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Abstract

In the development of numerical methods for boundary value problems, the re-
quirement of flexible mesh handling gains more and more importance. The avail-
able work deals with a new kind of conforming finite element methods on polyg-
onal/polyhedral meshes. The idea is to use basis functions which are defined im-
plicitly as local solutions of the underlying homogeneous problem with constant
coefficients. They are referred to local Trefftz functions. These local problems
are treated by means of boundary integral equations and are approximated by
the use of the boundary element method in the numerics.

The method is applied to the stationary diffusion equation, where lower as
well as higher order basis functions are introduced in two space dimensions. The
convergence is analysed with respect to the H1- as well as the L2-norm and rates
of convergence are proven. In case of non-constant diffusion coefficients, a special
approximation is proposed. Beside the uniform refinement, an adaptive strat-
egy is given which makes use of the residual error estimator and an introduced
refinement procedure. The reliability of the residual error estimate is proven
on polygonal meshes. Finally, the generalization to arbitrary polyhedral meshes
with polygonal faces is discussed. All theoretical results and considerations are
confirmed by numerical experiments.

Zusammenfassung

In der Entwicklung numerischer Verfahren zur Approximation von Randwer-
taufgaben werden flexible Vernetzungen der zugrunde liegenden Gebiete immer
wichtiger. Die vorliegende Arbeit beschäftigt sich mit neuartigen Finiten Element
Methoden, die zu konformen Approximationen auf polygonalen und polyhedralen
Gittern führen. Der Gedanke dieser Vorgehensweise liegt darin, die Ansatzfunk-
tionen implizit als Lösungen von lokalen Randwertaufgaben zu definieren, wie dies
auch schon E. Trefftz vorgeschlagen hat. Hierbei wird die Differentialgleichung
des Ursprungsproblems mit konstanten Koeffizienten und homogener rechter Seite
verwendet. Die lokalen Probleme werden mit Randintegralgleichungen und in der
Realisierung mit Randelementmethoden behandelt.

Das Verfahren wird auf die stationäre Diffusionsgleichung angewendet, wofür
Ansatzfunktionen niedriger als auch höherer Ordnung eingeführt werden. Konver-
genzraten bezüglich der H1- sowie der L2-Norm werden untersucht und bewiesen.
Im Falle eines nicht konstanten Diffusionskoeffizienten wird eine spezielle Vorge-
hensweise vorgeschlagen. Neben der gleichmäßigen Verfeinerung der Netze wird
ebenso eine adaptive Strategie angegeben, die von dem residualen Fehlerschätzer
und einer eingeführten Verfeinerung Gebrauch macht. Die Zuverlässigkeit des
Fehlerschätzers auf polygonalen Netzen wird bewiesen und schließlich wird das
Verfahren erweitert, so dass es auf polyhedralen Gittern mit polygonalen Ele-
mentflächen angewendet werden kann. Alle theoretischen Resultate und Überle-
gungen werden durch numerische Experimente bestätigt.
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Introduction

On Tuesday, 21st February, 1888, Erich Trefftz was born in Leipzig, Germany.
In 1908, he began his studies in mechanical engineering and soon changed to
mathematics. His most important teachers were Carl Runge, David Hilbert and
Ludwig Prandtl. Under the guidance of Richard von Mises, Trefftz started his
academic career with his doctoral thesis in Strasbourg in 1913. He was a soldier
in the First Word War and managed to get his habilitation already in 1919.
Trefftz became a full professor in Aachen and moved after three years to the
Technical University of Dresden, where he worked until he died in consequence
of a malicious disease on 21st January, 1937.

Figure 1: Erich Trefftz (1888–1937), see [59]

One of his famous publications is [72], ‘Ein Gegenstück zum Ritzschen Ver-
fahren’ (a counterpart to Ritz’ method) lectured in Zürich on the 2nd Interna-
tional Congress of Technical Mechanics in 1926. Instead of approximating the
solution of a Dirichlet boundary value problem, according to Ritz, by a function

v(x) = g(x) +
n∑
j=1

cjqj(x),

where g fulfils the boundary condition and qj vanishes on the boundary, Trefftz
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2 Introduction

proposed an approximation of the form

w(x) =
n∑
j=1

cjpj(x),

where pj fulfils the differential equation. In both cases the coefficients cj are
computed such that the approximations are somehow optimal. Thus, the Trefftz
method yields a function which fulfils the differential equation and approximates
the boundary data. Additionally, Trefftz proposed in his publication to decom-
pose the domain and to prescribe certain conditions for the approximation across
the interfaces of the subdomains.

Years later, the original idea of Trefftz was further developed. Here, we men-
tion the direct methods of Jirousek and the indirect methods of Herrera which
were also studied by Ziliñski. For an overview see [38] and the references therein
as well as the book [60]. But there are also other methods that base on these
ideas. For example, the method of fundamental solutions, see [46, 67], and also
domain decomposition methods can be traced back to the work of Trefftz.

In 1990, Hsiao and Wendland proposed the first domain decomposition ap-
proach in boundary element methods [42]. Already in this publication, we can
find the basic idea of the finite element method with local Trefftz trial functions.
The approximation of the solution of the boundary value problem is defined to
fulfil the differential equation locally in each part of the decomposed domain. In
2009, Copeland, Langer and Pusch interpreted the subdomains of the decomposi-
tion as elements and began to study the boundary element domain decomposition
approach in the framework of a finite element method in [20]. A more detailed de-
scription was published in [21]. Thus, the BEM-based FEM was born. Since that
time, the method was the topic of several developments which include the work
of Hofreither et. al. [39, 40, 41] as well as the present dissertation containing [77].
But there is still ongoing research in different directions.

The advantageous of this new approach are for example that it is applicable on
general polygonal meshes in two dimensions and on general polyhedral meshes in
the three dimensional case. Therefore, the BEM-based FEM is very flexible with
respect to the discretization of the domain and can handle locally refined meshes
as well as meshes with non-matching interfaces. Although the meshes are not
regular in the classical sense, the method still yields conforming approximations.
Since the trial functions are defined implicitly to fulfil the underlying differential
equation locally, the obtained approximation already captures some properties of
the exact solution.

The scope of the present dissertation goes from the introduction of lower as
well as higher order basis functions and proofs of convergence rates over an adap-
tive strategy with the residual error estimate to a generalization to polyhedral
elements. All these topics and the advantageous described above are also the
subject of recent research in other areas.

The discontinuous Galerkin method is very flexible with respect to the meshes
due to the discontinuous approximations across element boundaries, see [25]. For
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the same reason, the method yields non-conforming approximations which are
easily extended with higher order basis functions. In [9, 48], a posteriori error
estimates were introduced. For the more recent developments of the discontinuous
Petrov-Galerkin method, a hp-strategy can be found in [23].

In multiscale finite element methods, the basis functions are defined implicitly
as local solutions of the underlying differential equation, see [31] and the references
therein. Here, the local problems are dealt with additional local finite element
methods whereas in the BEM-based FEM a local boundary element method is
utilized. This local boundary element method in the BEM-based FEM allows to
reformulate the variational formulation and to reduce the dimension of the local
problems. For the multiscale methods an adaptive approach was proposed in [1]
and there are the first attempts to get higher order convergence with the help of
local spectral basis functions, see [30].

Another area of increasing interest is the mimetic finite difference method.
Convergence results were proven in [14] for diffusion problems on polyhedral
meshes. A residual based error estimator was introduced in [10] and recent re-
sults yield arbitrary order of convergence for a nodal mimetic discretization on
polygonal meshes, see [11].

Beside the alternative strategies to handle boundary value problems, also in
the finite element developments the use of polygonal and polyhedral elements has
begun. Already in 1975, Wachspress [76] proposed the construction of conforming
rational basis functions on convex polygons with any number of sides. In recent
years, several improved basis functions on polygonal elements have been intro-
duced and applied in linear elasticity for example, see [70, 71]. They are often
referred to generalized barycentric coordinates. The harmonic coordinates are
one example and we will recover them in the BEM-based FEM for the diffusion
equation. These coordinates are applied in computer graphics, see [43, 49, 64].
An analysis can be found in [35]. There are even the first attempts which seek
to introduce quadratic finite elements on polygons [61].

The outline of the present dissertation is as follows. In Chapter 1, we intro-
duce the model problem which is considered throughout the dissertation and we
discuss the basics as well as some regularity statements. Additionally, we give
a definition of regular and stable polygonal meshes and prove some properties
of them. Chapter 2 deals with the introduction of lower as well as higher order
basis functions. We show convergence estimates and discuss the numerical re-
alization in case of an advanced approximation of the diffusion coefficient. An
adaptive BEM-based finite element method is proposed in Chapter 3. Therefore,
the residual error estimate is introduced and its reliability is proven on regular
and stable polygonal meshes. In Chapter 4, the lower order method is general-
ized to three space dimensions such that the BEM-based FEM is applicable on
polyhedral elements with polygonal faces. Finally, we give a conclusion.





Chapter 1

Preliminaries

Throughout this preliminary chapter, the basic notation is introduced. We state
the model problem and give the definitions of several function spaces. For these
definitions, classical books like [2] and [34] are used, but also [50] for function
spaces on the boundary of the domain. Afterwards, the variational formulation
of the model problem is introduced and an abstract approximation idea is given.
In Section 1.4, various regularity results for the solution of the model problem
are summarised from [34, 36, 44], for example. The regularity depends on the
shape of the domain as well as on the given data. A special focus lies on jumping
coefficients in the material parameters.

Afterwards, we discuss the discretization of the domain. The BEM-based
FEM is applicable on general polygonal meshes, thus we give a proper definition
of the admitted discretizations and prove some properties. These results are
important throughout the forthcoming proofs in later chapters. Additionally, we
discuss a new strategy to refine the polygonal meshes in the two dimensional case.

Finally, the boundary integral formulation for the Laplace equation with
Dirichlet boundary conditions is reviewed and analysed according to [50, 68].
This formulation is needed in local problems while reformulating the variational
equation of the modal problem for the global finite element strategy. The lo-
cal boundary integral equations are treated with boundary element methods as
in [68]. They are presented in the last section of this chapter.

1.1 Model problem

In the whole dissertation, theory, numerics and the key ideas are carried out
on a model problem. As it is usual in introductory books on new numerical
schemes which approximate the solution of boundary value problems, we deal
with the Laplace problem with Dirichlet boundary condition. But moreover, the
generalized Poisson problem with mixed boundary conditions is considered to
capture the whole extend of the underlying scheme.

Let Ω be a bounded polygonal domain in R2 or a bounded polyhedral domain

5



6 Chapter 1. Preliminaries

in R3. Its boundary Γ = ΓD ∪ ΓN is split into two parts, where Dirichlet and
Neumann boundary conditions are prescribed, respectively. Here, the closure of a
set is marked with an overline. The Dirichlet part ΓD of the boundary is assumed
to have a strictly positive d − 1 dimensional measure |ΓD| > 0. For given data
f ∈ L2(Ω), gD ∈ H1/2(ΓD) and gN ∈ L2(ΓN), the model problem reads

−div(a∇u) = f in Ω,

u = gD on ΓD,

a∇u · n = gN on ΓN ,

(1.1)

where n denotes the unit outer normal vector of Ω and a ∈ L∞(Ω) is a scalar
function with

0 < amin ≤ a(x) ≤ amax for x ∈ Ω.

The Lebesgue and Sobolev spaces are defined more precisely in the next section.
The assumption on the coefficient function a guarantees the ellipticity of the
differential equation. Together with the other ingredients, the boundary value
problem is well posed and admits a unique solution in a weak sense as we will see
later.

Beside the simple structure of the model problem, it already captures some
difficulties and finds applications in real life problems. One could think about
high oscillating coefficients or the case when amin tends to zero such that the
ratio amax/amin gets unbounded. In models for heat transport, electro magnetism
and elastic membranes the considered model equation can be found. Another
application of increasing interest is the model of flow in porous media which is
used in simulations of ground water flow and oil reservoirs, for example.

1.2 Function spaces and trace operators

In the studies of boundary value problems, the solutions have to be specified in
proper function spaces. In the following, we give definitions of several spaces. For
this reason, let Ω be any measurable subset of Rd, d ∈ N with strictly positive
Lebesgue measure. The Banach spaces L1(Ω) and L2(Ω) are defined in the usual
way with the corresponding norms

‖u‖L1(Ω) =

∫
Ω

|u| and ‖u‖L2(Ω) =

(∫
Ω

|u|2
)1/2

,

respectively. Here, the symbol | · | denotes the absolute value. But in other
contexts, it might denote the Euclidean norm, the d or d−1 dimensional measure
or even the cardinality of a discrete set. Furthermore, let the space of locally
integrable functions be labeled by

Lloc1 (Ω) = {u : u ∈ L1(K) for any compact K ⊂ Ω}.



1.2. Function spaces and trace operators 7

The space L2(Ω) together with the scalar product

(u, v)L2(Ω) =

∫
Ω

uv,

which is often abbreviated to (·, ·), becomes a Hilbert space. Additionally, we
denote by L∞(Ω) the space of measurable and almost everywhere bounded func-
tions. It is equipped with the norm

‖u‖L∞(Ω) = ess sup
x∈Ω
|u(x)| = inf

K⊂Ω,|K|=0
sup
x∈Ω\K

|u(x)|,

where |K| is the d dimensional Lebesgue measure of K. For a d− 1 dimensional
manifold Γ, the space L2(Γ) is defined in an analog way. Here, the surface measure
is used instead of the volume measure.

The space of continuous functions over Ω is denoted by C0(Ω) and equipped
with the supremum norm

‖u‖C0(Ω) = sup
x∈Ω
|u(x)|.

Let α = (α1, . . . , αd) ∈ Nd
0 be a multi-index, i.e. a d-tuple with non-negative

entries, and set

|α| = α1 + · · ·+ αd as well as ∂α =

(
∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd
.

The order of the partial derivative ∂α is the number |α|. For any integer k ≥ 0
and Ω open, we define

Ck(Ω) = {u : ∂αu exists and is continuous on Ω for |α| ≤ k}.

In the special case that k = 0, the space of continuous functions over Ω is recov-
ered. Furthermore, we define

Ck
0 (Ω) = {u ∈ Ck(Ω) : suppu ⊂ Ω},

where
suppu = {x ∈ Ω : u(x) 6= 0},

and set
C∞(Ω) =

⋂
k≥0

Ck(Ω) as well as C∞0 (Ω) =
⋂
k≥0

Ck
0 (Ω).

Finally, we review the space of Lipschitz functions

C0,1(Ω) = {u ∈ C0(Ω) : ∃L > 0 : |u(x)− u(y)| ≤ L|x− y| for x, y ∈ Ω}

and
Ck,1(Ω) = {u ∈ Ck(Ω) : ∂αu ∈ C0,1(Ω) for |α| = k}
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for k ∈ N. The space of Hölder continuous functions is a straightforward gener-
alization. For κ ∈ (0, 1], it is

C0,κ(Ω) = {u ∈ C0(Ω) : ∃C > 0 : |u(x)− u(y)| ≤ C|x− y|κ for x, y ∈ Ω}

and
Ck,κ(Ω) = {u ∈ Ck(Ω) : ∂αu ∈ C0,κ(Ω) for |α| = k}

for k ∈ N.

1.2.1 Sobolev spaces

Let Ω be a non-empty open subset of Rd, d ∈ N. The Sobolev space Hk(Ω) of
order k ∈ N0 is defined by

Hk(Ω) = {u ∈ L2(Ω) : ∂αu ∈ L2(Ω) for |α| ≤ k} (1.2)

with the norm ‖ · ‖Hk(Ω) and the semi norm | · |Hk(Ω), where

‖u‖Hk(Ω) =

( ∑
|α|≤k

‖∂αu‖2
L2(Ω)

)1/2

and |u|Hk(Ω) =

( ∑
|α|=k

‖∂αu‖2
L2(Ω)

)1/2

.

Here, the partial derivative ∂αu has to be understood in the weak sense. More
precisely, let the functional gα : C∞0 (Ω)→ R be the distributional derivative of u
with index α, i.e. gα fulfils

(u, ∂αϕ)L2(Ω) = (−1)|α|gα(ϕ)

for all ϕ ∈ C∞0 (Ω). Furthermore, let gα have the representation

gα(ϕ) =

∫
Ω

ϕ∂αu

for all ϕ ∈ C∞0 (Ω) with some function ∂αu ∈ Lloc1 (Ω) which is defined uniquely
up to an equivalence class. Then, ∂αu is called the weak derivative of u with
index α. The additional condition ∂αu ∈ L2(Ω) in (1.2) ensures that the weak
derivative can be chosen such that it is square integrable.

For the definition of Sobolev spaces with fractional order s ≥ 0, we write
s = k + µ with k ∈ N0 and µ ∈ [0, 1). The Sobolev-Slobodekii norm is given by

‖u‖Hs(Ω) =

(
‖u‖2

Hk(Ω) +
∑
|α|=k

|∂αu|2Hµ(Ω)

)1/2

,

where

|u|Hµ(Ω) =

(∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|d+2µ
dxdy

)1/2

.
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Therefore, we define

Hs(Ω) = {u ∈ Hk(Ω) : |∂αu|Hµ(Ω) <∞ for |α| = k}.

The Sobolev norm ‖ · ‖Hs(Ω) for arbitrary real s ≥ 0 is induced by the scalar
product

(u, v)Hs(Ω) = (u, v)Hk(Ω) +
∑
|α|=k

(∂αu, ∂αv)Hµ(Ω)

with
(u, v)Hk(Ω) =

∑
|α|≤k

(∂αu, ∂αv)L2(Ω)

and

(u, v)Hµ(Ω) =

∫
Ω

∫
Ω

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|d+2µ

dxdy.

Thus, Hs(Ω) is a Hilbert space for all s ≥ 0.

1.2.2 Sobolev spaces on the boundary

For the definition of Sobolev spaces on the boundary of a domain, we have to
restrict the class of admitted domains. Therefore, let Ω ⊂ Rd, d ∈ N be a bounded
open set with boundary Γ. Additionally, we assume that Γ is non-empty and can
be parametrised in the way

Γ =

p⋃
i=1

Γi, Γi =
{
x ∈ Rd : x = χi(ξ) for ξ ∈ Ki ⊂ Rd−1

}
. (1.3)

With regard to the decomposition of Γ, let {ϕi}pi=1 be a partition of unity
with non-negative cut off functions ϕi ∈ C∞0 (Rd) such that

p∑
i=1

ϕi(x) = 1 for x ∈ Γ, ϕi(x) = 0 for x ∈ Γ \ Γi.

For a function u defined on Γ, we write

u(x) =

p∑
i=1

u(x)ϕi(x) =

p∑
i=1

ui(x) for x ∈ Γ,

where ui(x) = u(x)ϕi(x). In the next step, x is replaced by the parametrisation
from (1.3) and we obtain

ui(x) = u(x)ϕi(x) = u(χi(ξ))ϕi(χi(ξ)) for ξ ∈ Ki ⊂ Rd−1, i = 1, . . . , p.

The last expression is abbreviated to ũi(ξ). These functions are defined on
bounded subsets of Rd−1, and thus the Sobolev spaces from Section 1.2.1 can
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be used. To fulfil ui ∈ Hs(Ki) for s ≥ 0, the corresponding derivatives of the
parametrisation χi have to exist. For the definition of these derivatives of order
up to s ≤ k, we have to assume χi ∈ Ck−1,1(Ki).

For 0 ≤ s ≤ k, the Sobolev norm

‖u‖Hs(Γ),χ =

( p∑
i=1

‖ui‖2
Hs(Ki)

)1/2

,

which depends on the parametrisation of Γ, is defined. By the use of this norm
the Sobolev spaces Hs(Γ) can be introduced. For a Lipschitz domain Ω and
s ∈ (0, 1), the Sobolev-Slobodekii norm

‖u‖Hs(Γ) =

(
‖u‖2

L2(Γ) +

∫
Γ

∫
Γ

|u(x)− u(y)|2

|x− y|d−1+2s
dsxdsy

)1/2

is equivalent to ‖ · ‖Hs(Γ),χ, and thus the space Hs(Γ) is independent of the
parametrisation chosen in (1.3).

For s < 0, we define Hs(Γ) as the dual space of H−s(Γ) and equip it with the
norm

‖u‖Hs(Γ) = sup
06=v∈H−s(Γ)

u(v)

‖v‖H−s(Γ)

.

Additionally, we need some spaces which are only defined on a part of the
boundary. Let Γ0 be an open subset of the sufficiently smooth boundary Γ. For
s ≥ 0, we set the Sobolev space

Hs(Γ0) = {u = ũ|Γ0 : ũ ∈ Hs(Γ)}

with the norm

‖u‖Hs(Γ0) = inf
ũ∈Hs(Γ):ũ|Γ0

=u
‖ũ‖Hs(Γ).

Furthermore, let

H̃s(Γ0) = {u = ũ|Γ0 : ũ ∈ Hs(Γ), supp ũ ⊂ Γ0} ,

and for s < 0, we set Hs(Γ0) as the dual space of H̃s(Γ0).
Finally, we define a Sobolev space over the boundary with piecewise regularity

Hs
pw(Γ) = {u ∈ L2(Γ) : u|Γi ∈ Hs(Γi), i = 1, . . . , p} ,

and we equip it with the norm

‖u‖Hs
pw(Γ) =

( p∑
i=1

‖u|Γi‖2
Hs(Γi)

)1/2

.
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1.2.3 Properties of Sobolev spaces

To state some properties of Sobolev spaces, we have to guaranty certain regular-
ities of the domain Ω and its boundary Γ. Therefore, we take from [36]

Definition 1. Let Ω be an open subset of Rd. We say that its boundary Γ
is continuous (respectively Lipschitz, continuously differentiable, of class Ck,1,
k times differentiable) if for every x ∈ Γ there exists a neighbourhood U of x in
Rd and new orthogonal coordinates {ξ1, . . . , ξd} such that

1. U is an hypercube in the new coordinates:

U = {(ξ1, . . . , ξd) : −ci < ξi < ci, i = 1, . . . , d}

2. there exists a continuous (respectively Lipschitz, continuous differentiable,
of class Ck,1, k times continuously differentiable) function f , defined in

U ′ = {(ξ1, . . . , ξd−1) : −ci < ξi < ci, i = 1, . . . , d− 1}

and such that

|f(ξ′)| ≤ cd/2 for every ξ′ = (ξ1, . . . , ξd−1) ∈ U ′,
Ω ∩ U = {ξ = (ξ′, ξd) ∈ U : ξd < f(ξ′)},
Γ ∩ U = {ξ = (ξ′, ξd) ∈ U : ξd = f(ξ′)}.

From now on, we restrict ourselves to bounded domains Ω. So, the boundary Γ
is compact, and thus we can find a finite cover of Γ which can be used to construct
a parametrisation as given in (1.3). We state the famous Sobolev embedding
theorem which can be found in [2, 15], for example.

Theorem 1. (Sobolev embedding) Let Ω ⊂ Rd, d ∈ N be a bounded domain with
Lipschitz boundary and let 2k > d with k ∈ N. For u ∈ Hk(Ω), it is u ∈ C0(Ω)
and there exists a constant CS > 0 such that

‖u‖C0(Ω) ≤ CS‖u‖Hk(Ω)

for all u ∈ Hk(Ω).

Remark 1. In [15], it is shown that for convex domains Ω with diameter smaller
or equal to one, the constant in Theorem 1 has the form

CS = c |Ω|−1/2

with a constant c > 0 which only depends on d and k.

Next, we give some results for traces of functions in Sobolev spaces. For
sufficiently smooth functions u over Ω, we set the trace operator γ0 as restriction
of u to the boundary Γ, i.e.

γ0u = u
∣∣
Γ
.

This operator has continuous extensions such that the following theorems taken
from [2] and [50] are valid.
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Theorem 2. If the bounded subset Ω of Rd has a boundary Γ of class Ck−1,1 and
if 1/2 < s ≤ k then

γ0 : Hs(Ω)→ Hs−1/2(Γ)

is a bounded linear operator, i.e.

‖γ0u‖Hs−1/2(Γ) ≤ cT ‖u‖Hs(Ω) for u ∈ Hs(Ω).

This operator has a continuous right inverse

E : Hs−1/2(Γ)→ Hs(Ω)

with γ0Ev = v for all v ∈ Hs−1/2(Γ) and

‖Ev‖Hs(Ω) ≤ cIT ‖v‖Hs−1/2(Γ) for v ∈ Hs−1(Γ).

Theorem 3. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary Γ. Then,
there exists a bounded linear operator

γ : H1(Ω)→ L2(Γ)

with
‖γu‖L2(Γ) ≤ cLT ‖u‖H1(Ω) for u ∈ H1(Ω).

