance comparison between PROSPERA and NELL on
sports relations: number of extractions

All experiments were performed on a Hadoop (0.20.1) cluster with 10 server-
class machines. Each machine has a Dual-Xenon E5530 2.4 GHz processor (16
physical cores), 48 GB RAM (DDR3), 1.5 TB iSCSI storage, and 1 Gbit Ethernet
interconnect. The NELL experiment ran on the Yahoo! M45 supercomputing
cluster, but no statements were given about the number of nodes used and their
utilization.

Performance metrics of interest are recall, precision, and run-times. Here re-
call refers to the number of extracted facts which are returned by each of the
knowledge-harvesting systems, as there is no way of estimating the total num-
ber of truly correct facts that appear (in latent form with natural language) in
the entire corpus. Precision was estimated by sampling the harvested facts and
having a human judge assess their correctness. As our runs yielded much higher
recall than NELL, we also ranked the resulting facts by their confidence and addi-
tionally determined the precison@1000 for the 1000 highest-ranked facts of the
largest relations. All precision assessments are based on 50 randomly sampled
facts for each relation.

All data on the experiments reported here are made available as supplementary
material on the Web site www.mpi-inf.mpg.de/yago-naga/prospera/.

Scalability Experiment (Sports Relations)

The scalability experiment aimed to evaluate the performance of our approach
on large and noisy data for all three performance metrics. Tables 3.5 though
3.7 show the results of the experiment on sports relations. PROSPERA ran 6
iterations, and NELL ran 66 in total. We compare PROSPERA-6 (6 iterations)
against NELL-6 (first 6 iterations) and NELL-66 (all 66 iterations). For the first
four relations, both precision and recall numbers for NELL are given in [20] and
its supplementary material. NELL was run on the other relations as well, but no
recall/precision numbers were given.
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Relation Precision

PROSPERA-6 NELL-6 NELL-66
AthletePlaysForTeam 82% 100% 100%
CoachCoachesTeam 88% 100% 100%
TeamPlaysAgainstTeam 89% 96% 99%
TeamWonTrophy 94% 88% 68%

AthletePlaysInLeague 94% n/a n/a
TeamPlaysInLeague 89% n/a n/a

AthleteWonTrophy 90% n/a n/a
CoachCoachesInLeague 99% n/a n/a
TeamMate 86% n/a n/a

Table 3.6: Performance comparison between PROSPERA and NELL on
sports relations : precision

Relation Precision@1000

PROSPERA-6
AthletePlaysForTeam 100%
CoachCoachesTeam n/a
TeamPlaysAgainstTeam 100%
TeamWonTrophy n/a

AthletePlaysInLeague n/a
TeamPlaysInLeague n/a

AthleteWonTrophy n/a
CoachCoachesInLeague n/a
TeamMate 100%

Table 3.7: Performance of PROSPERA: precions@1000

PROSPERA has orders-of-magnitude higher numbers of extractions compared to
NELL-6, as shown in Table 3.5. Even NELL-66 still had substantially fewer results
than PROSPERA. On the other hand, NELL had precision close to 100% for most
of these relations, except for the TeamWonTrophy. For this relation NELL-6 has
precision of 88% and further degradation can be seen in NELL-66 at 68%. Gen-
erally, [20] reported that NELL’s precision would gradually go down with larger
numbers of iterations. In contrast, PROSPERA’s precision was consistently good
and hardly varied across iterations. For the TeamWonTrophy relation, PROSPERA
outperformed NELL on precision (see Table 3.6), for the other relations is was
somewhat worse than NELL but still well above 80%. Note, however, that the
precision across all extractions is misleading here, as PROSPERA returned a much
higher number of facts. We also evaluated the precision@1000 for the largest re-
lations, as shown in Table 3.7. Here, PROSPERA achieved 100%. So overall,
our approach essentially achieved the same precision as NELL while giving much
higher recall.
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Relation PROSPERA
AthletePlaysForTeam (Ben_Gordon, Chicago_Bulls)
TeamPlaysInLeague (Chicago_Bulls, National_Basketball_Association)
AthletePlaysForTeam (Jason_Giambi, New_York_Yankees)
TeamPlaysAgaintsTeam (San_Francisco_Giants, New_York_Yankees)
AthletePlaysForTeam (Ben_Graham_(footballer), Arizona_Cardinals)
AthletePlaysForTeam (Edgar_Gonzalez_(infielder), St._Louis_Cardinals)
TeamMate (Metro_Prystai, Jim_Henry_(ice_hockey))

Table 3.8: Sample output from PROSPERA

Relation NELL
AthletePlaysForTeam (Ben Gordon, Bulls)
TeamPlaysInLeague (Chicago Bulls, NBA)
AthletePlaysForTeam (Jason Giambi, Yankees)
TeamPlaysAgaintsTeam (Giants, New York Yankees)
AthletePlaysForTeam n/a
AthletePlaysForTeam n/a
TeamMate n/a

Table 3.9: Sample output from NELL

PROSPERA produces high-quality extractions in canonical form: relational facts
between disambiguated entities. For example, across all extractions, all relational
facts involving the team Chicago Bulls, always use the same consistent identifier
for this team. This is different from the NELL output which has facts referring
to names, returning, for example, both the Bulls and the Chicago Bulls. Our
approach includes entity disambiguation, thus recognizing, based on the context
of the name occurrence, if the string “Bulls” refers to the entity Chicago_Bulls or
some other team with the ending “Bulls”. Table 3.8 shows disambiguated output
from PROSPERA in comparison to NELL extractions (Table 3.9 ) .

The total run-time of PROSPERA was about 2.5 days for the 6 iterations on the
sports domain. This is in contrast to NELL’s 6 or 66 days for the first 6 or all
iterations, respectively. Note that NELL ran on a much larger cluster but also ex-
tract other relations and categories that we did not consider in our experiments.
So the run-time numbers are not comparable. Nevertheless, especially in view of
our much higher recall, the PROSPERA run-times look favorable.

In this experiment, the MaxSat-based reasoning constitutes only a small percent-
age of the total run-time. This is illustrated in Figure 3.6(a) where in every
iteration, pattern analysis (the bottom part) took between 4 to 6 hours while rea-
soning took less than an hour. Not shown in Figure 3.6(a) is the run-time of the
preprocessing for pattern gathering, which took approximately 20 hours. This
time is included in the total figure of 2.5 days for gathering and 6 iterations of
analyis and reasoning. Figure 3.6(b) shows that the number of extractions con-
sistently increases over iterations; running more iterations would probably lead
to further extractions.

To determine how individual components of our approach contribute to perfor-
mance, we ran additional measurements with different variants of PROSPERA,
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Figure 3.6: PROSPERA runtimes on the sports domain (a) and number of
extractions across iterations (b).

selectively disabling one component at a time. For this study, we ran only 2 it-
erations. As the results in Table 3.10 show, reasoning plays a significant role
in ensuring high precision. Without the reasoner, precision would be only 31%.
Reasoning about the quality of the patterns ensures that patterns whose quality
is uncertain do not lead to extractions. This initially leads to much lower re-
call, but for a good pattern, subsequent iterations gather enough support for the
pattern. Thus, such a pattern is eventually accepted by later iterations of the
reasoner, leading to increased recall over successive iterations. For example, in
the first iteration, starting with the initial seed facts, the pattern “would beat the”
only had a confidence weight of 0.5 for expressing the TeamPlaysAgainstTeam
relation. By the fourth iteration, evidence in support of this pattern grew and
its confidence weight increased to 0.96. Note that all this is fully automated in
PROSPERA, whereas NELL had some manually designed seed patterns and used
a small amount of human supervision after each iteration.

The confidence weights also play a vital role in the quality of our output, both for
pruning bad patterns and for providing better statistical evidence to the reasoner
about which candidates are more likely to be true. Without the use of weights,
precision drops to 73%. On noisy Web data like the ClueWeb09 corpus, the new
notion of n-gram-itemset patterns with confidence weights pays off well.

To determine speedup obtained by parallelizing the reasoner, we reduced the
number of reasoners by half and measured run-times for reasoning in the first
iteration. Using half the reasoners, 5 in total (on 5 nodes of the cluster), took
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Method # Precision Runtime (hours)
extractions

Full-PROSPERA 3,174 90% 8.37
NoReasoner 157,610 31% 8.22
Unweighted 8,429 73% 8.32

Table 3.10: PROSPERA variants on sports relations (2 iterations).

7.6 minutes compared to 3.5 minutes when using 10 reasoners. This suggests
a slightly super-linear speedup of 2.2, which is attributed to the fact that parti-
tioning the candidate graph reduces the search space of the reasoner, resulting in
faster execution times.

Constraints Experiment (Academic Relations)

As the sports-domain experiment did not have any advanced constraints, we car-
ried out a second experiment that aimed to stress-test the constraint reasoning
aspect of PROSPERA on five academic relations. We specified the following con-
straints in first-order logic:

• a student can have only one alma mater that she/he graduated from (with
a doctoral degree);

• a student can have only one doctoral advisor (who had this role officially);

• the advisor of a student must have had a position at the university from
which the student graduated;

• the advisor of a student must be older than her/his student.

We ran PROSPERA for two iterations only, using seed facts from the YAGO on-
tology; the results are shown in Table 3.12. Both the number of extractions and
precision are high with the exception of the hasAcademicAdvisor relation which
returned only few extractions with mediocre precision. Here, our approach of
consistenly referring to canonical entities became unfavorable, as we could ac-
cept only facts where both student and advisor are known to YAGO (or Wikipedia,
on which YAGO is based). The number of pairs that fulfilled this strict require-
ment and also appeared in the ClueWeb09 corpus was too low.

In general, having rich constraints significantly improved precision as shown in
Table 3.13. Without the reasoner, we obtained several birth dates for one person
and in some cases more than five advisors for one person, a situation highly
unlikely in reality. Without the reasoner precision dropped to 25%. Table 3.11
shows a few sample results for facts and their supporting patterns.

This experiment had longer run-times (ca. 18 hours for 2 iterations) due to the
use of domain-specific constraints for the reasoner, and also because of the larger
number of seed facts obtained from YAGO for the first iteration. The experi-
ment again showed considerable speedup obtained from parallelizing the rea-
soner, with 5 reasoners (on 5 nodes of our cluster) taking 7.1 hours whereas 10
reasoners only took 2.7 hours.
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Relation PROSPERA
facultyAt (Richard_Axel, Columbia_University)

’s group at

facultyAt (Richard_Fateman, University_of_California,_Berkeley)
and colleagues at the

graduatedFrom (Albert_Einstein, University_of_Zurich )
earned a doctorate from the

hasAcademicAdvisor (Miguel_Rolando_Covian, Bernardo_Houssay)
student of

hasAcademicAdvisor (Frank_Wilczek, David_Gross)
shared the, in, with his thesis advisor

Table 3.11: Sample output from PROSPERA

Relation # Precision Precision
extractions @1000

bornOnDate 40,962 92% 97%
facultyAt 4,394 96% 98%
graduatedFrom 1,371 81% n/a
hasAcademicAdvisor 46 75% n/a
hasWonPrize 4,800 91% 100%

Table 3.12: Extracted facts and estimated precision for academic relations
obtained from two iterations of PROSPERA.

Method # Precision Runtime (hours)
extractions

Full-PROSPERA 51,573 92% 18.3
NoReasoner 773,721 25% 13.1

Table 3.13: PROSPERA variants on academic relations

Discussion

The presented experiments are a proof of concept for the scalability of our ap-
proach. Each iteration of the analysis and reasoning phases takes only a few
hours, with the Hadoop-based, parallelized PROSPERA system. In particular,
even in the more demanding setting of the constraints-rich academic relations,
the graph-partitioning-based distributed reasoner is fast enough to avoid bottle-
necks.

In all experimental results, precision is very high and matches up against the high
quality of the NELL results. In terms of recall, we achieved a much larger number
of extracted facts, for some relations even orders-of-magnitude higher. Here the
combination of richer patterns, statistically informative weights for clauses, and
the resulting better input for the reasoner proved to be vital. As our studies with
selectively disabling specific components of PROSPERA show, all building blocks
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are essential and their careful integration is key to the overall performance.

Regarding the quality of the output of the knowledge-harvesting systems, let us
again emphasize that the facts by PROSPERA refer to canonical entities, whereas
NELL’s output refers to potentially ambiguous non-canonical names. When con-
sidering these approaches for further extending near-human-quality knowledge
bases such as DBpedia, Freebase, or YAGO, this clean entity-level output is an im-
portant asset. In our experiments, the name-to-entity mapping heuristics worked
very well. When sampling the accepted facts, we came across very few disam-
biguation errors, they had negligible influence on the overall precision.

3.9 SUMMARY

This chapter has addressed the goal of large-scale fact extraction from Web sources.
It extended and improved prior work by projects like KnowItAll, StatSnowball,
ReadTheWeb, and YAGO-NAGA in several ways. First, we introduced a new no-
tion of n-gram-itemset patterns and associated confidence statistics. Second, we
showed how to utilize pattern statistics for MaxSat-based reasoning with infor-
mative clause weights, and we developed techniques for making the previously
expensive reasoning much more efficient and parallelizable. Third, we integrated
all building blocks into a MapReduce-based distributed system architecture for
scalable knowledge harvesting that can achieve both high precision and much
higher recall than prior methods. In large-scale experiments, we compared our-
selves against the latest state-of-the-art competitor and demonstrated significant
gains. Our experimental data is accessible on the Web site:
www.mpi-inf.mpg.de/yago-naga/prospera/.

We note that PROSPERA deals with a pre-specified set of relations along with the
relations seeds. The next chapter addresses this limitation.
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CHAPTER

4

Relation Extraction with PATTY

The previous chapter introduced PROSPERA, a system for Web-scale fact extrac-
tion. One of the limitations of PROSPERA is that it extracts only facts pertaining
to a small set of pre-specified relations. This chapter presents PATTY, a system
for extracting a comprehensive set of relations from a text corpus. PATTY learns
textual patterns that denote binary relations. The patterns are semantically typed
and organized into pattern synonym sets (synsets) and into a subsumption tax-
onomy. From Wikipedia, PATTY learned 350,569 pattern synsets. A sample of
randomly selected patterns showed a pattern accuracy of 84.7%.

4.1 MOTIVATION

WordNet [43] is one of the most widely used lexical resources in computer sci-
ence. It groups nouns, verbs, and adjectives into sets of synonyms, and arranges
these synonyms in a taxonomy of hypernyms. WordNet is limited to single words.
It does not contain entire phrases or patterns. For example, WordNet does not
contain the pattern:

X is romantically involved with Y.

Just like words, patterns can be synonymous, and they can subsume one another.
The following patterns are synonymous:

X is romantically involved with Y
X is dating Y.

Both are subsumed by:

X knows Y.

Patterns for relations are a vital ingredient for many applications, including infor-
mation extraction and question answering. If a large-scale resource of relational
patterns were available, this could boost progress in NLP and AI tasks.

Yet, existing large-scale knowledge bases are mostly limited to abstract binary
relationships between entities, such as “bornIn” [8, 13, 86, 108]. These do not
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correspond to real text phrases (e.g., “a native of", “her birthplace", etc). Only the
ReVerb system [41] yields a larger number of relational textual patterns. How-
ever, no attempt is made to organize these patterns into synonymous patterns, let
alone into a taxonomy. Thus, the patterns themselves do not exhibit semantics.

4.2 CONTRIBUTION

PATTY’s goal is to systematically compile relational patterns from a corpus, and
to impose a semantically typed structure on them. The result we aim at is a
WordNet-style taxonomy of binary relations. In particular, we aim at patterns
that contain semantic types, such as 〈singer〉 sings 〈song〉. We also want to auto-
matically generalize syntactic variations such as:

sings her 〈song〉
and sings his 〈song〉,

into a more general pattern:

sings [prp] 〈song〉

with POS tag [prp]. Analogously but more demandingly, we want to automati-
cally infer that the above patterns are semantically subsumed by the pattern:

〈musician〉 performs on 〈musical composition〉,

with more general types for the entity arguments in the pattern.

Compiling and organizing such patterns is challenging for the following reasons:

1. The number of possible patterns increases exponentially with the length of
the patterns. For example, the string:

“Amy sings ‘Rehab”’

can give rise to the patterns:

〈singer〉 sings 〈song〉,
〈person〉 sings 〈artifact〉,
〈person〉 [vbz] 〈entity〉, etc.

If wildcards for multiple words are allowed, such as in:

〈person〉 sings * 〈song〉,

the number of possible patterns explodes.

2. A pattern can be semantically more general than another pattern (when
one relation is implied by the other relation), and it can also be syntacti-
cally more general than another pattern (by the use of placeholders such as
[vbz]). These two subsumption orders have a non-obvious interplay, and
none can be analyzed without the other.

3. We have to handle pattern sparseness and coincidental matches. If the cor-
pus is small, the patterns:

〈singer〉 later disliked her song 〈song〉
and
〈singer〉 sang 〈song〉,
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may, for example, apply to the same set of entity pairs in the corpus. Still,
the patterns are not synonymous.

4. Computing mutual subsumptions on a large set of patterns may be pro-
hibitively slow. Moreover, due to noise and vague semantics, patterns may
even not form a crisp taxonomy, but require a hierarchy in which subsump-
tion relations have to be weighted by statistical confidence measures.

