EFFICIENT QUERY PROCESSING
AND INDEX TUNING
USING PROXIMITY SCORES

Dissertation
zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultiten
der Universitiat des Saarlandes

Andreas Broschart

Universitiat des Saarlandes

Saarbriicken
2012

Dekan der Naturwissenschaftlich-Technischen Fakultat I | Prof. Dr. Mark Groves

Vorsitzender der Priifungskommission Prof. Dr.-Ing. Thorsten Herfet
Berichterstatter PD Dr.-Ing. Ralf Schenkel
Berichterstatter Prof. Dr.-Ing. Gerhard Weikum
Berichterstatter Prof. Torsten Suel, PhD
Beisitzer Dr.-Ing. Klaus Berberich

Tag des Promotionskolloquiums 09.10.2012

Acknowledgments

I would like to to express my sincere gratitude to my supervisor, PD Dr.-Ing. Ralf
Schenkel for guiding me from my Master’s to my PhD degree. He has always been a
source of motivation and the door of his office has never been closed whenever I needed
support. I would like to thank him for many interesting and fruitful discussions as well
as for the scientific guidance he gave me.

My special thanks go to Prof. Dr.-Ing. Gerhard Weikum for giving me the oppor-
tunity to pursue my PhD studies in Saarbriicken, for his helpful comments, and for
joining the reviewers board.

I would like to also thank Prof. Torsten Suel, PhD for accepting my request to
review my PhD thesis.

Furthermore, I would like to thank Prof. Dr.-Ing. Thorsten Herfet for chairing the
examination board and Dr.-Ing. Klaus Berberich for taking the minutes.

Finally, I would like to thank my colleagues for the great atmosphere at the work
place and many enjoyable moments.

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstédndig und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus
anderen Quellen oder indirekt iibernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder dhnlicher
Form in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbriicken, den 31.05.2012

(Unterschrift)

Kurzfassung

Angesichts wachsender Datenmengen stellt effiziente Anfrageverarbeitung, die gleich-
zeitig Ergebnisqualitit und Indexgrofie beriicksichtigt, zusehends eine Herausforderung
fiir Suchmaschinen dar. Wir zeigen, wie man Proximityscores einsetzen kann, um An-
fragen effektiv und effizient zu verarbeiten, wobei der Schwerpunkt auf eines der Ziele
gelegt wird.

Die Hauptbeitriage dieser Arbeit gliedern sich wie folgt:

e Wir prisentieren eine umfassende vergleichende Analyse von Proximityscoremo-
dellen sowie eine griindliche Analyse des Potenzials von Phrasen und passen ein
fithrendes Proximityscoremodell fiir die Verwendung mit XML-Daten an.

e Wir diskutieren fiir die présentierten Proximityscoremodelle die Eignung zur Top-
k-Anfrageverarbeitung und prisentieren einen neuen Index, der einen Inhalts- und
Proximityscore kombiniert, um Top-k-Anfrageverarbeitung zu beschleunigen und
die Giite zu verbessern.

e Wir prisentieren ein neues, verteiltes Indextuningpaket fiir Term- und Termpaar-
listen, das Tuningparameter mittels wohldefinierter Optimierungskriterien unter
Groflenbeschrankung bestimmt. Indizes konnen auf Effizienz oder Giite optimiert
werden und sind bei hoher Giite performant.

o Wir zeigen, dass gekiirzte Indizes mit einem Merge Join-Ansatz Top-k Algorith-
men mit ungekiirzten Indizes bei hoher Giite schlagen.

e Auflerdem présentieren wir eine hybride Indexstruktur, die Cold Cache-Effizienz
verbessert.

Abstract

In the presence of growing data, the need for efficient query processing under result

quality and index size control becomes more and more a challenge to search engines.

We show how to use proximity scores to make query processing effective and efficient

with focus on either of the optimization goals.

More precisely, we make the following contributions:

We present a comprehensive comparative analysis of proximity score models and
a rigorous analysis of the potential of phrases and adapt a leading proximity score
model for XML data.

We discuss the feasibility of all presented proximity score models for top-k query
processing and present a novel index combining a content and proximity score
that helps to accelerate top-k query processing and improves result quality.

We present a novel, distributed index tuning framework for term and term pair
index lists that optimizes pruning parameters by means of well-defined optimiza-
tion criteria under disk space constraints. Indexes can be tuned with emphasis
on efficiency or effectiveness: the resulting indexes yield fast processing at high
result quality.

We show that pruned index lists processed with a merge join outperform top-k
query processing with unpruned lists at a high result quality.

Moreover, we present a hybrid index structure for improved cold cache run times.

II1

Zusammenfassung

Auf der Suche nach Information erwarten Leute qualitativ hochwertige Ergebnisse
bei schnellen Antwortzeiten, zwei gegensitzliche Ziele. Angesichts stéindig wachsen-
der Datenmengen wird dabei effiziente Anfrageverarbeitung unter Beriicksichtigung
von Ergebnisgiite und Indexgrofie zusehends eine Herausforderung fiir Suchmaschinen.
Diese Arbeit beschéftigt sich mit dem wichtigen Problem, wie man Proximityscore-
modelle einsetzen kann, um Anfrageverarbeitung gleichzeitig effizient und effektiv zu
machen. Wir stellen neuartige Indexstrukturen vor, die Top-k-Anfrageverarbeitung er-
lauben und auf eine Reihe von Proximityscoremodellen anwendbar sind. Ein neuartiger
Algorithmus zur Indexoptimierung kann fiir Ergebnisgiite oder Effizienz unter Index-
groBenkontrolle optimiert werden.

Der erste Teil dieser Arbeit widmet sich hauptsichlich Effektivitdtsaspekten von
Proximityscoremodellen.

In einer grofl angelegten Studie existierender Proximityscoremodelle klassifizieren
wir diese in vier Kategorien: 1) Linearkombinationen eines Inhaltsscoremodells und
eines Proximityscoremodells, 2) integrierte Scoremodelle, 3) Sprachmodelle mit Wort-
abstandskomponenten und 4) Modelle, die Wortabstandsinformation verwenden und
Scoremodelle mit maschinellen Lerntechniken erlernen. Wir présentieren eine verglei-
chende Effektivitédtsanalyse fiir eine betréichtliche Menge von Proximityscoremodellen,
die wir in einem gemeinsamen Framework mit Hilfe von vier Testumgebungen evaluie-
ren. Wir fithren einen systemorientierten Vergleich der erforderlichen Features jedes
Scoremodells durch. Fiir jedes Scoremodell in jeder Testumgebung empfehlen wir
Modellparameter, die eine hohe Ergebnisgiite erzielen. Zusétzlich evaluieren wir, wie
in [Met06a] vorgeschlagen, die Robustheit jedes Modells beziiglich Modellparametern.

Weiterhin fithren wir einige Erweiterungen fiir Proximityscores in der Textsuche
durch. Die Verwendung von Phrasen als hartes Filterkriterium fiir Ergebnisse ist eine
weitere Moglichkeit, die Ergebnisqualitit zu verbessern. Wir fithren eine griindliche
Analyse des Potenzials expliziter Phrasen fiir die Ergebnisqualitdt durch und verglei-
chen sie mit der Ergebnisqualitéit eines der fithrenden Proximityscoremodelle. Eine
Nutzerstudie untersucht, wie sehr Nutzer bei der Kennzeichnung von Phrasen fiir eine
gegebene Anfrage iibereinstimmen. Wir validieren die weit verbreitete Intuition, dass
die Verwendung von Phrasen in Anfragen die Ergebnisqualitit existierender Retrieval-
modelle steigern kann. Jedoch ist die Wahl geeigneter Phrasen eine nichttriviale Auf-
gabe und kann unter Umsténden zu schwierig fiir Benutzer sein, die zudem h&ufig iiber

v

die Wahl geeigneter Phrasen uneins sind. Weiterhin kommt der Anordnung von Termen
in Anfragen nicht immer eine semantische Bedeutung zu.

Aufgrund der Verbreitung von XML-Dokumenten ist es niitzlich, dass eine Such-

maschine nicht nur unstrukturierte Textdokumente unterstiitzt, sondern auch semi-
strukturierte XML-Daten. Wir passen eines der besten Proximityscoremodelle aus der
Textsuche an, um Inhaltsanfragen auf XML-Daten zu unterstiitzen. Mit Hilfe zusétz-
licher Abstidnde an den Elementgrenzen tragen wir der Dokumentstruktur fiir die XML-
Elementsuche Rechnung, wenn wir die Distanz von Termauftreten berechnen.
Der zweite Teil dieser Arbeit konzentriert sich auf Effizienzaspekte von Proximity-
scoremodellen. Nachdem wir eine Einfithrung in Top-k£ und Nicht-Top-k Algorithmen
gegeben haben, passen wir eines der fithrenden Proximityscoremodelle so an, dass wir es
vorberechnen und in eine Indexstruktur giefflen kénnen. Weiterhin diskutieren wir fiir
alle im ersten Teil vorgestellten Proximityscoremodelle die Anwendbarkeit der zuvor
entwickelten Methoden. Wo diese anwendbar sind, leiten wir obere und untere Score-
schranken fiir Kandidaten und Zwischenergebnisse in Top-k Algorithmen her und ent-
wickeln passende Indizes. Wir zeigen weiterhin, dass bereits wenige Tausend gelesene
Indexeintrige hinreichend sind, um eine Ergebnisgiite zu erzielen, die mit ungekiirzten
Indizes erreicht werden kann. Weil derart wenige Eintrdge gelesen werden miissen,
eroffnet das die Moglichkeit, auf gekiirzten Indexlisten einen Merge Join-basierten
Ansatz zu verwenden. Das spart gleichzeitig zusétzliche Kosten der Top-k-Algorithmen
und reduziert signifikant die Indexgrofle. Wir erzielen beeindruckende Effizienzsteige-
rungen um bis zu zwei GroBenordnungen verglichen mit dem Lesen ungekiirzter Listen
mit Inhaltsscoreinformation. In einem ersten Ansatz wurden dabei alle Listen auf nicht-
systematische Art gekiirzt.

Das ist die Stelle, an der unser Indexoptimierungspaket fiir Term- und Termpaar-
indexlisten ins Spiel kommt. Wir schlagen einen systematischen Ansatz vor, der
mit wohldefinierten Optimierungskriterien Parameter zum Kiirzen von Indexlisten
errechnet. Dazu entwickeln wir ein Indexoptimierungspaket, das Indexstrukturen fiir
Terme und Termpaare fiir maximale Ergebnisgiite oder maximale Effizienz unter Giite-
kontrolle und Indexgroflenbudget optimiert. Das Paket verwendet Hadoop, ein Open
Source MapReduce-Paket und gestattet eine selektive Materialisierung von Termpaar-
listen auf der Basis von Information aus einer Anfrageprotokolldatei. Wir zeigen, wie
wir Indizes sowohl mit als auch alternativ ohne Bewertungen der Ergebnisrelevanz
optimieren konnen. Die resultierenden gekiirzten Indizes bieten verléssliche Anfrage-
ausfiithrungszeiten und eine Ergebnisgiite, die vergleichbar oder sogar besser als die
ungekiirzter Termindizes ist, welche die Ergebnisgiite des BM25-Bewertungsmodells
liefern. Wir présentieren eine hybride Indexstruktur, welche Term- und Termpaarindex-
listen kombiniert, um weniger gelesene Listen gegen eine hohere gelesene Datenmenge
einzutauschen, um Cold Cache-Laufzeiten zu verbessern. Wir zeigen experimentell, dass
die resultierenden gekiirzten Indizes Anfragen um fast eine Groflienordnung gegeniiber
einem fithrenden Top-k Algorithmus bei vergleichbarer Ergebnisgiite beschleunigen. Wir
fithren ausgedehnte Experimente auf den Dokumentkollektionen GOV2 und ClueWeb09
sowie fiir den INEX Efficiency Track 2009 und den TREC Web Track 2010 durch.

Summary

When people search for information, they expect high quality results at fast processing
times which are conflicting goals. In the presence of growing data, the need for efficient
query processing under result quality and index size control increasingly becomes a
challenge to search engines. This work addresses the important problem how to use
proximity scores to make query processing effective and efficient at the same time. We
present novel index structures for top-k query processing applicable to a number of
proximity score models and a novel algorithm for index tuning that can be optimized
for retrieval quality or efficiency under index size control.

The first part of this thesis deals mainly with effectiveness aspects of proximity score
models.

In an extensive survey of existing proximity-enhanced score models, we put them
into four categories: 1) linear combinations of a content score model and a proximity
score model, 2) integrated score models, 3) language models with proximity compo-
nents, and 4) models that incorporate proximity features and learn to rank by applica-
tion of machine learning techniques. We present a comparative analysis of a significant
set of proximity score models in a single evaluation framework with four test beds. We
carry out a system-oriented comparison with the required features per score model. We
give recommendations on how to set parameters for each combination of test bed and
score model. In addition, we measure intercollection and intracollection generalization,
entropy, and spread values as proposed in [Met06a].

Furthermore, we elaborate on some extensions to proximity scores in text retrieval.
Usage of phrases as a hard filter criterion for results is a different means to improve
retrieval quality. We carry out a rigorous analysis of the potential of explicit phrases for
retrieval quality and compare it to the retrieval quality of a state-of-the-art proximity
score model. A user study investigates the degree of user agreement about phrases in a
query. We validate the common intuition that phrase queries can boost the performance
of existing retrieval models, but choosing good phrases is a non-trivial task and might
be too difficult for users as they frequently disagree on phrases in a query; furthermore,
term order in queries does not always bear semantics.

Due to the dissemination of XML documents, it is useful for a search engine to not
only support unstructured text documents, but also semi-structured XML data. We
adapt one of the best performing proximity score models from text retrieval to support
content queries on XML data. By means of virtual gaps in XML documents, we take

VII

the document structure into account when computing the distance of term occurrences.

The second part of this thesis concentrates on efficiency aspects of proximity score
models.

After giving an introduction into top-k£ and non-top-k algorithms, we show how to
adapt a state-of-the-art proximity score model for top-k query processing and devise
appropriate index structures that allow precomputation of the required features. Fur-
thermore, we discuss the feasibility of all proximity score models presented in the survey
for top-k query processing, give score bounds, and devise indexes where possible. We
furthermore show that already a few thousand read entries are good enough to yield a
retrieval quality comparable to reading unpruned index lists. As only that few entries
have to be read, this opens the door to merge join processing on pruned index lists,
saving on overhead costs of top-k query processing and index space requirements. We
achieve impressive performance gains by up to two orders of magnitude compared to
reading unpruned content score lists. However, all index lists have been pruned in a
non-systematic, ad hoc style manner.

That is the place where our index tuning framework for term and term pair index
lists comes into play. We propose a systematic pruning approach with well-defined
optimization criteria. To this end, we introduce a tunable indexing framework for term
and term pair index structures for optimizing index parameters towards either maximal
result quality or maximal query processing performance under result quality control,
given a maximal index size. The index tuning framework is implemented on top of
the Open Source MapReduce framework Hadoop and allows a selective materialization
of term pair index lists based on information from a query log. We show how to
perform index tuning both in the presence and, alternatively, in the absence of relevance
assessments. The resulting indexes provide dependable query execution times while
providing result quality comparable to or even better than unpruned term indexes that
provide BM25 score quality. We present a hybrid index structure that combines the
term and term pair index lists to trade in a reduced number of fetched lists for an
increased number of read bytes to improve cold cache run times. Experimental results
demonstrate that the resulting index configurations allow query processing that achieves
almost one order of magnitude performance gain compared to a state-of-the-art top-k
algorithm yielding results of comparable quality. We carry out extensive experiments
on GOV2 and ClueWeb09, in the INEX 2009 Efficiency Track and for the TREC Web
Track 2010.

Contents

1 Introduction 3
1.1 Contributions 4
1.2 Publications 5
1.3 Thesis Outline 7

2 Proximity Score Models 9
2.1 Introduction 9

2.1.1 Motivation 9
2.1.2 Model and Notation 10
2.2 Unigram Models 12
2.2.1 BM25 . . 12
222 Lnultc. 13
2.2.3 ES . e 14
2.2.4 Language Models, Smoothing Methods, and KL-Divergence . . . 14
2.3 Example oL 15
2.4 Linear Combinations of Scoring Models 16
2.4.1 Rasolofo and Savoy Lo 16
2.4.2 Bittcheretal. 18
24.3 Uematsuetal. 19
244 MONzo e 19
245 Taoand Zhai 21
2.5 Integrated Score Models 22
2.5.1 De Kretser and Moffat 22
252 Songetal. 27
2.5.3 Mishne and de Rijke oL 29
2.6 Language Models with Proximity Components 31
26.1 LvandZhai. 31
2.6.2 Zhaoand Yun 34
2.7 Learning torank oo 35
2.7.1 General Introduction to Learning to Rank Approaches 35
2.7.2 Svoreetal. 35
2.7.3 Metzler and Croft 35
2.74 Cummins and O’Riordan 39

2.8 System-Oriented Comparison of Implementation Efforts per Scoring Model 42
Benchmarks 47
3.1 Introduction 47
3.2 Initiatives e 48
3.2.1 The TREC Initiative and Selected Test Beds 48
3.2.2 INEX and Selected Test Beds 51
3.2.3 Other Initiatives 54
3.3 Measures e 54
3.3.1 Measures for Text/Document Retrieval o4
3.3.2 Measures for XML Retrieval 57
Evaluation for Selected Score Models 59
4.1 Results from the Original Papers 59
4.1.1 Linear Combinations of Scoring Models 59
4.1.2 Integrated Score Models 61
4.1.3 Language Models with Proximity Components 63
414 LearningtoRank.o 64
4.2 Comparative Analysis for Selected Score Models 65
4.2.1 Experimental Comparison of Scoring Models 66
4.2.2 Individual Scoring Models 68
4.2.3 Intercollection and Intracollection Generalization Results 74
4.2.4 Sensitivity Charts o 75
4.2.5 Summary e 7
Extensions 79
5.1 Introduction 79
5.2 XML . . .o 80
5.2.1 XML Background oL L 80
5.2.2 Notation. 80
5.2.3 Related Work by Beigbeder 81
5.2.4 Proximity Scoring for XML oo 82
5.2.5 Experimental Evaluation 85
5.2.6 Additional Experiments for INEX 2008 88
5.3 Phrases e 90
5.3.1 Evaluating the Potential of Phrases 90
Top-k Vs. Non-Top-k Algorithms 95
6.1 Top-k Algorithms from DB 0L 95
6.1.1 Sorted and Random Accesses 97
6.1.2 No Random Accesses. 98
6.1.3 Carefully Scheduled Random Accesses 98
6.2 Top-k Algorithms from IR 100

6.2.1 Exact Top-k Algorithms from IR 101

8

6.2.2 Exact Top-k Algorithms from IR with a Term Proximity Com-

ponent 104
6.2.3 Approximate Top-k Algorithms from IR 106
6.3 Non-Top-k Algorithms 107

Casting Proximity Scoring Models into Top-k£ Query Processing 109

7.1 Introduction 109
7.2 Proximity Scoring L 110
7.2.1 Proximity Scoring Models L. 110
7.2.2 Modification of Biittcher’s Scoring Model 111
7.3 Indexing and Evaluation Framework 112
7.3.1 Precomputed Index Lists and Evaluation Strategies 112
7.3.2 Evaluation Setup 114
7.3.3 Results 115
7.3.4 Results with Pruned Index Lists 116

7.3.5 Comparison: TopX(RR-LAST Mode) on Unpruned Lists vs. Merge
Join on Pruned Lists L. 122
7.3.6 Conclusion of the Experiments 124
7.4 Feasibility of Scoring Models for Top-k Query Processing 125
7.4.1 Linear Combinations of Scoring Models 125
7.4.2 Integrated Score Models 130
7.4.3 Language Models with Proximity Components 131
744 LearningtoRank oo 138
TA5 Summary 139
Index Tuning for High-Performance Query Processing 141
8.1 Introduction 141
8.1.1 DMotivation 141
8.1.2 Contributions 142
8.1.3 Outline of the Chapter 142
8.2 Indexes e 143
8.3 Parameter Tuning Lo L 147
8.3.1 Tuning as Optimization Problem 147
8.3.2 Implementation of the Tuning Framework 152
8.4 Log-Based Term Pair Pruning, 154
8.5 Experimental Evaluation 156
851 Setup 157
8.5.2 Index Tuning on GOV2 159
8.5.3 Query Processing with GOV2 165
8.5.4 Log-based Pruning with GOV2 173
8.5.5 Summary of Conclusions and Limitations of the Approach 174
8.5.6 Results with ClueWeb09, 175

8.5.7 Results with INEX 2009 177

8.6 Hybrid Index Structure for Efficient Text Retrieval
8.6.1 Imtroduction L
8.6.2 Hybrid Index Framework
8.6.3 Experimental Evaluation

8.7 Conclusion

9 Conclusion and Outlook
9.1 Conclusion
9.2 Outlook

A Retrieval Quality and Sensitivity
B TREC

C INEX

List of Figures

List of Tables

References

Index

189
189
189

191

209

215

225

229

230

241

List of Abbreviations

C={dy,...,dn} : document corpus/collection consisting of N documents
ctf(ti) = D gec tf(ti,d) : collection term frequency of term t; in C

df (t;) : document frequency of term t; in C

dt : number of distinct terms in C

dt(d) : number of distinct terms in document d

idf (t;) : inverse document frequency of term t; in C

idf;j(t;) : inverse document frequency of term t; in C, variant j

le = gecla = length of document collection C

lg = |d| : length of document d

le = |e| : length of element e

K=Fk-[(1-b)+0- avgdl] frequently occurring component in scoring models
N : number of documents in the document corpus/collection C

P C{1,...,1q} : subset of positions in document d

Py(t
Pt
Pa(q

Pe(q

pi(d;) : term occurring at position i of document d;

)={i:pi(d) =t} C{1,...,lq} : set of positions in document d where term t occurs
)={i:pi(e) =t} C{1,...,lc} : set of positions in element e where term t occurs
) := U,eqPa(ti) = set of positions of all query terms in document d
) := Up,eqPe(t;) : set of positions of all query terms in element e
pi(e;) = term occurring at position i of element e;

q={t1,...,tn} : unordered query with query terms ty,... t,

Qadj,a(q) == {(i,5) € Palq) x Pa(q) | (i <j)AVEE{i+1,....5 =1}k & Py(q)}
set of pairs of query terms in document d that are adjacent to each other

Qadje(q) = {(i,7) € Pe(q) x Pe(q) | (i <j)AVE€{i+1,....5 -1} : k & Pe(q)}

set of pairs of query terms in element e that are adjacent to each other

Qan,d(g, dist) :={(i,j) € Palq) x Pa(q) | (i <j) A (j —i < dist)} :

set of pairs of query terms in document d within a window of dist positions
Qai,d(q) : the same as Qqu.d(g, dist), but employs a window size of dist =l

Qair,e(q, dist) :={(i,5) € Pe(q) X Fe(q) | (i <j) A (j —i < dist)} :
set of pairs of query terms in element e within a window of dist positions

Qaite(q) : the same as Qqu (g, dist), but employs a window size of dist = I,

qtf(t;) : query term frequency of term t; in a query

Sq = (t1,...,tn) : ordered query

Ta(P) =A{t| i € P Api(d) =t} : terms located at the positions of P in document d
T.(P) ={t| i € P Ap;(e) =t} : terms located at the positions of P in element e
tf(ti,d) : term frequency of t; in d

V ={v1,...,un} : vocabulary, set of terms which occur in an index

Wy = (qu(t1),...,quw(ts)) C [0,1]" : query term weights for terms in query q

Chapter 1

Introduction

There is a plethora of applications, on the Web, in XML retrieval, in Intranets, Digital
Libraries, or Desktop search, where large document collections need to be queried.
Users expect not only high quality answers but also require almost instant response
times. To achieve these conflicting goals, index structures and algorithms have to be
devised that index documents in a compact way that allows determining a ranking
of the top matching documents without inspecting the entire index. In this thesis,
we focus on retrieval models for proximity search, which go far beyond simple bag
of words. Proximity score models are a means to improve the retrieval quality of
results by exploiting term position information of query term occurrences in documents
where positional distances consider contextual information. Clearly, a good proximity
score model has also to be robust to model parameters. Phrases are a hard filter for
documents that can be used to further improve retrieval quality, but may also be subject
to deleting potentially relevant results if the phrase in the query is not exactly matched
in a document. Proximity scores allow soft phrase querying without the requirement
to specify phrases.

The improvement in user-perceived result quality comes, however, in general at the
price of a larger index size and higher query response times. As there is no need to
exhaustively compute the score of all documents with respect to a query, as only the
top ranked documents are shown to a user, we apply top-k algorithms which are an
effective means to tackle efficiency issues by dynamic pruning/early termination. The
key idea is to stop the query processing at a point where all potential top results have
been inspected. In this context, it is important that a proximity score model can be
cast into precomputed index lists to compute score bounds for result candidates, hence,
allow early stopping. Devising compact index structures that can be efficiently queried
and at the same time provide highly accurate results is the task we consider in this
thesis. We show how proximity scores that enhance retrieval quality can be integrated
into efficient top-k algorithms.

We propose to extend the index with additional term pair lists that maintain prox-
imity scores. However, an index with these lists can become prohibitively large.

A naive approach would simply cut index lists or exclude complete lists already

3

4 1. Introduction

during the indexing phase. However, it remains unclear where to cut index lists, hence
the tradeoff between performance gains and loss in user-perceived result quality is rather
ad-hoc and bears the risk to drastically favor one or the other extreme.

To overcome this, in this thesis, we devise a number of techniques for limiting
the index size. Occurrences within a large proximity distance have only a marginal
contribution to the overall score, we propose a window-based pruning approach that
only considers term pair occurrences in a text-window of fixed size. We heuristically
limit the list length to a constant number of entries, usually in the order of a few
thousand entries. Further list pruning with quality guarantees is applied.

We show that pruned term and term pair lists provide a retrieval quality compara-
ble to unpruned term lists. At the same time, this not only saves on disk space, but
significantly accelerates query processing. We propose an index tuning framework that
prunes term and term pair lists in a systematic fashion and we prune both list types by
list length, term pair lists are additionally restricted to entries above a minimal proxim-
ity score contribution. If the disk space is limited, control over the space consumption
of index structures is necessary. It is desirable to opt between index optimization to-
wards maximum efficiency and maximum effectiveness given an index size constraint.
Our approach allows tuning pruning parameters by using a set of queries and their
relevance assessments for the collection to be indexed or, alternatively, if relevance as-
sessments are not available, by a result overlap approach. In addition, query logs can
be used to select term pair lists to be materialized. Using lossless index compression,
the index size can be further decreased.

Although this thesis focuses on Web Retrieval scenarios for the evaluation of the pre-
sented approaches, the developed techniques are not only applicable to Web Retrieval,
but also to other domains such as book search over digital libraries or Intranet search
for enterprises that keep track of various kinds of documents such as blueprints and
patents. In fact, we make a proximity score feasible for XML element retrieval and show
that we can apply our index tuning framework for indexes that support content queries
for XML element retrieval. Beyond the technical contributions in the area of proximity
indexing and search, this thesis provides a comprehensive survey that describes and
experimentally compares a significant portion of proximity scoring models.

1.1 Contributions

1. We present a comprehensive comparative analysis of a significant set of proximity
score models in a single evaluation framework with four test beds. We extensively
present and classify existing proximity-enhanced score models in a joint notation;
using one running example, we illustrate the various models and include a feature
list to compare the required model features. We show how to adapt a state-of-
the-art proximity scoring model to support content queries on XML data.

2. We carry out a rigorous analysis of the potential of explicit phrases for retrieval
quality and compare it to the retrieval quality of a state-of-the art proximity score

1.2 Publications 5

model. A user study investigates the degree of user agreement about phrases in

a query.

3. We propose a novel index structure that combines content and proximity scores.
Processing that index structure together with a content score index improves
query processing in top-k algorithms by up to two orders of magnitude through
tighter score bounds and a better retrieval quality compared to processing content
score lists only. We apply top-k query processing to several proximity score models
and devise appropriate index structures.

4. We show that already a few thousand read entries on unpruned term and term pair
lists are good enough to yield a retrieval quality comparable to reading unpruned
index lists. This insight opens the door to a simple merge join-based approach
with pruned index lists: we require less disk space and keep the performance
improvements.

5. We propose a novel, distributed index tuning framework for term and term pair
index lists that optimizes pruning parameters for retrieval quality or efficiency
under index size control with well-defined optimization criteria. We allow a selec-
tive materialization of term pair index lists based on information from a query log
and show how to perform index tuning both in the presence and in the absence
of relevance assessments.

6. We present a hybrid index structure for improved cold cache run times of small
and medium-sized queries that reduces the number of fetched index lists.

1.2 Publications

Various aspects of this thesis have been published in [SBH*07, BS08b, BS08a, BST0S,
BS09, BBS10, BS10, BS11, BS12].

Effectiveness-related contributions have been described in the following publications:
in [BS08b], we have presented a proximity score model for content-only queries on XML
data, enriched with additional experiments on a different test bed in [BSTO08].

[BS08b)] Andreas Broschart and Ralf Schenkel. Proximity-Aware Scoring for XML
Retrieval. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
2008, Poster.

[BST08] Andreas Broschart, Ralf Schenkel, and Martin Theobald. Experiments with
Proximity-Aware Scoring for XML Retrieval at INEX 2008. In Advances

in Focused Retrieval, 7th International Workshop of the Initiative for the
Evaluation of XML Retrieval, INEX 2008.

6 1. Introduction

In [BBS10], we have rigorously analyzed the potential of phrases, compared the retrieval
quality to proximity scores and carried out a user study.

[BBS10] Andreas Broschart, Klaus Berberich, and Ralf Schenkel. Evaluating the
Potential of Explicit Phrases for Retrieval Quality. In Advances in Infor-
mation Retrieval, 32nd European Conference on IR Research, ECIR 2010,
Poster.

Efficiency-related contributions have been described in the following publications:
in [SBH'07], we have shown how to accelerate top-k query processing by means of
a content score index structure and a new index structure that incorporates a content
and a proximity score. Furthermore, we have shown that a few thousand entries per
list are enough to provide the same retrieval quality as on unpruned content score lists.
In addition, pruning saves on index space.

[SBHT07] Ralf Schenkel, Andreas Broschart, Seung-Won Hwang, Martin Theobald,
and Gerhard Weikum. Efficient Text Proximity Search. In String Pro-
cessing and Information Retrieval, 14th International Symposium, SPIRE
2007.

In [BS08al, we have presented the merge join-based approach with pruned index lists to
save on overhead costs of top-k query processing and to lower index space requirements.

[BS08a] Andreas Broschart and Ralf Schenkel. Effiziente Textsuche mit Positions-
information. In Grundlagen von Datenbanken, 2008.

In [BS12], we have presented a novel, distributed index tuning framework which is a
major part of this thesis (cf. Chapter 8) and supported it with extensive experiments
especially for GOV2. Additional experiments with this tuning approach for more test
beds have been released for the INEX 2009 Efficiency Track in [BS09] and for the TREC
Web Track 2010 in [BS10].

[BS12] Andreas Broschart and Ralf Schenkel. High-Performance Processing of
Text Queries with Tunable Pruned Term and Term Pair Indexes. In ACM
Transactions on Information Systems 2012, Volume 30, Issue 1.

[BS09] Andreas Broschart and Ralf Schenkel. Index Tuning for Efficient Proximity-
Enhanced Query Processing. In Focused Retrieval and Evaluation, 8th In-
ternational Workshop of the Initiative for the Evaluation of XML Retrieval,
INEX 2009.

[BS10] Andreas Broschart and Ralf Schenkel. MMCI at the TREC 2010 Web
Track. In The Nineteenth Text REtrieval Conference Proceedings, TREC
2010.

1.3 Thesis Outline 7

In [BS11], we have presented a hybrid index structure for improved cold cache run times
for pruned indexes from our index tuning framework that trades in a reduced number
of fetched lists for an increased number of read bytes.

[BS11] Andreas Broschart and Ralf Schenkel. A Novel Hybrid Index Structure
for Efficient Text Retrieval. In Proceedings of the 34th International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2011, Poster.

1.3 Thesis Outline

Chapter 2 gives an extensive overview over proximity-enhanced score models that we
put in four categories: after describing unigram models that serve as basis for proximity
score models, we detail every proximity score model and carry out a system-oriented
comparison of the implementation effort required per score model. Chapter 3 introduces
two popular evaluation initiatives, namely TREC (text retrieval), and INEX (XML
retrieval) and two less popular, niche initiatives. We present a choice of test beds
for each of them and performance metrics for both text/document retrieval and for
XML retrieval. Chapter 4 shows experimental results of the score models from the
original papers surveyed in Chapter 2. As they usually compare only a few of the score
models, we perform a comparative analysis of a significant portion of proximity score
models in a single evaluation framework using four test beds. Chapter 5 proposes one
of the first XML score models that uses proximity information, rigorously analyzes the
potential of explicit phrases for retrieval quality, and compares it to a proximity score.
Chapter 6 presents various top-k algorithms from both the database systems and the
IR community as well as non-top-k algorithms. Chapter 7 describes a modification of
Biittcher et al.’s score model that allows to use it in a top-k style with dynamic pruning
techniques that not only improves retrieval effectiveness but also efficiency compared
to standard top-k algorithms. We show that already a few thousand read entries per
index list yield a good retrieval quality. This opens the door to using light-weight n-ary
merge joins to save on processing overhead. Moreover, we discuss the feasibility of the
remaining proximity score models surveyed in Chapter 2 for top-k query processing
and propose appropriate index structures where possible. Chapter 8 introduces our
index tuning framework for trading off index size and result quality given an index
size constraint. Chapter 9 concludes this thesis and outlines possible future research
directions.

Chapter 2

Proximity Score Models

2.1 Introduction

2.1.1 Motivation

In search engines scoring functions play an important role to rank results supposed
to answer user queries. Therefore, the quality of the scoring function is decisive to
user satisfaction and success of the search engine. Nowadays, many search engines rely
on some form of BM25 [RW94, RWHBT95], a state-of-the-art content-based scoring
model commonly used in probabilistic information retrieval. It incorporates ¢f values
(term frequency, i.e., the number of a term’s occurrences in a document) and idf values
(inverse document frequency, i.e., the inverse of the number of documents that con-
tain a term) plus document length information. Content-based scoring models usually
represent documents using “bags of words” that consider all query term occurrences,
but ignore the information where these query terms occur. That way those models
ignoring positional information are foregoing the chances to leverage the power of term
proximity information, i.e., measuring the distance between query term occurrences in
a document and aggregating them into a proximity score to rank the document appro-
priately. If this valuable information is ignored, users might face unsatisfactory results.
Suppose a user poses the query surface area of a triangular pyramid. Scoring func-
tions that completely ignore proximity information may consider documents relevant
that contain query terms frequently, but in different paragraphs that are likely to treat
different topics: in a document related to geometric objects like the one depicted in
Figure 2.1, the first paragraph might elaborate on the "volume of a triangular prism”,
while the second talks about the "volume of a square pyramid”, and the third about
the "surface area of a cylinder”. Each of the query terms will individually occur quite
frequently, but not in the user-intended context. From a user’s point of view, formu-
lating her information need as a phrase query might be the solution to prevent such
results. As phrase queries are usually used as hard filters, documents that do not con-
tain the phrase terms in the exact order (as they might be interleaved by a different
term or appear in a slightly different order) are ignored. Unfortunately this comes at
the expense of many discarded good results - documents carrying information about

9

1

=)

2. Proximity Score Models

1st paragraph:
volume of a
triangular prism
7 2nd paragraph:
j volume of a
square pyramid
3rd paragraph:
surface area of
a cylinder

document

n

Figure 2.1: Non-relevant document for query surface area of a triangular pyramid.

the "surface area of a pyramid composed of four triangular faces” would certainly be
a good hit, but excluded by the phrase query. Proximity scores provide a solution
to alleviate those effects by providing some kind of soft phrasing without the need to
specify phrase bounds by the user.

This chapter gives an extensive overview of existing proximity-enhanced score mod-
els. We categorize them into the following four categories:

e linear combinations of a content score model and a proximity score model de-
scribed in Section 2.4 (e.g., Rasolofo and Savoy [RS03], Biittcher et al. [BCO5,
BCL06], Uematsu et al. [UIF+08], Monz [Mon04], and Tao and Zhai [TZ07]),

e integrated score models described in Section 2.5 (e.g., Song et al. [STW™T08], de
Kretser and Moffat [dKM99, dKMO04], and Mishne and de Rijke [MdRO05]),

e language models with proximity components described in Section 2.6 (e.g., Lv
and Zhai [LZ09], and Zhao and Yun [ZY09]), and

e models that incorporate proximity features and learn to rank by application of
machine learning techniques described in Section 2.7 (e.g., Svore et al. [SKK10],
Metzler and Croft [MCO05], and Cummins and O’Riordan [CO09)]).

An experimental study in Chapter 4 will investigate the retrieval quality for a selec-
tion of these approaches and compare them to the retrieval quality that can be achieved
using BM25.

2.1.2 Model and Notation

In order to describe the scoring models of this survey in a uniform manner, we first
introduce some notation.

2.1 Introduction 11

Definition 2.1.1. (corpus, vocabulary, position-related notation)

A corpus C ={dy,...,dn} is a set of N documents where each document is considered
a sequence of terms. The vocabulary V- = {v1,..., vy} is the set of terms which occur in
an index. Given a document d with length 5, we denote the term occurring at position
i of d by p;i(d),1 < i < lg; if the document is clear from the context, we simply write
pi-

For a term t, we capture the positions in document d where t occurs by Py(t) = {i :
pi(d) = t} C {1,...,1q}; if d is clear from the context, we write P(t). We write
Py(q) = U,eqPalt) for the positions of all query terms in document d, again omitting
the suffix d if the document is clear from the context.

Given a set of positions P C {1,...,lg} and a document d, we write Ty(P) to denote the
set of terms at the positions of P C {1,...,l4} in d. Precisely, T4(P) := {p;(d)]i € P}.

Definition 2.1.2. (document frequency, inverse document frequency)

A term t; occurs in df (t;) documents in C, the document frequency of t;. The inverse
document frequency idf (t;) measures a term’s importance in C by means of an inverse
function of df (¢;). In the literature (e.g., [BCL06, RS03, UIF+08]), the inverse document
frequency idf (t;) is used in (slightly) different versions!, e.g.,

o idfi(t;) = log gy

o idfa(t;) = maz{0, logN df } and

o idfs(t) = maz{0,log YIS Q;gﬂ

Definition 2.1.3. (term frequency, collection term frequency for terms and
n-grams)

Given a term t;, a corpus C, and a document d in C, the term frequency of t; in
d, tf(t;,d), is the number of times term ¢; occurs in d. The term frequency of the
n-gram (i, ..., tixn—1) in d, tf((t;,...,titn—1),d), is the number of times the n-gram
(tiy... tiyn—1) occursin d. The collection term frequency of t; is the total number of oc-
currences of the term ¢; in C and defined as ct f(t;) = Y _ .0 tf(ti, d). The collection term
frequency of the n-gram (t;, ..., t;1n—1) is the total number of occurrences of the n-gram

(ti,...,titn—1) in C and defined as ct f((t, ..., tixn—1)) = D gec LS ((ti,- - s tizn—1),d).

Definition 2.1.4. (document and collection length, number of distinct terms
in a document or collection)

Given a corpus C and a document d in C, the document length of d corresponds to
the number of term occurrences in d and is denoted by Iy = |d|. The collection length
corresponds to the number of term occurrences in C and is denoted by lc = > ;¢ la-
While dt(d) = |{t : tf(t,d) > 0}| stands for the number of distinct terms in document
d, we use dt = |{t : 3d € C s.t. tf(t,d) > 0}| as an abbreviation for the number of
distinct terms in C.

'Please note that, unlike e.g., [RS03, UTFT08], for idf2(t;) and idfs(t;), we have imposed a lower
bound of zero to avoid negative score contributions of too frequent terms.

12 2. Proximity Score Models

For the ease of presentation, as a default, we assume that each query term occurs
just once per query such that we can use sets of terms to model issued queries. In
some cases it may be necessary to deviate from this (e.g., if the order of query terms in
the original query matters). Where applicable we will make additional remarks in the
description of the affected scoring model.

Definition 2.1.5. (query, query term frequency, unordered query, ordered
query, query term weights)

W.lo.g. the user issues an (unordered) query ¢ = {t},...,t,;} which is supposed to
represent her information need; the query processor evaluates only query terms from
V, i.e., the evaluated queryis q=¢' NV = {t1,...,t,}. Ordered queries are denoted by
Sq = (t1, .. tp).

The query term frequency denotes the number of times a query term ¢ appears in a
query Sy, short gt f(t); for unordered queries gt f(t) is either 0 or 1.

Query terms may be attributed query term weights W, = (qw(ty1), ..., quw(t,)) C [0,1]™.

Definition 2.1.6. (set of pairs of adjacent query term occurrences, set of
pairs of all query term occurrences)
We denote pairs of query terms that are adjacent to each other (there might be non-

query terms in between) in document d by
Qadjd(a) == {(i,J) € Pa(q) x Pa(q) | (i <j)AVEe{i+1,....j—1}:k & Py(q)}.
Pairs of query terms within a window of dist positions in document d are defined as
Qa,a(q, dist) :={(i, j) € Pa(q) x Pa(q) | (i <j) A (j —i < dist)}.

Please note that in this case, the query terms need not occur consecutively in a docu-
ment. Qa,d(q) := Qai.d(q,la) denotes all query term pairs in the document.

2.2 Unigram Models

This section describes unigram models that serve as basis for proximity scores.

2.2.1 BM25

We start with the probabilistic, content-scoring model BM25 [RW94, RWHB™'95].
Robertson and Walker [RW94] define the relevance score of a document d for the query
qg=A{t1,...,tn} as

(k1 +1)-tf(t:, d) RSy, (ks +1)gtf(t:)
d - -W i) T /e
scorepas (- 0) tze; E-[(L—b)+b-] + £ (ts,d))

where the Robertson/Sparck Jones weight [RJ76] is defined as

(r(ti) +0.5)(N — R — df (t;) + r(t;) + 0.5)

W (t;) = log (df (t:) — r(t;) + 0.5)(R — r(t;) + 0.5)

2.2 Unigram Models 13

R denotes the number of relevant documents, and r(¢;) the number of relevant docu-
ments which contain term ¢;.
Later publications substitute the Robertson/Sparck Jones weight by a form of idf s.t.

(k1 +1) - tf(t;, d)

k- [(1=b)+ b ity + tf (ti, d)

idf (t:) - qtf'(t:),

scorepn2s(d, @) = Z

tieq

where idf and ¢t f’ determine the specific variant of BM25; idf is a variant of the inverse
document frequency (as described in Definition 2.1.2) and gtf’ (cf. Definition 2.1.5)
represents a function that incorporates t¢;’s query term frequency gtf. In the BM25
scoring model, k, k1, and b are constants (where k1 = k in the original definition), and
avgdl is the average document length in the collection, i.e., avgdl = % A frequently
used abbreviation is K =k -[(1 —b) +b- mf;dl].

Table 2.1 shows the idf and q¢tf’ components and the tuning parameters k, ki,
b, and optionally k3 as used in a follow-up [RWHB*95] to the original BM25 paper?

and in some proximity scores. k3 set to none indicates the absence of k3 in the re-

spective method. Additionally, the table contains a pointer to the section where the

corresponding content /proximity scoring model is described.

lmethod [idf or WESJ [qtf’ [b [kl [k [k3 [Section‘
Robertson et al. WERST (1) (Dot 1 €[0.6,0.75] [€[1.0,2.8] [b [8 2.2.1
N—df(t;) qtf(t;)
Rasolofo and Savoy maz{0, log) } Tataqtf (6 0.9 1.2 2 [1,000| 2.4.1
Uematsu et al. maa{0, log Yo UE0E [0.75 1.2 1.2|none | 2.4.3
Biittcher et al. log %t) 1 0.5 1.2 1.2|none | 2.4.2
: N—df({)1051 | (ka+1)- 2 :
Tao and Zhai maz{0, log df({S-ﬁ-)ST5 } (2;_;;?({5;) optimal 1.2 1.2(1,000| 2.4.5
Cummins and O’Riordan | maz{0, log %} qtf(t:) 0.75 0 1.2|none | 2.7.4

Table 2.1: Overview: BM25 variations.

In Tao and Zhai [TZ07], b is tuned for optimality on BM25, although its exact value
is not reported. For our own experiments, we use the BM25 score as used by Biittcher
et al. in [BC05, BCLOG6].

2.2.2 Lnu.ltc

Buckley et al. [BSM95] introduced the Lnu.ltc weighting scheme used by Monz [Mon04]
(cf. Section 2.4.4) in a normalized version. Lnu specifies the document weight that is
determined by a logarithmically smoothed term frequency and a pivoted length nor-
malization. Lic relates to the query term weight that is computed by a logarithmically
smoothed query term frequency in combination with idf and a standard cosine normal-
ization.

2The original BM25 paper [RW94] does not specify the parameter choices while [RWHBT95] shows
typical values and ranges.

14 2. Proximity Score Models

The formulation for the Lnu weighting is

1+log(tf(t:,d))
1+10g(m)9tj c{t:tf(t,a)>0)tf(t5,d))

(1 — slope) - pivot + slope - dt(d)"

Inu(d,t;) =

The slope value is fixed at 0.2, pivot is set to the average number of distinct terms per
document in the collection. The ltc weighting scheme for queries is

(log(qtf(t:)) +1) - idf1(t:) .
JEealog(atf (£)) + 1) -)P

lte(t;) =

2.2.3 ES

Cummins and O’Riordan employ a term weighting scheme learned in [CO07]

tf(ti,d) - qtf(t; ctf(t;
ti GTd Pd tf(tu d + 0 45 df

scoreps(d,q) =

and linearly combine it with their proximity score combinations learned by Genetic
Programming as described in [CO09]. Section 2.7.4 elaborates on the details of the
learning process and specifies the learned proximity scores.

2.2.4 Language Models, Smoothing Methods, and KL-Divergence

Another group of models are language models (LM) which have been employed in
several areas of computer science such as speech recognition. Ponte and Croft [PC98§]
and Hiemstra [Hie98] were the first to use language models in Information Retrieval.
Language models aim at modelling the query generation process. To this end, they rank
documents according to the likelihood that a random sample of a document generates
a given ordered query S, = (t1,...,t,). This likelihood is captured by means of a
document language model for each document. The most basic language model is the
unigram language model that uses bag-of-words. It relies only on term distributions
and does not use any context information:

Pumg'ram(Q‘d) = HP(tJd),
=1

where P(t;|d) = W which corresponds to the maximum likelihood model for
document-term probability.

For completeness, we introduce bigram language models which consider the previous
term as a context (and therefore already incorporate some proximity information by
means of the context information) such that

Pbigram(q’d) = P(tl‘d) HP(ti‘ti—la d)7
=2

2.3 Example 15

where P(t;|t;—1,d) = %. The general form of n-gram language models consid-
ers the previous n-1 terms and defines probabilities analogously to the bigram language
model.

In [ZL04], Zhai and Lafferty survey different smoothing methods and compare their
performance. Smoothing methods aim at adapting the maximum likelihood estimator
such that data sparseness is compensated. Jelinek-Mercer smoothing [JMS80] uses a
linear interpolation of the maximum likelihood model for document-term probability
as foreground model and the collection-term model as background model. It uses a

mixture parameter ¢ to control the influence of each model
P(t|d,C) = (1 =¢) - P(t|d) + ¢ - P(t|C),
where P(t|d) = Ud) and P(t|C) = /) For a non-seen term ¢ in d, tf(t,d) is 0 which

lq le
would make the score of that document zero for any query containing t (as P(t|d) = 0);

smoothing aims at fixing that flaw by introducing the background model. Another
popular smoothing method surveyed in [Z1.04] is the Dirichlet prior

Plla.c) - L0+ 1P

where p is a smoothing parameter.

KL-divergence [LZ01] measures the difference of two probability distributions. In
the case of language models it compares a query language model and a document
language model. The basic form of the KL-divergence model is defined as

f(x)
KL(f,g) = f(x) - log .
zm: 9(z)
If f and g represent the same distribution, their KL-divergence value becomes 0 — for
larger values, the divergence is larger. Lv and Zhai (cf. Section 2.6.1) use KL-divergence
to compare the similarity between a query language model and their positional language
model that constructs a language model at each term position. The KL-divergence

language model variant used by Tao and Zhai is defined as

tf(t,d)
p - p(t[C)

U
lg+p

scoregr(d,q) = Z (qtf(t)-in(1+
t€Tq(Palq)

)+ lal - In

where p(t|C) = %C(t)

2.3 Example

As a running example, we will use a poem written by Amy Lowell (taken from ”A Dome
of Many-Coloured Glass”) which is depicted in Figure 2.2. Superscripts represent term
positions. Our query will be ¢ = {sea, shell, song} or, for order-aware scoring models,
Sy = (sea, shell, song).

The query terms (with position information, disabling match cases and ignoring
punctuation) in the poem are located at {sea', shell?, sea®, shell*, sea®, shell®, song'?,
song!t, sead, shell®*, sea®, shell®}.

16 2. Proximity Score Models

Seal Shell?
Sea? Shell,* Sea® Shell,

Sing” me® a? song,'” O'! Please!'?

A3 song! of'® ships,'® and!” sailor'® men,

And?® parrots?!, and?? tropical®?® trees,?*

Of?% islands?® lost?” in?® the?® Spanish3® Main3!
Which3? no®* man* ever?> may3® find3" again,3?
Of* fishes? and*! corals*? under® the** waves,

51 52

And*® seahorses?” stabled*® in?” great®® green®! caves.

Sea®® Shell,>* Sea’ Shell,>®
Sing®” of°® the® things®® youb! know%? s0% well.64

Figure 2.2: A poem with position information.

2.4 Linear Combinations of Scoring Models

One category of text-proximity enhanced scoring models is based on linearly combining
content and proximity scores. Such scoring models always attribute a relevance score
of the following form to a given document d with respect to a query ¢:

score(d,q) = A\ - cscore(d,q) + (1 — \) - pscore(d Ae (0,1).
(d,q) (d,q) + () p (d,q), X € (0,1)

While cscore denotes the content score, pscore denotes the proximity score. In
this section, we will present several approaches that can be assigned to this class of
scoring models, namely scoring approaches by Rasolofo and Savoy [RS03], Biittcher et
al. [BC05, BCLO06], Uematsu et al. [UIF+08], Monz [Mon04], and Tao and Zhai [TZ07].
Please note that the absolute scores computed in [RS03, BC05, BCL06, Mon04, UTF 08,
TZ07] differ by a factor of two from the descriptions presented here to fit our frame-
work. Dividing the scores from the original papers by two however neither influences
the ranking (as the order of scores is preserved) nor the ratio between scores attributed
to documents.

2.4.1 Rasolofo and Savoy

Rasolofo and Savoy [RS03] compute results of a query ¢ by means of a two-stage algo-
rithm: in stage one, the algorithm computes the top-100 documents from C according
to the cscore which is a variant of Okapi BM25 described in Section 2.2.1. In stage
two, it reranks these documents. To this end, for every such document, it computes the
pscore. Reranking just the top-100 documents from stage one is motivated by efficiency
needs and the main interest to improve the ranking of the top-ranked documents.

The algorithm sequentially reads the query term positions within d and computes
a weight for each pair of query term positions (4, j) € Qau.a(q, dist) as

ti(i,4) = =53¢

2.4 Linear Combinations of Scoring Models 17

The underlying assumption is that there is no semantic relationship between two key-
words located in a text window with a width that exceeds dist. [RS03] sets dist to a
value of 5. This means for the poem example and dist=5 that song'® only influences
(and is influenced by) sea®, shell®, and song'* as these three occurrences are located
within the text window of song'®. We define the sum of ¢pi contributions of term pair
(ti,t;) within a text window of size dist as

tpiaccq(t;, tj, dist) = Z tpi(i, j).
(4.9)€Qaur,a(gq,dist):pi=tiAp;=t;

As shell* or sea® are too distant from song'? in document d (i.e., they are not part
of song'®’s text window), the term pairs (shell*, song'?) and (song'®, sea®®) do not
influence tpiaccy(shell, song, 5) and tpiaccy(sea, song,5), respectively.
For our example the formula leads to the following tpiacc scores:
tpiaccy(sea, sea,5) = ! + ! + ! + ! = 0.625,
B-12 (G-12 " (5-32 " (55—53)?2
tpiaccy(sea, shell,5) = ! + ! + ! + ! + ! +
2-12 @4-12 (6-12% (3-2?2 (5-2)
1 1 1 1 1
@32 " 6-32 " 542 T 6-52 " (5a—532 "
1 1 1
(56 —53)2 '~ (55 —54)% T (56 —55)2 8484,
tpiaccy(sea, song, 5) :m =0.04,
tpiaccy(shell, shell,5) = ! + ! + ! + ! = 0.8125
Y T 92 T (6-2)2 T (6-4)2 " (56 — 54)2 ’
tpiaccq(shell, song,5) —M = 0.0625, and
tpiaccq(song, song,) :(M—110)2 = 0.0625.

The weight for a pair of query terms (¢;,t;)
tpiaceq(ti, tj, dist) - (k1 + 1)

ti, ti,dist) =
wd(REVE (2]) tplaccd(tzvtjvdZSt) +K

is structure-wise similar to the term frequency component of BM25, substituting ¢ f (¢, d)
for tpiaccy(ti, tj). Finally, the proximity scoring function for a document d on query
q sums up the contributions of all pairs of query terms in document d. Hence, the
formulation

pscore(d, q,dist) = Z wq(ti, t;, dist) - min{qw(t;), qu(t;)},
(tistj)€qxq

where qu(t;) = idfa(t;) - %g?&_) , which shrinks the influence of a query term to the
importance of the least important term in the considered pair. The final score is defined
as

1 1
SCOT€Rasolofo(d, ¢, dist) = 3 cscore(d, q) + 3 - pscore(d, q).

18 2. Proximity Score Models

2.4.2 Biittcher et al.

Biittcher et al. [BC05, BCL0O6] combine the baseline BM25 scoring function® with a
proximity score which we will describe in the following to compute document-level
relevance scores. For any document d, they maintain for every query term t; an accu-
mulator value denoted by accy(ty). This accumulator value can be summarized by the
following formula:

accq(ty) = > m + 2 E(Jifi(];)lg '

Biittcher et al. use adjacent query term occurrences to compute accumulator values.

(4.3)€Qadaj,a(q):pi#Pj Pi=tk (4,7)€Quadj,a(a):Pi#Pj pj=tk
Adjacency is used in the broader sense here such that non-query terms might be located
between adjacent query terms. It is obvious that the accumulator value increases the
more, the less distant the occurrences of two distinct terms are and the less documents
in the collection contain the adjacent term.

For our example we demonstrate how to compute accy scores. To this end we have
to consider Qqq5.q4(q)= {(1,2),(2,3),(3,4),(4,5), (5,6), (6,10), (10, 14), (14, 53),(53, 54),
(54,55), (55,56)} which contains the position information of adjacent query term oc-
currences in the example poem.

accq(t) considers idf scores of t’s adjacent query terms. We briefly explain how to
compute accgy(song): for this purpose we consider all query term occurrences adjacent
to any occurrence of query term song in d. song'* is adjacent to sea®® and shell® is
adjacent to song!®. accq(song) is increased by the idf scores of the adjacent terms
of ’song’ but decreases with the square of increasing distance to the adjacent terms.
Please note that accy(song) is not influenced by (song'®, song'?) as p1g = p14 = song.
Consequently,
idfy (sea) idfy (shell)
(53 — 14)2] [(10 — 6)2 I

The proximity score structurally resembles the BM25 scoring model presented in

accq(song) =[

Section 2.2, substituting the accumulator values for the tf values:

B , . accy(t) - (k1 + 1)
pscore(d, q) = ;mzn{l,zdfl (t)} adccd(t) ;K :

The document score for a document d structurally corresponds to the one formulated
in Subsection 2.4.1:

1 1
scoregittcher (d, q) = 3 cscore(d, q) + 3 - pscore(d, q).

In Biittcher et al.’s approach [BC05, BCLO06] only adjacent query terms of the same
document influence a query term’s aggregated proximity score. This varies the previous
work by Rasolofo and Savoy [RS03] that considers all query terms within a given text
window. Moreover, Biittcher et al. limit the term proximity score’s influence on the
document score for terms occurring in just a few documents. They do so by restricting
idf1(t) as a multiplier in pscore to one.

Swithb=0.5and k =k, = 1.2

2.4 Linear Combinations of Scoring Models 19

2.4.3 Uematsu et al.

From a structural point of view, Uematsu et al.’s approach [UIF*08] is very similar
to Biittcher et al.’s approach. Like Biittcher et al., they use a variant of BM25 (in a
slightly different version) as cscore. Details can be found in Table 2.1.

The proximity score structurally resembles the cscore, however substitutes the tf
values by co-occurrence values of all query terms. Here coue(d, q) counts the number
of sentences where all query terms from ¢ occur:

Coocc(da Q) : (kl +]-)
Coocc(da Q) + K

pscore(d, q) = Z ~adfs(t;).

ti€q

While the first sentence (positions 1 to 12) in our running example contains all query
terms (sea, shell, and song) at least once, the second sentence (positions 13 to 52) only
contains the query term song and the third sentence (positions 53 to 64) only sea and
shell, but not song; hence coocc(d,q)=1. scoreyjamatsy(d> ¢) combines its cscore and
pscore in the same way as SCorepigicher :

1 1
scoreematsu(d 4) = 5 cscore(d, q) + 3 - pscore(d, q).

2.4.4 Monz

Monz [Mon04] uses a normalized version of Buckley’s Lnu.ltc weighting scheme [BSM95]
as cscore. Monz normalizes the Lnu.ltc score

scoreppuite(d, q) = Z Inu(d,t;) - lte(t;)

ti€q
with respect to the maximal similarity score of the query such that

SCOT@Lnu.ltc(dy Q)
maxXqgec ScoreLnu.ltc((L Q)

SCOTeLnu.ltc,norm(da Q) =

The model used for the pscore builds on the concept of a minimal matching span,
which is the smallest text excerpt that contains all terms that occur both in the query
and in the document. To capture the minimal matching span more formally, Monz
defines the concept of matching spans. Given a document d and a query g, a matching
span ms is a set of consecutive positions, where ¢ N Ty({1,...,lq}) = ¢NTy(ms). That
means the consecutive document part represented by ms contains every query term
that occurs in document d at least once. The length of a matching span is defined as

length(ms) = max(ms) — min(ms) + 1,

mazxz(ms), min(ms) being the highest and lowest position in ms, respectively.

A matching span for d and ¢ with the shortest length is called minimal matching
span mms(d, q); its length is denoted length(mms(d, q)). If multiple minimal matching
spans exist, we can safely pick any of them (e.g., the one with the lowest min(ms))

20 2. Proximity Score Models

to compute the proximity score pscore: we can do that since the pscore only uses
length(mms(d, q)) (multiple minimal matching spans have the same length) and the
number of query terms in the minimal matching span (which is also equal for multiple
matching spans since they contain all query terms that occur in the document).

We illustrate the concepts of matching span and minimal matching span using our
running example, showing again the query term occurrences in d:

seal, shell?, sea®, shell*, sea®, shell®, song'®, song'?, sea®, shell®*, sea®, shell®®.

mms(d,q) ms

Matching spans of d contain all terms that occur both in ¢ and d. Therefore,
{14, ..., 54}, but also others like {14, ..., 56} qualify as matching spans. A matching
span with the smallest length, called minimal matching span, however, consists of
{5, ..., 10}. Note that in [Mon04] minimal matching spans have been defined ambigu-
ously. Instead of defining the minimal matching span as the matching span with the
shortest length in the given document, it has only been checked that a given matching
span does not contain another matching span with lower length as a subset. However,
this might result in multiple minimal matching spans of different lengths: in the exam-
ple given above, employing the ambiguous definition of Monz [Mon04], {14, ..., 54}
and {6, ..., 53} would qualify as minimal matching spans besides {5, ..., 10} since all
of them do not contain another matching span with lower length as subset.
The span size ratio considers the proximity of matching terms and is defined as

_ lenTa({L, .. lad))
ssr(d, q) = length(mms(d,q))

It measures how large the document excerpt has to be in order to cover all possible
distinct query terms in a document. In our example, length(mms(d,q)) = 10-5 + 1
= 6 and ssr(d,q) = 2 = 0.5. The matching term ratio

6
mtr(d, C]) — ‘q N Td({|1qv’ s 7ld})‘

measures the fraction of covered query terms in a document which is % =1
Span size ratio and matching term ratio are used to compute the

pscore(d, q) = ssr(d, q)® - mtr(d, q)°.

Here, o and (3 are additional weights for the span size ratio and the matching term
ratio, respectively.* The score of a document is then computed as

A -escore(d,q) + (1 — A) - pscore(d,q) : [gNTy({1,...,la})] > 1

onz d7 =
scorenonz(d, q) { cscore(d, q) : else

If d contains only one query term (i.e., [gNTy({1,...,l4})| = 1), the pscore is omitted.
If [gNTy({1,...,la})| > 1 (i-e., the document d and query ¢ have more than one query
term in common), both cscore and pscore influence the final score.

4Monz uses a=0.125, 3=1.0, and A=0.4 for his experiments.

2.4 Linear Combinations of Scoring Models 21

2.4.5 Tao and Zhai

Tao and Zhai [TZ07] linearly combine a baseline cscore with a proximity score. The
baseline scores are 1) the KL-divergence model and 2) the Okapi BM25 model as de-
scribed in Section 2.2.

The authors outline five prozimity distance functions which can be classified into
span-based and distance aggregation measures. The first class computes proximity scores
based on the length of a text segment that covers all query terms. The second class
aggregates distances over pairs of query terms and is more local than the first one which
takes all query terms into account.

The authors use two different span-based measures:

1) Span is defined as the length of the document part that covers all query term oc-
currences in a document, i.e.,

Span(d, q) = max(Fy(q)) — min(Pa(q)).
2) Min coverage (MinCover) uses the length of the shortest document part that covers
each query term at least once in a document, i.e.,
MinCover(d, q) = min{max(P') — min(P") : Ty(P") = Ty(P4(q))},
where P’ is a set of positions in document d.

Both span-based measures are normalized such that

_ maz(Py(q)) — min(Fa(q))

Spannorm(d7 Q) = ’Pd(q)| and
| _ min{maz(P') — min(P)|Ta(P') = Ta(Pafa))}
MinCoverporm(d, q) = Ta(P)] .

Distance aggregation measures come in three variants and are all based on the
minimum distance between pairs of query terms ¢, and ¢, defined as

mindist(tq,ty, d) = min{|i — j| : pi(d) = tq A pj(d) = tp}.
Those three variants encompass

1) Minimum pair distance (MinDist) which is the smallest distance over all query term
pairs in document d, i.e.,

MinDist(d, q) = ming, 4 e7,(Py(q)) tartt, 1ViNdi5t (ta, T, d) }-

2) Average pair distance (AvgDist) which is the average distance over all query term
pairs in document d, i.e.,

2
AvgDist(d, q) = 1 Z mindist(tq, ty, d)
n(n = ta,ty€Ta(Pa(q)) taFts

with n being the number of unique matched query terms in d.

22 2. Proximity Score Models

3) Maximum pair distance (MazDist) which is the maximum distance over all query

term pairs in document d, i.e.,

MazDist(d, q) = maxy, 1,e7,(Py(q))tatt, 1VINdist(ta, tp, d) }.

For the case that document d contains just one kind of query term, MinDist(d,q),
AwgDist(d,q), and MazxDist(d,q) are all defined as 4.

The authors propose two constraints for a function that transforms the value of
a proximity distance function 6(d,q) into a proximity score 7(d,q) which is a func-
tion of §(d, ¢). While the first constraint (called proximity heuristic) attributes smaller
proximity scores to larger d(d, ¢), the second constraint suggests a convex-shaped trans-
formation function that only rewards really close term occurrences. Both constraints
lead to the definition of a proximity score

m(d, q) = log(a + e~°@),

where « is a tuning parameter. The baseline retrieval models KL-divergence and BM25
are enriched with the proximity score such that

1 1 1 1
Ri(d,q) = E-scoreKL(d, q)—|—§-7r(d, q) and Ry(d,q) = 3 -scoreg)\ 25 (d, q)+§-7r(d, q)-

2.5 Integrated Score Models

Another category of proximity-enhanced score models are integrated score models. Un-
like the linear combination models presented in Section 2.4, integrated score models do
not linearly combine cscore and pscore parts, but seek providing a holistic, integrated
approach to rank.

2.5.1 De Kretser and Moffat

De Kretser and Moffat [dKM99, dKMO04] describe a model that does not make use of
Okapi BM25 [RW94, RWHB™95], but relies exclusively on proximity scores of query
terms in the text collection. It retrieves the exact point of maximum similarity to
the query for any given document, not the document as a whole. The presentation
of result snippets can benefit from the knowledge about the exact point of maximum
similarity as this opens the option to show only relevant document parts to the user. De
Kretser and Moffat’s key assumption is that text regions having a high density of query
terms are considered as highly important, while isolated query terms in a document
are considered as less important. Thus, dense text regions are attributed high scores,
while text regions consisting of isolated query terms generate lower scores.

To this end, for each query term ¢, there is a contribution function ¢; which expresses
the impact of ¢, occurring at a position [, on the score for position x. There are three
main factors that influence contribution functions: shape, height, and spread.

The shape of the contribution function determines the region of influence of each
appearance of ¢ in d. De Kretser and Moffat implemented triangle, cosine, circle, and

2.5 Integrated Score Models 23

arc functions that are plotted in [dKM99]. Unfortunately, the plots depicted in [dKM99]
for arc and circle do not match the formulas. Hence, we added two additional functions

we named circle’ and arc’ that match the plots.

triangle
cosine -------
circle --------

-St 0 St
offset from query term occurence x-|

Figure 2.3: Plots according to formulas in [dKM99].

triangle
circle

-St 0 St
offset from query term occurence x-|

Figure 2.4: Arc and circle replaced to fit the plots in [dKM99, dKMO04].

The corresponding contribution functions are listed below:
1. triangle: ¢(z,1) = max(0, hy - (1 — @))

1+cos W-M
2. cosine: ¢(x,1) = max(0, hy - w)

3. circle: ¢t(z,1) = max(0,hy - 4/1 — (|%”)2)

24 2. Proximity Score Models

4. arc: ¢(z,1) = maz(0,% - (1 - le:ll +4/1— (My))

St

5. circle’: ¢(x,1) = max(0, by - (1 — /1 — (1 — M)z))

St

6. arc’s ¢(z,1) = maz(0, & - (1 - /1 - (1 = =2 4 (1= Lzl

St
where |z — [| denotes the positional distance between an occurrence of query term ¢
at position [and the position x we want to compute a score for. Furthermore, h;
represents the height and s; the spread of t’s contribution function. The plots for the
functions are depicted in Figure 2.3 and Figure 2.4, respectively.

35 T T T T T T

sea
shell -
3 O = '_l' 'x"," ".' _____________ 1
P Y song

J ’ .
J § 3 s
K S Y "\
K i 't Y n

-' . .\
o -] K
=g J s, Ky —
G K4 4 “

similarity

1 5 _;_'. ,‘.“ '\“" |

10

Figure 2.5: Example: triangle-shaped contribution function.

The maximum height of the contribution function for a query term occurs at the
position of each query term appearance. A query term t generates a contribution
function using either a non-damped height

ht,non—damped = qtf(t) : th(t)

or a damped height
l
ht,damped = qtf(t) : loge Cic

2.5 Integrated Score Models 25

120 T T T T T T T T T T T T
aggregated ———

100
80

60

score,(d,q)

40

20

O I
5 10 15 20 25 30 35 40 45 50 55 60

X

Figure 2.6: Example: aggregated score score,,.

which are alternatively used as h; in the contribution functions. (The usage of qtf(t)
indicates that this approach allows for term repetitions in the same query.) The spread
or width of the contribution function determines the distance from the query term
appearance in which the query term exerts non-zero influence to the aggregated score.
A query term t influences proximity scores of terms within a radius of

dt le dt
le ctf(t) ctf(t)

The aggregated score for position z in document d and query ¢ is the sum of the

St =

contribution function values:

scorey(d,q) = Z Z ez,).

teq lePy(t)

Following our running example, Figure 2.5 depicts the individual non-aggregated
triangle-shaped contribution functions for each query term occurrence. Figure 2.6 de-
picts the aggregated scores at all locations in the example document; positions with
query term occurrences are marked with crosses.

To reduce computation costs, de Kretser and Moffat restrict the evaluation of ag-
gregated proximity scores to locations where query terms appear. Please note that,

26 2. Proximity Score Models

for some documents d, the highest score,(d,q) might be located at a non-query term
location = not considered for efficiency reasons. For the example document, whose ag-
gregated scores at various positions are shown in Figure 2.6, this issue does not arise
since the highest score,(d, q) is achieved at positions 4 and 5 where query terms occur.

Figure 2.7 shows a scenario where the highest score,(d, q) is located at a non-query
term position. This example underlies a cosine-shaped contribution function that is
applied to an example document that contains the query term shell at position 4 and
song at position 10. The highest score,(d,q) value, however, is achieved at the non-
query term position 6.

