
Algorithms and Data Structures for Interactive

Ray Tracing on Commodity Hardware

Stefan Popov

Computer Graphics Group
Saarland University

66123 Saarbrücken, Germany

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

Betreuender Hochschullehrer / Supervisor:
Prof. Dr.-Ing. Philipp Slusallek, Universität des Saarlandes, Saarbrücken, Germany

Gutachter / Reviewers:
Prof. Dr.-Ing. Philipp Slusallek, Universität des Saarlandes, Saarbrücken, Germany
Dr. Habil. Karol Myszkowski, MPI Informatik, Saarbrücken, Germany
Prof. Dr. Kun Zhou, Zhejiang University, Hangzhou, P. R. China

Dekan / Dean:
Prof. Dr. Mark Groves, Universität des Saarlandes, Saarbrücken, Germany

Eingereicht am / Thesis submitted:
13. Juli 2012 / July 13th, 2012

Datum des Kolloquiums / Date of defense:
18. September 2012 / September 18th, 2012

Prüfungskommission / Committee:
Vorsitzender / Chair:
Prof. Dr. Sebastian Hack, Universität des Saarlandes, Germany

Prüfer / Examiners:
Prof. Dr.-Ing. Philipp Slusallek, Universität des Saarlandes, Saarbrücken, Germany
Dr. Habil. Karol Myszkowski, MPI Informatik, Saarbrücken, Germany

Protokoll / Reporter:
Dr.-Ing. Tobias Ritschel, MPI Informatik, Saarbrücken, Germany

Stefan Popov
Lehrstuhl für Computergraphik, Universität des Saarlandes
Campus E 1 1
66123 Saarbrücken
Germany
popov@cg.uni-saarland.de

iii

Abstract

Rendering methods based on ray tracing provide high image realism, but have been
historically regarded as offline only. This has changed in the past decade, due to
significant advances in the construction and traversal performance of acceleration
structures and the efficient use of data-parallel processing. Today, all major graphics
companies offer real-time ray tracing solutions. The following work has contributed
to this development with some key insights.

We first address the limited support of dynamic scenes in previous work, by pro-
posing two new parallel-friendly construction algorithms for KD-trees and BVHs. By
approximating the cost function, we accelerate construction by up to an order of ma-
gnitude (especially for BVHs), at the expense of only tiny degradation to traversal
performance.

For the static portions of the scene, we also address the topic of creating the
“perfect” acceleration structure. We develop a polynomial time non-greedy BVH
construction algorithm. We then modify it to produce a new type of acceleration
structure that inherits both the high performance of KD-trees and the small size of
BVHs.

Finally, we focus on bringing real-time ray tracing to commodity desktop com-
puters. We develop several new KD-tree and BVH traversal algorithms specifically
tailored for the GPU. With them, we show for the first time that GPU ray tracing
is indeed feasible, and it can outperform CPU ray tracing by almost an order of
magnitude, even on large CAD models.

iv

v

Kurzfassung

Ray-Tracing basierte Bildsynthese-Verfahren bieten einen hohen Grad an Realismus,
wurden allerdings in der Vergangenheit ausschließlich als nicht echtzeitfähig betrach-
tet. Dies hat sich innerhalb des letzten Jahrzehnts geändert durch signifikante Fort-
schritte sowohl im Bereich der Erstellung und Traversierung von Beschleunigungs-
Strukturen, als auch im effizienten Einsatz paralleler Berechnung. Heute bieten alle
großen Grafik-Firmen Echtzeit-Ray-Tracing Lösungen an. Die vorliegende Disserta-
tion behandelt Beträge zu dieser Entwicklung in mehreren Kernaspekten.

Der erste Teil beschäftigt sich mit der eingeschränkten Unterstützung von dyna-
mischen Szenen in bisherigen Verfahren. Hierbei behandeln wir zwei zur Parallelisie-
rung geeignete Algorithmen zur Erstellung von KD-Bäumen und Bounding-Volume-
Hierarchien. Durch Approximation von Kosten-Funktionen kann eine Verbesserung
der Konstruktionszeit von bis zu einer Größenordnung erreicht werden (speziell für
BVH-Strukturen), bei nur geringem Verlust von Traversierungs-Effizienz.

Mit Blick auf den statischen Teil einer Szene beschäftigen wir uns mit der Erstel-
lung “perfekter” Beschleunigungs-Strukturen. Wir entwickeln einen Algorithmus zur
BVH-Erstellung, der ein globales Optimum in polynomialer Zeit liefert. Dies führt
zu einer neuartigen Beschleunigungs-Struktur, welche sowohl die hohe Leistung von
KD-Bäumen, als auch den geringen Platzbedarf von BVH-Strukturen in sich verei-
nigt.

Abschließend betrachten wir Echtzeit-Ray-Tracing auf Desktop-Computern. Wir
entwickeln neuartige KD-Baum- und BVH-Traversierungs-Algorithmen, die speziell
auf den Einsatz von Grafikprozessoren zugeschnitten sind. Wir zeigen damit zum
ersten Mal, dass GPU-Ray-Tracing nicht nur praktikabel ist, sondern auch mehr als
eine Größenordnung effizienter sein kann als CPU basierte Ray-Tracing-Verfahren,
selbst bei der Darstellung großer CAD Modelle.

vi

vii

Contents

1 Introduction 1

1.1 Thesis Outline . 2

2 Background 5

2.1 Light Transport . 5

2.1.1 Radiometric Quantities . 5

2.1.2 The Rendering Equation . 6

2.1.3 The Ray Tracing Operator . 7

2.1.4 The Bi-Directional Scattering Distribution Function 8

2.2 Rendering Algorithms . 11

2.2.1 Scene Description . 12

2.2.2 Rendering with Non-Surface Light Sources 15

2.2.3 Whitted Style Ray Tracing . 16

2.2.4 Rasterization . 19

2.2.5 Ray Tracing vs. Rasterization 20

2.3 Acceleration Structures Background 21

2.3.1 Grids . 22

2.3.2 Space Partitioning Hierarchies 23

2.3.3 Bounding Volume Hierarchies 24

2.4 Interactive Ray Tracing . 25

2.4.1 Interactive Traversal . 25

2.4.2 Animation . 27

2.5 Summary . 28

I Construction of Acceleration Structures 29

3 Construction Background 31

3.1 Basics . 31

3.1.1 Top-down Construction . 31

3.1.2 Bottom-up Construction . 32

3.1.3 The Overlap Test . 33

3.1.4 Termination Criteria . 33

3.2 The Surface Area Cost Model . 34

3.2.1 The Surface Area Heuristics . 34

3.2.2 Automatic Termination Criteria 35

CONTENTS viii

3.2.3 Plane Sweep Algorithms . 35
3.3 Construction of KD-trees . 36

3.3.1 Split in the Middle and Median Split 37
3.3.2 Cost Based Splitting . 40
3.3.3 Construction Complexity: O(N logN) vs O(N log2N) 41
3.3.4 Implementation Details . 43

3.4 Construction of BVHs . 45
3.4.1 Searching for the Optimal Split Plane 46

3.5 Summary . 48

4 Fast Construction of KD-Trees 49
4.1 Background . 49
4.2 Bottlenecks in KD-Tree Construction 50
4.3 Binned Cost Function Sampling . 51

4.3.1 Sampling Accuracy . 52
4.4 Processing the Lower Tree Levels . 54

4.4.1 Improving Classical Construction 54
4.4.2 Brute-Force Sampling . 55

4.5 Implementation Details . 55
4.5.1 Memory Management for Breadth-First Construction 56
4.5.2 Memory Management for Depth-First Construction 57
4.5.3 In-Place Sifting . 57
4.5.4 Numerical Stability . 60
4.5.5 Parallel and Lazy Construction 61

4.6 Results . 62
4.7 Summary . 63

5 Fast Construction of BVHs 65
5.1 SAH Evaluation Through Binning . 65
5.2 Sifting . 66
5.3 Results and Discussion . 67
5.4 Summary . 68

6 Construction of High Quality BVHs 71
6.1 Geometric Partitioning . 72

6.1.1 From NP Complete to Polynomial 73
6.1.2 A Grid Approximation . 74
6.1.3 Cost and Feasibility of a Configuration 76

6.2 A Generic Construction Algorithm . 77
6.2.1 Primitive Splitting . 77
6.2.2 Defining the Search Space . 78
6.2.3 The Algorithm . 79

6.3 Patching the SAH . 82
6.3.1 Overlap-Aware SAH . 83

6.4 Results and Discussion . 84
6.5 A Spatial Construction Algorithm . 89
6.6 Summary . 90

ix CONTENTS

II GPU Ray Tracing 93

7 GPU Ray Tracing Background 95

7.1 Acceleration Structure Traversal . 95

7.1.1 Sequential Traversal of KD-trees 97

7.1.2 Early Ray Termination . 97

7.1.3 Recursive Traversal of KD-trees 98

7.1.4 Packet Traversal of KD-trees 100

7.1.5 BVH Traversal . 103

7.2 Graphics Processing Units . 105

7.2.1 Shader Model 3 . 105

7.2.2 The Tesla Architecture . 106

7.2.3 Fermi and Beyond . 108

7.2.4 CUDA . 109

7.3 GPU Ray Tracing . 110

7.4 Summary . 111

8 Stackless KD-Tree Traversal 113

8.1 Related Work . 113

8.2 Efficient Stackless KD-Tree Traversal 114

8.2.1 Single Ray Stackless KD-Tree Traversal 115

8.2.2 Rope Construction . 116

8.2.3 Stackless Traversal for SIMD Packets of Rays 119

8.3 Implementation . 122

8.4 Results and Discussion . 125

8.4.1 Memory Requirements . 125

8.4.2 Traversal Steps . 126

8.4.3 Absolute Performance . 127

8.5 Summary . 128

9 Shared Stack BVH Traversal 131

9.1 Background . 131

9.2 The Traversal Algorithm . 132

9.2.1 Voting . 134

9.3 Results and Discussion . 135

9.4 Summary . 137

III Conclusion 139

10 Conclusion 141

A Proofs 145

A.1 Numerical Stability of In-Place Sifting 145

B Common Notation 149

CONTENTS x

List of Figures 161

List of Tables 163

List of Algorithms 165

1

Chapter 1

Introduction

Over the past few decades, computer graphics has become ubiquitous. We encounter
its products on a daily basis, on television, billboards, magazines and even on our
phones. We encounter it indirectly even much more, since almost any modern human-
made item we come into contact with, is usually designed with the help of CAD soft-
ware. That said, it is not surprising that the main driving forces behind the progress
of computer graphics are the movie and entertainment industry, the advertisement
industry, and the CAD industry.

One of the main tasks in computer graphics is the digital synthesis (a.k.a. render-
ing) of 2D images from a 3D virtual scene description. Based on its use, rendering
can be divided into off-line and interactive. In the first case images are rendered with
a very high and typically photo-realistic quality and the process can take minutes,
hours or even days. In the second – quality is sacrificed in the name of interactive per-
formance and an image is typically rendered in a fraction of a second. To achieve this,
many light transport effects are approximated, faked, or often completely omitted.

The first case assumes that the image is rendered once and then viewed without
changes multiple times. It is typically used to render images for printed media or
frames in a movie. To achieve photo-realism, images are rendered by simulating
the propagation of light in the virtual scene, according to the laws of physic. In
most cases, the largest performance bottleneck of these simulations is the ray tracing
operator, whose job is to find the first point intersected by a given ray.

Interactive rendering on the other hand assumes that the user can alter the scene
and/or the viewpoint and can see the effects of this interaction instantly. Typical
applications for this case include CAD software and games. Interactive applications
today mostly rely on an algorithm known as rasterization, running on extremely fast
specialized graphics chips (known as GPU s). Due to its limitations however, rasteri-
zation can only handle efficiently a small set of light interactions. Even though many
applications based on rasterization look stunningly good today (especially games),
this is usually because they fake the physically based effects or they pre-compute
them offline (if the effect allows it). In turn this often requires significant manual
effort by the scene designers. And even then, efficient simulation of effects as simple
as real refractions and reflections from glass objects remains beyond the reach of
rasterization.

In the years preceding the work in this thesis, ray tracing algorithms and hardware

CHAPTER 1. INTRODUCTION 2

had evolved to a point where interactive rendering became feasible [Wald, 2004;
Benthin, 2006]. Nevertheless, even the most efficient ray tracers at that time required
clusters of computers to show non-trivial light transport effects (e.g. refraction),
which were not already possible with rasterization [Benthin, 2006]. Furthermore, they
were mainly limited to static scenes and scenes with rigid body motion, eventually
allowing local deformations in some cases (e.g. for skinning). The reason behind
this limitation were the large times required to construct an efficient acceleration
structure, which in turn is essential for achieving interactive performance with ray
tracing.

The primary goal of the research in this thesis was to bring interactive algorithms
based on ray tracing to the commodity desktop computer and in general to make ray
tracing a viable alternative to rasterization. To this end we address three problems
here: fast construction of acceleration structures, needed to support dynamic scenes;
construction of optimal acceleration structures, with the aim to maximize the ray
tracing performance in the static parts of the scene; and finally GPU ray tracing,
where we aim to develop new ray tracing algorithms that make efficient use of the
most powerful processor in today’s computers – the GPU.

1.1 Thesis Outline

This thesis is structured into two independent parts, dedicated to our contribution
to acceleration structure construction and GPU ray tracing respectively. They are
preceded by a common background chapter, which introduces the basics of ray trac-
ing (Chapter 2).

Part I starts with a detailed discussion of the previous KD-tree and BVH construc-
tion algorithms (in Chapter 3). Then, in Chapter 4 we show our contribution to fast
construction of KD-trees. We present there a new algorithm based on cost function
approximation, which greatly accelerates KD-tree construction, at the cost of only
few percent slower traversal (following our paper [Popov et al., 2006]). The structure
of this algorithm makes it also very friendly to parallel and lazy construction, which
in turn gives large potential for future optimizations. Furthermore, we present a
previously unpublished extension of this algorithm, which augments our algorithm
with ideas from [Hunt et al., 2006]. In Chapter 5, we present our paper [Günther
et al., 2007], which applies the same idea to BVHs. There, we also show that it
performs even better for BVHs, accelerating their construction by up to an order of
magnitude. Finally, in Chapter 6, we propose a non-greedy construction algorithm
for BVHs. By studying its results, we develop a new acceleration structure and a new
construction algorithm for it, which accelerates traversal up to 6 times, especially for
non-axis aligned scene geometry. There, we also identify a hidden requirement of
the SAH cost function and we propose how to “fix” the cost, when partitioning is
not enforced by the construction algorithm. The research from this chapter was first
published in our paper [Popov et al., 2009].

In Part II we show our contribution to interactive GPU ray tracing. We again start
with an overview (Chapter 7), discussing the previous CPU traversal algorithms and
the limitations of the GPU hardware. Next, in Chapter 8 we develop two new KD-
tree traversal algorithms specifically tailored for the GPU, which rely on ropes to

3 1.1. THESIS OUTLINE

avoid the traversal stack. The use of a traversal optimized acceleration structure,
allowed our algorithm to increase the performance of GPU ray tracing 30 times,
when compared to previous work. Furthermore, with this work we showed for the
first time that GPU ray tracing is not only feasible, but can also outperform CPU
ray tracing considerably. In the next chapter (Chapter 9), we develop a new shared-
stack BVH packet traversal algorithm, which pushes the performance of GPU ray
tracing even further. Also, since BVHs are smaller in size and since our algorithm
requires no additional data (such as ropes), our implementation also pushed the limit
of supported scene sizes for GPU ray tracing: We were able to achieve interactive
frame rates for a scene with 40 times more primitives than anything shown before on
the GPU. The research from chapters 8 and 9 was first published in our papers [Popov
et al., 2007] and [Günther et al., 2007] respectively.

Finally, in Chapter 10 we summarize the research presented in this thesis, we
discuss what lasting impact it has on today’s state-of-the-art interactive ray-tracing,
and we also show its evolution in follow-up work up until today.

CHAPTER 1. INTRODUCTION 4

5

Chapter 2

Background

In this chapter we give the necessary background for the rest of the thesis. To show
the importance of the ray tracing operator and to motivate the need of acceleration
structures, we start by briefly covering the topics of light transport and rendering
algorithms in general. Then, we discuss Whitted style ray tracing in more detail, as
it is the fastest ray tracing based rendering algorithm and the first one to achieve
real-time performance. We also discuss rasterization and its limitations, as it is the
preferred rendering algorithm in most of today’s interactive applications. Finally, we
focus on acceleration structures in general and their relation to interactive rendering.
The latter two are in essence the topics that this thesis deals with.

2.1 Light Transport

Light interaction and distribution in a scene is described by the light transport theory.
We will give a very brief introduction of the latter in this section. If the reader
is interested in more in-depth details, we recommend reading [Dutre et al., 2006],
[Veach, 1998], or [Pharr and Humphreys, 2004].

2.1.1 Radiometric Quantities

The fundamental radiometric quantity in light transport theory is radiant power
also called radiant flux. It expresses how much electromagnetic radiation (including
visible light) passes through a volume per unit time. Flux is measured in Watts and
is usually denoted with Φ.

There are several important quantities in computer graphics which are derived from
radiant power, including irradiance E(x) = dΦ/dA, which gives the incident radiant
power per unit surface area, radiosity B(x) = dΦ/dA, which gives the exitant radiant

power per unit surface area, and radiance L(x, ω) = d2Φ
dwdA⊥

, which specifies the flux
per unit solid angle per unit projected area. The last one is also the most important
one, as it captures the “appearance” of objects in a scene.

Radiance is a five dimensional function that varies with position x and direction ω.
Since projected area can be expressed using surface area (dA⊥ = cosϕdA), radiance
becomes

L =
d2Φ

dωdA cosϕ

CHAPTER 2. BACKGROUND 6

where ϕ is the angle between dω and the surface normal Nx at x. It can be proven
that radiance remains unchanged along a straight line in vacuum [Dutre et al., 2006,
p. 23].

2.1.2 The Rendering Equation

Light distribution in a scene is commonly modeled by using the rendering equa-
tion [Kajiya, 1986]. For a given point x on some surface and a given viewing (outgo-
ing) direction ωo, the outgoing radiance L(x→ ωo) from x along ωo can be expressed
as:

L(x→ ωo) = Le(x→ ωo) +

∫
Ω+

L(x← ωi)fr(x, ωi → ωo) cosϕ dωi (2.1)

The equation states that the radiant energy flowing from x along wo is equal to the
energy Le(x → ωo), emitted by the surface at x in direction ωo, plus the incoming
radiance from the whole hemisphere Ω+ above x, weighted by the spatially varying
bi-directional reflectance distribution function (a.k.a. BRDF) fr(x, ωi → ωo) and the
cosine of the angle ϕ between the geometric normal Nx at x and the incoming light
direction ωi. We use the notation x ← ω to denote incoming energy at x from
direction ω and x→ ω to denote outgoing.

