
Timing Model Derivation
Pipeline Analyzer Generation

from
Hardware Description Languages

Dissertation
zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

U
N

IV
E R SITA

S

S
A

R A V I E N S
I S

von
Diplom-Informatiker

Markus Pister

Saarbrücken
Mai 2012

Kolloquium

Tag des Kolloquiums Mittwoch, 19. September 2012

Dekan Prof. Dr. Mark Groves

Prüfungsausschuss

Vorsitzender Prof. Dr. Sebastian Hack

Berichterstatter Prof. Dr. Dr. h.c. Reinhard Wilhelm

Prof. Dr.-Ing. Wolfgang Kunz

Akad. Mitarbeiter Dr.-Ing. Daniel Grund

Impressum

© 2012 Markus Pister

Herstellung und Verlag: Pirrot Verlag, Saarbrücken

ISBN: 978-3-937436-40-1

Das Werk ist urheberrechtlich geschützt. Jede Verwertung ist ohne Zustim-
mung des Verlages und des Autors unzulässig. Dies gilt insbesondere für die
elektronische oder sonstige Vervielfältigung, Übersetzung, Verbreitung und
öffentliche Zugänglichmachung.

Bibliografische Information der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deut-
schen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet
über http://dnb.d-nb.de abrufbar.

Abstract

Safety-critical systems are forced to finish their execution within strict
deadlines so that worst-case execution time (WCET) guarantees are
a crucial part of their verification. Timing models of the analyzed
hardware form the basis for static analysis-based approaches like
the aiT WCET analyzer. Currently, timing models are hand-crafted
based on frequently incorrect documentation causing the process to
be error-prone and time-consuming.
This thesis bridges the gap between automatic hardware synthesis
and WCET analysis development by introducing a process for the
derivation of timing models from VHDL specifications. We propose
a set of transformations and abstractions to reduce the hardware
design’s complexity enabling the generation of efficient and provably
correct WCET analyzers. They employ an abstract interpretation-
based simulation of program executions based on a defined abstract
simulation semantics. We have defined workflow patterns showing
how to gradually apply the derivation process to VHDL models,
thereby removing timing-irrelevant constructs. Interval property
checking is used to validate the transformations.
A further contribution of this thesis is the implementation of a tool set
that realizes the introduced derivation process and shows its appli-
cability to non-trivial industrial designs in experimental evaluations.
Influences on design choices to the quality of the derived timing
model are presented building an informal predictability notion for
VHDL.

Zusammenfassung

Sicherheits-kritische Systeme unterliegen oft der Einhaltung strikter
Laufzeitschranken, weshalb zur Verifikation sichere Obergrenzen der
Laufzeit im schlimmsten Fall (WCET) bestimmt werden. Zeitmodelle
der analysierten Hardware sind hierbei die Grundlage für auf stati-
schen Analysen basierende Verfahren. Aktuell werden solche Modelle
händisch aus Handbüchern extrahiert, ein sehr zeitaufwändiger und
fehleranfälliger Prozess.
Diese Arbeit schlägt eine Brücke zwischen automatischer Hardware-
Synthese und der Entwicklung von WCET-Analysen durch die Ein-
führung eines Ableitungsprozesses von Zeitmodellen aus VHDL-
Spezifikationen. Transformationen und Abstraktionen werden zur
Komplexitätsreduktion eingesetzt, um die Erzeugung von effizien-
ten und beweisbar korrekten Analysatoren zu ermöglichen. Selbige
bedienen sich abstrakter Interpretation von Programmausführungen
basierend auf einer Simulations-Semantik. Definierte Arbeitsabläufe
zeigen, wie man die Ableitung schrittweise auf VHDL-Modellen um-
setzt und dadurch für das Zeitverhalten irrelevante Teile des Modells
entfernt. Interval Property Checking gewährleistet hierbei, dass die
Transformationen semantik-erhaltend sind.
Eine Tool-Implementierung realisiert den vorgestellen Ableitungspro-
zess und unterstreicht seine Anwendbarkeit auf komplexe industrielle
Designs durch experimentelle Untersuchungen. Außerdem werden
VHDL-Designentscheidungen hinsicht ihres Einflusses auf die Quali-
tät des abgeleiteten Zeitmodells betrachtet.

Acknowledgments

I want to express my gratitude to many people that have influenced this
work in a variety of ways. First, many thanks go to Prof. Reinhard Wilhelm
not only for allowing me to scientifically address this challenging topic. But
also because I have learned a lot due to his ability to steer people into the
right direction while still fostering their personal development by very free
working conditions.

I am also very grateful to Prof. Wolfgang Kunz for his willingness to judge my
thesis and his motivating interest in my work, in general. Prof. Sebastian Hack
and Dr. Daniel Grund are the remaining members of my thesis jury, so I thank
both for their commitment, as well.

Reinhold Heckmann, Daniel Kästner, Philipp Lucas, Stephan Thesing and Markus
Wedler all have proof-red the thesis at hand and provided many excellent
comments. I am indebted to them for this.

Thanks go to various (both current and former) colleagues at AbsInt GmbH
and the Compiler Design Group at Saarland University. I enjoyed many hilari-
ous (coffee) breaks with them over the last couple of years.

Although he has already been covered by the credits above, I want to point
out my special thanks to my long-lasting colleague Marc Schlickling. We are
cooperating since the early phases of our studies and have jointly developed
large parts of the VHDL Derivation Tool Set. His ability to quickly find
conceptual corner cases was a great help to me and I appreciate him a lot as
my office roommate and friend.

During my research, I was (at least partly) funded by different European
research projects AVACS, ES_PASS and Verisoft XT, so I want to thank for
these investments in my work.

Last but not least I want to thank my parents, Christel and Gerhard, and my
love Katharina for their support in all phases of my life.

Contents

1 Introduction 1
1.1 Embedded Systems . 2
1.2 Timing Analysis of Embedded Systems 2

1.2.1 The Timing Problem . 3
1.2.2 WCET Analysis by Abstract Interpretation 4

1.3 Deriving Timing Models . 6
1.4 Contributions . 7

1.4.1 Timing Model Derivation 8
1.4.2 Simulation Semantics 11
1.4.3 Timing Model Validation 11
1.4.4 VHDL Predictability . 12
1.4.5 VHDL Derivation Tool Set 12
1.4.6 Experimental Results . 14

1.5 Thesis Outline . 15

Contents

2 Related Work 17
2.1 Worst-Case Execution Time Computation 18

2.1.1 Static Methods . 18
2.1.2 Dynamic Methods . 22
2.1.3 Hybrid Methods . 23

2.2 Analysis of Formal Hardware Specifications 24
2.2.1 Functional Verification 24

2.3 Hardware Simulation . 26
2.3.1 GHDL . 26
2.3.2 ModelSim . 27
2.3.3 Summary . 27

3 Embedded Systems 29
3.1 Overview . 30

3.1.1 Characteristics . 31
3.1.2 Real-Time Systems . 34

3.2 Application Areas . 36
3.2.1 Automotive Electronics 36
3.2.2 Aviation . 37
3.2.3 Railway Electronics . 37
3.2.4 Telecommunication . 38
3.2.5 Medical Engineering . 38
3.2.6 Military Applications 39
3.2.7 Authentication Systems 40
3.2.8 Consumer Electronics 40
3.2.9 Fabrication Equipment 40
3.2.10 Smart Buildings . 41

3.3 Architectures . 41
3.3.1 Overview . 41
3.3.2 Memory Hierarchies . 45
3.3.3 Caches . 46
3.3.4 Memory . 50
3.3.5 Buses . 52
3.3.6 Peripheral Devices . 53

3.4 Processor Pipelines . 53
3.4.1 Overview . 53
3.4.2 Pipeline Hazards . 55
3.4.3 Performance Improving Features 57

3.5 Summary . 62

x

Contents

4 Timing Analysis of Embedded Systems 63
4.1 Overview . 64
4.2 Classification of Approaches 65

4.2.1 Static Methods . 66
4.2.2 Dynamic Methods . 67

4.3 aiT Worst-Case Execution Time Framework 68
4.3.1 Overview . 68
4.3.2 Decoding Phase . 70
4.3.3 Micro-architectural Analysis Phase 75
4.3.4 Path Analysis Phase . 83
4.3.5 Visualization Phase . 86
4.3.6 User Annotations . 87

4.4 Summary . 88

5 Formal Hardware Specifications and Synthesis 89
5.1 Overview . 90
5.2 VHDL . 92

5.2.1 Domains and Abstraction Levels 93
5.2.2 Basic Language Constructs 95
5.2.3 Semantics . 101
5.2.4 Analysis, Elaboration and Simulation 104

5.3 Hardware Synthesis . 106
5.4 Summary . 108

6 Derivation of Timing Models 109
6.1 Overview . 110
6.2 Timing Models . 111

6.2.1 Nondeterminism . 112
6.2.2 Timing Anomalies . 115

6.3 Analyzing VHDL Models . 116
6.3.1 Mapping VHDL to CRL 117
6.3.2 Semantic Level Reduction 118
6.3.3 Abstract Interpretation of VHDL 119

6.4 Semi-Automated Timing Model Derivation 120
6.4.1 Model Preprocessing . 121
6.4.2 Model Abstractions . 125
6.4.3 Model Transformations 128

6.5 Timing Model Derivation Workflow 131
6.5.1 Application of Model Preprocessing 132
6.5.2 Application of Model Abstractions 136

xi

Contents

6.5.3 Derivation Step Categorization 141
6.6 Model Transformation Phase Coupling 143
6.7 Summary . 144

7 Pipeline Analyzer Generation 147
7.1 Overview . 148
7.2 Concrete Simulation . 148

7.2.1 Operational Semantics 149
7.2.2 Activation Sequences 154
7.2.3 Simulation Traces . 155

7.3 Abstract Simulation . 155
7.3.1 Simulation Trees . 156
7.3.2 Abstract Operational Semantics 159
7.3.3 Correctness and Soundness 165

7.4 Summary . 166

8 Timing Model Validation 167
8.1 Overview . 168
8.2 Legacy Validation Approaches 168

8.2.1 Validation by Performance Counter Monitoring 169
8.2.2 Validation by Trace Matching 170

8.3 Formal Functional Hardware Verification 171
8.3.1 Interval Property Checking 172
8.3.2 Completeness . 173
8.3.3 Example Property . 174

8.4 Property Checking Based Timing Validation 175
8.4.1 Current State . 178

8.5 Summary . 179
8.6 Future Work . 180

9 Timing Predictability 183
9.1 Overview . 184
9.2 Timing Predictability of Hardware Features 186

9.2.1 Processor Pipelines . 187
9.2.2 Caches . 188
9.2.3 Buses . 189
9.2.4 Main Memory . 190
9.2.5 Peripheral Devices . 192
9.2.6 System Configuration 192
9.2.7 Summary . 194

xii

Contents

9.3 Timing Impact of VHDL Constructs 195
9.3.1 Predictability Enhancing Design Decisions 196
9.3.2 Predictability Degrading Design Choices 198

9.4 Summary . 200

10 VHDL Derivation Tool Set Implementation 203
10.1 Structure of the VHDL Derivation Tool Set 204
10.2 VHDL Compiler . 206

10.2.1 Analysis . 206
10.2.2 IRF Writer . 208
10.2.3 Elaboration . 211
10.2.4 CRL Writer . 212
10.2.5 Usage . 216
10.2.6 Complexity . 217

10.3 Static Analyzers . 218
10.4 Model Transformers . 218

10.4.1 Timing Dead Code Eliminator 219
10.4.2 Domain Abstractor . 222
10.4.3 Process Replacer . 225
10.4.4 Complexity . 226
10.4.5 Usage . 226

10.5 Generators . 227
10.5.1 Pipeline Analyzer Generator 227
10.5.2 Abstract VHDL Generator 229

10.6 Implementation Complexity . 229
10.7 Implementation Restrictions . 231
10.8 Summary . 233

11 Experimental Results 235
11.1 Overview . 236
11.2 Complexity of VHDL Specifications 236

11.2.1 Superscalar DLX . 237
11.2.2 Code Size Comparison 240
11.2.3 Structural Size Comparison 241

11.3 Derivation Process Complexity 243
11.3.1 Tool Execution Time Experiments 244
11.3.2 Tool Memory Consumption Experiments 251

11.4 VHDL Specification Size Reduction 258
11.5 Precision of Computed WCET Bounds 262

11.5.1 Superscalar DLX . 264

xiii

Contents

11.5.2 Avionics Memory Controller 266
11.6 Applicability and Summary . 269

12 Conclusion and Future Work 273
12.1 Contributions of this Thesis . 274

12.1.1 Timing Model Derivation 274
12.1.2 Simulation Semantics 276
12.1.3 Timing Model Validation 276
12.1.4 VHDL Predictability . 277
12.1.5 VHDL Derivation Tool Set 277
12.1.6 Experimental Results . 278
12.1.7 Summary . 279

12.2 Future Work . 280

List of Figures 283

List of Tables 285

Listings 287

Bibliography 289

Index 311

xiv

1
Introduction

“There is no reason for any
individual to have a
computer in his home.”

(Ken Olson)

1 Introduction

1.1 Embedded Systems

Since the industrialization, our daily life is more and more influenced by
technological innovations. This trend emerges, e.g., the evolution of mobile
phones from their original purpose — being able to phone a person more
or less independently of the own location — towards small but integrated
smartphones allowing their users to not only do phone calls but also to
organize their life and thereby integrating business with spare time. But
embedded systems support human beings even in less visible areas: namely
embedded into larger products like cars, air planes, trains, medical devices
and more.

Among those applications, there are the safety-critical applications/systems,
as e.g., a flight controller in fly-by-wire steered air planes which surely is
one of the most prominent and critical examples. Failures of such systems
are simply not acceptable and the probability of their occurrence must be at
least minimized. Otherwise, their consequences would create high costs or
even endanger human life. Therefore, utmost carefulness and state-of-the-art
techniques for verifying software safety requirements have to be applied in
order to assure an application’s proper mode of operation.

1.2 Timing Analysis of Embedded Systems

Assuring correctness is not limited to the validation of the program logic of
the application. Beyond that, the absence of runtime errors (division by zero,
array index over-/underflow, . . .) has to be proven [KWN+10]. In addition,
safety-critical systems are often forced to finish their execution within strict
deadlines dictated by the surrounding physical environment. Not to fulfill
such deadlines might lead to system errors ending up in hazards that actually
compromise the functional correctness of a system. This dependency is
also reflected in all current safety standards (like DO-178B [DO92], ISO
26262 [ISO11], IEC 61508 [IEC10], . . .) whose goals are to require the system
developer to identify both functional and non-functional hazards and to
demonstrate that the software does not violate the relevant safety goals.
Depending on the criticality level, a sophisticated examination of the timing
behavior has to be contributed to show the functional correctness of a safety-
critical system, i.e., it has to be proven that the system meets its deadlines
even in the worst-case scenario [SPH+05]. While the standards do not enforce

2

1.2 Timing Analysis of Embedded Systems

Figure 1.1 – Execution time distribution

Execution Time

Pr
ob

ab
ili

ty BCET WCETAverage execution time

Safe WCET approximation

Sample
Measurements

Over-approximationUnder-approximation

specific testing and verification methods, the importance of static verification
is emphasized.

Code level timing analysis addresses the non-preempted execution of a single
process, a task or an interrupt service routine. Its results are then used by
the system level timing analysis which checks a system of functions or tasks
for their schedulability according to a specified scheduling algorithm. This
thesis focuses on the code level timing analysis as described in Chapter 4.

1.2.1 The Timing Problem

Why is the determination of the runtime of a program a difficult and
complex problem?

One might come up with this question. But when starting to think about
how to exactly determine a program’s execution time, it quickly becomes
clear that runtime is not a single and precisely computable value. Figure 1.1
tries to exemplarily illustrate that the runtime of a program or task varies
among different executions between a so-called best- and worst-case execution
time which are typically abbreviated with BCET and WCET.

Possible reasons for the execution time’s variability are

I the input program (size, number of memory accesses, . . .),

3

1 Introduction

I the initial system state (cache contents, hardware configuration, . . .),

I interferences from the environment (preemptions, interrupts, . . .).

In general, the concrete WCET cannot be determined for all programs because
this would decide the halting problem (cf. Chapter 4). But a suitably restricted
subset of programs (no endless loops, no dynamic memory allocation, . . .)
would at least theoretically allow this computation. However practically,
this task is just too demanding from a computational complexity point of
view because of the above mentioned uncertainties in the starting state of
the system. Additionally, a “brute-force” simulation of all execution paths
in the program is not feasible in most cases, as well, since the number of
paths grows exponentially with the size of the program [WEE+08]. Any test
case selection for a program potentially under-approximates its WCET as
long as the corresponding worst-case input (the one triggering the worst-
case execution time) is not known. Unfortunately, this worst-case input
is unknown for non-trivial software and its determination would require
an exhaustive exploration of all program paths. Therefore, it can only be
approximated in a safely manner by computing an upper bound on the
execution time which is guaranteed to be greater than or equal to all possible
execution times independently from the sources of variability. Moreover, the
computed bound needs to be precise for industrial applications because large
overestimations do not enable users to prove their timing constraints to be
met.

A traditional approach for this timing problem has been to partition the
application under analysis into code snippets for which the determination of
the worst-case input seems to be possible. The execution time of each snippet
based on these inputs is then measured and the results are combined to find
the global worst-case path together with its runtime. Based on the above
described variability of the runtime, this is an error-prone and expensive
approach and does not satisfy modern safety requirements. The goal must be
the determination of safe and precise upper bounds on the concrete WCET.

1.2.2 WCET Analysis by Abstract Interpretation

Most interesting program properties like the WCET are undecidable. Abstract
interpretation [CC77, CC92a, CC92b] is a semantics-based methodology for
static program analyses where the concrete semantics is mapped to a simpler
– abstract – model. Static analysis then determines program properties with

4

1.2 Timing Analysis of Embedded Systems

respect to that model. Although mapping concrete to abstract semantics is
at the expense of analysis precision, i.e., it leads to over-approximations of
the concrete WCET, the computation may be faster. Another advantage is
the provable soundness of abstract interpretation-based analyzers. Sound
means that its results hold for any program execution and can therefore be
used as a safety-guarantee. A WCET bound computed by a sound analyzer
will never under-approximate the concrete WCET of the analyzed program.
This combination of analysis efficiency and soundness matches the above
requirements of timing analyses of safety-critical embedded systems.

Over the last years, a standard architecture for timing analysis tools has
emerged [TFW00, FHL+01, Erm03] and consists of the following phases:

I control-flow reconstruction,

I micro-architectural analysis and

I path analysis.

The control-flow reconstruction phase operates on the fully linked binary
executable and generates a combined call and control-flow graph for its input
[The03]. All subsequent analyses are based on this intermediate representa-
tion.

The computationally more intensive micro-architectural analysis phase is
realized by abstract interpretations and has the following three constituents:

1. Loop/Value analysis attempts to compute information about data accesses
and control flow. In particular it tries to identify infeasible paths,
i.e., syntactically possible paths that will never be taken because of
contradictory conditions. The underlying abstract model is manually
derived from the concrete instruction-set semantics.

2. Cache-behavior prediction determines a safe and concise approximation
of the contents of caches in order to classify memory accesses as definite
cache hits or misses.

3. Pipeline-behavior prediction analyzes how instructions pass through the
processor pipeline taking cache-hit or miss information into account.
There, basic block timings are determined using an abstract processor
model (timing model) that defines a cycle-level abstract semantics for
each instruction’s execution yielding in a certain set of final system
states. After the analysis of one instruction has been finished, these

5

1 Introduction

states are used as start states in the analysis of the successor instruc-
tion(s). Here, the timing model introduces nondeterminism that leads
to multiple possible execution paths in the analyzed program. The
pipeline analysis needs to examine all of these paths.

The last phase of the timing analysis architecture, the path analysis, combines
the timing information computed by its predecessor phase to determine the
global worst-case execution time for the input program and the triggering
path, the so-called worst-case execution path.

The most challenging part of this architecture is the creation of the under-
lying timing model for the pipeline-behavior prediction because it needs to
precisely model the behavior of the processor with its employed memory
hierarchy like memory controller, bus system, etc. Depending on the architec-
ture under analysis, the modeled level of detail varies, i.e., for rather simple
processors like an ARM7 [ARM00], the analysis “only” needs to count the
instructions while applying specific execution latencies. But the unit-time
(executing an instruction always takes exactly one time unit) or constant-time
abstraction used for simpler architectures is rendered obsolete by the advent
of modern processors. With features like branch prediction, out-of-order
execution or speculation, the state space of input data and initial states, in
general, is too large to exhaustively explore all possible executions and so
determine the exact worst-case execution time. Some abstraction of the exe-
cution platform is necessary to make a timing analysis of the system feasible.
These abstractions inevitably lose information, and yet must guarantee upper
bounds for the worst-case execution time.

The aiT WCET analyzer developed by AbsInt GmbH and Saarland University
is a prominent timing analysis tool that implements the above described
architecture. It has been used in international industrial and research projects,
e.g., Verisoft, Verisoft XT [Ver], PREDATOR [PRE], INTERESTED [INT], . . . ,
and has been used in the certification of safety-critical industrial systems,
e.g. [SPH+05]. Therefore, the implementations that are contributed by this
thesis, are realized on top of the AbsInt tool chain for WCET analysis, which
is detailed in Section 4.3.

1.3 Deriving Timing Models

Currently, the timing models described above are hand-crafted [SP10] by
human experts based on

6

1.4 Contributions

I processor/system documentation and

I reverse engineering by runtime measurements.

Although the hardware manufacturers are usually cooperative and provide
internal and partly confidential documentation, there is the drawback that
those documents usually contain errors or leave out some important details.
Traces of specific runtime measurements on partly hand-written assembler
code should fill this gap. Depending on the hardware architecture, those
traces might only show end-to-end timings or timestamps of active bus
transaction signals (cf. Section 8.2.2). Sometimes, it is also possible to monitor
processor core internals by so-called performance monitoring features within
the hardware (cf. Section 8.2.1).

This basis for the development of timing models renders the model engineer-
ing as well as the implementation of the corresponding pipeline analyzer
to be a time-consuming, complex and error-prone process. Creating such
a timing model from scratch for a modern and complex processor like the
Freescale PowerPC 7448 [Fre05a] might consume 3–4 man-months even for
rather experienced people.

Nowadays, hardware circuits are automatically synthesized from formal
hardware specifications like VHDL or Verilog (cf. Section 5.3). Besides a
formalization of the functional details, such specifications implicitly contain
an execution model that also reflects the timing behavior of the whole system.
This enables the derivation of timing models based on their formal hardware
specification to simplify the above described error-prone development process.
Moreover, this bridges the gap between hardware circuit synthesis and WCET
analysis development and constitutes one of the major contributions of this
thesis.

1.4 Contributions

In the context of timing analysis for safety-critical embedded control software
and the development of the required timing models, the contributions of this
thesis are outlined below. Additionally, a differentiation between the present
thesis and the work of Schlickling [Sch13] is given where appropriate.

7

1 Introduction

1.4.1 Timing Model Derivation

Static analysis and model transformations are employed to extract the timing
information of hardware circuits from its formal specification. Where Schlick-
ling [Sch13] introduces abstract interpretation-based static analysis of formal
hardware models, this thesis focuses on the derivation process as a whole.
Starting from the hardware model, transformations and abstractions based
on the results of static analyzers extract the timing-relevant information,
the timing model. In the end, an aiT-compatible pipeline analyzer can be
generated from such a model.

Semantic Level Reduction A prerequisite for the application of both static
program analysis and transformations is a common intermediate representa-
tion of the hardware model. Because the chosen analysis approach, abstract
interpretation, has its origins in program analysis, the hardware model needs
to be represented as a sequential program. Although hardware descriptions
are concurrent models, i.e., their processes are designed to run in parallel,
such a conversion is possible because their two-level semantics allows to
choose an arbitrary execution order of the processes (cf. Section 5.2.3). Thus,
this thesis defines translation rules to convert VHDL language constructs into
control-flow entities combined with a framework of generated routines, so
that the resulting control-flow representation forms a simulation environment
for the original hardware design. On top of that, abstract interpretation-based
static analyzers [Sch13] are enabled to examine the model and result com-
munication is possible via a shared intermediate format called CRL. This
translation from VHDL into a sequential execution model is called semantic
level reduction (cf. Section 6.3.2) and is generic enough to be applied to related
hardware description languages like Verilog, as well.

Derivation Process Definition As these hardware specification languages
have been partly designed for integrated simulation of the specified circuits
[Ash08], the question might come up here whether it would not be possible
to just use these simulation capabilities to determine execution costs of
critical tasks. The answer is that VHDL models of real-world processors are
usually big and complex making WCET determination a difficult task [SP10].
In the presence of the uncertainties described above like nondeterministic
system starting states, a static timing analysis based on the unchanged formal
hardware specification would be infeasible in terms of space and analysis

8

1.4 Contributions

Figure 1.2 – Sketched Timing Model Derivation Process

VHDL Model

Preprocessed
Timing Model

Abstract
Timing Model

Pipeline
Analyzer

Preprocessing

Processor state abstractions

Analyzer generation

time consumption. Furthermore, the VHDL code cannot be used “as is” for a
static timing analysis because such a simulation cannot cope with “unknown”
data, e.g., unknown cache contents.

Therefore, a distinct process for extracting timing-relevant information is
necessary which is one of the main contributions of this thesis. Figure 1.2
shows a structural picture of this process.

In a first step, the size of the model is reduced by pruning out all parts that
do not contribute to the timing behavior at all. For example, there is no need
for information about each step within a multiplier unit. Instead, it suffices
to know the number of clock cycles each stage of the multiplier pipeline is
occupied by a specific instruction. The pruned model still contains a lot of
detailed information about the processor state. But for practical reasons it
is impossible to represent all state information in full detail. For example,
if the contents of all memory cells or registers should be modeled in all
details, the resulting space requirements would be prohibitive for non-trivial
architectures. Fortunately, the exact knowledge about such details often is
not important as far as timing is concerned: an addition always takes the
same amount of time, no matter what the arguments are. In other cases, the
timing does depend on such information, but a loss of precision is acceptable
in order to make the analysis more efficient, or even possible at all. One
example for this situation are multiplications on some architectures which
are faster if one argument has leading zero bits. By not keeping track of the
arguments exactly, an entire range of execution times has to be assumed for
multiplication. The loss in precision is acceptable in this case as the difference

9

1 Introduction

usually is below ten processor cycles and multiplications are in general rare.
Therefore, abstractions from the concrete model are introduced, i.e., some
details of the processor state are left out or will be approximated. Using
the methodology of abstract interpretation, one can trade precision of the
analysis against efficiency by choosing different abstractions and concretion
relations between the original and abstract model. Finally, an aiT-compatible
pipeline-behavior analysis is generated from the timing model in the last step
that concludes the derivation process.

Derivation of Workflow Patterns The derivation process described above
represents a general methodology. But the particular abstractions and trans-
formations depend on the concrete hardware architecture whose timing
behavior has to be modeled so that the invention of these abstractions re-
mains an intellectual challenge. However, typical working patterns came up
during the implementation/experiments and are described in Section 6.5.

The model preprocessing phase is realized by assigning fixed values to sig-
nals/variables so that a subsequent constant propagation effectively renders
parts of the specification unused – timing dead. Their transitive closure can
then be removed automatically. Inventing assumptions about the model is
an iterative procedure and coupled with feedback from an interactive explo-
ration and understanding of the hardware design that can be reached using
the level-based slicing tool developed by Schlickling [Sch13].

In principle, a processor’s timing behavior is dominated by the (timing-
)effect of the instruction flow through the processor pipeline and latencies for
memory accesses. Therefore, the resulting timing model needs to represent
this flow. Required combinations of program slices and additional model
assumptions can be used to extract this information. They are described in
Section 6.5.1.

After model preprocessing, abstractions may be applied to further reduce the
resulting timing analysis’ complexity. Three different kinds of abstractions
are proposed:

I Memory abstraction

I Domain abstraction and

I Process replacement

10

1.4 Contributions

The memory abstraction aims at removing all data paths from the hardware
model. Instead, queries to the value analysis results (cf. Section 1.2.2) are
inserted appropriately. Domain abstractions perform source-to-source type
transformations. A prominent example is the so-called address abstraction
where concrete addresses are replaced by abstract values standing for certain
sets of concrete values. Process replacements enable the integration of custom
simulation routines into the timing model. They substitute VHDL processes
by simplified code snippets. Typically, these snippets specify the timing effect
of the replaced process and remove purely functional code. For example,
the functionality of a simple arithmetic unit can be replaced by a small
component with a timer. It is started for an instruction newly entering
the unit and simulates their execution time because this is the essential
information within the timing analysis.

1.4.2 Simulation Semantics

A pipeline-behavior analysis is an abstract (and thereby computable) sim-
ulation of a program’s execution. The generated analyzer is based on a
corresponding abstract simulation semantics that is constructed throughout
Chapter 7: An operational semantics for the simulation of non-abstracted
VHDL models is formalized and followed by an abstract variant so that the
pipeline analyzer’s abstract simulation safely approximates any concrete
simulation. Employed abstractions can render the model nondeterministic,
i.e., the simulation process might compute multiple successors for a given
input system state leading to multiple possible execution paths partially with
different costs in terms of execution time. The defined abstract simulation
semantics is able to cope with such uncertainties and simulates all potential
execution paths.

1.4.3 Timing Model Validation

The derived timing model per construction is a correct representation of the
underlying hardware’s timing behavior and the defined abstract simulation
semantics is a sound approximation to any concrete simulation. Concerning
the correctness of the resulting pipeline-behavior analysis, it remains to show
that the employed model abstractions and transformations do not introduce
unsafe1 changes to the timing behavior. Interval property checking techniques

1under-estimations

11

1 Introduction

(IPC) [Bor09] from the area of formal functional hardware verification fit that
purpose because they are able to show the “timing-semantic” preserving
translation from the input design to the timing model. Thus, this thesis
contributes approaches for the validation of derived timing models based on
IPC.

Additionally, complementing validation techniques are presented where
confidence on the correctness is achieved by testing. Measurement capabilities
can produce runtime observations at different levels that are compared to
the corresponding prediction of the timing analyzer. Sample levels are
processor core events like cache hits and number of dispatched instructions
at a specific execution point or visible bus transaction signals triggered by
memory accesses.

1.4.4 VHDL Predictability

Experiments with different VHDL models have revealed that the quality of the
derived timing model (in terms of the precision of computed WCET bounds
as well as the computational complexity) is influenced by the VHDL coding
style. This thesis describes design choices together with their effect on the
derivation process and thereby formulates a kind of predictability notion for
VHDL language constructs along with advices to the corresponding hardware
development. Minimal dependencies between processes, a clear logical sepa-
ration of different functionality into different processes/subprograms and
a sequential logic design are the most prominent and important properties
which support and simplify the semi-automatic derivation process.

1.4.5 VHDL Derivation Tool Set

The timing model derivation process has been realized by the implementation
of a set of tools:

I a VHDL compiler,

I abstract interpretation-based static analyzers,

I model transformation tools,

I a pipeline analyzer generator and

I an abstract VHDL generator.

12

1.4 Contributions

The VHDL compiler is called Vhdl2Crl2 and transforms an input VHDL
design into its equivalent representation as a sequential program. By this,
it implements the semantic level reduction that has been mentioned at the
beginning of this section. All analysis and transformation tools operate on
the generated CRL representation (cf. Section section 1.4.1 on page 8) that
serves as an exchange format.

Three static analyzers are employed during the derivation process: Vhdl-
ResetAnalyzer, VhdlAssumptionBasedModelRefiner and the VhdlSlicer. The
first two tools deal with the computation of initial signal assignments and the
identification of unused code snippets based on given signal assumptions,
respectively. Model exploration and understanding is supported by the
slicing tool. All three have been developed by Schlickling [Sch13] and are
used within the defined timing model derivation process.

Three model transformation tools are contained in the tool set: Vhdl-
TimingDeadCodeEliminator incorporates the results of the assumption-
based model refiner by automatically removing the transitive closure (“timing-
dead propagation”) of all marked CRL entities. By this, it effectively reduces
the size of the model. VhdlDomainAbstractor implements automatic type
changes to signals or variables of a design as a source-to-source translation
where the destination domain has to be specified by the user. For example, an
integer data type might be transformed into a custom-defined abstract data
type representing an interval of integers. Expressions using variables/signals
whose type has been transformed to the specified target domain are poten-
tially invalid as the standard operators might not be defined for the specified
target domain. In such cases, alternative operators have to be provided by
the user. To support this need, the tool prints signatures of needed operators
as a result of the transformation. Additionally, different application scopes
are supported, i.e., the transformation effect can be restricted to a specified
set of identifiers. By this, the model can be iteratively transformed. Vhdl-
ProcessReplacer automates the replacement of VHDL processes by custom
simulation routines which are provided by the user.

The pipeline analyzer generation tool is called PipelineAnalyzerGenerator
and realizes the abstract simulation semantics contributed by this thesis and
mentioned above. A reconstruction of the timing model into an abstract
VHDL can be performed by the tool AbstractVhdlGenerator. Its purpose is
to establish a link between the derived timing model in its CRL representation
and the validation of the employed model transformations because the above

13

1 Introduction

mentioned interval property checking techniques are implemented within a
VHDL-reading analyzer.

1.4.6 Experimental Results

Experiments with the tool implementations have been conducted to underline
the industrial applicability of the approach in total.

The following VHDL designs have been examined:

I a superscalar DLX variant similar to a PowerPC 603e,

I the SPARC V8 architecture based LEON2 processor (typically used in
aeronautics applications),

I a memory controller used within modern avionics systems and

I two representative automotive processors.

Except the first one, all these models represent processors or memory con-
troller specifications that are utilized within real-world safety-critical systems.
The superscalar DLX machine is an implementation from the Technical Uni-
versity of Darmstadt [Hor97] that is based on the DLX presented by Hennessy
[HPG06]. Although the design is not industrially used, it offers features like
out-of-order execution, speculation and branch prediction. Non-disclosure
agreements with the particular manufacturers forbid the exposure of the
original names for the anonymous avionics and automotive designs.

Runtime and memory consumption experiments show a good performance
of the implemented tools along with a linear scaling in the code size on the
selected hardware models. Even big processor specifications like a LEON2
(with about 70 000 lines of code) can be translated into their sequential
program representation within acceptable time (about 17 min for the LEON2).
The memory consumption is high with about 7 GB but this has been expected
regarding the transformation’s complexity. Resource consumption of the
transformation and generator tools is low compared to the VHDL compiler
and dominated by the size of the intermediate representation. Execution
times are just below 30 s and the maximal observed memory consumption is
802 MB in the experiments.

During the derivation process employed model transformations are shown to
reduce the size of input VHDL models (around 50 % for a modern memory

14

1.5 Thesis Outline

controller of an avionics system) enabling the generation of aiT-compatible
pipeline analyzers.

Moreover, there are two different kinds of experiments underlining the
competitiveness of derived timing models against hand-crafted ones. For the
superscalar DLX, synthetic execution traces retrieved by VHDL simulations
have been compared to the predictions of the corresponding generated timing
analyzer. Results show an average overestimation of around 10 % for the
predictions. Additionally, the semi-automatically derived timing model of
the avionics memory controller is qualitatively compared to an existing hand-
crafted model where the term hand-crafted in this case means that the model
has been developed by a manual examination of the controller’s VHDL
design. Computed WCET bounds either are equal or over-estimate the legacy
bounds only by a small percentage (less then 1 %).

1.5 Thesis Outline

After this introductory chapter, a classification of related work is given in
Chapter 2.

Chapter 3 develops a terminological basis for “embedded systems” with its
characteristic properties including typical application areas. Moreover, it
introduces current hardware architectures and processor pipelines for such
systems with their performance enhancing features.

The current state-of-the-art in timing analysis of embedded systems is de-
scribed in Chapter 4. First, there is an overview of the different existing
approaches and after that, the structure and functionality of the aiT frame-
work is presented in detail.

In Chapter 5, formal hardware specification languages are introduced with
the example of VHDL. Typical language constructs and the two-level seman-
tics are explained and the automated synthesis of hardware circuits from
formal specifications is address, as well.

Chapter 6 contains a detailed description of the workflow for timing model
derivation.

Chapter 7 shows how to generate a pipeline analyzer from a derived timing
model.

15

1 Introduction

In Chapter 8, methods for the validating timing models are presented.

Considerations about timing predictability of hardware components and the
impact of certain language constructs on the predictability of a derived timing
model is detailed in Chapter 9.

After that, Chapter 10 presents the VHDL derivation tool set implementation
with the structure of the contained tools.

Corresponding experimental results on industry hardware models are then
shown in Chapter 11.

Finally, Chapter 12 concludes this thesis and gives an outlook to potential
future work.

16

2
Related Work

“Honos reddatur dignis.”

2 Related Work

This chapter describes work related to this thesis and points out the particular
relation. In parts, this relations are already picked up in other chapters by
citations.

The first part addresses the worst-case execution time determination and
gives an overview of existing tools and techniques in this area. Because the
implementations presented in this thesis base on the aiT WCET analyzer
framework, a specific chapter has been dedicated to it. Thus, aiT is not
mentioned in this chapter.

In Section 2.2, there is a short introduction to research work about the analysis
of formal hardware specifications, in general, but also with the intention of
proving safety properties.

The last section in this chapter lists capabilities of hardware simulators and
discusses the difference between such a concrete system simulation and the
abstract simulation performed by the combined cache and pipeline analysis
as presented in Section 4.3.3.

2.1 Worst-Case Execution Time Computation

As detailed by Wilhelm [WEE+08], there are numerous tools around that are
concerned with the determination of upper bounds on the execution time
of tasks within embedded systems. In the following, a short description of
the most prominent and usable tools is given. More details and references
can be found in the WCET tool survey [WEE+08] and WCET Tool Challenge
report 2011 [HHL+11]. According to the theoretical considerations on timing
analysis in Section 4.2, existing methods can be categorized into two major
groups, static and dynamic methods. Whereas approaches in the first group
are based on static analysis of binary executables and/or source code, the
second represents dynamic methods relying on runtime measurements to
determine the timing bounds. In the end, there is another group, called the
hybrid methods which try to combine both worlds in order to overcome their
specific limitations.

2.1.1 Static Methods

Besides the aiT WCET analyzer which is described in detail in Section 4.3,
there are other WCET tools that are based on static analysis. The following

18

2.1 Worst-Case Execution Time Computation

sections describe all available tools that have participated in the WCET tool
challenge 2011 [HHL+11] with the exception of aiT which is described in
Section 4.3 in detail.

Bound-T

Bound-T [HS02] has originally been developed at Space Systems Finland Ltd.
for the verification of software running in spacecrafts. Currently, Tidorum
Ltd. has taken over the development.

Bound-T is based on the binary executable from which the control-flow graph
is reconstructed by a decoding process. After that, static analysis like constant
and copy propagation is performed and integer computations are modeled
as transfer relations described by Presburger arithmetic formulas [KK67].
These transfer relations are then analyzed in order to identify loop induction
variables and bounds as well as the resolution of dynamic branches. The
worst-case execution path and its costs are then determined by implicit path
enumeration [LM95] which is applied to each subprogram separately.

Neither caches nor dynamic hardware components like caches or out-of-order
execution pipelines are considered by Bound-T.

METAMOC

METAMOC [DOT+10] is a research prototype from Uppsala university in
Sweden that has been developed on top of the UPPAAL model checker. Its
tool chain consists of the following different analyses: control-flow analysis,
value analysis and pipeline analysis. During control-flow analysis, the input
binary executable is translated into its assembly representation. The value
analysis analyzed the assembly representation and determines an approxi-
mation to register values and addresses of accessed memory cells for each
program point. Flow information like loop bounds that cannot be automat-
ically computed, have to be specified by the user. The control-flow graph
of the decoded assembly is reconstructed and represented as an UPPAAL
model. This model is combined with a model of the underlying hardware
architecture (given by the user as networks of timed automata [DOT+10]) so
that the resulting model can be checked using the UPPAAL model checker
whose final result is the WCET bound.

19

2 Related Work

Exposing the hardware model to the user demands for a detailed knowledge
about the hardware’s behavior. The authors of METAMOC state that mod-
eling complex and timing anomaly exhibiting [RWT+06] processors push
the underlying model checker to its limits [DOT+10]. Similar consequences
might result from imprecise flow information.

OTAWA

OTAWA [BCRS10] is an open-source framework library from IRIT and Uni-
versity of Toulouse intended to support the development of WCET analyzers
operating on the binary executable. The supported tool chain is similar to the
one of the aiT framework, i.e., a decoding phase to reconstruct the control
flow of the input executable is followed by micro-architectural analyses for
the determination of flow facts and execution timings based on the previous
analysis results.

A generic kernel with defined interfaces allows the integration of different
analyses implementations which makes the framework extensible. Function-
ality for loading binaries of certain architectures like PowerPC, ARM, TriCore,
Sparc and HCS12 is already available. Additionally, loaders of user annota-
tions for flow facts (loop bounds, branch targets or custom flow constraints,
. . .) and custom information on each control-flow graph node exist. The
actual development of a timing analysis is supported by an interface that
allows to plug in different WCET computation models. From that point of
view, OTAWA is not a stand-alone WCET analyzer by itself.

Proof-of-concept analyzers have been implemented and participated in the
WCET tool challenge 2011 [HHL+11]. There, they are described to have
problems with unsupported instructions and not automatically computed
flow facts.

SWEET

SWEET [Erm03, ESG+07] is the abbreviation for Swedish Execution Time Tool
which has been developed and maintained by the Mälardalen WCET research
group. SWEET operates on a custom intermediate program representation
format called ALF. Its tool chain is similar to the one of aiT and consists of
three phases:

20

2.1 Worst-Case Execution Time Computation

I A flow analysis phase which consists of program slicing, pattern match-
ing and abstract execution (symbolic execution based on abstract inter-
pretation). It is used to determine flow facts on the analyzed program
like loop bounds. These flow facts are usable only if the input pro-
gram has been compiled with the integrated SWEET research compiler.
Otherwise, all flow information must be given manually.

I Processor-behavior analysis that consists of a memory-access analysis to
identify the memory accessed by instructions and a pipeline analysis
performing a simulation of the analyzed program based on a cycle-
accurate model of the architecture with the determined flow analysis
results as additional input. This analysis phase only supports instruc-
tion caches and in-order processors with bounded long-timing effects
and no timing anomalies (cf. Section 6.2.2). Out-of-order execution is
explicitly not supported.

I Estimate calculation phase that actually calculates the worst-case execu-
tion path with its costs using implicit path enumeration [LM95] as well
as fast local-path techniques.

TuBound

TuBound is a research prototype from Vienna University of Technology
[PSK08]. The idea behind that tool is that annotations and optimizations can
be made at the source code level while the actual timing analysis still happens
at the object code level. Source code is parsed with the C/C++ frontend
from the Edison Design Group into a syntax tree format which is analyzed
with an inter-procedural interval analysis generated by the program analyzer
generator PAG [Mar99]. By this, value ranges of variables are attached to the
syntax tree. Then, loop bounds are determined via equation system solving
and constraint logic programming on this annotated syntax tree which results
in annotated flow constraints. After that, the input program is optimized
by the ROSE source-to-source transformation and optimization framework
while the annotated flow information is changed accordingly. The optimized
program code is then processed with a modified compiler that preserves
the annotated flow information. Worst-case execution times of basic blocks
are computed by instruction table lookups which effectively prevents to
model complex processor architectures with superscalar pipelines and related
performance-enhancing features. The global worst-case execution path is
then computed via integer linear programming over the combined equation

21

2 Related Work

system of basic block execution times, control-flow graph connections and
annotated flow constraints.

WCA

WCA is research prototype of a static WCET analysis tool for the JOP architec-
ture [SPPH10]. Tool inputs are a processor specification and the java bytecode
that is executed on the architecture. Additionally, annotations from the java
source code can be loaded. For the execution timing, data-flow analysis is
employed first to obtain loop bounds and branch targets (for dynamic method
dispatching). After that, a pipeline analysis derives symbolic formulas of
the worst-case execution time of bytecode instructions. WCA only supports
a subset of C, called wcetC, enhanced by extensions for flow annotations.
According to [HHL+11], the tool cooperates with a modified version of the
GNU C compiler that performs abstract co-interpretation during code trans-
lation yielding an integer linear program. That program in the end is solved
by an ILP solver to compute the overall timing bound.

2.1.2 Dynamic Methods

The counterpart for the above described static methods is the dynamic
method. In this section, some existing tools implementing such approaches
are shortly presented. Their common property is that they do not rely on
static analysis to obtain the worst-case timing bounds. Instead, they basically
perform runtime measurements of the analyzed program and try to infer
WCET estimations from them.

Research Prototype from TU Vienna

The research prototype from TU Vienna [PN98] has no explicit tool name. Its
approach is to iteratively perform runtime measurements for the computation
of a WCET estimate where genetic algorithms are used to provide the input
data for that measurements. An evaluation of the computed timing estimates
steers the repeated generation of new input data for the next iteration of
measurements. To stop the iteration, a termination criterion has to be specified
by the user. As described in Section 4.2.2, such an approach cannot assure any
safety guarantee on the worst-case execution time of a program, in general.

22

2.1 Worst-Case Execution Time Computation

2.1.3 Hybrid Methods

The third category of WCET computations are the hybrid methods. They
combine static analysis with runtime measurements.

RapiTime

RapiTime [BCP02] is the commercial version of a research tool from the
University of York and distributed by Rapita System Ltd. It computes the
distribution of the execution time for basic blocks of a program by perform-
ing runtime measurements where the corresponding program input has to
be provided by the user. The needed runtime traces can be obtained by
techniques like code instrumentation (optionally with external hardware sup-
port), non-intrusive tracing techniques (e.g. Nexus traces) or cycle-accurate
simulator traces. Basic block execution times are then combined using an
algebra of probability distributions [WEE+08].

FORTAS

As described by Hanxleden [HHL+11], FORTAS [CG11] uses a combination
of measurements and static analysis where the traditional measurement-
based approach is augmented by a feedback loop implemented by iterative
refinements of the measurement inputs. The tool still has a prototype status.

Research Prototype from TU Vienna

TU Vienna has developed another research prototype [WRKP05] in addition
to the one already mentioned above under the dynamic methods. This one
uses static analysis of the source code to partition the analyzed program into
segments of reasonable size and therefore yields a set of execution paths and
information on infeasible paths. For each path, a model checker generates test
data serving as inputs for measurements on the corresponding paths. The
global WCET estimate is then computed using integer linear programming.
As the flow information is based on a source code analysis, it has to be
assured that the compiler does not change the program’s structure. Path
coverage is ensured by the static analysis part, but in the presence of complex
processor pipelines, the execution time strongly varies depending on the

23

2 Related Work

input state. Due to this, the needed state coverage is not provided by the
tool.

2.2 Analysis of Formal Hardware Specifications

As the timing model derivation approach presented in this thesis uses formal
hardware specifications as the starting point, it is interesting to distinguish it
from other research work or tools that are concerned with the analysis of spec-
ification models in VHDL, Verilog or similar formal hardware specification
languages.

2.2.1 Functional Verification

Formal Functional Hardware Verification

Another kind of analysis on hardware specifications exists in the area of
formal functional verification where the correctness of a model according
to a given specification, like the instruction set semantics, is proven. The
employed methods are variants of (bounded) model checking which is com-
mon in this area. Details about the state-of-the-art in functional verification
of hardware designs, Equivalence Checking, are presented in Section 8.3, so
further descriptions are omitted here.

Testing-based Validation

Besides formal verification techniques, “simple” testing is still widely used
for showing correctness properties of a circuit design. Here, the key point for
the testing scenarios is the coverage of the test cases on the specification code.
Therefore, tools examine such metrics for a given set of tests, for example

I the tools distributed by TRANSEDA (http://www.transeda.com) or

I the open-source tool covered (cf. http://covered.sourceforge.net).

More tools are available especially in the embedded system community. Often,
this functionality is integrated into commercially available development suites
for hardware circuits including synthesis tools.

24

2.2 Analysis of Formal Hardware Specifications

Timed Automata

In [Neh04], VHDL models are transformed into timed automata specifications
by a tool called VAT. The overall goal is to apply existing analysis techniques
for such automata to hardware specifications in VHDL. Exemplarily, the
finite state machine generated by VAT can be checked with the UPPAAL
model checker [BLL+96]. In principle, the provided functionality seems to be
directly related to the VHDL frontend Vhdl2Crl2 from the VHDL derivation
tool set introduced in Chapter 10 if one abstracts from the concrete output
syntax of the automata and the CRL files. The difference lies in the type of
intermediate representation of the analyzed model. Where Vhdl2Crl2 gener-
ates a control-flow graph like description of the VHDL design, VAT generates
timed automata that can be processed directly by a model checker.

Information Flow Analysis

T. Tolstrup presents an approach [TN06] to detect security leaks in VHDL
specifications due to differences in the execution time. The idea is that the
timing of cryptographic algorithms often varies depending on the input, e.g.,
a password or a key. An “observer” then might retrieve such passwords
or keys by precisely examining the execution time differences for different
inputs. A data-flow analysis is presented that could detect such possibilities
by analyzing the timing difference between all paths along which an input
signal can flow through the system until it reaches the modification of an
output signal. Despite of its nature as a data-flow analysis, this kind of
analysis is similar to a WCET analysis as the execution of a program induces
signal changes in the hardware model which are integrated in the abstract
simulation. It therefore might be possible to implement the proposed analysis
in the environment of the VHDL derivation tool set.

Abstract Interpretation of VHDL

Charles Hymans has introduced an abstract interpretation of VHDL models
that computes an approximation on the states reachable during the simulation
of such a design [Hym02]. A trade-off between precision and computational
complexity can be reached by changes to the employed abstract domains.
In principle, its method is similar to the pipeline analysis used in the aiT
framework (cf. Section 4.3.3). The difference to the timing models used there

25

2 Related Work

is that Charles Hymans’ work does not transform the input hardware model
in any way. As in this thesis, the only purpose of the timing models is to
be used for the computation of WCET bounds, the original model can (and
from a complexity point of view must) be freed of all artifacts that do not
contribute to the timing behavior of the specified hardware.

Hymans gives a definition of simulation semantics for VHDL language
constructs including all types of expressions. In this context, he defines some
predicates that have been used by the simulation semantics in Chapter 7:

I next:
This predicate returns the next statement based on the current simula-
tion position.

I eval:
Evaluation of VHDL expressions is embedded into this predicate.

I wake:
Repeated process execution after a value change in at least one of the
signals in the process’ sensitivity list is embedded in this predicate. The
analogous operator in this thesis is called repeat.

2.3 Hardware Simulation

In addition to the different WCET tools described above in Section 2.1,
there are simulators for VHDL (or similar hardware description languages)
available which can be used for debugging and exploration purposes of a
hardware design. In principle, the functionality of these tools is partly equal
to synthesis tools as the design has to be loaded and elaborated before it can
be simulated. Available tools come from two different communities, namely
the academic world and some commercially distributed simulators. One
representative for each community is shortly described in the following.

2.3.1 GHDL

is an open-source implementation of a VHDL frontend which has a high
acceptance, i.e., nearly the whole synthesizable VHDL subset is supported.
The design is directly compiled into an executable using the GNU compiler

26

2.3 Hardware Simulation

collection (GCC)1 whose execution represents the simulation of the hardware
circuit. There is no integrated visualization feature like a graphical user
interface for an exploration of the model, but timing diagrams for signal
values over simulation time can be generated.

Due to the integration with GCC, there is neither any direct access nor an
interface to the parsed VHDL design, although this is actually not needed
for a simulation, it effectively prevents the tool’s use for the timing model
derivation purposes introduced by this thesis. For that, dedicated control over
the generated intermediate representation is required because the different
analyses and transformations need to store custom data.

2.3.2 ModelSim

The tool ModelSim is distributed by Mentor Graphics [Men08] and is one
representative solution for an industrially available simulation tool. It sup-
ports even the newest version (from 2008) of the VHDL standard as well as
(System-)Verilog and can be used for interactive debugging and exploration
by featuring a sophisticated graphical user interface. Furthermore, ModelSim
has an integrated heuristic to determine a topological order of the different
VHDL modules. This is a convenient feature because most of the existing
tools let the user determine the order in which the different VHDL files are
fed to the parser. And depending on the hardware to be modeled, such
dependencies can become rather complex and unclear. Due to its features,
ModelSim can be used for a testing-based functional verification in addition
to “simple” model simulation. But as with , there doesn’t exist any externally
accessible interface to internal data structures of a loaded hardware model.

2.3.3 Summary

Besides the two given examples for hardware simulators, there are others
available. For a potential usage for the derivation of timing models from
formal hardware specifications, there was always the problem of not having
access to the internal data structures of a loaded design. This actually is
the reason why Vhdl2Crl2 (cf. Chapter 10) has been developed. Due to cost
reasons, an evaluation of different synthesis tools has not been performed.

1http://gcc.gnu.org

27

2 Related Work

Another common problem especially for the freely available tools is that they
most often do not accept the full synthesizable VHDL subset.

In general, hardware simulation is no alternative for analyzing the timing
behavior of systems because:

I Modern real world processors (like Freescale PowerPC 755 [Fre01]) are
far too complex. The computational complexity of the simulation would
render the method infeasible for industrial usage.

I Due to the complexity of the problem, nondeterminism is introduced
into the computation model. No traditional VHDL simulator can cope
with that.

To the best of the authors knowledge, nobody has tried before to automate
(at least partly) the development process of a timing model for processors
with the goal of WCET determination.

28

3
Embedded Systems

“I wanted to change the
world. But I have found that
the only thing one can be
sure of changing is oneself.”

(Aldous Huxley)

3 Embedded Systems

This chapter gives an introduction to embedded systems in general, starting
from a definition, listing common characteristics of such systems in Section 3.1
and describing application areas for them in Section 3.2. Moreover, an
overview of commonly used hardware architectures is given with a focus on
the structure and properties of the processor pipelines in Section 3.3.

3.1 Overview

According to [Mar05], an embedded system is an information processing
system embedded into a larger product. This means that the system itself
normally is not directly visible to its user. For example, there are embedded
systems within modern cars processing sensor inputs but the driver itself is
not aware of them besides some notification icons in the cockpit.

From a historical point of view embedded systems represent the newest of
three eras of computer systems:

I Mainframe computing systems mainly used by scientists and large com-
panies have build the starting era until the late eighties.

I Personal computing systems then were introduced during the nineties
offering computing power to “everyone”.

I Embedded systems represent the usage of computers within enclosing
products of every day life to provide omnipresent information.

As stated by Mark Weiser [Wei95], the growing demand for ubiquitous com-
puting will more and more cause the disappearance of personal computers
in favor of the “Internet of Things”. This means that smaller and smaller ob-
jects which are connected to different networks (like the Internet), simplifies
information retrieval.

Technically, an embedded system is not necessarily always decomposed into
the actual application code and an underlying operating system. Especially
for small systems, the latter might be missing so that the application needs to
take care about low-level functionality like the communication to peripheral
devices. Otherwise, employed operating systems are typically specialized
and have been specifically developed for their purpose [Win, QNX]. But there
are also customized versions of standard operating systems like Linux [Lin]
and Windows 7 [Mic]. The actual application is often structured into a set of

30

3.1 Overview

different processes. If the processes are scheduled by an operating system,
they are usually called tasks.

3.1.1 Characteristics

Embedded systems are designed for specific purposes, so there are different
characteristic properties of such systems. The following list presents an
overview of such properties. Depending on the concrete application sce-
nario, the importance of the different properties varies which also influences
particularly required limits.

Reliability The reliability is the likeliness that a system will not fail, i.e.,
the system does not work as expected. This is often expressed in terms of
probabilities.

Maintainability The maintainability of a system describes how much effort
is needed to keep the system in a working state. This either means to prevent
failures by providing regular support as well as the average time to repair a
failing system.

Availability The availability of a system is the percentage of time when it is
in an operational condition and is strongly connected to the reliability and
maintainability. Without a high reliability and maintainability, the availability
of that system cannot be high.

Safety The safety of a system is a metric that measures the probability of
the occurrence of a failure that lead to hazards for either human life, property
or the system’s environment. Safety standards like the ISO 26262 [ISO11]
define corresponding limits for these probabilities.

Security The security of a system defines whether failures in that system
can reveal any confidential data stored in it.

31

3 Embedded Systems

Efficiency The efficiency of an embedded system addresses different as-
pects:

I Energy
The power consumption of an embedded system is important especially
if the power source is a battery. On the one hand, the computational
demands of embedded applications are growing rapidly but on the
other hand, the battery technology only increases at a slow rate. So,
the power consumption needs to be minimized in order to achieve long
runtimes for the systems.

I Code size
The executed software needs to be stored within the embedded system.
Often the storage capacities are restricted due to size and cost reasons,
i.e., because the final system cannot effort to exceed a certain size
and more storage capacities increase the production costs. This is
also important for so-called systems on a chip (SoCs) integrating all
components of a computer or other electronic systems into a single
integrated circuit (chip). Storing the instruction memory on that chip
raises the requirement to minimize the code size.

I Runtime efficiency
This topic covers different aspects:

I the system only contains the minimum amount of resources or
hardware components,

I the clock frequencies as well as the supply voltage are minimized
and

I existing timing constraints must be met.

I Weight
The weight of the system often needs to be minimized, especially for
mobile devices.

I Cost
The production costs – especially for high-volume products in consumer
electronics – are an important property. Often, these costs decide over
the competitiveness of the system compared to similar products of
another manufacturer.

32

3.1 Overview

The different aspects are not independent of each other and partly counter-
productive. For example, reducing the weight of a system can be achieved
by smaller batteries. But ignoring possible technological improvements these
batteries provide less energy.

Application Embedded systems are designed for a single purpose and
not for general purpose computing. Once produced, they will work for
that purpose during their product life time. The reasons for that principle
are simply that the more functions a system provides, the smaller is the
dependability, reliability, maintainability, etc. Furthermore, this would have
the consequence that resources which are only used for providing one of the
multiple functions, often remain unused.

User Interface In contrast to personal computers embedded systems often
do not have keyboards, mouses or monitors. Instead, there is a dedicated
user interface like buttons, steering wheels, pedals, etc. This is due to the fact
that such systems are not designed to process arbitrary kind of input data.
They work within a restricted operational environment which influences their
input/output interfaces.

Real-time constraints Real-time constraints define a time window for the
completion time of a task. Depending on the consequences of not meeting
a deadline for task completion, two categories of real-time constraints are
distinguished:

I Hard real-time constraints:
A time constraint is called hard if not meeting that constraint could
result in a catastrophe [Kop97]. If an airbag control software in a car
does not activate the airbag fast enough, this might cause severe injuries.

I Soft real-time constraints:
All time constraints that are not hard are called soft time constraints.
If a DVD player cannot deliver a video frame in time, the playback
starts jerking. Despite lowering the quality of the player, this does not
endanger human life.