120 T T T T T T T T T T T T
aggregated ——
shell -
100 B Song ------------- -
R |
O
)
& 60 r _
S
3
40 |
20 _
0 1 %\f’u 1 1 1 1 1 I ! I 1
5 10 15 20 25 30 35 40 45 50 55 60

X

Figure 2.7: Example: highest aggregated score score, located at a non-query term
location.

To obtain a ranking for documents, the authors describe two algorithms: for a given
query ¢, both algorithms start off with retrieving for each document d in the corpus C
the set of positions P;(q) where query terms occur.

e The first algorithm computes for every document d and all positions 2 € P;(q)
the score;(d,q) at position x in d; the scores from all documents are sorted in
descending order. For each document d € C the algorithm creates a document
accumulator A[d] that keeps the document’s score. Now the algorithm starts
greedily processing the scores from all documents values and adds them to the
corresponding accumulator until £ documents have been seen. Those documents
are returned as the top-k results.

2.5 Integrated Score Models 27

e The second algorithm computes for each document d the maximum similarity
score at any position z € Py(q) in d and returns the k£ documents with the highest
scores.

As de Kretser and Moffat consider the first approach more effective, we use this one

later for our experiments.

2.5.2 Song et al.

Song et al. [STWT08] describe an algorithm that partitions documents into groups
of subsequent query term occurrences. By construction, the query terms in such a
group, called espan (short for ezpanded span), are pairwise distinct. By means of the
espans that contain a query term, the algorithm computes the query term’s relevance
contribution score (as a substitute for proximity scores) that is directly plugged into
an Okapi BM25 ranking function.

The following assumptions underlie the design of the algorithm: the closer appro-
priately chosen groups of query term occurrences in a document, the more likely that
the corresponding document is relevant. The more espans contained in a document,
the more likely that the document is relevant. The more query terms an espan of a
document contains and the more important these terms are, the more likely that the
document is relevant.

The algorithm to detect espans is depicted in Figure 2.8 and proceeds as follows:
given a document d and a query ¢, all query term occurrences form a sequence of (term,
position) pairs that are ordered by ascending position; each such pair is called hit. We
identify the j* query term occurrence in the given document by (a;,b;), a; and b;
being the query term and its position in the document, respectively.

The algorithm distinguishes four cases while scanning the position-ordered sequence
of hits:

(1) If the distance between the current hit (aj,b;) and the next hit (a;41,b;41) is larger
than a user-defined threshold dpqe (i-€., bj41 —bj > dinaz), a new espan starts with the
next hit. This is covered in lines 6-9.

(2) If the current hit (aj,b;) and the next hit (a;y1,bj41) represent the same query
term (i.e., aj = a;41), a new espan starts with the next hit which is described in lines
10-13.

(3) If the next hit (aj;+1,bj41) represents a term aj41 which is identical to a hit’s term
in the current subchain currentFEspan, it computes the distance between the current
and the next hit as well as the distance between the existing hit and the current hit.
The new espan begins at the bigger gap which is handled in lines 14-23.

(4) Otherwise the algorithm scans the next hit in the sequence of (query term, position)
pairs which is caught in lines 24 and 25.

Please note that for (3) a tie-breaker is missing, if the distance between the current
and the next hit equals the distance between the existing hit and the current hit. For
this case our implementation always splits between the current and the next hit.

28 2. Proximity Score Models

DETECTESPANS(d, q)

1 termsAndPositions < SORTBYPOSITIONASCENDING(d, q)
2 length < termsAndPositions.length()

3 espans «— {0}

4 currentEspan « ()

5 for (j = 1 to length-1)

6 if ((bj+1 —bj) > dmaa)

7 currentEspan « currentEspan U {(aj,b;)}

8 espans «— espans U {currentEspan}

9 currentEspan « ()

10 else if (aj+1 = CL]')

11 currentEspan «— currentEspan U {(aj,b;)}

12 espans « espans U {currentEspan}

13 currentEspan « ()

14 else if (I(az,bz) € currentEspan s.t. bj;1 = by)
15 distl «— b]'+1 - b]'

16 disty < bj - by

17 if (dist1 > distQ)

18 currentEspan « currentEspan U {(aj,b;)}
19 espans «— espans U {currentEspan}

20 currentEspan «+ ()

21 else

22 espans «— espans U {currentEspan}

23 currentEspan — {(a;,b;)}

24 else

25 currentEspan «— currentEspan U {(aj,b;)}

26 if (length # 0)

27 currentEspan « currentEspan U {(aength, biength)}
28 espans «— espans U {currentEspan}

29 return espans

Figure 2.8: detectEspans pseudocode.

For a query ¢, the set of all espans in document d is denoted as espans(d, q). We
illustrate now how to compute all espans for a document with the help of our running
example, assuming d,,.z=10. The query term occurrences are located at {sea', shell?,

sea®, shell*, sea®, shell®, song'?, song'*, sea®, shell®*, sea®, shell®®}.

The first espan consists of {sea!, shell?} by application of (3) since sea® is an

1

identical hit to sea'. As the distance between sea' and shell? equals the distance

between shell? and sea®

, our tie-breaker applies: it splits between the current hit
shell? and the next hit sea®. The second espan follows the same rule and consists of
{sea®, shell*}. The next espan consists of {sea®, shell®, song'®} by application of (2)

53 exceeds dynas-

as song'” is identical to song'*. The distance between song'* and sea
Hence, by application of (1), {song'*} forms an espan. According to (3) the remaining
two espans are {sea’?, shell®*} and {sea®, shell®}.

Intuitively, for Song et al., the relevance contribution of an espan is a function of
its density and the number of query terms occurring in the espan. The density of an

espan is defined as

#query terms(espan)

density(espan) = width(espan)

2.5 Integrated Score Models 29

where

maxpos(espan)-minpos(espan) + 1: #query terms(espan) > 1

width(espan) = { p 4
mag: €lse

, maxpos(espan)=maz{b|(a,b) € espan}, and minpos(espan)=min{b|(a,b) € espan}.
Song et al. measure a term t’s relevance contribution given an espan that contains
t by means of a function

f(t,espan) = (density(espan))® - (#query terms(espan))?.

If the given espan does not contain term t, f(¢, espan) is set to zero. For all their ex-
periments Song et al. set t=0.25 and y=0.3, respectively. Depending on the collection,
they set b=0.3 and k;=0.4 (TREC-9 and 10) or b6=0.45 and k;=2.5 (TREC-11).

The relevance contribution of all occurrences of term t in espans(d, q) are accumu-
lated to:

re(t,d) = Z f(t,espan;).
espan j€espans(d,q)

To compute the final score scoregong, the authors employ Okapi BM25 and replace
tf(ti,d) by rc(t;,d) with idfs as idf score variant such that

re(ti,d) - (k1 +1)
re(ti,d) + K

SCOT€S0ong(d, q) = Y ~idfs(t;).
i€

In contrast to Okapi BM25, which attributes a fixed weight of one to each term
occurrence, the weight in Song’s approach is dependent on the environment of the term
occurrence and the density of the espan it has been assigned to.

Although both the approaches proposed by Monz (cf. Section 2.4.4) and Song et
al. rely on spans to compute relevance scores, they differ in some features. While Monz
considers only the span of minimal length that contains all query terms, Song et al.’s
final relevance score incorporates multiple expanded spans. Monz’ minimum matching
spans contain all query terms that occur in the considered document, Song et al.’s
espan may only contain a subset of them. There is a threshold d;,q. that limits the
width of expanded spans and the relevance contribution of espans is directly plugged
in the Okapi BM25 model.

2.5.3 Mishne and de Rijke

In [MdRO5], Mishne and de Rijke make use of a scoring model similar to the tf-idf
model [SWY75] and additionally incorporate the coverage of query terms in the docu-
ment to be scored.

They use the ordered query S, to construct all possible term-level n-grams that
are part of the query following an "everything-is-a-phrase approach”. Considering an
ordered query S;=(sea, shell, song), the corresponding 1-grams are (sea), (shell) and
(song), 2-grams are (sea, shell) and (shell, song), while the only 3-gram is (sea, shell,

song).

30 2. Proximity Score Models

Every term-level n-gram (i.e., n consecutively occurring terms in S;) derivable from
the ordered query S, forms a phrase, with n between 1 and the length of the ordered
query.

Prozimity terms are term-level n-grams like phrases but the authors use two rewrit-
ing methods, namely the fized distance and variable distance mode. For fixed distance
proximity terms, the length of the proximity term n and a tuning parameter k are used
as input to a combining method (e.g., k + n) that determines the window size where
proximity term occurrences in documents are considered (an example follows below).
If the distance is m = k + n, all term occurrences in a window of size m or less in a
document are attributed the same score. For wvariable distance proximity terms, terms
that are found in smaller windows than size m in the document are attributed a higher
score: window sizes are decreased stepwise from m = k + n to 1 + n and matching
proximity terms are counted in each step. This is equivalent to issuing a query that
consists of multiple fixed distance proximity terms of varying size; the ¢ f value of the
n-gram can be increased by one for each window size in which the n-gram occurs.

Phrases and proximity terms incorporate position information of query term occur-
rences into the scoring model and can replace query terms.

The score in its basic form where each t; represents a query term is defined as

tf(t; -id, t; A/t ti,d -id, t;
SCOT’eMishne(deq): Zti in S, qnfo(w,)l(;qf() fgwrn)l(;)f()

- mitr(d,q) - weight(t;),

where norm(Sy) = Z Vatf(t:) -idf (t:)?,
t; in Sy
norm(d) = \/l>,

mitr(d, q) lgNTy({1,.. -,ld})|,

|4l
and de(tl) =1+ idfl (tz)

qtf(t;) counts the number of occurrences of query term t; in S, such that for
Sqg=(sea, shell, song, sea), qtf(sea) would be 2. weight(t;) is used as a phrase
weight proportional to the real term frequency of phrases in different fields of HTML
documents (such as BODY, ANCHOR TEXT and TITLE) and seems to be dis-
abled for most evaluation methods. We think that norm(S;) should be rather
\/ 2ot in 5, Vatf(ti)? - idf (t;)* to make it appear more similar to a cosine normal-

ization.

The basic form of the scoring model with t; representing a query term can be varied
such that ¢; represents a phrase, a fixed distance proximity term or a variable distance
proximity term. We illustrate the effects of variable as well as fixed distance proximity
terms on the computation of ¢f(¢;,d) values for the example that ¢; represents the
2-gram (shell, song).

2.6 Language Models with Proximity Components 31

The query terms shell and song occur at the following positions in the example

document:
shell?, shell*, shell®, song'®, song'?, shell®*, shell®®.

While (shell, song) never occurs as a phrase in our example document (the most
proximate occurrence of this term pair is (shell®, song'?)), the term pair can still occur
as a proximity term in the document if k is chosen large enough: if & is set to 4 and the
combining method is m = k + n, a window size of m=6 is induced (as the proximity
term (shell, song) is a 2-gram which means n = 2). Using variable distance proximity
terms is equivalent to using some fixed distance proximity terms of varying size; for
the example with a window size of m = 6, using variable distance proximity terms is
equivalent to using four fixed distance proximity terms (with a distance of 6, 5, 4, and
3). As (shell®, song'?) has one occurrence in a text window of 5 terms for our example
document, in the fixed distance proximity mode it increases ¢ f((shell, song), d) by one,
while it increases tf((shell, song),d) by two in the variable distance proximity mode;
for a window size of 6 and 5. Being 7 positions apart, (shell, song'!) does not influence
tf(ti,d) = tf((shell, song),d).

For efficiency reasons, document frequencies of phrases and proximity terms are
estimated. To estimate the document frequency for a phrase or proximity term
p=(ty,ty+1,...,tz) with length |p| = z — y + 1, Mishne and de Rijke use different
heuristics for their estimations of idf values:

o Sum: ddf(p) = >, 4df (t;) = >, (1 +idf1(t:))
e Minimum: idf(p) = min;ey, . .y idf (t;) = mingeg,, . -y (1 +idf1(t;))
o Maximum: idf(p) = max;eyy, .y idf(ti) = max;eq, . .y (1+idf1(t:))

e Arithmetic mean: idf(p) = ﬁ iy ddf () = ﬁ iy, (L +idfi(t:)

1 1

e Geometric mean: idf(p) = [[;_, idf (t;) T = [[;_, (1 +idf1(t;)) ™

2.6 Language Models with Proximity Components

This section presents the language models by Lv and Zhai [LZ09] and by Zhao and
Yun [ZY09] that exploit proximity information.

2.6.1 Lv and Zhai

In contrast to most other works that deal with language models (LMs), Lv and
Zhai [LZ09] do not use one general language model for each document, but one lan-
guage model for each word position in a document coined positional language model
(PLM) estimated based on position-dependent counts of words. In most existing work
on LMs, the estimated document language models only consider the word counts in
the document, but not the positions of words. PLMs implement two heuristics which
are usually treated externally to LM approaches:

32 2. Proximity Score Models

1. the proximity heuristic that rewards documents which have closeby occurrences
of query terms and

2. passage retrieval that scores documents mainly based on the best matching pas-
sage.

PLMs facilitate the optimization of combination parameters that combine proximity
and passage retrieval heuristics on one side and language models on the other side.
Furthermore, PLMs allow finding best-matching positions in a document, i.e., support
soft passage retrieval. PLMs at a position of a document are estimated based on
propagated word counts from the words at all other positions in the document: positions
closer to a term occurrence in a document get a higher share of the impact than those
farther away which captures the proximity heuristics. A similar approach has also been
used by de Kretser and Moffat for text retrieval (cf. Section 2.5.1) and by Beigbeder
for XML retrieval (cf. Section 5.2.3). The propagation of a term occurrence to other
positions is accomplished by a proximity-density function. A PLM is a generalization
of a standard document LM and a window passage LM.

Documents can be scored using one PLM or by a combination of multiple PLMs.
First, the authors build up a virtual document d; for each position ¢ in document d. d;
is a term frequency vector whose jth component contains the propagated count ¢/ (tj,1)
of occurrences of term ¢; in document d to position i. Thus,

d(t,1)

p(t|d7z) = Ztlev Cl(t,, Z)

is a PLM at position ¢, where
lq
d(t,i) = elt,j) - k(i,j).
j=1

¢(t,j) is the count of term ¢ at position j which is 1 iff ¢ occurs at j (0 otherwise),
and k(i,7) (which can be any non-increasing function of |i — j|) serves as a discounting
factor. The authors populate the discounting factor with one out of 5 different kernels
that determine the influence of a term occurring at position j to position i:

1. Gaussian kernel: s
-3
202

]

k<Z7]) = exp[

2. Triangle kernel:

ki) = 1- =)i—jl <o
) 0 otherwise

3. Cosine (Hamming) kernel:

1 [i—j|-m if i — 4l <
k(i,) = 51+ cos(——=—=)] if [i j| <o
0 otherwise

2.6 Language Models with Proximity Components 33

4. Circle kernel:
li=gl\e e s
k(i, 7) —‘{ 1= -)P iffi—jl <o

0 otherwise

5. Passage kernel (=the baseline):

o 1 ifli—jl <o
k(w)z{ | ‘7.‘

0 otherwise

The spread o is a tuning parameter which is kept constant for all queries and query
terms. De Kretser and Moffat’s approach described in Section 2.5.1 makes use of kernel
functions named contribution functions; the authors employ triangle, cosine, and circle
kernels as used by Lv and Zhai, but also an arc-shaped kernel which is not used here.

Furthermore, Lv and Zhai use two standard smoothing methods, namely Dirichlet
prior and Jelinek-Mercer smoothing (adapted to PLMs). Following the descriptions of
smoothing methods for LMs in Section 2.2, application of Dirichlet prior smoothing to
Lv and Zhai’s PLM leads to

d(t,4) + pp(t|C)
Opev i) +p’

and Jelinek-Mercer smoothing results in

ppp(tld,i) =

psm(tld,i) = (1 = N)p(t|d, i) + Ap(t|C)

with p(#|C) = <O,

le
Intuitively, p(t|d, i) describes the share of the impact of ¢ to impacts of all terms at

position ¢ in d, the relative influence share of term ¢ to position ¢ in d. For each PLM,
the authors adopt the KL divergence model to compute a position i-specific score

S(d,q,i) == pltlg)-) -log_ ||Q))
teV

where p(t|d, i) can be either the non-smoothed, Dirichlet prior smoothed (ppp(t|d,i)) or

Jelinek-Mercer smoothed psas(t|d, i) variant; p(t|q) is the maximum likelihood estimate

(MLE) for a query language model, i.e., p(t|q) = qt‘f ?) or a result of a pseudo relevance

feedback algorithm.
Ranking options are as follows:

e scoring all documents by the best position in that document:
S(d> Q) = mawie{l,...,ld}{s(d, q, Z)}
e scoring all documents by the average of the best k positions in that document:

S(dg) =1 > S(dad)

i€top-k of all S(d,q,)

34 2. Proximity Score Models

e scoring all documents using a weighted score based on various spreads o:

S(da Q) = Z ﬁo’ : ma:EiE{l,...,ld}{SO'(d? q, Z)}

o€ER

with R being a predefined set of spreads and) . 3, = 1.

2.6.2 Zhao and Yun

Zhao and Yun [ZY09] propose a proximity language model that incorporates a so-called
proximity centrality and uses Dirichlet prior smoothing. The proximity centrality is
computed for every query term and expresses the query term’s importance for the
proximity structure in document d relative to the query g = {t1,...,t,}.

The score for a document d relative to a query ¢ is defined as

- tild
score(d, q) = Z p(tilf,) log ps(tild,u) + log ag,
e y aq - p(ti|C)
f(ti,d)>0,t; in g
where 6, represents the language model estimate for ¢ (s.t. p(t;|0,) = qt{;fi)), and u =
(u1,...,uy|) are hyper-level parameters of the Dirichlet prior with u; = AProxp(t;).

tf(ti, d) + u; + pp(t:|C)
lg+ lell u; + [

is the seen word probability of #; in document d wrt its proximity model.

ps(tild,u) = 07, =

ag - p(t;|C) is the probability assigned to unseen words in d, where

and p(t;|C) = th(ti).

le

. M
= %
lg+ ZL:Q u; +

Qg

The authors implement three variants to compute the proximate centrality Prozpg(t;)
of a term ¢; in d:

L. minimum distance: Proxnsinpist(ti) = f(ming 44, ¢ in ¢ {Dis(ti, t,d)})

2. average distance: Prozaygpist(t;) = f(-11 Zt]’?’éti:tj in ¢ Dis(tistj,d)),
where n = [{t; in q: tf(t;,d) > 0}

3. summed distance: Prozsymproz(ti) = th#i,tj in q f(Dis(t;, tj,d))

While Dis(t;,t;,d) is the minimum pairwise distance between occurrences of the terms

t; and t; in document d, f is a non-linear monotonic function to transform a pair-

dist

wise distance dist into a term proximity score: f(dist) = x~%*" where x is a scaling

parameter. If not both ¢; and ¢; occur at least once in d, Dis(t;,t;,d) is set to l4.

2.7 Learning to rank 35

2.7 Learning to rank

2.7.1 General Introduction to Learning to Rank Approaches

Learning to rank approaches, a kind of supervised learning approaches, have become
popular over the last decade. Supervised learning approaches rely on a training set
which consists of a set of training topics, a document collection represented by feature
vectors, and the corresponding relevance assessments. According to [Liull], learning
algorithms aim at learning a ranking model (i.e., how to combine the features) such
that the learned ranking model can predict the ground-truth labels of the training set
as accurately as possible where prediction accuracy is measured using a loss function.
[Liull] contains a comprehensive review of many contributions in the research area of
learning to rank.

2.7.2 Svore et al.

Svore et al. [SKK10] extend the work by Song et al. [STWT08] summarized in Sec-
tion 2.5.2. They provide a measure how to determine the goodness of an espan and
extend the espan feature set introduced in [STW08]. The initial approach presented
in [STWT08] used only the density of espans and the number of query terms to assess
the goodness of an espan. In this method, the goodness g5 of an espan s is defined as

gs = Z QfUf s,

fer

where f is a feature of s taken from a feature set I'. o denotes the weight of f and vy ,
the value of f for s. The goodness score for document d that contains a set of espans

S is defined as
9gd = Z Z QfUf s = Z af(z Vf.s)-
sES fEF feF ses
The goal is to learn all feature weights ay. To this end, the sum of the document’s
espans’ feature vectors is input into LambdaRank [BRLO6].

Espan-based features used for the goodness score can be assigned to different cate-
gories: basic query match features, formatting and linguistic features, and third-party
phrase features extracted from Wikipedia titles and popular n-grams from search engine
query logs. A detailed list of espan goodness features can be found in Table 2.2.

Model-related features which concern (unigram/standard) BM25, a bigram version
of BM25 as well as proximity match features are depicted in Table 2.3. They can be
used as additional features to determine the goodness score of a document (substituting

ZSES Uf7s)'

2.7.3 Metzler and Croft

In [MCO5], Metzler and Croft design a framework to model term dependencies using
Markov random fields (MRFs). In statistical machine learning, MRFs are used to

36 2. Proximity Score Models

Query Match Features

Espan contains > 2 (> 4) query terms (both binary)
Espan length (number of terms in espan)
Count of query terms in espan and density of espan

Formatting and Linguistic Features (F)

Count of indefinite and definite articles in espan
Count of stopwords in espan
Espan contains a sentence (paragraph) boundary (binary)

Espan contains only stopwords (all binary)

Espan contains html markup (bold, italic, tags) (binary)
Third-party Phrase Features (P)

Espan contains an important phrase (binary)

Count and Density of important phrases in espan

Table 2.2: Espan goodness features.

ABM25 Features
Term frequency of query unigrams

Document frequency of query unigrams
Length of body content (number of terms)
ABM25-2 Features

Term frequency of query bigrams

Document frequency of query bigrams

Proximity Match Features

Relevance contribution (per query term, rc in [STWT08])

Number of espans in the document

Maximum, average espan length, maximum, average espan density
Maximum, average count of query matches in espans

Length of espan with highest term frequency

Term frequency of espan with longest length, largest density

Table 2.3: Model feature sets.

model joint distributions. [MCO05] models a joint distribution Py (Q, D) over random
variables for queries () and documents D (an estimate of the relevance of a document to
a query), parameterized by A. A is estimated given user-defined relevance assessments.

The model uses three kinds of features, namely single query terms, ordered phrases,
and unordered phrases. An MRF is generated from an undirected graph G whose nodes
represent random variables while edges carry dependence information between random
variables. There are two types of nodes, one query node for each query term ¢; and
one document node D. Dependent query terms are connected to each other by edges.
All query term nodes are connected to the document node. There exist three variants
of the MRF model:

2.7 Learning to rank 37

e Full independence variant (FI): query terms are considered independent given
a document D which means that P(g;|D,qj+;) = P(¢;|D), an assumption that
many retrieval models like bag-of-words and unigram language models are based
on.

e Sequential dependence variant (SD): adjacent query terms are considered depen-
dent; i.e., P(q| D, qj+i) = P(q;|D) only for g; not adjacent to g;. This variant can
represent biterm (non-order-aware occurrences of query terms in documents) and

bigram (order-aware occurrences of query terms in documents) models.

e Full dependence variant (FD): all query terms are dependent on each other. The
corresponding graph is complete.

o o o
)) e || (o @@e}@

Figure 2.9: Three variants of the MRF model for our running example query, i.e.,
Sq=(sea,shell,song). We depict (left) the full indepence (FI) variant, (middle) the
sequential dependence (SD) variant, (right) the full dependence (FD) variant.

Figure 2.9 illustrates the three variants of the MRF model for the query from our
running example which means that S, =(sea,shell,song). While the FI variant considers
the three query terms as independently occurring in documents, the SD variant con-
siders the query as ordered and all adjacent query terms in the query as related: sea
and shell as well as shell and song are treated as dependent. The FD variant considers
all query term pairs as related: sea and shell, sea and song, and shell and song are
connected in the graph.

To utilize the MRF model, in a first step, the graph G to represent all query term
dependencies is constructed. In a second step, a set of potential functions (-, A) over
cliques in the graph is defined. Potential functions are parameterized as 1(c,A) =
exp(Acf(c)), where f(c) is a feature function over random variables in a clique ¢. The
joint distribution over the random variables in G is defined as

1
PA(Q,D) = ZACEE([G)W; A),

where @ = Sg = (q1,---,an); Zn = g pllecc() ¥(c;A), and C(G) is the set of
cliques in G. Metzler and Croft propose three kinds of potential functions that aim at

38 2. Proximity Score Models

abstracting the idea of term co-occurrence which can be applied to different kinds of
cliques:

e 2-clique, one edge between document node D and query node ¢; (i.e., ¢ = g;, D):

Yr(c) = Arlog P(q|D)
tf(qi, D) ctf(gi)

=)\Tlog[(l—aD)T—i-aD L],

where P(¢;|D) is a smoothed language modeling estimate which uses a mixture
of a document foreground model for document D and a collection background
model, ap = H‘FLZD the Dirichlet prior (cf. Section 2.6). The potential function
measures how likely or well D is described by g;.

e cliques with two or more query nodes (i.e., ¢ = ¢, ..., Girr, D):

Yo(c) = Xolog P(#1(qi,...,qi41)|D)
)tf#l(qi7~~aQi+k)7D+

Ip

le

= Molog[(1—ap ap

Y

where ¢ f41(4,.....q.),D 18 the number of occurrences of the exact phrase ¢;, . . ., gi+
in D.

e an unordered window of size N, cliques with two or more query nodes (i.e., ¢ =
Gis - 7QJ7D)

Yu(c) = Avlog P(#uwN (g, ..., q;)|D)

tf guwN (gi,....q;),D tap th#uwé\/(qi,m,qj')
C

=)‘U IOg[(l - CYD)]7

Ip

where ¢ f4uuwN(g;,....q;),0 18 the number of ordered or unordered occurrences of the
query terms g;,...,q; in D within a window of size N.

2.7 Learning to rank 39

In a third step, documents are ranked according to Py (D|Q).

nol) = 90

x PA(Q,D)
1
= Zn H ¥(c;A)

ceC(G)
<[] ¢len)
ceC(G)

Y logip(e; A)

ceC(G)

=) log(exp(Af(c)))

ceC(G)

- Z)\cf(c)

ceC(G)

= > Arfr(0)+) dofole)+ DY Aufule)

ceT ceO ceOUU

such that
)\T —+)\O + >\U = 1.

T is the set of 2-cliques representing one query term and a document D, O is the set of
cliques with a document node and at least two continuously appearing query terms, and
U a set of cliques with a document node and at least two non-contiguously appearing
query terms.

A7, Ao, and Ay need to be tuned such that the retrieval measure for a given test bed
is maximized (the authors use the mean average precision value as retrieval measure).
As the authors claim that the mean average precision curve has a near concave surface
when plotted against the tuning parameters and due to the small number of tuning
parameters, this makes tuning by simple hill climbing feasible (i.e., it is unlikely to run
into a local maximum value).

2.7.4 Cummins and O’Riordan

Cummins and O’Riordan [CO09] use some term-term proximity measures in a learning
to rank framework. To give examples for the various measures, we use our running
example, showing again the query term occurrences in d,

seal, shell?, sea®, shell*, sea®, shell®, song'®, song'?, sea®, shell®*, sea®, shell®®.

For the ease of presentation, we restrict ourselves to the query term pair (sea, song)
when we explain term-term proximity measures. Measures which explicitly capture
proximity of query term occurrences in documents include

40 2. Proximity Score Models

1) the minimum distance between query terms as used in Tao and Zhai (cf. Section
2.4.5):

mindist(ti, tj, d) = min{|i — j| : pi(d) = t; A p;(d) =t;},
where mindist(sea, song,d) = |5 — 10| = 5,

2) the distance of average positions of ¢; and ¢; in d:

; St b Dops(d)=t;
def*avgipOS(tht]?) | tf(tz)Z a t;]((;]) dt]) |a

4 7 24
_ ’1+3+5;53+55 _ 10;1 | = |% — 27| =114

where dif f_avg_pos(sea, song, d)

3) the average distance between all occurrences of ¢; and ¢; in d:

\Z—J\
dist(t;,t;
avg_ars) _]a Z Z ‘Pd ‘Pd(t])"

1€P;(t;) jEPy(t

(9+13)+(7+11)+(5+9) +(43+39)+(45+41) _ o9 o

where avg_dist(sea, song,d) = r4

4) the average of the shortest distance between all occurrences of the least frequently
occurring term ¢; and any occurrence of the other term ¢;:

3 min{li — j| : j € Pa(tj)}

avg_min_dist(t;, t;,d) = |Pd(tl)| ’

1€ Py (tl)

where avg_min_dist(sea, song,d) = w =7,

5) the smallest average distance avg-match_dist(t;,t;,d) when each term occurrence
has at most one matching distinct term occurrence while there may be two partner
term occurrences t; for some j € Py(t;) in avg_min_dist. For avg_match_dist, every
occurrence of the least frequently occurring term of the term pair in the document
has to be paired with a distinct occurrence of the more frequently occurring term
of the term pair such that the total distance between the two terms is minimized.
To calculate avg_match_dist(sea, song,d), either song'® or song'* can be paired
with sea®, but not both of them; consequently, avg_match_dist(sea,song,d) =

w = 8 or avg_match_dist(sea, song,d) = w =8, and

6) the maximum distance between two adjacent occurrences of t; and t;,
max_dist(t;,tj,d) = max{j —i: (i,J) € Qaaja({ts,t;}) A pi(d) # pj(d)},
where maz_dist(sea, song,d) = 53 — 14 = 39.

Another way to implicitly measure proximity uses term frequencies of ¢; and ¢; in
d which comes in the variants

8) sumtf(t;,tj,d) =tf(t;,d) +tf(tj,d), where sumtf(sea,song,d) =5+2 =7, and

2.7 Learning to rank 41

9) prodtf(ti,t;,d) =tf(t;,d)-tf(tj,d), where prodtf(sea,song,d) =5-2 = 10.

High sumtf and prodtf values increase the probability of closer occurrences for the
given term pair (t;,t;) in document d.

Other approaches capture information about the entire query (in our example, ¢ =
{sea, shell, song}) by

10) the length of the shortest document part that covers all query term occurrences
(corresponds to Tao and Zhai’s Span(d, q) measure, cf. Section 2.4.5)

FullCover(d, q) = max(Py(q)) — min(Pi(q))
which is FullCover(d, {sea, shell, song}) = 56 — 1 = 55 in our example, or

11) the length of the shortest document part that covers each query term that occurs
in d at least once (also employed by Tao and Zhai as described in Section 2.4.5),

MinCover(d, q) = min{max(P") — min(P")|T4(P") = T4(Pa(q))}
In the example MinCover(d, {sea, shell,song}) =10 — 5 = 5.
Normalization measures in use include

12) the length of the document under view /4, and

13) the number of unique query terms in document d,

qt(q,d) = |Ta({1,. .., la}) N4
which is 3 in our example.

Cummins and O’Riordan use genetic programming (GP) to learn good scoring mod-
els that combine a subset of the measures presented above. Poli et al. have published a
guide to GP [PLMO08] that presents an introduction to GP but also advanced techniques
in the field. They describe that GP randomly creates an initial population of programs
and evolves them from generation to generation using a set of primitive modification
operations. All programs are executed and only the best fitting programs per gener-
ation survive and are modified using genetic operations to form the candidate set for
the next generation. In GP, the primitive modification operations are crossover (i.e.,
randomly chosen parts of two parent programs are combined), and mutation (i.e., a
randomly chosen part of a parent program is randomly changed). When a solution is
acceptable or a stopping criterion is reached (e.g., the number of generations exceeds
a threshold), the so-far best program is returned as a solution. Solutions are repre-
sented using trees. Each tree (genotype) consists of two types of nodes, operators (i.e.,
functions) or operands (i.e., terminals).

Cummins and O’Riordan run GP six times with an initial population of 2,000
programs for 30 generations and use an elitist strategy which copies the best solution of a

42 2. Proximity Score Models

generation to the next generation. They employ three constants for scaling ({1,10,0.5})
and seven functions (+,—,-,/, Vo square(),log()) during evolution with the goal to
maximize the MAP metrics performance.

Given an n-term query {ti,...,t,}, the authors represent documents as n x n ma-
trices, where the diagonal entries are some tf-idf measure w(t;) per term ¢;, and the
non-diagonal entries are proximity scores prox,(t;,t;) for pairs of query terms (;,t;),
where v denotes the proximity score variant:

jw(ti)] ifi=j
score(d, q) = Z Z { lprozy(ti, ;)| it i # j
ti€Ta(Pa(q)) t;€Ta(Pa(q)

The three best proximity functions (from the six runs) are coined prozy, prozs,
and proxg (due to double entries for each query term pair (i.e., there are entries in
the document matrix for (¢;,t;) and (t;,t;)), the learned function is twice the value
produced by the proximity function):

2 - proxa(ts, tj, d) =log(

10)45 prodtf(ti, t;,d) 10

mindist(ti, t;,d) avg_dist(t;, t;,d) mindist(t;, t;,d)

log(FullCover(d, q)) 10
mindist(t;, t;,d)? sumt f(t;, t;, d)

prodtf(t;,t;,d)
log(0.5) + WM

Jmindist(t;,t;,d)* + 05)/mindist(t;,t;,d)) — 0.5
10 ' 10
l dtf(t;, t;,d —
mindist(t;, t;, d)) + log(prodt f(ti, 15, d) + mzndzst(ti,tj,d))
10 prodtf(ti, tj,d)
t(q,d
+ mindist(t;,tj,d) sumtf(t;,t;,d)- qt(q,d)>/q (g,d))
prodtf(ti, t;,d)
avg-dist(t;, tj, d) - mindist(t;, t;,d)

2 proxzs(t, ty, d) =(((() - mindist(t;, t;,d) —0.5)

2 - proxe(ti, tj,d) =((3 - log(

The authors use scoregg and a scoreppros variant as baselines (cf. Section 2.2 for
details); the term weighting scheme scoregg (cf. Section 2.2) is linearly combined with
the learned proximity score. An additional proximity-enhanced baseline is scorepg
combined with MinDist as proximity function as used by Tao and Zhai (cf. Sec-
tion 2.4.5).

2.8 System-Oriented Comparison of Implementation Ef-
forts per Scoring Model

This subsection aims at reviewing the required implementation effort for each of the
scoring models we have presented in Chapter 2. Table 2.4 gives just a rough overview
of the components needed by each scoring model (with additional remarks in the cap-
tion of the table). As content scores which do not use proximity information, BM25
variants, Lnu.ltc, ES, unigram LMs (non-smoothed, Jelinek-Mercer, and Dirichlet prior

2.8 System-Oriented Comparison of Implementation Efforts per Scoring Model 43

smoothed), and KL-divergence models do not need materialized term position lists. All
presented proximity scoring models can be implemented with term position indexes ex-
cept Uematsu et al.’s approach [UIFT08] that uses sentence-level term indexes. While
all presented linear combination scoring models use avgdl and l; information, most
non-linear combination scoring models only use [;. The presented learning to rank and
language model approaches do not incorporate idf values, the remaining approaches
employ some form of idf. ctf values are only used by Metzler and Croft [MCO05] as
well as de Kretser and Moffat [dKM99, dKMO04]: while the first uses ctf for terms,
phrases, and unordered windows, the latter uses ctf only for terms. Monz’ scoring
model [Mon04] is the only model that makes use of the collection-related dt and avgdt
values.

Some variants of the scoring models presented in the original papers may require
more features than the ones listed in Table 2.4. We will now provide more details
for some scoring models but exclude tuning parameters from our descriptions as we
consider them known after training the respective scoring model.

While Rasolofo and Savoy’s approach [RS03] considers all query term occurrences in
small text windows, Biittcher et al.’s approach [BC05, BCL06] only considers adjacent
query term occurrences in unrestricted text windows. Determining those query term
occurrences can be implemented using term position lists. For each term, Uematsu
et al.’s sentence-level scoring model [UIFT08] needs to index the term occurrences on
a sentence-level to compute the number of sentences in a document where all query
terms co-occur. Monz’ approach [Mon04] can be implemented using term position lists
that help to determine matching spans and minimal matching spans, respectively. De
Kretser and Moffat [dKM99, dKMO04] use term positions to determine a score for a
given document at a given position: to this end, the positional distances between the
scored position and positions of query term occurrences are taken into account.

Song et al.’s approach [STWT08] relies on term position lists to segment documents
into espans and uses dp,q; as a maximum width of espans. In some settings, Mishne and
de Rijke [MdRO5] employ a tag-related weight which is proportional to the number term
occurrences within a certain element of an HTML document (e.g., BODY, ANCHOR
TEXT or TITLE). Term positions are needed to determine phrases and proximity term
occurrences in a complete document or a given tag scope of a document, respectively.
Lv and Zhai’s approach [LZ09] and Zhao and Yun’s approach [ZY09] require term
position information to compute kernel values for any position in a document and to
compute the proximate centrality of query terms, respectively.

The required implementation effort for the presented learning to rank approaches
is highly dependent on the kind of features in use.

Analogously to Song et al.’s approach [STWT08|, Svore et al. [SKK10] segment
documents into espans using term position lists. The authors can plug a wide choice
of different features which influence the required implementation effort in their scoring
model. If the model employs formatting features, information about sentence and para-
graph boundaries, HI'ML markup information needs to be stored for each document. If
the model uses third party phrase features, it requires lists of important phrases which

44 2. Proximity Score Models

may not be publicly available. Using ABM25 features requires knowledge about doc-
uments’ body content lengths, ABM25-2 features require ¢f and df values for bigrams
in documents. The implementation effort for Metzler and Croft’s approach [MCO05] is
dependent on the form of cliques required for scoring. For cliques handling phrases or
unordered occurrences of query terms in windows of a given size, one needs to know ¢ f
and ctf values for phrases and unordered occurrences of query terms in text windows
of a given size, respectively. Deriving those values may be realized using term positions
indexes. Materializing ¢t f and ct f values for phrases and unordered occurrences of query
terms in text windows is usually only doable for tiny document collections or restricted
sets of phrases. Otherwise the required disk space may quickly become prohibitively
large.

45

2.8 System-Oriented Comparison of Implementation Efforts per Scoring Model

91008 Ajurxoad poures|
oy} uo Juopuadap IoPIp Aeul SaINYLdJ JO 498 S, PUL ‘SULIO) WRIS-U JO SOOUILINDIIO PIIIPIOUN PUR SWRIS-U I0J OS[e 1] SULId) I0] AUO
jou sonfea f7 osn Lewr . ‘(-030 ‘soseayd juerrodur jo sysi snid A[parpoodsor ‘swerdiq/sureisiun 10§ 4 pue fp “39) Suryjes posorduwo oty
U0 JUapUdop $9IMYedJ JO IS O} SAUIULIOP ¢ ‘PIsn dIe FuIjoouwrs I0LId JS[YPDLI(] 10 IDIANA-NPUIP[JT [7 pue [0 soxmbar , ‘U0I309[[0d

93 Ul A/ SHUWNOOP JO Joquuill 973} OS[e Spoolu Sy Iewod [eUONPPY ‘[opown MQCOOm [oeo Ul posnt Sadmnjes MIIAIRA() :F'¢ 9L

T

o

cUBPIONY (O PU® surmwn)
x $HOID pue ID[ZIDN
& T8 10 910Ag
x ung pue oeyy
¢'BUZ pue AT
Yprt1 fry op pue duysiy
€/p1 X ‘Te 10 8uog
X X TRJJO]N pU® I9S}oI3] op
(NG /T3 MmoyyM)reyy, pue Orf,

ZUOJN

o

K| R

AR s

o

"
AR R AR A R R]

X €fp1 X ‘TR 70 nsjewWa)
pr Te %0 1eypyng
e fp1 X Aoaeg pue ojo[osey]
weis-u = 7 X (1 < u) NT weis-u

X (reyy, pue or],) 90USIGAIP-TS]
Suryjoows Iotid JoydLII(]

"
»

A Rl Rl]
"

»

o

x SUMI00WS I9DIDN-XPUT[d[

AT wreasStun

X x X 1(weprory O pue suruwn))SH

p? x X (zuopy) oy nuy

z(p1 X ScINd

(P)ap k "1 k (P Df+ k 'sod eouogues | 'sod woy | (3)/p k @i k (#)Jp? k P91 k wbao | jpbav k Jabav
Poje[eI-juUaNIOP POIR[DI-UOI}ID[[0D

"
AR R R R e

poysewt

Chapter 3

Benchmarks

3.1 Introduction

When users look for information, they are driven by an information need. An infor-
mation need of a user might be: information whether she shall consume black tea or
coffee if she suffers from high blood pressure. To represent this information need, users
try to formulate queries which usually contain keywords likely to occur in documents
that may satisfy the information need, e.g., ¢={coffee, black, tea, effect, high, blood,
pressure}. In order to compare the retrieval quality of different search engines that
provide result lists as answers to queries that express users’ information needs, various
initiatives have developed test beds for different application scenarios.

A test bed consists of a document collection, a set of information needs expressed as
topics, and a set of relevance assessments which maintain for each topic a list of items
judged according to their relevance to the information need. Relevance assessments
can be binary-level (i.e., a result is either relevant or non-relevant) or multi-level (e.g.,
a result is non-relevant, marginally relevant, mostly relevant, or definitely relevant).
For classical text retrieval, the granularity of results is typically document-level and
the relevance is thus assessed with respect to the complete document while for XML
retrieval, results may be parts of the document such as elements or passages whose
relevance is also assessed. Relevance is always assessed with respect to the user’s
information need, not to a query. That means that a result is considered relevant iff it
contains some information related to the user’s information need. Mere occurrence of
the keywords from the query in a result is not sufficient to render the result relevant.

Retrieval results are evaluated using various retrieval quality metrics.

In the following, we will describe two popular evaluation initiatives for text and
XML retrieval and two less popular, niche representatives for Japanese language and
medical search; all of them have in common to provide the means to compare the
performance of different systems. After that we will give a detailed description of
performance metrics which express the performance of a system under consideration.

47

48 3. Benchmarks

3.2 Initiatives

3.2.1 The TREC Initiative and Selected Test Beds

The U.S. NIST (National Institute of Standards and Technology) started their Text
REtrieval Conference (TREC) efforts in 1991. The first TREC workshop took place
in 1992 and has been run annually since then. It provides a forum for IR researchers
to compare their systems to those of others in various areas of IR. A report about
the economic impact of the TREC Program can be found at http://trec.nist.gov/
pubs/2010.economic.impact.pdf and contains much of the information briefly sum-
marized in the following. When NIST started their TREC effort, they aimed at fixing
two problems in IR, namely the lack of document collections and of methodologies to
enable a standardized comparison of IR systems. They helped to put evaluation efforts
into more realistic scenarios by creating many new, large test collections: test collec-
tions used for the first TREC in 1992 contained already approx. 750,000 documents
compared to a size of 12,000 documents for the largest commonly used collection before.
The collection sizes continuously increased to adjust to the growing Web and more pow-
erful machines: in 2004 the GOV2 collection contained approx. 25 million documents
(426GB), and the most recent ClueWeb09 collection used for the TREC Web Tracks
2009 and 2010 consisted of more than 1 billion documents (25TB). TREC helped to
develop standardized IR evaluation methods by providing document collections, sets of
topics and relevance assessments (which documents are relevant to a given query) to
compare IR systems in a standardized manner. Test collections are available not only
for established tasks such as ad hoc retrieval but also for newer areas such as video
retrieval and spam detection. TREC distributes research results and makes them also
available to people not participating in TREC. Evaluation techniques and formats used
in TREC inspired a number of other workshops and programs.

TREC runs multiple tracks dedicated to particular areas in IR. Past TREC Tracks
are listed at trec.nist.gov/tracks.html and include the Blog Track (last run in
2010), Cross-Language Track (in 2002), Enterprise Track, Filtering Track (last run
in 2002), Genomics Track (last run in 2007), HARD (High Accuracy Retrieval from
Documents, last run in 2005), Interactive Track (last run as adjunct to the Web Track
2003), Million Query Track (last run in 2009), Novelty Track (last run in 2004), Question
Answering (QA) Track (last run in 2007), Relevance Feedback Track, Robust Retrieval
Track (discontinued after 2005), SPAM Track (last run in 2007), Terabyte Track (last
run in 2006), Video Track (last run in 2002, starting 2003 there was an independent
evaluation named TRECVID with a workshop taking place), and the former Web Track
(last run in 2004). In 2011, tracks encompassed the Chemical IR Track, Crowdsourcing
Track, Entity Track, Legal Track, Medical Records Track, Microblog Track, Session
Track, and a new Web Track (started in 2009).

The Million Query Track used a large number of incompletely judged queries and
aimed to find out whether this is better than the traditional TREC pooling approach.
The Robust Track used difficult queries and focused on individual topics’ retrieval

3.2 Initiatives 49

quality rather than optimizing the average effectiveness. The Web Track used a web
collection to perform search tasks on it: the Topic Distillation Task tried to find relevant
pages desirable for inclusion in a list of key pages. The Large Web Task used 10,000
search log queries from Alta Vista and Electric Monk [Haw00]. The Ad Hoc Task and
Small Web Task in TREC-8 used the same topic set to find out how web data differs
from Ad Hoc data [VHO00]. The Terabyte Track used a significantly larger collection
than used for previous TREC evaluations and aimed to find out whether the evaluation
scales.

Table 3.1 shows an overview of selected test beds in the context of TREC which
include Tracks/Tasks in TREC, a reference to the employed document collection, and
the topic sets. We will now describe some TREC collections that are either used in
experiments later in this thesis or have been used in the original papers that introduced
the methods in Chapter 2.

The TREC45 and TREC45-CR (a.k.a. TREC-8) collection: TREC Disk 4
contains about 30,000 documents (approx. 235MB, avgdl=1373.5) from the Congres-
sional Record of the 103rd Congress (CR), about 55,000 documents (approx. 395MB,
avgdl=644.7) from the Federal Register in 1994 (FR), and about 210,000 documents
(approx. 565MB, avgdl=412.7) published in the Financial Times from 1992 to 1994
(FT). TREC Disk 5 contains about 130,000 documents provided by the Foreign Broad-
cast Information Service (approx. 470MB, avgdl=543.6) (FBIS) and about 130,000
randomly selected Los Angeles Times articles from 1989 and 1990 (approx. 475MB,
avgdl=526.5) (LA Times). The information given here has been taken from http:
//www.nist.gov/srd/nistsd22.cfm (TREC Disk 4) and http://www.nist.gov/srd/
nistsd23.cfm (TREC Disk 5) where the disks can also be ordered. While the TREC45
collection is approx. 2,140MB in size, the TREC45-CR (a.k.a. TREC-8) collection’s
size is only about 1.9GB as it does not contain the data from the Congressional Record
of the 103rd Congress. Average document lengths for the subcollections have been
mentioned in [VHO0] and have been computed without term stemming and without
stopword removal. According to [VH97] TREC45-CR consists of 528,155 documents at
an avgdl of 467.42, and after stopword removal of 263.65. While TREC Disks 4 and 5
have been used to process the Ad Hoc Topics in TREC-6, TREC45-CR has been used
for the TREC-8 Web Track Ad Hoc Task and the TREC-12 and TREC-13 Robust
Track. TREC Disks 4 and 5 (plus the complete TIPSTER collection) have been used
in the QA Track in TREC-9 and TREC-10.

The AQUAINT collection: The information presented here can be found at http:
//www.ldc.upenn.edu/Catalog/docs/LDC2002T31/. The AQUAINT collection con-
sists of newswire text data in English from three sources: the Xinhua News Service
from China (January 1996-September 2000) (XIE), the New York Times News Service
(NYT), and the Associated Press Worldstream News Service (June 1998—September
2000) (APW). All articles are SGML-tagged text data presenting the series of news
stories. There is a single DTD available for all data files in the corpus. The corpus

50 3. Benchmarks

was prepared by the Linguistic Data Consortium (LDC) for the AQUAINT Project to
be used by NIST for evaluations. The data files are about 3GB in size and contain
approx. 375 million words. The AQUAINT collection has been used for the TREC-11
QA Track Main Task, and for the TREC-14 Robust Track.

The TIPSTER collection: The TIPSTER collection (http://www.ldc.upenn.
edu/Catalog/CatalogEntry. jsp?catalogId=LDC93T3A) comes on three disks and
contains articles from the Wall Street Journal (1987-1992) (WSJ87-92) (173,252 doc-
uments, approx. 81M words), Federal Register (1988 and 1989) (FR88-89), Associated
Press (1988-1990) (AP88-90) (242,918 documents, approx. 114M words), Information
from the Computer Select disks copyrighted by Ziff-Davis (1989-1992) (ZIFF89-92)
(approx. 112M words), San Jose Mercury News (1991) (approx. 45M words), U.S.
Patents (1983-1991) (250MB in size), and Department of Energy abstracts (DOE)
(approx. 28M words) . In total it contains approx. 448 million words in over 700,000
documents with 2.1GB of text (http://www2.parc.com/istl/projects/ia/papers/
sg-sigir93/sigir93.html). While the TIPSTER Disks 1 and 2 have been used to
evaluate the Ad Hoc Topics in TREC-1 to TREC-3, TIPSTER Disks 2 and 3 have
been used to process the Ad Hoc Topics in TREC-4, TIPSTER Disk 2 (plus TREC
Disk 4) to process the Ad Hoc Topics in TREC-5. The complete TIPSTER collection
(plus TREC Disks 4 and 5) has been used in the QA Track in TREC-9 and TREC-10.

The VLC2 collection: The VLC2 collection is about 100GB in size and contains
18.5 million web pages which are part of a web crawl from 1997 carried out by the
Internet Archive. It has been described in detail in [HCT98] and has been used for the
Large Web Task of the TREC-8 Web Track.

The WT2g collection: The WT2g collection is a 2GB sized subset of the larger
VLC2 collection and contains 250,000 documents. Details can be found in [HVCB99].
The collection has been used for the Small Web Task of the TREC-8 Web Track.

The WT10g collection: The WT10g collection (http://ir.dcs.gla.ac.uk/test_
collections/wt10g.html) consists of 1,692,096 English web documents crawled from
11,680 servers and is about 10GB in size. It is the successor of the WT2g collection and
contains 171,740 inter-server links (within the collection). Own experiments using the
Galago parser have resulted in avgdl=599.41 and after stopword removal avgdl=393.74.
According to [BCHO3a], which contains a lot of information about the construction of
the WT10g corpus, the corpus was created to perform repeatable retrieval experiments
which model web search better than any previously available test collection. It has
been used as document collection for the Web Track in TREC-9 and TREC-10.

The .GOV collection: The .GOV collection is a TREC test collection (http://
ir.dcs.gla.ac.uk/test_collections/govinfo.html) which is a crawl of .gov (U.S.
governmental) web sites from early 2002. In total it contains 1,247,753 documents (of

3.2 Initiatives 51

which 1,053,372 are HTML files) that have been truncated to a maximum size of 100KB
each (reducing the size from 35.3GB to 18.1GB). This collection has been used for the
Web Track, Topic Distillation Task from TREC-11 to TREC-13.

The GOV2 collection: The GOV2 collection is a TREC benchmark collection in-
tended for use in the Terabyte Track (http://ir.dcs.gla.ac.uk/test_collections/
gov2-summary.htm). It was crawled using NIST hardware and network. This crawl
from early 2004 of .gov (U.S. governmental) web sites has an uncompressed size of
approximately 426GB and consists of 25,205,179 documents (out of which 23,111,957
are HTML, 2,030,339 PDF, 60,176 plain text, 2,253 MS-Word, 454 postscript files)
that have been truncated to a maximum size of 256KB each. Our experiments with the
Galago parser have resulted in avgdl=886.03, and after stopword removal avgdl=633.08.
This collection which entails 20 times more documents than the .GOV collection has
been used for the Terabyte Track, Ad Hoc Task in TREC-13 to TREC-15, and for the
Terabyte Track, Efficiency Task in TREC-14.

The ClueWeb09 collection: The ClueWeb09 dataset was created by the Lan-
guage Technologies Institute at Carnegie Mellon University (CMU) and consists of
1,040,809,705 web pages in 10 languages (http://boston.lti.cs.cmu.edu/Data/
web09-bst/). It was crawled in January and February 2009 and encompasses 25TB
of uncompressed data. The dataset is used by several tracks of the TREC conference.
People participating in the TREC Web Track often restrict the collection first to the
503,903,810 English documents (http://boston.1lti.cs.cmu.edu/clueweb09/wiki/
tiki-index.php?page=Dataset+Information#Record_Counts), from which they chose
the 50% documents with the smallest probabilities to be spam according to the Water-
loo Fusion spam ranking (http://plg.uwaterloo.ca/ gvcormac/clueweb09spam/).
The resulting document set has an uncompressed size of about 6TB. In our own exper-
iments with the remaining 251,664,804 documents and our own parser, after stemming
and stopword removal, the avgdl value was 3021.49. The ClueWeb09 collection has
been used as a document collection for the Web Track, Ad Hoc Task in TREC-18 to
TREC-20.

3.2.2 INEX and Selected Test Beds

The second initiative we describe is the INitiative for the Evaluation of XML retrieval
(INEX) which exists since 2002. It is the leading workshop on XML retrieval and takes
place annually. In contrast to TREC where NIST is responsible for providing the test
bed, in INEX only the document collection is provided and participants are asked to
formulate topics and judge results for relevance.

Like in TREC, the test collections employed in INEX have grown in size over the
years to catch up with data growth in the real world, more powerful machines and to
pose new challenges to the participants. While the initial INEX IEEE collection from
2002 consisted of about 12,100 articles with 8 million elements at a size of 494MB, and

52 3. Benchmarks
TREC Year | Track/Task Collection Topics
TREC-1 1992 | Ad Hoc Topics TIPSTER Disks 142 51-100
TREC-2 1993 | Ad Hoc Topics TIPSTER Disks 142 101-150
TREC-3 1994 | Ad Hoc Topics TIPSTER Disks 142 151-200
TREC-4 1995 | Ad Hoc Topics TIPSTER Disks 243 201-250
TREC-5 1996 Ad Hoc Topics TIPSTER Disk 2+ 251-300
TREC Disk 4
TREC-6 1997 | Ad Hoc Topics TREC45 301-350
TREC-7 1998 | Ad Hoc Topics TREC45 351-400
TREC-8 1999 | Web Track, Ad Hoc Ad Hoc: TREC45-CR | 401-450
and Small Web Topics SmallWeb: WT2g
TREC-8 1999 | Web Track, Large Web Task VLC2 20001-30000
TREC-9 2000 | Web Track WT10g 451-500
TREC-10 | 2001 | Web Track, Ad Hoc Topics WT10g 501-550
TREC-11 | 2002 | Web Track, GOV 551-600
Topic Distillation Task
TREC-12 | 2003 | Web Track, GOV TD1-TD50
Topic Distillation Task
TREC-13 | 2004 | Web Track, GOV 75 topics from WT04-1 to WT04-225
Topic Distillation Task
TREC-18 | 2009 | Web Track, Ad Hoc Task ClueWeb09 wt09-1 to wt09-50
TREC-19 | 2010 | Web Track, Ad Hoc Task ClueWeb09 51-100
TREC-16 | 2007 | Million Query Track GOV2 1-10000
TREC-12 | 2003 | Robust Track TREC45-CR 100 topics from 303-650
TREC-13 | 2004 | Robust Track TREC45-CR 301-450 (Ad Hoc Topics TREC6-TRECS),
601-650 (new topics TREC-12 Robust Track),
651-700 (new topics TREC-13 Robust Track)
TREC-14 | 2005 | Robust Track AQUAINT 50 topics from 303-689
TREC-13 | 2004 | Terabyte Track, Ad Hoc Task | GOV2 701-750
TREC-14 | 2005 | Terabyte Track, Ad Hoc Task | GOV2 751-800
TREC-15 | 2006 | Terabyte Track, Ad Hoc Task | GOV2 801-850
TREC-14 | 2005 | Terabyte Track, GOV2 1-50000
Efficiency Task
TREC-9 2000 | QA Track TIPSTER+TREC45 201-893
TREC-10 | 2001 | QA Track, Main Task TIPSTER+TREC45 894-1393
TREC-11 | 2002 | QA Track, Main Task AQUAINT 1394-1893

Table 3.1: Some TREC test beds

was increased to approx. 16,800 articles, 11 million elements with 764MB in size in
2005, the change to a Wikipedia collection in 2006 brought more than 1.5 million XML
documents in 8 languages (out of them about 660,000 English documents) at a size of
approx. 10GB. The current Wikipedia collection in use increased the size to more than
50 GB with more than 2.6 million XML documents and 1.4 billion XML elements.

INEX also offers multiple tracks (https://inex.mmci.uni-saarland.de/) to their
participants. Past tracks include the Heterogeneous Collection (2004-2006), Relevance
Feedback (2004-2006), Natural Language (2004—2006), XML Multimedia (2005-2007),
Use Case Studies (only in 2006), XML Entity Ranking (2006-2009), Efficiency (2008
and 2009), Book Search (2007-2010, renamed to Book and Social Search in 2011), Ad
Hoc Retrieval (2002-2010), and XML Mining (2007—2010) Tracks.

In 2011, tracks encompass the Book and Social Search, Interactive, Relevance Feed-
back, Data-Centric, Question Answering (QA), Web Service Discovery, and the newly
introduced Snippet Retrieval Track which replaces the former Ad Hoc Track. Mostly for
the Ad Hoc Track, INEX uses two types of queries: CO (content-only) queries and CAS
(content-and-structure) queries. While CO queries are keyword queries without struc-
tural information as used in text retrieval, CAS queries impose structural constraints
which position keywords into a structural context.

We will now describe the INEX collections used over the years for the Ad Hoc Track.

3.2 Initiatives 53

The INEX IEEE collection 2002-2004 and its extension from 2005: The
initial INEX collection from 2002 consisted of 12,107 marked-up articles with 8 million
elements, taken from IEEE journals between 1995 and 2002, 494MB in size, and de-
scribed in [LT07] which we will summarize here. The collection got extended in 2005 by
4,712 new IEEE articles published between 2002 and 2004, resulting in 16,819 articles
with 11 million elements and a size of 764MB. A typical article consists of front matter,
body, and back matter. The front matter contains metadata (e.g., title, author, publi-
cation information, and abstract). The body contains text embedded in its structural
information: sections, sub-sections, and sub-sub-sections that start with a title element
followed by paragraphs. The content is extended by references (citations, tables, and
figures), item lists, and layout (e.g., emphasised, bold text). The back matter contains
bibliography and information about the authors. This collection has been used for the
Ad Hoc Track which was the only INEX track in 2002 and 2003, and for the Interactive,
Relevance Feedback, and Natural Language Track in 2004.

The INEX Wikipedia collection 2006-2008: The INEX Wikipedia collection
used for the INEX workshop from 2006 to 2008 consists of 1,535,355 Wikipedia-based
XML documents in 8 languages with a total size of about 10GB. The English part
consists of 659,388 English documents which are about 4,600MB in size. The average
size of an English document is 7,261 bytes, the average depth of a node in an XML
document tree is 6.72, and the average number of elements in a document is 161.35.
More detailed information can be found in [DGO06a] and [DGO6b]. As the collection
is highly irregular, there is no DTD available for this collection. This collection has
been used for the Ad Hoc Track from 2006-2008, the INEX Efficiency Track 2008, and
the Entity Ranking Track 2007 and 2008. The English part of this INEX Wikipedia
collection with more than 300,000 images at approx. 60GB size has been used for the
Multimedia Track in 2007 while the English part with tagged articles and a size of
approx. 6GB has been used as Entity corpus for the Entity Ranking Track in 2007 and
2008.

The INEX Wikipedia collection from 2009: This Wikipedia collection has been
newly introduced in 2009 (http://www.mpi-inf.mpg.de/departments/d5/software/
inex/) and was created at Max-Planck-Institute and Saarland University. It consists
of 50.7GB XML-ified Wikipedia articles, with 2,666,190 articles (which is four times
the number the English articles in the former Wikipedia collection) and 1.4 billion
elements. The collection is annotated with the 2008-w40-2 version of YAGO [SSKO07].
Parsing the document collection using the Galago parser resulted in avgdl=565.83,
and after stopword removal in avgdl=393.62. In 2009, the INEX Efficiency Track, the
Link-the-Wiki Track, and the Question Answering Track have used this collection.

54 3. Benchmarks

3.2.3 Other Initiatives
The IREX Project

The IREX (Information Retrieval and Extraction Exercise) project is an evaluation
project for Information Retrieval and Information Extraction in Japanese. [SI00] reports
on this project, briefly summarized below: the project lasted from May 1998 to Septem-
ber 1999 and ended with an IREX workshop held in Tokyo. More information including
the data and tools used for the project can be found at http://nlp.cs.nyu.edu/irex/.
The IREX project had two tasks, namely the Information Retrieval task (IR) and the
Named Entity task (NE). We omit the description of the NE task as the evaluation in
related work presented in Chapter 4 only deals with the IR task. There were 30 topics
in the IR task and participants were asked to submit their top-300 results for each
topic. The employed IREX_IR collection consists of about 212,000 Mainichi newspaper
articles written in Japanese that were published in 1994 and 1995.

OHSUMED

A description of the OHSUMED test bed is given in [HBLH94] and http://ir.ohsu.
edu/ohsumed/ohsumed.html, its characteristics are briefly summarized in the following.
The OHSUMED test collection is a subset of MEDLINE, a bibliographic database
for medical publications maintained by the National Library of Medicine and about
400MB in size. MEDLINE consists of more than 7 million references starting in 1966,
and grows by about 250,000 references per year. The OHSUMED collection contains
348,566 references, a subset of 270 medical journals covering the years 1987 to 1991.

The generally short queries contain a brief statement about the patient and an
information need. Relevance assessments distinguish two levels of relevance, namely
definitely relevant (DR) and definitely or possibly relevant (D+PR). The test bed con-
tains 101 physician-generated queries during patient care with at least one document
considered definitely relevant.

3.3 Measures

In order to assess the retrieval quality of search engines, the IR community has devel-
oped several measures which can be classified in measures for text/document retrieval
and measures for XML retrieval.

Relevance is always assessed with respect to the user’s information need, not to a
query. That means that a document is considered relevant iff it contains some infor-
mation related to the user’s information need. Mere occurrence of the keywords from
the query in a retrieved document is not sufficient to render the document relevant.

3.3.1 Measures for Text/Document Retrieval

Query processing in a search engine returns a ranked list of results that are assessed
using various measures; two of the most prominent measures are precision and recall.

3.3 Measures 55

For these measures, the order of (the first n) entries in the ranked list of query results
does not influence the value of the measure such that the ranked list can also be viewed
as a result set.

Definition 3.3.1. (Precision at rank n) Given a set of the first n items I, =
{i1,...,in} retrieved as answer to query ¢, and the set of items R considered relevant
to g, precision at rank n is defined as

I,
Pan = 7|Rﬁ |
| 1]

and measures which fraction of the retrieved items in I, is actually relevant to the
query.

Definition 3.3.2. (R-Precision) Given the set of items R considered relevant to a
query ¢, and a set of retrieved items Ijp = {i1,...,ip} retrieved as answer to g,

R-Precision is defined as
1RO Dyl

iRl

and measures which fraction of the first |R| retrieved items is actually relevant to g.

R — Precision =

Definition 3.3.3. (Recall) Given a set of n items I,, = {i1,...,4,} that represent a
query result, and the set of items R considered relevant to ¢, the recall is defined as

[R 01|

recall =
R

and describes to which extent the items considered relevant have been retrieved.

Sometimes, for example in the area of question answering, it is good enough to
know whether there is at least one relevant answer among the first n results. A simple
measure that can be used for this purpose is answer-at-n.

Definition 3.3.4. (Answer-at-n (a@n)) Given a set of the first n items I, =
{i1,...,in} of a query result, and the set of items R considered relevant to ¢, the
answer-at-n value is defined as

a@n = min(1, |, N R|).

Therefore, a@n = 1 if there is at least one relevant result among the first n results and
0 otherwise.

While the evaluation measures just described ignored the order of the ranked result
lists, the evaluation measures we will describe in the following take the order of the
ranked result lists into account. Thus, the order of the retrieved results has an impact
on the value of the measures.

56 3. Benchmarks

Definition 3.3.5. (AP (average precision)) Given a ranked result list RL of re-
trieval results for a query ¢ and the set of results R = {d,...,d.} in RL considered
relevant, the average precision (AP) is defined as

AP(q,RL) Z P@rank(d}, RL),

‘ |d’eR
where rank(d,, RL) is the rank of d; in RL.

The NDCG measure (normalized discounted cumulative gain) has been proposed
in [JKO02] and supports non-binary relevance assessments: relevance assessments have
more than two relevance levels, such as non-relevant, marginally relevant, relevant, and
highly relevant. Each relevance level is mapped to a relevance value which is a number
such as highly relevant—3, relevant—2, marginally relevant—1, and non-relevant—a0.
As the original work computes the NDCG value in an algorithmic way and we want to
keep the definition compact, we adapt the variant presented in [MRS08] to our notation.

Definition 3.3.6. (NDCG at rank k) Let rel(q, d) be the relevance value attributed

to document d for query ¢, RL the ranked list for query ¢, and RLj, the k' result in

RL. The NDCG value for q at rank k is defined as

2rel(q,RLT) -1

NDCG(q,k) = Z, _
(Q7) q; 10g(1 +T) 9

where Z, is a normalization factor such that a perfect ranked result list’s NDCG at

rank k is 1

The RR (reciprocal rank) measure quantifies when the first relevant document is
encountered in a result list.

Definition 3.3.7. (RR (reciprocal rank)) Let RL, be a ranked list, and R, the set
of relevant items for query g. Then the reciprocal rank (RR) for ¢ is defined as

1
minrank(RLy N Ry)’

RR(q) =

where minrank(RLy N R,) is the minimum rank of a relevant document in RL,. If

1
» minrank(RLgyNR,

RL,N R, =0 (i.e., no relevant results are retrieved)) is set to 0.

Common measures that are based on mean values for a set of topics (query load)
are MAP (mean average precision) and MRR (mean reciprocal rank). While MAP
averages over AP values, MRR averages over RR values:

Definition 3.3.8. (MAP (mean average precision)) Given a query load @ =
{q1,...,¢n} and a ranked result list of retrieved results for each query in @}, RL; being
the ranked list for query ¢; and R; the set of relevant items for query g;. Then the
mean average precision (MAP) for @ is defined as

MAP(Q) = ZAP ¢j, RL;).

QI <

3.3 Measures 57

The MRR (mean reciprocal rank) averages over the reciprocal ranks of the first

relevant retrieved result for each query in a query load.

Definition 3.3.9. (MRR (mean reciprocal rank)) Given a query load @ =
{q1,...,qm} and a ranked result list of retrieved results for each query in @, RL;
being the ranked list for query g; and R; the set of relevant items for query ¢;. Then
the mean reciprocal rank (MRR) for @ is defined as

1 1Q 1
M =
RR(Q) Q| jz_; minrank(RL; N R;)’

where minrank(RL; N R;) is the minimum rank of a relevant document in RL;. If

1
» minrank(RL;NR;)

RL; N Rj =0 (i.e., no relevant results are retrieved) is set to 0.

3.3.2 Measures for XML Retrieval

In [KPK107] Kamps et al. describe the official retrieval effectiveness measures used
for the Ad Hoc Track at INEX 2007. While in earlier years only XML elements were
allowed for retrieval, INEX 2007 allowed arbitrary document parts, i.e., XML elements
and passages. The Focused Task requires a ranked list of non-overlapping document
parts (i.e., there is no document part in the ranked list which is enclosed or partially
overlaps with any other document part from the ranked list). Submitting organizations
are asked to provide for each query ¢ ranked lists of 1,500 non-overlapping document
parts L, that are supposed to be most focused and relevant.

The amount of relevant information retrieved is measured in terms of the length of
relevant text retrieved. Since 2005, INEX uses highlighting to get relevance assessments
for the topics. Therefore, the evaluation is based on the number of relevant highlighted
characters, not documents.

pr is the document part assigned to rank r in the ranked list L, of document parts
returned by a retrieval system for a topic ¢'. size(p,) is the total number of characters
contained in p, and rsize(p,) the total number of characters in the highlighted relevant
text part of p,. Trel(q) denotes the total number of characters in all highlighted relevant
text for q.

The precision at rank r is defined as

i rsize(p;)
> iy size(p;)

and measures which portion of the retrieved characters is relevant.

Plr] =

The recall at rank 7 is defined as

i rsize(p;)
==t

LThe topic may be notationally omitted if it is clear from the context which topic we are considering.

58 3. Benchmarks

and measures to which extent the retrieved characters cover characters from text con-
sidered relevant. Both precision and recall are similar to the earlier definitions but use
characters instead of documents as evaluation units.

The interpolated precision at recall level x for query ¢ is defined as

Plel(q) = { maz{P[r] : Rr] Za:(}) ieflszgRULqu |

where R[|L,|] is the maximum recall over all retrieved documents L,. It considers the
maximum achievable precision after the returned results have achieved at least recall
level z. If the recall level z exceeds the maximum recall level for L,, the interpolated
precision drops to 0.

The average interpolated precision measure for query ¢

1

AiP(q) = {57 - me%;ﬂip [z](q)

builds the average over the interpolated precision at the 101 standard recall levels
SRL = {0.00,0.01,...,1.00}.
The mean average interpolated precision measure is defined as

. 1 .
MAiP = T Z AiP(q)
qeT

and expresses the performance across a set of topics 7.

Chapter 4

Evaluation for Selected Score
Models

In the first part of this chapter (Section 4.1) we present a lot of insightful experimen-
tal results from the original papers. However, they usually compare only a few of the
proximity score models surveyed in Chapter 2. The second part of this chapter (Sec-
tion 4.2) seeks to close this gap by performing a comparative analysis of a significant
set of proximity score models in a single evaluation framework with four test beds.