The rendering equation “works” locally on a point. It assumes that energy is
either absorbed, emitted or reflected by a surface point. As a consequence, it can
not model certain light phenomena, such as sub-surface scattering and diffraction.
Even though more advanced models that can also capture such cases are available
(e.g. [Jensen et al., 2001]), many rendering applications today still rely only on the
rendering equation (especially the interactive ones). In this thesis we will only look
at illumination algorithms based on the rendering equation.

A natural way of extending the rendering equation, is to integrate over the whole
sphere of directions Ω around a point x [Veach, 1998, Section 3.6]. This formulation is
known as the scattering equation and allows semi transparent materials, such as glass,
to be simulated. The function fr(.) in this equation is known as the bi-directional
scattering distribution function (BSDF).

To account for color in the general case, the functions L and LE must be addi-
tionally parametrized by the wavelength λ of light. In this case the BSDF becomes
a parametric linear operator over L(λ) = L(x← ωi, λ). In practice, the spectrum of
light is usually represented as a weighted sum of delta functions and the functions L
and LE operate on vectors. Thus, the result of fr is a matrix. For efficiency reasons,
most rendering systems operate on only three wavelengths: red, green, and blue,
which map directly to the RGB values of the pixels in a monitor. Furthermore, these
systems assume that fr operates on the different wavelengths independently, and
thus the matrix of fr is diagonal. The latter is true for most materials encountered
in nature.

7 2.1. LIGHT TRANSPORT

2.1.3 The Ray Tracing Operator

The rendering equation specifies how light interacts with surfaces, but leaves out the
detail of how incoming and outgoing radiance relate. Due to the property of radiance
being constant along a ray, in vacuum and “thin” air the relation is given by:

L(x← ωi) = L(h(x, ωi)→ −ωi) (2.2)

The ray tracing operator h(x, ω) in this equation returns the first intersection point
of the ray with origin x and direction ω with the surfaces of the scene.

A close relative to the ray tracing operator is the binary visibility operator V (x, y)
which determines whether two points x or y are mutually visible. The visibility
operator can be expressed as

V (x, y) =

{
1 , if

∣∣∣h(x, y−x|y−x|)− x
∣∣∣ ≥ |y − x|

0 , otherwise
(2.3)

The rendering equation presented in (2.1) integrates over the incoming directions
of light. Thus (2.1) is known as the directional formulation of the rendering equa-
tion. Using the visibility operator, the rendering equation can also be expressed as
integration over the surfaces of the scene (a.k.a. the area formulation). The solid
angle dω as seen from the point x and subtended by a surface patch dAy around a
point y can be expressed as

dω = cos(Ny,−Ψ)
dAy

(x− y)2

with Ψ = y−x
|y−x| . The rendering equation written using the area formulation then

becomes:

L(x→ ωo) = Le(x→ ωo) + (2.4)∫
Ω+

L(y → Ψ)fr(x,Ψ→ ωo)V (x, y)G(x, y)dAy

Here, the term G(x, y) is known as the geometric term and is given by

G(x, y) =
cos(Nx,Ψ) cos(Ny,−Ψ)

(x− y)2

Note that the two forms of the rendering equation (2.1) and (2.4) are equivalent
only if LE , which is defined over the surfaces of the scene, is the only source of radiant
energy. The directional form is more general as it can can also handle non-surface
light sources. However, as we will see in Section 2.2.1, the two forms can be used
together when calculating illumination.

CHAPTER 2. BACKGROUND 8

Figure 2.1: Decomposition of fr into fΩ+→ Ω+

r , fΩ−→ Ω−
r , fΩ+→ Ω−

r , and fΩ−→ Ω+
r .

The support of the base functions is disjoint.

2.1.4 The Bi-Directional Scattering Distribution Function

The function fr(x, ωi → ωo) defines the appearance of the objects in a scene. It is
known as the bi-directional scattering distribution function (BSDF) when integrating
over the whole sphere of directions and as the bi-directional reflectance distribution
function (BRDF) when assuming opaque materials and integrating over the upper
hemi-sphere only.

The BSDF is in general a 6 dimensional function (because x lies on a 2D surface).
If Ω− is the lower hemisphere (below x with respect to the normal Nx) then a BSDF
can be decomposed into (see Figure 2.1):

fr(x, ωi → ωo) = fΩ+→ Ω+

r + fΩ−→ Ω−
r + fΩ+→ Ω−

r + fΩ−→ Ω+

r

where

fΩ1 → Ω2

r (x, ωi → ωo) =

{
fr(x, ωi → ωo) , if ωi ∈ Ω1 ∧ ωo ∈ Ω2

0 , otherwise

The support of the four functions is disjoint. The first two functions, namely
fΩ+→ Ω+

r and fΩ−→ Ω−
r , describe the reflectance properties of the outside and inside

surfaces respectively. Thus, they can be viewed as outer and inner BRDFs respec-
tively. Which surface is inside and which outside is determined by the normal, which
is usually assumed to point to the outside.

The second pair of functions (fΩ+→ Ω−
r and fΩ−→ Ω+

r) describe the transmittance
of light respectively from outside to inside and vice versa. They are known as the
bidirectional transmittance distribution functions (BTDFs). In practice, the majority
of materials are opaque. For such materials, only the outside BRDF is non zero.

BSDFs that describe physically based materials conserve energy∫
Ω+

fr(x, ωi → ωo) dωo ≤ 1

and physically based BRDFs are symmetric (i.e. they obey the Helmholtz reciprocity
principle [Helmholtz, 1867])

fr(x, ωi → ωo) = fr(x, ωo → ωi)

Note that the latter is unique to reflection only and does not apply to the BTDF part
of the BSDF in general. Further details on BSDFs can be found in [Veach, 1998].

9 2.1. LIGHT TRANSPORT

Figure 2.2: Four different types of BSDF: Lambertian diffuse, Blinn-Phong, perfect
mirror, and glass.

The ray tracing applications presented in this thesis rely on four basic BSDF models
(Figure 2.2), namely diffuse (a.k.a. Lambertian), Blinn-Phong, glass, and mirror.
They are among the most widely used models in interactive rendering. Other popular
models include Cook-Torrance [Cook and Torrance, 1982], Ward [Ward, 1992], and
Lafortune[Lafortune et al., 1997].We will also use combinations of the above materials,
to achieve effects such as a reflecting table top for example (by combining mirror and
Blinn-Phong).

The mirror and glass materials belong to a special class known as specular ma-
terials. The latter includes all materials whose BSDF can be represented as a sum
of delta functions. For a fixed x and ωo, such materials have only a finite set of
directions that can contribute to the outgoing energy. This set is encoded in the ar-
guments of the delta functions, and is used by some rendering algorithms to optimize
performance.

Diffuse Surfaces

Lambertian/diffuse surfaces are opaque diffuse surfaces that scatter light uniformly.
They are characterized by an absorption coefficient ρ ∈ [0, 1], which specifies how
much of the total incoming radiant energy is absorbed by the surface. The BRDF of
a Lambertian surface is constant, since the incoming radiance from one direction is
scattered uniformly. It is given by

fr(x, ωi → ωo) = Cd(x) =
ρ(x)

2π

Dividing by 2π is necessary since ρ is actually the integral over the upper hemisphere
of fr(.) w.r.t. ωo.

Blinn-Phong Surfaces

The Blinn-Phong model [Blinn, 1977] is an extension to the Lambertian diffuse model,
that also accounts for glossy highlights. Again it is an opaque material, and thus only
its outside BRDF is non-zero. The Blinn-Phong model is not physically correct, as
it does not conserve energy. However, it is simple and fast to compute and gives
plausible results. Thus it is the preferred model in many interactive and real-time
rendering applications.

CHAPTER 2. BACKGROUND 10

Figure 2.3: A schematic derivation of the functions ωr = R(x, ω) and ωt = T (x, ω)
respectively. Here η1 and η2 give the speed of light and Cη(x) = η2

η1

The BRDF of the Blinn-Phong model is given by:

fr(x, ωi → ωo) = Cd(x) + Cs(x)

〈
ωi + ωo
|ωi + ωo|

, Nx

〉Ce(x)

As before, Cd specifies the absorption coefficient for the diffuse part. The coefficient
Ce specifies how glossy the surface is, whereas Cs specifies the weight of the glossy
part in the lighting calculations.

Mirror Surfaces

The mirror is a specular opaque material. Incoming radiance flowing along a direction
ωi is reflected in exactly one direction ωo, equal to ωi reflected around the normal
Nx. Its BRDF is given by [Veach, 1998, Section 5.2.1.2]:

fr(x, ωi → ωo) =
δ(R(x, ωi)− ωo)

cos(Nx, ωi)

where δ(.) is the Dirac impulse function and R(x, ω) is a function whose result is ω
reflected around the normal Nx. The function expects that ω points away from x
and is given by (see Figure 2.3 and [Pharr and Humphreys, 2004, Section 8.2])

R(x, ω) = −ω + 2 〈ω,Nx〉Nx

The set of directions that can contribute to the outgoing energy for a mirror material
has exactly one element: R(x, ωo).

Refractive Surfaces

Refractive surfaces, such as glass and water, are specular and semi transparent. In-
coming radiance from a direction ωi is both reflected in direction ωr and transmitted

11 2.2. RENDERING ALGORITHMS

through the surface in direction ωt, with the latter being determined by Snell’s law.
The fractions µr and µt of the incoming energy that is reflected/refracted along ωr/ωt
are determined by Fresnel’s equations. Additionally, at shallow incoming angles, to-
tal internal reflection can occur in the more dense media. In those cases µr = 1 and
µt = 0.

Refractive surfaces are parametrized by the coefficient Cη giving the ratio of the
speed of light inside the medium to its speed outside the medium. An additional
parameter Cα ≤ 1 can be used to control the transparency (to simulate colored glass
for example).

As with mirror surfaces, the reflected direction is calculated as ωr = R(x, ωi). The
refracted direction is given by (see [Pharr and Humphreys, 2004, Section 8.2] and
Figure 2.3):

ωt = T (x, ωi) = Cη(x)
(
− ωi + 〈ωi, Nx〉Nx

)
−

√
1− 1− 〈ωi, Nx〉2

Cη(x)2
Nx

If we denote the expression under the square root with D(x, ωi), then the function
T (.) is only defined if D(x, ωi) ≥ 0. In case it is negative, total internal reflection
occurs.

If we denote the angle between −ωi and Nx with φ1 and the angle between ωt
and −Nx with φ2 then, according to the Fresnel equations for unpolarized light, the
transmittance and reflection coefficients are given by:

µr(x, ωi) =
1

2

[
Cη(x) cosφ1 − cosφ2

Cη(x) cosφ1 + cosφ2
+
Cη(x) cosφ2 − cosφ1

Cη(x) cosφ2 + cosφ1

]

µt(x, ωi) = 1− µr(x)

Thus, the BSDF of a refractive material becomes:

fr(x, ωi → ωo) =


δ
(
R(x,ωi)−ωo

)
cos(Nx,ωi)

, D(x, ωi) ≤ 0

1
cos(Nx,ωi)

[
µr(x) δ

(
R(x, ωi)− ωo

)
+ Cα(x) µt(x) δ

(
T (x, ωi)− ωo

)] , D(x, ωi) > 0

where δ(x) is again the Dirac impulse function. The set of directions that can con-
tribute to the outgoing energy for a refractive material has either one or two elements.
The first element is always R(x, ωo) and in case no total internal reflection occurs,
the second element is T (x, ωo).

2.2 Rendering Algorithms

Rendering is the process of taking a picture on a virtual camera by solving the
rendering equation. There are a vast amount of rendering algorithms available, the
more popular of which include path tracing [Kajiya, 1986], bidirectional path-tracing

CHAPTER 2. BACKGROUND 12

[Lafortune and Willems, 1993; Veach, 1998], radiosity [Goral et al., 1984], and photon
mapping [Jensen, 1996]. In this thesis we are going to use Whitted style ray tracing
[Whitted, 1980] as it currently presents the optimal trade-off between image quality
and interactivity (among all ray-tracing based algorithms).

Besides discussing Whitted style ray tracing, we show in this section, how to define
the input of a rendering algorithm (i.e. the scene) and we discuss rasterization. The
latter is important, as most current interactive algorithms are built on top of it. Also,
it has been the driving force behind the development of graphics hardware in the past
decades.

2.2.1 Scene Description

The input data on which rendering algorithms operate is generally known as the
scene description. It includes description of the scene’s geometry, the materials, the
camera parameters, and the light sources.

Geometry Description

There are various ways to describe the input geometry and the means of description
also depend on the rendering algorithm itself. Especially for interactive applications,
the most common case is to describe the scene through its surface, specified as a set
of geometric primitives. This is also the representation that we will assume in this
thesis.

In ray tracing, the primitives can be of any type, as long as the application knows
how to compute the intersection of a ray with a primitive. For efficiency reasons,
most ray tracing algorithms require further that the primitives are bounded and that
there exists a way to compute those bounds. This requirement enables the use of an
acceleration structure (see Section 2.3). Some acceleration structures require further
the ability to clip a surface primitive with a bounding box (e.g. KD-trees). Finally,
rendering algorithms can also operate efficiently on unbounded primitives, provided
that their count is small.

The preferred surface type for representing geometry in most rendering systems is
the triangle as it is easy to transform and manipulate, it can be efficiently intersected,
has a well defined and efficient to compute bounding box, and higher order surfaces
can be tessellated using triangles. Triangles are specified through their vertices,
which beside position can contain arbitrary user defined attributes, such as color and
surface normal. During shading, these attributes are linearly interpolated for each
point from the triangle, using the barycentric coordinates as weights [Phong, 1975].

Animation

During rendering, the geometry can not change for consistency reasons, but it is free
to do so between two frames. This changes are known as animation. They can be
encoded in the input itself, but they can also come from other sources, such as user
interaction or a physics simulation engine for example.

Rendering algorithms are not interested in the animation itself (as it is static while
rendering), but rather in its structure. Knowing the latter, they can sometimes

13 2.2. RENDERING ALGORITHMS

cache certain scene-related data between frames and accelerate computations. In
the context of ray tracing animation can be classified as static geometry, rigid body,
skinning (or deformable animation), and fully dynamic. Each of the classes in this
list is a superset of all classes that precede it. We will discuss how ray tracing based
algorithms exploit the animation structure in Section 2.4.2.

Static geometry contains no animation at all. In rigid body animation, the scene
consists of a (usually small) set of rigid bodies (i.e. static geometries), with an affine
transformation applied over each of them. Animation is then performed by chang-
ing the affine transformations. Rigid body animation can be used for example to
animate moving objects and skeletons. Deformable animation builds on top of rigid
body animation and allows the triangles within each rigid body to move in a small
constrained space. This type of animation can be used for skin or leaf animations.
Fully dynamic (a.k.a. unstructured) animation allows arbitrary changes to the scene.

Materials

Besides geometry, the other major factor that determines the appearance of an object
are its materials. In a surface based scene description, a material is usually equivalent
to a BSDF and it is given as a property of the surface primitive. Conceptually, a
material consists of two parts: a parametric model, which is uniform over the surface,
and the actual parameters, which define the concrete appearance at a point and can
vary arbitrary over the surface.

The parametric model is specified as a set of programs (a.k.a. shaders [Apodaca
and Mantle, 1990; Pixar, 1989; Hanrahan and Lawson, 1990]), whose purpose is
specific to the rendering algorithm. A material commonly provides two functions:
for computing the BSDF at a point and for BSDF sampling. The shaders can be
built into the rendering application, in which case we speak of fixed-function shading,
or they can be supplied with the scene description (a.k.a. programmable shading).

Material parameters are specified in the scene description. Parameters that are
uniform over a surface primitive are usually stored as a property of the latter. Pa-
rameters that vary linearly over the surface of a primitive are usually specified as
attributes in the vertices of the primitive. Finally, finer control can be achieved
by using textures, which are two dimensional maps of parameters. The mapping of
surface position to texture position is usually specified by storing an attribute in
each vertex, that gives the 2D position of the vertex onto the texture (a.k.a. texture
coordinates).

Camera Description

To render a picture from a scene description, we first define a camera model. Like in
the real-world, a virtual camera is used to capture an image of the virtual environ-
ment, which can then be displayed on a screen. A virtual camera consists of a sensor
array (a.k.a. the image plane) and a lens system.

The sensors measure the radiant energy that falls onto them. They are usually
arranged in a rectangular grid. To display an image taken from a virtual camera, it
suffices to map the measured values to pixel intensities.

CHAPTER 2. BACKGROUND 14

Figure 2.4: A pinhole camera. Directions ωi are mapped onto positions xi on the
image plane as light passes through the pinhole C. The vertical opening angle (red)
is denoted by θ.

The lens system provides the mapping between rays entering the camera and po-
sitions on the image plane. The simplest and most widely used lens system is the
one from the pinhole camera. It consists of an obstacle in front of the image plane
with an infinitely small hole (see Figure 2.4). This camera model captures an image
as seen from the center C of the pinhole. It provides a one-to-one mapping between
the direction of incoming rays at C and the position on the image plane. This is the
model we are going to use throughout this thesis.

Rendering is the process of measuring the total radiant power falling on the sensors.
For each sensor j of a pinhole camera, this power is given by the measurement
equation [Dutre et al., 2006, Section 2.8]:

Mj =

∫
Aj

W (x← Ψ)L(x← Ψ) cos θdx (2.5)

where Ψ = x−C
|x−C| and θ is the angle between the vector Ψ and Nx. The response

function W (.) is defined over all sensors (they are treated as part of the scene), and
gives the sensitivity to radiance on their surfaces. The resulting 2D array of measured
values forms the picture taken by the virtual camera.

To achieve color rendering, the measurement equation has to be parametrized by
the wavelength λ of light. As in the case of the rendering equation, the measure-
ment function becomes a linear parametric operator that works on L and the value
of Mj becomes a function over the wavelength of light. Displaying of rendered im-
ages is achieved by convoluting the computed sensor values Mj(λ) with the response
functions of the display device’s pixel channels.

In the common case, the response functions of the display device are assumed to be
delta functions located at the wavelengths of red, green, and blue. In this case, the
spectrum is approximated during rendering as a weighed sum of these three functions
and W (.) is taken to be identity.