1.3 Variational formulation

For the finite element method, the model problem (1.1) has to be understood in
a week sense. To obtain a variational formulation, the differential equation in
the model problem is multiplied by an arbitrary smooth test function v which
vanishes on the Dirichlet boundary ΓD. Afterwards, the equation is integrated by
parts and the Neumann boundary conditions are incorporated. This procedure
yields the equality ∫

Ω

a∇u · ∇v =

∫
Ω

fv +

∫
ΓN

gN v,

which is the basis for the variational formulation. The reduced regularity of the
test function

v ∈ V = H1
D(Ω) = {v ∈ H1(Ω) : γ0v = 0 on ΓD}

is sufficient. The integrals can be interpreted as duality products and conse-
quently the equation remains valid for given data gN ∈ H−1/2(ΓN) and f in the
dual of H1

D(Ω). The Hilbert space V is equipped with the norm ‖·‖V = ‖·‖H1(Ω).
To handle the inhomogeneous Dirichlet datum, an extension uD ∈ H1(Ω) of gD is
used. This extension exists since gD ∈ H1/2(ΓD). We seek the unknown solution
u ∈ H1(Ω) in the form u = u0 +uD with u0 ∈ H1

D(Ω). This yields the variational
formulation

Find u0 ∈ V : aΩ(u0, v) = `(v), ∀v ∈ V, (1.4)
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with the bilinear form

aΩ(u, v) =

∫
Ω

a∇u · ∇v,

and
`(v) = (f, v) + (gN , v)ΓN − aΩ(uD, v).

Here, (·, ·) and (·, ·)ΓN denote the L2-scalar products over Ω and ΓN , respectively.
In the case of gN 6∈ L2(ΓN) and f 6∈ L2(Ω), the L2-scalar products are interpreted
again as duality products.

Due to the properties of the coefficient function a ∈ L∞(Ω), the bilinear form
is continuous on V , i.e. there is a constant M > 0 such that

|aΩ(u, v)| ≤M‖u‖V ‖v‖V for u, v ∈ V.

This is a consequence of the Cauchy-Schwarz inequality as we see easily

|aΩ(u, v)| ≤ amax

∫
Ω

|∇u ·∇v| ≤ amax‖∇u‖L2(Ω)‖∇v‖L2(Ω) ≤ amax‖u‖H1(Ω)‖v‖H1(Ω).

Furthermore, the bilinear form aΩ(·, ·) is V -elliptic, i.e. there is a constant m > 0
such that

aΩ(v, v) ≥ m‖v‖2
V for v ∈ V.

To prove this inequality, we need the lower bound of the coefficient function as
well as the following result, which is proven even for more general norms in [33].

Lemma 1. Let Ω ⊂ Rd, d ∈ N be a bounded Lipschitz domain with boundary Γ
and let ΓD ⊂ Γ with |ΓD| > 0. Then, there exists a constant cPF > 0 such that

‖u‖2
L2(Ω) ≤ cPF

|u|2H1(Ω) +

( ∫
ΓD

u

)2


for u ∈ H1(Ω).

For v ∈ V , we obtain

aΩ(v, v) ≥ amin |v|2H1(Ω) =
amin

2

|v|2H1(Ω) + |v|2H1(Ω) +

( ∫
ΓD

v

)2


≥ amin

2
min

{
1,

1

cPF

}
‖v‖2

H1(Ω).

Another possibility to prove the V -ellipticity is to use the equivalence of the
norm ‖ · ‖H1(Ω) and the semi norm | · |H1(Ω) on V . This equivalence can be seen
easily from Lemma 1, but there is also a direct proof available, see [18].
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In analogy to the continuity of the bilinear form, we recognize the linearity
and the continuity of the right hand side ` of (1.4) on V , i.e. there is a constant
c` > 0 such that

|`(v)| ≤ c`‖v‖V for v ∈ V.

A well known result in variational calculus is

Theorem 4. (Lax-Milgram lemma) Let V be a Hilbert space, a(·, ·) : V ×V → R
a continuous V -elliptic bilinear form, and let ` : V → R be a continuous linear
form. Then the abstract variational problem:

Find u ∈ V : a(u, v) = `(v), ∀v ∈ V

has one and only one solution.

In the proof of the Lax-Milgram lemma, the Riesz representation theorem is
utilized, see for example [18] or the original work [47]. It is

Theorem 5. (Riesz representation theorem) Let V be a Hilbert space with scalar
product (·, ·)V and corresponding induced norm ‖ · ‖V =

√
(·, ·)V . Furthermore,

let V ′ be the dual of V equipped with the norm

‖`‖V ′ = sup
0 6=v∈V

|`(v)|
‖v‖V

.

For each ` ∈ V ′, there exists a unique u ∈ V such that

(u, v)V = `(v) for v ∈ V

and
‖u‖V = ‖`‖V ′ .

The variational formulation (1.4) fulfils all ingredients of the Lax-Milgram
lemma and has therefore a unique solution u0 ∈ V . Consequently, we obtain
u = u0 + uD as unique solution of the week formulation of our model problem.

Remark 2. Since aΩ(·, ·) is symmetric in the model problem, the unique solv-
ability can also be proven directly by applying the Riesz representation theorem.
Due to the properties of the bilinear form, aΩ(·, ·) is a scalar product on V . The
right hand side `(·) of (1.4) belongs to the dual of V . Thus, Theorem 5 guaranties
a unique function u0 ∈ V such that

aΩ(u0, v) = `(v) for v ∈ V.

The induced norm
‖v‖E =

√
aΩ(v, v)

is called energy norm and as a consequence of the continuity and the ellipticity
of the bilinear form on V , the energy norm is equivalent to the H1-norm.
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In the numerics, it is not possible to work with the space V directly. Therefore,
a finite dimensional subspace Vh of V is introduced and the discrete variational
formulation

Find u0h ∈ Vh : aΩ(u0h, vh) = `(vh), ∀vh ∈ Vh (1.5)

is considered. This approach is also called discrete Galerkin formulation. Since
Vh ⊂ V , the method is said to be conforming. Due to the finite dimension of Vh,
we can introduce a basis Ψ with Vh = span Ψ and dimVh = n for some n ∈ N.
Next, we express u0h as linear combination of basis functions

u0h =
∑
ψ∈Ψ

βψψ,

and we have to test (1.5) only with vh = φ for all φ ∈ Ψ. Consequently, we end up
with a system of linear equations to compute the unknown coefficients βψ of u0h.
More precisely, let β be the vector with components βψ. We obtain

Aβ = b

with

A = (aΩ(ψ, φ))φ,ψ∈Ψ ∈ Rn×n and b = (`(φ))φ∈Ψ ∈ Rn.

The system matrix A is symmetric and positive definite because of the symmetry
and the V -ellipticity of the bilinear form aΩ(·, ·). Therefore, the n× n system of
linear equations admits a unique solution.

Nevertheless, the question remains how the variational formulations (1.4)
and (1.5) are related to each other. Céa’s lemma gives the answer. The dis-
crete Galerkin formulation (1.5) yields the best approximation of the solution
of (1.4).

Lemma 2. (Céa’s lemma) Let V be a Hilbert space and Vh ⊂ V a finite dimen-
sional subspace of V , let a(·, ·) : V × V → R be a continuous V -elliptic bilinear
form, and let ` : V → R be a continuous linear form. Furthermore, let u ∈ V be
the solution of

Find u ∈ V : a(u, v) = `(v), ∀v ∈ V

and uh ∈ Vh the solution of

Find uh ∈ Vh : a(uh, vh) = `(vh), ∀vh ∈ Vh.

Then, the abstract error estimate

‖u− uh‖V ≤
M

m
min
vh∈Vh

‖u− vh‖V

holds.
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Proof. By the use of the V -ellipticity, the Galerkin orthogonality

a(u− uh, vh) = 0 for vh ∈ Vh, (1.6)

as well as the continuity of the bilinear form, we obtain

m ‖u− uh‖2
V ≤ a(u− uh, u− uh)

= a(u− uh, u− vh)
≤ M ‖u− uh‖V ‖u− vh‖V

for arbitrary vh ∈ Vh. Taking the minimum with respect to vh and dividing by
m and ‖u− uh‖V finishes the proof.

In Chapter 2, we discuss a possible choice of basis functions and the ap-
proximation properties of the corresponding discrete space Vh in two dimensions.
These ideas are extended to three dimensions in Chapter 4. Whereas the theory
in this section is valid for arbitrary data gN ∈ H−1/2(ΓN) and f in the dual of
H1
D(Ω), we restrict ourselves to the case gN ∈ L2(ΓN) and f ∈ L2(Ω) which is

more suitable for the numerics.

1.4 Regularity statements

In the previous section, we have seen that the weak solution of the model prob-
lem (1.1) which is obtained by solving the corresponding variational formulation
fulfils u ∈ H1(Ω). This regularity statement is the worst case. In general, one
would expect that the solution of the model problem is two times differentiable
in the classical or at least in the weak sense such that its second derivatives
are square integrable. Under certain assumptions on the domain Ω and on the
regularity of the boundary data, it is possible to prove higher regularity of the
solution. In this section, we summarize several regularity results from the litera-
ture. We restrict ourselves to the case of pure Dirichlet boundary conditions, but
in the cited literature one can also find similar results for more general boundary
conditions.

First, we state some results taken from [34]. Here, the derivatives are under-
stood in the classical sense, and we seek a solution which is two times differen-
tiable. A bounded domain Ω ⊂ Rd for d ∈ N is said to fulfil the exterior sphere
condition if for every point x ∈ ∂Ω there exists a d-dimensional ball B satisfying
B ∩ Ω = x. This holds for example if the boundary of Ω is of class C2 or if Ω is
a convex d-dimensional polygon. For κ ∈ (0, 1), we have

Theorem 6. Let Ω ⊂ Rd, d ∈ N be a bounded domain, and let a ∈ C1,κ(Ω) be
such that

0 < amin ≤ a(x) ≤ amax for x ∈ Ω.
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Furthermore, let f be bounded and belong to C0,κ(Ω). Suppose that Ω satisfies an
exterior sphere condition. Then, if g is continuous on Γ, the Dirichlet problem

−div(a∇u) = f in Ω,

u = g on Γ,

has a unique solution u ∈ C0(Ω) ∩ C2,κ(Ω).

Several properties are known for the solution of such a Dirichlet problem. Let
L denote the differential operator defined by

Lu = div(a∇u).

We say that L is elliptic if the condition

0 < amin ≤ a(x) ≤ amax for x ∈ Ω

holds. In the theory of partial differential equations of second order, the maximum
principle is an important tool. It is sometimes also called minimum-maximum
principle.

Theorem 7. (Weak maximum principle) Let L be elliptic in the bounded do-
main Ω. Suppose that

Lu ≥ 0 (Lu ≤ 0) in Ω

with u ∈ C2(Ω) ∩ C0(Ω). Then the maximum (minimum) of u in Ω is achieved
on ∂Ω, that is,

sup
Ω
u = sup

∂Ω
u (inf

Ω
u = inf

∂Ω
u).

The last two results also include the Dirichlet problem for the Poisson equation
which is important in the definition of basis functions in Chapter 2. For this case
(a ≡ 1), we additionally state the strong form of the maximum principle.

Theorem 8. (Strong maximum principle) Let Ω be a domain (not necessarily
bounded) and let u ∈ C2(Ω) such that

∆u ≥ 0 (∆u ≤ 0) in Ω.

Suppose there exists a point y ∈ Ω for which

u(y) = sup
Ω
u (u(y) = inf

Ω
u).

Then u is constant. Consequently a harmonic function cannot assume an interior
maximum or minimum value unless it is constant.

The monograph [36] deals with problems in non-smooth domains and analyses
the existents and uniqueness of solutions of (1.1) in Sobolev spaces. This means
that the derivatives in the partial differential equation are understood in the weak
sense.
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Theorem 9. Let Ω be a bounded open subset of Rd with a C1,1 boundary. Let
a ∈ C0,1(Ω) be such that

0 < amin ≤ a(x) for almost every x ∈ Ω.

Then for every f ∈ L2(Ω) and every g ∈ H3/2(Γ), there exists a unique solution
of

−div(a∇u) = f in Ω,

γ0u = g on Γ,

with u ∈ H2(Ω).

The condition on the boundary can be relaxed under the assumption that Ω
is convex. For this case, we restrict ourselves to homogeneous Dirichlet boundary
conditions.

Theorem 10. Let Ω be a convex, bounded and open subset of Rd and a ∈ C0,1(Ω)
such that

0 < amin ≤ a(x) ≤ amax for x ∈ Ω.

Then for each f ∈ L2(Ω), there exists a unique solution of

−div(a∇u) = f in Ω,

γ0u = 0 on Γ,
(1.7)

with u ∈ H2(Ω).

Next, we focus on the two dimensional setting (d = 2) and assume that Ω is
a polygonal bounded domain. We decompose the boundary Γ into straight line
segments Γi such that

Γ =

p⋃
i=1

Γi, xi = Γi ∩ Γi+1 for i = 1, . . . , p where Γp+1 = Γ1,

and the angle between two consecutive segments Γi and Γi+1 is smaller than π.
The segments are ordered counterclockwise and xi denotes the vertex between
them. For convex Ω of this kind, the trace operator for smooth functions, consid-
ered at the end of Section 1.2, can be extended continuously to a bounded linear
operator

γpw : Hk(Ω)→ Hk−1/2
pw (Γ)

for k ∈ N, see [36]. Now, we are interested in the boundary value problem

−∆u = f in Ω,

γpwu = g on Γ,
(1.8)

for f ∈ L2(Ω) and g ∈ H
3/2
pw (Γ). For convex domains Ω, like the elements of

regular meshes defined in the next section, we already know from Theorem 10 that
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the problem admits a unique solution in H2(Ω) for homogeneous boundary data.
To find similar results for inhomogeneous Dirichlet data, we reduce the problem
to the previous case. Therefore, the question arises if a function ug ∈ H2(Ω)
exists such that

γpwug = g. (1.9)

In [36], the author demands additional regularity on

∆ug − f ∈ L2(Ω),

but this is not necessary due to the equivalence of two different definitions of
Sobolev spaces which has been shown in [51].

Theorem 11. Let f ∈ L2(Ω), g ∈ H3/2
pw (Γ) and let g be continuous in the vertices

xi, i = 1, . . . , p of the boundary Γ. Then there exists a function ug ∈ H2(Ω)
such that (1.9) holds true. Consequently, problem (1.8) admits a unique solution
u ∈ H2(Ω).

If we allow non-convex polygonal domains, the smoothness of the solution
decreases. Assume, we have a polygonal domain Ω with one reentrant corner. So
all interior angles between the boundary segments are smaller than π beside at
one vertex xs. This vertex is called a singular point and the interior angle at this
point exceeds π. The Dirichlet problem for the Laplace equation is now studied
again in the variational framework. By the use of localization techniques, it is
possible to show that the solution of (1.8) for homogeneous boundary data can
be decomposed into

u = w + ρ.

Here, w ∈ H2(Ω) is the regular part of the solution. But the remainder fulfils
ρ 6∈ H2(Ω) and its singularity depends on the interior angle at xs. Consequently,
the solution of the problem gets singular and it is u 6∈ H2(Ω). Nevertheless,
it is known that the Laplace problem with homogeneous Dirichlet datum on
polygonal domains with reentrant corners admits unique solutions which are at
least in H3/2(Ω), see [37]. This result is proven by the help of decomposition
theorems. Such a theorem is given in [44] even for more general cases, namely
for interface problems.

In the special case that the diffusion coefficient is piecewise constant, we
call (1.7) an interface problem. From now on, we assume that the domains,
where a(·) is constant, are polygonal bounded. The union of the boundaries of
these domains is called the interface, and the vertices of them are called singular
points. Considering the domain Ω = [−1, 1]2, we define with the help of polar
coordinates (r, ϕ) the function

g(x) = rλ


cos(λ(π/2− b2)) cos(λ(ϕ− π/2 + b1)) for 0 ≤ ϕ < π/2,
cos(λb1) cos(λ(ϕ− π + b2)) for π/2 ≤ ϕ < π,
cos(λb2) cos(λ(ϕ− π − b1)) for π ≤ ϕ < 3π/2,
cos(λ(π/2− b1)) cos(λ(ϕ− 3π/2− b2)) for 3π/2 ≤ ϕ < 2π,
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see [45]. With a given diffusion coefficient

a(x) =


a1 for 0 ≤ ϕ < π/2,
a2 for π/2 ≤ ϕ < π,
a3 for π ≤ ϕ < 3π/2,
a4 for 3π/2 ≤ ϕ < 2π,

it is possible to choose the parameters λ > 0, b1, b2 in such a way that u = g is
the weak solution of the interface problem

−div(a∇u) = f in Ω,

u = g on Γ.

Vice versa, it is also possible to choose ai, i = 1, . . . , 4 for given λ > 0, b1

and b2 such that u = g solves the boundary value problem. In both cases, the
solution fulfils u ∈ H1+s(Ω) for 0 < s ≤ λ if λ < 1. Analysing this example,
it is possible to find data and parameters such that u ∈ H1+ε(Ω) for arbitrary
small ε ∈ (0, 1) as well as u ∈ H2−ε(Ω), see [57]. For example, if we choose
a1 = a3 = 1 and a2 = a4 = ã, the regularity of the solution gets arbitrarily low
for ã → ∞. Consequently, the distribution of the piecewise constant material
coefficient function a(·) has a big influence on the regularity of the solution.

xs
a2

a3

a4

a5
a1

xs
a2

a1

a3

Figure 1.1: Local distribution ai for xs ∈ Ω (left) and xs ∈ Γ (right)

If we pick a singular point xs and order the domains counterclockwise which
border on xs and where a(·) is constant, see Figure 1.1, we get a local distribution
ai, i = 1, . . . , n of the piecewise constant material coefficient function. Here, n
denotes the number of neighbouring domains to xs. If xs ∈ Γ, we start the
numbering next to the boundary and if xs ∈ Ω, we set an+1 = a1. In both cases,
we assume that ai 6= ai+1 for i = 1, . . . , n − 1 and i = 1, . . . , n, respectively.
Otherwise, two domains are merged. The material coefficient is called quasi-
monotone with respect to xs ∈ Ω if there exists only one index i with

ai > ai−1 and ai > ai+1,
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see Figure 1.2. So, there is no local maxima beside the one at index i. For xs ∈ Γ,
the material coefficient is called quasi-monotone with respect to xs if there exists
an index i such that

a1 > . . . > ai < . . . < an,

where a1 and an are next to Γ. The quasi-monotonicity condition is always valid
with respect to interior singular points if at most three domains meet there. For
singular points on the boundary, it is always valid if at most two domains meet.
Under the assumption that the material coefficient is quasi-monotone with respect
to each singular point, there are further regularity statements for the interface
problem. In [57], the author has shown that under this assumption the solution
of the boundary value problem belongs at least to H5/4(Ω).

xs
2

3

2

10.5

xs
1

2

2

xs
2

2

3

1

1

Figure 1.2: Quasi-monotone coefficient with respect to xs ∈ Ω (left), xs ∈ Γ
(middle) and non-quasi-monotone coefficient with respect to xs ∈ Ω (right)

1.5 Properties and refinement of regular meshes

For the finite element method, we have to introduce a discretization Kh of Ω. In
this section, we restrict ourselves to the two dimensional case Ω ⊂ R2. In contrast
to classical conforming finite element methods, we allow meshes with arbitrary
convex polygonal elements which are bounded. Examples of such meshes are
given in Figure 1.3. The elements K ∈ Kh are non-overlapping open sets such
that

Ω =
⋃

K∈Kh

K.

The elements consist of nodes and edges. An edge E is always located between
two nodes, the start and the end point, which are also the only nodes on E. In
each corner of an element K, a node is located, but there could also be some nodes
on straight lines of the boundary ∂K, compare the left picture in Figure 1.4. We
stress this fact more carefully. If we have a triangle with three nodes and we add
some nodes on the boundary, this triangle turns formally into a polygon. These
additional nodes enrich the approximation space in the finite element method in
Chapter 2. In this context, nodes on straight lines are natural since they are just
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classical nodes for polygons. In triangular or quadrilateral meshes these nodes
appear as hanging nodes which are undesirable and do not influence the accuracy
of the approximation. In classical finite element implementations, such hanging
nodes have to be treated in a special way whereas methods working on polygonal
meshes include them naturally.
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Figure 1.3: Two examples for meshes with polygonal elements

The length of an edge E and the diameter of an element K are denoted by
hE and hK = sup{|x − y| : x, y ∈ ∂K}, respectively. We introduce the diameter
ρK of the largest circle inscribed in K with center zK , see Figure 1.4. If zK is not
unique an arbitrary but fixed one is chosen.

Definition 2. The mesh Kh is called regular if it fulfils:

1. The aspect ratio is uniformly bounded from above by σ, i.e.
hK/ρK < σ ∀K ∈ Kh.

2. All elements K ∈ Kh are convex polygons.

Additionally, we assume that hK < 1 for all elements K ∈ Kh. This condition
is no grievous restriction on the mesh since hK < 1 can always be satisfied by
scaling Ω. Nevertheless, it is necessary in the forthcoming local boundary integral
formulations.

zK

K

ρK

Figure 1.4: Elements with additional nodes on the straight boundary (left) and
element K with inscribed circle (right)
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For the later analysis, we need some notation. Nh denotes the set of all nodes
in the mesh Kh. It is Nh = Nh,Ω ∪Nh,D ∪Nh,N , where Nh,Ω, Nh,D, Nh,N contain
the nodes in the interior of Ω, on the Dirichlet boundary ΓD and on the interior of
the Neumann boundary ΓN , respectively. The transition points between ΓD and
ΓN belong to Nh,D. We label the set of all edges of the mesh with Eh. In analogy
to the set of nodes, we decompose Eh = Eh,Ω ∪ Eh,D ∪ Eh,N , where Eh,Ω, Eh,D and
Eh,N contain all edges in the interior of Ω, on the Dirichlet boundary ΓD and on
the Neumann boundary ΓN , respectively. Moreover, the sets N (K) and N (E)
contain all nodes which belong to the element K ∈ Kh and the edge E ∈ Eh,
respectively. Finally, we denote the set of edges which belong to the element K
by E(K).

E′

E

K

TE′

TE

α0

z

zK

K

E

zb

y

ρK δ

ze

Figure 1.5: Element with two isosceles triangles adjacent to the node z (left) and
element with inscribed circle, auxiliary triangulation and projection y of zK onto
the straight line through E (right)

Lemma 3. Let Kh be a regular mesh according to Definition 2. Then, there is an
angle α0 with 0 < α0 ≤ π/3 such that for all elements K ∈ Kh and all its edges
E ∈ E(K) the isosceles triangle TE with longest side E and two interior angles
α0 lies inside the element K, see Figure 1.5. The angle α0 only depends on σ.

Proof. For arbitrary K ∈ Kh, we construct a triangulation by connecting all ver-
tices z ∈ N (K) with zK . Next, we bound the angles between the new introduced
edges and the previous ones E = zbze ∈ E(K) from below, see Figure 1.5. With-
out loss of generality, we assume that the angle δ is smaller than π/2. Using the
projection y of zK onto the straight line through the edge E, we recognize

sin δ =
|y − zK |
|zb − zK |

≥ ρK
hK
≥ 1

σ
.

Consequently, it is δ ≥ arcsinσ−1. Since this estimate is valid for all angles
next to ∂K of the auxiliary triangulation, the isosceles triangles with common
angle α0 = min{π/3, arcsinσ−1} lie inside the auxiliary triangles and therefore
inside K.

Remark 3. The upper bound of α0 is chosen in such a way that the longest side
of the isosceles triangle TE is always the edge E. This fact is not important in
the previous lemma, but it simplifies forthcoming proofs.
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Corollary 1. Let Kh be a regular mesh. Every node belongs to finitely many
elements, i.e. |{K ∈ Kh : z ∈ N (K)}| ≤ c ∀z ∈ Nh. The constant c > 0 only
depends on σ.

Proof. Due to the regularity of Kh, every interior angle of an element is bounded
from below by α0 as we have seen in Lemma 3. This angle only depends on σ.
Therefore, we have

|{K ∈ Kh : z ∈ N (K)}| ≤
⌊

2π

α0

⌋
,

where the term on the right hand side denotes the biggest integer smaller than
or equal to 2π/α0.

The isosceles triangles and the auxiliary triangulation introduced in Lemma 3
and its proof play an important role. They are used in later proofs to handle
the polygonal elements. In [35], the following proposition is proven with similar
considerations as in the proof of Lemma 3.

Proposition 1. For a regular mesh Kh, all angles of all triangles in the auxiliary
triangulation defined in the proof of Lemma 3 are less than π − arcsin(1/σ).

One consequence of this proposition is that the auxiliary triangulation fulfils
a maximum angle condition. Therefore, the standard approximation properties
of finite element interpolation for linear as well as for higher order basis functions
are valid on this discretization, see [4]. The constants appearing in the estimates
depend only on the maximal aspect ratio σ of the mesh Kh since the maximal
angle in Proposition 1 only depends on this regularity parameter.