4.1 Results from the Original Papers

In this section, we report the main results from the original papers and describe their
experimental setups. When we describe the employed test beds, we first talk about
the topics with the corresponding tracks/tasks and mention the employed document
collection in brackets. More information about the test beds can be found in Chapter 3.

4.1.1 Linear Combinations of Scoring Models

Rasolofo and Savoy: Rasolofo and Savoy (cf. Section 2.4.1) use three Web Track
Ad Hoc Task test beds from TREC-8 (TREC45-CR), TREC-9, and TREC-10 (both
WT10g) with 125 multi-keyword queries without stopwords. They compare the retrieval
quality of their proposed proximity-aware model to an Okapi BM25 baseline. Proximity
scores help more with early (P@5) than with later precision. Average precision values
for BM25 and the proposed model hardly differ for which the authors give two reasons:
1) Proximity scores only consider term pairs in a window size of five which limits the
number of documents whose scores are influenced by proximity scores and 2) only the
100 documents with the highest BM25 scores are scored which may rule out potentially
relevant documents beyond the top-100.

Sign tests at p<0.05 show that their approach significantly improves in AP over the
baseline when evaluating over all queries from all three test beds. Considering single
test beds, only for TREC-8, their approach significantly improves over the baseline.

99

60 4. Evaluation for Selected Score Models

Biittcher et al.: Biittcher et al. (cf. Section 2.4.2) perform two rounds of experi-
ments: 1) They evaluate 100 topics from the TREC 2003 Robust Track (TREC45-CR)
and 50 topics from the TREC 2004 Terabyte Track, Ad Hoc Task (GOV2). Like Ra-
solofo and Savoy, they compare their proximity-enhanced model to a BM25 baseline:
a paired t-test shows significant improvements on GOV2 (P@Q10 at p<0.02, P@Q20 at
p<0.01), but fails on TREC45-CR. 2) They split the GOV2 collection into 100 ran-
dom chunks which are combined to form 10%, 20%, ..., 90% of the GOV2 documents
(20 subcollections per size). Their test bed uses the 100 queries from TREC Terabyte
Track, Ad Hoc Tasks 2004 and 2005 (subcollections of GOV2). It turns out that the
larger the document collection is, the more important the impact of term proximity
scores gets for PQ10 and P@20 values. The authors suspect, that, in large collections,
it is more likely to accidentally find non-relevant documents that contain query terms;
term proximity may help to find relevant ones. As the relative gain of proximity scores
is higher for stemmed than for unstemmed queries, term proximity may help to find
stem-equivalent terms that represent the same semantic concept. Average document
length and effectivity of term proximity do not seem to be related.

Uematsu et al.: Uematsu et al. (cf. Section 2.4.3) use two test beds: 50 topics from
the TREC-8 Web Track, Ad Hoc Task (TREC45-CR), and 30 IR Task Topics from
IREX (IREX_IR collection). They compare precision and average query processing
times when evaluating queries with document-, word-, and sentence-level indexes and
report index sizes. A document-level index contains only (docid, ¢ f(term,docid)) pairs,
and word-level indexes contain additional term position information. The proposed
sentence-level index contains for each term t a list of docids and the number of sentences
where ¢ occurs plus sentence positions. This is used to determine, for each document,
the number of sentences with co-occurrences of all query terms per document. Indexes
are compressed by means of dgap and v-byte encoding: due to smaller dgaps, sentence-
level may compress better than word-level indexes. Sentence-level indexes lead to the
highest early precision values for both test beds.

Document-level indexes are smallest, sentence-level indexes are as effective as word-
level indexes, but smaller. Without positional information, document-level indexes
are not as effective as the other indexes as they can only be used to compute BM25
scores without term proximity contributions. To index the TREC45-CR collection, the
sentence-level index requires 900GB (39% larger than document-, 26% smaller than
word-level index), for IREX_IR 210GB (25% larger than document-, 12% smaller than
word-level index).

For the TREC-8 test bed, document- and sentence-level indexes’ query processing
times are comparable and a bit faster than the word-level indexes’. For the IREX_IR
test bed, index granularities hardly influence the query processing speed.

Monz: Monz (cf. Section 2.4.4) uses test beds from the question answering (QA)
Tracks of TREC-9, TREC-10 (both TIPSTER+TREC45), and TREC-11 (AQUAINT)
to evaluate his minimum span weighting (msw) approach against the baseline Lnu.ltc.

4.1 Results from the Original Papers 61

He compares the percentages of questions that have at least one relevant document
among the top-n results (a@n), and shows that msw outperforms the baseline on all
test beds, especially for low n. The precision values decline for the TREC-11 test bed
as it contains more difficult questions and the average number of relevant documents is
lower than for the TREC-9 and TREC-10 test beds. Percentually, the precision values
P@n show higher gains than for a@n at all cutoffs. For both metrics, with every test
bed and at all cutoffs, the performance of msw significantly outperforms the baseline
at p<0.01. The author fails to show a correlation between query length and average
precision.

Tao and Zhai: Tao and Zhai (cf. Section 2.4.5) employ five TREC test beds, namely
the 50 TREC-1 Ad Hoc Topics (AP, FR), DOE queries (DOE), and 50 TREC-8 Web
Track, Ad Hoc and Small Web Topics (TREC45-CR, WEB2g). The authors report
average values of five individual proximity distance functions (considered in isolation)
for relevant and non-relevant documents. Ideally non-relevant documents should have
higher distance values than relevant ones. It turns out that global measures (Span and
MinCover) need a normalization as relevant documents tend to contain more query
terms which span wider than in non-relevant documents. Local measures (MinDist,
AvgDist, and MaxDist) perform better than global measures; MinDist is likely to
be the best proximity distance function on every test bed. Except for FR (maybe
too few queries (21) are applicable which tends to support the null hypothesis), MAP
values improve significantly (Wilcoxon signed rank test, p < 0.05) for Ry + MinDist
and Ro + MinDist over the baselines KL-divergence and BM25, respectively. Early
precision values are better for Ry + MinDist and Ry + MinDist than for the base-
lines. Ry + MinDist provides similar MAP values as the MRF approach used by
Metzler and Croft [MCO05] (cf. Section 2.7.3). Parameter sensitivity studies show that
global proximity measures are less stable and accurate than local ones. Simple addi-
tion of KL-divergence and proximity measures cannot improve retrieval quality over
KL-divergence.

4.1.2 Integrated Score Models

De Kretser and Moffat: De Kretser and Moffat (cf. Section 2.5.1) compare their
locality to traditional document retrieval models using the AP metric for £=1,000
documents. They evaluate 150 long TREC-1-3 (TIPSTER Disks 142) and 49 short
TREC-4 Ad Hoc Topics (TIPSTER Disks 2+3) on subcollections from TIPSTER
Disk 2 (AP88, FR88, WSJ90-92, ZIFF89-90), newspaper AP88+WSJ90-92, and non-
newspaper FR88+ZIFF89-90 parts.

As document retrieval baselines, they use 1) the standard cosine measure (baselinel)
and 2) an approach which uses tf, gtf, pivoted document length normalization, and
1df-normalization by maximum frequency which achieves the best overall performance
in [ZM98] (baseline?2). For locality retrieval models, the authors test four kernel shapes
with damped and non-damped height.

62 4. Evaluation for Selected Score Models

For the short topics (7 distinct terms on average), with a few exceptions, their
locality-based retrieval models improve over baselinel and the arc-shaped, damped
height kernel outperforms baseline2 on 5 of 6 document collections. For the long
topics (43 distinct terms on average in description field), locality methods do not pay
off except for FR88 which contains long documents where users save most time when
pointed to passages by locality-based retrieval models.

Song et al.: Song et al. (cf. Section 2.5.2) compare early and average precision of
their retrieval model (newTP) to BM25 and Rasolofo and Savoy’s approach (OkaTP).

To this end, they use the 50 topics from the TREC-10 Web Track, Ad Hoc Task
(WT10g) and 50 topics from the TREC-11 Web Track, Topic Distillation Task (.GOV)
as test beds. Song et al. tune first on BM25, then the newTP parameters using the
TREC-9 Web Track, Ad Hoc Task (WT10g) test bed: newTP’s term proximity scores
use much larger text windows (size=45) than OkaTP (size=5).

newTP significantly (paired t-test, p<0.05) outperforms BM25 in terms of P@Q5 and
P@10 for both testbeds. For P@Q5, OkaTP outperforms newTP which indicates that
OkaTP brings more documents with very close term pair occurrences to the top-5.
For P@10, Song et al.’s approach outperforms OkaTP and BM25 which indicates that
newTP can handle more distant term pairs better than OkaTP. newTP and OkaTP
provide similar average precision values that both outperform BM25.

Mishne and de Rijke: Mishne and de Rijke (cf. Section 2.5.3) evaluate the impact
of phrase and proximity terms and document structure on retrieval quality with two test
beds: 50 queries from the TREC-12 and 75 queries from the TREC-13 Web Track, Topic
Distillation Task (.GOV collection). They compare five approaches which use 1) single
query terms from each topic as terms, no document structure (baseline), 2) all term-
level n-grams from a topic as phrase terms (phrases), 3) phrase terms with weights
proportional to term phrase frequencies in different fields (phrases-b), 4) all term-level
n-grams from a topic as proximity terms with fixed distance length (proximity), and
5) with variable distance length (prox-v). The authors claim that using a multiple field
representation for each document, phrase and proximity terms can help effectiveness
and confirm Mitra et al. [MBSC97] that, for single field representations, given a good
basic ranking model, phrases yield little or no improvement.

Phrase and proximity terms often help to provide higher effectiveness the less re-
strictive the variant in use (i.e., prox-v often outperforms proximity and proximity
often outperforms phrases). phrases-b provides more stable results than phrases.
Short queries often form linguistic phrases and rather gain effectiveness by phrase and
proximity terms than longer queries. Those tend to consist of non-related sets of terms
and may consequently suffer from a topic drift. Effectiveness gains for short queries
predominate - starting at a query length of four terms, the effectiveness drops.

4.1 Results from the Original Papers 63

4.1.3 Language Models with Proximity Components

Lv and Zhai: Lv and Zhai (cf. Section 2.6.1) use four TREC test beds to evaluate
their positional language model (PLM) approach: 50 TREC-1 Ad Hoc Topics (AP88-
89 and FR), and 50 TREC-8 Web Track, Ad Hoc and Small Web Topics (WT2g and
TREC45-CR). For the best position strategy (BPS), they compare the effectiveness of
proximity-based kernels. The KL-divergence model (with Dirichlet prior smoothing)
returns initial results re-ranked with PLMs for 25 < ¢ < 300: o > 125 does best, and
Gaussian kernels are usually preferable. Lv and Zhai claim that the Gaussian kernel is
superior since it is the only kernel under view whose propagated count drops slowly for
small distances |i — j| (dependent terms are not always adjacent in documents), fast for
moderate distances (boundary of term’s semantic scope reached), and again slowly for
large distances (all terms are only loosely associated). For the multi-position strategy
with a single spread o, a Gaussian kernel (with Dirichlet prior smoothing) does not
yield noticeable improvements over BPS (k=1) such that, for one single o, BPS can
be considered a robust method for document ranking. For the multi-o strategy, PLMs
(oprar flexible) and document language model (07,5 = 00) are linearly combined using
a coefficient ~. Interpolation helps PLMs to be more robust and effective: the authors
claim that PLMs represent proximity well although document-level retrieval heuristics
are better represented by document LMs. The PLM approach performs best for small
opry values (e.g., 25 or 75). For collections with larger avgdl values (i.e., WT2g and
FR), PLMs need more weight (i.e., a larger) since their document LMs tend to be
noisier.

Zhao and Yun: Zhao and Yun (cf. Section 2.6.2) use four test beds: the title
fields of the 50 TREC-5 Ad Hoc Topics (AP88 and WSJ90-92), the title fields of 50
TREC-3 Ad Hoc Topics (WSJ87-92), and the OHSUMED Topics (OHSUMED). The
compared approaches are 1) the KL-divergence model, 2) the KL-divergence model
linearly combined with a proximity score model as used in [TZ07], and 3) the proposed
proximity integrated language model (ProxLLM) with different term proximity centrality
measures.

The authors compare the best achievable performance of the term proximity cen-
trality measures. Proxsympros performs similarly well as Prozasinpist and both out-
perform Prox ayepist- 2) performs better than 1) on all test beds except for OHSUMED
whose queries are verbose. 3) outperforms 1) and 2) in terms of precision and MAP and
can handle verbose queries very well: for OHSUMED, 3) always significantly (Wilcoxon
signed rank test, p<0.05) outperforms 1) and 2).

The authors study how robust the approaches are if stopwords in queries are con-
sidered. To this end, they use the 23 Ad Hoc Topics from TREC-5 that contain at least
one stopword on the collections AP88 and WSJ90-92. While, in the presence of stop-
words, 1) is robust in terms of effectiveness, 2) fails for both collections. Proxsumprox
used as centrality measure in 3) improves over 1), is robust to stopword occurrences,
and superior to Prozxrinpist- The authors claim that stopwords occur frequently in

64 4. Evaluation for Selected Score Models

documents, i.e., they are likely to occur close to other query terms which may highly
influence proximity centrality scores for Proz yrinpist-

4.1.4 Learning to Rank

Metzler and Croft: Metzler and Croft (cf. Section 2.7.3) evaluate with four TREC
test beds: the 150 Ad Hoc Topics from TREC-1 to TREC-3 (WSJ87-92 and AP88-90,
respectively; both part of TIPSTER), 100 topics from the Web Track, Ad Hoc Task
of TREC-94+10 (WT10g), and 50 topics from the Terabyte Track, Ad Hoc Task 2004
(GOV2). Documents are stemmed and stopwords removed during evaluation. The full
independence (FI) setting (only cliques in T') serves as a baseline for the parameter-
tuned, weighted MRF models. For the sequential dependence (SD) setting (cliques in
T, U, and O), the authors evaluate MAP values for window sizes of 2, 8, 50, and oo
and tune parameters separately for each window size. It seems that the window size
only matters for the GOV2 collection: a size of 8 (which corresponds to the average
length of English sentences) performs best and outperforms oo-sized windows.

Hill climbing is used for parameter tuning which starts off with the FI setting
(Ar=1, Ao=Ay=0). The authors find that SD and FD significantly (paired t-test,
p<0.05) improve MAP values for all testbeds compared to FI variants.

Svore et al.: Svore et al. (cf. Section 2.7.2) study the effect of different feature
sets on effectiveness in web retrieval using stemmed English queries (up to 10 terms)
sampled from a commercial search engine’s query log. Each query has on average
150-200 assigned documents with 5-level relevance assessments. While the training set
consists of 27,959 queries (of which 20% are used for validation), the test set consists
of 11,857 queries. The authors compare the impact of phrases and proximity terms on
early NDCG values and compare ten different models: 1) BM25, 2) train LambdaRank
over BM25 features (ABM25), 3) Rasolofo and Savoy’s approach, 4) a bigram-version
of 3), 5) Song et al.’s approach, 6) ABM25 with bigram features, 7) 6) with additional
espan-based rc value from 5), 8) an approach that uses all espan goodness features and
model feature sets (Espan), 9) Espan without formatting features, and 10) Espan
without 3rd-party phrase features.

Espan significantly (t-test, p<0.05) outperforms all other models: phrase features
and -even more- formatting features are important for retrieval effectiveness. To con-
sider query characteristics, the queries in the test set are split by 1) length and 2)
popularity. For popular queries, Espan significantly outperforms all other models. For
short queries, removing phrase span features has only a small impact. In a full ranking
model, Espan outperforms the other models. The experiments are not repeatable as
neither queries nor assessments are disclosed.

Cummins and O’Riordan: Cummins and O’'Riordan (cf. Section 2.7.4) make use
of the LA, FBIS, and FR collections from TREC Disks 4 and 5 as test data. For
each collection, the corresponding topic set is evaluated in two variants with stemming

4.2 Comparative Analysis for Selected Score Models 65

and stopword removal: 1) short (title field) and 2) medium length queries (title plus
description fields). Furthermore, 63 topics are evaluated with the OHSUMED collection
(title plus description fields only).

For each term-term proximity measure, for short and medium length queries sepa-
rately, the average values for relevant and non-relevant documents are computed to see
correlations. While average values for min_dist, avg_min_dist and avg_match_dist seem
to be inversely correlated with relevance (i.e., larger average values for less relevant
documents), gt, sumtf, and prodtf values seem to be directly correlated with relevance
(i.e., larger average values for relevant documents).

Genetic programming is used to find a combination of a subset of the 12 proposed
term-term proximity measures that form a learned proximity score. An FT subset of
69,500 documents from TREC Disk 4 and 55 topics (subset of Ad Hoc Topics from
TREC-6+7) are used as training data.

scoregs and a scoreppro; are used as baselines and linearly combined with the
learned proximity score: on the training data, for ES (MAP as fitness metric), the prox-
imity score generates significant improvements for proxs and prozg (Wilcoxon signed
rank test, p<0.05), for BM25, proximity scores do not significantly improve the MAP
values. An additional proximity-enhanced baseline is scoreps combined with MinDist
as proximity function as used by Tao and Zhai which is not significantly better than
scoregg on the training data. For most test collections, prozxg linearly combined with
scorepg also significantly improves over the scoregg baseline, proxs still significantly
improves for FBIS.

4.2 Comparative Analysis for Selected Score Models

In Section 4.1, we have seen that the original papers present a wealth of insightful
experimental results. However, they usually only compare the effectiveness of just a
few of the proximity score models described in Chapter 2. Therefore, it is difficult to
assess which of the scoring models provides the best retrieval quality. We seek to close
this gap by performing a comparative analysis of a significant set of proximity score
models in one single evaluation framework with four test beds.

In our experiments, we use an open-source implementation of the MapReduce frame-
work, Hadoop in version 0.20 on Linux. Hadoop runs on a cluster of 10 servers in the
same network, where each server has 8 CPU cores plus 8 virtual cores through hyper-
threading, 32GB of memory, and four local hard drives of 1TB each. The implementa-
tion has been done completely in Java 1.6.

We evaluate the retrieval quality for various parameter combinations and a set of
individual scoring models. The evaluation is accelerated and partially only enabled
by the distributed evaluation in the Hadoop framework. For each scoring model, we
have implemented a separate class which can be fully customized and plugged into our
evaluation driver. Each scoring model class includes a list of all parameters that are
evaluated.

66 4. Evaluation for Selected Score Models

There is one file per test bed which contains all information that is necessary to
perform the evaluation. This encompasses the document corpus, its characteristics
(such as avgdl, N, and dt), the topic sets to be evaluated, and the relevance assessments.
In addition, the file specifies query readers and document parsers plus optional Hadoop-
related parameters to be used during evaluation; we employ the Galago Parser to parse
the document collection.

The evaluation makes use of two jobs: in the map phase of the first job, we evaluate
the query load for all documents and for each configuration. (A configuration consists
of one scoring model with one parameter combination.) In the reduce phase of the first
job, we aggregate, for each configuration and topic, retrieval quality statistics. The
second job reconciles the per-topic, per-method, and per-metric results into averages
per method and metric; the work is done exclusively in the reduce phase.

We will now briefly describe the various test beds we use across this section. For the
Web Track, we evaluate the retrieval quality for the Web Tracks in 2000 and 2001 on
the WT10g collection: topics 451-500 denote evaluations with Web Track Topics from
TREC-9 (2000), and topics 501-550 denote evaluations with the Web Track, Ad Hoc
Topics from TREC-10 (2001). For the Web Track, we additionally show the influence of
limiting the evaluated topics to those that consist of at least two query terms, namely
451-500+2 and 501-550+2. This is intended to show the effects of proximity scores
(which need at least two query terms to become effective). ALL encompasses all topics
from both years (i.e., topics 451-550).

For the Robust Track, we evaluate the retrieval quality of the Ad Hoc Topics on
TREC Disks 4 and 5 (without the Congressional Record data). While topics 301-350
denote evaluations with the Ad Hoc Topics from TREC-6 (1997), topics 351-400 denote
evaluations with the Ad Hoc Topics from TREC-7 (1998). Topics 401-450 evaluate
using the Web Track, Ad Hoc Topics from TREC-8 (1999), 601-650 represent the new
topics from the TREC-12 Robust Track (2003), and 651-700 the new topics from the
TREC-13 Robust Track (2004). ALL encompasses all topics from the five years, thereby
considering the result quality values from topics 301-450 and 601-700 for each run.

For the Ad Hoc Tasks of the Terabyte Track, we evaluate the retrieval quality on
the GOV2 collection. Topics 701-750, 751-800, and 801-850 denote evaluations with
topics from TREC-13 (2004), TREC-14 (2005), and TREC-15 (2006), respectively.
ALL encompasses all topics from the three years (topics 701-850).

For INEX, we evaluate the 68 Ad Hoc Track Topics from 2009 and the 52 Ad Hoc
Track Topics from 2010 on the INEX Wikipedia collection from 2009. ALL encompasses
the 120 topics from both years. In our evaluation, documents are considered relevant
if they contain some characters marked as relevant.

4.2.1 Experimental Comparison of Scoring Models

For each test bed, we measure the retrieval quality using the NDCG@10, NDCG@100,
P@10, P@Q100, and MAP retrieval metrics. Stop words are removed and query terms
are stemmed. For each test bed, we compare the result quality of the scoring models

4.2 Comparative Analysis for Selected Score Models 67

by Biittcher et al., Rasolofo and Savoy, Zhao and Yun, Tao and Zhai, Lv and Zhai,
Song et al., and de Kretser and Moffat. Furthermore, we evaluate LM with Dirichlet
smoothing, ES, and BM25 as content-scores. We vary the parameters for each scoring
model. For the Terabyte Track test bed, we can not evaluate Lv and Zhai’s scoring
model within a reasonable amount of time due to the collection size and positional
language models that need to be constructed for every position in each document.

Evaluation Using Web Track Test Beds

Figures A.1 to A.3 in Appendix A show the best NDCG, precision, and MAP values
for the Web Track test beds. Song et al.’s and Biittcher et al.’s scoring models have the
highest NDCG values, Tao and Zhai’s approach often performs similarly well. Tao and
Zhai’s scoring model and Biittcher et al.’s scoring model provide the highest precision
values. Song et al.’s and Biittcher et al.’s scoring models perform best for the MAP
metric. De Kretser and Moffat’s approach performs worse than its competitors.

Restricting the test beds involving topics 451-500 and 501-550 to those with at least
two query terms (451-5004-2, 501-500+2) yields a higher overall retrieval quality, but
does not influence the order of result quality among the scoring models.

Evaluation Using Robust Track Test Beds

Figures A.4 to A.6 in Appendix A show the best NDCG, precision, and MAP values for
the Robust Track test beds. The best performing scoring models on the Robust Track
test beds are the ones by Biittcher et al., Tao and Zhai, and Song et al.; there is no
clear winner among these three models, usually they achieve similar retrieval quality
values. Like for the other test beds, de Kretser and Moffat’s approach falls behind the
quality of the remaining scoring models.

Evaluation Using Terabyte Track Test Beds

Figures A.7 to A.9 in Appendix A show the best NDCG, precision, and MAP values for
the Terabyte Track test beds. Biittcher et al.’s scoring model yields the highest retrieval
quality for all test beds and retrieval metrics except for 751-800 with the MAP metric
where it performs slightly weaker than Song et al.’s scoring model. For all other test
beds Song et al.’s scoring model performs second best. BM25, Rasolofo and Savoy’s
scoring model perform similarly, but still good. For the NDCG and precision metrics,
the Dirichlet smoothed language model and Zhao and Yun’s scoring model yield similar
retrieval quality, however often slightly weaker than BM25 and Rasolofo and Savoy’s
scoring model. For the MAP metric, Zhao and Yun’s model falls behind the Dirichlet
smoothed language model. De Kretser and Moffat’s scoring model is far weaker than
all other scoring models.

68 4. Evaluation for Selected Score Models

Evaluation Using INEX Test Beds

Figures A.10 to A.12 in Appendix A show the best NDCG, precision, and MAP values
for the INEX test beds. Biittcher et al.’s scoring model yields the highest retrieval
quality on all test beds (2009, 2010, and ALL) for all employed retrieval metrics. Song
et al.’s approach always performs second best. Song et al.’s model outperforms BM25,
Rasolofo and Savoy, LM with Dirichlet smoothing, and Zhao and Yun’s approach; the
latter four provide a similar retrieval quality and are a bit stronger than Lv and Zhai’s
approach. Tao and Zhai’s scoring model and ES are similarly strong and a bit weaker
than Lv and Zhai’s scoring model. De Kretser and Moffat’s approach is far behind.

4.2.2 Individual Scoring Models

This subsection details the parameter settings which have been evaluated for the scoring
models. To keep the evaluation manageable, in this subsection, we restrict ourselves
to evaluating all topics available for the test beds (i.e., topic set ALL). In the result
tables we abbreviate the four resulting test beds by WEB, ROBUST, TERABYTE,
and INEX.

BM25: For the (disjunctive) evaluation of the BM25 scoring model, we vary the
parameters kj and b: k; € {0.25,0.4,0.75,1.0,1.2,1.3,1.4,1.5,1.6,1.7,2.0,2.5} (12 vari-
ants), b € {0.25,0.3,0.5} (3 variants), and 2 variants of idf (idf; and idfs). k is always
set to k1. Therefore, in total 12 -3 -2 = 72 runs are evaluated per test bed.

While for the MAP metric, smaller choices of b (0.25 and 0.3) work good for WEB
and INEX, TERABYTE prefers larger b (0.3 and 0.5). For ROBUST, there does not
seem to be a consistent best choice for b among the best parameter settings. k; should
be small or medium-valued: k; < 1 yields the best results for WEB and ROBUST,
0.75 < k1 < 1.2 for TERABYTE, and 0.4 < k1 < 1.0 for INEX. The choice of the
1df variant does not seem to be important for the retrieval quality. For the NDCG@10
metric, results tend to be better if k1 is chosen larger, i.e., k1 > 1.5 for WEB, 0.75 <
k1 < 1.2 for ROBUST, k; > 1.2 for TERABYTE, and 0.75 < k; < 1.5 for INEX. Good
choices for b are similar as for MAP.

optimize NDCG@10 optimize MAP
Collection k1 k b idf NDCG@10 k1 k b idf MAP
WEB 2.00 2.00 0.30 | idfs 0.3436 0.75 0.75 0.25 idfs3 0.2010
ROBUST 0.75 0.75 0.30 | 4dfy 0.4329 0.75 0.75 0.30 | 4dfy 0.2325
TERABYTE 1.60 1.60 0.50 | 4dfy 0.5004 1.00 1.00 0.30 | 4dfy 0.2973
INEX 1.00 1.00 0.30 | 2dfy 0.6148 0.75 0.75 0.30 | @dfy 0.3389

Table 4.1: BM25: optimal tuning parameter setting with NDCG@10 and MAP values.

Table 4.1 contains the optimal tuning parameter settings for BM25 with NDCG@10
and MAP values for all test beds.

4.2 Comparative Analysis for Selected Score Models 69

Biittcher et al.: As described in Section 2.4.2, the proximity score part of Biittcher
et al.’s scoring function is defined as

accy(t) - (k1 + 1).

pscore(d, q) = Zmin{l,idfl ()} accq(t) + K

teq

We evaluate the effects of shrinking the influence of the pscore in Biittcher et al.’s
scoring function, substituting min{1, idf1(t)} by min{minidf,idfi(t)}, where minidf €
{0,0.1,0.2,...,1.0,1.5,2.0,10000} (14 variants). For the cscore part (i.e., a BM25 score
variant), we evaluate the 72 BM25 tuning parameter combinations as described in the
paragraph dealing with BM25. Thus, we evaluate 14 - 72 = 1,008 runs in total per test
bed.

To achieve high MAP values, smaller values of b like 0.25 or 0.3 and relatively small
values for ki are preferable on all test beds: on TERABYTE and INEX 0.4 < k; < 1.3
perform best, on ROBUST 0.4 < k; < 1.0, and on INEX 0.25 < k; < 1.0. To
achieve high NDCG@10 values, smaller values of b usually work well: 6=0.25 performs
best for WEB and INEX, and b € {0.25,0.3} for ROBUST test beds. In contrast,
TERABYTE achieves high NDCG@10 values for larger values of b, i.e., b € {0.3,0.5}.
Medium-size choices of ki perform well: 0.75 < k1 < 1.3 for WEB, 0.4 < k; < 1.3
for ROBUST, 0.6 < k1 < 1.5 for INEX test beds. Best runs for the TERABYTE
test bed tend to have larger choices of ki, i.e., k1 > 1.0. Limiting the influence of
the proximity score part makes sense, i.e., minidf = 10000 usually performs worse
than values below 2: the best NDCG@10 runs use 0.5 < minidf < 1.0 for WEB and
ROBUST, 0.6 < minidf < 1.5 for TERABYTE, and 0.6 < minidf < 2.0 for INEX. The
best MAP runs use 0.4 < minidf < 2.0 for WEB, 0.5 < minidf < 1.5 for ROBUST,
0.9 < minidf < 2.0 for TERABYTE, and 0.7 < minidf < 2.0 for INEX. The choice
of the idf-variant has practically no impact on the result quality for all test beds and
both retrieval metrics.

optimize NDCG@10 optimize MAP
Collection k1 k b mainidf | idf NDCG@10 k1 k b mainidf | idf MAP
WEB 1.00 | 1.00 | 0.25 | 0.7 idfy | 0.3528 0.4 0.4 0.3 0.8 idfs | 0.2131
ROBUST 0.75 | 0.75 | 0.30 | 0.9 idf1 | 0.4471 0.75 | 0.75 | 0.30 | 0.9 idf1 | 0.2469
TERABYTE | 1.60 | 1.60 | 0.30 | 1.0 idfs | 0.5199 0.75 | 0.75 | 0.30 | 1.5 idfs | 0.3257
INEX 1.30 | 1.30 | 0.25 | 1.0 idfy | 0.6398 0.75 | 0.75 | 0.25 | 2.0 idf1 | 0.3764

Table 4.2: Biittcher et al.’s scoring model: optimal tuning parameter setting with
NDCG@10 and MAP values.

Table 4.2 contains the optimal tuning parameter settings for Biittcher et al.’s scoring
model with NDCG@10 and MAP values for all test beds.

Rasolofo and Savoy: For the evaluation of Rasolofo and Savoy’s scoring model,
we use the same parameters as for BM25. In addition, dist € {5,10,20,10000} (4
variants) is varied which specifies the text window width where pairs of query term
occurrences influence each other’s proximity contribution. Therefore, 72 - 4 = 288
parameter combinations are evaluated per test bed.

70 4. Evaluation for Selected Score Models

For WEB and INEX, smaller choices of b (0.25 or 0.3) usually generate better
NDCG@10 and MAP values. For NDCG@10, both WEB and TERABYTE work best
with medium and larger-valued ki: 1.0 < k; < 2.5. To yield good NDCG@10 values
for ROBUST and INEX, k; should be chosen not that large: 0.4 < k; < 1.5 and
0.75 < k1 < 1.7 perform best. To achieve good MAP performance, k1 values should be
chosen a bit smaller than for NDCG@10 values, i.e., 0.25 < k1 < 1.2 for ROBUST and
INEX, 0.75 < k1 < 1.4 for TERABYTE, and k; < 1.7 for WEB.

There is a high impact of the choice of dist, especially for the NDCG@Q@10 metric.
Unfortunately, it is not clear whether to choose high or low dist values. The highest
peaks are generated for the TERABYTE test bed: if chosen wrong, the NDCG@10
value can drop from 50% to 40%. Only the MAP value on WEB and ROBUST is
not influenced much by the dist parameter. Furthermore, the choice of the idf version
has a similar impact as dist and there is no tendency which ¢df version to prefer.
Consequently, Rasofolo and Savoy’s scoring model is difficult to tune.

optimize NDCG@10 optimize MAP
Collection k1 k b dist | idf NDCG@10 k1 k b dist idf MAP
WEB 2.00 | 2.00 | 0.30 | 10 idf3 | 0.3436 0.40 | 0.40 | 0.25 | 5 idf1 | 0.2059
ROBUST 0.75 0.75 0.50 10 idfq 0.4329 0.40 | 0.40 | 0.30 20 idfs 0.2276
TERABYTE 1.60 1.60 | 0.50 20 idfq 0.5004 0.75 0.75 0.30 10,000 idf3 0.2925
INEX 1.00 1.00 | 0.30 5 idfy 0.6148 0.40 | 0.40 | 0.25 5 idfq 0.3396

Table 4.3: Rasolofo and Savoy’s scoring model: optimal tuning parameter setting with
NDCG@10 and MAP values.

Table 4.3 contains the optimal tuning parameter settings for Rasolofo and Savoy’s
scoring model with NDCG@10 and MAP values for all test beds.

Language Model with Dirichlet smoothing: For the Dirichlet smoothed language
model we vary the smoothing parameter p € {500,750, 1000, 1250, 1500} which leads
to five evaluated runs per test bed.

The evaluation shows that the spread in result quality is usually very small so that
the choice of the tuning parameter does not have a large influence. Nevertheless, often
smaller choices of i yield small improvements, e.g., for the MAP value on ROBUST
and INEX as well as the NDCG@10 value on ROBUST and TERABYTE. For MAP
on WEB and NDCG@10 on INEX, larger choices of i are often slightly better. There
is no clear tendency whether to choose u small or large for MAP on TERABYTE and
NDCG@10 on WEB.

optimize NDCG@10 optimize MAP
Collection 7 NDCG@10 1 MAP
WEB 750 0.3233 1,500 | 0.1988
ROBUST 500 0.4831 500 0.2340
TERABYTE | 500 0.4255 750 0.3021
INEX 1,500 | 0.5984 500 0.3359

Table 4.4: Language Model with Dirichlet smoothing: optimal tuning parameter setting
with NDCG@10 and MAP values.

Table 4.4 contains the optimal tuning parameter settings for Language Model with

4.2 Comparative Analysis for Selected Score Models 71

Dirichlet smoothing with NDCG@10 and MAP values for all test beds.

Zhao and Yun: For the evaluation of Zhao and Yun’s score we use Dirichlet smooth-
ing with smoothing parameter p € {500, 1000, 2000, 3000, 5000} (5 variants), scaling
parameter x € {1.5,2.0,2.5,3.0,4.0,5.0} (6 variants), A € {3.0,5.0,7.5,10.0,12.5} (5
variants), and proximate centrality chosen between minimum distance, average dis-
tance, and summed distance (3 variants). This amounts to 5-6 -5 -3 = 450 evaluated
parameter combinations per test bed.

To achieve high NDCG@10 values, usually p = 500 is a good choice on all test
beds; only for INEX p € {1000, 2000} performs better. The best MAP-oriented runs
use ;= 500 for INEX and ROBUST, p = 1000 for TERABYTE, and p = 2000
for WEB test beds. For NDCG@10, while among the top runs for ROBUST and
TERABYTE the average distance measure is most frequently used and for INEX the
minimum distance measure is most frequently used as proximate centrality measure,
there are no noticeable tendencies for WEB. For MAP, while the summed distance and
minimum distance measures are most frequent among the top runs of ROBUST and
INEX, there are no noticeable tendencies for WEB and TERABYTE. z and \ are very
heterogeneously chosen among the top runs for all test beds; therefore, it is hard to
give a general recommendation for choices of z and A.

optimize NDCG@10 optimize MAP
Collection o T A Proxzp(t;) NDCG@10 o x A | Proxzp(t;) MAP
WEB 500 | 5 7.5 | Prozaygpise(ti) | 0.3235 2000 | 5 5 | Prozarinpist(t:) | 0.1989
ROBUST 500 | 4 7.5 | Prowapgpist(ti) | 0.4255 500 | 2.5 | 3 | Prozarinpist(t:) | 0.2340
TERABYTE | 500 4 7.5 | Proxaygpist(ti) | 0.4866 1000 | 4 3 | Proxgympist(t;) | 0.2738
INEX 2000 | 1.5 | 10 | Prowa,gpist(t;) | 0.6008 500 | 2.5 | 5 | Prozsumpist(t;) | 0.3366

Table 4.5: Zhao and Yun’s scoring model: optimal tuning parameter setting with
NDCG@10 and MAP values.

Table 4.5 contains the optimal tuning parameter settings for Zhao and Yun’s scoring
model with NDCG@10 and MAP values for all test beds.

Tao and Zhai: For the evaluation of Tao and Zhai’s score we use a language model
with Dirichlet smoothing and smoothing parameter p € {100, 250, 500, 1000, 1500, 2000,
2500, 3000, 3500, 4000, 5000} (11 variants), o € {0.1,0.2,...,1.5,2.0} (16 variants), and
the kernels MinDist, AvgDist, and MaxDist (3 variants). This results in 11-16-3 = 528
evaluated runs per test bed.

The evaluation shows that the choice of the kernel has only a minor influence on
result quality, although for the ROBUST and INEX test beds MinDist appears fre-
quently among the best runs. Smaller and medium-valued choices of u perform usually
better than large choices. If one aims at optimizing MAP values, u € {500, 1000, 1500}
works well for TERABYTE and INEX, p € {250,500,1000} for ROBUST, and p €
{1000, 1500, 2000, 2500} for WEB. If one aims at optimizing NDCGQ10 values, p €
{250, 500,1000} yields best values for TERABYTE (u = 500 works especially well),
w € {500,1000,1500,2000} for INEX, p € {250,500,1000,1500} for ROBUST, and

72 4. Evaluation for Selected Score Models

w € {500, 1000, 1500} for WEB. Setting ©=500 works with all test beds and metrics. It
is unclear how to select a: almost all values of o are represented within the best runs
on all test beds with both metrics.

optimize NDCG@10 optimize MAP
Collection yn « kernel NDCG@10 I e kernel MAP
WEB 1,000 0.9 MaxDist 0.3269 2,000 0.8 MinDist 0.2057
ROBUST 500 1.1 MinDist 0.4207 500 0.7 | MinDist 0.2313
TERABYTE 500 0.4 MaxDist 0.4517 1,000 0.6 MinDist 0.2572
INEX 500 0.8 MinDist 0.5205 500 1.0 MinDist 0.3080

Table 4.6: Tao and Zhai’s scoring model: optimal tuning parameter setting with
NDCG@10 and MAP values.

Table 4.6 contains the optimal tuning parameter settings for Tao and Zhai’s scoring
model with NDCG@10 and MAP values for all test beds.

ES: As described in Section 2.2, Cummins and O’Riordan linearly combine the ES
score with their proximity score combinations learned by Genetic Programming. As we
do not have an implementation of this non-trivial Genetic Programming framework, we
just use ES as another content-score without any parameters, generating only one run
per test bed. Consequently, we cannot provide any optimal tuning parameter settings
for NDCG@10 and MAP values.

Lv and Zhai: The scoring model proposed by Lv and Zhai builds one positional
language model for each word position in the document. As a consequence, it is com-
putationally very expensive so that we could not evaluate the TERABYTE test bed.

To further reduce computation costs, we have evaluated using the Gaussian kernel
with Dirichlet prior smoothing as the Gaussian kernel is considered superior by Lv
and Zhai (cf. Section 4.1.3). We have evaluated four parameter combinations, namely
o € {25,275} and p € {1000,2000}. To rank, we scored each document by the best
position in that document. For the three test beds (WEB, ROBUST, and INEX),
we found that both for NDCGQ@10 and MAP used as retrieval quality metric, the
combination p = 1000 and o = 275 yielded the best results. Thus, the intercollection
generalization results are perfect (always 1.0000) on this restricted set of parameter
combinations for all pairs of test beds.

Song et al.: We evaluate Song et al.’s scoring model with k; € {0.25,0.4,2.5} (3 vari-
ants), b € {0.3,0.45} (2 variants), two idf implementations, x € {0,0.25,0.5,0.55,0.75,1}
(6 variants), y € {0,0.25,0.5,0.75,1} (5 variants), and dpqe. € {5, 45,100} (3 variants)
which amounts to 3-2-2-6-5-3 = 1,080 parameter combinations.

Large k1 (2.5) work best for NDCG@10 with the WEB and TERABYTE test beds.
The best parameter combinations for INEX include medium and large choices of k; (i.e.,
0.4 and 2.5), whereas we obtain the best values on ROBUST for small and medium
choices of k; (0.25 and 0.4). For MAP, recommended choices of k; are more homoge-
neous: small and medium choices of k; (i.e., 0.25 or 0.4) yield the best MAP values

4.2 Comparative Analysis for Selected Score Models 73

for all test beds. For all test beds and both MAP and NDCG@10 metrics, dpqr = 5 18
very frequent among the top performing parameter settings. Except for TERABYTE
and the NDCG@10 metric (where the choice of b is unclear), b set to 0.3 is common
for the best runs. The choice of the idf version has only a minor impact on the result
quality. Choices of x and y among the best runs are too heterogeneous to say anything
meaningful about them.

optimize NDCG@Q@10 optimize MAP
Collection k1 |k b idf |z y dmaz | NDCGQI0 || k1 |k b idf |z y dmaz | MAP
WEB 2.5(2.5/0.30 | ¢dfy [0.25]0.75|5 0.3471 0.4]0.4|0.3|4df3 0.5 [0.5 |5 0.2114
ROBUST 0.4(0.4|0.3 |idfy [0.55]0.25|5 0.4418 0.4]0.4|0.3|4df; |0.5 [0.25|5 0.2440
TERABYTE |2.5|2.5|0.45 | idfy | 0.25 | 0.25 | 5 0.5138 0.4]0.4|0.3]|4df3|0.75|0.25 5 0.3214
INEX 0.4(0.4(0.3 |[idfy [0.5 |0.0 |5 0.6244 0.4]0.4|0.3]|4df1 |0.55[0.25 |5 0.3693

Table 4.7: Song et al.’s scoring model: optimal tuning parameter setting with
NDCG@10 and MAP values.

Table 4.7 contains the optimal tuning parameter settings for Song et al.’s scoring
model with NDCG@10 and MAP values for all test beds.

De Kretser and Moffat: We evaluate de Kretser and Moffat’s scoring model in
conjunctive and disjunctive mode (2 variants), using the contribution functions triangle,
cosine, circle, arc, circle’; and arc’ (6 variants), and the two algorithms to obtain a
ranking for documents (2 variants) which generates 2 -6 -2 = 24 runs in total.

De Kretser and Moffat’s scoring model performs worse than all other scoring models
we have evaluated. Nevertheless parameters have a high influence on result quality also
for this scoring model; conjunctive evaluation of queries always provides higher retrieval
quality than disjunctive evaluation which is especially high for TERABYTE and INEX
test beds. For NDCG@Q10 advantages amount to about 12 and 17 percentage points,
for MAP to around 7 and 5 percentage points, respectively. Only for the ROBUST test
bed with MAP values, it is not clear whether one should use conjunctive or disjunctive
query evaluation. To obtain a ranking for documents, choosing the first algorithm
that greedily aggregates scores from different positions and documents (first algorithm)
is often a bit better (below 2 percentage points) than considering the position with
maximum score per document (second algorithm). This does not hold for the WEB
test bed: if one wants to optimize NDCG@10 values, it remains unclear which ranking
algorithm yields the better retrieval quality, for MAP values the second algorithm is
often slightly better than the first algorithm.

optimize NDCG@Q@10 optimize MAP
Collection conj./disj. kernel | algorithm NDCG@10 conj./disj. kernel | algorithm MAP
WEB conjunctive | circle’ | 2nd algorithm | 0.2357 conjunctive | circle 2nd algorithm | 0.1323
ROBUST conjunctive | circle 1st algorithm 0.3340 disjunctive circle’ 1st algorithm 0.1493
TERABYTE | conjunctive | arc 1st algorithm 0.2370 conjunctive | circle 1st algorithm 0.1671
INEX conjunctive | circle 1st algorithm 0.4092 conjunctive | circle’ 1st algorithm 0.2005

Table 4.8: De Kretser and Moffat’s scoring model: optimal tuning parameter setting
with NDCG@10 and MAP values.

Table 4.8 contains the optimal tuning parameter settings for de Kretser and Moffat’s

74 4. Evaluation for Selected Score Models

scoring model with NDCG@10 and MAP values for all test beds. For all test beds, de
Kretser and Moffat’s approach falls behind the retrieval quality of the remaining scoring
models.

4.2.3 Intercollection and Intracollection Generalization Results

In this subsection, we measure both intercollection and intracollection generalization
performance of different scoring models.

To measure the intercollection generalization performance of a scoring model for a
given evaluation metric, Metzler [Met0O6b] first computes the parameter combination
for a training test bed that achieves the highest retrieval quality. This parameter
combination is used as parameter combination for the test data (another test bed); the
resulting retrieval quality m’ is divided by the best retrieval quality m* achievable on

m/

the test data to compute the effectiveness ratio G = 5.

We use one document collection with the corresponding topic set ALL as training
test bed to check the retrieval quality for some parameter combinations. Then, we
employ the parameter combination that yields the highest retrieval quality for the
training data with a different document collection with the corresponding topic set
ALL for that second collection (test data).

According to Metzler [Met06b], an ideal model that generalizes perfectly achieves an
effectiveness ratio of 1. While effectiveness ratios below 0.90 indicate a scoring model’s
missing ability to generalize, the most reasonable retrieval models have an effectiveness
ratio above 0.95. Table 4.9 shows the intercollection generalization results for various
scoring models for both the NDCG@10 and the MAP metric.

Biittcher et al.’s scoring model and the LM approach with Dirichlet smoothing
generalize especially well: all effectiveness ratios for both metrics are above 95%.

In most cases, for the NDCG@10 metric, the other scoring models do not generalize
as well as these two approaches, but usually still generalize reasonably well: BM25’s
and Rasolofo and Savoy’s effectiveness ratios are always above 93.63%; when trained
on TERABYTE or INEX, the ratio even always exceeds 95%. Zhao and Yun’s scoring
model’s effectiveness ratio is always above 93.13%; when trained on WEB, ROBUST or
TERABYTE, the ratio overscores 95%. For Song et al.’s scoring model the effectiveness
ratio overscores 93.18%; when trained on WEB, ROBUST or INEX, the ratio overscores
95%. Only de Kretser and Moffat’s scoring model slightly underscores the 90% bound
at a level of 87.91% when it is trained on WEB and tested with TERABYTE which
may still be acceptable.

For the MAP metric, BM25 and Song et al.’s scoring model have an effectiveness
ratio above 95% and thus generalize very well. Zhao and Yun’s scoring model and Tao
and Zhai’s scoring model have a high effectiveness ratio of at least 94.33% and 94.28%,
respectively; when trained on ROBUST, TERABYTE or INEX, the ratio always ex-
ceeds 95%. Rasolofo and Savoy’s scoring model slightly underscores the 90% bound at
a level of 88.17%; it may still be acceptable, especially when trained with ROBUST or
TERABYTE. de Kretser and Moffat’s scoring model is not able to generalize: when

4.2 Comparative Analysis for Selected Score Models 75

trained on ROBUST and tested on TERABYTE the effectiveness ratio is just 52.43%.

Scoring model NDCG@10 MAD
Train\ Test WEB ROBUST | TERABYTE | INEX WEB ROBUST | TERABYTE | INEX
WEB - 0.9795 0.9498 0.9708 - 0.9956 0.9829 0.9895
BM25 ROBUST 0.9363 | - 0.9790 0.9613 0.9919 | - 0.9989 1.0000
TERABYTE | 0.9708 | 0.9819 - 0.9512 0.9875 | 0.9887 - 0.9919
INEX 0.9860 | 0.9974 0.9664 - 0.9919 | 1.000 0.9989 -
WEB - 0.9952 0.9775 0.9927 - 0.9947 0.9816 0.9727
Biittcher ot al. ROBUST 0.9848 | - 0.9861 0.9795 0.9802 | - 0.9890 0.9879
TERABYTE | 0.9789 | 0.9787 - 0.9696 0.9848 | 0.9906 - 0.9933
INEX 0.9824 | 0.9917 0.9930 - 0.9907 | 0.9827 0.9979 -
WEB - 0.9795 0.9498 0.9708 - 0.9767 0.8817 1.0000
Rasolofo, Savoy ROBUST 0.9363 | - 0.9790 0.9613 0.9748 | - 0.9633 0.9860
; TERABYTE | 0.9708 | 0.9819 - 0.9512 0.9712 | 0.9993 - 0.9944
INEX 0.9860 | 0.9974 0.9664 - 1.0000 | 0.9767 0.8817 -
WEB - 0.9965 0.9928 0.9944 - 0.9650 0.9815 0.9673
LM. Dirichlet ROBUST 0.9940 | - 1.0000 0.9951 0.9809 | - 0.9824 1.0000
’ TERABYTE | 0.9940 | 1.0000 - 0.9951 0.9909 | 0.9913 - 0.9996
INEX 0.9792 | 0.9844 0.9541 - 0.9809 | 1.0000 0.9824 -
WEB - 0.9997 0.9997 0.9875 - 0.9482 0.9534 0.9433
Zhao. Yun ROBUST 0.9973 | - 1.0000 0.9872 0.9745 | - 0.9840 0.9999
] TERABYTE | 0.9973 | 1.0000 - 0.9872 0.9831 | 0.9820 - 0.9882
INEX 0.9492 | 0.9677 0.9313 - 0.9635 | 0.9986 0.9779 -
WEB - 0.9727 0.9717 0.9812 - 0.9526 0.9515 0.9428
Tao. Zhai ROBUST 0.9782 | - 0.9900 0.9971 0.9724 | - 0.9916 0.9972
’ TERABYTE | 0.9745 | 0.9750 - 0.9632 0.9824 | 0.9805 - 0.9700
INEX 0.9815 | 0.9917 0.9897 - 0.9666 | 0.9977 0.9855 -
WEB - 0.9610 0.9836 0.9789 - 0.9982 0.9929 0.9944
Song et al. ROBUST 0.9670 | - 0.9808 0.9907 0.9777 | - 0.9889 0.9997
TERABYTE | 0.9724 | 0.9318 - 0.9413 0.9778 | 0.9869 - 0.9965
INEX 0.9702 | 0.9984 0.9831 - 0.9775 | 0.9991 0.9924 -
WEB - 0.9416 0.8791 0.9244 - 0.9676 0.8924 0.9149
De Kretser. Moffat ROBUST 0.9937 | - 0.9980 1.0000 0.8070 | - 0.5243 0.7134
’ TERABYTE | 0.9782 | 0.9992 - 0.9987 0.9608 | 0.9863 - 0.9856
INEX 0.9937 | 1.0000 0.9980 - 0.9827 | 0.9813 0.9698 -

Table 4.9: Intercollection generalization results for various scoring models.

The intracollection generalization measure deals with how well a model trained on
one topic set for a given collection generalizes to a different topic set on the same
collection. Like for the intracollection generalization measure, the effectiveness ratio

G = fnﬂi is computed. To this end, the topic set is divided in two halves; one half is

used for training, the other half for evaluation. This procedure is repeated 5,000 times
to compute an average value for G which represents the intracollection generalization
measure. All scoring models exhibit high intracollection generalization values between
98% and 100% on all test beds with both the MAP and NDCG@10 evaluation metrics.
Therefore, we do not show the exact values.

4.2.4 Sensitivity Charts

Following Metzler’s work [Met06a, MetO6b], we compute entropy and spread values for
the scoring models.

The spread of the effectiveness metric measures the quality difference between the
parameter setting with the highest retrieval quality and the parameter setting with the
lowest retrieval quality. Therefore, it gives an idea of how bad the results can get if we

choose the wrong parameter values.

Given a topic set Q and the corresponding relevance assessments R with 7 = (Q, R),

76 4. Evaluation for Selected Score Models

the entropy is defined as
H = —/P(Q[T) log P(0|7).
0

To estimate P(0|7), the following procedure is performed B=5,000 times: in iter-
ation b, we repeatedly sample a subset of topics from a test bed, i.e., if we have |Q|
topics, we sample |Q| times with repetition. After sampling, we have obtained a subset
Ty, of T, and determine the best parameter combination 6, for 7.

After B iterations, Metzler estimates the posterior P(6|7) s.t.

DERICAL)
P(O|T) = &=L
where 0(0,0;) denotes Kronecker’s delta. That means that one counts, for any given
parameter combination 6, how often 6 has been chosen as an optimal parameter combi-
nation during the B iterations and divides this number by the number of iterations B.

According to [Met06a], the spread and entropy provide a novel, robust way of
looking at parameter sensitivity. Metzler claims that a model with high entropy and
low spread is more stable than a model with low entropy but large spread; an ideal
model features both low entropy and low spread. We think that this kind of evaluation
is only fair when the number of evaluated parameter combinations is similar for all
scoring models as the number of evaluated parameter combinations biases the results:
the more parameter combinations of a scoring model are evaluated, the potentially
higher its entropy and spread. The reason for different numbers of evaluated parameter
combinations has two reasons: on the one hand, the number of parameters differs
from scoring model to scoring model, on the other hand, evaluating many parameter
combinations is infeasible for some scoring models as it is computationally too expensive
such that experiments take arbitrarily long time.

Therefore, the experiments carried out for Lv and Zhai’s scoring model (four set-
tings), for the Dirichlet smoothed language model (five settings), and de Kretser and
Moffat’s scoring model (24 settings) are not directly comparable to the remaining scor-
ing models. Anyway, we leave them in the sensitivity charts as the entropy and spread
values can be considered as a lower bound for these scoring models: if more settings
had been evaluated, the values would have potentially increased. In other words: if the
spread or entropy values for the scoring model under consideration are already high
with a small amount of evaluated settings, the scoring model would also perform bad
or even worse given more evaluated settings.

When evaluating the sensitivity using NDCG@10, de Kretser and Moffat’s scor-
ing model usually features a comparably high spread. This is mainly due to the re-
trieval quality difference between runs using conjunctive and disjunctive evaluation.
The Dirichlet smoothed language model just uses one parameter (u) and therefore is
less affected by high spreads. Lv and Zhai’s model usually features the lowest entropy
which is also caused by the low number of evaluated settings.

We show sensitivity charts in Appendix A to depict entropy and spread values for
nine scoring models on the WEB, ROBUST, GOV, and INEX test beds.

4.2 Comparative Analysis for Selected Score Models 7

Figures A.13(a) and A.13(b) show the sensitivity of nine scoring models on the WEB
test bed for the MAP and NDCG@10 evaluation metric, respectively. Figures A.14(a)
and A.14(b) show the sensitivity of scoring models on the ROBUST test bed for MAP
and NDCG@10 evaluation metrics, respectively. Figures A.15(a) and A.15(b) show the
sensitivity of scoring models on the TERABYTE test bed for MAP and NDCG@Q@10
evaluation metrics, respectively. Figures A.16(a) and A.16(b) show the sensitivity of
scoring models on the INEX test bed for MAP and NDCG@Q10 evaluation metrics,
respectively.

For the scoring models with 24 or less evaluated parameter settings, the entropy
value is naturally very low. Given that small amount of evaluated parameter settings,
the spread of de Kretser and Moffat’s scoring model is very high which renders it a
scoring model which is difficult to tune.

Among the scoring models which had at least 72 evaluated parameter settings, Song
et al.’s scoring model and Tao and Zhai’s scoring model exhibit always the highest
spread. BM25, Biittcher et al.’s, Zhao and Yun’s, as well as Rasolofo and Savoy’s
scoring model have usually low spreads (except for Rasolofo and Savoy’s model on
TERABYTE with NDCG@10 where the spread is higher) and BM25 usually offers the
lowest spread.

The entropy value of Biittcher et al.’s and Song et al.’s scoring model are usually
highest. For the INEX test bed, Zhao and Yun’s (both for MAP and NDCG@10) and
Rasolofo and Savoy’s scoring model (only for MAP) have a higher entropy. Furthermore,
Zhao and Yun’s approach has a higher entropy value than Biittcher et al.’s approach
for the MAP value on TERABYTE.

In our setting, we think that the spread value is more meaningful than the entropy
value as it measures how much retrieval quality can decrease if we choose the wrong
parameter combination.

4.2.5 Summary

Biittcher et al.’s scoring model and LM Dirichlet smoothing provide the best intergen-
eralization values for both NDCG@10 and MAP. The other scoring models are slightly
behind, but still exceed a level of 90% except de Kretser and Moffat’s scoring model
whose effectiveness ratio is just slightly above 50% for MAP. The intracollection gener-
alization measures are excellent (98% to 100%) for all scoring models. Scoring models
with low spread values include BM25, Biittcher et al.’s, and Zhao and Yun’s scoring
model.

With the exception of de Kretser and Moffat’s scoring model, all surveyed prox-
imity scoring models perform well in relevant sensitivity and generalization measures.
We focus later on Biittcher et al.’s scoring model since it combines one of the best
intercollection generalization values and a low spread.

Chapter 5

Extensions

5.1 Introduction

This chapter deals with extensions to the proximity score model proposed by Biittcher
et al. [BCLO6] described in Section 2.4.2 and provides an extensive experimental study
to investigate their impact on retrieval quality.

Term proximity has been a common means to improve effectiveness for text retrieval,
passage retrieval, and question answering, and several proximity scoring functions have
been developed in recent years. Sections 2.4 to 2.7 survey a selection of proximity
scoring models developed for text retrieval during the last decade. For XML retrieval,
however, proximity scoring has not been similarly successful. To the best of our knowl-
edge, there is only one single existing proposal for proximity-aware XML scoring. This
proposal has been authored by Beigbeder and was initially described in [Bei07] and ex-
tended towards full boolean query support in [Beil0] by the same author. It computes,
for each position in an element, a fuzzy score for the query, and then computes the
overall score for the element by summing the scores of all positions and normalizing by
the element’s length. We provide a more detailed description of this scoring model in
Section 5.2.3.

The contributions of this chapter are two-fold: 1) In Section 5.2 we propose one of
the first XML score models that uses proximity information. This part is based on our
work published in [BS08b] and [BST08]| which presents a proximity score for content-
only queries on XML data. We describe how to adapt the existing scoring model
proposed by Biittcher et al. [BCL06] towards XML element retrieval by taking into
account the document structure when computing the distance of term occurrences. 2)
In Section 5.3, by means of a case study, we rigorously analyze the potential of explicit
phrases for retrieval quality and compare it to the proximity score used in [SBH*07].
This part is based on our work published in [BBS10].

79

80 5. Extensions

5.2 XML

In this section, we introduce some XML-related background and describe Beigbeder’s
approach for proximity-enhanced XML retrieval [Bei07, Beil0O] as well as his experi-
mental results. Then, we present our own XML score model for content-only queries
on XML data that uses proximity information published in [BS08b] and [BST08]. We
show experimental results for two test beds and present a new evaluation metric.

5.2.1 XML Background

In the context of the INEX workshop, documents are Wikipedia articles that have
been annotated with XML tags. For our experiments in this chapter, we use the
Wikipedia collection used for INEX during the years 2006 to 2008 (cf. Section 3.2.2)
which contains tags that can be classified into two categories [DG06al: a) language-
independent general tags that carry structural information derived from the Wikitext
format, and b) language-dependent template tags which describe repetitive information.
Examples for general tags include article, section, p (which stands for paragraph),
title, various forms of links (e.g., collectionlink and unknownlink), and emphasis
levels (e.g., emph2 and emph3). Template tags always start with template_ and vary
depending on the language of the Wikipedia collection in use.

According to the W3C recommendation from 26 November 2008 (http://www.w3.
org/TR/xml/), elements are either delimited by start tags and end tags (e.g., <article>
and </article>), or, for empty elements, by an empty-element tag (e.g.,
). Each
element has a type, identified by name (generic identifier (GI)), and may have a set of
attribute specifications. Each XML document can be represented as an element tree.

Nodes represent elements and directed edges indicate parent-child relationships be-
tween elements in the document under consideration. If the complete collection in-
cluding links is considered, the tree structure is converted into the more general graph
structure, links being considered as directed edges which may generate loops. Hence,
XML retrieval aims at retrieving subtrees/subgraphs from the collection graph as re-
sults to an issued query.

According to [KGTT08], the two main research questions for the INEX Ad Hoc
Track are 1) whether the document annotation helps to identify the relevant portion
of a document, and 2) how focused retrieval compares to traditional document-level
retrieval.

5.2.2 Notation

To discuss proximity scoring models for XML elements, we adapt the notation intro-
duced for text retrieval in Section 2.1.2 to the XML element retrieval setting where
term positions in an element are defined analogously to term positions in documents.

Definition 5.2.1. (element length; position-related notation) Given an element
e in an XML document d, the element length of e is defined as [, = |e| and corresponds

5.2 XML 81

to the number of term occurrences in e. Given e with length [., we denote the term
occurring at position i of e by p;(e), 1 < i < l; if the element is clear from the context,
we simply write p;. For a term ¢, we capture the positions in element e where t occurs by
P.(t) = {i|pi(e) =t} C {1,...,l.}; if e is clear from the context, we write P(t). Given a
query ¢ = {t1,...,tn}, we write P.(q) := Uy,eqPe(t;) for the positions of all query terms
in element e, again omitting the suffix e if the element is clear from the context. Given
a set of positions P C {1,...,l.} and an element e, we write T.(P) to denote the set of
terms at the positions of P C {1,...,l.} in e. Precisely, T.(P) = {t| i € P Ap;(e) = t}.

Definition 5.2.2. (set of pairs of adjacent query term occurrences; set of pairs
of all query term occurrences) We denote pairs of query terms that are adjacent to
each other (there might be non-query terms in between) in an element e by

Qadje(q) = 1{(i,7) € Pe(q) X Pe(q) | (1 <j)AVE€{i+1,....5 =1} : k& Pe(q)}-

Pairs of query terms within a window of dist positions in an element e are defined as

Qate(q, dist) == {(i,7) € Pe(q) x Pe(q) | (i < j)A(j —i < dist)}.

Please note that in this case, the query terms need not to occur consecutively in e.
Qaire(q) is the same but employs a window size of l.

5.2.3 Related Work by Beigbeder

This section describes a proposal for proximity-aware XML scoring that has been au-
thored by Beigbeder and was initially described in [Bei07] and extended towards full
boolean query support in [BeilO] by the same author. He transfers a score model
akin to the one proposed by de Kretser and Moffat for text retrieval in [dKM99] (cf.
Section 2.5.1) to XML retrieval.

The approach answers boolean queries. To this end, it introduces several modes to
combine the impacts of the contribution function at position z in document d:

e conjunctive mode: cgng, () = min(cq, (), ¢gy(x)),
e disjunctive mode: ¢g,vq, () = max(cy, (), cqy(x)), and
e complement mode: c-q () =1 — ¢g (),

where ¢; is a boolean query.

If ¢; is a term ¢, the value of the contribution function at position z in d is defined
as ci(z) = mawiep,pcy(z,1), where ci(z,l) = max(0,1 — @) The contribution
function ¢} is triangle-shaped, its height h; is 1, and the spread s is considered a built-
in parameter which is kept constant for all terms. For the most frequent elements in the
Wikipedia collection used for INEX 2008, Beigbeder distinguishes between manually
chosen title-like elements and section-like elements. While title-like elements encompass
name, title, template, and caption elements, section-like elements consist of article,

section, body, figure, image, page, and div elements.

82 5. Extensions

To score full XML documents or passages in XML documents, query terms that
occur in title-like elements can extend their influence to the full content of the element
and recursively to the elements it contains. The intention of that so-called propagation
mode is to reflect the descriptive property of the title element for the section element
it entitles. Thus, given any positions [and x, if [is located in a title-like element e;
and z in a section-like element e that is entitled by e, it follows that ¢;(z) = 1. For
all positions z located in any title-like element, the contribution ¢;(z) is 1.

The score of a document or passage p, respectively that starts at position x; and
ends at position s is defined as

legazgxg Cq (.%')

p|

score(q,p) =)
where the document /passage length |p| = 9 — z1 + 1 is used for score normalization.

The approach requires a mapping that keeps information whether a given term posi-
tion belongs to a title-like or section-like element. For the propagation mode, additional
descendant information for elements is necessary to decide where to propagate scores.
Descendants information for XML documents can be kept in pre-/post-order trees, for
example.

Experimental evaluation: For the experimental evaluation, Beigbeder evaluates
the 70 assessed topics from the INEX 2008 Ad Hoc Track (with the INEX Wikipedia
collection 2006-2008), drops importance modifiers, and mostly uses keywords in the
title field. Some topics are modified before evaluation to fit the boolean model better
(e.g., spanish classical guitar players is modified to spanish (classical | classic) guitar
players).

Beighbeder varies the spread s and evaluates three approaches, retrieving only
section-like elements: 1) NP-NS (no propagation, no structure) where the structure is
ignored (term proximity only used as in text retrieval), 2) NP-S (no propagation, struc-
ture) where only section-like elements are retrieved, term proximity influence ends at
the boundaries of section-like elements, terms in title-like elements are not propagated,
and 3) P-S (propagation, structure) where title-element terms’ propagation is enabled.

The best run’s (P-S, s=10) iP-Value of 0.69490141 outperforms the best INEX 2008
run(0.68965708). For s € {5, 50,500}, Precision-Recall curves are highest for P-S whose
iP value benefits from small choices of s.

5.2.4 Proximity Scoring for XML

This section presents our proximity-enhanced score model for XML element retrieval
based on our work published in [BS08b] and [BST08] which answers content-only queries
on XML data.

To compute a proximity score for an element e with respect to a query with multiple
terms ¢ = {t1,...,t,}, we first compute a linear representation of e’s content that takes
e’s position in the document into account, and then apply a variant of the proximity

5.2 XML 83

article

<p>d e </p>
<p>g h </p>

sectio

<section>uvw
</section>

ab k uvw x z

Figure 5.1: An XML document and its linearization.

score by Biittcher et al. [BCL0O6] on that linearization. This variant has been first
proposed in [SBHT07] and will be described in detail in Section 7.2.2.

Figure 5.1 shows an example for the linearization process. We start with the se-
quence of terms in the element’s content. Now, as different elements often discuss
different topics or different aspects of a topic, we aim at giving a higher weight to
terms that occur together in the same element than to terms occurring close together,
but in different elements. To reflect this in the linearization, we introduce virtual gaps
at the borders of certain elements whose sizes depend on the element’s tag (or, more
generally, on the tags of the path from the document’s root to the element). In the
example, gaps of section elements may be larger than those of p (paragraph) elements,
because the content of two adjacent p elements within the same section element may
be considered related, whereas the content of two adjacent section elements could be
less related. Some elements (like those used purely for layout purposes such as bold or
for navigational purposes such as link) may get a zero gap size. The best choice for
gaps depends on the collection; gap sizes are chosen manually in our experiments.

Based on the linearization, we apply the proximity scoring model of Biittcher et
al. [BCLO6] (cf. Section 2.4.2) for each element in the collection to find the best matches
for a query q = {t1,...,t,} with multiple terms.

To allow index precomputation without knowing the query load, we reuse the modi-
fied variant proposed in [SBHT07] (detailed explanations can be found in Section 7.2.2)
that does not only consider pairs of adjacent query term occurrences in documents, but
all pairs of query term occurrences (not necessarily adjacent). We further gener-

84 5. Extensions

alize the approach to score elements instead of documents, so the query-independent
term weights in the formulas are not inverse document frequencies but inverse element

frequencies
N —ef(t)+0.5
ef(t)y+1 7

where N is the number of elements in the collection and ef(¢) is the number of ele-

ief(t) = logy

ments that contain the term ¢. Similarly, average and actual lengths are computed for
elements.

Please note that, unlike [BSTWO07], we do not use a tag-specific ief score

Nao—efa(t)+0.5
efa(t)+1 ’

iefa(t) = log,

where Ny is the tag frequency of tag A and efa(t) is the element frequency of term
t as to tag A, i.e., the number of elements (in documents of the corpus) with tag A
that contain ¢ in their full-content. We demonstrated in [BS08b] (and also in additional
non-submitted results in [BSTWO7]) that a global ief value for each term (i.e., ief(t))
achieves better result quality for content-only (CO) queries than tag-specific ief values
(i.e., iefa(t)).

The BM25 score of an element e for a query ¢ is defined as

(e,t) - (k1 +1)
tfle,t) + K

scorepmas (€, q) = Z ief(t) 2

teq

where K=k-[(1—b)+b- mf;el] with avgel being the average element length in C. b, k1,
and k are tuning parameters that are set to b = 0.5 and k = k1 = 1.2, respectively. As
for XML element retrieval the element length is important to keep up result quality,
we do not ignore it in the proximity score component as in [SBH*07].

Hence, the proximity part of an element’s score is computed by plugging the acc

values into a BM25-style scoring function:

acc(e,t) - (k1 + 1)
accle,t) + K 7

SCOTeproz(€,q) = Z min{1,ief(t)}

teq

where

ief(t) ief(t)
accle,t) = Z (i —j)2 + Z —
(4,5) € Qair,e(q) : (1,5) € Qair,e(q)

pi=tp; =t t#t pi=t,pj=tt#t

and K as well as the configurable parameters are set like for the BM25 score contribu-
tion.
The overall score is then the sum of the BM25 score and the proximity score:

score(e, q) = scorepmas (€, q) + scoreproz (e, q).

5.2 XML 85

5.2.5 Experimental Evaluation

In order to evaluate our methods, in [BS08b] we used the standard INEX benchmark,
namely the INEX Wikipedia collection [DG06a] with the content-only (CO) topics from
the INEX Ad Hoc Task 2006. The 111 topics with relevance assessments are shown
in Appendix C. Following the methodology of the INEX Focused Task, we computed,
for each topic, a list of the 100 best non-overlapping elements with highest scores and
evaluated them with the interpolated Precision metric used at INEX 2007! [KPK*07].
Details about the metric are given in Section 3.3.