A pinhole camera is specified in the scene data through the location of its center
C, its orientation in space (i.e. the forward and up directions), its vertical opening
angle (see Figure 2.4) and the sensor resolution.

Light Sources

The illumination in a scene is modelled using light sources, which are usually specified
in the scene input. Their purpose is to define the emittance function Le from the

15 2.2. RENDERING ALGORITHMS

rendering equation, but they are more general than that, as they can also define
“detached” illumination that does not originate from a surface.

Each light source l occupies a certain area Al of either space or directions. In
the first case, i.e. finite light sources, each point from Al emits light. In the second
case (i.e. infinite light sources), light is emitted from infinity along the directions
contained in Al. Light sources are further characterized by their intensity function
measured in watt per steradian (i.e. dΦ

dω). For finite light sources, this function is
given as Il(x→ ω) with x ∈ Al and ω ∈ Ω, while for infinite – as Il(ω) with ω ∈ Al.

2.2.2 Rendering with Non-Surface Light Sources

To account for the fact that light sources are not necessary attached to surfaces of
the scene, we first reformulate the rendering equation in its incident radiance form
[Dutre et al., 2006, Section 4.1.3]:

L(x← ωi) = Le(x← ωi) +

∫
Ω
L(y ← ω)fr(y, ω → −ωi) cos(Ny, ω)dω (2.6)

with y = h(x, ωi). The term Le(x← ωi) represents incident emitted radiance and is
equal to Le(h(x, ωi),−ωi).

The formulation (2.6) is more powerful than (2.1) as it gives the freedom to incor-
porate non-surface emittance. To do so, we rewrite (2.6) in its direct illumination
formulation [Dutre et al., 2006, Section 2.6.3]:

L(x← ωi) = Le(x← ωi) + Lr(x← ωi) (2.7)

Lr(x← ωi) = Ldirect + Lindirect (2.8)

Ldirect =

∫
Ω
Le(y ← ω)fr(y, ω → −ωi) cos(Ny, ω)dω (2.9)

Lindirect =

∫
Ω
Lr(y ← ω)fr(y, ω → −ωi) cos(Ny, ω)dω (2.10)

with y = h(x, ωi). According to the description of the intensity function, Ldirect and
Le(x← ωi) can be written as:

Ldirect =
∑
l∈EP

∫
Al

I (ξl → ϑ) fr (y,−ϑ→ −ωi)V (y, ξl)G(y, ξl)dξl

+
∑
l∈ED

∫
Al

I(ωl)fr(y,−ωl → −ωi) cos(Ny,−ωl)dωl

(2.11)

LE(x← ωi) =
∑
l∈ED

Il(−ωi)V∞(x, ωi)

+
∑
l∈EP

∫
Al

δ
(
x−ξl
|x−ξl| + ωi

)
Il(ξl,−ωi) cos(Nξl ,−ωi)V (x, ξl)

(x− ξ)2
dξl

(2.12)

CHAPTER 2. BACKGROUND 16

with ϑ = y−ξl
|y−ξl| . Here EP denotes the set of finite light sources, ED – the set of

infinite ones, and V∞(x, ω) is a function that has a value 0 if the ray (x, ω) intersects
anything and 1 otherwise. We also assume that I(ω) is defined for any direction and
is 0 if ω /∈ Al.

Light Sources Classification

There are several common types of light sources used in today’s rendering systems.
Surface (or area) lights are finite light sources for which Al is a 2-manifold. The
normal at each point of the light source coincides with the surface normal at that
point. Such lights are used to simulate surface emission, such as fluorescent lamps
for example. A special case of an area light source is the virtual point light (VPL).
It’s Al contains a single point only, it has a fixed normal, and its intensity is a delta
function. VPLs are used to approximate surface area lights for algorithms that only
support delta light sources.

Volumetric lights are again finite and their Al is a 3-manifold. While integrating
in (2.12), the normal to each point is assumed to coincide with the direction towards
x and thus cos(x − ξ,Nξ) = 1. Volumetric lights are used to simulate volumetric
lighting such as fire for example. Point light sources are a special case for which Al
is a point and Il(x → ω) is a delta function. They are used to simulate light from
e.g. incandescent light bulbs.

Environment lights are infinite light sources such that their Al has non-zero mea-
sure. They are usually used to simulate distant illumination. Directional lights are
a special case of an environment light, where Al contains a single direction only and
Il(ω) is a delta function. They are typically used to simulate light coming from the
sun.

2.2.3 Whitted Style Ray Tracing

In order to render a picture, one has to solve the measurement equation (2.5) for
each sensor of the camera. This also involves solving the rendering equation (2.1).
Except in trivial cases, the two equations can not be solved analytically. Instead,
rendering algorithms use numerical methods.

Probably the simplest and most efficient rendering algorithm is Whitted style ray
tracing [Whitted, 1980]. To render a picture it samples the incoming radiance at the
image plane by tracing paths from the camera towards the light sources.

For efficiency reasons, Whitted style ray tracing only works with delta light source
(i.e. point and directional). The rationale behind this limitation is to be able to
deterministically and efficiently compute the direct illumination at any point of the
scene. It can be extended to support arbitrary light sources if required, by using
Monte-Carlo integration for example.

Furthermore, Whitted style ray tracing simplifies the lighting model by assuming
that any indirect illumination at a point can only come from the specular part of a
BSDF. Since the latter is a finite sum of delta distributions, the algorithm can limit
its search for incoming energy to the directions encoded in those functions only. This

17 2.2. RENDERING ALGORITHMS

Figure 2.5: Whitted style ray tracing. The figure shows the types of rays shot
during rendering. One of the primary rays intersects a glass sphere and generates
secondary rays. The hit point x2 sees both light sources, where as x1 sees neither,
being occluded by the blue rectangle. Note that not all shot shadow rays are shown
on the picture.

severely limits the directions that Whitted style ray tracing needs to explore and thus
leads to a much greater efficiency.

Under these assumptions, and taking into account that the emittance of point and
directional light sources is a delta function, equations (2.11), and (2.10) become:

Ldirect =
∑
l∈EP

Il(ξl → ϑ)fr(y,−ϑ→ −ωi)V (y, ξl)G(y, ξl)

+
∑
l∈ED

Il(ωl)V
∞(x,−ωl)fr(y,−ωl → −ωi)

(2.13)

Lindirect =
∑

ω∈Ω(y,−ωi)

Lr(y ← ω)fr(y, ω → −ωi) cos(ω,Ny) (2.14)

with ϑ = y− ξl. Here, ξl denotes the position in space of the point light l, ωl denotes
the direction of the directional light l, and Ω(x,−ωi) is the finite set of all directions
ω, for which the specular BSDF fr(x, ω → −ωi) is not zero.

Equations (2.13) and (2.14) form the core of the ray tracing algorithm (Algo-
rithm 2.1), which computes the incoming radiance for a given point and direction.
Rendering an image is then achieved by sampling the sensors of the image plane,
computing the incoming radiance at each sample, and summing the obtained values
according to the sample weights and the response function. Ray tracing is usually
viewed as a backward algorithm, as it actually starts at the image plane and works
its way back to the light sources. Thus, the paths connecting a light source to a
sample on the image plane are usually depicted as flowing towards the light source
(see Figure 2.5).

CHAPTER 2. BACKGROUND 18

Algorithm 2.1 The Ray Tracing Algorithm

1: function Ldirect(y, ωi) . Direct illumination (2.13)
2: ret← 0
3: for all l ∈ EP do
4: if V (y, ξl) then
5: ϑ← y − ξl
6: ret← ret+ Il(ξl → ϑ)fr(y,−ϑ→ −ωi)G(x, ξl)
7: end if
8: end for
9: for all l ∈ ED do

10: if V∞(y,−ωl) then
11: ret← ret+ Il(ωl)fr(y,−ωl → −ωi) cos(Ny,−ωl)
12: end if
13: end for
14: return ret
15: end function
16:

17: function Lindirect(y, ωi) . Indirect illumination (2.14)
18: if recursion depth > maximum allowed then
19: return 0
20: end if
21: ret← 0
22: for all ω ∈ Ω(y,−ωi) do
23: τ ← Lr(y, ω) . Recursion
24: ret← ret+ τfr(y, ω → −ωi) cos(Ny, ω)
25: end for
26: return ret
27: end function
28:

29: function Lr(x, ωi) . See (2.7)
30: y ← h(x, ωi)
31: return Ldirect(y, ωi) + Lindirect(y, ωi)
32: end function
33:

34: function L(x, ωi) . Computes incoming radiance
35: return ret← Lr(x, ωi)

. We ignore Le, since this function is only used for the mea-
surement equation and the probability of directly hitting a
delta light source is 0

36: end function

19 2.2. RENDERING ALGORITHMS

Figure 2.6: Ambient Illumination. The same scene rendered without ambient illu-
mination (left), with standard ambient illumination (middle) and with our improved
version(right). Adding ambient illumination reveals a cube under the plane. Adding
eye-light reveals one further cube.

In the context of Whitted style ray tracing, we distinguish three types of rays.
Primary rays are those that enter the camera and hit the image plane. Shadow rays
are used to determine the visibility of the light sources. All other rays are known
as secondary (see Figure 2.5). Primary and shadow rays can be computed more
efficiently than secondary. In the first case, they have a very specific distribution (see
Section 2.4). In the second case, we are interested in any intersection and not the
closest one, which can be used to optimize the binary visibility function V (x, y)

Approximation Quality

Whitted style ray tracing is clearly an approximation. It captures the most important
illumination (direct illumination and specular reflections), but ignores the rest and
the images it produces tend to look darker. As a workaround, many Whitted style
ray-tracing implementations use a technique known as ambient illumination. The
latter is a non-physically correct form of uniform illumination present in the whole
scene. It is usually defined by its intensity Ia, and through a surface coefficient
Ca(x), specifying the ambient reflectivity at x. The contribution IaCa(x) of the
ambient illumination is then added to the outgoing radiance of a point.

For the ray tracers presented in chapters 8 and 9, we use an improved model
for ambient illumination. Objects illuminated with the standard model look “flat”
(Figure 2.6) as it does not account for the surface geometry. To avoid this, we further
add eye lighting. We define a second ambient illumination constant I ′a and further
add I ′a fr(x, ωo → ωi) to the outgoing radiance of the hit point x. This allows us
to reveal important geometry details, that would otherwise remain hidden in regions
with no direct lighting.

2.2.4 Rasterization

The currently fastest rendering algorithms are not based on ray tracing, but rather
on a technique known as rasterization. The latter was initially designed as an efficient
approach for intersecting a regular batch of primary rays with the scene. Today, it is
commonly implemented in dedicated hardware, known as a graphics processing unit
(GPU), which is present in all modern computers.

CHAPTER 2. BACKGROUND 20

Figure 2.7: The triangle is projected onto the image plane through C. The primary
rays of all samples (with origins depicted as dots) covered by the projection will
intersect the triangle.

Rasterization expects that all rays in the batch originate from a pinhole camera.
Thus, it expects that their origins are arranged on a rectangular planar grid (a.k.a.
the image plane) and all of them pass through a point C (Figure 2.7).

Instead of tracing rays, rasterization works by projecting each triangle onto the
image plane, using the pin hole C as a center. If a point on the image plane is
covered by a projection, then the ray originating from this point will intersect the
triangle. Thus, rasterization loops over all triangles of a scene and for each triangle it
enumerates all samples that are covered by its projection. For each covered sample,
rasterization executes a small program and stores the result with the sample. We will
refer to this value as the color of the sample, although its purpose can be arbitrary.
The executed program is uniform over all samples and is known as a fragment program
or pixel shader.

To account for occlusion, rasterization also stores the distance from each sample
to the closest intersection found so far. If a triangle covers a sample that has been
covered by a previous triangle, the depth and color values are only updated if the
sample’s stored distance is smaller than incoming one. The buffers where those values
are stored are known as the depth- or Z-buffer [Catmull, 1974] and the color buffer.

The worst case complexity for rasterizing a scene is O(MN), where N is the num-
ber of primitives and M is the number of pixels. In practice however, rasterization
is much faster than that. For most reasonable smaller scenes, each pixel is cov-
ered by only a few primitives. Furthermore, methods such as hierarchical frustum
culling [Clark, 1976], portal culling [Teller, 1992], level-of-detail [Erikson, 2000], and
occlusion culling, enable efficient rasterization of huge depth-complex models as well.

2.2.5 Ray Tracing vs. Rasterization

Rasterization is primarily used for rendering. Simple lighting, such as ambient il-
lumination and eye light, is easy to simulate with rasterization, by specifying the
proper pixel shader. With the help of algorithms such as shadow mapping [Williams,
1978] and shadow volumes [Crow, 1977], rasterization can render scenes with direct
illumination from point lights and directional lights.

21 2.3. ACCELERATION STRUCTURES BACKGROUND

Figure 2.8: The same scene rendered with rasterization (left), Whitted style ray
tracing (middle), and photon-mapping (right). Rasterization can not handle refrac-
tions and reflections in general, while Whitted style ray tracing can not handle global
light interaction, such as the caustics on the rightmost image.

In the recent years, many techniques have been developed to simulate even more
advanced light transport effects with rasterization. Instant radiosity [Keller, 1997] for
example, as well as its faster but more inaccurate variant of using imperfect shadow
maps [Ritschel et al., 2008], can simulate multi-bounce diffuse inter-reflections. Envi-
ronment maps have been used to fake specular effects such as reflection and refraction
[Watt, 1993, Section 5.6]. Various shadow map techniques, such as percentage closer
filtering and variance shadow maps [Donnelly and Lauritzen, 2006], can be used to
blur shadow edges, which gives the impression that the scene is illuminated from a
small area light source.

Despite those advances however, the types of light transport that can be efficiently
simulated using rasterization remains limited. The main issue comes from the fact
that rasterization can solve only one very specific type of visibility query and in order
to solve it efficiently, the query must contain a very large amount of rays.

Thus, even simple effects such as simulating light interaction with glass, which are
more or less trivial for a Whitted style ray tracer, become impractically slow to do
with rasterization in the general case. And so do all advanced light transport algo-
rithms such as bi-directional path tracing [Veach, 1998] or photon mapping [Jensen,
2001]. Figure 2.8 illustrates the limits of rasterization, comparing it to Whitted style
ray tracing and photon mapping.

2.3 Acceleration Structures Background

The primary mechanism for transferring energy between two points for most ren-
dering algorithms is the ray tracing operator. Thus, it is also usually their major
performance bottleneck. A typical rendering algorithm will need to trace millions to
even billions (e.g. path tracing) of rays for just one frame.

The naive way to solve a ray tracing query is to loop over all primitives in the scene,
intersect each with the ray and select the closest intersection to the ray’s origin. Such
an algorithm has a linear time complexity and except for trivial scenes is unsuitable
for rendering, due to its excessive running time.

The most common strategy to reduce the time complexity of intersection is to
use an acceleration structure. The latter is a form of spatial index over the primi-

CHAPTER 2. BACKGROUND 22

Figure 2.9: A regular grid. The ray will traverse the voxels in green and will only
test triangles T1 and T2 for intersection (without even considering the rest).

tives, which allows the ray tracing operator to only examine primitives near the ray,
without ever touching the rest. In this section we introduce the main types of accel-
eration structures. We will briefly discuss their respective traversal algorithms and
construction algorithms, leaving the details for chapters 3 and 7.

There are three major types of acceleration structures used today: grids, space
partitioning hierarchies, and bounding volume hierarchies. Each of the types has
several variations. A good in-depth study of acceleration structures for ray tracing
can be found in [Havran, 2000].

2.3.1 Grids

Probably the simplest acceleration structures is the regular grid [Fujimoto et al.,
1986]. It partitions the space of the scene uniformly using a rectangular regular grid.
Each voxel of the grid contains a list of primitives that overlap with it.

To compute h(x, ω), the grid voxels along the ray are incrementally enumerated
using a digital difference analyzer (Figure 2.9). The primitives contained in each
enumerated voxel are intersected with the ray. If at least one intersection is contained
in the current voxel, the enumeration stops and the closest intersection is returned. If
the grid is constructed properly, a visibility query requires O(3

√
|S|) time on average

[Cleary and Wyvill, 1988].

The main disadvantage of grids is that they can not adapt to non-uniform primitive
distributions due to their regular subdivision of space. To alleviate the problem,
hierarchical grids have been introduced. A hierarchical grid, like a regular grid,
contains lists of primitives in most of its voxels. However, some voxels can contain
a nested (hierarchical-) grid instead. The construction algorithm decides whether to
create a nested grid or a primitive list based on criteria such as how much geometry
is contained in a voxel. A description of the types of hierarchical grid structures and
further references can be found in [Havran, 2000].

23 2.3. ACCELERATION STRUCTURES BACKGROUND

Figure 2.10: A KD-tree. The left part of the picture shows how the scene space
is partitioned by the tree on the right. The split planes are denoted with Si, the
primitives – with Ti, the nodes with Ni, and the leafs are represented as rectangles
whose content is the list of incident primitives.

2.3.2 Space Partitioning Hierarchies

Space partitioning hierarchies, the second major type of acceleration structure, are
tree structures. Each node N of the tree corresponds to a region of space R(N).
The root node corresponds to a region bounding all primitives of the scene. The
region corresponding to a node is always partitioned by its children. Thus, the set
of regions corresponding to the leafs of the tree forms a full partitioning of the space
corresponding to the root. Each leaf contains a list of all primitives that overlap with
its region.

We discuss construction strategies for space partitioning hierarchies in Chapter 3
and their traversal in Chapter 7. Furthermore, we give a sketch of the traversal
algorithm here, as it is required for the rest of the discussion in this chapter. To
solve a visibility query, a space partitioning hierarchy is traversed in a recursive
manner. Starting from the root, the children of each node are enumerated in an
ascending order, using as a key the distance from the ray’s origin to the entry point
of the ray in that child. An intersection is then searched for in each child recursively
in the above order. If a node is a leaf, the ray is tested for intersection with all of
the leaf’s incident primitives. If such an intersection is found, the traversal stops and
the closest intersection in the leaf becomes the result of the visibility query.

Two major types of space partitioning hierarchies, that have been commonly used
in ray tracing, are octrees [Glassner, 1984] and KD-trees (see Figure 2.10). Even
though the first are still used in some rendering software today (such as [Blender]),
they are considered inefficient. KD-trees are preferred due to their potential to adapt
quicker to non-uniform geometry. Thus, we will not discuss Octrees here, but will
rather concentrate on KD-trees.