For the analysis of local boundary element methods used in the BEM-based
FEM and some proofs in Chapter 3, the regularity of a mesh is not enough.
Another important property is that the diameter of an element is comparable to
the length of its shortest edge. This is ensured by the following definition.

Definition 3. The regular mesh Kh is called stable if there is a constant c1 > 0
such that for all elements K ∈ Kh and all its edges E ∈ E(K) it holds

hK ≤ c1hE.

In Section 3.2, we have to consider neighbourhoods of nodes, edges and ele-
ments for a proper definition of a quasi-interpolation operator. At the current
point, we want to give a preview and prove some properties. These neighbour-
hoods are open sets and they are defined as element patches by

ωz =
⋃

z∈N (K′)

K ′, ωE =
⋃

E∈E(K′)

K ′, ωK =
⋃

K∩K′ 6=∅

K ′

for z ∈ Nh, E ∈ Eh and K ∈ Kh, see Figure 1.6. An important role plays
the neighbourhood ωz of a node z. Its diameter is denoted by hωz and it is of
comparable size to K ⊂ ωz as shown in
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z

ωz

E

ωE

ωK

K

Figure 1.6: Examples for neighbourhoods of nodes, edges and elements

Lemma 4. Let Kh be regular and stable. Then, the mesh fulfils:

1. The number of nodes per element is uniformly bounded,
i.e. |N (K)| ≤ c, ∀K ∈ Kh.

2. Each element is covered by a uniformly bounded number of neighbourhoods
of elements, i.e. |{K ′ ∈ Kh : K ⊂ ωK′}| ≤ c, ∀K ∈ Kh.

3. For all z ∈ Nh and K ⊂ ωz, it is hωz ≤ chK.

The generic constant c > 0 only depends on σ and c1 from Definitions 2 and 3.

Proof. 1. Let K ∈ Kh. In two dimensions, the number of nodes |N (K)| and
the number of edges of the element K are identical. Since K is convex and
since it lies in a square with side length hK , the circumference |∂K| can be
estimated in terms of hK . Namely, it is |∂K| ≤ 4hK . Additionally, we have
hK ≤ c1hE for every edge E of K because of the stability of Kh. These
facts yield

|N (K)|hK ≤ c1

∑
E∈E(K)

hE = c1|∂K| ≤ 4c1hK

and prove the first part.

2. Let K ∈ Kh. Obviously, the neighbourhood of an element K ′ ∈ Kh can be
reformulated to

ωK′ =
⋃

z∈N (K′)

ωz.

Consequently, K is covered by all ωK′ which contain at least one ωz ⊂ ωK′
with z ∈ N (K) since K ⊂ ωz. For each z ∈ N (K), the patch ωz covers
itself at most b 2π

α0
c elements, where α0 only depends on σ, see Corollary 1.

Therefore, ωz is contained in at most b 2π
α0
c neighbourhoods ωK′′ . So, K is

covered by at most

|N (K)| ·
⌊

2π

α0

⌋
≤ c

neighbourhoods of elements ωK′ .
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3. We first recognize, that we have hK′ ≤ c1hE ≤ c1hK for K,K ′ ∈ Kh
with E ∈ E(K) ∩ E(K ′). If we apply this inequality successively in the
neighbourhood ωz of the node z ∈ Nh, we obtain with Corollary 1

hK′ ≤ c
b2π/α0c−1
1 hK for arbitrary K,K ′ ⊂ ωz.

This yields

hωz ≤ 2 max
K′⊂ωz

hK′ ≤ 2c
b2π/α0c−1
1 hK for K ⊂ ωz

and concludes the proof since α0 only depends on σ.
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Figure 1.7: Refinement of an element: element with centre x̄ (left), element with
eigenvector (middle), two new elements (right)

The use of polygonal meshes is quite interesting for practical applications.
In some real life problems, the materials already show polygonal structures like
in crystals or different soil layers in ground water simulations. Furthermore, in
the discretization of complex domains and interfaces between different meshes,
polygonal elements are more flexible and advantageous over triangulations. Nev-
ertheless, only a few commercial mesh generators are able to create and refine
such meshes. To perform numerical convergence tests which confirm the theo-
retical results, a new procedure has been implemented to refine the polygonal
meshes locally and globally. In a first step, some elements, or in the case of uni-
form refinement, all elements are marked. Afterwards, the procedure divides the
marked elements. For the decision how to split an element K into two new ones,
we first compute the matrix

MCov =

∫
K

(x− x̄)(x− x̄)>dx,

where

x̄ =
1

|K|

∫
K

x dx
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is the barycentre of the element. The two by two matrix MCov is symmetric and
positive definite due to construction. So, we compute its eigenvalues and the cor-
responding eigenvectors. The eigenvector which belongs to the biggest eigenvalue
points into the direction of the longest extend of the element K. Consequently,
we split the element orthogonal to this eigenvector through the barycentre x̄ of
K. After these steps have been carried out, two new elements are obtained,
see Figure 1.7. The regularity and stability of the mesh have to be ensured by
the implementation of the algorithm. Similar ideas are used in [63] to cluster
point clouds which are used for matrix approximation in fast boundary element
methods.

Fri May 28 15:08:40 2010

−2 −1 0 1 2

−1

0

1

Mesh in Level 1

X−Axis

Y
−

A
xi

s

Fri May 28 15:09:05 2010

−2 −1 0 1 2

−1

0

1

Mesh in Level 3

X−Axis

Y
−

A
xi

s

Fri May 28 15:09:19 2010

−2 −1 0 1 2

−1

0

1

Mesh in Level 5

X−Axis

Y
−

A
xi

s

Fri May 28 15:09:29 2010

−2 −1 0 1 2

−1

0

1

Mesh in Level 7

X−Axis

Y
−

A
xi

s

Figure 1.8: Uniform refinement of a triangle after one, three, five and seven
refinement steps

Figures 1.8 shows a uniform refinement starting from a triangle. The meshes
are obtained after one, three, five and seven refinement steps. We recognize
that even a refinement of a triangle results in an unstructured polygonal mesh.
Nevertheless, the resulting sequence of meshes has a uniform character. A big
advantage of the introduced strategy can be seen in an adaptive context. It
is possible to perform local refinements within a few elements. Classical mesh
refinement techniques for triangular meshes, for example, suffer from the fact that
local refinement propagates in neighbouring regions. This behaviour is necessary
since the resulting meshes have to be admissible and thus the use of hanging
nodes is very restricted or even avoided.

1.6 Boundary element method

As already mentioned in Section 1.3, we have to introduce some basis functions for
the finite element method. These functions are defined over polygonal and poly-
hedral convex elements as solutions of local boundary value problems in Chapter 2
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and 4. To handle the implicitly defined functions, the boundary integral formula-
tion is used. In the numerics, this formulation is realized by the use of boundary
element methods. For this reason, we review the theory and the numerics of the
Dirichlet problem for the Laplace equation presented in [50, 68].

1.6.1 Boundary integral formulation

Let K ⊂ Rd, d = 2, 3 be a bounded open domain with polygonal or polyhedral
boundary. In the later application, we think of K ∈ Kh for some polygonal or
polyhedral mesh Kh, but in general K can be an arbitrary non-convex domain.
Consider the problem

−∆u = 0 in K,

u = g on ∂K
(1.10)

with some given function g ∈ H1/2(∂K). For the following theory of boundary
integral formulations, we need the usual trace operator γK0 : H1(K)→ H1/2(∂K)
introduced in Theorem 2. Here, the index indicates that the trace is taken with
respect to the domain K. Let v ∈ H1(K) with ∆v in the dual of H1(K). Due to
Green’s first identity [50], there exists a unique function γK1 v ∈ H−1/2(∂K) such
that ∫

K

∇v(y) · ∇w(y) dy =

∫
∂K

γK1 v(y)γK0 w(y) dsy −
∫
K

w(y)∆v(y) dy (1.11)

for w ∈ H1(K). We call γK1 v the conormal derivative of v. If v is smooth, e.g.
v ∈ H2(K), we have

(γK1 v)(x) = nK(x) · (γK0 ∇v)(x) for x ∈ ∂K,

where nK(x) denotes the outer normal vector of the domain K at x. The trace
and the conormal derivative are also called Dirichlet and Neumann trace for the
Laplace equation.

Additionally, we need the fundamental solution of the Laplacian. This singular
function is given as

U∗(x, y) =


− 1

2π
ln |x− y|, for x, y ∈ R2

1

4π |x− y|
, for x, y ∈ R3

.

The fundamental solution fulfils the equation

−∆yU
∗(x, y) = δ0(y − x),

where δ0 is the Dirac delta distribution. If we substitute v(y) = U∗(x, y) in
Green’s second identity∫

K

(v(y)∆u(y)− u(y)∆v(y)) dy =

∫
∂K

(
γK0 v(y)γK1 u(y)− γK0 u(y)γK1 v(y)

)
dsy,
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see [50], we obtain a representation formula for the solution u in every point
x ∈ K. It reads

u(x) =

∫
∂K

U∗(x, y)γK1 u(y) dsy −
∫
∂K

γK1,yU
∗(x, y)γK0 u(y) dsy. (1.12)

Consequently, if the data γK0 u and γK1 u is known, it is possible to evaluate the
function u everywhere in the domain K. Furthermore, it is possible to calculate
the Neumann datum if the Dirichlet datum is known as in (1.10). We apply
the trace operator and the conormal derivative operator to the representation
formula. This yields the system of equations(

γK0 u
γK1 u

)
=

(
1
2
I−KK VK

DK
1
2
I + K′K

)(
γK0 u
γK1 u

)
. (1.13)

This system contains the standard boundary integral operators which are well
studied, see e.g. [50, 65, 68]. For x ∈ ∂K, we have the single-layer potential
operator

(VKζ)(x) = γK0

∫
∂K

U∗(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K),

the double-layer potential operator

(KKξ)(x) = lim
ε→0

∫
y∈∂K:|y−x|≥ε

γK1,yU
∗(x, y)ξ(y) dsy for ξ ∈ H1/2(∂K),

and the adjoint double-layer potential operator

(K′Kζ)(x) = lim
ε→0

∫
y∈∂K:|y−x|≥ε

γK1,xU
∗(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K),

as well as the hypersingular integral operator

(DKξ)(x) = −γK1
∫
∂K

γK1,yU
∗(x, y)ξ(y) dsy for ξ ∈ H1/2(∂K).

These integral operators

VK : H−1/2(∂K) → H1/2(∂K),
KK : H1/2(∂K) → H1/2(∂K),
K′K : H−1/2(∂K) → H−1/2(∂K),
DK : H1/2(∂K) → H−1/2(∂K)

are linear and continuous. For K ⊂ R2 with hK < 1 or K ⊂ R3, the single-layer
potential operator induces a bilinear form (VK ·, ·)L2(∂K), which is H1/2(∂K)-
elliptic and continuous on H1/2(∂K), see [50, 68]. Here, the L2-scalar product
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has to be interpreted as duality pairing. According to the Lax-Milgram lemma,
see Theorem 4, the single-layer potential operator is invertible. Therefore, the
first equation of system (1.13) yields a connection between the Dirichlet and the
Neumann trace

γK1 u = SKγ
K
0 u with SK = V−1

K

(
1
2
I + KK

)
. (1.14)

The operator
SK : H1/2(∂K)→ H−1/2(∂K)

is called Steklov-Poincaré operator and it is linear and continuous due to its
definition. Using the second equation of system (1.13), we find the symmetric
representation

SK = DK +
(

1
2
I + K′K

)
V−1
K

(
1
2
I + KK

)
. (1.15)

The inversion of the single-layer potential operator in the evaluation of the Steklov-
Poincaré operator is not desirable. To compute the unknown Neumann datum
t = γK1 u ∈ H−1/2(∂K) from given Dirichlet datum g = γK0 u ∈ H1/2(∂K), it is
more convenient to use the variational formulation

Find t ∈ H−1/2(∂K) : (VKt, ξ)L2(∂K) =
((

1
2
I + KK

)
g, ξ
)
L2(∂K)

∀ξ ∈ H1/2(∂K).

This formulation admits a unique solution according to the Lax-Milgram lemma
and is consequently equivalent to the evaluation of SK .

Finally, we are able to solve the Laplace problem (1.10) at least theoretically.
First, we compute the Neumann datum from the Dirichlet datum with the use
of the Steklov-Poincaré operator and then we insert it into the representation
formula (1.12) which solves the problem. The solution obtained this way fulfils
u ∈ H1(K), see [50, 68].

1.6.2 Discretization

In most cases, the boundary integral operators mentioned in Subsection 1.6.1 can-
not be realized analytically in simulations. Therefore, numerical approximations
are needed. In the following, we review the boundary element method which is
used for the discretization of the boundary integral equations.

Let K ⊂ Rd, d = 2, 3 be a polygonal domain with hK < 1 or a polyhedral
domain. The first step in solving (1.10) with the help of the boundary inte-
gral formulation is to discretize the boundary of K and to introduce a boundary
mesh, see Figure 1.9. In the two dimensional case, we decompose the polygo-
nal boundary into line segments. The coarsest discretization is obtained if each
line segment coincides with an edge of K. The three dimensional case is more
complicated. Here, we have to introduce a triangulation of the surface. This tri-
angulation has to be admissible in the sense of classical finite element methods,
i.e. two neighbouring triangles share either a common node or a common edge.
Furthermore, we have to ensure some form regularity such that the ratio between
the diameter of the triangle and the diameter of the largest inscribed circle of the
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Figure 1.9: A domain and its boundary mesh for d = 2 (left) and d = 3 (right)

triangle is uniformly bounded for all elements of the surface mesh, see [65, 68].
The boundary mesh is denoted by Bh and its elements by T , where T is either a
line segment (d = 2) or a triangle (d = 3). The set of nodes is labeled Mh.

For each T ∈ Bh, we define a function

τ 0
T =

{
1, in T

0, else
and set ΦN = {τ 0

T : T ∈ Bh},

which is a basis of the space of piecewise constant functions over the mesh Bh. It is
span ΦN ⊂ H−1/2(∂K), and thus we use this discrete space for the approximation
of the Neumann trace. Additionally, we define for z ∈Mh a function

ϕz =


1, at z

linear, on T ∈ Bh
0, at x ∈Mh \ {z}

and set ΦD = {ϕz : z ∈Mh}.

These functions form a basis of the space of piecewise linear and globally contin-
uous functions over the boundary ∂K. Therefore, it is span ΨD ⊂ H1/2(∂K) and
we use this discrete space for the approximation of the Dirichlet trace.

In the boundary value problem (1.10) the Dirichlet datum g ∈ H1/2(∂K) is
given. We carry out the L2-projection onto the space of piecewise linear and glob-
ally continuous functions to get an approximation gh ∈ span ΦD. This projected
datum is used in a discrete Galerkin formulation

Find th ∈ span ΦN : (VKth, ϑ)L2(∂K) =
((

1
2
I + KK

)
gh, ϑ

)
L2(∂K)

∀ϑ ∈ ΦN

to approximate the unknown Neumann datum t = γK1 u ∈ H−1/2(∂K). Due to
the properties of the boundary integral operators, the variational formulation has
a unique solution. The representations

th =
∑
τ∈ΦN

tττ and gh =
∑
ϕ∈ΦD

gϕϕ

yield the system of linear equations

VK,hth =
(

1
2
MK,h + KK,h

)
g
h
,
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where the underline refers to the coefficient vector, e.g. th = (tτ )τ∈ΦN
. The

matrices are defined as

VK,h =
(

(VKτ, ϑ)L2(∂K)

)
ϑ∈ΦN ,τ∈ΦN

and

MK,h =
(

(ϕ, ϑ)L2(∂K)

)
ϑ∈ΦN ,ϕ∈ΦD

, KK,h =
(

(KKϕ, ϑ)L2(∂K)

)
ϑ∈ΦN ,ϕ∈ΦD

.

After the computation of th, we use the approximations gh ∈ span ΦD of the
Dirichlet datum and th ∈ span ΦN of the Neumann datum in the representation
formula (1.12) to obtain an approximation

uh(x) =

∫
∂K

U∗(x, y)th(y) dsy −
∫
∂K

γK1,yU
∗(x, y)gh(y) dsy (1.16)

of the exact solution u in K. The approximation fulfils uh ∈ H1(K).

The boundary element method presented here is well studied and several
approximation properties are proven, see [65, 68]. For illustration, some results
are stated below. In the case that gh is replaced by the exact Dirichlet datum g
in the considerations of this subsection, there are the estimates

‖t− th‖L2(∂K) ≤ ch |t|H1
pw(∂K)

and

|u(x)− uh(x)| ≤ c(x)h3 |t|H1
pw(∂K) for x ∈ K

as well as

‖u− uh‖H1(K) ≤ ch3/2 |t|H1
pw(∂K)

for an exact solution u ∈ H5/2(K). In these estimates, h denotes the biggest
diameter of the mesh elements T ∈ Bh. Additionally, it is assumed in the deriva-
tion of these estimates, see [68], that the mesh is globally quasi-uniform, i.e. the
ratio between the biggest and smallest element diameter is bounded uniformly.

Till now, we have seen how to approximate the Neumann trace by the use
of the Steklov-Poincaré operator. Next, we want to discretize the symmetric
representation (1.15) of the operator. For this reason, we set

S̃Kgh = DKgh +
(

1
2
I + K′K

)
th

and choose an arbitrary function

qh =
∑
ξ∈ΦD

qξξ ∈ span ΦD.



1.6. Boundary element method 33

It is (
S̃Kgh, qh

)
L2(∂K)

=
(
DKgh +

(
1
2
I + K′K

)
th, qh

)
L2(∂K)

= (DKgh, qh)L2(∂K) + 1
2

(qh, th)L2(∂K) + (KKqh, th)L2(∂K)

= q>
h
DK,hgh + q>

h

(
1
2

(MK,h)
> + (KK,h)

>
)
th

= q>
h
DK,hgh + q>

h

(
1
2

(MK,h)
> + (KK,h)

>
)

V−1
K,h

(
1
2
MK,h + KK,h

)
g
h

= q>
h
SK,hgh,

where

SK,h = DK,h +
(

1
2

(MK,h)
> + (KK,h)

>
)

V−1
K,h

(
1
2
MK,h + KK,h

)
with

DK,h =
(

(DKϕ, ξ)L2(∂K)

)
ξ∈ΦD,ϕ∈ΦD

.

Consequently, we can use the approximation

(SKgh, qh)L2(∂K) ≈
(
S̃Kgh, qh

)
L2(∂K)

= q>
h
SK,hgh (1.17)

for the bilinear form induced by the Steklov-Poincaré operator.
Finally, the question arises how to set up all the boundary integral matrices

in the implementation. The mass matrix MK,h can be computed analytically,
whereas numerical integration is used to compile VK,h and KK,h. There are sev-
eral possibilities for this integration. Either a fully numerical or a semi analytical
scheme can be chosen. The latter one uses Gaussian quadrature for the outer
integral and evaluates the integral operator analytically in the Gaussian points.
At the end, the matrix entries of DK,h are computed as linear combinations of
matrix entries from VK,h. For a detailed description see [68].

The strategies reviewed in this subsection are for lower order approximation.
But it is not difficult to extend the ideas to a higher order boundary element
method. Here, H−1/2(∂K) is discretized with piecewise linear functions and
H1/2(∂K) with piecewise quadratic and globally continuous functions, for ex-
ample. In the two dimensional case, this means, that we extend the basis ΦN

with functions

τ 1
T =


1, at ze

linear, on T

0, else

for all T ∈ Bh, where ze is the node at the end of the line segment T . The
basis ΦD is equipped with additional bubble functions

ϕT = 4ϕzbϕze

for all T ∈ Bh, where ze is as before and zb is the node at the beginning of the
line segment T . We obtain directly a higher order method using these extended
bases in the formulation of the discrete Galerkin scheme above.





Chapter 2

BEM-based FEM in 2D

The purpose of the following pages is to introduce the BEM-based FEM for the
model problem in two dimensions. The ideas how to define the first order trial
functions are taken from [20] and are based on the symmetric boundary element
domain decomposition method presented in [42]. The trial functions are defined
implicitly as solutions of local boundary value problems. These problems are
solved approximately by the boundary element method. Therefore, the global
strategy is called BEM-based finite element method. In contrast to the publi-
cations [20, 21, 40], where the method is analysed in the domain decomposition
framework, we favour the viewpoint of a finite element method, and we deal with
mixed boundary conditions as well as with non-vanishing right hand side in the
differential equation.

After the discussion of the first order trial functions, we introduce higher order
trial functions over polygonal meshes based on new ideas. Interpolation operators
are declared and approximation properties are proven by the use of recent results
from [35] and extending them to the situation of higher order approximation.
This strategy yields convergence estimates for the finite element method with
exact trial functions where numerical errors in their approximation are neglected.

In previous realizations, the diffusion coefficient has been approximated by a
piecewise constant function such that the numerical realization is straightforward
as we see in the first section. But this restriction deteriorates the convergence
of the higher order method with non-constant coefficient. For this reason, we
propose a new kind of approximation which overcomes the difficulties, and we
discuss how to realize the advanced strategy numerically.

Throughout the chapter, we present several numerical examples which illus-
trate the addressed problems and confirm the theoretical results.

2.1 Lower order method

As the name of the method already indicates, we are dealing with a finite element
method. Therefore, the basis of the further considerations is the discrete varia-

35
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tional formulation (1.5) of the model problem (1.1). The aim is to define a proper
space Vh such that we can use it in the discrete Galerkin formulation and set up
the corresponding system of linear equations as stated in Section 1.3. In classical
finite element methods, piecewise linear and globally continuous functions over a
mesh are used for the definition of Vh. But this is only possible for triangulations.
One advantage of the BEM-based FEM is that it works on arbitrary polygonal
meshes which are regular according to Definition 2. Let Kh be such a regular
mesh which serves as discretization of the domain Ω. The idea is to define a
basis Ψ and to set Vh as the linear hull of Ψ.

The functions in Ψ are defined in the spirit of Trefftz such that they fulfil
the partial differential equation of the boundary value problem in some sense.
In contrast to the original idea of Trefftz where the basis functions satisfy the
equation globally, we only force them to fulfil it locally, on each element of the
discretization Kh. Additionally, we simplify the differential equation for the basis
functions and prescribe zero right hand side as well as constant material coeffi-
cients. For our model problem, we end up with the Laplace equation. To get
a unique definition, we have to state boundary values on the boundary of the
elements for the local problems. Since we are interested in a lower order method,
we prescribe linear data. To get a nodal basis, we set the functions equal to one
at one node and equal to zero at every other node of the mesh. More precisely,
we define for every z ∈ Nh, the function ψz as unique solution of

−∆ψz = 0 in K for all K ∈ Kh,

ψz(x) =

{
1 for x = z

0 for x ∈ Nh \ {z}
, (2.1)

ψz is linear on each edge of the mesh.

Obviously, the basis functions ψz are defined as solutions of local boundary value
problems (in K). The support of these functions ψz is small since they vanish on
all elements K ∈ Kh with z 6∈ N (K). Due to the nature of the Dirichlet problem
for the Laplace equation on convex domains, it is well known that ψz is arbitrary
smooth in the interior of K and continuous on the closure of K for K ∈ Kh,
see [34]. Consequently, the basis functions are globally continuous on Ω and thus
belong to the space H1(Ω). In Figure 2.1, some basis functions are illustrated
over one element.

The minimum-maximum principle for harmonic functions says that ψz reaches
its minimal and maximal value at the boundary of K, see Section 1.4. Therefore,
we have

0 < ψz < 1 in K

for z ∈ N (K). Additionally, we recognize that ψz has no strict local minima or
maxima inside of K. Otherwise, there would be a contradiction to the minimum-
maximum principle since ψz is harmonic in every small neighbourhood of the
extremum and thus reaches its extremal values on the boundary of the neigh-
bourhood.
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Figure 2.1: Visualisation of lower order trial functions on quadrangle elements,
nodes are marked with black dots

In the case that Kh is an admissible triangulation without hanging nodes,
the basis functions turn out to be the standard hat functions of classical finite
element methods. This relation is quite obvious since the lowest order linear
basis functions fulfil the data on the boundary of each element and they are
harmonic because of their linearity. According to the unique solvability of the
Dirichlet problem for the Laplace equation the hat functions coincide with the
basis functions defined here. In this sense, the BEM-based FEM can be seen as
a generalization of standard finite element methods.