Toward meeting PATTY’s goal, the chapter makes the following contributions:

1. SOL patterns: We define an expressive family of relational patterns, which
combines syntactic features (S), ontological type signatures (O), and lexical
features (L). The crucial novelty is the addition of the ontological (seman-
tic) dimension to patterns. When compared to a state-of-the-art pattern
language, we found that SOL patterns yield higher recall while achieving
similar precision.

2. Mining algorithms: We present efficient and scalable algorithms that can in-
fer SOL patterns and subsumptions at scale, based on instance-level overlaps
and an ontological type hierarchy.

3. A large Lexical resource:. On the Wikipedia corpus, we obtained 350,569
pattern synsets with 84.7% precision. We make our pattern taxonomy avail-
able for further research at www.mpi-inf.mpg.de/yago-naga/patty/ .

4.3 RELATED WORK

Binary Relations in Knowledge Bases

A wealth of taxonomic knowledge bases (KBs) about entities and their semantic
classes have become available. These are very rich in terms of unary predicates
(semantic classes) and their entity instances. However, the number of binary re-
lations (i.e., relation types, not instances) in these KBs is usually small: Freebase
[13] has a few thousand hand-crafted relations. WikiNet [86] has automatically
extracted ca. 500 relations from Wikipedia category names. DBpedia [8] has
automatically compiled ca. 8000 names of properties from Wikipedia infoboxes,
but these include many involuntary semantic duplicates such as surname and
lastname. In all of these projects, the resource contains the relation names, but
not the natural language patterns for them. The same is true for other projects
along these lines [85, 93, 94, 108].

Surface Patterns in Knowledge bases

Knowledge base projects that automatically populate relations from Web pages
also learn surface patterns for the relations: examples are TextRunner/ReVerb
[10, 41], NELL [20, 77], Probase [123], the dynamic lexicon approach by [59,
122], the LDA-style clustering approach by [131], which learns relation-specific
lexica to train relation-specific CRF extractors and projects on Web tables [74,
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112]. Of these, only TextRunner/ReVerb and NELL have made large pattern col-
lections publicly available.

ReVerb [41] constrains patterns to verbs or verb phrases that end with preposi-
tions, while PATTY can learn arbitrary patterns. More importantly, all methods in
the TextRunner/ReVerb family are blind to the ontological dimension of the enti-
ties in the patterns. Therefore, there is no notion of semantic typing for relation
phrases as in PATTY.

NELL and OntExt

NELL [20] is based on a fixed set of pre-specified relations with type signatures,
(e.g., personHasCitizenship: 〈person〉 × 〈country〉), and learns to extract suitable
noun-phrase pairs from a large Web corpus. In contrast, PATTY discovers patterns
for relations that are a priori unknown.

In OntExt [77], the NELL architecture was extended to automatically compute
new relation types (beyond the pre-specified ones) for a given type signature of
arguments, based on a clustering technique. For example, the relation musician-
PlaysInstrument is found by clustering pattern co-occurrences for the noun-phrase
pairs that fall into the specific type signature 〈musician〉 × 〈musicinstrument〉.
This technique works for one type signature at a time, and does not scale up to
mining a large corpus. Also, the technique is not suitable for inferring semantic
subsumptions. In contrast, PATTY efficiently acquires patterns from large-scale
corpora and organizes them into a subsumption hierarchy.

Class-based Attribute Discovery

Class-based attribute discovery is a special case of mining relational patterns (e.g.,
[4, 91, 92, 97]). Given a semantic class, such as movies or musicians, the task is
to determine relevant attributes, such as cast and budget for movies, or albums
and biography for musicians, along with their instances. Unlike PATTY’s patterns,
the attributes are not typed. They come with a pre-specified type for the domain,
but without any type for the range of the underlying relation.

Relation-centric NLP tasks

There are further relation-centric tasks in NLP and text mining that have common-
alities with our endeavor, but differ in fundamental ways. The SemEval-2010 task
on classification of semantic relations between noun-phrase pairs [55] aimed at
predicting the relation for a given sentence and pair of nominals, but used a fixed
set of pre-specified relations. Another task in this research avenue is to character-
ize and predict the argument types for a given relation or pattern [65, 84]. This
is closer to KB population and less related to our task of discovering relational
patterns and systematically organizing them.
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Unary Predicates and Lexical Resources

From a linguistic perspective, there is ample work on patterns for unary predicates
of the form class(entity). This includes work on entailment of classes, i.e., on is-a
and subclassOf relationships. Entailment among binary predicates of the form
relation(entity1, entity2) has received less attention [71, 52, 11]. These works
focus solely on verbs, while PATTY learns arbitrary phrases for patterns.

Several lexical resources capture verb categories and entailment: WordNet 3.0
[43] contains about 13,000 verb senses, with troponymy and entailment rela-
tions; VerbNet [61] is a hierarchical lexicon with more than 5,000 verb senses in
ca. 300 classes, including selectional preferences. Again, all of these resources
focus solely on verbs.

ConceptNet 5.0 [53] is a thesaurus of commonsense knowledge built as a crowd-
sourcing endeavor. PATTY, in contrast, is constructed fully automatically from
large corpora.

Paraphrasing

Automatic learning of paraphrases and textual entailment has received much
attention (see the survey of [6]), but does not consider fine-grained typing for
binary relations, as PATTY does.

4.4 OVERVIEW OF PATTY

Entity Type 
Bill 
Clinton 

Politician 

Madonna Singer 
... ... 

Text documents Entity Knowledge Base 

Pattern 
Extraction 

Pattern 
Typing 

Synset 
Generation 

Subsumption 
Mining 

Taxonomy 
Construction 

Taxonomy of 
 Pattern Synsets 

Figure 4.1: Architecture of the PATTY System.
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PATTY processes large text corpora (e.g., the full text of Wikipedia, news archives,
or Web crawls) to build a taxonomy of textual patterns. Figure 4.1 shows PATTY’s
architecture. PATTY is backed by a knowledge base of semantically typed entities.
For the latter, we use either YAGO [108] or Freebase [13]: YAGO has classes
derived from Wikipedia categories and integrated with WordNet classes to form
a hierarchy of types (Figure 4.2 shows a simplified hierarchy of types); Freebase
has a handcrafted type system with upper level topical domains as top tier and
about entity classes as a second tier. PATTY works in four stages:

1. Pattern extraction. A pattern is a surface string that occurs between a pair
of entities in a sentence, thus the first step is to obtain basic textual patterns
from the input corpus (Section 4.5).

2. SOL Pattern Transformation. The second step is to transform plain pat-
terns into SOL patterns thereby enhancing them with ontological types (Sec-
tion 4.6).

3. Pattern Generalization. The third step is to generalize the patterns, both
syntactically and semantically (Sections 4.7 and 4.8).

4. Subsumption mining. The last step is to arrange the patterns into a hier-
archy based on hypernymy/hyponymy relations between patterns (Section
4.9).

Each of the stages is explained in detail in the next few sections.

Entity 

Person Location 

Politician 

Governor President 

Country 

Figure 4.2: An example type system.

4.5 PATTERN EXTRACTION

This section explains how we obtain basic textual patterns from the input corpus.
We first apply the Stanford Parser [75] to the individual sentences of the corpus
to obtain dependency paths. The dependency paths form a directed graph, with
words being nodes and dependencies being edges. For example, the sentence:

“Winehouse effortlessly performed her song Rehab."
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yields the following dependency paths:

nsubj(performed-3, Winehouse-1)
advmod(performed-3, effortlessly-2)
poss(Rehab-6, her-4)
nn(Rehab-6, song-5)
dobj(performed-3, Rehab-6)

While our method also works with patterns obtained from shallow features such
as POS tags, we found that dependency paths improve pattern extraction preci-
sion especially on long sentences.

We then detect mentions of named entities in the parsed corpus. For this purpose,
we use a dictionary of entities. This can be any resource that contains named
entities with their surface names and semantic types [8, 108, 58, 13]. In our
experiments, we used the YAGO2 knowledge base [58]. We match noun phrases
that contain at least one proper noun against the dictionary. For disambiguation,
we use a simple context-similarity prior, as described in [109]. We empirically
found that this technique has accuracy well above 80% (and higher for prominent
and thus frequently occurring entities). In our example, the entity detection
yields the entities:

Amy Winehouse
and
Rehab (song).

Whenever two named entities appear in the same sentence, we extract a textual
pattern. For this purpose, we traverse the dependency graph to get the shortest
path that connects the two entities. In the example, the shortest path between
“Winehouse" and “Rehab" is:

Winehouse nsubj performed dobj Rehab.

In order to capture only relations that refer to subject-relation-object triples, we
only consider shortest paths that start with subject-like dependencies, such as
nsubj, rcmod and partmod. To reflect the full meaning of the patterns, we expand
the shortest path with adverbial and adjectival modifiers, for example the advmod
dependency. The sequence of words on the expanded shortest path becomes our
final textual pattern. In the example, the textual pattern is:

Amy Winehouse effortlessly performed Rehab (song).

4.6 SOL PATTERN MODEL

Textual patterns are tied to the particular surface form of the text. Therefore,
we transform the textual patterns into a new type of patterns, called syntactic-
ontological-lexical patterns (SOL patterns). SOL patterns extend lexico-syntactic
patterns by ontological type signatures for entities. The SOL pattern language is
expressive enough to capture fine-grained relational patterns, yet simple enough
to be dealt with by efficient mining algorithms at Web scale.
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4 RELATION EXTRACTION WITH PATTY 4.6 SOL Pattern Model

Definition 4.6.1 (SOL Pattern) A SOL pattern is an abstraction of a textual pat-
tern that connects two entities of interest. It is a sequence of words, POS-tags,
wildcards, and ontological types.

A POS-tag stands for a word of the part-of-speech class such as a noun, verb,
possessive pronoun, etc. We introduce the special POS-tag [word], which stands
for any word of any POS class. A wildcard, denoted ∗, stands for any (possibly
empty) sequence of words. Wildcards are essential to avoid overfitting of patterns
to the corpus. An ontological type is a semantic class name (such as 〈singer〉) that
stands for an instance of that class. Every pattern contains at least two types, and
these are designated as entity placeholders.

Definition 4.6.2 (Entity Placeholder) An entity placeholder in a SOL pattern is a
semantic class name that represents the types of entities that are allowed to appear
in that position.

In the following we consider only SOL patterns with exactly two entity placehold-
ers.

Definition 4.6.3 (String Pattern Match) A string and a pattern match, if there
is an order-preserving bijection from sequences of words in the string to items in
the pattern, so that each item can stand for the respective sequence of words. For
example, the pattern:

〈person〉’s [adj] voice * 〈song〉

matches the strings:

“Amy Winehouse’s soft voice in ‘Rehab”’
and
“Elvis Presley’s solid voice in his song ‘All shook up”’.

Definition 4.6.4 (Type Signature) The type signature of a pattern is the pair of
the entity placeholders. In the example, the type signature is person× song.

Definition 4.6.5 (Pattern Support Set) The support set of a pattern is the set of
pairs of entities that appear in the place of the entity placeholders in all strings in
the corpus that match the pattern. In the example, the support set of the pattern
could be:

{(Amy, Rehab), (Elvis, AllShookUp)}.

Each pair is called a support pair of the pattern.

Definition 4.6.6 (Lexico-Syntactic Generalization) Pattern B is syntactically more
general than pattern A if every string that matches A also matches B.

Definition 4.6.7 (Semantic Generalization) Pattern B is semantically more gen-
eral than A if the support set of B is a superset of the support set of A.

Definition 4.6.8 (Pattern Synset) If A is semantically more general than B and
B is semantically more general than A, the patterns are called synonymous. A set
of synonymous patterns is called a pattern synset. Two patterns, of which neither is
semantically more general than the other, are called semantically different.
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To generate SOL patterns from the textual patterns, we decompose the textual
patterns into n-grams (n consecutive words). A SOL pattern contains only the
n-grams that appear frequently in the corpus and the remaining word sequences
are replaced by wildcards. For example, the sentence:

“was the first female to run for the governor of”

might give rise to the pattern:

* the first female * governor of,

if “the first female” and “governor of” are frequent in the corpus.

To find the frequent n-grams efficiently, we apply the technique of frequent item-
set mining [1, 95]: each sentence is viewed as a “shopping transaction” with a
“purchase” of several n-grams, and the mining algorithm computes the n-gram
combinations with large co-occurrence support1. These n-grams allow us to
break down a sentence into wildcard-separated subsequences, which yields an
SOL pattern. We generate multiple patterns with different types, one for each
combination of types that the detected entities have in the underlying ontology.

We quantify the statistical strength of a pattern by means of its support set. We
compute support and confidence as follows:

Definition 4.6.9 (Pattern Support) For a given pattern p with type signature t1
× t2, the support of p is the size of its support set.

Definition 4.6.10 (Pattern Confidence) For a given pattern p with type signature
t1 × t2, its confidence is computed by comparing the support-set sizes of p and an
untyped variant pu of p, in which the types 〈t1〉 and 〈t2〉 are replaced by the generic
type 〈entity〉. We define the confidence of p as the ratio of the support-set sizes of p
and pu.

4.7 LEXICO-SYNTACTIC PATTERN GENERALIZATION

Almost every pattern can be generalized into a syntactically more general pattern
in several ways: by replacing words by POS-tags, by introducing wildcards (com-
bining more n-grams), or by generalizing the types in the pattern. It is not obvi-
ous which generalizations will be reasonable and useful. We observe, however,
that generalizing a pattern may create a pattern that subsumes two semantically
different patterns. For example, the generalization:

〈person〉 [vb] 〈person〉,

subsumes the two semantically different patterns :

〈person〉 loves 〈person〉
and
〈person〉 hates 〈person〉.

1 Our implementation restricts n-grams to length 3 and uses up to 4 n-grams per sentence
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This means that the pattern is semantically meaningless.

Therefore, we proceed as follows. For every pattern, we generate all possible
generalizations. If a generalization subsumes multiple patterns with disjoint sup-
port sets, we abandon the generalized pattern. Otherwise, we add it to our set of
patterns.

4.8 SEMANTIC PATTERN GENERALIZATION

The main difficulty in generating semantic subsumptions is that the support sets
may contain spurious pairs or be incomplete, thus destroying crisp set inclusions.
To overcome this problem, we designed a notion of a soft set inclusion, in which
one set S can be a subset of another set B to a certain degree. One possible
measure for this degree is the confidence, i.e., the ratio of elements in S that are
in B,

deg(S ⊆ B) = |S ∩ B|/|S|.

However, if a support set S has only few elements due to sparsity, it may become
a subset of another support set B, even if the two patterns are semantically differ-
ent. Therefore, one has to take into account also the support, i.e., the size of the
set S. Traditionally, this is done through a weighted trade-off between confidence
and support.

To avoid the weight tuning, we instead devised a probabilistic model. We inter-
pret S as a random sample from the “true” support set S′ that the pattern would
have on an infinitely large corpus. We want to estimate the ratio of elements of S′

that are in B. This ratio is a Bernoulli parameter that can be estimated from the
ratio of elements of the sample S that are in B. We compute the Wilson score in-
terval [c− d, c+ d] [15] for the sample. This interval guarantees that with a given
probability (set a priori, usually to α = 95%), the true ratio falls into the interval
[c− d, c + d]. If the sample is small, d is large and c is close to 0.5. If the sample
is large, d decreases and c approaches the naive estimation |S ∩ B|/|S|. Thereby,
the Wilson interval center naturally balances the trade-off between confidence
and the support. Hence we define:

deg(S ⊂ B) = c.

This estimator may degrade when the sample size is too small. We can alterna-
tively use a conservative estimator :

deg(S ⊂ B) = c− d,

i.e., the lower bound of the Wilson score interval. This gives a low score to the
case where S ⊂ B if we have few samples (S is small).

4.9 TAXONOMY CONSTRUCTION

We now have to arrange the patterns in a semantic taxonomy. A baseline solution
would compare every pattern support set to every other pattern support set in
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ID Pattern Synset & Support Sets
P1 〈Politician〉 was governor of 〈State〉

A,80 B,75 C,70
P2 〈Politician〉 politician from 〈State〉

A,80 B,75 C,70 D,66 E,64
P3 〈Person〉 daughter of 〈Person〉

F,78 G,75 H,66
P4 〈Person〉 child of 〈Person〉

I,88 J,87 F,78 G,75 K,64

Table 4.1: Pattern Synsets and their Support Sets

Root 

A p1,p2 
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p1,p2 

p1,p2 
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E p2 
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p3 I 

J 
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G p4 

K p4 

p4 

p4 

p3 

p3 

Figure 4.3: Prefix-tree for the Synsets in Table 4.1.

order to determine inclusion, mutual inclusion, or independence. This would
be prohibitively slow. For this reason, we make use of a prefix-tree for frequent
patterns [50]. The prefix-tree stores support sets of patterns. We then developed
an algorithm for obtaining set intersections from the prefix-tree.

Prefix-Tree Construction

Suppose we have pattern synsets and their support sets as shown in Table 4.1.
An entity pair in a support set is denoted by a letter. For example, in the support
set for the pattern:

〈Politican〉 was governor of 〈State〉,

the entry 〈A,80〉 may denote the entity pair:

Arnold Schwarzenegger, California,

with an occurrence frequency 80. The contents of the support sets are used to
construct a prefix-tree.