When we check for significant improvements of an approach over the BM25 baseline,
we first check for significance using the Wilcoxon signed rank test as it does not make
any assumptions about the distribution of differences between pairs of results. If it fails
at p<0.10, we try the paired t-test which assumes a normal distribution of differences
between pairs of results. In all tables of this section, 1 and { indicate statistical sig-
nificance over the baseline according to the Wilcoxon signed rank test at p<0.05 and
p<0.10, respectively. * and / indicate statistical significance over the baseline according
to the paired t-test at p<0.05 and p<0.10, respectively.

Results for Document-Level Retrieval

For our first experiment, we evaluated how good our proximity-aware scoring is at
determining documents with relevant content. We limited the elements in the result
set to article elements, corresponding to complete Wikipedia articles, and considered
different gap sizes, where we report

(1) gaps of size 0 for all elements,
(2) gaps of size 5 for section and 3 for p elements, and
(3) gaps of size 30 for section and p elements.

Approaches (1)-(3) all exploit proximity information in the form of scorepoq(e,q),
and approaches (2) and (3) increase distances between query term occurrences in
different elements by artificial gaps. We call the first approach gap-free, the latter two
approaches gap-enhanced models. Additionally, we report results without proximity
(i.e., only the BM25 score scorepnas(e, q) is used to rank elements) as baseline results.
Our implementation first computed the 100 best results for the BM25 baseline and then
additionally computed the different proximity scores for these results, re-ranking the
result list.

Table 5.1 shows the results for document-level retrieval with stopword removal. If
stemming is enabled, usage of the gap-free model that employs proximity information
improves every iP and MAiP value compared to the baseline, and gaps help additionally
(except for iP[0.01]). The same holds if stemming is disabled, this time without any

'Due to a bug reported for the original INEX implementation, we used a Java-based reimplementa-
tion of the metric.

86 5. Extensions

stemming, stopword removal no stemming, stopword removal
metric baseline | (1) (2) (3) baseline | (1) (2) (3)
iP[0.01] | 0.6610 0.69161 | 0.69121 | 0.6859/ || 0.6721 0.7043% | 0.7045% | 0.7046%
iP[0.05] | 0.5630 0.5918* | 0.5953* | 0.5930*% || 0.5701 0.5904* | 0.59541 | 0.595371
iP[0.10] | 0.5339 0.5496/ | 0.5545* | 0.5521/ || 0.5487 0.5644/ | 0.5685* | 0.5684*
MAiP 0.2682 0.2795% | 0.2804%1 | 0.2798% 0.2617 0.2717f | 0.2725% | 0.2730%

Table 5.1: Results for document-level retrieval with stopword removal.

exception. In both cases, we get very significant improvements for proximity scores over
the baseline. With only a few exceptions, gap-enhanced approaches can further improve
the iP result quality over gap-free approaches. For the MAiP metric all approaches
achieve significant improvements over the baseline with the Wilcoxon signed rank test
at p<0.05.

stemming, no stopword removal no stemming, no stopword removal
metric baseline | (1) (2) (3) baseline | (1) (2) (3)
iP[0.01] | 0.6440 0.6233 | 0.6186 | 0.6163 || 0.6660 0.6068 | 0.6157 | 0.6187
iP[0.05] | 0.5476 0.4986 | 0.4964 | 0.4984 || 0.5579 0.5081 | 0.5173 | 0.5209
iP[0.10] | 0.5117 0.4620 | 0.4604 | 0.4596 || 0.5230 0.4775 | 0.4853 | 0.4888
MAiP 0.2543 0.2444 | 0.2432 | 0.2434 || 0.2487 0.2360 | 0.2369 | 0.2375

Table 5.2: Results for document-level retrieval without stopword removal.

Table 5.2 depicts the impact of missing stopword removal on the results for
document-level retrieval. The results clearly demonstrate that stopword removal is
crucial if we do not want to risk decreasing result quality with proximity scores com-
pared to the baseline. If the query contains stopwords, the loss of result quality can
be attributed to stopword occurrences near other query terms in some documents; as
all pairs of query terms are considered if a document is to be scored, they generate an
increased proximity contribution for the corresponding document. We think that these
pairs are less meaningful (i.e., carry less semantics) than pairs of non-stopwords.

Gap-enhanced models cannot resolve the issue of losing result quality against the
baseline. They just reduce the losses if stemming is disabled but do not get even close to
the baseline’s result quality. Consequently, all significance tests to show improvements
over the baseline fail.

In summary, stopword removal is mandatory to get high retrieval quality for
document-level retrieval and gap-enhanced approaches can often help additionally to
improve the retrieval quality. In most cases, runs that are based on disabled stemming
have slight advantages for the absolute iP values over those runs that use stemming.
We get the best MAIP values when stemming is enabled and stopwords are removed.

Results for Element-Level Retrieval

We now evaluate the performance of proximity-aware scoring for element-level retrieval,
where we limit the set of elements in the result list to those with article, body,

5.2 XML 87

section, p, normallist, and item tags for efficiency reasons; initial experiments with
all tags yielded similar results. As we had to remove overlap, we first computed the
best 200 elements for the BM25 baseline, for which we then computed the proximity
scores, resorted the list according to the new scores, and removed the overlap between
elements. Whenever two elements overlapped, we kept the element with the highest

score.

stemming, stopword removal no stemming, stopword removal
metric baseline | (1) (2) (3) baseline | (1) (2) (3)
iP[0.01] | 0.6589 0.6847% | 0.67461 | 0.67537 || 0.6624 0.6659 0.6681 0.6677
iP[0.05] | 0.5344 0.5591% | 0.5534% | 0.5544% || 0.5143 0.52741 | 0.52801 | 0.5263
iP[0.10] | 0.4482 0.4680% | 0.4643% | 0.4643% || 0.4270 0.44411 | 0.4413 0.4370
MAIiP 0.1793 0.1870f | 0.1855% | 0.1854f || 0.1617 0.1670 0.16691 | 0.1666t

Table 5.3: Results for element-level retrieval with stopword removal.

Table 5.3 illustrates the results for element-level retrieval with stopword removal.
The best results and most significant improvements in element-level retrieval can be
achieved if stemming is enabled. While the gap-free approach shows significant im-
provements over the baseline (Wilcoxon signed rank test at p<0.05, for every metric),
the gap-enhanced approaches slightly lose absolute result quality compared to the gap-
free approach. However, this does not overly harm the significance of improvements
of gap-enhanced approaches over the baseline. For all metrics, except for iP[0.01], we
achieve significant improvements with the Wilcoxon signed rank test at p<0.05, for
iP[0.01] the improvements are still significant according to the Wilcoxon signed rank
test, but only at p<0.10. If stemming is disabled, the usage of proximity improves every
iP value compared to the baseline, but gaps help slightly only for early iP values. Sig-
nificant improvements over the baseline using the Wilcoxon signed rank test at p<0.10
can be realized only for later iP values.

In general, compared to stemming with stopword removal, no stemming with stop-
word removal achieves less significant improvements for approaches (1)-(3) over the
baseline (if at all) as well as a lower absolute result quality.

stemming, no stopword removal no stemming, no stopword removal
metric baseline | (1) (2) (3) baseline | (1) (2) (3)
iP[0.01] | 0.6409 0.6539* | 0.6524/ | 0.6484 0.6079 0.6050 0.6045 0.6047
iP[0.05] | 0.5077 0.5165/ | 0.5163/ | 0.5072 0.4736 0.4828 0.4764 0.4758
iP[0.10] | 0.4042 0.4139 0.4136 0.4075 0.3627 0.3766% | 0.37001 | 0.3702f
MAIiP 0.1452 0.1535% | 0.1533f | 0.15041 || 0.1267 0.1331% | 0.13081 | 0.1307f

Table 5.4: Results for element-level retrieval without stopword removal.

Table 5.4 shows the results for element-level retrieval without stopword removal.
Gap-free models improve every iP and MAiP value over the baseline, except for iP[0.01]
if stemming is disabled. Gap-enhanced models slightly lose on absolute result quality
compared to gap-free models but still frequently beat the baseline.

88 5. Extensions

When we combine stemming with stopword removal, we achieve the best and most
significant results for element-level retrieval. Gaps, however, help only for early iP
values if stemming is disabled and stopwords are removed. Stopword removal is more
important for document-level retrieval than for element-level retrieval if we want to
obtain a good result quality, but our approaches benefit from stopword removal at both
retrieval granularities. The structure-aware proximity score for XML retrieval that we
have presented helps to improve the retrieval effectiveness of gap-free approaches for
document-level retrieval, but does not show a similar effect for element-level retrieval.
An automated selection of gap sizes by means of relevance feedback techniques could
improve the result quality.

5.2.6 Additional Experiments for INEX 2008

This subsection describes additional experiments we have carried out for INEX 2008.
It extends the experiments from Section 5.2.5 which used the 111 CO topics from the
INEX Ad Hoc Task 2006 by another test bed (including the same document collection)
used in the INEX 2008 Ad Hoc Track. An overview of the INEX 2008 Ad Hoc Track
has been authored by Kamps et al. and has been published in [KGT*08]. 70 topics
have been assessed for the INEX 2008 Ad Hoc Track which are depicted in Appendix C,
Table C.4.

The choice of runs we submitted to the Focused Task at INEX 2008 [BSTO08] was
based on earlier results from SIGIR 2008 [BS08b]: as iP[0.01] is the metric that ranks
the runs in INEX, we have chosen the setting that provides the highest retrieval quality
at iP[0.01] from our previous experiments (detailed in Section 5.2.5), i.e., no stemming,
but stopword removal in document-level retrieval. The Focused Task aims at returning
a ranked list of elements or passages in a focused way, i.e., returned elements must
not overlap. According to [KGTT08]|, participants were allowed to submit up to three
element result-type runs per task and three passage result-type runs each, for the
Focused, Relevant in Context, and Best in Context Task in the Ad Hoc Track. As we
have only evaluated element result-type runs for the Focused Task, we have only been
allowed to submit three runs as described in the following:

e TopX-CO-Baseline-articleOnly: this run considers the non-stemmed terms in
the title of a topic (including the terms in phrases, but not their sequence) except
terms in negations and stopwords. We restricted the collection to the top-level
article elements and computed the 1,500 articles with the highest scoregnos
value as described in Section 5.2.4. Note that this approach corresponds to stan-
dard document-level retrieval. This run is comparable to the baseline approach
for document-level retrieval with stopword removal and disabled stemming used
in Section 5.2.5.

e TopX-CO-Proximity-articleOnly: this run re-ranks the results of the baseline
run coined TopX-CO-Baseline-articleOnly by adding the proximity score con-
tribution scorep,, as described in Section 5.2.4. We use gaps of size 30 for

5.2 XML 89
1:id=12 —

2:id=57 | —

3: id=21 — —

kid=40 | Lo Ll s s s L s L .

characters

Figure 5.2: Example: illustration for metric P[#characters].

section and p elements. This run is comparable to the gap-enhanced approach
(3) used in Section 5.2.5. Due to the limited number of submittable runs to INEX

2008, we could not evaluate different gap sizes.

e TopX-CO-Focused-all: this element-level run considers the terms in the title of

a topic without phrases and negations, allowing all tags for results. Note that,

unlike our contributions from earlier years (e.g., [BSTWO07]), we do not use a

tag-specific ief score, but a single global ief value per term. We demonstrated

in [BSO8b] that this achieves better result quality for CO queries than tag-specific

ief values (cf. Section 5.2.4).

run/metric iP[0.00] | iP[0.01] | iP[0.05] | iP[0.10] | MAIiP
TopX-CO-Baseline-articleOnly 0.6700 0.6689 0.5940 0.5354 0.2951
TopX-CO-Proximity-articleOnly | 0.6804 0.6795 0.5807 0.5265 0.2967
TopX-CO-Focused-all 0.7464 0.6441 0.5300 0.4675 0.1852

Table 5.5: Results: Focused Task INEX 2008, stopword removal, no stemming.

Table 5.5 shows the results for these runs. It is evident that element-level retrieval

generally yields a higher early precision than document-level retrieval, but the quality

quickly falls behind that of document-level retrieval which means that results become

significantly worse than article-only runs starting at a recall level of 0.01.

This is reflected in the results: while the element-level run TopX-CO-Focused-all

ranks at position 11 among 61 runs, the document-level runs rank at position 4

(TopX-CO-Baseline-articleOnly) and position 3 (TopX-CO-Proximity-articleOnly)

among 61 runs, the last one being our best submitted run. Proximity scoring with gaps

can in general help to improve early precision with document-level retrieval. MAiP val-

ues are almost equal for the document-level baseline TopX-CO-Baseline-articleOnly

and the gap-enhanced model TopX-CO-Proximity-articleOnly.

90 5. Extensions

Our experiments in SIGIR 2008 [BS08b] showed significant improvements of the
gap-enhanced approach (3) over the baseline. Unfortunately, at INEX 2008 [BST08]
comparable runs did not demonstrate equally significant improvements (significance
levels are p=18.77% and 35.85% for paired t-test and Wilcoxon signed rank test, re-
spectively).

As the iP metric returns the maximally achievable precision after the returned re-
sults have reached a recall level of at least x, this metric hides the points in the result
sets where the retrieval quality originates from. Therefore, for analytical reasons, we
have a look at the results using an alternative metric that measures the precision af-
ter x characters, abbreviated as P[x characters]. Figure 5.2 provides an example to
illustrate how that alternative metric works. Assume that we want to calculate the
precision value after 1,000 characters, P[1,000 characters]. We think of the result set
as a characterwise concatenation of results for a given run; the evaluation measures
the precision after reading the first 1,000 characters which corresponds to the retrieved
number of characters carrying relevant content divided by the number of retrieved
characters. Figure 5.2 characterwise aligns rectangles that represent the retrieved doc-
uments of a fictitious run, relevant characters are represented as yellow boxes. The first
retrieved document of that fictitious run has id 12 and consists of 300 characters where
the first 200 characters are considered relevant. The second retrieved document with
id 57 consists of 600 characters of which 300 characters are relevant. As just the first
100 characters of the third document fit into the 1,000 characters limit, this document
cannot generate a positive contribution to the precision (the relevant portion of this

document starts after 300 characters only). Hence, the value for P[1,000 characters] is

2004300 _
Tooo — 0-9

Figure 5.3 depicts the precision values after x characters for each of the three runs.

calculated as

It turns out that if we are interested in retrieving just a small amount of characters,
it is worth considering to use the element-level run (leading up to 1,200 characters).
Then the result quality of the element-level run deteriorates quickly and the proximity
run outperforms the two other runs. Only very late, after 5,700 read characters, the
baseline yields a slightly higher precision than the proximity run. Hence, to improve
the retrieval quality, a hybrid approach could return the first 1,200 characters from the
element-level run and fill the remaining characters with results from the proximity run.

5.3 Phrases

By means of a case study, we rigorously analyze the potential of explicit phrases for
retrieval quality and compare it to the proximity score used in [SBH"07]. This part is
based on our work published in [BBS10].

5.3.1 Evaluating the Potential of Phrases

Phrases, i.e., query terms that should occur consecutively in a result document, are a
widely used means to improve result quality in text retrieval [CCT97, CTLI1, Fag87,

5.3 Phrases 91

0.56

054 /‘\’\ |
0.52 ;

o
[$)]
|

P[#characters]
o
~
oo

0.44 +

0.42

o

N

(o]
Il

T
O O O O O O O O O O O o o o
O O O O O O O O O O o o o o
~ 00 O MO &~ — 1O O M NN - 1 0O M
- - N N N o o I I I 0

5700
6100
6500
6900
7300
7700
8100
8500
8900
9300
9700

#characters
TopX-CO-Baseline-articleOnly -~ TopX-CO-Proximity-articleOnly — TopX-CO-Focused-all

Figure 5.3: Comparison of the three runs: P[# characters] values.

LLYMO04, MdRO05], and a number of methods has been proposed to automatically iden-
tify useful phrases, for example [LLYMO04, Z*07]. However, there are studies indicating
that phrases are not universally useful for improving results, but that the right choice
of phrases is important. For example, Metzler et al. [MSCO06] reported that phrase
detection did not work for their experiments in the TREC Terabyte Track, and Mitra
et al. [MBSC97] reported similar findings for experiments on news corpora.

The remainder of this chapter experimentally analyzes the potential of phrase
queries for improving result quality through a case study on the TREC Terabyte bench-
mark. We study the performance improvement through user-identified and dictionary-
based phrases over a term-only baseline and determine the best improvement that any
phrase-based method can achieve, possibly including term permutations.

Experimental Setup

We did a large-scale study on the effectiveness of phrases for text retrieval with the
TREC GOV2 collection, and the 150 topics from the TREC Terabyte Tracks 2004—
2006 (topics 701-850) where we used the title only. More details about the collection
and TREC can be found in Section 3.2.1. All documents were parsed with stopword
removal and stemming enabled. We compared different retrieval methods:

e A standard BM25F scoring model [RZT04] as established baseline for content-

92 5. Extensions

based retrieval, with both conjunctive (i.e., all terms must occur in a document)
and disjunctive (i.e., not all terms must occur in a document) query evaluation.
The boosting weights are chosen as depicted in Table 5.6 and the same as the
ones used in the GOV2 parser of the TopX search engine [TSWO05].

e Phrases as additional post-filter on the results of the conjunctive BM25F, i.e.,
results that did not contain at least one instance of the stemmed phrase were
removed. As the TREC topics do not contain explicit phrases, we considered the
following ways to find phrases in the queries:

— We performed a small user study where five users were independently asked
to highlight any phrases in the titles of the TREC queries.

— As example for a dictionary-based method for phrase detection, we matched
the titles with the titles of Wikipedia articles (after stemming both), follow-
ing an approach similar to the Wikipedia-based phrase recognition in [Z107].

— To evaluate the full potential of phrases, we exhaustively evaluated the re-
trieval quality, i.e., precision for 10 results, of all possible phrases for each
topic and chose the best-performing phrase(s) for each topic.

— To evaluate the influence of term order, we additionally considered all pos-
sible phrases for all permutations of terms and chose the best-performing
phrases, potentially after permutation of terms, for each topic.

o A state-of-the-art proximity score by Biittcher [BCL06] (described in Section 2.4.2)
as an extension of BM25F, including the modifications from [SBH07]. This
score outperformed other proximity-aware methods on TREC Terabyte; a thor-
ough comparative experimental evaluation of various proximity-enhanced scoring
models can be found in Section 4.2.

We additionally report the best reported results from the corresponding TREC Terabyte
tracks, limited to title-only runs. When we checked for significant improvements over
the baseline BM25F (conjunctive), we used both the Wilcoxon signed rank (WSR) test
and the paired t-test.

Results

Our small user study showed that users frequently disagree on phrases in a query:
on average, two users highlighted the same phrase only in 47% of the queries, with
individual agreements between 38% and 64%. For each topic with more than one term,
at least one user identified a phrase; for 43 topics, each user identified a phrase (but
possibly different phrases). The same user rarely highlighted more than one phrase in
a topic. Overall, our users identified 227 different phrases in the 150 topics.

Our experimental evaluation of query effectiveness focuses on early precision. We
aim at validating if the earlier result by [MBSC97] (on news documents) that phrases
do not significantly improve early precision is still valid when considering the Web.

5.3 Phrases 93

tags weight
TITLE 4

H1, H2 3
H3-H6, STRONG, B, CAPTION, TH | 2

A, META, EM, I, U, DL, OL, UL 1.5

Table 5.6: Boosting weights BM25F'.

BM25F user 1 | user 2 | user 3 | user 4 | user 5
topics (conjunctive)
701-750 (TREC 2004) 0.536 0.512 0.534 0.504 0.546 0.536
751-800 (TREC 2005) 0.634 0.576 0.484 0.548 0.592 0.602
801-850 (TREC 2006) 0.528 0.518 0.500 0.514 0.546 0.526
average 0.566 0.535 0.506 0.522 0.561 0.554

Table 5.7: PQ10 for user-identified phrases.

Table 5.7 shows precision values for the top-10 results when using the phrases identified
by the different users (as strict post-filter on the conjunctive BM25F run). Surprisingly,
it seems to be very difficult for users to actually identify useful phrases, there hardly
is any improvement. In that sense, the findings from [MBSC97] seem to be still valid
today.

In the light of these results, our second experiment aims at exploring if phrase
queries have any potential at all for improving query effectiveness, i.e., how much can
result quality be improved when the ‘optimal’ phrases are identified. Tables 5.8 and 5.9
show the precision at 10 results for our experiment with the different settings introduced
in the previous section, separately for each TREC year.

BM25F BM25F best user | Wikipedia
topics (conjunctive) | (disjunctive) | phrases phrases
701-750 (TREC 2004) 0.536 0.548 0.546 0.566
751-800 (TREC 2005) 0.634 0.630 0.592 0.564
801-850 (TREC 2006) 0.528 0.538 0.546 0.526
average 0.566 0.572 0.561 0.552

Table 5.8: P@10 for different configurations and query loads, first part.

It is evident from the tables that an optimal choice of phrases can significantly
improve over the result quality of the BM25F baseline, with peak improvements between
12% and 14% when term order remains unchanged, and even 17% to 21% when term
permutations are considered?. Topics where phrases were most useful include “pol pot”
(843), “pet therapy” (793) and “bagpipe band” (794) (which were usually identified by
users as well). On the other hand, frequently annotated phrases such as “doomsday
cults” (745) and “domestic adoption laws” (754) cause a drastic drop in performance.
Interesting examples for improvements when permuting terms are "hybrid alternative

?both significant according to a paired t-test and Wilcoxon signed rank test, p <0.01

94

5. Extensions

BM25F | proximity | best best phrases best title-only
topics (conj.) score phrases | +permutations | TREC run
701-750 (TREC 2004) 0.536 0.574 0.616 0.668 0.588
751-800 (TREC 2005) 0.634 0.660 0.704 0.740 0.658
801-850 (TREC 2006) 0.528 0.578 0.606 0.654 0.654
average 0.566 0.604 0.642 0.687 0.633

Table 5.9: PQ10 for different configurations and query loads, second part.

fuel cars“ (777) where the best phrase is actually “hybrid fuel” (with a P@Q10 value of
0.8, compared to 0.5 for the best in-order phrase and 0.2 for term-only evaluation in the
form of BM25F (conjunctive)), and “reintroduction of gray wolves” (797) with P@Q10
of 1.0 with the phrase “wolves reintroduction”, compared to 0.6 otherwise (amongst
others: reintroduction of “gray wolves”).

The best possible results are way above the best reported results for 2004 and 2005
and get close to the best result from 2006 (which was achieved, among other things, by
the use of blind feedback)?. Wikipedia-based phrase recognition, a simple automated
approach to phrase recognition, only leads to significant improvements for 2004 (paired
t-test and Wilcoxon signed rank test, p<0.05). For the remaining years we cannot
observe significant improvements.

Interestingly, the proximity-aware score yields significant improvements over the
baseline*; as it automatically considers “soft phrases”, there is no need to explicitly
identify phrases here.

Discussion and Lessons Learned

The experimental analysis for phrase queries in this section yields the following results:

e We validated the common intuition that phrase queries can boost performance
of existing retrieval models. However, choosing good phrases for this purpose is
nontrivial and often too difficult for users, as the result of our user study shows.

e Existing methods for automatically identifying phrases can help to improve query
performance, but they have their limits (like the methods based on Wikipedia
titles evaluated here). While we expect that more complex methods (such as the
advanced algorithm introduced in [Z107]) will get close to the upper bound, they
need to include term permutations to exploit the full potential of phrases. The
common intuition that term order in queries bears semantics does not seem to
match reality in all cases.

e Proximity-aware scoring models where the user does not have to explicitly identify
phrases can significantly improve performance over a non-proximity-aware scoring
model.

3no significance tests possible as we do not have per-topic results for these runs
4paired t-test and Wilcoxon signed rank test, p<0.1 for TREC 2005 and p<0.01 for the other two

Chapter 6

Top-k Vs. Non-Top-k Algorithms

This chapter starts with Section 6.1 that presents various top-k algorithms from the
database systems community; they are classified according to the access methods to
index lists required by the algorithms. Section 6.2 describes exact top-k algorithms
(with and without term proximity component) and approximate top-k algorithms from
the information retrieval community. The chapter concludes with Section 6.3 that
explains some non-top-k algorithms.

6.1 Top-k Algorithms from DB

Top-k algorithms aim at efficiently assembling a ranked list of the k objects that match
best the user need expressed by means of a top-k query. In the scenarios used through-
out this thesis, objects may represent either elements of XML documents or full doc-
uments. To process top-k queries efficiently, a number of query processing techniques
has been proposed over the last two decades (e.g., [Fag99, FLN03, CwH02, MBGO04,
GBKO00, BGM02)).

To score an object, a score aggregation function I aggregates all known scores from
different dimensions for this object. Assume that we want to aggregate scores for two
objects 0; and oy. An aggregation function F' is called monotone if F(s;1,. .., Sim) <
F(si1, ..., 8im) when s;; < syrj for every dimension j, where s;; and s;/; are the scores
from dimension j for object o; and oy, respectively.

The following descriptions assume that top-k algorithms have access to a set of m
inverted lists L = {Lj,..., Ly} that represent one out of m score dimensions each.
These algorithms assume that the scores for objects in each dimension j have been
precomputed and stored in an inverted list L; which is sorted by descending score, i.e.,
lists start with objects having high scores and end with objects having lower scores.

While a sorted access (also called sequential access) denotes an access to an object
and its score during a sequential scan of a list, a random access denotes a direct access
to an object and its score by the object identifier. Some algorithms use random lookups
for promising candidates in dimensions where they have not yet been encountered; as
such a random access (RA) is a lot more expensive than a sorted access (SA) (in the

95

96 6. Top-k Vs. Non-Top-k Algorithms

order of 50 to 50,000 according to [BMS™06]), an intelligent schedule for these RAs has
a great impact on efficiency. The cost of one SA and one RA is denoted cg and cgp,
respectively.

In [Fag02] Fagin defines the middleware cost as

cs #SA+cr-#RA

which corresponds to the query execution cost.

Algorithms from the family of Threshold Algorithms are similar to dynamic pruning
approaches from the IR community. They start with a phase of sequential scans to
each list involved in the query execution in an interleaved, round-robin manner. Pro-
cessing lists in a round-robin manner characterizes the sequence in which lists are read:
(L1, Lo, ..., Ly, L1,...), ie., circular reads to each list, one after the other. As docu-
ments are discovered in this process, they are maintained as candidates in an in-memory
pool, where each candidate has a current score also called worstscore (aggregated from
the scores in dimensions where the document has been encountered so far). Addition-
ally, each candidate object o; has an upper score bound that is computed by setting all
unknown scores to the highest possible score high; corresponding to the score at the
current scan position (i.e., the last sequentially accessed tuple) of each list L;:

bestscore(o;) = F(pi1, pi2, - - -, Pim),

where p;; = s;; if 0; has been seen in L; and p;; = high; otherwise. p;; is called
predicate of object o; in dimension j, S(o0;) denotes those lists in L where o; has been
seen, S(o;) those lists in L where o; has not been encountered yet. A common choice for
a monotonous aggregation function F'is simple summation. Then, bestscore is defined
as follows:

(s if L€ S(or)
b t i) — N ’ S Z ‘ 1
estscore(o;) Z (high; if Lj € S(0;)) (6.1)

j=1
To evaluate a top-k query, the algorithms typically maintain two priority queues:
a priority queue (ordered by decreasing worstscore) that maintains a list of the k
candidates with the highest worstscore values called the (intermediate) top-k results
R, and another priority queue (ordered by increasing bestscore) that maintains the
list of remaining candidates C' that have the potential to qualify for the final R. The
lowest worstscore of any object in R is named min-k. Candidates whose bestscore
is not greater than min-k (i.e., the head of R), can be safely removed from C. The
execution stops if all candidates in C' have been eliminated and no unseen document
can qualify for the final results; this is typically the case long before the lists have been
completely read.
An excellent survey about top-k query processing techniques in the database systems
area has been authored by Ilyas et al. [I[BS08]. One way to classify these techniques is
by the access methods to index lists required by the algorithms:

1. Sorted and random accesses to every list.

6.1 Top-k Algorithms from DB 97

2. No random accesses, only sorted accesses.
3. Sorted accesses with carefully scheduled random accesses.

Marian et al. [MBGO04] categorize sources (index lists) by their supported access meth-
ods: while S-sources provide sequential accesses only, R-sources provide random ac-
cesses only, and SR-sources provide both sequential and random accesses.

6.1.1 Sorted and Random Accesses

The algorithms described in this section use sorted as well as random accesses to lists.
This means that all lists have to be SR-sources.

Fagin’s algorithm (FA) [Fag99] proceeds in two rounds. In a first round, it performs
sorted accesses to all lists in a round-robin manner until at least k objects have been fully
evaluated. In a second round, for the remaining objects that have been encountered
in at least one, but not all dimensions by sorted accesses, it performs random accesses
to the lists representing the missing dimensions. Finally, the aggregation function F is
applied to all seen objects and the objects are sorted such that the k objects with the
highest scores can be returned.

The Threshold algorithm (TA) [FLNO3| performs sorted accesses to all lists in a
round-robin manner. When a new object o is seen by a sorted access to list L,, TA
performs random accesses to the remaining lists - therefore, it can compute the final
score for o immediately. o is kept in the intermediate top-k results R iff it belongs to the
k highest scores seen so far. C'is always empty! After each round of sequential accesses,
the high; values of the lists change, and the threshold value 7 has to be updated: T is
calculated by combining the scores of the items read by the most recent sorted access
to each list (i.e., high; for each list L;) in a monotone aggregation function F. If 7
underscores the min-k score (the lowest worstscore of the intermediate top-k results),
the algorithm can safely terminate as no not yet seen object will be able to overscore
the min-k score and thus make it to the top-k results R. The algorithm assumes that
one sorted access has the same cost as one random access which is not valid in the
cost model, but just influences TA’s runtime behavior: this can lead to very expensive
executions as the number of random accesses is not restricted and every sorted access
can induce up to m-1 random accesses.

The Quick-Combine algorithm [GBKO0] is a variant of TA. It uses an indicator
A; = g—; - (Si(d; — ¢) — Si(d;)) which estimates the utility to read from list L;. The
indicator considers 1) the influence of the predicate p; used in list L; on the overall
score F' and 2) the decay of the score in L; over the last ¢ steps which decreased the
upper bound for not yet seen objects (i.e., S;(d; — ¢) — Si(d;)). The algorithm chooses
the list with maximal A; and works particularly well for skewed data.

Like FA and TA, the Combined algorithm (CA) [FLNO03] performs sorted accesses
to all lists in a round-robin manner. It makes use of the cost ratio between random and
sorted accesses, v = |cr/cg]: every time the depth of sorted accesses increases by 7,
it picks the object o with missing information whose bestscore is largest and performs

98 6. Top-k Vs. Non-Top-k Algorithms

random accesses to all lists where o has not been encountered yet, short all lists in S(o).
The algorithm can safely terminate if it has seen k objects and no object outside the
top-k results R has a bestscore that overscores the min-k score and thus may make it to
R. This includes the bestscore of the virtual document defined as F'(high, ..., highp,).
The algorithm assumes that random accesses are more expensive than sorted accesses.
Each of the picks for random accesses induces up to m — 1 random accesses as for TA;
however random accesses are only triggered every - sequential accesses. One can view
CA as a merge between TA and NRA (cf. Section 6.1.2). If v is very large (e.g., larger
than the number of objects in all lists), CA corresponds to NRA. If v = 1, CA is similar
to TA: while CA performs RAs to all lists in S(0) for some object o, TA performs RAs
to all lists in S(0) for every object o seen during round-robin sorted accesses.

6.1.2 No Random Accesses

Algorithms in this category only support sorted accesses and do not make use of random
accesses. This means that all lists have to support sorted accesses (i.e, they are S-sources
or SR-sources).

The No Random Access algorithm (NRA) [FLNO3] performs sorted accesses to all
lists in a round-robin manner. For each seen object, it keeps track of its bestscore and
worstscore and the most recently seen scores high; per list L;. The algorithm can
safely stop when at least k objects have been seen and for all objects o that are not in
the top-k results R (including the virtual document) holds bestscore(o) < min-k.

The Stream-Combine algorithm [GBKO01] is similar to the NRA algorithm but favors
sorted accesses to those lists that are more likely to lead to early termination than
others. To estimate the utility of reading next from list L;, it uses an indicator similar
to the one used in the Quick-Combine algorithm A; = #M; - g—; ~(Si(di — ¢) — Si(dy)).
This indicator also considers the cardinality of M;, the subset of the intermediate top-k
results R whose bestscore would be decreased or whose precise score would be known
after reading from list L;.

6.1.3 Carefully Scheduled Random Accesses

Algorithms in this category require that at least one list is sequentially accessible (i.e.,
the list is an S-source or an SR-source) to get an initial set of candidate objects that
may make it into the final top-k results. The Upper and Pick algorithms [BGMO02,
MBGO04] have been proposed in the context of Web-accessible sources categorized by
their supported access methods.

The Upper algorithm [BGMO2] fills the bestscore-ordered candidate queue C' us-
ing round-robin sorted accesses to sorted sources (S-sources and SR-sources). In each
round, it checks whether C' has run empty or the object o4, with the highest bestscore
in C' underscores the threshold 7 defined as F'(highi,...,highy,) (i.e., the bestscore
of an unseen document). If one of these two conditions holds, the Upper algorithm
performs a sorted access and inserts the read object o into the candidate queue C' or
updates o’s bestscore (if it has already been in the queue). Given the new high; value,

6.1 Top-k Algorithms from DB 99

7 can be updated. If the score of o is final (i.e., bestscore(o) = worstscore(o)), o is
returned as a member of the top-k results. If none of these two conditions holds, the
algorithm selects the best source for o4, to perform a random access which can come
in different implementations. The algorithm stops iff k& objects have been returned.

The Pick algorithm [MBGO04] chooses the object o with the largest difference between
worstscore(o) and bestscore(o) to perform a random access. The source to be probed
for o is randomly chosen from the set of sources that represent a score dimension not
yet known during the evaluation of o.

The Minimal Probing (MPro) algorithm [CwHO02] works in two phases, 1) the ini-
tialization phase which performs only sorted accesses and 2) the probing phase which
performs random accesses to complete scores. The initialization phase uses sources
that provide sorted access to fill the candidate queue C' with objects. Before inserting
each object, the MPro algorithm assigns a bestscore value to the object that considers
the maximum scores of the remaining, expensive sources representing unknown score
dimensions. In each iteration, the probing phase removes the object o with the highest
bestscore from the candidate queue and probes its next unevaluated source. If the
evaluation for o is complete, o is returned as part of the top-k results, otherwise it is
reinserted into the candidate queue. The algorithm stops as soon as k objects have
qualified for the top-k results. Finding the optimal probing schedule for each object is
an NP-hard problem: thus, optimal probing schedules are approximated using a greedy
approach that relies on benefit and cost of each predicate obtained by sampling of
ranked lists at query startup time. The authors prefer global scheduling (i.e., the prob-
ing sequence is the same for every object) since per-object scheduling would generate
the N-fold cost, given N objects in the database. In contrast to the Upper algorithm,
MPro expects as input a fixed schedule of accesses to R-sources fixed during the initial
sampling phase [MBGO04]. Thus, during query processing, it selects only the object to
probe next, but avoids source selection at run time that is necessary for Upper. Assum-
ing that a sorted access is cheap, this algorithm aims at minimizing the cost of random
accesses.

I0-Top-k [BMS106] processes index lists in batches of b sorted accesses which are
distributed across the index lists. The authors reuse the cost model (middleware cost)
introduced by Fagin in [Fag02] which makes cg - #SA + cg - #RA the overall objective
function.

The goal of SA scheduling is to optimize in each batch the individual batch sizes
b; across all lists, such that some benefit function is maximized and Zie (1,m} b, =0b
which is equivalent to solving the NP-hard knapsack problem. The authors propose two
strategies to handle the problem. The Knapsack for Score Reduction (KSR) method
aims at reducing high; values as quickly as possible as low high; values allow earlier
candidate pruning. Given the current scan positions in the index lists and a budget
b, the goal is to find a schedule of individual batch sizes per list such that the total
expected reduction of bestscore values for all candidates is maximized. bestscore values
are estimated using histograms, assuming uniformly distributed scores. Besides, the
optimization expects that the probability of seeing a particular document in list L;

100 6. Top-k Vs. Non-Top-k Algorithms

where it has not been encountered yet is (close to) zero as only a small part of a list (i.e.,
b; entries) is scanned in the next batch. Thus, the expected reduction of that document’s
bestscore corresponds to the estimated delta (with the help of histograms) in high; for
b; read entries in L;. The Knapsack for Benefit Aggregation (KBA) method performs
typically better than KSR, uses the notion of benefit per candidate, and aggregates all
candidates’ benefits to decide about b; choices. The goal is to achieve low SA costs in
the overall objective function. Like KSR, it uses histograms and current scan positions
but also uses knowledge (obtained by the scans so far) about the candidate under view.

The goal of RA scheduling is 1) to increase min-k in the beginning and 2) clarify
scores for candidates to allow early termination in later stages. The authors propose
two strategies coined Last-Probing and Ben-Probing. Last-Probing proceeds in two
phases: the first phase consists of several rounds of SAs, the second phase performs
only RAs. The second phase is started iff 1) the expected cost for RAs is less than
the number of all SAs done up to that point and 2) Y" | high; < min-k. The first
condition aims at balancing the costs of SAs and RAs, the second condition ensures
that all top-k items have been seen at this point. Ben-Probing uses a probabilistic cost
model to compare the benefit of performing RAs against performing SAs. Costs are
compared every b steps when SA scheduling has to be done anyway.

The most efficient variant, coined RR-LAST mode, does round-robin sequential ac-
cesses and schedules all RAs only at the end of the partial scans of inverted lists, namely,
when the expected cost for RAs is below the cost of all sequential accesses so far.

6.2 Top-k Algorithms from IR

Besides top-k algorithms from the database systems area (cf. Section 6.1), there are also
approaches for top-k query processing in the information retrieval domain (e.g., [AMO06,
BCH™"03b, SC07, TMO10, DS11]).

Following the classification by Ding and Suel [DS11], indexes can be organized in
different ways:

e document-sorted: the postings in each inverted list are sorted by docid.

e impact-sorted: the postings in each inverted list are sorted by their impact, i.e.,
their influence on the score of a document which assumes that the scoring function
is decomposable (i.e., one can sum up contributions of single term entries).

e impact-layered: the postings are organized in layers, with postings in layer @
having a higher impact than the ones in layer ¢+ 1. Each layer’s entries are sorted
by docid.

In impact-sorted and impact-layered indexes the postings with the highest impact can
be found at the start of the inverted lists such that they are read first during query
processing. This property makes impact-sorted and impact-layered indexes popular for
early termination algorithms. Impact-sorted indexes cannot use docids for compression

6.2 Top-k Algorithms from IR 101

since docids increase and decrease with decreasing impact. They can be compressed if
the number of distinct impacts is small or if small integer numbers are used as impacts.
Impact-layered indexes which employ a small number of layers may be better to com-
press, but do not reach the same compression level as document-sorted indexes whose
docid gaps are smaller. Only very few early termination techniques use document-sorted
index structures.

The IR community usually categorizes index traversal approaches as follows:

e DAAT (document-at-a-time): the postings of document d; are processed before
the postings of document d;41. Each document is assigned a final score before the
next document is scored and a set of the & documents with the currently highest
scores is maintained.

e TAAT (term-at-a-time): the inverted list of query term t¢; is processed before
the inverted list of query term ¢;1. Documents’ partial scores are maintained in
so-called accumulators which keep both candidates C' and (intermediate) top-k
results R. As TAAT approaches do not know the final scores of objects imme-
diately, but maintain partial scores instead, the memory footprint is larger for
TAAT than for DAAT approaches.

e SAAT (score-at-a-time): this approach is neither strictly TAAT nor DAAT. All
inverted lists are open at the same time and pointers to list entries that make
larger contributions to document scores are processed first. It requires the index
structures to be organized in an impact-sorted or impact-layered form.

6.2.1 Exact Top-k Algorithms from IR

This subsection elaborates on top-k algorithms from the IR community that deliver
exact top-k results, but do not involve proximity scores.

Anh and Moffat [AMO06] propose dynamic pruning methods that use impact-layered
indexes. For each document, all queryable terms are sorted by decreasing term fre-
quency value within that document. Given the ordering, each term in the document is
assigned an impact between an upper limit u (decided at indexing time) and 1. The
number of terms assigned to lower valued layers is exponentially growing. Stop words
are always assigned the lowest impact 1. Considering a document with ng distinct
terms, of which ng stop words, the base of the layer is defined as B = (ng — ns + 1)1/“.
The layers contain (B —1)B? items, where i € {0,...,u—1}; in [AMO06] Anh and Moffat
choose u = 8. This approach allows a high compression and storage of documents in
impact order. The index structure resembles the inverted block-index structure used by
Bast et al. for I0O-Top-k [BMST06] (Section 6.1). Bast et al. partition each index list
into blocks, which are ordered by descending score. Within each block, index entries
are stored in item ID order which is comparable to document-sorted partial indexes.

The authors describe a pruning method that proceeds in four stages and relies on an
SAAT approach with an impact-layered index. The algorithm maintains accumulators
that keep track of candidate documents C' (and their worstscores) which may qualify

102 6. Top-k Vs. Non-Top-k Algorithms

for the top-k results R. Furthermore, it keeps track of the current top-k results R, the
min-k score (i.e., the lowest worstscore among the items in R, worstscore(Ry)). R;
denotes the result at rank i, i.e., the result with the i*" largest score.

For each list L;, the impact of the next not yet processed document in the inverted
list is stored as next;. As aggregation function Anh and Moffat use the commonly used
simple summation.

The algorithm runs in four phases: the initial OR phase accepts new candidates to
be added. The subsequent AND phase only updates already existing candidates and
top-k results but does not add new ones. The REFINFE phase only considers documents
that are in the top-k results and reorders them. The final IGNORE phase ignores the
remainder of all inverted lists. The initial OR phase can be quit if no document that is
not yet in C' or R (i.e., that has not yet been read in an inverted list), can make it to
the final top-k results R which holds if

min-k > Z next;.
L;eL

This criterion corresponds to the stopping criterion for the virtual document o applied in
the NRA (Section 6.1.2): bestscore(o) < min-k with bestscore(o) = F(highy, ..., highy,)
and high; = next;. The subsequent AND phase can be left when the set of top-£ results
will not change any more:

min-k > max{bestscore(d) : d € C,d ¢ R},

where
bestscore(d) = worstscore(d) + Z next;.
L;eS(d)
This criterion corresponds to the stopping criterion for all candidate objects applied in
the NRA. The REFINE phase can be stopped when the sequence of the top-k results
will not change any more. This holds if for all top-k documents the bestscore of the
document at rank 7 is not larger than the worstscore of the document at rank ¢ — 1 :

VRi,Ri—1 € R,i < k : bestscore(R;) < worstscore(R;_1).

The final IGNORE phase can ignore all remaining postings then. In addition, the
authors propose a method which limits the number of entries read after the OR phase
and reaches precision@20 values comparable to the algorithm just described, already
when stopping reading inverted lists after 30% of the entries that have not been read
during the OR phase. The method features low memory requirements and is way faster
than exhaustive evaluation since only needed fragments of inverted lists are transferred
from disk.

Strohman and Croft [SC07] keep the entire index in main memory to avoid expensive
random accesses to disk such that their query processing cost is determined by the
number of read bytes. The impact-layered index uses the same impact model as Anh
and Moffat, with only eight different integer valued term weights [AMO06]. The index

6.2 Top-k Algorithms from IR 103

is organized in segments where every segment contains a set of documents sharing the
same impact value. Fach segment is document-sorted.

The algorithm is based on Anh and Moffat’s approach adding some optimizations:
while Anh and Moffat’s algorithm prunes candidates only once, once the top-k results
are known (just before the REFINE phase starts), Strohman and Croft eliminate candi-
dates after each inverted list segment has been processed: document d can be removed
from the candidates if min-k > bestscore(d); doing so, the number of candidates to be
updated can be reduced earlier.

In addition, the authors propose a technique to optimize the list-length depen-
dent skipping distance such that inverted list skipping can be applied during both the
AND and the REFINE phase. As both accumulators and inverted list segments are
document-sorted, large sections in the inverted lists not worth decoding can be identi-
fied and skipped.

The WAND approach devised by Broder et al. [BCHT03b] uses a document-sorted
index with DAAT-based query processing. It maintains a list of top-k items R scored so
far, sorted by decreasing score, and sets the threshold 7 to the score of the k" item, Rj.
(Scores of items are always complete scores, i.e., bestscore=worstscore.) Furthermore,
for each inverted list, the algorithm keeps track of the current scan position as well as
the maximum score in the respective list.

The algorithm uses pivoting in order to skip postings and proceeds in multiple
iterations: at the beginning of each iteration, the pointers to the inverted lists are
ordered by ascending current docid. Then the inverted lists’ maximum scores are
aggregated (in the sequence of the ordered pointers), one after the other, until 7 is
exceeded. The term corresponding to the inverted list where 7 has been exceeded is
called pivot term, and the current document in the respective inverted list is called
pivot document; the pivot document has the smallest docid with the chance to exceed
7. However, the pivot document is only valid, if the current docids of all preceding
inverted lists are equal to the pivot docid. Then the corresponding document can be
scored. Otherwise, the cursor of one of the preceding term lists is moved to the pivot
docid and the next iteration can start.

Ding and Suel’s Block-Max WAND (BMW) algorithm [DS11] is a state-of-the-art
DAAT algorithm that uses dynamic pruning and which is based on the WAND algo-
rithm. The focus of [DS11] is on top-k early termination query processing (in the sense
of non-exhaustive evaluation) using main-memory based index structures.

The authors devise an inverted index structure called block-max index which sorts
the inverted list in docid order like the input for the WAND algorithm, but organizes
the compressed inverted list in blocks. For each block, it stores the maximum impact
score of a posting in the block in an uncompressed form to allow skipping long list
parts. The inverted lists’ block size is 64 or 128 documents (postings) and supports
decompressing individual blocks. There is an additional table outside the inverted list
blocks (to avoid cache line effects) that stores the maximum (or minimum) docid and
the block size. Storing this extra information only slightly increases the index size.

For the WAND algorithm, skipping is limited because the inverted indexes only store

104 6. Top-k Vs. Non-Top-k Algorithms

the maximum impact score of the entire list. Storing the maximum impact score per
block for block-max indexes enhances the skipping known from the WAND algorithm.
This way, the upper bound approximation of document impact scores can be lowered
and large performance improvements achieved.

The authors distinguish between deep pointer movement in an inverted list which
usually involves block decompression and shallow pointer movement which moves the
current pointer to the corresponding block without decompressing the block. To this
end, the shallow pointer movement relies on the block boundary information stored in
the additional table.

As stated before, the BMW algorithm is based on WAND and thus uses pivoting in
order to skip postings and proceeds in multiple iterations: before evaluating a pivoting
docid, first the shallow pointers are moved to check whether the document can make
it to the top-k based on the maximum score per block. If not, another candidate is
chosen. Instead of moving the cursor in one list to pivot docid+1, Ding and Suel choose
d = min{ci,...,cp—1,¢p}, where ¢; to ¢p—1 are the block boundaries plus one of the
first p — 1 lists and ¢, is the current docid in the pivot term list. This approach greatly
improves skipping compared to moving the cursor in one list to pivot docid+1.

Ding and Suel experimentally validate that the basic BMW algorithm outperforms
their implementation of Strohman and Croft’s approach which is again faster than the
WAND approach.

Extensions include an impact-layered index organization and docid reassignments.
The idea of docid reassignments is to give similar web-pages close docids to improve
index compression. Ding and Suel attribute docids by alphabetical ordering of the URLs
as in their earlier work with Yan [YDS09b]; it seems that after reassignment, documents
in the same block tend to have more similar scores which in addition helps to speed
up query processing. The average speed is still slightly slower than for exhaustive
conjunctive evaluation, but the difference is greatly narrowed.

The goal of impact-layered index organization here is to put high-scoring documents
in the same layer and thus avoid spiky scores in the remaining layers. This approach is
supposed to avoid reading as many blocks in the remaining layers as possible during the
execution of the BMW algorithm. The impact-layered index is split into NV layers and
each layer is treated like a separate term with the disadvantage of the larger number
of terms per query. Ding and Suel choose N=2 to avoid decreasing performance, only
lists with at least 50,000 postings are split with 2% of the postings added to the first
layer. That way runtime can be decreased further, almost meeting the average speed
of exhaustive conjunctive evaluation.

6.2.2 Exact Top-k Algorithms from IR with a Term Proximity Com-
ponent

This subsection presents approaches that deliver exact top-k results and incorporate
some term proximity scoring into dynamic pruning. There has been little work pub-
lished that incorporates proximity scores to accelerate top-k text retrieval. [ZSLWO07,

6.2 Top-k Algorithms from IR 105

ZSYWO08, YSZ110] use a combination of term as well as term proximity scores simi-
lar to the solution presented later in Chapter 7 and make additional use of PageRank
scores. [ZSLWOT7] propose a PageRank ordered index structure that segments in-
dex entries based on the tags that surround the text the index entry has been gen-
erated from. This results in a long body tag segment and a short segment for all
remaining tags. An extension of this index structure splits the body tag segment
in two segments, based on whether a document’s term weighting score exceeds or
underscores a threshold score. A very recent approach to use term pair indexes to
improve bounds in top-k text retrieval was presented in [YSZ110] which focuses on
the index building and query processing with term-pair indices on every local ma-
chine of a cluster. They use an order-aware proximity score resulting in two term
pair lists per term pair. Like [ZSLWO07, ZSYWO08], the approach is only applicable
for two-term-queries. To keep the ranking flexible [YSZT10] store position informa-
tion while we make use of an integrated proximity score (cf. Section 7.2.2). Our
approximate approach that we will present in Chapter 8 elaborates on the trade-off
between index size and result quality which was not mentioned in [YSZ"10]. In con-
trast to [ZSLWO07, ZSYWO08, YSZ*10, SBHT07, BS12], [TMO10] do not create term
pair lists statically but dynamically during query processing to save on disk space.
Document-sorted term pair posting lists are generated from two document-sorted sin-
gle term lists by a merge join-based operation. To save on I/O operations, only single
term lists are read from disk and decompressed: i.e., the pointer of the list with the
minimum current docid in two document-sorted single term lists is moved. If the two
pointers point to the same document, this document qualifies for the term pair list. The
authors analyze two existing DAAT dynamic pruning strategies, MaxScore (terminates
one item’s scoring if its score cannot exceed min-k) and WAND (cf. Section 6.2), and
modify them to support proximity scores. They accelerate MaxScore and WAND in a
two-stage approach: in a first stage, only single term posting lists are processed like in
WAND or MaxScore. In a second stage, term pairs are subsequently processed using
early termination (with the MaxScore strategy).

The order-aware proximity score uses the sequential term dependence (SD) model
for Markov Random Fields [MCO05] (cf. Section 2.7.3). For all pairs of adjacent query
terms it captures the number of exact phrase occurrences and term pair occurrences in
a text window of size 8 for a document d. In [MOT11], the upper bound of a term pair
(ti,ti+1)’s frequency is approximated by the maximum term frequency in the term post-
ing lists L(t;) and L(ti+1): min(mazger,)(tf(ti, d)), mazaerq,) (tf(tiv1,d))) as no
term pair can occur more often in a document than the least frequent of the constituent
terms. If a term pair posting is selected for scoring, the exact term pair frequency for
a text window size is computed using position lists in both single term posting lists.
Otherwise, this computation can be avoided.

106 6. Top-k Vs. Non-Top-k Algorithms

6.2.3 Approximate Top-k Algorithms from IR

While the approaches described above compute the exact top-k results for a scoring
model with queries on an indexed collection, the approaches described in this subsection
just approximate the top-k results instead which is often good enough in terms of result
quality.

Approximate top-k algorithms include probabilistic result pruning [TWS04], execu-
tion with limited budget [SSLM*09], and improving score bounds for proximity scores
by means of pruned bigram indexes [ZSYWO08].

In contrast to dynamic pruning approaches which maintain full index lists and
evaluate only a fragment of the indexed documents at query processing time, static
pruning approaches such as [SCC*01, BC06] discard postings considered not important
already at indexing time. This incurs less stored information on hard disk and often
opens the opportunity to keep the indexes in memory of a single machine which saves
on I/O time during processing. If indexes are wisely pruned, the retrieval quality of the
top-k results is comparable to dynamic pruning approaches, usually at the expense of
lower recall values. [SCC'01] introduced list pruning with quality guarantees for the
scores of query results, assuming top-k style queries with a fixed (or at least bounded)
k. For each list L, they consider the score si(L) at position k (the k® highest score)
in L, and drop each entry from that list whose score is below € - s;(L), where 0<e<1
is a tuning parameter. They assume a given k, €, and the original score S that uses
unpruned lists as input. They prove that for each query ¢ with r < % terms there is a
scoring function S’ such that for every document

(1 - GT)S(%d) < Sl(qa d) < S(Q7d)

S’ is similar to a scoring function on pruned lists except for the case that a document’s
entries have been pruned away in too many dimensions such that its score becomes
zero. Experiments are carried out with the topics 401-450 from the Ad Hoc Task of
TREC-7 in short and long variants: short queries use the titles only, whereas long
queries use titles and descriptions. Choosing € = 50% provides similar PQ10 values as
on the unpruned index.

[BCO6] prune lists using a document-centric approach. The approach decides, based
on a term’s contribution to a document’s Kullback-Leibler divergence from the text
collection’s global language model, whether the corresponding posting should remain
in the index. For each document d in the text collection their best-performing approach
(DCPI({Z) keeps only the postings for the top-k4 terms in d, where kg = [dt(d) - A] and
A is a user-defined pruning parameter. Using a pruned index with A = 0.1 (i.e., 10%
of each document’s terms are kept) generates a result quality slightly worse than using
an unpruned BM25 index evaluated with the 50 Ad Hoc topics from the TREC 2005
Terabyte Track. Its size of 1,570MB corresponds to 12% of the size of an unpruned
index. Given a fixed response time, DCPI(?‘);% can provide a better result quality than
two other strategies at most recall levels on the TREC 2004 and 2005 Terabyte Track
test beds. The first strategy indexes a constant number of terms per document and the

6.3 Non-Top-k Algorithms 107

second strategy performs term-centric pruning which keeps the & best postings for the
n most frequent terms.

[ZSYWO08] combine static index pruning with dynamic pruning techniques. They use
pruned uncompressed bigram indexes derived by static index pruning as an additional
input to dynamic pruning top-k processing. The pruned bigram indexes lower the upper
bound for term proximity scores during query processing of two-term-queries. The prun-
ing technique discards 1) bigrams when they are rare in the collection (as that two-term
query is unlikely to be issued) and 2) bigrams when both terms are rare in the collection
(inducing short term indexes which can be processed quickly). A combination of the
pruned bigram index and a two-segment index (i.e., high and low score segment), with
each segment ordered by PageRank score, processes retrieved results most efficiently.

[WLM11] propose a cascade ranking model, a sequence of increasingly complex
ranking models. The first stage returns the highest scoring documents according to
the first applied scoring model. Each subsequent stage first prunes candidates and
then refines the scoring for the remaining candidates used as input to the next stage.
The authors propose rank-based, score-based, and score distribution-based prunings.
Unigram features and bigram proximity features (both ordered and unordered term
occurrences) as proposed in [MCO05] are integrated into a Dirichlet and BM25 score,
respectively. A boosting algorithm (based on AdaRank [XLO07]) learns the cascade
sequence and feature weights of the individual scoring functions. To this end it uses a
tradeoff metric that weights effectiveness and efficiency (costs). The cost of a scoring
model depends on the normalized average run time over a set of training queries and
the input size of this stage.

6.3 Non-Top-£ Algorithms

The highly efficient top-k or dynamic pruning algorithms (cf. Sections 6.1 and 6.2) that
are frequently applied for efficient query processing incur a non-negligible processing
overhead for maintaining candidates and candidate score bounds, for mapping newly
read index entries to a possibly existing partially read document using hash joins, and
for regularly checking if the algorithm can stop. In scenarios with short index lists, this
processing overhead is not necessary. Instead, it is sufficient to exhaustively evaluate
queries in a DAAT fashion. If the lists are long, one should prefer a top-k algorithm
instead.

The n-way merge join is a DAAT algorithm which receives n docid-ordered lists
as input and in each join step calculates the (full) score for the document deyprent
having the next smallest not yet evaluated docid. If the algorithm is executed in the
exhaustive OR mode (disjunctive query evaluation), deyrrent does not have to be seen
in every list. If the algorithm is executed in the ezxhaustive AND mode (conjunctive
query evaluation), the current docid must be seen in every list and the computation
of deyrrent’s score can be skipped if one list pointer points to a different document. If
the score is higher than the min-k value, the document is kept in a heap of candidate

108 6. Top-k Vs. Non-Top-k Algorithms

results, otherwise it is dropped as it cannot make it into the top-k results R any more.
For every list it keeps track of the position up to which the list has been read so far
and iterates to the next item if the document in this list has just been evaluated. If the
items of all lists have been read completely, the algorithm terminates. Once all index
entries have been read, the content of the heap is returned.

One commonly used approach to accelerate query processing is to perform ranking
in two phases. The first phase that uses a simple and easily-to-compute ranking model
(e.g., BM25) pre-selects the documents to be re-ranked in the second phase with a
usually more complex, not that easily-to-compute scoring model. Furthermore, using
phrases is a common means in term queries to restrict the results to those that exactly
contain the phrase and is often useful for effective query evaluation [CCB95]. A simple
way to efficiently evaluate phrases are word-level indexes, inverted files that maintain
positional information [WMB99]. There have been some proposals for specialized index
structures for efficient phrase evaluation that utilize term pair indexes and/or phrase
caching, but only in the context of boolean retrieval and hence not optimized for top-
k style retrieval with ranked results [CP06, W99, WZB04]. There are proposals to
extend phrases to window queries, where users can specify the size of a window that
must include the query terms to favor documents containing all terms within such a
window [MSTC04, PA97, BAYS06]. However, this line of works has treated term prox-
imity only as an afterthought after ranking, i.e., proximity conditions are formulated
as a simplistic Boolean condition (e.g., requiring query terms to appear within the
user-specified window size) and optimized as separate post-pruning step after ranked
evaluation.

Chapter 7

Casting Proximity Scoring
Models into Top-£ Query
Processing

7.1 Introduction

The first part of this chapter describes how we can modify Biittcher et al.’s scoring
model to make it fit into top-k algorithm-based query processing. It is based on our
work published in [SBH107].

There has been a number of proposals in the literature for proximity-aware scor-
ing schemes summarized in Chapter 2; however, there are only a few proposals that
efficiently find the best results to queries in a top-k style with dynamic pruning tech-
niques (cf. Section 6.2.2). We show that integrating proximity in the scoring model
can not only improve retrieval effectiveness, but also improve retrieval efficiency; using
pruned index lists, we gain up to two orders of magnitude compared to standard top-k
processing algorithms for purely occurrence-based scoring models on unpruned lists.

This insight opens the door for using a light-weight n-ary merge join in combination
with pruned document-sorted index lists published in [BS08a] which realizes a similar
speed up by one or two orders of magnitude compared to an evaluation with a top-k
system such as TopX [TSWO05] using unpruned lists. Hence, we can avoid top-k dynamic
pruning techniques that maintain a candidate pool and compute best-/worstscores for
result candidates to finally come up with the top-k results. Besides saving the overhead
costs, this simple approach keeps up the excellent precision values and saves much disk
space.

The second part of this chapter aims at evaluating the feasibility of the proximity-
enhanced scoring models surveyed in Chapter 2 for top-k algorithm-based query pro-
cessing. Thereby, we try to figure out how to apply the techniques presented in the
first part of this chapter to other scores.

109

110 7. Casting Proximity Scoring Models into Top-k Query Processing

7.2 Proximity Scoring

7.2.1 Proximity Scoring Models

We focus on proximity scoring models that use a linear combination of a content-based
score with a proximity score as they are usually more easily decomposable into their
features and thus more straight forward to index than integrated scoring models. We
have described a selection of such linear combination and integrated scoring models in
Section 2.4 and Section 2.5, respectively.

The particular scoring model we use is a scoring model proposed by Biittcher et
al. [BC05, BCLO6] (labelled Biittcher’s scoring model from now on) which has been
described in detail in Section 2.4.2. We have experimentally validated in Section 4.2
that for the Web Track and Robust Track test beds, Biittcher’s scoring model is among
the scoring models that provide the highest precision, MAP, and NDCG values. For
the Terabyte Track test beds, it yields the highest retrieval quality for all test beds and
retrieval metrics (except for topics 751-800 with the MAP metrics where it performs
slightly weaker than Song et al.’s scoring model) and for all INEX test beds the high-
est retrieval quality with all metrics. According to Metzler [Met06b], an ideal model
that generalizes perfectly achieves an effectiveness ratio of 1. While effectiveness ratios
below 90% indicate a scoring model’s missing ability to generalize, the most reason-
able retrieval models have an effectiveness ratio above 95%. In Section 4.2.3 we have
demonstrated for the MAP and NDCG@10 metrics that Biittcher’s scoring model has
an effectiveness ratio that overscores 95% which holds only for two scores in our eval-
uation. All scoring models exhibit high intracollection generalization values between
98% and 100% on all test beds with both the MAP and NDCG@10 metrics. In Sec-
tion 4.2.4, we have shown for both the MAP and NDCG@10 metrics that Biittcher’s
scoring model exhibits a relatively low spread, but a relatively high entropy. In our
setting, we think that the spread value is more meaningful than the entropy value as
it measures how much retrieval quality can decrease if we choose the wrong parameter

combination.

An initial set of experiments aimed at validating that Biittcher’s score outperformed
the BM25 score for various parameter settings and thus shows improvements indepen-
dent of the parameter choice. In particular, we wanted to find out whether the original
parameter setting from [BC05, BCLO06] is appropriate and can be used for our exper-
iments. To this end, with the 100 topics from the TREC Terabyte Track, Ad Hoc
Tasks 2004 and 2005 on the GOV2 collection, we evaluated the effect of Biittcher’s
score over the BM25 score alone for 60 combinations of values for k; and b, for pre-
cision at different cutoffs and MAP. For all experiments, the results with Biittcher’s
score were always at least as good as the results with BM25, significantly better (with
p < 0.05 for a signed t-test) for 42 configurations in precision at 10 results, for 59
configurations in precision at 100 results, and always for MAP. We use the parame-
ter setting from [BCO05, BCL06] (k; = k& = 1.2,b = 0.5), which was among the best

configurations in our experiments as well.

7.2 Proximity Scoring 111

7.2.2 Modification of Biittcher’s Scoring Model

To include Biittcher’s proximity score into query processing, it would be intriguing
to use a standard word-level inverted list, i.e., an inverted list that stores with each
document also the positions of the term occurrences in the document, and compute
proximity scores on the fly as a document is encountered. We could use the tf(¢,d)
values for each query term ¢ in d to compute a bestscore for a document: to this end
we would have to ’construct’ a document that maximizes the pscore(d,q) value by
putting ¢ f(t,d) times query term ¢ into the conceived document (we do not know the
real document since we have not read the word-level inverted lists yet). This boils
down to a combinatorial problem. For two-term queries {¢;,¢;} it is already hard to
solve; if ¢; and t; share the same ¢ f value in d, one has to place them alternately in the
conceived document to maximize the pscore value as only non-equal adjacent query
terms generate a proximity contribution. If ¢; and ¢; have different ¢f values in d, we
first have to place the term with the lower ¢f value (w.l.0.g. t;) and then try to group
the term occurrences of ¢; around the occurrences of ¢;. The longer the query, the more
complex the combinatorial problem gets. However, this approach is not feasible in a
top-k style processing as it is not possible to compute tight score bounds for candidates
which in turn disables dynamic pruning and in addition the combinatorial problem does
not seem to be trivial, especially for long queries.

For an efficient computation of the top-k results, we need to precompute and store
proximity score information in index lists that can be sequentially scanned and compute
tight score bounds for early termination. The main problem with Biittcher’s scoring
function in this respect is that the accumulator value accy(t) is computed as a sum
over adjacent query term occurrences, which is inherently query dependent, and we
cannot precompute query-independent information. An additional, minor issue is that
the scoring function includes the document length which cannot be easily factorized
into a precomputed score contribution.

To solve this, we slightly modify Biittcher’s original scoring function; this does
not have much influence on result quality, but allows precomputation. In addition to
dropping the document length, by setting b = 0 in the formula, we consider every query
term occurrence, not only adjacent occurrences. The modified accumulation function
acc is defined as

idf (p;) idf (pi)
CLCC/ t = 7/7] + T o5 - 71
) =2 gomt 2 g ()
(4,7) € Qau,a(q) : (4,7) € Qau,alq) :
Pi = ti,Di # Dj pj =tk,pi # Dj

As the value of acc);(t) does not only depend on d and tj,, but also on the other query
terms, we still cannot precompute this value independently of the query. However, we

112 7. Casting Proximity Scoring Models into Top-k Query Processing

can reformulate the definition of acc)(t;) as follows:

accy(ty) =y _ idf (t) > (Z._l et > (2_1])2 (7.2)

teq (4,7) € Qau,a(q) : (4,7) € Qau,alq) :
pi =tg,p; =1, pi =t,pj = ti,
Pi # Dj Di 7 Dj
;:acg;(tk,t)
= idf(t) - acca(ty,t). (7.3)

tq

We have now represented acc),(t) as a monotonous combination of query term pair
scores accq(ty,t). We can precompute these pair scores for all term pairs occurring
in documents and arrange them in index lists that are sorted by descending accy(tx,t)
scores. Note that term order does not play arole, i.e., accq(tg,t) = accy(t, t). Including
these lists in the sequential accesses of our processing algorithm, we can easily compute
upper bounds for acc)(t) analogously to query term dimensions by plugging in the
score at the current scan position in the lists where d has not yet been encountered.
The current score of a document is then computed by evaluating our modified Biittcher
score with the current value of acc);, and the upper bound is computed using the upper
bound for accl; this is correct as the modified Biittcher score is monotonous in acc);.

7.3 Indexing and Evaluation Framework

7.3.1 Precomputed Index Lists and Evaluation Strategies

Our indexing framework consists of the following precomputed and materialized index
structures, each primarily used for sequential access, but with an additional option for
random access:

e Term index list (short: term list): for each single term ¢ a list that contains an
entry for each document d where this term occurs (i.e., tf(¢,d) > 0). This entry
has the form (d.docid, scoregyo5(d,t)) where d.docid is a unique numerical id
for document d. TL(t) denotes the term list of term ¢. The chosen parameters
have been disclosed in Section 7.2.1.

e Proximity index list (short: proximity list): for each single term pair (¢1,t2) a
list that contains an entry for each document d where this term pair occurs within
any text window of size W (we will discuss the window size in Section 7.3.4).
This entry has the form (d.docid,accy(ty,t2)) where the proximity contribution of
(t1,ta) for d is stored in accy(ty1,t2). t1 and to are lexicographically ordered (i.e.,
t1 < t2) such that for any single term pair combination we keep the corresponding
proximity list just once. PXL(¢;,%2) denotes the proximity list for the term pair

(t1,t2).

7.3 Indexing and Evaluation Framework

113

e Combined index list (short: combined list): for each single term pair (¢1,%2) a
list that contains an entry for each document d where this term pair occurs within
any text window of size W (we will discuss the window size in Section 7.3.4).
This entry has the form (d.docid,accq(t1,t2),5coregpios(d, t1),scoregnioas (d, t2))
where the proximity contribution of (1,¢2) for d is stored in accy(t1,t2). t1 and
to are lexicographically ordered (i.e., t; < t2) such that for any single term pair
combination we keep the corresponding combined list just once. CL(¢1, t2) denotes

the combined list for the term pair (¢y,t2).

Both PXLs and CLs are term pair lists (short: pair lists). The order of entries
in the index lists depends on the algorithm used for query processing. Entries can be
ordered either by docid or by descending scores (scoregpos for the term lists, accq

values for the term pair lists).

We illustrate the layout of our index lists with score-based ordering in Figure 7.1.
It depicts the term, proximity, and combined index lists which can be used to process

the query {bike, trails}.

.| TL(bike) TL(trails)
5| (1,9.3) (4,9.1)
gl 1(12,7.2) (2,8.6)
£ (5,5.0) (1,5.9)
g (2,4.5) (25,4.6)
(d.docid, (d.docid,

scoregyps(d, 1)) scoregys(d, 1)

descending acc,(t; t;)

<

PXL(bike,trails)

(2,3.0)
(4,0.7)
(12,0.5)
(9,0.2)

(d.docid, acc(t, t)

CL(bike,trails)

(2,3.0,4.5,8.6)
(4,0.7,1.5,9.1)
(12,0.5,7.2,3.0)
(9,0.2,1.7,2.0)

(d.docid, acc(t, t,),
scoregyns(d, t),
scoregyps(d, 1)

Figure 7.1: Score-ordered term, proximity, and combined index lists which can be used

to process the query {bike, trails} in several processing strategies.