If Kh is a polygonal mesh, another connection can be recognized. For the
model problem, we rediscover the so called harmonic coordinates mentioned in
several articles like [32, 35, 43, 49]. These harmonic coordinates restricted to one
element K ∈ Kh are a special type of barycentric coordinates, i.e. they satisfy

ψz(x) ≥ 0 on K (2.2)

for z ∈ N (K) and it is

v =
∑

z∈N (K)

v(z)ψz (2.3)

for any linear function v on K according to [35]. Condition (2.2) follows directly
from the minimum-maximum principle. To verify (2.3), we observe that both
sides of the equation are harmonic and coincide on the boundary of K. Therefore,
the difference of both sides is harmonic and identical to zero on the boundary.
Using the minimum-maximal principle again shows that equation (2.3) is valid
in the whole element.

In [32], the authors have proven for any set of barycentric coordinates and
especially for the harmonic coordinates, which are considered in this section,
that they satisfy the estimate

0 ≤ Llow
z ≤ ψz ≤ Lup

z ≤ 1 on K

for z ∈ N (K). Here, Llow
z and Lup

z are piecewise linear functions defined as
follows. Both functions are equal to one at the node z and they are equal to zero
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at every other node on the boundary of K. Additionally, Llow
z is linear on the

triangle constructed by connecting the node before and after z on the boundary,
and zero else, see Figure 2.2. The function Lup

z is linear on each triangle that is
obtained by connecting z with all other nodes on the boundary of K.

z z

Figure 2.2: Triangles for construction of Llow
z (left) and Lup

z (right)

We come back to the discrete Galerkin formulation and set

Ψ(1) = {ψz : z ∈ Nh} and ΨD = {ψz : z ∈ Nh,D}.

Using these sets of functions, we introduce the finite dimensional space

Vh = span Ψ with Ψ = Ψ(1) \ΨD

which is conforming, i.e. Vh ⊂ V . A discrete extension uDh of the Dirichlet
boundary datum is needed. For simplicity, we choose the interpolation of gD
with trial functions ψz ∈ ΨD as extension uDh. The Galerkin formulation (1.5)
yields together with

u0h =
∑
ψ∈Ψ

βψψ and uDh =
∑
ψ∈ΨD

βψψ

the system of linear equations∑
ψ∈Ψ

βψ aΩ(ψ, φ) = (f, φ) + (gN , φ)ΓN −
∑
ψ∈ΨD

βψ aΩ(ψ, φ) for φ ∈ Ψ.

In the approximation of u0h and uDh, we use the same symbol βψ for the coeffi-
cients but there should be no confusion since Ψ∩ΨD = ∅. We see that the main
topic is to evaluate the bilinear form aΩ(·, ·) applied to trial functions in the set
up of the system. The boundary integral (gN , φ)ΓN can be computed quite easily
since the function φ is a piecewise linear polynomial over ΓN . To handle (f, φ),
we can split the volume integral over Ω into integrals over elements and use nu-
merical integration over each polygonal region. For this quadrature, it is possible
to split the polygon even further into triangles or to use appropriate quadrature
rules for polygonal elements, see [54]. After solving the system of equations, the
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approximation of the unknown function u in the model problem (1.1) is given
by uh = u0h + uDh.

Lets address the computation of the bilinear form applied to trial functions.
The drawback of the actual formulation is that one has to integrate the gradient of
the implicitly defined trial functions over the interior of the elements. Under the
restriction that the material coefficient a(·) is constant on each element K ∈ Kh,
i.e.

a(x) = aK for x ∈ K and K ∈ Kh,
or it is approximated by a piecewise constant one, it is possible to rewrite this
formulation. With the help of Green’s first identity (1.11), we observe

aΩ(ψ, φ) =
∑
K∈Kh

aK

∫
K

∇ψ · ∇φ =
∑
K∈Kh

aK

∫
∂K

γK1 ψγ
K
0 φ.

So, we can reduce the volume integral to integrals over the boundary of the ele-
ments. Here, we have to integrate the product of the Dirichlet and the Neumann
traces of trial functions where the first one is known by definition (2.1) and the
other one can be expressed by the use of the Steklov-Poincaré operator. Since the
traces of these trial functions lie in the discrete space span ΦD used in Section 1.6
for the boundary element method, we obtain∫

∂K

γK1 ψγ
K
0 φ =

∫
∂K

γK0 φSKγ
K
0 ψ ≈ γK0 φSK,h γ

K
0 ψ

according to (1.17). Here, the underline refers to the coefficient vector of the
discrete representation. A closer look at the traces shows that

γK0 ψz = ϕz ∈ ΦD

for a trial function ψz ∈ Ψ. This means, that the trace of a trial function ψz coin-
cides with a basis function used in the local boundary element method. Therefore,
the vectors γK0 φ and γK0 ψ contain only zeros and a single one. Consequently, the
boundary integral is approximated by one entry of the matrix of the symmetric
discretization of the local Steklov-Poincaré operator.

We set up the global finite element matrix using local stiffness matrices which
belong to elements. These matrices are the symmetric discretizations of the local
Steklov-Poincaré operators weighted with the elementwise constant coefficient.
For the model problem, the global system matrix is symmetric and positive def-
inite as it has been mentioned already in Section 1.3. Additionally, we obtain
a sparse matrix since the trial functions have local support. Therefore, an ap-
propriate iterative solver can be used to find the solution of the system of linear
equations. In the realization for the later examples, we utilize a conjugate gradi-
ent method.

The finite element method on polygonal meshes with lowest order harmonic
trial functions yields linear convergence in the H1-norm as well as quadratic
convergence in the L2-norm. This behaviour is observed in our first example and
is analysed later.
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Figure 2.3: Initial mesh (left), refined mesh after two steps (middle), refined mesh
after four steps (right)

Example 1. The function u(x) = exp(2π(x1 − 0.3)) cos(2π(x2 − 0.3)), x ∈ R2

fulfils
−∆u = 0 in Ω = (0, 1)2,

u = gD on Γ

with gD = γ0u. The error is analysed with respect to h = max{hK : K ∈ Kh}.
The convergence can be seen in Figure 2.4 for the finite element method on a
sequence of uniform refined meshes, compare Figure 2.3.
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Figure 2.4: Absolute error with respect to h for Example 1 and triangles with
slope one and two

2.2 Extensions to higher order

The lowest order harmonic trial functions are understood quite well and thus the
question for higher order approximations arises. A straightforward generalization
is to add harmonic trial functions which have quadratic boundary data.
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We define for each edge E ∈ Eh a function ψE. Let zb, ze ∈ N (E) be the nodes
at the beginning and at the end of the edge E = zbze. Then, ψE is the unique
solution of

−∆ψE = 0 in K for all K ∈ Kh,
ψE = 4ψzbψze on Ẽ for all Ẽ ∈ Eh.

Due to the definition of ψE, it vanishes in all nodes and on all edges of the mesh
apart from E. For an illustration of such a trial function, see Figure 2.5. The
restriction of ψE onto E is the well known quadratic bubble function which is
zero in the corner points and one at the midpoint of the edge. For E ∈ Eh,Ω,
we have suppψE = K1 ∪K2, where K1, K2 ∈ Kh are the neighbouring elements
of E with E ∈ E(K1) ∩ E(K2). If E ∈ Eh,D ∪ Eh,N belongs to the boundary of
the domain Ω, it has just one neighbouring element of course. Since the trial
function is harmonic in the interior of each element, ψE is arbitrary smooth in K
and continuous on the closure of K for all K ∈ Kh, see [34]. As in the case of
lower order trial functions the minimum-maximum principle is applicable. We
conclude that ψE has no strict local extrema inside an element and fulfils the
estimate

0 < ψE < 1 in K

for E ∈ E(K) as the nodal basis functions.

Figure 2.5: Visualisation of higher order trial functions ψE (left) and ψK (right)
on quadrangle elements, nodes are marked with black dots

To obtain higher order convergence, we enrich the trial space Vh = span Ψ by
adding the edge trial functions ψE to the basis Ψ. Therefore, we set

Ψ = Ψ(2) \ΨD

with
Ψ(2) = Ψ(1) ∪ {ψE : E ∈ Eh},

where we also have to enrich ΨD to

ΨD = {ψz, ψE : z ∈ Nh,D, E ∈ Eh,D}.

The discrete space Vh is now equipped with harmonic functions of higher poly-
nomial order over the edges of the mesh. This space seems to suit to approximate
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triangles with slope two and one

harmonic functions with higher order. Consequently, we can use the enriched Vh
in the Galerkin formulation which has been stated in Section 1.3. The bound-
ary datum gD is now approximated by piecewise quadratic polynomials over ΓD
and the extension uDh is chosen as linear combination of trial functions ψ ∈ ΨD.
Under the restriction of a piecewise constant diffusion coefficient the numerical
realization can be done in a similar way as before. We just have to use higher
order trial functions in the local boundary element method.

Example 2. We solve again the Laplace problem mentioned in Example 1 for
the harmonic function u(x) = exp(2π(x1 − 0.3)) cos(2π(x2 − 0.3)) and plot the
convergence in Figure 2.6.

Example 3. Consider the Dirichlet boundary value problem

−∆u = f in Ω = (0, 1)2,

u = 0 on Γ,

where f ∈ L2(Ω) is chosen in such a way that u(x) = sin(πx1) sin(πx2) for x ∈ Ω
is the exact solution. The convergence results can be found in Figure 2.6.

In the last two examples, we have seen that the trial space Vh fits quite well
for problems with vanishing right hand side f but lacks in the general case.
This behaviour is not surprising since an approximation uh ∈ Vh always satisfy
−∆uh = 0 in all K ∈ Kh. It is necessary to enrich the trial space Vh even further.

For each element K ∈ Kh, we introduce a so called element bubble func-
tion ψK , see Figure 2.5, which fulfils

−∆ψK = 1 in K,

ψK = 0 else
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and is therefore uniquely defined. This function ψK is arbitrary smooth in K
and continuous on the closure of K, see [34]. According to the weak maximum
principle, ψK reaches at least one minimum on the boundary of K and thus we
have

ψK ≥ 0 in K.

Adding these bubble functions to the basis

Ψ = Ψ(3) \ΨD

with

Ψ(3) = Ψ(2) ∪ {ψK : K ∈ Kh},

we obtain an improved trial space which is still conforming, i.e.

Vh = span Ψ ⊂ V.

Using this final space Vh in the Galerkin formulation to solve the Poisson prob-
lem in Example 3, we get the desired rates of convergence. For the numerical
realization, we refer to Section 2.5.

Example 4. We solve again the problem mentioned in Example 3 for the function
u(x) = sin(πx1) sin(πx2) and plot the convergence in Figure 2.7. Due to the
enriched trial space, we get quadratic convergence in the H1-norm and cubic
convergence in the L2-norm.
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Figure 2.7: Absolute error in H1- and L2-norm with respect to h for Example 4
with Ψ = Ψ(1) \ ΨD (•) and Ψ = Ψ(3) \ ΨD (+), respectively, and triangles with
slope one, two and three
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2.3 Interpolation error and FEM convergence

The common way to find convergence estimates for finite element methods is
to use Céa’s lemma, see Lemma 2, and replace the function in the argument
of the minimum by an interpolation. If we have an appropriate interpolation
operator I : H2(Ω)→ Vh, we get

‖u− uh‖H1(Ω) ≤
M

m
min
vh∈Vh

‖u− vh‖H1(Ω) ≤
M

m
‖u− Iu‖H1(Ω).

Obviously, the problem to find convergence estimates for finite element methods
reduces to find a good interpolation operator and to study its properties.

In the following, we introduce three interpolation operators. The first one
interpolates a given function u ∈ H2(Ω) using lower order trial functions. This
operator has already been studied in [35] and some interpolation estimates have
been shown. Additionally, we introduce two higher order interpolation operators
and prove new estimates with similar but extended ideas. For v ∈ H2(Ω), we
define the operators I(i) : H2(Ω)→ H1(Ω), i = 1, 2, 3 as follows

I(i)v =
∑
ψ∈Ψ(i)

αψψ, i = 1, 2, 3,

where
αψz = v(z) for z ∈ Nh,

αψE = v

(
zb + ze

2

)
−
(
I(1)v

)(zb + ze
2

)
for E ∈ Eh with E = zbze

and

αψK =
1

ψK(zK)

(
v(zK)−

(
I(2)v

)
(zK)

)
for K ∈ Kh.

These operators use pointwise interpolation. Evaluations of functions v ∈ H2(Ω)
in one point are well defined because of the fact that H2(Ω) ⊂ C0(Ω) in two
dimensions according to the Sobolev embedding theorem, see for example Sub-
section 1.2.3, Theorem 1.

Since we can decompose the square of the H1(Ω)-norm into a sum of squares
of H1(K)-norms over elements, it is enough to examine the interpolation prop-
erties over a single element. Let Pk(K) denote the space of polynomials over K
with degree k.

Lemma 5. The restrictions of the interpolation operators I(i), i = 1, 2, 3 to each
element K ∈ Kh fulfil

1. I(1)p = p for p ∈ P1(K),

2. I(2)p = p for p ∈ P2(K) with ∆p = 0, and

3. I(3)p = p for p ∈ P2(K).
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Proof. Let p ∈ Pk(K) with ∆p = 0 for k = 1, 2. Obviously, the trace of p on the
boundary of K is a polynomial of degree k. Therefore, we can express this trace
exactly with the trial functions out of Ψ(k) restricted to ∂K. It is

p
∣∣
∂K

= I(k)p
∣∣
∂K
, (2.4)

and both p as well as I(k)p fulfil the Dirichlet problem

∆u = 0 in K,

u = p on ∂K.

Since this problem has a unique solution, it follows that I(k)p = p.
Next, we show P2(K) ⊂ span Ψ(3). Let p ∈ P2(K). As before, we can express

the trace of p by (2.4) with k = 2. Furthermore, we set α = ∆p ∈ R and

p̃ = αψK + I(2)p ∈ span Ψ(3). (2.5)

Both functions p and p̃ fulfil the boundary value problem

∆u = α in K,

u = p on ∂K.

Therefore, they are equal, i.e. p = p̃. Solving (2.5) for α yields

α =
1

ψK(x)

(
p(x)− I(2)p(x)

)
for x ∈ K

which means α = αψK and proves I(3)p = p.

Another property of the interpolation operator is the continuity. This has been
shown for I(1) in [35]. In the subsequent lemma, we prove the corresponding
estimate for the interpolation operators I(k), k = 2, 3 in a similar way. Lets
assume that the diameter hK of the element K ∈ Kh is one. This can be ensured
by scaling. In the following, c denotes a generic constant that only depends on
the maximal aspect ratio σ of the mesh given in Definition 2.

Lemma 6. Let Kh be a regular mesh and K ∈ Kh with hK = 1. For i = 1, 2, 3,
there exists a constant c = c(σ) independent of K such that

‖I(i)v‖H1(K) ≤ c ‖v‖H2(K) for v ∈ H2(K).

Proof. In this proof, we make use of the minimum-maximum principle, see Sec-
tion 1.4. Let v ∈ H2(K) and i = 3. The interpolation I(3)v fulfils the Dirichlet
problem

∆ṽ = αK in K,

ṽ = gv on ∂K
(2.6)
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in the classical sense with a piecewise quadratic function gv = I(3)v
∣∣
∂K

on the
boundary. Consequently, it also satisfies the weak formulation

Find ṽ ∈ H1(K) : γK0 ṽ = gv and

∫
K

∇ṽ · ∇w = (αK , w)L2(K), ∀w ∈ H1
0 (K).

To obtain homogeneous boundary data, we decompose ṽ = ṽ0 + ṽg, where
ṽ0 ∈ H1

0 (K) and ṽg ∈ H1(K) with γK0 ṽg = gv. According to Proposition 1,
the auxiliary triangulation of K which is obtained by connecting zK ∈ K with
all vertices of K fulfils a maximum angle condition. Therefore, we can use the
standard interpolation operator on triangular meshes for quadratic trial functions
to get some ṽg. Due to this choice and since hK = 1, it is

‖v − ṽg‖H1(K) ≤ C1 |v|H2(K),

see [4], where the constant C1 only depends on the maximum angle and thus on
the maximal aspect ratio σ. The reverse triangular inequality yields

‖ṽg‖H1(K) ≤ C1 |v|H2(K) + ‖v‖H1(K) ≤ max{1, C1} ‖v‖H2(K).

The function ṽ0 fulfils

Find ṽ0 ∈ H1
0 (K) :

∫
K

∇ṽ0 · ∇w = (αK , w)L2(K) −
∫
K

∇ṽg · ∇w, ∀w ∈ H1
0 (K).

In [34], the Poincaré inequality is stated as

‖w‖L2(K) ≤
(

1

π
|K|
)1/2

|w|H1(K) for w ∈ H1
0 (K).

According to this inequality and since |K| ≤ h2
K = 1, it is

‖ṽ0‖2
H1(K) = ‖ṽ0‖2

L2(K) + |ṽ0|2H1(K) ≤
(
1 + π−1

)
|ṽ0|2H1(K).

Due to the variational formulation for ṽ0, we find with the help of the Cauchy-
Schwarz inequality as well as the Poincaré inequality that

|ṽ0|2H1(K) =

∣∣∣∣∣∣(αK , ṽ0)L2(K) −
∫
K

∇ṽg · ∇ṽ0

∣∣∣∣∣∣
≤ |αK ||K|1/2‖ṽ0‖L2(K) + |ṽg|H1(K)|ṽ0|H1(K)

≤ π−1/2|αK ||K||ṽ0|H1(K) + |ṽg|H1(K)|ṽ0|H1(K)

which yields

|ṽ0|H1(K) ≤ π−1/2|αK ||K|+ |ṽg|H1(K). (2.7)
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In the next step, the term |αK | is estimated. We make use of Theorem 1 which
states H2(K) ⊂ C0(K) and

‖w‖C0(K) ≤ CS ‖w‖H2(K) for w ∈ H2(K).

Therefore, we have

|αK | ≤
1

|ψK(zK)|

|v(zK)|+
∑

z∈N (K)

|αψz |ψz(zK) +
∑

E∈E(K)

|αψE |ψE(zK)


≤ 1

|ψK(zK)|

1 +
∑

z∈N (K)

ψz(zK) +
∑

E∈E(K)

2ψE(zK)

 ‖v‖C0(K).

The whole term in big brackets is harmonic as a function of zK in K. It reaches
its maximum on the boundary ∂K because of the maximum principle and is
therefore smaller or equal four. We get

|αK | ≤
4CS

|ψK(zK)|
‖v‖H2(K)

and have to estimate ψK(zK). Let

p(x) =
1

4

(
ρ2
K − |x− zK |2

)
for x ∈ K,

and let BρK (zK) ⊂ K be the circle with radius ρK and center zK . Because of the
weak maximum principle, we know that ψK ≥ 0 in K. It is

∆ (ψK − p) = 0 in BρK (zK) and

ψK − p ≥ 0 on ∂BρK (zK).

The strong maximum principle yields ψK(x) ≥ p(x) for x ∈ BρK (zK) and espe-
cially ψK(zK) ≥ ρ2

K/4. Finally, we obtain

|αK | ≤
8CS
ρ2
K

‖v‖H2(K)

which gives together with (2.7)

|ṽ0|H1(K) ≤ 8π−1/2CS
|K|
ρ2
K

‖v‖H2(K) + |ṽg|H1(K)

≤ C2 ‖v‖H2(K) + ‖ṽg‖H1(K).

The constant C2 only depends on σ. This is seen by the following considerations.
We have the bound |K| ≤ h2

K as well as h2
K/ρ

2
K ≤ σ2, and we can estimate CS

uniformly according to Remark 1 since

|K| ≥ πρ2
K ≥ πσ−2h2

K = πσ−2
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is uniformly bounded for all K ∈ Kh with hK = 1 due to Definition 2.
The final step in the proof is to combine all estimates.

‖I(3)v‖H1(K) ≤ ‖ṽ0‖H1(K) + ‖ṽg‖H1(K)

≤
√

1 + π−1/2 |ṽ0|H1(K) + ‖ṽg‖H1(K)

≤
√

1 + π−1/2
(
C2 ‖v‖H2(K) + ‖ṽg‖H1(K)

)
+ ‖ṽg‖H1(K)

≤ C2

√
1 + π−1/2 ‖v‖H2(K) + max{1, C1}

(
1 +

√
1 + π−1/2

)
‖v‖H2(K)

= c ‖v‖H2(K).

The cases i = 1, 2 are proven in the same way. Here, the proof is even shorter
since αK vanishes in the auxiliary problem (2.6).

The polynomial approximations of functions in Sobolev spaces and their prop-
erties are important. Especially, the following lemma is of interest.

Lemma 7. Let Ω ⊂ Rd, d = 2, 3 be a bounded convex domain with diameter hΩ

and let v ∈ Hk+1(Ω) for k ∈ N. Then, there exists a polynomial p ∈ Pk(Ω) and
a constant C = C(j, k, d) with

|v − p|Hj(Ω) ≤ C hk+1−j
Ω |v|Hk+1(Ω) for j = 0, 1, . . . , k + 1.

For a proof see [22, 75]. A simple consequence of this lemma is the estimate

‖v − p‖H2(K) ≤ C |v|H2(K)

for a function v ∈ H2(K) with corresponding p ∈ P1(K) and the estimate

‖v − p‖H2(K) ≤ ChK |v|H3(K) (2.8)

for a function v ∈ H3(K) with corresponding p ∈ P2(K). The constant C is
independent of the element K.

With the help of the previous considerations, we can state the main results
for the interpolation error.

Theorem 12. For a regular mesh Kh of a bounded polygonal domain Ω ⊂ R2,
the interpolation operators I(i) : H2(Ω)→ span Ψ(i), i = 1, 3 fulfil

‖v − I(1)v‖H1(Ω) ≤ c h |v|H2(Ω) for v ∈ H2(Ω)

and

‖v − I(3)v‖H1(Ω) ≤ c h2 |v|H3(Ω) for v ∈ H3(Ω),

where h = max{hK : K ∈ Kh} and the constant c only depends on the maximal
aspect ratio σ of the mesh.
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Proof. The first inequality has already been proven in [35] and thus we restrict
ourselves to the second estimate. Let us start to examine the error over one
element K ∈ Kh. We have to scale this element in such a way that its diameter
becomes one. The scaled element is denoted by K̂ and we define the affine map

x̂ ∈ K̂ 7→ x = F (x̂) = Bx̂

with the matrix B = hKI. We have F : K̂ → K and detB = h2
K , ‖B‖2 = hK as

well as ‖B−1‖2 = h−1
K . Let v ∈ Hk(K), then it is v̂ = v ◦ F ∈ Hk(K̂) with

|v̂|Hk(K̂) ≤ c‖B‖k2| detB|−1/2|v|Hk(K)

and
|v|Hk(K) ≤ c‖B−1‖k2| detB|1/2|v̂|Hk(K̂),

where the constant c only depends on k ∈ N0, see [18].

Let Î(3) be the interpolation operator with respect to K̂. Due to the point-
wise interpolation, it does not matter if v is first transformed into v̂ and then
interpolated or if v is first interpolated I(3)v and then transformed. This means

Î(3)v̂ = Î(3)v.

Consequently, we obtain

‖v − I(3)v‖2
H1(K) = ‖v − I(3)v‖2

L2(K) + |v − I(3)v|2H1(K)

≤ ch2
K‖v̂ − Î(3)v̂‖2

L2(K̂)
+ c |v̂ − Î(3)v̂|2

H1(K̂)

≤ c ‖v̂ − Î(3)v̂‖2
H1(K̂)

since hK ≤ 1. Let p̂ ∈ P2(K̂) be the polynomial of Lemma 7 which closely
approximates v̂. Applying Lemma 5 and Lemma 6, we obtain

‖v̂ − Î(3)v̂‖H1(K̂) ≤ ‖v̂ − p̂‖H1(K̂) + ‖Î(3)(v̂ − p̂)‖H1(K̂)

≤ (1 + c) ‖v̂ − p̂‖H2(K̂) (2.9)

≤ (1 + c)C |v̂|H3(K̂),

where we also have used (2.8). Comparing the last two estimates and transforming
back to the element K yields

‖v − I(3)v‖2
H1(K) ≤ ch4

K |v|2H3(K).

In the last step of the proof, we have to sum up this inequality over all elements
of the mesh and apply the square root to it. This gives

‖v − I(3)v‖H1(Ω) ≤ c

(∑
K∈Kh

h4
K |v|2H3(K)

)1/2

≤ c h2 |v|H3(K)

and finishes the proof.
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Instead of measuring the interpolation error in the H1-norm, we can use the
L2-norm. As we see in the next lemma, one power of h is gained by this change
of norms.

Lemma 8. For a regular mesh Kh of a bounded polygonal domain Ω ⊂ R2, the
interpolation operators I(i) : H2(Ω)→ span Ψ(i), i = 1, 3 fulfil

‖v − I(1)v‖L2(Ω) ≤ c h2 |v|H2(Ω) for v ∈ H2(Ω),

and

‖v − I(3)v‖L2(Ω) ≤ c h3 |v|H3(Ω) for v ∈ H3(Ω),

where h = max{hK : K ∈ Kh} and the constant c only depends on the maximal
aspect ratio σ of the mesh.