33

3 Embedded Systems

Hybrid Systems An embedded system is called a hybrid system if it con-
tains both analog as well as digital parts. Analog parts are specified in
continuous time, e.g., by differential equations, so that the system state
changes continuously within certain invariants. In contrast, digital parts
are captured in discrete time, e.g., by control graphs. State changes happen
according to specific conditions and typically result from corresponding
events.

Reactive Systems A reactive system is an embedded system that is in
continuous interaction with its environment. It is usually waiting for an input
from its environment, then performs some computations on the input to
produce some output. The computation results in a new state of the system
again waiting for input. Therefore, automata can be used to describe the
behavior of reactive systems.

3.1.2 Real-Time Systems

The response time of a system denotes the time span between the activation
of a task and the end of the associated computation together with a potential
output. As mentioned in Section 3.1.1, real-time constraints define bounds on
the response time of a system. These bounds have to be fulfilled regardless
of the current load of the system and the absolute values of the bounds.

Definition 3.1 — Real-time System:
An embedded system for which real-time constraints exist is called a
real-time system.

Because of the timing effects of swapping, heap accesses and hardware inter-
rupts, timing constraints cannot be guaranteed in general so that scheduling
and memory management have to be treated specifically. Operating systems
providing timing guarantees for system calls are named real-time operating
systems (RTOS).

As mentioned above, a mentionable number of embedded systems can be
characterized as safety-critical. This means that system failures, e.g., due to
not meeting a hard real-time constraint, are not acceptable since they may
cause severe damage or even loss of lifes. A hard real-time system for which
missing a deadline could cause damage to the product and/or its users is
called safety-critical.

34

3.1 Overview

Because of the severity of a system failure the manufacturer of such systems
are forced by law to certify their product before they are allowed to ship it.
The certification aims at ensuring system safety by demonstrating that no
safety hazards can occur. Furthermore, often there are specific requirements
for the development process to ensure that the complete product life cycle
satisfies quality assurance requirements [Wol00]. For example, the ISO 26262
[ISO11], a modern safety standard for road vehicles, demands for a limitation
of the “observable incident rate” to be less than one billion (109) per hour of
operation at the highest safety level. Incident rate in this context refers to a
failure that has the potential to lead to the violation of a safety goal.

The software of a real-time system often consists of a set of tasks which are
executed periodically and implement a certain sub-function of the whole
system. Among the tasks, often there are dependencies, i.e., one task must
finish its execution before another one starts. Besides such dependencies,
there are other parameters which could be used to define an order among
the set of tasks:

I release time: the minimal amount of time before a task can be started.

I priority: imposes a total order on the set of tasks and is used to decide
which task to execute among multiple active tasks. The priority can be
assigned statically or dynamically which means that they are assigned
in a fixed way or that they could change during execution.

I period: the total time between two invocations of a task.

Based on these parameters, different scheduling strategies can be used to
decide the task’s execution order.

Depending on the schedule creation time, algorithms can be categorized
as online or offline scheduling. Offline means that the task execution order
is determined before the start of the whole system. In contrast, online
scheduling algorithms decide that during system runtime.

Another property of the scheduling algorithm is whether it is preemptive or
not, i.e., whether the execution of a task can be interrupted by the execution
of another task that has become ready.

Static-priority scheduling algorithms operate on a fixed set of processes and
computes a fixed schedule that does not change whereas these restrictions
does not hold for the dynamic-priority variant.

35

3 Embedded Systems

An example for a static scheduling algorithm is rate monotonic scheduling
[LL73]. Here, priorities are assigned by the inverse length of the period.
This means that the task with the smallest period is assigned the highest
priority. A dynamic scheduling algorithm is called earliest-deadline-first (EDF).
It assigns the highest priority to the task whose deadline is nearest. EDF with
preemption is known to be optimal on a uni-processor system, cf. [Liu00].

To show whether a set of tasks with given parameters and a given scheduling
algorithm is feasible, i.e., whether all deadlines, release times, . . . , hold, the
worst-case execution time of each single task has to be computed first. And
in order to get this time, it is not sufficient to rely on statistical arguments
[Kop97]. More details about the timing analysis of embedded systems can be
found in Chapter 4.

3.2 Application Areas

In order to give an overview, the following list covers the most important
application areas of embedded systems:

3.2.1 Automotive Electronics

There are more and more electronic devices in modern cars. Example appli-
cations are:

I technical assisting systems: brake-by-wire, adaptive-cruise control, pow-
ertrain management, or exterior light control systems,

I safety assistant systems: electronic stability program (ESP), anti-lock
breaking system (ABS), emergency break assistant or airbag controllers,

I driver assistant systems: head-up displays or navigation systems or

I multimedia systems.

All these systems are highly integrated and communicate over different bus
systems in the vehicle. Consequently, a modern car contains more than
a hundred microcontrollers and different communication networks which
impose a high system complexity.

36

3.2 Application Areas

3.2.2 Aviation

The term aviation combines the aircraft manufacture, development and
design. It represents a global industrial sector with lots of subcontractors and
a growing number of electronic systems specifically developed for the use in
aerospace vehicles. These systems are called avionics and nearly all of them
are safety-critical:

I flight control systems in fly-by-wire controlled airplanes which are re-
sponsible for the whole flight state of the aircraft,

I engine control systems which maintain the engine status including thrust
level and alarm detection,

I flight planning systems which compute fuel consumption forecasts, navi-
gation information or

I cabin pressure control systems.

Failures in such systems often directly lead to severe damage or even loss
of lifes. Because of that some sort of redundancy often is required. Typical
strategies are:

I Hardware redundancy:
Employed methods are Dual- and Triple-Modular-Redundancy (DM-
R/TMR). For DMR, two identical systems run in parallel and the second
one serves as fail-safe for the first. In the case of TMR, three identical
systems run in parallel and there is a so-called voter that compares
the results of the three systems. The voting mechanism is a so-called
“two-out-of-three voting”, i.e., a failure of one system can be overridden
by the two others.

I Information redundancy:
Information redundancy is achieved by error checking and correction
methods. One example for such a redundancy is the ECC protection of
memory chips.

3.2.3 Railway Electronics

Because train traffic is controlled in a centralized way, i.e., trains are not able
to change their track autonomously, there are different control applications
in the railroad market:

37

3 Embedded Systems

I Automatic train supervision:
They order and manage the traffic of complete railroad networks by
signal controlling and interact with an operator.

I Automatic train control:
Such control systems assist the platoon leader or even drive the train
automatically including stopping at the right positions at stations, open-
ing/closing of the doors as well as speed and distance control.

I Automatic train protection:
These systems constantly control the position and speed of all trains in
a network and initiates appropriate actions to prevent accidents, e.g.,
by automatically stopping trains that would collide otherwise.

Besides those control applications, there are other not directly safety-related
system in train vehicles like passenger information systems. In the past, such
systems were installed on mainlines and metropolitan mass transit networks,
but they are more and more introduced on regional tracks.

3.2.4 Telecommunication

Telecommunication is about sending and receiving messages and in the past,
visual and acoustical signal have been the transmission instruments. Nowa-
days, with electric devices, the word-wide web, and the invention of different
communication protocols like wireless networks, the term telecommunication
is more than just end-to-end communication. Developed for practical reasons,
communication devices like mobile phones are today merchandised with em-
phasis on the consumer’s emotions. And recently, smartphones have started
capturing the market by promoting the integration with social networks.
Therefore, this area is one of the fastest growing markets of the recent years
as stated by the marketing research company “Insight Research Corporation”
[Ins10].

3.2.5 Medical Engineering

The area of healthcare is a quickly growing market for embedded systems as
well. The technology requirements here go beyond avoidance of failure and
can even facilitate medical intensive care (which deals with healing patients),

38

3.2 Application Areas

and also life support (which is for stabilizing patients). The challenges for
these systems typically are:

I Data rates are increasing tremendously.

I Real-time constraints exist, especially for imaging systems.

I Medical equipment is expected to take enormous scientific knowledge into
account with decreasing human interaction.

I Users need a highly interconnected and integrated set of systems.

I Robustness.

I Sterility.

I Updatability due to changed or augmented knowledge.

3.2.6 Military Applications

Military systems probably were one of the first application areas of embedded
systems but that development has not been published widely for confiden-
tiality reasons. In this field, there is a variety of application scenarios. Some
of them are

I weapon systems,

I weapon guidance systems,

I radar and sonar technology,

I military avionics systems,

I encrypted communication systems.

The challenge for the development of those systems often is their demanding
working condition where they need to withstand extreme heat, humidity,
altitude and multiple other extreme environmental conditions.

39

3 Embedded Systems

3.2.7 Authentication Systems

Embedded systems can be used for authentication purposes, for example
in:

I advanced payment systems,

I finger print sensors,

I face recognition systems or

I full body scanners.

There is a growing demand for such automated authentication because
business transactions are more and more shifted into the world-wide web.

3.2.8 Consumer Electronics

Systems of this area are produced for our every day life and nowadays, there
is a broad perception of this terminology. Consumer electronics products are
typically used for the entertainment, communication or office productivity.
For example, personal computers, telephones, MP3 players, audio/video
equipment, televisions, calculators, digital cameras or mobile phones belong
to this application area which has merged to a large extend with the computer
industry due to the increasing digital technology.

Due to better quality and new service requirements, the information pro-
cessing in such systems needs to make use of more and more sophisticate
digital signal processing techniques as well as high performance processors
and memory systems. Furthermore, the connectivity plays an important role
for streaming applications. As a consequence of this connectivity, this and
the telecommunication area merge more and more.

3.2.9 Fabrication Equipment

This is a traditional area for the usage of embedded systems. Already since
decades, machines are used to automate the manufacturing process more and
more. Nowadays, they are programmable reducing the human involvement
to monitoring tasks. Less and less work has to be done manually. This is
especially the case for automotive industry.

40

3.3 Architectures

3.2.10 Smart Buildings

Smart buildings can increase the comfort level, reduce the energy consump-
tion and improve the safety and security of the inhabitants. The main
requirement for this is the integration of traditionally independent systems
or sensors into one big system: air-conditioning, lighting, access control
and more. For example, the air-conditioning can alter the temperature in
empty rooms, activation and deactivation of lights can be done automatically
when entering/leaving the room, access controls can make the traditional key
obsolete and similar functionality. Currently, such techniques are only used
for modern high-tech buildings but might get introduced in private houses
in the future as well.

As can be seen by this list of application areas, embedded systems are
distributed among different industries and their usage and relevance is
growing faster and faster. According to Jim Turley from the Linley Group:
“. . .only two percent of the world’s microprocessor chips go into PCs. The
other 98 % are used in . . .embedded systems. . .” [Tur09].

3.3 Architectures

3.3.1 Overview

As mentioned in Section 3.1.1, there are characteristic properties of embedded
systems. This has lead to rather specific system architectures designed for
special purposes whereas the goal of personal computers was to provide
general purpose computing power.

All this has influenced the design of hardware architectures for embedded sys-
tems which can be categorized by the employed microprocessor architecture
as well as the connected peripheral components.

The internal structure of a microprocessor is often referred to as processor
pipeline and defines how its assembler instructions are executed. Overall
goal is to maximize the throughput of executed instructions per time unit.
The microprocessor architectures can be grouped into different processor
families.

41

3 Embedded Systems

VLIW processors VLIW stands for “very large instruction word” because
one VLIW instruction consists of several1 micro-operations. VLIW processors
belong to a modern architecture with multiple functional units to which all
micro-operations of one VLIW instruction are issued. This causes execution
parallelism on the instruction level. The advantages of this architecture are
simple control paths and good compiler optimizations [Kä00, PK05]. Such
processors are mainly used for digital signal processing in media applications.
An example of a modern VLIW processor is the TriMedia TM3270 processor
[Wae06] which has been developed by Philips Semiconductors.

RISC processors RISC – reduced instruction set computer – architectures
have a rather simple instruction set that allows a good balanced pipeline
with high clock frequencies. Simple instruction set means that complex
instructions combining slow memory accesses with arithmetic operations are
left out. Instead, there are special instructions (load, store) for memory
accesses. Complex addressing modes are omitted. All this decreases the
pipeline depth, reduces the risk of pipeline hazards (cf. Section 3.4) and
speeds up the instruction decoding. RISC processors are probably the most
popular processor architecture for embedded systems due to their high
efficiency in energy consumption and size as well as to their performance. An
example of a modern RISC processor is the Freescale PowerPC 755 [Fre01].

CISC processors CISC is an abbreviation for “complex instruction set com-
puter”. In contrast to RISC processors, this category represents architectures
with complex addressing modes and combinations of memory accesses with
arithmetic operations within one instruction. The design philosophy is or-
thogonal to the family of RISC processors. In general, for a given level of
performance, a CISC design will typically consists of more transistors than a
corresponding RISC design. An example for a CISC processor is the Motorola
M68020 processor [Mot92].

FPGA FPGA stands for “Field Programmable Gate Array” and represents a
configurable integrated circuit. It’s components are called logic blocks and
contain programmable logic that can perform complex combinational logic
or represents simple logic gates. Often, blocks are associated with storage
elements like flip-flops or more complex memory blocks. The components

1a fixed number for a specific processor

42

3.3 Architectures

Figure 3.1 – CPU Transistor Counts 1971-2010 - Moore’s Law

1970 1975 1980 1985 1990 1995 2000 2005 2010
103

104

105

106

107

108

109

i4004

i286

i386

Pentium 4 Core 2 Duo

Nehalem

Year of introduction

Tr
an

si
st

or
co

un
t

of a FPGA circuit are wired over configurable interconnect buses. By this,
simple circuits like counters as well as highly complex ones like whole
microprocessors can be realized. The advantages of this method are its
flexibility and low development costs because chip fabrication is replaced
by programming the logic blocks and their wiring. Design changes can be
quickly incorporated without an expensive new manufacturing contract.

In the last decades, the number of components in integrated circuits had
doubled every year from their invention until today as it has been predicted
by Moore’s Law [Moo65]. Based on a listing of transistor counts published on
en.wikipedia.org/wiki/Transistor_count, Figure 3.1 shows the evolution
of the number of transistors from 1970 up to now. The vertical axis is
in logarithmic scale so that the nearly linear increase corresponds to an
exponential growth of the number of transistors in relation to the years. Each
point in this figure marks the introduction of a new processor architecture,
some rather popular ones are marked.

This claim for computing power has lead to a trend of using older genera-
tions of desktop and server processors as microcontrollers within embedded
systems although they were not originally designed for that purposes. Archi-
tectures with sophisticated processor pipelines and performance-improving
features (cf. Section 3.4 on page 53) have been introduced. Now, the bot-
tleneck in the computing power is not the processor core anymore, but the
discrepancy between the processor and memory bandwidth. Depending on

43

3 Embedded Systems

Figure 3.2 – Performance gap between CPU and main memory 1981-2005

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004
100

101

102

103

104

Year

Pe
rf

or
m

an
ce

CPU
Memory

the application2, a processor core spends most of the execution time waiting
for memory accesses to finish. Figure 3.2 shows the evolution of processor
and memory performance in the years 1981 up to 2005 starting with a basic
value of one in 1981. This picture has been originally published by Mahapatra
[MV99].

As stated by Hennessy [HPG06], the processor performance was increasing
yearly by 35 % between 1981 and 1986, from then the growth rate has been
even 55 % yearly. In contrast to that, the memory performance only has been
increasing by 7 % yearly in the average.

This problem has been solved by computer architects by introducing memory
hierarchies. Here, small but fast memories try to cache data loaded by or
written from the core before accessing the larger but slow main memory.
The next section describes the functionality of such caches and memory
hierarchies.

The last innovation of demand for computing power was the introduction of
multi-core architectures for embedded systems. Despite its average system
performance increases, this step really complicates the determination of safe
upper bounds on the worst-case execution time of tasks on such systems.

2This is especially true for most embedded software due to their input/output heaviness.

44

3.3 Architectures

Figure 3.3 – Memory Hierarchies

Main Memory

Level 3 Cache

Level 2 Cache

Level 1 Cache

Registers

A
cc

es
s

Sp
ee

d C
apacity

3.3.2 Memory Hierarchies

As mentioned above, there is a gap between processor and memory per-
formance. Fast memory is expensive in construction and arbitrary small
access latencies cannot be guaranteed for arbitrarily large memory. To bridge
this gap at least to a certain amount, memory hierarchies were introduced.
This term represents a hierarchical composition of technologically different
memories with increasing capacity and decreasing access speed.

Figure 3.3 illustrates this memory hierarchy. The register file of a processor
is the fastest accessible storage element. It is part of the processor core and
directly connected to the execution units. A register file consists of registers
where each is able to store a single data, i.e., a field of – usually 8, 16, 32 or
64 – bits. The access latency to a register usually is just one processor core
clock cycle.

Data, that is not stored in any processor register, is retrieved from the next
higher level in the memory hierarchy, which typically are the processor
caches. They are subdivided into one, two or three different levels on their

45

3 Embedded Systems

own where the levels differ in their sizes and access latencies according to
the above mentioned hierarchy principle. A detailed description of processor
caches can be found in the following section.

In the end, main memory represents the largest but also slowest memory.
There are different types of main memory which differ in their access times.
Furthermore, an embedded system is typically provided with different mem-
ory types in parallel. For example, more critical data is stored in faster
memory. Typical memory types and their determining characteristics are
described in Section 3.3.4.

3.3.3 Caches

Processor caches are small but fast memories interposed between the proces-
sor core and the slow main memory. Their location is either on the processor’s
circuit board or they are even integrated into the core. Depending on that,
the caches operate on different clock frequencies. They are managed by the
hardware, i.e., their functional behavior is transparent to the software level.
There can be different levels of caches that are inclusive, i.e., the content
of cache level i is retrieved from cache level i + 1. The highest cache level
then is connected to the main memory over a bus. For a typical personal
computer, there are three levels – L1, L2 and L3 – of caches where the L1
cache is the fastest but smallest and the L3 cache is the slowest but largest
memory among the cache levels.

The idea behind the caches is to temporarily store data from the main memory
in order to deliver it with low latency to the processor core. If the result
of a memory request is already located in the Li cache, this is called a Li
cache hit and the requested data can be directly retrieved from that cache
level. Otherwise, the situation is called Li cache miss and the data has to be
retrieved from the next cache level or the main memory respectively.

The cache hit rate is the average ratio between the cache hits and the overall
number of requests to the cache. Having a high hit rate results in an average
memory performance near the latency of the L1 cache but due to the size of
the caches the average costs per bit of the whole system are near the costs
per bit of the (cheap) main memory.

The organizational structure of a cache is a matrix with S rows – cache sets –
and A columns – cache lines as illustrated by Figure 3.4 on the facing page.
Each line contains the following data:

46

3.3 Architectures

Figure 3.4 – Cache structure

1

C
ac

he
se

ts

S

1 Cache lines A

I the tag which is a part of the address (cf. below at the cache location
computation),

I the actual data and

I some status bits: dirty, valid and cache coherency bits.

If the dirty bit is set, the data in the associated cache line has not been written
back to the next cache level or main memory. An activated valid bit shows
whether the corresponding cache line contains loaded data. Cache coherency
bits [HPG06] are needed for the consistency of data in local caches that has
been loaded from shared resources like a shared L2 cache. For example,
assuming there are two processors, p1 and p2, that share an L2 cache and
both have loaded the same data d to their private L1 caches (in line l1 and
l2, respectively). If p1 writes into the allocated cache line l1, p2 has to be
notified that its “copy” of d is not up-to-date anymore. Such synchronization
information is stored in the coherency bits.

The characterizing properties of a cache are:

I the associativity A is the number of cache lines that are contained in
each cache set,

I the line size L is the size of a cache line,

I the number of sets S,

47

3 Embedded Systems

I the replacement policy (see below) and

I the capacity C which is computed by C = S ∗ A ∗ L.

If each cache line represents its own cache set, i.e., A = 1, the cache is called
direct-mapped because a memory address is mapped to one single cache line.
The cache is called fully associative if the associativity is equal to the number
of cache sets, i.e., A = S. This means that an arbitrary memory address can
be mapped to an arbitrary empty cache set. If the associativity has been
chosen somewhere between these limits, this is a A-way set-associative cache
which is a compromise between direct-mapped and fully associative.

The physically addressable memory space is distributed among the cache
sets depending on a hash function which takes the associativity into account.
Typically, the hash function is just a modulo operation to the number of sets,
i.e., an address a can be stored in one of the cache lines of set s = (a÷ L)
mod S. By this, a cache line only need to store a significant number of bits of
a. Those bits are called tag. In the case of a cache miss, not only the requested
amount of data (e.g., a byte) is retrieved from the next cache level or the main
memory. Instead the whole cache line is filled.

Due to the nature of the modulo computation and depending on the size of
the main memory, different addresses are mapped to the same cache set. If all
cache lines an address a is mapped to are occupied by other data, one cache
line needs to be emptied before retrieval of the requested data. The decision
which cache line will be emptied then depends on the so-called replacement
policy. There are different heuristics for the replacement:

I Least Recently Used (LRU)
The strategy is to replace that line in the set whose referencing is
the oldest, i.e., the memory cells stored in that line have not been
accessed for a longer time than the cells of all other cache lines. LRU is
easy to implement by maintaining an age for each cache line and old
lines are specifically chosen which leads to good hit rates in average.
Furthermore, the predictability of LRU is the best according to [Rei08].
But this policy produces just a moderate hit rate and requires status
bits for higher associativity [Rei08]. Therefore, this policy is only rarely
implemented.

I Pseudo-Least Recently Used (PLRU)
PLRU is an efficient tree-based algorithm to implement the LRU policy.
The computational model behind PLRU is a binary search tree where
the cache lines are represented by the leaves of the tree. Each node in

48

3.3 Architectures

the tree stores a bit whose values indicates the direction to go when
walking from the root node to a child. The values 0 and 1 point to the
left and right sub-tree, respectively. Thus, the bits in the search always
mark the cache line that is chosen for the next replacement. If that
happens, the bits on the path to the replaced line are inverted, so that
the next line to be replaced is selected. PLRU’s low implementation
costs and only slightly worse hit rate compared to LRU do explain its
popularity among the processor manufacturers.

I First-in First-out (FIFO)
This policy works like a queue. The choice of the line to replace falls to
the line that was first filled in the particular cache set. FIFO produces
slightly worse hit rates then LRU in the average, but has lower hit
latencies [Rei08]. The disadvantage of this replacement policy is that its
performance is not predictable. But the implementation costs are low.

I Most recently used (MRU)
MRU discards, in contrast to LRU, the most recently used items first. It
is most useful in situations where the older an item is the more likely it
is to be accessed. According to [Rei08], the most recently used policy is
impossible to predict at all.

All layers in the memory hierarchy need to be synchronized, i.e., if data is
stored in the cache, the hardware needs to ensure that this data is written
back to main memory at last when the corresponding cache line will be
replaced. Due to performance reasons of data transfer over the system bus,
there are two different strategies – write policies – how to do this:

I write through: for a store operation the data is always written back to
the next higher level in the memory hierarchy. This ensures consistency
of data by construction. Usually there is a write buffer for such writes
so that the core does not need to wait.

I write back: the data is not directly written back to the next higher
memory hierarchy level. The write back operation takes place when the
cache line is replaced from the set. In order to remember whether a line
has been written back, there is the dirty bit as mentioned above.

The write back policy might impose more difficulties on the timing pre-
dictability depending on the employed cache replacement policy because the
eviction of a cache line cannot be predicted precisely. Further details on this
can be found in Chapter 9.

49

3 Embedded Systems

In general, two types of caches are distinguished: instruction containing
executable instructions and data caches for increasing data read or store
operations. Additionally, there is the so-called unified cache which can contain
both instructions and data. Typical cache configurations separate the data
paths between instruction fetching and data accesses, i.e., there are two
separate L1 caches, one instruction cache and one data cache. Often, the
second cache level is a unified cache.

3.3.4 Memory

The main memory is the highest level in the memory hierarchy (cf. Figure 3.3
on page 45) and connected to the processor (over the cache components).
Typically, embedded systems have a high load in their input/output behavior
which results in a high number of memory accesses. Therefore, the main
memory is the component in the system with the greatest influence on the
execution timing.

Memory accesses to the main memory3 are started by the processor core’s
memory subsystem (MSS). From there, the request is passed over to the
system’s memory controller which is typically integrated into the main
system controller – the northbridge. The communication between the core
and the memory controller is done over the system bus which typically is
divided into an address bus and a data bus. Here, a specific communication
protocol, e.g., the 60x bus protocol for some PowerPCs, is employed. The
memory controller translates the cores request into the access protocol of the
particular memory chips and potentially delivers the answer of the memory
to the processor again over the system bus. This communication structure is
illustrated in Figure 3.5 on the facing page.

There are different types of memory devices which all are different in their
behavior and performance:

Static Random-Access-Memory (SRAM) The internal storage cells are
implemented by transistor technology. Therefore, this memory type has
low access latencies – about five to 100 nanoseconds – which are constant.
Unfortunately, this technology is expensive and its needed circuit space per
bit is high. This type of memory is often used for caches or systems with low

3after all cache handling

50

3.3 Architectures

Figure 3.5 – Bus and memory communication

Core

MSS
Address Bus

Data Bus

MCU
Chip

Chip

Bus protocol
Memory access protocol

memory consumption. The timing predictability (cf. Chapter 9) of SRAM is
high due to the constant access latencies.

Dynamic Random-Access-Memory (DRAM) The internal storage cells are
implemented via small capacitors which allow a tight packing of the cells. By
this, cheap and large memories can be constructed compared to SRAM, but
the access latencies are typically about 16 times slower than SRAM. Because
this memory has a dynamic characteristic as described below, the access
latencies are not constant and depend on the history of the last accesses.

As the technology has evolved over the years, there are different types of
DRAM concerning when exactly a chip delivers requested data: synchronous
dynamic RAM (SDRAM) returns data only at rising clock edges, double data-
rate RAM (DDR-SDRAM) is able to send data beats both on rising and falling
clock edges. Analogously, there are also so-called quad data-rate RAM (QDR)
and even octal data-rate RAM (ODR). Both share the idea to combine the
technology of DDR-RAM and two or four read/write ports respectively.

The structure of dynamic memory modules often underlies the same principle.
Logically, the addressable memory for one memory chip is divided into
equally sized banks, each one represents their part of the memory as a
matrix. To access a specific address, the responsible memory bank must be
determined. Within the bank the specific row in the matrix of that address
has to be selected first. All memory cells in the same row form one so-
called page and the selection process is called to open a page. The memory
controllers typically store the currently selected row for each logical bank, so

51

3 Embedded Systems

a subsequent access that goes into the same page can be answered without a
previous row selection (page hit). Otherwise, another row has to be selected
before the request can be answered (page miss).

As the memory cells in dynamic RAM are implemented by capacitors, their
content needs to be refreshed from time to time. These refreshes are asyn-
chronous events which do complicate a precise timing analysis of such
memories (cf. Chapter 9).

Scratchpad Memory Scratchpad memories, often just called scratchpads,
are internal (on-chip) memories where a processor core can privately use for
local and temporary data storage. They can be compared to L1 caches in
terms of their small capacity and small access latencies. But where caches
are self-controlled by the circuits, scratchpads are software-managed, i.e., the
running program needs to explicitly decide about what data to place into the
scratchpad memory.

Marwedel et al. [MWV+04] shows that architecture-aware compilers can
increase the overall system performance in the presence of scratchpads by
about 50 %. They also state that the timing behavior of accesses into scratch
memory is well predictable rendering this type of memory ideal for WCET
analysis.

3.3.5 Buses

A bus is a subsystem for transferring data between different components
inside a computer, between a computer and its peripheral devices, or between
different computers. In contrast to point-to-point connections, a bus typically
connects more than two peripherals over the same set of wires. Independent
of the number of connected devices, dedicated protocols control and syn-
chronize the transactions. In general, buses can be classified by the involved
components:

I system buses like the 60x bus on the PowerPC [Fre04],

I memory buses connecting the memory controller with the memory slots,

I internal computer buses like Peripheral Component Interconnect (PCI)
[PCI98] and

I external computer buses like CAN [CAN03] or FlexRay [Fle10].

52

3.4 Processor Pipelines

Typically, the buses are clocked with lower frequencies than the processor
core, e.g., the PCI bus is specified to 33 MHz in Revision 2.0 and to 66 MHz
in Revision 2.1 of the PCI standard.

In contrast to the categorization by the involved components, buses can be
divided into serial and parallel buses. Parallel buses support the interleaving
of consecutive accesses resulting in an enhanced performance and reduced
idle time. This interleaving is called bus pipelining and the possible number
of interleaved and therefore pending accesses is the pipeline depth. To
implement this parallelism, such buses are separated into an address bus and
a data bus.

3.3.6 Peripheral Devices

An embedded system interacts massively with its environment, i.e., input data
is received and computed results are emitted. This environmental interaction
is implemented by the communication with peripheral devices. Mainly,
these are sensors and actuators which are accessed by special input/output
instructions or memory accesses in case of memory mapped devices.

Other peripheral devices are memory controllers which are connected to the
CPU over the system bus.

3.4 Processor Pipelines

3.4.1 Overview

Processor pipelines have been introduced in order to increase the computing
performance of processors as already mentioned above. The idea behind
pipelining in general is the overlapping of consecutive actions. In this context,
the execution of a machine instruction is divided into parts (pipeline stages),
i.e., an instruction has to pass through the stages according to specific rules.
For example, the pipelined DLX from [MP00] consists of five stages:

I Instruction Fetch (IF): Instruction sequences are retrieved from memory
into a queue according to the program flow.

I Instruction Decode (ID): Instructions are decoded for dispatching to the
appropriate execution unit.

53

3 Embedded Systems

Figure 3.6 – Ideally pipelined execution on the DLX

Ideally filled pipeline

Cycles

Pipeline Stage

1 2 3 4 5 6 7 8 9 10

IF

ID

EX

M

WB

I0 I1

I0

I2

I1

I0

I3

I2

I1

I0

I4

I3

I2

I1

I0

I5

I4

I3

I2

I1

I5

I4

I3

I2

I5

I4

I3

I5

I4 I5

I Execute (EX): Instructions are actually executed on the execution unit.

I Memory (M): Memory accesses are performed here.

I Write Back (WB): Computed results are written back to memory or
registers.

All instructions pass through all the mentioned stages in descending order.
Figure 3.6 shows the execution of an ideally pipelined instruction sequence.
In cycle 1, instruction I0 has entered the processor pipeline at the IF stage. In
each processor cycle, each instruction can advance to its next pipeline stage so
that another instruction can enter the pipeline. By the end, all pipeline stages
are occupied by different instruction at cycle 5 and the processor pipeline is
ideally filled. Now, in each cycle, an instruction is finished and can leave the
processor pipeline which is called instruction retirement. In this example, the
instruction sequence ends with I5, so the pipeline runs empty until cycle 10
when I5 retires. Assuming that no instruction overlapping would happen,
the execution would end in cycle 50. So the performance gain in this example
is a factor of five which illustrates the theoretical potential of pipelining the
execution of instructions within the processor.

54

3.4 Processor Pipelines

3.4.2 Pipeline Hazards

The illustration of a pipelined execution as shown in Figure 3.6 on the
facing page is idealized. In practice, such a perfectly overlapped instruction
execution often cannot be achieved because of side conditions. These could
be induced by the executed program itself, e.g., by dependencies between the
instructions, or by the processor pipeline. Such situations where the pipeline
stalls, are called pipeline hazards and they can be grouped into three categories
depending on the stall indication.

Structural Hazard

Structural hazards are a consequence of resource shortages among the units
within the processor pipeline. For example, this could happen if an instruction
fetch and a memory operation both want to occupy the memory bus. Some
delay emerges either at the fetch or the memory unit and the result is a delay
at one of these pipeline stages. Another example could be if there are more
integer instructions in a sequence than there are integer units available in the
processor. As long as all available units are occupied by some instruction, the
instruction dispatch stalls.

Data Hazard

Depending on the program code to execute, there are more or fewer data
dependencies between the instructions to execute. Such dependencies then
lead to stalls in the pipeline that are needed to preserve the semantics of the
program. There are three different kinds of such data dependencies which
are depicted in a small assembly program in Listing 3.1 on the next page.

I Read-after-write
There is an instruction accessing a register or memory cell that is
written by a previous instruction. As long as the first instruction is not
finished, the second instruction is stalled and the pipeline stage, too.
The instructions in the lines one and two of Listing 3.1 on the following
page show such a dependency.

I Write-after-read
There is an instruction that wants to write to the same register as a
previous instruction. In this case, the processor must ensure that the

55

3 Embedded Systems

Listing 3.1 – Pseudo assembler instruction sequence

1 r8 = r9 + r9
2 r10 = r8 - r11
3 r11 = r7 + r7
4 r6 = r12 - r12
5 r11 = r8 + r8

writing instruction does not complete before the reading one does. This
is no problem for so-called in-order executing processors which execute
the instructions in the order of their occurrence in the program. For out-
of-order execution, there must be a mechanism to prevent the writing
instruction to complete before the reading one does. Typically, this is
implemented by the consequent usage of rename registers [HPG06].
The in-order and out-of-order properties of processor pipelines are
explained in Section 3.4.3. The instructions in line two and three of
Listing 3.1 show such a dependency.

I Write-after-write
For multiple writing operations to the same register or memory cell,
it must be ensured that the last instruction in program order is ac-
tually written back last to the target location. An example for such
a dependency is shown by the instructions in line three and five of
Listing 3.1.

Control Hazard

Control hazards occur if the target of a branch instruction is not directly
known to the processor. This happens for computed branches where the
target is not hard-coded but stored in a register or memory location and
therefore computed by previous instructions. Analogously, branches can be
conditional, i.e., a condition is associated with a branch instruction and the
result of their evaluation is stored in special control flags of the processor.
Depending on the control flag’s value, the branch is taken or not. The lack
of such condition or target information might stall the fetch unit so that the
pipeline runs empty.

56

3.4 Processor Pipelines

3.4.3 Performance Improving Features

In addition to the general idea behind instruction pipelining there are a lot
of features introduced for further performance improvements by avoiding
pipeline stalls.

Prefetching

In general, prefetching represents the heuristic load of data before its demand
gets evident. This technique is used within the memory hierarchy where
not only the requested data are retrieved from the next hierarchy level, but a
whole cache line. Another example for prefetching can be found in the fetch
units of processors. There is a so-called instruction queue which temporarily
stores fetched instructions until they are dispatched to an execution unit. This
bypasses stalls caused during instruction fetch, by dependencies, etc. For the
determination of worst-case execution time bounds, a prefetching behavior
must be taken into account as it influences the global timing.

Branch Folding

To avoid control hazards in the pipeline, the processor tries to fetch further
instructions even after having fetched a branch instruction. For this, branches
are already decoded when they are fetched and if the target of a branch is
known, the branch instruction is removed from the instruction queue and the
prefetching address is redirected to this target address. Such a removal of a
branch instruction is called branch folding.

Branch Prediction

A branch is called conditional if the decision whether the branch is taken
depends on some condition which is computed by previous instructions. If
the branch is additionally not computed, i.e., the taken branch target is fixed,
there are two possible successors: the fixed branch target address and the
direct successor address of the branch (fall-through). The target address of
a conditional and not computed branch can be predicted by the fetch unit
in order to determine the address for the next fetch after the branch. When
the condition becomes known to the processor the prediction resolves either
to be correct or false. The latter is called a misprediction: the corresponding

57

3 Embedded Systems

instructions then have to be removed from the instruction queue and the
pipeline stalls until the instructions at the correct target address are fetched.

There are two kinds of branch prediction:

I Static branch prediction does not change the prediction direction during
the execution of a program and is based on known facts. For example,
for loops, the backwards branch to the loop header is more likely to be
taken as there usually is more than one iteration within a loop. Some
instruction set architectures (like the PowerPC) support a static branch
prediction by a bit in the machine code of the branch instruction. By this,
the compiler can give the processor a “hint” about the likeliness of the
branch directions. Due to the static nature of this method, the branch
prediction is not sensitive to the actual executed program and yields
misprediction rates not less than 30 % – 40 % (according to [HPG06]).

I Dynamic branch prediction is able to compute the predicted direction
of a branch during the programs execution. Therefore the prediction
is sensitive to the actual program and can reduce the misprediction
rate down to about 2 % (according to [HPG06]). This method can
be implemented by caching the actual branch direction (taken or not
taken) in so-called branch history tables. The computation of the branch
prediction is then based on the history of the executed branches of the
program.

Delay Slots

Delay slots are another possibility to avoid pipeline stalls due to dynamic
branches. Depending on the concrete architecture, a specific number of
instructions directly following a branch are called the delay slots of that
branch. These instructions are even executed if the branch is taken. The idea
behind this technique is that the processor has computed the branch target
before the instructions from the delay slots have finished their execution so
that execution can seamlessly continue.

Forwarding/Shortcuts

To avoid read-after-write hazards mentioned above, fast data forwarding has
been introduced. The idea is to forward the result of an operation from one
stage in the pipeline to any other stage that holds an instruction depending

58

3.4 Processor Pipelines

on that result. By this, the depending stage does not need to be stalled until
the result is written back.

Shortcuts are hardware optimizations for special cases like the multiplication
with a zero argument. Therefore, the execution time of such an instruction
can depend on the concrete value of its arguments.

Superscalarity

Scalar processors can only issue zero or one instruction per clock cycle. Thus,
they can only finish one instruction per clock cycle at most. In contrast to that,
superscalar processors can issue more than one instruction per clock cycle.
This increases the maximal number of instructions that can be finished within
one clock cycle which again increases the performance of the processor. For
example, the Freescale PowerPC 755 can issue/finish up to two instructions
per clock cycle.

Properties like the issue structure (static vs. dynamic), the hazard detection
(hardware vs. software), the scheduling strategy and more are used to further
categorize superscalar processors. Hennessy describes further Details about
that [HPG06].

Out-of-order Execution

Out-of-order execution has been introduced to overcome structural and data
hazards. The general idea is that the execution of an instruction can be started
and/or finished earlier than the execution of its predecessor instructions.
This means that the issue step is still in program order but for example
a long running memory instruction does not block the whole processor
pipeline. Instead, consecutive independent instructions can already start
their execution on other execution units so that only the memory unit is
stalled. Completion time of an instruction and its retirement have to be
distinguished. The completion time is when their execution has been finished
and the retirement represents the time when the instruction has written back
its results and leaves the processor pipeline. In order to keep the programs
semantics, the retirement time of an instruction sequence still need to follow
the program imposed order which is called in-order retirement.

59

3 Embedded Systems

Speculative Execution

As branch prediction tries to fetch instructions over branch boundaries, the
idea behind speculative execution is to actually even execute such instructions
which are then called speculative instructions or speculatively executed
instructions. Such a speculative execution implies that the processor must
be able to roll back all results of speculative instructions. This is achieved
by the usage of so-called shadow registers which are a temporal storage in
order to cache the results of register write operations. For memory accesses
the instruction can proceed until a memory transaction over the memory bus
would be started where the instruction stalls. If the branch prediction has
been resolved, the contents of the used shadow registers are just written back
or transactions over the bus can be started. In the case of a misprediction, the
allocated shadow registers are just freed again and all traces of the speculative
instructions are removed from the pipeline.

Modern processors like the Freescale PowerPC 7448 can speculate more
than one level, i.e., there can be multiple branch instructions in the fetch
unit whose target is predicted in order to continue instruction fetch. As
the PowerPC 7448 is able to execute up to 16 instructions in parallel, there
would be pipeline stalls due to missing new instructions without such a deep
speculation depth.

Store Gathering

Store gathering is a feature that reduces the memory bus utilization and is
employed within processor cores with a rather complex load/store unit. If
there is more than one outstanding store operation to the same cache line and
all of these accesses result in transactions on the bus (due to cache misses),
the processor tries to combine the accesses to larger ones. For example, two
word stores would be combined to a double-word store on the bus. This
saves memory bus bandwidth and therefore increases the overall processor
performance because other accesses waiting for such stores can be processed
faster.

Memory Protection

Memory protection is not a performance increasing feature but often used and
needed in multi-processor systems. In such systems, each process assumes

60

3.4 Processor Pipelines

that it runs in its own address space solely. This is implemented in the
processes by using virtual addresses. The underlying operating system then
needs to translate each virtual address into the actual physical correspondent.
The process specific mapping is stored in memory in the so-called page table
where each entry represents such a mapping. If there is a process switch, the
page table entry for the new process is loaded into memory. To speedup this
process, modern processors cache recent accessed page table entries. Such
caches are called Translation Lookaside Buffers (TLB).

Depending on the executing processor features, different attributes can be
associated with an entry in the page table. For example, a page can be
annotated as “guarded” so that any speculation into such memory regions is
deactivated.

System Configuration

Modern processors are highly configurable, i.e., they have features that can
be deactivated. By this, the processor can be adjusted to the needs of the
customer. In the area of embedded systems, the configuration often is done by
the provider of the embedded operating system. For example, the following
features4 usually are configurable:

I cache activation,

I cache locking,

I branch prediction,

I power management,

I address translation,

I store gathering,

I branch folding,

I branch history table,

I bus operation modes and

I bus pipelining.

Using (or not) these features influences the timing behavior of the whole
system as well as its predictability (cf. Chapter 9).

4The list is not meant to be exhaustive in any way.

61

3 Embedded Systems

3.5 Summary

This chapter gives an introduction to embedded systems in general alongside
a short categorization within the historical development of computer systems.
Characteristic properties are listed and shortly explained with a focus on
safety-criticality and real-time, followed by a description of typical application
areas.

After this more general overview of embedded systems, their underlying
hardware architectures and employed processors together with their pipeline
structures and performance enhancing features are presented.

62

4
Timing Analysis of
Embedded Systems

“Technology doesn’t save
time, but it redistributes it.”

(Helmar Nahr)

4 Timing Analysis of Embedded Systems

4.1 Overview

Why do we need to know the precise timing behavior of a system?

The answer is as simple as short. The correctness of safety-critical embedded
real-time systems decides about human lifes. This implies the demand to
ensure a correct behavior of such systems and in the presence of real-time
constraints the timing behavior strongly influences the functional correct-
ness. Software development standards like the DO-178B/ED-12B1 [DO92]
try to force the integration of quality assurance as well as system validation
and verification into the software life cycle. Before the official launch of a
safety-critical system, the manufacturer has to convince certification author-
ities about the system’s development process, i.e., that they have fulfilled
the requirements demanded by the standard. Among other things, this
means to prove that a system fulfills its timing constraints by computing safe
approximations on its execution time.

To determine such approximations, a sophisticated timing analysis of the
whole system has to be performed. This is done on different levels:

I on the system level and

I on the code level.

System level timing analysis comprises the analysis of task scheduling. For
this, the so-called worst-case response time (WCRT) of each task as well as the
worst-case end-to-end communication delays have to be computed.

Definition 4.1 — Worst-Case Response Time:
The worst-case response time of a task is the longest possible time
between the task activation and its completion.

It takes information about code level timing analysis, scheduling of the
underlying operating system, bus arbitration, possible interrupts and their
priorities into account. The goal is to show the schedulability of the task
system, i.e., whether the employed scheduling algorithm computes a feasible
schedule that satisfies all deadlines and dependencies of the system’s task
(as mentioned in Section 3.1.2).

The code level timing analysis deals with the non-preempted execution times
of single tasks.

1Software Considerations in Airborne Systems and Equipment Certification

64

4.2 Classification of Approaches

Definition 4.2 — Worst-Case Execution Time:
The Worst-Case Execution Time (WCET) of a task is the longest possible
time the task’s execution can take.

In general, the computation of the exact WCET is not possible for general
programs because it can be reduced to the halting problem: As a non-
terminating program (for example with an endless loop) has a WCET of
∞, the computation of the WCET would have to decide first whether the
program terminates at all. For a restricted form of programming with limited
recursion and loop bounds the termination could be guaranteed so that the
WCET computation becomes feasible again. These restrictions are usually
implemented within embedded systems so that this problem remains a
theoretical one.

Remark:
For the sake of simplicity the term WCET is used as a synonym for a safe upper
bound on the actual concrete worst-case execution time of a code snippet.

But there are a lot of practical limitations in the field of timing analysis
of embedded systems. On the system level the scheduling strategies of
some operating systems prevent the computation of precise time slots of the
processes which renders schedulability analysis impossible. This problem
is addressed with specific real-time operating systems (cf. Section 3.1.1) or
a system implementation without an operating system layer. Code level
timing analysis has to cope with complex processor architectures that are
used nowadays (cf. Section 3.4). The usage of some modern features could
increase the computational complexity dramatically so that the analysis itself
is time-consuming.

In this chapter, the different existing approaches to timing analysis of embed-
ded systems are outlined. Then, one of the existing industrial tools for WCET
determination – aiT – is detailed.

4.2 Classification of Approaches

As illustrated by the curve in Figure 4.1 on the next page2, a task shows a
certain variation of execution times between a shortest and longest possible
execution time. Both corner cases are called best case execution time (BCET) and

2also shown in Chapter 1

65

4 Timing Analysis of Embedded Systems

Figure 4.1 – Execution time distribution

Execution Time

Pr
ob

ab
ili

ty BCET WCETAverage execution time

Safe WCET approximation

Sample
Measurements

Over-approximationUnder-approximation

worst-case execution time (WCET) respectively. The most probable execution
time is the average case.

There are different reasons for this runtime distribution:

I different input (e.g., other operating mode),

I different initial system state or

I some change in the environment, e.g., different sensor values that lead
to more complex computations.

In order to derive safety guarantees, all possible executions have to be taken
into account and the state space leading to that is typically large which
renders simple end-to-end measurements infeasible.

In general, the existing approaches can be categorized into two classes: static
and dynamic methods.

4.2.1 Static Methods

Static methods do not rely on the execution of the code on the real hardware
or a simulator. Instead, the binary executable is analyzed independently
of any input or initial state. By construction, all possible executions of the
analyzed program are taken into account. Static methods share a common
scheme of work flow:

1. Reconstruction of the binary’s control flow

66

4.2 Classification of Approaches

2. Static Analyses of the set of possible control-flow paths through the task

3. Combination of paths with an abstract model of the concrete hardware
architecture

The employed abstractions reduce the state space to explore so that the
whole timing analysis gets feasible even for complex processor architectures.
Together with the nature of an input independent – static – analysis, this
leads to an overestimation of the exact worst-case execution time of a task.

Despite its safety, static methods have the disadvantage of requiring a deep
insight into the timing behavior of the system in order to minimize the above
mentioned overestimations. The development of the hardware models often
relies on processor manuals and other documentation which unfortunately
often contains errors. Moreover, the behavior of undocumented features has
to be reverse engineered.

4.2.2 Dynamic Methods

In contrast to their static counterparts, dynamic methods rely on the execution
of the code on the real hardware or cycle-accurate simulators with given
inputs. These measurements are either for the whole task execution (end-
to-end) or only for snippets. For the latter case, the measured times are
combined to derive execution times for the whole task. They lead to a
minimal and maximal observable execution time as well as the measured
runtime distribution.

One way to perform such measurements is to add additional instrumenta-
tion code that collects timestamps or CPU cycle counter information. Fully
transparent measurement mechanisms are possible using logic analyzers, e.g.,
using the NEXUS standard [IEE00], or cycle-accurate hardware simulators.

An advantage of dynamic timing analysis methods is their fast setup time
because it relies on execution or formal hardware design simulation in
contrast to the development of a sophisticated hardware model. So, they do
not rely on erroneous processor documentation.

In contrast to that, the main and disqualifying disadvantage of all dynamic
methods is that their results might be unsafe without any evidence that all
possible executions or at least the worst-case path have been measured. For
measuring the worst-case path, its corresponding worst-case input has to
be known as well as the worst-case initial state. For complex software in

67

4 Timing Analysis of Embedded Systems

combination with modern processors and their complex pipelining features,
such a validation is hard to obtain. Neglecting the problem of knowing
the worst-case input, another problem raises for simulators sometimes pro-
vided by the processor manufacturer. They claim their simulators to be
cycle-accurate. But at least the underlying hardware model of Freescale’s
sim_G4plus simulator [Fre05b] for the MPC7447A/7448 (also known as G4)
does not correctly represent its behavior [SP09].

Furthermore, logic analyzer traces can be used to validate the hardware
models employed in the static methods (cf. Section 4.2.1).

4.3 aiT Worst-Case Execution Time Framework

As the last section has given an overview and categorization of existing timing
analysis methods, this section now describes a particular static method in
more detail.

4.3.1 Overview

The aiT WCET analyzer is a generic framework for the determination of
upper bounds on the worst-case execution time of tasks. In general, ab-
stract interpretation [CC77, CC79, CC81, CC92a, CC92b, NNH99] gave the
theoretical background for a couple of doctoral theses at the Saarland Uni-
versity [Fer97, Mar99, The03, The04]. Therefore, aiT is classified as a static
timing analyzer with respect to the categorization of Section 4.2. Based on
these research results, a first version of aiT has been designed by AbsInt
Angewandte Informatik together with Saarland University3 in the European
project Daedalus [Dae]. Since then, aiT is industrially used for more than
10 years now and has constituted within the certification of safety-critical
industrial systems, e.g. [SPH+05].

The analysis assumes the non-preempted execution of the analyzed task. The
time bounds computed by aiT are both provably safe and precise [The04] and
can be used as input for further system-level timing analysis [KWH+08].

The whole timing analysis is subdivided into phases where each one consists
of different actions as depicted by Figure 4.2 on the facing page. The starting

3at the Compiler Design Lab headed by Prof. Dr. Reinhard Wilhelm

68

4.3 aiT Worst-Case Execution Time Framework

Figure 4.2 – Structure of the aiT framework

Executable

Decoding Phase

CFG
Reconstruction

Loop
Transformation

CFG

Microarchitectural Analysis Phase

Loop Bound

Value

Cache/Pipeline

Annotated
CFG

Prediction
File

Path Analysis Phase

Prediction File
based

Prediction File
based (ILP)

ILP
based

ILP

ILP solver

WCET Path

Visualization Phase

aiSee

U
ser

A
nnotations

69

4 Timing Analysis of Embedded Systems

point is the binary executable. In the first phase – the decoding phase –
the control-flow graph (CFG) of the binary is reconstructed and translated
into an intermediate representation (CRL). In the second phase, different
micro-architectural analyses are performed whose results are stored in the
CRL graph. These results include the timing information at the basic block
level. The path analysis phase then uses the results of the previous phase to
compute the actual worst-case execution path together with its corresponding
execution time – the worst-case execution time for the analyzed task. Finally,
not only the computed timing bound is given to the user, but also the call and
control-flow graph together with all computed results are visualized. The
following sections now explain the different phases of aiT in more detail.

4.3.2 Decoding Phase

The input for the decoding phase is the fully linked binary executable that
needs to be analyzed or that contains the task to be analyzed. There are
reasons why the whole timing analysis works on the executable level: the
analysis at higher levels of abstraction like the source or intermediate code
level is not feasible since this code undergoes further transformations by the
compiler and linker which influence the timing behavior. In other words, the
only way to analyze the real timing behavior of a piece of software during
execution is to analyze the actual binary that is loaded and executed on
a particular system. Another advantage for the timing analysis are fixed
parameters that can be extracted from the binary executable. For example,
known code addresses simplify the analysis of the cache behavior.

Fundamental Program Representations

The result of the decoding phase is a machine-level representation of the
binary program. Therefore the concept of machine operations needs to be
defined. In the terminology of [WM95] a micro-operation, or machine operation,
is an elementary operation that can be executed on the processor. The notion
of machine operation has to be distinguished from the concept of machine
instructions. In some architectures exhibiting intra-processor parallelism, es-
pecially in VLIW (cf. Section 3.3) architectures, multiple machine operations
can be combined to form one machine instruction. The execution of all opera-
tions contained in the same instruction is started in parallel. In the following

70

4.3 aiT Worst-Case Execution Time Framework

Figure 4.3 – Control-flow graph for composed statements

c f g(while B do S od) =

B

c f g(S)

T

F

(a) Loop

c f g(if B then S1 else S2 fi) =

B

c f g(S1) c f g(S2)

T F

(b) Conditional

c f g(S1; S2) =

c f g(S1)

c f g(S2)

(c) Sequence

a summary of the most important concepts is given; Wilhelm [WM95] give
more detailed explanations and additional literature references.

The control-flow graph of a procedure indicates which instructions can be
executed one after the other. Whether this actually occurs during program
execution may depend on conditions which in general cannot be evaluated at
compilation time.

Definition 4.3 — Control-Flow Graph (CFG):
A control-flow graph is a graph G = (V, E) with a set V of vertices and a
set E ⊆ V ×V of edges. The nodes are labeled with program constructs:
prog(v) denotes the label of a node v ∈ V. The edges which are written
as e = v1 → v2 (v1, v2 ∈ V), are labeled with edge labels denoted by lab(e)
for an edge e ∈ E.

It is assumed that G has unique start and end nodes which are denoted
by sG and eG respectively. In addition, there must exist a path (see below)
through G from sG to every node v. Likewise, a path must exist from
every node v to eG.

The subgraphs representing loops, conditional branches and sequential
program flow are shown in Figure 4.3. Here, a subgraph G′ = (N′, E′) is
inserted as follows: all incoming edges lead to sG′ , all outgoing edges to
the successor node uniquely determined by the execution context. Nodes
with more than one predecessor are called joins and nodes with more
than one successor are called forks.

Definition 4.4 — Path:
A path π from node v1 to node vk in a directed graph G = (V, E) is a

71

4 Timing Analysis of Embedded Systems

sequence of edges, beginning with a node v1 ∈ V and ending in vk ∈ V
where π = v1 → v2, v2 → v3, . . . , vk−1 → vk and vi → vi+1 ∈ E for
i = 1, . . . , k− 1. The length of π is defined as the number of edges on π,
i.e., l(π) = k− 1.

Definition 4.5 — Basic Block:
A basic block in a control-flow graph is a path of maximal length which
has no joins except possibly at the beginning and no forks except possibly
at the end.

If the first instruction of a basic block is executed, then in case of error-free
execution (no hardware exceptions) all other operations of the basic block are
executed as well.

CFG Reconstruction

The CFG reconstruction (cf. Figure 4.2 on page 69) action in the decoding
phase reconstructs the CFG from a given binary executable. In fact, the
reconstructed graph is a combined call and control-flow graph, i.e., the graph
consists of two levels. The “outer” level is the call graph of all found routines
in the analyzed code where the “inner” level represents the control-flow
graph of each routine.

Remark:
The term CFG is used synonymous for this combined call and control-flow
graph.

The resulting CFG may also contain nodes that are not directly mapped to
program constructs. To ensure unique end nodes for each routine, special
nodes need to be added to the control-flow graph. These special nodes
are labeled with special symbols to distinguish them from program nodes.
Another program construct that needs special care are routine calls and
their returns. Due to the way how the micro-architectural analyses work,
a special call and return node is added for each call in the program (cf.
Section 4.3.3). To ensure safety of later analysis results, this reconstructed
CFG must be safe, i.e., all possible paths that can occur during execution of
the program must be represented. This is difficult for dynamically computed
successors, e.g., indirect calls via function pointers or the implementation of
high-level programming language constructs like switch tables. But often the
possible successors can be deduced knowing which compiler has generated

72

4.3 aiT Worst-Case Execution Time Framework

the code because code generation is done in a fixed way. If the target(s) of
a branch or call cannot be determined statically during CFG reconstruction,
there are two possibilities: Emitting a decoding error forcing the user to
supply information about all possible successors via user annotations (cf.
Section 4.3.6) or assuming that all routines in the executable are possible
successors. The latter leads to imprecise analysis results.

Technically, decoding is realized iteratively by two nested loops. The outer
loop gathers reachable routines starting from the user-specified entry address
and thereby computes the call graph of the read executable. It starts the
inner loop that actually classifies byte streams as instructions. The result is
the control-flow graph of the particular routine. Decoding of call instruc-
tions might detect new routines that haven’t been decoded so far. They are
communicated to the outer loop. Theiling [The03] explains details about the
decoding algorithm.

Although the inner loop makes use of constant propagation, slicing and
pattern matching, there still may be imprecise knowledge about parts of
the control flow, e.g., because of function calls via function pointers whose
content is not precisely known. In that case, the value analysis of the following
analysis phase (cf. Section 4.3.3) is queried to analyze the current control-flow.
With its results, the decoding phase is restarted to refine the control-flow. By
this establishment of a feedback loop between decoding and value analysis,
the precision of the control-flow reconstruction generally is increased.

The CFG reconstruction represents the CFG in a special intermediate lan-
guage, the so-called Control-Flow Representation Language (CRL). This lan-
guage is hierarchically organized in operations, instructions, basic blocks and
routines, i.e., basic blocks are enclosed within routines, instructions within ba-
sic blocks and analogously operations within instructions. Each entity in the
CRL graph is annotated with so-called attributes. They contain information
from the decoding phase like the processor resources used by an instruction4,
instruction classes and opcodes and similar data. The micro-architectural
phase makes heavily use of this information.

Listing 4.1 on the next page shows an extract from a sample CRL file that
illustrates the mentioned hierarchical composition of control-flow informa-
tion.

4like source and destination registers

73

4 Timing Analysis of Embedded Systems

Listing 4.1 – Sample CRL file extract

1 ...
2 routine r74: address=0x10b0, instruction_set="ppc", name="min",

section=".text", surface_address="0x10b0" {
3 block b75 (start) {
4 edge e78 (linear) -> b77;
5 }
6

7 block b76 (end);
8

9 block b77: address=0x10b0, instruction_set="ppc",
surface_address="0x10b0" {

10 edge e80 (true) -> b124;
11

12 edge e79 (false, linear) -> b105;
13

14 instruction i81: address=0x10b0, bytes=?vb(4*[0x94 0x21 0
xff 0xe0]), surface_address="0x10b0",

15 width=4 {
16 operation o82 "stwu r1, -32(r1)": arch="UISA",

assembly="stwu $, $($)", cat={ mem_write=1 }, dst
=4*[?v, ?v, "r1", "Mem"], form="D", genname="
stwu", op_id=0x194000000, optype=3*["GPRegAll", "
signed", "GPRegBase"], src=3*["r1", -32, "r1"];

17 }
18 ...

Loop Transformation

After CFG reconstruction, the Loop Transformation converts each loop in the
CFG into a tail-recursive routine. The original loop is replaced with a call
to the generated loop. Similarly, each branch back to the start of the loop
(a so-called “back-edge”) is replaced by a recursive call. These calls do not
correspond to code instructions of the executable and are only virtually
added, i.e., in the control-flow graph structure.

By this, different iterations of the loop are transformed into consecutive
recursive calls so that each iteration corresponds to exactly one execution of
the loop routine. This transformation does not change the semantics of the
program but enables a more precise analysis of loops because different itera-
tions can be analyzed separately and thereby enables a configurable virtual
inlining and unrolling [MAWF98]. Moreover, the loop transformation is only

74

4.3 aiT Worst-Case Execution Time Framework

done on the reconstructed control-flow graph, so the original executable is
not changed at all.