Definition 4.9.1 (Prefix-tree of Support Sets) Consider a set T of SOL patterns
represented by their support sets. A prefix tree of support sets T is a tree consisting
of a node set V representing entity pairs in the support sets of patterns. If pattern
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synsets have entity pairs in common, they share a common prefix; thus the shared
parts can be represented by one prefix-path in the tree.

Nodes are augmented with synset information stored at the nodes. Each node (entity
pair) stores the identifiers of the patterns whose support sets contain that entity pair.
In addition, each node stores a link to the next node with the same entity pair.

This is a compact representation of the support sets. To increase the chance
of shared prefixes, entity pairs are inserted into the tree in decreasing order of
occurrence frequency.

Figure 4.3 shows the tree for the pattern synsets in Table 4.1. The left-most path
contains synsets P1 and P2. The two patterns have a prefix in common, thus they
share the same path. This is reflected by the synsets stored in the nodes in the
path. Synsets P2 and P3 belong to two different paths due to dissimilar prefixes
although they have common nodes. Instead, their common nodes are connected
by the same-entity-pair links shown as dotted lines in Figure 4.3.

Definition 4.9.2 (Same-entity-pair Link) A same-entity-pair link is a link between
two nodes with the same entity pairs. It is created whenever the entity pair already
exists in the tree but with a prefix different from the prefix of the synset being added
to the tree.

The size of the tree is at most the total number of entity pairs making up the
supports sets of the synsets. The height of the tree is at most the size of the
largest support set.

Mining Subsumptions from the Prefix-Tree

To efficiently mine subsumptions from the prefix-tree, we have to avoid compar-
ing every path to every other path as this introduces the same inefficiencies that
the baseline approach suffers from.

From the construction of the tree it follows that for any node Ni in the tree, all
paths containing Ni can be found by following node Ni ’s links including the same-
entity-pair links ( see dotted lines in Figure 4.3 ). By traversing the entire path of
a synset Pi, we can reach all the pattern synsets sharing common nodes with Pi.
This leads to our main insight: if we start traversing the tree bottom up, starting
at the last node in P′i s support set, we can determine exactly which paths are
subsumed by Pi. Traversing the tree this way for all patterns gives us the sizes of
the support set intersection. The determined intersection sizes can then be used
in the Wilson estimator to determine the degree of semantic subsumption and
semantic equivalence of patterns.

For example, in Figure 4.3, suppose we start at node E. From the synset list, we
identify that the only synset terminating in node E is P2, thus we start searching
for all synsets that are subsumed by P2. At node D, we do not encounter any new
synsets, at node C we pick up synset P1, we thus mine the possible subsumption
that P1 ⇒ P2, with the size of their intersection, P2 ∩ P1 initialized to 1. We
continue traversing the path of P2 until it terminates at node A, incrementing
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the counter for P2 ∩ P1, and picking up any new possible subsumptions along the
way for all the new synsets encountered on the path, in this case there are none.
At the end of P2’s path, we end up with a possible subsumption is P1 ⇒ P2, with
P2 ∩ P1 = 3. Having processed node E, the next node to process is node D, but
we see that no synsets terminates in D, thus we proceed to the next node C which
is terminating node for synset P1, traversing P1’s path we do not encounter any
other synsets thus P1 does not subsume any other synsets.

For the case when same-entity-pair links are present, we examine the paths of
P3 and P4. Starting bottom-up, we begin with node K, which we start to pro-
cess as it is a synset terminating node, P4 stops there. Traversing P4’s path, we
first encounter node G, which has same-entity-pair links. We thus find G’s head
node, which is the the first G node added to the tree, from that node we follow
the same-entity-pair links, picking up any synset we encounter as being possibly
subsumed by P4. In this case, G was first added in the tree for path P3, we thus
introduce a potential subsumption P3 ⇒ P4 and initialize P3 ∩ P4 = 1, the next
link to G is in the path P4, we thus continue to the next node, node F, from the
same-entity-pair links of F we update P3 ∩ P4 = 2.

The next synset terminating node in Figure 4.3 is H when synset P3 ends, travers-
ing its path, we encounter nodes G and F, resulting in a possible P4 ⇒ P3 with
P4 ∩ P3 = 2. It is possible that both Pi ⇒ Pj and Pj ⇒ Pi hold simultaneously.
This is an indication of a synonyms, that Pi = Pj.

Notice that in this example, for clarity of exposition, we first processed the left-
most sub-tree, but based on the bottom-up processing order the algorithm in fact
starts with the right-most branch.

The algorithm is given in Algorithm 4.1. Given a prefix tree T, and the minimum
subsumption threshold α, we process every synset terminating node in the tree.
For every such node, we traverse the path from that node to the root, and keep
track of all possible subsumptions and their corresponding set intersection sizes.
Finally, we add all the subsumptions of the node to the set of all subsumptions,
granted that they meet the minimum subsumption threshold. Since the number
of synset terminating nodes is proportional to the number of synsets in the data,
the complexity of the algorithm is O(|Synsets|), thus it is linear in the number of
synsets.
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Root 
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Figure 4.4: An example type-segmented tree.

Algorithm 4.1 Prefix-tree Subsumption Mining

Input: Support set prefix-tree T and a subsumption threshold α

Output: Complete set of subsumption relations, S

1: procedure MineSubmptions(T, α)
2: S← ∅; // initialize subsumptions set
3: for node ni ∈ T do // process tree bottom up
4: if not ni is synset terminating
5: continue;
6: Ci ← synsets terminating in ni;
7: Si ← ∅; // subsumptions of current node
8: for node nj ∈ path ni → root do
9: CXj ← synsets in nj;
10: for synset ci ∈ Ci do
11: for synset cxj ∈ CXj do
12: if cxj ⇒ ci /∈ Si
13: Si.add(cxj ⇒ ci, 0); // initialize cxj ∩ cj
14: Si.increment(cxj ∩ ci);
15: endfor
16: endfor
17: S∪ { cx ⇒ c ∈ Si : (|cx− c| <= α) }
18: endfor
19: endfor
20: return S

Sub-tree segmentation. Algorithm 4.1 requires that the tree be stored in mem-
ory, which may not always fit. For this reason, we propose an optimization step
which reduces the memory requirements for storing the tree. Recall that a sysnet
can only subsume another if their type signatures are compatible. Therefore, at
any given time, we only need to keep in memory those parts of tree that are com-
patible. In this case, we can alter the tree construction algorithm so that the root
is constrained by types, so that nodes belonging to a pair of compatible types go
to one sub-tree. An example type-segmented tree is shown in Figure 4.4.

Alternative MapReduce Algorithm. If sub-trees still do not fit in memory, we
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Entity-Pair Synsets
A P1, P2
B P1, P2
C P1, P2
D P2
E P2
F P3P4
G P3P4
H P3
I P4
J P4
K P4

Table 4.2: Inverted data for Map-Reduce algorithm

developed a highly scalable algorithm using the Map-Reduce framework. First,
we invert the synset support data. Instead of providing for a synset, all entity-
pairs that occur with it, we provide for an entity-pair, all the synsets that it occurs
with. Table 4.2 shows the inverted support sets of the data in Figure 4.1. We
then determine the co-occurrence of synsets by emitting pairs of synsets that
co-occur for every synset they co-occur together. This is done in the mappers.
For example for A, B and C, the mappers emit p1, p2, whereas for E, F, I, J, K
nothing is emitted and so on. The reducers aggregate co-occurrence information,
to effectively output the sizes of the set intersection of the possible subsumptions.
Once these set intersections are known, another Map-Reduce job is launched to
determine which of these surpass the subsumption thresholds.

Removing Cycles

Once we have generated subsumptions between relational patterns, there might
be cycles in the graph we generate. We ideally want to remove the minimal total
number of subsumptions whose removal results in an a directed acyclic graph
(DAG). This task is related to the minimum feedback-arc-set problem: given a
directed graph, we want to remove the smallest set of edges whose removal
makes the remaining graph acyclic. This is a well known NP-hard problem [60].
We use a greedy algorithm for removing cycles and eliminating redundancy in
the subsumptions, thus effectively constructing a DAG. Starting with a list of
subsumption edges ordered by decreasing weights, we construct the DAG bottom-
up by adding the highest-weight subsumption edge. This step is repeated for
all subsumptions, where we add a subsumption to the DAG only if it does not
introduce cycles or redundancy. Redundancy occurs when there already exists
a path, by transitivity of subsumptions, between pattern synsets linked by the
subsumption. This process finally yields a DAG of pattern synsets – the PATTY
taxonomy.
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4.10 EVALUATION

Setup

The PATTY extraction and mining algorithms were run on two different input
corpora:

• The New York Times archive (NYT) which includes about 1.8 Million news-
paper articles from the years 1987 to 2007

• The English edition of Wikipedia (WKP), which contains about 3.8 Million
articles (as of June 21, 2011).

Experiments were carried out, for each corpus, with two different type systems:

• The type system of YAGO2, which consists of about 350,000 semantic classes
from WordNet and the Wikipedia category system

• The two-level domain/type hierarchy of Freebase which consists of 85 do-
mains and a total of about 2000 types within these domains.

All relational patterns and their respective entity pairs are stored in a MongoDB
database. We evaluated PATTY along four dimensions: quality of patterns, qual-
ity of subsumptions, coverage, and design alternatives. These dimensions are
discussed in the following four subsections. We also performed an extrinsic
study to demonstrate the usefulness of PATTY for paraphrasing the relations
of DBpedia and YAGO2. In terms of runtimes, the most expensive part is the
pattern extraction, where we identify pattern candidates through dependency
parsing and perform entity recognition on the entire corpus. This phase runs
about a day for Wikipedia on a cluster. All other phases of the PATTY system
take less than an hour. All experimental data is available on our Web site at
www.mpi-inf.mpg.de/yago-naga/patty/.

Precision of Relational Patterns

To assess the precision of the automatically mined patterns (patterns in this sec-
tion always mean pattern synsets), we sampled the PATTY taxonomy for each
combination of input corpus and type system. We ranked the patterns by their
statistical strength (Section 4), and evaluated the precision of the top 100 pat-
tern synsets. Several human judges were shown a sampled pattern synset, its
type signature, and a few example instances, and then stated whether the pat-
tern synset indicates a valid relation or not. Evaluators checked the correctness
of the type signature, whether the majority of patterns in the synset is reason-
able, and whether the instances seem plausible. If so, the synset was flagged as
meaningful. The results of this evaluation are shown in column four of Table 4.3,
with a 0.9-confidence Wilson score interval [15]. In addition, the same assess-
ment procedure was applied to randomly sampled synsets, to evaluate the quality
in the long tail of patterns. The results are shown in column five of Table 4.3. For
the top 100 patterns, we achieve above 90% precision for Wikipedia, and above
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80% for 100 random samples. Sample relational patterns are shown in Appendix
A.

Corpus Types Patterns Top 100 Random

NYT
YAGO2 86,982 0.89±0.06 0.72±0.09
Freebase 809,091 0.87 ±0.06 0.71±0.09

WKP
YAGO2 350,569 0.95±0.04 0.85±0.07
Freebase 1,631,531 0.93±0.05 0.80±0.08

Table 4.3: Precision of Relational Patterns

From the results we make two observations. First, Wikipedia patterns have higher
precision than those from the New York Times corpus. This is because some the
language in the news corpus does not express relational information; especially
the news on stock markets produced noisy patterns picked up by PATTY. How-
ever, we still manage to have a precision of close to 90% for the top 100 patterns
and around 72% for random sample on the NYT corpus. The second observation
is that the YAGO2 type system generally led to higher precision than the Free-
base type system. This is because YAGO2 has finer grained, ontologically clean
types, whereas Freebase has broader categories with a more liberal assignment
of entities to categories.

Precision of Subsumptions

We evaluated the quality of the subsumptions by assessing 100 top-ranked as well
as 100 randomly selected subsumptions. As shown in Table 4.4, a large number
of the subsumptions are correct. The Wikipedia-based PATTY taxonomy has a
random-sampling-based precision of 75%.

Corpus Types # Edges Top 100 Random

NYT
YAGO2 12,601 0.86±0.07 0.68±0.09
Freebase 80,296 0.89±0.06 0.41±0.09

WKP
YAGO2 8,162 0.83±0.07 0.75±0.07
Freebase 20,339 0.85±0.07 0.62±0.09

Table 4.4: Quality of Subsumptions

Example subsumptions from Wikipedia are:

〈person〉 nominated for 〈award〉 A
〈person〉 winner of 〈award〉

〈person〉 ’ s wife 〈person〉 A
〈person〉 ’s widow 〈person〉
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Coverage

To evaluate the coverage of PATTY, we would need a complete ground-truth re-
source that contains all possible binary relations between entities. Unfortunately,
there is no such resource2. We tried to approximate such a resource by man-
ually compiling all binary relations between entities that appear in Wikipedia
articles of a certain domain. We chose the domain of popular music, because it
offers a plethora of non-trivial relations (such as addictedTo(person,drug), cov-
eredBy(musician,musician), dedicatedSongTo(musician,entity))). We considered
the Wikipedia articles of five musicians (Amy Winehouse, Bob Dylan, Neil Young,
John Coltrane, Nina Simone). For each page, two annotators hand-extracted all
relationship types that they would spot in the respective articles. The annotators
limited themselves to relations where at least one argument type is 〈musician〉.
Then we formed the intersection of the two annotators’ outputs (i.e., their agree-
ment) as a reasonable gold standard for relations identifiable by skilled humans.
In total, the gold-standard set contains 163 relations.

We then compared our relational patterns to the relations included in four major
knowledge bases, namely, YAGO2, DBpedia (DBP), Freebase (FB), and NELL,
limited to the specific domain of music. Table 4.5 shows the absolute number of
relations covered by each resource. For PATTY, the patterns were derived from
the Wikipedia corpus with the YAGO2 type system.

gold standard PATTY YAGO2 DBP FB NELL
163 126 31 39 69 13

Table 4.5: Coverage of Music Relations

PATTY covered 126 of the 163 gold-standard relations. This is more than what
can be found in large semi-curated knowledge bases such as Freebase, and twice
as much as Wikipedia-infobox-based resources such as DBpedia or YAGO offer.
Some PATTY examples that do not appear in the other resources at all are:

• 〈musician〉 PRP idol 〈musician〉 for the relation hasMusicalIdol

• 〈person〉 criticized by 〈organization〉 for critizedByMedia

• 〈person〉 headliner 〈artifact〉 for headlinerAt

• 〈person〉 successfully sued 〈person〉 for suedBy

• 〈musician〉 wrote hits for 〈musician〉 for wroteHitsFor,

• 〈performer〉 be dedicate to 〈person〉 for dedicatedSongTo,

• 〈person〉 in [det] week’s 〈press〉 for appearedInMedia.

This shows (albeit anecdotically) that PATTY’s patterns contribute added value
beyond today’s knowledge bases. The full comparison results of PATTY vs. other
resources is shown in Appendix A.

2Lexical resources such as WordNet contain only verbs, but not binary relations such as is the president of. Other
resources are likely incomplete.
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Reverb-style PATTY PATTY full
patterns without types

# Patterns 5,996 184,629 350,569
Patterns Precision 0.96±0.03 0.74±0.08 0.95±0.04

# Subsumptions 74 15,347 8,162
Subsumptions Precision 0.79 ±0.09 0.58±0.09 0.83±0.07

# Facts 192,144 6,384,684 3,890,075
Facts Precision. 0.86 ±0.07 0.64±0.09 0.88 ±0.06

Table 4.6: Results for Different Pattern Language Alternatives

Relation Paraphrases Precision

DBPedia/artist 83 0.96±0.03
DBPedia/associatedBand 386 0.74±0.11
DBPedia/doctoralAdvisor 36 0.558±0.15
DBPedia/recordLabel 113 0.86±0.09
DBPedia/riverMouth 31 0.83±0.12
DBPedia/team 1,108 0.91±0.07

YAGO/actedIn 330 0.88±0.08
YAGO/created 466 0.79±0.10
YAGO/isLeaderOf 40 0.53±0.14
YAGO/holdsPoliticalPosition 72 0.73±0.10

Table 4.7: Sample Results for Relation Paraphrasing Precision

Pattern Language Alternatives

We also investigated various design alternatives to the PATTY pattern language.
We looked at three main alternatives: the first is verb-phrase-centric patterns
advocated by ReVerb [41], the second is the PATTY language without type signa-
tures (just using sets of n-grams with syntactic generalizations), and the third one
is the full PATTY language. The results for the Wikipedia corpus and the YAGO2
type system are shown in Table 4.6; precision figures are based on the respec-
tive top 100 patterns or subsumption edges. We observe from these results that
the type signatures are crucial for precision. Moreover, the number of patterns,
subsumptions and facts found by verb-phrase-centric patterns (ReVerb [41]), are
limited in recall. General pattern synsets with type signatures, as newly pursued
in PATTY, substantially outperform the verb-phrase-centric alternative in terms of
pattern and subsumption recall while yielding high precision.