The index structures depicted in Figure 7.1 can be combined into several processing

strategies:

e TL: this corresponds to standard, text-based retrieval (just BM25 scores are em-
ployed) without usage of proximity scores. To process the query {bike, trails}, it
uses the two term lists TL(bike) and TL(trails).

e PXL: this scans only the proximity lists and uses the proximity part of our modified
Biittcher scoring function for ranking. To process the query {bike, trails}, this
strategy uses the proximity list PXL(bike, trails).

e TL+PXL: this scans proximity and content score lists (which would be the straight-
forward implementation of our scoring model with a Threshold algorithm). To

114 7. Casting Proximity Scoring Models into Top-k Query Processing

process the query {bike, trails}, this strategy uses the two term lists TL(bike) and
TL(trails) as well as the proximity list PXL(bike, trails).

e TL+CL: this strategy, which is the main contribution of this chapter, exploits the
additional content scores in the CLs to reduce the uncertainty about the score
of documents with high proximity scores early in the process, which often allows
early termination of the algorithm. We can additionally tighten the bounds when
a CL for a pair (¢1,t2) runs empty: if a document was seen in the TL for ¢, but
not in the CL for (¢1,t2), it is certain that it will not appear in the TL for ¢ty any
more. To process the query {bike, trails}, this strategy uses the two term lists
TL(bike) and TL(trails) as well as the combined list CL(bike, trails).

We restrict ourselves to answering soft phrase queries. Once indexing considering
term pair occurrences in a text window has been performed, it is not possible to process
strict phrase queries with a pair-based index. This means that we cannot exclude
those documents from the result set that do not contain the terms from the phrase
consecutively. However, proximity scores are usually higher for documents with phrase
occurrences than for those without phrase occurrences. Therefore, documents with
phrase occurrences are not pruned away from the pair lists such that they will be very
likely to be considered during query processing. Query-independent weights such as
PageRank weights [BP98] may be stored in term lists. As they are small in size for
commonly used document collections, they may be kept even in main memory (but
this has also not been considered in other papers such as [DS11, SC07]). If updates are
needed, the updates will just have to be carried out in one place - the term lists.

There has been a noticeable amount of work using precomputed lists for docu-
ments containing two or more terms to speed up processing of conjunctive queries, for
example [CCKS07, KPSV09, LS05], for centralized search engines, and [PRL107] for
distributed search engines. None of these approaches includes proximity scores, so they
can only improve processing performance, not result quality. Another bunch of papers
deals with efficiently precomputing indexes for phrase queries [BWZ02, CP06, WZB04],
but again they do not include proximity scores. Some of these consider the problem of
reducing the index size while providing decent performance for most queries, usually
by restricting to phrases or term pairs in frequently occurring queries.

7.3.2 Evaluation Setup

We evaluated our algorithms with the Java-based, open-source TopX search en-
gine! [TSWO05] which stores index lists in an Oracle database. Our experiments were
run using the GOV2 collection with roughly 25 million documents, corresponding to
about 426 GB of data (see Section 3.2.1 for more details). We evaluated our methods
with the 100 Ad Hoc topics (topic numbers 701-800) from the 2004 and 2005 TREC
Terabyte Track, Ad Hoc Tasks. The topic sets are listed in Tables B.1 and B.2. As
we are focusing on top-k retrieval, we measured precision values at several cutoffs.

"http://topx.sourceforge.net

7.3 Indexing and Evaluation Framework 115

To evaluate efficiency, we measured the number of sequential (SA) and random (RA)
accesses to the index lists and the number of bytes transferred from disk, assuming sizes
of 8 bytes for scores and docids. As random accesses are usually much more expensive
than sequential accesses, we additionally compute a byte-based abstract cost

Cost(y) = #bytes(SA) + v - #bytes(RA)

for each run, based on the cost ratio 7 := ¢p/cg of random to sequential accesses; we
used ~ values of 100 and 1,000 to determine abstract costs.

We indexed the documents with the indexer included in the TopX system with
stopword removal enabled and computed the pair lists needed for the queries with an
additional tool. We ran the results with TopX configured in RR-LAST mode and a batch
size of 5,000, i.e., round-robin sequential accesses in batches of 5,000 items to the index
lists and postponing random accesses to the end.

7.3.3 Results

Table 7.1 shows our experimental results for top-10 retrieval with stemming enabled.

lConﬁguration[P@lO[#SA[#RA[#bytes(SA)[#bytes(RA)[Cost(lOO)[Cost(l,OOO)‘
TL 0.56(24,175,115|196,174 | 386,801,840 1,569,392 | 543,741,040 | 1,956,193,840
TL+PXL 0.60] 24,743,014 | 149,166 | 395,002,624 | 1,193,328 | 515,235,424 | 1,589,230,624
TL+CL 0.60| 4,362,509| 8,663 108,743,568 79,256 (116,669,168 | 187,999,568
PXL 0.40 867,095 2,925| 13,873,520 23,400| 16,213,520 37,273,520

Table 7.1: Experimental results for top-10 retrieval of 100 Ad Hoc topics from the 2004
and 2005 TREC Terabyte Track, Ad Hoc Tasks.

It is evident that the configuration TL+CL improves PQ10 to 0.60 over the original
BM25 setting (which corresponds to TL with a P@10 value of 0.56), with a t-test and a
Wilcoxon signed-rank test confirming statistically significant improvements at p < 0.01.
The configuration TL+PXL with simple proximity lists achieves the same improvement
in precision as it uses the same scoring function as TL+CL whereas scanning only the
PXLs exhibits poor result precision. We verified by additional experiments that the
retrieval quality of our modification of Biittcher’s scoring model was as good as the
original version of Biittcher’s scoring model.

In addition to the improved retrieval quality of TL+CL over the TL baseline, it dra-
matically reduces the number of accesses, bytes transferred, and abstract costs by a
factor of 5 to 10. This is due to the additional content scores available in CL and the
better bounds. The configuration TL+PXL needs to run longer than TL+CL until it can
safely stop. Scanning only the PXLs is much faster (at the expense of result quality).

index/limit unpruned size(#items) required space
TL 3.191-10° 47.5GB
PXL/CL (estimated!) 1.410-10'2{20.5TB / 41.0TB

Table 7.2: Index sizes in items and required space for unpruned indexes.

116 7. Casting Proximity Scoring Models into Top-k Query Processing

Table 7.2 shows the index sizes (number of list entries and required space) for
term (exact) and pair lists (estimated). As the complete set of pair lists was too
large to completely materialize it, we randomly sampled 1,500,000 term pairs with a
frequency of at least 10, of which about 1.2% had a non-empty pair list. They are
calculated /estimated according to the kind of data stored in the lists as described in
Section 7.3.1, assuming an uncompressed storage. We assume that document identifiers
and scores have a size of 8 bytes each. Therefore one TL entry or PXL entry (consisting
of document identifier and BM25 score or accumulated score, respectively) takes a size
of 16 bytes whereas one CL entry takes a size of 32 bytes as it stores the document
identifier, the accumulated score, and two BM25 scores.

It is evident that keeping all pair lists consumes prohibitively much disk space (for
the GOV2 collection the estimated disk space to store unpruned PXL and CL indexes
amounts to 20.5TB and 41.0TB, respectively): for large collections, the size of the
inverted lists may be too large to completely store them, especially when the index
includes term pair lists. As we do not consider only adjacent terms, but any terms
occurring in the same document, a complete set of pair lists will be much larger than
the original text collection.

Lossless index compression techniques (see, e.g., [{MNZBY00]) are one way to solve
this problem, but the compression ratio will not be sufficient for really huge collections.
We therefore apply index pruning (which is a lossy index compression technique) to
reduce the size of the index, while at the same time sacrificing as little result quality as
possible. Following the literature on inverted lists for text processing, a common way
is pruning lists horizontally, i.e., dropping entries towards the end of the lists. These
entries have low scores and hence will not play a big role when retrieving the best
results for queries. Unlike term lists, term pair lists contain many entries with very low
scores (as the score depends on the distance of term occurrences), so the pruning effect
on pair lists should be a lot higher than on term lists.

7.3.4 Results with Pruned Index Lists

Our indexing framework provides three different pruning methods, mainly geared to-
wards term pair lists. First, we heuristically limit the distance of term occurrences
within a document, as occurrences within a large distance have only a marginal contri-
bution to the proximity score. Second, we heuristically limit the list size to a constant,
usually in the order of a few thousand entries. Third, we leverage the seminal work by
Soffer et al. [SCCT01] for pair lists. They introduced list pruning with quality guar-
antees for the scores of query results, assuming top-k style queries with a fixed (or at
least bounded) k. For each list L;, they consider the score si(L;) at position k of the
list, and drop each entry from that list whose score is below € - si(L;), where 0 < e < 1
is a tuning parameter.

We first study the size of our indexes at different levels of pruning for an index
(without stemming as this is an upper bound for the index size with stemming). Ta-
ble 7.3 shows the influence of index list pruning on the number of index items. It is

7.3 Indexing and Evaluation Framework 117

[index/limit [500] 1,000] 1,500] 2,000] 2,500[3,000 unpruned]
TL 295 355 402 442 472 496 3,191
PXL/CL (est.) 368,761 | 435,326 [481,949(515,079] 542,611 566,277 | 1,410,238
PXL/CL, accq > 0.01 (est.)]| 23,050] 28,855| 34,023] 38,985| 42,085| 45,186 87,049

Table 7.3: Index sizes (million items) with different length limits, with and without
minimum acc-score requirement.

[index/limit [500[1,000] 1,500] 2,000] 2,500] 3,000 unpruned|
TL 4.4GB| 5.3GB[6.0GB[6.6GB| 7.0GB[7.4GB[47.5GB
PXL (est.) 54TB| 6.3TB| 7.0TB| 7.5TB| 7.9TB| 8.2TB| 20.5TB
PXL, accqg > 0.01 (est.)|343.5GB| 430GB| 507GB|580.9GB[627.1GB|673.3GB| 1.3TB
CL (est.) 10.7TB|12.7TB[14.0TB| 15.0TB| 15.8TB| 16.5TB| 41.0TB
CL, accq > 0.01 (est.) [686.9GB[860GB| 1.0TB| 1.1TB|[12TB| 1.3TB| 25TB

Table 7.4: Index sizes (disk space) with different length limits, with and without mini-
mum acc-score requirement.

evident that keeping all pair lists, even with a length limit, is infeasible.

However, limiting the text window size to 10 reduces the number of items in the CL
index noticeably to at most a factor of 8-15 over the unpruned term index, which may
be tolerated given the cheap disk space available today. We mark settings with limited
window sizes by accy > 0.01; one term occurrence of both ¢; and ¢; in a text window
of 10 amounts to an accq(t;,t;) contribution of at least 0.01.

Table 7.4 shows the index sizes (required disk space) for the very same lists. The
size of TLs is not a big issue as the unpruned TLs only amount to 47.5GB, and can be
further downsized using maximum list lengths. The far more critical indexes are PXLs
and CLs that exhibit the prohibitive estimated size of 20.5TB and 41.0TB, respectively.
Limiting the list size helps, although the lists remain too large. Additionally restricting
PXLs and CLs by a minimum acc-score of 0.01 finally leads to tolerable sizes between
343.5GB and 673.3GB for PXLs and 686.9GB and 1.3TB for CLs.

As we show later in Table 7.5, excellent results can be achieved when limiting the
index size to 1,000 entries per list. Hence, we need less than 900GB of disk space to
execute TL+CL(1,000;accy; > 0.01) on a document collection with 426GB data. Note
that in this setting, both TLs and CLs keep at most 1,000 entries and CL entries require
a minimum acc-score of 0.01. Additional lossless compression may further reduce the
index sizes.

We then evaluated retrieval quality with pruned (term and combined) index lists,
where we used combinations of window-based pruning with a maximal size of 10, fixed-
length index lists, and the pruning technique by Soffer et al. [SCCT01] for k¥ = 10.
All measurements were done without random accesses (i.e., using NRA), hence we
report only a single cost value based on the number of bytes transferred by sequential
accesses. Additional experiments without this constraint in RR-LAST mode showed that
TopX only rarely attempts to make RAs in this setting as the pruned lists are often
very short: hence, RR-LAST degenerates into NRA.

Table 7.5 shows the experimental results for top-10 queries in this setup, again with

118 7. Casting Proximity Scoring Models into Top-k Query Processing

[Configuration [P@10 [#SA [bytes(SA) [cost]
TL+CL (accqg > 0.01) 0.60(5,268,727(111,119,408 111,119,408
TL (500) 0.27| 148,332 2,373,312 2,373,312
TL (1,000) 0.30| 294,402| 4,710,432| 4,710,432
TL (1,500) 0.32] 439,470 7,031,520 7,031,520
TL (2,000) 0.34| 581,488| 9,303,808| 9,303,808
TL (2,500) 0.36| 721,208| 11,539,328| 11,539,328
TL (3,000) 0.37| 850,708 | 13,611,328 | 13,611,328
TL+CL (500) 0.53| 295,933| 7,178,960| 7,178,960

TL+CL (1,000) 0.58| 591,402| 14,387,904| 14,387,904
TL+CL (1,500) 0.58| 847,730| 20,605,312| 20,605,312
TL+CL (2,000) 0.60|1,065,913| 25,971,904| 25,971,904
TL+CL (2,500) 0.60|1,253,681| 30,648,064| 30,648,064
TL+CL (3,000) 0.60|1,424,363| 34,904,576| 34,904,576

TL+CL (e = 0.010) 0.60[4,498,890| 87,877,520 87,877,520
TLA4CL (e = 0.025) 0.60 (3,084,801 73,744,304| 73,744,304
TL+4CL (e = 0.050) 0.60|4,337,853| 75,312,336 75,312,336
TL+4CL (e = 0.100) 0.60(5,103,970| 84,484,976| 84,484,976
TL+4CL (e = 0.200) 0.586,529,397 | 105,584,992 | 105,584,992
TL+CL (500; € = 0.025) 0.54| 281,305 6,628,528| 6,628,528

TLA4CL (1,000; € = 0.025) 0.58| 521,519| 12,034,320| 12,034,320
TLA4CL (1,500; € = 0.025) 0.59| 732,919| 16,606,064| 16,606,064
TL+CL (2,000; € = 0.025) 0.60| 910,721| 20,377,904| 20,377,904
TL+CL (2,500; € = 0.025) 0.60|1,060,994| 23,519,296| 23,519,296
TL+CL (3,000; € = 0.025) 0.60|1,191,956| 26,211,376| 26,211,376
TL+CL (500; accg > 0.01) | 0.58| 290,788 6,931,904| 6,931,904
TL+CL (1,000; accq > 0.01)| 0.60| 543,805| 12,763,376| 12,763,376
TL+CL (1,500; accq > 0.01)| 0.61| 780,157| 18,117,552| 18,117,552
TL+CL (2,000; accq > 0.01)| 0.61| 984,182| 22,734,544| 22,734,544
TL+CL (2,500; accq > 0.01)| 0.61]1,166,144| 26,854,608| 26,854,608
TL+CL (3,000; accq > 0.01)| 0.61]1,325,250| 30,466,512| 30,466,512

Table 7.5: Experimental results for top-10 retrieval with pruned lists.

stemming enabled. It is evident that TL+CL with length-limited lists and a minimum
acc-score constraint (limited window size) gives a factor of 50-150 over the unpruned TL
baseline in terms of saved cost, while yielding the same result quality (TL+CL (1,000;
accg > 0.01)). Using TL as processing strategy with term lists of limited length is a lot
worse in effectiveness. Pruning with € is not as efficient, and large values for ¢ in fact
increase cost: many entries from the pair lists are pruned away, but at the same time
the additional content scores available from these entries are not available any more.

In combination with length limiting, results are comparable to our best configura-
tion, but with slightly longer lists. Figures 7.2 to 7.5 illustrate some of these experimen-
tal results. We obtain the best precision values when limiting the list size to 1,500 or
more elements (for TL+CL (#items; accg > 0.01) runs). Out of the approaches depicted
in Figures 7.2 and 7.3, TL+CL (#items) is the approach with the worst precision values
at the highest cost. TL+CL(#items; accgy > 0.01) provides the best precision values
at a medium cost, whereas TL+CL(#items; ¢ = 0.025) only comes up with a slightly
better precision than TL+CL (#items), however at the best costs. For mere static index
list pruning, precision values are most favorable for choices of € below 0.1.

Table 7.6 demonstrates that, compared to TL+CL with pruned lists, TL+PXL with

7.3 Indexing and Evaluation Framework 119

35,000,000

.
30,000,000 // 061 " " N a
0.60 & L il
25,000,000 — = s
8 20,000,000 058 ¢ P
) L 8o
5o
15,000,000 / < /
10,000,000 - 055
/ "7
5,000,000 ‘
053 &
500 1,000 1,500 2,000 2,500 3,000 o0 000 a0 2000 2500 voo0
#items #items
[—-TurCL(fitems) —m-TLeCL(fitems; e=0.025) ——TL+CL (fitems; accg20.01) | | Tuci(stems m-Tucidtems e0025) —aTuick(ftems; acc2001) |
Figure 7.2: TL4+CL approaches: cost. Figure 7.3: TL4+CL approaches: PQ10.

120,000,000

4 0.6 4
115,000,000
110,000,000
105,000,000 r 3 0.595 \

S 100,000,000
=]

\

|

95,000,000 \
|
%

H S
z ® 0.59
S 90,000,000 a

85,000,000

£0,000,000 \\ //' 0.585

75,000,000 9

70,000,000 } } } { 0.58 T T T 2 4

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
€ €
Figure 7.4: TL+CL(e varied): cost. Figure 7.5: TL+CL(e varied): P@10.

pruned lists suffer from a strongly reduced retrieval quality. This is due to the fact
that documents from pruned CLs are often not among the top-documents in TLs such
that their BM25 scores are missing in pruned TLs: these additional BM25 scores from
the CLs have a decisive impact on the retrieval quality as the results of runs using
TL+PXL with pruned lists deteriorate. Runs with minimum acc-score constraints and
the pruning technique by Soffer et al. [SCCT01] delivered comparable results. Hence,
we do not consider TL+PXL settings with pruned lists any more.

Given that obvious importance of BM25 scores in pruned CLs for the high retrieval
quality of TL+CL (#items), we now investigate to which extent the result quality changes
if we use only the BM25 scores from the pruned CLs.

To this end, we devise another list structure called CTL (combined term index
list) that is based on CL but removes the acc-score dimension. For each single
term pair (¢1,t2) there is a list that contains an entry for each document d where
this term pair occurs within any text window of size W. This entry has the form
(d.docid,scorepg\o5(d, t1),scoregpias(d,t2)). t1 and to are lexicographically ordered
(i.e., t1 < t2) such that for any single term pair combination we keep the corresponding
combined list just once. CTL(t1,t2) denotes the combined term index list for the term
pair (t1,t2). Pruned CTLs keep those entries from the corresponding CLs where the
total contribution from both BM25 score dimensions is highest.

Table 7.7 compares the retrieval quality for top-100 retrieval of pruned TL+CTL and
TL+CL settings. For a list length of 1,000, P@100 for TL+CL is comparable to TL+CTL;

120 7. Casting Proximity Scoring Models into Top-k Query Processing

[Configuration [P@10][P@100]
TL+CL (aceq > 0.01) 0.60] 0.39 Configuravion [PEiw0]
TL1PXL (1,000) 0.43| 026
TL+PXL (2,000) 045 0.28 TL+CTL(1,000) | 0.3768
TL+PXL (3,000) 0.47| 0.30 TL+CTL(2,000) | 0.3753
TL+PXL (3,000; ¢ = 0.025) | 0.47| 0.30 TL+CTL(3,000) | 0.3769

TL+CL (1,000) | 0.3710

TL+PXL (3,000; accqg > 0.01)| 0.47| 0.30
TL+CL (2,000) | 0.3841

TL+CL (1,000) 0.58] 0.37
TL+CL (2,000) 0.60| 0.38 TL+CL (3,000) | 0.3877
TL+CL (3,000) 0.60| 0.39
Table 7.7: Retrieval quality for top-100
Table 7.6: Retrieval quality for top-10 retrieval with pruned TL+CTL and
and top-100 retrieval with pruned lists. TL+CL settings.

for longer lists, TL+CL outperforms TL+CTL. Due to this advantage, in Chapter 8, we
will focus on TL+CL settings when we determine pruning levels for index structures.

Podnar et al. [PRLT07] use static index list pruning in a peer-to-peer setting with
terms and term sets as keys. They distinguish discriminative keys (DKs) that occur
in at most DF,q, documents and non-discriminative keys (NDKs) that occur in more
than DF},,, documents. Posting lists of NDKs are truncated to their best DFj,q.
entries. A key is called intrinsically discriminative if it is a DK and all smaller subsets
of this key are NDKs. A key is called highly discriminative key (HDK) if it has at
most S;,q: terms, and it occurs in a window of size w, and in addition is an intrinsically
discriminative key. Full posting lists are stored for HDKs. Each peer maintains a local
index which is built in several iterations, starting with one-term keys to s;,4,-term keys,
and adds local HDKs and NDKs with their posting lists to the global network. The
P2P network maintains the global posting lists and notifies the responsible peers if an
inserted HDK becomes globally non-discriminative. In that case, the peers in charge
of the globally non-discriminative keys start expanding the keys with additional terms
to produce new HDKSs of increased key size. The authors use BM25 scores as a scoring
model which is similar to using TL+CTL(DF, 4z).

As especially pruning along the lines of Soffer et al. [SCCT01] is done for a specific
value of k, it is interesting to see how good results using the index pruned with & = 10
are for larger values of k. Tables 7.8 and 7.9 show the results for top-100 retrieval with
pruned and unpruned lists. Even though proximity awareness cannot improve much on
result quality, most runs with pruning are at least as effective as the unpruned runs,
while saving one or two orders of magnitude in accesses, bytes transferred, and cost.
The combination of length-limited lists and limited window size is again best, with a
peak factor of more than 320 over the unpruned TL baseline at the same quality (TL+CL
(1,000; accy > 0.01)).

7.3 Indexing and Evaluation Framework 121

[Configuration [P@100[MAP@100] #SA[#RA[#bytes(SA)|#bytes(RA)]
TL 0.37 0.13[42,584,605[434,233] 681,353,680 3,473,864
TL+PXL 0.39 0.1444,450,513[394,498] 711,208,208 3,155,984
TL+CL 0.39 0.1412,175,316| 32,357 302,386,896 380,552
PXL 0.27 0.09] 867,095| 2,925 13,873,520 23,400
TL+CL (accg > 0.01) 0.39 0.14[17,714,952 0] 346,997,712 0
TL+CL (500) 0.34 0.11| 310,469 0] 7,558,816 0
TL+CL (1,000) 0.37 0.13| 610,983 0| 14,838,144 0
TL+CL (1,500) 0.38 0.13| 904,910 0| 21,911,520 0
TL+CL (2,000) 0.38 0.14| 1,184,658 0| 28,615,776 0
TL+CL (2,500) 0.39 0.14| 1,457,093 0| 35,138,176 0
TL+CL (3,000) 0.39 0.14| 1,723,204 0| 41,493,728 0
TL+CL (500; € = 0.025) 0.33 0.11| 281,485 0] 6,631,408 0
TL+CL (1,000; € = 0.025) 0.36 0.12| 527,171 0| 12,156,256 0
TL+CL (1,500; € = 0.025) 0.37 0.13| 753,012 0| 17,054,112 0
TL+CL (2,000; € = 0.025) 0.37 0.13| 957,593 0| 21,371,376 0
TL+CL (500; accq > 0.01) 0.34 0.12] 290,968 0] 6,934,784 0
TL+CL (1,000; accqg > 0.01) 0.37 0.13 551,684 0| 12,940,576 0
TL+CL (1,500; accg > 0.01)| 0.38 0.13| 802,538 0| 18,638,752 0
TL+CL (2,000; accq > 0.01)| 0.38 0.13| 1,039,466 0| 23,969,632 0
TL+CL (2,500; accqg > 0.01) 0.38 0.13| 1,261,124 0] 28,907,200 0
TL+CL (3,000; accg > 0.01)| 0.38 0.13| 1,483,154 0| 33,856,144 0

Table 7.8: Experimental results for top-100 retrieval with unpruned and pruned lists.

Configuration Cost(100) [Cost(1,000) ‘
TL 1,028,740,080 | 4,155,217,680
TL+PXL 1,026,806,608 | 3,867,192,208
TL+CL 340,442,096 | 632,938,896
PXL 16,213,520 37,273,520
TL+CL (accq > 0.01) 346,997,712 | 346,997,712
TL+CL (500) 7,558,816 7,558,816
TL+CL (1,000) 14,838,144 14,838,144
TL+CL (1,500) 21,911,520 21,911,520
TL+CL (2,000) 28,615,776 28,615,776
TL+CL (2,500) 35,138,176 35,138,176
TL+CL (3,000) 41,493,728 41,493,728
TL+CL (500; € = 0.025) 6,631,408 6,631,408
TL+CL (1,000; € = 0.025) 12,156,256 12,156,256
TL+CL (1,500; € = 0.025) 17,054,112 17,054,112
TL+CL (2,000; € = 0.025) 21,371,376 21,371,377
TL+CL (2,500; ¢ = 0.025) 25,288,646 25,288,646
TL+CL (3,000; € = 0.025) 28,924,720 26,211,376
TL+CL (500; accq > 0.01) 6,934,784 6,934,784
TL+CL (1,000; accq > 0.01) 12,940,576 12,040,576
TL+CL (1,500; accq > 0.01) 18,638,752 18,638,752
TL+CL (2,000; accqg > 0.01) 23,969,632 23,969,632
TL+CL (2,500; accq > 0.01) 28,907,200 28,907,200
TL+CL (3,000; accq > 0.01) 33,856,144 33,856,144

Table 7.9:

Costs for top-100 retrieval with unpruned and pruned lists.

122 7. Casting Proximity Scoring Models into Top-k Query Processing

7.3.5 Comparison: TopX(RR-LAST Mode) on Unpruned Lists vs. Merge
Join on Pruned Lists

Our experiments so far have shown that lists cut at a maximum length of 2,000 (when
combined with window- or epsilon-based pruning even less) can retain the retrieval
quality of unpruned index lists. So we might be able to save the overhead costs induced

by the family of threshold algorithms.

.| TL(bike) TL(trails)
d [[woa)] [on)rime
sl [(12,7.2) (2,8.6) "
£ (5,5.0) (1,5.9 hr
2 2,4.5 =
5 (,.) (25,4.1.6) <
(d.docid, (d.docid, -
scoregyps(d, 1) scoregyps(d, 1)) =
. ©
CL(bike, trails) CL{bike, a0
= map) o
3 (2,3.0,4.5,8.6) Cl(map, | @
S| (4,0.7,1.5,9.1) trails) |5
s °
=l |(12,0.5,7.2,3.0) = g
sl 1 (9021720 w (2,3.0,4.5,3.6) @
g . > (4,0.7,1.5,9.1) =
v — o (9,0.2,1.7,2.0) g
g‘i‘z]”(j"fj; (12,0.5,7.2,3.0) sl
scoregps(d, t),

scoregyps(d, 1)

Figure 7.6: Example: query={bike, trails, map}, merge join with processing strategy
TL+CL using pruned term lists and combined lists.

The highly efficient top-k or dynamic pruning algorithms [AMO06, FLNO3] that are
frequently applied for efficient query processing incur a non-negligible processing over-
head for maintaining candidate lists and candidate score bounds, for mapping newly
read index entries to a possibly existing partially read document using hash joins, and
for regularly checking if the algorithm can stop. In our scenario with index lists that
are pruned to a rather short maximal length, this processing overhead is not necessary
since we will almost always read the complete lists anyway. Instead, it is sufficient to
evaluate queries in document-at-a-time evaluation. Our merge-based processing archi-
tecture is depicted in Figure 7.6 for index lists relating to the example query terms
bike, trails, and map, and consists of the following components:

1. After pruning index lists to a fixed maximal size (and, possibly, using a minimal
score cutoff for combined lists), we resort each list in ascending order of docids,

and optionally compress it.

7.3 Indexing and Evaluation Framework 123

2. At query time, the n term and combined lists for the query are combined using an
n-way merge join that combines entries for the same document and computes its
score. The n-way merge join receives the n document-sorted lists as input and in
each join step calculates the score for the next smallest not yet evaluated docid.
If that score is higher than the current kth best score, the document is kept in a
heap of candidate results (e.g., described on page 125 in [MRS08]), otherwise it
is dropped as it cannot make it into the top-k results any more. For every list it
keeps track of the position up to which the list has been read so far and iterates
to the next item if the document in this list has just been evaluated. If the items
of all lists have been read completely, the algorithm terminates. Note that we
process queries in a disjunctive manner, i.e., docids that do not occur in every
list can still qualify for the top-k results.

3. Once all index entries have been read, the content of the heap is returned.

Instead of maintaining a heap with the currently best k results, an even simpler
implementation could keep all results as result candidates and sort them in the end;
however, this would increase the memory footprint of the execution as not k, but all
encountered documents and their scores need to be stored.

Independent of the actual algorithm, processing a query with our pruned index lists
has a guaranteed maximal abstract execution cost (i.e., the number of index entries
read from disk during processing a query), so worst- and best-case runtime are very
similar and basically depend only on the number of lists involved in the execution
and the cutoff for list lengths. This is a great advantage over using non-pruned term
lists with algorithms for dynamic pruning and early stopping, which can read large
and uncontrollable fractions of the index lists to compute the results, and may give
arbitrarily bad results when stopped earlier [SSLM*09].

Our experiments use a server running the Microsoft Windows 2003 Enterprise 64-bit
edition on a Dual Core AMD Opteron CPU with 2.6GHz and 32 GB RAM. Both TopX
and the merge join-based approach have been executed in a Sun Java 1.6 VM that was
allowed to use at maximum 4 GB RAM, although the real memory requirements are
way below 4 GB. Index lists have been stored in an Oracle 10g DBMS. The baseline of
the experiments has been computed with TopX with a batch size of 100,000 in RR-LAST
mode, i.e., round-robin sequential accesses to the index lists in batches of 100,000 items
and postponing the random accesses to the end of the query processing. Unlike the
previous experiments where we used only abstract cost measures, now, we will show that
the abstract cost advantages translate into accelerated query processing by measuring
real runtimes (in ms).

Table 7.10 shows average precision values and measured runtimes (in ms) for various
TopX- and merge join-based runs. Please note that we encounter minor differences in
result quality compared to the experiments carried out in the first part of this chapter.
This is due to a modified policy for tie-breaking; in Table 7.10 documents with lower
docids are given preference in case of equally scored documents. The order of result
quality and execution speed are still the same, however.

124 7. Casting Proximity Scoring Models into Top-k Query Processing

k=10 k=30 k=50 k=70 k=100

Run P@k | t[ms] | PQk | t[ms] | PQk | t[ms] |PQk| t[ms]|PQk| t[ms]

o | TL 0.57|5,220] 0.49 6,129 0.45| 6,868 0.42| 7,074] 0.38| 8,827
& [TL+PXL 0.61]6,266 | 0.52|8,835| 0.48 | 11,127 | 0.45| 10,363 | 0.41 | 15,524
&= TL+CL 0.61] 821|0.52(1,350| 0.48| 1,651| 0.45| 1,955| 0.41| 2,042
TL (1,000) 0.30 35| 0.24 36| 0.22 35] 0.20 341 0.18 35
TL (2,000) 0.34 68| 0.27 71| 0.24 64| 0.22 67 0.20 67
TL (3,000) 0.37| 101|0.29| 103| 0.27 100 | 0.25 99| 0.22 100
TL+CL (1,000) 0.60 78| 0.51 80| 0.46 80| 0.43 81| 0.39 79

-% TL+CL (2,000) 0.61| 156| 0.51| 155 0.47 153 | 0.44 155| 0.40 158
?} TL+CL (3,000) 0.61] 225|0.52| 230| 0.47 224 0.44 223 | 0.40 232
%o TL+CL (1,000; € = 0.025) 0.60 79| 0.51 80| 0.46 80| 0.43 81| 0.39 81
= | TL4CL (2,000; € = 0.025) 0.61| 154 0.51| 153 0.47 153 | 0.44 155 | 0.40 153
TL+CL (3,000; e = 0.025) 0.61| 223|0.52| 223| 0.47 225 0.44 225 | 0.40 224
TL+CL (1,000; accqg > 0.01) | 0.62 70| 0.51 73| 0.46 70| 0.42 71| 0.38 76
TL+CL (2,000; accqg > 0.01) | 0.62| 137| 0.51| 135]| 0.47 134 0.44 135 0.39 134
TL+CL (3,000; accqg > 0.01) | 0.62| 193] 0.51| 199 0.47 191 0.44 191 0.40 191

Table 7.10: Comparison: TopX with unpruned lists vs merge join on pruned lists.

TL+CL runs are faster than TL+PXL runs at similar precision values, and TL
runs exhibit a decreased precision compared to TL+CL and TL+PXL runs. While run
times for TopX runs usually grow with increasing k, run times of the merge join runs
are independent of k: TopX can terminate the query evaluation early dependent on the
number of results; for merge joins, the lists are read completely, no matter how k is
chosen. For the merge join implementation, run times are linearly proportional to the
lengths of the read lists.

The merge join implementation of the pruned TL+CL lists can keep up the excellent
precision values of the TopX runs with unpruned lists. Using a light-weight n-ary merge
join in combination with pruned index lists sorted by docid, we achieve substantial
performance gains. That way, we save much disk space and accelerate query processing
by one to two orders of magnitude compared to an evaluation with TopX using unpruned
lists.

7.3.6 Conclusion of the Experiments

We have presented novel algorithms and implementation techniques for efficient evalu-
ation of top-k queries on text data with proximity-aware scoring. We have shown that
our techniques can speed up evaluation by one or two orders of magnitude, trading in
runtime for cheap disk space and maintaining the very high result quality (effectiveness)
of proximity-aware scoring models.

Furthermore, we have shown that the abstract cost advantages can be turned into
substantial runtime benefits using a light-weight n-ary merge join in combination with
pruned document-sorted index lists. The speed up by one or two orders of magnitude
compared to an evaluation with TopX in RR-LAST mode using unpruned lists can be
confirmed, still providing the same excellent precision values and in addition saving
much disk space.

7.4 Feasibility of Scoring Models for Top-k Query Processing 125

7.4 Feasibility of Scoring Models for Top-k Query Pro-
cessing

While some of the techniques presented in Chapter 2 demonstrate significant improve-
ments in result quality (cf. Chapter 4), they do not consider the problem how these
scores can be efficiently implemented in a search engine. Usually, implementations
therefore resort to enriching term index lists with position information (e.g., [YDS09a])
and compute proximity scores after having determined an initial set of documents with
‘good’ text scores (e.g., cf. Section 2.4.1).

Orthogonal to this kind of works, we discuss the feasibility of scoring models for
top-k query processing with early termination in the sense of whether they can be used
for NRA-based query processing (cf. Section 6.1). Early termination means that the
index lists do not have to be processed completely but reading can stop usually long
before all index entries have been read. In particular, we want to explore whether
the scoring models are suitable for usage with the index model based on pair lists
as presented in Section 7.3.1. Assessing this involves a judgment whether we can
build a queryload-independent index that allows to precompute score bounds for result
candidates during query processing (cf. Section 7.2.2) to enable early termination by
means of tight score bounds.

7.4.1 Linear Combinations of Scoring Models

We start our discussion with the class of linear combinations of scoring models which
combine content and proximity score models.

Rasolofo and Savoy: Rasolofo and Savoy process queries in two steps: step one
computes the k£ documents with the highest cscore values, step two re-ranks the doc-
uments from step one using proximity scores. One way to make Rasolofo and Savoy’s
approach feasible for top-k query processing works in analogy to the approach used for
the modification of Biittcher’s score (Section 7.2.2) and employs term and term pair
lists to store for cscore and pscore computations, respectively. Rasolofo and Savoy use

(k1 +1)-tf(ti,d) N —df(t:), . .

scorenzs (@ 0= maz{0,log —— Syt (1),
tiZG;J k-[(1=b)+b- aqudl] +tf(ti,d) df (t:)

where qtf'(t;) = %. A term list for term ¢; could keep an entry of the form

(d.docid, scoregngos(d, ti)/qt f'(t;)) for each document d with at least one occurrence
of term t;. The list is ordered by descending scoregyros(d, t:)/qt f'(t;) values. Dividing
scoregnias(d, ti) by qtf'(t;) removes the query dependency from scoregypas(d, ti).
Additionally, the term list can maintain the idfa(t;) score in order to compute
qu(t;) = idfg(t,-)#% which is required to compute pscore values. A term pair list
for a term pair (¢;,¢;) can be used for pscore computations if the text window size dist
is kept fixed. For each document with at least one occurrence of the term pair in the

126 7. Casting Proximity Scoring Models into Top-k Query Processing

text window, it contains an entry of the form (d.docid, wq(t;, t;, dist)) and is sorted by
descending wq(t;,t;, dist) values.

During query processing, the BM25 score-related part in the term list is multiplied
by qtf'(t;), which, for a given query, remains constant for all entries of ¢;’s term list.
The resulting cscore for t; is combined with the pscore part which can be derived from
wq(ti, tj, dist) and qu(t;), quw(t;), respectively.

Top-k query processing should definitely be applied to step one to allow early ter-
mination. Step two could use either random accesses to fetch proximity scores just for
the documents from step one if the term pair index supports random accesses, or step
two could scan the complete term pair lists, skipping documents not retrieved in step
one. In the latter case it may be conceivable to order term pair lists by docid (best with
a block structure and skip pointers) and perform a merge join of the document-sorted
result lists from step one with the term pair lists.

Optionally, query processing could merge the two steps into one and process term
and term pair lists together in a single step. Considering cscore and pscore at the
same time, this approach would not re-rank just the top-k documents with the highest
BM25 scores. Thus, this approach would omit the precomputation of the top-k£ doc-
uments with the highest BM25 scores. Like our top-k variant of Biittcher’s score (cf.
Section 7.2.2), this could help faster termination through tighter earlier score bounds.

Uematsu et al.: Adapting Uematsu et al.’s approach for top-k query processing is
not easily possible: when it comes to compute score bounds for the pscore part, we need
to know the number of sentences where all query terms co-occur, copec(q,d). Building
up lists with the number of co-occurrences for all possible query term combinations
would solve that problem. As the query load is not known in advance, this will render
indexes quickly prohibitively large.

As a compromise, we may store d.docid and coec(q,d) values in lists ordered by
descending co,.. value just for two-term-queries or selected frequent queries from query
logs. For the general case of n-term queries however, the precomputation of pscore
values is problematic as indexes are likely to end up being too large.

To save on runtime, an approximation comparable to Tonellotto et al.’s approach
(cf. Section 6.2.2) could be used: cosc(q,d) cannot be greater than the minimum of
coocc({ti tj}, d) for all {t;,t;} C g which could be used as an upper bound for coue.(q, d).

One could generate term pair lists for (¢;,¢;) with (d.docid, cooec({t;,tj},d)) entries
ordered by descending coocc({ti,t;},d) values. For each term ¢, we build a term list
(ordered by descending BM25 score) with (d.docid, scoregyo5(d, t)) entries in the same
way as for Biittcher’s approach (with a modified idf score) but with additional sentence-
level posting lists: it may be necessary to use position lists to clarify the final copec(q, d)
value since cooec(q, d) is not decomposable into cogee({t;,tj},d) values.

Monz: Monz’ approach cannot be straight-forwardly incorporated into top-k query
processing.

7.4 Feasibility of Scoring Models for Top-k Query Processing 127

The Lnu.ltc score (cscore) could be computed by means of an Inu-score ordered term
list for each term ¢. That term list keeps the idf (t) value and a list of (d.docid, Inu(d,t))
tuples for each document that contains ¢. The ltc(t) value (which uses only idf and gt f
values) can be computed before reading the first entry from the Inu list and factorized
into the documents’ Lnu.ltc scores. However, normalization by the maximum Lnu.ltc
score achievable by any document in the collection is an issue: it requires knowledge
about the top-1 result over the complete query and cannot yet be computed after
reading only the first entry of each term list.

Computing minimum matching spans is inherently query-dependent. Their compu-
tation requires knowledge about the positions of query terms and the subset of query
terms that occur in each document. Hence, precomputing the pscore which builds upon
minimum matching spans is problematic as we do not know the queryload in advance.
For two-term queries, proximity scores (product of ssr and mtr features) can be stored
in a term pair list. In principle, for n-term queries (n > 2) this is doable as well; how-
ever space requirements to store lists will quickly render this approach non-practical.
Anyway, precomputation could be done for selected, very frequent queries from a query
log.

Keeping posting lists with term position information for any (term, document)-
pair would be sufficient to compute minimum matching spans but lacks support to
precompute score bounds for the pscore part.

Tao and Zhai: Tao and Zhai combine a baseline content score, which can be either
the KL-divergence or the BM25 score, with a proximity score.

The content score part can be easily stored in term lists which allow top-k
query processing with dynamic pruning. A term list for term ¢ keeps an entry for
each document d with at least one occurrence of term t. Term lists that use KL-
divergence as cscore, maintain entries of the form (d.docid, scorex(d,t)/qtf(t)), where
scoregrp(d,t)/qtf(t) = In(1l+ Li(t.d))+ lnﬁ and p(t|C) = %(t) Term lists that use

n-p(t|C) c
BM25 scores as cscore, follow the schema described for Rasolofo and Savoy’s ap-

proach and contain (d.docid, scoregyjor(d,t)/qtf'(t)) entries. The lists are ordered
by descending scorex(d,t)/qtf(t) and scoregpios(d,t)/qtf'(t) values, respectively.
The gtf and qtf’ values are constant for a given query-term combination and are
incorporated while scoring a document at query processing time.

Tao and Zhai propose a pscore of the general form 7(d, q) = log(a + e~%(49) that
employs a selection of span-based and distance aggregation measures to populate d(d, q).

Span-based measures require position information and are inherently query-depen-
dent so that we cannot precompute scores. To compute the Span value, we need
knowledge about the maximum and minimum position of all query term occurrences in a
document. Building up a term list for each term with minimum and maximum position
of that term’s occurrences in a document is not good enough. As long as there is just
one missing dimension, the maximum and minimum position can still change (unless
they are already 1 and lg4, respectively); score bounds cannot be precomputed that way.
Term pair lists can resolve this issue just for two-term queries and use the difference of

128 7. Casting Proximity Scoring Models into Top-k Query Processing

maximum and minimum position. To compute the MinCover value, we face a similar
problem, since the length of the shortest document part that covers each query term
at least once has to be found. It seems that MinCover cannot be decomposed into
term pair lists to perform early candidate pruning as position information is required
for all query terms. The normalized versions of Span and MinCover share the same
problems.

The situation is better for distance aggregation measures which can be represented
by a term pair list for each term pair {¢,,¢,}. For each document d; with at least one
occurrence of both t; and t;, the term pair list for {¢,,t,} contains an entry of the
form (d;.docid, mindist(ts,ty,d;)), where mindist(tq,ty,d;) = min{|la — b| : pe(d;) =
ta App(d;) = tp}. Term pair lists may be sorted either by descending or ascending score
since we will see in the following descriptions, that we need both high; and low; scores
to compute score bounds which is different from typical scenarios involving the NRA
where lists are ordered by descending score. Therefore, it may be good to read term
pair lists from both ends of the lists in order to decrease their high and increase their
low values at the same time. If the list is sorted by descending score, high; is the score
at the current scan position and low; the lowest score available in a list, respectively.
If the list is sorted by ascending score, high; is the highest score available in a list and
low; the score at the current scan position in a list, respectively.

We reuse the notation from Section 6.1 to compute a document d;’s bestscore and
worstscore values (¢ and p indexes denote the cscore and pscore component, respec-
tively):

1 1
bestscore(d;) = 3 bestscore.(d;) + 3 bestscore,(d;) and

1 1
worstscore(d;) = 3 worstscore.(d;) + 3 worstscorey(d;).

For a given query, Lescore is the set of term lists, Lyscore is the set of term pair lists,
both with remaining unread entries. Sc(d;) C Lescore and Sp(d;) € Lpgcore denote the
set of term and term pair lists where d; has been seen, whereas S.(d;) = Lescore — Se(d;)
and S’p(di) = Lpscore — Sp(d;) represent the set of not completely processed term and
term pair lists where d; has not yet been encountered.

The minimum pair distance (MinDist) is the smallest distance over all query term
pairs in document d; with MinDist(d;, q) = Ming, 16T, (Py, (@) tatty LIRSt (L0, Ty, di) }-

M 4, €Ty, (P, (0)ta by {mindist(ta :tbvdi)})

Hence, 7(d;, q) = log(a + e 349 = log(a + e
The corresponding worstscore and bestscore for the proximity part m(d;,q) with
MinDist can be calculated as follows:

—min(max; -3 (qg. (high;)ming, N (mindist(ta,ty,d;
worstscorey(d;) = log(a + e (mazp;esp(a;) (high)ming jes, a((tarty)))) and

_min(minLj €5p(d;) (lowy) ,minL]. e5p(d;) (mindist(ta,ty,di))))

bestscorey(d;) = log(a + e

As worstscorey(d;) represents the minimally possible proximity score for d;, the ex-
ponent of the exponential function must become as negative as possible. Consequently,
we use the maximum among all high; for L; € S,(d;) as higher values render the

7.4 Feasibility of Scoring Models for Top-k Query Processing 129

argument of —min larger and the exponent more negative. As bestscorey(d;) repre-
sents the maximally possible proximity score for d;, the exponent of the exponential
function must become as little negative as possible. Hence, we use the minimum of
all low; values as lower values render the argument of —min smaller and the exponent
less negative. ming eg,(a,) (mindist(ta,ty, d;)) represents MinDist in the dimensions
where d; has already been encountered and is used both for worstscore and bestscore
computations. The exponent starts with —min as —d(d;, q) = —MinDist(d;, q).

The average pair distance (AvgDist) is the average distance over all query term pairs
in document d; with AvgDist(d;,q) = ﬁZta,tberi(pdi(q)),ta#b mindist(tq,ty, d;)
and n being the number of unique matched query terms in d;. Hence,

n(n2—1) Ztu,ibETdi <Pdi () ta#ty mindiSt(ta’tb’di))

7(di, q) = log(a + e %D) = log(a + e
n(%_l) corresponds to -+ which is the reciprocal of the number of term pairs and used
2
to build the average distance over all query term pairs.
The worstscore and bestscore for the proximity part m(d;, q) with AvgDist can be
calculated as follows:

worstscore,(d;) = log(a_‘_e*mafngép(di) [f(Avsp(di))(ZL]-eA highj+ZLjeSp(di) mmdiSt(tmtmdz‘))])
pldi) =

and bestscore,(d;) = log(a_i_e*mmAgSp(di)[f(A’Sp(di))(ZL]-eAloijFZLjes(di) mmdiSt(ta,tmdi))})
plai) =

I

where f(A,Sy(d;)) = (\A|+|Sp(d¢)|)(|2A\+\Sp(di)|—1) and (JA| 4 |Sp(d;)|) represents the true
value for n in d;.

As worstscore,(d;) represents the minimally possible proximity score for d;, we
have to select the subset A of term pair lists where d; has not been encountered yet
(i.e., Sp(d;)) such that the exponent of the exponential function becomes as negative
as possible. We use high; for L; € A as higher values render the argument of —max
larger and the exponent more negative. In contrast, bestscorey(d;) represents the max-
imally possible proximity score for d;: we have to select the subset A of term pair
lists where d; has not been encountered yet (i.e., S,(d;)) such that the exponent of
the exponential function is as little negative as possible. We use low; for L; € A as
lower values render the argument of —min smaller and the exponent less negative.
Both for worstscore,(d;) and bestscore,(d;), ZLjeSp(di) mindist(tq,ty,d;) represents
the contribution of proximity score dimensions, where d; has already been seen.

The maximum pair distance (MazDist) is the maximum distance over all query term
pairs in document d; with Max Dist(d;, q) = mazy, y,e7, (P, (g)),tatt, LINdiSE (L0, 1y, d;) }-

maa:ta,tberi (Pdi (@)sta#ty {mindist(ta,tb,di)})

Hence, 7(d;, q) = log(a + e =949 = log(a + e
The worstscore and bestscore for the proximity part 7(d;, ¢) using MaxDist can be
calculated as follows:

_ma:c(maij €5p(d;) (highj)7mazLj eSp(d;) (mindist(ta,tp,di)))) and

worstscorep(d;) = log(a+ e

,mam(minLj €5p(d;) (lowy) MALL ;€ S (d;) (mindist(ta,tp ,dl))))

bestscorey(d;) = log(a + e

130 7. Casting Proximity Scoring Models into Top-k Query Processing

While S,(d;) = 0, worstscore,(d;) = log(a + e'4) for all distance aggregation
measures. This takes account of the case that there is only one query term match in a
document, for which MinDist, MaxDist and AvgDist are all defined as the length of
the document lg;.

To safely stop, the following inequality must be fulfilled for not yet seen (virtual)
documents:

1 1 i ,
3 Z qtf'(t;)high; + 3 log(a + e mmLJEL”sc"’"e(lowJ)) < min-k.

Lj ELcscore

The left side of the inequation represents the bestscore for not yet seen documents,
the right side the smallest worstscore of the temporary top-k results. This holds for
all presented distance aggregation measures. For AvgDist and MaxDist, bestscore,
becomes the largest if the virtual document is contained only in one term pair list, the
one with the lowest low; score. For MaxDist, we can safely remove the maximum from
the exponent then (as there is only one dimension). For MinDist, bestscore, becomes
the largest if the virtual document is contained in the term pair list with the lowest
low; score. The only difference to AvgDist and MaxDist is that it may also occur in
other term pair lists; however this would not affect the bestscore, bound of the virtual
document.

7.4.2 Integrated Score Models

This subsection discusses the feasibility of selected integrated score models for top-k
query processing.

De Kretser and Moffat: De Kretser and Moffat describe two algorithms to compute
a ranking of documents. As the first algorithm follows a greedy approach, we focus on
the second. The second algorithm uses the maximum score among the scores at posi-
tions of query term occurrences in d as document score. The algorithm could be imple-
mented by means of lists for ordered term pairs (¢;,t;), PL(t;,t;). They consist of en-
tries of the form (d.docid, x, ZlePd(tj) cgj (x,1)) ordered by descending ZlePd(tj) c;j (z,1)
values and z being a position with a term occurrence of term ¢;, i.e., x € Py(t;). cgj (z,1)
equals ¢, (z,1)/qt f(t;) as qtf(t;) values from the height component in ¢, (w,1) are only
known at query processing time. Evaluating a query ¢ processes all PL(t;,t;) indexes,
where t;,t; € ¢. In this setup, bestscore(d, q) equals mawwepd(q)bestscore(d, q,z), where
bestscore(d, q, x) is the highest score achievable at a query term position z. Note that
this approach may not be usable in practice due to blown-up indexes: every document
generates not only one entry per term pair (¢;,t;), but one entry per occurrence of ¢; in
d. In addition, as the term pairs are ordered, we need two term pair lists per term pair.

Song et al.: Song et al. partition documents into groups of subsequent query term
occurrences, so-called espans. Espans (the number of query terms in them and their
density, respectively) do not seem to be representable by term or term pair lists as

7.4 Feasibility of Scoring Models for Top-k Query Processing 131

they highly depend on the position of all query term occurrences in a document: the
solution to the problem of determining bestscore bounds for documents could follow
an approach similar to the approach we sketched in Section 7.2.2 for Biittcher et al.’s
score. Again, everything boils down to a combinatorial problem where we construct
conceived documents by means of tf(t,d) scores that maximize the document score
which is dependent on spans. Compared to the solution for Biittcher et al.’s score, this
problem seems to be even more difficult as the document has to be additionally split
into espans.

Mishne and de Rijke: Mishne and de Rijke’s scoring model follows an "everything-
is-a-phrase” approach which means that every term-level n-gram of an ordered query
forms a phrase. Proximity terms relax phrases to term set occurrences in a text win-
dow. All these approaches share the problem that queries are not length-limited and
consequently phrases and proximity terms are not length-limited either. While the
idf values of phrases could be estimated by aggregating idf values stored as meta-
information per term list, we do not see a way to cast the scoring model into term or
term pair lists without keeping and reading posting lists with position information of
individual terms which would prevent precomputation of score bounds. Position lists
are required to assess whether phrase terms occur adjacently to each other or in a text
window, respectively, and not only to clarify the final score value.

Like for Uematsu et al., an approximation comparable to Tonellotto et al. (cf.
Section 6.2.2) could be used to compute an upper bound for ¢f values of a phrase p:
tf(p,d) cannot be greater than the minimum of ¢ f(¢, d) for all single terms ¢ in p. The
accuracy of the upper bound could be improved by usage of term pair lists instead.
This would alleviate the problem, but not solve it.

7.4.3 Language Models with Proximity Components
This subsection discusses the feasibility of two language models with proximity com-

ponents for top-k query processing.

Lv and Zhai: Lv and Zhai’s approach can be adapted to top-k query processing
with early termination. Ranking documents comes in three variants which all aggregate
scores at document positions. The score at position 7 in d is defined as

S(d, q,i) = = _ p(tlg) - log pltlg) _ —Y " p(tlq) -logp(tla) + Y p(tlg) - logp(t|d, i)

p(t|d, i)
teV tev tev
qtf(qtf(t)
==Y ‘ | log = + Y pltlg) - log p(t|d, i)
teV q teV

x Zp t|q) - log p(t|d, 1) Z a f p(tld, 1) Z |f log p(t|d,).
teq

teV teV

132 7. Casting Proximity Scoring Models into Top-k Query Processing

ZteV 7 ‘ - log qtr; (|t) is constant for all documents given a query ¢, it can be

omltted without influencing the document ranking. We further can restrict the sum-
mation to query terms, since non-query terms have no influence on S(d, q,i) because
their ¢t f value is always 0.

The positional language model (in the non-smoothed version) at position ¢ in docu-

ment d is defined as p(t|d,i) = %, where ¢/(t,1) = Zi‘dﬂ c(t,j) - k(i,7). Hence,
S(d,q,7) < 3, qt|];| -log 5~ /C &, Z)(r7y- Given a fixed kernel and spread, it is possible to

store for every term ¢ a term list with entries of the form (d.docid, d.i,log %),

where d.7 is the scored position in document d, ordered by descending log %
values. Our solution for de Kretser and Moffat’s approach described in Section 7.4.2
also assumes a fixed kernel and spread, but uses ordered term pair lists instead of term
lists.

The Jelinek-Mercer smoothed variant of the positional language model is defined as

pan(tld, i) = (1= A)p(t|d, i) + Ap(t[C)
o d(t,i) ctf(t)
=(1-X) S (1) +A e

Hence, S(d, q,1) < 3¢, qt‘f;(‘t log[(1 —)Z/ < (ti)(A)+/\thc(t)],

Given a fixed kernel, spread, and weight)\ 1t is possible to store for every term ¢ a
term list with entries of the form (d.docid, d.i,log[(1 — \) Wy 4)\th()]) which is

2pev ¢ (t)
ordered by descending log[(1 — \) S ¢t ,)(7y T)\th (t)] values with d.i being the scored
position in document d. < |f (|) is only known at query processing time and is factorized

into the score by simple multiplication by the indexed scores.
The positional language model with Dirichlet prior smoothing is defined as
/(t Z) + Mp(ﬂc) (t ’L) + ,Uth() c(t, i)‘lClJFH'th(t)
_ c
Zt/ev d(t 1) + Zt/ev d(t 1) + pf Zt/ev d(t 1) + pf
lc : (Zt’ev (tyi) + 1)

pr(t‘d 2)

. qtf(t) c(t,i)-le+p-ctf(t)
Hence, S(d, q,1) o« ¢, o log i (Zt/evC’(t’ TR
Given a fixed kernel and spread, we propose to store term lists for every term ¢ with
entries of the form (d.docid, d.i,log e C(gzz) l\‘;ﬂf;% (t))) where d.i is the scored position
the

in document d, ordered by descending log ;- (gz) l‘fﬂz Ct.’;il)
t'e

In the following, we elaborate on bestscore and worstscore bounds for documents

values.

when Dirichlet prior smoothing is used which provides the best results in the studies of
Lv and Zhai. We detail score bounds for each of the three ranking options suggested by

7.4 Feasibility of Scoring Models for Top-k Query Processing 133

Lv and Zhai. While S(d, i) denotes the set of term lists where an entry for document
d at position i has been encountered, S(d,i) represents the set of term lists which

still contain unread entries and where d has not been seen yet. We define f(d,i,t) =
log & td)-letpctf(t)
g le- (Zt’ev (i) +u')” . .
If we score all documents by the best position in that document, the score bounds

qtf(ty)
lq|

are

worstscore(d) = mamie{lvm’ld}{O, Z f(d,i,t;)} and

L;€S(d,i)

bestscore(d) = mazic,. i1 Z atf t])f(d,z,tj)—l— Z qtf(tj)highj}.

L;€S(d,i) \q! L;eS8(dyi)]q\

If we score all documents by the average of the best k positions in that document,
we get

worstscore(d) = % : Z maz{0, Z qtf(tj)f(d7i’tj)} and

. q
i € top-k of L;eS(d,i) | |
S(d, g, -)worstscores

1 t
bestscore(d) = % Z Z a f - high;.

i € top-k of L;€S(d,i) S(i) ’ |
S(d, g, -)bestscores

If we score all documents using a weighted score based on various spreads 3, with
o€ R, ie., S(d,q) =) cpBs - maricpi,.. 1315-(d, q,4)}, we obtain

worstscore(d) = maxie{17,,,7,d}{o, Z By - Z qtf(tj)f(d,i,tj)} and

ocER L;eS(dyi) ‘q|

bestscore(d) = mawie{17,_.7ld}{z Bo - (Z qtf t] Z Qtf ghyj)}-

0ER L;jeS(d,i) L;e5(dyi)

To safely stop, the following inequation must be fulfilled for not yet seen (virtual)
documents and holds for every score variant:

tf(t;
Z gt])highj < min-k,

LjEL | ‘

where L represents the set of lists with remaining unread entries. The left part of the
inequation represents the bestscore of not yet seen documents. As a virtual document
has not been encountered in any dimension, for every bestscore computation, we can
ignore the part which sums up contributions over L; € S(d,i). Instead we expect to
see virtual documents in all lists with remaining unread entries.

When scoring documents by the best position, the virtual document d has the
atf(t;)
lq]
that all high; point to the same (d,7) pair, we obtain the highest possible bestscore for

following bestscore: bestscore(d) = ma$i€{1,...,ld}{ZLjeL high;}. If we assume

d which corresponds to the left side of the inequation.

134 7. Casting Proximity Scoring Models into Top-k Query Processing

When scoring documents by the average of the best k positions in that document,
the virtual document d has the following bestscore:

1 qtf(t; .
bestscore(d) = % Z Z |q(| i) high;.
i € top-k of L; €S(d,i)

bestscores at positions in d
If we assume that all high; point to the same (d,) pair (with (d,?) as top-1 bestscore)
and the remaining k-1 bestscore positions in d have the same bestscore as (d, 1), we ob-

tain the highest possible bestscore for d. Hence, bestscore(d) = %k-ZLJ_eL qtﬁfj) - high;

which corresponds to the left side of the inequation.
When scoring documents using a weighted score based on various spreads [, with
o € R, we obtain:

t
bestscore(d) = maxieqy, .. ,ld}{z B - (Zq 7 hj)}-

cER L;eL

With) . B,=1 and assuming again that all high; point to the same (d, i) entry, we
obtain the left side of the inequation.

Zhao and Yun: We can cast Zhao and Yun’s retrieval model into index lists to allow
top-k query processing with early termination. To this end, we first transform the score
into indexable components:

~ s tz d7
score(d,q) = Z p(t:]6,) log ps(tild,u) ¢ log ag
aq - p(ti|C)
tf(ti,d) >0,
t; in q
tf(ti,d)+AProzpg(t;)+p- th(t)
_ qtf tz ld+Z,-: AProzp(t)+H
: Z lal Nl ctf(ts))+log ag
tf(ti,d) >0, ld+ZLZ|1 AProz g (t;) -+t Ic
ti n q
- ¥ gt ())0 (lc (tf(ti, d) +AProzp(t;) +u- >))
= o
g >0, |1 - ctf(t)
t; in q
log K

l—i—E 1 AProzp(t;) + p

t 7 t tz, * l)\P l
~ ¥ e
tf(ti,d) >0, ! !
t; in q

J

+ lo .
g la+ 2 e AProzp(t) + p

lo as Proxp(t) becomes very small

g AR ~ log ; Ve T
la+> ;1 AProzp(t;)+p a2 req \PTOTE (1)1
for non-query terms in V.

7.4 Feasibility of Scoring Models for Top-k Query Processing 135

For each term ¢;, we maintain a term list which keeps entries of the form (d.docid,
tf(ti,d)le tf(ti,d)le
et f(t;) weetf(ti)

For each term pair {t¢;,¢;}, like for Tao and Zhai’s scoring models, we keep a list
with (d.docid, mindist(t;,t;,d)) entries.

Analogously to the approach we proposed for Tao and Zhai’s retrieval model, term

), ordered by descending values.

pair lists may be sorted either by descending or ascending score since we will see in
the following descriptions, that we need both high; and low; scores to compute score
bounds which is different from typical scenarios involving the NRA where lists are
ordered by descending score. If the list is sorted by descending score, high; is the score
at the current scan position and low; the lowest score available in a list, respectively.
If the list is sorted by ascending score, high; is the highest score available in a list and
low; the score at the current scan position in a list, respectively.

For a given query, Lescore is the set of term lists. Lpscore(t;) stands for the set of
not completely read term pair lists for ¢; and a different query term. R,(d,t;) denotes
the set of completely read term pair lists where d was not encountered, one partner
term is ¢; and the other one a different query term. While R, (¢;) denotes the set of
completely read term pair lists, R,(¢;) denotes the set of not yet completely read term
pair lists, where one partner term is ¢; and the other one a different query term. S,(d, ;)
represents the set of term pair lists for ¢; and a different query term, where d has been
encountered. S’p(d,ti) is the set of not completely read term pair lists for ¢; and a
different query term, where d has not yet been encountered.

If we use minimum distance as proximate centrality, i.e., Proxasinpist, we obtain
the following score bounds for the proximity component in the non-ay part:

N~ inllaming e sp (d,e) (mindist(tit,d)) lo
worstscorey(t;,d) = and
p-ctf(ti)

)\J:fmin(ld,minLij €Sp(dit;) (mindist(t;,t; ,d)),minLij €5p(d.t;) (low;;)) e

- ctf(ti)

worstscorey(t;,d) gets smallest if the exponent of z is as negative as possible.

bestscorey(t;,d) =

This is the case if d is not contained in any list L;; € S,(d,t;) which would result
in Dis(t;,t;,d) = lg. For those lists where d has been encountered we have to set
mindist(t;, t;,d) as distance. bestscorey(t;,d) gets largest if the exponent of z is as
little negative as possible. To this end, we expect to see d in L;; from Sp(d, t;) having
the smallest low;; value. For worstscorep o,(q) and bestscorep o,(q) the actions to take
to minimize/maximize the score, respectively, are switched since z does not stand in
the numerator, but in the denominator.
Consequently, for a4, we obtain the following score bounds:

I

worstscorey o,(q) = . , — .
b, —min(lg,ming, .. S (mindist(t;t;,d)),ming . -5 A (low;
lﬁZtigq \r (d LZJGSp(d,tl)((2L)) L”esp(d,tl)(”))-i-u

_ H
o —min(lg,ming,. .) indist(t;,t;,d)
ld + Ztieq A\t min(lg mlnL”ESp(d,tz)(mln ist(tist;)))+ﬂ

and bestscorep o,(q)

136 7. Casting Proximity Scoring Models into Top-k Query Processing

To safely stop, the following inequation must be fulfilled for not yet seen (virtual)
documents:

7min(ld7minlzij €Lpscore(t;) (lowij)) .l

p - et f(t)

tf(ti .
Z g {(‘ i) -log(high;+ +1)
LieLcscore q
I

+ lo < min-k.
& lg+ Ztieq Az—la (ti)-i-,u

high; is the highest score in the term list of ¢; which becomes 0 if the list has been
read completely. As the left side of the inequality is to be maximized, we expect for the
non-ag—part that we see d with the lowest possible low;; score. If all term pair lists
have been read, we have to use l;. For the ag—part, we expect d not to be seen in any
of the remaining term pair lists and hence employ /4.

If we use average distance as proximate centrality, i.e., Proxa.gpist, we get the
following score bounds for the proximity component in the non-ay part:

N T ACS @t (Sp i)) @ (Sn (@) + T e bighis + o emycany W) |

p-ctf(ti)

worstscorey(t;,d) =

and
)\x*mi"Ag%j(d,ti) [f(Sp(d;ti),A) (g(SP(d7ti)HZLij€A lowijJFZLijeRp(d,ti) la)] de

bestscore,(t;,d) = ,
p-ctf(ti)

where f(Sp,(d,t;),A) = m and g(Sp(d, t;)) = ZLijeSp(d,ti) mindist(t;, t;,d).

For the computation of worstscore,(t;, d), we again aim at making the exponent of
x as negative as possible. To this end, we negatively maximize it over all subsets A of
S'p(d, t;); we expect d to be encountered in all lists in A with the highest possible value
high;j. Hence, f(Sp(d,t;),A) = -5 where n = |S,(d,t;)| + |A|. For bestscore,(t;, d),
we make the exponent of x as little negative as possible. Therefore, we expect d to be
encountered in all lists in A with the lowest possible value low;;.

For a4, we obtain the following score bounds:

n
worstscore = -
Dy0g (Q) lﬁztieq)\x_ml”Aggp(d,t,-) [f(Sp(diti),A) (g(Sp(d,ti))—,‘—ZLij ca lowi; +2Lij €Rp(d.t;) ld)]‘HL

and

7
*m“zAgép(d,ti)[f(Sp(d:ti)’A)(Q(Sp(dvti))+zLijeA highij+ZLijeRp(d,ti) ld)]—hu, '

bestscorep o,(q)

lﬁ—Zti q AT

worstscorep o,(q) and bestscorey, o,(q) are handled analogously to the other proxi-
mate centrality variants.

7.4 Feasibility of Scoring Models for Top-k Query Processing 137

To safely stop, the following inequation must hold for not yet seen (virtual) docu-

ments:
qtf *mmAng(ti)[‘A‘%l(ZLijeA lowij+3 1, erp(t;) (Minaec)la)l o
Z g(high;+ +1)
L GLCSCO"‘E H ’ th(tZ)
! ‘
+ log < min-k.

1 X
—maz scry) lTa—1 (L, ca Mghii+ 221, cryy) (Mazaecla))]
ld + Zt cq CRp(t;)TA[-1 ij € J ij €ERp(ty) _|_,u

high; is the highest score in the term list of ¢; which becomes 0 if the list has been
read completely. For the non-ay—part, we aim at rendering the exponent of x as little
negative as possible: to this end, we use low;; for all lists in A and the minimum
document length in the collection for completely read lists. For the ay—part, we aim
at rendering the exponent as negative as possible. Therefore, we use high;; for lists in
A and the maximum length of any document in the collection for completely read lists.

If we use summed distance as proximate centrality, i.e., Proxsympist, we can work
with the following score bounds for the proximity component in the non-ay part:

A~ OO (DI L e rya) at i jesp(a ba) | le
worstscorey(t;, d) = and

p- et f(t)
Am_(g(sp(d7ti))+zLijeRP(dvti) ld+zLije§p(d¢i) low;j) . lC
p-ctf(t:) ’

where g(S,(d, t;)) = ZLijeSp(d,ti) mindist(t;,t;, d).
worstscorey(t;, d) gets smallest if the exponent of z is as negative as possible. To

bestscore,(t;,d) =

accomplish that we set I; for all lists where d has not been encountered (i.e., lists in
Ry(d,t;) or Sp(d,t;)) which means that d will not be seen in those lists any more.
bestscore,(t;,d) gets largest if the exponent of z is as little negative as possible. For
each list L;; in S’p(d, t;) we set low;; to fulfill this goal.

worstscorey o,(q) and bestscorey, o,(q) are handled analogously to the other proxi-
mate centrality variants.

For a4, we obtain the following score bounds:

1

worstscore = and
p,ad(Q) lﬁZtieq A —(g(Sp(d,ti)HZLUeRp(d,ti) ld+zLi‘je5P(d,ti)l0wij) 4+
1
bestscore = .
p7ad(Q) ld—'—ztieq)\ 7(g(SP(d7ti))+ZLijeRp(d,ti) ld+zLij€§P(dvti) ld) + ,LL
To safely stop, the following inequation must be fulfilled for not yet seen (virtual)
documents:
qtf x_(ZLijGLPSCOTE(ti) (lowij)+ZLijeRP(ti) (mingecla)) e
Z g(high;+ et f () +1)
L GLCSCO’V‘G /J/ c v
+log a < min-k.

- .) lg)+ .) l
L+ Y, - i (L erpty) (Maaecla) ¥ 2oL, e Lpscore (t;) (MaTaec d))-l-,u

138 7. Casting Proximity Scoring Models into Top-k Query Processing

high; is the highest score in the term list of ¢; which becomes 0 if the list has been
read completely. For the non-ag—part, (to render the exponent of x as little negative
as possible) we expect for the not yet completely read term pair lists that the virtual
document is encountered with the lowest possible value low;;. For the completely read
term pair lists in R, (t;) we use the minimum length of any document in the collection.
For the ag—part, we aim at rendering the exponent as negative as possible. Therefore,
we use the maximum length of any document in the collection.