A KD-tree is a binary space partitioning tree. The children of each each internal
node of the KD-tree are separated by an axis aligned (split-) plane. Again, a leaf
of the KD-tree contains the list of all primitives that overlap with it. KD-trees are
constructed top-down and the different construction strategies differ in the choice

CHAPTER 2. BACKGROUND 24

Figure 2.11: A Bounding Volume Hierarchy. The left part of the picture shows
the scene and how the nodes of the BVH are formed. The right part is the BVH
tree. The lists of primitives overlapping the leafs (N4, N5, N6, and N7) are presented
under them on the right picture.

of split planes. Practical results show that suitably chosen split planes can make
an order of a magnitude difference in the average time needed for computing an
intersection [Havran, 2000, Appendix E].

KD-trees are a special case of binary space partition (BSP) trees, and the difference
is that the latter allow non-axis aligned split planes as well. While this could help to
build better acceleration structures in theory, the added cost of intersecting with an
arbitrary plane makes BSP traversal slower in practice [Havran, 2000, Section 4.2.1].
As a consequence, they are not used for ray tracing in practice.

2.3.3 Bounding Volume Hierarchies

Bounding volume hierarchies or BVHs are tree structures with a usually fixed arity
(Figure 2.11). Again, each node of the tree has a corresponding region of space
which fully bounds the regions of space of its children. In the case of a leaf, the
corresponding region of space fully bounds the primitives contained in the leaf. The
main difference between a BVH and a space partitioning hierarchy is that while the
first partitions space, the second partitions sets of objects. As a consequence, the
children of a BVH node can overlap and also some empty space regions of a node can
be left uncovered by any of its children. Furthermore, each primitive is referenced in
exactly one leaf.

Similar to a space partitioning hierarchy, a BVH is traversed in a recursive manner.
Starting from the root, the children of each node are ordered along the ray (according
to their entry point). Children that are not intersected at all by the ray are skipped.
In contrast to space partitioning hierarchies however, the traversal does not stop
once an intersection is found. Rather, the distance to the intersection is remembered
and only nodes that have a ray entry distance smaller than the remembered one are
traversed. Traversal stops when there no more nodes are available for traversal.

Except in some architecture specific cases [Dammertz et al., 2008; Ernst and
Greiner, 2008], the arity of a BVH is most commonly chosen to be two. The shape

25 2.4. INTERACTIVE RAY TRACING

of the corresponding region of a node can be arbitrary, but in practice it is usually
chosen to be an axis aligned bounding box (AABB).

2.4 Interactive Ray Tracing

Until recently, the only technique capable of handling general purpose interactive 3D
visualization was rasterization (Section 2.2.4). Unfortunately, due to its limitations,
rasterization can not simulate many light transport effects (e.g. reflections and re-
fractions). Furthermore, rasterization techniques for orthogonal light effects are often
incompatible or combining them is very hard. On the positive side, rasterization is
very fast. Ray tracing based techniques on the other hand have none of the above
problems, but they have been historically slow and only used for off-line rendering.
Due to hardware and algorithmic development in the recent years, algorithms based
on ray tracing have become interactive (especially Whitted style ray tracing) and are
increasingly viewed as an alternative to rasterization.

In this section, we try to summarize briefly the important work that has lead to the
current state of the art in interactive ray tracing. We first look at the development of
traversal algorithms. We pay special attention to those that exploit thread and data
level parallelism, as they are the base and inspiration of our work in Part II of this
thesis. We than discuss the limitations of previous work on interactive animation
with ray-tracing, as those limitations were the motivation behind our work in Part I.

2.4.1 Interactive Traversal

Undoubtedly, the largest speed improvements in ray tracing based algorithms have
come through the use of acceleration structures. More notable in this area is the work
of Cleary and Wyvill [Cleary and Wyvill, 1988], for their contribution on regular grid
construction and traversal for ray tracing, the work of Goldsmith and Salmon [Gold-
smith and Salmon, 1987], for the introduction of the surface area model and the
automatic construction of BVHs, the work of MacDonald and Booth [MacDonald
and Booth, 1989], for the development of the surface area heuristic and applying it
to KD trees, and finally the PhD thesis of Vlastimil Havran [Havran, 2000] for sum-
marizing all relevant acceleration structures research and comparing the properties
of all known (at that time) acceleration structures.

After the introduction of SAH, there has been little algorithmic improvement of
the speed of single ray visibility queries. Traversal has been accelerated by statistical
optimizations (e.g. [Havran et al., 1998b] or [Mahovsky, 2005, Section 4.5]) and there
have been attempts to come up with better cost metrics (including our own, presented
in Chapter 6). Most of the speed-up, has come through the use of parallelism,
architecture specific optimizations, and through approximation techniques.

Notable approximation techniques include the Render Cache [Walter et al., 1999]
and the Holodeck [Ward and Simmons, 1999]. While undoubtedly interesting, ap-
proximation techniques will be left out of the discussion here, as they are orthogonal
to the rendering algorithms and to ray-tracing. We will rather focus on the core
ray-tracing techniques.

CHAPTER 2. BACKGROUND 26

In most rendering algorithms, the paths passing through different sensors of the
image plane are independent. Thus, they can be processed in parallel, which makes
most ray tracing based algorithms inherently parallel. One of the first such imple-
mentations (and probably the first interactive ray tracer) was due to Muuss [Muuss,
1995], who used an array of SGI PowerChallange computers (with 96 processors in
total). Later, Parker et al. [Parker et al., 1999] developed an interactive ray tracing
system on a shared-memory supercomputer. Like Muuss, they used a “brute force”
approach, in the sense that their system simply executed the serial code for different
pixels in parallel. In both systems, the major challenge was the load balancing and
the synchronization. Since then, there have been many other parallel implementa-
tions, including Manta [Bigler et al., 2006], and OpenRT [Wald et al., 2003].

While the implementations mentioned above are parallel at task level, parallelism
can also be exploited at data level. Most current processors offer extensions that
allow efficient processing of packets of data, in the form of instructions that operate
on vectors (a.k.a. Single Instruction Multiple Data or SIMD). Since the cost of a
vector instruction is usually the same as the cost of a scalar one, researchers have
tried to parallelize serial code, by emulating task level parallelism using the SIMD
extensions. The challenge in such emulations comes from code divergence. It can
happen for example, that one thread executes the if part of an if-else construct, while
the other one executes the else part. In this case, both threads will have to execute
both parts (due to the SIMD model). To obtain correct results, implementations
keep a mask of the currently active threads and discard results of the inactive. SIMD
parallel traversal of acceleration structures has first been demonstrated in [Wald
et al., 2001] for KD-trees, in [Wald et al., 2007] for BVHs, and in [Wald et al., 2006a]
for grids.

A very important factor for the efficient execution of any program today is its
cache friendliness. Due to the multi-level memory hierarchy of modern processors, an
incoherent memory access pattern can lead to an order of magnitude slower execution.
Thus, many ray tracing implementations, including [Wald et al., 2001, 2006b, 2007;
Reshetov et al., 2005; Overbeck et al., 2008], process even larger packets in SIMD
manner, for rays known to be coherent (e.g. primary and shadow rays). Since the
coherent rays typically visit the same elements of the acceleration structure and
intersect the same triangles, the cost of an operation to main memory is amortized
in this way over the whole packet. The idea of large packets has been furthermore
extended to frustum traversal [Reshetov et al., 2005; Wald et al., 2007, 2006b]. In
some cases (e.g. primary and sometimes shadow rays), the rays in a packet can be
bound by a frustum, which can be used to efficiently cull elements of the acceleration
structure that will not be traversed by any ray.

The efficiency of packet traversal techniques is limited by the coherency of the rays
to be traversed. Thus, in scenarios such as path tracing, packet traversal becomes
less useful. In order to be able to exploit SIMD parallelism in this cases, several
approaches [Dammertz et al., 2008; Wald et al., 2008; Tsakok, 2009] use higher arity
acceleration structures and intersect in parallel one ray with a SIMD-width number
of acceleration structure elements.

All of the above discussed work is CPU based. Recognizing that the CPU is
a general purpose processor, which is not specifically optimized for graphics, re-

27 2.4. INTERACTIVE RAY TRACING

searchers have attempted to accelerate ray tracing by using hardware implementa-
tions (e.g. [Woop et al., 2005]). Furthermore, there were several attempts prior to
our work to use the GPU for ray-tracing. They were rather unsuccessful, despite the
GPU being the most powerful processor in modern computers. This is where our
contribution lies in. In the second part of this thesis, we develop several traversal
algorithms specifically tailored for the GPU, which show that GPU ray tracing is
indeed feasible and can considerably outperform the CPU based one. We leave the
in-depth discussion of prior GPU implementations for there (in Chapter 7).

2.4.2 Animation

Until now we have regarded the scene as a “soup” of primitives. Even though conve-
nient, this representation poses a great challenge to a ray tracing pipeline, since the
acceleration structure has to be rebuilt every frame. Depending on the scene size, a
rebuild can take from few milliseconds to even hours, which effectively disallows in-
teractive rendering of non-trivial animated scenes. This has inspired a lot of research
on fast acceleration structure construction lately, and chapters 4 and 5 present our
contribution to the field.

An alternative to fast rebuilding is to exploit the structure of the animation. The
first proposed solution was to separate the geometry into static and dynamic, use an
acceleration structure for the static part and intersect the rays separately with the
dynamic one using a naive intersection algorithm [Parker et al., 1999]. A disadvantage
of this approach is that the complexity of the dynamic geometry needs to be low in
order to achieve interactive frame rates. One could as well build an acceleration
structure for the dynamic geometry at each frame, but again the amount of dynamic
geometry has to be low.

A further solution is to exploit the structure of rigid body animation. Since the
rigid bodies are composed of static geometry, their acceleration structures can be
built in advance. During animation a new top-level acceleration structure is built for
each frame over the transformed AABBs of the rigid bodies. The approach works
under the assumption that the count of top level objects is relatively low. During
ray tracing, the top-level structure is used to enumerate the rigid bodies pierced by
a ray. For each object in the enumeration, the ray is transformed with the object’s
inverse transformation and then it is intersected with the scene using the object’s
acceleration structure. This approach has been introduced in [Lext and Akenine-
möller, 2001; Wald et al., 2003].

Later on, the approach was extended to also support deformable geometry. In
some cases, a bounding box relative to the rigid object can be computed for each
primitive, such that it bounds all possible positions in space that the primitive can
take. In the context of KD-trees, this fact can be exploited to build fuzzy KD-trees
(e.g. for skinning animations) by using this AABB instead of the primitive’s own
AABB [Günther et al., 2006a]. Furthermore, unstructured key-frame animations can
be automatically analyzed to determine the rigid body structure and the AABBs
that constrain the movement of the primitives [Günther et al., 2006b]. Supporting
deformable geometry for BVHs is simpler, as they allow for fast refitting [Wald et al.,
2007; Lauterbach et al., 2006]. Hybrid data structures that allow refitting have been

CHAPTER 2. BACKGROUND 28

proposed as well [Woop et al., 2006].
Even though rigid body and deformable techniques achieve their goal (i.e. inter-

active animation), they limit the types of scene interactions that are allowed. In
the context of games and physical simulations for example, two interactions that
become impossible are breaking of objects and explosions. Furthermore, with those
techniques there is a penalty to traversal performance, which can be as high as 40%
(compared to a full rebuild). These two issues have motivated us to look at new meth-
ods for fast construction of acceleration structures from scratch, which we present in
Part I of this thesis.

2.5 Summary

In this chapter, we gave a brief overview of the topics from computer graphics rel-
evant to the rest of the thesis. Since part I of the thesis will deal mainly with the
issues of improving the speed of acceleration structure construction (in Chapter 4
and Chapter 5) and improving the quality of the constructed trees (in Chapter 6),
we will revisit acceleration structure construction in much more detail in Chapter 3.
Part II will deal with interactive ray tracing on the GPU. Thus, we will look closer at
acceleration structure traversal, the GPU architecture, and prior work on GPU ray
tracing in Chapter 7. We will then use this knowledge in Chapter 8 and Chapter 9
to develop several techniques for KD-tree and BVH traversal on the GPU.

29

Part I

Construction of Acceleration
Structures

31

Chapter 3

Construction Background

Part I of this thesis is dedicated to our contribution in acceleration structure con-
struction. To gain better understanding of the topic, we first present the necessary
background in this chapter. We introduce the common structure of a construction
algorithm, followed by a discussion on the surface area cost model. The latter is an
essential tool for building traversal-optimized trees. We then focus on the previous
state of the art KD-tree and BVH construction algorithms (which we refer to as
“classical”). We explore them in detail, since our work derives from them.

We leave grids out of the discussion, mainly because they are not connected to
our work, but also because their single-ray ray tracing performance is inferior to
kd-trees and BVHs (see [Havran, 2000]). Recent results show that grids can be in-
deed an alternative to KD-trees and BVHs for unstructured animation [Kalojanov
et al., 2011; Kalojanov and Slusallek, 2009; Wald et al., 2006b], due to their low
construction times. On the other hand, current fast BVH and KD-tree construc-
tion algorithms [Lauterbach et al., 2009; Pantaleoni and Luebke, 2010; Zhou et al.,
2008; Wald, 2007; Günther et al., 2007; Danilewski et al., 2010; Shevtsov et al.,
2007], achieve similar construction speeds but with much faster traversal perfor-
mance. Thus, the usefulness of grids in general remains questionable in our opinion.
More details on grid construction can be found in [Cleary and Wyvill, 1988; Havran,
2000].

3.1 Basics

Since kd-trees and BVHs are in essence trees, there are two ways in general to con-
struct them: top-down recursive and bottom-up. The first approach starts at the
root and recursively constructs the sub-trees of all child nodes. The second – starts
at the leafs, which are sub-trees with height 1, and iteratively groups sub-trees into
new sub-trees, until only one is left.

3.1.1 Top-down Construction

In top-down construction each to-be-constructed sub-tree with root node N has an
associated enclosed region of space R(N) and a set of primitives S(N). At the root,
S(N) is the set of all primitives and R(N) fully contains each of them. In order to

CHAPTER 3. CONSTRUCTION BACKGROUND 32

construct valid acceleration structures, construction algorithms have to ensure that
if a primitive p overlaps with R(N) for some node N , then S(N) will contain p.

A construction step involves three sub-steps . First, the set of primitives is split
into two S(N) = S(NL)∪S(NR), with NL and NR being the left and right child of N
respectively. Next, the regions of space enclosed by NL and NR are computed based
on S(NL), S(NR), andR(N). Finally, the construction step is recursively repeated for
the sub-trees rooted at NL and NR, using the computed S(NL) and R(NL) for the left
node, and S(NR) and R(NR) for the right one. The recursion terminates according
to some boolean criteria T (S(N), R(N)), known as the termination criteria. In this
case, N becomes a leaf and S(N) is stored in it (usually as a list). From now on we
will denote S(NL) with SL and S(NR) with SR.

Notice, that we have assumed arity 2 for the trees in the above explanation. In
general, the arity can be larger. Especially for BVHs, applications of trees with
higher arity have proven practical [Tsakok, 2009; Dammertz et al., 2008; Wald et al.,
2008; Ernst and Greiner, 2008]. However, n-ary BVHs are currently constructed by
folding nodes from an existing binary BVH, and we are not aware of algorithms able
to directly construct BVHs with higher arity.

If we assume at most linear complexity for both the part that determines how to
split S(N) and for the computation of T (S(N), R(N)), then the algorithm above
runs in O(|S| log |S|) on average [Havran, 2000, Section 4.9].

3.1.2 Bottom-up Construction

Bottom-up construction first partitions the set of primitives according to some criteria
and forms a set S, whose elements are the subsets of the partition. Each element
of S also holds a pointer to a corresponding node in the future tree. Initially, the
elements in S correspond to the leafs. Construction then proceeds by repeatedly
taking out two or more elements s1, s2, . . . from S, merging them, and putting back
the resulting element into S. The set of primitives contained in the new element is
simply the union of the primitives of all si, while the corresponding node is a new
node, with children – the nodes of si. The process continues until the size of S
becomes 1. The bounding volume of each new node is computed while creating it,
by computing a possibly tight volume, containing the volumes of all children.

The above described approach applies to BVHs only. We are not aware of any
bottom-up construction algorithms for space partitioning hierarchies. The major
advantage of this approach is its potential to perform faster than top-down recur-
sive construction. With suitably chosen criteria, the whole construction process can
become linear, thus beating the O(N logN) complexity of top-down construction.

The only bottom-up approach with decent tree quality that we are aware of is
presented in [Walter et al., 2008]. Unfortunately, it is actually slower than “gold
standard” BVH construction [Wald et al., 2007]. Also, the authors do not compare
their BVHs to [Wald et al., 2007], and it thus remains unclear whether the traversal
performance is higher and whether their method is useful in practice. We believe
that the choice of fast and efficient grouping criteria for bottom up builds is still an
open question.

33 3.1. BASICS

Figure 3.1: Exact vs boxed overlap. The exact overlap test will fail unless the
triangle T and the bounding box B overlap (left). The boxed one however will not
fail as the bounding boxes B(T) and B overlap (right).

3.1.3 The Overlap Test

Another topic relevant to the construction of a hierarchies is how to determine if a
primitive p is incident with the region of space R(N) of some node N . For efficiency
reasons [Havran, 2000, Section 4.2.1], in the context of ray tracing R(N) is always
chosen to be an axis aligned bounding box. Thus, we will assume from now on that
R(N) is indeed an AABB and we will denote it with B(N).

The overlap test boils down to determining whether some part of the primitive is
inside the bounding box or not (see Figure 3.1). An exact result requires clipping of
the primitive against a bounding box, which has linear time complexity w.r.t. the
number of vertices of polygonal objects. Thus, even with the simplifying assumption
of R(N) being AABB, the test might still take arbitrary long in the general case
and it can be slow even for simple primitives such as a triangle. For efficiency
reasons, primitives are sometimes approximated with the tightest AABBs around
them. Construction based on such an approximation is known as boxed construction.
We will refer to non-boxed construction as exact from now on. The trees produced
from exact construction can be up to 40% faster w.r.t. ray tracing than the ones
from boxed construction [Havran, 2000, Section 4.10.4]. On the other hand, boxed
construction can be much faster.

The common way to test if a triangle is incident to an AABB is to use a clipping
algorithm such as the one by Sutherland and Hodgeman [Sutherland and Hodgman,
1974]. Testing if two bounding boxes overlap (for boxed construction) is performed
through interval intersection in 1D [Akenine-Möller et al., 2008, p. 765]. More ob-
ject/AABB intersection routines can be found in [Akenine-Möller et al., 2008], though
usually primitives more complex than a triangle are always approximated by AABBs.