Extrinsic Study: Relation Paraphrasing

To further evaluate the usefulness of PATTY, we performed a study on relation
paraphrasing: given a relation from a knowledge base, identify patterns that
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Relation Sample Paraphrases

DBPedia/artist [adj] studio album of, [det] song by . . .
DBPedia/associatedBand joined band along, plays in . . .
DBPedia/doctoralAdvisor [det] student of, under * supervision . . .
DBPedia/recordLabel [adj] artist signed to, [adj] record label . . .
DBPedia/riverMouth drains into, [adj] tributary of . . .
DBPedia/team be * traded to, [prp] debut for . . .

YAGO/actedIn starred in * film, [adj] role for . . .
YAGO/created founded, ’s book . . .
YAGO/isLeaderOf elected by, governor of . . .
YAGO/holdsPoliticalPosition [prp] tenure as, oath as . . .

Table 4.8: Sample Results for Relation Paraphrasing

can be used to express that relation. Paraphrasing relations with high-quality
patterns is important for populating knowledge bases and counters the problem
of semantic drifting caused by ambiguous and noisy patterns.

We considered relations from two knowledge bases, DBpedia and YAGO2, focus-
ing on relations that hold between entities and do not include literals. PATTY
paraphrased 225 DBpedia relations with a total of 127,811 patterns, and 25
YAGO2 relations with a total of 43,124 patterns. Among these we evaluated a
random sample of 1,000 relation paraphrases. Table 4.7 shows precision figures
for some selected relations, along anecdotic example patterns.

Some relations are hard to capture precisely. For DBPedia/doctoralAdvisor, e.g.,
PATTY picked up patterns like “worked with” as paraphrases. These are not en-
tirely wrong, but we evaluated them as false because they are too general to
indicate the more specific doctoral advisor relation.

Overall, however, the paraphrasing precision is high. Our evaluation showed an
average precision of 0.76±0.03 across all relations.

4.11 APPLICATIONS

PATTY presents a valuable resource for a variety of applications: First, it can
boost IE and knowledge-base population tasks by its rich and clean repository of
paraphrases for the relations. Second, it can improve Open IE by associating type
signatures with patterns. Third, it can help to discover “Web witnesses” when as-
sessing the truthfulness of search results or statements in social media [42]. Last,
it provides paraphrases for detecting relationships in keyword queries, thus lift-
ing keyword search to the entity-relationship level. This can help to understand
questions and text snippets in natural-language QA.

We developed a front-end to the PATTY data for exploring these possibilities in
three ways:

1. Using PATTY as a thesaurus to find paraphrases for relations
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2. Using PATTY as a simple kind of QA system to query the database without
having to know the schema

3. Exploring the relationships between entities, as expressed in the textual
sources.

The Web-based front-end is running AJAX for asynchronous communication with
the server.

Figure 4.5: PATTY paraphrases for the YAGO relation actedIn

Using PATTY as a Thesaurus

PATTY connects the world of textual surface patterns to the world of predefined
RDF relationships. Users who are aware of RDF-based knowledge bases can ex-
plore how RDF relations map to their textual representations. For example, as
shown in Figure 4.5, PATTY knows over 300 ways in which the YAGO relation
actedIn can be expressed textually. We hope that this wealth of data can inspire
new applications in information extraction, QA, and text understanding.

Users do not need to be familiar with RDF in order to use PATTY. For example,
users can find different ways to express the hasAcademicAdvisor relation, simply
by typing “worked under” into the search box. PATTY also provides the text snip-
pets where the mention was found as a proof of provenance . These text snippets
can be explored to understand the context in which a pattern can have a certain
meaning. In addition, users can browse the different meanings of patterns, as
they occur with different types of entities.
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PATTY provides not only relations and patterns, but also a subsumption hierarchy
of patterns, where more general patterns subsume more specific patterns. The
PATTY subsumptions can be explored by clicking nodes that are linked to the
root of a pattern. When a node is clicked, the server retrieves all patterns that
imply the activated pattern. Figure 4.6 is a screenshot of a small part of the
subsumptions.

Figure 4.6: A part of the PATTY taxonomy

Schema-Agnostic Search

Internally, PATTY stores all extracted patterns with their support sets. This allows
users to search for facts in the database. For this purpose, the PATTY front-end
provides a search interface where the user can enter Subject-Predicate-Object
triples. Different from existing systems, the user does not have to know the
schema of the database (i.e., the relations of the fact triples). It is fully sufficient
to enter natural language keywords. For example, to find the costars of Brad Pitt,
the user can type

“costarred with”

in place of the relation. PATTY will then search not only for the exact words
“costarred with” but also automatically use the paraphrases

“appeared with”,
“cast opposite”, and
“starred alongside”,
see Figure 4.7 .

This way the query only needs to be issued once and the user does not need to do
multiple paraphrases as is the case for keyword search engines. For each result,
PATTY can show the textual sources from which it was derived.

The type signatures of the patterns can be used to narrow down the search results
according to different semantic types. For example, when searching for a pop-
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Figure 4.7: Schema-free search for costars of Brad Pitt

ular subject like Barack Obama or Albert Einstein, the result may span multiple
pages. If the user is interested in only one particular aspect of the entity, then the
domain of the subject can be semantically restricted. For example, to see what
PATTY knows about Albert Einstein in his role as a scientist,the user can restrict
the domain of the relation to scientist. Such a query returns Einstein’s teaching
positions, his co-authors, information about his theories, etc.; but it does not
return information about his wives or political activities.

These schema-agnostic queries can be extended to simple join queries. This
works by filling out multiple triples and linking them with variables, similar to
the way SPARQL operates. Different from SPARQL, our system does not require
the user to know the relation name or the entity names. For example, to find
visionaries affiliated with MIT, it is sufficient to type

?x vision ?y, ?x ?z MIT.

This will search for people ?x who have a vision ?y and who stand in some
relationship ?z with an entity with name MIT. The results are shown in Figure
4.8.

Explaining Relatedness

PATTY can also be used to discover relationships between entities [42]. For ex-
ample, if the user wishes to know how Tom Cruise and Nicole Kidman are related,
it is sufficient to type “Nicole Kidman” into the subject box and “Tom Cruise” into
the object box. PATTY will then retrieve all semantic relationships between the
two, together with the patterns in which this relationship is expressed. For each
result, users can click on the source button discover provenance. The results are
shown in Figure 4.9.

91



4 RELATION EXTRACTION WITH PATTY 4.12 Summary

Figure 4.8: Simple join query to find visionaries affiliated with MIT

This principle can be extended to full conjunctive queries. For example, to find
the entity that links Natalie Portman and Mila Kunis, the user can type

Natalie Portman ?r ?x, Mila Kunis ?s ?x.

This will find all entities ?x that link the two actresses, as well as an explanation
of how this entity establishes the link. In the example, PATTY finds a ballet
movie for ?x, and says that both actresses appeared in this movie. The results
are shown in Figure 4.10. As this example shows, PATTY has created an internal,
semantic representation of the input text documents, which allow her to answer
semi-structured queries. In addition to generating semantic patterns, in a sense,
PATTY has summarized the input text documents. Users can exploit and query
these summaries.

4.12 SUMMARY

This chapter presented PATTY, a large resource of text patterns and the methods
for constructing it from Web data. Different from existing resources, PATTY orga-
nizes patterns into synsets and a taxonomy, similar in spirit to WordNet. Our eval-
uation shows that PATTY’s patterns are semantically meaningful, and that they
cover large parts of the relations of other knowledge bases. The Wikipedia-based
version of PATTY contains 350,569 pattern synsets at a precision of 84.7%, with
8,162 subsumptions, at a precision of 75%. The PATTY resource is freely available
for interactive access and download at www.mpi-inf.mpg.de/yago-naga/patty/.
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Figure 4.9: Explaining relatedness through a direct triple

Our approach harnesses existing knowledge bases for entity-type information.
However, PATTY is not tied to a particular choice for this purpose. In fact, it would
be straightforward to adjust PATTY to use surface-form noun phrases rather than
disambiguated entities, as long as we have means to infer at least coarse-grained
types (e.g., person, organization, location). In the next chapter we show how
a system can extract facts pertaining to relations extracted by PATTY but also
capable of dealing with out-of-knowledge-base entities.
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Figure 4.10: Explaining relatedness through a join-query
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CHAPTER

5

Entity Extraction with PEARL

Both PROSPERA and PATTY rely on a common assumption in ontology-based IE
— that there exists a knowledge base which defines all entities and their types.
However, when extracting facts from highly dynamic data such as news and so-
cial media, new entities emerge that are not in the reference knowledge base.
In this chapter, we address the problem of out-of-knowledge-base entities. We
present a method for typing previously unseen entities. Our method is based on
an Integer Linear Program (ILP) and leverages pattern type signatures and type
disjointness constraints. In addition, we demonstrate the value of fact extraction
from news and social media through the application of fact-based emerging story
identification. Prior work on story identification generates stories as clusters of
related entities. No explicit semantic relations between the entities are given.

5.1 MOTIVATION

Figure 5.1: Out-of-knowledge-base entities per day

Dynamic content is an important part of the Web, it accounts for a substantial
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amount of Web traffic. For example, much time is spent reading news, blogs and
user comments in social media. In order to construct comprehensive knowledge
bases and avoid staleness, this kind of data must be brought into scope. DBPedia
Live addresses the issue of dynamic data updates to the DBPedia ontology. Up-
dates are pulled from Wikipeda via HTTP by accessing the Wikipedia live feed. In
this way, Wikipedia changes are extracted and propagated into the DBPedia on-
tology within minutes after they are made. DBpedia Live extractors are limited
to Wikipedia, which is primarily focused on popular entities.

In news and social media, there is a significant number of new entities emerg-
ing every day beyond those prominent enough to have a Wikipedia page. To
analyze the extent of new entity mentions, we considered a subset of Google
news data from July 2012 (see Section 5.8). We looked up every entity men-
tion in YAGO2 [57], and recorded all missing entities. Noun phrases unknown
to YAGO2 were recorded as missing, even if they are synonyms of entities al-
ready known to YAGO2. Our analysis, shown in Figure 5.1, revealed that about
10% of entities in a given day are out-of-knowledge-base entities. Thus standard
ontology-based IE would ignore facts related to 1 in 10 entities for any given day.
Lin et al. [72] observed that of all the 15 million facts extracted by Reverb[41],
over 5 million facts are related to entities that could not be linked to Freebase
[13] entities.

We illustrate the problem of fact extraction from dynamic sources with the exam-
ple in Figure 5.2. Traditional ontology-based IE only extracts one fact, whereas
the desired output contains three facts. Traditional IE fails to extract the facts
stated in the first two sentences, as the knowledge base does not contain the
relations:

hasRunningMate(person, person) and
ThreatenToHitArea(hurricane, location).

Traditional IE also fails to recognize the name Hurricane Isaac— a new entity.
Observe that the desired output does not and should not contain any facts from
the last sentence because it does not express any relational fact in the sense of a
subject-predicate-object triple.

As illustrated by the above example, fact extraction from rapidly updated data
sources entails a number of technical challenges that cannot simply be solved
by applying standard IE methods. These challenges, while partially addressed
by some approaches, such as the recall-oriented Open IE approach, they have
not been studied for high-precision ontology-based IE. Prominent among these
challenges are: dynamic entity recognition, and timely extraction.

Dynamic Entity Recognition

Traditional IE extracts facts about disambiguated entities by mapping noun phrases
in text to entities in a dictionary of entities. For example, when the noun phrase
“Jeff Dean” is encountered in text, it is mapped to the correct entity, which can ei-
ther be the Google engineer or the rock musician. However, knowledge bases are
never complete in the entities they contain. This is in part due to newly emerg-
ing entities (e.g., a new hurricane) and entities in the long tail. For example, Jeff
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Mitt Romney ’s running mate Paul Ryan
to give speech at RNC in Florida

Hurricane Isaac threatens to hit
Florida as RNC approaches

Mitt Romney ’s wife Ann Romney will
also give a speech

Republicans have not confirmed if Clint
Eastwood will speak

Relations
isMarriedTo
wasBornIn

Entities
Mitt Romney

Paul Ryan
Ann Romney

Knowledge base

Subject Relation Object
Mitt isMarriedTo Ann

Output of traditional IE
with pre-specified entities and relations

Subject Relation Object
Mitt <politician> ’s running mate Paul

<politician>

Hurricane Isaac <hurricane> threatens to hit Florida
<location>

Mitt <person> ’s wife <person> Ann

Desired output of IE
from rapidly updated data sources

Figure 5.2: Example of output from dynamic sources

Dean the Google engineer is a long-tail entity, he does not have a Wikipedia page.
He is therefore missing in Wikipedia-derived knowledge bases. A method for fact
extraction on dynamic data needs to recognize and handle out-of-knowledge-
base entities as they emerge. This should however go beyond simply treating
each noun phrase as a separate entity. Ideally, the output must contain semantics
along with noun phrases, facilitating high accuracy fact extraction.

Timely Extraction

A method for fact extraction from rapidly updated sources requires ensuring that
new facts are extracted and added to the knowledge base right after they become
available as opposed to a few weeks or months down the line. This requires
applying methods that solve the above two challenges, more frequently than it is
traditionally done in batch-oriented approaches.
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5.2 CONTRIBUTION

We present PEARL, a system for extracting facts from rapidly updated data sources.
PEARL introduces a method for learning types for out-of-knowledge-base entities.
Adding type information to such new entities yields useful semantics that can be
leveraged to boost fact accuracy.

To ensure timely fact extraction, PEARL uses a continuous processing model which
processes a stream of in-coming documents. PEARL demonstrates the utility of
fact extraction on rapidly updated data sources through the emerging story mining
application. PEARL mines stories as they emerge by clustering related facts. Pre-
vious work on story extraction [7, 30] defines stories as clusters of co-occurring
entities. The actual relationships between the entities are not explicitly stated.

In summary, the chapter’s novel contributions are:

• A framework for fact extraction from dynamic data: we introduce a novel
pipeline for mining facts from streams of rapidly updated data sources (Sec-
tion 5.4).

• Entity typing: we introduce a method for typing previously unseen entities
as they emerge. Our approach learns entity types from the type signatures of
the relational patterns they occur with. Additionally, to resolve type incom-
patibilities, we leverage disjointness constraints by specifying and solving
an Integer Linear Program (ILP). (Section 5.6);

• Emerging story extraction: we demonstrate that fact extraction from rapidly
updated data sources enables novel applications. We develop a graph-based
method for mining emerging stories as sets of semantically related facts
(Section 5.7).

• Evaluation: we evaluate PEARL on real world news data and demonstrate
the effectiveness of our methods (Section 5.8).

5.3 RELATED WORK

Our problem is related to literature spanning three areas: named entity recogni-
tion, semantic type inference, and event identification.

Named Entity Recognition

Recognizing named entities in text has been studied by a large body of work.
Named Entity Recognition (NER) systems aim to detect and assign types to named
entities in text. Traditional NER tools such as that by Finkel et. al [45] are
coarse-grained and only deal with a few types such as person, organization, and
company. Even fine-grained NER [68] methods have only dealt with up to 200
types. In contrast, PEARL deals with thousands of types. Entity disambiguation
and entity linking systems map noun phrases in text to entities in an existing
knowledge base [17, 51, 57, 76, 88, 114]. The knowledge base is expected to

98



5.3 Related Work 5 ENTITY EXTRACTION WITH PEARL

contain entities, their types, and their key attributes. The main difference be-
tween these approaches and PEARL is that the former are primarily concerned
with entities that are already known as opposed to discovering and typing out-
of-knowledge-base entities.

Inferring Semantic Types

More closely related to our work is the approach of Lin et al. [72] for predicting
types for out-of-knowledge-base entities. Two issues are addressed: determining
if a noun phrase is an entity or not; and for every noun phrases that is a true
entity, determining which Freebase types apply. To determine if a noun phrase
is an entity, a timestamped corpus spanning hundreds of years is used. In par-
ticular the Google books n-gram corpus from the year 1500 to 2007 is used. The
main insight is that true entities have different usage patterns over time than
non-entities. Using this insight and features learned from the corpus, their ap-
proach can determine that, for example, “Sex and the City" is an entity, while
“John and David", “ The method", and “12 cats" are not entities. However, this
approach is not applicable to emerging entities in news and social media because
there is no historical data for such entities. There are methods that employ ef-
fective heuristics based on capitalization, singular words, etc., such as those used
in [108] Lin et al.’s entity typing method employs a large collection of factual
assertions in the form of 〈nounphrase1〉 pattern 〈nounphrase2〉. Among those as-
sertions, a large number of them are related to noun phrases that are linkable
to Freebase entities, call this set L. The remaining set, U, contains assertions
related to unlinkable entities. The unlinkable entities are typed in a three step
process:

• Find Patterns. For an entity e ∈ U, find a set R of all the patterns in U that
co-occur with e in their domain, as opposed to their range. For example,
if the entity to be typed is Sun Microsystems, and it occurs in the assertion
〈Sun Microsystems〉 has released a minor update to 〈Java 1.4.2〉, then the
pattern “has released a minor update to" is added to R.

• Find Similar Entities. Find the linkable entities in L that occur in the do-
main, as opposed to the range, of most of the patterns in R. In this case,
entities such as Microsoft and Apple may show up. These entities are added
to a set S.

• Predict Types. Assign to e the most frequent Freebase types of the entities
in S. In this case it may be business operation.