4.3.3 Micro-architectural Analysis Phase

Program Analysis by Abstract Interpretation

This phase performs static analyses of the system architecture with respect
to the execution of a given program. For this purpose, the precise effect of
the program execution has to be formalized which is done by its semantics,
a mathematical characterization of the program’s possible behavior. The
most precise semantics is the so-called concrete semantics, describing closely
the actual execution of the program. Here, the system is represented by a
state, i.e., the contents of registers, memory cells, etc. Program execution is
then defined as consecutive transformations starting with an initial state and
leading to a specific end state. The execution of a single instruction is not
mapped to a single transformation as the semantic effect of the instruction
depends on the execution history as well as its control-flow predecessors, at
least for modern processor pipelines.

Remark:
There are two different logical layers in such a program analysis that deeply
incorporates the internal behavior of the underlying system. The outer layer
is the control-flow graph consisting of program points that represent assembler
instructions. And the inner layer represents the system state evolution caused
by the execution of the current instruction. In principle, the inner layer is the
essential part for the computation and the outer layer maps the sequence of
system states back to the control-flow graph.

Definition 4.6 — Trace:
A trace is a sequence of system states connected by state transformations
according to a given semantics.

In general, the concrete semantics of a program, i.e., all possible state transfor-
mations are not computable efficiently even under the restriction of terminat-
ing programs and a finite number of start states. Therefore approximations
for the information provided by the concrete semantics of a program are
needed. Such approximations will be incomplete but required to be safe, i.e.,
a program property that is claimed to be held by an analysis must be satisfied
for all possible executions of that program.

75

4 Timing Analysis of Embedded Systems

Definition 4.7 — Abstract Interpretation:
Abstract interpretation is a framework that defines relationships between
a concrete semantics and an abstract semantics that results from approxi-
mations.

Where the concrete semantics computes a set of system states, i.e., its working
domain is the superset of all possible traces, the abstract semantics works
on an abstract domain, leading to sets of abstract system states. Each ab-
stract system state represents a set of concrete system states in the concrete
semantics.

The goal of these approximations is to derive a computable semantic inter-
pretation of the program. Depending on the employed abstraction, a loss
of precision for the analyses results may be the consequence in favor of
the decidability and tractability. For example, lets assume an analysis that
abstracts from concrete values of program arithmetic and only stores the
signs of expressions. This abstraction does not necessarily lead to a loss of
precision: to compute the sign of a product, it suffices to know the signs of its
operands. But in contrast to that, it is impossible to know the sign of a sum
whose operands are respectively positive and negative. So, an abstraction
always represents a tradeoff between the precision and efficiency in terms of
computational complexity.

Definition 4.8 — Data-Flow Analysis:
Data-flow analysis is a program analysis technique where abstract values
computed by data-flow equations are propagated between the nodes of
a control-flow graph. The computation is repeated until the propagated
values stabilize. This is called a fixed point iteration.

As a special application of abstract interpretation, correctness proofs for data-
flow analysis can be given. In Section 4.3.3 there is an example illustrating
the way how such a data-flow analysis works.

Four different data-flow analyses are employed in this phase of the aiT
framework:

I the loop analysis,

I the value analysis,

I the cache analysis and

I the pipeline analysis.

76

4.3 aiT Worst-Case Execution Time Framework

Loop and value analysis are implemented within a single analyzer as well
as the cache and pipeline analysis. Where the first two analyses might also
be separated from each other, the combined cache and pipeline analysis has
to be combined because the pipeline analysis models the control flow of
instructions within the processor pipeline and therefore computes the precise
instant of time when the cache is queried and its state is updated.

The analyzers are not solely manually programmed. Instead they are gen-
erated using the so-called Program Analyzer Generator (PAG). PAG is a frame-
work used to generate program analyzers from a concise analyses specifi-
cations [Mar99]. It combines the advantages of two worlds: abstract inter-
pretation and data-flow analysis [Mar98]. Abstract interpretation enables
the specification of provable correct analyses where the latter offers efficient
implementation methods like the fixed point iteration. The generated code
is ANSI-C compliant and efficient. As the analyzers can be specified in a
concise and specifically developed high-level specification language, they can
be easily and therefore timely adapted to other semantics like a different
instruction set. By this, the loop, value and pipeline analyzers mentioned
above can be adopted to new processor architectures in short time.

Loop Analysis

The loop analysis tries to statically determine iteration bounds for loops in a
program by detecting code patterns that identify loop conditions as well as
counter variable initializations and modifications. The actual loop bounds
are computed by data-flow analysis on matching code pieces. For example,
compiler generated code for loops could look like this: loop counter initializa-
tion just before the loop by a register load with a constant, a comparison of
the register value with another constant at the beginning of the loop and an
addition of this register with an intermediate value somewhere at the end of
the loop body. Having identified these assembly statements by given compiler
patterns, the loop analysis interprets the code and can compute intervals5 for
possible register contents. Using this information and the offset identified for
loop counter incrementation, the actual loop bound is computed. Here, the
analysis greatly benefits from the loop transformation done in the decoding
phase as different loop iterations can be distinguished. The so-called VIVU
(virtual inlining, virtual unrolling) approach invented by Martin and Alt
[MAWF98] facilitates the analysis to gain precision by virtually unrolling

5actually more complex abstract values, cf. next section about value analysis

77

4 Timing Analysis of Embedded Systems

loop bodies. Otherwise, analysis results would be joined at the loop header
because the control flow of both the last instruction before the loop and the
last instruction of one iteration coalesce at that point.

A drawback of this code pattern-based approach is the need of adjustments
for each compiler, sometimes even for different optimization levels in the same
compiler. The quality, i.e., the ratio between the number of automatically
computed loop bounds and the total number of loops in the program to
analyze strongly depends on the precision of the patterns. This approach is
limited with respect to the complexity of loops with multiple modifications
of the loop counter where not all loop bounds in the program can be detected.
Recent work [FMC+07] has enhanced the loop analysis by a method using
intra-procedural data-flow analysis to derive invariants for the loop bounds.
This method relies on the semantics of the machine instruction set solely, so
there is no dependency on the compiler or code patterns. Combing both
methods, bounds for most of the loops in typical real-world embedded
applications can be automatically determined. In order to determine worst-
case execution times, all other loop bounds need to be specified by the user
via user annotations (cf. Section 4.3.6).

The computed loop bounds must not necessarily be precise values. In general,
they are intervals whose precision can be disturbed by two situations: if an
unknown value is involved in the loop counter’s initialization, modification
or comparison, the loop bound potentially cannot be determined at all. This
might be the case if some register values are involved in the computation that
are not set within the analyzed code, e.g., in system startup routines. Another
reason for imprecise loop bounds are abstraction losses. For example, they
can occur at control-flow joins where contradicting value information from
different paths must be combined so that contents of machine registers might
become unknown or imprecise. Martin [Mar99] gives further details on that
topic.

Another recent work by Wegener [Weg11] tries to determine loop bounds
even in the presence of imprecise data-flow information.

Value Analysis

Whereas the loop analysis determines intervals for loop bounds, the value
analysis computes addresses of memory accesses as well as register contents.
It operates not only on code snippets extracted by pattern matching. Instead,

78

4.3 aiT Worst-Case Execution Time Framework

the implementation is an abstract interpretation of the machine instruction
semantics as documented in the instruction set architecture manuals of the
particular processor family. As for the loop analysis, the results are safe
interval approximations based on [CH78]. So both analysis techniques are
similar in their principle of operation. The results represented by a domain
of abstract values standing for certain sets of concrete values. A value in
this abstract domain is represented by an interval of addresses enriched with
additional relational information about the interval. Modulo information is an
example for such relations and encodes the alignment of possible values in an
interval of addresses. To be more precise, a modulo information m specifies
that each possible element x within an interval has to fulfill an equation of
the form x % p = m, where p is a power of 2. More details of the modulo
information have been described by Grewe [Gre08].

In embedded systems, data is often either loaded from configuration tables or
memory-addressed peripheral devices (cf. Section 3.3.6). This means that the
accessed addresses are often offsets to base addresses, either the base address
of a configuration table or the start address of a memory-mapped device. So,
knowing such addresses is more or less crucial for precise analysis results.
Fortunately, they are often coded as constants for the executing tasks.

Moreover, properties of the different memory areas are important, e.g., read-
only areas. Knowing that a section of the executable is read-only means
that the value analysis can precisely determine the results of load operations
accessing these sections as the section contents can be extracted during the
decoding phase. Of course, this greatly improves the precision of dependent
value computations.

To further improve the precision of the results, the so-called context separation
technique is used to distinguish analysis results for program points depending
on their execution context. For example, the path through a routine might
depend on one of its parameters. Not separating the execution context would
lead to precision loss due to contradictory information from each callee.
There are publications [AM95, AM97, Mar99] that give more information on
the separation of the execution context.

A side product and consequence of the determination of memory access
addresses and register contents is the detection of so-called infeasible paths in
the control-flow graph.

Definition 4.9 — Infeasible Path:
A path in the control-flow graph that is not executed by any possible

79

4 Timing Analysis of Embedded Systems

execution of the program is called an infeasible path.

Whether a computed branch is taken or not depends on a condition value,
e.g., the contents of a register. By computing the possible values of such a
register, the analysis might prove that one6 of the control-flow successors is
never executed. This knowledge has advantages: whole paths through the
analyzed program can be marked as not executed which reduces the number
of control-flow joins. As those points potentially introduce abstraction losses
(due to contradictory value information) the precision can be increased in
general. Another advantage is the reduction of possible execution paths
through the program. Depending on the program, the following pipeline
analysis can greatly benefit from this reduction in terms of its runtime and
space consumption as it does not need to simulate those paths.

Concerning the precision of the analysis results, the value analysis underlies
the same restrictions as the loop analysis, i.e., the existence of unknown
register contents written during system startup and general abstraction losses.
In general, value analysis’ results are more precise if the analyzed task allo-
cates memory statically. Dynamic allocation usually leads to unpredictable
memory accesses because the allocating operations (like malloc/new in
C/C++) typically do not give any guarantee about the particular returned
address. Current research by Herter and Reineke [HR09] tries to overcome
this limitation. Fortunately, dynamic memory allocation is only rarely used
in hard real-time systems because developers otherwise need to cope with
sufficiency, garbage collection, fragmentation and timeliness questions.

The results of the loop and value analysis are annotated to the program points
in the control-flow graph as illustrated in Figure 4.2 on page 69. The following
cache/pipeline analysis heavily uses and relies on that information.

Cache/Pipeline Analysis

The combined cache and pipeline analysis represents an abstract interpreta-
tion of the program’s execution on the underlying system architecture. The
execution of a program is simulated by feeding instruction sequences from a
control-flow graph to the timing model which computes the processor state
changes at cycle granularity and keeps track of the elapsing clock cycles. The
cache analysis presented by [Fer97, FW98, FMWA99, FW99] is incorporated
into the pipeline analysis. At each point where the actual hardware would

6or more in case of switch statements

80

4.3 aiT Worst-Case Execution Time Framework

query and update the contents of the cache(s), the abstract cache analysis
is called, simulating a safe approximation on the cache effects. In addition
to that, precise analysis of cache behavior still is an active field of research
[GRG09, GR09, AMR10, GR10].

The underlying simulation model of the processor architecture has to be elab-
orated which is the reason why the pipeline analysis is the most complex in
the aiT framework. The system state is approximated for computational com-
plexity reasons which lead to precision losses as mentioned in Section 4.3.3.
The correctness proofs according to the theory of abstract interpretation have
been conducted by Thesing [The04]. Figure 4.4 on the next page exemplarily
shows the correspondence of the control-flow graph with system states and
their transformations as computed by the pipeline analysis.

Each basic block has an incoming and an outgoing data-flow value, called
data-flow information (DFI) each. The incoming DFI contains all possible
abstract states before starting execution of the instructions in that particular
basic block. The outgoing DFI analogously contains all possible final states
after the execution. Each abstract state within a DFI is a result of the employed
abstractions and represents a set of concrete system states. The abstract
simulation computes the relation between the starting and final states as a
sequence of processor cycle updates on each state in the incoming DFI of
a basic block. These processor cycle updates and their corresponding state
transformations are based on a timing model of the processor architecture
and are explained in more detail in Section 6.2.

At program points where control flow is joining (cf. Figure 4.4 on the follow-
ing page) the corresponding outgoing data-flow values are combined to the
incoming value of the next basic block. This is a property of the underlying
data-flow analysis equation (cf. [The04]) and implies potential abstraction
losses if contradicting information has to be combined in a safely manner.

The result of the cache/pipeline analysis is the execution timing information,
i.e., the number of processor clock cycles computed by the abstract simulation.
To be more precise, the pipeline analysis generates an abstract system state
graph – the prediction graph.

Definition 4.10 — Prediction Graph:
A prediction graph is a graph G = (V, E) where each node v ∈ V repre-
sents a system state computed by the abstract simulation of the pipeline
analysis (cf. Section 4.3.3). Each edge e ∈ E represents a system state
transformation at processor core clock granularity.

81

4 Timing Analysis of Embedded Systems

Figure 4.4 – Pipeline Analysis of the aiT framework

. . .
. . .

Abstractions

. . .

. . .

. . .

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 11

1 1 1 1 1

Abstract Simulation

Processor Cycle
. . .

. . .

Data-Flow Information

Abstract State

Concrete State Set

Concrete State

Basic Block

Instruction

Data Flow

System State
(Start/Inner/Final)

82

4.3 aiT Worst-Case Execution Time Framework

Depending on the chosen path analysis variant (cf. Section 4.3.4), the predic-
tion graph is generated with different levels of detail:

I only at basic block level (basic block-level prediction graph), i.e., the nodes
represent the resulting system states after having simulated the execu-
tion of all instructions of a basic block or

I at instruction level (instruction-level prediction graph), i.e., the nodes rep-
resent the resulting system states after the retirement of each instruction
whose execution has to be simulated.

This timing information is later used by the path analysis phase to determine
the actual worst-case execution path.

Even with the powerful methodology of abstract interpretation, the pipeline
analysis might be computationally complex and demanding especially for
modern and complex processor architectures like the Freescale PowerPC 7448
[Fre05a]. Recent research activities therefore try to transform the computa-
tional model into a model for symbolic state traversal in order to benefit from
the efficient state representation capabilities of binary decision diagrams.
Please refer to [WW09] for details on this topic.

4.3.4 Path Analysis Phase

The path analysis phase uses the results of the combined cache/pipeline
analysis to compute the worst-case path of the analyzed code with respect to
the execution timing. So, the execution time of the computed worst-case path
is the worst-case execution time for the program. Within the aiT framework,
three different methods for computing this worst-case path are available as
illustrated in Figure 4.2 on page 69. Each of this methods will be described
in the next sections with its advantages and disadvantages.

ILP Based Path Analysis

This method has been introduced by Theiling [The03]. The idea is to generate
an integer-linear program from the basic block-level prediction graph (cf.
Section 4.3.3). They are combined into an objective function together with
derived constraints on the control flow of the code.

83

4 Timing Analysis of Embedded Systems

The objective function has been described by Heckmann [Hec10]: Let T(e, c)
be the estimated WCET for edge e and context c as determined by the com-
bined cache and pipeline analysis. Furthermore, let C(e, c) be the execution
count which indicates how often control passes along edge e in context c.
If one knows for a specific run of the code the execution counts C(e, c) for
each edge e in each context c, then one can get an upper bound for the time
of this run by taking the sum of C(e, c) · T(e, c) over all edge-context pairs
(e, c). Thus, the task of obtaining a global WCET estimation can be solved
by finding a feasible assignment of execution counts C(e, c) to edge-context
pairs that maximizes the following:

∑ C(e, c) · T(e, c)

The value of this sum is then the desired global WCET estimate.

Constraints on the execution counts of basic blocks to each other then describe
the control flow of the execution. For example, if a basic block b1 has two
successor blocks b2 and b3, then the number of executions of b1 equals to
the sum over the executions of b2 and b3 because the control either passes
from b1 to b2 or to b3. More details on the constraint system are given by
Theiling [TFW00, The02]. Such constraints are automatically generated and
improve the precision of the computed WCET by restricting the computation
to paths in the control flow which are not infeasible, i.e., for which the
micro-architectural analyses could not prove infeasibility.

The ILP based path analysis method is the oldest and has been used suc-
cessfully in practice with precise results, for example for avionics software
[TSH+03]. A drawback is the usage of the worst-case path through the
pipeline states for each basic block. It therefore combines execution traces
which might not represent an actual execution of the program. This poten-
tially results in an overestimation.

Prediction File Based Path Analysis

To overcome potential overestimations of the purely ILP based path analysis
method, the prediction file based path analysis has been developed [Mat06].
It does not rely on the execution time information on the basic block level.
Instead, the instruction-level prediction graph (cf. Section 4.3.3) output of the
pipeline analysis is used.

84

4.3 aiT Worst-Case Execution Time Framework

Such a prediction graph contains all possible system states that can be reached
during execution of the analyzed code. Therefore the problem of computing
the WCET path of a program can be reduced to the determination of the
longest path in its prediction graph.

By basing on the pipeline state graphs, the method has knowledge about
the relation between the end states of a basic block and the starting states
of the successor block. This enables an overestimation reduction of the ILP
based path analysis method. Another advantage is that the prediction file
based method can be implemented efficiently. Assuming that the prediction
graph is acyclic, its longest path can be computed in Θ(V + E) according to
[CLRS01]. But that property also sets up a drawback of this method. In the
presence of loops, the pipeline state graph might become cyclic depending
on the analysis settings concerning virtual unrolling of loops [MAWF98]. In
such a situation, the prediction file based method cannot be employed.

ILP Based On Prediction Files Path Analysis

There is another variant of the ILP based path analysis that operates on the
instruction-level prediction graph analogously to the prediction file based
method presented in Section 4.3.4. This method combines the ideas of both
other path analysis approaches and has been developed by [Ste10]. Now, the
longest path is not computed using graph algorithms directly. Instead, an
ILP constraint system is generated from of the prediction graph.

By this construction, the advantages of both existing methods (cf. the two
last sections) can be combined, i.e., the precision improvements as well as the
possibility to incorporate loop constraints in the integer-linear program. The
latter enables the handling of cyclic prediction file graphs.

A disadvantage is the size of the generated ILP: it might become large due to
the structure of the prediction graph. For this reason, further implementation
optimizations are currently developed.

ILP Solver

The integer-linear programs generated by two of the above mentioned three
path analysis variants (cf. Section 4.3.4 and Section 4.3.4) can be solved using
an arbitrary available ILP solver as sketched in Figure 4.2 on page 69.

85

4 Timing Analysis of Embedded Systems

The aiT worst-case execution time framework currently supports the following
ILP solvers:

I CPLEX
The IBM ILOG CPLEX optimizer is probably the most advanced and
powerful ILP solver software available today [Int11]. The aiT framework
supports usage of CPLEX as a solving module although the license for
using this solver has to be provided externally.

I clpsolve
This solver is an open-source implementation from the COIN-OR project
[LH03] and is not as sophisticated as CPLEX, but available at no costs.
For medium size programs the integer-linear program generated by the
path analysis can be solved rather fast using clpsolve. Therefore it is a
good alternative to CPLEX.

4.3.5 Visualization Phase

By contrast to all previously described phases the visualization phase does
not directly compute any result that contributes to the worst-case execution
time. This phase collects the results of all other phases so that they can be
interactively explored.

The graphical representation is realized using the graph description language
(GDL) [EB09]. GDL is a hierarchical language similar to CRL that can be read
by the aiSee graph viewer [Abs11].

The following data can be visualized this way:

I Decoding phase results:
The result of the binary decoding phase – the combined call and control-
flow graph – is written in its GDL representation. In addition, the
decoded machine instruction can be seen in a code listing view including
cross references to the actual source code files (if available).

I Micro-architectural analyses results:
All results of the loop-, value- and cache/pipeline analysis can be
explored interactively. For the value analysis this means the presentation
of incoming and outgoing data-flow values for each program point
separately. The abstract simulation performed by the pipeline analysis
can be viewed in basic block granularity which enables to track the
system evolution during execution of the analyzed code.

86

4.3 aiT Worst-Case Execution Time Framework

I Path analysis phase results:
The determined WCET path is highlighted within the CFG representa-
tion together with its costs, i.e., timing information for each basic block
is provided.

The visualization feature of the aiT framework greatly supports the under-
standing of the timing behavior of a program. “Worst-case performance
bottlenecks” can be identified and examined, i.e., often small changes in the
source code can affect the precision of the timing bound [FH08, GCH11].

4.3.6 User Annotations

Due to the nature of the whole timing analysis framework, there is some
information which has to be provided by the user because it cannot be
extracted/derived from the input binary alone. Such information may be
missing loop bounds, targets of unresolved computed calls, memory timings
and properties, etc. In order to provide such information, the aiT framework
can be supplied with different kinds of specifications and annotations in
a specific language, called AIS [Hec10]. Depending on the input program
and the underlying target architecture, these annotations are crucial for
performing a WCET analysis at all or they improve the precision of the
computed timing bounds.

In any way, the provided information replaces results of automatic analysis
although warnings are emitted if the provided information is provably wrong.
But in general, the correctness of the determined timing bound strongly
depends on the correctness of the annotations.

Examples for such user annotations are:

I resolution of unresolved computed calls:
If there are calls whose targets are computed via array references and
the memory area storing the array contents is not marked as read-
only by the compiler, the control-flow reconstruction might not be able
to determine instruction successors precisely. Assuming all known
routines as possible successors is practically impossible as the resulting
precision degradation is not acceptable. Here, the user can mark a
specific memory area as read-only and/or specifies further information
about the structure of the array descriptor so that the call targets can be
deduced automatically.

87

4 Timing Analysis of Embedded Systems

I missing loop bounds:
If loop bound(s) cannot be determined automatically (cf. Section 4.3.3
on page 77), the user needs to provide them in order to make a timing
bound determination possible at all.

I memory map specification:
Depending on the underlying target architecture, more or less infor-
mation about the used memory hierarchy must be provided. Most
importantly, this includes the address ranges of all memory areas that
are possibly accessed by the analyzed software. As such memory areas
have configurable attributes in the hardware, WCET bound precision is
increased in general, if such attributes are known to the analyzer. For
example, it is important to specify whether a memory area is read-only
or writable because the value analysis is allowed to propagate data
contents of read-only areas during analysis. This information can lead
to more precise value analysis results and, in consequence, might lower
the computed WCET bound as more execution paths in the binary can
be statically excluded. Other attributes indicate whether a particular
region is served by a cache or specify cycle latencies of accesses.

For further details on the concrete syntax of AIS and its semantics, please refer
to the specific tool manual of the particular timing analyzer like [Hec10].

4.4 Summary

This chapter starts with a general introduction to timing analysis for em-
bedded systems. It explains the importance of this topic in the presence
of safety-critical systems, i.e., the necessity of determining safe and precise
upper bounds on the execution time of tasks in such systems.

Existing approaches to achieve this goal are categorized into static and
dynamic methods with their different characteristic properties.

Afterwards, the aiT WCET analyzer framework is presented in detail because
this tool has been used for the implementation and practical evaluation in
the remainder of this thesis. Its tool design is illustrated together with a
brief introduction of program analysis by abstract interpretation because
one contribution of this work is the generation of aiT-compatible pipeline
analyzers from the derived timing models.

88

5
Formal Hardware

Specifications and
Synthesis

“Tell me where a human is
superior to a machine and I
will build a machine that
disproves your opinion.”

(Alan Mathison Turing)

5 Formal Hardware Specifications and Synthesis

5.1 Overview

This chapter addresses the development of hardware components based on
formal specifications. Until the late eighties, hardware has been designed
using computer-aided design (CAD) systems that were based on so-called
netlist languages. These languages define the hardware wires between single
components of a chip. Their disadvantages are:

I They have a low level of abstraction which renders the design process
complex.

I It is difficult to handle the growing complexity of modern architectures
this way.

I Due to the complexity, the development process is slow.

I Support for automated optimizations concerning the wire locations is
missing.

These disadvantages have been eliminated by the introduction of formal
hardware specifications.

Definition 5.1 — Hardware Description Language (HDL):
A language that allows the specification of the functional, temporal and
topological behavior of a piece of hardware is called a hardware description
language (HDL).

One of the most important properties of such languages is the explicit sup-
port for expressing concurrency and time as both are integral properties of
electronics.

The advantages over manual net-list-based implementations are:

I the usage of high-level language constructs enabling to abstract away
from the complexity of gates and flipflops,

I the possibility for simulating the resulting hardware model,

I the ability to cope with a magnitude of billions (109) of transistors,

I the possibility of an automated model verification and

I a tool-supported and therefore automated hardware synthesis process
from a more abstract specification.

90

5.1 Overview

Despite the existence of a bulk of different and application-specific hardware
specification languages, there are only four major HDLs that are widely
used.

Verilog Verilog has been introduced in 1985 by the company “Gateway
Design Automation” (GTA) and has been standardized in the IEEE-1364
standard [IEE95b]. In 1989, GTA has been acquired by “Cadence Design
Systems”. Verilog is widespread in the USA.

VHDL VHDL has been developed by IEEE on behalf of the U.S. Department
of Defense in 1987 and represents the de facto standard for the specification
of hardware designs in Europe. The following section gives a detailed
description about its syntax and semantics.

SystemC SystemC has become an IEEE standard in 2005 [IEE05] and is a
language for the specification of systems with both hardware and software
components and is not a pure HDL like VHDL or Verilog. Syntactically,
SystemC is realized as a C++ class library and augments the C++ language
by macros and functions that provide features to express inter process com-
munication, synchronization and parallelism. A disadvantage of this close
relation to C++ is the syntactical overhead. On the other hand, the level of
abstraction is higher than the corresponding level of VHDL or Verilog so that
the simulation speed for SystemC specifications is faster by a factor of 10
according to Calazans et al. [CMH+03]. By this, simulations of larger and
more complex software are possible compared to real HDLs like VHDL or
Verilog.

SystemVerilog SystemVerilog represents a combination of a hardware de-
scription and a verification language. The hardware description part is a
further development of Verilog and the verification part has been inspired by
the verification language Vera [Syn12]. SystemVerilog has, similar to SystemC,
inherited language concepts from C/C++.

In the following, VHDL is introduced in more detail as an example of a
modern hardware description language.

91

5 Formal Hardware Specifications and Synthesis

5.2 VHDL

VHDL abbreviates Very High Speed Integrated Circuit Hardware Description
Language. It is a hardware description language developed as an alternative
to huge complex manuals describing the detailed behavior of a system.
Its focus ranges from specifying circuits at transistor level to describing
large system behaviors with high-level constructs. VHDL originally has
been introduced in 1987 in the standard IEEE-1076-1987 [IEE87] and got
augmented by a multi-valued logic data type within the standard IEEE-1164
[IEE93]. Besides revisions of IEEE-1076 in 1993, 2000 and 2002, some of the
developed sub-standards are:

I IEEE-1076.1 [IEE99a]
VHDL-AMS for mixed analog and mixed signal circuit design

I IEEE-1076.2 [IEE96]
Mathematical packages with support for real and complex numbers

I IEEE-1076.3 [IEE97]
Synthesis packages that define the interpretation of IEEE-1164 (cf. above)
for synthesis tools

I IEEE-1076.4 [IEE95a]
Additional support for detailed specification of pin-to-pin propagation
delays and timing constraints

The newest revision of IEEE-1076 has been published in 2008 and is also
known as VHDL 4.0. One of the major achievements here is a partial integra-
tion of the above sub-standards.

Although all language constructs within VHDL are suitable for a simulation,
some are not usable for the direct synthesis of hardware components, e.g., all
constructs that deal with timing. For this, another sub-standard – IEEE-1076.6
[IEE99b] – has been developed in order to define a synthesizable subset of
VHDL. This standard defines a mapping of language constructs to hardware
components, e.g., gates and flipflops, with the goal to unify the synthesis
results of the different synthesis tools.

The following sections give an overview of the basic concepts and notations
of VHDL alongside an introduction to its semantics. For a more thorough
explanation consult [Ash08].

92

5.2 VHDL

5.2.1 Domains and Abstraction Levels

VHDL offers three different domains, in which a system can be specified:

I Functional domain
Here, the functional operations performed by the system are described.

I Structural domain
This domain describes the structural composition of the system, i.e., the
interconnection between the different components.

I Geometric domain
The geometric domain specifies how the system is placed in physical
space, i.e., wire routing etc.

This enables a wide range of different syntactical specification possibili-
ties. Within each domain the designer can choose between four levels of
abstraction starting from more overview-like descriptive text up to detailed
low-level specifications suitable for automated synthesis/simulation and
analysis. Depending on the user’s needs, the hardware circuits can be de-
scribed in different domains/abstraction levels. Even a mixture of different
syntactical constructs within one model is possible as mentioned below. But
when modeling the same hardware within disjoint specifications at different
domains/abstraction levels, these models are not connected to each other.
For example, if there is a structural as well as a behavioral description of
the same hardware circuit within different VHDL models and one of the
two models is changed, the other model is not modified automatically. The
domains and abstraction levels only offer different syntactical specification
techniques.

The three specification domains with their four orthogonal abstraction levels
are illustrated in Figure 5.1 taken from Gajski [GK83]. The axes represent
the three specification domains and the circles the abstraction levels where
the outermost circle is the most abstracted level. This level is often called
behavioral model because the system is explained as a whole. For example,
in the functional domain this corresponds to pseudo-code that explains an
algorithm. The geometric domain at this level could consist of a floor plan
that shows the arrangement of the components on the die.

The second abstraction level reveals more details. In the functional domain,
there is the so-called register-transfer level that shows data paths and control

93

5 Formal Hardware Specifications and Synthesis

Figure 5.1 – VHDL domains and abstraction levels (Y-Chart from Gajski
[GK83])

Geometric

FunctionalStructural

Polygons

Sticks

Standard Cells

Floor Plan

Differential Equations

Boolean Equations

Register-Transfer Language

Algorithm

Transistor

Gate

Register-Transfer

Processor-Memory-Switch

sections.1 The geometric domain in this abstraction level addresses transfor-
mation units and registers within a floor plan, i.e., augments the previous
abstraction level.

In the second-most detailed level the structural domain shows the intercon-
nection of gates, the functional domain is already at the level of Boolean
equations representing the hardware logic and there are virtual grid notations
in the geometric domain.

The fourth abstraction level is the most detailed one. In the structural
domain, the individual transistors are shown. The functional domain derives
differential equations that enhance the Boolean equations from the previous
level by the relation between voltage and current in the circuit. In the
geometric domain, polygons for layout masks of an integrated circuit are
shown, which are used to describe the different layers of a circuit board.

Often models are not specified using only one abstraction level or domain.
Typically, the topmost entity is a more structural part of the design and de-

1An example for such VHDL descriptions can be found in Listing 5.1 on page 98.

94

5.2 VHDL

scribes how the hardware is composed of different sub-modules. Depending
on the size and complexity of the complete model, the sub-modules again
consists of other sub-modules. At some deeper level in this hierarchy, the
modules then contain the actual functional specification. So, a hardware
model often consists of a mixture of different abstraction levels and domains,
i.e., structural as well as behavioral parts. Despite this enormous flexibility of
the different abstraction levels, it should be noted that most system designers
do not need to model at the third or fourth level. The hardware synthesis
process supports an automated translation from the higher abstraction levels.
That is the reason to concentrate on the register-transfer abstraction level for
the purpose of extracting timing models from a system specification. This
level is already detailed enough to extract the concrete timing behavior. More-
over synthesis tools are not allowed to change the specified timing behavior,
so the synthesized hardware fulfills the specified timing.

5.2.2 Basic Language Constructs

This section shows some basic language constructs of VHDL with respect to
the register-transfer abstraction level (see above) in order to give an impres-
sion of typical specifications encountered in the area of embedded systems.

Declarative Constructs A VHDL design is hierarchically composed of dif-
ferent language constructs where the topmost is a so-called entity declaration.
It represents the design’s public interface, i.e., its incoming and outgoing
signals (see below), which are also called ports. Typically, these are the con-
nected pins of the hardware. The entity only has a declarative character, i.e.,
it does not directly contain executed statements. For this, the implementation
of an entity is specified via an architecture body construct which consists of one
or more concurrent statements. Concurrent here means that these statements
run in parallel when executing or simulating the design (cf. Section 5.2.3).

The most fundamental concurrent statement is the so-called process statement,
which is described separately below. Other types are:

I block statement
Block statements can be used to group different concurrent statements.

I concurrent procedure call statement
Using this construct, a procedure call can be placed at the level of the

95

5 Formal Hardware Specifications and Synthesis

concurrent statements. Otherwise, such calls are only allowed as a
sequential statement (see below).

I concurrent signal assignment statement
A signal assignment can be lifted to the concurrent statement level
analogously to procedure calls (of the previous item).

I component instantiation statement
A component is a construct for structural information, as it defines
the interface of a sub-module within an entity. Using a component
instantiation statement, a sub-module is mapped to concrete input and
output signals.

I generate statement
A generate statement encloses a sequence of concurrent statements and
generates a specified number of copies of these sequence. Syntactically,
this looks similar to a “for” loop in C.

In general, all above listed concurrent statement types can be reduced to
process statements. Therefore, they only represent a convenient way to
express certain patterns of processes. In principle, all concurrent statements
of a design are executed in parallel. Partly, their execution depends on
conditions like sensitivity lists of processes (cf. Section 5.2.3). Because of that,
there are no global variables and each globally visible signal is only allowed
to be driven by one concurrent statement.

Implementation (architecture body) and interface declaration (entity) of a
design is separated because this enables the definition of multiple alternative
implementations for the same component in different domains. For example,
an entity may be associated with a behavioral implementation that abstractly
describes the component’s functionality. Additionally, there might be a
structural description of the component that describes how it is composed of
other subsystems.

Sequential Executive Constructs At the RTL abstraction level, the archi-
tecture body consists of one of more process statements. Each of them is
composed of one or more sequential statements which are executed in order
as in other conventional programming languages. A sequential statement
can be an evaluation of expressions, a variable or signal assignment, condi-
tional and/or repeated execution or a subprogram call. Subprograms may be

96

5.2 VHDL

defined within the scope of a process and can be called by a sequential state-
ment. There are two different kinds of subprograms: procedures or functions.
The main difference between both is that a procedure has no return type in
contrast to a function. Thus, a procedure call is a sequential statement on its
own and a function call is part of an expression.

Storage Constructs There are three kinds of elements for storing values
in a model: constants, variables and signals. Constants and variables are
process- or subprogram-local constructs, i.e., their usage is only allowed
within the bodies of processes or subprograms. Where a constant can be only
written once at its declaration, a variable is modifiable by a corresponding
assignment sequential statement. At first glance, signals and variables are
identical storage elements. The difference between them is the point of time
when corresponding assignments take effect. Assigning a value to a variable
takes effect immediately, i.e., the next reference to this variable returns the
newly assigned value whereas the assignment of a value to a signal is only
scheduled to be the future value, i.e., the next reference returns the old value.
Additionally, signals are used within interface declarations of entities as they
are used for the communication between different components.

Example: 3-bit Counter Listing 5.1 on the following page shows the above
specification of a simple 3-bit counter. The entity declaration of the compo-
nent “counter” is shown in lines four to seven followed by its implementation
(architecture body). The input ports are the signals clk and rst where the
first one is the clock and the second one is the asynchronous reset signal that
is used to reset the counter value. The counter is designed as a synchronous
circuit, i.e., all computations except for the reset are synchronized on the
transitions of the clock signal. The current value of the counter is provided
by the output port val which is a 3-bit binary number.

The implementation is given in form of two processes, namely increment
and output. During simulation, a process executes its code whenever one of
the signals contained in its sensitivity list (clk and rst or cnt respectively)
changes its value. The process increment either increments the counter
value for each rising clock edge and output generates the new output signal
of the counter value or it sets the counter value to "000" if the reset signal
is activated.

97

5 Formal Hardware Specifications and Synthesis

Listing 5.1 – 3-bit counter VHDL design

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity Counter is
5 port (clk, rst : in bit;
6 val : out integer (2 downto 0));
7 end Counter;
8

9 architecture rtl of Counter is
10 signal cnt : integer (2 downto 0);
11

12 begin
13 increment: process (clk, rst)
14 begin
15 if (rst = ’1’) then
16 cnt <= "000";
17 elsif (rising_edge (clk)) then
18 cnt <= cnt + ’1’;
19 end if;
20 end process;
21

22 output: process (cnt)
23 begin
24 val <= cnt;
25 end process;
26 end;

Because of the special semantics of signal assignments, the statement “cnt
<= cnt + ’1’;” in line 18 of Listing 5.1 schedules the next value of cnt
to be cnt plus one, but the next reference val <= cnt; (line 24) schedules
the next value of val to be the current value of cnt. These future values
take effect as soon as all processes suspend their execution. The execution
semantics are detailed further in Section 5.2.3.

Example: Implication Circuit VHDL also supports component-based cir-
cuit specifications. Figure 5.2 on the facing page shows such a hierarchical
composition by a circuit for the logical implication. The result c of the circuit
is computed by two sub-components, namely a logical-not gate (not) and a
logical-or gate (or). The whole circuit then implements the implication by the
formula c = ¬a ∨ b. The mentioned decomposition into two sub-components
can be seen in the VHDL specification of the implication circuit as shown

98

5.2 VHDL

Figure 5.2 – Implication circuit schema

a not

b

or c

Listing 5.2 – Implication circuit VHDL design

1 entity implies is port (a, b: in std_logic;
2 c: out std_logic);
3 end entity;
4

5 architecture struct of implies is
6 signal int_neg: std_logic;
7 begin
8 not: entity invert
9 port map (a, int_neg);

10

11 or: entity or2bit
12 port map (int_neg, b, c);
13 end;

in Listing 5.2 where the logical-not and -or gate are implemented by two
sub-components.

Wait Statements A language construct to explicitly express time is the
so-called wait statement. The process execution stops at this point and the
process suspends for a specified amount of time or until one of its sensitive
signals changes its value. This is a special property of the VHDL semantics
(cf. Section 5.2.3). Wait statements are forbidden in the synthesizable subset
(IEEE-1076.6). There, processes suspend implicitly after having executed all
of their sequential statements which corresponds to a wait statement at the
end of all sequential statements.

Type System The VHDL standard [IEE87] defines fundamental data types.
Figure 5.3 on the following page sketches the most prominent ones along-
side their dependencies. In addition, there are other data types which are

99

5 Formal Hardware Specifications and Synthesis

Figure 5.3 – VHDL type system

Types

scalar

discrete

integer

integer

positive

natural

enumeration

boolean

bit

character

floating point real

composite

array

constrained

unconstrained
bit_vector

string

record

100

5.2 VHDL

partly defined in complementing sub-standards like IEEE-1164 [IEE93] which
augments VHDL by a multi-value logic data type.

Scalar data types are divided into discrete and floating point types. The
discrete types represent different variants of integer numbers, where natural
(≥ 0) and positive (> 0) are only sub-types of integer. Additionally, there are
enumeration types: character, bit and boolean. On the floating point side, there
is only the data type real.

Based on top of the scalar data types, there are two main composite types: Ar-
rays that collect sequences of other data types (scalar or composite) or records
that can be used to hierarchically group other data types. Two important
predefined array types are the string and bit_vector types.

Of course, there are language constructs to construct custom data types or
new sub-types of existing ones. But the existing types are typically sufficient
to represent hardware circuits at the register-transfer level.

Ashenden [Ash08] gives more details about the VHDL syntax, its type system,
and insights into the different abstraction levels and domains.

5.2.3 Semantics

The semantics of VHDL is not directly comparable with that of a conven-
tional programming language like C or Pascal. In order to specify hardware
behavior, it is necessary to have explicit language support for concurrency
as it is present within hardware circuits. The simulation or execution of a
VHDL model consists of two phases: an initialization phase at the beginning
of the simulation and an iterative actualization phase. The state machine of the
concrete simulation semantics described below is shown for illustration in
Figure 5.4 on page 103.

Initialization Phase In the initialization phase (state init in Figure 5.4) all
signals are assigned to their type-specific default values and the simulation
time is set to zero. Then, all processes are executed once until they suspend,
i.e., until they have reached a wait statement or the execution of all sequential
statements has finished. During the process execution, signal assignments2

schedule a transaction in the so-called transaction list. Each element in this
2cf. Section 5.2.2

101

5 Formal Hardware Specifications and Synthesis

list is a tuple (t, s ← v) where t is the simulation time when the signal
assignment takes effect and s← v is the actual signal assignment.

Actualization Phase The actualization phase starts when all processes
have suspended their execution. Now, the transaction list is checked and all
transactions scheduled for the current simulation time (state sync in Figure 5.4
on the facing page) take effect and signal values potentially change. If there
are processes that are sensitive3 to at least one of those changed signals,
these processes are resumed and executed (state exec in Figure 5.4) until they
suspend again. Then the actualization phase is restarted again (by going
into state sync again). This process rerun step is called a delta cycle and it
is important to state that the simulation time is not changed during a delta
cycle. If all transactions for the current simulation time are done and all
processes have suspended again, the simulation time is increased (in state
time of Figure 5.4) to the value of the minimum over all timestamps t in the
transaction list. Then again all transactions of the new current simulation
time are executed and processes might be resumed. This shows that the
actualization phase is an iterative process and executed until there are no
more transactions in the transaction list (transition from state sync to state
end). In synchronous systems where all actions are synchronized to a the
clock signal, the simulation would never end because the actualization phase
loop is never left. In the real hardware, this is okay because the system stays
activated until it is shut down and during a simulation, one can set a time
limit as an upper bound.

Thus, the semantics of VHDL can be seen as a two-level semantics: sequential
process execution at its first, signal update and repeated process execution at
its second level. An interesting effect of this semantics is that there usually
exist delta cycles until system components reach a steady state. They are
called activation sequences.

Example

Figure 5.5 on the next page shows a timing diagram of a simulation of the
3-bit VHDL counter specification from Listing 5.1 on page 98. Each row
in the timing diagram represents a signal and shows its values during the
simulation. The simulation progress is shown in the first row where each

3A changed signal is contained in their sensitivity list.

102

5.2 VHDL

Figure 5.4 – VHDL simulation semantics state machine

initstart sync

exec

time

end
ε

signal value change(s)

no signal value change

empty transaction list

process(es) suspended

time advanced

Figure 5.5 – Simulation timing diagram of 3-bit counter from Listing 5.1

externally driven signals

simulation steps 0 0 + 1δ 1 1 + 1δ 1 + 2δ 2 3 3 + 1δ 3 + 2δ 4

clk

rst

cnt 3 0 1 2

val 2 0 1 2

Signal Name Signal Values

103

5 Formal Hardware Specifications and Synthesis

number is one simulation step. For the sake of simplicity, the unit of time is
in simulation steps so that the whole example is more or less independent
of the concrete frequency of the clock signal. Here, the difference between
a real simulation step (where time does elapse) and the described delta
cycles between them is illustrated. According to the semantics of VHDL,
one can see that there can be multiple process executions until some time
elapses. This is shown in the delta cycles between the simulation steps 1–2
and 3–4 where the change of the clock signal triggers another execution
of the process increment which itself causes a change of the cnt signal
that triggers another execution of the output process. After that sequence
of process executions, the signals become stable and simulation time can be
advanced.

5.2.4 Analysis, Elaboration and Simulation

One of the major goals of modern hardware description languages is the
possibility to simulate the specified hardware model. To reach this, a VHDL
specification undergoes three stages:

I Analysis

I Elaboration

I Simulation

Analysis Stage In the analysis stage, the model is checked for syntactic and
static semantic errors. The latter is possible because of VHDL’s strong type
system. This stage is similar to what is done in a compiler when analyzing
the input program.

Elaboration Stage The elaboration stage modifies the VHDL code so that
it is more suitable for synthesis and simulation. Hierarchies of data structures
are eliminated which means that custom defined types are resolved so that
only atomic data types defined by the standards are used. For hierarchically
composed specifications, the elaboration results in a flat definition, i.e., com-
ponents are instantiated at their declaration, record structures are collapsed
and functions returning record types are transformed into procedures. In the
end, there is only one large entity consisting of a number of processes and
some locally defined signals. As a consequence of this, all globally visible

104

5.2 VHDL

identifiers are renamed for unification, e.g., overloaded functions are resolved,
variable/signal names unified, etc. In addition, all structural descriptions are
transformed into wire definitions.

The following transformations to the VHDL code are required by the stan-
dard:

I Transformation of subtypes:
If subtypes have been introduced in the design, their definitions are
reformulated in terms of their atomic base types.

I Resolving of overloaded functions:
Function overloading is resolved by making all function names unique.
Moreover, all calls are adjusted accordingly.

I Transformation of record-returning functions:
Functions that return a record data structure are transformed into
procedures where the original return value is given a by-reference
parameter. Similarly to the resolution of function overloading, all
matching function calls have to be adjusted, as well.

I Record structure collapsing:
All occurrences of record data structures are collapsed, i.e., the struc-
tures are split up into their elements recursively. Effectively, no record
data structure is to be found after this conversion step.

I Transformation of range attributes:
All range attributes are replaced by the particular constant values.
This is possible because range attributes must be statically computable
according to the VHDL standard [IEE99b].

I Component instantiation and generate statements:
Component and generate statements are used to build up a hierarchical
structure in the hardware design, i.e., a component declaration is more
or less a reference to an entity definition (including corresponding
architecture). During this step, all such references are replaced by their
actual implementation.

I Embedding of block statements:
The contents of all block statements are moved to the architecture body
of the topmost entity and the corresponding block statements itself are
deleted.

105

5 Formal Hardware Specifications and Synthesis

The VHDL standard does not require a specific order of application for the
listed transformations.

Simulation Stage For the simulation stage, a model must be reducible to
a collection of signals and processes. This is guaranteed by the elaboration
process. Then, the model is simulated according to the semantics of VHDL
as described in the previous section. This enables a sophisticated debugging
and visualization flow for a hardware specification. Moreover, the elaborated
model serves as input for a hardware synthesis tool as described in the next
section.

5.3 Hardware Synthesis

Before the invention of modern hardware description languages, hardware
synthesis had to be done by manually designing the hardware components
in CAD systems. This process is complex and error-prone as it is conducted
at a low level of abstraction. The goal of a tool-supported hardware synthesis
is the specification of the circuits with descriptions at a higher abstraction
level ignoring their detailed implementation in hardware logic. A synthesis
tool then transforms the high-level description into a netlist based language
which defines the connections between modules on a computer chip. Such
netlists are the result of traditional CAD system usage, as well.

As mentioned above, the majority of the available synthesis tools accept
VHDL specifications only at the register-transfer level and generate circuits
from these specifications which are composed of standard cells for ASICs
(see below) or LUTs for FPGAs (see below). The common basis for the
accepted VHDL constructs is the synthesizable subset of VHDL (IEEE 1076.6
standard [IEE99b]). The VHDL specification is used to construct the described
behavior in hardware automatically which can be an ASIC (Application-
specific integrated circuit4) or FPGA5 implementation. ASICs are composed of
so-called standard cells: transistors and interconnect structures that either
implement Boolean functions, e.g., AND, OR, XOR, XNOR, or provide storage
functionality, e.g., flipflops or latches. The key components of FPGAs are
called n-bit lookup tables (LUTs) implemented by multiplexers. They can
encode any n-bit Boolean function.

4which means an application specific hardware component
5cf. Section 3.3.1

106

5.3 Hardware Synthesis

Listing 5.3 – 2-bit multiplexer VHDL design (taken from Heinkel [Hei00])

1 process (A, B, SEL)
2 begin
3 if (SEL = ’1’) then
4 OUT <= A;
5 else
6 OUT <= B;
7 end if;
8 end process;

The mapping between high-level language constructs and their corresponding
hardware implementation is done via pattern matching on the VHDL code.
Therefore, synthesis results can differ between different tools, but the timing
behavior in terms of clock cycles must not change to what is specified by
the VHDL description. This enables the extraction of timing models from
such VHDL specifications at the register-transfer level as it is demonstrated
by the thesis. The timing model derivation as presented in the next chapter
in combination with the generation of pipeline analyzers as described in
Chapter 7 can be seen as a VHDL design synthesis with respect to an abstract
semantics.

Although the semantics of process sensitivity lists is defined in the VHDL
standard, synthesis tools often ignore them according to [Hei00]. In this case,
the results of design simulation and execution of synthesized hardware may
differ depending on the concrete inputs of the circuits. The simulation might
potentially restart a process because one of the signals in its sensitivity list
has been updated. This could lead to the mentioned result differences.

Listing 5.3 illustrates this potential difference at the example of a 2-bit mul-
tiplexer (taken from Heinkel [Hei00]). The model has two signals in its
sensitivity list: A and B. Although the specified process reads the signal SEL,
it has been (intentionally) not specified in the sensitivity list. Depending
on the particular value of signal SEL, the values of A or B are assigned to
the output signal OUT (cf. lines 3–6). During simulation of this design, a
modification of signal SEL does not trigger a process execution so that the
output signal does not change. By contrast, the generated multiplexer circuit
appropriately drives the generated output signal value if the synthesis tool
does not honor the sensitivity list. In general, simulation and generated
hardware only show identical behavior if each process lists all signals that
are read in its body.

107

5 Formal Hardware Specifications and Synthesis

For the remainder of this thesis, it is assumed that input VHDL designs are
correct with respect to the sensitivity list specifications.

5.4 Summary

This chapter introduces formal hardware specification languages (HDL) in
general. The purpose of their invention with their advantages over existing
legacy methods for the specification of hardware circuits is described.

VHDL, one of the most prominent and widely used HDLs, is detailed as
an example for a modern specification language with automated circuit
synthesis and simulation support. Basic language constructs are depicted and
followed by a detailed description of their two-level execution semantics. This
is important because the generated pipeline analyzers in Chapter 7 represent
(abstract) simulators for VHDL designs.

108

6
Derivation of Timing

Models

“It is not enough time, we
have, but it’s too much time,
we do not use.”

(Lucius Annaeus Seneca)

6 Derivation of Timing Models

6.1 Overview

In Chapter 4, it has been shown that all static timing analysis methods are
based on a sophisticated model of underlying system architecture’s timing
behavior. Currently, these timing models are developed manually [The06], i.e.,
they are hand-crafted implementations by human experts. The development
is based on the manuals provided by the manufacturers of the hardware
platforms as well as a reengineering process for undocumented parts of the
system (cf. Section 4.3.3). Both render the model development error-prone
and time-consuming. It has been pointed out in Chapter 5 that modern
hardware components are automatically synthesized from formal hardware
descriptions like VHDL or Verilog. They determine the complete system’s
behavior – including timing information. So, it is highly desirable to extract
the information needed for the timing model creation from such specifications.
This would ensure that the resulting timing model is correct by construction
and would speed up the creation time massively.

This chapter provides an approach to extract the timing behavior of a system
from such formal hardware descriptions in order to overcome the limitations
and disadvantages of the manual development of timing models. This
thesis focuses on VHDL models nevertheless the approach in general can be
applied to any hardware description at the register-transfer level. The only
requirement is that the model is representative concerning the timing, i.e., it
is detailed enough to contain cycle-accurate information.

Unfortunately, VHDL specifications contain a lot of details on processor state
changes during program execution. If a timing model would be derived
from a processor specification without any model transformation, the re-
source consumption of the subsequent pipeline analysis would be prohibitive.
Therefore, the size of the model has to be reduced.

The remainder of this chapter is structured as follows: The next section intro-
duces the term timing model and lists computation approaches at different
levels of abstraction alongside their particular advantages and disadvantages.
Nondeterminism and timing anomalies are detailed with their effects and
implications on the safety of the computation approach employed within
aiT. Section 6.3 shows how to analyze VHDL specifications using abstract
interpretation by translating a hardware model into an equivalent sequential
program. The goal is to derive safe model constraints. After that, Section 6.4
introduces the so-called Timing Model Derivation Cycle that defines a process

110

6.2 Timing Models

for the extraction of timing information from a formal hardware specifica-
tion in VHDL. Section 6.5 describes common workflow for such a timing
model derivation together with sample application scenarios. Additionally,
a categorization of the presented steps into mandatory and optional one is
presented.

6.2 Timing Models

As described in Chapter 4, one of the most important parts of the aiT frame-
work is the combined cache and pipeline analysis which computes the timing
information at the basic block level in the granularity of processor clock
cycles. The computation of such timing information is possible in different
ways:

Simulation of low-level hardware models is an approach where a hardware
model is specified in a HDL at the gate level. This can be used to capture
the elapsed execution time during simulation. Unfortunately such models
contain too much information which is not necessary for the determination of
the timing behavior, e.g., there are internal signals which are only useful for
the functional behavior. In addition, the lack of hierarchy at the gate level pre-
vents the invention of efficient abstractions which renders the whole approach
to be computationally way too complex for industrial applications.

Another approach would be the simulation of RTL-level hardware models
in VHDL or Verilog where the level of abstraction is higher than in gate-level
models. But still, there is too much information in the description to be useful
in a timing analysis directly, i.e., without any kind of transformation. Both
for the gate- and RTL-level models their availability is a political issue that
has to be solved, i.e., processor manufacturers often are afraid to provide
their hardware specifications as they contain their intellectual property.

Effect semantics, i.e., specifying the semantic effect on the global system
state at the instruction level together with combination rules would be a
way to globally describe the timing effect of a program’s execution. This
approach cannot be realized for modern processors that can execute multiple
instructions in parallel. Here, a more fine-grained model based on processor
cycle-wise updates is needed. But for rather simple in-order processors, this
approach is an option.

111

6 Derivation of Timing Models

Designing a higher level model that represents the effects of the program
execution manually is the method currently used. Such models are not
designed at the gate level. Instead design components that more or less
directly map to the functional units of the actual system are designed by hand.
The pipeline analysis within the aiT framework as presented in Section 4.3 is
the implementation of such RTL-level models with incorporated abstractions.
It has been introduced by [The04]. This approach combines the needed level
of detail – cycle-accurate timing information – from the above-mentioned
RTL-level hardware models with the abstraction-implied analysis efficiency
of the theory of abstract interpretation.

This chapter introduces a novel approach to extract the timing information
needed to implement such pipeline analyzers by the transformation of an
original and representative RTL-level specification of the system to analyze.

Definition 6.1 — Timing Model:
A Timing Model is a finite state automaton where each state represents:

I the state of the inner components of the processor, e.g., caches or
queues,

I the values of timing relevant control signals of the system,

I the contents of the main memory during program execution (ab-
stracted by the value analysis) and

I the state of the main chip set connecting the processor to peripheral
devices.

The transitions between two states of the automaton is the effect of one
single processor clock cycle.

6.2.1 Nondeterminism

For computational complexity reasons, state abstractions are introduced into
timing models which over-approximate the set of all possible concrete states
for an execution of a program (cf. Section 4.3.3). These abstractions lead to a
nondeterministic automaton if the successor depends on a part of the state
which is not precisely known. Another cause for such nondeterminism is the
nature of static analysis, i.e., analyzing independently of any input which
could result in the same unknown or imprecise state information.

112

6.2 Timing Models

Example (Nondeterminism). A timing model often needs to cope with at
least two clock domains, namely the processor clock and the clock of the
main system bus which is used for communication between the processor
core and main memory or peripheral components. Despite the possibility of
asynchronous communication, data transfers over the system bus are typically
synchronized to rising clock edges. In this case, neither the core clock nor the
system bus clock are modeled explicitly within the timing model. The reason
is that a transition from one state to the next corresponds to a full processor
clock cycle in a synchronous design. Despite this, within the model the
information about the current offset between the core clock and the system
clock needs to be incorporated. During the analysis, there might arise the
situation that a bus transaction over the system bus has to be scheduled by
the load/store unit of the processor and the clock offset information is not
precise1. In this case, the timing model would be nondeterministic as it is not
known precisely whether a transaction can be scheduled on the bus or not
in this update cycle. Consequently, all possible successor states have to be
considered so that one system state might have more than one successor state.
In the above mentioned example case there are two states: one for the case
that bus communication is possible in that particular clock cycle and one for
no communication.

Definition 6.2 — State Split:
If a state transition in a timing model computes more than one successor
state, this is called a state split.

Some typical reasons for states splits in the timing model for the Freescale
PowerPC 755 are shown in Table 6.1 on the following page2.

The cache and pipeline analysis (cf. Section 4.3.3) supports different computa-
tion modes influencing the number of state splits in the abstract simulation.

Definition 6.3 — Global Worst-Case:
If the pipeline analysis follows all possible successor states, i.e., it per-
forms state splits whenever imprecise (or even unknown) information
influences the state transition, this is called the global worst-case compu-
tation. The computed WCET bound/path in this mode is often called
global WCET and global worst-case path respectively.

1Reasons are the merge of states with different offsets at control-flow joins.
2The table is not meant to list all possible reasons for state splits.

113

6 Derivation of Timing Models

Table 6.1 – Freescale PowerPC 755 timing model state split types

Split Type Description

Bank register hit/miss SDRAM access into an already opened
bank (hit) or not (miss).

Branch prediction Imprecise knowledge of the resolution of
static branch prediction.

Bus jitter Offset between processor and main system
bus clocks.

Cache hit/miss Memory access that hits or misses the
cache.

Multiple branch/call targets There are multiple possible successors in
the CFG, e.g., for switch statements.

Multiple memory areas Imprecise addresses touched by memory
accesses might access memory areas with
different access latencies.

PCI/async memory jitter Clock offset between the main system bus
and the PCI controller.

Variant execution time Execution time of an instruction might vary
depending on the concrete values of its
operands.

.

Definition 6.4 — Local Worst-case:
For some types of state splits, the pipeline analysis can weigh the transi-
tions with local costs concerning the simulation time result. This means
that the analysis can decide which possible successor leads to the lo-
cally slowest or fastest execution time. Whenever the global worst-case
computation would perform a state split, the local worst-case computation
only accounts for the locally slowest successor state. Analogously to the
global worst-case, the computed WCET bound and path are called local
WCET and local worst-case path respectively.

The difference between both computation modes is twofold. Certainly the
global worst-case computation can be computationally much more complex

114

6.2 Timing Models

as each state split increases the search space of possible system states. This
influences not only the pipeline analysis but all following steps in the aiT
framework tool chain. For example, the generated prediction file contains
much more states to be considered by the path analysis. In contrast to that
the local worst-case computation is usually not as complex and much faster
in computation time. But due to the presence of timing anomalies (cf. Sec-
tion 6.2.2), local worst-case decisions might not lead to a safe approximation
of the concrete worst-case execution time. Therefore this computation mode
must be used carefully. More details on the implications of timing anomalies
on the worst-case execution time computation are now discussed.

6.2.2 Timing Anomalies

In the area of WCET computation, the term timing anomaly intuitively is
defined as:

Definition 6.5 — Timing Anomaly:
If there is an execution path where a locally faster execution (e.g. a cache
hit) leads to the global worst-case execution, this path exhibits a timing
anomaly.