7.4.4 Learning to Rank

In this subsection, we discuss the feasibility of some Learning to Rank approaches for
early termination in an NRA setting.

Svore et al.: Svore et al.’s approach is based on Song et al.’s work which incorporates
assessing the goodness of espans. If the learned scoring model involves this kind of
features, it shares the same problems (cf. Section 7.4.2). This also applies to proximity
match features which require knowledge about spans in each document. Non-span
related features, however, can be cast into term lists (ABM25 features) or term pair
lists (ABM25-2 features) and make early termination possible.

Metzler and Croft: In principle, Metzler and Croft’s retrieval model can be cast
into score-ordered index lists to make early termination possible. For each of the three
kinds of potential functions, we need a separate list with docids and their feature values
ordered by descending feature value:

e For single terms ¢;, a term list for ¢; could store entries of the form

(D.docid, log](1 — ap) L4 D) | I @)y

lp le

e For ordered potential functions representing phrases ”gq;, ..., gi1+r”, we could store

tf# (q3+--9541),D th#l(q- i)
it k) N o9tk
) zl i ; i])

entries of the form (D.docid,log[(1 — ap

e For unordered potential functions representing ordered or unordered occurrences
of query term sets {g;, ..., q;j}, we could store entries of the form

tf#uwN(Qiu---Hj)vD n th#UWN(%--ij),D

(D.docid, log[(1 — ap) ap l
C

D)

Ip

The sum of the weighted scores from the three potential functions can be used to
compute score bounds during query processing. As usual, storing entries for single
terms is not an issue. The problem that prevents this approach from being practical
for top-k query processing, without restrictions on the queries, is the huge amount of
possible phrases and sets of query terms that may occur within a text window.

7.4 Feasibility of Scoring Models for Top-k Query Processing 139

Cummins and O’ Riordan: Cummins and O’ Riordan use genetic programming to
learn a scoring model.

The baseline scores can be cast into term lists. scoregs is materialized analo-
gously to scorepg)o5 as described for Rasolofo and Savoy’s approach. A term list for
term t; could keep an entry of the form (d.docid, scoregg(d,t;)/qt f(t;)) for each docu-
ment d with at least one occurrence of term t; where the list is ordered by descending
scorepg(d, t;)/qt f(t;) values.

The learned retrieval model is feasible for top-k query processing if only measures
are used which can be cast into term pair lists. These measures include measures 1 to 8
listed in Section 2.7.4. The document length (measure 12) is known at indexing time so
that it can also be incorporated into precomputed scores. The number of unique query
terms in a document (measure 13) can be captured by both reading term and term pair
lists. For learned scoring models where we can factor out the qt-part of the original
score, we could follow the approach we have proposed for making the AvgDist measure
by Tao and Zhai feasible for top-k querying. While scanning the lists, a document’s gt
value ranges from the number of distinct query terms seen so far for that document to
the number of query terms: while the bestscore would maximize the score value, the
worstscore minimizes the score value over all possible gt values. Having completely
read a scorepg or scorep)po5 based term list can shrink the range of gt.

Measures 10 and 11 (i.e., FullCover and MinCover) correspond to measures used
by Tao and Zhai (FullCover corresponds to Span in Tao and Zhai’s paper) and are
inherently query-dependent and cannot be easily decomposed into term pair lists. More
details can be found in the paragraph about Tao and Zhai’s approach in Section 7.4.1.

7.4.5 Summary

We have shown that, for a surprisingly high fraction of proximity score-enhanced re-
trieval models, it is possible to cast them into precomputed term and term pair lists:
Rasolofo and Savoy’s scoring model can be cast into precomputed term and term
pair lists similar to our modification of Biittcher’s approach. Tao and Zhai’s approach is
feasible for index precomputation when one of the three distance aggregation measures
is used. However, different from a conventional NRA strategy that orders lists by
decreasing impact, here, term pair lists may be ordered by ascending impact since
both low and high values of lists are needed to determine worstscores and bestscores
of documents. Thus, it may be worthwhile thinking about reading from both ends of
the lists for faster termination. De Kretser and Moffat’s second algorithm can be cast
into term pair lists with document-position related scores although the index may take
up too much space to be practical; the maximum score over all positions becomes the
document score. Lv and Zhai’s approach can be cast into term lists that keep scores for
(document, position) pairs. Zhao and Yun’s approach keeps three kinds of index lists:
term lists for the content score part, term pair lists for the proximity component and
one query-independent document-constant list. Cummins and O’Riordan’s approach
can be used for top-k query processing if we restrict learned scores to consist only of

140 7. Casting Proximity Scoring Models into Top-k Query Processing

components that can be cast into term pair lists.

Some scoring models cannot be cast into index lists due to space reasons: Tao
and Zhai’s model with span-based measures (Span and MinCover) requires position
information at query processing time. Precomputing index lists for Monz’ approach is
problematic since minimum spans are inherently query-load dependent. The approaches
by Song et al. and Svore et al. rely on espans which can be determined only if we
know, for any query term occurrence in a document, which query term follows next
in the document and at which position. The approaches suggested by Mishne and
de Rijke and by Metzler and Croft rely on ¢f values of phrasal occurrences and term
set occurrences within text windows, respectively. Precomputing and storing them for
arbitrary n-grams exceeds reasonable space requirements.

Chapter 8

Index Tuning for
High-Performance Query
Processing

The first part of this chapter introduces a joint framework for trading off index size
and result quality. It provides optimization techniques for tuning precomputed indexes
towards either maximal result quality or maximal query processing performance under
controlled result quality, given an upper bound for the index size. The framework
allows to selectively materialize lists for pairs based on a query log to further reduce
the index size. Extensive experiments with two large text collections demonstrate
runtime improvements of more than one order of magnitude over existing text-based
processing techniques with reasonable index sizes. This part is based on our article
published in [BS12] and enriched with results from our participation in the INEX 2009
Ad Hoc and Efficiency Tracks [BS09] and the TREC 2010 Web Track [BS10].

The second part of this chapter introduces a new index structure to improve cold
cache performance by reducing the number of fetched lists traded in for more read
bytes. This part is based on our work presented in [BS11].

8.1 Introduction

8.1.1 Motivation

In Chapter 7 we have presented an approach to integrate proximity scores as an integral
part of query processing. This showed that proximity scores can improve not only result
quality, but also efficiency, by means of index pruning. However, the index parameters
for pruning were chosen in an ad hoc manner, lacking systematic optimization. We now
extend results from Chapter 7 towards a configurable indexing framework which can
be tuned either for maximal and dependable query performance under result quality
control or for maximal result quality given an index size budget. Existing methods for
the integration of proximity scores into efficient query processing algorithms for quickly

141

142 8. Index Tuning for High-Performance Query Processing

computing the best k results (e.g., [CCKS07, PRL107]) make use of precomputed lists
of documents where tuples of terms, usually pairs, occur together, usually incurring
a huge index size compared to term-only indexes, or focusing on conjunctive queries
only. There are existing techniques for lossy index compression that materialize only
a subset of all term pairs, e.g., those term pairs occurring in queries of a query log.
In contrast and orthogonally to these techniques, this chapter aims at limiting the
size of each term pair list by limiting the maximal list length and imposing a minimal
proximity score per tuple in a term pair list. At the same time, the choice of term pair
index lists to be materialized can be based on frequent queries in a query log. Our
method can be tuned towards either guaranteeing maximal result quality or maximal
query performance at controlled result quality within a given index size constraint. For
both optimization goals, the result of the method is a set of pruned index lists of a
fixed maximal length, which means that the worst-case cost for evaluating a query with
this index can be tightly bound as well. In our experiments with the GOV2 collection
(reported in Section 8.5), we show that 310 entries per list can be enough to give the
same result quality as a standard score taking only term frequencies into account. We
have measured an average warm cache retrieval time of less than 30ms at a cache size of
just 64MB for a standard query load of 50,000 queries, an average cold cache retrieval
time of 127ms and a hot cache retrieval time of less than 1ms. In this configuration,
the size of the compressed index is 95GB, only slightly larger than the compressed
collection. Similar query processing costs can be achieved for much larger collections,
such as the recent ClueWeb09 collection.

8.1.2 Contributions
This chapter makes the following important contributions:

e [t introduces a tunable indexing framework for terms and term pairs for opti-
mizing index parameters towards either maximal result quality or maximal query
processing performance under result quality control, given a maximal index size.

o [t allows a selective materialization of term pair index lists based on information
from a query log.

e The resulting indexes provide dependable query execution times while providing
a result quality comparable to or even better than unpruned term indexes.

e [t experimentally demonstrates that the resulting index configurations allow query
processing that yields almost one order of magnitude performance gain compared
to a state-of-the-art top-k algorithm while returning results of at least comparable
quality.

8.1.3 Outline of the Chapter

The remainder of this chapter is structured as follows. Section 8.2 elaborates on the in-
dex organization and the employed index compression techniques. Section 8.3 presents

8.2 Indexes 143

the index tuning framework within the MapReduce paradigm and formulates tuning as
an optimization problem that considers both index size and retrieval quality. Section 8.4
shows how the size of the index can be reduced further using a query log. Section 8.5
experimentally evaluates our index tuning techniques from Section 8.3 with two large
text collections from TREC, namely GOV2 and ClueWeb09 (cf. Section 3.2.1), for dif-
ferent result size cardinalities. It can be tuned either towards effectiveness or efficiency,
given a size limit for the pruned indexes, both in the presence and absence of relevance
assessments. We compare the query processing performance of merge joins with pruned
indexes as input to a state-of-the-art document-at-a-time algorithm that uses dynamic
pruning on unpruned indexes and provide additional results for a proximity-enhanced
variant of that state-of-the-art document-at-a-time algorithm. Query processing per-
formance is measured both by abstract measures and average query processing times
for different cache settings. Furthermore, we evaluate the effect of query log-based
combined list pruning. Additional results with ClueWeb09 demonstrate the scalability
of our index tuning approach. As a third collection we use the textual content of the
INEX Wikipedia collection from 2009 (cf. Section 3.2.2). We present results from our
participation in the INEX 2009 Efficiency and Ad Hoc Tracks. Section 8.6 presents a
novel hybrid index structure that accelerates cold cache query processing, trading off a
reduced number of index lists for an increased number of bytes to read.

Please note that the techniques described in this chapter are not limited to this
particular proximity scoring model (cf. Section 7.2.2) we use throughout the chapter:
whenever bigram features, representing a proximity score contribution, can be stored in
term pair index lists, our techniques can be applied as well. In Section 7.4 which inves-
tigates the feasibility of various proximity scoring models for top-k query processing,
we have described which approaches can be cast into term pair index lists.

8.2 Indexes

Our studies in Section 7.3 have shown that by means of pruned term and combined
index lists as input to a TL+CL processing strategy, we can achieve the best retrieval
quality among the presented processing approaches for many pruning levels. We have
described the abstract layout of these two index structures in Section 7.3.1 and will
now discuss the efficient physical implementation of these index structures.

The index tuning framework described in this chapter transparently supports all
kinds of index compression. We will now introduce our proof-of-concept implementation
of index compression which applies delta and v-byte encoding [CMS10, ZMO06]; we did
not perform any specific optimization for the parameters, for example the number of
bits to represent a score, but we think that the values we chose are reasonable.

Our inverted lists are usually sorted by docid, but may also be sorted by descending
score (scorepg)[o5 for term lists, accq for combined lists).

Due to the implementation of our tuning framework (cf. Section 8.3.2) which par-
allelizes the indexing process across a cluster of servers, each index list is assigned to

144 8. Index Tuning for High-Performance Query Processing

one of several partitions. Figure 8.1 depicts the general structure of our term list index.

TLindexfile (partiD 0) TLdatafile (partID 0)

keyNo.,key addrOffset key value
Lty 0 >t TL(t,)

129,t0, 129 76892 t0,2 -I-L(tO,Z)
257t 193482
o s \ > 1109 TL(to120)

™ tg57 Tt s7)

/

. hashcode(terny)
erm 3 : :
=partlD(term) , : ot
TLindexfile (partlD 53) TL data file (partlD 53)
keyNo.,key addrOffset key value
13, 0 >ts31 Tl(ts3,)
129,t53,129 352892 t53’2 -I-L(t53,2)

257 ts0sr 1536482 | .-
e T \ \t53,129 TL(t53,129)

\t53,257 TL(t53,257)

Figure 8.1: Index and data files for TLs.

The hashcode of a term determines the partition where its term list (TL) is stored.
For each partition we generate one index file and one data file. All data files together
contain the complete index information and consist of key, value pairs: each key is a
term whose value is its TL. The index files are used to find the start address to lookup
in the data file where a term’s TL may be stored. Each index file stores every k' key,
where the keys are stored in ascending lexicographical order. Every key in an index
file is assigned to an address offset (in bytes) which points to the position in the data
file of the corresponding partition where the key and its TL are stored. The access
structure to find the inverted list for a given key is implemented analogously to that of
MapFiles in Hadoop [Whi09]; again, this is just a proof-of-concept implementation, we
could alternatively have implemented the access structure with B+-trees, for example.

In the system’s initialization phase, before processing any query, all index files are
loaded into main memory. To locate the inverted list for a key, we first determine its
partition id by means of its hashcode. The key or its closest smaller neighbor key (in
lexicographic order) is determined in the in-memory index using binary search, then
the data file is searched linearly from the offset of that key until either the right list is

8.2 Indexes 145

found or a larger key is encountered; in the latter case, there is no list for that key in
the data file, i.e., the key is not in the index.

Indexing combined lists (CLs) works analogously to indexing TLs, with the only
difference that the keys are term pairs instead of terms and the values are CLs instead
of TLs. Our indexes are materialized with 54 partitions and k=128 as step width,
however these numbers are configurable.

............. I..........-.. peccccssccccsscsccscns,

t, [deltaOffsetNextTL maxScoreg,s(t;) | idf(t,) : #doc.sin TL(t,) i header TL(t,)

...

..

T TLty)

: 106 i roundedNormScoregy,s(dget;)]

EETITITE Seerececrittiiiitiiiiiinieiee i ©

: 1079 : roundedNormScoregy;s(d;g70,ts) o

oooooooooo ® 000000000000 0000000000000000000000000000 000 _J E

F -

[}

—

Q0

£

greseesenneenesanaans . S

—> t, | deltaOffsetNextTL i maxScoregy,s(t,) | idf(t;) ; #docsinTL(t,) : header TL(t,) | &

— by

T T T T TETTT T PIPPIR @
: 15 roundedNormScoreg,s(d;s,t,)

.......... SR~ A

43 roundedNormScoregy,s (d,s,t,)

.
..

’“ TI—(tz)

ascending docid

..

Figure 8.2: Compressed TLs in docid-order.

We will now describe in detail how the data files are organized. Figure 8.2 and
Figure 8.3 show the structure of compressed TLs and CLs stored in docid order, re-
spectively. In both figures, we mark the encoding and data types by different kinds of
lines: green solid lines indicate UTF-8 encoding (consuming two bytes plus the number
of UTF-8 bytes), violet dotted lines a v-byte encoding (of flexible size), and orange
dashed lines float-typed data (consuming 4 bytes each).

Figure 8.2 shows that each TL(t) is preceded by a header that contains the UTF-8
encoded term t, the v-byte encoded byte offset value to the beginning of the next TL
(needed to search the right list in the data file), and the maximum scoregy9s value of
TL(t) which is required to reconstruct the stored BM25 scores in the corresponding TL.
Furthermore, we maintain the idf (¢) value that is required to process CLs as described
later. Additionally, we store the number of documents for each TL. The actual TL
contains a list of pairs that contain the docid and its rounded normalized BM25 score,

146 8. Index Tuning for High-Performance Query Processing

header

MaxSCoregymsmoanr(ty) | MaXSCOregymsmodor(ts) | #doc.s in CL(t,t,) CL(ty,t,)

: : H . H
i1 ¢ roundedNormAcc, (t,,t;) : roundedNormScoregysyoapr: (dity) ¢ roundedNormScoregyasyogiora(dists) '?é C
Gereeenes ; H b ' [}
c 4 E roundedNormAccd4(t1,t2) g roundedNormScoregy spodiors (daty) ¢ roundedNormScoregyssyodnra(daty) -So 'g
: _g CL(ty,t) =
S 3
e Jeeneeneee e e e,] 2
: 1079 roundedNormAccdwg(tl,tz) ¢ roundedNormScoreg,syodiors (di70:t;) ¢ roundedNormScoregsiodinr2(dio7:ts) 8 5
... 9
0o
£
........................... 2
—>| t,5t, | deltaOffsetNextCL ! maxAcc (t,t;) header | 8
.. a
S (t,) S t,) | #idocsin CLit,t;) | CL{t, t)| ©
MaxScoregyasvoaipra(ts) | MaxScoregy,syoara(ts) | #doc.sin (tyts) :
seennnnes gereeeee e T RRPPN -
115 ¢ roundedNormAccdls(tl,tg) H ; roundedNormScoregy;suodinr2(dis,ts 'g
HIE : 7 3
1784 g roundedNormAccd7§4(t1,t3) § § roundedNormScoregysyodior2(d7gats) * E’D
= CL(ty,t5)
k=]
H c
FRLTRITRE] 3 .. 3 ... 8
3594 ¢ roundedNormAccdﬁsq (tt3) : roundedNormScoregypsyogipr: (dzseaty) § roundedNormScoregysyoainra(dasonts 2

Figure 8.3: Compressed CLs in docid-order.

where roundedNormScoregy[95(d; t) is defined as

round((2'* — 1) - scoregyos(ds t)/mazace(scoregyos(dst))).

As this value is in [0,2' — 1], it can be encoded into at most 2 bytes with v-byte
encoding.

Figure 8.3 shows that the header for each CL(t;,t;) contains the UTF-8 encoded
term pair string ¢;5¢; ($ is the term delimiter), and the v-byte encoded byte offset value
to the term pair of the next CL in the same data file. Furthermore, the header contains
the maximum accg(t;,t;) score in that CL named maxAcc(t;,tj), and the maximum
scoreg)[25 modulo idf values for both scorepgyjos dimensions in CL(#;,¢;) named
maxScoreg)\25ModIDF1 (ti) and maxScoregyionModIDF2(tj); respectively. We do
not include idf scores in the index as they are not yet known at CL indexing time.
As TLs and CLs are used in combination for query processing, the idf scores can be
obtained from the TLs at query processing time. Like for each TL, for convenience
reasons during query processing, we store the number of documents included in each
CL. The actual CL contains a list of tuples; each tuple contains the docid plus three
scores:

e roundedNormAccy(t;,t;) = round((2* — 1) - maxdfwcc‘(iéz;f()t. tj))),
e 19

scorep\[95 (d,t;)
adf (t;))
scoreg\25 (d't;) /2
idf (t;)

e roundedNormScoregyi25ModIDF1 (4 ti) = round((2'4—1)-

mard/ec

and

8.3 Parameter Tuning 147

scorep\[25 (d,tj)
udf (t;))
scoreBM25(d’ ’tj) :
idf (1)

e roundedNormScoregy95ModIDF2(D: t5) = round((24—1)-

max g cc

Like in TLs, each v-byte encoded rounded normalized score does not require more than
two bytes.

When both CLs and TLs are docid-ordered, the docid values in each list are first
delta-encoded and then stored as v-bytes, and the score(s) of the entries are encoded as
v-bytes with at most 2 bytes per score. For score order, TLs are sorted by descending
scorep)r25 Which are delta-encoded and then stored as v-bytes, the corresponding
docids are encoded as v-bytes. CLs are sorted by descending accy scores which are
delta-encoded and then stored as v-bytes; the corresponding docids and the scoreg) 25
contributions for the two terms represented by the combined list are encoded as v-bytes.
In score order, ties are broken using docid. While ties are rare for term lists, they are
more frequent for combined lists which is due to the fact that accy scores as sorting
criterion in combined lists are more similar than BM25 scores as sorting criterion in

term lists.

8.3 Parameter Tuning

8.3.1 Tuning as Optimization Problem

We have demonstrated in Section 7.3 that using term and combined index lists together
for query processing can reduce processing cost by an order of magnitude compared
to using only term index lists and a standard top-k algorithm. At the same time, the
proximity component of the score helps to additionally improve result quality. However,
these great properties come at a big price: an index that maintains complete informa-
tion for all combined lists will be several orders of magnitude larger than the original
collection of documents and is therefore infeasible even for medium-sized collections.
We proposed to keep only prefixes of fixed length of each list, and demonstrated that
this improved both result quality and query performance while greatly reducing index
size. Section 7.3 also included experiments indicating that term pair occurrences that
are more than approximately 10 positions apart (runs marked with accgy > 0.01) hardly
play a role for result quality and can therefore usually be ignored. We take over this
finding, so whenever we talk about term pair occurrences, we mean occurrences of dif-
ferent terms within a window of at most 10 positions in the same document. Note,
however, that all our methods are still valid when this constraint is relaxed.

However, in Section 7.3, we did not provide any means for selecting the list length
cutoff, which usually depends on the document collection and on the required result
quality. There is a tradeoff between index size and quality: longer lists usually mean
better results, but also a bigger index, while setting the length cutoff very low will
greatly reduce index size, but at the same time also hurt result quality.

This section introduces an automated method to tune index parameters such that
both the size of the resulting index and the quality of results generated using this

148 8. Index Tuning for High-Performance Query Processing

index meet predefined requirements. (Note that for the moment, our approach keeps
all combined lists, but limits the information stored in each list. We will discuss in
Section 8.4 how a subset of all combined lists can be selected based on the occurrence
of the pairs in a query log.) We will proceed as follows: we first define two parameters
for tuning the index size, then we show how to estimate the size of an index given the
tuning parameters. Next, we define measures for the quality of a pruned index, and
finally, we formally define index tuning as an optimization problem and show how to
solve it.

Parameters

We start with defining two parameters to tune the selection of index entries stored in
each term or combined index list:

e Minimal score cutoff: we keep only index entries with a score that is not below a
certain lower limit m.

e List length cutoff: we keep at most the [entries from each list that have the
highest scores.

These two parameters allow us to systematically reduce the size of the resulting index
with a controllable influence on result quality. Figure 8.4 shows how the index size for
GOV2, relative to an unpruned index, changes with varying [and m.

index size
0.1 E

0.01

20000 :
18000
16000 i
14000 E minscore cutoff m
12000
10000

8000
list length cutoff I 2°°0 4000 5550

Figure 8.4: Relative index size with varying list length and minscore cutoffs.

We denote the index consisting of all term index lists for collection C' by T'(C),
and the index consisting of all term and combined index lists for C' by I(C'). We will

8.3 Parameter Tuning 149

use the term inverted lists synonymously for index lists. We write I(C,l,m) for the
index for document collection C' that consists of term and combined index lists, where
each list is limited to the [entries with highest score and the combined lists contain
only entries with an accg-score of at least m. We use the similar notation T'(C,1) for
an index consisting of only term lists where each list contains only the [entries with
highest score. Note that we do not perform score-based pruning on term lists. We omit
C when the collection is clear from the context.

Index Size

An important constraint in our optimization process is the maximal storage space that
the final pruned index is allowed to occupy. We will denote the size of an index [in
bytes by |I|. The size of an uncompressed index depends on (1) the aggregated number
N(I) of index entries in all lists, (2) the size s of each index entry in bytes, (3) the
number of different keys K(I) (i.e., terms and/or term pairs) in the index, and (4)
the per-key overhead a of the access structure to associate a key with an offset in the
inverted file. For a compressed index, s is not constant, but depends on the entry and
the previous entry (due to delta encoding). We can formally define the size of the index
I as
Il:=s-N(I)+a-K(I).

This simple definition is only valid when all index lists are of the same type. In our
application, we may have two different index lists, term lists and combined lists, which
may differ in number of entries, number of keys, and entry size. We therefore write
Ny¢(I) for the number of term list entries in index I and N.(I) for the number of
combined list entries in I, with N(I) = Ny(I) + N¢(I), and use a similar notation for s
and K (I). The more accurate size of an index [is then

1] := st - Ny(I) + se - No(I) + a - (Fy(I) + Ko(I)).

For an uncompressed index, assuming that integers and floats need 4 bytes to store, we
can set s; := 4+ 4 = 8 (document ID and content score) and s, :=4+4+4+4+4 =16
(document ID, proximity score, and content scores for both terms). We can estimate a
similarly (for example, by assuming that a corresponds to the average key length plus
the space for a pointer into the inverted file).

We are typically interested in estimating the size of a pruned index I(l,m) or T'(1)
without actually materializing it (because materializing it takes a lot of time and the
index may be too large to be completely materialized anyway). In the following we dis-
cuss how to estimate |I(l,m)|, the adaptation to |T'(1)| is straightforward. We consider
only a sample P of all possible keys (i.e., terms and term pairs) and use it to approxi-
mate the distribution of list lengths, given a list length cutoff [and minimal score cutoff
m. Formally, we denote by X (I, m) a random variable for the length of an index list in
index I(l,m), and want to estimate the distribution F'(I,m) of that random variable,
i.e., estimate F'(I,m;x) = P[X(l,m) < z]. We sample the index lists for a subset P of
n keys chosen independently from all keys; each sample yields a value X;(I,m) for the

150 8. Index Tuning for High-Performance Query Processing

length of that list in (I, m). Using the empirical distribution function [Was05], we can
estimate the cdf of this distribution as

2 iz J(Xi(l,m) <)

E,(l,m;z) =
n

, Where

1 it X;(I,m) <z
0 else

J(X;(l,m) <z)= {

All we actually need is the expected length E[F (I, m)], which can again be estimated
from the sample as X; (I, m) [Was05]. Assuming that there are K (P) keys in the sample,
the expected number of entries in the index for the sample is therefore K (P)- X;(l, m).
To extend this estimate to the complete collection, we make sure that the size of P
relative to the size of the collection is known, for example by sampling p% of all keys
(this can be easily implemented using hash values of keys). The expected number of

keys in the index is therefore LK(P), and the expected number of entries in the index
is K(P)
100 - —_—
N(L,p) = p(XL,

The size estimator for a compressed index is built similarly, but instead of computing
just the length X;(l, m), we materialize and compress the list, and use its actual size,
avoiding the need to estimate the average value of s.

As the space of feasible values for the parameters [and m is in principle infinitely
large, we cannot compute the estimate for all combinations. Instead, our implementa-
tion considers only selected step sizes for [and m, computes estimates for those values,
and interpolates sizes for other value combinations. We currently consider a step size
of 100 for [and 0.05 for m.

Index Quality

Intuitively, the fewer entries we keep in each list, the more will reduce the quality
of query results, since the probability that relevant documents are dropped from the
pruned lists increases. The goal is to find values for 7 and [that mazimize index quality
while generating an index that fits into a predefined amount of memory. We now define
different notions of index quality measures M (C, 1, m, k) for index I(C,l, m) and a fixed
number k of results.

In the best case, a set of predefined reference or training topics A is available that
include human assessments of the relevance of documents in the collection. Such a set
of topics can be build, for example, by first selecting a set of representative topics from
a query log, then computing top-k results for different parameter settings, pooling
those results per topic, and have human assessors determine the relevance of each
result. Alternatively, click logs could be used to estimate the relevance of results (but
with much lower confidence). Topic sets of this kind are frequently available for test
collections such as TREC .GOV or .GOV2, but they cannot be reused for different
document collections. Given such a set A of reference topics, we denote by palk; I]

8.3 Parameter Tuning 151

the average quality of the top-k results over all topics (e.g., precision@k or NDCGQk)
computed using index [; our implementation currently uses average precision at k. We
can now define effectiveness-oriented and efficiency-oriented absolute index quality:

o Fjffectiveness-oriented absolute index quality: this is quantified as the ratio of the
quality of the first k results with the pruned index to the quality of the first &
results with the unpruned index or, formally, %

e Ffficiency-oriented absolute index quality: this is quantified as the reciprocal of
the maximal query processing cost per query term and query term pair (i.e., %)

when the result quality of the pruned index is not worse than that of an unpruned

pA[lﬁI(C’lvm)} Z 1)’ and 0

term-only index without proximity lists (formally, when PAlT(O)]

otherwise.

Here, the effectiveness-oriented index quality measure aims at finding the best possible
results by including as much proximity information in the index as possible. The
efficiency-oriented quality measure, on the other hand, assumes that the quality of
a term-only index is already sufficient and tries to minimize the length of index lists
(assuming that query processing efforts are directly proportional to the lengths of index
lists).

For most applications, such a set of reference topics does not exist or would be
too expensive to generate. In this case, we fix a set I' of queries (e.g., representative
samples from a query log) and use relative quality to estimate how good results with
the pruned index are, compared to results with the unpruned index. We define, for
each query ~v; € I', the set of relevant results to be the top-k£ documents with some
index configuration I’ and use this to compute the result quality of index configuration
I. When the quality measure is precision, this boils down to computing the overlap of
the top-k results with index configurations I and I’. We formally denote the resulting
quality of index I as pp[k; I|I'].

We can now define relative index quality measures in an analogous way to the abso-
lute measures defined before. However, we then would always favor index configurations
that produce exactly the results of the corresponding unpruned index, as we assume
that any results not in the top-k results with the unpruned index are non-relevant. This
is often overly conservative in practice, as many of the new results will be relevant to
the user as well, so it is usually sufficient to provide a “high” overlap, not a perfect one.
We therefore introduce another application-specific tuning parameter o that denotes
the threshold for relative quality above which we accept an index configuration. This
is especially important for efficiency-oriented index quality: we cannot expect that we
will get the same results with the pruned index with term and combined lists as with
just the unpruned term lists, so achieving an overlap of 1 there would be impossible.
Instead, we use I(C) also in that case and set « to a value below 1.

o Fffectiveness-oriented relative index quality: this is the relative result quality of
the pruned index pr[k; I(C,1,m)|I(C)].

152 8. Index Tuning for High-Performance Query Processing

e Flfficiency-oriented relative index quality: this is the reciprocal of the maximal
query processing cost per query term and query term pair (i.e., %) when the
relative result quality of the pruned index prlk; I(C,1,m)|I(C)] is at least o and
0 otherwise.

Index Tuning

We can now formally specify the index tuning problem:

Problem 1. Given a collection C of documents, an upper limit S for the index size,
a target number of results k, and an index quality measure M, estimate parameters m
and 1 such that M(C,1,m, k) is maximized, under the constraint that |I(C,1,m)| < S.
When there is more than one combination of m and l that maximize the quality measure
and satisfy the size constraint, pick one of them where the index size is minimal.

Note that even though the index is tuned for a specific number k of results, it can
be still used to retrieve any other number of results. We will experimentally validate
in Section 8.5.2 that result quality does not degrade much in these cases.

8.3.2 Implementation of the Tuning Framework

We implemented our tuning framework within the MapReduce paradigm [DGO8], di-
viding the tuning process into several map-reduce operations. As stated before, the
input to the tuning process is the collection C', a target index size S, a target number
of results k, and an index quality measure M that includes a set of training topics 7.
Additionally, we fix the fraction p of index keys (for both terms and term pairs) to be
sampled. The tuning process then proceeds in the following order, where each step is
implemented as a map-reduce operation:

1. Compute index for sample and training topics. The map phase considers
each document in the collection, parses it, and creates index entries for terms
and term pairs that are either part of the sample or the training topics. These
entries are still incomplete, because the final BM25 scores can be computed only
when global properties of the collection are known, so they contain only term
frequencies and document lengths (but already complete accy(ti,t2) values for
term pairs); their key is the term or term pair. The reduce phase then combines
items with the same key into an index list, completing their scores as all global
parameters of the score (average document length, number of documents, and
document frequency of each term) are now known'. The output of this phase are
two indexes, one for the sample, the other for the set of training topics.

LAt least Hadoop 0.20 does not directly provide these global parameters to the reduce phase, so we need to
store them in files and aggregate them in each reducer. The alternative would be to combine the initial map
with a do-nothing reducer, include additional map-reduce operations to compute the global values, and then
have a map-reduce operation with a do-nothing mapper and the reducer we just described.

8.3 Parameter Tuning 153

2. Prepare the estimator for the index size. The map phase considers each key
in the sample and computes, for each combination (I,m) it considers, the size s
of the corresponding index list when pruned according to the I and m cutoffs (or
the size of its compressed representation for compressed indexes), which is then
written out with key (I, m). The algorithm starts with [= k and increases it by
the step size for [, and considers all values for m, starting at 0 and increasing it
by the step size for m. The reduce phase combines all values for a single pair of
(I,m) cutoffs and computes the average index list size for this cutoff. This value
is then stored in an on-disk data structure as size estimate for ({,m). This phase
also counts the overall number of keys in the sample.

3. Prepare solving the optimization problem. In an initial map-reduce oper-
ation, we compute the baseline precisions. The map phase then considers each
topic with its corresponding assessments and computes, for each (I,m) pair pro-
vided by the size estimator, the quality of the index for this topic. This can be
efficiently implemented by a stepwise incremental join algorithm.

In the first step, the algorithm sets [= k, i.e., it reads the first k entries from
each list and incrementally computes results for (k,m), starting at the highest
value for m and decreasing it by the step size of m. This yields, for each m, a
temporary set of results with (partial) scores, from which the & documents with
highest partial score are considered as result. The index quality for this result is
computed and written out with key (k,m). If the score of the entry at position
k is less than m (i.e., the list would be cut before it), the value m is marked as
completed and will not be considered later. As soon as m exceeds the score of
the last read entry, all smaller values for m will get the same index quality.

In the following steps, the algorithm reads more entries from each list correspond-
ing to the step size for [. Assume that it read up to [entries from each list. It
continues with the temporary set of partial results from the previous step and the
highest value for m not yet marked as completed and repeats the above process.
This phase ends when either all values for [have been considered or all lists have
been completely read. It is evident that each entry of the lists is read at most
once, so the complexity is linear in the aggregated number of entries in the index
lists for this topic.

Note that for the efficiency-oriented quality measures, the map phase does not
write the actual index quality measure introduced in Section 8.3.1: instead of 1/1,
the reciprocal of the maximal query processing cost per query term and query
term pair, respectively, the map phase writes the actual precision of the top-k
results. This is due to the fact that only (I,m) combinations are valid that can
provide a given precision (averaged over all training topics in 7T'). The reduce
phase will transfer the precision values for each valid (I, m) combination to such
an index quality measure later.

The reduce phase averages, for each combination of (I,m), the per-topic index

154 8. Index Tuning for High-Performance Query Processing

quality values computed by the map phase, and computes the final index quality
for this combination. For the efficiency-oriented measures, this means that it
compares the average precision with the result quality of the term-only index
and uses 1/[as final index quality when the average precision is high enough.
If the (I,m) combination has a non-zero index quality, the reducer estimates its
size using the size estimator. For each (I,m) combination with a non-zero index
quality that matches the size constraint S, the reduce phase outputs an (I, m, g, s)
tuple, where ¢ is the index quality and s is the index size.

4. Compute an approximate solution of the optimization problem. The
following centralized phase scans all output tuples from the previous step and
determines the tuple (I,7,7,3) with highest quality. Optionally, it can further
explore the solution space around (I,7) for better solutions. The output of this
step is an approximate solution to Problem 1.

5. Materialize the final index. Analogously to phase 1, the final index is ma-
terialized in a single map-reduce operation. Note that each mapper can already
restrict the index entries it generates: for term pair entries, it does not emit any
entries whose score is below 7, and for term entries, it emits only the [entries
with highest scores (which can be achieved using an additional combiner). An
additional optimization for this step would be to generate only an approximation
of the final index: if there are M mappers used to parse the collection, each map-
per needs to emit at most % -1 entries, where 3 > 1 is a tuning parameter that
steers the expected number of entries missing in the final index.

8.4 Log-Based Term Pair Pruning

Even with relatively short list length cutoffs [, the overall space consumption of the
pruned combined lists can still be pretty huge, because there are a lot more combined
lists than term lists. On the other hand, the majority of combined lists are unlikely
to ever occur in any query. A possible solution can be to selectively materialize only
combined lists for term pairs that occur at least ¢ times in a query log, which can
drastically reduce the number of lists. When counting term pairs in the query log, we
consider each query separately, build up all possible term pair combinations for that
particular query, and finally count for each term pair the number of occurrences over
the complete query log. However, when one of these unlikely queries is issued for which
not all or even no combined lists are available, answering it using the pruned term lists
and the available subset of combined lists only may affect the result quality for this
query. Figure 8.5 demonstrates this effect, using the AOL query log and our training
topics on .GOV?2 (see Section 8.5.1), with [= 4310 and m = 0.00. The x-axis of this
chart shows different values for the threshold t of term pairs in the AOL log, and the
y-axis shows the precision at 10 results. The line with diamonds depicts the result
of running our merge-based algorithm from Section 7.3.5 with the available index lists

8.4 Log-Based Term Pair Pruning 155

only. It is evident that the higher the threshold, the lower the result quality gets, which
can be explained by fewer and fewer combined lists being materialized. For very high
thresholds (not depicted in the chart), the precision drops to 0.396, compared to 0.617
when using all lists.

0.65
—e— Pruned lists only
—=— Full TL when one pair list missing
—a— Full TL when all pair lists missing
0.6
20.55 1
®
c
]
o
[3]
g
05
0.45 -
b
0.4

0 5 10 15 20 25 30 35 40 45 50
minimal frequency in the query log

Figure 8.5: Effect of log-based pruning on query performance (on training topics).

To overcome this negative effect, we propose to keep the unpruned term index lists
when log-based pruning is applied. As soon as at least one combined list for a query
term is missing (variant 1) or, alternatively, all combined lists (variant 2) for a query
term are missing, we read the available combined lists and the unpruned term list for
that term.

This improves result quality to at least the quality of an unpruned term index, but
at the same time incurs an increased cost for query evaluation as longer term lists have
to be read. Figure 8.5 also depicts the effect of these approaches on result quality (line
with squares: read full term lists when at least one pair is missing; line with triangles:
read full term lists when all combined lists are missing). It is evident that this combined
execution helps to keep precision close to the level of the precision with the unpruned
T(C) index only (which is 0.585). Our tuning framework can be extended to consider
only combined lists where the corresponding term pair occurs at least ¢ times in a query
log, and tunes the parameters to reach the optimization goals even with this limited
selection of combined lists. Maintaining only the term pair lists for term pairs that
appear in previous queries (e.g., term pairs that appear in queries from a query log)

156 8. Index Tuning for High-Performance Query Processing

may be restrictive for rare queries that will appear in the future. For those few queries
which are affected, the results of the proposed approach would not benefit from term
proximity. However, we can still achieve a retrieval quality similar to that using BM25
scores as we can use the unpruned term lists. If rare queries become more frequent over
time, one may consider using an updated query log file to update the index structures.

To accelerate query processing and to save on accumulators, we split unpruned
term lists in two pieces: the [entries with highest scores are stored in docid order and
the remaining entries in score order. When processing a query where some combined
lists are missing, in a first phase we process the first piece of the term lists and the
available combined lists with the merge-based algorithm from Section 7.3.5, keeping
all documents and their scores in memory. After that, in a second phase, a standard
top-k algorithm (in our case NRA, cf. Section 6.1) consumes the second piece of the
term lists, using the already read documents as candidates. The accy contribution for
non-available combined lists is 0 in both steps. This algorithm will terminate more
quickly than running it on the unpruned term lists alone, and will usually give better
results due to the proximity score from the combined lists.

We give a more detailed explanation of how we process queries for the case of a
4-term-query {t1,t9,ts3,t4} where one pruned combined list is missing (due to non-
sufficient frequency of that term pair in the query log). W.lo.g. assume that the
missing combined list is CL(t1,t2). For both variants, we load pruned CLs for (1, t3),
(t1,t4), (to,t3), (t2,ts), and (ts,t4). For variant 1, we load the pruned TLs for t3 and t4,
the unpruned TL for ¢; and for ¢y as at least one combined list for ¢; and at least one
pruned combined list for ¢o is missing, namely (¢1,%2). In the first phase, we process
the pruned TLs, the first piece (docid-ordered) of the unpruned TL for (¢1,t2), and the
available pruned CLs using an n-way merge join algorithm. In the second phase, we
process the second, score-ordered piece of the unpruned TL for (¢, t2) using NRA with
the already seen documents as candidates. For variant 2, we load only pruned TLs for
all query terms as for every query term not all combined lists are missing. As we work
with pruned lists only, we only execute an n-way merge join on the pruned lists, the
second phase is not needed.

8.5 Experimental Evaluation

This section presents results of a large-scale experimental evaluation of our techniques
with two standard text collections. To facilitate reading, we first give a short overview
of the content and the goals for each subsection. Section 8.5.1 gives details about the
experimental setup and the employed test beds. Section 8.5.2 describes the evaluation
of our index tuning techniques from Section 8.3 for different result size cardinalities
(10 and 100). Both for effectiveness- and efficiency-oriented index quality measures,
we present parameter tuning results given a size limit for the pruned indexes. We
present results that tune indexes in the presence (absolute index quality) and absence
(relative index quality) of relevance assessments. The goal of Section 8.5.2 is to show the

8.5 Experimental Evaluation 157

feasibility of our index tuning techniques. Section 8.5.3 compares the query processing
performance of merge joins with pruned indexes as input to the recently proposed
Block-Max WAND (BMW) algorithm [DS11], a state-of-the-art document-at-a-time
algorithm that uses dynamic pruning on unpruned indexes. Besides the original BMW,
we provide additional results for our proximity score-enhanced BMW variant. The
goal of Section 8.5.3 is to compare the query performance of merge joins with pruned
indexes to dynamic pruning with unpruned indexes. The query processing performance
is measured both by abstract measures (e.g., the number of opened lists, average number
of entries and bytes read from disks) and average query processing times for hot and
cold cache settings. A running system (i.e., a warm cache scenario) is simulated using
an LRU-based cache. For various cache sizes, we report cache hit ratios, the number of
non-cached lists, the warm cache query processing times, and for BMW, in addition, the
number of read blocks. Section 8.5.4 evaluates the effect of query log-based combined
list pruning, one way to shrink the index size that is orthogonal to index compression
techniques. Section 8.5.5 summarizes the conclusions from Section 8.5.2 to Section 8.5.4.
Section 8.5.6 presents additional results with ClueWeb09 and aims at demonstrating
the scalability of our index tuning approach by means of similar experiments as the
ones shown in Section 8.5.2. Section 8.5.7 describes our efforts that apply our tuning
framework to the INEX 2009 test bed for the Efficiency Track.

8.5.1 Setup

We evaluated our methods with two standard text collections from TREC?, the GOV2
collection and the ClueWeb09 collection (cf. Section 3.2.1 for more details about both
collections). The TREC GOV2 collection consists of approximately 25 million docu-
ments from U.S. governmental Web sites with an uncompressed size of approximately
426GB. We used the 100 Ad Hoc Task topics from the TREC 2004 and 2005 Terabyte
Tracks® (cf. Appendix B, Tables B.1 and B.2) as training topics for tuning index pa-
rameters, and the 50 Ad Hoc Task topics from the TREC 2006 Terabyte Track (cf.
Appendix B, Table B.3) for testing the quality of results. We used the AOL query log*
for the log-based technique. We measure result quality as precision values PQk, i.e.,
the average number of relevant results among the first £ results and additionally report
normalized discounted cumulative gain (NDCG@k) [JKO02] that considers the order of
results, not the result set as a whole.

The ClueWeb09 collection® consists of approximately 1 billion Web documents
crawled in January and February 2009. Following standards at the TREC Web Track,
we consider only the approximately 500 million English documents (e.g., also used
by [NC10]), from which we chose the 50% documents with the smallest probabilities
to be spam according to the Waterloo Fusion spam ranking® (spaminess has also been

’http://trec.nist.gov
3http://trec.nist.gov/data/terabyte.html
‘http://gregsadetsky.com/aol-data/
Shttp://boston.lti.cs.cmu.edu/Data/clueweb09/
Shttp://durum0.uwaterloo.ca/clueweb09spam/

158 8. Index Tuning for High-Performance Query Processing

used in [BFC10] for example). The resulting document set has an uncompressed size
of about 6TB. We use the 50 topics from the Ad Hoc Task of TREC Web Track 20097
(cf. Appendix B, Table B.4) to train and optimize the index parameters; documents
without assessment are considered non-relevant. The 50 topics from the Ad Hoc Task
of Web Track 2010® (cf. Appendix B, Table B.5, non-assessed topics are marked) are
employed as test topics. Due to a few missing relevance assessments for the test top-
ics, we only provide precision values for our runs submitted to Web Track 2010, based
on a subset of 48 topics with assessments as published in our contribution to TREC
2010 [BS10].

The most significant part of our experiments is built on the GOV2 collection, since
the number of available topics for the ClueWeb09 collection is lower and the assess-
ments sparser than for the GOV2 counterpart. Therefore, we run only a limited set of
experiments on the ClueWeb09 collection and report detailed tuning results for GOV2
only.

As an additional test bed we employ the test bed from INEX 2009. The INEX
Wikipedia collection from 2009 consists of approximately 2.67 million articles and 1.4
billion elements. There are two types of queries used in our experiments: 115 Type A
topics from the Ad Hoc Track which includes classic Ad Hoc-style focused passage or
element retrieval with a combination of NEXI CO and CAS queries. They are partially
enriched with phrasetitle elements that indicate important phrases in the title field.
115 Type B topics have been generated from the Type A topics by running Rocchio-
based blind feedback on the results of the article-only Ad Hoc reference run. Therefore,
Type B topics can consist of partly more than 100 keywords. We show results from
our participation in the INEX 2009 Ad Hoc and Efficiency Tracks where we evaluate
CO queries (i.e., title fields and partially phrasetitle fields). Type A topics are listed
in Appendix C, Table C.5 to C.8, Type B topics are not listed due to their length.

Whenever we report times for parameter tuning or index construction, they were
measured on a cluster of 10 servers in the same network, where each server had 8 CPU
cores plus 8 virtual cores through hyperthreading, 32GB of memory, and four local hard
drives of 1TB each. The cluster was running Hadoop 0.20 on Linux, with replication
level set to two. Query execution times are reported using a single core of a CPU of a
single node in the cluster. All algorithms are implemented in Java 1.6.

We distinguish between test indexes and full indexes: while test indexes contain
only lists for terms that are part of topics in a given test bed and term pairs that can
be built from each topic, full indexes do not make this restriction, but contain lists for
all terms and term pairs (occurring in a window of size W=10). If not explicitly stated
differently, we build up test indexes to keep the indexing effort manageable as to both
the time required for index construction and the required space on disk. Hence, we can
maintain many indexes for evaluation on the same disk.

"http://trec.nist.gov/data/web09.html
8http://trec.nist.gov/data/web10.html

8.5 Experimental Evaluation 159

8.5.2 Index Tuning on GOV2

We evaluated our index tuning techniques from Section 8.3 for different maximal index
sizes and result counts (10 and 100). We report all results in this section with and
without index compression. We are aware of the fact that compression is preferable to
using uncompressed indexes, because the data can be read faster and decompressing is
less expensive than reading more data. We do not exclude experiments without com-
pression from this section as we want to be able to quantify the effects of compression
within our tuning framework. The effect of log-based combined list pruning will be
evaluated in Section 8.5.4. For each setting, we first estimated index parameters using
the training topics, built an index with these parameters, and then evaluated result
quality on the test topics.

Absolute Index Quality

Table 8.1 shows the results of index tuning on the training topics with selected size
limits below the collection size, for uncompressed indexes. In this table, each row
shows results for a given index size constraint and number of query results, namely the
resulting index parameters, the estimated and real index size for these parameters, and
the result quality on the training and test topics with this index. The rows with size
limit oo denote the corresponding unpruned indexes with term+combined lists (named
I(C)) or term lists (named 7'(C')), respectively. To build up the unpruned combined
lists, we consider only term pair occurrences within a text window of fixed size W = 10
as used in Section 7.3. Estimating one set of parameters took approximately 5 hours,
where about 3.5 hours were required for the first map-reduce phase to build the index
for the sample and the training topics. The time for building the final index strongly
depends on the chosen parameters; for a full index with up to 310 entries per list and
a score threshold of 0.05, this took less than five hours on our cluster.

Opt. size size[GB] P@k on NDCG@k on
goal k limit 1 m est. l real train l test train l test
100GB || 19010 | 0.40 96.4 96.9 || 0.596 0.572 0.4766 | 0.5121
10 200GB || 19010 | 0.15 | 170.5 | 170.8 || 0.610 0.578 0.4819 | 0.5153
effective- 400GB 4310 | 0.00 | 396.4 | 396.4 || 0.617 0.592 0.4874 | 0.5262
ness 00 1(C) 757.0 || 0.614 0.578 0.4875 | 0.5158
oriented 100GB || 10200 | 0.35 97.4 97.6 || 0.3899 | 0.3146 | 0.4117 | 0.4174
index 100 200GB || 17900 | 0.15 | 169.1 | 169.4 || 0.3975 | 0.3244 | 0.4190 | 0.4256
quality 400GB 4200 | 0.00 | 394.3 | 394.3 || 0.4035 | 0.3176 | 0.4245 | 0.4204
00 I(C) 757.0 || 0.4108 | 0.3338 | 0.4264 | 0.4324
efficiency- 100GB 5010 | 0.30 87.2 87.0 || 0.586 0.578 0.4634 | 0.5174
oriented 10 | 200GB 310 | 0.05 | 128.1 | 127.9 || 0.588 0.534 0.4658 | 0.4732
index 00 T(C) 22.9 || 0.585 0.538 0.4701 | 0.4852
quality 100 400GB 800 [0.00 [270.6 | 270.6 0.3848 | 0.2850 | 0.4093 | 0.3888
00 T(C) 22.9 || 0.3847 | 0.3002 | 0.4078 | 0.3954

Table 8.1: GOV2: index tuning results for absolute index quality without index com-
pression.

It is evident that all indexes with the estimated parameters meet the index size

160 8. Index Tuning for High-Performance Query Processing

constraint. For the effectiveness-oriented quality goal, all precision results (for the
training and, more importantly, also for the test topics) are better than the precision
with an unpruned term-only index (significantly better under a paired t-test with p <
0.05 when the size limit is at least 200GB), so the additional combined index lists help to
improve precision even when they are pruned. For the efficiency-oriented quality goal,
it turns out that already very short list prefixes (310 entries for top-10, 800 entries for
top-100 results) are enough to yield results with a quality comparable to standard term
indexes, given a sufficiently large index size constraint. If this constraint is too tight,
short lists cannot guarantee the quality target.

0.62 0.54
0.59 052 -
0.56

0.5 -

0.53
0.5 0.48 |
k3
® 0.46 -
[G]

047

® 0.44

= 8 0.4 -
-4

042 -

0.41
0.38
0.35 +
0.32
0.29 +

0.4 -
-~ 038 -+

0.26 - 0.36 -
10 40 70 100 10 40 70 100
K K
| 19010,0.40 m 19010,0.15 ™ 4310,0.00 m 10200,0.35 m 17900,0.15 m 4200,0.00
mI(C) ™ 5010,0.30 310,0.05 m 800,0.00 T(C)

Figure 8.6: PQk and NDCG@k on test topics for effectiveness- and efficiency-oriented
absolute index quality without index compression.

Although we tune for document retrieval of either the best k=10 or k=100 result
documents, we are aware that sometimes it may be necessary to retrieve a number of
results k' that is different from the number of results k used for tuning. Figure 8.6
shows P@Qk and NDCG@Q@k values for the test topics with all index configurations from
Table 8.1 for varying numbers of retrieved results, namely 10, 40, 70, and 100 result
documents. It is evident that result quality with indexes tuned for k=10 results does
not degrade much when returning longer result lists, i.e., choosing k’ greater than 10.
Differences for NDCG are a bit larger than for precision as we tuned our indexes using
the precision measure. Compared to the original runs from the TREC 2006 Terabyte
Track [BCS06], our tuned indexes do well in terms of precision. The best P@20 we get
for the effectiveness-oriented goal is 0.5310 (for (10200, 0.35)), none of the PQ20 values
underscores 0.5210. Our best indexes outperform 14 of 20 competitors in P@20. Note
that our index tuning was not carried out with the TREC 2006 topics but with the
training topics and for retrieval of the top-10 or top-100 results instead of the top-20,
which imposes a penalty on us. For the efficiency-oriented goal the best index (5010,
0.30) reaches a P@20 of 0.5210; very short list lengths deteriorate in later precision
values, at 0.4520 for (310, 0.05).

Table 8.2, which has the same layout as the table before, shows the results of in-
dex tuning on the training topics with selected size limits below the collection size for

8.5 Experimental Evaluation 161

compressed indexes. Our index compression scheme is effective: an index in configu-
ration (4310, 0.00) requires 396.4GB uncompressed, but only 248.8GB compressed, an
index in configuration (5010, 0.30) requires 87.0GB uncompressed, but only 55.4GB
compressed, and an index in configuration (310, 0.05) requires 127.9GB uncompressed,
but only 94.9GB compressed.

Opt. size size[GB] P@k on NDCG@k on
goal k limit 1 m est. l real train test train test
50GB 6810 | 0.75 48.3 48.1 0.589 0.586 | 0.4612 | 0.5144
70GB 19010 | 0.30 64.6 64.5 0.599 0.574 | 04779 | 0.5140
10 100GB 19010 | 0.20 98.5 98.0 0.608 0.574 | 0.4795 | 0.5139
effective- 200GB 19010 | 0.05 | 173.8 | 172.8 0.615 0.584 | 0.4861 | 0.5182
ness 400GB 4310 | 0.00 | 249.7 | 248.8 0.617 0.592 | 0.4874 | 0.5262
oriented 9] 1(C) 468.9 0.614 0.578 | 0.4875 | 0.5158
index 50GB 10400 | 0.85 49.9 49.7 0.3795 | 0.3124 | 0.4017 | 0.4120
quality 70GB 19800 | 0.30 64.9 64.7 0.3926 | 0.3250 | 0.4156 | 0.4249
100 100GB 20000 | 0.20 99.0 98.5 0.3970 | 0.3248 | 0.4189 | 0.4260
200GB 19700 | 0.05 | 174.4 | 173.4 0.4008 | 0.3264 | 0.4223 | 0.4273
400GB 14400 | 0.00 | 295.1 | 293.5 0.4067 | 0.3272 | 0.4263 | 0.4288
[e'9) 1(C) 468.9 0.4108 | 0.3338 | 0.4264 | 0.4324
50GB 6310 | 0.75 47.9 47.7 0.585 0.588 | 0.4591 | 0.5156
70GB 5010 | 0.30 55.6 55.4 0.586 0.578 | 0.4633 | 0.5173
10 100GB 310 | 0.05 94.9 94.9 0.588 0.534 | 0.4658 | 0.4732
efficiency- 200GB 310 | 0.05 94.9 94.9 0.588 0.534 | 0.4658 | 0.4732
oriented 400GB 310 | 0.05 94.9 94.9 0.588 0.534 | 0.4658 | 0.4732
index 9] T(C) 14.5 0.585 0.538 | 0.4701 | 0.4852
quality 50GB 10400 | 0.85 49.9 49.7 0.3795 | 0.3124 | 0.4017 | 0.4120
70GB 6000 | 0.30 56.9 56.7 0.3847 | 0.2988 | 0.4077 | 0.4026
100 100GB 3600 | 0.15 84.6 84.2 0.3849 | 0.2946 | 0.4099 | 0.3979
200GB 900 | 0.00 | 193.8 | 193.5 0.3861 | 0.2868 | 0.4108 | 0.3902
400GB 900 | 0.00 | 193.8 | 193.5 0.3861 | 0.2868 | 0.4108 | 0.3902
[e9) T(C) 14.5 0.3847 | 0.3002 | 0.4078 | 0.3954

Table 8.2: GOV2: index tuning results for absolute index quality with index compres-
sion.

It is evident that all indexes with the estimated parameters meet the index size
constraint, and the size estimator only slightly overestimates the final index size. For the
effectiveness-oriented quality goal, all precision results for indexes with a size constraint
of at least 70GB (for the training and, more importantly, also for the test topics) are
better than the precision with an unpruned term-only index (significantly better under
a paired t-test with p < 0.05 when the size limit is at least 200GB), so the additional
combined index lists help to improve precision even when they are pruned. NDCG
results behave similarly. For the efficiency-oriented quality goal, it turns out that
already very short list prefixes (310 entries for top-10, 900 entries for top-100 results)
are enough to yield results with a quality comparable to standard term indexes, given a
sufficiently large index size constraint. If this constraint is too tight, short lists cannot
guarantee the quality target.

Note that index tuning for different index size limits may result in identical optimal
index parameters (I,m); for example, efficiency-oriented index quality tuning for top-

162 8. Index Tuning for High-Performance Query Processing

10 retrieval and size limits between 100GB and 400GB results in (310,0.05). Recall
from the description of efficiency-oriented index quality and Problem 1 in Section 8.3
that index list pruning aims at minimizing the list length [and as an afterthought
the index size; anyway, the respective pruned index has to provide at least the P@10
quality of unpruned term lists. As (I,m) combinations with [< 310 or [= 310 and
m > 0.05 cannot provide the same P@Q10 values that unpruned term lists provide, the
optimal index parameters (310,0.05) remain constant. In this case, the resulting pruned
index does not use the full amount of space given by the size limit, which comes as
a consequence of the efficiency-oriented quality definition. Efficiency-oriented tuning
aims at minimizing the maximum query processing cost per list and provides at least
the same retrieval quality as using unpruned 7'(C) indexes. If the retrieval quality goal
can be met with small indexes, we do not waste space.

0.59 0.54
g-:g 0.52
os 0.5
0.47 0.48
-
L 044 g 046
® 0.41 9 044
o a
0.38 2 o
035 0.4
0.32
0.38

0.29
0.26
0.23

0.36
0.34

m6810,0.75 = 19010,0.30 m 19010,0.20 m 19010,0.05 = 4310,0.00 m 10400,0.85
11.19800,0.30 H 20000,0.20 1 19700,0.05 19 14400,0.00 =1(C)

Figure 8.7: P@Qk and NDCG@k on test topics for effectiveness-oriented absolute index
quality with index compression.

0.59 - 0.54
0.56 0.52
0.53
os 0.5
0.47 0.48

3

o 0.44 ® 046

® 041 S 044

o a
0.38 2 042
0.35 0.4
0.32
0.29 0.38
0.26 0.36
0.23 0.34

k k

m6310,0.75 = 5010,0.30 m=310,0.05 = 10400,0.85 = 6000,0.30 = 3600,0.15 ©900,0.00 = T(C)

Figure 8.8: P@k and NDCG@k on test topics for efficiency-oriented absolute index
quality with index compression.

8.5 Experimental Evaluation 163

Although we tune for retrieving either the best k=10 or k=100 result documents,
it can often happen that a different number of results should be retrieved. Figures 8.7
and 8.8 show precision and NDCG values for the test topics with all index configurations
from Table 8.2 for varying numbers of retrieved results, namely 10, 40, 70, and 100 result
documents. In Figure 8.7, for each choice of k, the rightmost bar represents 1(C), the
baseline for effectiveness-oriented tuning; in Figure 8.8, the rightmost bar for each k
represents T'(C'), the baseline for efficiency-oriented tuning. It is evident that result
quality with pruned indexes tuned for k=10 results does not degrade much relative to
the result quality provided by T'(C') (the baseline for efficiency-oriented tuning) or I(C')
(the baseline for effectiveness-oriented tuning) when returning more results. Even if we
select the weakest setting at late precision values, namely (310,0.05), we still achieve
a P@100 value of 0.26 compared to 0.30 for T'(C'). Differences for NDCG are slightly
larger, which could be expected since we tuned for precision, not NDCG.

Relative Index Quality

We first performed an experiment to estimate good values for «, the application-specific
tuning parameter that denotes the threshold for relative quality above which we accept
an index configuration: we computed, for a selection of possible values for «, optimal
index parameters (I, 7m) for the training topics under relative index quality, then instan-
tiated the corresponding pruned indexes and compared the resulting absolute precisions
(using the assessments from TREC) to the precision of the same topics with /(C) and
T(C). The results of this experiment are displayed in Table 8.3. This allows to esti-
mate values for « that are sufficient to yield similar precision values as the unpruned

term-only index for the efficiency-oriented measure. A good choice for « is 0.75 as

p[100;1(C\l,m)]
p[100;7°(C)]

lists for top-100 document retrieval, we achieve a precision comparable to that using

is close to 1 which means that, using pruned term and pruned combined

unpruned term lists.

| ol 07] o075] 08 [08 [09 [095]
PIO0TICL Il 10,9343 [0.9471 [0.9626 | 0.9759 [0.9914 | 1.0010

p[100;1(C)]
pIOOICC.Lm)T [9945 | 1.0081 | 1.0246 | 1.0388 | 1.0553 | 1.0655

_p[I0G;T(O)]

Table 8.3: Relative result quality for different values of a.

Table 8.4 gives tuning results for relative index quality with uncompressed indexes.
We can get close to the result quality for top-10 results of an unpruned index with
the effectiveness-oriented techniques (we even get better quality for some scenarios),
for both the test and the training topics. For top-100 results, the situation is slightly
worse, there is a small gap to the quality of an unpruned index (which, however, may
be tolerable). For the efficiency-oriented indexes, we achieve comparable or even better
precision values than for the unpruned text indexes, at a reasonable index size of less
than 100GB. Figure 8.9 depicts P@Qk and NDCG@k values for efficiency-oriented and
effectiveness-oriented index quality goals on all (I,m) combinations from Table 8.4,

164 8. Index Tuning for High-Performance Query Processing

0.59 0.54
0.56 0.52
0.53
0.50 05
0.47 o 048
x 0.44 g) 0.46
a 0.41 8 044
0.38 Z o0
0.35
032 04
0.29 0.38
0.26 0.36
10 40 70 100 10 40 70 100
k k
W 12010,0.30 W 19810,0.15 m 19810,0.05 H 18100,0.35 m 19800,0.15
= 19800,0.05 mI(C) = 1910,0.30 8800,0.30 mT(C)

Figure 8.9: P@Qk and NDCG@k on test topics for effectiveness- and efficiency-oriented
relative index quality without index compression.

for varying numbers of retrieved results. It is evident that the relative index quality
approach ensures retrieval quality on test topics even without relevance assessments.
Like stated before, the result quality of indexes tuned for k=10 results does not degrade
much for more retrieved results relative to 7'(C') and I(C'), respectively and for both
retrieval measures.

Opt. size size|GB] overlap P@k on NDCG@k on
goal k limit 1 m est. ‘ real on train | train test train test
100GB || 12010 | 0.30 | 99.7 | 100.1 0.837 | 0.591 | 0.580 | 0.4711 | 0.5179
10 200GB || 19810 | 0.15 | 171.4 | 171.8 0.893 | 0.609 | 0.578 | 0.4809 | 0.5153
effective- 400GB || 19810 | 0.05 | 293.3 | 293.4 0.924 | 0.615 | 0.584 | 0.4858 | 0.5182
ness 00 1(C) 757.0 -10.614 | 0.578 | 0.4875 | 0.5158
oriented 100GB || 18100 | 0.35 | 100.0 | 100.4 0.773 | 0.3899 | 0.3252 | 0.4120 | 0.4263
index 100 200GB || 19800 | 0.15 | 171.4 | 171.8 0.829 | 0.3983 | 0.3248 | 0.4201 | 0.4260
quality 400GB || 19800 | 0.05 | 293.3 | 293.4 0.868 | 0.4008 | 0.3266 | 0.4222 | 0.4274
00 I(C) 757.0 - 10.4108 | 0.3338 | 0.4264 | 0.4324
efficiency- 10 100GB 1910 ‘ 0.30 ‘ 73.1 | T2.7 0.750 | 0.574 | 0.554 | 0.4549 | 0.5030
oriented 00 T(C) 22.9 -1 0.585 | 0.538 | 0.4701 | 0.4852
index 100 100GB 8800 | 0.30 [95.3 | 95.4 0.750 | 0.3903 | 0.3104 | 0.4121 | 0.4125
quality 00 T(C) 22.9 -1 0.3847 | 0.3002 | 0.4078 | 0.3954

Table 8.4: GOV2: Index tuning results for relative index quality without index com-
pression.

Table 8.5 gives tuning results for relative index quality with compressed indexes.
We can get close to the result quality for top-10 results of an unpruned index with
the effectiveness-oriented techniques (we even get better quality for some scenarios),
for both the test and the training topics. For top-100 results, the situation is slightly
worse, there is a small gap to the quality of an unpruned index (which, however, may
be tolerable). For the efficiency-oriented indexes, we achieve comparable or even better
precisions than the unpruned term indexes, at a reasonable index size of less than
100GB. Figures 8.10 and 8.11 depict precision and NDCG values for efficiency-oriented
and effectiveness-oriented index quality goals on all (I, m) combinations from Table 8.5,

8.5 Experimental Evaluation 165

Opt. size size|GB] overlap P@k on NDCG@k on
goal k limit 1 m est. l real on train | train test train test
50GB 7010 | 0.55 | 49.9 | 49.7 0.776 | 0.584 | 0.588 | 0.4587 | 0.5130
70GB 19810 | 0.30 | 64.9 | 64.7 0.854 | 0.596 | 0.576 | 0.4767 | 0.5140
10 | 100GB || 19810 | 0.20 | 98.9 | 98.4 0.882 | 0.606 | 0.580 | 0.4786 | 0.5139
effective- 200GB || 19810 | 0.05 | 174.5 | 173.5 0.924 | 0.614 | 0.584 | 0.4858 | 0.5182
ness 400GB || 19810 | 0.00 | 306.8 | 304.9 0.946 | 0.613 | 0.586 | 0.4854 | 0.5210
oriented 00 I1(C) 468.9 -10.614 | 0.578 | 0.4875 | 0.5158
index 70GB 20000 | 0.30 | 64.9 | 64.8 0.786 | 0.3923 | 0.3252 | 0.4155 | 0.4248
quality 100 100GB || 20000 | 0.20 | 99.0 | 98.5 0.819 | 0.3968 | 0.3250 | 0.4189 | 0.4260
200GB || 19800 | 0.05 | 174.5 | 173.5 0.867 | 0.4007 | 0.3266 | 0.4223 | 0.4274
400GB || 19800 | 0.00 | 306.7 | 304.8 0.903 | 0.4062 | 0.3282 | 0.4259 | 0.4290
00 1(C) 468.9 -1 0.4108 | 0.3338 | 0.4264 | 0.4324
50GB 1910 | 0.30 | 48.6 | 48.4 0.750 | 0.572 | 0.556 | 0.4549 | 0.5030
70GB 1910 | 0.30 | 48.6 | 48.4 0.750 | 0.572 | 0.556 | 0.4549 | 0.5030
10 | 100GB 1010 | 0.10 | 91.3 | 91.1 0.755 | 0.585 | 0.568 | 0.4614 | 0.5064
200GB 510 | 0.00 | 176.1 | 176.0 0.752 | 0.614 | 0.556 | 0.4846 | 0.4957
efficiency- 400GB 510 | 0.00 | 176.1 | 176.0 0.752 | 0.614 | 0.556 | 0.4846 | 0.4957
oriented [e's) T(C) 14.5 -1 0.585 | 0.538 | 0.4701 | 0.4852
index 70GB 8900 | 0.30 | 59.6 | 59.4 0.750 | 0.3903 | 0.3102 | 0.4123 | 0.4124
quality 100 100GB 4100 | 0.15 | 86.1 85.7 0.751 | 0.3874 | 0.2978 | 0.4119 | 0.4001
200GB 2100 | 0.05 | 130.1 | 129.7 0.752 | 0.3844 | 0.2940 | 0.4115 | 0.3976
400GB 1200 | 0.00 | 203.5 | 203.2 0.750 | 0.3893 | 0.2900 | 0.4127 | 0.3948
[eS) T(C) 14.5 -1 0.3847 | 0.3002 | 0.4078 | 0.3954

Table 8.5: GOV2: index tuning results for relative index quality with index compres-
sion.

for varying numbers of retrieved results. It is evident that the relative index quality
approach ensures retrieval quality on test topics even without relevance assessments.

8.5.3 Query Processing with GOV2

We compared the query processing performance using pruned indexes as an input for
our merge-based technique from Section 7.3.5 with the recently proposed Block-Max
WAND (BMW) algorithm [DS11] as a state-of-the-art document-at-a-time algorithm.
BMW requires index lists sorted in document order where entries are grouped in blocks
of fixed size; for each block, the maximal score, the maximal document ID, and its
size are maintained to enable skipping complete blocks during execution. We extended
BMW to support proximity scores, providing two kinds of index lists as input:

e term index lists as described in Section 7.3.1, but ordered by document ID, and

e proximity index lists as described in Section 7.3.1, but ordered by document
ID.

Both kinds of index lists are augmented by the block structure. We compress the
document IDs by delta- and v-byte encoding and store all scores using v-byte encoding.
The block size is 64 documents as used in [DS11]. We denote the respective index
consisting of all term index lists for collection C' by T'(C) parw and the index consisting
of all term and proximity index lists for C' by I'(C)pyw. In our implementation of
BMW, skipped blocks are not read from disk if the index list is not in memory. Note

166 8. Index Tuning for High-Performance Query Processing

P@k

0.59 0.54
0.56 0.52
0.53 05
b _ 048
0.44 % 0.46
0.41 2 0.44
0.38)
0.35
0.32 04
0.29 0.38
0.26 0.36
10 40 70 100 10 40 70 100
k k
m 7010,0.55 W 19810,0.30 m 19810,0.20 | 19810,0.05 m 19810,0.00
= 20000,0.30 ™ 20000,0.20 ™ 19800,0.05 19800,0.00 mI(C)

Figure 8.10: P@k and NDCG@k on test topics for effectiveness-oriented relative index

quality with index compression.