3.1.4 Termination Criteria

The choice of good termination criteria is important as it influences the subsequent
speed of the visibility queries. Termination criteria can be fixed or automatic.

Fixed (or ad-hoc) criteria were introduced in [Glassner, 1984]. They track two
characteristics of the current node N : depth of the node from the root and the
number of primitives associated with it. If this characteristics exceed respectively
fall below pre-determined thresholds (e.g. if a tree gets too deep or a node has too
few primitives), the termination criteria signals the construction process to create a
leaf. The thresholds are specified by the user and they are scene dependent.

CHAPTER 3. CONSTRUCTION BACKGROUND 34

Automatic termination criteria [Havran, 2000, Section 4.5] on the other hand use a
cost model and compare the cost of creating a leaf vs. the cost of creating a node. As
their name implies, they are designed to be scene independent, without the need of
user-specified parameters. While the term itself was first introduced in [Subramanian
and Fussell, 1991], the first working automatic termination criteria was described in
[Havran, 2000]. As the latter is based on the surface area heuristic, which we will
introduce in the next section, we will leave its discussion for later on.

3.2 The Surface Area Cost Model

The ray tracing performance of a tree can be predicted using the surface area cost
model introduced by [MacDonald and Booth, 1989] and later refined by [Havran,
2000]. The expected cost of a tree T is given by

Exp(T) = CT
∑
N∈SI

P (N | T) + CI
∑
L∈SL

P (L | T) |L| (3.1)

where SI is the set of all inner nodes of the tree, SL is the set of all leafs, P (.|T) is
the geometric probability of a random ray hitting a node/leaf given that it hits the
root node of the tree, |L| is the number of primitives in the leaf L, and CT and CI are
the traversal and intersection costs respectively. Assuming that the regions of space
corresponding to the tree nodes are convex, P (.|T) can be expressed as the ratio of
the surface area of the node/leaf to the surface area of the root node [Santaló, 1976].
Thus P (.|T) = A(.)/A(T), with A(.) being a function that returns the surface area
of its argument.
Exp(T) gives the expected cost for traversing the tree with a uniformly randomly

chosen ray. It assumes that the traversal does not terminate before traversing all
nodes incident to the ray. Even though this assumption rarely holds, since traversal
typically stops once it finds the closest intersection, in practice there is a strong cor-
relation between Exp(T) and traversal performance. Thus, construction algorithms
aim at minimizing Exp(T).

For binary trees, equation (3.1) can be expressed recursively:

Exp(N) =

{
CT + P (NL | N)E(NL) + P (NR | N)E(NR) , N node
CI |N | , N leaf

(3.2)

where NL and NR are the left and right children of N , and |N | is the number of
primitives in N . It is easy to see that Exp(T) = Exp(Root(T)). Again, P (.|N) =
A(.)/A(N), assuming that the regions of space associated with the nodes and leafs
of the tree have convex shape.

3.2.1 The Surface Area Heuristics

One of the primary uses of the surface area cost model is to construct trees optimized
for traversal. To create a tree T with optimal cost Exp(T), the children NL and NR

of each node N have to be chosen so that Exp(N) is minimized.
Unfortunately, this process is NP hard as Exp(N) is recursively dependent on

Exp(NL) and Exp(NR). Thus, for each tested configuration of NL and NR, the full

35 3.2. THE SURFACE AREA COST MODEL

trees of NL and NR need to be built. The surface area heuristic, or SAH [MacDonald
and Booth, 1989], tries to overcome this limitation by using an approximation.

To compute Exp(N), the SAH replaces Exp(NL) and Exp(NR) with the number of
primitives contained in each node (i.e. |SL| and |SR|). This corresponds to the upper
bound of Exp(N), which would be reached if the construction algorithm creates leafs
from the left and right sub-trees. In this case, the expected cost becomes

Exp(N) ≈ Exp
SAH

(N) = CT + CI
(
P (NL | N) |SL|+ P (NR | N) |SR|

)
(3.3)

3.2.2 Automatic Termination Criteria

Another benefit of using a cost model is the ability to use an automatic termination
criteria. The basic idea is to compare the minimum cost of a node as an internal tree
node to the cost of the node as a leaf [Havran, 2000, Section 4.5]. The quality of a
split is defined as the following ration

rQ(N) =
Exp(N)

CI |S(N)|
≈
CT + CI

(
P (NL | N) |SL|+ P (NR | N) |SR|

)
CI |S(N)|

If rQ(N) ≥ 1 the recursion has to terminate as it is more beneficial to create a leaf.
Furthermore [Havran, 2000] proposes to introduce a second threshold rminQ and to

consider a spilt as partly successful if rminQ < rQ(N) < 1. If the count of consecutive
partly unsuccessful steps from N towards root exceeds a scene specific threshold
Fmax, the construction should create a leaf. The intuition behind that approach is
that even though a split can be locally “bad” things might get better further down
the tree. The proposed way of computing Fmax is based on the maximum leaf depth
of the tree dmax

Fmax = K1
fail +K2

fail dmax

The constants are empirically chosen (based on practical test) to be K1
fail = 1.0,

K2
fail = 0.2, rmin

Q = 0.75. Since KD-trees and BVHs are more or less balanced, the
maximum depth dmax can either be computed as dmax = logN , where N is the
number of primitives in the tree, or it can be a fixed user-specified constant, in case
the automatic termination criteria is combined with ad-hoc termination.

3.2.3 Plane Sweep Algorithms

Most top down construction algorithms, including the new algorithms presented in
this thesis, rely on an approach from the field of computational geometry known
as the plane sweep algorithm [de Berg et al., 2008], which uses a conceptual sweep
(hyper-) plane to solve various problems in Euclidean space.

A sweep plane moves continuously along the direction of its normal. The movement
is defined by the distance v of the plane from the origin O of the coordinate system.
The sweep plane also has an associated status. The latter can be any property of
the geometry (such as for example the number of primitives to the left/right of the
plane), but with one restriction: the number of plane positions at which the status is
of interest to the solved problem has to be finite. These positions are called events.

CHAPTER 3. CONSTRUCTION BACKGROUND 36

To work efficiently, the plane sweep algorithm requires the following knowledge: 1)
the first event to visit; 2) how to compute the next event, based on data from past
events; 3) a way to determine if an event is the last one; and 3) how to incrementally
compute the status for a new event, based on the status of the previously visited
events. The algorithm then visits the events in order, incrementally computes the
status of each of them, and carries out a user specified operation on the computed
status.

The sweep plane algorithm is used commonly to search for properties of geometry
when either the events can not be computed efficiently in advance, or when computing
the status incrementally is more efficient than computing it directly.

A good example for the first case is finding all intersections of a given set of
line segments in 2D [de Berg et al., 2008, Section 2.1]. The sweep line in this case
moves perpendicular to the axis Ox and the events are the start and end points of
the segments as well as the intersections. The status of the sweep line is the set
of segments intersecting it and the user specified operation outputs an event if it
is an intersection point. The events are initially only the start and end points of
the segments. Once an event is reached, new (intersection-) events are calculated
based on the current status. With this algorithm, all intersections can be found in
O(N logN) as opposed to the O(N2) time of the näıve one.

In the context of acceleration structure construction, the sweep plane algorithm
is used to efficiently compute separating hyper planes that minimize a given cost
function over the geometry of a scene. We will use it to compute a median split
in Section 3.3.1 and SAH based splits in Section 3.3.2 and Section 3.4.1. We will
use the following notation: v will denote the offset of the sweep plane from the
origin of the coordinate system, the events (which are known in advance) will be
vstart = v0 < v1 < . . . < vk = vend and the objective will be to find the event vopt
that minimizes some cost function cost(v).

3.3 Construction of KD-trees

KD-trees are always constructed in a top-down manner. At each node N , the con-
struction process searches for a split plane P (N) and uses it to partition the region
R(N) among the two children of N . There are various methods for constructing a
KD-tree and their main differences lie in the process of choosing the split plane, in
the termination criteria used, and on whether the construction is boxed or exact.
The different methods present different trade-offs between construction and traversal
speed.

Before going into details about these methods, we will introduce some common
notations. Besides the set of corresponding primitives S(N) and the the bounding
box B(N), a construction process with exact overlap testing also keeps for each node
N a set

SB(N) = {B (p ∩ B(N)) | p ∈ S(N)} (3.4)

The latter contains the AABBs around the part of each primitive from S(N) that is
also in B(N) (see Figure 3.2). For a construction process with a boxed overlap test

37 3.3. CONSTRUCTION OF KD-TREES

Figure 3.2: The set SB = {B1,B2}, when using an exact overlap test (left) and a
boxed one (right). In the first case B2 = T2 ∩ B(N) whereas in the second B2 =
B(T2) ∩ B(N)

this set is given by:

SB(N) = {B(p) ∩ B(N) | p ∈ S(N))} (3.5)

Assuming that the split plane P (N) is already computed, the construction process
has to split the sets S(N) and SB(N) into S(N) = SL ∪ SR respectively SB(N) =
SB(NL)∪SB(NR). To do so (see Algorithm 3.1), it looks at each element in B ∈ SB(N)
and its respective primitive p ∈ S(N). If B is entirely to the “left” of P (N), it and p
are put in SB(NL) and SL respectively. If it is entirely to the right – the two are put
in SB(NR) and SR respectively. Finally, if B(p) is incident to P (N) the primitive p is
put in both SL and SR. The corresponding AABBs that go into SB(NL) respectively
SB(NR) are computed according to (3.4) and (3.5). With exact overlap testing, they
are B(p ∩ B(NL)) and B(p ∩ B(NR)) respectively, and for boxed – B(p) ∩ B(NL)
and B(p) ∩ B(NR) respectively . The above described process is known as sifting. A
bounding box B is considered to the “left” of a plane P iff all its vertices are contained
in the negative half-space of P and to the “right” if all its vertices are contained in
the positive one. The positive half-space of P is along the normal of P , which in this
case is parallel to one of the major axes (i.e. two of its components are 0 and the
third one is 1).

3.3.1 Split in the Middle and Median Split

The simplest strategy for computing P (N) is to split B(N) in the middle along one
of the three major axes. The latter can be chosen by taking the one that is parallel
to the longest side of B(N) or in an alternating way: if the parent node uses axis
d ∈ {0, 1, 2}, the current one will use (d+ 1) mod 3. This strategy is known as split
in the middle.

A similar strategy is to choose P (N) so that the number of primitives to the left
and right of the plane is approximately the same. Again, the dimension along which
the split happens can be chosen to be parallel to the longest side of B(N) or in an
alternating manner. This strategy is known as median splitting.

The position of P (N) in this case is best computed by using a sweep plane, which
moves along the chosen dimension d. The status of the sweep plane, when positioned
at offset v, is composed of two numbers: |SL(v)| and |SR(v)|. Here, SL(v) and
SR(v) denote the sets of primitives belonging to the potential left and right sub-
trees respectively, in case v is used as a split plane. Determining the median split

CHAPTER 3. CONSTRUCTION BACKGROUND 38

Algorithm 3.1 Generic KD-tree Construction

1: function Sift(S, SB,B, splitInfo)
2: SL ← ∅, SR ← ∅
3: SB(NL)← ∅, SB(NR)← ∅
4: (BL,BR)← SplitAABB(B, splitInfo.plane)
5: d← splitInfo.plane.axis
6: v ← splitInfo.plane.offset

7: for p ∈ S do
8: X ← AABB corresponding to p from SB
9: if X dmax ≤ v then . X dmax ≡ X .max[d]

10: SL ← SL ∪ p, SB(NL)← SB(NL) ∪ X
11: else if X dmin ≥ v then
12: SR ← SR ∪ p, SB(NR)← SB(NR) ∪ X
13: else
14: SL ← SL ∪ p, SB(NL)← Clip(p,BL)
15: SR ← SR ∪ p, SB(NL)← Clip(p,BR)
16: end if
17: end for
18: return (SL, SR, SB(NL), SB(NR),BL,BR)
19: end function
20:

21: function ConstructSubTree(S, SB,B)
22: splitInfo ← FindSplit(S, SB,B)

23: if T (splitInfo, S, SB,B) then . T (.) – termination criterion
24: return CreateLeaf(S, SB,B)
25: else
26: (SL, SR, SB(NL), SB(NR),BL,BR)← Sift(S, SB,B, splitInfo)
27: NL ← ConstructSubTree(SL, SB(NL),BL)
28: NR ← ConstructSubTree(SR, SB(NR),BR)
29: return CreateNode(splitInfo.plane, NL, NR)
30: end if
31: end function
32:

33: function ConstructTree(S) . S is the set of all primitives
34: B ← emptyAABB . the AABB of the root node
35: SB ← ∅ . the set of primitive AABBs
36: for p ∈ S do
37: B ← B ∪ B(p) . extend B to contain B(p)
38: SB ← SB ∪ B(p)
39: end for
40: return ConstructSubTree(S, SB,B)
41: end function

39 3.3. CONSTRUCTION OF KD-TREES

Figure 3.3: Plane sweep for KD-tree construction. The sets determined by the split
plane are SL(v) = {T1, T2} and SR(v) = {T2, T3, T4}. With exact overlap testing, the
sets of events are Sstart = {v1, v2, v4, v7}, Send = {v3, v5, v6, v8} and Sflat = ∅

is equivalent to determining the position vopt of the sweep plane that minimizes
cost(v) =

∣∣|SL(v)| − |SR(v)|
∣∣.

Another way of interpreting |SL(v)| and |SR(v)| is that they are the number of
primitives whose corresponding bounding box B from SB starts on the left of the
sweep plane or respectively ends to the right of the latter (see Figure 3.3). In this
case, the counts can be computed as:

|SL(v)| =
∣∣∣{B ∈ SB | Bdmin < v ∨ Bdmin = Bdmax = v

}∣∣∣
|SR(v)| =

∣∣∣{B ∈ SB | Bdmax > v
}∣∣∣

with Bdmin and Bdmax being the minimum respectively maximum offsets of B from
the origin O along the axis d. They can also be written as Bdmin = min

x∈B
xd and

Bdmax = max
x∈B

xd, where xd is the scalar component of x along the axis d.

This alternative interpretation shows how to choose the events for the sweep plane
and how to update the status. We distinguish between three types of events: start
events, end events and flat events. They are defined as follows (figure 3.3):

Sstart =
{
Bdmin | Bdmin 6= Bdmax and B ∈ SB

}
Send =

{
Bdmax | Bdmin 6= Bdmax and B ∈ SB

}
Sflat =

{
Bd | Bdmin = Bdmax and B ∈ SB

}
The final set of events is the union Sstart ∪ Send ∪ Sflat. As required by the sweep
plane algorithm, the events have to be sorted based on their offset from the origin
O. At this point, we assume that no two events can be on the same offset. We will
deal with the case of coinciding events in Section 3.3.4.

The status corresponding to the sweep plane requires two variables CL and CR,
initially set to CL = 0 and CR = |S(N)|, that keep track of |SL(v)| and |SR(v)|. At
each event the status is updated by looking at the event type. A start event signals

CHAPTER 3. CONSTRUCTION BACKGROUND 40

that the sweep plane is stepping into the bounding box B ∈ SB of a new primitive.
Thus, CL needs to be increased by one to account for that. Similarly, CR needs to
be decreased by one on an end event and both CL needs to be increased by one and
CR decreased by one on a flat event.

It is easy to see that the choice of events is correct for minimizing cost(v), since
the latter is piece wise constant with discontinuity points at the boundaries of the
bounding boxes in SB. Special care needs to be taken when computing the cost at a
flat event, since the primitive of a flat event can be put in either of the sets SL and
SR. Thus, the cost needs to be calculated twice: once before processing the event,
and once after that. A similar procedure needs to be carried out during sifting for
those primitives.

3.3.2 Cost Based Splitting

The two approaches presented above, namely split in the middle and median split,
are similar in the sense that they attempt to create “balance”: split in the middle
attempts to divide space more uniformly, whereas median split attempts to create a
balanced tree. While balance is important for range searches and nearest neighbor
searches, much better trees (w.r.t. to traversal performance) can be obtained by
solving a minimization problem using SAH as a cost function [Havran, 2000]. In
fact, both split in the middle and median split have the same SAH cost and SAH
achieves its minimum between the two [MacDonald and Booth, 1989].

The most efficient approach to solve the above minimization problem exactly is
currently known to be the plane sweep algorithm. The latter is executed indepen-
dently for each axis (Ox, Oy, and Oz), resulting in three candidate solutions. Among
them, the solution with minimal cost is chosen as the split plane.

To define the sweep plane events, we look into the definition of SAH, namely
equation (3.3). We are interested in how the cost of a split changes when we move
the sweep plane. Without loss of generality, we assume that the latter moves along
the Ox axis and its movement is defined through the distance v from the origin.
Similar to Section 3.3.1, we denote the potential children of the node w.r.t. the split
plane position with NL(v) and NR(v). The surface area A (NL(v)) of the AABB of
the left child is given by:

A (NL(v)) = 2Bysize(N) Bzsize(N)+

2 (v − Bxmin(N)) (Bysize(N) + Bzsize(N)) (3.6)

where B(N)dsize is the size of the bounding box along the axis d. Since B(N) is
fixed, it can be seen from (3.6) that A(NL(v)) is a linear function with respect to v.
Similarly, A(NR(v)) is also linear w.r.t. v and is given by

A (NR(v)) = 2Bysize(N)Bzsize(N) +

2 (Bxmax(N)− v) (Bysize(N) + Bzsize(N)) (3.7)

41 3.3. CONSTRUCTION OF KD-TREES

The two surface areas can be written in a more compact form:

A(NL(v)) = CL1 + vCL2 (3.8)

A(NR(v)) = CR1 + vCR2 (3.9)

with CL1|2 and CR1|2 being the coefficients of the linear functions from (3.6) and (3.7)

respectively. We assume here that v is the distance of the event from Bmin(N) and

not from the origin. Taking into account that P (.|N) = A(.)
A(N) , equation (3.3) becomes

Exp
SAH

(v) = CT + CI
(CL1 + vCL2)|SL(v)|+ (CR1 + vCR2)|SR(v)|

A(N)
(3.10)

If we assume for a moment that |SL(v)| and |SL(v)| are constant, equation (3.10)
becomes a linear function. From Section 3.3.1 we know that |SL(v)| and |SR(v)| only
change at the boundaries of the bounding boxes in SB(N). Thus, it follows that the
SAH cost is a piecewise linear function of v, and the discontinuity points are exactly
those boundaries. Most importantly, the objective function reaches its minimum
on at least one discontinuity point, since this function is a monotonic between the
discontinuity points.