Remark:
Within a WCET analysis, the occurrence of a timing anomaly can be observed
by comparing the local with the global WCET computation: if computing a
WCET bound for a task using the local worst-case computation leads to a lower
time bound than using the global worst-case computation mode, this is called a
timing anomaly. In other words, the WCET path computed in global worst-
case mode uses at least one local non-worst case decision.

Remark:
In the presence of timing anomalies, a local worst-case WCET computation is
not safe, i.e., the computed time bound does not necessarily represent a safe
upper bound to the concrete WCET of the analyzed task.

Reasons for timing anomalies often are complex hardware features introduced
for average case performance enhancements as for example:

I Cache replacement strategies:
As Berg [Ber06] has shown, the FIFO, round-robin and PLRU cache
replacement strategies are able to cause timing anomalies. Furthermore,

115

6 Derivation of Timing Models

Thesing [The04] revealed that the pseudo round-robin replacement
strategy of the Freescale ColdFire can trigger anomalies, as well.

I Complex pipeline features:
Modern out-of-order pipelines have parallel execution units with differ-
ent timing behavior as for example the Freescale PowerPC 755 (MPC755).
For this processor, Schneider [Sch03] found the existence of timing
anomalies.

But timing anomalies are not restricted to complex processors like the
MPC755. Even processors with a rather simple pipeline architecture can
exhibit timing anomalies as shown by Gebhard [Geb10]. This article gives a
nice overview of the whole topic of timing anomalies as well as illustrating
examples.

For some kind of timing anomalies, called k-bounded timing anomalies, their
effect can be bounded by a constant k that represents the maximal possible
timing difference that can be produced by the anomaly. For these, the local
worst-case computation mode could be safely used together with adding
the constant k to the computed time bound. Timing anomalies whose actual
effect on the execution time cannot be bounded by any constant are called
domino effects.

As a consequence of this, the computationally much cheaper local worst-case
mode cannot be used without proving the complete absence or at least the k-
boundedness of timing anomalies for safety reasons. Their safe identification
still is an unsolved problem and active field of research [EPB+06, RWT+06,
RS09, Geb10]. First work on the detection of possible anomalies has been
conducted by Schlickling [Sch10]. There, the goal was to find state split
types which cannot exhibit any anomaly so that one can use local worst-case
decisions at least for those state split types.

6.3 Analyzing VHDL Models

In order to extract information about the timing behavior of a hardware com-
ponent from its VHDL specification, it is necessary to analyze the hardware
description. The idea is to apply proven program analysis techniques, namely
abstract interpretation [CC77] and data-flow analysis [NNH99]. But these
techniques have been developed to analyze programs written in languages
with sequential semantics like C/C++. This means they cannot be applied

116

6.3 Analyzing VHDL Models

Table 6.2 – VHDL component to CRL mapping

CRL Element VHDL Element

Routine Process, Function, Procedure, Loop,

Concurrent signal assignment

Concurrent procedure call

Routine call Function/procedure call

Instruction Sequential statement

directly to a hardware language like VHDL with its two-level semantics (cf.
Section 5.2.3). The solution is to transform an elaborated VHDL model so
that it can be expressed as a sequential program rendering the application
of abstract interpretation-based techniques to VHDL feasible. Based on that,
[Sch13] introduces a general approach for the definition of static analyses
on VHDL which are used within the timing model derivation explained in
Section 6.4.

The next sections describe how a VHDL description can be expressed as
a sequential program by a transformation into a semantically equivalent
representation in the control-flow representation language (CRL). After that
Section 6.3.3 summarizes the applicability of abstract interpretation on VHDL
as introduced by [Sch13].

6.3.1 Mapping VHDL to CRL

In order to express a VHDL description using semantically equivalent CRL
constructs, a mapping from VHDL to CRL components has to be defined.
There is no design hierarchy left after the elaboration process, i.e., there are
only processes and connections between them via definitions and usages of
signals. A mapping from the basic language constructs to CRL has to be
defined to show the connection between VHDL and CRL on the syntactic
level. This mapping is listed in Table 6.2.

VHDL Processes, functions and procedures can be easily mapped to routines.
Special CRL attributes are used to distinguish them later on. The statements
inside of the processes are mapped to nodes forming the basic block struc-
ture in CRL, i.e., sequential statements are transformed into instructions

117

6 Derivation of Timing Models

surrounded by a basic block (cf. Section 4.3.2). Concurrent signal assignment
and concurrent procedure calls are a bit special. The former are converted
into routines with a basic block containing a single instruction, namely the
assignment. Concurrent procedure calls are handled similarly, but the single
instruction here consists of the procedure call.

To improve the precision of the analysis [MAWF98], VHDL loops are ex-
tracted from their location and transformed into self-recursive routines. The
original location of the loop is replaced by a call to the new loop routine. The
same transformation is done in the decoding phase of the aiT framework (cf.
Section 4.3.2).

The correspondence of function/procedure calls to routine calls as well as
the mapping of sequential statements to instructions is rather intuitive.

Additionally, meta data from the original VHDL language constructs are
stored at the corresponding CRL attributes3. For example, the sensitivity list
of each VHDL process is stored in a special attribute sensitivity_list
at the CRL routine.

For simplicity, VHDL case statements are transformed into “if-then-else”
cascades as they are simpler to reflect in the basic block structure of CRL.

6.3.2 Semantic Level Reduction

Besides a syntactical mapping of VHDL language constructs to their cor-
respondents in CRL, the concrete execution semantics of VHDL (cf. Sec-
tion 5.2.3) needs to be reflected by the generated intermediate representation
in CRL. Additional simulation code that implements the two-level VHDL
semantics as described by the state automaton in Figure 5.4 on page 103 is
required.

Variables in VHDL are process-local and processes run in parallel, and
signal assignments only take effect after all processes have finished their
execution. This semantics directly excludes side effects between the different
VHDL processes. So, their execution can be serialized without changing
the semantics of the whole model. If a process has at least one signal in its
sensitivity list with updated value, it is executed again. This is iterated until
a steady state is reached. Process execution is then represented by choosing
an arbitrary execution order among the processes and iteratively executing

3arbitrary key–value pairs

118

6.3 Analyzing VHDL Models

them in this order. The simulation code for process execution (state exec)
then consists of a routine simul with a loop whose body contains routine
calls where each called routine represents one of the former VHDL processes.
Additionally each such routine call for an original process is guarded with a
conditional statement that evaluates the sensitivity list of the process. If at
least one of the signals in the sensitivity list has changed, the call is taken.

The signal value synchronization (state sync) is encoded by an artificial
program point at the end of the loop in routine simul where the scheduled
signal assignments actually take effect. In addition to that, environmental
signal assignments are represented by a routine call to a special routine
vhdl_environment where external signal assignments can be modeled.

The clock cycles are represented by a routine vhdl_clock containing a loop
whose body simulates a full clock cycle, i.e., the routine simul is called twice.
Once for the simulation of a rising clock edge and once again for simulating
a falling clock edge. More precisely, this is a routine that calls the code
generated for the process execution state with an attribute showing whether
there is a rising clock edge or a falling one. By this, an analysis can simulate
the behavior of clock signals which are external signals and therefore not
explicitly set in the VHDL model. Both, synchronous as well as asynchronous
designs can be analyzed and multiple clock domains are supported, too.

This simulation code is called a VHDL analysis framework as it enables the
static analysis of the model’s execution.

6.3.3 Abstract Interpretation of VHDL

Abstract interpretation as mentioned in Section 4.3.3 enables the derivation
of safety properties of a VHDL model. Performing abstract interpretation
on an elaborated VHDL model surrounded by the analysis framework code
as presented in the previous section now allows the static analysis of the
hardware model’s execution [SP07]. The needed data-flow analyzers can be
generated from concise specifications using the Program Analyzer Generator
(PAG) which enables the efficient usage of the whole power of abstract
interpretation while minimizing the implementation efforts. Martin gives
further details on the usage of PAG [Mar98, AM95]. Figure 6.1 on the next
page illustrates this structure of the VHDL analysis framework.

119

6 Derivation of Timing Models

Figure 6.1 – VHDL Analysis Framework – Structure

VHDL Model
Level Re-
duction

CRL

Analysis
Specification PAG Static Analysis

Analysis Result

As the results of the analyzers hold for the whole simulation process of a
model4, they can be used for semantic preserving transformations on the
model. Section 6.4.3 describes those transformations that are related to the
derivation of timing models. Schlickling [Sch13] provides more details on
the analyzability of VHDL models by static data-flow analysis.

6.4 Semi-Automated Timing Model Derivation

This section describes the derivation process for timing models [PSM09, SP10]
starting from the VHDL model and ending in the corresponding timing
model which serves as input to the pipeline analysis generator (cf. Chapter 7).
First, the theory and idea are presented. Afterwards, Section 6.5 shows the
workflow of the derivation process.

Figure 6.2 on the facing page illustrates the overall process flow of the timing
model derivation. The flow starts at the top with the incoming VHDL model
in its CRL representation (cf. Section 6.3). As already mentioned in the
overview of this chapter, the size of the model needs to be reduced. Most of
this is done by the Model Preprocessing step as described in Section 6.4.1. Then
the preprocessed model is the starting point for the search and application of
Processor State Abstractions (cf. Section 6.4.2 on page 125). This iterative step
results in the Timing Model which is used for the generation of a pipeline
analysis fitting into the aiT framework (cf. Section 4.3). This generation
process is detailed in Chapter 7.

4which means under all circumstances

120

6.4 Semi-Automated Timing Model Derivation

Figure 6.2 – Timing Model Derivation Process – Overview

VHDL Model

Timing Dead
Code Elimination

Environmental
Assumption
Refinement

Data Path
Elimination

Model Preprocessing

Preprocessed
VHDL

Processor State
Abstractions

Timing Model

As the derived timing model is the basis for the determination of WCET
guarantees for safety-critical systems, it has to be proven that the resulting
model after the application of our size-reducing transformations and state
abstractions correctly approximates the timing behavior of the examined sys-
tem. An overview of this can be found in Chapter 8. The next sections detail
about the preprocessing step as well as the processor state abstractions.

6.4.1 Model Preprocessing

The model preprocessing step is responsible for a major size reduction of
the VHDL model which is essential as the resulting pipeline analysis would
otherwise simply be not tractable in terms of computational complexity. A
VHDL specification of a complete processor can be large, e.g., about 70 000
lines of code for the LEON2 processor [Gai05]. Simply transforming the
specification into a timing model would render the resulting timing analysis
infeasible, especially in terms of memory consumption.

Reasons for complexity problems are:

121

6 Derivation of Timing Models

I Large parts of the VHDL model are only relevant for the functional
behavior and do not affect timing properties.

I Although VHDL has been explicitly designed to allow simulation of the
model’s execution (cf. Section 5.2.4), WCET determination by abstract
interpretation is performed without relying on input whereas a VHDL
simulation is meant to be done with precisely known values for the
external signals of the specified hardware component. Thus, the timing
analysis has to examine all statically possible execution paths increasing
the impact of a large underlying hardware model to both analysis time
and space consumption. This second point can be seen as a consequence
of the first point.

A solution is to remove parts of the model which do not affect the timing
behavior. This is done in three steps:

I Environmental Assumption-Based Refinement,

I Timing Dead Code Elimination and

I Data Path Removal.

These steps are explained in the sequel.

Environmental Assumption-Based Model Refinement

The general idea behind this step is to remove parts of the VHDL model that
are either unused or can be ignored for timing analysis. Parts of a VHDL
model can be unused for different reasons.

A common cause is the gap between a specific application context within an
embedded system and the high configurability of the employed hardware
components. This means that certain features of modern processors can be
deactivated by the user program or via external pins. The deactivation of
such features renders some parts of the VHDL model unused which then can
be safely removed from the model. Examples for such features are dynamic
or static branch prediction, bus pipelining enabled or disabled, write-through
or write-back cache write policies. But depending on the application scenario,
even whole functional units of a processor can be unused. For example, if
the analyzed program does not make use of floating point instructions, an
existing floating point computation unit in the processor would be unused.
Although a timing model is not generated for the analysis of a single program,

122

6.4 Semi-Automated Timing Model Derivation

a class of safety-critical applications (e.g. flight guidance software) might be
known not to make use of certain features like special instruction set modes,
etc. Then, it makes sense to cut those unused features out of the model.
The same argumentation holds for systems that support different types of
memory like SDRAM, DDR, Flash or SRAM. For each type, there exists a
dedicated memory controller on the system board. Not using some type of
memory results in an unused memory controller for that type.

Another example why parts of a VHDL model can be ignored for timing
analysis is the existence of asynchronous events in the system, e.g., hardware
interrupts, DMA accesses, refreshes for dynamic memory (DDR), hardware
exceptions or ECC errors for protected memory. Currently, a static timing
analysis cannot fully deal with such events as the precise time of their
occurrence is not known within the analysis. A hardware exception or
interrupt brings the whole system to a state where no timing bound for the
current task is needed. So for timing analysis, it can be safely assumed that
those events do not happen. Some of these asynchronous events occur in
a certain frequency. Their effect on the execution time can be incorporated,
e.g., by adding penalties based on the computed WCET and the worst-case
occurrence of the events or by statistical means (cf. Section 9.2.4). Certainly,
this does not cope with their global effects on the timing behavior as they
are only added after having computed a WCET bound while ignoring them
during analysis.

In the VHDL code, such configurable parts of the hardware are guarded
by control signals that indicate whether the particular hardware feature is
enabled or disabled. Therefore, ignoring parts of a model is reflected by
assuming the correspondent control signal to be deactivated.

Definition 6.6 — Model Assumption:
A constant value assignment for a specific VHDL signal is called a model
assumption.

Certainly, assuming signal values to be constant is not restricted to a certain
scope within the VHDL model, i.e., not only whole features like an L2 cache
can be ignored. Instead, even small snippets everywhere in the model can
be pruned by such assumptions. As a result, parts of the VHDL become
unreachable, i.e., control never reaches these statements. So, dead-code
elimination is employed to remove those parts from the specification.

123

6 Derivation of Timing Models

Timing Dead Code Elimination

A similar optimization that reduces the size of the original VHDL model is
the Timing Dead Code Elimination which means the removal of model parts
that do not contribute to the timing behavior of the system. In contrast to
the Environmental Assumption-based Model Refinement as presented in
the previous section, specification code of components that are enabled and
actually used/exploited by the analyzed program can be removed.

In order to restrict the model to “timing-alive” code, all instruction retirement
points, i.e., locations where instructions can leave the pipeline, need to be
identified. Please note that there can be multiple such locations due to early-
out-conditions of some instruction classes. Having identified the instruction
retirement locations, backward slices from these locations are computed.

Definition 6.7 — VHDL Backward Slice:
A backward slice contains all instructions that may influence the value of
a signal (or variable) at the end of process execution, i.e., at suspension
time. Any instruction not in the slice is guaranteed to not influence the
value of the signal (variable).

Computing VHDL backward slices from all retirement locations, i.e., from
the set of points where instructions are retired in the VHDL model, results in
a set of slices. All instructions not contained in the union over these slices do
not have any influence on the timing of the processor.

This yields all VHDL statements that influence the instruction retirement and
therefore contribute to the instruction flow through the pipeline. All VHDL
code that is not contained in the union over all computed backward slices is
called “timing-dead” and can be safely removed.

Schlickling [Sch13] gives further details on how to perform slices on VHDL
code and how VHDL can be analyzed statically.

Data Path Removal

The third model preprocessing step is the so-called Data Path Removal that
removes the data paths from the VHDL model. This step is required by the
aiT framework because there, the data paths have been factored out into a
separate analysis – the loop/value analysis (cf. Section 4.3).

124

6.4 Semi-Automated Timing Model Derivation

The removal of data paths is a generic term for two abstractions: the mem-
ory abstraction that removes the actual representation of memory cells and
the address abstraction which is a specific domain abstraction from concrete
addresses to address intervals (cf. Section 6.4.2). These abstractions are both
described in the next section. Although data path removal consists solely of
abstractions, it is listed in the model preprocessing part because its applica-
tion is mandatory to produce a timing model suitable for the aiT framework.
And the same holds for the other preprocessing steps.

6.4.2 Model Abstractions

So far, the model preprocessing as described in the previous section is
responsible for removing those parts of a VHDL specification that are either
deactivated by the system configuration or just unused due to the specific
operational context of the target hardware. Additionally, all data paths have
been removed to reduce the memory consumption (see above).

The model size reduction achieved by the steps described in the previous
section might suffice for handling rather simple system architectures. But
analyzing real world applications running on modern and thus complex
superscalar architectures like the Freescale PowerPC 755 [Fre01] is a different
challenge. This has been the reason for the introduction of state abstractions
by Thesing [The04].

A state abstraction is the replacement of a concrete part of a system state by
an approximation where the specific type of approximation depends on the
underlying architecture.

In principle, such a lack of information about the system state might result in
a loss of precision in the computed WCET bound because the timing behavior
is not modeled exactly anymore. Fortunately, the timing is often not affected
by this as for example an addition always takes the same amount of time inde-
pendent of the argument values. By contrast, multiplications can be finished
faster if one argument has leading zero bits. The lack of precise information
about this condition requires to assume the entire range of execution times
for multiplication. But this might be acceptable as multiplications are rare.
Thesing’s experiments [The04] has shown the industrial applicability of such
an abstract interpretation for timing analysis. In the average, the computed
time bounds in this work for representative Airbus software are about 13%
higher than any measured execution time. This is comparatively precise for

125

6 Derivation of Timing Models

such a sophisticated processor architecture as the bounds are still below the
bounds derived with the Airbus’ legacy methods.

The introduction of suitable abstractions still is an engineering task and
cannot be fully automated. One contribution of this thesis (together with
the work by Schlickling [Sch13]) is to provide tools supporting the intro-
duction of state abstractions as much as possible. Model abstractions are
incorporated iteratively until the resulting timing model is computationally
tractable. Section 6.5 details about the application of the ideas presented in
this section.

In general, three different abstractions to the processor state are offered and
explained in the following.

Domain Abstraction

Domain abstractions are reflected syntactically as type changes in the model.
The most prominent and common example is the address abstraction where
the address domain is substituted by a domain of abstract values standing
for certain sets of concrete values. Effectively, concrete addresses are now
represented by intervals of addresses enriched with additional relational in-
formation (cf. Section 4.3.3 on page 78). Address abstraction is a consequence
of the data path removal done in the model preprocessing (cf. Section 6.4.1).
Domain abstractions are directly realized as a model transformation, which
is described in Section 6.4.3.

Process Substitution

The active parts of a VHDL specification are processes. Normally, a process
drives at least one signal containing the result of its computational task, e.g.,
the next address to be fetched from memory. Process substitution allows for
replacing a concrete VHDL process by a custom implementation modeling
less details or using a powerful abstraction.

The process substitution abstraction is directly realized by a corresponding
model transformation that is described in Section 6.4.3.

Process substitution has been successfully done for caches and is known as
the cache abstraction [Fer97, FW98, FMWA99, FW99]. Thereby, the concrete

126

6.4 Semi-Automated Timing Model Derivation

cache is replaced by an abstracted cache storing the maximal ages of all lines
that are definitively in the cache.

Memory Abstraction

The domain abstraction and process substitution can be applied multiple
times until the resource consumption of the resulting pipeline analysis is
acceptable. In contrast to that, the memory abstraction is employed only
once.

Processors execute programs that are kept in memory. For execution, instruc-
tions have to be fetched, decoded, executed and the results must be written
back to memory. But especially large memory arrays like main memory blow
up the timing model so that they have to be extracted. Fortunately, contents
of registers, memory addresses being accessed by a program, and contents of
memory cells can be computed using the value analysis and do not require a
cycle-wise simulation of the processor’s behavior.

The memory abstraction makes use of this fact and removes the concrete
representation of storage, i.e., registers and memory cells. This is possible for
the same reasons as in the aiT framework; There are cases where the timing
behavior of a hardware component is independent of the concrete values of
registers and memory cells at that point of execution. For example, the latency
of instructions is normally not affected by the content of their operands
although there might be exceptions depending on the concrete hardware
architecture, e.g., early out conditions of multiplier units. But for memory
reads and writes, the affected memory areas are certainly of special interest
as different areas often have different access latencies because either different
areas are served by different types of memory or types of peripheral devices
in the case of memory-mapped input/output communication. Thus, the value
analysis has to be queried whenever values affect the timing behavior.

This abstraction is one of two parts of the data path removal from the model
preprocessing phase (cf. Section 6.4.1). Its realization by suitable model
transformations is described in Section 6.4.3.

General Properties and Requirements

All of the above mentioned abstractions of the original VHDL model must
only change the timing behavior in safe manner, i.e., they may lead to over-

127

6 Derivation of Timing Models

estimations but never to under-estimations. Moreover, they are architecture
specific in terms of applicability and necessity. As described in Section 4.3.3,
imprecise values lead to multiple possibilities in the execution of a program.
If the number of alternatives is large, the computational complexity might be
higher than without the particular abstraction. So the introduced transforma-
tions must be chosen carefully and timing model development requires some
general experience with abstract interpretation.

The above mentioned possibility of multiple successor states for one state due
to abstractions render the timing model nondeterministic. In that case, the
micro-architectural analysis computes multiple execution paths through the
program and annotates each path with the execution times. The generation
of a cache and pipeline analysis as described in Chapter 7 needs to cope with
this nondeterminism.

6.4.3 Model Transformations

The application of the model preprocessing steps as well as state abstractions
form a feedback loop between static analyzers as defined by Schlickling
[Sch13] and transformations based on their results. This means that the
applied transformations are chosen depending on the particular results of
the analyzers. Previous sections have discussed in theory whose parts of
an input VHDL model are of interest for a timing analysis and others that
could be abstracted. Now, concrete model transformations are presented that
modify the model accordingly to reach the desired effect. In general, these
transformations are either code removals or replacements as will be described.
Details about the tool implementation of the presented transformations are
described in Chapter 10 whereas their usage and practical application is
shown in Section 6.5. The supported transformations all need to fulfill
the property of not affecting the timing behavior of the analyzed system
in an unsafe way (see above in Section refsec:derivation-general-properties-
requirements).

Of course, this only holds under certain assumptions on either the analyzed
architecture and/or the context of the concrete application being executed
on that architecture. For example, one must not remove parts of a VHDL
specification which are used by the analyzed program, i.e., a floating-point
unit cannot be excluded from the model if analyzed binaries do contain
corresponding floating-point instructions. Or the provided custom simulation
routines (cf. process substitution in Section 6.4.2) need to describe the timing

128

6.4 Semi-Automated Timing Model Derivation

behavior of the replacing components correctly. Otherwise the resulting
pipeline analysis would compute bounds which are not safe.

The following general transformations on VHDL models have been identified
and supported so far.

VHDL Timing Dead Code Elimination

This transformation removes all code snippets that have been marked as
timing dead by static analysis. Moreover the “timing-deadness” is getting
transitively propagated for resolving additionally dead code due to the
removals. Theoretically, this is not a complex problem. The tool Vhdl-
TimingDeadCodeEliminator implements the timing-dead code elimination
and technical details about the realization can be found in Section 10.4.1.

VHDL Domain Abstraction

As mentioned in Section 6.4.2, the domain abstraction mainly is a type
change, i.e., a source-to-source transformation. Based on a given mapping
from a source into a destination domain, all affected variables and signals
are transformed. This certainly renders existing operators on the source type
invalid. All such locations are collected and the interfaces for the needed
operators on the destination domain are computed and emitted. The user
has to provide the new operators.

Moreover, there is the possibility to incorporate “common” abstractions like
the address abstraction and different transformation scopes. The latter means
that the transformation can be restricted to a given list of identifiers or for
all identifiers of the source type. If the transformation scope is restricted to
a list of identifiers, all not transformed identifiers are reported in order to
give an impression of additional model parts affected by the source type.
This feature can be used for partially transforming the model so that the user
can first focus on specific pieces of a specification. The application of this
transformation is further explained in Section 6.5.

The type transformation is supported by the tool VhdlDomainAbstractor (cf.
Chapter 10).

129

6 Derivation of Timing Models

VHDL Process Replacement

This transformation supports the replacement of original VHDL processes by
custom simulation routines provided by a human expert. A custom simula-
tion routine means that the user provides an alternative implementation of a
VHDL process. The most important reasons for that are:

I Performance
As only the timing behavior of the VHDL process is of interest, an
alternative implementation might be much more efficient in terms of
simulation speed.

I Refactoring
The structure of hardware components is often designed hierarchically,
i.e., it is composed out of other smaller components. If one is able
to implement a custom and generic simulation routine for the timing
behavior of the original VHDL process, the simulation code can be used
for other timing models, as well.

If one specifies the timing behavior of a hardware component directly in
another language (like C/C++), the original VHDL process is removed in
favor of the custom specification which is inserted. In general, the implemen-
tation language of the custom simulation routine is not important as long as
the timing effect can be described. But the most important implementation
language is C/C++ as the aiT framework is written in that language. There-
fore the pipeline analyzer code generator described in Chapter 7 generates
compatible C code.

VHDL Memory Abstraction

In Section 6.4.2, the memory abstraction has been introduced as the removal
of data paths from the model. Thus, the VHDL design must be adapted to
utilize the information from the value analysis instead of the real computation
of addresses. For this purpose, all places where memory addresses are
generated by instructions have to be identified. Partly, these locations already
have been examined during address abstraction, so the identification step is
rather simple. At these places pseudo VHDL processes have to be added that
interface with the value analysis to retrieve its results.

For a processor specification, there are typically three locations to patch:

130

6.5 Timing Model Derivation Workflow

I code fetch,

I data access generation and

I system bus interface.

Code fetches are generated in the fetch unit and used to request new instruc-
tions from memory. Here, the existing address computation code is replaced
by queries to the control-flow graph mapping. Corresponding functions pro-
vided by generic parts of the pipeline analysis (cf. Section 4.3.3) realize these
queries to get information about the instructions that are to be fetched.

Another place is the load/store unit where data accesses are triggered. In that
case, code must be inserted that queries the value analysis and replaces the
existing address generation code. Corresponding functions in the pipeline
analysis framework serve this purpose, similarly to the CFG queries men-
tioned above.

The system bus interface manages the bus transactions and generates requests
to peripheral devices, where such requests originate from the above men-
tioned fetch and load/store units. Typically, this unit is aware of the cache
architecture and adjusts requested data addresses to match double word
or cache line boundaries, etc. Analogously to the load/store unit, address
generation code is replaced by corresponding queries to the value analysis’
results.

The identification of code locations to patch as well as the modification itself
are so far not supported by any automatic transformation and therefore have
to be done manually. Section 6.5.2 shows an example code location that has
to be patched according to the description in this section.

6.5 Timing Model Derivation Workflow

The previous sections have shown how to extract the timing behavior of
a given VHDL model as well as how to reduce its complexity by model
transformations based on introduced state abstractions. Although transfor-
mations and abstractions are specific to the hardware as well as the analyzed
application context5, this section presents some common working patterns

5for example concerning the hardware configuration

131

6 Derivation of Timing Models

of the above described method for deriving a timing model from a formal
hardware description in VHDL.

In principle, a common understanding of the underlying hardware model is
still required in order to properly extract the needed information. And work-
ing with VHDL designs of modern processors/systems is a complicated task
as such models can consist of hundred thousands lines of code. To support
the interactive exploration and understanding of the hardware behavior by
examining its formal specification, there exist two tools:

I aiSee
The interactive graph viewer aiSee [Abs11] can be used for the interac-
tive exploration of the graph representation of a VHDL model which
is generated by the VHDL parser described in Chapter 10. It has been
developed by AbsInt GmbH [Abs12].

I VhdlSlicer
A generic VHDL slicing tool has been developed by Schlickling [Sch13]
and can be used to compute slices interactively in the above mentioned
graph representation. This support is useful for the visualization of
dependencies among the different control signals in such VHDL mod-
els. Most of the actions described below require an understanding of
such dependencies and side effects in the analyzed VHDL code which
renders the slicer an important tool.

The next sections now present a common application workflow for the ex-
traction of timing information from VHDL models. After the application of
the transformations and abstractions the resulting model can be fed into the
pipeline analyzer generator described in Chapter 7 in order to see whether
the model is feasible for timing analysis.

6.5.1 Application of Model Preprocessing

The model preprocessing is mainly responsible for a significant size reduction
of the analyzed model. Different analyses and transformations are performed
in order to remove parts of the model that either do not contribute to the
timing behavior or can be ignored due to the operational context of the
analyzed application, e.g., ignoring hardware interrupts.

132

6.5 Timing Model Derivation Workflow

Listing 6.1 – Iterative model refinement workflow – pseudo-code

1 Loop
2 * State assumptions for signal values
3 * Run the model refiner with that assumptions
4 * Run timing dead code eliminator
5 * finish or restart with further assumptions
6 until resulting model is suitable

Reset Analysis

The first analysis, the so-called reset analysis, is mandatory for the next step
(see below). Its goal is to obtain initial values for VHDL signals. These default
values are set when the system reset is activated in order to bring it into a
defined starting state. To support this task, the so-called VhdlResetAnalyzer
has been developed by Schlickling [Sch13]. It performs a simulation of the
model execution under the assumption of an activated system reset and
computes constant signal values.

Here, “constant” refers to a slightly unusual scope, namely the whole model.
In the context of program analysis, “constant” only refers to a specific pro-
gram point. The results of the reset analysis are used as initial assumptions
for the iterative model refinement described in the next section.

Iterative Model Refinement

While the reset analysis described above computes initial signal assignments,
the iterative model refinement step is actually responsible for the identifica-
tion and marking of code snippets that can be removed from the specification.
Based on assumptions of signal assignments, the tool VhdlAssumptionBased-
ModelRefiner performs an abstract interpretation of the VHDL model which
identifies so-called “timing-dead” code that can be removed by the tool
VhdlTimingDeadCodeEliminator.

This removal can be applied iteratively. The corresponding workflow has
been illustrated by the pseudo-code in Listing 6.1. Assumptions about the
analyzed VHDL model must be stated by the user. Initial assumptions are the
ones computed by the reset analysis described above. The VhdlAssumption-
BasedModelRefiner then automatically detects all inactive parts of the model.
Using the VhdlTimingDeadCodeEliminator, these code snippets are removed

133

6 Derivation of Timing Models

from the model effectively reducing its size and complexity. Afterwards, the
user has to decide whether additional assumptions are required. Of course,
the concrete assumptions depend on the analyzed VHDL design, but typical
scenarios are discussed in Section 6.4.1.

Listing 6.2 on the facing page shows a VHDL code snippet from the LEON2
[Gai05] specification that is concerned with the SDRAM refresh counter. The
code snippet shows VHDL statements that are guarded by an “if” statement.
Its condition includes a check for an enabled signal r.cfg.renable which
serves as a configuration signal for the SDRAM refresh handling. If this
signal is assumed to be deactivated, i.e., hard-wire its value to 0, as a result
the code block becomes “timing-dead” and can be removed by the timing
dead code elimination.

Identification of Pipeline Instruction Flow

As mentioned in Section 6.4.1, the resulting timing model mainly needs to
represent the instruction flow through the processor pipeline. This is achieved
by the timing dead code elimination described in Section 6.4.1.

Figure 6.3 on the next page illustrates how the control structure of a proces-
sor’s pipeline looks for a DLX [Hor97] design. The pipeline consists of five
stages:

I Fetch: This stage is responsible for fetching the instructions to execute.

I Decode: In this stage, all fetched instructions are decoded.

I Execute: The actual execution of each instruction is done here.

I Memory Access: This stage is responsible for all kinds of memory ac-
cesses as a result of the instruction execution.

I Writeback: Instruction execution results are written back to registers.

In a typical VHDL specification, each pipeline stage consists of at least one
process implementing the functionality of the particular stage. Additionally,
each pipeline stage has its own internal data structures containing needed
information – at least some kind of reference to the instruction that currently
occupies the stage. The control structure of the pipeline is shown by the
dashed edges in Figure 6.3. Each pipeline stage has its own output enable

134

6.5 Timing Model Derivation Workflow

Listing 6.2 – LEON2 SDRAM refresh counter snippets in VHDL

1 if (r.cfg.renable = ’1’) and (r.istate = finish) then
2 v.refresh := r.refresh - 1;
3 if (v.refresh(14) and not r.refresh(14)) = ’1’ then
4 v.refresh := r.cfg.refresh;
5 v.cfg.command := "10";
6 end if;
7 end if;

Figure 6.3 – Simple pipeline control structure

Fetch Stage

Internal
state

Functionality
operates

on

Decoding Stage

Internal
state

Functionality
operates

on

Execution Stage

Internal
state

Functionality
operates

on

Memory Access Stage

Internal
state

Functionality
operates

on

Writeback Stage

Internal
state

Functionality
operates

on

fetch
output
enable

decode
output
enable

execute
output
enable

memory
output
enable

135

6 Derivation of Timing Models

signal6 which indicates whether the instruction can advance to the next
pipeline stage. This means that processes implementing the functionality of a
stage check these signals for incoming instructions. If an instruction is ready
to advance to the next pipeline stage, the corresponding output enable control
signal is active. The process of the successor stage detects this situation and
updates its internal state accordingly by adding the new instruction.

Instruction retirement happens at the end of the Writeback stage, so the goal
of the above-mentioned backward slicing is to identify the control statements
checking for the output enable signals as well as the corresponding signal
assignments. Ideally, only that control structure is needed for the timing
model together with some sort of counter that represents how long an
instruction remains within a pipeline stage. So, the slicing tool can be used
for a better understanding and identification of the instruction flow through
the processor pipeline.

As well as for the iterative model refinement, it depends on the concrete
VHDL code how good the instruction flow can be separated from the more
functional code snippets which make some VHDL designs more suitable for
the purpose of extracting timing information than others (cf. Chapter 9).

6.5.2 Application of Model Abstractions

Up to this point, the size of the original VHDL model has been reduced
without the introduction of abstractions except the needed steps for the
removal of data paths, i.e., memory and address abstraction. Depending on
the complexity of the hardware under analysis, this might already suffice to
get a feasible timing analysis.

For modern processors used in embedded systems (even systems which
are highly safety-critical), state abstractions are a must for the mentioned
complexity reasons of the resulting pipeline analysis. The next sections list
some commonly used abstractions that are also used in hand-crafted timing
models of already existing timing analyzers provided by AbsInt GmbH.

6For simplicity, there is only one output enable signal shown. In a real specification, there
are certainly more such signals.

136

6.5 Timing Model Derivation Workflow

Listing 6.3 – DLX effective address stage snippet in VHDL

1 -- Load-Store-Unit; Effective address stage
2 if LSU_EA_StageAvailable = ’1’ then
3 LSU_EA_AddrReg <= LSU_EA_AddrRegInput;
4 ...
5 end if;

Domain Abstractions

Domain abstractions are a common form of type transformations on the VHDL
model. The above mentioned address abstraction (cf. Section 6.4.2) is a
specific but the most prominent domain abstraction.

Listing 6.3 shows a VHDL code snippet of the superscalar DLX design
[Hor97] representing the effective address stage within the load/store unit.
Depending on the control signal LSU_EA_StageAvailable (in line 2), the
address buffer of the effective address stage (LSU_EA_AddrReg) is filled
according to the input signal LSU_EA_AddrRegInput (in line 3). Both
signals are operating on concrete addresses and would therefore be replaced
by intervals of abstract values containing the real addresses during the
address abstraction. The resulting abstracted VHDL code can be seen in
Listing 6.4 on page 138. Lines 2–8 first show an implementation of an
assignment operator on address intervals which is then used to replace the
original signal assignment. The type AddressRange realizing intervals of
addresses is implemented as an array with two elements, where the first
element (index 0) stores the lower interval bound and the second one (index
1) the upper bound.

In this case, only a simple assignment is needed but one can imagine that
depending on the surrounding VHDL code, there might be more complex
cases where even state splits would need to be incorporated. Then, it might
be easier to express the abstraction directly in a custom simulation routine
(cf. Section 6.5.2).

In addition to that, one might specify more type transformations on the VHDL
model. An example candidate for a domain abstraction that is not an address
abstraction can be seen in Listing 6.5 on the next page. Line 24 shows the
usage of the signal DataBus that is declared in line 10 of the code listing. The
declaration of the corresponding subtype TypeBidirectionalDataBus
is shown in the first two lines of Listing 6.5. This 64bit wide vector can be

137

6 Derivation of Timing Models

Listing 6.4 – Abstract DLX effective address stage snippet

1 -- Abstract signal assignment operator
2 procedure AddressRangeSignalAssign (
3 signal addrRange : out AddressRange;
4 value : in AddressRange) is
5 begin
6 addrRange (0) <= value(0);
7 addrRange (1) <= value(1);
8 end;
9

10 -- Load-Store-Unit; Effective address stage
11 if LSU_EA_StageAvaliable = ’1’ then
12 AddressRangeSignalAssign (LSU_EA_AddrReg,
13 LSU_EA_AddrRegInput);
14 ...
15 end if;

Listing 6.5 – 60x bus read handling VHDL snippet

1 subtype TypeBidirectionalDataBus is
2 std_logic_vector(63 downto 0);
3

4 ...
5

6 entity Dlx is
7 port (IncomingClock : in bit;
8 BusClock : out bit;
9 AddressBus : out TypeWord;

10 DataBus : inout TypeBidirectionalDataBus;
11 ByteEnable : out unsigned(7 downto 0);
12 TransferStart : out bit;
13 WriteEnable : out bit;
14 TransferError : in bit;
15 TransferAcknowledge : in bit;
16 InterruptRequest : in bichapters/t;
17 CacheInhibit : in bit;
18 Reset : in bit;
19 Halt : out bit);
20 end Dlx;
21

22 ...
23

24 BIU_IncomingData <= unsigned(To_bitvector(DataBus));
25

26 \dots

138

6.5 Timing Model Derivation Workflow

Listing 6.6 – DLX register file access VHDL snippet

1 RF_DataA1 <=
2 X"0000_0000" when IF_InstrRegA(25 downto 21) = "00000"
3 else
4 RF_Reg(To_Integer(IF_InstrRegA(25 downto 21)));
5

6 RF_DataA2 <=
7 X"0000_0000" when IF_InstrRegA(20 downto 16) = "00000"
8 else
9 RF_Reg(To_Integer(IF_InstrRegA(20 downto 16)));

10

11 RF_DataB1 <=
12 X"0000_0000" when IF_InstrRegB(25 downto 21) = "00000"
13 else
14 RF_Reg(To_Integer(IF_InstrRegB(25 downto 21)));
15

16 RF_DataB2 <=
17 X"0000_0000" when IF_InstrRegB(20 downto 16) = "00000"
18 else
19 RF_Reg(To_Integer(IF_InstrRegB(20 downto 16)));

replaced by a Boolean value only indicating that the bus is driven with valid
data. For a timing model, the concrete value on the bus is not important for
in-order memory subsystems, i.e., where the data beats occur in the order of
the corresponding bus requests. The reason for this is that the bus unit part of
the model has precise knowledge about all pending bus transactions so that
an incoming data beat can be unambiguously mapped to its originating mem-
ory request. The abstraction from the type TypeBidirectionalDataBus
to the type boolean certainly implies lots of transformations on other sig-
nals/variables as well as the operators on these original domains. Such a
work-flow is supported by the tool VhdlDomainAbstractor as described in
Chapter 10.

Memory Abstraction

Listing 6.6 partly shows the specification of the register file access in the
DLX [Hor97] design. The four signals RF_Data represent the operands
of currently executed instructions. In lines 4, 9, 14 and 19, the register
file data structure (RF_Reg) is accessed in order to retrieve the requested
register contents. During data path removal, these accesses would be replaced

139

6 Derivation of Timing Models

by procedure calls that actually would query the value analysis results.
The declaration of the register file data structure is removed as well. Such
query procedures would be implemented in custom simulation routines as
presented in the next section.

Custom Simulation Routines

A prominent example for this is the cache abstraction. It is already employed
in the aiT framework for all existing timing analyzers. The complete cache
update is here replaced by a custom library with abstract data structures.
This library implements the techniques introduced in [Fer97, FW98, FMWA99,
FW99].

Selecting processes for replacement means that the essential timing behavior
is reimplemented. Besides the cache abstraction, there is no “must-have”
or typical process replacement that could be mentioned here. The concrete
selection depends on the design under analysis.

Additionally, the removal of purely functional VHDL code can be realized by
the invention of custom simulation routines as described in the next section.

Removing Functional Code

A VHDL model contains all details about the hardware component which
is much more than the pure timing behavior. Depending on the structure
of the VHDL code, the model preprocessing steps presented in Section 6.5.1
might not remove all statements which only refer to functional details. For a
timing analysis, it is not necessary to know the functional design details of
a unit. The timing information comprises the details about the instruction
flow through the pipeline. So, it actually suffices to know how long each
instruction stays in each stage of the processor pipeline.

For example, a simple arithmetic unit whose instructions have a fixed execu-
tion latency7 may be abstractly represented by a reference to the currently
executed instruction together with a simple counter which gets initialized
with the particular instruction execution time on the unit. In each update
cycle, the counter value is decremented so that the instruction leaves the
unit if the counter value has expired. Imagining that a unit has one or

7Execution latencies may vary but within an interval of fixed bounds.

140

6.5 Timing Model Derivation Workflow

even more reservation stations. In this case, the model would just contain
a corresponding number of additional instruction references. By this, the
complete functional details of the arithmetic unit can be ignored. If there
are instructions that have a variable execution time on the simple arithmetic
unit, a specific state for each possible execution time has to be created (cf. the
definition of state splits in Section 6.2.1).

In Listing 6.7 on the following page, some VHDL code snippets from the
arithmetic-logical unit of the DLX [Hor97] design are shown. The actual
functionality of this execution unit is implemented in the function Alu (cf.
lines 3–21) whose returned result determines the output of the unit (cf. lines
25–27). Removing Alu and assuming a fixed value for the output of the
execution unit then decreases the size of the model. The execution time of an
instruction can then be represented by a counter as mentioned above.

Technically, such a removal of functional code segments can be achieved by
replacing VHDL processes using the VhdlProcessReplacer. But the applica-
bility strongly depends on the structure of the VHDL code. If the complete
logic of a functional unit is coded within one single big process, the VHDL
code must be rewritten first as it is not suitable for that kind of abstraction (cf.
Chapter 9). Despite the lack of a representative survey on industrial hardware
designs, at least the designs from the avionics and automotive domain do not
exhibit such a coding style. This also reflects in the results of the experiments
described in Chapter 11.

6.5.3 Derivation Step Categorization

From the user’s perspective, a categorization of the presented model trans-
formations according to their necessity is certainly of interest. The following
paragraphs classify the model preprocessing steps and abstractions that have
been described in Section 6.4.1 and Section 6.4.2 alongside the particularly
needed model transformations. In general, creative parts that require a deep
understanding of the hardware design have to be done manually where other
more schematically parts can be done fully automatic.

Mandatory Derivation Steps The only fully mandatory step is the removal
of data paths in the model preprocessing phase. Associated transformations
are the VHDL memory abstraction (cf. Section 6.4.3) and the address ab-
straction (cf. Section 6.4.3). To apply these transformations, corresponding

141

6 Derivation of Timing Models

Listing 6.7 – DLX arithmetic/logical unit snippet in VHDL

1 ...
2

3 function Alu(Source1, Source2 : TypeWord;
4 AluFunction: TypeAluFunction) return unsigned
5 is
6 variable Result : TypeWord;
7 variable Error : bit;
8 begin
9 case AluFunction is

10 when cAlu_add => Result := Source1 + Source2;
11 when cAlu_sub => Result := Source1 - Source2;
12

13 when cAlu_and => Result := Source1 and Source2;
14 when cAlu_or => Result := Source1 or Source2;
15 when cAlu_xor => Result := Source1 xor Source2;
16

17 ...
18 end case;
19

20 return Error & Result;
21 end Alu;
22

23 ...
24

25 ALU_AluOutput <= Alu(ALU_SourceDataReg1,
26 ALU_SourceDataReg2,
27 ALU_DecoderInfoReg);
28 ...

code locations have to be identified. This is an engineering task, requires an
understanding of the hardware design and therefore has to be done man-
ually. Replacing existing code with an interface to the value analysis and
the control-flow graph might be done automatically. That depends on the
concrete VHDL code. For example, if address generation is encapsulated into
a separate process, its replacement is simple and can be done by a custom
simulation routine so that the manual work reduces to the implementation of
the custom simulation routine.

Another mandatory action point results from the application of domain ab-
stractions, namely the implementation of operators for the target domains.
Here, detection of newly needed operators and their interface are automat-
ically reported by the domain abstraction tool VhdlDomainAbstractor. In

142

6.6 Model Transformation Phase Coupling

contrast, their implementation has to be provided by the user.

In principle, no further steps are actually required to get a working timing
analysis, i.e., the application of any model abstractions besides the data path
removal is actually not needed. But the resulting analysis complexity in terms
of their space consumption and runtime would not be satisfactory.

Optional Quality Increasing Derivation Steps The second category of
derivation steps are optional and effectively increase the quality of the result-
ing timing analysis. Here, quality refers to the precision of the computed
WCET bounds (a higher quality leads to more precise bounds with less
overestimations) as well as the overall analysis complexity (reducing the size
of the model decreases the complexity of the analysis).

The environmental assumption-based model refinement from the preprocessing
phase is one of such optional steps. Realized by the application of the reset
analysis, the assumption-based model refiner and the dead code eliminator,
this step is automated except the invention of corresponding assumptions.

Another optional derivation step is the timing dead code elimination. Like the
environmental assumption-based model refinement, this is a step from the
model preprocessing and its goal is to restrict the timing model to those parts
defining the instruction flow through the pipeline. The start, the identification
of code locations where instruction retirement happens, is an engineering
task and has to be done manually by the user. Backward slices from the
identified locations are then automatically possible using Schlickling’s Vhdl-
Slicer [Sch13]. Based on these slices, further dead-code assumptions can be
incorporated into the model. Where their invention is up to the user, their
actual processing is automated as in the environmental assumption-based
refinement.

In general, any kind of model abstraction represents an optional but quality-
increasing derivation step. Their different types are described in Sec-
tion 6.4.2.

6.6 Model Transformation Phase Coupling

The phase coupling problem as known from compiler design [Veg82] de-
scribes the phenomenon that different compiler optimization methods are

143

6 Derivation of Timing Models

interdependent, i.e., decisions made by one optimization impose restrictions
to another optimization. Finally, the order in which different optimizations
are applied leads to different results regarding the quality of the generated
code.

Looking at the different model transformations presented in Section 6.4.1
and abstractions in Section 6.4.2, the question arises whether they are phase-
coupled or not. Although there is no exhaustive examination of that problem,
it seems that there is no tight phase-coupling between the different model
transformations as they are rather independent by definition. From a practical
point of view, it might be good to first throw away as much of the model by
timing dead code elimination as possible (cf. Section 6.4.3) before applying
any state abstractions (cf. Section 6.4.2) as there is less code to be converted
in the later step.

6.7 Summary

In one sentence: this chapter defines how to derive timing models suitable for
WCET analysis from formal hardware descriptions in VHDL. To introduce
this process, a description of timing models is presented to give the reader an
impression of what is stored in such a model alongside some important prop-
erties like their nondeterministic processor update. Additionally, differences
between a local and global worst-case computation are highlighted.

Afterwards, it is shown how a VHDL model is syntactically mapped to the
chosen intermediate format CRL. In this context, the semantic level reduction
is presented, a technique to express concurrent VHDL models as sequential
programs in order to enable the application of abstract interpretation.

The derivation process of timing models from VHDL designs is described
in a process-oriented way in Section 6.4.1 and Section 6.4.2. First, a VHDL
model undergoes different model preprocessing steps that reduce its size
and introduce necessary modifications required by the aiT framework. In
a second phase, model abstractions are introduced to further compress the
hardware representation. These defined derivation steps can be realized by
concrete model transformations which are defined in Section 6.4.3.

To illustrate the timing model derivation, common working patterns together
with some examples are shown. The description goes through the different
derivation steps and explains their application.

144

6.7 Summary

In the end, a categorization follows that classifies the steps into mandatory
and optional ones. It is pointed out whether associated transformations can
be performed automatically or need manual contributions from the user.

145

7
Pipeline Analyzer

Generation

“By three methods we may
learn wisdom: First, by
reflection which is noblest;
Second, by imitation which
is easiest; and third by
experience which is the
bitterest.”

(Confuzius)

7 Pipeline Analyzer Generation

7.1 Overview

Where the previous chapter has detailed about how to extract information
about the timing behavior of a system from its formal specification (in VHDL)
into a so-called timing model, this chapter describes a method for the auto-
matic generation of a static analyzer based on such a model. The analyzer
can be used within the aiT framework as the pipeline analysis.

As mentioned in Section 4.3, this pipeline analysis performs an abstract
simulation of a task’s execution on the target system. This implies that
the generated static analyzer needs to cope with an abstracted model of
the hardware, which is nondeterministic in general. In other words, the
simulation process might compute multiple successors for a given input
system state leading to multiple possible execution paths partially with
different costs in terms of execution time. For safety reasons, the generated
pipeline analysis needs to follow all possibilities.

In order to describe the generation process, the next section first defines
simulation semantics for a concrete VHDL model. Analogously, simulation
semantics in the presence of employed abstractions are presented in the
section thereafter with differences highlighted.

These abstract operational semantics represents the formal basis for the
pipeline analyzer generation and the corresponding tool implementation (cf.
Section 10.5) realizes this exactly.

7.2 Concrete Simulation

As mentioned in Chapter 4, it is not advisable to use the simulation of
a concrete VHDL model for timing analysis of safety-critical real world
applications because the needed computing resources are too high. Even
though, in order to formalize the simulation process this section addresses the
simulation of a concrete VHDL model, i.e., a formal hardware specification
without any abstractions. This is needed for showing the differences to the
simulation of an abstracted VHDL model as resulting from the timing model
derivation process presented in the previous chapter.

148

7.2 Concrete Simulation

7.2.1 Operational Semantics

In the following, the operational semantics for simulating a concrete VHDL
model is described using inference rules as defined by Nielson [NN92]. This is
a common technique for specifying the semantics of a programming language.
The inference rules additionally define an interpreter for the language. The
central point is a program state. Inference rules specify changes to this state
as well as the conditions under which the state change takes place. By this,
the semantic effect of the execution of each language construct, i.e., their
effective changes to the system state, can be described.

The inference rules defined throughout this section have already been pub-
lished by Maksoud [MPS09].

Sequential Process Execution

To define the execution of a VHDL process, a context has to be specified:

Definition 7.1 — Process Execution Context:
The context of a process p needed for its sequential execution is the tuple
(Θ, ζ, Π) where

I Θ is called the environment mapping logical names to values. A
logical name in VHDL can be either a variable v, a signal s, or a
scheduled signal s̄.

I ζ is the program counter. The function next(ζ) returns the address
of the next statement of a program Π. This predicate has been
taken from Hymans [Hym04]. If the current statement is the last
one in a program, next(ζ) returns the special program counter
ζend indicating that the process has completed its execution. The
function start(b) takes a list of statements b and returns the address
of the first statement in b.

I Π is the list of statements of p, also called program.

The evaluation function eval embeds expression evaluation in VHDL.
Corresponding operational semantics has been defined by C. Hymans
[Hym04] by the specification of inference rules for all expression types
and their operators.

149

7 Pipeline Analyzer Generation

The relation ⇀seq of sequential execution is defined by the following rules.

The rule var (7.1) defines the semantic effect of a variable assignment.

var

Π[ζ]⇒ ν := expr; Θ ` eval(expr) = u

Θ′ = λt.

{
u if t = ν

Θ(t) otherwise

(Θ, ζ, Π) ⇀ (Θ′, next(ζ), Π)
(7.1)

If the statement to which the current program counter ζ points is a variable
assignment (ν := expr;) whose expression expr evaluates to u under the cur-
rent environment Θ, the context (Θ, ζ, Π) of the current process ρ is changed
to the new context (Θ′, next(ζ), Π) where Θ′ is the old environment Θ with
the value of variable ν changed to u.

Signal assignments are covered by rule sig:

sig

Π[ζ]⇒ s<= expr; Θ ` eval(expr) = u

Θ′ = λt.

{
u if t = s̄
Θ(t) otherwise

(Θ, ζ, Π) ⇀ (Θ′, next(ζ), Π)
(7.2)

If the statement to which the current program counter ζ points is a signal
assignment (s<= expr;) whose expression expr evaluates to u under the
current environment Θ, the context (Θ, ζ, Π) of the current process ρ is
changed to the new context (Θ′, next(ζ), Π) where Θ′ is the old environment
Θ with the scheduled value of signal s changed to u.

While in case of a variable assignment, the assigned value is directly visible
in the environment, this is not the case for signal assignments. Here, the new
value must be seen as the future (or scheduled) value (cf. Section 5.2.3). Note
that during evaluation, eval always works on the current values of signals,
never on scheduled ones. This exactly matches the VHDL semantics.

The next two rules specify the behavior of if-then-else statements.

tcond

Π[ζ]⇒ if expr then b1 else b2 end if;
Θ ` eval(expr) = true

(Θ, ζ, Π) ⇀ (Θ, start(b1), Π)
(7.3)

If the statement to which the current program counter ζ points to is an if-
then-else conditional statement whose expression expr evaluates to true

150

7.2 Concrete Simulation

under the current environment Θ, the context (Θ, ζ, Π) of the current process
ρ is changed to the new context (Θ, start(b1), Π), i.e., control is transferred to
the first instruction of the subsequent block b1. If the conditional expression
expr evaluates to false, the control is transferred to the first instruction in the
else block b2 which is shown by the rule fcond:

fcond

Π[ζ]⇒ if expr then b1 else b2 end if;
Θ ` eval(expr) = false

(Θ, ζ, Π) ⇀ (Θ, start(b2), Π)
(7.4)

Obviously, switch statements can be easily transformed into if-then-else
cascades, so the rules for these statements are left out. Actually, the translation
from VHDL to the intermediate representation CRL performs this conversion
as described in Chapter 10. Without loss of generality, if statements without
else case are converted into if-then-else statements with empty else
cases. The empty cases are handled by the rule skip (see below).

Similarly to conditional statements, the rules tloop and floop specify the
behavior of while loops.

tloop

Π[ζ]⇒ while expr loop b end loop;
Θ ` eval(expr) = true

(Θ, ζ, Π) ⇀ (Θ, start(b), Π)
(7.5)

If the statement to which the current program counter ζ points to is a
while statement whose expression expr evaluates to true under the current
environment Θ, the context (Θ, ζ, Π) of the current process ρ is changed
to the new context (Θ, start(b), Π), i.e., control is transferred to the first
instruction of loop body b. If the conditional expression expr evaluates to
false, the control is transferred to the next statement after the whole loop
statement which is shown in rule floop:

floop

Π[ζ]⇒ while expr loop b end loop;
Θ ` eval(expr) = false

(Θ, ζ, Π) ⇀ (Θ, next(ζ), Π)
(7.6)

The semantic effect of for loops can be defined analogously and is left out
here.

However, the above described rules do not fully specify all possible language
constructs as there might be empty blocks, e.g., in if-then-else statements.

151

7 Pipeline Analyzer Generation

Those are covered by the following rule skip. The environment is not updated,
control is simply transferred to the next statement.

skip
Π[ζ]⇒ ;

(Θ, ζ, Π) ⇀ (Θ, next(ζ), Π)
(7.7)

After the last statement in a process, the special program counter ζend is
reached and process simulation has reached a final state at that point. The
process then suspends, i.e., its program counter ζ is set to the special value
ζsus. This state transition is covered by the rule stop.

stop
(Θ, ζend, Π) ⇀ (Θ, ζsus, Π)

(7.8)

Simulation Semantics

Process termination in the sequential execution rules is embedded in the
definition of the function next(ζ). A process terminates, i.e., it suspends
execution when reaching the special program counter ζsus. For this, the
sequential execution rules defined in the previous section need to be applied
iteratively which requires a global simulation context:

Definition 7.2 — Simulation Context:
The simulation context of a VHDL model is the tuple (Θ, ρ) where

I Θ is the environment as defined in Section 7.2.1 and

I ρ is a map from process labels L to processes.

A process ρ(l) is a tuple (ζl, Πl, ωl) where ζl and Πl are the program
counter and the program respectively. And ωl is a set of signal names
representing the sensitivity list of ρ(l).

Remark:
Throughout this thesis, VHDL designs are assumed to be correct with respect
to their process sensitivity list specifications, i.e., all signals read by a process p
are listed in the sensitivity list of p.

152

7.2 Concrete Simulation

Based on this simulation context, process execution, i.e., iterative application
of the sequential execution rules can be defined.

exec

∃l ∈ L : ρ(l) = (ζl, Πl, ωl) ∧ ζl 6= ζsus :
(Θ, ζl, Πl) ⇀

∗
seq (Θ

′, ζsus, Πl)

ρ′ = λ(t ∈ L).

{
(ζsus, Πl, ωl) if t = l
ρ(t) otherwise

(Θ, ρ) ⇀ (Θ′, ρ′)
(7.9)

The simulation context (Θ, ρ) is changed into a new context (Θ′, ρ′) by rule
exec if there is at least one process ρ(l) whose program counter value is not
equal to ζsus. The process execution context of each process ρ(l) matching this
condition is changed from (Θ, ζl , Πl) to a new execution context (Θ′, ζsus, Πl)
by iteratively applying (⇀∗seq) the sequential execution rules (7.1)–(7.7). These
rules define the relation ⇀seq of sequential process execution. By this, the
rule exec advances the sequential execution of all active, i.e., not suspended,
processes. Rule exec matches as long as there exists a non-suspended process.
For multiple such processes, no specific order in which they are processed
is defined here. The special semantics of VHDL (cf. Section 5.2.3) allows to
choose an arbitrary execution order among the existing processes.

As mentioned in Chapter 5, the semantics of VHDL has two levels. After
all processes have finished their execution and are suspended, all scheduled
signal assignments for the current simulation time take effect. This might
trigger a repeated execution of a process depending on its sensitivity list (cf.
VHDL semantic description in Chapter 5) which is covered by the following
rule delta:

delta

∀l ∈ L : ρ(l) = (ζsus, Πl, ωl) Θ′ = λt.

Θ(s̄) if t = s
Θ(s̄) if t = s̄
Θ(t) otherwise

ρ′ = λ(l ∈ L).

{
(start(Πl), Πl, ωl) if ∃s ∈ ωl : Θ(s) 6= Θ(s̄)
(ζsus, Πl, ωl) otherwise

(Θ, ρ) ⇀ (Θ′, ρ′)
(7.10)

By this, the rule delta activates processes and applies delayed assignments,
i.e., all scheduled signals become visible. For each process ρ(l) having at
least one signal in its sensitivity list ωl changed, the program counter ζl is
set to the first instruction in the program start(Πl).

153

7 Pipeline Analyzer Generation

The inference rules presented in this section do not describe how simulation
time advances. Simulation proceeds until no more updates can be done and
the simulation time then must be updated by an external module. Since a
process in synthesizable VHDL cannot be sensitive on a signal it drives and
there is no possibility to wait for a timeout, there is no way to model the
frequent change of a clock signal.