While this approach is similar to PEARL, there are key differences. First, Lin
et al.’s method does not attempt to resolve inconsistencies among the predicted
types, it is left as future work. In contrast, PEARL uses an ILP with type dis-
jointness constraints to solve such inconsistencies. Second, Lin et.al’s method
uses untyped patterns. PEARL uses typed patterns which are harnessed for com-
puting type-pattern co-occurrence likelihood estimations. For example, PEARL is
able to estimate conditional type-pattern co-occurrence likelihoods as discussed
in Section 5.6. Third, Lin et al’s method only makes use of pattern domains, not
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Figure 5.3: Architectural overview of the PEARL approach

ranges. This implies that entities that appear in ranges may not be typed. In
contrast, PEARL uses both domains and ranges to infer types.

Event Identification.

Research on story and event identification has largely focused on detecting enti-
ties that co-occur at the same time in a bursty manner [7, 30]. The intuition is
that if entities receive “buzz” around the same time, then they participate in the
same event. An important difference between this line of work and our work is
that prior work does not state the relationships that hold between entities par-
ticipating in an event; thus their events are merely clusters of entities, lacking
informative semantics.

Another line of work on event extraction uses patterns to extract special aspects
of events. For example, the location and time of earthquakes [103]. In contrast,
we are not restricted to extracting specific aspects of an event.

Event extraction has also been applied to micro-blogs. Ritter et al. [101] studied
the problem of extracting a calendar of events from twitter.com. However, due to
their brief nature, such micro-blog posts are not suitable for extracting relational
facts. Hence the resulting event descriptions are brief.

5.4 OVERVIEW OF PEARL

PATTY showed that types are a key asset for discovering a large set of relations
beyond common ones. Our main insight is that, semantic types can also be used
to recognize and type out-of-knowledge-base entities.

Figure 5.3 illustrates the overall PEARL approach. As input, our approach takes
a knowledge base which contains entities along with their types. In the first step
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(marked step 1 in Figure 5.3), we use PATTY to generate relations in the form of
patterns with type signatures. This generates relations like: 〈actor〉 ’s character in
〈movie〉. In the second step (marked 2 in Figure 5.3), we use the typed phrases,
extracted in step 1, to extract facts. Different from standard ontology-based IE,
we also extract facts that refer to out-of-knowledge-base entities. For such new
entities, we learn their types from the phrases they occur with.

The output of our system are relational facts of the form:

〈Entity1〉 〈domain〉 phrase 〈range〉 〈Entity2〉.

An example fact in this format is:

〈Mitt Romney〉 〈politician〉 ’s running mate 〈politician〉 〈Paul Ryan〉.

5.5 DETECTION OF NEW ENTITIES

To detect noun phrases that potentially refer to entities, we apply a part-of-speech
tagger to the input text.

For a given noun phrase, there are four possibilities:

a) The noun phrase refers to a general concept (a class or abstract concept),
not an individual entity.

b) The noun phrase is a known entity that can be directly mapped to the knowl-
edge base.

c) The noun phrase is a new name for a known entity.

d) The noun phrase is a new entity not known to the knowledge base at all.

Case a) refers to non-entities, we would like to discard such noun phrases. To
decide if a noun phrase is a true entity (i.e., an individual entity that is a member
of one or more lexical classes) or a non-entity (i.e., a common noun phrase that
denotes a class or a general concept), we base the decision on the following
hypothesis (inspired by and generalizing [17]):

Hypothesis 5.5.1 (Entity Detection Hypothesis) A
given noun phrase, not known to the knowledge base, is a true entity if its headword
is singular and is consistently capitalized (i.e., always spelled with the first letter in
upper case).

Here the notion of headword refers to noun-group parsing which decomposes a
noun phrase into its semantic anchor (the headword), one or more pre-modifiers
and one or more post-modifiers. For example, in “the first black president of the
United States” the headword is “president”.

Case b) refers to entities already in the knowledge base. Therefore, this case
can be handled by a named entity disambiguation tool such as AIDA [57]. We
treat case c) equivalently to case d), because if the name does not appear in
the knowledge base there is no way of knowing which entity it refers to. Note
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that we already leverage KBs like YAGO2 that contain many millions of entities
with a huge number of surface names (synonyms) derived from anchor texts and
redirects of Wikipedia links. Our task thus is to compute semantics types for noun
phrases falling under cases c) and d). The noun phrases can then be added to
the knowledge base with their inferred types.

5.6 TYPING OUT-OF-KNOWLEDGE-BASE ENTITIES

To deduce types for new entities we propose to align new entities along the type
signatures of patterns they occur with. In this manner we use the patterns to
suggest types for the entities they occur with. In particular, we infer entity types
from pattern type signatures. Our approach builds on the following hypothesis:

Hypothesis 5.6.1 (Type Alignment Hypothesis) For a given pattern such as 〈actor〉’s
character in 〈movie〉, we assume that an entity pair (x, y) frequently occurring with
the pattern in text implies that x and y are of the types 〈actor〉 and 〈movie〉, respec-
tively.

Challenges and Objective

While the type alignment hypothesis works as a starting point, it introduces false
positives. Such false positives stem from the challenges of polysemy, fuzzy pat-
tern matches, and incorrect paths between entities.

Polysemy

The same lexico-syntactic pattern can have different type signatures. For exam-
ple, the following are four different patterns:

〈singer〉 released 〈album〉,
〈music_band〉 released 〈album〉,
〈company〉 released 〈product〉,
〈country〉 released 〈prisoner〉.

For an entity pair (x, y) occurring with the pattern “released", x can be one of
four different types (singer, music_band, company, country) and y can be one of
three different types (album, product, prisoner).

Fuzzy Pattern Matches

We cannot expect that the phrases we extract in text will be exact matches of
the typed relational patterns we have learned with PATTY. Therefore, for better
recall, we must accept fuzzy matches. Quite often however, the extracted phrases
matches multiple relational patterns to various degrees. Each of the matched
relational patterns has its own type signature. The type signatures of the various
matched patterns can be incompatible with one another.
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Incorrect Paths between Entities

This problem emerges when a pair of entities occurring in the same sentence
do not stand in a subject-object relation. For example, consider the sentence:
Liskov graduated from Stanford and obtained her PhD degree from MIT. In this
sentence, there is no relationship between Stanford and MIT, however we may
erroneously extract: [Stanford] obtained her PhD degree from [MIT]. If Stanford
were an unknown entity and we had a semantically-typed pattern which says
people obtain PhDs from institutions, then we would wrongly infer that Stanford
is a person.

Deep linguistic processing such as dependency parsing facilitates correct path
finding between entity pairs. However, dependency parsing does not adequately
solve the issue. Web sources contain a plethora of sentences that are not well-
formed. Such sentences mislead the dependency parser to extract wrong depen-
dencies.

Our solution takes into account polysemy, fuzzy matches, as well as issues stem-
ming from potential incorrect-path limitations. We define and address the fol-
lowing optimization problem:

Definition 5.6.2 (Type Inference Optimization) Given all the candidate types for
x, find the best types or “strongly supported" types for x. The final solution must sat-
isfy type disjointness constraints. Type disjointness constraints are constraints that
indicate that, semantically, a pair of types cannot apply to the same entity at the
same time. For example, a 〈university〉 cannot be a 〈person〉. We also study a relax-
ation of type disjointness constraints through the use of type correlation constraints.

Our task is therefore twofold: first, generate candidate types for new entities;
second, find the best types for each new entity among its candidate types.

Candidate Types for Entities

The candidate types for a new entity are the possible types that can be assigned
to it based on its occurrences with typed relational patterns.

Definition 5.6.3 (Candidate Type) A new entity x appears in a number of triples
(x, p1, y1), (y2, p2, x), ..., (yn, pn, x). We say that x is supported by patterns p1, p2, ..., pn.
Each pattern pi has a type signature with a domain and a range. If x occurs as a
left-hand argument, we consider the domain of pi as a candidate type for x. If x
occurs as a right-hand argument, we consider the range of pi as a candidate type for
x. Hence the triples (x, pi, y) and (y, pi, x) are treated differently.

We compute confidence weights for candidate types. Ideally, if an entity occurs
with a pattern which is highly specific to a given type then the candidate type
should have high confidence. For example “is married to" is more specific to
people then “expelled from". A person can be expelled from an organization but
a country can also be expelled from an organization such as NATO.
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There are various ways to compute weights for candidate types. We first intro-
duce a uniform weight approach and then present a method for computing more
informative weights.

Uniform Weights

Suppose a new entity x occurs in text with phrases (x phrase1 y1), (x phrase2 y2),
..., (x phrasen yn). Suppose these occurrences lead to the facts (x, p1y1), (x, p2, y2),...,
(x, pn, yn). The pis are the typed relational patterns extracted by PATTY. The facts
are generated by matching phrases to relational patterns with type signatures.
The type signature of a pattern is denoted as:

sig(pi) = (domain(pi), range(pi))

We allow fuzzy matches, hence each fact comes with a match score. This is the
similarity degree between the phrase observed in text and the typed relational
pattern.

Definition 5.6.4 (Fuzzy Match Score) Suppose we observe the surface string: (x
phrase y) which leads to the fact: x, pi, y. The fuzzy match similarity score is:
sim(phrase, pi), where similarity is the n-gram Jaccard similarity between the phrase
and the typed pattern.

The confidence that x is of type domain is:

Definition 5.6.5 (Candidate Type Confidence) For a given observation (x phrase
y), where phrase matches patterns p1, ..., pn, with domains d1, ..., db which are pos-
sibly the same:

typeCon f (x, phrase, d) = ∑
{pi :domain(pi)=d}

(
sim(phrase, pi)

)

Observe that this sums up over all patterns that match the phrase.

To compute the final confidence for typeCon f (x, domain), we aggregate the con-
fidences over all phrases occurring with x.

Definition 5.6.6 (Aggregate Confidence) For a set of observations (x, phrase1, y1),
(x, phrase2, y2), ..., (x, phrasen, yn), the aggregate candidate type confidence is given
by:

aggTypeCon f (x, d) = ∑
phrasei

typeCon f (x, phrasei, d)

= ∑
phrasei

∑
{pi :domain(pi)=d}

(sim(phrase, pi))

The confidence for the range typeCon f (x, range) is computed analogously. All
confidence weights are normalized to values between 0 and 1.
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The limitation of this approach is that each pattern is considered equally good
for suggesting candidate types. Thus this approach does not take into account
the intuition that an entity occurring with a pattern which is highly specific to a
given type is a stronger signal that the entity is of the type suggested. Our next
approach addresses this limitation.

Co-occurrence Likelihood Weight Computation

We devise a likelihood model for computing weights for entity candidate types.
Central to this model is the estimation of the likelihood of a given type occurring
with a given pattern.

Suppose using PATTY methods we mined a typed relational pattern 〈t1〉 p 〈t2〉.
Suppose that we now encounter a new entity pair (x, y) occurring with a phrase
that matches p. We can compute the likelihood of x and y being of types t1 and
t2, respectively, from the likelihood of p co-occurring with entities of types t1, t2.
Therefore we are interested in:

Definition 5.6.7 (Type-Pattern Likelihood) The likelihood of p co-occurring with
an entity pair (x, y) of the types (t1, t2) is given by:

P[t1, t2|p] (5.1)

where t1 and t2 are the types of the arguments observed with p from a corpus such
as Wikipedia. P[t1, t2|p] is expanded as:

P[t1, t2|p] =
P[t1, t2, p]

P[p]
. (5.2)

The expressions on the right-hand side of Equation 5.2 can be directly estimated
from a corpus as follows:

Definition 5.6.8 (Corpus-based Estimation) P[t1, t2, p] is the relative occurrence
frequency of the typed pattern among all entity-pattern-entity triples in a corpus
(e.g., the fraction of 〈musican〉 plays 〈song〉 among all triples).

P[p] is the relative occurrence frequency of the untyped pattern (e.g., plays) regard-
less of the argument types. For example, this sums up over both 〈musican〉 plays
〈song〉 occurrences and 〈actor〉 plays 〈fictional character〉.

We use the Wikipedia English version to for corpus-based estimations. If we ob-
serve a fact where one argument name can be easily disambiguated to a knowledge-
base entity so that its type is known, and the other argument is considered to be
an out-of-knowledge-base entity, we condition the joint probability of t1, p, and
t2 in a different way:

Definition 5.6.9 (Conditional Type-PatternLikelihood) The likelihood of an en-
tity of type t1 occurring with a pattern p and an entity of type t2 is given by:

P[t1|t2, p] =
P[t1, t2, p]

P[p, t2]
(5.3)
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where the P[p, t2] is the relative occurrence frequency of a partial triple, for example,
〈*〉 plays 〈song〉.

Observe that all numbers refer to occurrence frequencies. For example, P[t1,p,
t2] is a fraction of the total number of triples in a corpus.

Multiple patterns can suggest the same type for an entity. Therefore, the weight
of the assertion that y is of type t, is the total support strength from all phrases
that suggest type t for y.

Definition 5.6.10 (Aggregate Likelihood) The aggregate likelihood candidate type
confidence is given by:

typeCon f (x, domain)) = ∑
phrases

∑
pi

(
sim(phrasei, pi) ∗ L

)
Where L= P[t1, t2|p] OR P[t1|t2, p] OR P[t2|t1, p]

The confidence weights are normalized to values in [0, 1].

So far we have presented a way of generating a number of weighted candidate
types for x. In the next step we pick the best types for an entity among all its
candidate types.

Integer Linear Program Formulation

Given a set of weighted candidate types, our goal is to pick a compatible subset
of types for x. The additional asset that we leverage here is the compatibility of
types: how likely is it that an entity belongs to both type ti and type tj. Some
types are mutually exclusive, for example, the type em location rules out em
person and, at finer levels, city rules out river and building, and so on. Our
approach harnesses these kinds of constraints.

Our solution is formalized as an Integer Linear Program (ILP). We have candidate
types for x: t1, .., tn. First, we define a decision variable Ti for each candidate type
i = 1, . . . , n. These are binary variables: Ti = 1 means type ti is selected to be
included in the set of types for x, Ti = 0 means we discard type ti for x.

In the following we develop two variants of this approach: a “hard” ILP with rig-
orous disjointness constraints, and a “soft” ILP which considers type correlations.

“Hard” ILP with Type Disjointness Constraints

We infer type disjointness constraints from the YAGO2 knowledge base using
occurrence statistics. Types with no overlap in entities or insignificant overlap
below a specified threshold are considered disjoint. Notice that this introduces
hard constraints whereby selecting one type of a disjoint pair rules out the second
type. We define type disjointness constraints Ti + Tj ≤ 1 for all disjoint pairs
ti, tj (e.g. person-artifact, movie-book, city-country, etc.). The ILP is defined
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as follows, where the weights wi are the aggregrated likelihoods derived in the
previous subsection:

objective

max ∑i Ti × wi

binary variables

∀i Ti ∈ {0, 1}

type disjointness constraint

∀(ti, tj)disjoint Ti + Tj ≤ 1

“Soft” ILP with Type Correlations

In many cases, two types are not really mutually exclusive in the strict sense, but
the likelihood that an entity belongs to both types is very low. For example, few
drummers are also singers. Conversely, certain type combinations are boosted
if they are strongly correlated. An example is guitar players and electric guitar
players.

Our second ILP considers such soft constraints. To this end, we pre-compute
Pearson correlation coefficients for all type pairs (ti, tj) based on co-occurrences
of types for the same entities. These values vij ∈ [−1, 1] are used as weights
in the objective function of the ILP. We additionally introduce pair-wise decision
variables Yij, set to 1 if the entity at hand belongs to both types ti and tj, and
0 otherwise. This coupling between the Yij variables and the Ti, Tj variables is
enforced by specific constraints.

For the objective function, we choose a linear combination of the per-type ev-
idence, using weights wi as before, and the type-compatibility measure, using
weights vi j. The ILP with correlations is defined as follows:

objective

max α ∑i Ti × wi × (1− α)∑ij Yij × vij

binary variables

∀i Ti ∈ {0, 1}

type correlation constraints

∀i,j Yij + 1 ≥ Ti + Tj
∀i,j Yij ≤ Ti
∀i,j Yij ≤ Tj

Note that both ILP variants need to be solved per entity, not over all entities
together. The “soft” ILP has a size quadratic in the number of candidate types,
but this is still a tractable input for modern solvers. We use the Gurobi software
package to compute the solutions for the ILP’s.
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For both the “hard” and “soft” variants of the ILP, the solution is the best types
for entity x satisfying the constraints. We can thus use these types to emit the
final output of PEARL, which is relational facts of the form:

〈Entity1〉 〈domain〉 phrase 〈range〉 〈Entity2〉.

5.7 EMERGING STORY MINING

As an application for fact extraction on news we study emerging story mining.
There have been previous studies on emerging story mining [7, 30, 101]. How-
ever, we are not aware of any methods that create stories as sets of facts with
semantic relations. Instead, previous methods have relied on a general form of
relatedness to generate stories. They primarily use “temporal" co-occurrences.
Two entities are said to be in the same story if they co-burst; co-occurring fre-
quently over a given time period [30]. In contrast, our method produces rela-
tionships between pairs of entities. In this regard, the stories we generate are
more descriptive than stories of sets of entities. We define a story as follows:

Definition 5.7.1 (Story) Given a set Φ of all extracted facts, where a fact is an
entity-(typed)pattern-entity triple (e1, p, e2), a story is a set of facts Si ⊂ Φ that are
closely related.