Proof. Using the same ideas as in the proof of Theorem 12 yields for i = 1, 3

‖v − I(i)v‖L2(K) ≤ chK‖v̂ − Î(i)v̂‖L2(K̂) ≤ chK‖v̂ − Î(i)v̂‖H1(K̂).

According to (2.9), we obtain for v ∈ H2(Ω)

‖v − I(1)v‖L2(K) ≤ chK |v̂|H2(K̂) ≤ ch2
K |v|H2(K),

and for v ∈ H3(Ω)

‖v − I(3)v‖L2(K) ≤ chK |v̂|H3(K̂) ≤ ch3
K |v|H3(K).

Summing up the square of these terms finishes the proof.

As mentioned in the beginning of this section, error estimates for interpolation
operators carry over to approximation errors of the finite element method. Let u
be the solution of the model problem obtained by the variational formulation (1.4)
and uh its Galerkin approximation gained by (1.5). Céa’s lemma together with
the last theorem yield

Theorem 13. Let Kh be a regular mesh of a bounded polygonal domain Ω ⊂ R2.
Then, it is

‖u− uh‖H1(Ω) ≤ c h |u|H2(Ω) for u ∈ H2(Ω)

in case of the lower order method, i.e. Vh = span{Ψ(1) \ΨD}, and

‖u− uh‖H1(Ω) ≤ c h2 |u|H3(Ω) for u ∈ H3(Ω)

in case of higher order trial functions, i.e. Vh = span{Ψ(3) \ΨD}. Here, we have
h = max{hK : K ∈ Kh}, and the constant c only depends on the maximal aspect
ratio σ of the mesh.
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Remark 4. For the estimates in the theorem, we have implicitly assumed that
there are no errors in the evaluation of the bilinear form and the right hand side of
the Galerkin formulation. Additionally, this means that we use uD = uDh for the
extension of the Dirichlet datum of the boundary value problem. Therefore, it is
u− uh = u0 − u0h and u− I(i)u = u0 − I(i)u0, i = 1, 3. The case of approximate
data f , gD, gN in the discrete problem can be treated in the usual way, where
the Strang lemma is used instead of Céa’s lemma, see [18, 69].

The change of the norm in which the interpolation error is measured gives
an additional power of h. This behaviour is not natural for the finite element
convergence. To prove a corresponding result, the class of problems has to be re-
stricted such that the adjoint variational formulation admits a sufficiently regular
solution. The technique goes back to Aubin and Nitsche, see [3, 55].

Theorem 14. Let Kh be a regular mesh of a bounded polygonal domain Ω ⊂ R2.
Under the condition that for any g ∈ L2(Ω) there is a unique solution of

Find w ∈ V : aΩ(v, w) = (g, v), ∀v ∈ V,

with w ∈ H2(Ω) such that

|w|H2(Ω) ≤ C ‖g‖L2(Ω),

it is

‖u− uh‖L2(Ω) ≤ c h2 |u|H2(Ω) for u ∈ H2(Ω)

in case of the lower order method, i.e. Vh = span{Ψ(1) \ΨD}, and

‖u− uh‖L2(Ω) ≤ c h3 |u|H3(Ω) for u ∈ H3(Ω)

in case of higher order trial functions, i.e. Vh = span{Ψ(3) \ΨD}. Here, we have
h = max{hK : K ∈ Kh}, and the constant c only depends on the maximal aspect
ratio σ of the mesh.

Proof. Since u − uh ∈ V ⊂ L2(Ω) and due to the preliminaries of the theorem,
there is a unique function w ∈ H2(Ω) such that

aΩ(v, w) = (u− uh, v) for v ∈ V

and

|w|H2(Ω) ≤ C ‖u− uh‖L2(Ω).

The Galerkin orthogonality (1.6) and the continuity of the bilinear form yield for
arbitrary vh ∈ Vh

‖u− uh‖2
L2(Ω) = (u− uh, u− uh) = aΩ(u− uh, w)

= aΩ(u− uh, w − vh) ≤M ‖u− uh‖H1(Ω)‖w − vh‖H1(Ω).
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The two terms on the right hand side are estimated separately. For the second
one, we choose vh = I(1)w ∈ Vh and obtain with Theorem 12

‖w − I(1)w‖H1(Ω) ≤ ch|w|H2(Ω) ≤ ch‖u− uh‖L2(Ω).

The first term ‖u−uh‖H1(Ω), which is the approximation error of the finite element
method in the H1-norm, is treated by Theorem 13. Finally, we obtain

‖u− uh‖2
L2(Ω) ≤ cMhk |u|Hk(Ω)‖u− uh‖L2(Ω)

for k = 2, 3. Dividing by ‖u− uh‖L2(Ω) yields the desired estimates.

Remark 5. At this point, it is clear how to generalize the definition of trial
functions to arbitrary order n ∈ N with n > 2. The key idea is found in the proof
of Lemma 5. The trial space Vh has to contain the polynomial spaces Pn(K) for
K ∈ Kh. Therefore, we have to enrich Vh with additional edge bubble functions
which are harmonic inside of each K ∈ Kh and interpolate polynomials of order up
to n exactly on the boundaries of the elements. Furthermore, we have to introduce
element bubble functions which vanish on ∂K and fulfil Poisson problems inside
of K. For the Poisson problems the right hand sides are chosen such that they
form a basis of the space Pn−2(K) for each element K ∈ Kh.

2.4 Diffusion coefficient

All examples in Section 2.1 and 2.2 have been Poisson problems with material
coefficient a(·) ≡ 1. Since the numerical scheme presented in [20] can handle
piecewise constant coefficients, there is no error with respect to the coefficient.
In the general case, a piecewise constant approximation ah(·) of a(·) is needed.

In Example 5, we recognize that this coarse approximation of the material
coefficient seems to be enough in case of the lower order method, whereas the
convergence of the higher order method slows down due to this approximation
error.

Example 5. The function u(x) = |x− x∗|, x ∈ R2 with x∗ = (−0.1, 0.2)> fulfils

−div

(
1

|x− x∗|
∇u
)

= 0 in Ω = (0, 1)2,

u = gD on Γ

(2.10)

as well as
−∆u = f in Ω = (0, 1)2,

u = gD on Γ
(2.11)

with gD = γ0u and f(x) = −|x− x∗|−1. The convergence is shown in Figure 2.8
for the finite element method on a sequence of uniform refined meshes.
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Figure 2.8: Absolute error with respect to h in the H1-norm for problem (2.10)
and (2.11) in Example 5 with Ψ = Ψ(1) \ ΨD (•) and Ψ = Ψ(3) \ ΨD (+),
respectively, and triangles with slope one and two

To analyse the impact of the approximation error of the material coefficient,
the first Strang lemma [69] is used. Replacing the exact material coefficient in
the bilinear form aΩ(·, ·) by an approximated one can be seen as an approxima-
tion ahΩ(·, ·) of the bilinear form. We restrict ourselves to approximations ah(·) of
the material coefficient which fulfil

0 < amin ≤ ah(x) ≤ amax for x ∈ Ω and h > 0. (2.12)

Therefore, the bilinear form ahΩ(·, ·) is uniformly coercive as well as bounded on Vh
for h > 0, and the variational formulation has a unique solution. The following
formulation of the Strang lemma is taken from [18].

Lemma 9. Consider a family of discrete problems whose associated approximate
bilinear forms ahΩ : Vh × Vh → R are uniformly Vh-elliptic. Then there exists a
constant C independent of the space Vh such that

‖u− uh‖H1(Ω) ≤ C inf
vh∈Vh

{
‖u− vh‖H1(Ω) + sup

wh∈Vh

|aΩ(vh, wh)− ahΩ(vh, wh)|
‖wh‖H1(Ω)

}
.

Obviously, the approximation error in the finite element method is estimated
by a constant times the sum of two terms. One which gives the best approximation
error and one which measures the error coming from the inexact bilinear form.
Choosing vh = I(3)u in the lemma yields

‖u− uh‖H1(Ω) ≤ C‖u− I(3)u‖H1(Ω) + sup
wh∈Vh

|aΩ(I(3)u,wh)− ahΩ(I(3)u,wh)|
‖wh‖H1(Ω)

.

In Figure 2.9, we see that for Example 5 the interpolation error converges with sec-
ond order. This coincides with the theory of Section 2.3 which gives us quadratic
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convergence for the interpolation of a function u ∈ H3(Ω) in the Sobolev norm.
Hence, the approximation quality of the bilinear form is responsible for the re-
duced rate of convergence for the finite element method. To improve the approx-
imation of the bilinear form, we propose to use a globally continuous approx-
imation ah = I(1)a of the coefficient function. As already discussed, the trial
functions ψz ∈ Ψ(1) and thus the interpolation I(1)a reach their minimal and
maximal values on the boundary of the elements K ∈ Kh. Since these functions
are piecewise linear on the boundaries ∂K, the extremal values are even obtained
in the nodes of the mesh. Consequently, condition (2.12) holds because of

amin ≤ min
z∈Nh

a(z) = min
z∈Nh

ah(z) ≤ ah(x) ≤ max
z∈Nh

ah(z) = max
z∈Nh

a(z) ≤ amax

for x ∈ Ω. Due to this choice of ah, the numerical realization described in
Section 2.1 does not work any more. This problem is discussed in the next
section.

The following example shows the optimal convergence for a problem with
varying material properties.

Example 6. We solve again the first problem mentioned in Example 5 and use
the approximation ah = I(1)a for the material coefficient instead of a piecewise
constant one. In Figure 2.9, we recognize the improved rate of convergence due to
the better approximation of the material coefficient, and we see the convergence
of the interpolation error ‖u− I(3)u‖H1(Ω).
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1e− 01
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‖u− I(3)u‖

Figure 2.9: Absolute error with respect to h in the H1-norm for improved approx-
imation of aΩ(·, ·) in Example 6 with Ψ = Ψ(1) \ΨD (•) and Ψ = Ψ(3) \ΨD (+),
respectively, and interpolation error ‖u − I(3)u‖H1(Ω) as well as triangles with
slope one and two
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2.5 Numerical realization

In the previous sections, we have seen the discrete Galerkin formulation and the
corresponding approximations of solutions of different boundary value problems.
In the case of piecewise constant material coefficients, the set up of the finite
element matrix has been address at the end of Section 2.1. Nevertheless, the
globally continuous approximation of the material coefficient, which is essential
for the higher order method, introduces new difficulties while compiling the stiff-
ness matrix.

For the sake of completeness, the discrete formulation is reviewed. We seek
the approximate solution of the mixed boundary value problem (1.1) in the form
uh = u0h + uDh, where uDh is an extension of the discretized Dirichlet datum.
This extension is chosen to be

uDh =
∑
ψ∈ΨD

βψψ with ΨD = {ψz, ψE : z ∈ Nh,D, E ∈ Eh,D},

where the coefficients βψ are obtained by interpolation of gD. For the unknown
part u0h of the approximation, we take the ansatz

u0h =
∑
ψ∈Ψ

βψψ with Ψ = Ψ(3) \ΨD.

Here, the same symbol βψ is used for the coefficients of u0h and uDh, but there
should be no confusion since Ψ ∩ ΨD = ∅. The Galerkin formulation yields the
system of liner equations∑

ψ∈Ψ

βψ aΩ(ψ, φ) = (f, φ) + (gN , φ)ΓN −
∑
ψ∈ΨD

βψ aΩ(ψ, φ) for φ ∈ Ψ.

The system matrix is symmetric and positive definite due to the ellipticity of the
bilinear form. Additionally, we obtain a sparse matrix since the involved trial
functions have only local support. Therefore, an appropriate iterative solver, like
a cg-method, can be used to approximate the solution of the system of linear
equations.

As we have recognized earlier, the main topic is to evaluate the bilinear form
aΩ(·, ·) applied to trial functions in the set up of the system. The boundary
integral (gN , φ)ΓN and the volume integral (f, φ) are handled with numerical
quadrature. Here, we can split the Neumann boundary into edges where the
trial functions are quadratic polynomials. The volume integral over Ω can be
decomposed into integrals over elements and we use numerical integration over
each polygonal region. For this purpose, there are different integration schemes
available like [54] or a simple summation over quadratures on triangles. The
evaluation of trial functions in quadrature nodes within an element is done using
the representation formula (1.16).

In the following, we make use of Green’s formulae which involve the linear
trace operators γK0 and γK1 as we have seen in Section 1.6. In the case of trial
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functions ψ ∈ Ψ(3), we have γK0 ψ = ψ on ∂K since ψ ∈ C2(K)∩C0(K). Therefore,
we omit the trace operator γK0 in boundary integrals if no confusion occurs. Due
to the regularity of the trial functions, namely ψ ∈ H2(K), we have additionally

(γK1 ψ)(x) = nK(x) · (γK0 ∇ψ)(x) for x ∈ ∂K,

where nK(x) denotes the outer normal vector of the domain K at x.
As proposed in Section 2.4, the material coefficient is approximated by the

interpolant I(1)a, that means

ah(x) =
∑
λ∈Ψ(1)

αλλ(x) with αλz = a(z), z ∈ Nh.

Remember ∆λ = 0 in all K ∈ Kh and let ψ, φ ∈ Ψ, then

∇ψ · ∇φ =
1

2

(
∆(ψφ)− ψ∆φ− φ∆ψ

)
together with Green’s second identity yield

aΩ(ψ, φ) ≈ ahΩ(ψ, φ) =

∫
Ω

ah∇ψ · ∇φ =
∑

K∈Kh,λ∈Ψ(1)

αλ

∫
K

λ∇ψ · ∇φ

=
∑

K∈Kh,λ∈Ψ(1)

αλ
2

{∫
K

(λ∆(ψφ)− ψφ∆λ)−
∫
K

λψ∆φ−
∫
K

λφ∆ψ

}

=
∑

K∈Kh,λ∈Ψ(1)

αλ
2

{∫
∂K

(
λφ γK1 ψ + λψ γK1 φ− ψφγK1 λ

)
−
∫
K

(λψ∆φ+ λφ∆ψ)

}
.

At first glance, this representation for the bilinear form looks more complicated
than the standard one. But it turns out that it has some advantages. Depending
on the sort of trial and test functions many terms vanish. For example, let
ψ, φ ∈ Ψ(2) then the volume integral is zero since ψ and φ are harmonic. In
particular, the only case when the volume integral does not vanish is that ψ or
φ is an element bubble function and the Laplacian of this function is minus one.
Hence, we have to evaluate integrals like∫

K

λψ with λ ∈ Ψ(1) and ψ ∈ Ψ(3) for K ∈ Kh.

In the implementation, this integration is done with the help of numerical quadra-
ture using the representation formula for λ and ψ, see below.

The boundary integral contains three terms which are similar to each other.
Obviously, it is sufficient to study∫

∂K

λφ γK1 ψ for λ, φ, ψ ∈ Ψ(3). (2.13)
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Here, the conormal derivative as well as the traces of the trial and test functions
are involved. In the following, the boundary integral formulation is used to handle
this kind of integrals.

Let K ∈ Kh. First, we consider ψ ∈ Ψ(2) that means ψ fulfils the boundary
value problem

−∆ψ = 0 in K,

ψ = g on ∂K
(2.14)

with some piecewise quadratic function g on ∂K. In Section 1.6, we have seen
how to approximate the Neumann datum from given Dirichlet datum. This has
been done by the use of a variational formulation. In the current notation, we
have

ΦN = {τ 0
E, τ

1
E : E ∈ E(K)},

where τ 0
E, τ

1
E : ∂K → R with

τ 0
E =

{
1, on E

0, else
and τ 1

E =


1, at ze

linear, on E

0, else

for E = zbze. The set ΦN forms a basis of the space of piecewise linear functions
which is used to approximate H−1/2(∂K) and thus the Neumann trace of ψ. We
recognize that the space of piecewise quadratic and globally continuous functions
on ∂K is spanned by

ΦD = {γK0 ψz, γK0 ψE : z ∈ N (K), E ∈ E(K)}.

Obviously, the bases ΦD as well as ΦN coincide with the one proposed in Sec-
tion 1.6 for higher order boundary element methods in two dimensions. For the
discretization of the boundary ∂K, we use the naturally given decomposition by
the polygonal structure. So, the boundary element method is applied on a coarse
mesh with only a few elements.

We come back to the boundary value problem (2.14) for ψ. The Dirichlet da-
tum γK0 ψ = g ∈ span ΦD is given and the Neumann datum γK1 ψ is approximated
by th ∈ span ΦN . With the representations

th =
∑
τ∈ΦN

tττ and g =
∑
ϕ∈ΦD

gϕϕ,

we obtain the relationship between the Dirichlet and Neumann datum as a system
of linear equations

VK,hth =
(

1
2
MK,h + KK,h

)
g,

where the underline refers to the coefficient vector, e.g. th = (tτ )τ∈ΦN
. The

matrices are defined as

VK,h =
(

(VKτ, ϑ)L2(∂K)

)
ϑ∈ΦN ,τ∈ΦN
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and

MK,h =
(

(ϕ, ϑ)L2(∂K)

)
ϑ∈ΦN ,ϕ∈ΦD

, KK,h =
(

(KKϕ, ϑ)L2(∂K)

)
ϑ∈ΦN ,ϕ∈ΦD

.

When the boundary element matrices are computed, we can get the approxi-
mation of the Neumann trace of each harmonic trial function ψ with respect to
the element K ∈ Kh by multiplying V−1

K,h

(
1
2
MK,h + KK,h

)
with the coefficients g

of its Dirichlet trace, where g = γK0 ψ ∈ span ΦD. Consequently, this matrix is
computed once per element and stored. The evaluation of the trial function in
the interior of an element is approximated by inserting the exact Dirichlet trace
and the approximated Neumann trace into the representation formula (1.12).
Afterwards, the integrals therein are computed analytically.

For the approximation of the integral (2.13), we use a similar trick as in the
case of piecewise constant coefficients in Section 2.1. Let

ΦEx = {γK0 (ψzbψze), γ
K
0 (ψzbψzb), γ

K
0 (ψzbψE), γK0 (ψzeψE), γK0 (ψEψE) : E ∈ E(K)}

and choose an arbitrary function qh ∈ span ΦEx with

qh =
∑
χ∈ΦEx

qχχ.

Taking advantage of the symmetric representation of the Steklov-Poincaré oper-
ator and its approximation

S̃Kg = DKg +
(

1
2
I + K′K

)
th,

it is∫
∂K

qh γ
K
1 ψ ≈

∫
∂K

qh S̃Kg =
(
qh,DKg +

(
1
2
I + K′K

)
th
)
L2(∂K)

= (DKg, qh)L2(∂K) + 1
2

(qh, th)L2(∂K) + (KKqh, th)L2(∂K)

= q>
h
DEx
K,hg + q>

h

(
1
2

(
MEx

K,h

)>
+
(
KEx
K,h

)>)
th

= q>
h
DEx
K,hg + q>

h

(
1
2

(
MEx

K,h

)>
+
(
KEx
K,h

)>)
V−1
K,h

(
1
2
MK,h + KK,h

)
g

= q>
h
SExK,hg,

where

SExK,h = DEx
K,h +

(
1
2

(
MEx

K,h

)>
+
(
KEx
K,h

)>)
V−1
K,h

(
1
2
MK,h + KK,h

)
with

DEx
K,h =

(
(DKϕ, χ)L2(∂K)

)
χ∈ΦEx,ϕ∈ΦD

and

MEx
K,h =

(
(χ, τ)L2(∂K)

)
τ∈ΦN ,χ∈ΦEx

, KEx
K,h =

(
(KKχ, τ)L2(∂K)

)
τ∈ΦN ,χ∈ΦEx

.
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Since qh = λφ ∈ ΦEx for the integral (2.13) and g ∈ ΦD for ψ ∈ Ψ(2), the
coefficient vectors q

h
and g contain only zeros and a single one. Therefore, the

approximation of integral (2.13) coincides with an entry of the matrix SExK,h.

In the case of ψ ∈ Ψ(3) \ Ψ(2), the trial function fulfils for one K ∈ Kh the
boundary value problem

−∆ψ = 1 in K

ψ = 0 on ∂K
(2.15)

which is reduced to the previous situation. For this reason, we write ψ = ψh +ψp
with ψp(x) = −1

4
|x− zK |2. Then, (2.15) yields

−∆ψh = 0 in K

ψh = g on ∂K

with g = −γK0 ψp ∈ span ΦD. This problem can be treated as described earlier.
The integral (2.13) splits into two parts∫

∂K

qh γ
K
1 ψ =

∫
∂K

qh γ
K
1 ψh +

∫
∂K

qh γ
K
1 ψp ≈ q>

h
SExK,hg +

∫
∂K

qh γ
K
1 ψp.

In contrast to the previous case, g is now a full vector but q
h

still contains a
single one. The first term of the approximation turns into a scalar product of g

and a row of SExK,h. Due to the construction of ψp, the conormal derivative γK1 ψp
is constant on each edge E ∈ E(K). This fact can easily be seen using the
parametrisation x(s) = zb + s(ze − zb) ∈ E = zbze for 0 ≤ s ≤ 1 in

γK1 ψp(x) = −1
2
(x− zK) · nK = −1

2
(zb − zK) · nK − 1

2
s (ze − zb) · nK︸ ︷︷ ︸

=0

.

On E ∈ E(K), the function qh is a given polynomial of degree less or equal than
four. Therefore, the boundary integral in the second term of the approximation
can be computed analytically.

For the evaluation of an element bubble function ψK inside of K ∈ Kh, we
evaluate ψh according to above and ψp separately.

The final step in the set up of the finite element matrix is to compute all these
boundary integral matrices to construct SExK,h. The mass matrices MK,h and MEx

K,h

can be computed analytically, whereas numerical integration is used to compile
the others. In the realisation, we utilise an advanced adaptive integration scheme,
which is based on local subdivision of edges and shifting of Gaussian points [66]
according to the singularities of the integral kernels. By the use of this quadrature,
integrals of the form

(VKν, µ)L2(∂K) and (KKν, µ)L2(∂K) (2.16)

for

ν ∈
{
τ 0
E,
(
τ 1
E

)j
: E ∈ E(K), j = 1, . . . , 4

}
and µ ∈

{
τ 0
E, τ

1
E : E ∈ E(K)

}
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are computed. Due to the local support of ν and µ on the boundary ∂K, the
quadrature of (2.16) has a computational complexity of O(1). Building linear
combinations of these integrals, we can construct the matrices KEx

K,h, KK,h and
VK,h. Even the entries of DEx

K,h can be written as linear combinations of (2.16),
see [68]. Therefore, the local computations of the boundary element matrices
have a complexity of O(|E(K)|2), where |E(K)| denotes the number of edges in
K ∈ Kh. So, the most costly part in the set up of the local stiffness matrices SExK,h
is the inversion of VK,h which has a complexity of O(|E(K)|3). For this task, we
use an efficient LAPACK routine.

In total, the computations of the local boundary integral matrices and thus
the local stiffness matrices can be done in a preprocessing step and they are
highly parallelizable since matrices from different elements are independent. In
the theoretical considerations of the previous sections, we have allowed |E(K)| to
be unbounded. Nevertheless, for the numerical application it is suitable to asume
a regular and stable mesh according to Definitions 2 and 3. For such meshes, the
number of nodes and thus the number of edges per element is uniformly bounded
according to Lemma 4. Therefore, the local complexity in the computations
of the boundary element matrices is bounded. In practical applications, the
elements usually have only a few edges and consequently all appearing matrices
are small. In this scenario the local complexity is negligible compared to the
overall complexity of the global finite element computations.



Chapter 3

Adaptive BEM-based FEM

In all considerations and experiments till now, we have worked with a sequence
of uniform refined meshes. We always started with an initial mesh and refined
all elements equally. For this reason, the mesh size h = max{hK : K ∈ Kh}
decreased continuously and we have studied convergence with respect to h. In
many practical applications, however, the problems do not meet the requirements
of the convergence theorems proven in Chapter 2. The solution may contain
singularities due to complicated geometries of the domains or jumping material
coefficients as we have seen in Section 1.4. In such cases, it is advisable to adapt
the meshes to the problem. This can be done in a preprocessing step while
generating the initial mesh or fully automatic in an adaptive refinement strategy
during the computations.

In this chapter, we focus on an adaptive finite element method which is based
on a posteriori error estimates. The well known residual error estimate is intro-
duced, and we prove its reliability on general polygonal meshes which are regular
and stable. The techniques for the proofs are mainly based on [74]. However,
the challenging part is to deal with the non-simplicial elements. Triangles and
quadrangles in classical meshes can always be mapped onto a reference element
and the estimates can be performed there. Since this is not possible for arbitrary
polygonal elements, we have to take special care of the constants appearing in the
estimates. Especially, the Poincaré constant has to be mentioned at this point.
These constants have to be uniformly bounded over the whole mesh and even
over the whole sequence of meshes in the limiting case. Additionally, we have to
overcome some technical difficulties where the isosceles triangles from Lemma 3
come into play.