The above observation shows how to design a sweep plane approach for computing
the optimal split plane according to SAH. Since the minimum is located on a bound-
ary of a bounding box from the set SB, the events are chosen as in Section 3.3.1. As
before, the counts |SL(v)| and |SR(v)| belong to the sweep plane status, and we also
keep track of the surface areas A(NL(v)) and A(NR(v)) of the potential children.
Again, |SL(v)| and |SR(v)| can be computed incrementally, whereas A(NL(v)) and
A(NR(v)) can be computed directly. The objective function is cost(v) = Exp

SAH

(v)

from (3.10) and it can be computed directly from the corresponding status of the
sweep plane. We are going to leave the discussion of how to handle flat primitives
and what to do with coinciding events for Section 3.3.4. There, we will also give
pseudo code for the discussed algorithm.

3.3.3 Construction Complexity: O(N logN) vs O(N log2 N)

Searching for the split plane involves a plane sweep, which in turn requires the events
to be sorted along the sweep axis. There are two options to do the latter: either
extract and sort the events for each node independently, or extract them and sort
them once in the beginning and keep them sorted while sifting.

The first method requires at least O(N logN) time to sort the events for each
node, resulting in O(N log2N) construction. Since the events are floating point
numbers with finite size (4 bytes), the sorting can also be done using radix sort
on their bit representation. In theory, this would result in the better construction
time of O(N logN). According to our experience however, construction based on the
O(N logN) introspection sort [Musser, 1997] always outperforms construction based
on the O(N) radix sorting in practice. The reason is that on one side radix sort
is not cache friendly, and thus large data sets lead to cache thrashing, and on the
other, the real complexity of radix sort is O(N logM N +M) where N is the number

CHAPTER 3. CONSTRUCTION BACKGROUND 42

Figure 3.4: Sifting along the split axis. Triangle T1 is marked by the end event v3

as belonging to the left child; T3 – by the start event v4 as belonging to the right
child. Triangle T2 is never marked and thus belongs to both children. During sifting,
an end event is inserted in the left list for T2 (coinciding with the split plane) and an
opening one – in the right list.

of elements and M is the radix. Thus, radix sort is efficient only if N >> M (i.e.
on the top tree nodes, which are only a fraction of all nodes). Choosing a smaller
radix to allow for efficient sorting of small data sets alleviates the problem, but not
by much, as it also increases logM N .

The second method has been proposed in [Havran, 2000, Section 4.9] and later
presented in detail in [Wald and Havran, 2006]. During construction, each to-be-
constructed subtree is associated with three additional lists of events Lx, Ly, and
Lz (one for each axis). Each of this contains the sorted sweep plane events of all
primitives in the node along the corresponding axis. During sifting, the lists are split
among the children in linear time, thus achieving O(N logN) construction complex-
ity. The lists for the root are constructed in a pre-processing step with the method
discussed in Section 3.3.1. Then, again in a pre-processing step, the three lists for
the root are sorted in O(N logN) time.

Sifting of the lists is achieved as follows: Without loss of generality we assume
the split plane to be perpendicular to the axis Ox and at offset v from the origin.
We first split the list Lx and simultaneously mark each primitive as belonging to
the left, to the right, or to both children. The events in Lx are processed in two
stages: those before v and those afterwards. All events from the first stage go into
the list LxL of the left child (in the same order), and all events from the second stage
– into the list LxR of the right child. Any end event encountered during the first stage
marks the corresponding primitive as belonging to the left node only, while any start
event during the second stage – as belonging to the right node only (see Figure 3.4).
Primitives that are left unmarked belong to both nodes.

After stage one, all primitives that straddle the split plane will have their opening
event in LxL and their closing event in LxR. Thus, sifting adds for them new closing
events at the end of LxL and new opening ones at the beginning of LxR and all new
events have offset v from O (see Figure 3.4).

The events of Ly are sifted by putting those, whose primitives fully belong to the
left child, in the left child’s list LyL and those whose primitives belong to the right
child – in the right child’s list LyR (see Figure 3.5). When using a boxed overlap test,
the events of all primitives straddling the split plane are duplicated in both children’s

43 3.3. CONSTRUCTION OF KD-TREES

Figure 3.5: Sifting of events along an axis parallel to the split plane (Oy in this
case). The events for triangle T1 are put into the left list and those for T3 – into
the right one. Since T2 straddles the split plane, it is clipped with the AABB of the
left/right child. Its events (red) are stored in separate lists, which are later merged
with the children’s lists.

lists. The events in Lz are processed in a similar manner.

When using an exact overlap test, the events of the primitives that straddle the
split plane can change their offset during sifting (see Figure 3.5). Thus, such events
are initially ignored. In a second step, each primitive that straddles the split plane is
clipped to the AABB of the left and right child respectively, and two sets SLB and SRB
of bounding boxes are formed. Each of the two sets is used to create two lists of events
(one for each axis parallel to the split plane), resulting in the four lists My

L, M z
L, My

R,
M z
R. These lists are then sorted. To compensate for the events ignored during sifting,

LyL, LzL, LyR, and LzR are merged with My
L, M z

L, My
R, and M z

R respectively. Since the
number of primitives that straddle the split plane is expected to be O(

√
N) [Wald

and Havran, 2006], the total time for sorting and merging will not exceed O(N).

3.3.4 Implementation Details

We will now discuss how to proceed with a plane sweep in the “non-ideal” case, i.e.
when there are flat events present and when two or more events can be at the same
offset from the origin. We will follow the ideas presented in [Wald and Havran, 2006].

We define three sets of primitives: PL(v), PR(v), and PF (v). The first one contains
all primitives from S(N) whose corresponding bounding box B ∈ SB(N) is either
entirely to the left of the split plane, or is not flat and straddles the split plane.
The second one is defined analogically, but for the right side. The third set, namely
PF (v), contains all flat primitives that coincide with the split plane.

For a fixed position of the split plane, if the set PF (v) is not empty, its primitives
can go to either child. To decide where to put them, we look at the cost function.
Since SAH depends linearly on the expression A(NL(v))|SL(v)| +A(NR(v))|SR(v)|,
the lowest cost is obtained if all primitives from PF (v) are put in the node with
smaller surface area. Thus, if v is before the middle of B(N) (along the split axis),
all primitives in PF (v) have to be counted on the left side by adding their count to
CL. Otherwise their count has to be added to CR.

The above observation requires a small modification to the sweep plane procedure
from Section 3.3.1: We need to keep track of |PL(v)|, |PR(v)|, and |PF (v)|. To do so,
we modify the concept of an event: we interpret the group of all (elementary) events

CHAPTER 3. CONSTRUCTION BACKGROUND 44

Algorithm 3.2 Optimal Split Plane for Axis d for KD-tree

1: function LocateSplit(E , d,B, |S(N)|)
. finds the split plane along d
. E ≡ the set of events
. B ≡ the AABB of the node
. |S(N)| ≡ number of primitives in the node

2: bestSplit← (cost =∞)
3: λ← −∞ . the previous event offset
4: CEL ← 0, CER ← 0, CEF ← 0
5: CL ← 0, CR ← |S(N)|
6: M ← Bd+1

sizeB
d+2
size , A← Bd+1

size + Bd+2
size

7: CL1 ← 2
(
M − BdsizeA

)
, C2

L ← 2A . see (3.8)

8: CR1 ← 2
(
M + BdsizeA

)
, C2

L ← −2A . see (3.9)

9: for all e ∈ E ∪ {(flat event at +∞)} do . enumerate in order

10: if λ 6= e.offset then

11: CL ← CL + CEL , CR ← CR − CER
12: if λ < Bmin+Bmax

2 then

13: CL ← CL + CEF
14: end if

15: CEL ← 0, CER ← 0, CEF ← 0

16: v ← λ− Bmin
17: cost← CL

(
CL1 + vCL2

)
+ CR

(
CR1 + vCR2

)
. see (3.10)

18: if λ ≥ Bmin+Bmax
2 then

19: CR ← CR − CEF
20: end if

21: if cost < bestSplit.cost then

22: bestSplit←
(

plane = (d, λ), cost = CT + CI costA(B)

)
23: end if
24: λ = e.offset
25: end if
26: if e is start event then
27: CEL ← CEL + 1
28: else if e is end event then
29: CER ← CER + 1
30: else
31: CEF ← CEF + 1
32: end if
33: end for
34: end function

45 3.4. CONSTRUCTION OF BVHS

Algorithm 3.3 Find Optimal Split Plane w.r.t. SAH for KD-tree

1: function FindSplit(S, SB,B) . the O(N log2N) variant
2: bestSplit← (cost =∞)
3: for d ∈ {x, y, z} do . The split axis
4: E ← ∅ . The set of events along d
5: for B ∈ SB do
6: if Bdmin = Bdmax then

7: E ← E ∪
(
Bdmin, flat

)
8: else
9: E ← E ∪

{(
Bdmin, start

)
,
(
Bdmax, end

)}
10: end if
11: end for
12: SortWrtOffset(E) . Use the event’s offset as key
13: curSplit← LocateSplit(E , d,B, |S|) . see Algorithm 3.2
14: if curSplit.cost < bestSplit.cost then
15: bestSplit← curSplit
16: end if
17: end for
18: return bestSplit
19: end function

at a position v as a single new event. Thus no two new events can be at the same
position.

We process the new events in increasing order (w.r.t. their distance to the origin).
For each grouped event, we process the elementary events that form it and we count
the number of start, end, and flat events. We store these counts in CEL , CER , and
CEF . We update CL and CR by adding CEL and respectively subtracting CER . After
the update, it holds that CL = |PL(v)| and CR = |PR(v)|. As discussed above, we
need to add the “flat” primitives to the set corresponding to the node with smaller
probability. Thus, we add CEF to CL if v is before the middle of B(N) and we subtract
it from CR otherwise. At this point, it holds that CL = |SL(v)| and CR = |SR(v)|
and we can use these to compute the SAH cost.

Pseudo code for the above algorithm can be found in Algorithm 3.2. Furthermore
Algorithm 3.3 shows how the O(N log2N) construction algorithm extracts the events
for a node. Note that Algorithm 3.2 is the same for both the O(N logN) and the
O(N log2N) construction algorithms.

3.4 Construction of BVHs

Construction of BVHs follows a recursive pattern similar to the one of KD-trees.
The major difference is that the children of a node in a BVH partition the set of
objects associated with that node, whereas in spatial hierarchies the children of a
node partition its corresponding region of space space. This leads to a substantial
difference in the problem that the two construction processes have to solve at each
node.

CHAPTER 3. CONSTRUCTION BACKGROUND 46

Space partitioning implies that the children of a node are separated by the surface
they contact at. Thus, the job of a construction algorithm for a spatial hierarchy is
to find that surface. The KD tree construction algorithms described above search for
a separating hyperplane according to a cost criteria. To find that plane, they need
to explore O(|S(N)|) possible locations.

A BVH on the other hand has to partition the set of primitives corresponding to
the node. It needs to find SL and SR, such that S(N) = SL ⊕ SR. Furthermore, in
the context of ray tracing, this partitioning has to minimize a cost function (typically
SAH). Since there are exactly 2|S(N)|−1 ways to partition S(N) into two sets, finding
an optimal partitioning is in the general case NP-hard, as the algorithm needs to
evaluate the cost function for each possible partition.

One way to construct BVHs automatically is proposed in [Goldsmith and Salmon,
1987]. This method builds the BVH by adding the primitives incrementally to it. The
leaf where the primitive is inserted is chosen such that the total surface area grows
least. This method is based on heuristics and measurements show that the BVHs
produced by it are inferior to other acceleration structures [Havran, 2000, Appendix
E]. Thus, the method is seldom used in practice.

To overcome the exponential nature of cost-based construction, Wald et al. [Wald
et al., 2007] propose to replace each primitive with the center of its AABB (a.k.a.
centroid) and to transform the problem into a space partitioning one. To do so, they
search for a plane that is perpendicular to one of the major axes and separates the
centroids spatially. Primitives with centroid to the left of the plane are put in SL (in
the left child) and those with a centroid to the right – in SR. The goal is to find the
plane position that minimizes the SAH, although other cost functions (such as median
split and split in the middle) could be used as well. The intuition behind the method
is that if a centroid is on one side of the plane then more than half of the primitive
(more precisely of its AABB) will be on that side too. This is an approximation of
the problem, which however yields good results in practice. Furthermore, with the
exception of the above methods and our new algorithms discussed in Chapter 6, we
are not aware of any other method that can construct cost-based BVHs in reasonable
time. From now on we will refer to this approach as classical BVH construction.

3.4.1 Searching for the Optimal Split Plane

The procedure of searching for the optimal split plane position for BVHs is very
similar to the one introduced in Section 3.3.1. As in KD tree construction, best
results are again obtained by using the SAH as cost function and all three dimensions
need to be examined.

For efficiency, we again use the plane sweep algorithm. If the sweep plane is
positioned at offset v along the axis d we need to know |SL(v)|, |SR(v)|, |A(NL(v))|,
and |A(NR(v))| in order to compute the SAH cost. The first two can be computed by
incrementally counting the number of centroids to left respectively right of the sweep
plane. To compute the second pair, we need to keep track of B(SL(v)) and B(SR(v))
– the tightest AABBs around all primitives in SL(v) and SR(v) respectively. As we
will see, we can also do this incrementally. Thus, the status of the sweep plane is
composed of CL = |SL(v)|, CR = |SR(v)|, BL = B(SL(v)), and BR = B(SR(v)). Since

47 3.4. CONSTRUCTION OF BVHS

Algorithm 3.4 Optimal Split Plane w.r.t. SAH for BVH

1: function LocateSplitPlaneBVH(d, SC , SB)
. finds the split plane along d
. SC ≡ the set of centroids sorted along d
. SB ≡ the AABBs of the primitives

2: bestSplit← (cost =∞)
3: CL ← 0, CR ← |SC |
4: BL,BR ← empty AABB
5: BA ← array holding |SC | AABBs
6: for i = |SC |..1 do
7: BA[i]← BR
8: BR ← ExtendAABB (BR, SB[i])
9: end for

10: for i = 1..|SC | do
11: cost← A(BL)CL +A(BA[i])CR
12: if cost < bestSplit.cost then

13: bestSplit←
(

plane = (d, SdC [i]), cost = CT + CI cost
A(BR)

)
14: end if
15: CL ← CL + 1
16: CR ← CR − 1
17: BL ← ExtendAABB (BL, SB[i])
18: end for
19: return bestSplit
20: end function

all four variables of the status depend only on SL(v) and SR(v), and the latter two
only change when the sweep plane passes through a centroid, the events are chosen
to be the offsets Cd(p) of the centroids C(p) along the axis d. The objective function
is Exp

SAH

(v) from equation (3.3).

To design the rules for updating the status of the sweep plane, we will look at what
happens when the sweep plane moves beyond an event vi. Let vi correspond to the
centroid of the primitive p. If the sweep plane is before vi, p belongs to SR. Once the
sweep plane passes through vi, p is moved from SR into SL. Thus, CL is increased
by one and CR is decreased by one when the sweep plane passes over an event. The
initial values are again CL = 0 and CR = |S(N)|.

Since p is added to SL at an event, BL can be updated by taking the union of
its current value and B(p). Updating BR can not be done incrementally as there is
no way to predict the effect of removing p from SR on BR. Computing it efficiently
requires an additional pre-processing plane sweep pass. This time, the plane moves
in the opposite direction (i.e. from Bdmax(N) towards Bdmin(N)), the events are the
centroids, and the status is B′ = B(SR(v)). In this direction, passing over an event
corresponding to the primitive p results in p being taken out from SL and being put
in SR. Thus the bounding box B′ can again be incrementally computed through an
union. The computed values for B′ at each event in this pass are stored inside the

CHAPTER 3. CONSTRUCTION BACKGROUND 48

event for later use. During the main plane sweep, CL, CR, and BL are updated as
described above, whereas BR becomes the value of B′ that has been stored inside the
event.

The pseudo code for the above described algorithm can be found in Algorithm 3.4.
The latter expects a list of centroids, sorted along the split axis. As with KD-trees,
this list can be sorted independently for each node and each dimension, resulting in
O(N log2N) construction. Alternatively, three lists of centroids can be created and
sorted prior to construction, and their order can be kept during sifting (similar to
Section 3.3.3).

3.5 Summary

We presented several construction algorithms for KD-trees and BVHs in this chapter.
Our presentation was rather detailed, as we will build our algorithms in the next three
chapters on the ones presented here.

The two presented KD-tree algorithms are still known to produce the trees with
the lowest ray intersection cost. Their disadvantage however is the low construction
speed. In Chapter 4, we will present our new KD-tree construction algorithm, that
is significantly faster then both of them. It will run in O(N logN) and will be based
on an approximation of SAH. Also, the ray tracing performance of its trees will be
mostly indistinguishable compared to the two presented algorithms.

Using a similar approach, we will also significantly improve the performance of BVH
construction in Chapter 6. Finally, in Chapter 6, we will analyse the construction
of acceleration structures in general and we will present a new generic construction
algorithm that can build any type of cost based binary tree acceleration structure,
including KD-trees and BVHs. There, we will also present a new BVH construction
algorithm that builds BVHs with significantly higher traversal performance at a speed
comparable to that of KD-tree construction.

49

Chapter 4

Fast Construction of KD-Trees

In the recent years, ray tracing has become a popular technique for interactive visu-
alization. It has been shown (e.g. [Wald, 2004; Reshetov et al., 2005]) that real-time
ray tracing is feasible even on a single computer. Nonetheless, interactive frame rates
can only be achieved if a suitable acceleration structure is used (i.e. SAH based). Be-
cause of the high cost of acceleration structure construction, interactive ray tracing
was previously limited to rigid body scenes mostly, eventually allowing for local de-
formations (e.g. skinning) in some cases. With our work, initially published in [Popov
et al., 2006] and further extended in this chapter, we strive to remove this limitation
by accelerating the core construction process. We target construction of high-quality
SAH based KD-trees. Together with the similar approach from [Hunt et al., 2006],
our approach has served as a basis of a number of fast construction algorithms (see
Chapter 10).

4.1 Background

One way of achieving interactive ray tracing of dynamic scenes is to avoid the costly
rebuilds in every frame. As discussed in Section 2.4.2, this can be accomplished by
exploiting the structure of the animation.

The alternative is to use acceleration structures that are cheap to build, such as
for example split-in-the middle KD-trees, grids [Wald et al., 2006b; Reinhard et al.,
2000], or bounding interval hierarchies [Wächter and Keller, 2006]. Unfortunately, all
these structures are not SAH based. Thus, they can be up to an order of magnitude
less efficient in traversal than SAH based structures [Havran, 2000, Appendix E].
They present a trade-off between construction and traversal performance and are
useful only for scenarios with relatively low number of rays per frame. Since the
construction and traversal times are independent, SAH based structures will always
outperform non-SAH ones on animated scenes, above a certain number of rays per
frame.