Intuitively, two documents are likely to be discussing the same story if they have
a large overlap in the facts they state. Formally we have:

Definition 5.7.2 (Fact-based Document Similarity) The fact-based similarity of
a pair of documents d1 and d2 is quantified by the Jaccard similarity of their facts.

sim(d1, d2) = Jaccard(d1, d2)

=
|{facts ∈ d1} ∩ {facts ∈ d2}|
|facts ∈ d1} ∪ facts ∈ d2}|

Computing fact-based document similarity can be done efficiently for document
pairs. This information is then used to build the document fact graph.

Definition 5.7.3 (Document-Fact Graph) A document-fact graph G = (V,E) is a
weighted undirected graph consisting of a node set V representing documents and
an edge set E representing fact-based document similarity between documents. Each
edge has a weight w indicating the fact-based document similarity score.

Intuitively, the document-fact graph contains dense clusters of subgraphs. Each
such dense cluster expresses a story. Our task is to mine stories from the graph.
To solve this task, algorithms for identifying dense subgraphs can be applied.
Our approach is based on the idea of random walks [54]. We run a random walk
starting at a document node v, and obtain a ranking score for each visited node
vj ∈ V. The ranking score of a visited node reflects how likely the document is
part of the same story. We can apply this algorithm to every document node in
the graph; however, it would not be clear what the stories are. To counter this,
we introduce the concepts of major documents and supporting documents.
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Definition 5.7.4 (Major & Supporting Documents ) Given a document fact graph
G, a document node vi is a major document if it has a large number of immediate
neighbors. The document is said to be a major document for a yet to be discovered
story S. V∗ ∈ V is the set of all nodes corresponding to major documents. For a
given story Si, its supporting documents is given by nodes V−i , which are the nodes
that can be reached from one of the story’s major document through random walks.

The intuition is that a major document is vital to the story. Such a document states
facts that are central to the story. It may also contain some non-central facts. We
hypothesize that facts that are central to a story are repeated in most documents
pertaining to that story. Such facts are usually given as background information
to the reader. This means that a major document v has a large number of imme-
diate neighbors (above a specified threshold). Nodes in v’s neighborhood repeat
v’s set of facts to some degree. An example story is shown in Figure 5.4. The ma-
jor document in the story is d1. The rest of the documents, d2, d3, d4, d5, contain
some of the facts stated by d1 and are therefore supporting documents.

Thus the story formation algorithm begins by identifying all major documents.
The next step is to form neighborhoods around the major documents. For given
a major document v ∈ V∗, we want to compute a relevance score for the rest of
the nodes in the graph. Relevance scores are computed by random walks that
start with an initial distribution over the nodes where the entry corresponding to
a major document is set to one and all other entries are set to zero. As in stan-
dard Markov chains, the probability of taking a particular edge is proportional to
the edge weight over all the outgoing edges. Moreover, walks are occasionally
restarted based on coin tosses with probability ε; in these cases, the restart al-
ways jumps back to the original starting point. The result of the random walks is
an approximation of the stationary distribution of reaching other nodes from the
given major document.

All the nodes whose relevance score (with respect to the major document) is
above a threshold constitute the supporting documents. Note that a document
can be a supporting document in multiple stories. Algorithm 5.1 describes the
story formation procedure.
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d1
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d2 d4

d5

document facts
d1| f1, f2,f3, f4

d2| f1,f2
d3|f3
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d5|f1, f5

major document:
d1

supporting documents:
d2,d3,d4,d5
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w2,5

w1,3
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Figure 5.4: A fact graph depicting a single story
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Algorithm 5.1 Story Formation

1: procedure ExtractStories(G)
2: S← ∅; // initialize story set
3: V∗ ← ∅; // initialize major docs
4: for node vi ∈ G do
5: L(vi)← neighbors of vi;
6: if |L(vi)| > threshold θ

7: V∗ ← V∗ ∪ {vi};
8: endfor
9: R← computeRandomWalkScores(G);
10: V−i ← { vj ∈ V : (Rj > ε) }
17: Si ← V−i ∪ {vi};
11: S← S ∪ Si;
12: endfor
13: return S
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5.8 EVALUATION

Setup

Data Collection

To define a suitable corpus of test data, we obtained a continuous stream of news
documents by subscribing to Google News RSS feeds for a few topics starting in
April 2012. As of October 2012, the accumulated document count is 318, 434.
All our experiments are carried out on this data. We subscribed to eleven news
topics, namely: Angela Merkel, Barack Obama, Business, Entertainment, Hillary
Clinton, Joe Biden, Mitt Romney, Newt Gingrich, Rick Santorum, SciTech and Top
News. For the reference knowledge base of known entities, we used YAGO2 [58].
The type system used is that of the YAGO2, which is derived from WordNet. For
disambiguating mentions of known entities, we used AIDA [57].

Quality Assessment

All human evaluations were carried out using Amazon Mechanical Turk (MTurk).
MTurk is a platform for crowd-sourcing tasks which require human input. Tasks
on MTurk are small questionnaires consisting of a description and a set of ques-
tions. The questions can be single-choice, multiple-choice or open (text). In order
to minimize effects of mistakes or cheating, each task was submitted to multiple
turkers.

Methods under Comparison

For the typing of out-of-KB entities, we compared PEARL against two state-of-
the-art baselines:

• NNPLB (No Noun Phrase Left Behind), the method of [72], based on the
propagation of types for known entities through salient patterns occurring
with both known and unknown entities. We re-implemented the algorithm
of [72] in our framework, using the relational patterns of PATTY [81] for
comparability. For assessment we sample from the top-5 highest ranked types
for each entity.

• HYENA Hierarchical tYpe classification for Entity NAmes), the method of
[132], based on a feature-rich classifier for fine-grained, hierarchical type
tagging. This is a state-of-the-art representative of similar methods such as
[96, 73].

Evaluation of Entity Typing

We evaluated the quality of types PEARL assigned to new entities emerging in the
news stream. The turkers were presented with sentences from the news tagged
with out-of-KB entities and the types PEARL inferred for the entities. The task was

112



5.8 Evaluation 5 ENTITY EXTRACTION WITH PEARL

PEARL HYENA NNPLB

total % total % total %

num of. entity-type pairs 105 100% 105 100% 105 100%
majority VG or SAT 82 78% 26 25% 48 46%
majority VG 61 58% 14 13% 27 26%
points > 0 78 74% 24 23% 44 42%
avg. points 2.62 -2.42 -0.79
at least one VG or SAT 94 90% 59 56% 72 69%
at least one NS or W 40 38% 91 87% 85 81%

Table 5.1: Results for entity typing (NS: not sure, W: wrong, S: satisfactory,
VG: very good).

to assess the correctness of types assigned to an entity mention. For example, the
input sentence could be Angela Merkel has arrived for the Brussels Summit, and
poured cold water over hopes of a major breakthrough over the next two days. The
extracted entity and type were combined into a sentence to make understanding
the task easier. For example if PEARL inferred that Brussels Summit is an political
event, we generate and present the sentence: Brussels Summit is an event. We
allowed four possible assessment values:

a) Very good output corresponds to a perfect result.

b) Satisfactory output exhibits minor errors. For instance, the description G20
Summit is an organization is wrong, because the summit is an event, but G20
is indeed an organization. The problem in this example is incorrect segmen-
tation of a named entity.

c) Wrong for incorrect types (e.g., Brussels Summit is a politician).

d) Not sure / do not know for other cases.

Comparing PEARL to Baselines

We evaluated 105 entity-type test samples, using out-of-KB entities which were
mentioned frequently in the news corpus: in at least 20 different news articles.
Each test sample was given to 3 different turkers for assessment.

Since the turkers did not always agree if the type for a sample is good or not, we
aggregate their answers. We count how many times an entity type was classified
as not sure (NS), wrong (W), satisfactory (S) and very good (VG). We use majority
voting to decide whether the type was assigned correctly to an entity. We consider
the following variants of voting: i) we treat very good and satisfactory as correct,
ii) only very good counts as correct. Additionally, we aggregate the answers using
a point scoring system: a very good judgment is assigned +2 points, satisfactory
+1, wrong -2 (and not sure is discounted). We report the average number of
points and the number of samples with scores ≥ 0.

Table 5.1 shows the results of how PEARL performed versus the NNPLB and
HYENA methods. PEARL outperformed both opponents on all metrics. On the
metric of majority votes of Very Good or Satisfactory, PEARL achieved 78% pre-

113



5 ENTITY EXTRACTION WITH PEARL 5.8 Evaluation

κ Fleiss CohenVG CohenVG∨Sat

PEARL 0.31 0.40 0.44
HYENA 0.26 0.27 0.31
NNPLB 0.21 0.26 0.37

PEARL-all 0.52 0.59 0.68
PEARL-soft 0.39 0.58 0.44

Table 5.2: Inter-judge agreement kappa: Fleiss’ κ & adapted Cohen’s κ.

cision compared to HYENA’s 25% and NNPLB’s 46%. When we count samples
where at least one turker assigned Very Good or Satisfactory, PEARL reaches 90%
precision compared to 56% for HYENA and 69% for NNPLB. Anecdotic examples
for entity typing by PEARL are shown in Table 5.6. We also compare sample re-
sults of the same entities as ranked lists of types returned by each of the methods
in Table 5.7. Some of the samples provide insight into where limitations of the
baselines lie.

As shown in the samples in Table 5.7, HYENA’s output contains a great deal of
noise. HYENA’s relatively poor performance can be attributed to the fact that its
features are mainly syntactic such as bi-grams and part-of-speech tags. Web data
is challenging, it has a lot of variations in syntactic formulations. This introduces
a fair amount of ambiguity which can easily mislead syntactic features. Lever-
aging semantic features as done by PEARL could improve HYENA’s performance.
Furthermore, HYENA fails to assign types to some entities that PEARL finds types
for. For example, Melinda Liu is correctly typed by PEARL as a journalist but both
HYENA and NNPLB failed to assign any types to it. Furthermore, HYENA assigns
negatively correlated types to the same entity. For a given entity, the decision if a
given type is to be assigned to the entity is made independent of the other types,
however PEARL jointly makes decisions about all candidate types in its ILP.

While the NNPLB method performs better than HYENA, in comparison to PEARL,
there is room for improvement. Like HYENA, the NNPLB method also fails to
assign types to some entities which PEARL correctly finds types for. This results
from NNPLB’s focus on entities that appear in the subject role. This limitation
could be addressed by also considering entities in the object role in a similar
manner to the way PEARL does. Also like HYENA, NNPLB assigns negatively cor-
related types to the same entity. This limitation could be addressed by applying
PEARL’s ILPs to the candidate types suggested by NNPLB.

Inter-judge agreements of the human assessors are given in Tables 5.2 and 5.4.
For Table 5.2 we calculated the Fleiss’ kappa and Cohen’s kappa κ, which are
standard measures for inter-judge agreement. The standard assumption for Fless’κ
is that labels are categorical, so that each disagreement counts the same. This
is not the case in our settings, where different labels may indicate partial agree-
ment. Therefore, Fleiss κ is a lower-bound measure of agreement in our exper-
iments; the “true agreement” seems higher. Nevertheless, the observed Fleiss κ

values show that the task was fairly clear to the turkers; values > 0.2 are gen-
erally considered as acceptable [67]. Cohen’s κ assumes that there are only two
judges and two classes. Since it is not the case in our experiments, we had to
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PEARL PEARL-all PEARL-soft

total % total % total %

num of. entity-type pairs 105 100% 105 100% 105 100%
majority VG or SAT 82 78% 69 66% 56 53%
majority VG 61 58% 57 54% 39 37%
points > 0 78 74% 68 65% 49 47%
avg. points 2.62 1.80 0.31
at least one VG or SAT 94 90% 82 78% 82 78%
at least one NS or W 40 38% 45 43% 67 64%

Table 5.3: Results for entity typing by PEARL variants (NS: not sure,
W: wrong, S: satisfactory, VG: very good).

PEARL PEARL-all PEARL-soft HYENA NNPLB
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Not sure 0 2 2 4 0 6 2 6 0 7 5 8 0 8 2 4 1 17 8 9
Wrong – 43 37 15 – 76 19 17 – 88 50 25 – 163 32 52 – 105 38 49
Sat. – – 12 71 – – 9 39 – – 18 31 – – 8 20 – – 7 38
V. good – – – 129 – – – 141 – – – 83 – – – 26 – – – 43

Table 5.4: Inter-judge agreement in entity-typing assessments.

adapt it. First, we converted the assessments into two categories. We did it in
two ways: in CohenVG∨Sat we merge Very good with Satisfactory and Wrong with
Not sure, whereas in CohenVG we merged Satisfactory, Wrong and Not sure into
one category. Next, we found pairs of judges who assessed at least 10 identical
entity-type pairs and calculated Cohen’s κ for each such pair. The reported results
are averages over such pairs. For all evaluations, Cohen’s κ is > 0.2.

For inter-judge agreements we additionally report in Table 5.4 how many times
a particular assessment co-occurred for the same test sample, were a great deal
of agreement among the assessors can be seen.

PEARL Variants

We also evaluated several variants of PEARL. The previous numbers refer to the
variant with “hard ILP” evaluated on frequent entities. We now report on config-
urations with “soft ILP” on frequent entities, and with the default configuration of
“hard ILP” for randomly sampled entities including infrequent ones. The results
are shown in Table 5.3. As expected, the precision when sampling over all enti-
ties drops a bit. This can be attributed to the fact that some of the infrequently
occurring noun phrases are not real entities. While our entity-detection heuristics
weeds out many non-entities, some still remain. Furthermore, for infrequent en-
tities, PEARL does not have enough evidence for reliable type assignments. The
configuration with “soft ILP”, with α set to 0.5, generally performed worse than
the “hard ILP” variant. Nevertheless, it remains an interesting option because of
the tunable α, which allows better control over precision-recall trade-offs. So if
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an application requires high recall, an appropriately tuned “soft ILP” variant of
PEARL could be the method of choice.

NDCG

For assigning types to new entities, for a given entity e, an entity-typing system
return a ranked list of types {t1, t2, ..., tn}. We evaluated the ranking quality, using
the top-5 ranks for each method, by asking MTurk users to label each type with
scores 2 (Very Good), 1 (Satisfactory), or 0 (Wrong). These assessments are ag-
gregated into the normalized discounted cumulative gain (NDCG), a widely used
measure for ranking quality. We computed NDCG for three methods: PEARL,
HYENA, and NNPLB. The results are shown in Table 5.5. Here again, we see that
PEARL outperforms all other methods by a large margin.

NDCG

PEARL 0.53
HYENA 0.16
NNPLB 0.16

Table 5.5: NDCG for various entity-typing methods.

Fuzzy Score Evaluation

We varied the minimum fuzzy match score between phrases and the typed rela-
tional phrases. A low minimum fuzzy score means that we permit more uncertain
matches to suggest candidate types for entities. For this we evaluated three meth-
ods. The first is full PEARL with hard constraints. The second, denoted No ILP,
is a version of PEARL that does not attempt to resolve type inconsistencies but
leverages type-pattern co-occurrence likelihood weights. The third, denoted Uni-
form Weights is a version of PEARL that does not use type-pattern co-occurrence
likelihood weights, but resolves type inconsistencies.

To assess precision, we selected a random sample of 60 out-knowledge-base en-
tities extracted in July 2012. For a given entity in the sample, we evaluated the
types suggested for it by each of the three methods. An entity type assignment
by a given method is marked correct if all types the methods assigns to an entity
are correct.

Figures 5.5, 5.6, and 5.7 present performance results of the three methods.
PEARL outperforms the other methods by significant margins. For the case of
minimum fuzzy match score of 0.4 (shown in Figure 5.5, full results presented
in Appendix B), PEARL achieves 85% precision compared to No ILP with 28%
precision and the Uniform Weights method with 50% precision. This shows that
both the ILP and corpus-learned weights are crucial for high precision. For the
second case, seen in Figure 5.6, we set the minimum fuzzy match score to 0.8.
While PEARL still outperforms the other methods, its precision drops to 77%.
This is because using a high threshold means that most of the support for type
suggestions is lost. These results show that fuzzy matches are important for both
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high recall, as well as for boosting support for the correct types. Furthermore, a
high minimum match score leads to PEARL’s relative recall dropping to 52% (see
Figure 5.7 ). Recall was computed with respect to the number of typed entities,
out of the 60 in the sample set.

Table 5.8 shows sample output of the three methods. PEARL correctly types non-
trivial entities. For example, PEARL correctly types the entity Minaj as a musician.
The Uniform Weights method types Minaj as an athlete. The No ILP method types
it as both an athlete and musician.

Figure 5.5: Precision of entity typing methods at 0.4 minimum fuzzy
match score.
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Figure 5.6: Precision of entity typing methods at 0.8 minimum fuzzy
match score.

Figure 5.7: Relative recall for varying degrees of minimum fuzzy matches.
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Entity Inferred Type Source Sentence (s)

Lochte medalist Lochte won America’s lone gold on the
first day of swimming competition.

Malick director Turn the clock back 15 months, and
Brad Pitt, Sean Penn and Jessica Chas-
tain all graced the red carpet in Cannes
for Malick’s 2011 movie , “ The Tree of
Life’".