Finally, numerical examples show optimal rates of convergence in the energy
norm with respect to the degrees of freedom for the adaptive finite element strat-
egy which applies the residual error estimator on polygonal meshes. Additionally,
we discuss the impact of the nodes inserted during the refinement strategy which
would appear as conditional degrees of freedom, often called hanging nodes, in a
classical finite element realization.

61
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3.1 General ideas in the adaptive FEM

The error introduced by the BEM-based finite element method has been examined
in Chapter 2. We have shown estimates of the type

‖u− uh‖H1(Ω) ≤ chk−1 |u|Hk(Ω) for k = 2, 3 (3.1)

with the exact solution u ∈ Hk(Ω) of the model problem and its approximation
uh ∈ Vh on some mesh Kh. Such estimates are called a priori error estimates since
the right hand side is given in advance without the knowledge of the approxima-
tion uh. They are suitable for convergence statements in the case of smooth
solutions and if the element diameters decreases uniformly. But their use is lim-
ited in some situations. What to do if the solution does not meet the smoothness
assumption and we have u 6∈ Hk(Ω). This may happen for non-convex domains
or jumping coefficients, see Section 1.4. Additionally, the estimate says nothing
about the approximation quality within some subset of the domain. It is even im-
possible to compute the upper bound of the error in (3.1) since the exact solution
is unknown.

Due to these reasons, an estimate of the form

‖u− uh‖ ≤ c η for η2 =
∑
K∈Kh

η2
K

with η = η(uh) is desirable for practical considerations. Here, ‖ · ‖ denotes
some norm and η is a computable error estimator, which depends on the current
approximation uh. Therefore, the inequality is called a posteriori error estimate.
The values ηK , which are assigned to the elementsK ∈ Kh, serve as error indicator
over the corresponding elements. With the help of such an estimator, we can
judge the actual accuracy of the approximation. Furthermore, we can rate the
approximation quality over the elements with the indicators ηK and we may adapt
the mesh according to this information.

The preceding considerations lead to an adaptive strategy, the adaptive finite
element method which is abbreviated to AFEM. This scheme can be sketched as

SOLVE → ESIMATE → MARK → REFINE → SOLVE → · · · .

First, we solve the discrete boundary value problem on a given mesh and compute
the error estimator η and the error indicators ηK for all elements. If the desired
accuracy is reached according to η, we are done. If not, we mark some elements
for refinement. These elements are chosen on the basis of the error indicators ηK .
Next, the marked elements are refined, and thus we obtain a new mesh which is
adapted to the problem. So, we can solve the boundary value problem on the
refined mesh and continue this procedure until the desired accuracy is achieved.

Since we adapt the mesh successively to the exact solution of the boundary
value problem, the hope is that we obtain optimal rates of convergence even in
the case of u 6∈ H2(Ω). Due to local refinements of the mesh, it makes no sense
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to measure the convergence with respect to the mesh size h. Instead of h, we use
the number of degrees of freedom (DoF) in the system of linear equations. In the
following, we discuss the steps of the AFEM in more detail.

For triangular meshes and piecewise linear trial functions, the first convergence
proof for the adaptive finite element method applied to the Poisson problem can
be found in [26]. Here, the mesh has to fulfil some fineness assumption. In [52],
this condition is removed and the notion of data oscillation is introduced. A
general convergence result for conforming adaptive finite elements, which is valid
for several error estimates and for a class of problems, has been published seven
years later in [53]. The first convergence rates are proven in [12], where an
additional coarsening step is introduced and the refinement is done in such a way
that a new node lies inside each marked element of the previous mesh. In [17], the
authors show a decay rate of the energy error plus data oscillation in terms of the
number of degrees of freedom without the additional assumptions on coarsening
and refining.

Whereas the cited theory is done for triangular meshes, we introduce an adap-
tive finite element method on regular and stable polygonal meshes. In the SOLVE
step, we approximate the solution of the boundary value problem on the current
mesh Kh. This is done as described in Chapter 2. First, we restrict ourselves to
the case of a piecewise constant material coefficient such that

a(x) = aK for x ∈ K and K ∈ Kh

for the initial mesh and consequently for all meshes in the refinement process. In
the discrete Galerkin formulation, the lower order trial space is used, i.e.

Vh = span Ψ with Ψ = Ψ(1) \ΨD.

Here, Ψ(1) is the set of lower order basis functions and ΨD contains all of them
which belong to the Dirichlet boundary. Afterwards, we discuss how to incorpo-
rate approximation errors in the data and we allow the higher order trial space
in the BEM-based FEM, i.e. Ψ = Ψ(3) \ ΨD. Solving the discrete problem, we
obtain an approximation uh ∈ Vh on the current mesh.

The ESTIMATE part is for the computation of the a posteriori error esti-
mator η and local error indicators ηK . There is a great variety of estimators in
the literature. The most classical one is the residual error estimate which goes
back to [5]. This estimator measures the jumps of the conormal derivative of the
approximation uh over the element boundaries. Other estimators are obtained
by solving local Dirichlet [6] or Neumann [8] problems on element patches. The
engineering community came up with an error indicator that uses the difference
between ∇uh and its continuous approximation, see [78]. The equilibrated resid-
ual error estimator [13] is obtained by post processing of the approximation and
belongs to the more general class of functional analytic error estimates [62]. Fi-
nally, we mention the hierarchical [24] and the goal oriented [7] error estimates.
For a comparison of all these strategies see for example [16].
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In the adaptive finite element method in this chapter, we use a residual error
estimate and prove its reliability on regular and stable meshes. Since the exact
solution of the boundary value problem may fulfil u 6∈ H2(Ω), we cannot apply
pointwise interpolation operators from Section 2.3. Therefore, we have to use a
quasi-interpolation operator in forthcoming proofs.

After the computation of the estimator and the local error indicators, we have
to MARK several elements for refinement. There are different strategies in the
literature for this task. The most classical one is the maximum strategy which
has been proposed already in [6]. Here, all elements K ∈ Kh are marked which
fulfil

ηK ≥ θ ηmax

for a given parameter 0 ≤ θ ≤ 1 and ηmax = max{ηK : K ∈ Kh}. So, the elements
with the largest error indicators are chosen for refinement. For large values of θ,
the strategy becomes more selective, whereas for small θ, we obtain almost a uni-
form refinement. A similar idea is used by the modified equidistribution strategy.
For a given parameter 0 ≤ θ ≤ 1 and the global error estimator η, all elements
K ∈ Kh are marked which satisfy

ηK ≥ θ
η√
|Kh|

.

In this strategy one tries to reach a state where the error is distributed equally
over all elements. The parameter θ controls again the selectivity. Finally, we
mention Dörfler’s strategy, see [26]. Here, a set of elements KM ⊂ Kh is marked
such that ( ∑

K∈KM

η2
K

)1/2

≥ (1− θ) η,

where 0 ≤ θ < 1 is again a given parameter and η the global estimator. It is
advantageous to choose the set KM as small as possible. This can be achieved
by sorting the elements K ∈ Kh according to the value of their error indica-
tors ηK . Since every sorting algorithm is computationally expensive, Dörfler
proposed in [26] the following procedure with given parameter 0 < ν < 1, which
is chosen to be small.

sum = 0.0

µ = 1.0

while (sum < (1-θ)2 η2) do
µ = µ - ν
for all K ∈ Kh

if (K is not marked)

if (ηK > µ ηmax)

mark K
sum = sum + η2

K

Dörfler’s marking strategy was one of the key points in the proofs of convergence
and convergence rates of AFEM in the literature mentioned above. Since this
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strategy is so successful, we use it in the realization of the adaptive method in
this chapter.

As the name of the last step REFINE already indicates, this is the time
where the marked elements are refined. Usually, this step is more complicated for
standard methods working on triangular or quadrangular meshes because of the
strict admissibility conditions on the mesh. In such cases, it has to be guaranteed
that no hanging nodes appear. Therefore, the mesh has to be completed in the
sense that neighbouring elements are refined until all hanging nodes disappear. In
the literature, one can find several strategies like red-green refinement or newest
vertex bisection with completion algorithms, see [12, 74]. Another possibility
to handle hanging nodes is to treat them as conditional degrees of freedom, i.e.
to fix the value of the finite element functions in these points to be a suitable
interpolation of their neighbouring regular nodes. Nevertheless, the first idea with
completion spreads the local refinement into a neighbourhood and the second
one produces artificial nodes. Both scenarios are somehow unpleasant for the
numerical realization. Due to the use of the BEM-based finite element method, we
are in the fortune situation to cope with arbitrary polygonal meshes. Therefore,
we do not have to worry about hanging nodes because they are incorporated as
ordinary nodes in the strategy and thus contribute to the approximation accuracy.
This behaviour is discussed more precisely in Section 3.4. The refinement only
affects the marked elements and is done as described in Section 1.5. During the
refinement process, we just have to enforce the regularity and stability of the
sequence of meshes.

The overall algorithm of the adaptive finite element method is finally realized
according to the following concept, where ε > 0 is some given tolerance for the
error estimate.

Kh ← initial grid

solve for uh on Kh
compute ηK ∀K ∈ Kh and then η
while (η > ε) do

mark a set of elements (Dörfler’s strategy)

Kh ← refine grid

solve for uh on Kh
compute ηK ∀K ∈ Kh and then η

3.2 Quasi-interpolation operator

Before we present the quasi-interpolation operator, we review the neighbourhoods
of nodes, edges and elements. These open sets are defined in Section 1.5 as element
patches by

ωz =
⋃

z∈N (K′)

K ′, ωE =
⋃

E∈E(K′)

K ′, ωK =
⋃

K∩K′ 6=∅

K ′
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for z ∈ Nh, E ∈ Eh and K ∈ Kh. Additionally, the L2-projection Qz : L2(ωz)→ R
into the space of constants is needed. For v ∈ H1

D(Ω), we define the quasi-
interpolation operator Ih : H1

D(Ω)→ Vh by

Ihv =
∑

z∈Nh\Nh,D

(Qzv)ψz.

The definition is very similar to the one of Clément [19]. The major difference
is the use of non-polynomial trial functions on polygonal meshes. In contrast to
the interpolation operators in Section 2.3, we use the L2-projection over patches
instead of point evaluations to determine the coefficients in the linear combination
of trial functions. This modification is necessary since point evaluations are not
well defined for functions v ∈ H1

D(Ω). Our main interest in this section is to
prove approximation properties of Ih which are stated in Proposition 2 below. If
no confusion arises, we write v for both the function and the trace of the function
on an edge.

Proposition 2. Let Kh be a regular and stable mesh and let v ∈ H1
D(Ω), E ∈ Eh

and K ∈ Kh. Then, it holds

‖v − Ihv‖L2(K) ≤ chK |v|H1(ωK),

‖v − Ihv‖L2(E) ≤ ch
1/2
E |v|H1(ωE),

where the constant c > 0 depends only on the regularity and stability parameters
σ and c1, see Definitions 2 and 3.

In view of the proof, let Kh be a regular and stable mesh and denote by c a
generic constant that solely depends on the parameters σ and c1 from Definitions 2
and 3. We show an approximation estimate for the L2-projection on patches. The
important fact is here that the constant appearing in the estimate only depends
on the regularity and stability parameters of the mesh and not on the shape of
the patches.

Lemma 10. There exists a constant c = c(σ) such that for every z ∈ Nh and
v ∈ H1(ωz), it is

‖v −Qzv‖L2(ωz) ≤ chωz |v|H1(ωz),

where hωz denotes the diameter of ωz. If K ∈ Kh with K ⊂ ωz, it follows

‖v −Qzv‖L2(ωz) ≤ chK |v|H1(ωz),

where c depends on both the regularity and stability parameters.

Proof. It is known that the first inequality holds with the Poincaré constant

CP (ωz) = sup
v∈H1(ωz)

‖v −Qzv‖L2(ωz)

hωz |v|H1(ωz)

<∞,
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βK
K

K1

K2

z

ωz

Bρz(z)

z

Figure 3.1: Element K which is split along the bisector of the angle βK (left),
patch ωz with admissible decomposition {ωi}3

i=1 and triangulation (right)

see for example [73]. This constant depends only on the shape of the patch ωz.
Therefore, we have to show that the Poincaré constant CP (ωz) can be bounded
independently of z ∈ Nh from above in terms of the regularity parameter σ.
We make use of Lemma 3 which guaranties that all angles inside the polygonal
elements are bounded from below by α0 and this constant depends only on σ.
For convex domains ω, Payne and Weinberger [56] have shown CP (ω) ≤ 1/π. In
general, the patches ωz are not convex, but they are star shaped with respect
to z.

We distinguish two cases. First, we assume ωz = K which is the trivial
case. Since the element K is convex, we have CP (ωz) ≤ 1/π ≤ c. If ωz contains
more than one element, we use Proposition 2.10 (Decomposition) of [73]. As
preliminary of this proposition, an admissible decomposition {ωi}ni=1 of ωz with
pairwise disjoint domains ωi and

ωz =
n⋃
i=1

ωi

is needed. Admissible means in this context, that there exist triangles {Ti}ni=1

such that Ti ⊂ ωi and for every pair i, j of different indices, there is a sequence
i = k0, . . . , k` = j of indices such that for every m the triangles Tkm−1 and Tkm
share a complete side.

Let us construct a decomposition {ωi}ni=1 of ωz which is admissible. For any
z ∈ Nh, it is

ωz =
⋃

z∈N (K)

K.

The angle between two neighbouring sides in a polygon K, a triangle Ti and a
domain ωi at the node z are labelled βK , βTi and βωi , respectively, see Figure 3.1.
The set {ωi}ni=1 is defined as follows. It contains all elements K ∈ Kh with
z ∈ N (K) which satisfy βK ≤ π/2. Additionally, if βK > π/2 the set contains
the two segments K1 and K2 which are obtained by splitting K along the bisector
of the angle βK , see again Figure 3.1. Due to the convexity of K, the segments
K1 and K2 are also convex. We have constructed a decomposition {ωi}ni=1 of ωz
into convex subsets ωi which satisfy

α1 ≤ βωi ≤ π/2 for i = 1, . . . , n
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with
α1 = min{α0, π/4}.

According to Corollary 1, it is

n ≤ 2|{K ∈ Kh : z ∈ K}| ≤ c.

In the next step, we intersect the boundary of the circle Bρz(z) with radius

ρz = min

{
inf

x∈∂ωz\Γ
|z − x|,min{|z − x| : x ∈ Nh,D ∪Nh,N , x ∈ ∂ωz}

}
centred in z with the edges of ωi, i = 1, . . . , n adjacent to z. The radius ρz
is chosen in such a way that ωi ∩ Bρz(z) for i = 1, . . . , n is a circular sector.
Afterwards, we connect the points of intersection so that we obtain a coarse
triangulation {Ti}ni=1 of ωz ∩Bρz(z) with Ti ⊂ ωi for i = 1, . . . , n, see Figure 3.1.
According to the construction, every Ti is an isosceles triangle with angle βTi = βωi
at z which is enclosed by two sides of length ρz. Consequently, we have

|Ti| =
1

2
ρ2
z sin βTi ≥

1

2
ρ2
z sinα1 for i = 1, . . . , n

and the diameter hTi of Ti fulfils

hTi = max

{
ρz, 2ρz sin

βTi
2

}
≤ 2ρz.

Obviously, the decomposition {ωi}ni=1 of ωz is admissible. Thus, we can apply
Proposition 2.10 (Decomposition) of [73] which yields

CP (ωz) ≤ max
1≤i≤n

{
8(n− 1)

(
1− min

1≤j≤n

|ωj|
|ωz|

)(
C2
P (Ti) + 2CP (Ti)

) |ωz|h2
Ti

|Ti|h2
ωz

}1/2

for the Poincaré constant. Because of |ωz| ≤ h2
ωz , we obtain

|ωz|h2
Ti

|Ti|h2
ωz

≤
h2
Ti

|Ti|
≤ 4ρ2

z
1
2
ρ2
z sinα1

≤ 8

sinα1

≤ c.

Since the constant in Corollary 1 as well as α0 and thus α1 solely depend on the
regularity parameter σ, we can bound CP (ωz) independently of z ∈ Nh in terms
of σ, i.e. CP (ωz) < c where c = c(σ).

Finally, the second inequality in the lemma follows directly from the first one
and the application of Lemma 4 which produces the additional dependence of the
constant c on the stability parameter c1.

Lemma 11. Let v ∈ H1(K) and E ∈ E(K), then it is

‖v‖L2(E) ≤ c
{
h
−1/2
E ‖v‖L2(TE) + h

1/2
E |v|H1(TE)

}
with the isosceles triangle TE ⊂ K from Lemma 3.
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K

E
TE

T̂

1

Ê

1

FTE

Figure 3.2: Affine transformation of the reference triangle T̂ to TE ⊂ K

Proof. Let

T̂ = {x ∈ R2 : 0 ≤ x1, x2 ≤ 1, x1 + x2 ≤ 1}

be the reference triangle with horizontal edge Ê. According to the trace theorem,
see Theorem 3, there exists a constant ĉLT such that

‖v̂‖L2(Ê) ≤ ĉLT ‖v̂‖H1(T̂ )

for v̂ ∈ H1(T̂ ). Let K ∈ Kh be an arbitrary element with edge E and let
v ∈ H1(K). Owing to Lemma 3, there is a isosceles triangle TE ⊂ K with longest

side E. We choose the affine transformation FTE : T̂ → TE in such a way, that

Ê is mapped onto E, see Figure 3.2. We set v̂ = v ◦ FTE ∈ H1(T̂ ). For this
transformation, it is known [18] that

|v̂|Hm(T̂ ) ≤ C‖DFTE‖m2 | detDFTE |−1/2|v|Hm(TE) for v ∈ Hm(TE),

where C only depends on m and the spatial dimension which is equal to two here.
Moreover, we have

‖DFTE‖2 ≤ (2 +
√

2)hE and | detDFTE | = 2|TE| =
1

2
tan(α0)h2

E.

Using this transformation, we get

‖v‖L2(E) = h
1/2
E ‖v̂‖L2(Ê) ≤ ĉLTh

1/2
E ‖v̂‖H1(T̂ )

= ĉLTh
1/2
E

{
‖v̂‖2

L2(T̂ )
+ |v̂|2

H1(T̂ )

}1/2

≤ ĉLTh
1/2
E

{
‖v̂‖L2(T̂ ) + |v̂|H1(T̂ )

}
≤ ch

1/2
E

{
| detDFTE |−1/2‖v‖L2(TE)+| detDFTE |−1/2‖DF−1

TE
‖2|v|H1(TE)

}
≤ c

{
h
−1/2
E ‖v‖L2(T ) + h

1/2
E |v|H1(TE)

}
.

Finally, we prove Proposition 2 with the help of the stated lemmata.
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Proof (Proposition 2). For K ∈ Kh, we have∑
z∈N (K)

ψz = 1 on K

and ‖ψz‖L∞(K) = 1 for z ∈ N (K). To prove the first estimate in the proposition,
we distinguish two cases. Let K ∈ Kh and let all nodes z ∈ N (K) of the element
K be located in the interior of Ω or in the interior of the boundary ΓN . Applying
Lemma 10, we obtain

‖v − Ihv‖L2(K) ≤
∑

z∈N (K)

‖ψz(v −Qzv)‖L2(K)

≤
∑

z∈N (K)

‖v −Qzv‖L2(ωz)

≤
∑

z∈N (K)

chK |v|H1(ωz)

≤ chK |v|H1(ωK).

The last estimate is valid because of the fact that the number of nodes in N (K)
is uniformly bounded with respect to K ∈ Kh according to Lemma 4.

In the case that at least one node of the element K is on the boundary ΓD,
we write

v − Ihv =
∑

z∈N (K)

ψzv −
∑

z∈N (K)\Nh,D

ψzQzv

=
∑

z∈N (K)

ψz(v −Qzv) +
∑

z∈N (K)∩Nh,D

ψzQzv

and obtain

‖v − Ihv‖L2(K) ≤
∑

z∈N (K)

‖ψz(v −Qzv)‖L2(K) +
∑

z∈N (K)∩Nh,D

‖ψzQzv‖L2(K).

The first sum has already been estimated, so let us have a look at the term in
the second sum. For z ∈ N (K) ∩Nh,D, we have

‖ψzQzv‖L2(K) ≤ |Qzv| ‖ψz‖L∞(K) |K|1/2 ≤ hK |Qzv|.

Since z ∈ ΓD, there is an element K ′ and an edge E ′ ∈ E(K ′) such that z ∈ N (E ′)
and E ′ ∈ Eh,D. Furthermore, there is an isosceles triangle TE′ with TE′ ⊂ K ′

according to Lemma 3. Since v vanishes on E ′, we obtain with Lemma 11 and
with the stability condition h−1

E′ ≤ c1h
−1
K′ from Definition 3

|Qzv| = h
−1/2
E′ ‖Qzv‖L2(E′) = h

−1/2
E′ ‖v −Qzv‖L2(E′)

≤ ch
−1/2
E′

{
h
−1/2
E′ ‖v −Qzv‖L2(TE′ )

+ h
1/2
E′ |v −Qzv|H1(TE′ )

}
≤ c

{
h−1
K′‖v −Qzv‖L2(ωz) + |v|H1(ωz)

}
.
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Using Lemma 10 and putting all estimates together proves the first statement of
Proposition 2.

To prove the second estimate in the proposition, we proceed in a similar
manner. Let E ∈ Eh, we have ∑

z∈N (E)

ψz = 1 on E

and ‖ψz‖L∞(E) = 1 for z ∈ N (E). First, let E ∈ Eh be such that all nodes z of
the edge E are located in the interior of Ω or in the interior of the boundary ΓN .
Applying Lemmata 10 and 11 as well as hKEh

−1/2
E ≤ c1h

1/2
E , where KE ∈ Kh is

an element with edge E, we obtain

‖v − Ihv‖L2(E) ≤
∑

z∈N (E)

‖ψz(v −Qzv)‖L2(E)

≤
∑

z∈N (E)

‖v −Qzv‖L2(E)

≤
∑

z∈N (E)

c
{
h
−1/2
E ‖v −Qzv‖L2(TE) + h

1/2
E |v −Qzv|H1(TE)

}
≤

∑
z∈N (E)

c
{
h
−1/2
E ‖v −Qzv‖L2(ωz) + h

1/2
E |v|H1(ωz)

}
≤

∑
z∈N (E)

ch
1/2
E |v|H1(ωz)

≤ ch
1/2
E |v|H1(ωE),

where TE is the isosceles triangle of E with TE ⊂ KE.
If at least one node of E is on ΓD, we have

‖v − Ihv‖L2(E) ≤
∑

z∈N (E)

‖ψz(v −Qzv)‖L2(E) +
∑

z∈N (E)∩Nh,D

‖ψzQzv‖L2(E).

The first sum has already been estimated, so let us have a look at the term in
the second sum. For z ∈ N (E) ∩Nh,D, we have

‖ψzQzv‖L2(E) = |Qzv| ‖ψz‖L2(E) =
1√
3
h

1/2
E |Qzv|.

Since z ∈ ΓD, there is an element K ′ and an edge E ′ ∈ E(K ′) such that z ∈ N (E ′)
and E ′ ∈ Eh,D. Furthermore, there is an isosceles triangle TE′ with TE′ ⊂ K ′

according to Lemma 3. Since v vanishes on E ′, we obtain with Lemma 11 and
with the stability condition h−1

E′ ≤ c1h
−1
K′

|Qzv| = h
−1/2
E′ ‖Qzv‖L2(E′) = h

−1/2
E′ ‖v −Qzv‖L2(E′)

≤ ch
−1/2
E′

{
h
−1/2
E′ ‖v −Qzv‖L2(TE′ )

+ h
1/2
E′ |v −Qzv|H1(TE′ )

}
≤ c

{
h−1
K′‖v −Qzv‖L2(ωz) + |v|H1(ωz)

}
.
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Using Lemma 10 and putting all estimates together yields the second statement
of Proposition 2 and concludes the proof.

3.3 Residual error estimate

In this section, we formulate the main result for the residual error estimator and
prove its reliability. This estimator bounds the difference of the exact solution
and the Galerkin approximation in the energy norm ‖ · ‖E defined in Remark 2.
Among others, the residual error estimator measures the jumps of the conormal
derivatives over the element edges. Such a jump over an internal edge E ∈ Eh,Ω
is defined by

JuhKE = nK · γK0 (a∇uh) + nK′ · γK
′

0 (a∇uh),

where K,K ′ ∈ Kh are the neighbouring elements of E with E ∈ E(K) ∩ E(K ′).
In the case of a piecewise constant material coefficient a(·), this definition is
equivalent to

JuhKE = aKγ
K
1 uh + aK′γ

K′

1 uh,

due to the local regularity of the finite element approximation uh ∈ Vh which fulfils
uh ∈ H2(K) for K ∈ Kh. We assume that the Dirichlet boundary datum gD is
approximated exactly, i.e. gDh = gD. Consequently, we obtain u − uh ∈ H1

D(Ω)
since it is possible to set uDh = uD.