Using the operational semantics defined by the inference rules in the previous
and this section, the effect of the execution of all language constructs of the
synthesizable subset of VHDL is defined and can be used to generate a
simulator given an input VHDL model. However, specifications of processors
are too big and typically contain information having little or no impact on the
timing behavior of the processor. Therefore, abstractions have to be applied
to eliminate all unnecessary or expensive details.

7.2.2 Activation Sequences

Simulating the execution of a task with a given VHDL model would require
to implement the two-level semantics as described in Chapter 5. In addition
to the effect of a single process execution, process reactivation – VHDL
delta cycles – need to be incorporated. In the operational semantics (cf.
Section 7.2.1), the rule delta already covers this.

This means, additional simulation code has to be written implementing the
delta rule that cannot be derived from the actual VHDL model. Fortunately,
this code can be written once and is generic for all VHDL models because it
follows the language definition.

Definition 7.3 — Activation Sequence:
The sequence of delta cycles between two consecutive advancements of
simulation time is called an activation sequence as the underlying repeated
process execution is needed to yield the next “steady” state, i.e., there
are no scheduled signal assignments left for the current simulation time.

Each call to the cycle-wise update within the aiT framework (cf. Section 4.3)
would expect to result in the final state of such an activation sequence. This
property is independent from any employed model abstraction as it directly
follows from the VHDL language specification.

154

7.3 Abstract Simulation

7.2.3 Simulation Traces

The result of a simulation of a concrete VHDL model is a sequence of system
states, also called trace (cf. its definition in Section 4.3.3). By selecting those
states on a trace matching a given criterion, e.g., all states with an activated
bus signal, this trace subset, which is computed by the timing analysis, can
be compared to real hardware traces. Actually, this is an existing method
for the validation of hand-crafted timing models [Sch05] and described in
Section 8.2.

Even with a concrete VHDL model, it is not enough to simulate one single
trace because the starting state of the system is not known in general. The aiT
framework assumes that the analyzed code is run without interference from
any other task that might have been executed previously as well as without
any preemption, i.e., the processor pipeline is considered to be empty as
well as the cache content1. Despite this, hardware traces have shown that
the pipeline analysis needs to consider different instruction queue contents
accommodating remaining instructions from a previously executed task.
Those instructions actually are not executed anymore but still exist in the
instruction queue occupying slots and therefore slow down the start of the
execution a bit.

Another reason for the generation of more than one starting state are multiple
clock domains. The main system bus is clocked with a fraction of the proces-
sor core clock frequency resulting in an offset between both clocks. As the
starting offset between both clocks is not known, all possible displacements
need to be taken into account.

In the end, simulation of a concrete VHDL model within a timing analysis
would result in a set of simulation traces due to multiple starting states of the
system. For an abstracted model, the situation is more complex as detailed in
the next section.

7.3 Abstract Simulation

Abstract simulation, i.e., the simulation of an abstracted VHDL model (cf.
Chapter 6) generally works like the concrete simulation as described in the

1Actually, the cache content can be configured among an initial empty or chaos state where
chaos represents unknown contents.

155

7 Pipeline Analyzer Generation

previous section. Additionally, it has to cope with the nondeterminism of the
underlying timing model as a result of the abstractions (cf. Section 6.2.1).

The next section first describes the effect of abstractions on the simulation
result, namely the presence of state splits leading to simulation trees rather
than single traces. Afterwards, Section 7.3.2 defines the abstract operational
semantics for the simulation of abstract VHDL models.

7.3.1 Simulation Trees

Introducing abstractions to a program often implies a loss of information
about the state of the program, e.g., values of variables or signals, etc. This
information may be either missing or is not precisely known which is also
caused by the fact that static analyses in principle work independently of
any input. Due to the fact that program flow, i.e., the control flow, typically
depends on the program state, i.e., the current environment, simulation of
abstracted programs must cope with nondeterminism to cover all possible
execution paths.

In a deterministic simulation, the program state is precisely known at all
program points. The execution of a statement within a process updates the
environment exactly in the way described in Section 7.2.1, i.e., there are no
uncertainties.

By contrast, in a nondeterministic simulation of a VHDL model, a com-
putation potentially yields more than one result leading to so-called state
splits.

Definition 7.4 — System State Split:
A system state split happens if the state transition system leads to more
than one possible successor state for one input state due to imprecise
knowledge about the concrete state of a system. Multiple successor states
are then generated which all differ in some part(s) of their state.

So, a simulation must proceed along all possible paths. Thus, simulating
VHDL modules containing state splits proceeds along a tree rather than a
trace.

Definition 7.5 — Simulation Tree:
In the presence of state splits where the state transition computation for

156

7.3 Abstract Simulation

Listing 7.1 – Sample memory controller in VHDL

1 entity mem_ctrl is
2 port (addr : in integer; ws : out integer);
3 end entity;
4

5 architecture arch of mem_ctrl is
6 function access_time (a: integer) return integer is
7 begin
8 if a >= X"0000" and a < X"1000" then
9 --access to slow memory

10 return 15;
11 else
12 --access to fast memory
13 return 5;
14 end if;
15 end;
16 begin
17 P: process (addr)
18 variable t: integer;
19 begin
20 t := access_time(addr);
21 if addr mod 4 /= 0 then
22 --address not aligned
23 t := t * 2;
24 end if;
25 ws <= t;
26 end process;
27 end architecture;

one single input state results in multiple successor states, the simulation
from one starting state spans a tree structure, the simulation tree.

Due to the presence of timing anomalies (cf. Section 6.2.2), it is generally not
possible to ignore any path for safety reasons.

Listing 7.1 shows the VHDL description of a simplified memory controller.
For a given address addr, the module computes the number of wait-states
ws required for accessing the physical memory cells. Usually, the number of
wait-states depends on the addressed memory type and the access type, e.g.,
aligned or non-aligned accesses. So, the decisive factors in this simplified
memory controller are whether the access addresses the slower or the faster
memory, i.e., addr ∈ [0x0000, 0x1000) within the function access_time,
and whether the given address addr is aligned or not.

157

7 Pipeline Analyzer Generation

Figure 7.1 – Simulation trace vs. simulation tree

addr = 0x4001

t = 5

ws = 10

(a) Trace

addr =?

t = 5

ws = 5

al
ig

ne
d

ws = 10

!aligned

ad
dr
6∈ range

t = 15

ws = 15

al
ig

ne
d

ws = 30

!aligned

addr ∈ range

(b) Simulation Tree

During a concrete execution of this module, addr is precisely known, e.g.,
when addr = 0x4001, hence the function access_time will return 5, and
since addr is not aligned, the resulting number of wait states ws is 10.

Introducing a domain abstraction on addr from a concrete value to an in-
terval, simulation becomes more difficult. The range check in function
access_time may become ambiguous, i.e., it can be both, true and false,
so the function might return two values, namely 5 and 10. This introduces
nondeterminism into an abstract simulation, resulting in a state split. Fur-
thermore, the check in process P also becomes ambiguous, resulting in an
additional state split. A safe abstract simulation must result in four values of
wait states, namely 5, 10, 15 and 30.

Figure 7.1 on page 158 outlines in part (a) the execution trace in the de-
terministic case, and the abstract simulation tree in the nondeterministic
case in part (b) on the right. This example shows that a simulation coping
with abstractions needs to keep track of all points where nondeterminism
is encountered, i.e., all split points. Using the tree metaphor, a split point
represents a vertex having more than one child. Every path through the tree
leading to a leaf corresponds to an execution trace. Please note that due to
abstractions there might exist a path in the tree that does not correspond to a
real execution trace.

Analogously to the simulation of a concrete VHDL model, there must be mul-
tiple different starting states (cf. Section 7.2.3) so that the overall simulation
result is a forest of simulation trees.

158

7.3 Abstract Simulation

Listing 7.2 – Abstract simulation preprocessing example

1 --- Original code
2 if f1(i) + f2(j) * b > 1 then
3 ...
4

5 --- Preprocessed code
6 t1 = f2(j);
7 t2 = t1 * b;
8 t3 = f1(i);
9 t4 = t2 + t3;

10 t5 = t4 > 1;
11 if t5 then
12 ...

The next section describes the operational semantics of simulating abstracted
sequential VHDL code.

7.3.2 Abstract Operational Semantics

Analogously to the definition of the operational semantics for the simulation
of a concrete VHDL model (cf. Section 7.2.1), this section introduces inference
rules [NN92] to specify the semantic effect of the simulation of an abstracted
timing model. First, the sequential execution of processes is defined for all
language constructs. Then the effect of the second semantic level of VHDL –
the delta cycles – is defined.

An earlier version of the inference rules defined in this section has been
published by Maksoud [MPS09].

Abstract Sequential Process Execution

Without loss of generality, the VHDL code is assumed to be preprocessed
to avoid any nondeterminism in compound expressions, i.e., there shall be
at most one operation or function call in assignment statements, and no
operations at all in the conditions of if and loop-statements. The example
code in Listing 7.2 (taken from [Mak07]) illustrates the preprocessing.

In the original code in line one, the expression f1(i) + f2(j) ∗ b > 1 is split
up into its subexpressions using five temporary variables t1, . . . , t5 (lines

159

7 Pipeline Analyzer Generation

6–10). By this, each assignment to one of the temporary variables contains
at most one function call or operator usage. In the end, the conditional
expression in the preprocessed if statement (line 11) is just a reference to
the temporary variable t5.

The motivation behind this preprocessing is just to keep the abstract simula-
tion of if and loop statements simple as state splits now can only happen
in variable and signal assignments.

Analogously to the concrete sequential process execution, the abstract exe-
cution of a process needs a context, too, in order to define the operational
semantics.

Definition 7.6 — Abstract Process Execution Context:
The context for sequential execution of an abstracted process p can be
defined as the tuple (Θ, ζ, Π) where

I Θ is an environment as defined for the concrete process execution
context in Section 7.2.1.

I ζ is the program counter as defined before. Furthermore, ζend is a
special address indicating that the current simulation path is at its
end, i.e., process execution stops here.

I Π is the program as defined in Section 7.2.1.

In contrast to non-abstracted VHDL, the evaluation function eval returns
one or more values based on the current environment and the expression.

This definition of an abstract process execution context differs from the
concrete simulation only in the employed eval-function.

Based on the above definition of an abstract process execution context, the
inference rule for a variable assignment can be defined as:

varabstract

Π[ζ]⇒ ν := expr; Θ ` eval(expr) 3 u

Θ′ = λt.

{
u if t = ν

Θ(t) otherwise

(Θ, ζ, Π) ⇀ (Θ′, next(ζ), Π)
(7.11)

If the statement Π[ζ] at the current program point ζ is a variable assignment
whose right hand side evaluates to a result u, the new environment Θ′ is
created based on the input environment Θ but with u as the new value for
variable ν. Furthermore, the program counter PC is advanced by next(ζ).

160

7.3 Abstract Simulation

The new abstract process execution context then is denoted by (Θ′, ζ ′, Π). The
difference between the inference rule for a variable assignment in Section 7.2.1
here is the potential nondeterminism embodied in the selection of u as a result
of the expression evaluation. For example, assuming that the expression expr
actually evaluates to three values u1, u2, u3, rule var would match three times
yielding three different abstract process execution contexts (Θ′1, next(ζ), Π),
(Θ′2, next(ζ), Π) and (Θ′3, next(ζ), Π).

Analogously, signal assignments are then defined by the following rule:

sigabstract

Π[ζ]⇒ s<= expr; Θ ` eval(expr) 3 u

Θ′ = λt.

{
u if t = s̄
Θ(t) otherwise

(Θ, ζ, Π) ⇀ (Θ′, next(ζ), Π)
(7.12)

Due to the VHDL preprocessing described above, there are only simple
expressions left in the conditions for if statements which deterministically
evaluate to true or false. State splits can therefore never occur at such points.
The inference rule for an if statement whose condition expression evaluates
to true can then be defined like this:

tcondabstract

Π[ζ]⇒ if expr then b1 else b2 end if;
Θ ` eval(expr) = true

(Θ, ζ, Π) ⇀ (Θ, start(b1), Π)
(7.13)

As there are no changes of the environment, control is just passed to the
first statement of the then block b1. Analogously, the rule for a condition
expression evaluating to false is

fcondabstract

Π[ζ]⇒ if expr then b1 else b2 end if;
Θ ` eval(expr) = false

(Θ, ζ, Π) ⇀ (Θ, start(b2), Π)
(7.14)

Here, control is passed to the first statement of the else block, namely b2.
Because these two inference rules only alter the control-flow position, they
are equal to the rules (7.3) and (7.4) of the concrete simulation described in
Section 7.2.1.

The preprocessing of the VHDL code not only simplifies the abstract simula-
tion of conditional statements. Loops can be handled similarly:

tloopabstract

Π[ζ]⇒ while expr loop b end loop;
Θ ` eval(expr) = true

(Θ, ζ, Π) ⇀ (Θ, start(b), Π)
(7.15)

161

7 Pipeline Analyzer Generation

Rule tloopabstract shows the effect of the execution of a while loop whose con-
dition evaluates to true where the next rule (floopabstract) is for loop condition
expressions that evaluate to false:

floopabstract

Π[ζ]⇒ while expr loop b end loop;
Θ ` eval(expr) = false

(Θ, ζ, Π) ⇀ (Θ, next(ζ), Π)
(7.16)

In both cases, there are no changes to the process execution context except
the value of the current program pointer ζ which is advanced to the next
statement, either the first statement of the loop body (true-case) or to the next
statement after the loop (false-case). As for the if statement rules, the rules
tloopabstract and floopabstract are equal to their concrete simulation counterparts
(cf. rules 7.5 and 7.6).

Analogously to the concrete sequential process execution semantics empty
blocks have to be covered by a special rule:

skipabstract
Π[ζ]⇒ ;

(Θ, ζ, Π) ⇀ (Θ, next(ζ), Π)
(7.17)

After the last statement in a process, the special program counter ζend is
reached and process simulation has reached a final state at that point and the
process suspends. This state transition is covered by the rule stopabstract.

stopabstract (Θ, ζend, Π) ⇀ (Θ, ζsus, Π)
(7.18)

The program counter for the process is then updated to ζsus. This rule is
equal to rule (7.8).

Abstract Simulation Semantics

As for the simulation of a concrete VHDL model, the simulation semantics,
i.e., the iterative application of the abstract sequential process execution rules
as well as the effect of VHDL delta cycles, need to be defined. For this, a
global abstract simulation context is required.

Definition 7.7 — Abstract Simulation Context:
The abstract simulation context of a VHDL model is the tuple (Ξ, ρ) where

162

7.3 Abstract Simulation

I Ξ = {Θ1, . . . , Θn} is a set of environments where each environment
Θi is defined as in the definition of the abstract process execution
context in Section 7.3.2 and

I ρ is a map from process labels L to processes.

As for the definition of the simulation context in Section 7.2.1, a process
ρ(l) is a tuple (ζl, Πl, ωl) where ζl is the program counter and Πl is the
program, respectively. And ωl is a set of signal names representing the
sensitivity list of ρ(l).

This definition just differs from the simulation context for the concrete case
in using a set of environments Ξ instead of a single environment Θ. This
difference is implied by the introduction of abstractions that introduce state
splits (cf. Section 6.2.1). The resulting simulation tree (cf. Section 7.3.1) has
multiple end nodes with different environments. All these environments
have to be collected which is done by the set of environments Ξ.

Based on the abstract simulation context, process execution, i.e., the iterative
application of the abstract sequential execution rules can be defined:

execabstract

∃l ∈ L : ρ(l) = (ζl, Πl, ωl) ∧ ζl 6= ζsus :
Ξ′ = {Θ′ | Θ ∈ Ξ, (Θ, ζl, Πl) ⇀

∗
seq (Θ

′, ζsus, Π)}

ρ′ = λ(t ∈ L).

{
(ζsus, Πl, ωl) if t = l
ρ(t) otherwise

(Ξ, ρ) ⇀ (Ξ′, ρ′)
(7.19)

The simulation context (Ξ, ρ) is changed into a new context (Ξ′, ρ′) by rule
exec if there is at least one process ρ(l) whose program counter value is not
equal to ζsus. The process execution context of each process ρ(l) matching this
condition is updated for each environment Θi in the set of input environments
Ξ by iteratively applying (⇀∗seq) the abstract sequential execution rules (7.11)–
(7.18). By this, the rule exec advances the sequential execution of all active,
i.e., not suspended, processes. As defined in Section 7.3.2, the abstract
sequential execution rules are embedded in ⇀seq. In contrast to the exec rule
for the simulation of a concrete VHDL model as defined in Section 7.2.1, the
difference of the abstract simulation context from its concrete correspondent
implies that all existing environments (Θi ∈ Ξ) have to be used for process
execution.

163

7 Pipeline Analyzer Generation

As mentioned in Chapter 5, the semantics of VHDL has two levels and
as in the simulation of a concrete model, VHDL delta cycles need to be
incorporated in the abstract case, as well. After all processes have finished
their execution and are suspended, all scheduled signal assignments for the
current simulation time take effect. This might trigger a repeated execution
of a process depending on its sensitivity list (cf. VHDL semantic description
in Chapter 5) which is covered by the following rule:

deltaabstract

∀l ∈ L : ρ(l) = (ζsus, Πl, ωl)

Ξ = {Θ1, . . . , Θn}

∀i ∈ {1, . . . , n} : Θ′i = λt.

Θi(s̄) if t = s
Θi(s̄) if t = s̄
Θi(t) otherwise

Ξ′ = {Θ′1, . . . , Θ′n}

ρ′ = λ(l ∈ L).

{
(start(Πl), Πl, ωl) repeat(ωl)

(ζsus, Πl, ωl) otherwise

(Ξ, ρ) ⇀ (Ξ′, ρ′)
(7.20)

For each environment Θi in the input set of environments Ξ a new environ-
ment Θ′i is computed representing the application of delayed assignments,
i.e., all scheduled signals become visible. The new set of environments then
consists of all new environments Θ′i. Furthermore, for each process ρ(l)
having at least one signal in its sensitivity list ωl changed (repeat(ωl)), the
program counter ζl is set to the first instruction in the program start(Πl)
which effectively restarts its execution. The definition of the predicate repeat
has been taken from the dissertation of Hymans [Hym04], Chapter 4, where
repeated execution of abstract processes is defined. In contrast to the concrete
semantics where repeat realizes an inequality of future and current value of a
signal, the abstract variant is required to cope with a potentially introduced
domain abstraction. In this case, a custom operator on the new domain has
to be used that implements the repeat predicate. If there are no signal value
changes for a process, i.e., repeat evaluates to false, the process remains in
its suspended state. Except this predicate, the rule deltaabstract differs from
the concrete simulation rule delta as that all existing environments have to be
updated concerning delayed signal assignments. Everything else is analog
to the simulation of a concrete VHDL model. If a signal value has changed
in at least one environment Θi, all affected processes are restarted with all
available environments. An optimization would be to restart a process only

164

7.3 Abstract Simulation

with those environments that actually have caused the signal value change.
That optimization is left for the implementation described in Chapter 10.

Using the operational semantics defined by the inference rules in the previous
and this section, the effect of the abstract execution of all language constructs
of the synthesizable subset of VHDL is defined and can be used to generate a
simulator given an input VHDL model. This simulator is called an abstraction-
aware simulator because it can cope with employed abstractions to the VHDL
model.

7.3.3 Correctness and Soundness

Throughout this section, an abstract operational simulation semantics for
VHDL has been introduced which forms the theoretical basis for the gen-
eration of pipeline analyzers for the aiT framework. For that purpose, the
resulting abstract simulation must be provably correct with respect to the
following criteria:

I model transformations must not change the timing semantics of the
original model and

I the abstract simulation semantics has to be sound.

The first category refers to all employed model transformations (introduced
in Section 6.4.3) that lead to the resulting timing model. In parts, the re-
sults of the used static analyzers (cf. Section 6.3.3) influence the concrete
transformations and therefore their abstract interpretation need to safely
over-approximate any possible concrete result. This is called a sound ab-
straction and corresponding correctness proofs are given by [Sch13]. In
addition, the transformations itself must not change the timing behavior of
the hardware design, i.e., they have to be semantic-preserving. Chapter 8
deals with this topic and introduces a timing model validation technique
that makes use of methods from the area of formal functional hardware
verification. Interval property checking is proposed to show the semantic
equivalence of the original hardware design and the derived timing model.
By this, the semantic-preserving property of the employed transformations
gets verified.

The derived timing model is the input of the pipeline analyzer generation
phase. But besides the timing model itself, the generated simulation is based
on the abstract operational semantics which have been defined in this chapter.

165

7 Pipeline Analyzer Generation

It remains to argue about the soundness of this abstract semantics with
respect to its concrete counterpart. In other words, the abstract semantics
has to be a safe over-approximation to the concrete semantics. A soundness
proof is not given here, but follows from the correctness proof that has been
done by Hymans [Hym04]. He defines a concrete and abstract operational
semantics whose formal representation is close to the one given here. In
some parts, for example the wake predicate (repeat in this thesis) and the
evaluation of VHDL expressions (eval predicate), some foundations from his
work are taken over here. Therefore, his soundness arguments can be applied
to the abstract operational semantics defined in this chapter and conclude
the correctness of the abstract simulation framework.

7.4 Summary

This chapter starts with the definition of an operational simulation semantics for
non-abstracted VHDL models. For this, a process execution context is defined
that stores the current state of a process during its simulated execution.
Inference rules are introduced that specify how this process context changes
when executing VHDL language constructs. The simulation of a complete
VHDL design is then supported by the definition of a simulation context that
manages the execution context of each process in the design. Additional
inference rules then specify the effect of repeated process execution (VHDL
delta cycles) and when simulation time advances.

Based on these semantics for a concrete VHDL model, an abstract process
execution context is derived together with corresponding abstract variants of
inference rules for execution simulation. Due to the abstractions, nondeter-
minism is introduced into the model, so that the abstract process execution
semantics supports the simulation of all possible executions in the presence
of uncertainties. The result is a so-called simulation tree. Analogously to the
concrete variant, an abstract simulation context with corresponding simulation
inference rules is defined.

These abstract simulation semantics represents the basis for the generation of
aiT-compatible pipeline analyzers for abstracted timing models as they are
derived by the process invented in the last chapter.

166

8
Timing Model

Validation

“All truths are easy to
understand once they are
discovered; the point is to
discover them.”

(Galileo Galilei)

8 Timing Model Validation

8.1 Overview

Safety-critical embedded systems have to be developed under strict require-
ments. Before any commercial launch, the system itself as well as its devel-
opment process have to be certified against an appropriate safety-standard
like the DO-178B [DO92] for avionics systems. If the system has to fulfill
strict timing constraints, the determination of a safety-guarantee concerning
its execution time in the worst-case is mandatory. Using the aiT framework
(cf. Section 4.3) for this task implies that the tool itself is validated under
the terms of the same safety-standard. Among other things, this implies the
validation of the used timing model. As proposed by this thesis, deducing a
timing model from a formal hardware specification of the system to be exam-
ined ensures that the timing analysis correctly represents its actual behavior
because the specification exactly defines the semantics of the synthesized
hardware. This assumes correctness of synthesis results, i.e., the behavior
of generated hardware circuits fulfill their formal specification. Correctness
proofs for this result from a formal verification of the synthesized circuits
against the design specification.

From this point of view, the model is correct by construction and it remains
to be proven that the employed abstractions do not change or only safely
over-approximate the timing behavior of the input model so that the resulting
timing analysis is safe and correct. This chapter provides insights into the
currently employed validation techniques for timing models independently
from their particular development method, i.e., whether they are developed in
a hand-crafted manner or derived from VHDL. Beyond this, a new validation
method is presented mainly intended to be applied to timing models that have
been derived from formal hardware specifications as described in Chapter 6.
Here, the main idea is to apply the same techniques as in formal functional
verification of hardware components.

8.2 Legacy Validation Approaches

This section provides an overview of currently employed methods for timing
validation within the aiT framework. There are two approaches: one for
examining the timing model of a processor core and another one for the
validation of the prediction of bus accesses.

168

8.2 Legacy Validation Approaches

8.2.1 Validation by Performance Counter Monitoring

Some processors like the Freescale PowerPC 755/7448 provide so-called
performance monitoring facilities, i.e., they are able to monitor and count prede-
fined events such as processor clock ticks, cache misses, types of instructions
dispatched, or mispredicted branches. This section describes a validation
technique which exploits these facilities to compare the observable hardware
events against the predictions of aiT.

The process of the performance counter based validation starts with selecting
a specific set of performance counter events, e.g., dispatched instructions,
L1 cache hits, completed branches,. . . , to be observed. Then an appropriate
test program with user code is run on an evaluation board. Each time an
instruction completes, the values of the counters for the selected events are
written to memory. The collected information about performance counter
values is aggregated and displayed in a matrix illustrating the changes of
counter values over time. Additionally, the pipeline analysis has to be aug-
mented in order to predict the performance counter behavior. Augmenting
here means that corresponding code has to be written if the pipeline analysis
has been developed manually. Having used the semi-automatic approach
proposed in this thesis (cf. Chapter 6), the engineer “only” has to make sure
that the performance counter update is not removed from the resulting timing
model.

After an analysis of the task execution with aiT, the information about the
performance counter values and their changes over the execution time can
be compared between the pipeline prediction and measured traces. Impor-
tant for the comparison is that the test programs have a fixed behavior, i.e.,
they must have a deterministic starting state. Then, depending on the test
programs and the underlying hardware, one can try to examine the behavior
of the different functional units as separately as possible and special com-
binations of instruction sequences which are assumed to have a different
behavior as documented in the hardware manuals. Schlickling/Pister [SP09]
give further details on the concrete usage of this approach.

This technique complements the trace-based validation described in the next
section since the performance counters gather information about the internal
processor state that cannot be observed on the system bus.

169

8 Timing Model Validation

8.2.2 Validation by Trace Matching

Trace matching is a method developed in order to match aiT results – the
predicted timing behavior – against bus traces determined via measurements
on the actual hardware.

The idea is to let the pipeline analysis write predictions of the visible bus
transaction signals during the abstract simulation of the task’s execution. In
parallel, bus traces of the concrete execution are recorded and compared to
aiTs prediction.

In practice, this technique has been established with good results [Sch05].
Its effectiveness results from the fact that most industrial applications are
dominated by their memory accesses regarding the execution time. Therefore,
most execution time is spent within accesses to the memory hierarchy which
can be traced using the above mentioned bus traces rendering trace matching
to be the most important technique for timing model validation so far. All
measured end-to-end runtimes must be lower than or equal to the computed
WCET bound, i.e., no single under-estimation must exist. Furthermore, the
order of the visible bus signals in the measured trace has to be found in
the prediction. In other words, the measured execution path must always
be represented by one of the predicted paths. But it must not necessarily
contribute to the worst-case path since measurements do not provide a full
coverage of the potential execution paths in the analyzed executable and
therefore do not trigger the worst-case path in general (cf. Section 4.2.2).

Currently, this is the only way to compare the aiT prediction for bus accesses
with the actual hardware behavior. Although the idea sounds pretty simple,
the main problem in this technique is the comparison of the measured hard-
ware trace with the execution tree (cf. Section 7.3.1) in the timing prediction.
This graph can be big for real world applications, consisting of millions of
nodes. Although the comparison itself has been efficiently automated with
tools, the needed human effort is still high, speaking of man months depend-
ing on the complexity of the examined hardware architecture. If the timing
model has been built on documentation, such a trace validation exhibits
differences between the model and the actual hardware’s behavior. Needed
reverse engineering by suitable test cases and drawing the right conclusions
to correct the model is a difficult task. Additionally, the traces might have
recorded asynchronous events like DMA accesses or dynamic memory re-
freshes. They are not incorporated in the timing model and therefore lead to

170

8.3 Formal Functional Hardware Verification

mismatches in the automatic trace comparison. These are examples for the
high human effort.

8.3 Formal Functional Hardware Verification

Up to the nineties, the state-of-the-art in hardware verification has been a
purely simulation-based approach, i.e., hardware simulators were used to
obtain confidence about functional correctness of hardware circuits. This
requires the corresponding simulation test benchmarks to achieve a good cov-
erage of the hardware model which has been tried to achieve by stimulating
potential inputs.

But the simulation models are running with much slower speed (factor of
about one million) than the actual hardware. In consequence, only a small
portion of the lifetime of a chip can be covered by this technique within
an acceptable time span. So, a high probability remains that specification
errors remain undetected because it is clear that not all corner cases of the
functionality can be explored with this methodology. This problem is known
as the verification gap.

Formal verification methods have been introduced in the early nineties in or-
der to bridge this gap and are therefore often called gap-free verification. First
commercially available methods were the so-called assertion-based formal veri-
fication (ABFV) [Jas11, Ave11, Syn11, Rea11] which are based on traditional
model checking methods [CGJ+00]. The goal was to state assumptions on
the behavior of a hardware design which should then be proven to be valid
using a model checker. But traditionally, these approaches have complexity
problems if applied within an industrial context, i.e., used for the verification
of assertions on complex processor systems. And with the growing develop-
ment rate of modern processors and systems, the situation got even worse.
As stated by Bormann [Bor09], the development of these methods has not
kept pace with “Moore’s Law” [Moo65]. Often, hardware manufacturers are
already satisfied with the formal verification of small components in their
designs and neglect the interaction between different modules of a design.

Recent research of the last years has introduced new techniques for per-
forming formal functional verification of hardware circuits against a formal
specification that efficiently have overcome the performance problems with
early ABFV approaches mentioned above. A recent candidate is described in

171

8 Timing Model Validation

the next section because it can also be employed for the validation of timing
models which were derived from formal specifications.

8.3.1 Interval Property Checking

Interval property checking (IPC) is a formal verification method that can be
used for different aspects of functional verification of hardware circuits.
The idea of the approach is to develop a “structure” of what has to be
verified [Bor09]. And this structure can be derived from the operations of a
hardware circuit, e.g., the hardware instruction set. The instruction semantics
summarizes processes of the particular circuit over a defined range of time.
An execution of an instruction triggers a dedicated effect (although dependent
on the execution history, i.e., the current hardware state) within the processor
so that the union over all these effects, i.e., all available instructions, then
specifies the complete functionality of the hardware design. In order to
define the semantic effect of instruction execution on the design, one can use
temporal properties which can be derived either from the ISA (instruction
set architecture) documentation as well as from timing diagrams which are
usually available from the processor manufacturer.

A so-called property checker then tries to prove that the hardware implemen-
tation – a formal specification like VHDL, Verilog or a similar specification
language – fulfills the given properties. The difference to bounded model
checking (BMC) [BCC+03], a variant of model checking also used for formal
verification of hardware designs, is that the notion of time is built into a
property, i.e., a property can specify that certain state changes has to happen
within an interval of time [t, t + l]. Property checkers then start simulation
at time t with all possible input states. In contrast to that, BMC would
start at time 0 and is only able to simulate up to a point n = t + l in the
simulation time. Simulation from the system start then introduces additional
complexity.

As usual for model checking techniques, the computed output of a property
checker is either the proof that the design satisfies the given properties or a
counterexample where at least one property does not hold. This simplifies
the traceability of the potential error. Potential here means that the checker
analyzes the model independent from the input state, so there might be false
negatives with that method. For a computed counterexample, it has to be
checked whether the particular input state is possible for that situation. False

172

8.3 Formal Functional Hardware Verification

negatives could be avoided by intersecting them with the results of a reacha-
bility analysis that computes possible input states. The reachability analysis
could automatically generate additional properties which then exclude un-
reachable input states, at least for simple reachability constraints. Where
the automatic generation of such properties fails, the verification engineer
has to manually exclude unreachable states by hand-crafted specification of
additional constraints [Bor09]. Then, the final verification problem effectively
has been reduced to a SAT-problem, for which powerful solvers exist.

8.3.2 Completeness

As the invention of IPC for formal functional hardware verification seems
to render the verification of even complex circuit designs feasible, there is
another problem to be addressed: completeness. The given set of properties
represents another way of specifying the functionality of the design to be
verified. So it has to be assured that the properties fully cover all hardware
requirements. In other words: a property set for a specific hardware design
is called complete if and only if the output signals of the design can be
determined uniquely for all possible inputs.

To reach completeness, a property set has to be checked by a completeness
checker as it has been developed by Bormann [Bor09, Cla07]. IPC combined
with such a completeness checker is then called Complete Interval Property
Checking (C-IPC) and a complete set of properties for a hardware design
then forms an abstract specification of the circuits compared to its formal
specification in VHDL or Verilog.

Complete interval property checking has shown its applicability on modern
and large industrial hardware designs like the Infineon TriCore2 processor,
Infineon’s [Inf] next generation of microcontrollers which has been published
by Bormann [BBM+07]. The theoretical foundations have been developed
within the research projects Verisoft XT [Ver], Herkules [Her12], Valse and
Valse XT. The technology has been embedded into a commercially available
tool – OneSpin 360MV – which has been developed by OneSpin Solutions
GmbH [One11].

Recent research has invented methods for the derivation of abstract models
from a complete set of properties for a hardware design. With such models,
global liveness and safety properties of the design can be proven and temporal

173

8 Timing Model Validation

abstractions can be invented [USB+10]. Additionally, the theory has been
adapted for the verification of weakly programmable IPs [LWS+10].

8.3.3 Example Property

To give an overview of the formulation of properties for hardware circuits,
this section presents a rough description of an example taken from [Bor09].
A given SDRAM chip is first described and a sample property will be given
afterwards.

The chip is connected to a specific memory controller which is located on the
main system board. Data transfers between the processor and the memory
controller are then driven on the system bus. As described in Section 3.3.4,
the memory cells in SDRAM chips are arranged in matrices and due to this
structure, the address of a single memory cell consists of a row address part
and a column address part. Chip transactions between the memory controller
and the SDRAM chip are then composed by different control signals:

I Commands encode the concrete action to be performed on the chip.
Table 8.1 on page 176 shows the most important SDRAM commands.

I The address bus contains the address of the memory cell to be accessed.

I The data write bus contains data to be written in case of store operations.

I The data read bus contains read data delivered by the chip in case of
load operations.

Often the control logic is more complex than described here and uses ad-
ditional signals. They have been left out for simplicity and without loss of
generality.

Analogously to the above described commands, the SDRAM manages a state
which can be modeled by a finite state automaton. A simplified state machine
is shown in Figure 8.1 on page 176. Starting with the state IDLE, it depends
on the concrete address of an access. If the corresponding row is already
open, the current state is changed to READ or WRITE for the particular type
of the access. Otherwise, the row has to be activated first which is handled
by the precharge and row activate commands in state PRE_ACTIVE.
After having opened a row, the state machine enters state READ or WRITE.
There, the actual access is handled by issuing the commands read or write,
respectively. If the access is finished and does not cross any row boundary

174

8.4 Property Checking Based Timing Validation

(due to the particular access width), the control returns to the initial state
IDLE. For a row-crossing access, the next row has to be opened and the
current state is changed to PRE_ACTIVE, again.

The code in Listing 8.1 on page 177 shows a sample property for a read
operation into a currently not activated row of the matrix. First, the input
assumptions are defined in lines 3–7. They state that the input SDRAM
controller state (at time t) is IDLE and that there is a read request whose
row address part is not equal to the previously used row address. In lines
9–26, it is specified what the property checker should try to prove: First, the
controller state at time t + 1, t + 5 and t + 9 should be PRE_ACTIVE, READ
and IDLE respectively. Additionally, the most recently accessed row address
information should have been updated. Then, the different SDRAM com-
mands are sent to the chip. This is indicated by the assignments to the signal
sd_ctrl which have to be proven by the property checker. Furthermore, at
time t + 3 and t + 5, the address transferred to the chip should be the row
and the column address of the memory cell respectively. At time t + 8, the
requested data should have been transferred from the chip to the memory
controller over the data read bus. This is modeled by the rdata signal.
The nop commands used at time t + 2, t + 4 and during [t + 7, t + 9] are
needed because the concrete hardware sometimes requires some cycle delays
between the transmission of subsequent SDRAM commands. Named signals
and identifiers are directly coupled with their correspondents in VHDL.

This property language allows to express the functionality of the SDRAM
interface including the timing behavior. In Listing 8.1 on page 177, the
internal state of the SDRAM is specified for each clock cycle. The example
presented in this section should only give an impression of the formulation
of properties for hardware designs. For further details, please refer to the
original example from Bormann [Bor09] that contains more details which
were left out here.

8.4 Property Checking Based Timing Validation

This section introduces a new method for the validation of timing models
that have been derived from formal hardware specifications as described
in Chapter 6 on page 109. Such models have been transformed with the
goal to only represent the actual timing behavior of the hardware design.

175

8 Timing Model Validation

Table 8.1 – SDRAM chip commands

Command Description

row activate Activates a line in the matrix for subsequent accesses
to it.

read Performs a read operation from the addressed memory
cell within the currently active row.

write Performs a write operation into the addressed memory
cell within the currently active row.

precharge Closes the currently active row.

nop No operation. This command is needed to implement
needed delays after the other commands.

. . .

Figure 8.1 – SDRAM state machine

IDLE

start

PRE_ACTIVE
precharge,
activate

WRITE
write

READ
read

access
closed
rowaccess open

row
access open
row

access
opened row

access
opened row

end of row

access end

end of row

access end

176

8.4 Property Checking Based Timing Validation

Listing 8.1 – SDRAM read sample property

1 property read_new_row is
2

3 assume:
4 at t: state = idle;
5 at t: request = ’1’;
6 at t: rw = ’1’;
7 at t: address /= last_row;
8

9 prove:
10 at t+1: state = pre_active;
11 at t+5: state = read;
12 at t+9: state = idle;
13 at t+9: last_row = prev(row(address));
14

15 during [t+1, t+7]: ready = ’0’;
16 at t+1: sd_ctrl = row_activate;
17 at t+2: sd_ctrl = nop;
18 at t+3: sd_addr = row(address);
19 at t+4: sd_ctrl = nop;
20 at t+5: sd_ctrl = read;
21 at t+5: sd_addr = col(address);
22 at t+6: sd_ctrl = stop;
23 during [t+7, t+9]: sd_ctrl = nop;
24 at t+8: rdata = prev(sd_rdata);
25 at t+8: ready = ’1’;
26 at t+9: ready = ’0’;
27

28 end property;

Therefore, it has to be shown that the transformed model still represents the
same timing as the original model.

As the property checkers operate on the formal specification code (VHDL,
Verilog or similar), the transformed model cannot be examined directly
because the derivation process’ internal representation of the model is the
Control-Flow Representation Language (CRL) as described in Section 6.3.1.
A conversion that reconstructs VHDL from the internal CRL representation
has to be done first. Chapter 10 on page 203 describes the implementation of
this reconstruction within the code generation phase. This way, a property
checker could then compare both models (original and transformed one)
against a specification (given as a set of properties). The property set created
for the original design has to hold for the transformed model, too.

177

8 Timing Model Validation

This approach still is in an early development process as a cooperation
between Saarland University and the Electronic Design Automation Group,
University of Kaiserslautern which have a rich experience and knowledge
about formal functional verification in general and the application of interval
property checking in the presence of abstractions specifically. In the next
section, the current state of this cooperation is described and summarized
with an outlook on potential future work in Section 8.6.

8.4.1 Current State

The above mentioned needed property set can be either specifically formu-
lated for this purpose or taken from the properties used for a functional
verification of the hardware design where the latter variant has the advantage
of being complete (cf. Section 8.3.2). By this, the side product of a complete
formal verification on the original hardware model additionally contains the
timing behavior of the design although this information usually might be
formulated implicitly. A problem arising in this approach are the transforma-
tions performed to derive the timing model from the original one. Depending
on the concrete transformations (cf. Section 6.4.3), a lot of the properties
will not hold in the transformed model. For example, the removal of pure
functional code (cf. Section 6.5.2 on page 140) like the internal behavior of an
arithmetic-logical execution unit (ALU) will most probably break those prop-
erties that check the ALU’s semantic. In other words, functional attributes of
the model might get lost during the transformation and abstractions done
during the timing model derivation procedures. Properties then have to be
adjusted or possibly be removed so that only the timing behavior still is
reflected by them.

Assuming a performed domain abstraction (cf. Section 6.5.2), needed im-
plementations of new operators for the target domain should be specified
directly in VHDL in order to better support the usage of a property checker.
If this is not possible or intended, additional properties have to be formulated.
They need to specify the particular effect of the newly introduced operators
on the global state of the design because the property checker needs to know
the concrete semantics.

Another assumption which has to hold for the whole derivation process is
that there is no change in the input signals between the original model and
the transformed one. If this does not hold, a mapping between old and new
signals has to be provided.

178

8.5 Summary

Two proof-of-concept equivalence checks exist so far. They are described in
the following.

Proof-of-concept: Address Abstraction

The goal here was to show that an address abstraction as described in
Section 6.4.2 can be proven not to change the timing behavior of the system
in general. It has been manually performed for parts of the load/store unit
of the pipelined DLX design (described in Chapter 11). To recall the effect of
an address abstraction: concrete addresses a in the design get replaced by the
usage of intervals of addresses of the form [lb, ub] where lb (ub) represents a
lower (upper) bound on the potential addresses for a program point in the
specification code.

To show the equivalence of original and transformed model, each address
a in the original model has to be within the bounds of lba and uba in the
abstracted model, i.e.,

∀a : lba <= a <= uba.

This equivalence has been proven using the OneSpin equivalence checker
[One11].

Proof-of-concept: Reset Analysis

Here, the goal was to validate the results of the reset analysis (described
in Section 6.5.1) because they build the basis for further analysis like the
assumption-based model refinement (cf. Section 6.4.1) which end up in code
removals. The general idea is to formulate the analysis results as a property
and feed it to the OneSpin property checker. Formulated assumptions are
that the signals involved in the hardware reset are appropriately activated.

By this, the correctness of the reset analysis could be shown for the pipelined
DLX design.

8.5 Summary

This chapter deals with the validation of timing models employed in the
aiT framework, i.e., the presentation of approaches that can demonstrate

179

8 Timing Model Validation

the correctness of such models. Two existing legacy methods are presented
where both base on the comparison of execution time predictions with event
sequences that have been recorded during a real execution of the analyzed
task. The first is called performance counter validation and focuses on the
processor core’s performance counters (if supported). Events like instruction
retirement, cache hits/misses, number of instruction dispatches, etc. are
traced and compared to the corresponding prediction of the model.

This technique complements the second presented legacy method, trace
validation, which is concerned with visible bus transaction signals. They are
recorded using a logic analyzer so that the produced execution trace can be
compared to the corresponding prediction from the timing model. As the
execution time of most safety-critical embedded control software is memory-
bounded, the bus transactions can be used to validate the most important
part of the timing model: the memory management subsystem.

The formal verification technique interval property checking can be used to
prove temporal attributes of a hardware design and can therefore be applied
as a validation technique for safety and correctness properties of timing
models derived from formal hardware specifications in VHDL or Verilog.
Therefore, the second part of this chapter presents how to transfer this
technique appropriately to the validation of timing models. Employed model
transformations as presented in Chapter 6 are shown not to change the timing
semantics of the model in an unsafe manner, i.e., not to introduce any under-
estimation. Despite the fact that the presented methods are in an early phase
of development, the existing equivalence proves which have been sketched,
show their applicability for a timing validation in general. Proof-of-concept
equivalence checks exist for the output of the reset analysis as well as the
hand-crafted address abstraction.

8.6 Future Work

In addition to the description of the current state of development, there are
still open issues regarding the application of interval property checking for
the timing validation of semi-automatically derived models:

I The correctness of the assumption-based model refinement procedure (cf.
Section 6.4.1 on page 122) has to be proven. Analogously to the valida-
tion of the reset analysis, the correctness can be shown by reformulating

180

8.6 Future Work

any analysis result as properties which are then feed to the OneSpin
property checker. Corresponding assumptions given as input for the
refinement analysis are incorporated into the property (as property
assumptions) so that an equivalence result of the checker is directly
related to them. For a better user convenience, the conversion from
refinement analysis results to corresponding IPC properties should be
done automatically.

I Correctness of all types of transformations (cf. Section 6.4.3) has to be
shown. The idea is to specify the effect of a transformation within a
property. Removal of functional code from an arithmetic-logical unit
(ALU) in a processor pipeline might be shown “correct” if the whole
unit is treated as a black box. Its effect within the processor pipeline
is described by a property which additionally contains the specifica-
tion how long the ALU would be occupied by an executed instruction.
Similar equivalence checks have to be performed for any other trans-
formation applied to a model. An interesting point then might be
actual over-approximations introduced by single transformations and
abstractions. Used properties then not only have to show that the tim-
ing semantics of the original model still hold. It must be proven that
each approximation is safe, i.e., all abstract values computed by the
transformed model cover any possible concrete value.

The overall goal of showing that the timing behavior of the design is not
changed by any transformation as described in the validation strategy, can
then be achieved by showing that all properties of a complete set are still
satisfied by the transformed model modulo the breakage of properties which
check internal not timing relevant behavior. But this has not been formulated
in any way so far. Additionally, the equivalence checks are only valid for the
specific hardware design for which they have been done.

A more “off-topic” idea is to examine the potential extraction of timing
relevant information from a given complete property set for a given hard-
ware design. As both techniques have been designed and used for the
determination of safety guarantees, it would be interesting to see whether
such properties could complement the derivation of timing models from the
hardware specification.

181

9
Timing Predictability

“You see things; and you
say: "Why?" But I dream
things that never were; and I
say: "Why not?"”

(George Bernard Shaw)

9 Timing Predictability

9.1 Overview

Computer systems have dramatically changed during the last decades, espe-
cially for embedded systems as mentioned in Chapter 3. Despite innovations
like virtual memory, high-level programming languages or memory manage-
ment, execution times only played a role for marketing issues like “this new
system performs much better on the SPEC benchmarks. . . .”. Unfortunately,
the timing behavior of an embedded system strongly affects its functional
behavior.

Nowadays, more and more people are becoming aware of this problem
[Lee09]: it is crucial for a correct behavior of an embedded system to be able
to precisely predict the execution time of its tasks. But the developments
of the last years were so-called “ill-suited” for real-time systems [GRW11].
Architectures have become more and more complex, neglecting the resulting
complexity of their timing-behavior analysis, and thereby introduced a lot of
sources of uncertainties. These sources are situations where a static timing
analysis cannot precisely predict a hardware decision. As described by Grund
[GRW11], two lines of research are currently visible:

I improve existing timing analysis techniques to better cope with recent
architecture developments or

I influence future system design for a better predictability especially
regarding the timing behavior.

Between both worlds, there is no agreed formal definition of the term “timing
predictability”. So far, it is rather used subjectively based on the encoun-
tered difficulties when performing a timing analysis. As there are a variety
of variables influencing architectural predictability, Grund et al. [GRW11]
proposes a metric for comparing the predictability of systems based on a
so-called predictability template instead of a fixed definition. The template is
based on the property to predict (for example the execution time), the sources
of uncertainty and the quality measure.

Intuitively summarized, timing predictability can be defined like this:

Definition 9.1 — Timing Predictability:
In order to compare the timing predictability of two architectures for a
given program, the ratios between the best-case and worst-case execution

184

9.1 Overview

time (BCET and WCET1) over all possible starting system states and
inputs have to be determined.

Remark:
Intuitively, the gap between the result of a WCET analysis and the concrete
WCET of the analyzed task would represent a more precise definition of the
hardware’s timing predictability. But as the concrete WCET of a task cannot be
computed in general (cf. Section 4.1), such a metric is not applicable in practice.

The gap between the BCET and WCET results from the above mentioned
uncertainties of timing effects that might not even occur in the concrete
execution but cannot be excluded from the static analysis point of view
[RGBW07]. These uncertainties can be caused by hardware (state-induced) or
by software (input-induced) and can be categorized according to [WFC+09]
into:

I sequential control flow:
Different input might lead to different control flow.

I interleavings of concurrent control flow:
Component concurrency lead to multiple possible interleavings to
shared resources like multiple bus masters.

I architecture flow:
Due to the two points above, there are different input system states for
the abstract simulation leading to a large number of paths that have to
be analyzed. That effectively results in a large state space.

Additionally, the gap between the actual WCET of a task and the computed
timing bound is an important factor for the predictability. Again, it is affected
by both the timing predictability of the underlying hardware and its features
as well as precision of the employed timing analysis.

The goal of this chapter is to give an overview of the predictability of com-
monly used hardware features with respect to the timing analysis employed
by the aiT framework (cf. Section 4.3) which is described in the next section.
Additionally, there is an evaluation in Section 9.3 about the impact on VHDL
language constructs on the precision of a timing analysis which has been
derived from such a model as described in Chapter 6.

1cf. Chapter 4

185

9 Timing Predictability

9.2 Timing Predictability of Hardware Features

As mentioned in Chapter 3, architecture development in the last decades
has lead to more and more parallelism in the system due to the invention of
complex processor pipelines, caches (of different levels), buffers and queues
for memory accesses and suchlike features. Consequently, the execution time
of such complex architectures can no longer be directly deduced from the
documented instruction latencies. Therefore, only counting and accumulating
these timings is no longer feasible [KWH+08]. Actual instruction latency is
only computable by examination of the execution history. Larger queues
or more buffers then lead to longer lasting influences of past events to the
time of the currently executed instruction. As detailed below, this intro-
duces uncertainties increasing the state space to be explored by the timing
analysis.

Furthermore, more complex architectures exhibit timing anomalies (cf. Sec-
tion 6.2.2) which affects the predictability, as well. Regarding this topic,
architectures can be classified into three categories (taken from [WGR+09]):

I Fully timing compositional architectures:
The (abstract model of) an architecture does not exhibit timing anoma-
lies. Hence, the analysis can safely follow local worst-case paths only.
One example for this class is the ARM7 reference architecture [ARM00].
Actually, the ARM7 allows for an even simpler timing analysis. On
a timing accident all components of the pipeline are stalled until the
accident is resolved. Hence, one could perform analyses for different
aspects, e.g., cache, bus occupancy, separately and simply add all timing
penalties to the best case execution time.

I Compositional architectures with constant-bounded effects:
These exhibit timing anomalies but no domino effects. In general, an
analysis has to consider all paths. To trade precision with efficiency,
it would be possible to safely discard local non-worst-case paths by
adding a constant number of cycles to the local worst-case path. The
Infineon TriCore TC1797 [Inf07] is assumed, but not formally proven,
to belong to this class.

I Non-compositional architectures:
These architectures, e.g., the PowerPC 755 exhibit domino effects and
timing anomalies. For such architectures, timing analysis always have

186

9.2 Timing Predictability of Hardware Features

to follow all paths since a local effect may influence the future execution
arbitrarily.

Nowadays not only the complexity of modern processor pipelines imposes
difficulties for timing analysis in general. Recent trends are going towards
the introduction of multi-core systems into safety-critical embedded systems.
Most of such systems on the market have been originally developed for
desktop or server systems. Their design uses big second and third level
caches which are often shared among the processor cores. Up to now, the
problem of performing a precise timing analysis for multi-core systems
actually is not solved, but the research community is already addressing it
[WFC+09, CFG+10].

In the following sections the timing predictability of certain hardware features
is described. These features have been developed for increasing the average
case performance of the system ignoring its effects on the worst-case behavior.
If not mentioned otherwise, all statements below apply both to single as well
as multi-core architectures.

9.2.1 Processor Pipelines

Processor pipelines have become more and more deep and complex in the
last years. On the one hand, deep execution pipelines (cf. Section 3.4) have
been introduced and some execution units got its own “sub-pipeline”, i.e.,
the unit has its own pipeline in order to overlap the execution of consecutive
instructions. This was done mainly for units executing long-lasting instruc-
tions like a floating-point or a load/store unit. Additionally, performance
improving features have been developed as for example prefetching, branch
folding, branch prediction, delay slots, fast data forwarding and shortcuts, su-
perscalarity, out-of-order execution, speculative execution and store gathering
among others (cf. Section 3.4.3).

Assuming the availability of detailed documentation or specification about
the behavior of all these features, they all are good predictable, i.e., its
timing effect in principle is well understood and can be modeled by a static
analysis. But such features typically increase the potential parallelism within
the processor pipeline. At a first glance, this “only” induces a higher space
consumption of a single system state. But often, interferences between
combined features arise that can lead to a significant increase of the state
space to explore in case of uncertainties. For example, the IBM PowerPC

187

9 Timing Predictability

750 [IBM06] has a lot of buffers and queues within its load/store unit which
allow a bunch of parallel pending memory requests. One application is: if
there is a store and a load operation to the same memory location, the data
to be written by the store operation can be fast forwarded to the requesting
load operation increasing the overall system performance. Assuming that
there are imprecise value analysis results for these load or store operations,
the timing model cannot actually precisely decide whether the fast data
forward happens or not. So, both possibilities have to be examined so that
the timing model is getting more vulnerable to imprecise information from
the value analysis because the analysis cannot statically exclude some of the
possibilities. Combining such effects lead to an exponential increase (in the
number of such combined features) of the possible execution paths.

That is just one example how complex pipeline control structures might
increase the computational complexity of the pipeline analysis within the aiT
framework. The result is twofold: on the one hand the analysis time increases
because of a larger system state. And on the other hand, the computed
time bound might get more pessimistic because of uncertainties rendering
the whole architecture to be less predictable as best-case and worst-case
diverge.

9.2.2 Caches

The predictability of caches (cf. Chapter 3) is dominated by the predictability
of the employed replacement policy [RGBW07] where least-recently-used
(LRU) and its pseudo variant (PLRU) are the best predictable ones. A sophisti-
cated comparison of the predictability of caches can be found in publications
by Grund and Reineke [Rei08, GR10]. Certainly, the worst predictable caches
are the ones with a random replacement policy which are just impossible to
predict.

For caches smaller than 32KB, the LRU policy can be seen frequently in
embedded system architectures. But because LRU is costly, caches with
greater sizes usually are supplied with PLRU replacement. Second level
caches which are often much bigger, e.g., 1 MB for the Freescale PowerPC
7448 [Fre05a] and IBM PowerPC 750 [IBM06], are then often implemented
with some random replacement strategies.

Another factor deciding the predictability of caches is the write policy which
configures the concrete effect on stores. There are two write policies available:

188

9.2 Timing Predictability of Hardware Features

write-through where a store is directly written to the next level in the memory
hierarchy and write-back where the data is written into the next hierarchy
level if the concrete memory cell is evicted from the cache. Where the write-
through policy can be predicted precisely, this is not the case for write-back
because it then has to be known when exactly a memory cell is evicted from
the cache. But this information is not always precisely available as it depends
on the general precision of the cache analysis [RGBW07].

In general a worse predictable cache means that the corresponding cache
analysis could not precisely predict all cache hits and misses. The pipeline
analysis then needs to follow both parts which on the one hand leads to an
increase of computational complexity and on the other hand results in more
pessimistic time bounds for memory accesses which definitely hit the cache
in the concrete execution.

9.2.3 Buses

In general, buses are clocked with a lower frequency than the processor core.
The main system bus connecting the core with the chipset2 usually runs at
ratios between 1:2 and 1:8 compared to the CPU clock. A static analysis needs
to incorporate this by assuming all possible clock offsets between core clock
and system bus clock for the starting system states because the concrete offset
is statically not known.

The number of possible displacements of phase between CPU- and bus clock
signal is bounded, i.e., at the start of a CPU cycle the bus cycle can only be
in a finite number of states. For example, if the processor core operates at
fCPU = 100 MHz and the bus at fBUS = 25 MHz, there are 4 different states.
In general, the number of states is determined by:

bus-clock-states :=
fCPU

gcd(fCPU, fBUS)

The smaller the number of bus-clock-states the more efficient is the micro-
architectural analysis. Note that for integral ratios of CPU- to bus-frequency
the formula simplifies to fCPU/ fBUS. It might be beneficial to use integral
ratios; even if a close-by non-integral ratio would have a higher average-case
performance.

2usually called Northbridge

189

9 Timing Predictability

Buses can also be classified as parallel, e.g., SCSI, or bit-serial, e.g., USB,
buses. Parallel buses carry data words in parallel on multiple wires, bit-serial
buses carry data in serial form. Because of the separation of addresses and
data on parallel buses, the execution of consecutive memory accesses can
be overlapped, i.e., for two accesses, the address phase of the second access
can be overlapped with the data phase of the first access. This is called bus
pipelining. Although pipelined buses are tractable for static timing analysis in
principle, they increase the state space with rising pipeline depths. However,
the pipeline depth depends on the potential parallelism in the processor core
regarding memory accesses. Both, the bus architecture and core must match
here, i.e., it does not make much sense to use a bus architecture that can
process more requests in parallel than the connected processor core is able to
start.

Instances that can request accesses to the bus, are called bus masters. On
simple systems there is only one bus master since there is typically one CPU
that requests the bus. This scenario can be modeled because the timing
behavior is deterministic. The more masters a bus has the more difficult it is
to analyze the traffic on the bus and the less precise will be the bounds on
latencies that can be guaranteed. There are multiple methods to handle the
arbitration between multiple bus masters [WGR+09].

9.2.4 Main Memory

The predictability of memory accesses mainly depend on the accessed type
of memory (neglecting the load/store unit part in the processor core). In
safety-critical embedded systems, mainly the following memory types are
used.

Static Random-Access-Memory (SRAM)

SRAM features fixed access latencies independent to the execution history
and is therefore perfectly predictable. Actually SRAM often is the type of
memory which is used within level one or two caches. Because of the rather
high manufacturing costs, SRAM is unfortunately not used for bigger main
memories.

190

9.2 Timing Predictability of Hardware Features

Dynamic Random-Access-Memory (DRAM)

In contrast to the static ram, DRAM is more difficult to predict mainly because
the underlying memory cells need to be refreshed from time to time3. These
so-called DRAM refreshes are asynchronous events which cannot be predicted
precisely as it is not known when exactly they happen. An approach for this
is to analyze the computation time ignoring refreshes at all together with
adding a safety margin to the computed WCET. The margin then can be
determined based on the refresh frequency and the worst-case duration of
one single refresh4 so that the DRAM refresh costs are amortized over time.
This is possible because such a refresh has no side-effect to the state of the
system with one exception: it closes all memory pages such that a subsequent
access to a previously open page then results in a page miss that would have
hit otherwise. Therefore, the accounted refresh costs need to include the
time to open a page. This represents an overestimation for the case that a
subsequent access would not hit a previously opened page.

Such an argumentation is not valid for cache misses. Depending on the
hit/miss classification, a memory request is differently routed through the
processor pipeline, so that cache miss penalties cannot be incorporated after
the analysis. Instead, they must be taken into account locally, i.e., when the
access happens during the simulation. And if the access cannot be classified
precisely, both possibilities have to be taken into account.

Another asynchronous event is a so-called direct memory access (DMA) where
input/output performance is increased by a factor of about 10 without stalling
the processor core until the access is finished. If the frequency of such DMA
accesses is known, their time costs can be approximated in a similar way as
described for the refreshes.