The goal of our work presented here is to accelerate SAH based construction of
KD-trees to the point where it becomes competitive to the non-SAH one (i.e. split-
in-the-middle). Of course, since such trees will be built according to SAH, they will
not be subject to the trade-off discussed above. They will actually be both fast to
construct and fast to traverse.

CHAPTER 4. FAST CONSTRUCTION OF KD-TREES 50

4.2 Bottlenecks in KD-Tree Construction

In this section we analyse the bottlenecks of the previous construction methods,
namely the O(N logN) and O(N log2N) ones, by looking into their two basic com-
ponents: searching for the split plane and sifting. Based on those analysis, we will
develop our new method for fast construction of KD-trees. The exposition will follow
our paper [Popov et al., 2006].

Instead of analyzing and trying to improve the worst-case complexity of KD-tree
construction, which can not fall below O(N logN), we will try to improve its execu-
tion speed. Thus, we will look into issues such as “cash friendliness” and number of
executed instructions. They are commonly ignored in traditional algorithms litera-
ture, but they are indeed the reason why algorithms with larger complexity sometimes
execute faster than such with lower complexity. Examples related to ray tracing in-
clude the O(N logN) versus the faster in practice O(N log2N) KD-tree construction
as well as radix sorting vs. introspection sorting.

In both previous construction algorithms, searching for the split plane involves
sorting of events. In the O(N log2N) algorithm, the events are created and sorted
at each node. Even though sorting is really efficient, it still consumes more than
half of the processor time during construction. The plane sweep itself also takes a
considerable fraction of the execution time, mainly because of the cost of evaluating
the SAH at each event. In this algorithm, sifting takes only a fraction of the execution
time.

The second algorithm, namely the O(N logN) one from [Wald and Havran, 2006],
again sorts the events, but only once at the beginning. Besides the cost computa-
tions, what really consumes processor time there is the sifting of events. On one side,
the code is complex and requires many operations per event, including expensive de-
pendent memory accesses. On the other, even though the events are sorted along the
three axes, their corresponding primitives can be in arbitrary order in memory. Thus,
labeling the primitives as belonging to the left/right sub-tree (see Section 3.3.3), is
an operation with a random memory access pattern. On modern architectures, such
a pattern can slow down a program’s execution by an order of magnitude, since the
CPU cannot find the data in the caches and has to wait for it to arrive from the
“slow” RAM.

Another disadvantage of this algorithm is related to parallelism. Since the label of
each primitive has to be stored inside the latter for performance reasons, a parallel
implementation becomes relatively complicated. Multiple events can share the same
primitive and care has to be taken to duplicate the associated label or to avoid
processing those events in parallel.

As discussed above, both construction approaches spend a lot of time in the plane
sweep itself. We regard this as a waste of resources, since all of the computed SAH
values, with the exception of one, are actually thrown away. To avoid the issue, we
first observe that choosing a “wrong” split plane will still create a valid tree, but with
a potentially worse quality. Combining that with experimentally derived information
about the shape of the SAH cost function, we will develop our new construction
algorithm in the next section. It will search for an approximate minimum of the SAH
and will sample the latter at only few locations. Since our algorithm is not be based

51 4.3. BINNED COST FUNCTION SAMPLING

Figure 4.1: The Hand model and a plot of the SAH cost for the root node along
the axis Ox.

on a plane sweep at all, it requires neither sorting, nor an expensive book keeping of
sorted event lists.

4.3 Binned Cost Function Sampling

Our new algorithm relies on the fact that the SAH cost is a rather smooth function
for nodes with many primitives. To come to this conclusion, we have observed the
behaviour of the latter on various scenes, by plotting it for a set of randomly chosen
nodes of an already built KD-tree. One such plot can be seen on figure Figure 4.1

Because of the smoothness, we can find an approximately optimal location for the
split plane through sampling. To do so, we place M+1 << |S(N)| samples regularly
in the domain of Exp

SAH

. The location of sample i ∈ {0, 1, . . .M} is

vi = Bdmin(N) + i
Bdmax(N)− Bdmin(N)

M

with d being the split axis. To evaluate Exp
SAH

(vi), we need to know |SL(vi)| and

|SR(vi)|. One way to compute the latter two is by testing each primitive with each
sample location. This approach, which we name brute force, needs O(MN) time to
find the split plane. Thus, for reasonable number of samples, using it would result
in slow construction.

Instead, we create M bins, each of which corresponds to the space between two
adjacent sampling points: bin Bi with i ∈ {0, 1, . . .M−1} occupies the space between
the samples i and i+ 1 (Figure 4.2). We use the bins to count how many primitives
start respectively end between two consecutive sampling locations. For this purpose,
we store two counters in each bin: Bi

start and Bi
end. Again, we work only with the part

of each primitive that is inside the current node. Thus, we populate the counts by
enumerating all bounding boxes B ∈ SB(N) and for each of them we increase Bi

start

and Bj
end, with i and j being such that vi ≤ Bdmin < vi+1 and vj < Bdmax ≤ vj+1.

Primitives that are flat along the split axis are handled by increasing both Bi
start and

Bi
end, with vi ≤ Bdmin = Bdmax < vi+1 if the primitive is in the left part of the node’s

bounding box B(N) and vi < Bdmin = Bdmax ≤ vi+1 otherwise.

CHAPTER 4. FAST CONSTRUCTION OF KD-TREES 52

Figure 4.2: Sampling the cost function. The bins B0 . . . B7 are located in-between
the events v0 . . . v8. The respective number of primitives that start/end in a bin are
given under the bin label, separated with a semicolon.

To compute |SL(vi)| and |SR(vi)| for a sampling location vi, we now observe that
the first is actually equal to the number of primitives that start to the left of vi,
whereas the second one is equal to the number of primitives that end to the right of
vi. Thus, it holds that

|SL(vi)| =

j<i∑
j=0

Bj
start

|SR(vi)| =

j<M∑
j=i

Bj
end

We compute the above sums for all sampling locations simultaneously, by using
two prefix sums. For SL(vi) we do a prefix sum in increasing order over Bi

start and
for SR(vi) – in decreasing order over Bi

end. Once we know the two counts for each
event position, we can easily calculate the SAH costs there, and we can place the
split plane at the sampling position with minimal cost.

Pseudo code for the above described algorithm can be found in Algorithm 4.1.
Clearly, our approximation avoids the problems discussed in Section 4.2. We do not
need sorting at all, there is no complex book-keeping, and our algorithm performs
much less operations per primitive, as the SAH cost is evaluated on a fixed-size
independent set of locations. A valid question is how much do we loose in terms of
ray tracing performance. As we will see in Section 4.6 the speed loss is negligible as
it is always in the range of only few percent.

4.3.1 Sampling Accuracy

By doing measurements on a variety of different scenes, we found that 1024 regu-
larly placed samples are more than enough to approximate the SAH cost with almost
perfect quality. Nevertheless, there might be scenes which require greater accuracy.
Instead of blindly increasing the sample count, we show here how to adaptively iden-
tify the interval that needs more sampling. We base our approach on a conservative
estimate of the approximation error.

53 4.3. BINNED COST FUNCTION SAMPLING

Algorithm 4.1 Optimal Split Plane for KD-tree through Binning

1: function LocateSplitPlane(d, SB,B(N),M)
. finds the split plane along d
. SB ≡ the AABBs of the primitives
. B(N) ≡ the AABB of the node
. M + 1 ≡ the number of sample locations

2: Bstart, Bend ← arrays [−1 . . .M] initialized to 0
3: for all B ∈ SB do

4: i =

⌊
M

Bdmin − Bdmin(N)

Bdmax(N)− Bdmin(N)

⌋
5: jf = M

Bdmax − Bdmin(N)

Bdmax(N)− Bdmin(N)

6: j = bjfc
7: if j = jf then j = j − 1 . ensure that vj < Bdmax ≤ vj+1

8: if Bdmin 6= Bdmax then . primitive is not flat

9: Bi
start = Bi

start + 1; Bj
end = Bj

end + 1

10: else . flat primitive
11: if i < M

2 then k = j else k = i

12: Bk
start = Bk

start + 1; Bk
end = Bk

end + 1

13: end if
14: end for

15: for i = 0 . . .M do Bi
start = Bi

start +Bi−1
start

16: for i = M − 1 . . .− 1 do Bi
end = Bi

end +Bi+1
end

17:

18: M ← Bd+1
size(N)Bd+2

size(N), A← Bd+1
size(N) + Bd+2

size(N)

19: CL1 ← 2
(
M − BdsizeA

)
, C2

L ← 2A . see (3.8)

20: CR1 ← 2
(
M + BdsizeA

)
, C2

L ← −2A . see (3.9)

21: bestSplit← (cost =∞)
22: for i = 0 . . .M do

23: v ← Bd
min(N) + i

Bd
max(N)−Bd

min(N)

M

24: cost← Bi−1
start

(
CL1 + vCL2

)
+Bi

end

(
CR1 + vCR2

)
. see (3.10)

25: if cost < bestSplit.cost then

26: bestSplit←
(

plane = (d, v), cost = CT + CI
cost

A (B(N))

)
27: end if
28: end for
29: return bestSplit
30: end function

CHAPTER 4. FAST CONSTRUCTION OF KD-TREES 54

We look again at (3.10) – the definition of SAH w.r.t. to the split plane position
v. This function can be expressed as

Exp
SAH

(v) = CT + CI
fL(v) + fR(v)

A(N)

fL(v) =
(
CL1 (N) + vCL2 (N)

)
|SL(v)|

fR(v) =
(
CR1 (N) + vCR2 (N)

)
|SR(v)|

By looking at (3.6) and (3.7), it can be seen that fL(v) is a monotonically increasing
function whereas fR(v) is monotonically decreasing and both functions are positive.
Thus, for each pair of numbers v′ < v′′, it holds that

min
v∈[v′,v′′]

(
Exp
SAH

(v)

)
≥M(v′, v′′) = CT + CI

fL(v′) + fR(v′′)

A(N)
(4.1)

The above inequality follows from the fact that fL(v) > fL(v′) and fR(v) > fR(v′′)
for each v : v′ ≤ v ≤ v′′.

We can now use (4.1) to improve the sampling accuracy of our method. Assume
that we have already found an initial valueM for the minimum, by regularly placing
M samples. Then, when we place the additional samples, there is no need to regard
intervals where M(vi, vi+1) > M with {vi} being the set of old samples. Since we
need to place the new samples regularly, we identify two numbers i < j, such that
M(v0, vi) > M, M(vj , vM) > M, M(vi, vi+1) ≤ M, and M(vj−1, vj) ≤ M. We
then place the new samples regularly in the domain [vi, vj].

In our tests, the average value of j− i for M = 1024 over all nodes was below 2 for
all scenes and the maximum did not exceed 10. Thus, with two step refinement, we
were able to obtain accuracy comparable to placing approximately 1 million samples
on average.

4.4 Processing the Lower Tree Levels

The approach from Section 4.3 becomes inefficient once the ratio of sampling positions
to primitives in a node rises above a certain threshold. In this case, we can either
reduce the number of samples, by calculating it as a function of the number of
primitives, or we can switch to classic construction as we did in our paper [Popov
et al., 2006].

4.4.1 Improving Classical Construction

At the point of switching from sampling to exact SAH evaluation, the set of primitives
we have to work with is rather small. Most importantly, it is small enough to fit in
the caches of the CPU. To keep the O(N logN) complexity of the algorithm, in our
paper we used the O(N logN) construction method from Section 3.3.3 . Because all

55 4.5. IMPLEMENTATION DETAILS

data fits in the cache of the processor, the method does not result in cache trashing.
This, combined with the fact that the number of primitives was in the order of few
thousand, allowed us to use efficient radix sorting for the event lists. We also proposed
a scheme for incrementally evaluating the cost function, which reduced the number
of operations required to evaluate it at an event. The improvement was rather small,
so we are not going to discuss it here. Rather, we are going to show a new alternative
method, which uses sampling all the way down to the leafs and thus achieves better
construction times. This method, as well as the in-place sifting from 4.5.3, have not
been previously published.

4.4.2 Brute-Force Sampling

Profiling the algorithm from our paper, suggested that most of the construction time
is spent in the second phase (i.e. after switching to classical construction). On the
other hand, the results presented in [Hunt et al., 2006], suggest that using sampling
all the way down to the leafs still leads to well optimized KD-trees. Thus, we are
going to present a new algorithm here that only relies on sampling.

The first change that we introduce is that the number of samples is no longer a
constant. Instead, we use a bounded linear function

sample-count(x) = min(Cmax, max(Cmin, Ax+B))

with x being the number of primitives in the node.
The second change is that once the number of primitives falls below Cmin, we

switch to exact SAH evaluation. For this, we create samples at the boundaries of the
primitives inside the node and then we use brute-force sampling. For every sample,
we loop over all primitives in the node, keeping track of the count of primitives to
left and right of the sample position. We then use these counts to compute the SAH
at the sample.

By running measurements on a variety of scenes, we have discovered A = 1, B = 0,
Cmax = 256, and Cmin = 23 to be good values for an Intel Core2 Duo architecture.
The threshold Cmin = 23 for switching to brute force was chosen to be the point
where brute-force sampling becomes more effective than binned sampling. We chose
Cmax = 256 instead of the 1024 from our paper, so that the sample counters can fit
in the L1 caches of the CPU. As we will see in Section 4.6, this construction method
is considerably faster than the one proposed in our paper, and the traversal cost is
almost the same.

4.5 Implementation Details

An important issue while implementing KD-tree construction is the memory manage-
ment. During construction, an implementation has to keep for each to-be-constructed
node N at least two sets in memory: S(N) and SB(N). Since they both are split in
two while processing a node, an implementation has to allocate new memory for ev-
ery node. This could be achieved through the operating system’s memory allocation
routines. However, since these allocations happen at each node (and their count is
O(N)), relying on the OS will become the major bottleneck for non-trivial scenes.

CHAPTER 4. FAST CONSTRUCTION OF KD-TREES 56

Figure 4.3: Memory layout for breadth-first construction. The offsets Oj in chunk
2 are computed as Oi = Oi−1 + |Si−1,R| for i even, and as Oi = Oi−1 + |Si,L| for i
odd.

The usual approach of most implementations is to allocate a “big enough” chunk
of memory and to manage it on their own. As general-purpose memory management
can be quite complex and slow, we will describe below several strategies for efficient
memory management for breadth-first and depth-first construction.

4.5.1 Memory Management for Breadth-First Construction

In breadth-first construction, the unprocessed nodes are kept in a queue. Whenever
a node is created, its children are scheduled for construction, by adding them to
the queue. Thus, a node at depth d in the tree is only processed if all nodes with
depths smaller than d have also been processed. We use this fact to devise an efficient
memory management scheme. We process the nodes in groups, one tree level at a
time. We keep two memory chunks. The first one contains the data (e.g. S(N) and
SB(N)) necessary for processing the nodes of the current level. We use the second
one to store the data required to construct the nodes for the next level. Once we
finish processing a level, we continue to the next level, using the data from the second
chunk.

Processing of a level proceeds in three phases (see Figure 4.3). First, we compute
the optimal split plane, the cost of the split and the number of primitives CL(N)
and CR(N) in the left and right child respectively, for each node of the current level.
Then, we create the memory layout for the next level, by performing an exclusive
prefix sum over CL(N) and CR(N), assuming that the two are zero for leaf nodes.
Finally, we sift the primitives of each node N of the current level, and we store the
required data (e.g. S(N) and SB(N)) according to the computed layout.

With this scheme, we still need to re-allocate memory, however only once per
level (resulting in O(logN) allocations). To avoid memory fragmentation (which
can lead to out-of-memory errors), we further improve our allocation scheme by pre-
allocating the two chunks of memory. Then, after a level is complete, we simply swap
the pointers to the chunks. We only re-allocate a chunk if its size is not large enough
to hold the new data and we only do that after the layout phase. We have found
experimentally, that that chunks with initial size 5N for N primitives do not cause
re-allocations for the tested scenes.

57 4.5. IMPLEMENTATION DETAILS

4.5.2 Memory Management for Depth-First Construction

In our paper [Popov et al., 2006], we used breadth-first construction with the above
scheme for managing memory. The alternative is depth first construction, which has
the advantage that all of the data required to build a sub-tree will fit in the caches
after some level. We present below three efficient memory management schemes,
including our new and unpublished in-place sifting approach.

To manage allocations, we again allocate a chunk of memory and we define two
operation on it: tail allocation and tail de-allocation. We keep an integer variable
vs, giving the size of allocated memory from the chunk. All data in the memory at
offsets between 0 and vi is marked as “in-use”, while all memory after vs is marked
as free. A tail allocation of N bytes reserves the memory area vs . . . (vs + N) and
increments vs by N . If there is not enough space left in the chunk, we reallocate it,
increasing its size by at least the required amount of space, but with no less than
50% of its previous size. A tail de-allocation of N bytes simply decrements vs.

With those two operations, we can significantly reduce the number of required
allocations. Whenever we process a node, we tail-allocate the space required for its
children, we process the children recursively, and upon return, we tail-deallocate the
children’s memory.

Since the number of primitives straddling the split plane of a node N is on average
O(
√
|S(N)|) (see [Wald and Havran, 2006]), the maximum memory of the chunk

should not be larger than T (N), with N being the number of primitives in the scene
and T (x) = 2x + T (x2) +

√
x. Solving the recurrent relation, and assuming that

N > 1200, we obtain

T (N) = −5−
√

2 +
(

2 +
√

2
)√

N + 4N < 4.1N

Thus, using a size for the initial chunk, large enough to hold the data for 4.1N
primitives, is likely to avoid re-allocations completely in the general case. We have
also confirmed that experimentally for all scenes we have tested.

The memory required by the above described approach can effectively limit the
size of the scenes that can be constructed in memory. We can reduce this memory by
observing the following fact. In normal construction, the data required to build the
sub-trees of a node has to stay until both sub-trees are built. If we however reverse
the order in which we process the nodes (i.e. right node first), we can tail-deallocate
the memory for the right sub-tree immediately after it is processed. Note that this
only holds, if we have tail-allocated the left sub-tree’s data before the right one’s.
The recurrence relation is than changed to T (x) = T (x) = 3

2x+ T (x2) +
√
x and the

memory requirements (assuming that N > 1200) are reduced to

T (N) = −4−
√

2 +
(

2 +
√

2
)√

N + 3N < 3.1N

4.5.3 In-Place Sifting

To further reduce the required memory, we propose a new quick-sort-style in-place
sifting. With it, we completely reuse the memory space of a node’s data, overwriting
it with the data of both children.