In the first formulation of the residual error estimate we additionally assume
a piecewise constant material coefficient a(·) such that the Galerkin orthogonal-
ity (1.6) can be exploited as in the proof of Lemma 2. Furthermore, we restrict
ourselves to

Vh = span Ψ with Ψ = Ψ(1) \ΨD.

Theorem 15. Let Kh be a regular and stable mesh. Then the residual error
estimate is reliable, i.e.

‖u− uh‖E ≤
c

√
amin

ηR

with
η2
R =

∑
K∈Kh

η2
K

and
η2
K = h2

K‖f‖2
L2(K) +

∑
E∈E(K)

hE‖RE‖2
L2(E),

where

RE =


0 for E ∈ Eh,D,
gN − aKγK1 uh for E ∈ Eh,N with E ∈ E(K),

−1
2
JuhKE for E ∈ Eh,Ω,

and the constant c > 0 depends only on the regularity and stability parameters σ
and c1, see Definitions 2 and 3.
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Proof. In the first step, we define the functional R on V = H1
D(Ω) by

R(v) = aΩ(u− uh, v) =

∫
Ω

a∇(u− uh) · ∇v.

It is easy to see that R is linear and continuous on V and thus it belongs to the
dual V ′ of V . By the use of Green’s first identity (1.11) and splitting the integral,
we obtain

R(v) =

∫
Ω

fv +

∫
ΓN

gNv −
∑
K∈Kh

∫
K

aK∇uh · ∇v

=
∑
K∈Kh

∫
K

fv +
∑

E∈Eh,N

∫
E

gNv −
∑
K∈Kh

∫
∂K

aKγ
K
1 uh v

since the approximation uh is harmonic on each element. If we rearrange the
sums and take into account that we integrate over each edge in the interior of Ω
two times, we obtain

R(v) =
∑
K∈Kh

{∫
K

fv +
∑

E∈E(K)∩Eh,N

∫
E

(gN − aKγK1 uh)v

−1

2

∑
E∈E(K)∩Eh,Ω

∫
E

JuhKE v
}

=
∑
K∈Kh

{∫
K

fv +
∑

E∈E(K)

∫
E

REv

}
.

According to the Riesz representation theorem, see Theorem 5, and Remark 2 on
page 14, it is

‖u− uh‖E = sup
0 6=v∈V

|R(v)|
‖v‖E

. (3.2)

Next, we estimate |R(v)|. For this reason, the Galerkin orthogonality

aΩ(u− uh, vh) = 0 for vh ∈ Vh

is utilized which has been used already in the proof of Lemma 2. Additionally,
we use the triangular inequality as well as the Cauchy-Schwarz inequality and
obtain

|R(v)| = |R(v − Ihv)|

≤
∑
K∈Kh

{∣∣∣∣ ∫
K

f(v − Ihv)

∣∣∣∣+
∑

E∈E(K)

∣∣∣∣ ∫
E

RE(v − Ihv)

∣∣∣∣}

≤
∑
K∈Kh

{
‖f‖L2(K)‖v − Ihv‖L2(K) +

∑
E∈E(K)

‖RE‖L2(E)‖v − Ihv‖L2(E)

}
.
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To estimate |R(v)| even further, we remember |E(K)| = |N (K)| ≤ c and the
fact that each element is covered by a finite number of patches, see Lemma 4.
The Cauchy-Schwarz inequality and Proposition 2 with the estimates for the
interpolation error of the operator Ih yield

|R(v)| ≤ c
∑
K∈Kh

{
‖f‖L2(K) hK |v|H1(ωK) +

∑
E∈E(K)

‖RE‖L2(E) h
1/2
E |v|H1(ωE)

}

≤ c
∑
K∈Kh

{
hK‖f‖L2(K) +

( ∑
E∈E(K)

hE‖RE‖2
L2(E)

)1/2
}
|v|H1(ωK)

≤ c
∑
K∈Kh

{
h2
K‖f‖2

L2(K) +
∑

E∈E(K)

hE‖RE‖2
L2(E)

}1/2

|v|H1(ωK)

≤ c

( ∑
K∈Kh

η2
K

)1/2

|v|H1(Ω).

Because of

|v|H1(Ω) ≤
∣∣∣∣√ a

amin

v

∣∣∣∣
H1(Ω)

=
1

√
amin

‖v‖E, (3.3)

we have
|R(v)| ≤ c

√
amin

ηR ‖v‖E.

Inserting the last estimate into (3.2) concludes the proof.

Remark 6. The constant in front of the residual error estimator in the last
theorem depends on amin. It is more desirable to have an error estimate with a
constant independent of the actual problem. Such estimates are called robust.
Under certain assumptions, like for example a quasi-monotone material coefficient
a ∈ L∞(Ω), it is possible to derive estimates which fulfil this criterion, see [27, 58].

For the previous theorem, we have assumed that the material coefficient a(·)
is piecewise constant on the initial mesh, but this is not the case in general.
Therefore, we have to approximate it by a piecewise constant function or in the
advanced setting by the interpolant I(1)a. In Section 2.4, we have mentioned that
such an approximation ah(·) of a(·) yields an approximated bilinear form

ahΩ(u, v) =

∫
Ω

ah∇u · ∇v.

In the same way, there is sometimes a need to replace the exact Neumann da-
tum gN and the right hand side f in the model problem (1.1) by some approx-
imations gNh and fh, respectively. This leads to an approximated right hand
side

`h(v) = (fh, v) + (gNh, v)ΓN − ahΩ(uDh, v)
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in the discrete variational formulation of the problem. Lets set

uD + V = {v = v0 + uD ∈ H1(Ω) : v0 ∈ V }.

Since we assume uD = uDh, the discrete Galerkin solution fulfils uh ∈ uD + Vh as
well as

ahΩ(uh, vh) = (fh, vh) + (gNh, vh)ΓN for vh ∈ Vh, (3.4)

where we allow the case of higher order trial functions, i.e.

Vh = span Ψ with Ψ = Ψ(3) \ΨD.

On the other hand, the exact solution of the problem fulfils u ∈ uD + V and

aΩ(u, v) = (f, v) + (gN , v)ΓN for v ∈ V. (3.5)

Obviously, there is no Galerkin orthogonality any more and we cannot exploit
this property in the proof of the reliability of the residual error estimate. For
this reason, we have to rewrite the functional R such that it incorporates the
approximation errors of the data. Due to (3.5) and by adding and subtracting
the approximations fh as well as gNh, we obtain

R(v) = aΩ(u− uh, v)

= (f, v) + (gN , v)ΓN − aΩ(uh, v)

= (f − fh, v) + (gN − gNh, v)ΓN − aΩ(uh, v)

+(fh, v) + (gNh, v)ΓN .

Subtracting the right hand side of (3.4) and adding its left hand side yields

R(v) = (f − fh, v) + (gN − gNh, v)ΓN − aΩ(uh, v)

+(fh, v − vh) + (gNh, v − vh)ΓN + ahΩ(uh, vh).

Next, we add and subtract ahΩ(uh, v) and obtain

R(v) = (f − fh, v) + (gN − gNh, v)ΓN −
∫
Ω

(a− ah)∇uh · ∇v

+(fh, v − vh) + (gNh, v − vh)ΓN − ahΩ(uh, v − vh).

Splitting the integrals gives

R(v) =
∑
K∈Kh

{∫
K

(f − fh)v +
∑

E∈E(K)∩Eh,N

∫
E

(gN − gNh)v −
∫
K

(a− ah)∇uh · ∇v

+

∫
K

fh(v − vh) +
∑

E∈E(K)∩Eh,N

∫
E

gNh(v − vh)

−
∫
K

ah∇uh · ∇(v − vh)
}
.
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The use of the local identity∫
K

ah∇uh · (v − vh) =

∫
∂K

nK · γK0 (ah∇uh) γK0 (v − vh)−
∫
K

div(ah∇uh)(v − vh)

yields

R(v) =
∑
K∈Kh

{∫
K

(f − fh)v +
∑

E∈E(K)∩Eh,N

∫
E

(gN − gNh)v −
∫
K

(a− ah)∇uh · ∇v

+

∫
K

(
fh + div(ah∇uh)

)
(v − vh)

+
∑

E∈E(K)∩Eh,N

∫
E

(
gNh − nK · γK0 (ah∇uh)

)
(v − vh)

−
∑

E∈E(K)∩Eh,Ω

∫
E

nK · γK0 (ah∇uh) (v − vh)
}
.

If we rearrange the sums and use the abbreviations

R̃K = fh + div(ah∇uh)

and

R̃E =


0 for E ∈ Eh,D,
gNh − nK · γK0 (ah∇uh) for E ∈ Eh,N with E ∈ E(K),

−1
2
JuhKE,h for E ∈ Eh,Ω,

where
JuhKE,h = nK · γK0 (ah∇uh) + nK′ · γK

′

0 (ah∇uh),
we obtain

R(v) =
∑
K∈Kh

{∫
K

(f − fh)v +
∑

E∈E(K)∩Eh,N

∫
E

(gN − gNh)v −
∫
K

(a− ah)∇uh · ∇v

+

∫
K

R̃K(v − vh) +
∑

E∈E(K)

∫
E

R̃E(v − vh)
}
.

Next, we choose vh = Ihv and estimate |R(v)| with the same techniques as in
the proof of Theorem 15. For the last two terms, we recognize directly∣∣∣∣ ∫

K

R̃K(v − vh) +
∑

E∈E(K)

∫
E

R̃E(v − vh)
∣∣∣∣ ≤ c η̃K |v|H1(ωK),

where
η̃2
K = h2

K‖R̃K‖2
L2(K) +

∑
E∈E(K)

hE‖R̃E‖2
L2(E).
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Multiple applications of the Cauchy-Schwarz inequality and Theorem 3, which
gives ‖v‖L2(E) ≤ cLT‖v‖H1(K) for E ∈ E(K), yield for the first terms∣∣∣∣ ∫

K

(f − fh)v +
∑

E∈E(K)∩Eh,N

∫
E

(gN − gNh)v −
∫
K

(a− ah)∇uh · ∇v
∣∣∣∣

≤ ‖f − fh‖L2(K)‖v‖L2(K) +
∑

E∈E(K)∩Eh,N

‖gN − gNh‖L2(E)‖v‖L2(E)

+‖(a− ah)∇uh‖L2(K)‖∇v‖L2(K)

≤ c

(
‖f − fh‖L2(K) +

∑
E∈E(K)∩Eh,N

‖gN − gNh‖L2(E)

+‖(a− ah)∇uh‖L2(K)

)
‖v‖H1(K)

≤ c δ̃K ‖v‖H1(K),

where

δ̃2
K = ‖f − fh‖2

L2(K) +
∑

E∈E(K)∩Eh,N

‖gN − gNh‖2
L2(E) + ‖(a− ah)∇uh‖2

L2(K).

In total, it is

|R(v)| ≤ c
∑
K∈Kh

{
η̃K |v|H1(ωK) + δ̃K ‖v‖H1(K)

}
≤ c

∑
K∈Kh

{
η̃2
K + δ̃2

K

}1/2

‖v‖H1(ωK)

≤ c

( ∑
K∈Kh

{
η̃2
K + δ̃2

K

})1/2

‖v‖H1(Ω).

Since the norm ‖ · ‖H1(Ω) and the semi-norm | · |H1(Ω) are equivalent on V , we
obtain with (3.3)

|R(v)| ≤ c
√
amin

( ∑
K∈Kh

{
η̃2
K + δ̃2

K

})1/2

‖v‖E.

Inserting this estimate into (3.2) proves the following result.

Theorem 16. Let Kh be a regular and stable mesh. Then the extended residual
error estimate is reliable, i.e.

‖u− uh‖E ≤
c

√
amin

η̃R

with
η̃2
R =

∑
K∈Kh

{
η̃2
K + δ̃2

K

}
,
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where the error indicators for the finite element and data approximation, η̃K and
δ̃K, are defined as above. The constant c > 0 depends only on the regularity and
stability parameters σ and c1, see Definitions 2 and 3.

So, in the case that we approximate the initial data f , gN and the diffusion
coefficient a(·) for the computations, the additional approximation errors enter
the residual error estimate. Therefore, the accuracy of the data approximation
influences the adaptive refinement. The term

δ̃R =

( ∑
K∈Kh

δ̃2
K

)1/2

is often used as global estimator for the data error.

3.4 Numerical examples

In this section, we have a look at different numerical examples to confirm our
theoretical results and to show optimal rates of convergence for the adaptive
BEM-based finite element method. But before, we have to discuss how to analyse
the convergence.

If the solution of the model problem fulfils u ∈ H2(Ω), we know from Sec-
tion 2.3 that the BEM-based FEM converges quadratically in the mesh size h
with respect to the L2-norm on a sequence of regular meshes which are uniformly
refined. We also know that the convergence is linear in this situation when the
error is measured with respect to the H1-norm or with respect to the equivalent
energy norm ‖ · ‖E defined in Remark 2. As we have already mentioned, it makes
no sense to analyse the convergence in the mesh size h in case of adaptive refine-
ments. Therefore, we use the number of degrees of freedom (DoF) in the system
of linear equations. Since the relation

DoF = O(h−2)

holds for uniform triangular meshes, we say that the method has an optimal rate
of convergence with respect to the L2-norm if it converges linearly in the degrees
of freedom. Accordingly, the method has an optimal rate of convergence with
respect to the H1-norm or with respect to the energy norm if it converges with
the rate 1/2 in the DoF. This terminology is also valid for a sequence of adaptive
refined meshes.

Let Ω = (−1, 1) × (−1, 1) ⊂ R2 be split into two domains, Ω1 = Ω \ Ω2 and
Ω2 = (0, 1)× (0, 1). We are interested in the boundary value problem

−div (a∇u) = 0 in Ω,

u = g on Γ = ΓD,

where the coefficient a is given by

a =

{
1 in Ω1,
k2 in Ω2.
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Using polar coordinates (r, ϕ), we choose the boundary data as restriction of the
global function

g(x) = rλ
{

cos(λ(ϕ− π/4)) for x ∈ R2
+,

β cos(λ(π − |ϕ− π/4|)) else,

with

λ =
4

π
arctan

(√
3 + k2

1 + 3k2

)
and β = −k2

sin
(
λ
π

4

)
sin

(
λ

3π

4

) ,
where R2

+ = {x = (x1, x2)> ∈ R2 : x1, x2 ≥ 0}. This problem is constructed
in such a way that u = g is the exact solution in Ω. The parameter k2 > 0 is
responsible for the regularity of the solution. We have u ∈ H2(Ω) if k2 < 1, and
otherwise u is singular in the sense that the gradient of u is not square integrable
any more. Figure 3.3 displays approximations of the function g for two different
values of k2.

Figure 3.3: k2 = 0.01 and therefore g ∈ H2(Ω) (left), k2 = 100 and so g /∈ H2(Ω)
(right)

In the first numerical example, the convergence with respect to the DoF is
shown for the BEM-based FEM on polygonal meshes. We choose k2 = 0.01 so
that u ∈ H2(Ω) and we start with an initial polygonal mesh, see Figure 3.4.
In every iteration step, we refine all elements such that we obtain a uniform
refinement. In Figure 3.5, we sketch the approximation error ‖u− uh‖L2(Ω) with
respect to the degrees of freedom in a logarithmic plot and recognize a graph with
a slope of minus one which corresponds to linear convergence in the DoF. So, we
obtain an optimal rate of convergence for the L2-error by the proposed method
on arbitrary polygonal meshes.

The rate of convergence with respect to the energy norm is analysed in the
next numerical experiment. We perform the adaptive strategy with the error
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Figure 3.4: Initial mesh and uniform refinements
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Figure 3.5: Convergence for smooth solution (k2 = 0.01) with respect to DoF
using uniform refinement, triangles with slope minus one
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Figure 3.6: Convergence for smooth solution (k2 = 0.01) with respect to DoF
using adaptive and uniform refinement, triangles with slope minus one half
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estimate ηR and with uniform refinement. In Figure 3.6, we observe optimal
rates of convergence for the uniform as well as for the adaptive strategy with the
proposed method. We also recognize that the error estimate ηR reproduces the
behaviour of the error ‖u− uh‖E asymptotically very well.
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Figure 3.7: Initial mesh and adaptive refinements for k2 = 100

If one considers boundary value problems with smooth solutions, it is very dif-
ficult for an adaptive strategy to perform better than a uniform one. Therefore,
we choose the problem in such a way that it has a singular solution u 6∈ H2(Ω).
For k2 = 100, we obtain the convergence results shown in Figure 3.8 for uniform
and adaptive refinements, see Figures 3.4 and 3.7. Obviously, the error stays
more or less constant at the beginning of the two strategies. This can be ex-
plained as follows. In our considerations, we have assumed that the boundary
data is approximated exactly, but this assumption is not true here. The error
in the Dirichlet datum dominates. Consequently, the method needs some refine-
ment steps until the datum is approximated accurately enough to perform well.
Nevertheless, we see that the rate of convergence for the uniform refinement slows
down. In contrast, the adaptive method still converges optimal.
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1
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adaptive ‖u− uh‖E
uniform ‖u− uh‖E

adaptive ηR
uniform ηR

Figure 3.8: Convergence for singular solution (k2 = 100) with respect to DoF
using adaptive and uniform refinement, triangles with slope minus one half
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Finally, a standard example is considered. We use again the polar coordinates
(r, ϕ). Let Ω = {x ∈ R2 : |r| < 1 and 0 < ϕ < 3π/2} and

g(x) = r2/3 sin

(
2ϕ

3

)
for x ∈ R2.

The problem reads
−∆u = 0 in Ω,

u = g on Γ = ΓD.

It looks very simple but the solution u = g is singular in the origin of the co-
ordinate system. In Figure 3.9, the initial mesh and two adaptive refinements
after five and ten steps are shown. The adaptive finite element method obvi-
ously recognizes the singularity and refines the mesh near the origin. Typically,
one would expect that all elements near the origin should be refined in a similar
manner. But in Figure 3.9, the triangle on the upper right of the origin is still
not refined after five steps. Even after ten steps, there are large elements near
the origin. This is a difference to standard finite element methods, where values
at hanging nodes are prescribed by interpolation of values at classical nodes. In
the proposed BEM-based FEM, there is no distinction between the nodes in the
mesh. Consequently, a hanging node gives a degree of freedom and adds a trial
function to the approximation space Vh. These trial functions also affect the ap-
proximation quality at neighbouring elements. In Figure 3.10, we see that the
error over the upper right triangle of the origin is reduced by introducing hanging
nodes without refining the element.

The convergence analysis for this example shows the same results as in the
previous example. The uniform method does not converge optimal any more but
the adaptive strategy has still an optimal rate of convergence, see Figure 3.11.
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Figure 3.9: Initial mesh (left), adaptive refined mesh after five steps (middle),
adaptive refined mesh after ten steps (right)

Figure 3.10: Error distribution ‖u− uh‖2
E for the first three meshes
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Figure 3.11: Convergence for singular solution on arc with respect to DoF, trian-
gles with slope minus one half





Chapter 4

BEM-based FEM in 3D

The two dimensional version of the BEM-based finite element method is under-
stood quite well. In the previous chapters, we have seen several developments of
the method, and in the literature further topics are discussed, see [21, 39, 40, 41].
Already in [20], the authors have proposed a generalization to three space dimen-
sions and this strategy is used in the cited literature. The idea is to allow only
polyhedral elements with triangulated surfaces. In this situation, the definition of
trial functions is straightforward as we discuss in the next section. Nevertheless,
our aim is to introduce a new generalization of the lower order trial functions of
the BEM-based finite element method in the three dimensional case. Arbitrary
convex polyhedral elements are allowed, and we discuss how to cope with the
polygonal faces of the polyhedral elements. Additionally, this approach yields a
new point of view for the definition of trial functions in the framework of the
BEM-based FEM. This perspective could be advantageous for other boundary
value problems like convection-diffusion or Helmholtz equations.

Figure 4.1: Polyhedral mesh of the unite cube

The use of polyhedral meshes might be even more favourable in three space
dimensions than in the two dimensional case. While meshing complex geome-
tries, simplicial elements can be restrictive and deteriorate the mesh quality. In

85
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contrast, polyhedral cells are more flexible. An example of such a general mesh
can be seen in Figure 4.1. Here, the unite cube is discretized with a Voronoi mesh
according to [28].

4.1 Construction of trial functions

For the considerations in the three dimensional case, we keep the notations from
previous chapters. Kh denotes the mesh which consists of convex polyhedral
elements K. The convex faces of the polyhedra are labeled by F and the set of
all faces is abbreviated to Fh. This set is decomposed into Fh = Fh,Ω∪Fh,D∪Fh,N ,
where the disjoint subsets contain all faces in the interior of Ω, on the Dirichlet
boundary ΓD and on the Neumann boundary ΓN , respectively. As before, we
have the set of nodes Nh and the set of edges Eh. Additionally to N (K), N (E)
and E(K), we introduce the sets N (F ) for F ∈ Fh and F(K) for K ∈ Kh. These
sets contain the nodes which belong to the face F and the faces which belong to
the element K, respectively.

Before we introduce the generalization of the lower order trial functions for
the BEM-based FEM, the strategy from [20] is reviewed which has been used in
the literature till now. Here, the authors assume that the surfaces of the elements
are triangulated. In our notation, this means that all faces F ∈ Fh of the mesh
are triangles. Due to this restriction, it is possible to define the lower oder trial
functions in analogy with the two dimensional case. The nodal basis functions
are given by the solution of local boundary value problems

−∆ψz = 0 in K for all K ∈ Kh,

ψz(x) =

{
1 for x = z

0 for x ∈ Nh \ {z}
,

ψz is linear on each face of the mesh.

Here, the only difference to the two dimensional case is that the word ‘edge’ is
replaced by the word ‘face’. Since all faces are triangles, we are able to prescribe
linear data on them such that ψz is continuous on the boundary of each element,
i.e. ψz ∈ C0(∂K) for K ∈ Kh. This construction is not possible for general
polygonal faces. Obviously, the triangulations of the element surfaces admit
a boundary mesh Bh(K) of each K ∈ Kh. This discretization of ∂K can be
used directly in the three dimensional boundary element method discussed in
Section 1.6. Following the same steps as in Section 2.1, we can set up the FEM
system. For a piecewise constant material coefficient, the volume integral in
the bilinear form of the variational formulation is reduced to integrals over the
boundaries of the elements by the use of Green’s first identity. Then, the product
of the Dirichlet and Neumann trace has to be integrated. Finally, it turns out
that the discretization of the symmetric Steklov-Poincaré operator multiplied by
the constant coefficient serves as local stiffness matrix in the set up of the global
finite element matrix.
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Nevertheless, the restriction to polyhedra with triangular faces is not desir-
able. It is more convenient to work directly with polyhedral elements that have
arbitrary polygonal faces. Of course, it is always possible to introduce triangu-
lations of the surfaces, but this adds additional nodes to the mesh. Therefore,
the number of degrees of freedom in the finite element computation is increased.
These nodes might improve the accuracy of the approximation but they are arti-
ficial and spoil the idea of arbitrary polyhedral elements.

In the following, we give a generalization that copes with polygonal faces of
polyhedral elements directly. For this reason, we go back to the two dimensional
case and analyse the lower order trial functions again. We deal with a nodal trial
function ψz. Thus, we set the value of the function equal to one at one node
z ∈ Nh and equal to zero at every other node x ∈ Nh \ {z} of the mesh. Next,
the datum in the nodes is used to extend the trial function linearly on the edges
of the mesh. Finally, we use a harmonic extension of the data on the edges to
get the functions inside the elements. Additionally, we observe that the linear
extension of the nodal data to the edges is nothing else than a harmonic extension
in the parameter space of the edge, i.e. we solve

−ψ′′z = 0 in E for all E ∈ Eh,

ψz(x) =

{
1 for x = z

0 for x ∈ Nh \ {z}
,

where the derivatives are understood with respect to the linear parametrization
of the edges. From this point of view, we start in the nodes, go to the edges and
then into the elements. In each step, we extend the data from the previous step
harmonically. Following these considerations, we are able to generalize the lower
order trial functions to arbitrary dimension. The strategy is sketched in Fig-
ure 4.2. The values in the nodes are prescribed. Afterwards, we solve a Dirichlet
problem for the Laplace equation on each edge in the corresponding parame-
ter space. Then, we use the computed data as Dirichlet datum for the Laplace
problem on each face, and finally we proceed with the Laplace problem on each

ψ ∈ {0, 1} ∆1ψ = ψ′′ = 0 ∆2ψ = 0 ∆3ψ = 0

Figure 4.2: Stepwise construction of lower order trial functions
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element, where the solutions on the faces are used as boundary values. Denoting
the i-dimensional Laplace operator by ∆i, we have for the trial function ψz, which
belongs to z ∈ Nh,

−∆3ψz = 0 in K for all K ∈ Kh,
−∆2ψz = 0 in F for all F ∈ Fh,
−∆1ψz = 0 in E for all E ∈ Eh,

ψz(x) =

{
1 for x = z

0 for x ∈ Nh \ {z}
,

where the Laplace operators have to be understood in the corresponding linear
parameter spaces.