Bonamassa musician Bonamassa recorded Driving Towards
the Daylight in Las Vegas with a mix
of veteran studio musicians includ-
ing drummer Anton Fig from the Late
Show with David Letterman band and
Nashville bass ace Michael Rhodes.
At the age of 12, Bonamassa opened
for B.B. King in Rochester , N.Y. “It was
a thrill", he said and in 2009 he fulfilled
a dream by performing at the Royal Al-
bert Hall in London, where Eric Clapton
made a guest appearance.

Analog Man album Analog Man is Joe Walsh’s first solo al-
bum in 20 years.

Rep. Debbie Wasserman Schultz person Thomas Roberts speaks with Rep. Deb-
bie Wasserman Schultz, chair of the
Democratic National Committee, about
a new Quinnipiac Poll that shows ...

LightSquared organization LightSquared paid Boeing some $1 bil-
lion for two satellites with the largest
antenna receivers ever put into space,
one of which was launched and is cir-
cling the Earth now.

Melinda Liu journalist “My fervent hope is that it would be
possible for me and my family to leave
for the U.S. on Hillary Clinton’s plane,”
Chen said in a telephone interview with
journalist Melinda Liu of the Daily
Beast.

U.S. Border Patrol Agent Brian Terry military officer The inspector general determined that
ATF agents and federal prosecutors had
enough evidence to arrest and charge
Jaime Avila, a Phoenix gun smuggler,
months before Border Patrol Agent
Brian Terry was killed near Tucson in
December 2010.

RealtyTrac publication Earlier this month, RealtyTrac reported
that for the first time since it began
compiling foreclosure statistics in 2005,
Illinois had the highest foreclosure rate
among all the states in August.

Table 5.6: Example source sentences for PEARL results.
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Entity PEARL HYENA NNPLB

Lochte person,
medalist

painting,
device,
exile,
artifact ,
person

person,
scholar,
politician,
athlete,
musician

Malick person,
director

event,
battle

person,
manufacturer,
director,
actor,
photographer

Bonamassa person,
musician,
actor

event person,
musician,
singer

Analog Man artifact,
album

noble,
scholar,
aristocrat,
person,
artifact

artifact,
song,
album,
musical_composition

Rep. Debbie Wasserman Schultz person — —
LightSquared organization,

company
organization ,
medalist,
artifact,
device

organization,
scholar,
person,
director,

Melinda Liu person,
journalist

— —

U.S. Border Patrol Agent Brian Terry person,
military_officer

person person,
military_officer,
head_of_state,
president

RealtyTrac artifact,
publication

organization,
book,
executive,
ruler

artifact,
device,
publication

Table 5.7: Example results from PEARL, HYENA, NNPLB
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New Entity Proposed Types

PEARL No ILP Uniform Weights
Sen. Dianne Feinstein D-Calif person person,

artifact,
prisoner,
publication

person

MSNBC show artifact artifact,
country,
city

city

Mountain Lion event,
movie

event,
artifact,
person,
movie

event,
movie

Knowledge Graph artifact artifact,
event

artifact

ABCNews.com person person,
artifact,
event,
publication,

person

Prevention magazine person person,
artifact,
event,
publication

artifact,
publication

Singer Taylor Swift person person,
country

person

Cee Lo Green person person,
organization,
team

team

Justice Elena Kagan person person,
organization,
event,
university

person

Lena Dunham actor,
manufacturer,
person

person,
actor,
event,
judge

actor,
musician,
person

Minaj musician,
person,
pianist,
singer

person,
musician,
athlete,
actor

athlete,
basketball_player,
football_player,
person

Table 5.8: Sample results for typing out-of-knowledge-base entities
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Story Mining Evaluation

We also conducted a user study on the use-case of story mining. We compare
two story representations: a set of entities versus a set of facts. MTurk users were
presented with a description of a story in one of the two representations and a list
of three news headlines. The headlines were picked from documents belonging
to different sets of stories. One of the three headlines was from a document of
the described story; this ground-truth was not known to the turkers. The turkers
were then asked to select the headline which matches the described story. In
addition to the three headlines we provided a fourth option of “Not sure". To
make the task less obvious, we presented headlines which belong to stories that
overlap in the associated entities (but still leaving enough entities that occur in
only one of the three stories). We evaluated 50 story descriptions for each of the
two representation models: set of entities vs. set of facts. Each story description
was presented to three turkers, resulting in 300 assessments in total. The results
are shown in Table 5.9.

Precision

PEARL (set-of-facts representation) 45%
baseline (set-of-entities representation) 38%

Table 5.9: Quality assessment of story representations.

The set-of-facts representation outperformed the set-of-entities representation.
However, the results also show that precision is still low at 45%. This is due to the
situation that important facts of a story cannot always be extracted into explicit
subject-predicate-object triples. While devising a method for capturing complex
relationships is beyond the scope of this dissertation, it makes an interesting line
for future work.

Additionally, to assess precision of the stories mined by our algorithm, we ran-
domly selected a sample of 30 stories. A given story is marked correct by a human
judge if it corresponds to a real-life story. It is marked wrong otherwise. A real-
life story is a story that can be categorized as a specific type of event, for example,
a court case, a death, a campaign event or an announcement of a significant new
movie role for an actor. Of the 30 evaluated stories, 21 (70 %) were marked
as real-life stories (see Table 5.10). Table 5.11 shows the types of stories found
in the evaluated samples. Almost all of the evaluated stories were of different
event types. The exception is the category of market share competition which has
two stories - one on market share competition among browsers, and the other on
Twitter and Facebook advertisement market share competition.

Total Correct Precision
30 21 70%

Table 5.10: Precision of PEARL stories
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Event type # of stories
murder case 1
firing/replacement 1
high profile meeting 1
campaign attack 1
death 1
sports event reschedule 1
legal trial 1
new movie role 1
market share competition 2
initial public offering 1
sports match 1
political crisis 1
stock Markets 1
event cancellation 1
product announcement 1
police investigation 1
band reunite 1
lawsuit 1
rape scandal 1
prostitution scandal 1
pregnancy 1

Table 5.11: A categorization of the evaluated stories.

5.9 SUMMARY

This chapter addressed the problem of dealing with out-of-knowledge-base en-
tities in ontology-based IE. Considering such entities is crucial when extracting
facts from highly dynamic data sources such as news and social media. Our anal-
ysis of a real-world news stream showed that about 10% of daily entity mentions
were unknown to the YAGO2 knowledge base. The chapter presented PEARL,
a method for typing previously unseen entities. PEARL is based on an Integer
Linear Program (ILP) and leverages pattern type signatures and type disjointness
constraints. Our evaluation on the same news stream showed that PEARL outper-
formed two baselines. We also demonstrated the value of extracting facts from
news through the emerging story mining application. Our evaluation showed
that the stories we extracted correspond to real-world stories.
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CHAPTER

6

Conclusion

KNOWLEDGE BASES, due to their potential to boost progress in building in-
telligent systems, are being embraced in both the commercial world and
research. This trend has resulted in a variety of long-running knowl-

edge base construction projects. Commercial search engines have recently started
rolling out knowledge-backed features, enabling consumers to forgo clicking on
hyperlinks, instead presenting direct answers. This and many other applications
have solidified the need to pursue the challenging but rewarding endeavor of
harvesting knowledge for machine understanding. This chapter recaps the con-
tributions of the dissertation and brings forward some directions for future re-
search.

6.1 CONTRIBUTIONS

The first contribution of the dissertation is the PROSPERA system for fact extrac-
tion. PROSPERA reconciles high precision, high recall and scalability. However,
PROSPERA relies on a reference knowledge base to define binary relations for ex-
traction and to provide a dictionary of entities. The next two contributions have
addressed freeing PROSPERA, and ontology-guided fact extraction in general,
from limited binary relations and incomplete dictionaries of entities. PATTY ex-
tracs semantically typed relational patterns. The PATTY resource contains signif-
icantly more binary relations than existing knowledge bases. PEARL presented a
method for semantically enhancing out-of-knowledge-base entities, making them
valuable for high-accuracy fact extraction. The issue of out-of-knowledge-base
entities is especially relevant to the setting of fact extraction from highly dy-
namic sources such as news and social media. PEARL demonstrated the value of
extracting facts from such sources through the application of fact-based emerging
story mining.
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6.2 FUTURE DIRECTIONS

While this dissertation has made significant progress toward comprehensive knowl-
edge base construction, this is a grand-scale challenge and much work remains
to be done. In what follows we discuss several directions for future work.

Fact Extraction Across Sentences

We focused on extracting facts from a single sentence. However, it is very com-
mon for related information to span across multiple sentences. In such cases, the
use of pronouns such as "he" or "she" is very common. While approaches from
natural language processing research have been proposed, much remains to be
done toward developing general methods for resolving such pronouns. There is
an opportunity for so called big data methods to play a role, leveraging massive
corpora from the Web.

Unbounded Relations

The methods presented in this dissertation have focused on extracting relations
where patterns appear between a pair of entities. For example from the sentence:

Barbara Liskov is a professor at MIT,

the relation 〈professor〉 faculty at 〈university〉 can easily be extracted. However,
suppose the sentence is phrased differently as follows:

A professor at MIT, Barbara Liskov has been awarded the 2008 Turing
Award.

The phrase indicating the relationship between MIT and Liskov is not confined
between two entities and is therefore not extracted. Exploring such unbounded
relations could further boost recall.

Structured Provenance

The Web model of authorship means that anyone can state anything. Sometimes
this leads to conflicting views. Mutual exclusion constraints can be used to infer
the most likely ground truth of facts. However, applying such constraints is lim-
ited to a few relations such as 〈person〉 born on 〈date〉. However we can leverage
provenance information to annotate facts with their sources. Some statements
are directly attributed to their sources. Hence we can exploit sentences of the
form: According to X, Y is Z. A structured provenance model can be incorporated
into knowledge bases. Applications using the data can leverage such provenance
information to treat different facts differently based on the authority and trust-
worthiness of the sources they come from.
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Relations about Relations

In PATTY we focused on two types of relatedness: synonymy and hypernymy.
However many more types of relatedness between binary relations can be ex-
tracted. For example, we can also extract antonyms — where one relation is the
opposite of another. Furthermore, some relations have units, we could extract
the units of relations like height, GDP, etc. In addition, some relations have value
constraints, for example, it is not possible for a person’s height to be 5 meters.

Typing N-nary Relations

In PATTY we focused on mining a large collection of binary relations. However,
certain relations are more naturally expressed as n-nary relations, where n >

2. Such relations might be better suited to certain settings, such as explaining
complex relatedness and causality relations.

Non-Entities

In PEARL we focused on typing out-of-knowledge-base entities. However, it is
equally important to ask the question of which noun phrases are real entities
and which ones are not. Methods that make use of historical usage patterns
are not applicable to new entities. While heuristics can be effective, there is an
opportunity to also explore methods combining linguistic processing and data-
mining techniques.
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APPENDIX

A

PATTY vs. Other Resources

This appendix shows the details of the comparison between PATTY and existing
resources as introduced in Chapter 4. In particular, we compare PATTY’s relations
to those found in YAGO, DBpedia, Freebase and NELL.
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Relation Patty YAGO DBpedia Freebase NELL
eponymFor 〈person〉 named after 〈person〉 — namedAfter — —
〈person〉 × 〈person〉
hasNationality 〈person〉 DET citizen of 〈country〉 isCitizenOf 〈person〉 citizenship 〈*〉 country of
〈person〉 × 〈country〉 nationality personHasCitizenship
hasAncestry 〈person〉 of descent 〈country〉 — — ethnicity —
〈person〉 × 〈country〉
diedFrom 〈person〉 died from 〈catastrophe〉 — deathCause cause of —
〈person〉 × 〈event〉 complications of death
bornInCity 〈person〉 born in〈city〉 wasBornIn birthPlace place of personborninlocation
〈person〉 × 〈city〉 birth
diedInCity 〈person〉 died in 〈city〉 diedIn deathPlace place of —
〈person〉 × 〈city〉 death
buriedAt 〈person〉 buried at 〈city〉 — placeOfBurial place of —
〈person〉 × 〈location〉 burial
knownFor 〈person〉 known for 〈artifact〉 isKnownFor known for — —
〈person〉 × 〈entity〉
wasNominatedFor 〈person〉 nominated for 〈artifact〉 — — award —
〈person〉 × 〈award〉 nominations
hasWonPrize 〈person〉 was awarded 〈artifact〉 hasWonPrize award awards won —
〈person〉 × 〈award〉
hasReligiousBackground 〈person〉 was raised — — — —
〈person〉 × 〈religion or belief〉 as 〈organization〉
believesInReligion — — religion religion —
〈person〉 × 〈religion〉
convertedToReligion 〈person〉 converted — — — —
〈person〉 × 〈religion〉 to 〈organization〉
influencedByPerson 〈person〉 influence by 〈person〉 influences influencedBy influenced by —
〈person〉 × 〈person〉
adoresGroup 〈person〉 fan of 〈organization〉 — — — —
〈person〉 × 〈organization〉
attendedSchool 〈person〉 attended 〈organization〉 — formerHighschool — —
〈person〉 × 〈school〉
attendedUniversity 〈person〉 attended at 〈university〉 — almaMater — —
〈person〉 × 〈university〉
obtainedDegreeFrom 〈person〉 obtained degree graduatedFrom — — —
〈person〉 × 〈university〉 from 〈university〉
droppedOutOf 〈person〉 had dropped — — — —
〈person〉 × 〈university〉 out 〈university〉
wasExpelledFrom 〈person〉 expelled from — — — —
〈person〉 × 〈school〉 〈organization〉
hasBodyMark — — — — —
〈person〉 × 〈body covering〉
hasHairStyle — — — — —
〈person〉 × 〈hairdo〉
livedInCity 〈person〉 lives in 〈city〉 — residence places lived —
〈person〉 × 〈city〉
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Relation Patty YAGO DBpedia Freebase NELL
raisedInCity 〈person〉 raised in 〈city〉 — — — —
〈person〉 × 〈city〉
madeTripTo 〈person〉 trip to 〈country〉 — — — —
〈person〉 × 〈location〉
hasMother 〈person〉 ’s mother 〈person〉 — — — —
〈person〉 × 〈person〉
hasFather 〈person〉 ’s father 〈person〉 — — — —
〈person〉 × 〈person〉
hasSister 〈person〉 ’s sister 〈person〉 — — — —
〈person〉 × 〈person〉
hasBrother 〈person〉 ’s brother 〈person〉 — — — —
〈person〉 × 〈person〉
hasDaughter 〈person〉 ’s daughter 〈person〉 — — — —
〈person〉 × 〈person〉
hasSon 〈person〉 ’s son 〈person〉 — — — —
〈person〉 × 〈person〉
hasChild 〈person〉 ’s child 〈person〉 hasChild — — —
〈person〉 × 〈person〉
adoptedChild 〈person〉 adopted 〈person〉 — — — —
〈person〉 × 〈person〉
adoptedSon 〈person〉 adopted 〈person〉 — — — —
〈person〉 × 〈person〉
adoptedDaughter 〈person〉 adopted 〈person〉 — — — —
〈person〉 × 〈person〉
hasGrandParent 〈person〉 ’s grandmother 〈person〉 — — — —
〈person〉 × 〈person〉
hasGodChild — — — — —
〈person〉 × 〈person〉
hasGodDaughter — — — — —
〈person〉 × 〈person〉
hasGodSon — — — — —
〈person〉 × 〈person〉
hasGodFather — — — — —
〈person〉 × 〈person〉
hasGodMother — — — — —
〈person〉 × 〈person〉
hasGodMotherInLaw — — — — —
〈person〉 × 〈person〉
hasGodFatherInLaw — — — — —
〈person〉 × 〈person〉
hasDaughterInLaw — — — — —
〈person〉 × 〈person〉
hasSonInLaw 〈person〉 son in law of 〈person〉 — — — —
〈person〉 × 〈person〉
marriedTo 〈person〉 is married 〈person〉 isMarriedTo spouse spouse hasspouse
〈person〉 × 〈person〉
divorcedFrom 〈person〉 divorced from 〈person〉 — — — —
〈person〉 × 〈person〉
estrangedFrom 〈person〉 PRP estranged 〈person〉 — — — —
〈person〉 × 〈person〉
hasHusband 〈person〉 ’s husband 〈person〉 isMarriedTo spouse spouse wifeof
〈person〉 × 〈person〉
hasWife 〈person〉 ’s wife 〈person〉 isMarriedTo spouse spouse husbandof
〈person〉 × 〈person〉
hasChildhoodFriend 〈person〉 hasChildhoodFriend 〈person〉 — — — —
〈person〉 × 〈person〉
hasFriend 〈person〉 friend to 〈person〉 — — celebrity friends —
〈person〉 × 〈person〉
hasBoyfriend 〈person〉 ’s boyfriend 〈person〉 — — — —
〈person〉 × 〈person〉