0-59 0-54
0.56 0.52
053 0.50
0.5

0.47 o 048
0.44 8’ 0.46
0.41 8 0.44
0.38 = 042
035

030 0.40
0.29 0.38
0.26 0.36

10 40 70 100 10 40 70 100
k k

= 1910,0.30 ®=1010,0.10 = 510,0.00 m8900,0.30 ®™4100,0.15 ™ 2100,0.05 = 1200,0.00 = T(C)

Figure 8.11: P@Qk and NDCG@k on test topics for efficiency-oriented relative index
quality with index compression.

8.5 Experimental Evaluation 167

that it may seem appealing to simply store term position information in the term list
entries and use this for proximity scoring. However, it would no longer be possible to
skip blocks with this simple solution since there are no maximal proximity scores. On
the other hand, using precomputed proximity lists could help to improve performance
(as shown, for example, in Section 7.3 for NRA, a standard top-k algorithm and TopX
in RR-LAST mode).

Please note that BMW evaluates queries in a disjunctive manner like the n-way
merge joins described in Section 7.3.5: this means that matched documents neither
have to contain all query terms nor all query terms have to appear within a maximum
distance to each other. Further note that any processing algorithm would show similar
performance when run on the pruned lists; the goal of this section is to compare query
performance with pruned indexes to dynamic pruning on unpruned indexes.

To assess processing performance, we mainly use query processing times, but we
also consider abstract cost measures such as the number of opened lists, the average
number of entries or bytes read from disk. These abstract measures are not influenced
by transient effects like caching or other processes running on the same machine and
mask out the quality of the actual implementation. We consider two extreme settings:
(1) With hot caches, all index lists are loaded into memory before running the first
query, corresponding to the setting used in the BMW paper [DS11]. (2) With cold
caches, all index lists are completely loaded from disk, which is ensured by flushing the
file system cache before running each query, which corresponds to a very conservative
setting. We will examine other caching scenarios later in this section. Processing
times are measured with a single-threaded, Java-based implementation running on a
single core of a single cluster node. These measurements were taken by running the
complete batch of queries five times and taking the average. In addition, we invoke
the garbage collector before running each query to avoid side effects caused by garbage
collection during query execution. Whenever we use the average symbol &, we build
the average over all topics of the query load under consideration. For the mere sake of
completeness, we additionally provide NRA-based query performance values for runs
that employ indexes without compression. In the tables, those runs are denoted T'(C')
and I(C), respectively.

For all measurements in this section, processing the training topics accessed 300
term lists and 334 combined lists, and processing the test topics accessed 144 term lists
and 153 combined lists (for both pruned and non-pruned index lists).

Results with uncompressed indexes are depicted in Tables 8.6 and 8.7 for training
and test topics that show the number of read index entries as well as the number of
bytes and runtimes with cold and warm caches, averaged over all topics. Results with
the top-k algorithm NRA on the unpruned indexes are included in the rows for I(C') and
T(C), respectively. For the efficiency-oriented indexes, these results clearly demonstrate
that query processing on the pruned indexes is up to two orders of magnitude more
efficient than on the unpruned indexes. For top-10 results, we require less than 1,800
reads per topic on average with an index of 128GB size, which is less than one disk
block per index list. For the effectiveness-oriented indexes, the pruned index requires

168 8. Index Tuning for High-Performance Query Processing

Opt. size size[GB] greads-10° | @bytes-10° Dthot[ms] Dteora[ms]
goal k | limit 1 m | est. l real || train | test | train | test | train l test train l test
100GB|[19010|0.40| 96.4| 96.9|| 0.63| 0.61| 6.01| 5.81| 28.39| 31.61| 226.89| 243.57
10 200GB||19010|0.15|170.5|170.8|| 0.66| 0.64| 6.56| 6.24| 28.21| 27.78| 232.91| 245.80
effective- 400GB || 4310(0.00(|396.4|396.4|| 0.21| 0.19| 2.32| 2.07 9.53 8.61| 177.43| 182.61
ness 00 1(C) 757.0|| 8.43| 3.37| 71.73|29.70| 898.29| 429.83|1368.07|1020.75
oriented 100GB || 10200|0.35| 97.4| 97.6|| 0.38| 0.36| 3.76| 3.53| 16.43| 15.43| 199.59| 203.76
index 100 200GB||17900|0.15{169.1{169.4|| 0.63| 0.61| 6.27| 5.96| 27.52| 25.96| 236.69| 243.03
quality 400GB || 4200(0.00{394.3|394.3|| 0.20| 0.19| 2.27| 2.03 9.34 8.47| 174.68| 175.37
00 I1(C) 757.0(116.81|12.91| 71.73|29.70|1978.76|1628.06|2276.06 | 2068.93
efficiency- 100GB|| 5010{0.30| 87.2| 87.0|| 0.21| 0.19| 2.14| 2.00 8.87 8.44| 172.76| 181.61
oriented | 10 |200GB 310(0.05|128.1{127.9|| 0.02] 0.02| 0.21| 0.20 1.19 1.11| 135.03| 131.86
index 00 T(C) 22.9(/14.05| 9.45|112.40|75.60|1550.40| 926.13|1764.85|1311.10
quality 100 400GB 800[0.00[270.6 270.6|| 0.04] 0.04| 0.52| 0.49 2.30 2.22| 145.27| 150.60
00 T(C) 22.91/20.33|15.09|112.40|75.60 | 3453.74 | 2159.41| 4078.60 | 2669.32

Table 8.6: GOV2: query performance for absolute index quality without index com-

pression.
Opt. size size[GB] greads-10° | @bytes-10° Bthot [ms] Bteoid[ms]
goal k | limit 1 m est.l real || train | test | train | test | train l test train l test
100GB||12010{0.30| 99.7|100.1|| 0.44| 0.41 4.31| 4.06 20.46| 22.00| 203.65| 214.74
10 200GB||19810|0.15|171.4|171.8|| 0.69| 0.66| 6.77| 6.44| 29.81| 29.77| 232.32| 243.00
effective- 400GB [[19810(0.05|293.3|293.4|| 0.72| 0.68| 7.34| 6.86| 31.95| 29.81| 240.28| 257.10
ness 00 1(C) 757.0(| 8.43| 3.37| 71.73|29.70| 898.29| 429.83|1368.07|1020.75
oriented 100GB||18100{0.35[100.0|100.4|| 0.61| 0.59| 5.83| 5.61| 26.35| 24.85| 219.07| 232.50
index 100 200GB||19800|0.15|171.4|171.8|| 0.69| 0.66| 6.76| 6.44| 30.07| 27.99| 245.75| 259.52
quality 400GB [[19800(0.05(|293.3|293.4|| 0.72| 0.68| 7.34| 6.86| 32.07| 29.47| 247.53| 258.77
0 1(C) 757.0(116.81|12.91| 71.73|29.70|1978.76|1628.06|2276.06 | 2068.93
efficiency- 10 100GB 1910[0.30[73.1 72.7|| 0.09| 0.08] 0.96| 0.87 4.05 3.77| 146.11| 151.57
oriented 00 T(C) 22.91|14.05| 9.45(112.40|75.60|1550.40| 926.13|1764.85|1311.10
index 100 100GB 8800[0.30[95.3| 95.4| 0.33| 0.32| 3.37| 3.15| 14.67| 13.53| 187.33| 191.77
quality 0 T(C) 22.9(120.33|15.09(112.40|75.60 | 3453.74|2159.41|4078.60 | 2669.32

Table 8.7: GOV2: query performance for relative index quality without index compres-
sion.

up to one order of magnitude less reads than the unpruned index. For absolute index
quality tuning, query performance for larger indexes is actually better, because the
smaller indexes need to use long list length cutoffs, but high minscore cutoffs to meet
the index size constraint, which makes query processing expensive. For relative index
quality tuning, query performance for larger indexes slightly deteriorates, because the
larger indexes use longer list length cutoffs but also provide higher precision values. The
runtimes reported in these tables demonstrate that the theoretical cost advantage of
our approach is very beneficial in practice for hot cache as well as cold cache scenarios,
with average hot cache times of about 1ms for top-10 retrieval with the best efficiency-
oriented index. This corresponds to two to three orders of magnitude performance
advantage over standard top-k algorithm evaluation on unpruned term index lists.
Unlike that, the number of read items and the runtime of our technique does not

8.5 Experimental Evaluation 169

increase when retrieving more than 10 results by the nature of the merge join.

Opt. size size[GB] greads-10° | gbytes-10° | @tp0[ms] Dteord[ms]

goal k | limit 1 m | est. l real train‘ test train‘ test | train l test | train l test
50GB || 6810(0.75| 48.3| 48.1|| 0.26| 0.25| 1.33| 1.26| 8.09| 8.21| 90.47| 85.26
70GB |/ 19010]0.30| 64.6| 64.5|| 0.64| 0.61| 2.93| 2.82| 17.70|17.98|136.49 | 133.44
100GB || 19010 0.20| 98.5| 98.0|| 0.66| 0.63| 3.11| 2.96| 17.58 |18.52|138.57|135.51

effective- | 'O [200GB|[100100.05| 173.8| 172.8]| 0.70] 0.66| 3.37| 3.16| 18.54|18.16 | 151.66] 139.09
ness 400GB|| 4310[0.00[249.7]248.8[] 0.21] 0.19] 1.18| 1.06] 6.31] 5.90] 82.11| 73.19
oriented 00 I'(C)Buw 221.0[[3.96] 2.58(19.13[14.57| 66.65 |49.88|594.42 | 506.89
index 50GB[[10400[0.85] 49.9] 49.7[] 0.38] 0.36| 1.83] 1.72| 11.43[11.43]115.27|107.04
quality 70GB [19800]0.30] 64.9| 64.7]] 0.66] 0.63| 3.01| 2.91| 17.66]18.43143.13]141.09

100 [L00GB[20000]0.20| 99.0] 98.5] 0.69] 0.66] 3.22| 3.08| 18.28]19.77]149.89]152.08

200GB || 19700 | 0.05 | 174.4 | 173.4|| 0.72| 0.68| 3.46| 3.25| 19.36|18.74|157.14|148.71
400GB || 14400 [0.00|295.1 |293.5 || 0.59| 0.54| 2.98| 2.71| 16.44|15.58|149.70 | 144.95
00 I'(C)puw 221.0|| 7.07| 4.79|30.72|22.96 | 118.67 | 78.49 | 676.27 | 553.75

50GB || 6310|0.75| 47.9| 47.7|| 0.24| 0.23| 1.26| 1.19 6.92| 6.83| 89.12| 80.72
70GB || 5010(0.30| 55.6| 55.4|| 0.21| 0.19| 1.10| 1.03 6.06| 5.90| 82.32| 71.26
100GB 310(0.05| 94.9| 94.9|| 0.02| 0.02| 0.12| 0.11 0.81] 0.88| 13.82| 13.25

10 200GB 310(0.05| 94.9| 94.9|| 0.02| 0.02| 0.12| 0.11 0.81] 0.88| 13.82| 13.25
efficiency- 400GB 310(0.05| 94.9| 94.9|| 0.02| 0.02| 0.12| 0.11 0.81] 0.88| 13.82| 13.25
oriented o0 T(C)BMw 10.5|| 5.76 | 3.62|25.26 | 18.08 | 73.28 |61.13|546.09 | 466.72
index 50GB || 10400 |0.85| 49.9| 49.7|| 0.38| 0.36| 1.83| 1.72| 11.43|11.43|115.27|107.04
quality 70GB || 6000(0.30| 56.9| 56.7|| 0.24| 0.23| 1.26| 1.18 7.00| 6.82| 90.02| 84.38

100GB || 3600[0.15] 84.6] 84.2]] 0.16] 0.15| 0.91] 0.83| 5.04| 4.90| 72.40| 61.75
200GB || 900[0.00[193.8[193.5([0.05] 0.05] 0.32] 0.30] 1.89] 1.86] 16.42] 15.86
400GB|| 900[0.00]193.8]193.5[] 0.05] 0.05] 0.32] 0.30] 1.89] 1.86] 16.42| 15.86

) T(C)BuMw 10.5]] 8.21| 5.40(34.17[24.92(102.50 | 68.76 | 600.41 | 495.58

100

Table 8.8: GOV2: query performance for absolute index quality with index compres-
sion.

Tables 8.8 and 8.9 show the result of the performance experiments for training and
test topics. They include the number of read index entries as well as the number of
bytes and runtimes with cold and hot caches, averaged over all topics. Results with
BMW on unpruned indexes are included in the rows for I'(C)pyw and T(C)pyw;
here, we only count the number of index entries in blocks we load into main memory,
not in all blocks of the lists. Due to anomalies in the corresponding tables in [BS12], we
have measured the average cold cache times again and have updated Tables 8.8 and 8.9
accordingly. For the efficiency-oriented indexes, these results clearly demonstrate that
query processing on the pruned indexes can be one order of magnitude more efficient
than BMW for both hot and cold caches. For top-10 results, we read less than 1,800
index entries (approximately 12KB) per topic on average with an index of 94.9GB size,
whereas BMW needs to access more than 360,000 entries per topic. Similar results can
be achieved for top-100 results with an index of 193.5GB size. For the effectiveness-
oriented indexes, the performance gap is smaller. Note that query performance for
larger indexes is sometimes better because the smaller indexes need to use long list
length cutoffs, but high minscore cutoffs to meet the index size constraint, which makes
query processing expensive. For relative index quality tuning, query performance for
larger indexes slightly deteriorates, because the larger indexes use longer list length
cutoffs but usually also provide higher precision and NDCG values. The runtimes

170 8. Index Tuning for High-Performance Query Processing

Opt. size size[GB] greads-10° | gbytes-10° | @tp0¢[ms] Bteold[ms]

goal k | limit 1 m | est. l real |[train test | train | test | train l test | train l test
50GB || 7010|0.55| 49.9| 49.7|| 0.27] 0.26| 1.37| 1.29| 12.17|12.74| 96.38| 89.20
70GB || 19810]0.30| 64.9| 64.7|| 0.66| 0.63| 3.01| 2.91| 30.24|28.53|143.48 |135.55
100GB [[19810 0.20| 98.9| 98.4 || 0.68| 0.65| 3.20| 3.05| 31.38|26.59|150.23 | 138.29

10 500G B{[10810 [0.05| 174.5 | 173.5]| 0.72] 0.68| 3.47| 3.26| 32.27|30.79| 157.71] 137.68
effective- 400GB [[19810]0.00]306.8 [304.9 || 0.76 | 0.71| 3.75| 3.46| 32.65|30.87 | 165.67 | 145.72
ness oo T(CYgarw | 221.0|] 3.96] 2.58|19.13 | 14.57 | 66.65 | 49.88 | 594.92 | 506.89
oriented 50GB || 10300]0.80| 50.0| 49.9] 0.37| 0.35| 1.82| 1.71| 16.62|14.92|113.14]107.20
index 70GB (20000 [0.30| 64.9] 64.8|] 0.66| 0.64| 3.03| 2.93| 34.14]26.08 | 145.09 | 136.99
quality |, [100GB][20000{0.20] 99.0] 98.5]| 0.69] 0.66| 3.22| 3.07| 28.74|29.66]149.69| 142.79

200GB [[19800 [0.05 | 174.5[173.5] 0.72]| 0.68] 3.47| 3.26| 34.67|35.78[155.30 | 145.58
400GB [[19800 [0.00 [306.7[304.8 || 0.76 | 0.71] 3.75| 3.46] 33.23]29.95[168.20|150.73

00 I'(C)pmuw 221.0[[7.07| 4.79]30.72[22.96 | 118.67 | 78.49 | 676.27 | 553.75
50GB|| 1910/0.30| 48.6| 48.4(| 0.09] 0.08| 0.52| 0.47| 3.79| 3.03| 40.36| 36.04

70GB || 1910{0.30| 48.6| 48.4|| 0.09| 0.08| 0.52| 0.47| 3.79| 3.03| 40.36| 36.04
100GB || 1010|0.10| 91.3| 91.1|| 0.05| 0.05| 0.33| 0.31 2.23] 1.95| 27.93| 27.38

10 200GB 510(0.00{176.1|176.0|| 0.03| 0.03| 0.19| 0.18 1.72| 1.13| 19.62| 18.27
efficiency- 400GB 510(0.00|176.1|176.0|| 0.03| 0.03| 0.19| 0.18 1.72| 1.13| 19.62| 18.27
oriented o0 T(C)Buw 10.5|| 5.76 | 3.62|25.26 | 18.08 | 73.28 |61.13|546.09 | 466.72
index 50GB || 10300 |0.80| 50.0| 49.9|| 0.37| 0.35| 1.82| 1.71| 16.62|14.92|113.14|107.20
quality 70GB || 8900(0.30| 59.6| 59.4|| 0.34| 0.32| 1.69| 1.59| 15.17|13.72|115.14|104.44

100GB || 4100|0.15| 86.1| 85.7|| 0.18| 0.17| 1.01| 0.92 7.40] 8.21| 78.90| 70.51
200GB || 2100|0.05|130.1|129.7|| 0.10| 0.10| 0.62| 0.57| 5.00| 5.48| 53.33| 47.13
400GB || 12000.00|203.5|203.2 || 0.06| 0.06| 0.41| 0.38 2.82| 3.24| 36.07| 27.97

oo T(C)BuMw 10.5|| 8.21| 5.40|34.17|24.92|102.50 | 68.76 | 600.41 | 495.58

100

Table 8.9: GOV2: query performance for relative index quality with index compression.

reported in these tables demonstrate that the theoretical cost advantage of our approach
is very beneficial in practice for hot cache as well as cold cache scenarios, with average
hot cache times of about 1ms for top-10 retrieval with the best efficiency-oriented index.
Please note that we have used pruned test indexes in the tables. The (310,0.05) test
index needs on average 13.82ms and 13.25ms in a cold cache scenario for training and
test topics, respectively. This seems to be extremely fast and is probably influenced by
the dense arrangement of the test index structures on the hard disk and the resulting
non-controllable disk caching side effects. To allow a comparison, we have built the
(310,0.05) full index: for training and test topics @t..q values are 75.13ms and 68.65ms,
respectively. Unlike BMW| the number of read entries and the runtime of our technique
does not increase when retrieving more than 10 results by the nature of the merge join
(however at the price of a slightly reduced result quality).

As an interesting side result, we see that the additional proximity lists can sometimes
improve query performance for BMW because they allow tighter score bounds, which
is similar to the earlier results in Chapter 7 for the standard top-k algorithm NRA
and TopX in RR-LAST mode. For top-10 retrieval, BMW with term and proximity
lists (denoted as I'(C)pyw in Table 8.8) takes on average 66ms with hot caches for
the training topics and reads on average 396K entries, whereas using only term lists
(T(C)pmw) takes on average 73ms and reads on average 576K entries. With cold
caches, BMW with only term indexes is better due to the expensiveness of opening
more index lists (546ms vs 594ms).

8.5 Experimental Evaluation 171

cache cache hit ratio #non-cached
1 m size]MB] | [bytes] l [#lists] lists Dtwarm[ms]
310 | 0.05 8 | 28.98% | 29.29% 161,393 39.85
310 | 0.05 16 | 37.05% | 37.08% 143,613 36.04
310 | 0.05 32 | 44.36% | 43.89% 128,069 32.70
310 | 0.05 64 | 50.54% | 49.39% 115,525 29.67
310 | 0.05 1024 | 54.44% | 52.77% 107,801 28.92

Table 8.10: Efficiency Track: real system performance, merge join, various LRU cache
sizes with a (310,0.05) full index.

For efficiency reasons, storing position information in the term-only index to com-
pute proximity scores on the fly as a document is encountered is not an option for us.
As argued in Section 7.2.2, that approach is not feasible for top-k style processing as
it is not possible to compute tight score bounds for candidates which in turn disables
dynamic pruning.

To compute the top-k results efficiently, we need to precompute proximity informa-
tion into index lists that can be sequentially scanned and compute tight score bounds
for early pruning. As briefly discussed in Section 6.3, an alternative would be to first
determine a set of candidate documents with ’good’ term list scores and later re-rank
only the candidate documents by computing proximity scores from their position infor-
mation (cf. Section 2.4.1 for an example). This requires a large enough set of candidate
documents in the first step, which is potentially expensive to compute - if we choose
the set too small, we may leave out potentially relevant documents and decrease result
quality for the top-k results. As shown in Table 8.8 for BMW (7'(C)pnw), this can
easily cause high additional processing costs.

In a second line of experiments, we ran the 50,000 queries from the TREC Terabyte
Efficiency Track 2005 with the fastest index configuration determined by efficiency-
oriented index-tuning, the (310, 0.05) full index setting, comparing it again to BMW.
In addition to the hot and cold cache settings used before, we also consider warm
caches, a more realistic simulation of a running system. We implemented an LRU cache
of configurable size to store the least recently used index lists. This LRU cache was
emptied before running the first query; we then ran all queries sequentially. To minimize
side effects caused by file system caching and garbage collector activities during query
processing, we emptied the file system cache and invoked the garbage collector before
executing each query. In this scenario that corresponds to a steady-state execution in
a running search engine, processing with the (310, 0.05) full index takes less than 30ms
on average for an LRU cache size of 64MB, compared to an average of 0.7ms for hot
caches and 127ms for cold caches, respectively.

Table 8.10 shows performance values for query processing with a (310, 0.05) full
index for different cache sizes. It depicts the cache hit ratio both for the number of
read bytes (cache hit ratio[bytes]) and number of read lists (cache hit ratio[#lists])
as well as the number of non-cached lists and the average warm cache running times.
Even for a very small cache size of 8MB, we need less than 40ms on average to process

172 8. Index Tuning for High-Performance Query Processing

cache cache hit ratio #non-cached
k index size[MB] [bytes] ‘ [#lists] lists #read blocks | Ztwarm|[ms]
10 | T(C)puw 64 3.62% 2.15% 115,938 397,735,689 204.63
100 | T(C)puw 64 3.62% 2.15% 115,938 573,001,133 259.01
10 | T(C)puw 1024 | 46.39% | 26.58% 86,990 397,735,689 173.16
10 | I'(C)Buw 1024 | 44.02% | 14.57% 197,638 312,500,850 206.36

Table 8.11: Efficiency Track: real system performance, BMW, various LRU cache sizes.

a query, and starting with a cache size of 64MB, we need less than 30ms on average.
Note that the overall number of index lists used in this experiment is 228,247.

400

350

300

250

200
150
100
50
0 -
1 2 3 4 5 6 7 8 9
number of query terms
¢ time[ms], 8MB M ¢ time[ms], 16MB m ¢ time[ms], 32MB | ¢ time[ms], 64MB ¢ time[ms], 1GB
M o(time[ms]), 8MB m o(time[ms]), 16MB m o(time[ms]), 32MB o(time[ms]), 64MB W o(time[ms]), 1GB

Figure 8.12: Efficiency Track: real system performance for a (310,0.05) full index for
various query and LRU cache sizes.

Figure 8.12 depicts the average running times and their standard deviations de-
pending on the number of keywords in the query and the cache size. The larger the
cache size, the higher the cache hit ratio which lowers the average processing time.
As expected, the average running time is monotonous in the number of query terms
as more query terms potentially lead to more fetched index lists at processing time.
However the standard deviation of running times for a given query length is low (and
does not depend on the cache size) such that the average running time is usually a good
approximation for the expected running time of a query.

Table 8.11 shows performance values for query processing with BMW on T'(C) parw
and I'(C) pyrw indexes with varying cache sizes. The number of processed lists for this
query load amounts to 118,483 for T'(C') garw which consist of 1,061,659,742 blocks in

8.5 Experimental Evaluation 173

196.9GB size, and 231,346 for I'(C) gasw indexes which consist of 1,099,312,741 blocks
in 202.5GB size?. As expected, increased cache sizes help to speed up query processing
(204.63ms vs 173.16ms for 64MB vs 1GB LRU cache size with T(C)gyw)- I'(C) pyw
is slower than T'(C)pyw at the same cache size: although the number of read blocks
decreases, more non-cached lists have to be loaded. We see that the run time increases
with growing k. While processing queries with T'(C) gy with 64MB LRU cache size
takes 204.63ms to retrieve k=10 results, the same index requires 259.01ms to retrieve
k=100 results. In contrast, the run time is independent of the result set cardinality for
our pruned indexes as they are processed completely by an n-way merge join.

If we compare the warm cache performance of our pruned lists processed in a merge
join algorithm (Table 8.10) to that of BMW with a T'(C') ppsw index (Table 8.11) at an
LRU cache size of 64MB, we observe that the number of non-cached lists that have to
be fetched from hard disk is similar (115,525 vs 115,938). Anyway we achieve a speedup
of a factor of 7 (Ftwarm=204.63ms) for top-10 and a factor of 9 for top-100 retrieval
(Ztwarm=259.63ms), since the cache hit ratio measured in bytes is about 50% for our
approach compared to less than 4% for the BMW approach. To achieve a similar cache
hit ratio for the T'(C')pymw index as for our approach, we need to increase the LRU
cache size to 1GB. This means that, compared to our approach, we need 16 times as
much cache at a processing speed that is 5 times slower.

8.5.4 Log-based Pruning with GOV2

We evaluated our log-based technique for pruning term pairs from the index, using the
same training and test queries as before and the AOL query log. Note that all indexes
in this section are uncompressed as we consider log-based pruning and compression of
indexes as orthogonal ways to shrink index sizes whose effects are shown separately.
Table 8.12 shows index tuning results for t=1, i.e., materializing combined lists for

Opt. size size[GB] P@k on

goal k limit 1 m est. l real train l test
effectiveness- 10 100GB 5010 | 0.00 96.0 96.0 0.610 0.586
oriented 100 100GB 19800 | 0.10 93.6 93.6 0.3927 | 0.3192
index quality 400GB 20000 | 0.00 | 293.4 | 293.4 0.3969 | 0.3196
efficiency- 10 50GB 2210 | 0.15 47.8 47.8 0.538 0.462
oriented 100GB 1810 | 0.00 64.7 64.7 || 0.587 0.554
index 100 50GB 7200 | 0.35 50.0 50.2 0.3771 | 0.3036
quality 100GB 3800 | 0.00 86.2 86.2 0.3847 | 0.2980

Table 8.12: Index tuning results with log-based pruning (¢=1) for absolute index quality.

term pairs that occur at least once in the query log. It is evident that using log-based
pruning helps to get smaller index sizes for the efficiency-based techniques. The index
size reduces down to 47.8GB, which is approximately twice the size of the unpruned,
uncompressed term index (22.9GB). The result quality of indexes created by log-based

9There are more lists here because our pruning technique may completely drop a pair when all
entries in its list have a score below the minscore threshold.

174 8. Index Tuning for High-Performance Query Processing

pruning remains similar as for the unpruned, uncompressed term index. However, index
tuning using log-based pruning results in much longer index lists than index tuning
without log-based pruning. The longer lists in turn affect runtime (cf. Table 8.13):

Opt. P@k greads-10° Bthot[ms] Bteora[ms]

goal k 1 m train l test train l test | train l test train l test
efficiency- 10 2210 | 0.15 0.538 0.462 1.22 | 1.97 | 162.4 | 241.6 | 427.1 | 514.2
oriented 1810 | 0.00 0.587 0.554 1.20 | 1.96 | 162.2 | 229.6 | 441.3 | 525.7
index 100 7200 | 0.35 0.3771 | 0.3036 1.38 | 2.12 | 229.4 | 388.8 | 504.3 | 685.7
quality 3800 | 0.00 0.3847 | 0.2980 1.29 | 2.03 | 255.6 | 341.8 | 471.0 | 649.7

Table 8.13: Query performance with log-based pruning (t=1) for absolute index quality.

compared to the best results without log-based pruning, query processing takes an
order of magnitude longer. The longer run times are due to the score-ordered part of
the unpruned term lists as detailed in Section 8.4 which may be processed to a large
extent in the NRA phase to preserve retrieval quality if all corresponding combined
lists are missing. Anyway, it is still faster than BMW with unpruned 7'(C) in the
cold cache setting. We could not achieve the quality goal for the effectiveness-based
methods as there were not enough combined lists left to boost quality enough; we did
not evaluate performance for these settings. Log-based pruning therefore mostly serves
to reduce index size in situations with strong resource constraints where indexes need
to be loaded from disk. Here, it can still improve execution cost, while result quality
stays comparable to a term-only index.

8.5.5 Summary of Conclusions and Limitations of the Approach

Finding (I,m) parameters to build pruned GOV2 indexes is reasonably fast and takes
about five hours, while building a final full index is dependent on the resulting parame-
ters and takes less than five hours for (I,m)=(310,0.05). Already very short list prefixes
of term and combined lists are sufficient to yield a result quality comparable to the
one of unpruned term lists. This comes at the expense of more opened lists but saves
on the number of read bytes and tuples, respectively. As shown for BMW, processing
unpruned term indexes using dynamic pruning techniques is more expensive than pro-
cessing pruned term and combined lists in an n-way merge join. PQk’ and NDCG@k’
values of pruned indexes tuned for k results do not degrade much for larger result set
cardinalities k’. We show that, in the absence of relevance assessments, we can use
the overlap between top-k results on pruned term and combined lists and the top-k
results on unpruned lists as a substitute for the relevance assessments. The relative
index quality approach ensures retrieval quality on test topics even without relevance
assessments for the training topics — it works better for early P@k and NDCG@k, but
does not degrade much for larger k. Processing performance for training and test topics
is excellent compared to the BMW algorithm.

For a bigger query load, the 50,000 TREC Terabyte Efficiency Track queries from
2005, our experiments show the viability of our approach at an LRU cache size of 64MB:
although the number of non-cached lists for our pruned index and the T'(C) gy index

8.5 Experimental Evaluation 175

is comparable, our processing speed is 7 and 9 times faster for top-10 and top-100
retrieval, respectively, as the longer lists of the T(C)paw index require more cache
space. To achieve a similar cache ratio for the T'(C)ppw index as for our pruned
index, we would need to increase the LRU cache size to 1GB, at a processing speed
which is still 5 times slower than for our approach.

Log-based pruning helps to get smaller resulting indexes at similar result quality
at the expense of increased list lengths and an increased number of loaded lists which

incurs increased running time during query processing.

8.5.6 Results with ClueWeb09

size[GB] Pak greads-10° | gbytes-10° | Ftpot[ms] | Steora[ms]
Opt. goal | k (I,m)| est. l real ||train ‘test train | test | train | test trainl test trainl test
effect.-o. 10 || (1410,1.0) | 640.2 | 636.2 || 0.200 |- 0.04| 0.04| 0.24| 0.18| 2.32|1.25|67.35 | 56.38
index qual. [100 || (4600,0.3) | 979.0 | 977.9 || 0.1344 | - 0.14] 0.11| 0.75] 0.56 | 5.35|3.33|83.69 | 61.44
effic.-o. 10 (410,1.0) | 503.6 | 499.8 || 0.190 |0.2292 || 0.01 | 0.01| 0.07| 0.06 | 0.77]0.47|79.61|71.15
index qual. [100 || (400,1.0) | 464.6 | 462.8 || 0.1170 | - 0.01| 0.01| 0.07| 0.06 | 0.63|0.44|69.05 | 55.60

Table 8.14: ClueWeb09: index tuning results for absolute index quality and evaluation
of query performance, size limit set to S=1TB.

To demonstrate the scalability of our index tuning approach, we carried out experi-
ments on the ClueWeb09 collection similar to the ones shown in Section 8.5.2 for GOV2.
For all experiments we keep the index size limit of S=1TB fixed which corresponds to
about 17% of the size of the uncompressed spam-reduced English part of the ClueWeb09
collection (cf. Section 3.2.1 for details). We have published the corresponding results
in [BS10].

Again, we consider two baselines, the unpruned T'(C) and I(C) indexes; however,
as building the unpruned I(C) index exceeded our disk capacity, we had to limit each
index list to the first 20 million entries. We expect that this restriction will—if at
all—have only a negligibly small influence on the result quality. The result quality of
results created with these baselines was assessed using the available assessments for the
training topics; here, PQ10 was 0.180 for 7'(C') and 0.198 for I(C'), and P@100 was
0.1110 for T(C) and 0.1324 for I(C'). For the test topics, we submitted runs created
for the baseline indexes to the 2010 TREC Web Track, Ad Hoc Task, which yielded
a PQ10 of 0.2250 for both T(C) and I(C) indexes, which was somehow unexpected
(we had expected I(C) to yield a higher precision than T(C')). This may be partially
caused by sparser relevance assessments for the Web Track Topics, partially by giving
a lower assessment priority to our two baseline runs compared to our third run (which
was created with one of the pruned indexes). For P@100 our expectations are met:
I(C) yields a precision of 0.1358 compared to T'(C') which yields a precision of 0.1294.

Table 8.14 shows the results for absolute index quality tuning on the training topics
for compressed ClueWeb09 indexes. With index parameters tuned for efficiency and
top-10 document retrieval, the best index configuration turns out to be (410, 1.00) at

176 8. Index Tuning for High-Performance Query Processing

an index size of less than 500GB. Processing training topics with this pruned index
requires 1,302 reads on average per topic and takes less than 1lms for hot and 80ms
for cold caches, providing a result quality comparable to T'(C'). Processing test topics
with the same index is even slightly faster due to shorter index lists (1,045 reads on
average), reflected in improved hot cache times and cold cache times of about 70ms.
The corresponding run has been submitted to the 2010 TREC Web Track, Ad Hoc
Task as well, with a PQ10 of 0.2292, which is slightly higher than the PQ10 of T'(C)
and slightly higher than the P@10 value for the training topics. As NDCG@k has not
been used as retrieval quality metric in the 2010 TREC Web Track, Ad Hoc Task, we
only report precision values.

Efficiency-oriented indexes for top-100 document retrieval require less than 500GB
disk space and provide running times of less than 1ms for hot caches and around 70ms
for cold caches on the training topics at a result quality comparable to the T'(C') baseline
run. Query processing on the test topics is again faster, with 55ms on average with
cold caches.

Our effectiveness-oriented index tuned for top-10 retrieval (1410, 1.00) requires
640GB and provides a retrieval quality comparable to I(C). Query execution takes
about 2ms for the training topics and slightly more than 1ms for the test topics for
hot caches. Effectiveness-oriented indexes for top-100 retrieval require less than 1TB
disk space and thus stay within our index size limit, providing again a result quality
comparable to I(C). Here, query execution takes about 5ms and 3ms for hot caches,
whereas cold cache times range below 85ms and 65ms for training and test topics,
respectively. The results show that the size estimator also works effectively on the
ClueWeb09 collection with only minor overestimation.

size[GB] @reads | gbytes | Sthor | Dteold
Opt. goal k (I,m) | est. l real overlap | P@k -10% -10° [ms] [ms]
effect.-o. 10 (9810,1.00) 9279 | 923.6 0.986 | 0.198 2.89 1.45 8.46 | 152.17
index qual. | 100 || (19000,0.80) | 1008.3 | 1006.5 0.972 | 0.1330 5.52 2.72 | 13.77 | 135.93
effic.-o. 10 (110,1.00) 395.3 | 391.6 0.856 | 0.160 0.04 0.02 0.28 | 70.89
index qual. | 100 (200,1.00) 408.1 | 407.6 0.781 | 0.1010 0.06 0.04 0.43 | 82.95

Table 8.15: ClueWeb09: index tuning results for relative index quality and evaluation
of query performance, size limit set to S=1TB.

Table 8.15 shows the results for relative index quality tuning on ClueWeb09 with
the training topics. While the effectiveness-oriented approaches result in indexes which
deliver result quality comparable to I(C') (at the price of longer lists compared to ab-
solute index quality), result quality with the efficiency-oriented indexes falls shortly
behind BM25 score quality, but the difference would still be tolerable in applications.
We assume that this effect can at least partly be attributed to the fact that relevance
assessments from TREC 2009 are very sparse compared to those from earlier years;
unassessed documents contribute to the overlap with the groundtruth, but do not in-
crease precision values if they are in the result list of a query, even though a user may
consider them relevant.

Although the indexed part of the ClueWeb09 collection is one order of magnitude

8.5 Experimental Evaluation 177

larger in size than GOV2 (6TB vs. 426GB uncompressed), the required index space
does not grow as fast as the collection (e.g., index size grows from 94.9GB to 499.8GB
for the efficiency setting (310, 0.05) on GOV2 compared to (410, 1.00) on ClueWeb09).
For absolute index quality tuning, the indexes tend to have shorter list lengths on
ClueWeb09 such that query processing is often even faster on ClueWeb09 indexes.

8.5.7 Results with INEX 2009

This part is based on our participation in INEX 2009 [BS09] which describes our efforts
that apply our tuning framework to the INEX 2009 test bed for the Efficiency Track.
We tune the index structures for different choices of result size k. To allow comparison
as to retrieval quality with non-pruned index structures, we also depict our results from
the Ad Hoc Track. The scoring model we used in INEX 2009 corresponds to the one we
used in INEX 2008 [BSTO08], this time retrieving article elements only. Details about

the scoring model can be found in Section 5.2.4.

Ad Hoc Track

For our contribution to the Ad Hoc Track, we removed all tags from the XML documents
in the official INEX 2009 collection and worked on their textual content only. The last
two runs have been submitted to INEX 2009, the first is the non-submitted baseline:

e MPII-COArBM’: a content-only (CO) run that considers the stemmed terms in the
title of a topic (including the terms in phrases, but not their sequence) except
terms in negations and stop words. We restrict the retrieval to the top-level
article elements and compute the 1,500 articles with the highest scoregnas value
as described in our contribution to INEX 2008 [BST08]. Note that this approach
corresponds to standard document-level retrieval. This run is the actual non-
submitted baseline to enable a comparison to the submitted runs which all use
proximity information. The corresponding run in Section 5.2.6 has been named
TopX-CO-Baseline-article(Only.

e MPII-COArBP: a CO run which aims to retrieve the 1,500 articles with the highest
SCOTeBM25+5COTEproy Values, where scorepo, is calculated based on all possible
stemmed term pairs in the title of a topic (including the terms in phrases, but
not their sequence) except terms in negations and stop words.

e MPII-COArBPP: a CO run which is similar to MPII-COArBP but calculates the
scoreproe part based on a selection of stemmed term pairs. Stemmed term pairs
are selected as follows: we consider all stemmed tokens in phrases that occur both
in the phrasetitle and in the title and are no stop words. The modified phrases
in the phrasetitle are considered one at a time to combine term pairs usable to
calculate scorepro,. If the phrasetitle is empty, we use approach MPII-COArBP.

The results in Table 8.16 show that computing our proximity score with a subset of
term pairs based on information taken from the phrasetitles (MPII-COArBPP) does not

178 8. Index Tuning for High-Performance Query Processing

run iP[0.00] | iP[0.01] | iP[0.05] | iP[0.10] | MAiP
MPII-COArBM’ | 0.5483 0.5398 0.5112 0.4523 0.2392
MPII-COArBP | 0.5603 0.5516(26) | 0.5361 0.4692 0.2575
MPII-COArBPP | 0.5563 0.5477(28) | 0.5283 0.4681 0.2566

Table 8.16: Results for the Ad Hoc Track: interpolated precision at different recall
levels (ranks for iP[0.01] are in parentheses) and mean average interpolated precision.

improve the iP values compared to using all term pairs (MPII-COArBP). As expected,
MPII-COArBP leads to a slight improvement over MPII-COArBM’ .

Efficiency Track

In the following, we describe our effort in INEX 2009 to tune our index structures for
efficient query processing, taking into account the expected retrieval quality and index
size. After that we briefly explain the approaches used by the other participants in the
Efficiency Track and conclude with the results of the Efficiency Track.

Like for index tuning with the GOV2 and ClueWeb09 collection, we aim to prune
TLs and CLs after a fixed number of entries per list (plus an optional minimum score
requirement for CLs) and employ them as input to a merge join.

To measure retrieval quality, one usually compares the retrieval results with a set
of relevance assessments. As at the time of index tuning we did not have any relevance
assessments and we aim at maximum query processing speed, we tuned for efficiency-
oriented relative index quality. To this end, for each number of results k required by
INEX (k €{15,150,1500}), we first built up a groundtruth as a substitute for relevance
assessments. That groundtruth consists of the top-k results obtained through process-
ing the I(C) index. Note that this corresponds to the k highest scoring results of
MPIT-COArBP.

We have found in Section 8.5.2 for the GOV2 collection that it was reasonable to
use an overlap of a=75% between the top-k documents obtained by query processing
on pruned TLs and CLs and the top-k documents of the groundtruth. This is enough
to achieve the retrieval quality of T'(C), i.e., BM25 retrieval quality. (Note that the
overlap is computed by the amount of overlapping documents and is not based on the
number of characters returned.)

The optimization process follows the description given in Section 8.3.1. Please note
that for our submission to INEX 2009 we used an early implementation of the tuning
framework described in Section 8.3.2 which supported only uncompressed indexes: for
all list lengths [ranging between 10 and 20,000 (step size of 100) and minimal score
cutoffs between 0 and 1 (step size 0.05), we estimate the index size first by hashcode-
based sampling 1% of all terms and term pairs. In our experiments, we restrict the
processing of the query load to those indexes that meet the index size constraint set to
S=100 GB.

Table 8.17 presents the tuning results based on Type A queries with efficiency-

8.5 Experimental Evaluation 179

k (I,m)|overlaplest. size[GB]| Ni(I)| Nc(I)|s¢ - N¢(I)[MB]|sc - Ne(1)[GB]
15 | (210,0.00)| 0.7629 62.8| 66.4-109(3.55-109 507 52.9
150 | (610,0.00)| 0.7639 74.3] 91.3-109(4.31-10° 697 64.2
1500((1810,0.00)| 0.754 84.4/123.3-100(4.97-109 941 74.1

Table 8.17: Tuning results based on Type A queries with efficiency-oriented relative
index tuning, uncompressed indexes.

oriented relative index tuning for the three result cardinalities k. The size of the
access structure a; - K¢(I) + a. - K.(I) is estimated to 9.4 GB for all choices of k with
K.(I) = 7.62-10% and an average term pair length of 12.17 in the sample.

run (1, m
MPII-eff-15 (210,0.00
MPII-eff-150 | (610,0.00
MPII-eff-1500{(1810,0.00

Zthot[mS][Bteorqms][iP[0.00][iP[0.01][iP[0.05][iP[0.10][MAiP
88 2165 0575 0559 0511 0.400] 0.177
132] 2425] 0.574] 0560 0531 0.466] 0.233
27.1] 287.0] 0.566] 0.553] 0.532] 0.464] 0.248

|| =

Table 8.18: Efficiency Track results, type A queries.

Table 8.18 shows the results of the tuned index structures for type A queries. For
performance reasons, tuning was carried out using the type A queries only. To process
type B queries, we used the same pruned indexes. MPII-eff-k depicts the optimal list
lengths for different choices of k, the average cold and hot cache running times, and
interpolated precision values at different recall levels. While measuring the cold cache
running times, we have emptied the filesystem cache after each query execution, not
just after each batch. To collect the hot cache running times, in a first round we fill
the cache by processing the complete query load and measure the running times in the
second round. The difference between the cold and hot cache running times can be

considered as I/O time. Queries are processed using the pruned index structures which

run (1,m
MPII-eff-15 (210,0.00
MPII-eff-150 | (610,0.00
MPII-eff-1500((1810,0.00

2ot [mS][Bteorqms] [iP[0.00][iP[0.01][iP[0.05][iP[0.10][MAiP
604.3] 7,630.4] 0.374] 0356] 0.304] 0.272] 0.099
922.7] 10,235.3| 0.391] 0379 0.338] 0.315] 0.157
1,492.3] 12,9799 0391 0379 0337 0.316] 0.162

Nl Rl N NS

Table 8.19: Efficiency Track results, type B queries.

have been reordered by docid to allow merge join query processing. The pruned index
is created by Hadoop and, in that early version, stored in a MapFile which is accessed
by Hadoop in a non-optimized way during query execution: hence, there is still room
for performance improvements. These performance improvements have been realized
in later implementations (see experiments with other test beds) by means of our own
file-based inverted list implementation and access methods detailed in Section 8.2. It
turns out that already very short list prefixes are sufficient to lead to a result quality
comparable to MPII-COATBP at early recall levels (until iP[0.01]) and to MPII-COArBM’
at later recall levels.

Table 8.19 shows the results of the tuned index structures for type B queries. It is

180 8. Index Tuning for High-Performance Query Processing

clear that in our setting type B queries that consist of partly more than 100 keywords
cannot be executed as fast as type A queries. Many thousands of possible pruned CLs
per query have to be fetched from hard disk before the evaluation can start.

Other participants In the following, we will describe the approaches pursued by
the other participants in the Efficiency Track of INEX 2009.

Spirix: SPIRIX [WKO09] is a P2P system which uses distributed search techniques
for XML retrieval and splits collection, index, and search load over the P2P network.
The employed P2P protocol is based on a Distributed Hash Table (DHT). The authors
exploit XML structure to reduce the number of messages sent between peers. To
compute the structural similarity with indexed articles for CAS queries, the authors
use four groups of functions, which are used in different combinations for ranking and
routing. The authors have implemented adaptions of several scoring models, namely
the BM25, BM25E, and tf - idf model. SPIRIX has participated in the Ad Hoc and
Efficiency track where the precision values were competitive with centralized solutions.

The authors claim that they can reduce the total amount of different structures to
1539. There is no information about the number of structures in the full index such that
the extent of the reduction remains unclear. The system significantly improves on early
precision measures when it uses structural similarity. However an improvement from
iP[0.01]=59% to 59.9% comes at the price of about 50 times slower query processing.

In contrast to the other participants in the Efficiency Track who aim at providing
fast query execution times, the authors redefine efficiency as getting the P2P system
to scale, i.e., load balancing on large collections.

MPII-TopX2: MPII-TopX2 used in INEX 2009 [TAS09] is based on the earlier reim-
plementation of TopX for INEX 2008 [TAS08] and extends it by a new distributed XML
indexing component. It supports a CAS-specific distributed index structure with a par-
allelization of all indexing steps. The overall time for indexing, which is done in a 3-pass
process, amounts to 20 hours on a single node system, and 4 hours on a cluster with
16 nodes.

Retrieval modes include the Article mode (retrieves only article elements), CO Mode
(retrieves any kind of elements), and CAS Mode (supports path queries with NEXT or
XPath2.0 syntax). Entire lists or their prefixes, respectively, can be cached; the decoded
and decompressed data structures can be reused by MPII-TopX2. Keys are tag-term
pairs with a term propagation upwards in the XML tree. ¢ f and ef values are computed
for each tag-term pair. Due to the large collection size, collection-wide statistics are
approximated. The scoring model in use is an XML-specific extension to BM25. The
index uses an inverted block structure and compresses the blocks into a customized
compact binary format.

The Otago System: The system developed at the University of Otago [TJGO09] uses
a dictionary of terms organized in two levels: the first level stores the first four bytes and

8.5 Experimental Evaluation 181

the length of every term string, and the position to retrieve the term block that belongs
to the term prefix. Terms with the same four bytes prefix are stored in the same term
block which stores terms statistics: these include ctf and df values, the offset to locate
the postings list, the length of the postings list, the uncompressed length of the postings
list, and the position to locate the term suffix which is stored at the end of the block.
At start-up, only the first level dictionary is loaded into memory. Query processing
allows to set two parameters, namely lower-k and upper-K. While lower-k specifies how
many documents to return, upper-K specifies how many documents to read from each
t f-sorted postings list. (If there are ties, the postings with the same ¢ f-value as the Kth
posting are also evaluated.) When upper-K is specified, the complete postings list is
decompressed, but only the documents with the highest ¢ f-values are processed. This
is similar to impact-layered indexes presented in Section 6.2.1. Each ¢ f-layer stores the
document ids in increasing order and compresses them by delta-encoding. Postings are
compressed by v-byte encoding. The authors employ a special version of the quick sort
algorithm that partitions the accumulators by their score so that only the top-partition
has to be sorted.

The employed scoring model is a modified version of BM25. Only operating system
caching is used with the disk cache flushed before each run. A memory layer of 5.3GB
is allocated with a usage of 97%. Lower-k is chosen as 15, 150, and 1,500 as required
by the Efficiency Track. Each choice of lower-k is combined with upper-K set to 1, 15,
150, 1,500, 15,000, 150,000, and 1,500,000 which generates 21 runs. The runs which
yield the highest MAiP of 29% and 30%, respectively, set lower-k to 1,500 and use an
upper-K of at least 15,000. Early precision (iP[0.01]) values are good unless upper-K
is chosen small (i.e., too few entries per postings list have been read); peak values
between 58% and 60% are achieved for upper-K choices of at least 15,000. The average
run time is split into I/O and CPU part. For Type A topics, the I/O costs are more
or less constant (between 56ms and 58ms on average per topic), whereas CPU costs
increase with increasing Upper-K (around 20ms for Upper-K<1,500, up to about 65ms
for upper-K=1,500,000). For Type B topics, the I/O costs are again very similar, as for
all choices of lower-k and upper-K the same number of postings is retrieved from disk,
causing the same disk I/O (between 325ms and 350ms). The CPU costs are similar
for upper-K values of at most 150 (around 30ms) independent of the lower-k choice.
Due to the increased number of postings lists for Type B topics, compared to Type A
topics, the CPU time increases way more (up to 217ms for upper-K=1,500,000). The
best MAIP value of 18% is achieved for lower-k=1,500 and upper-K=150,000. Run
time is dominated by the I/O costs. Lower-k values above 15,000 lead to an increased
run time to sort the top-partition of the accumulators.

Efficiency Track Results Figures 8.13 and 8.14 describe the performance of the
submitted runs in terms of efficiency and effectiveness (MAiP metrics) for type A and
type B topics, respectively.

Figures 8.15 and 8.16 describe the performance of the submitted runs in terms of
efficiency and effectiveness (iP[0.01] metrics) for type A and type B topics, respectively.

182 8. Index Tuning for High-Performance Query Processing

MAIP for type-A-topics

0.35
@ Otago
B MPII-Prox
03 PO AMPII-TopX2
¢ ® Spirix
(24
0.25 = A ® ®
*
[. [}
*e
= 02 *
o
g |- B ad IIJ
<
2 015 7Y L]
¢ A AD® (] [
* At e o ° ®.
0.1
A
*
0.05
)))
0 ‘ ‘ ‘ ‘
1.0 10.0 100.0 1000.0 10000.0 100000.0
runtime (ms)
Figure 8.13: MAiP values: type A queries.
MAIP for type-B topics
0.25
A
0.2 L]
A []
)
:: g CXX) °
[[b
0.15 -
4 Otago
= m MPII-Prox
s L
& * A ™ AMPII-TopX2
< * @ Spirix
= *
0.1 L
A
0.05 - L 3
0 ‘ ‘ ‘
100 1000 10000 100000 1000000

runtime (ms)

Figure 8.14: MAiP values: type B queries.

8.6 Hybrid Index Structure for Efficient Text Retrieval 183

iP[0.01] for type-A-topics

0.6 ®
Rk A ° °
h A
.
0.55 * E‘ 4 Otago
W MPII-Prox
0.5 A A MPII-TopX2
A -
* A @ Spirix
0.45
A [J
0.4 =20 Y ®
g []
3 035 s 8 *
[°
0.3
0.25
*
0.2
0.15
[] [] [J
0.1
1.0 10.0 100.0 1000.0 10000.0 100000.0
runtime (ms)

Figure 8.15: iP values: type A queries.

Spirix is very slow because it uses a distributed P2P search setting. The Otago
system is fastest for type B queries since it employs highly optimized C++ code using
impact layered indexes with a modified version of BM25 scores. MPII-TopX2 makes
use of an inverted block structure and compresses the blocks into a customized compact
binary format. Our own runs labelled MPII-Prox use merge joins with pruned indexes,
tuned as described before. Squares in the left rectangle depict our hot cache runs
which represent the best case where every list comes from the cache, squares in the
right rectangle show cold cache runs which represent the worst case where every list
lookup causes I/O costs. Our approach performs index pruning in a retrieval quality-
aware manner to realize performance improvements and smaller indexes at the same
time. Our best tuned index structures provide the best CPU times for type A queries
among all Efficiency Track participants while still providing at least BM25 retrieval
quality. Due to the number of query terms, Type B queries which consist of partly
more than 100 keywords cannot be processed equally performant as type A queries:
the number of pair lists to be fetched from harddisk for type B queries before they can
be evaluated can easily be in the order of thousands.

8.6 Hybrid Index Structure for Efficient Text Retrieval

This section is based on our work published in [BS11]. Query processing with pre-
computed term pair lists can improve efficiency for some queries, but suffers from the

184 8. Index Tuning for High-Performance Query Processing

iP[0.01] for type-B topics

0.5
[]
0.45 4
e © o
3° .
A
0.4 'S
3 =
* 4 Otago
S 035 - - M MPII-Prox
g) A MPII-TopX2
- : A @ Spirix
0.3
0.25
L J
0.2 T T T
100 1000 10000 100000 1000000
runtime (ms)

Figure 8.16: iP values: type B queries.

quadratic number of index lists that need to be read. Here, we present a novel hybrid
index structure that aims at decreasing the number of index lists retrieved at query
processing time, trading off a reduced number of index lists for an increased number of
bytes to read.

8.6.1 Introduction

While precomputed indexes for term pairs can greatly improve performance for short
queries, they are not that efficient for long queries or when lists are not available in
a cache, but need to be read from disk. This disadvantage is rooted in the quadratic
number of term pair lists that need to be accessed for every query. Especially with
the pruning methods proposed earlier in this chapter that store only a small number
of entries per term pair list, query processing time is dominated by the time to locate
and open index lists. Reducing the number of index lists for processing a query can
therefore significantly improve efficiency, even if more data must be read from each list.
We base on and extend the index framework for TLs and CLs presented in Section 8.2.
Experimental results indicated that it is enough to heuristically keep only the best few
thousand entries in each list to achieve good result quality.

8.6 Hybrid Index Structure for Efficient Text Retrieval 185

8.6.2 Hybrid Index Framework

To accelerate query processing, especially for medium-sized queries, it is necessary to
reduce the number of lists accessed by each query. For a query with 5 terms, up to 10
CLs and 5 TLs need to be opened. The hybrid index framework that we have proposed
in [BS11] can reduce this to at most 10 lists in the best case, reducing the number of
lists to open by 33%. We achieve this by combining the CL for a term pair (t1,t2)
with the TLs for ¢; and ts, yielding an extended combined index list (CLExt) that now
contains the best documents for both the term pair and the two single terms. We can
expect that many documents will be included in two or three of the lists, so that the
number of entries in the resulting CLExt will be less than the aggregated number of
entries of the three source lists. Within the CLExt, we store all entries in the same
format, replacing unknown scores by 0, and sort all entries by their docid.

% CL(bike, trails)
E’a (2,3.0,4.5,8.6)
35|l (40.7,159.1)
gl (9,0.2,1.7,2.0) CLExt(bike, trails)
8]l (12,0.5,7.2,3.0) (1,0.0,9.3,5.9)
(1,0.0,9.3,5.9) (2,3.0,4.5,3.6)
(2,3.0,4.5,8.6) § (4,0.7,1.5,9.1)
< 4071591 1% (5,0.0,5.0,0.0) z
2| (5005.000) |5 (9,0.2,1.7,2.0) 8
- : (9.02,1.7,2.0) |8 12,0.5,7.2,3.0 2
Tfé TL(kike) TL(trails) (12’0_5’7'2’3.0) 2 525,0.0,0.0,4.6)) _g
I (193)|| (159]| (25000026 | § Al g
s|| (245)]] (286) 2
gl| (55.0)|] (49.1) v
el | (12,7.2) | (25,4.6)

Figure 8.18: Merge join with hybrid in-
Figure 8.17: Hybrid index CLExt. dex CLExt for query {bike, trails, map}.

Figure 8.17 shows how to combine two TLs and one CL into one CLExt and Fig-
ure 8.18 how a merge join works with the hybrid index CLExt.

At query processing time, only CLExts need to be read, reducing the number of
index lists by n (for queries with n terms). For queries with 3 terms, the number of lists
is only 3 compared to 6 in the existing TL+CL approach. For queries with a larger
number of terms, the technique is less effective since there is still a relatively large
number of CLExts to read, and information from one TL is now included in several
CLExts, so some of the information read during query processing is not needed. We
will see later that the break-even point is around 8 terms per query. Note that TLs

186 8. Index Tuning for High-Performance Query Processing

need to be kept in the index for queries that consist of just a single term.

If we build a hybrid index as we just explained, the size of that index will be a
lot larger than the size of the index with just TLs and CLs. While this comes as a
surprise at first view, it has a simple explanation: many pairs of terms hardly occur
together in the same document’s text window of size W=10, so the corresponding CL
is very short, but they frequently occur in isolation, so the (prefix of the) TL of each
term in the index is long. The CLExt for such pairs is therefore orders of magnitude
larger than the CL for the same pair. We can lower the required space for the hybrid

index type size | build time
CL 93.2 GB

TL 1.6 GB <5h

CLExt 3.1TB 70h

CLExtQrog | 131.7 GB 4.5h

Table 8.20: Index sizes and build times for full (310,0.05) indexes.

index by using additional information on how frequently pairs are used, for example
from a query log. We then build CLExts only for term pairs that are used frequently
enough; for all other pairs we keep the old CL scheme. This drastically reduces the
size of the hybrid index, while still providing reasonable performance improvements.
With the TREC GOV2 collection, generating CLExts only for term pairs that occur at
least once in the AOL query log reduced the on-disk size of the CLExts from over 3TB
to 131.7GB; the on-disk size of all CLs in the standard index was 93.2GB. Table 8.20
shows index sizes and build times for different index types.

8.6.3 Experimental Evaluation

For the experimental evaluation we have built full compressed indexes. We evaluated
our proposed hybrid index with the GOV2 collection, using the 150 Ad Hoc topics
from the TREC 20042006 Terabyte Track, Ad Hoc Tasks and the first 10,000 queries
from the Terabyte Track, Efficiency Task (EffTrack) 2005 [CSS05] as test beds. All
TLs and CLs are pruned to at most 310 entries, and entries in CLs have an acc-score
of at least 0.05; experiments in Section 8.5.2 have shown that this is enough to yield a
similar quality for top-10 documents as produced by unpruned TLs. We report average
cold-cache runtimes (averaged over six independent runs) and access costs for top-10
retrieval with the original index (TL+CL) and the hybrid index with log-based pruning
(TL+CLExtQr0g); file-system caches were emptied before running each query, which is
a very conservative setting. Note that runtimes and cost are largely independent of the
number of retrieved results.

For the Terabyte Track, Ad Hoc Tasks queries, using the hybrid index improved
runtime from 59ms to 49ms per query over the original index; for the Eff Track queries,
the improvement was even better (55ms vs 42ms per query). This clearly shows that
our hybrid index can greatly improve cold-cache performance. We will now evaluate
the impact for queries of different length, and the influence of log-based pruning.

8.6 Hybrid Index Structure for Efficient Text Retrieval 187

400

B TL+CL, Efficiency Track

350 +—— W TL+4CLExtq,,, Efficiency Track T
O TL4CL, Terabyte Tracks
= TL+CLExtg g Terabyte Tracks
300
250
T -
150 T
100 T
50
04
2 3 4 5 6 7 8

number of query terms

ztime[ms]
N
o
o

Figure 8.19: Average runtimes for Terabyte and EffTrack queries.

Figure 8.19 reports average query times for the two test beds, grouped by the
number of terms per query. Improvements are best for short queries, but we see im-
provements up to 7 terms. The chart also indicates the standard deviations which are
pretty low.

120000 40

100000 +

80000 +

60000 +

40000 +

F#read bytes
S1Sl| peaJl# g

20000 +

2 3 4 5 6 7 8

number of query terms

Figure 8.20: Average cost in bytes and average number of opened lists, for the Eff Track
queries.

Figure 8.20 details the average number of bytes read per query for the EffTrack.
The hybrid index reads up to twice as many bytes from disk, but is (as we saw before)
still faster because it needs to open fewer lists (also depicted in this figure by triangles
and diamonds).

Figure 8.21 shows the influence of log-based pruning on runtime. We computed,

188 8. Index Tuning for High-Performance Query Processing

160 + -+ 0.7
| TL+CL, Efficiency Track "
140 + o m 2 |6
B TL+CLEXt o o0 Efficiency Track - “;‘
[0}
120 + ¥ g
2 g 405
=
100 +)
9] 4
= c|le +04
£ 52
£ 80+ 2|5
T FIE
% T 0.3
60 +
+ 0.2
40 4
204 +01
0+ +0

[0;20%] (20%;40%] (40%;60%] (60%;80%] (80%,100%]
#CLExt/#pairs

Figure 8.21: Effect of query term pair coverage in the AOL query log on runtime, for
the Eff Track queries.

for each EffTrack query, the fraction of term pairs covered in the log, and grouped
queries into five buckets from low coverage (0%-20%) to high coverage (80%-100%).
Our method gives benefit only for queries with a term pair coverage of at least 60%;
however, these are the most frequent queries in this load (indicated by the black dots).
For the remaining queries, our method does not create a performance penalty.

8.7 Conclusion

We clearly demonstrated that indexing terms and term pairs, together with tunable list
pruning, is a viable method to improve either result quality or, providing a similar qual-
ity as pure term indexes, processing performance. Results with effectiveness-oriented in-
dexes are comparable to the best results using unpruned indexes and efficiency-oriented
index configurations yield almost one order of magnitude performance gain compared
to a state-of-the-art top-k algorithm. We have demonstrated that our hybrid index
structure significantly improves cold-cache query processing times of almost 25% on
standard benchmark queries from TREC Terabyte and Efficiency Tracks by decreasing
the number of fetched index lists, at the price of reading more from each list. The
highest improvements are achieved for short queries.

Chapter 9

Conclusion and Outlook

9.1 Conclusion

In the presence of growing data, the need for efficient query processing under result
quality and index size control becomes more and more a challenge to search engines.
This work has shown how to use proximity scores to make query processing effective
and efficient with focus on either of the optimization goals.

This thesis made the following important contributions:

e We have presented a comprehensive comparative analysis of proximity score mod-
els and a rigorous analysis of the potential of phrases and have adapted a leading
proximity score model for XML data.

e We have discussed the feasibility of all presented proximity score models for top-
k query processing and have presented a novel index combining a content and
proximity score that helps to accelerate top-k query processing and improves
result quality.

e We have presented a novel, distributed index tuning framework for term and
term pair index lists that optimizes pruning parameters by means of well-defined
optimization criteria under disk space constraints. Indexes can be tuned with
emphasis on efficiency or effectiveness: the resulting indexes yield fast processing
at high result quality.

e We have shown that pruned index lists processed with a merge join outperform
top-k query processing with unpruned lists at a high result quality.

e Moreover, we have presented a hybrid index structure for improved cold cache
run times.

9.2 OQOutlook

There are still some interesting remaining open challenges that deserve future attention.

189

190 9. Conclusion and Outlook

As our index tuning framework only uses term and term pair lists (e.g., combined
lists), a possible extension would be to precompute (selected) term n-tuple lists for
n > 2. Furthermore, extending index lists with more features could generate better re-
trieval quality at lower query processing costs: some query-independent features like the
PageRank score may be easily integrated into term indexes (cf. Section 7.3.1) whereas
other features may pose real challenges for integration into the existing framework and
ask for novel index structures.

The evaluation and integration of further pruning methods such as the document-
centric pruning by Biittcher and Clarke (see Section 6.2.3 for more details) into our
index tuning framework may be worth investigation.

Possible improvements as to index construction, index tuning, and index mainte-
nance are as follows: improving the construction of the final index by reducing the
number of temporary index entries, and improving the estimation stage which cur-
rently needs to parse the complete document collection would reduce the time required
to build up an index and to find optimal pruning parameters. Further consideration
of the impact of pruned indexes on cache effectiveness and a careful index layout that
groups frequently co-occurring lists close to each other will be a key extension for further
improving processing time with cold caches.

Index maintenance such as supporting index updates would be especially beneficial
for dynamic data such as email collections. So far the index has to be completely rebuilt
and the optimization process is repeated completely if new documents are added to a
collection. For dynamic data, it is required to develop means to incrementally add new
documents and regularly optimize tuning parameters without the need to completely
rebuild the index.

Finally, our hybrid index structure may be improved in the following ways: our
hybrid index structure significantly improves cold-cache query processing times by de-
creasing the number of fetched index lists, at the price of reading more from each list. As
the highest performance improvements are achieved for short queries, future work may
concentrate on improving performance for long queries, for example by precomputing
lists for frequently used phrases or removing non-important pair lists. Extending our
index tuning framework to optimize pruning parameters for our hybrid index structure
would certainly enrich our framework.