The trial functions restricted to one face are obviously the well known two
dimensional trial functions from Section 2.1. Therefore, the trace of a trial func-
tion ψz on the boundary of K takes values between zero and one. Additionally,
the Dirichlet datum on ∂K for the three dimensional Laplace problem is contin-
uous. According to Theorem 6 of Section 1.4, we have

ψz ∈ C0(K) ∩ C2(K),

and ψz is even arbitrary smooth in the interior of K since it is harmonic. The
maximum principle yields

0 < ψz < 1 in K

for z ∈ N (K), and ψz has no local extrema inside of K unless it is constant.
The only possibility for ψz to be constant over K is that z 6∈ N (K) and then
we have ψz ≡ 0 on K. Consequently, the trial functions have local support.
Due to the continuity of the trial functions over Ω, they belong to the Sobolev
space H1(Ω) and thus the later finite element computations yield conforming
approximations. So, all desirable properties of the two dimensional case carry
over to three dimensions.

At this point, we mention that for K ∈ Kh the functions ψz with z ∈ N (K)
form barycentric coordinates, i.e. they satisfy (2.2) and (2.3) that are

ψz(x) ≥ 0 on K

for z ∈ N (K) and

v =
∑

z∈N (K)

v(z)ψz

for any linear function v on K. The first condition has been observed already
and the second one follows in a similar way as in Section 2.1. A linear function
restricted to an edge, face and an element fulfils the i-dimensional Laplace equa-
tion for i = 1, 2, 3, respectively. Since the right hand side of (2.3) also fulfils
these equations and both sides coincide in the nodes z ∈ N (K), the equality
follows because of the unique solvability of the Dirichlet problem for the Laplace
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equation. More precisely, both sides of (2.3) coincides in the nodes and fulfil
the Laplace equation on the edges, thus the equality holds on the edges. Since
both sides are the same on the boundary of the faces and are harmonic on the
faces, they are also equal in the interior of the faces. Finally, (2.3) holds on the
whole element K because both sides fulfil the Laplace equation on the element
and coincide on ∂K. A consequence of this property is that the pointwise inter-
polation with lower order trial functions is exact for linear polynomials and that
the functions ψz for z ∈ Nh form a partition of unity over Ω. This statement has
been proven in Lemma 5 for the two dimensional case.

The presented idea, how to generalize the lower order trial functions of the
BEM-based finite element method for the model problem, can be transfered to
other boundary value problems. In [21, 41], Helmholtz, Maxwell and convection-
diffusion-reaction problems are considered. The trial functions are defined locally
as solution of the underlying differential equation with constant material coeffi-
cients on each element, where piecewise linear data on the triangulation of the
element boundary is prescribed. Instead of this boundary data, it might be ad-
vantageous to use the stepwise definition presented above and to work directly
on the polygonal faces of the elements.

In the model problem, the underlying differential equation with piecewise
constant coefficients and homogeneous right hand side reduces to the Laplace
equation. In the general case of other boundary value problems, we obtain corre-
sponding differential equations. These equations can be used to define the trial
functions successively on the edges, faces and elements. Starting from the nodal
values, boundary value problems are solved step by step in the corresponding
parameter spaces of the edges, faces and elements. Here, the previously com-
puted data is used as Dirichlet datum in the next step. Due to this construction
the trial functions already capture some properties of the solution of the bound-
ary value problem and therefore may improve the finite element computations.
For example, this may enhance the stability in the convection-diffusion problem
analysed in [41] even further.

4.2 Numerical considerations

The theoretical construction of the trial space in the three dimensional case has
been discussed in the last section. Nevertheless, the numerical realization of these
implicitly defined functions is still unclear. Whereas we have had to solve only
local problems on the elements in the two dimensional setting, we now have to
deal with problems on the faces as well as on the elements. When other partial
differential equations are considered beside the model problem, we even have to
solve boundary value problems on the edges. But for the current presentation, we
restrict ourselves to the model problem and only mention necessary modifications
for other problems.

As before, we make use of the boundary element method to approximate the
nodal trial functions ψz in the interior of the elements. The approximation of ψz
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Figure 4.3: Polyhedral element and surface triangulations of level l = 0, . . . , 4

on the surfaces of the elements can also be done with a two dimensional boundary
element method in the parameter space of the faces. But it is more suitable to
discretize the trial functions by a finite element method on the faces of the mesh.
The advantage of this choice can be seen later.

For the realization of the two dimensional finite element method, triangula-
tions of the faces are needed. For each F ∈ Fh, we introduce a mesh Bh(F )
of level l. The coarsest mesh with l = 0 is obtained by connecting the nodes
z ∈ N (F ) with the point

zF =
1

|N (F )|
∑

z∈N (F )

z.

Afterwards, the meshes of level l ≥ 1 are defined recursively by splitting each
triangle of the previous level into four similar triangles. So, the midpoints of the
sides of a triangle are connected successively, see Figure 4.3. The set of nodes
in the triangular mesh is denoted by Mh(F ). Obviously, we can combine the
discretizations of the faces to a triangulation of the whole surface of an element
K ∈ Kh by setting

Bh(K) =
⋃

F∈F(K)

Bh(F ) and Mh(K) =
⋃

F∈F(K)

Mh(F ).

Due to the construction, the surface mesh Bh(K) is conforming.
Now, we address the approximation of the trace of a trial function ψz, z ∈ Nh

on a face F ∈ Fh with z ∈ N (F ). For the finite element computations on the
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face, we additionally need a trial space. Its basis ΦD(F ) and the trial functions ϕz
for z ∈Mh(F ) are defined by

ϕz =


1, at z

linear, on T ∈ Bh(F )

0, at x ∈Mh(F ) \ {z}
and ΦD(F ) = {ϕz : z ∈Mh(F )}.

We approximate the trace of the trial function ψz by

gFz =
∑

ϕ∈ΦD(F )

gϕϕ

where the coefficients gϕ which belong to ϕ = ϕx with x ∈ ∂F are fixed such
that gFz coincides with the piecewise linear data of ψz on the edges of the face F .
Consequently, we obtain the discrete Galerkin formulation

Find gFz :
∑

x∈Mh(F )

gϕx

∫
F

∇ϕx · ∇ϕy = 0, ∀y ∈Mh(F ) : y 6∈ ∂F,

for the approximation of the trace of ψz on F ∈ Fh, where z ∈ N (F ). According
to Section 1.3, this formulation admits a unique solution and the correspond-
ing system of linear equations can be solved by a conjugate gradient method.
Changing the level of the face discretization, the accuracy of the finite element
approximation can be adapted.

To get an approximation gKz of the trace of ψz on the whole boundary of
an element K ∈ Kh, the Dirichlet problems on the faces F ∈ F(K) are solved
successively. Afterwards, these approximations are combined to

gKz =
∑

ϕ∈ΦD(K)

gϕϕ with ΦD(K) =
⋃

F∈F(K)

ΦD(F ).

So, we obtain a piecewise linear and globally continuous approximation of the
Dirichlet trace γK0 ψz over the surface triangulation Bh(K).

Next, we use the computed Dirichlet trace as boundary datum for the Laplace
problem on the element to find an approximation of the trial function ψz in the
interior of the element K ∈ Kh. For this purpose the boundary element method
is applied. At this point, it becomes clear why we have chosen a finite element
discretization of the faces. The surface mesh Bh(K) and the trial functions on the
boundary ∂K for the two dimensional finite element method fit into the theory
of the boundary element method in Section 1.6. Following the ideas given there,
we obtain an approximation tKz of the Neumann trace γK1 ψz in the form

tKz =
∑

τ∈ΦN (K)

tττ,

where for T ∈ Bh(K)

τ 0
T =

{
1, in T

0, else
and ΦN(K) = {τ 0

T : T ∈ Bh(K)}.
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Referring to the coefficient vectors of the approximations with an underline, we
have

tKz = V−1
K,h(

1
2
MK,h + KK,h)g

K

z
(4.1)

with the well known boundary element matrices of the single layer and the double
layer potential as well as the mass matrix.

For each element K ∈ Kh, the approximations of the Dirichlet and Neumann
traces of the trial functions ψz with z ∈ N (K) are gathered in the matrices

DK =
(
gK
z

)
z∈N (K)

and NK =
(
tKz

)
z∈N (K)

such that each column corresponds to the datum of one ψz. The relation (4.1)
turns into

NK = V−1
K,h(

1
2
MK,h + KK,h)DK .

For a better understanding, we give the dimensions of the matrices.

VK,h ∈ R|Bh(K)|×|Bh(K)| DK ∈ R|Mh(K)|×|N (K)|

KK,h ∈ R|Bh(K)|×|Mh(K)| NK ∈ R|Bh(K)|×|N (K)|

MK,h ∈ R|Bh(K)|×|Mh(K)|

In the global finite element computation, the number of degrees of freedom which
correspond to the element K is |N (K)|. For the local computations, we use
|Bh(K)| degrees of freedom to approximate the Neumann trace of each trial func-
tion and the Dirichlet trace is represented by |Mh(K)| coefficients. Obviously,
we have

|N (K)| ≤ |Mh(K)| and |F(K)| ≤ |Bh(K)|.

Since we know how to approximate the Dirichlet and Neumann data of the
trial functions, the set up of the global finite element method can be addressed.
We assume that the material coefficient is constant on each element such that

a(x) = aK for x ∈ K and K ∈ Kh,

or it is approximated by a piecewise constant function. The Galerkin formulation
is treated in a similar way as in the two dimensional case of the lower order
method in Section 2.1. We set

Ψ(1) = {ψz : z ∈ Nh} as well as ΨD = {ψz : z ∈ Nh,D},

and we introduce the trial space

Vh = span Ψ with Ψ = Ψ(1) \ΨD.

The discrete Galerkin formulation (1.5) for uh = u0h + uDh with

u0h =
∑
ψ∈Ψ

βψψ and uDh =
∑
ψ∈ΨD

βψψ
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reads ∑
ψ∈Ψ

βψ aΩ(ψ, φ) = (f, φ) + (gN , φ)ΓN −
∑
ψ∈ΨD

βψ aΩ(ψ, φ) for φ ∈ Ψ,

where uDh is the discrete extension of the boundary data gD in the model prob-
lem (1.1). As in Section 2.1, the main task is to study the bilinear form aΩ(·, ·)
applied to trial functions out of Ψ(1). The integrals (f, φ) and (gN , φ)ΓN are
treated again with an appropriate numerical quadrature.

In analogy to the former case, we can derive element stiffness matrices which
involve the symmetric discretizations of the local Steklov-Poincaré operators.
Nevertheless, we present an alternative approach such that we do not have to
set up the matrix DK,h of the hypersingular integral operator. Let ψ, φ ∈ Ψ(1),
it is

aΩ(ψ, φ) =
∑
K∈Kh

aK

∫
K

∇ψ · ∇φ =
∑
K∈Kh

aK
2

( ∫
∂K

γK1 ψγ
K
0 φ+

∫
∂K

γK1 φγ
K
0 ψ

)
according to Green’s first identity (1.11) and since ψ as well as φ are harmonic
on each element K ∈ Kh. Obviously, there are x, z ∈ Nh such that ψ = ψx and
φ = ψz and if there is no K ∈ Kh with x, z ∈ N (K) we have aΩ(ψ, φ) = 0. On the
other hand, for each K ∈ Kh with x, z ∈ N (K) we get the approximations gKx , g

K
z

for the Dirichlet traces and tKx , t
K
z for the Neumann traces of the trial functions

ψx and ψz out of the matrices DK and NK , respectively. For the integrals in the
representation above of the bilinear form, we choose the approximation∫
∂K

γK1 ψxγ
K
0 ψz ≈

∫
∂K

tKx g
K
z =

∑
τ∈ΦN (K)

tτ
∑

ϕ∈ΦD(K)

gϕ(τ, ϕ)L2(∂K) =
(
tKx
)>

MK,h g
K

z

with the mass matrix MK,h defined as in Section 1.6. This yields the symmetric
approximation

aΩ(ψx, ψz) ≈
∑
K∈Kh

aK
2

((
tKx
)>

MK,h g
K

z
+
(
tKz
)>

MK,h g
K

x

)
, (4.2)

where the coefficient vectors are identical to zero if x 6∈ N (K) and z 6∈ N (K),
respectively. Consequently, we use the local matrix

N>K MK,h DK ∈ R|N (K)|×|N (K)|

for each K ∈ Kh to set up the global finite element matrix. Due to the symmetric
approximation (4.2) of the bilinear form, we obtain a symmetric system matrix
in the finite element method which is sparse and positive definite. Therefore, the
conjugate gradient method is applied to get a solution of the system of linear
equations.

In a post processing step, it might be interesting to evaluate the approxima-
tion uh in some points. This is done with the help of the representation for-
mula (1.16). Suppose, we want to evaluate uh in a point x ∈ K for same K ∈ Kh.
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Then, we obtain the approximation of the Dirichlet trace and the Neumann trace
of uh on the boundary of K as linear combinations of the columns in DK and NK ,
respectively. These approximations are inserted into the representation formula
and the integrals therein can be computed analytically, see [68].

Finally, we summarize the steps which are needed to set up the system of
linear equations in the presented finite element method. The trial functions are
given by the values, one or zero, at the nodes of the mesh. In the case of the
model problem, they are linear on the edges of the mesh. Otherwise, we choose
the discretization level of the faces larger than one, i.e. l > 1. Therefore, we also
obtain a discretization of the edges and the underlying boundary value problems
can be solved on each edge to get the data of the trial functions on the edges.
Afterwards, we solve the corresponding Dirichlet problem on every face F ∈ Fh
for each node z ∈ N (F ). Additionally, the boundary element matrices are set
up for every element K ∈ Kh. These computations can be done in parallel since
there are no dependences between the calculations. The Dirichlet datum of the
trial functions are gathered in the matrices DK and the Neumann datum

NK = V−1
K,h(

1
2
MK,h + KK,h)DK

is computed. After these preprocessing steps, the global finite element matrix is
assembled with the help of the local matrices N>K MK,h DK and the right hand
side is set up.

4.3 Numerical experiments

All numerical examples in this section are formulated on the unite cube. As dis-
cretization, we utilize Voronoi meshes which are an example of polyhedral meshes.
In Figure 4.4, the first meshes of the sequence for the convergence experiments
are visualized. We see that the elements are non-trivial polyhedra with arbitrary
polygonal faces. The meshes have been produced by generating random points
according to [29] and constructing the corresponding Voronoi diagram in accor-
dance with [28]. In the set up of the local boundary element matrices, we use a
semi analytical integration scheme. The inner integral in the Galerkin matrices is
evaluated analytically and the outer one is approximated by Gaussian quadrature.
First of all, we give a simple example and visualize the approximation.

Example 7. The function u(x) = −1
6

(
(x1− 0.8)2 + (x2− 0.7)2 + (x3− 0.6)2− 3

)
,

x ∈ R3 fulfils
−∆u = 1 in Ω = (0, 1)3,

u = gD on Γ

with gD = γ0u. We apply the proposed generalization of the BEM-based finite
element method to three space dimension on the upper right mesh of Figure 4.4
with a discretization level l = 1 of the faces. In Figure 4.5, the approximation of
the solution is visualized.
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Figure 4.4: Sequence of Voronoi meshes

Figure 4.5: Approximation of the solution in Example 7 on the whole cube (left)
and on a cut of the cube along element faces (right)
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In Table 4.1, we sketch the number of elements |Kh| and the number of
nodes |Nh| in the different Voronoi meshes. The proposed strategy approximates
the solution by as many trial function as nodes are in the mesh. Therefore the
number of degrees of freedom in the finite element method is |Nh| minus the
number of nodes on the Dirichlet boundary ΓD. The method proposed in [20]
needs to triangulate the surfaces of the elements and the number of trial functions
corresponds to the total number of nodes after the triangulation. In Table 4.1,
this total number of nodes is listed in the case that the faces are triangulated
with the level l = 0, 1, 2. We recognize that in this situation much more trial
functions and thus degrees of freedom are required in the global computations.
Roughly speaking, the number of nodes doubles if the coarsest discretization of
the faces is used. If a finer triangulation is needed, the number of nodes and thus
the number of degrees of freedom increase ten times for l = 1 and even more than
forty times for l = 2. Since the diameter of the elements are equivalent in all
four situations, the approximation errors of the finite element computations are
of the same order. Therefore, the method proposed in this chapter is favourable
because it has the smallest system matrix in the global finite element method.
The dimension of this matrix is DoF × DoF, where DoF denotes the number of
degrees of freedom which corresponds to |Nh| minus the nodes on the Dirichlet
boundary ΓD.

|Kh| |Nh| l = 0 l = 1 l = 2

9 46 98 424 1790
76 416 905 4170 18011
712 4186 9081 42446 184170
1316 7850 17013 79676 345903
5606 34427 74457 349663 1519143
26362 164915 356189 1675171 7280603

Table 4.1: Total number of nodes when working with triangulated surfaces

In the following, we investigate the influence of the face discretization. These
triangulations of the faces are required to approximate the traces of the trial
functions on the faces with the local two dimensional finite element methods
and later in the boundary element computations. The finer the discretization is
chosen the better is the approximation of the traces and thus the approximation
of the trial functions. Even though the face discretization does not blow up the
global system matrix, the computational effort for the local problems increases if
the discretization level l is raised. In Table 4.2, we give the number of nodes |Nh|
in the global mesh as well as the number of additional nodes coming from the
triangulation of the faces. As one example, we pick the element K from Figure 4.3
and list the number of nodes |Mh(K)| and the number of triangles |Bh(K)| in the
surface discretization of K for different levels l in Table 4.3. In the next example,
we analyse the rates of convergence for different values of l.
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|Kh| |Nh| l = 0 l = 1 l = 2

9 46 52 378 1744
76 416 489 3754 17595
712 4186 4895 38260 179984
1316 7850 9163 71826 338053
5606 34427 40030 315236 1484716
26362 164915 191274 1510256 7115688

Table 4.2: Number of additional nodes coming from the face discretization

|N (K)| l |Mh(K)| |Bh(K)|
12 0 20 36

1 74 144
2 290 576
3 1154 2304
4 4610 9216

Table 4.3: Number of nodes |Mh(K)| and number of triangles |Bh(K)| in the
surface discretization of the element in Figure 4.3 for different levels

1e− 01

1e+ 00

1e+ 01

1e+ 02

1e+ 03

1e− 01 1e+ 00

1
1

1

2

l = 0
l = 1
l = 2
l = 0
l = 1
l = 2

Figure 4.6: Absolute error in ‖ · ‖E (•) and ‖ · ‖L2(Ω) (+) with respect to h for
l = 0, 1, 2 in Example 8 and triangles with slope one and two
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Example 8. Consider the Dirichlet boundary value problem

−∆u = 0 in Ω = (0, 1)3,

u = gD on Γ

with gD = γ0u such that

u(x) = e2
√

2π(x1−0.3) cos(2π(x2 − 0.3) sin(2π(x3 − 0.3), x ∈ R3

is the exact solution. In Figure 4.6, the approximation errors ‖u − uh‖E and
‖u− uh‖L2(Ω) are given with respect to h = max{hK : K ∈ Kh} in a logarithmic
plot for different discretization levels l = 0, 1, 2 of the faces.

This example has shown that the discretization level of the faces does not
influence the rates of convergence. Therefore, the coarsest face discretization with
l = 0 is sufficient to analyse the convergence rates in the forthcoming numerical
experiments. Due to this choice, the local complexity in the two dimensional
finite element method on the faces F ∈ Fh and the local boundary element
methods on the elements K ∈ Kh is rather small. Furthermore, in Figure 4.6, we
recognize linear convergence for the approximation error measured in the energy
norm and quadratic convergence if the error is measured in the L2-norm. This is
the first numerical experiment in three space dimensions which confirms the rates
of convergence for the BEM-based finite element method on Voronoi meshes with
polyhedral elements and arbitrary polygonal faces.

Beside the Dirichlet problem for the Laplace equation, we also give examples
for the Poisson problem and the case of a non-constant material parameter.

1e− 03

1e− 02

1e− 01

1e+ 00

1e+ 01

1e− 01 1e+ 00

1
1

1

2
‖ · ‖E
‖ · ‖L2

Figure 4.7: Absolute error with respect to h for Example 9 with l = 0 and
triangles with slope one and two
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Example 9. The function u(x) = cos(πx1) sin(2πx2) sin(3πx3), x ∈ R3 fulfils the
boundary value problem

−∆u = f in Ω = (0, 1)3,

u = gD on Γ

with f = 14π2u and gD = γ0u fixed. In Figure 4.7, the errors ‖u − uh‖E and
‖u − uh‖L2(Ω) are shown with respect to h = max{hK : K ∈ Kh} in logarithmic
scale.

Example 10. We take the two functions already considered in Example 8 and 9
and label them by u1 and u2, respectively. They fulfil the boundary value prob-
lems

−div
(
(7

2
− x1 − x2 − x3)∇ui

)
= fi in Ω = (0, 1)3,

ui = giD on Γ

for i = 1, 2, where fi and giD have to be chosen appropriately. In Figure 4.8, the
approximation errors ‖ui − uih‖E and ‖ui − uih‖L2(Ω) are shown with respect to
h = max{hK : K ∈ Kh} in logarithmic scale for i = 1, 2.
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1e− 01 1e+ 00

1 1

1 1
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‖ · ‖E
‖ · ‖E
‖ · ‖L2

‖ · ‖L2

Figure 4.8: Absolute error ‖ui − uih‖ for i = 1 (•) and i = 2 (+) with respect
to h for Example 10 and triangles with slope one and two

In the final two examples, we have also obtained optimal rates of convergence
for the finite element approximation. So, the method yields linear convergence
in the energy norm and quadratic convergence in the L2-norm. This behaviour
together with the flexibility of the polyhedral meshes and the conforming ap-
proximations makes the BEM-based finite element method an interesting and
attractive strategy for ongoing research.





Conclusion

The presented finite element method with local Trefftz trial functions is a new
strategy based on the idea in the recent publication [20]. We have given sev-
eral novel developments that belong to the first extensions of the primal strategy.
The introduced lower as well as higher order trial functions admit optimal rates of
convergence on polygonal meshes. This approach, also called BEM-based FEM,
yields conforming approximations on these arbitrary meshes. Thus, the develop-
ments fit into the current research topics in several areas. We just mention the
discontinuous Petrov-Galerkin methods, the mimetic finite difference methods,
multiscale finite element methods and the topic of generalized barycentric coor-
dinates in computer graphics. In all these methods the use of polygonal meshes
and the generalization to higher order approximation is discussed in the latest
literature as for example [11, 23, 30, 35, 61].

According to the definition of the trial functions, the BEM-based FEM is
a generalization of several well known strategies. If the lower order method is
applied to a mesh containing only triangles or quadrangles the standard linear
and bilinear trial functions of finite element methods are recovered. In the case
that the mesh consists of one element with many nodes on the boundary, we end
up with the boundary element method. And finally, a domain decomposition
method is obtained if the convergence is analysed with respect to the refinement
that solely adds nodes to the boundaries of the elements in the mesh. Thus,
the coupling between these established methods and the BEM-based FEM is
straightforward.

The investigated method has a high potential for future research. We already
stated the idea how to generalize the strategy to arbitrary order of convergence.
Here, it has been essential to cope with the restriction to piecewise constant
material coefficients in the differential equation for what we proposed a novel
approximation. Additionally, the reliability of the residual error estimate has
been proven which is the first step to efficient adaptive strategies. In adaptive
finite element methods the use of polygonal meshes is very attractive since local
refinements produce no additional difficulties. The class of functional analytic
error estimates [62] is promising for general meshes, but H(div)-conforming trial
functions are needed for the flux variables. Such trial functions are the topic of
ongoing research in the context of BEM-based FEM for mixed formulations of
elliptic problems.

The developments extend to the three dimensional case. We have intro-
duced trial functions on polyhedral elements with polygonal faces which gen-
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eralize present ideas in the literature. Due to the stepwise construction, these
functions already capture some properties of the solution of the underlying differ-
ential equation. Thus, their application to convection-diffusion or other boundary
value problems is auspicious.
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