hasGirlfriend 〈person〉 ’s girlfriend 〈person〉 — partner — —
〈person〉 × 〈person〉
knows 〈person〉 where got to know 〈person〉 — — — —
〈person〉 × 〈person〉
hasLoveRelationWith 〈person〉 relationship with 〈person〉 — — romantically —
〈person〉 × 〈person〉 involved with
strainedRelationWith 〈person〉 PRP estranged 〈person〉 — — — —
〈person〉 × 〈person〉
reunitedWithPerson 〈person〉 reunited with〈person〉 — — — —
〈person〉 × 〈person〉
reunitedWithGroup 〈musician〉 reunited with 〈organization〉 — — — —
〈person〉 × 〈group〉 ADJ members of
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Relation Patty YAGO DBpedia Freebase NELL

influencedByMusician 〈person〉 influenced by 〈person〉 — influencedBy influenced —
〈musician〉 × 〈musician〉 by
influencedByBand 〈person〉 influenced by — influencedBy influenced —
〈musician〉 × 〈group〉 groups ADJ 〈organization〉 by
influencedByGenre — — — — —
〈person〉 × 〈genre〉
influencedMusician 〈musician〉 influenced ADJ — influencedBy influenced —
〈musician〉 × 〈musician〉 artists 〈musician〉 by d
influencedBand — — influencedBy influenced —
〈person〉 × 〈group〉
influencedGenre — — — — —
〈person〉 × 〈genre〉
hasMusicalIdol 〈musician〉 PRP idol 〈musician〉 — — — —
〈person〉 × 〈group〉
learnedFrom 〈person〉 learned from 〈person〉 — — — —
〈musician〉 × 〈musician〉
discoveredTalent 〈musician〉 discovered CON managed — — — —
〈musician〉 × 〈musician〉 CON managed ADJ

performers 〈artist〉
wroteHitsFor 〈musician〉 wrote hits for 〈musician〉 — — — —
〈musician〉 × 〈musician〉
hasSingingVoice — — voiceType vocal range —
〈musician〉 × 〈voice type〉
playsInstrument 〈musician〉 plays 〈musical_instrument〉 hasMusicalRole instrument instruments musician-
〈musician〉 × played plays-
〈musical instrument〉 instrument
playsGenre — hasGenre genre — music-
〈musician〉 × artistgenre
〈music genre〉
releasesAlbum 〈musician〉 ’s album〈album〉 album musical
〈musician〉 × 〈album〉 album
releasesDebutAlbum 〈musician〉 ’s debut album 〈album〉 — — — —
〈person〉 × 〈group〉
releasesDebutAlbum 〈musician〉 ’s debut album 〈album〉 — — — —
〈person〉 × 〈group〉
releasesLiveAlbum — live
〈musician〉 × 〈album〉 album
releasesAcousticAlbum — — — — —
〈musician〉 × 〈album〉
releasesSingle 〈song〉 ’s hit song 〈song〉 — — — —
〈musician〉 × 〈song〉
releasesDebutSingle 〈song〉 DET song from PRP — — — —
〈musician〉 × 〈song〉 PRP debut album 〈album〉
wroteSong 〈musician〉 song written by 〈song〉 — writer works —
〈musician〉 × 〈song〉 composed
wroteSong 〈song〉 lyrics written by 〈person〉 — lyrics lyrics —
〈person〉 × 〈song〉 written
dedicatedSongTo 〈musician〉 dedicated DET — dedications —
〈musician〉 × 〈person〉 song to 〈person〉
performsForLabel 〈musician〉 signed to ADJ record — record —
〈musician〉 × 〈organization〉 label 〈organization〉 label
hasProducer 〈person〉 produced ADJ artists — producer record —
〈musician〉 × 〈person〉 including 〈musician〉 producer
hasManager 〈musician〉’s manager 〈person〉 — manager tour —
〈musician〉 × 〈person〉 manager
hasRepresentative 〈person〉 represented ADJ — — — —
〈person〉 × 〈musician〉 artists ADJ 〈musician〉
hasSoundEngineer 〈person〉 recording engineer [[con]] — — recording —
〈musician〉 × 〈person〉 producer for ADJ client 〈singer〉 engineer
memberOf 〈musician〉 member of 〈organization〉 — currentMember member —
〈musician〉 × 〈group〉 of
co-founded 〈musician〉 cofounded DET band — foundingPerson founders —
〈musician〉 × 〈group〉 〈organization〉
recruited 〈musician〉 recruited DET — — — —
〈musician〉 × 〈musician〉 players 〈musician〉
playedWithBand 〈musician〉 has performed with — — — —
〈musician〉 × 〈group〉 DET band 〈organization〉
playedWithPerson 〈musician〉 performed along 〈musician〉 — associatedMusicalArtist — —
〈musician〉 × 〈musician〉
hadDuetWith 〈musician〉 duet with 〈musician〉 — — — —
〈musician〉 × 〈musician〉
singsWith 〈musician〉 sings with 〈musician〉 — — — —
〈musician〉 × 〈musician〉
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A PATTY VS. OTHER RESOURCES

Relation Patty YAGO DBpedia Freebase NELL
recordedAtLocation 〈album〉 sings with 〈city〉 — recordedIn place —
〈musician〉 × 〈location〉 recorded
performedAt 〈musician〉 performed PRP ADJ — — concert —
〈musician〉 × 〈event〉 concert in 〈artifact〉 venue
performedAtLocation 〈musician〉’s concert 〈city〉 — — concert —
〈musician〉 × 〈location〉 venue
headlinerAt 〈musician〉 headliner 〈artifact〉 — — — —
〈musician〉 × 〈event〉
headlinerAt 〈person〉 involved in 〈event〉 — — — —
〈person〉 × 〈event〉
invitedByPerson 〈person〉 invited by 〈person〉 — — — —
〈person〉 × 〈person〉
rejectedPerformance — — — — —
〈person〉 × 〈event〉
canceledPerformance — — — — —
〈person〉 × 〈event〉
performedForPerson 〈musician〉 has performed for 〈person〉 — — — —
〈person〉 × 〈event〉
performedForOrg 〈musician〉 has performed for — — — —
〈musician〉 × 〈organization〉 〈organization〉
covered 〈musician〉 covered DET song — — — —
〈musician〉 × 〈song〉 〈song〉
coveredBy 〈musician〉 covered by 〈musician〉 — — — —
〈musician〉 × 〈musician〉
wroteSoundtrackFor 〈musician〉 wrote DET music of 〈movie〉 wroteMusicFor — soundtrack —
〈musician〉 × 〈movie〉
parodied 〈person〉 was parodied 〈person〉 — — — —
〈musician〉 × 〈person〉
appearedOnTV 〈person〉 ADJ television appearances 〈event〉 — — broadcast artists —
〈person〉 × 〈broadcast〉
appearedOnRadio 〈musician〉 has appeared on — — broadcast artists —
〈person〉 × 〈broadcast〉 radio stations〈artifact〉
appearedInFilm 〈person〉 appeared in films 〈movie〉 actedIn film —
〈person〉 × 〈movie〉 appearances
starredInFilm 〈person〉 starred in 〈movie〉 actedIn starring film actor-
〈person〉 × 〈movie〉 appearances starredin-

movie
madeFilm 〈person〉 directed〈movie〉 directed director of films director-
〈person〉 × 〈movie〉 directed directed-

movie
appearedInMedia 〈person〉 appeared on — — — personwritten-
〈person〉 × 〈medium〉 cover of 〈publication〉 aboutin-

publication
featuredIn 〈person〉 featured in 〈artifact〉 — — — —
〈person〉 × 〈artifact〉
interviewedBy 〈person〉 interviewed by 〈person〉 — — interviews —
〈person〉 × 〈person〉 given
praisedByPerson 〈person〉 praised by 〈person〉 — — — —
〈person〉 × 〈person〉
praisedByPerson 〈person〉 praised by 〈person〉 — — — —
〈person〉 × 〈person〉
praisedFor — — — — —
〈person〉 × 〈entity〉
criticizedByPerson 〈person〉’s critique of 〈person〉 — — — —
〈person〉 × 〈person〉
praisedByMedia — — — — —
〈person〉 × 〈medium〉
criticizedByMedia 〈person〉criticized by 〈organization〉 — — — —
〈person〉 × 〈medium〉
criticizedAt — — — — —
〈person〉 × 〈evente〉
criticizedFor — — — — —
〈person〉 × 〈entity〉
gotTributeFrom 〈person〉 paid tribute 〈person〉 — — — —
〈person〉 × 〈person〉
gaveTributeTo 〈person〉 tribute to 〈person〉 — — — —
〈person〉 × 〈person〉
hasSculptureAt 〈person〉 sculpture at 〈organization〉 — — — —
〈person〉 × 〈organization〉
hasExhibitionAt 〈person〉 exhibition in 〈organization〉 — — — —
〈person〉 × 〈organization〉
hasWorkAnalyzedBy 〈person〉 analysis of 〈person〉 — — — —
〈person〉 × 〈person〉
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Relation Patty YAGO DBpedia Freebase NELL
wroteBook 〈person〉 author of 〈artifact〉 created author author writerwrote-
〈person〉 × 〈book〉 book-
wrotePoem 〈person〉 wrote PRP poem〈artifact〉 created — works
〈person〉 × 〈artifact〉 written
hasPublisher 〈person〉 published by 〈company〉 — publisher publisher
〈person〉 × 〈company〉
licensedRightsTo 〈organization〉 bought DET remain created author rights
〈person〉 × 〈organization〉 〈person〉 holder of
joinedCampaignFor 〈person〉 campaigned for〈organization〉 — — — —
〈person〉 × 〈entity〉
advocateFor 〈person〉 advocate for 〈organization〉 — — — —
〈person〉 × 〈entity〉
supportedByPerson 〈person〉 supported by 〈person〉 — — — —
〈person〉 × 〈person〉
supportedByOrg 〈person〉 supported by 〈organization〉 — — — —
〈person〉 × 〈organization〉
criticOf 〈person〉 critique of 〈person〉 — — — —
〈person〉 × 〈entity〉
wasDrunkAt — — — — —
〈person〉 × 〈event〉
misbehavedAt — — — — —
〈person〉 × 〈event〉
tookDrug — — — — —
〈person〉 × 〈drug〉
addictedTo — — — substance abuse —
〈person〉 × 〈drug〉 problems
suffersFrom 〈person〉 suffers from 〈artifact〉 — — — —
〈person〉 × 〈disease〉
diagnosedWith 〈person〉 diagnosed with 〈artifact〉 — — — —
〈person〉 × 〈disease〉
hospitalizedFor — — — — —
〈person〉 × 〈event〉
treatedFor — — — — —
〈person〉 × 〈condition〉
treatedUsing — — — — —
〈person〉 × 〈drug〉
hadAccidentAt 〈person〉 accident in 〈city〉 — — — —
〈person〉 × 〈location〉
arrestedFor 〈person〉 arrested for 〈event〉 — — — —
〈person〉 × 〈entity〉
accusedOf 〈person〉 been accused of 〈event〉 — — — —
〈person〉 × 〈entity〉
admitted 〈person〉 admitted to 〈event〉 — — — —
〈person〉 × 〈entity〉
sentencedFor — — — — —
〈person〉 × 〈drug〉
sentencedTo — — — — —
〈person〉 × 〈drug〉
signedContractWith 〈person〉 is signed with 〈company〉 — — — —
〈person〉 × 〈company〉
workedFor 〈person〉 worked for 〈organization〉 worksAt employer employer agentbelongs-
〈person〉 × 〈organization〉 toorganization
workedWith 〈person〉 collaborated with 〈person〉 — — — —
〈person〉 × 〈person〉
owns 〈person〉 owns DET 〈organization〉 — owner owner -
〈person〉 × 〈organization〉
launched 〈person〉 launched DET 〈organization〉 — — — —
〈person〉 × 〈person〉
loanedTo 〈person〉 loaned to 〈organization〉 — — — —
〈person〉 × 〈person〉
donatedTo 〈person〉 donated to 〈organization〉 — — — —
〈person〉 × 〈person〉
earnedAt 〈person〉 earned for 〈event〉 — — — —
〈person〉 × 〈event〉
suedBy 〈person〉 successfully sued 〈person〉 — — legal entanglements —
〈person〉 × 〈event〉
sued 〈person〉 sued 〈person〉 — — — —
〈person〉 × 〈entity〉
suedFor 〈person〉 sued for 〈artifact〉 — — — —
〈person〉 × 〈event〉
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APPENDIX

B

PEARL Evaluation

In this appendix we present the output of the PEARL variants for the 60 out-
of-knowledge-base entities corresponding to results reported in Chapter 5. We
present results for PEARL, PEARL without an (ILP) , and Pearl with uniform
weights.
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B PEARL VS. BASELINES

New Entity Proposed Types

PEARL PEARL without ILP PEARL with uni-
form weights

Kim Jong Eun military_officer,
person

person,
organization,
event,
country

military_officer,
person

Mr Thompson person person,
organization,
enterprise

enterprise,
organization

NAACP convention event event,
person,
organization,
artifact

event

London Games event,
festival

event,
city,
person,
medalist

event,
festival

Rupert Sanders director,
person

person,
river,
director,
musician

musician, person

Bush tax artifact artifact,
person,
athlete,
football_player,

athlete,
football_player,
person

Susan Ellis person person,
event,
artifact,
company

businessman,
businessperson,
person

Judge Colin Birss head_of_state,
person

person,
organization,
ship,
artifact

head_of_state,
person

Adam Mann actor,
musician,
person

person,
artifact,
organization,
event

actor,
musician,
person

Google + artifact artifact,
event,
person

artifact
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B PEARL VS. BASELINES

New Entity Proposed Types

PEARL PEARL without ILP PEARL with uni-
form weights

GOP convention event event,
country,
city,
artifact

country

New York Mayor Rudy Giuliani businessman,
businessperson,
person

person,
organization,
musician,
artifact

head_of_state,
person,
president,
scholar

Cavill person person,
event,
scholar

person

Twitter CEO Dick Costolo person person,
event,
scholar

person

Jerri DeVard person person person
Galaxy Tab person person,

organization,
artifact,
criminal

criminal,
person

Russian Foreign Minister Sergey Lavrov person person person
Scott Lanman person person,

country,
artifact,
scholar

person

Dina ElBoghdady person person,
event,
artifact,
movie

person

Hilaria Thomas person person person
Mark O’Mara person person,

organization,
team
journalist

journalist,
person

Treasury Secretary Timothy F. Geithner artist,
composer,
person

person,
writer,
artist,
musician

head_of_state,
person,
president,
scholar
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B PEARL VS. BASELINES

New Entity Proposed Types

PEARL PEARL without ILP PEARL with uni-
form weights

Carlina White actor,
person

person,
organization,
artifact,
event

actor,
musician,
person

Misty Cook-Morrissey actor,
person

person,
actor,
country,
artifact

actor,
person

Peregrine Financial Group PFG musician,
person

person,
singer,
musician

actor,
musician,
person

Hyon Yong Chol person,
priest,
spiritual_leader

person,
organization,
artifact,
company

athlete,
director,
person,
trainer

George Zimmerman person person,
organization,
team,
event

event,
team,

Mr. Sedlak athlete,
director,
football_player,
person,

person,
organization,
athlete,
artist

athlete,
director,
football_player,
person

Rami Abd al-Rahman person person,
event,
scholar

person

Chicago Mayor Rahm Emanuel artist,
person

person,
event,
country,
artist

artist,
composer,
guitarist,
person

Trayvon Martin person person person
Obama campaign official journalist,

person
person,
journalist,
writer

journalist,
person

Jerry del Missier person person,
politician,
musician

musician,
person
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B PEARL VS. BASELINES

New Entity Proposed Types

PEARL PEARL without ILP PEARL with uni-
form weights

Josh Earnest person person person
Prime Minister Salam Fayyad head_of_state,

person
person,
artifact,
country,
city

military_officer,
person

Kathryn McCormick actor,
person

person,
actor,
event,
artifact

actor,
musician,
person

European Union officials artist,
manufacturer,
person

person,
organization,
event,
artifact

military_officer,
person,
scholar

Conn. city city,
country,
organization,
person

country

LeBron athlete,
person

person,
country,
organization,
wrestler

athlete,
person

Alex Okrent person person,
event,
spiritual_leader,
saint

musician,
person

Mrs Merkel person person,
country,
organization

person

Gabby Douglas person person,
artifact,
event

person

Galaxy S III artifact artifact artifact
ECB President Mario Draghi person person
Ore. city city,

artifact
city
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B PEARL VS. BASELINES

New Entity Proposed Types

PEARL PEARL without ILP PEARL with uni-
form weights

AuthenTec company,
organization

person,
organization,
artifact,
event

artist,
person,

Investor Marc Andreessen person person person
Ric Gillespie person person,

organization,
artifact,
politician

artist,
person,
photographer

Gen. Manaf Tlass head_of_state,
person

person,
sovereign,
ruler,
head_of_state

head_of_state,
person,

Eric Dunham person person,
military_officer

military_officer,
person

Olympic trials event event
organization,
university

organization,
university

Ariz. city city,
artifact,
person,
scholar

city

Citicorp person person,
organization

person

Wimbledon title event event event
Nanette Kinkade person,

event,
artist,
musician

artist,
person

artist,
painter,
person

Andreessen Horowitz company,
organization

organization,
company,
enterprise

enterprise,
organization,

Elaine Barrish governor,
person

person,
politician,
governor,
actor

governor,
person

S.C. country country,
organization

country

Md. city city,
country,
artifact,
event

country

Bloomberg News artifact,
publication

artifact,
publication

artifact,
publication
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