Appendix A

Retrieval Quality and Sensitivity

191

192 A. Retrieval Quality and Sensitivity

WEB
0.42

0.38 -

0.36 -

0.34 -

0.3

NDCG at 10

0.28 -

0.26 -

0.24 -

0.2

%
topic set
BM25 LM,Dirichlet Lv,Zhai de Kretser,Moffat ms
ES mmm—

Buettcher et al. Zhao,Yun msss
Rasolofo,Savoy s Tao,Zhai Song et al. m—

(a) Web Track (WT10g): best NDCG@10 values per scoring model

WEB
0.4

0.36 -

0.34 |-

03

NDCG at 100

0.28 -

0.26 |-

0.22

topic set

Buettcher et al. mm—— Zhao,Yun mssss

BM25 LM,Dirichlet mmm— Lv,Zhai e de Kretser,Moffat ==
ES
Rasolofo,Savoy s Tao,Zhai Song et al. m—

(b) Web Track (WT10g): best NDCG@100 values for per scoring model

Figure A.1: Web Tracks test beds (WT10g): best NDCG values

193

precision at 10

precision at 100

WEB
0.46

044 | -
042 |
04
038 |-

0.36 -

0.32 -

03 |-

0.28 -

0.22 -

02 =
0):6\
%,

<)

topic set
BM25 LM,Dirichlet Lv,Zhai de Kretser,Moffat ms
ES mmm—

Buettcher et al. Zhao,Yun msss
Rasolofo,Savoy s Tao,Zhai Song et al. m—

(a) Web Track (WT10g): best P@10 values per scoring model

WEB
0.22

02

0.18 |-

0.16 |-

0.1

0.08

©

topic set

Zhao,Yun mssss

LM,Dirichlet mmm— Lv,Zhai e de Kretser,Moffat ==
ES
Tao,Zhai Song et al. m—

Rasolofo,Savo

(b) Web Track (WT10g): best P@100 values for per scoring model

Figure A.2: Web Tracks (WT10g): best precision values

194

A. Retrieval Quality and Sensitivity

WEB

0.26
0.24 B
0.22 B
0.2 B
< 0.18
£ E
0.16 B
0.14 o
0.12 B
01 & &
2
KN s N KN %
2 D, £2 D,
< <
topic set
BM25 LM,Dirichlet mm— Lv,Zhai de Kretser,Moffat =
Buettcher et al. m—— Zhao,Yun mmm ES mmmmm
Rasolofo,Savoy s Tao,Zhai Song et al. m——

Figure A.3: Web Track (WT10g): best MAP values for each scoring model

195

NDCG at 10

NDCG at 100

0.5

0.48

0.46

0.44

0.42

0.4

0.38

0.36

0.34

0.32

0.3

0.28

ROBUST

0.44

0.42

0.4

0.38

0.36

0.34

0.32

0.3

0.28

0.26

0.24

0.22

topic set
BM25 LM,Dirichlet Lv,Zhai de Kretser,Moffat mws
Buettcher et al. Zhao,Yun mss =
Rasolofo,Savo Tao,Zhai Song et al. m—

(a) Robust Track: best NDCG@10 values for each scoring model

ROBUST

topic set
BM25 LM, Dirichlet s Lv,Zhai e de Kretser,Moffat ==
Buettcher et al Zhao,Yun msss ES mmmmm
Rasolofo,Savo Tao,Zhai Song et al. m——

(b) Robust Track: best NDCG@100 values for each scoring model

Figure A.4: Robust Track: best NDCG values

196

A. Retrieval Quality and Sensitivity

precision at 10

precision at 100

ROBUST
0.48
0.46 |- -
0.44 | ,
042 —
04 - B
0.38 —
0.36 —
0.34 | —
0.32 —
03 - B
0.28 —
0.26 —
0.24 -
%
topic set
BM25 LM,Dirichlet Lv,Zhai de Kretser,Moffat mws
Buettcher et al. Zhao,Yun mss =
Rasolofo,Savo Tao,Zhai Song et al. m—
(a) Robust Track: best P@Q10 values per scoring model
ROBUST
0.24
0.22 -
0.2 -
0.18 - B
0.16 - B
0.14 |- o
0.12 -
0.1 [-
0.08 - P
%, d 7, %
% A g
topic set
BM25 LM, Dirichlet s Lv,Zhai e de Kretser,Moffat ==
Buettcher et al. m—— Zhao,Yun msss ES mmmmm
Rasolofo,Savoy s Tao,Zhai Song et al. m—

(b) Robust Track: best P@Q100 values per scoring model

Figure A.5: Robust Track: best precision values

197

MAP

ROBUST
0.3
0.28 - B
0.26 - B
024 B
022 B
02 .
0.18 |- B
0.16 B
0.14 B
012 3) 7) 6,
% S % e, SN %
&2 % % 22 %
topic set
BM25 LM,Dirichlet mm— Lv,Zhai de Kretser,Moffat =
Buettcher et al. m—— Zhao,Yun mmm ES mmmmm
Rasolofo,Savoy s Tao,Zhai Song et al. m——

Figure A.6: Robust Track: best MAP values for each scoring model

198

A. Retrieval Quality and Sensitivity

NDCG at 10

NDCG at 100

0.56
054
0.52

05
0.48
0.46
0.44
0.42

0.4
0.38
0.36
034
0.32

03
0.28
0.26
0.24
0.22

0.2
0.18

05
0.48
0.46
0.44
0.42

04
0.38
0.36
0.34
0.32

03
0.28
0.26
0.24
0.22

TERABYTE

B &
53 % s %
R2 v 2

topic set

LM,Dirichlet mm— ES
Zhao,Yun mss Song et al.
Tao,Zhai de Kretser,Moffat s

BM25
Buettcher et al.
Rasolofo,Savo

(a) Terabyte Track: best NDCG@10 values per scoring model

TERABYTE

‘7((

topic set

BM25 LM,Dirichlet s ES mmmmam
Buettcher et al. Zhao,Yun s Song et al.
Rasolofo,Savoy s Tao,Zhai de Kretser,Moffat s

(b) Terabyte Track: best NDCG@100 values per scoring model

Figure A.7: Terabyte Track: best NDCG values

199

precision at 10

precision at 100

0.48
0.46
0.44
0.42

0.4
0.38
0.36
0.34
0.32

0.3
0.28
0.26
0.24
0.22

0.2
0.18

TERABYTE

P
%, %
% &2

topic set

LM,Dirichlet mm— ES
Zhao,Yun mss Song et al
Tao,Zhai de Kretser,Moffat s

BM25
Buettcher et al.
Rasolofo,Savo

(a) Terabyte Track: best P@10 values per scoring model

TERABYTE

s %
K2

topic set

BM25 LM,Dirichlet s ES mmmmam
Buettcher et al Zhao,Yun s Song et al.
Rasolofo,Savo Tao,Zhai de Kretser,Moffat s

(b) Terabyte Track: best P@100 values per scoring model

Figure A.8: Terabyte Track: best precision values

200 A. Retrieval Quality and Sensitivity

TERABYTE
0.34 - B
0.32 B
03 |- o
0.28 - B
0.26 - B
o - o
2 0.24
=
0.22 - o
02 [B
0.18 |- B
0.16 - B
0.14 B
0.12 BS
%, % %o %
P % &2
topic set
BM25 s LM, Dirichlet mmmm— ES m—
Buettcher et al. sessan Zhao,Yun mmmes Song et al. m——
Rasolofo,Savoy s Tao,Zhai de Kretser,Moffat s

Figure A.9: Terabyte Track: best MAP values for each scoring model

201

NDCG at 10

NDCG at 100

0.66
0.64
0.62

06
058
0.56
054
0.52

05
0.48
0.46
0.44
0.42

04
0.38
0.36

INEX

%, %, %,
topic set

0.58

0.56

0.54

0.52

0.5

0.48

0.46

0.44

0.42

0.4

0.38

0.36

0.34

0.32

BM25
Buettcher et al.
Rasolofo,Savo

Zhao,Yun mss

LM,Dirichlet Lv,Zhai de Kretser,Moffat mws
ES
Tao,Zhai Song et al. m—

(a) INEX: best NDCG@10 values per scoring model

INEX

v’o,o Y %

topic set

Zhao,Yun msss

LM, Dirichlet s Lv,Zhai e de Kretser,Moffat ==
ES
Tao,Zhai Song et al. m——

Rasolofo,Savo

(b) INEX: best NDCG@100 values per scoring model

Figure A.10: INEX: best NDCG values

202

A. Retrieval Quality and Sensitivity

precision at 10

precision at 100

0.62

06
0.58
0.56
0.54
052

05
0.48
0.46
0.44
0.42

0.4
0.38
0.36
0.34
0.32

INEX

2%, 2, %,

topic set

0.34

0.32

0.3

0.28

0.26

0.24

0.22

0.2

0.18

0.16

0.14

BM25
Buettcher et al.
Rasolofo,Savo

Zhao,Yun mss
Tao,Zhai Song et al. m—

LM,Dirichlet Lv,Zhai de Kretser,Moffat mws
ES

(a) INEX: best P@Q10 values per scoring model

INEX

v’o,o Y %

topic set

Buettcher et al. m—— Zhao,Yun msss

BM25 LM, Dirichlet s Lv,Zhai e de Kretser,Moffat ==
ES
Rasolofo,Savoy s Tao,Zhai Song et al. m—

(b) INEX: best P@Q100 values per scoring model

Figure A.11: INEX: best precision values

203

MAP

0.4

0.38

0.36

0.34

0.32

0.3

0.28

0.26

0.24

0.22

0.2

0.18

0.16

INEX

2 ®
% % <

topic set

BM25 LM,Dirichlet mm— Lv,Zhai de Kretser,Moffat =
Buettcher et al. m—— Zhao,Yun mmm ES mmmmm
Rasolofo,Savoy s Tao,Zhai Song et al. m——

Figure A.12: INEX: best MAP values for each scoring model

204 A. Retrieval Quality and Sensitivity
0.12
0.10 *
Song et al.
0.08
° @ Tao,Zhai
Q 0.06
S
[7,]
De
0.04 Kretser,Moffat Rasolofo,Savoy
4
0.02 @ Ly, Zhai ¢ Zhao,Yun Buttcher et al.
: ¢ BM25
LM, Dirichlet
0.00 T T |’ T T T T T T T 1
0O 05 1 15 2 25 3 35 4 45 5 55
Entropy
(a) WEB: sensitivity of scoring models for MAP
0.18
0.16
@ Songetal.
0.14
0.12
'?3 0.10
= De
o .
& 0.08 Kretser,Moffat ¢ Tao,zhai
0.06 * Rncnlnfn,‘in\/m’/
@ Lv,Zhai
0.04 : Zhao,Yun
0.02 ® BM25 Biittcher et al.
0.00 T T T I’ LIIVI' DIIrIChI?t T T T T T 1

0O 05 1 15 2 25 3 35 4 45 5 55 6 6.5
Entropy

(b) WEB: sensitivity of scoring models for NDCG@10

Figure A.13: WEB: sensitivity of scoring models

205

0.14

0.12

0.02

0.00

0.20
0.18
0.16
0.14
0.12

0.10

Spread

0.08
0.06
0.04
0.02
0.00

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Entropy

(a) ROBUST: sensitivity of scoring models for MAP

* Tao, Zhai
@ Songetal.
@ De Kretser,Moffat
N Rasolofo, Savoy
P Lv, Zhai ¢ Zhao, Y.“._,.'Bugccher etal.
P BM25

@ LM, Dirichlet
T T

0 05 1 15 2 25 3 35 4 45 5 55 6

Entropy

(b) ROBUST: sensitivity of scoring models for NDCG@10

Figure A.14: ROBUST: sensitivity of scoring models

* Tao, Zhai
& Songet al.
B.uttcher et al.
BM25 Zhao, Yun
® Ly, Zhai - Rasolofo, Savoy
De Kretser,Moffat
9 LM, Dirichlet
T T T T T T T T 1

206

A. Retrieval Quality and Sensitivity

0.25

0.20

0.15

Spread

0.10

0.05

0.00

0.20

0.18

0.16

0.14

0.12

Spread
o
[E=Y
o

0.08
0.06
0.04
0.02

0.00

@ Songetal.

@ Tao, Zhai

L 2
De Kretser,Moffat

¢ Rasolofo, Savoy ¢ Bittcheret al.

<

" BM25 @ Zhao, Yun

@ LM, Dirichlet
T T T T T T 1

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Entropy

(a) TERABYTE: sensitivity of scoring models for MAP

@ Songetal.

@ De Kretser,Moffat

4 Rasolofo, Savoy

¥ Tao, Zhai

_Zhao, Yun
v

L2
¢ BM25 Blttcher et al.

4 LM, Dirichlet

05 1 15 2 25 3 35 4 45 5 55 6 65 7 75

Entropy

(b) TERABYTE: sensitivity of scoring models for NDCG@10

Figure A.15: TERABYTE: sensitivity of scoring models

207

Spread

0.25
0.20 ¢ Songetal.
@ Tao, Zhai
0.15
R
©
g
S
wv
0.10
@ De Kretser, Moffat ® Biittcher et al.
® Zhao, Yun
0.05 -
Lv, Zhai ©BM25 #Rasolofo, Savoy
@ LM, Dirichlet
0.00 T T T T T T T T 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Entropy
(a) INEX: sensitivity of scoring models for MAP
0.25
V'S &
020 " De Kretser, Moffat ¥ Song et al.
@ Tao, Zhai
0.15
0.10
@ Ly, Zhai @ Rasolofo, Savoy, it cher et al.
0.05 & BM25 *
Zhao, Yun
0.00 : : : # LM, Dirichlet : : : :

T
0 0.5 1 1.5 2 2.5 3 3.5 4
Entropy

(b) INEX: sensitivity of scoring models for NDCG@10

Figure A.16: INEX: sensitivity of scoring models

Appendix B

TREC

num: title num: title

701: U.S. oil industry history 726: Hubble telescope repairs

702: Pearl farming 727: Church arson

703: U.S. against International Criminal Court | 728: whales save endangered

704: Green party political views 729: Whistle blower department of defense
705: Iraq foreign debt reduction 730: Gastric bypass complications
706: Controlling type II diabetes 731: Kurds history

707: Aspirin cancer prevention 732: U.S. cheese production

708: Decorative slate sources 733: Airline overbooking

709: Horse racing jockey weight 734: Recycling successes

710: Prostate cancer treatments 735: Afghan women condition

711: Train station security measures 736: location BSE infections

712: Pyramid scheme 737: Enron California energy crisis
713: Chesapeake Bay Maryland clean 738: Anthrax hoaxes

714: License restrictions older drivers 739: Habitat for Humanity

715: Schizophrenia drugs 740: regulate assisted living Maryland
716: Spammer arrest sue 741: Artificial Intelligence

717: Gifted talented student programs 742: hedge funds fraud protection
718: Controlling acid rain 743: Freighter ship registration
719: Cruise ship damage sea life 744: Counterfeit ID punishments
720: Federal welfare reform 745: Doomsday cults

721: Census data applications 746: Outsource job India

722: Iran terrorism 747: Library computer oversight
723: Executive privilege 748: Nuclear reactor types

724: Iran Contra 749: Puerto Rico state

725: Low white blood cell count 750: John Edwards womens issues

Table B.1: TREC 2004 Terabyte Track, Ad Hoc Task topics.

210

B. TREC

num: title num: title

751: Scrabble Players 776: Magnet schools success

752: Dam removal 777: hybrid alternative fuel cars

753: bullying prevention programs 778: golden ratio

754: domestic adoption laws 779: Javelinas range and description
755: Scottish Highland Games 780: Arable land

756: Volcanic Activity 781: Squirrel control and protections
757: Murals 782: Orange varieties seasons

758: Embryonic stem cells 783: school mercury poisoning

759: civil war battle reenactments 784: mersenne primes

760: american muslim mosques schools 785: Ivory-billed woodpecker

761: Problems of Hmong Immigrants 786: Yew trees

762: History of Physicians in America 787: Sunflower Cultivation

763: Hunting deaths 788: Reverse mortgages

764: Increase mass transit use 789: abandoned mine reclamation
765: ephedra ma huang deaths 790: women'’s rights in Saudi Arabia
766: diamond smuggling 791: Gullah geechee language culture
767: Pharmacist License requirements 792: Social Security means test

768: Women in state legislatures 793: Bagpipe Bands

769: Kroll Associates Employees 794: pet therapy

770: Kyrgyzstan-United States relations 795: notable cocker spaniels

771: deformed leopard frogs 796: Blue Grass Music Festival history
772: flag display rules 797: reintroduction of gray wolves
773: Pennsylvania slot machine gambling | 798: Massachusetts textile mills

774: Causes of Homelessness 799: Animals in Alzheimer’s research
775: Commercial candy makers 800: Ovarian Cancer Treatment

Table B.2: TREC 2005 Terabyte Track, Ad Hoc Task topics.

211

num: title num: title

801: Kudzu Pueraria lobata 826: Florida Seminole Indians
802: Volcano eruptions global temperature 827: Hidden Markov Modeling HMM
803: May Day 828: secret shoppers

804: ban on human cloning 829: Spanish Civil War support
805: Identity Theft Passport 830: model railroads

806: Doctors Without Borders 831: Dulles Airport security
807: Sugar tariff-rate quotas 832: labor union activity

808: North Korean Counterfeiting 833: Iceland government

809: wetlands wastewater treatment 834: Global positioning system earthquakes
810: timeshare resales 835: Big Dig pork

811: handwriting recognition 836: illegal immigrant wages
812: total knee replacement surgery 837: Eskimo History

813: Atlantic Intracoastal Waterway 838: urban suburban coyotes
814: Johnstown flood 839: textile dyeing techniques
815: Coast Guard rescues 840: Geysers

816: USAID assistance to Galapagos 841: camel North America

817: sports stadium naming rights 842: David McCullough

818: Chaco Culture National Park 843: Pol Pot

819: 1890 Census 844: segmental duplications
820: imported fire ants 845: New Jersey tomato

821: Internet work-at-home scams 846: heredity and obesity

822: Custer’s Last Stand 847: Portugal World War 11
823: Continuing care retirement communities | 848: radio station call letters
824: Civil Air Patrol 849: Scalable Vector Graphics
825: National Guard Involvement in Iraq 850: Mississippi River flood

Table B.3: TREC 2006 Terabyte Track, Ad Hoc Task topics.

212

B. TREC

topic number: query

topic number: query

l:obama family tree

26:lower heart rate

2:french lick resort and casino

27:starbucks

3:getting organized

28:inuyasha

4:toilet 29:ps 2 games
5:mitchell college 30:diabetes education
6:kes 31:atari

T:air travel information

32:website design hosting

8:appraisals

33:elliptical trainer

9:used car parts

34:cell phones

10:cheap internet

35:hoboken

11:gmat prep classes

36:gps

12:djs

37:pampered chef

13:map

38:dogs for adoption

14:dinosaurs

39:disneyland hotel

15:espn sports

40:michworks

16:arizona game and fish

41:orange county convention center

17:poker tournaments

42:the music man

18:wedding budget calculator

43:the secret garden

19:the current

44:map of the united states

20:defender

45:solar panels

21:volvo

46:alexian brothers hospital

22:rick warren

47:indexed annuity

23:yahoo

48:wilson antenna

24:diversity

49:flame designs

25:euclid

50:dog heat

Table B.4: TREC 2009 Web Track, Ad Hoc Task topics.

213

topic number: query

topic number: query

51:horse hooves

76:raised gardens

52:avp T7:bobcat
53:discovery channel store 78:dieting
54:president of the united states 79:voyager

55:iron

80:keyboard reviews

56:uss yorktown charleston sc

81:afghanistan

57:ct jobs

82:joints

58:penguins

83:memory

59:how to build a fence

84:continental plates

60:bellevue

85:milwaukee journal sentinel

61:worm

86:bart sf

62:texas border patrol

87:who invented music

63:flushing 88:forearm pain
64:moths 89:0cd
65:korean language 90:mgb
66:income tax return online 91:er tv show
67:vldl levels 92:the wall
68:pvc 93:raffles
69:sewing instructions 94:titan

70:to be or not to be that is the question

95:earn money at home®

71:living in india

96:rice

72:the sun 97:south africa
73:neil young 98:sat
T4:kiwi 99:satellite

75:tornadoes

100:rincon puerto rico®

Table B.5: TREC 2010 Web Track, Ad Hoc Task topics (! indicates

non-assessed

Appendix C

INEX

topic_id | title

289 emperor "Napoleon I” Polish

290 “genetic algorithm”

291 Olympian god or goddess

292 Italian Flemish painting Renaissance -French -German

293 wifl security encryption

294 user interface design usability guidelines

295 software intellectual property patent license

296 ”Borussia Dortmund” + European Championship Intercontinental Cup
297 “cool jazz” "West coast” musician

298 George Orwell life books essays 1984 Eric Arthur Blair Animal Farm
300 Airbus A380 ordered

301 Algebraic Vector Space Model generalized vector space model

Latent Semantic Indexing Topic-Based vector space model extended Boolean
model enhanced topic based Salton SMART

302 “web services” security standards

303 fractal applications -art

304 allergy treatments

305 “revision control system”

306 theories Studies genre classification structuralist Plato forms Aristotle forms
308 wedding traditions and customs

309 "Ken Doherty” finals tournament

310 Novikov self-consistency principle and time travel

311 global warming cause and effects

312 recessive genes and hereditary disease or genetic disorder
313 “"immanuel kant” "moral philosophy” "categorical imperative”
314 food additive toxin carcinogen "E number”

315 spider hunting insect

316 differents disciplines and movements for gymnastics sport
317 tourism paris visit museum cathedral

Table C.1: INEX CO topics with relevance assessments, Ad Hoc Track 2006, part 1

215

216 C. INEX
topic_id | title
318 the atlantic ocean islands and the slave trade
319 "northern lights” "polar lights” “aurora borealis” "solar wind” "magnetic field”
earth
320 paris transport "Gare de Lyon” "Gare du Nord”
321 buildings designed Antoni Gaudi Barcelona architect
322 castles kasteel in the netherlands
323 founder ikea
324 composition of planet rings
325 ”Cirque du Soleil” shows
326 Scotland tourism
327 cloning animals accepted "United States of America”
328 NBA European basketball player
329 "national dress” +Scottish
330 “nobel prize” laureate physics dutch Netherlands
331 figure tulips
332 NCAA basketball tournament "march madness”
333 steve wozniak steve jobs
334 ”Silk Road” China
335 prepare acorn eat
336 species of monotreme
337 security algorithms in computer networks
338 high blood pressure effect
339 Toy Story
340 Reinforcement Learning + Q-Learning
341 microkernel operating systems
342 "birthday party” "nick cave”
343 fantasy novel goodkind book
344 XML database
345 Sex Pistols concert audience Manchester music scene
346 ~+unrealscript language api tutorial
347 +”state machine” figure moore mealy
348 drinking water abstraction +germany
349 proprietary implementation +protocol +wireless +security
350 Animal flight
351 ”Chinese wedding” custom tradition
352 Faster-than-light travel
353 pseudocode for in-place sorting algorithm
354 novel adaptations for science fiction films
355 +"Best Actress” +”Academy Award” -Supporting -nominated winner film
356 use of natural language processing in information retrieval
357 babylonia babylonian assyriology
358 ontologies information retrieval semantic indexing
360 solar energy for domestic electricity and heating
361 "Europe after the second world war” 4+ democracy
362 effect nuclear power plant accident

Table C.2: INEX CO topics with relevance assessments, Ad Hoc Track 2006, part 2

217

topic_id | title

363 Bob Dylan Eric Clapton

364 +mushroom poisonous poisoning

365 economy peru international investment tourism

366 Fourier transform applications

368 Hymenoptera +Apocrita -Symphyta +reproduction queen bees wasps hornets

369 Pillars of Hercules + Mythology

371 escaped convict "William Buckley”

372 Purpose of voodoo rituals.

373 Australia’s involvement in Echelon spy network

374 Aid following the 2004 Tsunami.

375 states countries nuclear proliferation nonproliferation treaty npt

376 “diabetes mellitus” "type 2” symptoms

378 +rules "team sports” +indoor +ball world -football -basketball -handball -
voleyball

379 "Helms-Burton law” "United States” embargo against Cuba consequences econ-
omy

380 Symptoms: headache, fatigue, nausea

381 ubiquitous computing and application

382 “greek mythology” aphrodite

383 Informations about the city of Lyon in France

384 politics political albert einstein

385 arnold schwarzenegger stars cast

386 fencing +weapon

387 bridge types

388 rhinoplasty

390 Insomnia "what are the causes” +sleep

391 Cricket "How to Play”

392 Australian Aboriginals "stolen generation”

395 September 11 "conspiracy theories”

399 “mobile phone” country UMTS

400 “non violent” revolution country

401 movie award "eddie murphy” ”jim carrey” "robin williams”

402 country european capital

403 color television analog standard description

404 french france singer

405 "The Old Man and the Sea”

406 book architecture

407 "Football World Cup” +”"Miracle of Bern”

409 Hybrid Vehicles -biology "fuel efficiency” "fuel sources” model engine

410 Routers and Switches +computer -travel -light network types history

411 +GSM, +CDMA, system,standard,clear battery coverage roaming price.

413 Coordinates and Population of capital cities of Europe

Table C.3: INEX CO topics with relevance assessments, Ad Hoc Track 2006, part 3

218 C. INEX

topic id | title topic id | title

544 meaning of life 602 Webster’s Dictionary

545 dance style 603 Tata Motors Company in India

546 19th century imperialism 607 law legislation act +nuclear -family

547 Greek revolution 1821 609 mechanism RAID storage

550 dna testing -forensic -maternity - | 610 Nikola Tesla inventions patents

paternity

551 pollen allergy 611 rotary engines in cars

552 keyboard instrument -electronic 613 wireless network security

553 spanish classical +guitar players 616 +Egypt museum pyramid

555 +Amsterdam picture image 617 +acne treatment side effects

556 vegetarian person -she -woman 624 “open source” information retrieval
systems

557 electromagnetic waves 626 "Bayes Filter” +application

559 vodka producing countries 628 MBA school in Canada

561 Portuguese typical dishes 629 science fiction film

562 algerian war 634 vauban

563 Virginia Woolf novels 635 Linux Operating System

565 discovery "by chance” serendipity 636 Image File Formats

570 introduced animals 637 Java Programming Language

574 guitar tapping 641 Museum Picasso France

576 aircraft formation 642 social networks mining

577 genetically modified food safety 643 wikipedia vandalism

578 childbirth tradition 644 virtual museums

579 diet descriptions 646 records management” +metadata -
system

580 “european basketball players” +nba 647 time travel theories

581 wine tasting 649 flower meaning

582 famous bouddhist places 650 ale

585 +7International brigades” Spanish | 656 bilingualism children "language ac-

Civil War quisition”

586 “magnetic levitation” technology 657 scrabble game rules

587 autistic spectrum disorder 659 technological singularity concept and
implications

592 berbers of north africa 666 party primaries in the United States

595 car company 667 Wine regions in Europe

596 Jennifer Lopez 668 Codebreaking at Bletchley Park

597 expert on database 669 coin collecting

598 mahler symphony song 673 intrusion detection

600 Japanese culture food 675 Environmental Impacts of Earth-
quakes

601 Townships of Michigan 677 terracotta figures +horse

Table C.4: Assessed INEX CO topics, Ad Hoc Track 2008

219

topic id | title phrasetitle

2009001 | Nobel prize "Nobel prize”

2009002 | best movie "best movie”

2009003 | yoga exercise “yoga exercise”

2009004 | mean average precision reciprocal | "mean average precision” “reciprocal
rank references precision recall pro- | rank” "precision recall” "recall preci-
ceedings journal sion”

2009005 | chemists physicists scientists al- | "periodic table”
chemists periodic table elements

2009006 | opera singer italian spanish -soprano | “opera singer”

2009007 | financial and social man made catas- | -"natural disaster” “financial misfor-
trophes adversity misfortune -"natural | tune” financial disaster” “financial
disaster” catastrophe” "financial adversity” "so-

cial disaster” ”social catastrophe”

2009008 | israeli director actor actress film festi- | ”israeli director” "israeli actor” "israeli
val actress” "film festival”

2009009 | election +victory australian labor | ”election victory” ’state election”
party state council -federal “council election” ”australian labor

party”

2009010 | applications bayesian networks bioin- | "bayesian networks”
formatics

2009011 | olive oil health benefit "olive 0il” "health benefit”

2009012 | vitiligo pigment disorder cause treat- | "treatment of vitiligo”, "cause of "vi-
ment tiligo” "pigment disorder”

2009013 | native american indian wars against | "native american” “american indian”
colonial americans “wars against colonial americans”

2009014 | content based image retrieval “content based” "image retrieval” ”"con-

tent based image retrieval”

2009015 | Voice over IP none

2009016 | cycle road skill race “road bike” "road race”

2009017 | rent buy home none

2009018 | Dwyane Wade "Dwyane Wade”

2009019 | Latent semantic indexing "latent semantic indexing”

2009020 | IBM computer "IBM computer”

2009021 | wonder girls "wonder girls”

2009022 | Szechwan dish food cuisine "Szechwan dish” ”Szechwan food”

"Szechwan cuisine”

2009023 | plays of Shakespeare”+Macbeth “plays of Shakespeare”

2009024 | cloud computing “cloud computing”

2009025 | scenic spot in Beijing “scenic spot”

2009026 | generalife gardens none

2009027 | Zhang Yimou ”Zhang Yimou”

2009028 | fastest speed bike scooter car motor- | none
cycle

2009029 | personality type career famous “personality type”

2009030 | popular dog cartoon character “cartoon character”

Table C.5: INEX 2009 - Type A queries, part 1

220 C. INEX

topic id | title phrasetitle

2009031 | sabre none

2009032 | evidence theory dempster schafer “evidence theory” "dempster schafer”

2009033 | Al-Andalus taifa kingdoms "taifa kingdoms”

2009034 | the evolution of the moon none

2009035 | Bermuda Triangle "Bermuda Triangle”

2009036 | notting hill film actors "notting hill” "film actors”

2009037 | movies directed tarantino “tarantino movie”

2009038 | french colony africa independence “french colony”

2009039 | roman architecture “roman architecture”

2009040 | steam engine "steam engine”

2009041 | The Scythians “the Scythians”

2009042 | sun java “sun java’

2009043 | NASA missions "NASA missions”

2009044 | OpenGL Shading Language GLSL ”"OpenGL Shading Language”

2009045 | new age musician "new age”

2009046 | Penrose tiles tiling theory "Penrose tiles” "Tiling theory”

2009047 | "Kali’s child” criticisms reviews Psy- | "Kali’s child” "Psychoanalysis of Ra-
choanalysis of Ramakrishna’s mysti- | makrishna’s mysticism”
cism

2009048 | biometric technique "biometric technique”

2009049 | Chicago Symphony Orchestra "Chicago Symphony Orchestra”

2009050 | valentine’s day “valentine’s day”

2009051 | Rabindranath Tagore Bengali litera- | "Rabindranath Tagore” "Bengali liter-
ture ature”

2009052 | newspaper spain headquarter Madrid | none

2009053 | finland car industry manufacturer | "car industry” "car manufacturer”
saab sisu

2009054 | tampere region tourist attractions “tampere region” "tourist attraction”

2009055 | european union expansion “european union”

2009056 | higher education around the world “higher education”

2009057 | movie Slumdog Millionaire directed by | “Slumdog Millionaire” "Danny Boyle”
Danny Boyle

2009058 | Tiananmen Square protest 1989 "Tiananmen Square” "protest 1989”

2009059 | failure tolerance in distributed sys- | "failure tolerance” “distributed sys-
tems tems”

2009060 | hard disk technology “hard disk”

Table C.6: INEX 2009 - Type A queries, part 2

221

topic id | title phrasetitle
2009061 | france second world war normandy ”second world war”
2009062 | social network group selection “group selection in social network” "so-
cial network” "group selection”
2009063 | D-Day normandy invasion "normandy invasion”
2009064 | stock exhange insider trading crime “stock exhange” "insider trading”
2009065 | sunflowers Vincent van Gogh "Vincent van Gogh”
2009066 | folk metal groups finland “folk metal”
2009067 | probabilistic models in information re- | ”probabilistic models” "information re-
trieval trieval”
2009068 | China great wall "Great Wall”
2009069 | Singer in Britain’s Got Talent "Britain’s Got Talent”
2009070 | health care reform plan “health care reform” "health care plan”
2009071 | earthquake prediction “earthquake prediction”
2009072 | +professor "information retrieval” | “information retrieval” "computer sci-
“computer science” ence”
2009073 | web link network analysis “web link analysis” ”link analysis”
"network analysis”
2009074 | web ranking scoring algorithm “web ranking” “scoring algorithm”
2009075 | tourism in tunisia none
2009076 | sociology and social issues and aspects | ”social aspects” "social issues” "science
in science fiction fiction”
2009077 | torrent client technology "Torrent technology”
2009078 | supervised machine learning algo- | "supervised machine learning algo-
rithm rithm” "machine learning”
2009079 | dangerous paraben bisphenol-A none
2009080 | international game show formats "game show” "show formats”
2009081 | Maya calendar "Maya calendar”
2009082 | south african nature reserve “south african” "nature reserve”
2009083 | therapeutic food “therapeutic food”
2009084 | food allergy "food allergy”
2009085 | operating system +mutual +exclusion | "operating system” +"mutual exclu-
sion”
2009086 | airbus a380 none
2009087 | history bordeaux none
2009088 | "hatha yoga” deity asana “hatha yoga”
2009089 | world wide web history "world wide web”
2009090 | Telephone history none

Table C.7: INEX 2009 - Type A queries, part 3

222

C. INEX

topic id | title phrasetitle
2009091 | Himalaya trekking peak none
2009092 | ski +waxing -water -wave ’ski waxing”
2009093 | French revolution "French revolution”
2009094 | global warming human activity “global warming” "human activity”
2009095 | Weka software none
2009096 | Eiffel none
2009097 | location marcel duchamp work "Marcel Duchamp”
2009098 | Pandemic Death none
2009099 | movie houdini none
2009100 | search algorithm with plural keywords | “search algorithm” "plural keywords”
2009101 | alchemy in Asia including Japan | "alchemy in Asia”
China and India
2009102 | historical ninja stars “ninja stars”
2009103 | photograph world earliest “earliest photograph”
2009104 | lunar mare formation mechanism “lunar mare” "formation mechanism”
2009105 | Musicians Jazz ”Jazz musicians”
2009106 | +7amy macdonald” +love +song “amy macdonald” "love song”
2009107 | design science sustainability renew- | ”design science” ”design science sus-
able energy synergy tainability” "renewable energy”
2009108 | sustainability indicators metrics “sustainability indicator” “sustainabil-
ity metric”
2009109 | circus acts skills “circus act” "circus skills”
2009110 | paul is dead hoax theory +"paul is dead”
2009111 | europe solar power facility "solar power” "facility in Europe”
2009112 | rally car female OR woman driver “rally car” "female driver” “woman
driver”
2009113 | Toy Story Buzz Lightyear 3D render- | "Toy Story” “Buzz Lightyear” ”3D
ing Computer Generated Imagery rendering” "Computer Generated Im-
agery”
2009114 | self-portrait "self portrait”
2009115 | virtual museums “virtual museum”

Table C.8: INEX 2009 - Type A queries, part 4

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8
2.9

5.1
5.2
5.3

7.1

7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3

Non-relevant document for query surface area of a triangular pyramid. . 10
A poem with position information. L. 16
Plots according to formulas in [dKM99]. 23
Arc and circle replaced to fit the plots in [dKM99, dKMO04]. 23
Example: triangle-shaped contribution function. 24
Example: aggregated score score,. L. 25

Example: highest aggregated score score, located at a non-query term
location. e 26

detectEspans pseudocode. Lo oL 28

Three variants of the MRF model for our running example query, i.e.,
Sq=(sea,shell,song). We depict (left) the full indepence (FI) variant,
(middle) the sequential dependence (SD) variant, (right) the full depen-

dence (FD) variant. Lo 37
An XML document and its linearization. 83
Example: illustration for metric P[#characters].. 89
Comparison of the three runs: P[# characters| values. 91

Score-ordered term, proximity, and combined index lists which can be
used to process the query {bike, trails} in several processing strategies. 113

TL+CL approaches: cost. 119
TL+CL approaches: PQ10., 119
TL+CL(e varied): cost. 119
TL+CL(e varied): P@Q10. 119
Example: query={bike, trails, map}, merge join with processing strategy

TL+CL using pruned term lists and combined lists. 122
Index and data files for TLs. 144
Compressed TLs in docid-order., 145
Compressed CLs in docid-order. 146

224 LIST OF FIGURES
8.4 Relative index size with varying list length and minscore cutoffs. 148
8.5 Effect of log-based pruning on query performance (on training topics). . 155
8.6 P@k and NDCG@Qk on test topics for effectiveness- and efficiency-

oriented absolute index quality without index compression. 160
8.7 P@k and NDCGQk on test topics for effectiveness-oriented absolute in-

dex quality with index compression. 162
8.8 P@k and NDCG@k on test topics for efficiency-oriented absolute index

quality with index compression. 162
8.9 P@k and NDCG@k on test topics for effectiveness- and efficiency-

oriented relative index quality without index compression. 164
8.10 P@Qk and NDCGQk on test topics for effectiveness-oriented relative index

quality with index compression. 166
8.11 P@k and NDCG@k on test topics for efficiency-oriented relative index

quality with index compression. L L. 166
8.12 Efficiency Track: real system performance for a (310,0.05) full index for

various query and LRU cache sizes. 172
8.13 MAIP values: type A queries. 182
8.14 MAIP values: type B queries. L. 182
8.15 iP values: type A queries. 183
8.16 iP wvalues: type B queries. Lo oL 184
8.17 Hybrid index CLExt. 185
8.18 Merge join with hybrid index CLExt for query {bike, trails, map}. . . . 185
8.19 Average runtimes for Terabyte and EffTrack queries. 187
8.20 Average cost in bytes and average number of opened lists, for the Eff-

Track queries. 187
8.21 Effect of query term pair coverage in the AOL query log on runtime, for

the EffTrack queries. 188
A1 Web Tracks test beds (WT10g): best NDCG values. 192
A2 Web Tracks (WT10g): best precision values 193
A.3 Web Track (WT10g): best MAP values for each scoring model 194
A.4 Robust Track: best NDCG values 195
A.5 Robust Track: best precision values. 196
A.6 Robust Track: best MAP values for each scoring model 197
A.7 Terabyte Track: best NDCG values 198
A.8 Terabyte Track: best precision values 199
A.9 Terabyte Track: best MAP values for each scoring model 200

A 10 INEX: best NDCG values 201

LIST OF FIGURES 225

A.11 INEX: best precision values 202
A.12 INEX: best MAP values for each scoring model 203
A.13 WEB: sensitivity of scoring models 204
A.14 ROBUST: sensitivity of scoring models 205
A.15 TERABYTE: sensitivity of scoring models 206

A.16 INEX: sensitivity of scoring models 207

List of Tables

2.1
2.2
2.3
24

3.1

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Overview: BM25 variations. 13
Espan goodness features. L. 36
Model feature sets. 36

Overview: Features used in each scoring model. Additional remarks: !
needs also the number of documents N in the collection, ? requires ctf
and tf if Jelinek-Mercer or Dirichlet prior smoothing are used, ® deter-
mines the set of features dependent on the employed setting (e.g., df and
tf for unigrams/bigrams, respectively plus lists of important phrases,
etc.), * may use tf values not only for terms but also for n-grams and
unordered occurrences of n-gram terms, and °’s set of features may differ

dependent on the learned proximity score. 45
Some TREC test beds 52

BM25: optimal tuning parameter setting with NDCG@10 and MAP values. 68

Biittcher et al.’s scoring model: optimal tuning parameter setting with

NDCG@10 and MAP values. 69
Rasolofo and Savoy’s scoring model: optimal tuning parameter setting
with NDCG@10 and MAP values. 70
Language Model with Dirichlet smoothing: optimal tuning parameter
setting with NDCG@10 and MAP values. 70
Zhao and Yun’s scoring model: optimal tuning parameter setting with
NDCG@10 and MAP values. 71
Tao and Zhai’s scoring model: optimal tuning parameter setting with
NDCG@10 and MAP values. 72
Song et al.’s scoring model: optimal tuning parameter setting with
NDCG@10 and MAP values. 73
De Kretser and Moffat’s scoring model: optimal tuning parameter setting
with NDCG@10 and MAP values. 73
Intercollection generalization results for various scoring models. 75

226

LIST OF TABLES 227

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

7.1

7.2
7.3

7.4

7.5
7.6
7.7

7.8
7.9
7.10

8.1

8.2

8.3
8.4

8.5

8.6

8.7

Results for document-level retrieval with stopword removal. 86
Results for document-level retrieval without stopword removal. 86
Results for element-level retrieval with stopword removal. 87
Results for element-level retrieval without stopword removal. 87
Results: Focused Task INEX 2008, stopword removal, no stemming. . . 89
Boosting weights BM25F.o oo 93
P@10 for user-identified phrases. 93
P@10 for different configurations and query loads, first part. 93
P@10 for different configurations and query loads, second part. 94

Experimental results for top-10 retrieval of 100 Ad Hoc topics from the
2004 and 2005 TREC Terabyte Track, Ad Hoc Tasks. 115

Index sizes in items and required space for unpruned indexes. 115

Index sizes (million items) with different length limits, with and without
minimum acc-score requirement. Lo 117

Index sizes (disk space) with different length limits, with and without

minimum acc-score requirement. Lo 117
Experimental results for top-10 retrieval with pruned lists. 118
Retrieval quality for top-10 and top-100 retrieval with pruned lists. . . . 120
Retrieval quality for top-100 retrieval with pruned TL+CTL and TL+CL

settings.o 120
Experimental results for top-100 retrieval with unpruned and pruned lists.121
Costs for top-100 retrieval with unpruned and pruned lists. 121
Comparison: TopX with unpruned lists vs merge join on pruned lists. . 124

GOV2: index tuning results for absolute index quality without index
COMPTESSION. . . v v v v v v e e e e e e e e e 159

GOV2: index tuning results for absolute index quality with index com-
Pression. L e e e e 161

Relative result quality for different values of 163

GOV2: Index tuning results for relative index quality without index
COMPTESSION. . . v v v v v v e e e e e e e e e 164

GOV2: index tuning results for relative index quality with index com-
Pression. oLl 165

GOV2: query performance for absolute index quality without index com-
Pression. oL e e 168

GOV2: query performance for relative index quality without index com-
Pression. Lo e 168

228 LIST OF TABLES

8.8 GOV2: query performance for absolute index quality with index com-
Pression. oL e e 169

8.9 GOV2: query performance for relative index quality with index com-
Pression. Lo 170

8.10 Efficiency Track: real system performance, merge join, various LRU
cache sizes with a (310,0.05) full index. 171

8.11 Efficiency Track: real system performance, BMW, various LRU cache
SIZES. . . 172

8.12 Index tuning results with log-based pruning (t=1) for absolute index
quality. 173
8.13 Query performance with log-based pruning (t=1) for absolute index quality.174

8.14 ClueWeb09: index tuning results for absolute index quality and evalua-
tion of query performance, size limit set to S=1TB. 175

8.15 ClueWeb09: index tuning results for relative index quality and evaluation
of query performance, size limit set to S=1TB. 176

8.16 Results for the Ad Hoc Track: interpolated precision at different recall

levels (ranks for iP[0.01] are in parentheses) and mean average interpo-
lated precision. L 178

8.17 Tuning results based on Type A queries with efficiency-oriented relative
index tuning, uncompressed indexes. 179
8.18 Efficiency Track results, type A queries. 179
8.19 Efficiency Track results, type B queries. 179
8.20 Index sizes and build times for full (310,0.05) indexes. 186
B.1 TREC 2004 Terabyte Track, Ad Hoc Task topics. 209
B.2 TREC 2005 Terabyte Track, Ad Hoc Task topics. 210
B.3 TREC 2006 Terabyte Track, Ad Hoc Task topics. 211
B.4 TREC 2009 Web Track, Ad Hoc Task topics. 212

B.5 TREC 2010 Web Track, Ad Hoc Task topics (! indicates non-assessed
BOPICS). . o 213
C.1 INEX CO topics with relevance assessments, Ad Hoc Track 2006, part 1 215
C.2 INEX CO topics with relevance assessments, Ad Hoc Track 2006, part 2 216
C.3 INEX CO topics with relevance assessments, Ad Hoc Track 2006, part 3 217
C.4 Assessed INEX CO topics, Ad Hoc Track 2008 218
C.5 INEX 2009 - Type A queries, part 1 219
C.6 INEX 2009 - Type A queries, part 2 220
C.7 INEX 2009 - Type A queries, part 3 221

LIST OF TABLES

C.8 INEX 2009 - Type A queries, part 4

Bibliography

[AAST09]

[AMO6]

[BAYS06]

[BBS10]

[BCO5]

[BCOG]

[BCHO3a)

[BCH*03b)]

James Allan, Javed A. Aslam, Mark Sanderson, ChengXiang Zhai, and
Justin Zobel, editors. Proceedings of the 32nd Annual International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR 2009, Boston, MA, USA, July 19-23, 2009. ACM, 2009.

Vo Ngoc Anh and Alistair Moffat. Pruned query evaluation using pre-
computed impacts. In Efthimiadis et al. [EDHJ06], pages 372-379.

Chavdar Botev, Sihem Amer-Yahia, and Jayavel Shanmugasundaram.
Expressiveness and performance of full-text search languages. In EDBT,
pages 349-367, 2006.

Andreas Broschart, Klaus Berberich, and Ralf Schenkel. Evaluating the
potential of explicit phrases for retrieval quality. In Cathal Gurrin, Yulan
He, Gabriella Kazai, Udo Kruschwitz, Suzanne Little, Thomas Roelleke,
Stefan M. Riiger, and Keith van Rijsbergen, editors, FCIR, volume 5993
of Lecture Notes in Computer Science, pages 623—626. Springer, 2010.

Stefan Biittcher and Charles L. A. Clarke. Indexing time vs. query time:
trade-offs in dynamic information retrieval systems. In Otthein Herzog,
Hans-Jorg Schek, Norbert Fuhr, Abdur Chowdhury, and Wilfried Teiken,
editors, CIKM, pages 317-318. ACM, 2005.

Stefan Biittcher and Charles L. A. Clarke. A document-centric approach
to static index pruning in text retrieval systems. In Proceedings of the
2006 ACM CIKM International Conference on Information and Knowl-
edge Management, pages 182-189, 2006.

Peter Bailey, Nick Craswell, and David Hawking. Engineering a multi-
purpose test collection for web retrieval experiments. Information Pro-
cessing and Management, 39(6):853-871, 2003.

Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Ja-
son Y. Zien. Efficient query evaluation using a two-level retrieval process.
In CIKM, pages 426-434. ACM, 2003.

230

BIBLIOGRAPHY 231

[BCLOG]

[BCS06]

[Bei07]

[Beil0]

[BFC10]

[BGMO02]

[BMS*06]

[BP9S]

[BRLOG6]

[BS08a]

[BSO8D)

Stefan Biittcher, Charles L. A. Clarke, and Brad Lushman. Term proxim-
ity scoring for ad-hoc retrieval on very large text collections. In Efthimi-
adis et al. [EDHJ06], pages 621-622.

Stefan Biittcher, Charles L. A. Clarke, and Ian Soboroff. The TREC
2006 Terabyte Track. In Ellen M. Voorhees and Lori P. Buckland, ed-
itors, TREC, volume Special Publication 500-272. National Institute of
Standards and Technology (NIST), 2006.

Michel Beigbeder. ENSM-SE at INEX 2007: Scoring with proximity. In
Preproceedings of the 6th INEX Workshop, pages 53-55, 2007.

Michel Beigbeder. Focused retrieval with proximity scoring. In Sung Y.
Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and
Chih-Cheng Hung, editors, SAC, pages 1755-1759. ACM, 2010.

Michael Bendersky, David Fisher, and W. Bruce Croft. UMass at TREC
2010 Web Track: Term dependence, spam filtering and quality bias. In
Web Track Notebook of the 19th Text RFEtrieval Conference, 2010.

Nicolas Bruno, Luis Gravano, and Amélie Marian. Evaluating top-k
queries over web-accessible databases. In ICDE 2002, pages 369-380,
2002.

Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald,
and Gerhard Weikum. Jo-top-k: Index-access optimized top-k query
processing. In Umeshwar Dayal, Kyu-Young Whang, David B. Lomet,
Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha,
and Young-Kuk Kim, editors, VLDB, pages 475-486. ACM, 2006.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertex-
tual web search engine. Computer Networks, 30(1-7):107-117, 1998.

Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. Learning
to rank with nonsmooth cost functions. In Bernhard Scholkopf, John C.
Platt, and Thomas Hoffman, editors, NIPS, pages 193-200. MIT Press,
2006.

Andreas Broschart and Ralf Schenkel. Effiziente Textsuche mit
Positionsinformation. In Hagen Hopfner and Friederike Klan, editors,
Grundlagen von Datenbanken, volume 01/2008 of Technical Report,
pages 101-105. School of Information Technology, International Univer-
sity in Germany, 2008.

Andreas Broschart and Ralf Schenkel. Proximity-aware scoring for xml
retrieval. In Sung-Hyon Myaeng, Douglas W. Oard, Fabrizio Sebastiani,
Tat-Seng Chua, and Mun-Kew Leong, editors, SIGIR, pages 845-846.
ACM, 2008.

232

BIBLIOGRAPHY

[BSO9]

[BS10]

[BS11]

[BS12]

[BSM95]

[BSTO8]

[BSTWO7]

[BWZ02]

[CCBY5|

[CCKSO07]

[CCTY7]

[CHKZ01]

[CMS10]

Andreas Broschart and Ralf Schenkel. Index tuning for efficient
proximity-enhanced query processing. In Geva et al. [GKT10], pages
213-217.

Andreas Broschart and Ralf Schenkel. MMCI at the TREC 2010 Web
Track. In Ellen M. Voorhees and Lori P. Buckland, editors, TREC.
National Institute of Standards and Technology (NIST), 2010.

Andreas Broschart and Ralf Schenkel. A novel hybrid index structure
for efficient text retrieval. In Ma et al. [MNBY 11|, pages 1175-1176.

Andreas Broschart and Ralf Schenkel. High-performance processing of
text queries with tunable pruned term and term pair indexes. ACM
Transactions on Information Systems, 30(1):5:1-5:32, 2012.

Chris Buckley, Amit Singhal, and Mandar Mitra. New retrieval ap-
proaches using SMART: TREC 4. In TREC, 1995.

Andreas Broschart, Ralf Schenkel, and Martin Theobald. Experiments
with proximity-aware scoring for XML retrieval at INEX 2008. In Geva
et al. [GKT09], pages 29-32.

Andreas Broschart, Ralf Schenkel, Martin Theobald, and Gerhard
Weikum. TopX @ INEX 2007. In Fuhr et al. [FKLTO08], pages 49-56.

Dirk Bahle, Hugh E. Williams, and Justin Zobel. Efficient phrase query-
ing with an auxiliary index. In SIGIR, pages 215-221. ACM, 2002.

James P. Callan, W. Bruce Croft, and John Broglio. TREC and Tipster
experiments with Inquery. Information Processing and Management,
31(3):327-343, 1995.

Surajit Chaudhuri, Kenneth Ward Church, Arnd Christian Konig, and
Liying Sui. Heavy-tailed distributions and multi-keyword queries. In
Kraaij et al. [KAVC107], pages 663-670.

Charles L. A. Clarke, Gordon V. Cormack, and Elizabeth A. Tudhope.
Relevance ranking for one to three term queries. In RIAQO, pages 388—
401, 1997.

W. Bruce Croft, David J. Harper, Donald H. Kraft, and Justin Zo-
bel, editors. SIGIR 2001: Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA. ACM,
2001.

Bruce Croft, Donald Metzler, and Trevor Strohman. Search Engines -
Information Retrieval in Practice. Addison Wesley, 2010.

BIBLIOGRAPHY 233

[CO07]

[CO09]

[CPO]

[CSS05]

[CTLI1]

[CwHO02]

[DGO6a]

[DGOGH]

[DGOS]

[dAKMO99)]

[dKMO04]

Ronan Cummins and Colm O’Riordan. An axiomatic study of learned
weighting schemes. In SIGIR Learning to Rank Workshop, 2007.

Ronan Cummins and Colm O’Riordan. Learning in a pairwise term-term
proximity framework for information retrieval. In SIGIR, pages 251258,
20009.

Matthew Chang and Chung Keung Poon. Efficient phrase querying with
common phrase index. In Mounia Lalmas, Andy MacFarlane, Stefan M.
Riiger, Anastasios Tombros, Theodora Tsikrika, and Alexei Yavlinsky,
editors, FCIR, volume 3936 of Lecture Notes in Computer Science, pages
61-71. Springer, 2006.

Charles L. A. Clarke, Falk Scholer, and Ian Soboroff. The TREC 2005
Terabyte Track. In Ellen M. Voorhees and Lori P. Buckland, editors,
TREC, volume Special Publication 500-266. National Institute of Stan-
dards and Technology (NIST), 2005.

W. Bruce Croft, Howard R. Turtle, and David D. Lewis. The use of
phrases and structured queries in information retrieval. In SIGIR, pages
32-45, 1991.

Kevin Chen-Chuan Chang and Seung won Hwang. Minimal probing:
supporting expensive predicates for top-k queries. In Michael J. Franklin,
Bongki Moon, and Anastassia Ailamaki, editors, SIGMOD Conference,
pages 346-357. ACM, 2002.

Ludovic Denoyer and Patrick Gallinari. The Wikipedia XML Cor-
pus. In Norbert Fuhr, Mounia Lalmas, and Andrew Trotman, editors,
INEX, volume 4518 of Lecture Notes in Computer Science, pages 12-19.
Springer, 2006.

Ludovic Denoyer and Patrick Gallinari. The Wikipedia XML Corpus.
SIGIR Forum, 40(1):64-69, 2006.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107-113,
2008.

Owen de Kretser and Alistair Moffat. Effective document presentation
with a locality-based similarity heuristic. In SIGIR, pages 113-120.
ACM, 1999.

Owen de Kretser and Alistair Moffat. Seft: a search engine for text.
Software - Practice and Experience, 34(10):1011-1023, 2004.

234

BIBLIOGRAPHY

[dMNZBY00] Edleno Silva de Moura, Gonzalo Navarro, Nivio Ziviani, and Ricardo A.

[DS11]

[EDHJO06]

[Fag87]

[Fag99]

[Fag02]

[FKLTOS]

[FLNO3]

[GBKO0]

[GBKO1]

[GKT09]

Baeza-Yates. Fast and flexible word searching on compressed text. ACM
Transactions on Information Systems, 18(2):113-139, 2000.

Shuai Ding and Torsten Suel. Faster top-k document retrieval using
block-max indexes. In Ma et al. [MNBY ™ 11], pages 993-1002.

Efthimis N. Efthimiadis, Susan T. Dumais, David Hawking, and Kalervo
Jarvelin, editors. SIGIR 2006: Proceedings of the 29th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, Seattle, Washington, USA, August 6-11, 2006. ACM,
2006.

Joel L. Fagan. Automatic phrase indexing for document retrieval: An
examination of syntactic and non-syntactic methods. In SIGIR, pages
91-101, 1987.

Ronald Fagin. Combining fuzzy information from multiple systems.
Journal of Computer and System Sciences, 58(1):83-99, 1999.

Ronald Fagin. Combining fuzzy information: an overview. SIGMOD
Record, 31(2):109-118, 2002.

Norbert Fuhr, Jaap Kamps, Mounia Lalmas, and Andrew Trotman, edi-
tors. Focused Access to XML Documents, 6th International Workshop of
the Initiative for the Fvaluation of XML Retrieval, INEX 2007, Dagstuhl
Castle, Germany, December 17-19, 2007. Selected Papers, volume 4862
of Lecture Notes in Computer Science. Springer, 2008.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation
algorithms for middleware. Journal of Computer and System Sciences,
66(4):614-656, 2003.

Ulrich Giintzer, Wolf-Tilo Balke, and Werner Kieflling. Optimizing
multi-feature queries for image databases. In Amr El Abbadi, Michael L.
Brodie, Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter
Schlageter, and Kyu-Young Whang, editors, VLDB 2000, Proceedings
of 26th International Conference on Very Large Data Bases, September
10-14, 2000, Cairo, Egypt, pages 419-428. Morgan Kaufmann, 2000.

Ulrich Giintzer, Wolf-Tilo Balke, and Werner Kieflling. Towards efficient
multi-feature queries in heterogeneous environments. In ITCC, pages
622-628. IEEE Computer Society, 2001.

Shlomo Geva, Jaap Kamps, and Andrew Trotman, editors. Advances in
Focused Retrieval, 7th International Workshop of the Initiative for the
Evaluation of XML Retrieval, INEX 2008, Dagstuhl Castle, Germany,

BIBLIOGRAPHY 235

[GKT10]

[Haw00]

[HBLH94|

[HCT9g]

[Hie98]

[HVCBYY]

[IBS08]

[JK02]

[JMS0]

[KdVC*07]

December 15-18, 2008. Revised and Selected Papers, volume 5631 of Lec-
ture Notes in Computer Science. Springer, 2009.

Shlomo Geva, Jaap Kamps, and Andrew Trotman, editors. Focused
Retrieval and Evaluation, S8th International Workshop of the Initiative
for the Evaluation of XML Retrieval, INEX 2009, Brisbane, Australia,
December 7-9, 2009, Revised and Selected Papers, volume 6203 of Lecture
Notes in Computer Science. Springer, 2010.

David Hawking. Overview of the TREC-9 Web Track. In TREC, 2000.

William Hersh, Chris Buckley, T. J. Leone, and David Hickam.
Ohsumed: an interactive retrieval evaluation and new large test collec-
tion for research. In Proceedings of the 17th Annual International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR 94, pages 192-201, New York, NY, USA, 1994. Springer-
Verlag New York, Inc.

David Hawking, Nick Craswell, and Paul B. Thistlewaite. Overview of
trec-7 very large collection track. In TREC, pages 40-52, 1998.

Djoerd Hiemstra. A linguistically motivated probabilistic model of in-
formation retrieval. In Christos Nikolaou and Constantine Stephanidis,
editors, FCDL, volume 1513 of Lecture Notes in Computer Science, pages
569-584. Springer, 1998.

David Hawking, Ellen M. Voorhees, Nick Craswell, and Peter Bailey.
Overview of the TREC-8 Web Track. In TREC, 1999.

Thab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of
top-k query processing techniques in relational database systems. ACM
Computing Surveys, 40(4):11:1-11:58, 2008.

Kalervo Jérvelin and Jaana Kekéldinen. Cumulated gain-based eval-
uation of IR techniques. ACM Transactions on Information Systems,
20(4):422-446, 2002.

Frederick Jelinek and Robert L. Mercer. Interpolated estimation of
markov source parameters from sparse data. Pattern Recognition in
Practice, pages 381-397, 1980.

Wessel Kraaij, Arjen P. de Vries, Charles L. A. Clarke, Norbert Fuhr,
and Noriko Kando, editors. SIGIR 2007: Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, Amsterdam, The Netherlands, July 23-27, 2007.
ACM, 2007.

236

BIBLIOGRAPHY

[KGT08]

[KPK*07]

[KPSV09)

[Liull]

[LLYMO04]

[LS05]

[LTO7]

[LZ01]

[LZ09]

[MBGO4]

[MBSC97]

[MCO5]

Jaap Kamps, Shlomo Geva, Andrew Trotman, Alan Woodley, and Marijn
Koolen. Overview of the INEX 2008 Ad Hoc Track. In Geva et al.
[GKTO09], pages 1-28.

Jaap Kamps, Jovan Pehcevski, Gabriella Kazai, Mounia Lalmas, and
Stephen Robertson. INEX 2007 evaluation measures. In Fuhr et al.
[FKLTO08], pages 24-33.

Ravi Kumar, Kunal Punera, Torsten Suel, and Sergei Vassilvitskii. Top-
aggregation using intersections of ranked inputs. In Ricardo A. Baeza-
Yates, Paolo Boldi, Berthier A. Ribeiro-Neto, and Berkant Barla Cam-
bazoglu, editors, WSDM, pages 222-231. ACM, 20009.

Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer,
Berlin Heidelberg, 2011.

Shuang Liu, Fang Liu, Clement T. Yu, and Weiyi Meng. An effective
approach to document retrieval via utilizing wordnet and recognizing

phrases. In SIGIR, pages 266-272, 2004.

Xiaohui Long and Torsten Suel. Three-level caching for efficient query
processing in large web search engines. In Allan Ellis and Tatsuya
Hagino, editors, WWW, pages 257-266. ACM, 2005.

Mounia Lalmas and Anastasios Tombros. INEX 2002 - 2006: Under-
standing XML retrieval evaluation. In Costantino Thanos, Francesca
Borri, and Leonardo Candela, editors, DELOS Conference, volume 4877
of Lecture Notes in Computer Science, pages 187—196. Springer, 2007.

John D. Lafferty and ChengXiang Zhai. Document language models,
query models, and risk minimization for information retrieval. In Croft
et al. [CHKZ01], pages 111-119.

Yuanhua Lv and ChengXiang Zhai. Positional language models for in-
formation retrieval. In Allan et al. [AAST09], pages 299-306.

Amélie Marian, Nicolas Bruno, and Luis Gravano. Evaluating top-
queries over web-accessible databases. ACM Transactions on Database
Systems, 29(2):319-362, 2004.

Mandar Mitra, Chris Buckley, Amit Singhal, and Claire Cardie. An
analysis of statistical and syntactic phrases. In RIAO, pages 200-217,
1997.

Donald Metzler and W. Bruce Croft. A markov random field model
for term dependencies. In Ricardo A. Baeza-Yates, Nivio Ziviani, Gary
Marchionini, Alistair Moffat, and John Tait, editors, SIGIR, pages 472—
479. ACM, 2005.

BIBLIOGRAPHY 237

[MdRO5]

[Met06a]

[Met06b]

[MNBY*11]

[Mon04]

[MOT11]

[MRS08]

[MSCO6]

[MSTCO4]

[INC10]

[PA9T]

[PCO8]

Gilad Mishne and Maarten de Rijke. Boosting web retrieval through
query operations. In David E. Losada and Juan M. Fernandez-Luna,
editors, FCIR, volume 3408 of Lecture Notes in Computer Science, pages
502-516. Springer, 2005.

Donald Metzler. Estimation, sensitivity, and generalization in parame-
terized retrieval models. In Philip S. Yu, Vassilis J. Tsotras, Edward A.
Fox, and Bing Liu, editors, CIKM, pages 812-813. ACM, 2006.

Donald Metzler. Estimation, sensitivity, and generalization in parame-
terized retrieval models (extended version). Technical report, University
of Massachusetts, 2006.

Wei-Ying Ma, Jian-Yun Nie, Ricardo A. Baeza-Yates, Tat-Seng Chua,
and W. Bruce Croft, editors. Proceedings of the 34th International ACM

SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR 2011, Beijing, China, July 25-29, 2011. ACM, 2011.

Christof Monz. Minimal span weighting retrieval for question answering.
In Rob Gaizauskas, Mark Greenwood, and Mark Hepple, editors, Pro-
ceedings of the SIGIR Workshop on Information Retrieval for Question
Answering, pages 23-30, 2004.

Craig MacDonald, Iadh Ounis, and Nicola Tonellotto. Upper-bound
approximations for dynamic pruning. ACM Transactions on Information

Systems, 29(4):17:1-17:28, 2011.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze.
Introduction to information retrieval. Cambridge University Press, 2008.

Donald Metzler, Trevor Strohman, and W. Bruce Croft. Indri trec note-
book 2006: Lessons learned from three terabyte tracks. In TREC, 2006.

Donald Metzler, Trevor Strohman, Howard R. Turtle, and W. Bruce
Croft. Indri at trec 2004: Terabyte track. In Ellen M. Voorhees and
Lori P. Buckland, editors, TREC, volume Special Publication 500-261.
National Institute of Standards and Technology (NIST), 2004.

Dong Nguyen and Jamie Callan. Combination of evidence for effective
web search. In Proceedings of the 19th Text RFEtrieval Conference, 2010.

R. Papka and J. Allan. Why bigger windows are better than small ones.
Technical report, CIIR, 1997.

Jay M. Ponte and W. Bruce Croft. A language modeling approach to
information retrieval. In SIGIR, pages 275-281. ACM, 1998.

238

BIBLIOGRAPHY

[PLMOS]

[PRLT07]

[RI76]

[RS03]

[RW94]

[RWHB*95]

[RZT04]

[SBH*07]

[SC07]

[SCCH01]

[S100]

[SKK10]

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A
Field Guide to Genetic Programming. lulu.com, 2008.

Ivana Podnar, Martin Rajman, Toan Luu, Fabius Klemm, and Karl
Aberer. Scalable peer-to-peer web retrieval with highly discriminative
keys. In ICDE, pages 1096-1105. IEEE, 2007.

S. E. Robertson and K. S. Jones. Relevance weighting of search terms.
Journal of the American Society for Information Science, 27(3):129-146,
1976.

Yves Rasolofo and Jacques Savoy. Term proximity scoring for keyword-
based retrieval systems. In Fabrizio Sebastiani, editor, ECIR, volume
2633 of Lecture Notes in Computer Science, pages 207-218. Springer,
2003.

Stephen E. Robertson and Steve Walker. Some simple effective approx-
imations to the 2-poisson model for probabilistic weighted retrieval. In
W. Bruce Croft and C. J. van Rijsbergen, editors, SIGIR, pages 232-241.
ACM/Springer, 1994.

Stephen E. Robertson, Steve Walker, Micheline Hancock-Beaulieu, Mike
Gatford, and A. Payne. Okapi at TREC-4. In TREC, 1995.

Stephen E. Robertson, Hugo Zaragoza, and Michael J. Taylor. Simple
BM25 extension to multiple weighted fields. In CIKM, pages 42-49,
2004.

Ralf Schenkel, Andreas Broschart, Seung Won Hwang, Martin Theobald,
and Gerhard Weikum. Efficient text proximity search. In Nivio Ziviani
and Ricardo A. Baeza-Yates, editors, SPIRFE, volume 4726 of Lecture
Notes in Computer Science, pages 287-299. Springer, 2007.

Trevor Strohman and W. Bruce Croft. Efficient document retrieval in
main memory. In Kraaij et al. [KdAVC'07], pages 175-182.

Aya Soffer, David Carmel, Doron Cohen, Ronald Fagin, Eitan Farchi,
Michael Herscovici, and Yoélle S. Maarek. Static index pruning for in-
formation retrieval systems. In Croft et al. [CHKZ01], pages 43-50.

Satoshi Sekine and Hitoshi Isahara. IREX: IR and IE evaluation-based
project in Japanese. In The Second International Conference on Lan-
guage Resources and Fvaluation, 2000.

Krysta Marie Svore, Pallika H. Kanani, and Nazan Khan. How good
is a span of terms?: exploiting proximity to improve web retrieval. In
Fabio Crestani, Stéphane Marchand-Maillet, Hsin-Hsi Chen, Efthimis N.

BIBLIOGRAPHY 239

[SSK07]

[SSLM*09]

[STW08]

[SWY75]

[TASO0S]

[TAS09]

[TJGO09)

[TMO10]

[TSWO5]

[TWS04]

Efthimiadis, and Jacques Savoy, editors, SIGIR, pages 154-161. ACM,
2010.

Ralf Schenkel, Fabian M. Suchanek, and Gjergji Kasneci. Yawn: A
semantically annotated wikipedia xml corpus. In Alfons Kemper, Harald
Schoning, Thomas Rose, Matthias Jarke, Thomas Seidl, Christoph Quix,
and Christoph Brochhaus, editors, BT'W, volume 103 of LNI, pages 277—
291. GI, 2007.

Michal Shmueli-Scheuer, Chen Li, Yosi Mass, Haggai Roitman, Ralf
Schenkel, and Gerhard Weikum. Best-effort top-k query processing under
budgetary constraints. In ICDE, pages 928-939. IEEE, 2009.

Ruihua Song, Michael J. Taylor, Ji-Rong Wen, Hsiao-Wuen Hon, and
Yong Yu. Viewing term proximity from a different perspective. In Craig
Macdonald, Iadh Ounis, Vassilis Plachouras, ITan Ruthven, and Ryen W.
White, editors, FCIR, volume 4956 of Lecture Notes in Computer Sci-
ence, pages 346-357. Springer, 2008.

Gerard Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. Communications of the ACM, 18(11):613-620, 1975.

Martin Theobald, Mohammed AbuJarour, and Ralf Schenkel. TopX 2.0
at the INEX 2008 Efficiency Track. In Geva et al. [GKT09], pages 224
236.

Martin Theobald, Ablimit Aji, and Ralf Schenkel. TopX 2.0 at the INEX
2009 Ad-Hoc and Efficiency Tracks. In Geva et al. [GKT10], pages 218
228.

Andrew Trotman, Xiangfei Jia, and Shlomo Geva. Fast and effective
focused retrieval. In Geva et al. [GKT10], pages 229-241.

Nicola Tonellotto, Craig Macdonald, and Tadh Ounis. Efficient dynamic
pruning with proximity support. In LSDS-IR Workshop, pages 31-35,
2010.

Martin Theobald, Ralf Schenkel, and Gerhard Weikum. An efficient
and versatile query engine for TopX search. In Klemens Bohm, Chris-

tian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Ake Larson, and
Beng Chin Ooi, editors, VLDB, pages 625-636. ACM, 2005.

Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-k query
evaluation with probabilistic guarantees. In Mario A. Nascimento,
M. Tamer Ozsu, Donald Kossmann, Renée J. Miller, José A. Blake-
ley, and K. Bernhard Schiefer, editors, VLDB, pages 648-659. Morgan
Kaufmann, 2004.

240

BIBLIOGRAPHY

[TZ07]

[UTF+08]

[VHO7]

[VEHO0]

(W99

[Was05]
[Whi09]

[WKO9]

[WLM11]

[WMBY9]

[WZB04]

[XLO7]

[YDS09a)]

Tao Tao and ChengXiang Zhai. An exploration of proximity measures
in information retrieval. In Kraaij et al. [KAVCT07], pages 295-302.

Yukio Uematsu, Takafumi Inoue, Kengo Fujioka, Ryoji Kataoka, and
Hayato Ohwada. Proximity scoring using sentence-based inverted in-
dex for practical full-text search. In Birte Christensen-Dalsgaard, Do-
natella Castelli, Bolette Ammitzbgll Jurik, and Joan Lippincott, editors,
ECDL, volume 5173 of Lecture Notes in Computer Science, pages 308
319. Springer, 2008.

Ellen M. Voorhees and Donna Harman. Overview of the Fifth Text
REtrieval Conference (TREC-5). In Proceedings of the 5th Text REtrieval
Conference, pages 1-28, 1997.

Ellen M. Voorhees and Donna Harman. Overview of the Eighth Text
REtrieval Conference (TREC-8), 2000.

Hugh E. Williams et al. What’s next? index structures for efficient
phrase querying. In Australasian Database Conference, pages 141-152,
1999.

Larry Wasserman. All of Statistics. Springer, 2005.
Tom White. Hadoop - The definite guide. O’Reilly, 2009.

Judith Winter and Gerold Kiihne. Achieving high precisions with peer-
to-peer is possible! In Geva et al. [GKT10], pages 242-253.

Lidan Wang, Jimmy J. Lin, and Donald Metzler. A cascade ranking
model for efficient ranked retrieval. In Ma et al. [MNBY*11], pages
105-114.

I.LH. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan
Kaufman, San Francisco, 1999.

Hugh E. Williams, Justin Zobel, and Dirk Bahle. Fast phrase querying
with combined indexes. ACM Transactions on Information Systems,
22(4):573-594, 2004.

Jun Xu and Hang Li. AdaRank: a boosting algorithm for information
retrieval. In Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SI-
GIR 2007, pages 391-398, New York, NY, USA, 2007. ACM.

Hao Yan, Shuai Ding, and Torsten Suel. Compressing term positions in
web indexes. In Allan et al. [AAST09], pages 147-154.

BIBLIOGRAPHY 241

[YDS09b)

[YSZ*10]

[Z107]

[Z1.04]

[ZM9g]

[ZMO6]

[ZSLWO7]

[ZSYWOS]

[ZY09)

Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and
query processing with optimized document ordering. In Proceedings of
the 18th international conference on World wide web, WWW ’09, pages
401-410, New York, NY, USA, 2009. ACM.

Hao Yan, Shuming Shi, Fan Zhang, Torsten Suel, and Ji-Rong Wen.
Efficient term proximity search with term-pair indexes. In Jimmy Huang,
Nick Koudas, Gareth Jones, Xindong Wu, Kevyn Collins-Thompson, and
Aijun An, editors, CIKM, pages 1229-1238. ACM, 2010.

Wei Zhang et al. Recognition and classification of noun phrases in queries
for effective retrieval. In CIKM, pages 711-720, 2007.

ChengXiang Zhai and John D. Lafferty. A study of smoothing methods
for language models applied to information retrieval. ACM Transactions
on Information Systems, 22(2):179-214, 2004.

Justin Zobel and Alistair Moffat. Exploring the similarity space. SIGIR
Forum, 32(1):18-34, 1998.

Justin Zobel and Alistair Moffat. Inverted files for text search engines.
ACM Computing Surveys, 38(2):1-56, 2006.

Mingjie Zhu, Shuming Shi, Mingjing Li, and Ji-Rong Wen. Effective top-
k computation in retrieving structured documents with term-proximity
support. In Mario J. Silva, Alberto H. F. Laender, Ricardo A. Baeza-
Yates, Deborah L. McGuinness, Bjgrn Olstad, @Qystein Haug Olsen, and
André O. Falcao, editors, CIKM, pages 771-780. ACM, 2007.

Mingjie Zhu, Shuming Shi, Nenghai Yu, and Ji-Rong Wen. Can phrase
indexing help to process non-phrase queries? In James G. Shanahan,
Sihem Amer-Yahia, loana Manolescu, Yi Zhang, David A. Evans, Alek-
sander Kolcz, Key-Sun Choi, and Abdur Chowdhury, editors, CIKM,
pages 679-688. ACM, 2008.

Jinglei Zhao and Yeogirl Yun. A proximity language model for informa-
tion retrieval. In Allan et al. [AAST09], pages 291-298.