Due to the design of DRAM chips (segmentation into different memory banks,
pages, . . .) the corresponding memory controller’s design can get complex.
Internal queues and buffers with a complex update logic increase the state
space for the pipeline analysis in a similar way as the above mentioned
complex pipeline structures of the processor core. Of course, an exhaustive
documentation about the internal behavior of the memory controller is a
necessity for a successful static timing analysis.

3The actual interval depends on the concrete memory chip.
4Both parameters are known from the chip manufacturer.

191

9 Timing Predictability

9.2.5 Peripheral Devices

Peripheral devices are connected to the system board via external buses like
PCI [PCI98], CAN [CAN03], etc. As such buses generally have their own
clock domain, such accesses are processed by a memory controller which
is divided into two parts. One part that is clocked with the frequency of
the system bus clock and another part that is clocked with the frequency of
the external bus. In contrast to the displacement between the processor core
clock and the system bus clock (cf. Section 9.2.3) where the system bus clock
is generated from the core clock signal, these external clocks often are not
produced from the same clock generator and therefore not synchronized to
the core clock.

The static analysis has to incorporate this when predicting the access latency
of a memory access to such a peripheral device. All possible displacements
between a best case starting condition where communication on the external
bus is directly possible, and a worst-case starting condition where the memory
controller needs to wait until communication on the external bus is possible.
In addition to that the system designer has to provide minimal and maximal
access latencies for the actual time spent on the device. This approach
can be used for a safe time prediction but can also be costly in terms of
computation time and space consumption. The number of system state
splits (cf. Section 6.2.1) here depends on both the difference of the system and
external bus clock frequencies as well as the given access latency interval. The
computational complexity might grow rather fast if the difference between
the interval bounds is large. Usually, this difference should be around 10
at most although this strongly depends on the remaining complexity of the
whole architecture.

9.2.6 System Configuration

Modern systems are highly configurable, i.e., certain provided hardware
features can be adjusted in their behavior or even disabled. Therefore the
chosen hardware configuration strongly affects the timing predictability of
the whole system. In the following, design hints and advices for possible
values of system configuration parameters that increase the system’s timing
predictability are given. The list is not meant to be exhaustive and has been
based on experiences with timing analyses of industrial code. For a more

192

9.2 Timing Predictability of Hardware Features

thorough treatment, see the detailed discussion by Cullmann and Gebhard
[CFG+10].

I Unified caches:
If configurable, unified caches (cf. Section 3.3.3) should be avoided
as much as possible because their timing analysis is more difficult.
For example, some PowerPC processors with unified caches can be
configured to use them for instructions or data exclusively or their ways
can be separately reserved for instructions or data.

I Cache locking:
Cache locking effectively disables the eviction of any cache content, i.e.,
no new tags (cf. Section 3.3.3) in the cache will be allocated by memory
accesses and can only be manipulated by special cache instructions.
Read accesses to data that has been filled into the cache will result in a
cache hit. Otherwise, they are handled by the next memory hierarchy
level like the L2 cache or main memory. Store operations modify the
local copy in the cache and are then forwarded to the next memory
hierarchy level if the store either misses the cache or the write policy is
configured to write through. Regarding their access behavior, locked
caches can be used like scratchpad memories.

Such a usage enable to work around unpredictable cache replacement
policies like random replacement (cf. Section 9.2.2). Frequently accessed
data can be manually filled into the cache and locking is enabled
afterwards.

Another potential application of cache locking is in the presence of
write-back memory areas (cf. Section 9.2.3). In its locked mode, the
cache does not need to perform any write-back operation since there
is never any eviction from the cache that normally causes a write-back
of the replaced cache line into the next cache level or main memory.
As a write-back policy gives a better performance in the average case,
developers tend to decide to use that and thereby making the timing
analysis of their task much more difficult in terms of result precision
and computational complexity. From the analysis point of view, the
locked ways of the cache are considered as scratchpad memory (cf.
Section 3.3.4) and the actual cache to be analyzed is smaller enhancing
the analysis precision.

I Branch prediction:
As described in Section 3.4.3, branch prediction can be categorized into

193

9 Timing Predictability

a static and a dynamic variant. The dynamic variant uses big tables for
caching directions (taken or not taken) of processed branches during
execution. Such tables have to be explicitly modeled within the static
timing analysis thus increasing its memory consumption dramatically.
It is therefore desirable to deactivate dynamic branch prediction and
only use its static variant.

I Clock ratios:
Section 9.2.3 details that the ratio between the processor core clock
and the system bus clock has to be taken into account by inserting
multiple different system states at the start of the pipeline analysis (cf.
Section 4.3.3). As there are other reasons for state splits during the
abstract simulation, less starting system states potentially save a lot of
state splits and therefore computation time and space. This goal could
be supported by choosing smaller ratios between core and bus clock.
Furthermore, it is desirable to avoid odd ratios like 1:4.5.

I Multiple bus masters:
Multiple bus masters render a timing analysis more difficult as ex-
plained in [WGR+09], so if possible, there should be only one bus
master in the system, the processor core.

9.2.7 Summary

The timing predictability of the hardware features presented throughout this
section can be categorized into three “classes” of predictability:

I features that are actually well predictable if examined in isolation,

I features like write-back cache policies which are predictable in principle
but only with pessimistic timing bounds and

I unpredictable features like random replacement caches (although there
are workarounds for them as described above).

Most of the features fall into the first class, i.e., they are well understood.

In principle, even the combination of features is not the main problem in state-
of-the-art static timing analysis. But some of them interfere in a way that their
combination results in a high analysis complexity due to a significant increase
of possible execution paths in the presence of (even small) uncertainties.

194

9.3 Timing Impact of VHDL Constructs

For example, the memory management units in processors like the IBM
PowerPC 750 [IBM06] or Freescale PowerPC 7448 [Fre05a] have numerous
queues for buffering memory accesses and there is a sophisticated clash
checking for fast data forwarding between consecutive accesses, i.e., it is
checked if any requested data has been already retrieved by a previous access.
A cache miss results in loading the corresponding cache line which often is
more data than it is requested. Following accesses might result in a cache hit
therefore. If the target address of a memory access is not precisely known,
the outcome of these clash checks could not be predicted by the analysis so
that all possible decisions then must be examined. This raises the number of
possible execution paths and represents an increasing spiral of complexity
because the different types of state splits (cf. Table 6.1 on page 114) mutually
influence each other.

Statically, such systems are only analyzable with the major advantage of
abstract interpretation as used in the aiT framework (cf. Section 4.3) which is
its inherent feature of domain abstraction, i.e., combining sets of concrete sys-
tem states into one single abstract state. This improves analysis performance
rendering such static timing analysis of complex systems feasible at all. Badly
designed embedded software might then trigger the bad case for the timing
analysis, i.e., the occurrence of multiple different uncertainties at the same
analysis time. The resulting state space to be explored by the analysis can be
dramatically large increasing the computation time and space consumption.
Therefore besides all hardware predictability, it is equally important that the
software to be analyzed has been designed with respect to timing analysis as
proposed by Gebhard [GCH11].

9.3 Timing Impact of VHDL Constructs

Section 4.3 shows that the basis for the timing analysis performed by the aiT
framework is a timing model describing the timing behavior of the examined
hardware components in the system to be analyzed. When deriving such a
timing model from the VHDL specification, the quality (in terms of WCET
bound precision) of the resulting analysis may depend on the coding style
used in the VHDL description.

Where the previous section gives an overview of the timing predictability
of certain hardware features, this section is about the impact of the VHDL
code structure as well as the usage of certain language features on the

195

9 Timing Predictability

precision of the resulting timing model. Due to the language flexibility of
VHDL functionally equivalent hardware components can be constructed in
different ways. But not all of them are equivalent regarding the applicability
of abstract interpretation. A VHDL design therefore is better predictable if
the derived timing model enables a higher precision regarding the computed
time bounds.

The following results have been achieved during the development of the
VHDL Timing Model Derivation Toolset (cf. Chapter 10) as the tools have been
applied to different VHDL specifications of different coding styles. Details
on the experimental results are shown in Chapter 11). The insights of this
evaluation of VHDL design decisions have been obtained by comparing
different VHDL models. Unfortunately, some of these models are not open
and the intellectual property of different hardware manufacturers so that they
are confidential. Because of that, it is not possible to give concrete examples
for the design decisions in order to prevent any legal problems.

In the following, two classes of VHDL design decisions are presented that
distinguish between predictability enhancing and degrading decisions.

9.3.1 Predictability Enhancing Design Decisions

The design decisions described in this section have an enhancing effect on the
design’s predictability, i.e., the quality of the resulting timing model using
the methods described in Chapter 6 and Chapter 7 is better in terms of WCET
bound precision.

Complex Data Types

From a structural point of view, hardware is rather simply arranged in zeroes
and ones. This should be reflected in the used VHDL data types. If the
information carried by a variable or signal is simple, i.e., Boolean, its data
type should be similarly simple, i.e., a Boolean data type.

Developers tend to use standard integer data types for simplicity reasons
so that the Boolean characteristic is not expressed explicitly. This situation
might be even worsened when the same logical information is encoded with
different data types so that implicit casts occur. For example, a Boolean
flag might be encoded with different integer data types (unsigned, signed,

196

9.3 Timing Impact of VHDL Constructs

different bit sizes). Other typical examples for such scenarios are control
signals like output enables or bus transaction signals.

Using over-complex data types for variables and signals, the complexity of
applied static analyzers might grow because they need to store and maintain
this information during analysis time. For VHDL signals, the information
is stored even three times to maintain the current, last and scheduled signal
values, respectively. In addition to the increased analysis complexity, the
identification of the instruction flow through the pipeline is more difficult.
For the case of different data type usage for the same logical information,
the application of domain abstractions is more complex because consecutive
transformations are needed, one for each data type.

Process Separation

Process separation means to separate logically or structurally different things
into different processes. For example, the stages of a processor pipeline
might be implemented within their own VHDL processes and communicate
over signals that control the data paths between them. Similar separations
might be done at other levels, e.g., to separate the specification of functional
units. The instruction flow of the processor pipeline is then represented more
explicitly within the VHDL design.

Positive effects of such a process separation besides a better maintainability
and readability of the VHDL code would a better applicability of purely func-
tional code removal as described in Section 6.5.2. If the complete hardware
behavior is implemented within one big process, the identification of purely
functional parts of the design by static analysis gets more difficult.

Control Signals

Section 6.5.1 describes that the flow of instructions through the processor
pipeline might be controlled by a set of signals which are called control
signals. This means for example that each stage of the pipeline has some sort
of “output enable” signal indicating that the current contents of the stage can
be advanced to the next stage.

The advice is to introduce such control signals for explicit modeling of the
pipeline control structure instead of using variables/signals containing actual
data like addresses. Furthermore this would enhance the readability of the

197

9 Timing Predictability

VHDL code for the user because the separation between control structure and
actual functionality, e.g., adding values, is much clearer then. The instruction
flow can then be better detected by the methods mentioned in Section 6.5.1.

Functionality Separation

Where the introduction of explicit control signals is good for a separation
between control structure and functionality, the functionality itself might be
separated further. Error and exception handling has to be processed in each
hardware model. The corresponding checks and actual error and exception
code are often ignored for a timing analysis. Because of that, such code
should be separated from the actual functionality in order to simplify its
removal during iterative model refinement (cf. Section 6.5.1).

Code Discipline

VHDL is a feature-rich and complex language offering different ways to
express the desired semantic effect of a hardware component. Because of that
it is mandatory for the programmer to code in a disciplined way. This mainly
means to use the same data type for the same kind of information. Often it
can be seen that the same kind of information is stored in variables/signals
of different types in different processes. This decreases the readability and
simplicity of the whole model as well as making life harder for domain
abstractions because they rely on the fact that the same kind of information
is represented by the same data types. An example for that might be that an
address can be represented by different custom data types of different bit
sizes.

9.3.2 Predictability Degrading Design Choices

The following design decisions have a degrading effect on the design’s
predictability, i.e., the quality of the resulting timing model. At least it is
more difficult to derive the timing model.

198

9.3 Timing Impact of VHDL Constructs

Interfaces

The interfaces of processes are their sensitivity lists, i.e., the list of signals for
which a value change triggers a repetition of the particular process execution.
For VHDL procedures and functions, the interface is their particular list of
parameters.

From a static analysis point of view, every element in such an interface
imposes a control-dependency. Therefore it is important to minimize the
number of elements within these interfaces to those which are really needed.
In any case, it should be avoided to include variables or signals which are not
necessary at all for the semantic effect of the process, function or procedure.

The consequence of actually not needed elements within interfaces is that
the results of static analysis are too pessimistic. For example, lets assume
that a system has separated instruction and data caches and two update
processes, one for each cache. If the sensitivity list of the instruction cache
updating process contains a reference to the complete state of the data cache
and vice versa, a static analysis has to assume that any change in the data
cache triggers a repeated execution of the instruction cache update process
although both updates could be isolated.

Combinatorial versus Sequential Logic Design

As defined by Ashenden [Ash08], a combinatorial design is given if the output
values are determined solely from the input values. In other words, the design
does not maintain any internal state. In contrast to that, a sequential design
has an internal state so that the output values depend on the input values
and the internal state, i.e., the history of execution affects the successor state
computation.

Sequential logic designs are more similar to the semantics of traditional
imperative programming languages. For that reason they are more suitable
to be analyzed using program analysis techniques, for example abstract
interpretation. So the advice is to favor a sequential logic design over the
other possibilities in order to achieve better results regarding the derivation
of timing models as described in Chapter 6. Furthermore, a sequential
logic design of a hardware component usually can be mapped better to its
corresponding description in the particular user/reference manual which
supports the readability of the code.

199

9 Timing Predictability

Instruction Retirement

In order to identify the instruction flow through the processor pipeline,
so-called retirement points need to be identified (cf. Section 6.5.1). These
are points where an instruction leaves the pipeline so that the instruction
semantic has taken effect to the system state.

Depending on the overall structure of the VHDL code, it might become
difficult to identify those points precisely. Reasons for that might be confusing
variable naming, naming conventions in general, the process structure of
the whole design, etc. As stated in Chapter 6, to derive timing models from
formal hardware specifications, a good understanding of the whole model is
needed. And especially if the person trying to derive a timing model does
not belong to the original development team of the analyzed VHDL model, a
clear code structure is needed to simplify model understanding.

One cannot give precise definitions for simple and clear code structure as
this is a subjective topic. However, if looking at some open-source implemen-
tations of hardware components like the LEON2 [Gai05] or LEON3 [GHC05],
this subject certainly has to be addressed.

Intra-Process Control Flow

Similar to the above mentioned clear code structure, the control flow within a
process should be examined, as well. Creating unnecessary complexity does
not only degrade, in a negative way, the readability of the whole model, it
might impact results of a static analysis due to abstraction losses at control-
flow joins (cf. reasons for uncertainties in Section 9.1). With a clear logical
distribution to different processes, the complexity within one process can be
bounded.

9.4 Summary

This chapter has started with an intuitive description of the term timing
predictability of an embedded system in Section 9.1. Based on that terminology,
the predictability of existing hardware features are presented and categorized
into three classes:

I features that are actually well predictable if examined in isolation,

200

9.4 Summary

I features like write-back cache policies which are predictable in principle
but only with pessimistic timing bounds and

I unpredictable features like random replacement caches (although there
are workarounds for them as described above).

The majority of processor features fall into the first class. Combinations
of them can be problematic from the analysis complexity point of view
in the presence of (even small) uncertainties. An example of the memory
subsystem of the IBM PowerPC 750 [IBM06] and Freescale PowerPC 7448
[Fre05a] depicts the complexity problems arising from the side effects of
employed buffers and queues.

The precision of computed WCET bounds depends on how precise the analy-
sis’ timing model represents the behavior of the underlying hardware and
thereby defines kind of a quality measure for the timing model. In the context
of a timing model that has been derived from a VHDL model (cf. Chapter 6),
the second part of this chapter identifies and evaluates the impact of some
VHDL design choices on the derived timing model’s quality. The results are
design advices that support the timing model derivation process. Designs
suitable for a timing model derivation should feature minimal dependencies
between processes, a clear logical separation of different functionality into
different processes/subprograms and a sequential logic design.

201

10
VHDL Derivation Tool

Set Implementation

“640K software is all the
memory anybody would
ever need on a computer.”

(Bill Gates)

10 VHDL Derivation Tool Set Implementation

Table 10.1 – VHDL Derivation Tool Set collection

Tool Category Tool

Parsers Vhdl2Crl2

Static Analyzers VhdlResetAnalyzer

VhdlAssumptionBasedModelRefiner

VhdlSlicer

Transformation Tools VhdlTimingDeadCodeEliminator

VhdlDomainAbstractor

VhdlProcessReplacer

Generators PipelineAnalyzerGenerator

AbstractVhdlGenerator

10.1 Structure of the VHDL Derivation Tool Set

This chapter describes the implementation of the VHDL Derivation Tool Set, a
collection of tools to support the semi-automatic derivation of timing models
from formal hardware specifications in VHDL. The theoretical background
has been described in Chapter 6.

The tool set consists of parser, analysis, transformation and code generation
tools which are listed in Table 10.1. All of them make use of a support
library, libvhdlanu, that realizes the evaluation of VHDL expressions and a
prototypical type inference system. This functionality has been factored out
into a separate library because it is required by all involved tools.

The VHDL compiler and libvhdlanu have been designed and implemented
by my colleague Marc Schlickling and myself in cooperation. In contrast, the
static analyzers have been developed solely by Schlickling [Sch13] and I am
responsible for the transformation and generation tools. Some early versions
of the pipeline analyzer and abstract VHDL generators have been developed
by Mohamed Abdel Maksoud [Mak07].

Their structural arrangement is illustrated in Figure 10.1 on the next page.
With the help of Vhdl2Crl2, a VHDL model can be parsed and transformed
into a CRL graph structure. All static analyzers and transformation tools

204

10.1 Structure of the VHDL Derivation Tool Set

Figure 10.1 – VHDL Derivation Tool Set – Structure

CRL Graph

VhdlReset-
Analyzer

Vhdl-
Assumption-
BasedModel-
Refiner

VhdlTiming-
DeadCode-
Eliminator

VhdlDomain-
Abstractor

VhdlProcess-
Replacer

Vhdl-
Slicer

VHDL Specification

Abstract VHDLPipeline Analyzer

Vhdl2Crl2

AbstractVhdlGeneratorPipelineAnalyzerGenerator

205

10 VHDL Derivation Tool Set Implementation

operate on this data structure where the results of the analyzers are used
to incorporate appropriate changes to the model using the transformation
tools.

Having finished the model analysis and transformation cycle, there are two
generators available, namely the PipelineAnalyzerGenerator and the Abstract-
VhdlGenerator. The first is used for the generation of an aiT-compatible
pipeline analyzer to be used in its timing analysis tool chain where the
latter is able to reconstruct VHDL from the intermediate representation. Due
to employed abstractions, the reconstructed VHDL is possibly no longer
syntactically valid, so the output in general is called abstract VHDL.

This chapter describes the details of all above mentioned tools in the following
sections. After that there are some VHDL language restrictions of the tool set
given in Section 10.7.

10.2 VHDL Compiler

As mentioned in the last section, the tool Vhdl2Crl2 is responsible for con-
verting a VHDL design into the internal CRL graph format. This conversion
is a result of consecutive processes whose flow is sketched by Figure 10.2 on
the facing page. The phases are now described one by one.

10.2.1 Analysis

First, the VHDL files are fed to the analysis phase. During the analysis
phase, an input VHDL file is read into memory by performing lexicographic,
syntactic and semantic analysis as known from compiler design [WM95].

Besides these “classical” tasks of a compiler, VHDL case statements are
converted into a nested hierarchy of if-then-else statements in order to
simplify the CRL generation and static analysis because only this case has
to be supported there. The conversion can be easily done as it does not
introduce any semantic change to the VHDL design.

The result of the analysis phase in Vhdl2Crl2 is a decorated syntax tree
as shown in Figure 10.2 on the next page. To be precise, for each found
entity/package in the design, a separate syntax tree is created so that the
overall result is a forest of syntax trees depending on the input VHDL.

206

10.2 VHDL Compiler

Figure 10.2 – VHDL Compiler (Vhdl2Crl2) – Structure

VHDL Specification

VHDL Reader

Decorated Syntax Tree
01010101010
01010101010
01010101010
01010101010
01010101010
01010101010

GDL Visualization

IRF Writer

Design Library

01010101010
01010101010
01010101010
01010101010
01010101010
01010101010

Elaborator

Elaborated Syntax Tree
01010101010
01010101010
01010101010
01010101010
01010101010
01010101010

GDL Visualization

CRL Writer

CRL Graph

207

10 VHDL Derivation Tool Set Implementation

Mainly for debugging purposes, an optional visualization of the forest can be
generated. Similarly to all visualizations in the aiT framework (cf. Section 4.3),
the output format is GDL [EB09] so that aiSee [Abs11] can be used to view
and explore the visualization. Figure 10.3 on page 210 shows such a sample
visualization. Each rectangle represents a node in the syntax tree with some
important properties of the corresponding data structure. These are among
others an unique identifier, the specific node type and some references to the
original source code location in the input VHDL specification. Figure 10.3
on page 210 for example shows the start of the assignment statement in line
24 of Listing 5.1 on page 98 – the 3-bit VHDL counter example. The node
with the id 605 represents the topmost sequential statement node and its left
child indicates that this specific statement is an assignment statement. In the
left child sub-tree, the left hand side of the assignment is encoded where the
right sub-tree analogously represents the right hand side of the assignment.
As this is an expression with a high depth, only the topmost parts of the
corresponding syntax tree are shown in this example. The source code
documentation contains a detailed description of the syntax tree specification.
It explains the intent of all node types and the way in which nodes of different
types can be connected to each other to build a valid syntax tree.

10.2.2 IRF Writer

Each syntax tree generated by the analysis described in the previous section is
stored in a special textual format called intermediate representation format (IRF).
To illustrate the format, a sample snippet of an IRF file is shown in Listing 10.1
where the syntax tree from Figure 10.3 on page 2101 is represented.

The syntax of the IRF file format is in its structure similar to XML where
each line in a tag body consists of an assignment of the form key = value.
Each used key then refers to a special member of the corresponding class data
structure. In line 3 of the listing, a syntax tree node specification is started
by opening the tag “NODE”. Then, in lines 5–8, some common properties
are specified. Lines 12–35 then define the left sub-tree of the left child node
illustrating the recursive structure of the IRF grammar. In other words, the left
child of a node is again a node with left and right children specifications.

1Graphical representation of left and right sub-trees have been swapped by aiSee’s layout
algorithm.

208

10.2 VHDL Compiler

Listing 10.1 – Sample IRF file extract

1 ...
2

3 <NODE>
4 # Common node properties inherited from ParseNode
5 ID ="605";
6 TYPE ="NodeSequentialstatement";
7 LINENO ="24";
8 FILENAME ="3-bit-counter.vhd";
9

10 # Definition of the left child
11 <LCHILD>
12 <NODE>
13 # Common node properties inherited from ParseNode
14 ID ="604";
15 TYPE ="NodeAssignmentstatement";
16 LINENO ="24";
17 FILENAME ="3-bit-counter.vhd";
18 # Common node properties inherited from StatementNode
19 LABEL="";
20

21 # Specific properties
22 ASSIGNMENT_TYPE="SIGNALASSIGNMENT";
23

24 # Definition of the left child
25 <LCHILD>
26 ...
27 </LCHILD>
28

29 # Definition of the right child
30 <RCHILD>
31 ...
32 </RCHILD>
33 </LCHILD>
34

35 # Definition of the right child
36 <RCHILD>
37 ...
38 </RCHILD>
39 </NODE>
40

41 ...

209

10 VHDL Derivation Tool Set Implementation

Figure 10.3 – Sample Vhdl2Crl2 generated syntax tree

Such an intermediate format is needed because a VHDL design might be
distributed over multiple source code files with dependencies among them
due to data structure references. In that case, each file has to be analyzed (as
described in the last section) separately in the correct order. In other words,
the analysis of a VHDL code module a which depends on data structure
declarations provided by code module b, requires b to be analyzed first so
that needed declarations can be loaded from existing IRF files. The collection
of all IRF files is called the design library for the VHDL specification that is
iteratively filled with parser information from the analysis phase.

The order, in which the files are given to Vhdl2Crl2, has to be determined
manually by the user itself. Other existing VHDL parsers like GHDL [Gin]
handle this in the same way although there are some commercially available
parsers (like the one used in Mentor’s ModelSim [Men08]) which are using
heuristics to determine the correct file order automatically. Basically, they
use a trial-and-error approach that permutes the order smartly until all unre-
solved reference errors are eliminated. For Vhdl2Crl2, such an enhancement

210

10.2 VHDL Compiler

could be implemented, as well (cf. Section 12.2).

In the end, the whole VHDL design to be processed is available in the design
library so that the elaboration can be started.

10.2.3 Elaboration

After all source files have been analyzed and added to the design library as
described above, the VHDL standard [IEE99a] requires a specific transforma-
tion process called elaboration to be applied. This process has been described
and introduced in Section 5.2.4.

Vhdl2Crl2 implements this elaboration process with respect to a given entity
name which represents the topmost component in the given hardware design.
In addition to the particular transformations described in Section 5.2.4, the
following changes to the VHDL code are realized:

I Type name conversion:
For example, a type name t declared in a package p of a library l may
be referenced by l.p.t. Depending on how the library has been made
visible (cf. semantic of the use clause), the type is additionally visible
under its base name t. All used type names are renamed by their fully
prefixed name in order to have a consistent view on identifiers.

I Early constant propagation:
Constant values are propagated during the elaboration process for one
level, i.e., all usages of constant values are replaced by their particular
constant value. Only one level is propagated because this can be done
in a single-pass and without further analysis which is performed by the
static analyzers (cf. Section 10.3) anyway.

I Removal of instantiated component declarations:
Component declarations which have been instantiated are removed in
order to improve readability of the code. Due to the instantiation, such
declarations are never referenced in the design.

I Garbage Collection:
The elaboration steps described above have transformed the forest
of syntax trees generated by the analysis phase (cf. Section 10.2.1)
into one single big tree containing all needed data structures for the
hardware design. It is the syntax tree of the topmost entity specified for
elaboration. If there is still any syntax tree separated from this big tree,

211

10 VHDL Derivation Tool Set Implementation

it is definitely unused in the design and for the given topmost entity. A
further optimization step, removes any such “orphaned” trees.

I Expansion of function calls:
All function calls used within compound statements are factored out
into assignments to dynamically created temporary helper variables or
signals. This step’s purpose is to restrict locations of nondeterminism.
As described in Section 7.3.2, the goal is to only have at most one
operation or function call in assignment statements in order to simplify
the abstract simulation semantics.

All these listed transformation steps are not explicitly required by the VHDL
standard and represent model optimizations which support a later static
analysis.

10.2.4 CRL Writer

After the VHDL model has been analyzed and the resulting syntax tree
is elaborated, the corresponding CRL formulation can be generated. The
implementation makes use of the AbsInt (http://www.absint.com) support
library libcrl2.

As described in Section 4.3.2, CRL has been designed to represent the control-
flow of a program. Therefore, the structure is hierarchically composed and
consists of routines and basic blocks with instructions. The latter even might
be build of multiple micro operations per instruction to reflect assembly pro-
grams for VLIW architectures (cf. Section 3.3). In the context of representing
VHDL designs as sequential programs, micro operations are not needed so
that a VHDL statement is assigned to a CRL instruction. More details about
CRL can be found in Section 4.3.2.

Analysis Framework

To support static analysis on such VHDL models (cf. Section 10.3), the
following additional constructs have to be generated:

I Routine simul:
This routine consists of a loop whose body contains routine calls where
each called routine represents one of the former VHDL processes as
converted from the input VHDL specification. All calls are guarded,

212

10.2 VHDL Compiler

i.e., there are conditionals whose expressions decide whether the call is
actually executed or not. They are needed to model delta cycles due to
value changes in signals contained in the particular sensitivity list of a
VHDL process (cf. Section 5.2.3).

I Routine vhdl_clock:
The clock cycles are represented by this routine containing a loop whose
body simulates a full clock cycle, i.e., the routine simul is called twice:
once for the simulation of a rising core clock and once again for the
simulation of a falling clock edge. The mentioned loop is modeled as a
self-recursive routine for a better static analysis support [MAWF98].

I Routine environment:
Environmental signal assignments are represented by a call to this
special routine where external signal assignments can be modeled. This
routine is called from the simulation loop in routine simul.

I Routine analysis_start:
The current implementation of the program analyzer generator (PAG),
which is used to specify the static analyzers (cf. Section 10.3), does not
allow the start of any analysis to be a self-recursive routine so that
the routine analysis_start is generated as a wrapper. It calls the
self-recursive routine vhdl_clock.

These constructs build up an analysis framework needed for the simulation
of the VHDL semantics.

Figure 10.4 shows a GDL [EB09] visualization of the CRL graph generated
from the example of a 3-bit counter in Listing 5.1. Sub-figure (a) shows the
graph in its folded view so that only routines are visible, in order to get an
overview. In this small example, only the routines output and increment
originate from the input VHDL model. All other routines implement the
simulation and analysis framework as described above. In sub-figure (b), the
routines analysis_start, vhdl_clock, and simul are shown in a boxed
view so that their control-flow is visible. The starting basic blocks of a routine
are always filled with the same color as the corresponding end block.

Meta Information

Similar to compiler-generated debug information in binary executables, CRL
has the capabilities to store arbitrary data in so-called meta sections. They

213

10 VHDL Derivation Tool Set Implementation

Figure 10.4 – Sample Vhdl2Crl2 generated CRL graph

(a) Folded view (b) Boxed view

214

10.2 VHDL Compiler

are special language constructs which can store lists, vectors, maps, etc., of
values like strings or numbers. Vhdl2Crl2 uses these meta sections to store
the following kind of information:

I Hierarchy Information:
The elaboration process (cf. Section 10.2.3) eliminates any hierarchy in
the used data structures, e.g., by collapsing record variables/signals
into its elements recursively. But for the VHDL reconstruction, the
hierarchy information has to be preserved and is therefore stored in a
special meta section of the generated CRL graph. For each identifier
in the original VHDL code, a string encoding its location within other
data structures is stored, i.e., a list of other identifier names in which it
is contained.

I Global Value Map:
During the CRL graph generation, Vhdl2Crl2 stores all encountered
constant definitions together with their values in a specific meta section
which is called the global value map. These values are later used by the
static analyzers (cf. Section 10.3).

I Global Type Map:
Actual types of variables and signals (except function/procedure pa-
rameters, see below) are stored in a specific meta section of the CRL
graph which is called global type map. The data from the internal type
checking system are for example needed for the VhdlDomainAbstractor
tool (cf. Section 10.4.2).

I Parameter Type Map:
Types of parameters of functions and procedures are treated separately
from all other identifiers. Their visibility is restricted to the particular
function/procedure, so they are stored in a special meta section and are
flagged with their particular routine name.

The global and parameter type maps are similar to symbol tables as known
from the compiler construction [WM95]. Actually, their content is filled with
information from the symbol table within Vhdl2Crl2 after having parsed the
whole VHDL design.

215

10 VHDL Derivation Tool Set Implementation

10.2.5 Usage

Synopsis

Vhdl2Crl2 [-i | --irf] [-g | --gdl]
[-c | --crl
[[-r|--rising-clock-edge] [-f | --falling-clock-edge]]]
[-e|--elab <name>] [-t | --trace-file] [-q|--quiet <int>]
[-o|--output <file>] -d|--design-library <path>
[-p|--library-prefix <name>] [name]

-i | --irf
Generate IRF file from parsed VHDL file.

-g | --gdl
Activate GDL visualization.

-c | --crl
Activate CRL generation.

-e | --elab <name>
Activate elaboration of design library. <name> is the top level entity
name.

-r | --rising-clock-edge
Only generate rising clock edge triggered model. Effective in conjunc-
tion with --crl.

-f | --falling-clock-edge
Only generate falling clock edge triggered model. Effective in conjunc-
tion with --crl.

-q | --quiet <int>
Quiet level within the range [-1,6]. Default is -1. A higher quiet level
results in less emitted messages.

-o <file>
Optional name of the generated CRL file. Effective in conjunction with
--crl. If omitted, output is emitted on standard out.

-d | --design-library <path>
Path to the design library for storing and reading.

216

10.2 VHDL Compiler

Listing 10.2 – Vhdl2Crl2 sample usage

1 ## Analysis of a VHDL file
2 Vhdl2Crl2 --design-library . --irf 3-bit-counter.vhd
3

4 ## Elaboration of the design library and CRL file generation
5 Vhdl2Crl2 --design-library . --elab Counter --crl -o Counter.crl

-p | --library-prefix <name>
Specify prefix attached to the front of each entity name in any generated
IRF file. Effective in conjunction with --irf.

The <name> parameter specifies the input VHDL specification which should
be parsed. If <name> is omitted, the input is read from standard input
(except when using the --elab switch, cf. Section 10.2.3).

Example

Listing 10.2 shows a sample usage of Vhdl2Crl2 for processing the 3-bit
counter example in Listing 5.1 on page 98 (file 3-bit-counter.vhd). First,
the VHDL file is analyzed and added to the design library by converting it
into IRF format. Then, the design library is elaborated and the corresponding
CRL formulation is generated into the file Counter.crl.

10.2.6 Complexity

As shown in Figure 10.2 on page 207, Vhdl2Crl2 consists of the four processes
VHDL Reader, IRF Writer, Elaborator and CRL Writer. The parser used within
the VHDL reader is generated using the open-source tool bison [Fre11],
so its runtime complexity is the one of a LALR [WM95] parser. All other
processes are iterating over the syntax forest (cf. Section 10.2.1), so their
asymptotic runtime complexity is linear in the number of nodes in all syntax
trees. IRF and CRL generation are single-pass processes, i.e., they only need
to iterate once over each syntax tree. In contrast, the elaboration process is
more complex because it is composed of numerous different transformation
steps which are executed consecutively (details about the elaboration can
be found in cf. Section 10.2.3). Therefore, this step is the most complex one
concerning the runtime performance.

217

10 VHDL Derivation Tool Set Implementation

VHDL specifications tend to be large concerning the lines of code as described
in Section 11.2. This property propagates to the corresponding syntax trees
and crl representations so that they can grow up to multiple gigabytes.

More statistics about runtime performance and space consumption issues
can be found in Chapter 11.

10.3 Static Analyzers

The following list of static analyzers belong to the VHDL derivation tool set
but have been implemented by Marc Schlickling [Sch13] solely and are only
listed for the sake of completeness:

I VhdlResetAnalyzer computes initial signal and variable assignments of a
VHDL design.

I VhdlAssumptionBasedModelRefiner computes parts of a VHDL design
that are so-called timing-dead (cf. Section 6.4.1).

I VhdlSlicer computes backward slices on a VHDL design.

All of these analyzers operate on the intermediate representation (CRL) of
the VHDL model as illustrated by Figure 10.1 on page 205. The computed
results are stored in special attributes of the CRL graph so that subsequent
tools analyzing or transforming the graph can access them.

10.4 Model Transformers

Besides the static analyzers mentioned in the previous section, some model
transformation tools have been developed representing source-to-source
translations on the CRL graph. Based on the results of the analyzers from
the last section, these tools are used to actually shrink the size of the timing
model. Furthermore, the introduction of state abstractions is supported.

Debugging, understanding and exploration purposes are supported by visu-
alization capabilities of the CRL graph using the graph viewer software aiSee
[Abs11]. For this, one of the tools from the aiT tool chain – crl22gdl – can
be used to convert any CRL file output of the presented transformation tools
into GDL representation. As all transformation tools operate on CRL, their

218

10.4 Model Transformers

structural changes to the graphs can be illustrated by such visualizations.
Sample aiSee visualizations of control-flow graphs are shown in Figure 10.4
on page 214.

10.4.1 Timing Dead Code Eliminator

VhdlTimingDeadCodeEliminator removes parts of the VHDL model which
have been marked as “timing-dead”, so the tool is based on the results of the
VhdlAssumptionBasedModelRefiner (cf. Section 10.3). Marking a construct
as timing-dead is realized by the CRL attribute vhdl_timing_dead which
is interpreted as a Boolean value pointing to such dead constructs.

Structure

The implementation operates on the CRL representation of a VHDL design
as illustrated in Figure 10.1 on page 205. First, the input CRL file is read into
memory. Then, a depth-first search (DFS) on the graph structure is performed
that checks for the above mentioned timing-dead markers and performs the
removal. Removal here means that the particular dead component is unlinked
from the graph structure. After the DFS walk, some post-processing steps
are done which are detailed below. In the end, the shrunken CRL description
is written to the specified output file. All input and output processes are
realized using the AbsInt libcrl2 library.

CRL Graph Iteration

The DFS walk over the graph structure checks the timing-dead attribute
for all CRL constructs that are annotated by Schlickling’s static analyzer
[Sch13], namely routines, instructions and edges. Therefore, dead routines
and instructions can be identified directly by checking the attribute. Each such
routine or instruction is stored separately for deletion in the post-processing
steps and all their incoming edges are marked as timing dead. A basic block
b is identified as dead if all of b’s incoming edges have been marked as dead
by the analyzer. Consequently, all outgoing edges of b are marked as dead
and b is marked for the post-processing steps (see below). The storage of
pointers to dead constructs and their post-pass deletion is an implementation
details and implied by the libcrl2 library. Direct deletion from the graph

219

10 VHDL Derivation Tool Set Implementation

is not possible because the iteration would otherwise fail with a runtime
error.

Additionally, constructs which potentially can be simplified due to the re-
moval are stored for post-processing, as well (see below for a description of
the simplification process).

Post-Processing

After the DFS walk, some post-processing steps take place. They have to be
done afterwards in order to technically simplify the DFS walk. For example,
there might be different paths leading to the same dead block. If the block
would be directly deleted during its first occurrence on the DFS walk, the
iteration over the graph needs to take care about deleted constructs.

I Deletion of stored dead blocks/routines/instructions:
The CRL constructs stored during the DFS walk (see above) are actually
deleted from the heap memory in this step.

I Code simplification:
Due to the code removal, basic blocks surrounding deleted blocks
potentially can be merged to one new block. If a block b has only one
alive, i.e., not timing-dead, outgoing edge, the successor block can be
merged with the block b. Another situation where a simplification is
applicable is if a call edge, i.e., an edge from a basic block to another
block in a different routine, is marked as timing-dead, e.g., due to
having marked the whole target routine dead. Then, the return block,
i.e., the successor block of the block containing the call, can be merged
with the caller block.

Timing-Dead Propagation

The property of being timing-dead might be propagated from one basic block
to another one by the removal. For example, an originally “timing-alive”
basic block could get timing-dead because all incoming edges have been
marked dead as a consequence of the deadness of its predecessor blocks.
This propagation is supported by VhdlTimingDeadCodeEliminator and can
happen for basic blocks and routines. Typically, this occurs in the presence
of concurrent signal assignments where the destination signal has been
assumed to be of constant value. In the control-flow graph, such assignments

220

10.4 Model Transformers

Listing 10.3 – VhdlTimingDeadCodeEliminator statistics

1 Progress: [09:53:03]: Parsing input Crl file ’else-case.crl’...
2 Progress: [09:53:03]: Computing transformation statistics...
3 Info: Eliminated 0 (0 empty) of 3 routines (0 percent).
4 Info: Eliminated 3 (2 empty) of 17 blocks (18 percent).
5 Info: Eliminated 0 of 8 instructions (0 percent).
6 Info: Eliminated 3 of 17 edges (18 percent).
7 Progress: [09:53:03]: Writing result Crl file...

are represented by one instruction that is solely contained within one basic
block which itself is contained in a single routine. Marking this instruction
as timing-dead results in the removal of the surrounding basic block which
is then empty and therefore results in the removal of the whole routine due
to the timing-dead propagation.

Statistics

At the end of the transformation process, a statistic is emitted showing a
percentage and absolute number of removed CRL constructs. The output
is categorized by the construct type, i.e., subdivided into the number of
removed blocks, routines or instructions.

Listing 10.3 shows a sample output of VhdlTimingDeadCodeEliminator
where the statistic can be read in lines 3–6. They show the number of
eliminated routines, basic blocks, instructions and edges respectively. If
some of the eliminated elements have been removed because of a timing-
dead propagation (cf. above), their portion of the total number of removed
elements is shown in parentheses and called empty. For example in line four,
one can see that two of the three eliminated blocks have been removed due
to such a propagation. Section 11.4 interprets such propagation rates in a
quantitative description of possible VHDL model reductions.

Complexity

The asymptotic runtime of VhdlTimingDeadCodeEliminator is linear in the
sum of the number of nodes and edges in the graph as the DFS walk is
the dominating process concerning the runtime. Consumed main memory

221

10 VHDL Derivation Tool Set Implementation

is linear in the number of CRL constructs in the input graph as the corre-
sponding data structures are held in the heap memory of the process. This
dominating role of the CRL graph iteration arises in the runtime and memory
consumption experiments which are described in Section 11.3 and show a
linear complexity dependency from runtime and consumed main memory to
CRL graph size.

Usage

VhdlTimingDeadCodeEliminator [-o|--output <file name>]
[-v|--verbose] <file name>

-o | --output <file name>
Transformed CRL file is written into the file specified by <file name>.

-v | --verbose
Activate more progress and information messages.

The <file name> parameter specifies the input CRL file.

10.4.2 Domain Abstractor

The VhdlDomainAbstractor supports automatic domain abstractions as de-
scribed in Section 6.4.2, i.e., the conversion of identifiers from a source to a
destination type where both can be specified on the command line of the
tool.

Structure

As illustrated in Figure 10.1 on page 205, the VhdlDomainAbstractor operates
on the CRL graph structure which has been read into memory from a given
file. Analogously to the VhdlTimingDeadCodeEliminator (cf. Section 10.4.1,
the parsed CRL graph is traversed by a DFS walk searching for identifiers
matching the specified source domain. Having finished the graph traversal,
results are printed:

I transformed identifiers,

I needed operator implementations due to the transformation and op-
tionally

222

10.4 Model Transformers

I further transformation proposals if the search scope has been restricted
(see below).

CRL Graph Iteration

For each CRL instruction (aka VHDL statement) which is encountered during
the DFS walk over the graph, the corresponding identifier uses and definitions
are determined. Then, their types are extracted from the global and parameter
type map (cf. Section 10.2.4) sections stored in the CRL graph. All identifiers
whose type matches the specified source domain are converted to the specified
destination domain by adjusting the corresponding entry in the type map
meta sections of the graph. There is a so-called check-only operation mode
where the computed transformations are not applied. The actual computation
is not changed, but a written model is the identity of the input model. This
can be used to determine needed operators under a given domain abstraction
without actually modifying the input.

VhdlDomainAbstractor features so-called transformation scopes, i.e., the user
might want to restrict the type transformation to a certain set of identifiers.
Then only these identifiers are processed which is useful for partial conver-
sions. For example, one might only want to focus on a specific part of the
model in order to postpone the examination of all other parts. By this, the
domain abstraction can be used iteratively which simplifies the processing of
larger VHDL designs.

Due to the type conversion, new operators working on the destination domain
might be needed. Therefore, the graph traversal additionally checks all used
operators after the type conversion. For example, lets assume there is an ex-
pression a + b where a and b both are addresses (e.g. ieee.unsigned (31
downto 0)). If a and b are converted to an abstract domain AddressRange
where a and b both represent an interval of addresses, an operator +interval is
needed which can work on the new type. After having finished the type con-
version, VhdlDomainAbstractor prints out such collected needed operators
that have to be provided by the user. Already implemented operators can be
specified via a file containing their signatures (see Section 10.4.2). These are
then not reported by the tool.

Another helpful feature of the domain abstraction tool are transformation
proposals if the transformation scope has been restricted to a set of identifiers.

223

10 VHDL Derivation Tool Set Implementation

If the conversion of an identifier type is only prevented by this scope restric-
tion and the transformation proposals are enabled, this identifier is stored
internally. After the transformation process, all collected (not converted)
identifiers are printed.

Complexity

The asymptotic runtime of VhdlDomainAbstractor is linear in the sum of the
number of nodes and edges in the graph as the DFS walk is the dominating
process concerning the runtime. Consumed main memory is linear to the
number of CRL constructs in the input graph as the corresponding data
structures are held in the heap memory of the process.

Usage

VhdlDomainAbstractor [-o|--output <file name>]
[-v|--verbose]
-s|--source-domain <domain>
-d|--destination-domain <domain>
[-c|--check-only]
[-r|--restrict <identifier>]
[-p|--enable-proposals]
[--signature-file <file name>]
<crl file name>

-o | --output <file name>
Transformed CRL file is written into the file specified by <file name>.

-v | --verbose
Activate more progress and information messages.

-s | --source-domain <domain>
The source domain is specified by <domain>.

-d | --destination-domain <domain>
The destination domain is specified by <domain>.

-c | --check-only
Activates the check-only mode.

224

10.4 Model Transformers

-r | --restrict <identifier>
Transform only the given identifier. This option can be used multiple
times to restrict the transformation to specific identifiers.

-p | --enable-proposals
Activate transformation proposals. This option is only meaningful in
conjunction with the restrict option.

--signature-file <file name>
Already implemented new operators can be specified via the file whose
name is given by <file name>.

The <crl file name> parameter specifies the input CRL file.

10.4.3 Process Replacer

Compared to VhdlTimingDeadCodeEliminator and VhdlDomainAbstractor,
the VhdlProcessReplacers implementation is simpler. It automates the re-
placement of VHDL processes by custom simulation routines which are
provided by the user.

First, a specification file (given on the command line) is read into memory.
It contains pairs of CRL routines and URLs where the first one identifies
the routine to be replaced and the latter points to the file containing the
corresponding custom implementation of the process. Analogously to the
VhdlTimingDeadCodeEliminator and VhdlDomainAbstractor, the CRL graph
structure is read into memory, as well.

Then, the algorithm iterates over all existing routines in the CRL graph.
Any routine whose name matches one of the names in the specification file
mentioned above, is flagged with the following attributes:

I vhdl_custom_simulation_routine:
This attribute is of type Boolean and indicates that the routine has been
reimplemented by a custom simulation routine.

I vhdl_custom_simulation_routine_url:
This attribute contains the source code location of the new implementa-
tion for the routine.

225

10 VHDL Derivation Tool Set Implementation

All calls to such a routine are flagged with the same attributes which is needed
for other tools like the PipelineAnalyzerGenerator (cf. Section 10.5.1).

Moreover, a special meta section (process_replacement_map) is added to
the graph representing the mapping from the specification file. The abstract
VHDL generator makes use of this meta section. It only integrates empty
VHDL processes into the reconstructed design because the custom simulation
code is mainly written in C and not VHDL.

Ideally, these routines would not only be flagged with attributes to identify
them as being reimplemented by a custom simulation routine, but actually
replaced by the new implementation. This is not done because the new code
must not necessarily be written in VHDL. As the main goal is to generate an
aiT-compatible pipeline analyzer from the model, such custom simulation
routines actually are written in C/C++.

10.4.4 Complexity

The asymptotic runtime of VhdlProcessReplacer is linear in the sum over the
number of nodes and edges contained in the input CRL file as the parsing
and rewriting of the CRL file is the dominant runtime influencing factor.
Fortunately, the used AbsInt implementation of the access library for CRL
directly offers access to the routines of a CRL graph so that this only consumes
constant asymptotic runtime. As the number of entries in the specification
file cannot exceed the number of routines in the CRL graph, this reading
process can be neglected in the runtime examination.

The consumed main memory is linear to the number of CRL constructs in
the input graph as the corresponding data structures are held in the heap
memory of the process. For the same reason as in the runtime examination,
the number of entries in the specification file only is a negligent factor.

10.4.5 Usage

VhdlProcessReplacer [-o|--output <file name>]
[-v|--verbose]
-s|--specification <file name>
<crl file name>

226

10.5 Generators

-o | --output <file name>
Transformed CRL file is written into the file specified by <file name>.

-v | --verbose
Activate more progress and information messages.

-s | --specification <file name>
The name of the specification file is given by <file name>.

The <crl file name> parameter specifies the input CRL file.

10.5 Generators

As illustrated by Figure 10.1 on page 205, two possible outputs can be
generated from the CRL graph: an aiT-compatible pipeline analyzer and a
(partially) abstract VHDL representation. Both are described in the following
sections.

10.5.1 Pipeline Analyzer Generator

The PipelineAnalyzerGenerator produces ANSI-C code implementing the
functionality of a cache/pipeline analysis as presented in Section 4.3.3. Basis
for the generation algorithm are the inference rules for abstract simulation
of VHDL designs which have been defined in Section 7.3. By this, the rules
additionally serve as a formal description of the implementation.

Each routine in the CRL graph is printed by the tool in its ANSI-C represen-
tation. This task is straightforward and is mainly concerned with syntactical
transformations except for signal assignments. They have to be treated spe-
cially due to their “delayed” semantics, i.e., their assignments only take effect
after all routines have been executed (cf. Section 5.2.3). A global storage con-
struct has to be generated which temporarily stores future values for signals
collected by the execution of their assignments. Therefore the code for signal
assignments is a bit special because the need for the global storage update.
Additionally, simulation code is generated in order to correctly simulate
repeated process execution due to VHDL delta cycles (cf. Section 5.2.3).

227

10 VHDL Derivation Tool Set Implementation

Generated Analyzer Structure

An aiT-compatible pipeline analyzer consists of two logical parts: one rep-
resenting the actual timing model of the underlying hardware architecture
and another generic part which connects the architectural model with the
control-flow graph of the executable to be analyzed.

Due to its generic property, the latter part does not need to be generated. It
is already offered as a generic implementation (pipeline analyzer framework)
where the architectural part can be connected with by a specific interface. This
interface is a main function – single_step – which computes the evolution
of an input system state by a single processor core clock update. One of its
parameters is an input system state and it performs a processor core clock
cycle update, i.e., all possible successor states (according to the semantics of
the underlying model) are computed. Due to the employed state abstractions
there might be multiple successor states for one input state (cf. Section 6.2.1).
The analysis framework iteratively feeds appropriate input system states to
the generated single_step function and collects all computed successor
states until the task simulation is completed.

As mentioned above, each CRL routine is converted to an ANSI-C function
in the generated pipeline analyzer. The main update function single_step
then consists of consecutive calls to all those functions which represent pro-
cesses in the original model. Corresponding information has been preserved
in CRL graph attributes.

There is a small difference between the inference rules for VHDL delta cycles
and the implementation in the generated pipeline analyzer: if the value of a
signal has changed, all VHDL processes need to be executed again according
to the abstract simulation semantics (cf. Section 7.3.2). Actually, this is an
over-approximation to the concrete VHDL semantics as only those processes
that are sensitive to that signal, need to be restarted. This optimization is
realized by the pipeline analyzer.

The runtime complexity of PipelineAnalyzerGenerator is asymptotically
linear to the sum over the number of nodes and edges in the CRL graph as
the generation process can be done in a single pass over the graph structure.
Similarly, the memory footprint is dominated by the in-memory CRL graph.

The work on this aiT-compatible pipeline analyzer has already been published
by Maksoud et al. [Mak07, MPS09].

228

10.6 Implementation Complexity

10.5.2 Abstract VHDL Generator

Although the main purpose of the VHDL derivation tool set is to generate an
aiT-compatible pipeline analyzer from the timing model in CRL presentation,
another tool called AbstractVhdlGenerator has been developed which is able
to regenerate VHDL code from a CRL representation. The motivation is that
the VHDL code generated this way can be used as input for a validation of
the timing model using interval property checking as described in Chapter 8.
Another advantage of the VHDL regeneration is the better readability of the
VHDL in contrast to the pipeline analyzer code. For people familiar with the
original design, the regenerated code is looking familiar and recognizable
which additionally supports debugging processes.

As mentioned in Section 5.2.4, the VHDL elaboration process eliminates
higher-ordered language constructs like records by atomic values. The VHDL
restoration process reverts this by restoring hierarchy information stored in
the hierarchy meta section (cf. Section 10.2.4) of the CRL file.

Most of the CRL components can be easily converted to valid VHDL state-
ments. As processes and subprograms both correspond to routines in the
CRL representation, special attributes at such constructs are used to distin-
guish between them in order to restore the correct construct. Edges in the
CRL graph could originate from two different VHDL language constructs:
loops or if-then-else statements. Because the loop transformation (cf.
Section 4.3.2) has converted loops into self-recursive routines, edges between
basic blocks uniquely identify if-then-else-statements. Analogously to
VHDL processes and subprograms, CRL routines which have been generated
by the loop transformation, are flagged with a special attribute for their
identification. Besides that, instructions inside basic blocks of the CRL graph
directly map to VHDL statements. The runtime complexity and memory
consumption of AbstractVhdlGenerator are asymptotically the same as for
the pipeline generator.

Maksoud [Mak07] gives details about the reconstruction algorithm.

10.6 Implementation Complexity

The implementation of the different tools has been a technically ambitious
project because the goal always was to accept the whole synthesizable sub-

229

10 VHDL Derivation Tool Set Implementation

Table 10.2 – VHDL Derivation Tool Set: lines of code

Tool/Library Lines of Code

Blank Comments Code Total

libvhdlanu 656 403 2 740 3 799

Vhdl2Crl2 6 962 8 452 28 385 43 799

VhdlTimingDeadCodeEliminator 417 568 866 1 851

VhdlDomainAbstractor 403 500 1 022 1 925

VhdlProcessReplacer 69 88 170 327

AbstractVhdlGenerator

PipelineAnalyzerGenerator 2 183 2 143 8 558 12 884

standard of VHDL. At the start of the project, it has been decided to develop
a new parser tool, Vhdl2Crl2, from scratch because existing tools either do
not accept the fully synthesizable VHDL subset or do not provide access (in
the form of a programming interface) to the generated intermediate repre-
sentation. The design and development of such a new parser for a complex
language like VHDL together with the static analyzers, transformation and
generation tools has been a complex task which is reflected in the following
statistical data.

Table 10.2 outlines the size of the tool implementations in terms of code lines,
where blank, comment, and actual code lines are listed in separate columns
alongside a total sum in the rightmost column. Each row represents a tool
or library. The two generator tools AbstractVhdlGenerator and Pipeline-
AnalyzerGenerator share the CRL file reading functions and internal data
structures. Therefore, they are represented by one single entry in the table
because both are implemented in the same executable which supports two
different operation modes. All in all, the presented implementation consists
of 64 697 lines of code (without the contribution of the static analyzers).
Vhdl2Crl2 and the combined generator tool are the largest software pieces in
the bundle with 43 799 lines and 12 996 lines, respectively. But the 3 799 lines
of code for libvhdlanu indicate the complexity arising from VHDL expressions
and types. With an average of 1 367 lines, the transformation tools are more
compact. Alongside the representation of VHDL models as control-flow
graphs using CRL, their examination and modification is supported by the

230

10.7 Implementation Restrictions

Table 10.3 – VHDL Derivation Tool Set C++ classes and files

Tool Files C++ Classes

libvhdlanu 10 2

Vhdl2Crl2 197 97

VhdlTimingDeadCodeEliminator 7 2

VhdlDomainAbstractor 7 3

VhdlProcessReplacer 3 1

AbstractVhdlGenerator

PipelineAnalyzerGenerator 15 44

libcrl2 (cf. Section 10.2.4). The code size of the combined generator tool
(12 884 lines) lies between the VHDL compiler’s and transformation tools’
sizes. Code sizes of the static analyzers are not given here as they have been
solely developed by Schlickling. He lists corresponding information about
them [Sch13].

A more structural metric to depict the size of the implementation is the
distribution of the source code over files and C++ classes. Analogously to
the code line comparison, Vhdl2Crl2 is the by far largest software in the
derivation tool set with 197 files and 97 class declarations. The majority of
these files and classes, 178 and 93 respectively, is used for the syntax tree
representation of the parser (cf. Section 10.2.1). In general, the distribution
of files and classes to tools/libraries exhibits the same trends as the above
described code line metric.

10.7 Implementation Restrictions

The implementations of the tools presented throughout this chapter still
have a proof-of-concept status, i.e., they should proof the feasibility of the
proposed methods but do not claim to be already industrially usable. In
consequence, there are some restrictions to the input VHDL code which are
listed in the following.

First of all, only the synthesizable subset of VHDL [IEE99b] is supported by

231

10 VHDL Derivation Tool Set Implementation

Vhdl2Crl2 although this actually is not a hard restriction. As the overall
goal is to enhance existing methods for timing analysis on realistic hardware,
designs that are not synthesizable will never be examined. One exception re-
mains: some synthesis tools might support language constructs which are not
synthesizable even though this contradicts the purpose of the synthesizable
VHDL standard.

Besides this, there are other restrictions to the analyzed design which are
listed in the following:

I Sensitivity lists of processes must not contain references to single array
elements. The current development state of the VHDL parser does not
yet accept those constructs.

I Calls to functions that return a record type must only occur on the right
hand side of an assignment. Currently, this would break the elaboration
step within Vhdl2Crl2 (cf. Figure 10.1 on page 205).

I Calls must not contain actual parameters that are complex expressions
in which records or record elements are involved. This is not supported
by the implementation of the elaboration step.

I Function symbols equal to the operator symbols provided by the IEEE
library, e.g., ’+’ or ’−’, cannot be used for function overloading. Usually,
the operator symbols from the IEEE library are not used as function
calls (prefix notation), so the time needed to resolve such overloading
can be economized.

I Constants of type record can only be initialized using ordered named
association. No unnamed or unordered association is allowed.

I Arrays of records are not supported. The current state of the elabora-
tion phase within the VHDL compiler currently does not support the
collapsing of record structures that are elements of arrays.

I Data types using up/downto slices where the bounds are computed
using complex expressions are not supported by VhdlDomainAbstractor.
Complex in this context means that no nested expressions are used.

All restrictions from this list are not impossible to fix up in general and could
be overcome with more or less effort.

232

10.8 Summary

10.8 Summary

This chapter describes the implementation of the VHDL Derivation Tool Set
that consists of the following tools:

I VHDL compiler:
The tool Vhdl2Crl2 translates designs into the intermediate representa-
tion format (CRL) to enable the processing with analysis, transformation
and generation tools.

I Static analyzers:
Schlickling [Sch13] provides three abstract interpretation-based static
analyzers: VhdlResetAnalyzer, VhdlAssumptionBasedModelRefiner
and VhdlSlicer. They are used to explore the VHDL model and to
incorporate assumptions (as fixed signal assignments).

I Transformation tools:
Three model transformation tools are presented: VhdlTimingDead-
CodeEliminator effectively removes code that has been marked dead by
the assumption-based model refiner. Implied code simplifications like
empty basic block removal and block merging are supported. Domain
abstractions can be invented by source-to-source type changes using the
VhdlDomainAbstractor. The tool requests needed operators from the
user for the particular target domain and supports different application
scopes, i.e., the transformation effect can be restricted explicitly to a
given set of identifiers. Finally, the replacement of VHDL processes by
custom simulation routines is supported by the VhdlProcessReplacer.

I Generator tools:
Two different generator tools are available. PipelineAnalyzerGenerator
is able to convert a timing model in CRL format to an aiT-compatible
pipeline analyzer. The nondeterministic property of the input timing
model is explicitly supported. AbstractVhdlGenerator reconstructs an
abstract VHDL variant of the timing model that is employed in its
validation using interval property checking (cf. Chapter 8).

For each presented tool, its structure and underlying algorithmic details are
described. All tools have been implemented in C/C++.

Afterwards, some statistical data about the implementation are given in the
form of lines of code and number of code modules, files, class declarations,
etc.

233

10 VHDL Derivation Tool Set Implementation

Although the fully synthesizable VHDL standard is supported by the tools,
in general, there are some restrictions which are listed in Section 10.7. All
restrictions from this list are not impossible to fix up and could be overcome
with more or less effort.

234

11
Experimental Results

“Not everything that can be
counted counts, and not
everything that counts can
be counted.”

(Albert Einstein)

11 Experimental Results

11.1 Overview

This chapter describes experiments with the VHDL derivation tool set imple-
mentation as described in Chapter 10. Corresponding results are discussed
and evaluated. They have been obtained for the following VHDL designs:

I a superscalar DLX variant similar to a PowerPC 603e,

I the SPARC V8 architecture based LEON2 processor,

I a memory controller used within modern avionics systems and

I two representative automotive processors.

As described in Chapter 10, the developed tools have a proof-of-concept
status, i.e., showing the general applicability of the whole derivation approach.
Therefore, some of the designs make use of VHDL language features which
are currently not supported by the transformation and generator tools (cf.
Section 10.7). Particular restrictions are mentioned accordingly throughout
this chapter.

This chapter is structured into three parts. First, the architecture of the
superscalar DLX is described because the runtime and space consumption
experiments which are detailed in the subsequent Section 11.3 have been
done on the VHDL model of this architecture. After that, Section 11.4
discusses achievable space compaction rates for the resulting timing models
compared to the original input code. The precision of the derived models
concerning computed WCET bounds is presented in Section 11.5. Finally,
Section 11.6 contains an evaluation of the industrial applicability of the
derivation approach together with a general summary of the experimental
results.

11.2 Complexity of VHDL Specifications

VHDL is a complex language because of the expressiveness of this language,
i.e., hardware circuits may be described in different domains. Within one
domain, there are different levels of abstractions (cf. Section 5.2.1). To have a
concise formal specification of hardware circuits, the register-transfer (RTL)
level would suffice because the hardware’s behavior can be specified on the
granularity of a processor clock cycle. But even on the RTL level, VHDL offers

236

11.2 Complexity of VHDL Specifications

flexibility on the syntactic level. By this, there are language constructs that are
difficult to distinguish for a VHDL parser. For example, it is not clear whether
two redundant operators for array accesses, namely a[i] and a(i), are needed.
The latter variant cannot be distinguished from a function/procedure call
without a context-sensitive lexicographic analysis. Figure 11.1 on the next
page shows the graphical representation of the generated parser automaton
of Vhdl2Crl2. Due to the graph’s scaling factor, it is not meant to present
more details about the implemented grammar. Instead, the visualization
underlines the complexity of the VHDL syntax because the large number of
edges in the graph overlie the nodes that represent parser states.

In the following, a superscalar DLX architecture is presented which is used
in the experiments described in the subsequent sections. After that, the sizes
of different VHDL models which are available to the author, are discussed.

11.2.1 Superscalar DLX

The superscalar DLX machine is an implementation from the Technical
University of Darmstadt [Hor97]. It is based on the DLX presented by
Hennessy [HPG06] and conceptually similar to a Freescale PowerPC 603e
[Fre02]. Figure 11.2 on page 239 illustrates the functional units of the DLX
and data flow between them.

Starting with the instruction fetch handling, the superscalar DLX design has
a direct-mapped instruction cache with a size of 64 byte. This is a small cache
capacity and not realistic for such a processor. For example, the L1 instruction
cache of the Freescale PowerPC 603e is much bigger with a size of 16 kilobyte.
Although this has no direct impact on the runtime and memory consumption
performance of the derivation tools, it is of interest for the precision of the
resulting timing model. The impact of inaccuracies in the pipeline model to
the computed WCET bound is smaller because the processor core has to wait
for data accesses more frequently due to the small cache size.

Additionally, there is a four-entry branch-target-buffer (cf. Section 3.4) for the
prediction of branch targets. Instructions can be fetched by the instruction
fetch unit from both of these two sources with a throughput of up to two
instructions per clock cycle. Fetched instructions are then stored in two
buffers (cf. Instruction A and Instruction B in Figure 11.2 on page 239). In order
to increase the overall processor performance, prefetching over computed
branches whose target is not directly known to the fetch unit triggers one

237

11 Experimental Results

Figure 11.1 – Bison generated state automata of Vhdl2Crl2

238

11.2 Complexity of VHDL Specifications

Figure 11.2 – Superscalar DLX architecture – Data flow

Instruction
Decoder

Dispatcher

Instruction A Instruction B

Instruction-Fetch
Branch-Target

Buffer
Instruction

Cache

Instruction-Address
Translation-Buffer

Register-File

Pipelined
Load/Store

Unit

Integer
Unit

Mul/Div
Unit

Branch
Resolve

Unit

Reorder-Buffer
Data

Cache
Write
Buffer

Commit-Unit
(without data-flow) Data-Address

Translation-Buffer
Bus-Interface-Unit

External Bus

level of speculative execution. In contrast, unconditional branches are directly
folded, i.e., removed from the instruction stream and fetching is redirected
appropriately.

The dispatch unit then decodes fetched instructions and determines the
particular responsible execution unit. Additionally, current values of the
instruction’s source operands are retrieved and rename registers are allocated.
The unit is able to dispatch two instructions that are thereby appended to the
internal FIFO queue of the reorder buffer, per clock cycle to the execution
units. Depending on the used addressing mode, the 32 registers (with 32 bit
width each) or the memory cells serve as operands for the instructions.

After dispatch, the four execution units actually implement the instruction
semantics. For memory accesses, there is a load/store unit mainly served by
the direct-mapped L1 data cache which has the same size as the L1 instruction

239

11 Experimental Results

cache (64 byte). Store operation performance is optimized by the existence
of a write buffer that can process one write so that only a second write
would stall the pipeline. Arithmetic/logical and multiplication/division
integer operations are executed on the integer and multiplication/division
unit respectively. Furthermore, there is a branch resolve unit that manages
the resolution of the branch prediction which has been triggered by the
prefetching mechanism. Mispredicted branches cause a complete flush of all
instructions executed under speculation in the pipeline. Otherwise, in the
correct prediction case, all speculatively executed instructions are allowed to
write back their changes to registers/memory.

By design, the DLX machine supports out-of-order execution because the
four execution units work independently from each other. Nevertheless, the
program semantics has to be preserved, so instructions have to retire in-order.
This program induced order on the instruction stream is enforced by the
reorder buffer as instruction retirement of up to two instructions per clock
cycle is performed there from a FIFO queue.

Memory accesses that miss the L1 data cache are forwarded to the bus inter-
face unit which then schedules corresponding transactions on the external
bus. Incoming data beats (instruction fetches or reads) are forwarded by this
unit to the instruction and data cache. For data reads, incoming data bytes
from the bus interface unit are received by the write buffer and bypassed
to the data cache because a clash checking against pending writes is done
here. Besides this, the superscalar DLX design supports virtual memory by
two address translation buffers (one for each cache), precise exceptions, and
interrupt handling.

11.2.2 Code Size Comparison

The VHDL specification of the Superscalar DLX design is smaller than other
complete processor specifications that provide the same architectural fea-
tures within their pipeline. It consists of two files: DlxPackage.vhd and
Dlx.vhd where the first declares the internal data structures and the latter
actually implements the design. The total number of code lines is around
5 000 with a high amount of comments: around 1 100 lines which is about
22 % of the total number of lines. As presented by Table 11.1 on page 242,
industrially used processors are much bigger with respect to the specification
size in lines.

240

11.2 Complexity of VHDL Specifications

For example, the Avionics MCU represents a memory controller unit (MCU)
developed for avionics systems. Its concrete name is hidden due to a nondis-
closure agreement with the manufacturer. With 18 986 lines of code in total,
this MCU consists of around 3.7 times more lines than the superscalar DLX.
The documentation contributes with 18.4 % to the code lines.

The LEON2 processor, an open-source implementation of a SPARC V8 from
Gaisler Research [Gai05], consists of about 14 times more lines (69 144) than
the DLX design. Here, only about 10 % of the code is documentation.

The listed Automotive CPU 1 is a modern coprocessor of a widely used auto-
motive system whose concrete name cannot be stated due to nondisclosure
agreements with the manufacturers. It is implemented within 31 981 lines of
code in total with about 17 % of comments.

Automotive CPU 2 represents a modern processor for automotive systems. Its
VHDL specification consists of 164 476 lines (about 33 times bigger than the
DLX design) in total with a documentation ratio of rounded 16.7 %. Within
this comparison of different processors, it is the most complex and powerful
one regarding automotive applications. Throughout the experiments, only
parts of the memory subsystem of this processor (providing dummy dec-
larations for missing module dependencies) have been processed because
some third party libraries used in the design have not been provided by
the manufacturer. The memory subsystem is a suitable part of the design
that could be processed separately. This part (Automotive MMU) consists of
around 8 400 lines of code in total with 1 285 comment lines and 1 067 blank
lines.

So, VHDL specifications of modern and complex hardware components
tend to be large as it is underlined by this small statistic in Table 11.1 on
the following page. The total number of lines is additionally sketched in
Figure 11.3 on the next page.

11.2.3 Structural Size Comparison

The structure and style among VHDL designs varies greatly due to the
flexibility of the language itself. Although the superscalar DLX is similar to
the Freescale PowerPC 603e [Fre02], its specification only consists of one entity
and one package, i.e., different functional units are not separated into different
design entities. Additionally, the superscalar DLX specification often makes
use of combinatorial logic (cf. Section 9.3.2) which allows a more compact

241

11 Experimental Results

Table 11.1 – VHDL design size comparison

VHDL Design Blank Comment Code Total

in lines in lines in lines in lines

Superscalar DLX 718 1 108 3 196 5 022

Automotive MMU 1 067 1 285 6 048 8 400

Avionics MCU 3 783 3 500 11 703 18 986

Automotive CPU 1 4 058 5 637 22 286 31 981

LEON2 5 793 7 253 56 098 69 144

Automotive CPU 2 20 719 27 326 116 431 164 476

Figure 11.3 – VHDL design size comparison diagram

242

11.3 Derivation Process Complexity

Table 11.2 – Structural VHDL design size comparison

VHDL Design Entities Packages Total Units

Superscalar DLX 1 1 2

Automotive MMU 9 6 15

Avionics MCU 32 4 36

Automotive CPU 1 49 10 59

LEON2 284 13 297

Automotive CPU 2 210 61 271

but less readable design. In contrast, even the avionics memory controller
and automotive CPU 1 already consist of 32 entities with four packages and
49 entities with 10 packages respectively. The design of the LEON2 is split
into 284 entities and 13 packages. By this, it provides more entities than
the automotive CPU 2 (210 entities and 61 packages) despite being smaller
in terms of code size (lines of code). The MMU part of automotive CPU 2
consists of 9 entities and 6 packages. But the number of packages in the
LEON2 specification is much smaller than in automotive CPU 2, namely 13
compared to 61. Table 11.2 again summarizes the described structural size
characteristics of the examined specifications. The bar diagram in Figure 11.4
on the next page gives another view on the comparison explained in this
section.

11.3 Derivation Process Complexity

This section shows the results of runtime and space consumption experi-
ments with the tools in the VHDL derivation tool set. The goal is to show
their applicability on whole processor specifications even in the state of a
proof-of-concept implementation. The developed static analyzers, i.e., Vhdl-
ResetAnalyzer, VhdlAssumptionBasedModelRefiner as well as the VhdlSlicer,
are not evaluated in the scope of this thesis. Schlickling [Sch13] conducts
similar experiments regarding these tools concerning runtime and space con-
sumption. Throughout the next section, runtime performance and memory
consumption measurements of Vhdl2Crl2, VhdlTimingDeadCodeEliminator,

243

11 Experimental Results

Figure 11.4 – Structural VHDL design size comparison diagram

VhdlDomainAbstractor, and VhdlProcessReplacer are described and eval-
uated. These experiments have been conducted on a Linux workstation
equipped with an Intel Core2 Duo (2.66 GHz) and 8 Gigabyte of DDR main
memory.

11.3.1 Tool Execution Time Experiments

Vhdl2Crl2

The execution time of Vhdl2Crl2 has been measured on the VHDL specifica-
tions described in Section 11.2.2: the superscalar DLX, the avionics memory
controller, automotive CPU 1 and MMU as well as the LEON2 processor. Be-
sides the total execution time, the contribution of the parsing and elaboration
phase is given. Depending on the input model, the runtime of Vhdl2Crl2
varies between 0.5 min (for the DLX) and 16 min (for the LEON2). The remain-
ing designs could be processed within 2.7 s (avionics MCU), 6.5 s (automotive
CPU 1) and 2.5 s (automotive MMU). Concluding from the original size of
the model, a higher execution time would have been expected due to the

244

11.3 Derivation Process Complexity

Table 11.3 – Vhdl2Crl2 runtime distribution

VHDL Design Parsing Elaboration Total Runtime

in s in s in s

Superscalar DLX 11.02 21.26 32.28

Automotive MMU 69.47 82.68 152.15

Avionics MCU 82.97 78.85 161.83

Automotive CPU 1 198.61 191.16 389.77

LEON2 517.55 497.82 1 015.37

runtime performance scaling of Vhdl2Crl2 as described in Section 11.2. All
results of the runtime measurements are presented in Table 11.3. They have
been obtained using a little Linux runtime and memory space consumption
profiling tool called proc-time provided by http://lilypond.org/. For
illustration, the measured runtimes are additionally shown in a bar diagram
of Figure 11.5 on the next page.

Figure 11.6 on the following page highlights a good scaling factor of
Vhdl2Crl2’s runtime within the experiments. Depending on the size of
the input VHDL model, an almost linear scaling factor can be observed
when comparing the different runtimes. Overall, the runtime results show a
good performance of Vhdl2Crl2 compared to the complexity of VHDL, both
syntactically and semantically. It is remarkable that the elaboration needs
nearly as much time as the parsing phase. The main reason is the number of
transformations required by the VHDL standard and their particular com-
plexity (cf. Section 10.2.3). Each transformation requires at least one separate
pass over the syntax forest.

Despite this, there still is optimization potential. For example, the structure
of the syntax tree is close to the actual grammar. Its complexity can be re-
duced without loosing any important information but increasing the runtime
performance.

Transformation Tools

The execution times for the three transformation tools (cf. Section 10.4) have
been measured on the VHDL design of the superscalar DLX, the avionics

245

11 Experimental Results

Figure 11.5 – Vhdl2Crl2 runtime distribution diagram

Figure 11.6 – Vhdl2Crl2 runtime performance scaling function

0 1 2 3 4 5 6
·104

0

200

400

600

800

1,000

Lines of code

To
ta

lr
un

ti
m

e
in

se
co

nd
s

246

11.3 Derivation Process Complexity

Table 11.4 – Transformation tools runtime distribution

VHDL Design VTDCE Runtime VDA Runtime VPR Runtime

in s in s in s

Superscalar DLX 1.38 4.09 1.47

Automotive MMU 1.64 6.63 1.76

Avionics MCU 1.92 6.90 1.83

memory controller and automotive MMU. LEON2 and automotive CPU 1
have not been processed as they make use of downto/upto slices where
the lower and/or upper bound is not determined directly via constants but
more complex expressions. Those are currently not supported by the tools
(cf. Section 10.7).

As listed in Table 11.4, the superscalar DLX requires a computation time of
1.38 s to VhdlTimingDeadCodeEliminator (VTDCE). For the model of the
automotive MMU and avionics memory controller, the transformation took
1.64 s and 1.92 s respectively. As the runtime is dominated by the iteration
over the CRL graph, the concrete inputs can be neglected. Nevertheless,
Section 11.4 at least gives the concrete model assumptions for the run of
VhdlTimingDeadCodeEliminator on the DLX. For the other two models, the
assumptions unfortunately cannot be given without disclosing details about
the confidential specifications.

Processing time of VhdlDomainAbstractor (VDA) on the same models took
4.09 s, 6.63 s and 6.90 s for the DLX, automotive MMU and avionics MCU
in that order. Input for the tool has been the particular source domains
representing a concrete address in the design and a custom defined type
AddressRange which represents an interval of addresses. But the concrete
source and destination domain are not that important for runtime measure-
ments because the complexity of the graph transformations are not directly
related to them.

VhdlProcessReplacer (VPR), the tool for replacing VHDL processes by custom
simulation routines, needs 1.47 s to process the superscalar DLX design, 1.76 s
for the automotive MMU and 1.83 s for the avionics memory controller. The
setup of that experiment has been to replace three arbitrary processes by corre-
sponding references to custom implementations. As this tool “only” replaces

247

11 Experimental Results

processes by references to its custom implementations, the graph iteration is
the most dominant factor in the runtime as described in Section 10.4.3.

For illustration purposes, all results are additionally sketched in the bar
diagram of Figure 11.7 on the facing page.

The low execution times, compared to the parsing and elaboration processes,
can be explained by a lower complexity of the computations as they operate on
the control-flow representation. Moreover, the runtime of the transformation
tools actually is not directly influenced by the concrete structure and style of
the VHDL design. Mainly the size of the control-flow graph decides about the
execution time of the transformation tools because the runtime is dominated
by the iteration over that graph which is implemented using a specific AbsInt
access library (libcrl2). This library is highly optimized for just that purpose
and therefore runtime and space efficient.

The runtime of VhdlDomainAbstractor is slightly higher than the runtime
of VhdlTimingDeadCodeEliminator and VhdlProcessReplacer. Although all
three tools share the graph iteration (and therefore its runtime costs), the
domain abstractor performs more operations on the CRL attributes when
querying and changing type information. In contrast to that, the timing
dead code eliminator mainly works on the structure of the graph itself, i.e., it
changes edges which is a bit cheaper transformation than changing attributes
(or their values). The same holds for the process replacer which has to identify
matching processes to be replaced and marks them with specific attributes
that are read by the pipeline analyzer generator.

Interpreting Figure 11.8 on the next page, the execution times of VhdlTiming-
DeadCodeEliminator (VTDCE) and VhdlProcessReplacer (VPR) scale nearly
linear with increasing size of the input VHDL model. Based on only three
measurement points, it is difficult to deduce a scaling function. Nevertheless,
a code review reveals a major dependency of the total runtime to the CRL
graph iteration. This fact underlines the scaling assumption.

Because the times for these two tools are below two seconds throughout the
experiments, i.e., the runtime difference is small, and therefore the slope of
the corresponding plot curve is low. Similarly, the curve for VhdlDomain-
Abstractor shows a nearly linear behavior, as well. Due to its higher complex-
ity (see above), the effect of a larger input model is more visible than for the
other two transformation tools.

248

11.3 Derivation Process Complexity

Figure 11.7 – Transformation tools runtime distribution diagram

Figure 11.8 – Transformation tools runtime performance scaling function

0.4 0.6 0.8 1 1.2
·104

2

4

6

Lines of code

To
ta

lr
un

ti
m

e
in

se
co

nd
s VTDCE

VDA
VPR

249

11 Experimental Results

Table 11.5 – Generator tools runtime distribution

VHDL Design PAG Runtime AVG Runtime

in s in s

Superscalar DLX 7.79 0.60

Automotive MMU 13.51 2.94

Avionics MCU 28.63 7.44

Generators

As described in Section 10.5, the VHDL derivation tool set contains two
different generators: one for the creation of aiT-compatible pipeline analyzers
(PipelineAnalyzerGenerator) and one for the reconstruction of (abstract)
VHDL from a CRL representation (AbstractVhdlGenerator). To demonstrate
the runtime behavior of both tools, the transformed timing model (in CRL
representation) of the superscalar DLX, the one of the avionics MCU and
automotive MMU have been fed to them. For applicability and availability
reasons of a timing model which are explained in Section 11.6, both generators
have not been tested with the designs of LEON2 and automotive CPU 1. The
results of the runtime measurements are shown in Table 11.5 and additionally
illustrated in Figure 11.9 on page 252.

With a runtime of 7.79 s for the DLX, 8.51 s for automotive MMU and 31.52 s
for the avionics memory controller, the pipeline analyzer generator’s (PAG)
runtime performance is good. This has been expected because the code
generation process is straight forward. On the one hand, all instructions
(former VHDL statements) within CRL routines have to be converted to ANSI-
C functions. Here, the semantics of this sequential statement execution is the
same as in C. Surrounding these functions, a main processor cycle update
function, called single_step (cf. Section 10.5.1), has to be generated which
actually implements the second level of VHDL semantics (cf. Section 5.2.3).
The remaining challenge is the realization of the backtracking rules presented
in Section 7.3.2 in order to express nondeterminism induced by abstractions
of the concrete hardware model. But this generation is computationally not
as hard as an abstract interpretation based static analysis on the model or the
parsing process. Therefore, the runtime of the pipeline analyzer generator is
rather short.

250

11.3 Derivation Process Complexity

Table 11.6 – Vhdl2Crl2 memory consumption distribution

VHDL Design Parsing Elaboration

in MB in MB

Superscalar DLX 111 576

Automotive MMU 191 989

Avionics MCU 432 1 680

Automotive CPU 1 756 3 043

LEON2 1 929 6 960

AbstractVhdlGenerator (AVG) is even faster than the pipeline analyzer genera-
tor (cf. Table 11.5 on the facing page) because this process is highly supported
by information already computed by Vhdl2Crl2. As the task is to regenerate
VHDL from the CRL representation including the hierarchy restoration of
the used VHDL data structures, the VHDL compiler computes and preserves
meta information about that hierarchy (cf. Section 10.2.4). Those information
can then be used by the AbstractVhdlGenerator.

Figure 11.10 on the next page shows the runtime performance scaling of the
generator tools. Although a scaling function cannot be deduced from only
three measurement points, at least this assumption can be stated because the
algorithmic implementation mainly depends on the size of the input CRL
graph.

11.3.2 Tool Memory Consumption Experiments

Vhdl2Crl2

During the execution time measurements described in Section 11.3.1, the
memory consumption of Vhdl2Crl2 has been recorded. Therefore, the results
have been obtained by the same tool as in the runtime measurements, namely
proc-time provided by http://lilypond.org/.

As listed in Table 11.6, the needed main memory for the parsing varies
between 111 MB for the superscalar DLX and 1 929 MB for the LEON2. Con-
cerning the elaboration process, the consumed memory ranges between

251

11 Experimental Results

Figure 11.9 – Generator tools runtime distribution diagram

Figure 11.10 – Generator tools runtime performance scaling function

0.4 0.6 0.8 1 1.2
·104

0

10

20

30

Lines of code

To
ta

lr
un

ti
m

e
in

se
co

nd
s PAG

AVG

252

11.3 Derivation Process Complexity

Figure 11.11 – Vhdl2Crl2 memory consumption distribution diagram

576 MB and 6 960 MB respectively. Figure 11.11 additionally illustrates these
memory consumptions.

As illustrated by Figure 11.12 on the following page, a nearly-linear scaling
can be observed for the memory consumption of Vhdl2Crl2 in relation to the
size of the input VHDL design. These results correspond to the measured
runtime performance scaling.

Summarizing and interpreting the memory experiment results, the parsing
and elaboration of processor descriptions can be memory-consuming looking
at the more than six Gigabyte needed to process the LEON2 model. Addition-
ally, it can be observed that the memory consumption of the elaboration phase
is much higher than the needed memory for the parsing phase. The reason
mainly is the embedding of components and generate statements during
the elaboration as required by the VHDL standard. Still, these results show
weaknesses in the implementation which has space optimization potential
especially in the representation of the annotated syntax tree. Nevertheless, it
is demonstrated that even whole processor designs can be handled by this
proof-of-concept implementation on a workstation with state-of-the-art main
memory equipment.

253

11 Experimental Results

Figure 11.12 – Vhdl2Crl2 memory consumption scaling function

0 1 2 3 4 5 6
·104

0

2,000

4,000

6,000

Lines of code

M
em

or
y

co
ns

um
pt

io
n

in
M

B

Another interesting comparison is the size of the input VHDL model (in
Kilobytes) with the size of the resulting CRL file. For example, the LEON2
model has a size of around 3 MB where the generated CRL representation is
larger with a size of 5.3 MB. This increase can be explained by the unrolling of
generate statements which are embedded into the elaborated entity leon.

Transformation Tools

The memory consumption of the three transformation tools has been mea-
sured together with the described runtime experiments (cf. Section 11.3.1), i.e.,
experiments have been done with the superscalar DLX, the avionics memory
controller and the automotive MMU designs. The required memory profiles
for them are listed in Table 11.7 on the next page and sketched in Figure 11.13
on the facing page.

As all of the three transformation tools operate on the CRL description of the
VHDL model, their memory consumption is dominated by the size of the
input model which has to be loaded and remains in memory during runtime.
This explains that all tools have the same maximal memory consumption
for the same inputs. Overall, the transformation tools have a cheap memory
profile thanks to the efficiency of the CRL access library (libcrl2).

Comparing the memory consumption of the tools with the original size of

254

11.3 Derivation Process Complexity

Table 11.7 – Transformation tools memory consumption distribution

VHDL Design VTDCE VDA VPR

in MB in MB in MB

Superscalar DLX 4 4 4

Automotive MMU 11 11 11

Avionics MCU 24 24 24

Figure 11.13 – Transformation tools memory distribution diagram

255

11 Experimental Results

Figure 11.14 – Transformation tools memory consumption scaling function

0.4 0.6 0.8 1 1.2
·104

5

10

15

20

25

Lines of code

M
em

or
y

co
ns

um
pt

io
n

in
M

B

the VHDL input model as plotted in Figure 11.14, a nearly-linear scaling
performance can be observed which is analog to the runtime performance
described in Section 11.3.1. As for the runtime experiments, there are only
three measurement points rendering a deduction of the scaling function
difficult. Examining the implemented algorithms, memory consumption is
asymptotically constant except the memory footprint of the loaded CRL data
structures. Here, the memory consumption dependency is linear to the size
of the CRL graph.

Generators

The memory footprints of the two generator tools, namely PipelineAnalyzer-
Generator and AbstractVhdlGenerator, have been examined in the same
experimental setup as for the runtime experiments which have been described
in Section 11.3.1 on page 250. Results of these are shown in Table 11.8 on the
facing page and drawn in Figure 11.15 on the next page.

The PipelineAnalyzerGenerator needs a maximum of around 212 MB memory
for generating a pipeline analyzer for the superscalar DLX timing model. For
the automotive MMU and avionics memory controller, 585 MB and 802 MB
are required respectively. In contrast, the AbstractVhdlGenerator only needs
22 MB to reconstruct the abstract VHDL representation for the timing model

256

11.3 Derivation Process Complexity

Table 11.8 – Generation tools memory consumption distribution

VHDL Design PAG AVG

in MB in MB

Superscalar DLX 212 22

Automotive MMU 585 60

Avionics MCU 802 81

Figure 11.15 – Generator tools memory consumption distribution diagram

257

11 Experimental Results

Figure 11.16 – Generator tools memory consumption scaling function

0.4 0.6 0.8 1 1.2
·104

0

200

400

600

800

Lines of code

To
ta

lr
un

ti
m

e
in

se
co

nd
s PAG

AVG

of the superscalar DLX design. Respectively, 60 MB and 81 MB are needed
for the automotive MMU and avionics memory controller.

This difference in the memory consumption can be explained by the fact
that the VHDL reconstruction process is computationally a bit cheaper than
the pipeline analyzer generation. Partly, the needed information to produce
VHDL is already contained in the CRL representation. Similar to the required
memory of the transformation tools, the generators consume less memory
than Vhdl2Crl2. Generally, the memory consumption is expected to scale lin-
early with a growing size of the input timing model. This assumption is based
on the construction of the underlying algorithm whose memory allocation
profile is dominated by the data structures storing the CRL representation.
Figure 11.16 confirms this assumption.

11.4 VHDL Specification Size Reduction

In general, the compaction rate strongly depends on the actual timing model
and its coding style as described in Chapter 9. During the derivation of a
timing model for the superscalar DLX design, the CRL representation of it
has been passed to the timing dead code eliminator with the results from the
static analyzers [Sch13].

258

11.4 VHDL Specification Size Reduction

Table 11.9 – DLX timing model signal assumptions

Signal/Variable Value Range

BIU_TransferErrorFetch +0..+0

BIU_TransferErrorLoad +0..+0

BIU_TransferErrorStore +0..+0

DP_IssueIllegalInstrError +0..+0

IF_TransferErrorFlagA_Input +0..+0

IF_TransferErrorFlagB +0..+0

IF_TransferErrorFlagB_Input +0..+0

TransferError +0..+0

CU_Inhibit +0..+0

DP_TakeExternalInterrupt +0..+0

InterruptRequest +0..+0

Reset +0..+0

The different signal assignment assumptions can be roughly grouped into
three categories: error, interrupt and reset handling. Error handling of a
system is actually never considered for a timing analysis because the worst-
case execution time is to be determined for normal operating conditions.
Safety-critical systems normally are designed for fault-tolerance, i.e., there is
at least one redundant, secondary, system that carries over all responsibilities
of the primary system in case of any error situation, e.g., hardware failure
(exception, power off, etc.) or software detected malfunction.

The second group of assumptions is concerned with the interrupt handling
which is ignored within the timing model for similar reasons. Interrupts are
asynchronous events and their time of occurrence is therefore statically not
predictable. If a bound on the execution time of an interrupt handler needs
to be computed, the corresponding routines have to be analyzed separately.
Then, the corresponding code cannot be ignored for the timing model.

Finally, the reset signal is assumed to be inactive. It is ignored for the timing
model for the same reason as the error handling.

As a result of the above assumptions, inactive parts of the model have been

259

11 Experimental Results

marked as “timing-dead” by the assumption refiner. In consequence, those
parts can be removed by the timing dead code eliminator whose statistics
are shown in Table 11.10. It shows the number of original elements in
the CRL graph for each language construct, i.e., for routines, basic blocks,
instructions and edges, in its second column. The third column then contains
the number of eliminations with the corresponding ratio to the number of
original elements in the fourth column. In the last column (“Propagated”),
the number of eliminated elements (out of the total eliminations) due to a
timing-dead propagation (cf. Section 10.4.1) is given. For the DLX model, the
unchanged CRL representation consists of 923 routines, 7 695 basic blocks,
3 978 instructions and 9 476 edges. Based on the input assumption that has
been mentioned above, 49 routines, 119 basic blocks, 19 instructions and
140 edges could be removed where the elements of a deleted routine do not
count for the corresponding values of deleted blocks and instructions. This
corresponds to a decrease of 5.3 % and 1.5 % to the original model in terms of
number of routines and basic blocks respectively. Since single instructions are
only occasionally removed with respect to the total number of instructions,
this ratio is only 0.5 % after rounding. The number of edges in the graph has
been reduced by 1.5 %. This small reduction is illustrated in Figure 11.17.

As described in Section 9.3, the compaction rate in general depends on the
coding style of the VHDL design. The DLX specification contains concurrent
signal assignments that specify the relation between the different control
signals and the state of the units. Additionally, there are two processes:
one that updates the internal data structures of the functional units and
another one that updates the external bus clock. Only small parts of the
model use a sequential logic which renders the application of size reducing
transformations difficult. This is reflected in the reduction rates described
above which are rather small but sufficient for a feasible timing analysis
where feasible refers to both computational complexity and precision of
computed WCET bounds. If the VHDL model is using more sequential logic
and a clear logical separation of functionality in different processes, higher
compaction rates are achievable.

For example, the avionics MCU is a more suitable example for a semi-
automated timing model derivation due to a higher usage of sequential logic
in the design. Its model compaction results are shown in Table 11.11 on
page 263. The unchanged model consists of 1 210 routines where 681 – 56.3 %
– of them have been eliminated. Regarding the basic blocks, the elimination
rate is 25.4 %, i.e., 3 121 out of the original 12 288 blocks have been removed
from the model where these blocks are not contained in the eliminated

260

11.4 VHDL Specification Size Reduction

Table 11.10 – Superscalar DLX model reduction

CRL Construct Original Elements Eliminations Ratio Propagated

in %

Routines 923 49 5.3 11

Basic blocks 7 695 119 1.5 54

Instructions 3 978 19 0.5 0

Edges 9 476 140 1.5 0

Figure 11.17 – Superscalar DLX model reduction diagram

261

11 Experimental Results

routines. For instructions and edges, the ratio of reduction is smaller with
1.8 % and 3.9 %. Having a much lower compression for instructions and
edges means that the number of routine and block removals has been higher.
Single instruction removals are rare in comparison because the containing
basic block or routine is removed anyway. The only situation leading to such
an instruction-only removal is an assignment to a variable or signal which
has been assumed or determined to be constant using Schlickling’s static
analyzers [Sch13]. These results are additionally illustrated in Figure 11.18
on the next page.

The LEON2 specification is another example for a VHDL design not suitable
for a semi-automatic timing model derivation process as introduced by
this thesis. Although the authors have split the functionality into different
processes in order to achieve a separation of logically different functions, they
have introduced superfluous dependencies between them by the specification
of signal identifiers in the process sensitivity lists. For example, the data cache
updating process not only depends on the corresponding data structures.
Additionally, any modification of a cell in the instruction cache triggers
an execution of the data cache process. Such scenarios are not suitable
for a static timing analysis because these sensitivity signals induce control
dependencies between the corresponding processes and thereby lead to
uncertainties in the analysis results. In that case, it is hard to exclude parts
of the model not contributing to the timing behavior without changing the
model itself. Schlickling [Sch13] provides details on such “bad dependencies”
when statically analyzing VHDL models.

11.5 Precision of Computed WCET Bounds

By construction, the generated pipeline analyzers allow for a determination
of safe upper bounds on the execution time of tasks because the underlying
timing model has been derived from the formal specification of the target
architecture (assuming that the performed transformations and abstractions
correctly over-approximate the systems actual timing behavior). In order to
be usable for industrial applications, the computed WCET bounds also need
to be precise, i.e., the gap between the concrete WCET and the computed
upper bound should be small which usually means not to over-approximate
more than 10 % to 20 %. Showing that the generated timing analyzers fulfill
such precision criteria and thereby being competitive to hand-crafted and

262

11.5 Precision of Computed WCET Bounds

Table 11.11 – Avionics MCU model reduction

CRL Construct Original Elements Eliminations Ratio Propagated

in %

Routines 1 210 681 56.3 36

Basic blocks 12 288 3 121 25.4 1 420

Instructions 8 954 162 1.8 0

Edges 16 785 671 3.9 0

Figure 11.18 – Avionics MCU model reduction diagram

263

11 Experimental Results

optimized timing models is the objective of the experiments described in this
section.

For this, two different kinds of experiments have been done: first, synthetic
execution traces of the superscalar DLX retrieved by VHDL simulations have
been compared to the predictions of the corresponding generated timing
analyzer. Afterwards, the semi-automatically derived timing model of the
avionics memory controller is qualitatively compared to an existing hand-
crafted model where the term hand-crafted in this case means that the model
has been developed by a manual examination of the VHDL design of the
memory controller.

11.5.1 Superscalar DLX

In these experiments, some sample programs have been compiled with the
C0 compiler [Lei08] which has been developed to produce binaries for the
VAMP architecture [Bey05]. As the VAMP and the superscalar DLX both
have a compatible DLX instruction set, these binaries can be processed with a
VHDL simulator of the superscalar DLX and the existing aiT for VAMP tool.
The combined cache and pipeline analyzer of the latter has been replaced
with the derived one from the VHDL model allowing a comparison between
simulations of test programs with their corresponding aiT predictions. Re-
sults of these experiments are shown in Table 11.12 on the facing page and
illustrated in Figure 11.19 on the next page.

For each test program whose identifier is given in the first column, the results
of its VHDL simulation in core clock cycles (column two) are given together
with the corresponding WCET prediction (in column three). In the last two
columns, the overestimation which is an indicator of the precision of the
underlying timing model, is shown in absolute processor cycles as well as a
percentage.

The results can be split into two different groups. The first consists of the
programs nac, minmax and loops. All of them are small in code size with
at most around 80 lines of code, no complex control-flow graph structure and
only a small number of data dependencies. Therefore, the aiT prediction is
cycle-accurate on these programs without any overestimation.

The remaining test programs, namely prime, dry2_1 and edn are more
complex compared to the others building bigger control-flow graphs with
more called routines and/or loops where dry2_1 and edn are benchmark

264

11.5 Precision of Computed WCET Bounds

Table 11.12 – Superscalar DLX WCET prediction precision

Test Program Simulation Time aiT Prediction Overestimation

in cycles in cycles in cycles in %

nac 310 310 0 0.0

minmax 1 721 1 721 0 0.0

loops 2 024 2 024 0 0.0

prime 16 693 18 082 1 389 8.3

dry2_1 146 290 161 065 14 775 10.1

edn 871 300 966 271 94 971 10.9

Average 4.9

Figure 11.19 – Superscalar DLX WCET overestimation diagram

265

11 Experimental Results

Table 11.13 – Avionics MCU WCET prediction precision

Test Program Legacy Prediction Prediction Overestimation

in cycles in cycles in cycles in %

nac 1 168 1 168 0 0.0

minmax 4 601 4 601 0 0.0

loops 3 711 3 711 0 0.0

prime 104 201 104 374 173 0.2

dry2_1 34 942 35 022 80 0.2

edn 144 206 144 421 215 0.1

Average 0.1

programs, i.e., all execution paths through these programs are typically
contained in the worst-case path. Here, there is an overestimation of 8.3 %,
10.1 % and 10.9 % respectively. Reasons for these are either analysis induced
ones, i.e., precision losses due to control-flow joins, or timing model induced
ones, i.e., precision losses due to the employed abstractions. Actually, the
encountered precision of the timing model of the superscalar DLX could
have been expected because the VHDL design is the simplest one among the
examined designs. Therefore, nearly everything can be modeled precisely
which restricts the potentials for abstraction losses.

11.5.2 Avionics Memory Controller

The last section has provided a comparison between VHDL simulations
and the aiT prediction on some test programs. Another interesting point
is to show that the generated timing models are competitive regarding the
precision of the computed time bounds. Because there exists a hand-crafted
timing model of the avionics memory controller incorporated into the aiT
framework, it can be replaced by the semi-automatically derived one in order
to see the effect on the timing results. The results of these experiments are
shown in Section 11.13 and Section 11.20 where the latter shows the processor
cycle difference between the derived model and the corresponding legacy
prediction.

266

11.5 Precision of Computed WCET Bounds

Figure 11.20 – Avionics MCU WCET overestimation diagram

267

11 Experimental Results

Figure 11.21 – Timing over-estimation for alternative conditionals

c11

then12 else1 1

c21

then22 else2 1

Basic Block

WCET cycles

CFG Edge

For the sake of completeness, it has to be mentioned that the test programs
listed in Table 11.13 on page 266 originally were identical to the ones used for
testing the timing analyzer for the superscalar DLX. But as mentioned in the
last section, the C0 compiler [Lei08] which only accepts a restricted subset of
the C language, has been used for executable creation. Two major restrictions
are the lack of pointer arithmetic whose occurrence is just rejected by the C0
compiler, and floating-point instruction support, i.e., data-dependent loops
are generated for multiplications and divisions. For simplification, such
loops have been annotated with global loop iteration default (cf. [Hec10]).
By this, the resulting execution times of the test programs cannot be com-
pared between the two architectures although this is not the intention of this
experiment, anyway.

In principle, both models for the avionics MCU should produce the same
results as they are based on the same VHDL specification. The only difference
is that the hand-crafted model has been developed based on manual examina-
tion and transformation of the input VHDL specification whereas the newly
derived timing model performs the same type of transformations based on
the VHDL derivation tool set as it is described in detail in Chapter 10. This
assumption is confirmed by the results for the test programs nac, minmax
and loops where both models compute exactly the same timing bounds.
However, the remaining tests, namely prime, dry2_1 and edn, reveal that
the newly derived model is a bit more pessimistic. More concretely, the
computed timing bounds are 173, 80 and 215 (processor clock) cycles higher
than the corresponding bounds computed by the legacy model.

The are two reasons for these differences: imagine a given control-flow graph

268

11.6 Applicability and Summary

as illustrated in Figure 11.21 on the preceding page where there are two
successive control-flow splits (due to conditional statements c1 and c2) with
“then”- and “else”-cases, respectively. For simplification of the description, the
timing costs of all basic blocks are annotated to the graph. Another assump-
tion is that the condition c2 is always inverse to c1. By this, only two paths
remain feasible, namely p1 = (c1, then1, c2, else2) and p2 = (c1, else1, c2, then2),
both equipped with timing costs of five cycles. In the hand-crafted model,
these paths actually are exclusively handled which must not necessarily be
the case for the generated pipeline analyzer. Here, two additional paths,
namely p3 = (c1, then1, c2, then2) and p4 = (c1, else1, c2, else2), might be feasi-
ble, as well, because the static analyzers only determine that the expressions
for c1 and c2 might evaluate to both possible values, i.e., true and false. The
generated pipeline analyzer would then generate predictions for all four
paths through this CFG snippet and the path analysis would determine the
most costly path which is p3 with six cycles. Such a scenario shows that man-
ual optimizations to the timing model might further increase the precision
of the timing behavior prediction. Stein [FMC+07] has investigated a similar
problem for the path analysis and developed an analysis to identify such
mutually exclusive paths in a control-flow graph. A future enhancement of
the VHDL derivation tool set therefore might be to adopt and incorporate
such an optimization.

Another cause for the higher WCET bounds in the experiments of this section
is that the replaced memory controller is only a part of the complete timing
model which covers the whole CPU. Even small changes to parts of the
model often have side-effects to the global prediction. For example, if the
predicted point of time for the termination of a data phase on the system bus
changes, this actually affect the retirement of the instruction that has caused
this memory request.

11.6 Applicability and Summary

By these experimental results, the general feasibility of the timing model
derivation approach has been shown. The automotive and avionics designs
are coded in a style close to the actual hardware components, i.e., more “low-
level”. They are written in sequential logic style which is a more structural
description than a combinatorial one. Such a coding style simplifies the
timing model derivation a lot and lead to satisfactory results. In contrast, the

269

11 Experimental Results

LEON2 is not suitable for a semi-automatic derivation process because of its
high-level language construct usages and poorly designed data dependencies
between processes.

In general, VHDL descriptions tend to be large especially for complete proces-
sor descriptions. This is shown in the comparison of different VHDL models
in Section 11.2 on page 236. For example, the LEON2 design consists of
69 144 total lines of code and the automotive CPU 2 model is even composed
of 164 476 lines. The avionics memory controller is comparatively even larger
with 18 986 lines as this model only represents the memory controller of
the corresponding system. Such complex specifications are actually hard to
examine manually without any tool support. This underlines the motivation
behind the derivation tool set implementation.

Concerning the efficiency of the tool implementations, Section 11.3 details
about measured computation times and corresponding memory consump-
tions. Summarized, even complex VHDL models as mentioned above can be
handled by the VHDL compiler in acceptable time (< 16 min) and memory
footprint (< 7 GB). Later employed transformation and generator tools benefit
from the compact and efficient intermediate representation and have pro-
cessed their inputs in the experiments below 30 s while consuming at most
802 MB.

The combination of assumption-based model refinement and subsequent
dead code removal (cf. Section 6.4) has shown to be effective. The numbers
of routines and basic blocks of the avionics memory controller model have
been reduced by 56.3 % and 25.4 % respectively.

Experimental results show that the quality (in terms of precision and resulting
analysis complexity) of the derived timing models varies depending on the
employed coding style of the input VHDL design. Minimal dependencies
between processes, a clear logical separation of different functionality into
different processes/subprograms and a sequential logic design are the most
prominent and important properties which support and simplify the semi-
automatic derivation process and therefore formulate kind of a predictability
notion for VHDL constructs/designs. They additionally might be claimed as
overall design goals since fulfilling these properties increases the readability
of the code which may even help engineers during the functional verification
of the hardware design.

Comparing the computational complexity and resulting analysis efficiency of
a semi-automatically with a manually derived timing model is similar to the

270

11.6 Applicability and Summary

comparison between hand-written assembler code and a compiler-generated
program. The hand-written code can outperform the generated one because
of manual optimizations. In contrast, the development time is much shorter
using a compiler for generating code. Deriving a timing model is much like
the same problem. A hand-written timing model (especially if manually
derived from the formal hardware specification) can be more effective in
runtime and memory consumption but its development time possibly take
much longer than using the semi-automatic derivation process introduced
by this thesis. And the automatically generated pipeline analyzer might be
further optimized manually if necessary.

Nevertheless, WCET precision results render the whole approach competitive
with hand-crafted models as shown in Section 11.5. WCET bounds computed
by the superscalar DLX model have been compared to results from synthetic
execution traces. They showed an average overestimation of 4.9 %. For the
avionics memory controller, WCET bounds of a derived timing model have
been compared to the bounds computed by a hand-crafted model. The latter
have been developed by a manual examination of the VHDL model. Half of
the test cases lead to identical timing bounds and the other half showed an
average overestimation of only 0.1 %. These overestimations can be explained
by the above mentioned manual tuning of the hand-crafted model.

271

12
Conclusion and Future

Work

“Alea iacta est.”

(Gaius Iulius Caesar)

12 Conclusion and Future Work

Numerous safety-critical systems are subject to strict timing constraints, i.e.,
there are deadlines for the execution time of single processes or tasks. Missing
a deadline can affect the functional correctness of the system as a whole.
Therefore, a sophisticated analysis of its timing behavior is crucial to ensure
global functional correctness. On the code level, this demands for a safe and
precise worst-case scenario approximation of the execution times of single
processes, tasks and interrupt service routines, so-called worst-case execution
times (WCETs).

State-of-the-art static timing analyzers, like aiT, determine such timing
bounds based on a detailed execution model (“timing model”) of the under-
lying hardware architecture. It includes the instruction flow of the processor
pipeline integrated with a cache-behavior analysis as well as the memory ac-
cess timings of peripheral devices. These timing models are hand-coded start-
ing with a manual inspection of the specific processor/system documentation.
Based on traces obtained by hardware measurements undocumented details
are then re-engineered and errors in the documentation can be discovered.
Unfortunately, this development process is error-prone and time-consuming.

Nowadays, hardware circuits are automatically synthesized from formal
hardware specifications like VHDL or Verilog. Besides a formalization of the
functional details, such specifications implicitly contain an execution model
that also reflects the timing behavior of the whole system. This enables the
derivation of timing models based on their formal hardware specification
to simplify the above described error-prone development process. By this,
this thesis bridges the gap between hardware circuit synthesis and WCET
analysis development. A detailed conclusion of our different contributions
are outlined in the following.

12.1 Contributions of this Thesis

12.1.1 Timing Model Derivation

Static analysis and model transformations have been invented by Schlick-
ling and myself to extract the timing information of hardware circuits
from its formal specification. Where Schlickling [Sch13] introduces abstract
interpretation-based static analysis of formal hardware models, this thesis
focuses on the derivation process as a whole. Starting from the hardware
model, transformations and abstractions which are based on the results of

274

12.1 Contributions of this Thesis

static analyzers extract the timing-relevant information, the timing model. In
the end, an aiT-compatible pipeline-behavior analyzer can be generated from
such a model.

Semantic Level Reduction A prerequisite for the application of both static
program analysis and transformations is a common intermediate represen-
tation of the hardware model. Since the chosen analysis approach, abstract
interpretation, has its origins in program analysis, the hardware model needs
to be represented as a sequential program. Thus, this thesis has defined
translation rules to convert VHDL language constructs into control-flow enti-
ties combined with a framework of generated routines, so that the resulting
control-flow representation forms a simulation environment for the original
hardware design. On top of that, abstract interpretation-based static analyz-
ers [Sch13] are enabled to examine the model and result communication is
possible via a shared intermediate format called CRL. This translation from
VHDL into a sequential execution model is called semantic level reduction and
is generic enough to be applied to related hardware description languages
like Verilog, as well.

Derivation Process Definition A direct execution simulation of hardware
models is generally prevented by the size of these specifications because the
computation time for such an input-independent simulation would be too
high. Therefore, a distinct process for extracting timing-relevant information
from the CRL representation of a hardware model has been defined:

I Model preprocessing
This step mainly removes everything that does not contribute to the
timing behavior, e.g., functional details of an adder or multiplier, or con-
figurable features which are disabled by the active system configuration.
The result is a significant reduction of the size of the model.

I Processor state abstractions
A fully detailed representation of the system state would lead to a
prohibitively large space consumption dependent on the complexity
of the system under analysis. For this, employed abstractions either
leave out some details of the processor state or approximate them. The
level of abstraction mainly depends on the complexity of the analyzed
architecture.

275

12 Conclusion and Future Work

Derivation of Workflow Patterns The derivation process described above
represents a general methodology. But the particular abstractions and trans-
formations depend on the concrete hardware architecture whose timing
behavior has to be modeled so that defining these abstractions remains an
intellectual challenge. However, we have identified typical working patterns
during the implementation and experiments.

In principle, the timing behavior of a processor is dominated by the (timing-
)effect of the instruction flow through the processor pipeline and latencies for
memory accesses. Therefore, the resulting timing model needs to represent
this flow. Combinations of program slices, model assumptions (represented
as assignments of fixed values to signals/variables) and constant propagation
effectively render parts of the specification unused, timing dead. These parts
can be removed in a following step.

Afterwards, abstractions may be applied to further reduce the resulting
timing analysis’ complexity. We describe sample abstractions together with
their application to appropriate VHDL code snippets.

12.1.2 Simulation Semantics

A pipeline-behavior analysis is an abstract (and thereby computable) simu-
lation of a program execution. The theoretical foundation of the generated
analyzers is an abstract simulation semantics: we have formalized an opera-
tional semantics for the simulation of non-abstracted VHDL models alongside
an abstract variant so that the abstract simulation safely approximates any
concrete simulation. Employed abstractions can render the model nonde-
terministic, i.e., the simulation process might compute multiple successors
for a given input system state leading to multiple possible execution paths
partially with different costs in terms of execution time. The defined abstract
simulation semantics is able to cope with such uncertainties and simulates
all potential execution paths.

12.1.3 Timing Model Validation

We have shown that a derived timing model per construction correctly rep-
resents the timing behavior of the particular hardware. Concerning the
correctness of the resulting pipeline-behavior analysis, it remained to argue
that the employed model abstractions and transformations do not introduce

276

12.1 Contributions of this Thesis

unsafe1 changes to the timing behavior. We therefore presented interval prop-
erty checking techniques which validate the “timing-semantic” preserving
translation from the input design to the timing model.

Additionally, complementing validation techniques are presented where
confidence on the correctness is achieved by testing. Measurement capabilities
can produce runtime observations at different levels that are compared to
the corresponding prediction of the timing analyzer. Example levels are
processor core events like cache hits and number of dispatched instructions
at a specific execution point or visible bus transaction signals triggered by
memory accesses.

12.1.4 VHDL Predictability

Experiments with different VHDL models (cf. below) have revealed that the
quality of the derived timing model (in terms of the precision of computed
WCET bounds as well as the computational complexity) is influenced by
the VHDL coding style. We have described design choices together with
their effect on the derivation process and thereby formulated a kind of
predictability notion for VHDL language constructs along with advices to
the corresponding hardware development. Minimal dependencies between
processes, a clear logical separation of different functionality into different
processes/subprograms and a sequential logic design are the most prominent
and important properties which support and simplify the semi-automatic
derivation process.

12.1.5 VHDL Derivation Tool Set

We have implemented a set of tools, the so-called VHDL Derivation Tool Set,
that proves the feasibility and applicability of the proposed timing model
derivation workflow and pipeline analyzer generation. The different tools
are:

I A VHDL compiler for loading designs into an intermediate control-flow
representation. This contribution originates from a strong cooperation
between Marc Schlickling [Sch13] and myself.

1under-estimations

277

12 Conclusion and Future Work

I Static analyzers which are based on an analysis framework so that the
model can be explored and analyzed in order to identify parts to be
removed. This contribution has been done by Marc Schlickling [Sch13]
and is only listed here for the sake of completeness.

I Model transformers that support the removal of “timing dead” code, the
introduction of domain abstractions as well as the replacement of VHDL
processes.

I A pipeline analyzer generator to automatically generate the above men-
tioned aiT-compatible analyzers.

I An abstract VHDL generator that automatically reconstructs abstract
VHDL from a given timing model. This code can then be used for the
validation of employed transformations (see below).

12.1.6 Experimental Results

Experiments with the tool implementations have been conducted to underline
the industrial applicability of the approach in total.

We examined the following VHDL designs:

I a superscalar DLX variant similar to a PowerPC 603e,

I the LEON2 processor which is based on the SPARC V8 architecture
(typically used in space applications),

I a memory controller used within modern avionics systems and

I two representative automotive processors.

Except the first one, all these models represent processors or memory con-
troller specifications that are utilized within real-world safety-critical systems.
The superscalar DLX machine is an implementation from the Technical Uni-
versity of Darmstadt [Hor97] that is based on the DLX presented by Hennessy
[HPG06]. Although the design is not industrially used, it offers features like
out-of-order execution, speculation and branch prediction. Non-disclosure
agreements with the particular manufacturers forbid the exposure of the
original names for the anonymous avionics and automotive designs.

Runtime and memory consumption experiments show a good performance
of the implemented tools along with a linear scaling in the code size on the
selected hardware models. Even big processor specifications like a LEON2

278

12.1 Contributions of this Thesis

(with about 70 000 lines of code) can be translated into their sequential
program representation within acceptable time (about 17 min for the LEON2).
The memory consumption is high with about 7 GB but this has been expected
regarding the complexity of the transformation. Resource consumption of the
transformation and generator tools is low compared to the VHDL compiler
and dominated by the size of the intermediate representation. Execution
times are just below 30 s and the maximal observed memory consumption is
802 MB in the experiments.

During the derivation process employed model transformations are shown to
reduce the size of input VHDL models (around 50 % for a modern memory
controller of an avionics system) enabling the generation of aiT-compatible
pipeline analyzers.

Moreover, there are two different kinds of experiments underlining the
competitiveness of derived timing models against hand-crafted ones. For the
superscalar DLX, synthetic execution traces retrieved by VHDL simulations
have been compared to the predictions of the corresponding generated timing
analyzer. Results show an average overestimation of around 10 % for the
predictions. Additionally, the semi-automatically derived timing model of
the avionics memory controller is qualitatively compared to an existing
hand-crafted model where the term hand-crafted in this case means that the
model has been developed by a manual examination of the controller design.
Computed WCET bounds either are equal or over-estimate the legacy bounds
only by a small percentage (less then 1 %).

12.1.7 Summary

What is the expected impact of the proposed timing model derivation
approach?

One of the main contributions of this work is to provide the ability to semi-
automatically generate the timing analyzers alongside their provable cor-
rectness: analyzer generation instead of a manual implementation fastens
development times so that the engineer is enabled to focus on the model
abstractions. Generated timing analyzers correctly represent the timing be-
havior of the particular target architecture because both the timing model and
the synthesized circuits are based on the same source, the formal specifica-
tion. By this, the timing model derivation approach prevents wrong analysis
results caused by errors in the documentation of the analyzed hardware.

279

12 Conclusion and Future Work

The effectiveness of the derivation approach depends on the coding style of
the VHDL model. The results are excellent when the code features minimal
dependencies between processes, a clear logical separation of different func-
tionality into different processes/subprograms and a sequential logic design.
Ideally, the code reflects the structural composition of the processor pipeline
with explicit control signals to steer the flow of instructions and data.

The presented method can be seen as a complementary approach to the
development of timing models. Legacy solutions based on system documen-
tation will most certainly not be entirely replaced by this method because not
all hardware manufacturers are willing to provide their VHDL code to the
model developers.

A disadvantage of the timing model derivation based on formal specifications
is the requirement to fully understand the design which might be a complex
task for a complete processor including peripheral devices. But the derivation
approach has shown to be effective when applied to specific components of
a complex system, e.g., a memory controller. Such components are better
suitable in size and complexity and have a well defined interface to the
remaining system.

Legacy timing model development processes and the proposed derivation
approach share the fact that the invention of abstractions cannot be fully au-
tomated. Our proposed approach supports the extraction of timing-relevant
information from a formal specification as well as the application of transfor-
mations on it. The idea of what particular kind of state abstraction is suitable
for the analyzed hardware model remains an engineering task which is left
to human experts.

12.2 Future Work

This section briefly summarizes potential future work that has been discov-
ered during the work on this thesis.

Hardware circuit synthesis tools actually make use of code patterns to identify
typical components like an adder which then are mapped to internally
available highly optimized netlist implementations. The more patterns can
be found in a VHDL model, the higher is the efficiency of the synthesized
hardware. An interesting work could be to compare these code patterns with
the coding style guidelines from Section 9.3. If a common denominator can

280

12.2 Future Work

be found, this increases the probability that hardware architects will follow
these guidelines.

As mentioned in Section 8.4, the timing model validation based on interval
property checking only exists as a proof-of-concept. From a technical point
of view, this work might be continued.

An analysis of the dependencies arising from the sensitivity lists of VHDL
processes might be interesting from at least two points of view. On the one
hand, such dependency information might be used together with module-
specific dependencies to automatically determine the input order of the
different code files to the VHDL compiler. On the other hand, proposals
about potentially superfluous dependencies might be determined.

As described in Section 8.3, a complete property set for an architecture
contains a lot of meta information about the timing behavior. It might be
interesting to see whether this information can be used (at least as additional
information) for the derivation of timing models for that architecture.

281

List of Figures

1.1 Execution time distribution . 3
1.2 Sketched Timing Model Derivation Process 9

3.1 CPU Transistor Counts 1971-2010 - Moore’s Law 43
3.2 Performance gap between CPU and main memory 1981-2005 . . 44
3.3 Memory Hierarchies . 45
3.4 Cache structure . 47
3.5 Bus and memory communication 51
3.6 Ideally pipelined execution on the DLX 54

4.1 Execution time distribution . 66
4.2 Structure of the aiT framework 69
4.3 Control-flow graph for composed statements 71
4.4 Pipeline Analysis of the aiT framework 82

5.1 VHDL domains and abstraction levels (Y-Chart from Gajski [GK83]) 94
5.2 Implication circuit schema . 99

List of Figures

5.3 VHDL type system . 100
5.4 VHDL simulation semantics state machine 103
5.5 Simulation timing diagram of 3-bit counter from Listing 5.1 . . 103

6.1 VHDL Analysis Framework – Structure 120
6.2 Timing Model Derivation Process – Overview 121
6.3 Simple pipeline control structure 135

7.1 Simulation trace vs. simulation tree 158

8.1 SDRAM state machine . 176

10.1 VHDL Derivation Tool Set – Structure 205
10.2 VHDL Compiler (Vhdl2Crl2) – Structure 207
10.3 Sample Vhdl2Crl2 generated syntax tree 210
10.4 Sample Vhdl2Crl2 generated CRL graph 214

11.1 Bison generated state automata of Vhdl2Crl2 238
11.2 Superscalar DLX architecture – Data flow 239
11.3 VHDL design size comparison diagram 242
11.4 Structural VHDL design size comparison diagram 244
11.5 Vhdl2Crl2 runtime distribution diagram 246
11.6 Vhdl2Crl2 runtime performance scaling function 246
11.7 Transformation tools runtime distribution diagram 249
11.8 Transformation tools runtime performance scaling function . . . 249
11.9 Generator tools runtime distribution diagram 252
11.10 Generator tools runtime performance scaling function 252
11.11 Vhdl2Crl2 memory consumption distribution diagram 253
11.12 Vhdl2Crl2 memory consumption scaling function 254
11.13 Transformation tools memory distribution diagram 255
11.14 Transformation tools memory consumption scaling function . . 256
11.15 Generator tools memory consumption distribution diagram . . 257
11.16 Generator tools memory consumption scaling function 258
11.17 Superscalar DLX model reduction diagram 261
11.18 Avionics MCU model reduction diagram 263
11.19 Superscalar DLX WCET overestimation diagram 265
11.20 Avionics MCU WCET overestimation diagram 267
11.21 Timing over-estimation for alternative conditionals 268

284

List of Tables

6.1 Freescale PowerPC 755 timing model state split types 114
6.2 VHDL component to CRL mapping 117

8.1 SDRAM chip commands . 176

10.1 VHDL Derivation Tool Set collection 204
10.2 VHDL Derivation Tool Set: lines of code 230
10.3 VHDL Derivation Tool Set C++ classes and files 231

11.1 VHDL design size comparison . 242
11.2 Structural VHDL design size comparison 243
11.3 Vhdl2Crl2 runtime distribution 245
11.4 Transformation tools runtime distribution 247
11.5 Generator tools runtime distribution 250
11.6 Vhdl2Crl2 memory consumption distribution 251
11.7 Transformation tools memory consumption distribution 255
11.8 Generation tools memory consumption distribution 257

List of Tables

11.9 DLX timing model signal assumptions 259
11.10 Superscalar DLX model reduction 261
11.11 Avionics MCU model reduction 263
11.12 Superscalar DLX WCET prediction precision 265
11.13 Avionics MCU WCET prediction precision 266

286

Listings

3.1 Pseudo assembler instruction sequence 56

4.1 Sample CRL file extract . 74

5.1 3-bit counter VHDL design . 98
5.2 Implication circuit VHDL design 99
5.3 2-bit multiplexer VHDL design (taken from Heinkel [Hei00]) . . 107

6.1 Iterative model refinement workflow – pseudo-code 133
6.2 LEON2 SDRAM refresh counter snippets in VHDL 135
6.3 DLX effective address stage snippet in VHDL 137
6.4 Abstract DLX effective address stage snippet 138
6.5 60x bus read handling VHDL snippet 138
6.6 DLX register file access VHDL snippet 139
6.7 DLX arithmetic/logical unit snippet in VHDL 142

7.1 Sample memory controller in VHDL 157

Listings

7.2 Abstract simulation preprocessing example 159

8.1 SDRAM read sample property . 177

10.1 Sample IRF file extract . 209
10.2 Vhdl2Crl2 sample usage . 217
10.3 VhdlTimingDeadCodeEliminator statistics 221

288

Bibliography

[Abs11] AbsInt Angewandte Informatik GmbH. aiSee. Website, January
2011. http://www.aisee.de/.

[Abs12] AbsInt Angewandte Informatik GmbH. Website, March 2012.
http://www.absint.com.

[AM95] Alt, Martin and Martin, Florian. Generation of Efficient Interpro-
cedural Analyzers with PAG. In Alan Mycroft, editor, Proceedings
of the International Static Analysis Symposium (SAS), volume 983 of
Lecture Notes in Computer Science (LNCS), pages 33–50 (Springer,
Glasgow, United Kingdom, 1995). doi:10.1007/3-540-60360-3_31.

[AM97] Alt, Martin and Martin, Florian. Practical Comparison of Call
String and Functional Approach in Data Flow Analysis. In
Herbert Kuchen, editor, Proceedings of the Arbeitstagung Program-
miersprachen (ATPS), volume 58 of Arbeitsberichte des Instituts für
Wirtschaftsinformatik (Westfälische Wilhelms-Universität, Munich,
Germany, 1997).

Bibliography

[AMR10] Altmeyer, Sebastian, Maiza, Claire, and Reineke, Jan. Resilience
Analysis: Tightening the CRPD Bound for Set-Associative Caches.
In Jaejin Lee and Bruce R. Childers, editors, Proceedings of the
Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES), pages 153–162 (Association for Computing Machinery
(ACM), Stockholm, Sweden, 2010). doi:10.1145/1755888.1755911.

[ARM00] ARM Limited. ARM Architecture Reference Manual, June 2000.
Revision 1.

[Ash08] Ashenden, Peter J. The designer’s guide to VHDL, volume 3 of
Systems on Silicon (Morgan Kaufmann Publishers, San Francisco,
USA, 2008), 3rd edition.

[Ave11] Averant Incorporated. Solidify Data Sheet. Website, July 2011.
http://www.averant.com/storage/documents/Solidify.pdf.

[BBM+07] Bormann, Jörg, Beyer, Sven, Maggiore, Adriana, Siegel, Michael,
Skalberg, Sebastian, Blackmore, Tim, and Bruno, Fabio. Com-
plete Formal Verification of TriCore2 and Other Processors. In
Tom Fitzpatrick, editor, Proceedings of the Design and Verification
Conference and Exhibition (DVCon) (San José, USA, 2007).

[BCC+03] Biere, Armin, Cimatti, Alessandro, Clarke, Edmund M., Strich-
man, Ofer, and Zhu, Yunshan. Bounded Model Checking.
Advances in Computers, 58:117–148, August 2003. doi:10.1016/
S0065-2458(03)58003-2.

[BCP02] Bernat, Guillem, Colin, Antoine, and Petters, Stefan M. WCET
Analysis of Probabilistic Hard Real-Time Systems. In Proceedings
of the Real-Time Systems Symposium (RTSS), pages 279–288 (IEEE
Computer Society, Austin, USA, 2002).

[BCRS10] Ballabriga, Clément, Cassé, Hugues, Rochange, Christine, and
Sainrat, Pascal. OTAWA: An Open Toolbox for Adaptive WCET
Analysis. In Sang Lyul Min, Robert G. Pettit IV, Peter P.
Puschner, and Theo Ungerer, editors, Proceedings of the Work-
shop on Software Technologies for Future Embedded and Ubiquitous
Systems (SEUS), volume 6399 of Lecture Notes in Computer Sci-
ence, pages 35–46 (Springer, Waidhofen/Ybbs, Austria, 2010).
doi:10.1007/978-3-642-16256-5_6.

290

Bibliography

[Ber06] Berg, Christoph. PLRU Cache Domino Effects. In Frank Mueller,
editor, Proceedings of the Workshop on Worst-Case Execution Time
Analysis (WCET), volume 4 of OpenAccess Series in Informatics
(OASICS) (Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Dagstuhl, Germany, 2006). doi:10.4230/
OASIcs.WCET.2006.672.

[Bey05] Beyer, Sven. Putting it all together - Formal Verification of the VAMP.
Ph.D. thesis, Saarland University, Saarbrücken, Germany, March
2005.

[BLL+96] Bengtsson, Johan, Larsen, Kim, Larsson, Fredrik, Pettersson, Paul,
and Yi, Wang. UPPAAL – a tool suite for automatic verification
of real-time systems. Lecture Notes in Computer Science: Hybrid
Systems III, 1066:232–243, April 1996.

[Bor09] Bormann, Jörg. Vollständige funktionale Verifikation. Ph.D. thesis,
Technische Universität, Kaiserslautern, Germany, June 2009.

[CAN03] CAN in Automation (CiA). ISO 11898-1:2003 Road vehicles —
Controller area network — Part 1: Data link layer and physical sig-
nalling, 2003.

[CC77] Cousot, Patrick and Cousot, Radhia. Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. In Proceedings of the
Symposium on Principles of Programming Languages (POPL), pages
238–252 (Association for Computing Machinery (ACM), Los
Angeles, USA, 1977). doi:10.1145/512950.512973.

[CC79] Cousot, Patrick and Cousot, Radhia. Systematic Design of Pro-
gram Analysis Frameworks. In Proceedings of the Symposium on
Principles of Programming Languages (POPL), pages 269–282 (As-
sociation for Computing Machinery (ACM), San Antonio, USA,
1979). doi:10.1145/567752.567778.

[CC81] Cousot, Patrick and Cousot, Radhia. Program flow analysis: The-
ory and applications, chapter 10, pages 303–342 (Prentice Hall,
Englewood Cliffs, USA, 1981).

[CC92a] Cousot, Patrick and Cousot, Radhia. Abstract interpretation
frameworks. Journal of Logic and Computation, 2(4):511–547, Au-
gust 1992. doi:10.1093/logcom/2.4.511.

291

Bibliography

[CC92b] Cousot, Patrick and Cousot, Radhia. Comparing the Galois
Connection and Widening/Narrowing Approaches to Abstract
Interpretation. In Maurice Bruynooghe and Martin Wirsing,
editors, Proceedings of the International Workshop of Programming
Language Implementation and Logic Programming (PLILP), volume
631 of Lecture Notes in Computer Science, pages 269–295 (Springer,
Leuven, Belgium, 1992). doi:10.1007/3-540-55844-6_101.

[CFG+10] Cullmann, Christoph, Ferdinand, Christian, Gebhard, Gernot,
Grund, Daniel, Maiza, Claire, Reineke, Jan, Triquet, Benoît, We-
gener, Simon, and Wilhelm, Reinhard. Predictability Consider-
ations in the Design of Multi-Core Embedded Systems. In Pro-
ceedings of the International Congress and Exhibition on Embedded
Real Time Software and Systems (ERTS2), pages 36–42 (Toulouse,
France, 2010).

[CG11] Courbin, Pierre and George, Laurent. FORTAS: Framework for
Real-Time Analysis and Simulation. In Giuseppe Lipari and Tom-
maso Cucinotta, editors, Proceedings of the International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Sys-
tems (WATERS), pages 21–26 (Porto, Portugal, 2011).

[CGJ+00] Clarke, Edmund, Grumberg, Orna, Jha, Somesh, Lu, Yuan, and
Veith, Helmut. Counterexample-guided abstraction refinement.
In E. Allen Emerson and A. Prasad Sistla, editors, Proceedings of
the International Conference on Computer Aided Verification (CAV),
volume 1855 of Lecture Notes in Computer Science (LNCS), pages
154–169 (Springer, Chicago, USA, 2000). doi:10.1007/10722167_
15.

[CH78] Cousot, Patrick and Halbwachs, Nicolas. Automatic Discovery of
Linear Restraints Among Variables of a Program. In Proceedings
of the Symposium on Principles of Programming Languages (POPL),
pages 84–96 (Association for Computing Machinery (ACM), Tuc-
son, USA, 1978). doi:10.1145/512760.512770.

[Cla07] Claessen, Koen. A Coverage Analysis for Safety Property Lists.
In Proceedings of the International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pages 139–145 (IEEE Com-
puter Society, Austin, USA, 2007).

292

Bibliography

[CLRS01] Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L.,
and Stein, Clifford. Introduction to Algorithms (The MIT press,
Cambridge, USA, 2001), 2nd edition. ISBN 0262032937.

[CMH+03] Calazans, Ney, Moreno, Edson, Hessel, Fabiano, Rosa, Vitor,
Moraes, Fernando, and Carara, Everton. From VHDL Reg-
ister Transfer Level to SystemC Transaction Level Modeling:
a Comparative Case Study. In Proceedings of the Symposium
on Integrated Circuits and Systems Design (SBCCI), pages 355–
360 (IEEE Computer Society, Sao Paulo, Brazil, 2003). doi:
10.1109/SBCCI.2003.1232853.

[Dae] Daedalus Research Project. Website. http://www.di.ens.fr/

~cousot/projects/DAEDALUS/index.shtml.

[DO92] Radio Technical Commission for Aeronautics SC-167. Soft-
ware Considerations in Airborne Systems and Equipment Certification
(DO-178B), December 1992.

[DOT+10] Dalsgaard, Andreas E., Olesen, Mads Chr., Toft, Martin, Hansen,
René R., and Larsen, Kim G. METAMOC: Modular Execu-
tion Time Analysis using Model Checking. In Björn Lisper,
editor, Proceedings of the International Workshop on Worst-Case
Execution Time Analysis (WCET), volume 15 of OpenAccess Se-
ries in Informatics (OASICS), pages 113–123 (Schloss Dagstuhl
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2010). doi:
10.4230/OASIcs.WCET.2010.113.

[EB09] Evstyugov-Babaev, Alexander. Graph Description Language
in a Nutshell. Website, July 2009. http://www. aisee.de/gdl/

nutshell/.

[EPB+06] Eisinger, Jochen, Polian, Ilia, Becker, Bernd, Metzner, Alexander,
Thesing, Stephan, and Wilhelm, Reinhard. Automatic Identi-
fication of Timing Anomalies for Cycle-Accurate Worst-Case
Execution Time Analysis. In Matteo Sonza Reorda, Ondrej
Novák, Bernd Straube, Hanna Kubátová, Zdenek Kotásek, Pavel
Kubalík, Raimund Ubar, and Jiri Bucek, editors, Proceedings of the
Workshop on Design & Diagnostics of Electronic Circuits & Systems
(DDECS), pages 15–20 (IEEE Computer Society, Prague, Czech
Republic, 2006).

293

Bibliography

[Erm03] Ermedahl, Andreas. A Modular Tool Architecture for Worst-Case
Execution Time Analysis. Ph.D. thesis, Uppsala University, Upp-
sala, Sweden, June 2003.

[ESG+07] Ermedahl, Andreas, Sandberg, Christer, Gustafsson, Jan, Bygde,
Stefan, and Lisper, Björn. Loop Bound Analysis based on a
Combination of Program Slicing, Abstract Interpretation, and
Invariant Analysis. In Christine Rochange, editor, Proceedings of
the International Workshop on Worst-Case Execution Time Analysis
(WCET), OpenAccess Series in Informatics (OASICS (Interna-
tionales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Dagstuhl, Germany, 2007). doi:10.4230/OASIcs.WCET.
2007.1194.

[Fer97] Ferdinand, Christian. Cache Behaviour Prediction for Real-Time Sys-
tems. Ph.D. thesis, Saarland University, Saarbrücken, Germany,
1997.

[FH08] Ferdinand, Christian and Heckmann, Reinhold. Worst-Case Exe-
cution Time–A Tool Provider’s Perspective. In Proceedings of the
International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC), pages 340–345 (IEEE Computer Society, Or-
lando, USA, 2008). doi:10.1109/ISORC.2008.16.

[FHL+01] Ferdinand, Christian, Heckmann, Reinhold, Langenbach, Marc,
Martin, Florian, Schmidt, Michael, Theiling, Henrik, Thesing,
Stephan, and Wilhelm, Reinhard. Reliable and Precise WCET
Determination for a Real-Life Processor. In Thomas A. Henzinger
and Christoph M. Kirsch, editors, Proceedings of the International
Conference on Embedded Software (EMSOFT), volume 2211 of Lec-
ture Notes in Computer Science: Embedded Software, pages 469–485
(Springer, Tahoe City, USA, 2001). doi:10.1007/3-540-45449-7_32.

[Fle10] FlexRay Consortium. FlexRay Protocol Specification, October 2010.
Version 3.0.1.

[FMC+07] Ferdinand, Christian, Martin, Florian, Cullmann, Christoph,
Schlickling, Marc, Stein, Ingmar, Thesing, Stephan, and Heck-
mann, Reinhold. New Developments in WCET Analysis. In
Thomas Reps, Mooly Sagiv, and Jörg Bauer, editors, Essays Ded-
icated to Reinhard Wilhelm on the Occasion of His 60th Birthday,

294

Bibliography

volume 4444 of Lecture Notes in Computer Science: Program Anal-
ysis and Compilation, Theory and Practice, pages 12–52 (Springer,
Berlin, Germany, 2007). doi:10.1007/978-3-540-71322-7_1.

[FMWA99] Ferdinand, Christian, Martin, Florian, Wilhelm, Reinhard, and
Alt, Martin. Cache Behavior Prediction by Abstract Interpretation.
Science of Computer Programming, 35:163–189, November 1999.
doi:10.1016/S0167-6423(99)00010-6.

[Fre01] Freescale Semiconductor Incorporated. MPC750 RISC Micropro-
cessor Family User’s Manual, December 2001. Revision 1.

[Fre02] Freescale Semiconductor Incorporated. MPC603e RISC Micropro-
cessor User’s Manual, 2002. Revision 3.

[Fre04] Freescale Semiconductor Incorporated. PowerPC Microprocessor
Family: The Bus Interface for 32-Bit Microprocessors, January 2004.
Revision 0.1.

[Fre05a] Freescale Semiconductor Incorporated. MPC7450 RISC Micro-
processor Family Reference Manual, January 2005. Rev. 5.

[Fre05b] Freescale Semiconductor Incorporated. sim_G4plus v1.1 Cycle-
Accurate Simulator User’s Guide, May 2005. Rev 2.4.

[Fre11] Free Software Foundation. Bison Manual. Website, May 2011.
http://www.gnu.org/software/bison/manual/bison.html.

[FW98] Ferdinand, Christian and Wilhelm, Reinhard. On Predicting Data
Cache Behavior for Real-Time Systems. In Frank Mueller and
Azer Bestavros, editors, Proceedings of the Workshop on Languages,
Compilers, and Tools for Embedded Systems (LCTES), volume 1474
of Lecture Notes In Computer Science: Languages, Compilers, And
Tools For Embedded Systems, pages 16–30 (Springer, Montréal,
Canada, 1998). doi:10.1007/BFb0057777.

[FW99] Ferdinand, Christian and Wilhelm, Reinhard. Fast and Effi-
cient Cache Behavior Prediction for Real-Time Systems. Real-
Time Systems, 17(2-3):131–181, November 1999. doi:10.1023/A:
1008186323068.

[Gai05] Gaisler Research. LEON2 Processor User’s Manual, July 2005. Ver-
sion 1.0.30.

295

Bibliography

[GCH11] Gebhard, Gernot, Cullmann, Christoph, and Heckmann, Rein-
hold. Software Structure and WCET Predictability. In Philipp
Lucas, Lothar Thiele, Benoît Triquet, Theo Ungerer, and Rein-
hard Wilhelm, editors, Proceedings of the International Workshop on
Bringing Theory to Practice: Predictability and Performance in Em-
bedded Systems (PPES), volume 18 of OpenAccess Series in Infor-
matics (OASICS), pages 1–10 (Schloss Dagstuhl Leibniz-Zentrum
für Informatik, Dagstuhl, Germany, 2011). doi:10.4230/OASIcs.
PPES.2011.1.

[Geb10] Gebhard, Gernot. Timing Anomalies Reloaded. In Björn
Lisper, editor, Proceedings of the International Workshop on Worst-
Case Execution Time Analysis (WCET), volume 15 of OpenAccess
Series in Informatics (OASICS), pages 1–10 (Schloss Dagstuhl
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2010). doi:
10.4230/OASIcs.WCET.2010.1.

[GHC05] Gaisler, Jiri, Habinc, Sandi, and Catovic, Edvin. GRLIB IP Library
User’s Manual, 2005. Version 1.0.6.

[Gin] Gingold, Tristan. GHDL User’s Guide. Website. http://ghdl.

free.fr/.

[GK83] Gajski, Daniel and Kuhn, Robert H. New VLSI Tools. IEEE
Computer, 16(12):11–14, December 1983. doi:10.1109/MC.1983.
1654264.

[GR09] Grund, Daniel and Reineke, Jan. Abstract Interpretation of
FIFO Replacement. In Jens Palsberg and Zhendong Su, editors,
Proceedings of the International Static Analysis Symposium (SAS),
volume 5673 of Lecture Notes In Computer Science: Static Analysis,
pages 120–136 (Springer, Berlin, Germany, 2009). doi:10.1007/
978-3-642-03237-0_10.

[GR10] Grund, Daniel and Reineke, Jan. Toward Precise PLRU Cache
Analysis. In Björn Lisper, editor, Proceedings of International Work-
shop on Worst-Case Execution Time Analysis (WCET), volume 15 of
OpenAccess Series in Informatics (OASICS), pages 23–35 (Interna-
tionales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Dagstuhl, Germany, 2010). doi:10.4230/OASIcs.WCET.
2010.23.

296

Bibliography

[Gre08] Grewe, Dominik. Static Congruence Analysis on Binaries. Bachelor
thesis, Saarland University, Saarbrücken, Germany, July 2008.

[GRG09] Grund, Daniel, Reineke, Jan, and Gebhard, Gernot. Branch Target
Buffers: WCET Analysis Framework and Timing Predictability.
In Patrick Kellenberger, editor, Proceedings of the International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), pages 3–12 (IEEE Computer Society, Beijing,
China, 2009). doi:10.1109/RTCSA.2009.8.

[GRW11] Grund, Daniel, Reineke, Jan, and Wilhelm, Reinhard. A Tem-
plate for Predictability Definitions with Supporting Evidence.
In Philipp Lucas, Lothar Thiele, Benoît Triquet, Theo Ungerer,
and Reinhard Wilhelm, editors, Proceedings of the International
Workshop on Bringing Theory to Practice: Predictability and Per-
formance in Embedded Systems (PPES), volume 18 of OpenAccess
Series in Informatics (OASICS), pages 22–31 (Schloss Dagstuhl
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2011). doi:
10.4230/OASIcs.PPES.2011.22.

[Hec10] Heckmann, Reinhold. AbsInt Advanced Analyzer for PowerPC
MPC7448. AbsInt Angewandte Informatik GmbH, Saarbrücken,
Germany, December 2010.

[Hei00] Heinkel, Ulrich. The VHDL Reference – A Practical Guide to
Computer-Aided Integrated Circuit Design (Wiley-Blackwell, 2000).

[Her12] Herkules Research Project. Website, March 2012. http://www.

edacentrum.de/herkules.

[HHL+11] von Hanxleden, Reinhard, Holsti, Niklas, Lisper, Björn, Ploed-
ereder, Erhard, Wilhelm, Reinhard, Bonenfant, Armelle, Casse,
Hugues, Bünte, Sven, Fellger, Wolfgang, Gepperth, Sebastian,
Gustafsson, Jan, Huber, Benedikt, Islam, Nazrul Mohammad,
Kästner, Daniel, Kirner, Raimund, Kovacs, Laura, Krause, Felix,
de Michiel, Marianne, Olesen, Mads Christian, Prantl, Adrian,
Puffitsch, Wolfgang, Rochange, Christine, Schoeberl, Martin, We-
gener, Simon, Zolda, Michael, and Zwirchmayr, Jakob. WCET
Tool Challenge 2011: Report. In Proceedings of the International
Workshop on Worst-Case Execution Time Analysis (WCET) (Aus-
trian Computer Society, Porto, Portugal, 2011).

297

Bibliography

[Hor97] Horch, Joachim. Entwurf eines RISC–Prozessors in der Hard-
warebeschreibungssprache VHDL. Studienarbeit, Technische
Universität, Darmstadt, Germany, June 1997.

[HPG06] Hennessy, John L., Patterson, David A., and Goldberg, David.
Computer Architecture: A Quantitative Approach (Morgan Kauf-
mann Publishers, San Francisco, USA, 2006), 4th edition.

[HR09] Herter, Jörg and Reineke, Jan. Making Dynamic Memory Al-
location Static To Support WCET Analyses. In Niklas Holsti,
editor, Proceedings of the International Workshop on Worst-Case Ex-
ecution Time Analysis (WCET), volume 10 of OpenAccess Series
in Informatics (OASICS) (Schloss Dagstuhl Leibniz-Zentrum für
Informatik, Dublin, Ireland, 2009).

[HS02] Holsti, Niklas and Saarinen, Sami. Status of the Bound-T WCET
tool. In Guillem Bernat, editor, Proceedings of the International
Workshop on Worst-Case Execution Time Analysis (WCET), pages
36–41 (Vienna, Austria, 2002).

[Hym02] Hymans, Charles. Checking Safety Properties of Behavioral
VHDL Descriptions by Abstract Interpretation. Lecture Notes
in Computer Science: Static Analysis, 2477:493–498, 2002. doi:10.
1007/3-540-45789-5_31.

[Hym04] Hymans, Charles. Verification of VHDL descriptions by abstract
interpretation. Ph.D. thesis, École Polytechnique, Paris, France,
September 2004.

[IBM06] International Business Machines Corporation. IBM PowerPC
750GX and 750GL RISC Microprocessor Users Manual, March 2006.
Version 1.2.

[IEC10] International Electrotechnical Commission. IEC 61508–Functional
Safety of Electrical/Electronic/Programmable Electronic Safety-related
Systems, April 2010. Safety Standard.

[IEE87] IEEE Standards Association. 1076-1987 IEEE Standard VHDL
Language Reference Manual, January 1987. doi:10.1109/IEEESTD.
1992.101084.

[IEE93] IEEE Standards Association. 1164-1993 IEEE Multivalue Logic
System for VHDL Model Interoperability (Std_logic_1164), 1993.

298

Bibliography

[IEE95a] IEEE Standards Association. 1076.4-1995 IEEE Standard for VI-
TAL Application-Specific Integrated Circuit (ASIC) Modeling Speci-
fication, 1995. doi:10.1109/IEEESTD.1996.80811.

[IEE95b] IEEE Standards Association. 1364-1995 IEEE Standard Hardware
Description Language Based on the Verilog Hardware Description
Language, 1995.

[IEE96] IEEE Standards Association. 1076.2-1996 IEEE Standard VHDL
Language Math Packages, 1996. doi:10.1109/IEEESTD.1997.81589.

[IEE97] IEEE Standards Association. 1076.3-1997 IEEE Standard VHDL
Synthesis Packages, 1997. doi:10.1109/IEEESTD.1997.82399.

[IEE99a] IEEE Standards Association. 1076.1-1999 IEEE Standard VHDL
Analog and Mixed-Signal Extensions, 1999. doi:10.1109/IEEESTD.
1999.90578.

[IEE99b] IEEE Standards Association. 1076.6-1999 IEEE Standard for
VHDL Register Transfer Level (RTL) Synthesis, 1999. doi:10.1109/
IEEESTD.2004.94802.

[IEE00] IEEE Industry Standards and Technology Organization – NEXUS
5001™ Forum. IEEE-ISTO 5001™-1999, January 2000. http:

//www.nexus5001.org/, version 1.1.

[IEE05] IEEE Standards Association. 1666-2005 IEEE Standard SystemC
Language Reference Manual, 2005. doi:10.1109/IEEESTD.2006.
99475.

[Inf] Infineon Technologies AG. Website. http://www.infineon.com.

[Inf07] Infineon Technologies AG, Munich, Germany. TC1797 32-Bit
Single-Chip Microcontroller Target Specification, November 2007.
Version 1.5.

[Ins10] Insight Research Corporation. The 2010 Telecommunications
Industry Review: An Anthology of Market Facts and Forecasts.
Website, January 2010. http://www.insight-corp.com/reports/
review10.asp.

[INT] INTERESTED Research Project. Website. http://interested-ip.
eu.

299

Bibliography

[Int11] International Business Machines Corporation. ILOG CPLEX
Optimizer. Website, January 2011. http://www-01.ibm.com/

software/integration/optimization/cplex-optimizer.

[ISO11] International Organization for Standardization. ISO 26262 Road
vehicles – Functional safety, April 2011. Safety Standard.

[Jas11] Jasper Design Automation. JasperGold. Website, August 2011.
http://www.jasper-da.com/products/jaspergold.htm.

[KK67] Kreisel, Geord and Krivine, Jean L. Elements of Mathemati-
cal Logic: (Model Theory), volume 42 of Studies in Logic and the
Foundations of Mathematics (North Holland Publishing Company,
1967).

[Kop97] Kopetz, Hermann. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications (Kluwer Academic Publishers,
Norwell, USA, 1997), 1st edition.

[KWH+08] Kästner, Daniel, Wilhelm, Reinhard, Heckmann, Reinhold,
Schlickling, Marc, Pister, Markus, Jersak, Marek, Richter, Kai,
and Ferdinand, Christian. Timing Validation of Automotive
Software. In Tiziana Margaria and Bernhard Steffen, editors,
Proceedings of the International Symposium on Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISOLA), vol-
ume 17 of Communications In Computer and Information Science:
Leveraging Applications Of Formal Methods, Verification And Val-
idation, pages 93–107 (Springer, Berlin, Germany, 2008). doi:
10.1007/978-3-540-88479-8_8.

[KWN+10] Kästner, Daniel, Wilhelm, Stephan, Nenova, Stefana, Cousot,
Patrick, Cousot, Radia, Feret, Jérôme, Mauborgne, Laurent, Miné,
Antoine, and Rival, Xavier. Astrée: Proving the Absence of
Runtime Errors. In Jean-Claude Laprie, editor, Proceedings of the
International Congress and Exhibition of Embedded Real Time Soft-
ware and Systems (ERTS2) (Toulouse, France, 2010).

[Kä00] Kästner, Daniel. Retargetable Postpass Optimisation by Integer Lin-
ear Programming. Ph.D. thesis, Saarland University, Saarbrücken,
Germany, December 2000.

[Lee09] Lee, Edward A. Computing needs time. Communications of the
ACM, 52(5):70–79, May 2009. doi:10.1145/1506409.1506426.

300

Bibliography

[Lei08] Leinenbach, Dirk. Compiler Verification in the Context of Perva-
sive System Verification. Ph.D. thesis, Saarland University, Saar-
brücken, Germany, June 2008.

[LH03] Lougee-Heimer, Robin. The Common Optimization INterface
for Operations Research: Promoting open-source software in
the operations research community. IBM Journal of Research and
Development, 47(1):57–66, January 2003. doi:10.1147/rd.471.0057.

[Lin] Linux Kernel Archives. Website. http://www.kernel.org.

[Liu00] Liu, Jane W.S. Real-Time Systems (Prentice Hall, Upper Saddle
River, USA, 2000), 1st edition.

[LL73] Liu, Jane W.S. and Layland, James W. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. Journal of
the ACM (JACM), 20(1):46–61, January 1973. doi:10.1145/321738.
321743.

[LM95] Li, Yau-Tsun Steven and Malik, Sharad. Performance Analysis
of Embedded Software Using Implicit Path Enumeration. In
Proceedings of the Workshop on Languages, Compilers, & Tools for
Real-Time Systems (LCT-RTS), volume 30 of ACM SIGPLAN No-
tices, pages 88–98 (Association for Computing Machinery (ACM),
La Jolla, USA, 1995). doi:10.1145/216636.216666.

[LWS+10] Loitz, Sascha, Wedler, Markus, Stoffel, Dominik, Brehm, Chris-
tian, and Kunz, Wolfgang. Complete Verification of Weakly
Programmable IPs against Their Operational ISA Model. In
Adam Morawiec and Jinnie Hinderscheit, editors, Proceedings of
the Forum on Specification & Design Languages (FDL), pages 29–36
(Electronic Chips & Systems design Initiative (ECSI), Southamp-
ton, United Kingdom, 2010). doi:10.1049/ic.2010.0125.

[Mak07] Maksoud, Mohamed Abdel. Generating Code from Abstract VHDL
Models. Master’s thesis, Saarland University, Saarbrücken, Ger-
many, August 2007.

[Mar98] Martin, Florian. PAG–an efficient program analyzer genera-
tor. International Journal on Software Tools for Technology Transfer
(STTT), 2(1):1–22, November 1998. doi:10.1007/s100090050017.

[Mar99] Martin, Florian. Generating Program Analyzers. Ph.D. thesis, Saar-
land University, Saarbrücken, Germany, June 1999.

301

Bibliography

[Mar05] Marwedel, Peter. Embedded System Design (Springer, Berlin, Ger-
many, 2005), 2nd edition.

[Mat06] Matthies, Niklas. Präzise Bestimmung längster Programmpfade an-
hand von Zustandsgraphen unter Berücksichtigung von Schleifen-
Nebenbedingungen. Diploma thesis, Saarland University, Saar-
brücken, Germany, February 2006.

[MAWF98] Martin, Florian, Alt, Martin, Wilhelm, Reinhard, and Ferdinand,
Christian. Analysis of Loops. In Kai Koskimies, editor, Pro-
ceedings of the International Conference on Compiler Construction
(CC), volume 1383 of Lecture Notes in Computer Science: Com-
piler Construction, pages 80–94 (Springer, Lisboa, Portugal, 1998).
doi:10.1007/BFb0026424.

[Men08] Mentor Graphics Corporation. ModelSim DataSheet. Website,
2008. http://www.mentor.com/products/fv/modelsim/upload/

datasheet.pdf.

[Mic] Microsoft Windows Embedded Compact 7. Website. http://www.
microsoft.com/windowsembedded.

[Moo65] Moore, Gordon. Cramming More Components onto Integrated
Circuits. Electronic Magazine, 38(8):114–117, April 1965. doi:
10.1109/JPROC.1998.658762.

[Mot92] Motorola Incorporated. M68020 Microprocessors User’s Manual,
1st edition, 1992. Revision 2.

[MP00] Müller, Silvia M. and Paul, Wolfgang J. Computer Architecture:
Complexity and Correctness (Springer, Berlin, Germany, 2000).

[MPS09] Maksoud, Mohamed Abdel, Pister, Markus, and Schlickling,
Marc. An Abstraction-Aware Compiler for VHDL Models. In
Proceedings of the International Conference on Computer Engineering
and Systems (ICCES), pages 3–9 (IEEE Computer Society, Cairo,
Egypt, 2009). doi:10.1109/ICCES.2009.5383321.

[MV99] Mahapatra, Nihar R. and Venkatrao, Balakrishna. The Processor-
Memory Bottleneck: Problems and Solutions. Crossroads – Com-
puter Architecture, 5, April 1999. doi:10.1145/357783.331677.

302

Bibliography

[MWV+04] Marwedel, Peter, Wehmeyer, Lars, Verma, Manish, Steinke, Ste-
fan, and Helmig, Urs. Fast, predictable and low energy memory
references through architecture-aware compilation. In Masa-
haru Imai, editor, Proceedings of the International Conference on
Asia South Pacific Design Automation: Electronic Design and Solu-
tion Fair (ASP-DAC), pages 4–11 (IEEE Computer Society, Yoko-
hama, Japan, 2004).

[Neh04] Nehme, Carl. The VAT Tool: Automatic Transformation of VHDL
to Timed Automata. Master’s thesis, Massachusetts Institute of
Technology, Cambridge, USA, June 2004.

[NN92] Nielson, Hanne Riis and Nielson, Flemming. Semantics with Ap-
plications: A Formal Introduction. Wiley Professional Computing
(John Wiley & Sons Limited, 1992).

[NNH99] Nielson, Flemming, Nielson, Hanne Riis, and Hankin, Chris.
Principles of Program Analysis (Springer, Berlin, Germany, 1999),
1st edition.

[One11] OneSpin Solutions. OneSpin 360 MV Product Familiy Data Sheet,
July 2011.

[PCI98] PCI Special Interest Group (PCI-SIG). PCI Local Bus Specification,
December 1998. Revision 2.2.

[PK05] Pister, Markus and Kästner, Daniel. Generic Software Pipelining
at the Assembly Level. In Krishna M. Kavi and Ron Cytron,
editors, Proceedings of the International Workshop on Software and
Compilers for Embedded Systems (SCOPES), pages 50–62 (Asso-
ciation for Computing Machinery (ACM), Dallas, USA, 2005).
doi:10.1145/1140389.1140395.

[PN98] Puschner, Peter and Nossal, Roman. Testing the results of static
worst-case execution-time analysis. In Proceedings of the Real-
Time Systems Symposium (RTSS), pages 134–143 (IEEE Computer
Society, Madrid, Spain, 1998). doi:10.1109/REAL.1998.739738.

[PRE] PREDATOR Research Project. Website. http://www.predator-

project.eu/.

[PSK08] Prantl, Adrian, Schordan, Markus, and Knoop, Jens. TuBound –
A Conceptually New Tool for Worst-Case Execution Time Anal-
ysis. In Raimund Kirner, editor, Proceedings of the International

303

Bibliography

Workshop on Worst-Case Execution Time Analysis (WCET) (Prague,
Czech Republic, 2008). doi:10.4230/OASIcs.WCET.2008.1661.

[PSM09] Pister, Markus, Schlickling, Marc, and Maksoud, Mohamed Ab-
del. Semi-Automatic Derivation of Abstract Processor Models.
Reports of ES_PASS, Saarland University, Saarbrücken, Germany,
June 2009.

[QNX] QNX. QNX Realtime Operating System. Website. http://www.

qnx.com/products/neutrino-rtos/index.html.

[Rea11] RealIntent Incorporated, Sunnyvale, USA. CONQUEST Data
Sheet, July 2011.

[Rei08] Reineke, Jan. Caches In WCET Analysis – Predictability, Com-
petitiveness, Sensitivity. Ph.D. thesis, Saarland University, Saar-
brücken, Germany, November 2008.

[RGBW07] Reineke, Jan, Grund, Daniel, Berg, Christoph, and Wilhelm,
Reinhard. Timing Predictability of Cache Replacement Policies.
Real-Time Systems, 37(2):99–122, November 2007. doi:10.1007/
s11241-007-9032-3.

[RS09] Reineke, Jan and Sen, Rathijit. Sound and Efficient WCET Anal-
ysis in the Presence of Timing Anomalies. In Niklas Holsti,
editor, Proceedings of International Workshop on Worst-Case Exe-
cution Time Analysis (WCET), OpenAccess Series in Informatics
(OASICS) (Schloss Dagstuhl Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 2009).

[RWT+06] Reineke, Jan, Wachter, Björn, Thesing, Stephan, Wilhelm, Rein-
hard, Polian, Ilia, Eisinger, Jochen, and Becker, Bernd. A Defini-
tion and Classification of Timing Anomalies. In Frank Mueller,
editor, Proceedings of International Workshop on Worst-Case Exe-
cution Time Analysis (WCET), volume 4 of OpenAccess Series in
Informatics (OASICS) (Schloss Dagstuhl Leibniz-Zentrum für In-
formatik, Dagstuhl, Germany, 2006). doi:10.4230/OASIcs.WCET.
2006.671.

[Sch03] Schneider, Jörn. Combined Schedulability and WCET Analysis for
Real-Time Operating Systems. Ph.D. thesis, Saarland University,
Saarbrücken, Germany, 2003.

304

Bibliography

[Sch05] Schlickling, Marc. Trace Validation for aiT for PowerPC MPC755
(Hurricane Chip Set). Technical report, AbsInt Angewandte
Informatik GmbH, Saarbrücken, Germany, March 2005.

[Sch10] Schlickling, Marc. ANASTASY WP1-Report: Searching for Tim-
ing Anomalies. Technical report, AbsInt Angewandte Informatik
GmbH, Saarbrücken, Germany, November 2010.

[Sch13] Schlickling, Marc. Timing Model Derivation – Static Analysis of
Hardware Description Languages. Ph.D. thesis, Saarland University,
Saarbrücken, Germany, 2013. To appear.

[SP07] Schlickling, Marc and Pister, Markus. A Framework for Static
Analysis of VHDL Code. In Christine Rochange, editor, Pro-
ceedings of the International Workshop on Worst-case Execution Time
Analysis (WCET), volume 6 of OpenAccess Series in Informat-
ics (OASICS), pages 29–34 (Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Dagstuhl, Germany,
2007). doi:10.4230/OASIcs.WCET.2007.1189.

[SP09] Schlickling, Marc and Pister, Markus. Worst Case Execution Time
Analyzer for PowerPC MPC7448 Performance Counter Valida-
tion Report. Technical report, AbsInt Angewandte Informatik
GmbH, Saarbrücken, Germany, September 2009.

[SP10] Schlickling, Marc and Pister, Markus. Semi-Automatic Deriva-
tion of Timing Models for WCET Analysis. In Jaejin Lee and
Bruce R. Childers, editors, Proceedings of the Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES), pages
67–76 (Association for Computing Machinery (ACM), Stockholm,
Sweden, 2010). doi:10.1145/1755888.1755899.

[SPH+05] Souyris, Jean, Pavec, Ervan Le, Himbert, Guillaume, Jégu,
Victor, Borios, Guillaume, and Heckmann, Reinhold. Com-
puting the Worst Case Execution Time of an Avionics Pro-
gram by Abstract Interpretation. In Reinhard Wilhelm, edi-
tor, Proceedings of the International Workshop on Worst-case Exe-
cution Time (WCET), pages 21–24 (Mallorca, Spain, 2005). doi:
10.4230/OASIcs.WCET.2005.810.

[SPPH10] Schoeberl, Martin, Puffitsch, Wolfgang, Pedersen, Rasmus Ulslev,
and Huber, Benedikt. Worst-case execution time analysis for a

305

Bibliography

Java processor. Software: Practice and Experience, 40(6):507–542,
May 2010. doi:10.1002/spe.968.

[Ste10] Stein, Ingmar. ILP-based Path Analysis on Abstract Pipeline State
Graphs. Ph.D. thesis, Saarland University, Saarbrücken, Germany,
February 2010.

[Syn11] Synopsys Incorporated, Mountain View, USA. VCS Data Sheet,
July 2011.

[Syn12] Synopsys Incorporated. OpenVera. Website, March 2012. http:
//www.open-vera.com/.

[TFW00] Theiling, Henrik, Ferdinand, Christian, and Wilhelm, Reinhard.
Fast and Precise WCET Prediction by Separated Cache and Path
Analyses. Real-Time Systems, 18(2–3):157–159, 2000. doi:10.1023/
A:1008141130870.

[The02] Theiling, Henrik. ILP-based Interprocedural Path Analysis. In
Alberto L. Sangiovanni-Vincentelli and Joseph Sifakis, editors,
Proceedings of the International Conference on Embedded Software
(EMSOFT), volume 2491 of Lecture Notes in Computer Science:
Embedded Software, pages 349–363 (Springer, Berlin, Germany,
2002). doi:10.1007/3-540-45828-X_26.

[The03] Theiling, Henrik. Control Flow Graphs for Real-Time System Analy-
sis: Reconstruction from Binary Executables and Usage in ILP-Based
Path Analysis. Ph.D. thesis, Saarland University, Saarbrücken,
Germany, February 2003.

[The04] Thesing, Stephan. Safe and Precise WCET Determination by Ab-
stract Interpretation of Pipeline Models. Ph.D. thesis, Saarland Uni-
versity, Saarbrücken, Germany, July 2004.

[The06] Thesing, Stephan. Modeling a system controller for timing anal-
ysis. In Sang Lyul Min and Wang Yi, editors, Proceedings of the
International Conference Embedded Software (EMSOFT), pages 292–
300 (Association for Computing Machinery (ACM), Seoul, Korea,
2006). doi:10.1145/1176887.1176929.

[TN06] Tolstrup, Terkel K. and Nielson, Flemming. Analyzing for Ab-
sence of Timing Leaks in VHDL. In Proceedings of the Workshop
on Issues in the Theory of Security (WITS), pages 71–86 (Vienna,
Austria, 2006).

306

Bibliography

[TSH+03] Thesing, Stephan, Souyris, Jean, Heckmann, Reinhold, Randim-
bivololona, Famantanantsoa, Langenbach, Marc, Wilhelm, Rein-
hard, and Ferdinand, Christian. An Abstract Interpretation–
Based Timing Validation of Hard Real-Time Avionics Software.
In Proceedings of the International Conference on Dependable Systems
and Networks (DSN), pages 625–632 (IEEE Computer Society, San
Francisco, USA, 2003). doi:10.1109/DSN.2003.1209972.

[Tur09] Turley, Jim. Growth Is No Longer in PCs, It’s In Embedded
Systems. Website, June 2009. http://www.glgroup.com/News/

Growth-Is-No-Longer-in-PCs-Its-In-Embedded-Systems-4008

8.html.

[USB+10] Urdahl, Joakim, Stoffel, Dominik, Bormann, Jörg, Wedler,
Markus, and Kunz, Wolfgang. Path predicate abstraction by com-
plete interval property checking. In Roderick Bloem and Natasha
Sharygina, editors, Proceedings of the International Conference on
Formal Methods in Computer-Aided Design (FMCAD), pages 207–
215 (IEEE Computer Society, Lugano, Switzerland, 2010).

[Veg82] Vegdahl, Steven R. Phase coupling and constant generation
in an optimizing microcode compiler. SIGMICRO Newsletter,
13(4):125–133, October 1982.

[Ver] Verisoft XT Research Project. Website. http://www.verisoftxt.
de.

[Wae06] van de Waerdt, Jan-Willem. The TM3270 Media-processor. Ph.D.
thesis, Delft University of Technology, Delft, Netherlands, Octo-
ber 2006.

[WEE+08] Wilhelm, Reinhard, Engblom, Jakob, Ermedahl, Andreas, Holsti,
Niklas, Thesing, Stephan, Whalley, David, Bernat, Guillem, Fer-
dinand, Christian, Heckmann, Reinhold, Mitra, Tulika, Mueller,
Frank, Puaut, Isabelle, Puschner, Peter, Staschulat, Jan, and Sten-
ström, Per. The Worst-Case Execution Time Problem—Overview
of Methods and Survey of Tools. ACM Transactions on Embed-
ded Computing Systems (TECS), 7(3):36:1–36:53, April 2008. doi:
10.1145/1347375.1347389.

[Weg11] Wegener, Simon. Improving Static Analysis of Loops. Master’s
thesis, Saarland University, Saarbrücken, Germany, June 2011.

307

Bibliography

[Wei95] Weiser, Mark. The Computer for the 21st Century. In Ronald
Baecker, Jonathan Grudin, William A. Buxton, and Saul Green-
berg, editors, Readings in Human-Computer Interaction: Toward the
Year 2000, pages 933–940 (Morgan Kaufmann Publishers, San
Francisco, USA, 1995), 2nd edition.

[WFC+09] Wilhelm, Reinhard, Ferdinand, Christian, Cullmann, Christoph,
Grund, Daniel, Reineke, Jan, and Triquet, Benoît. Designing
Predictable Multicore Architectures for Avionics and Automo-
tive Systems. In Lothar Thiele, Reinhard Wilhelm, Theo Un-
gerer, Bengt Jonsson, and Jian-Jia Chen, editors, Proceedings of
the Workshop on Reconciling Performance with Predictability (RePP)
(Grenoble, France, 2009).

[WGR+09] Wilhelm, Reinhard, Grund, Daniel, Reineke, Jan, Schlickling,
Marc, Pister, Markus, and Ferdinand, Christian. Memory Hi-
erarchies, Pipelines, and Buses for Future Architectures in
Time-critical Embedded Systems. IEEE Transactions on CAD
of Integrated Circuits and Systems, 28(7):966–978, July 2009. doi:
10.1109/TCAD.2009.2013287.

[Win] Wind River Systems. VxWorks. Website. http://www.windriver.
com/products/vxworks/.

[WM95] Wilhelm, Reinhard and Maurer, Dieter. Compiler Design. Interna-
tional Computer Science Series (Addison-Wesley, 1995).

[Wol00] Wolf, Wayne. Computers as Components: Principles of Embedded
Computing Systems Design (Morgan Kaufmann Publishers, San
Francisco, USA, 2000), 1st edition.

[WRKP05] Wenzel, Ingomar, Rieder, Bernhard, Kirner, Raimund, and
Puschner, Peter. Automatic Timing Model Generation by CFG
Partitioning and Model Checking. In Proceedings of the Interna-
tional Conference and Exhibition on Design, Automation and Test in
Europe (DATE), pages 606–611 (IEEE Computer Society, Munich,
Germany, 2005). doi:10.1109/DATE.2005.76.

[WW09] Wilhelm, Stephan and Wachter, Björn. Symbolic State Traver-
sal for WCET Analysis. In Samarjit Chakraborty and Nicolas
Halbwachs, editors, Proceedings of the International Conference on
Embedded Software (EMSOFT), pages 137–146 (Association for

308

Bibliography

Computing Machinery (ACM), Grenoble, France, 2009). doi:
10.1145/1629335.1629354.

309

Index

A
AbsInt 6, 68, 132, 136, 212, 219, 226,

248
abstract interpretation75, 119
abstract value domain . 76, 79, 126,

137, 181
abstraction see model state

abstraction
activation sequence see VHDL

semantics
actualization phasesee VHDL

semantics
aeronautics 14, 278
aiSee . 132, 208
aiT see Worst-Case Execution Time
analysis

loop . 77

micro-architectural 70
path see path analysis
pipeline . 80
timing . 64
value . 78

analysis_start 213
architectures see hardware
ARM7 . 186
arraysee VHDL types
assumption see timing model
authentication systems 40
automotive . 36
Automotive CPU 241
Automotive MMU 241
avionics .37

flight control system 37
Avionics MCU 240

Index

B
backward slice see VHDL analysis
basic block see control flow
boolean see VHDL types
Bound-T see Worst-Case Execution

Time
branch folding see processor

pipeline
branch prediction . . . see processor

pipeline
bus

external bus 52
CAN . 52
FlexRay 52

internal bus 52
PCI . 52

memory bus 52
system bus 52

60x bus 52

C
cache

associativity 47
capacity .48
data . 50
direct-mapped 48
FIFO . 49
hit . 46
instruction cache 50
level . 46
line . 46
locking 193
LRU . 48
miss . 46
MRU . 49
PLRU . 48
replacement 48
set . 46
tag . 47

unified . 50
write policy 49

write back 49
write through 49

call graph .72
CAN . see bus
clpsolve see ILP solver
combinatorial design . . . see VHDL
conditional see control flow
constant-bounded effect 186
consumer electronics 40
control flow

basic block 72
conditional 71
decoding 70–75
edge . 71
fork . 71
graph 71–75
infeasible path 79
instruction 70
join . 71
loop transformation . . . 74, 229
path . 71
reconstruction 72
sequence 71
trace . 75

CPLEX see ILP solver
CRL . 73

basic block 73
global type map 215
global value map 215
instruction 73
meta information213–215
parameter type map 215
routine .73

D
data cache see cache
data path removal see model

preprocessing

312

Index

data-flow analysis 76
dead code elimination . . see model

preprocessing
decoding see control flow
delay slot . . see processor pipeline
derivation 7–11, 120–131, 236, 260,

262, 269, 281
DO-178B 64, 168

E
edge see control flow
elaboration see VHDL
embedded system

availability 31
code size 32
cost . 32
efficiency 32
energy 32, 41, 42
hybrid . 34
maintainability 31
reactive . 34
real time . see real-time system
reliability 31
robustness 39
runtime efficiency32
safety 31, 35, 37
security . 31
sterility . 39
task . 35
weight . 32

error handling 259

F
fabrication equipment 40
FIFO . see cache
finite state automaton . . 19, 25, 34,

112, 118, 174
timed . 25

FlexRay see bus

flight control system . .see avionics
fork see control flow
FORTAS see Worst-Case Execution

Time
forwarding . see processor pipeline
Freescale PowerPC

603e . 236
750 . 187
755 . . 42, 59, 113, 116, 125, 169,

186
744860, 83, 169, 188

G
GDL . 86
generator tools 227–229
GHDL 26, 27, 210
global worst-case see timing model

H
hardware

processor architecture 41
ASIC 106
cache see cache
CISC . 42
FPGA . 42
Moore’s Law 43
performance gap 43
pipeline see processor

pipeline
RISC . 42
VLIW . 42

redundancy 37
hardware bus see bus
hardware description language 90

I
IDLE see main memory
ILP see path analysis
ILP solver

313

Index

clpsolve . 86
CPLEX . 86

infeasible path see control flow
initialization phase see VHDL

semantics
instructionsee control flow
instruction cache see cache
instruction retirement . . 54, 59, 83,

124, 136, 143, 200, 240, 269
integer see VHDL types
interrupt handling 259
interval 78, 125, 126, 172, 179
IPC 11, 14, 165, 172–175, 281

completeness 173–174
property 174, 179

ISO 26262 . 31

J
join see control flow

L
LEON2 . 241
local worst-case . see timing model
loop bound see analysis, loop
loop transformation . . . see control

flow
LRU . see cache

M
main memory 50–52

DDR . 51
QDR . 51
scratchpad 52
SDRAM . 51

commands 176
IDLE .174
PRE_ACTIVE 174
READ 174
WRITE 174

SRAM . 50
mainframe . 30
measurements . . . 66, 170, 243, 250
medical engineering 38
memory hierarchy 45–46
memory protection . .see processor

pipeline
METAMOC see Worst-Case

Execution Time
micro-architectural analysis . . . see

analysis
military applications 39
model preprocessing

data path removal . . . 124–125,
126, 141

dead code elimination 124
refinement . . see timing model,

assumption
model state abstraction

domain abstraction 126
memory abstraction 127
process replacement . . 126–127

model transformers 218–227
ModelSim27, 210
Motorola see Freescale
MRU . see cache

N
netlist see VHDL
non-compositional 186
nondeterminism see timing model

O
OneSpin 173, 179, 181
operational semantics . . see VHDL

semantics
OTAWA see Worst-Case Execution

Time

314

Index

out-of-order executionsee
processor pipeline

overestimation . . see timing model

P
PAG 77, 119, 213
path see control flow
path analysis 83

ILP based 83
ILP based on prediction files 85
prediction file based 84

PCI . see bus
performance counter 169
personal computer 30
pipeline hazard

control . 56
data . 55

read-after-write 55
write-after-read 55
write-after-write 56

structural 55
pipeline stage

decode . 53
execute . 54
instruction fetch 53
write back 54

PLRU see cache
PRE_ACTIVE . . see main memory
precision see timing model
predictability

timing 184, 192
cache 48, 188
peripheral devices 192
processor pipeline61
SDRAM191
SRAM 51

VHDL 12, 196, 270
prediction graph 81, 83–85
prefetching . see processor pipeline

processsee VHDL
process execution context see

VHDL semantics
processor pipeline

branch folding 57
branch prediction 57–58

dynamic 58
misprediction 57
static . 58

delay slot 58
forwarding/shortcut 58
memory protection 60
out-of-order execution 59
prefetching 57
speculative execution 60
store gathering 60
superscalarity 59
system configuration 61

program analysis
abstract interpretation see

abstract interpretation
data-flow analysis see data-flow

analysis
generator see PAG

property see IPC
prototype TU Vienna see

Worst-Case Execution Time

R
railway . 37–38
RapiTime see Worst-Case

Execution Time
READ see main memory
real-time system

constraint 33, 34
scheduling see scheduling

record see VHDL types
reduction see timing model
redundancy see hardware

315

Index

register-transfer level . . 93, 96, 106,
110, 112, 236

reset analysis . . see VHDL analysis
reset handling 259
retirement see instruction

retirement

S
scheduling

dynamic-priority 35
earliest-deadline-first 36
period . 35
preemptive 35
priority . 35
rate monotonic36
release time 35
static-priority 35

semantic level reduction . 118–119
sensitivity list see VHDL
sequence see control flow
sequential logic design . see VHDL
shortcut see processor pipeline
signal see VHDL
simul 119, 212
simulation see VHDL

VHDLsee VHDL
simulation context see VHDL

semantics
simulation tree see VHDL

semantics
single_step 228, 250
smart buildings 41
speculative execution see processor

pipeline
state split see timing model
static analyzers 218
store gathering see processor

pipeline
superscalar DLX 237–240

superscalarity see processor
pipeline

SWEET . see Worst-Case Execution
Time

synthesis see VHDL
system configuration see processor

pipeline
SystemC . 91
SystemVerilog 91

T
task see embedded system
telecommunication 38
timed automaton 25
timing analysis 64

code level 64
system level64

timing anomaly . see timing model
timing compositional 186
timing dead code elimination . see

model preprocessing
timing model 6–8, 81, 111–115

assumption . 122–123, 133, 134,
143, 179, 180

derivation see derivation
nondeterminism 112–115
overestimation66, 67
precision . 76, 77, 79, 81, 84, 85,

87, 125, 143, 185, 195, 262
reduction 125, 132, 262
reduction rates 236, 258
soundness 165
state split . . . 112–115, 116, 137,

156–158, 160, 161, 163
timing anomaly 20, 21,

115–116, 157, 186
under-estimation 128, 170
validation 11–12, 168, 170, 175
worst-case

316

Index

global 4, 6, 21, 113
local 114, 116, 186

timing problem 3–4
trace see control flow
trace matching 170–171
transformations

domain abstraction 129
process replacement 130
timing dead code elimination

129
TriMedia .42
TuBound see Worst-Case Execution

Time

U
under-estimation see timing model
unified see cache
unresolved computed call87
user annotation 87–88

V
validation see timing model
Verilog 27, 91, 172, 177
VHDL . . 8, 25, 26, 92, 110, 195, 196

analysis . . . see VHDL analysis
block statement 95
combinatorial design 199, 241,

269
component instantiation . . . 96
concurrent procedure call state-

ment 95
constant . 97, 133, 211, 215, 220
elaboration 104–106, 117,

211–212, 217
function . 97, 105, 157, 215, 237
generate statement 96, 105, 253
netlist 90, 106, 280
procedure . . . 97, 105, 117, 199,

215, 237

process 97, 126, 149
semantics see VHDL semantics
sensitivity list . 96, 99, 102, 108,

199
sequential logic design 12, 199,

260, 269, 277
signal 27, 97, 102, 133, 196, 197
simulation .26, 27, 81, 106, 140,

148, 171
synthesis 7, 92, 93, 95, 106, 107,

232, 280
synthesizable sub-standard 26,

92, 99, 106, 229
types see VHDL types
variable 97, 196

VHDL analysis
backward slice 124
refinement . . see timing model,

assumption
reset analysis 133, 143, 179–180

VHDL compiler see Vhdl2Crl2,
206–218

VHDL semantics
activation sequence 154
actualization phase 102
initialization phase . . . 101–102
operational semantics 149
process execution context

abstract 160
concrete 149, 162

simulation context
abstract 162–163
concrete 152

simulation tree 156
suspend 98, 99, 101, 102
two-level 102, 118, 154

VHDL types
array101, 137, 232, 237
boolean 101, 196
integer 101, 196

317

Index

record101, 104
vhdl_clock 119, 213

W
WCA . . . see Worst-Case Execution

Time
WCET . . see Worst-Case Execution

Time
WCET path 85, 115
WCRT . . see Worst-Case Response

Time
Worst-Case Execution Time

dynamic methods
measurements see

measurements
prototype TU Vienna22

hybrid methods
FORTAS 23
prototype TU Vienna23
RapiTime 23

static methods
aiT 68–88
Bound-T 19
METAMOC 19
OTAWA20
SWEET 20
TuBound 21
WCA . 22

Worst-Case Response Time 64
WRITE see main memory
write policy see cache

318