CHAPTER 4. FAST CONSTRUCTION OF KD-TREES 58

Figure 4.4: The desired memory layout targeted by in-place sifting, the pointers
used while sifting (see also Algorithm 4.2) and the direction they move in.

If no primitive straddles the split plane, we could sift the primitives using Hoare’s
partition [Cormen et al., 2009] method. For that purpose, we need to keep two
pointers l and r, pointing initially to the start respectively end of the chunk of data
allocated for a node. Hoare’s partition method increases l in a loop as long as it
points to a primitive that has to go left. It then decreases r as long as it points to
a primitive belonging to the right. Once l points to a primitive that has to go right
and r – to one that has to go left, the method swaps the elements pointed by l and
r. The two loops and the swap are repeated as long as l points to a location before
r in memory. Hoare’s partition runs in O(N).

In the general case, we can not apply Hoare’s partition directly, as the primitives
may straddle the split plane. We first have to take into account that the combined
children’s data is larger then that of their parent and we need to increase the storage
for the node accordingly. By visiting the children in an order that is opposite to the
order of their data in memory (as in Section 4.5.2), we know that the data of the
currently processed node will be the last one in the pre-allocated chunk. Thus, we
can tail-reallocate the data of the node by simply increasing vs. The amount to add
to the latter is exactly |SL|+ |SR|−|S(N)| and it is equal to the number of primitives
that straddle the split plane.

Having enough storage for both children, we have to modify Hoare’s partition to
account for the duplicated primitives. Our goal is to re-order the data of the node
so that it achieves a B|L|R|U layout in memory (see Figure 4.4). Here B is the
data for all primitives that straddle the split plane, L is the data for all primitives
that are completely to the left, R – for those to the right, and U is the extra (and
uninitialized) memory that we have appended. Once we achieve this order, we can
complete the sifting process by copying B onto U and then clipping the bounding
boxes of all primitives in B and U to the AABB of the parent (Section 3.3).

We modify Hoare’s partition method by introducing a third pointer b, used to
account for the duplicated primitives. Initially, we set b to point to the beginning
of the node’s chunk, l – to where the first left-only primitive will be stored (i.e.
l = b + |SL| + |SR| − |S(N)|), and r – to the end of the node’s chunk. As in
Hoare’s partition, we increment l until we encounter a primitive that has to go in
the right child, and we decrement r until we encounter a primitive that has to go
in the left child. The difference comes when handling primitives that are shared by
both children. If l points to such a primitive, it means that there is at least one
primitive in the region B that does not straddle the split plane. Thus in this case,
we first increase b as long as it points to a shared primitive. Once it starts pointing
to a primitive that is completely to the left or right of the sweep plane, we swap its
pointed value with the one pointed to by l. We perform the same steps for r. These

59 4.5. IMPLEMENTATION DETAILS

Algorithm 4.2 In-Place Sifting

1: function SiftInPlace(M,vs, CL, CR, |S(N)|)
. sifts the primitives in-place
. M ≡ the memory used for construction
. vs ≡ how much of M is full (Section 4.5.2)
. CL, CR ≡ # of primitives in the left/right child.
. |S(N)| ≡ # of primitives in the node.

2: v′s ← vs + CL + CR − |S(N)|
3: if v′s > |M | then
4: M ← ReAllocate

(
M,max

(
v′s,

3
2 |M |

))
5: end if
6: b, b0 ← AddressOf(M [0]) + vs − |S(N)|
7: l, l0 ← b+ CL + CR − |S(N)|
8: r, r0 ← AddressOf(M [vs − 1])
9: u← r

10: vs = v′s
11: loop
12: while l ≤ r0 ∧ M [l] is not right of the split plane do
13: if M [l] straddles split plane then
14: while b < l0 ∧ M [b] straddles split plane do b← b+ 1
15: Swap (M [b],M [l])
16: else
17: l← l + 1
18: end if
19: end while
20: while r ≥ l0 ∧ M [r] is not left of the split plane do
21: if M [r] straddles split plane then
22: while b < l0 ∧ M [b] straddles split plane do b← b+ 1
23: Swap (M [b],M [r])
24: else
25: r ← r − 1
26: end if
27: end while
28: if r ≤ l then break
29: Swap (M [l],M [r])
30: end loop
31: Copy M [b0 . . . l0 − 1] to M [r0 . . . vs − 1]
32: ClipPrimitives(M [b0 . . . l0 − 1])
33: ClipPrimitives(M [r0 . . . vs − 1])
34: end function

CHAPTER 4. FAST CONSTRUCTION OF KD-TREES 60

steps restore the property that l and r point to primitives that are completely on
one side of the split plane. Thus, we can continue with the standard Hoare partition.
Algorithm 4.2 summarizes our in-place sifting approach.

To give a good guess on the initial chunk size, we observe that the memory required
to build a tree will be approximately T (N) = N + d

√
N , with d being the depth

of the tree. This is due to the memory reuse, and because the average number
of the primitives straddling the split plane is O(N) (see [Wald and Havran, 2006]).
Considering that d = 1.2 log2N+2 is a good estimate for the tree depth (see [Havran,
2000, Section 4.5]), we obtain (for N > 1200)

T (N) ≈ 2 +N + 1.2 log2N
√
N < 1.4N (4.2)

Using the above estimate, we were able to construct all scenes from Section 4.6
without the need of resizing the initial memory chunk. Furthermore, besides the low
memory usage, a strong advantage of in-place sifting is its cache friendliness. On one
side, the memory is reused, and on the other – the working set for a sub-tree becomes
much smaller.

4.5.4 Numerical Stability

An important issue of binning, when combined with in-place sifting, is the numerical
stability. For any interval [a, b], the sampling positions when using M bins can be
calculated as (see also Algorithm 4.1, line 23)

vi = a+ i
b− a
M

(4.3)

To calculate the bin into which a point x falls, we can use (see also Algorithm 4.1,
line 4)

i(x) =

⌊
M

x− a
b− a

⌋
(4.4)

The issue here is, that there is no guarantee that x ∈
[
vi(x), vi(x)+1

)
, due to the

rounding of floating point operations. It might happen that a primitive has been
counted on both sides during binning, but actually ends up on only one of the sides
during sifting. Thus the counts we compute for |SL| and |SR| might actually be
incorrect, leading to an incorrect allocation size for the chunk during sifting. Even
worse, the pointers l, r and b can not be initialized correctly, which effectively makes
in-place sifting impossible.

Fortunately, the issue can be solved by changing the rounding mode of the floating
point processor. It can be proven (see Section A.1) that if i(x) is calculated in round-
down mode and vi is calculated according to equation (4.3) using round-up mode,
then indeed x ∈ [vi(x), vi(x)+1).

Since changing the rounding mode of the CPU too often would hurt the build
performance considerably (as the CPU pipeline needs to be flushed), we use instead
both the SSE and the FP87 units of the CPU simultaneously in our implementation.
We use round-down for the SSE unit and we instruct the compiler to perform all
floating point operations on this unit. To compute the sample positions, we use the
FP87 unit in round-up mode, programming the calculations manually in assembly

61 4.5. IMPLEMENTATION DETAILS

language. Note that this approach does not work on all architectures (and especially
on x64). A solution there is to check the bounds during binning, which however
decreases the efficiency of the algorithm.

4.5.5 Parallel and Lazy Construction

Our sampling construction approach also improves two further important aspects of
KD-tree construction: parallelism and on-demand (a.k.a. lazy) construction. With
our method, they become much more efficient and easier to implement.

In our paper, we present a parallel implementation that uses both data parallelism
(through SIMD) and task-based parallelism (through multi-threading). In the first
case, we process all three dimensions simultaneously during binning, and we also
apply this to the brute-force sampling. To this end, we map each point/vector to the
first three components of the SIMD unit. In the second case, we process independent
sub-trees with different threads.

To create enough work for the multi-threaded build, we initially start by using
single threaded breadth first construction. During that phase we postpone nodes
that have fewer than a user specified number of primitives by putting them on a
queue. At the end of this pass, we have a large queue of nodes, whose trees can be
built independently. At this point we start a user specified amount of threads, each
of which fetches nodes from the queue in a loop and fully constructs their sub-trees.

Even though much of the construction time is spent exactly in those small sub-
trees that we postpone, as expected our implementation can not achieve linear speed-
up because of the initial serial phase. This phase is required however, in order to
distribute the tasks evenly among the threads. Thus, we have proposed a way to
make it parallel as well.

The idea is to let all threads work cooperatively on the same node. This can be
achieved by partitioning the set of corresponding primitives into S(N) = S1(N) ⊕
S2(N)⊕ . . . SK(N) and assigning thread i to the set Si(N). Each thread i will then
use binning and compute the counts of primitives to the left/right of each sample
location as described in Section 4.3, but only for the primitives in Si(N). Since the
sample locations for all threads are the same, the counts of primitives to the left/right
of the samples can be computed by merging the counts collected by the threads. This
is also where our algorithm has an advantage over the previous ones: Because of the
plane sweep there, processing a node cooperatively by many threads is not as efficient
and is much harder to implement.

Once the primitive counts for the samples are known, the split plane position can
be computed and the primitives can be sifted. The latter could probably also be
done using multiple threads. However, since the nodes at this stage are rather large
and their corresponding sets do not fit in the CPU caches, and since sifting in our
algorithm requires very few operations per primitive, it is actually bandwidth limited.
Thus, on many architectures, it might not make sense to use multiple threads for this
purpose.

The second large optimization, that can be applied to kd-tree construction, is
on-demand construction. With it, the tree is constructed during traversal and a
sub-tree is only constructed if a ray needs to traverse it. On-demand construction

CHAPTER 4. FAST CONSTRUCTION OF KD-TREES 62

can be applied to the classical construction algorithms too. Using sampling however
brings an additional advantage: the events of the nodes do not need to be sorted
at all. Thus, whereas the classical algorithms would waste CPU cycles to fully sort
the events for a node that will never be traversed (while processing its parent), our
sampling approach doesn’t. Note that for both the O(N logN) and the O(N log2N)
algorithms, the events of all primitives will be sorted at least one time, namely in the
root node.

4.6 Results

In this sections we compare the results of running the O(N logN) builder, our builder
from [Popov et al., 2006] and the builder presented in Section 4.4.2. We use the follow-
ing test scenes: Shirley6, Hand, Sponza, Bunny, Fairy Forest, Conference,
Buddha, and Soda Hall. The results are summarized in table 4.1. The measure-
ments were done on a Lenovo T61P notebook, with a Core 2 Duo T9330 processor,
running at 2.5Ghz and with 32K L1 data cache and 6MB L2 cache. Beside the
build times, we also give the performance characteristics of the built trees: namely
the average traversal cost Ctrav, and the surface area metric cost Exp(T). For Ctrav
we shoot 106 random rays, originating inside the scene and with uniformly random
directions, and we average the cost of all of them. To form the cost of a single ray,
we look at the number of nodes it has traversed and the number of intersections it
has performed and then we sum the above two, weighed respectively by CT and CI .
Finally, we provide in the table the speed-up factor for construction and the drop in
quality as percentage for each method.

In this chapter, we try to focus on the core construction algorithm. Thus, we only
provide results from a serial implementation of our new algorithm, as we see the
task of implementing it in parallel as an orthogonal addition. Results from a parallel
implementation of our initial binning algorithm can be found in our paper [Popov
et al., 2006], and a much improved implementation is available in [Shevtsov et al.,
2007].

In the table we compare the build algorithms on two versions of the geometry of
each scene: the original one and a shuffled one. In the second we simply shuffle the
order of the triangles. By doing this we try to achieve a worst case scenario for the
input geometry so we can show the true strengths and weaknesses of each algorithm.

As it can be seen from the table, the sampling algorithm from our paper does
not really increase the traversal cost. In all cases, the increase is below 2% in both
the surface area metric cost and the the average ray traversal cost. The increase
in construction speed is rather small for the smaller models and the improvement
comes primarily because we use radix sorting for the events and incremental SAH
calculation. Only once the model is big enough does the strength of sampling really
become apparent: for the 1.1M triangle Buddha, we were able to achieve a maximum
speedup of 63% and for the 2M triangle Soda Hall – a speedup of 50%.

Our new algorithm from Section 4.4.2 on the other hand shows a significantly
improved speed-up even for the small models. It achieves on average a 100% speedup
and the decrease in traversal performance is rather small: a maximum of 9% when

63 4.7. SUMMARY

measured as surface area cost and a maximum of 7% and average of 3% if measured
as the more relevant average traversal cost.

Unfortunately, we were not able to compare our sampling algorithms to the one
from [Hunt et al., 2006]. Eventhough their results were measured on a similar Core 2
Duo system and even though we have 4 scenes in common, the trees constructed by
both algorithms seem to be quite different. For the Fairy Forest model, we can not
directly compare neither construction speed, nor surface area cost, as they work on
quads directly and thus have to handle only half of the geometry that we do. For the
Soda Hall model, their construction is considerably faster, but they produce trees
that are four times slower to traverse than ours. In the Bunny and Hand scenes
they achieve better absolute performance and for the first one also better traversal
cost. Unfortunately, even though we implemented their algorithm, we were not able
to reproduce their results. Furthermore, our implementation of their algorithm was
always slower then our new sampling approach algorithm from 4.4.2.

4.7 Summary

In this chapter we showed two novel approaches for fast KD-tree construction based
on SAH cost sampling. The first approach was taken from our paper [Popov et al.,
2006] and runs in O(N logN). It uses binning to compute the SAH cost at the
sampling positions for the higher tree levels and thus avoids the expensive sorting
and book keeping of the classical construction algorithms. For the lower tree levels it
switches to classical O(N logN) construction as all data fits in the CPU caches. The
second algorithm uses sampling all the way down to the leafs. To calculate the SAH
cost it uses binning up to a certain point and then switches to exact cost calculation
by using brute force sampling, and by allocating the samples on the boundaries of
the objects. We also introduced several schemes for efficient memory management
during construction.

O(N logN) Sampling Old Sampling New
Scene N TB Exp Ctrav TB Exp RS RQ1

RQ2 TB Exp RS RQ1
RQ2

Shirley6 804 3.6ms 28.9 16.5 3.3ms 28.9 9% 0.0% 0.0% 1.9ms 28.3 90% -2.0% -2.5%
Shirley6S 804 3.8ms 28.9 16.5 3.6ms 28.9 5% 0.0% 0.1% 2.0ms 28.3 91% -2.0% -2.5%
Hand 17.1K 0.08s 69.2 28.2 0.08s 69.2 1% 0.0% 0.0% 0.04s 75.5 120% 8.4% 5.8%
HandS 17.1K 0.08s 69.2 28.2 0.08s 69.2 -2% 0.0% 0.0% 0.04s 75.5 113% 8.4% 5.8%
Sponza 67.5K 0.29s 109.0 28.1 0.28s 110.1 2% 0.9% 0.8% 0.22s 113.9 31% 4.3% 7.3%
SponzaS 67.5K 0.31s 109.0 28.1 0.31s 110.1 1% 0.9% 0.8% 0.24s 113.9 32% 4.3% 7.3%
Bunny 69.5K 0.41s 94.1 32.8 0.37s 95.0 11% 0.9% 0.9% 0.20s 99.4 106% 5.3% 3.8%
BunnyS 69.5K 0.42s 94.1 32.8 0.39s 95.0 9% 0.9% 0.9% 0.21s 99.4 104% 5.3% 3.8%
F.Forest 191.8K 0.54s 61.4 30.7 0.48s 61.8 14% 0.6% 1.2% 0.24s 67.5 124% 9.1% 2.0%
F.ForestS 191.8K 0.56s 61.4 30.7 0.49s 61.8 14% 0.6% 1.2% 0.26s 67.5 117% 9.1% 2.0%
Conference 282.7K 1.13s 78.1 32.1 1.01s 79.2 12% 1.4% 0.9% 0.61s 82.1 87% 4.9% 1.3%
ConferenceS 282.7K 1.35s 78.1 32.1 1.08s 79.2 25% 1.4% 0.9% 0.67s 82.1 102% 4.9% 1.3%
Buddha 1.1M 4.55s 142.3 44.9 3.63s 143.1 26% 0.5% 0.5% 2.94s 156.5 55% 9.1% 6.1%
BuddhaS 1.1M 6.89s 142.3 44.9 4.22s 143.1 63% 0.5% 0.5% 3.14s 156.5 119% 9.1% 6.1%
Soda Hall 2.2M 11.13s 119.8 20.1 8.59s 121.3 30% 1.2% 0.1% 7.36s 122.8 51% 2.4% 0.4%
Soda HallS 2.2M 16.59s 119.8 20.1 11.04s 121.3 50% 1.2% 0.1% 7.92s 122.8 109% 2.4% 0.4%

Table 4.1: Comparison of the O(N logN), Sampling Old (from our paper [Popov et al., 2006]), and Sampling New (Sec-
tion 4.4.2) algorithms. The number of triangles is denoted by N , the build time – with TB, Exp is the surface area cost of the tree,
and Ctrav is the cost for traversing a random ray. Furthermore, RS is the speedup, RQ1 – the increase of expected cost (Exp), and
RQ2 – the increase of traversal cost. The results in this table are discussed in Section 4.6.

65

Chapter 5

Fast Construction of BVHs

Inspired by the good results from the previous chapter, and by the demonstrated
performance of BVHs for animated scenes (in [Wald et al., 2007]), we have extended
our sampling construction method to BVHs. We present this extension here, following
the exposition of our paper [Günther et al., 2007], where it was first introduced. Note
that a similar method was independently and in parallel developed in [Wald, 2007].

As with KD-tree construction, building a BVH according to SAH requires a plane
sweep and thus it also requires event extraction and event sorting steps (Section 3.4).
If extraction and sorting is done at each node, the complexity of the algorithm be-
comesO(N log2N). If it is done at the beginning, the complexity becomesO(N logN),
but the construction algorithm needs to keep lists of sorted events. Even though not
as complex and expensive as with KD-trees, the book keeping of the lists adds com-
plexity to the construction algorithm and thus slows it down. Furthermore, the SAH
is evaluated at every centroid, which in practice is unnecessary dense, especially in
the top levels of the tree.

5.1 SAH Evaluation Through Binning

Similar to the previous chapter, we can apply sampling to find the optimal location
of the split plane (w.r.t. SAH). One key difference however is that since a KD tree
is a spatial partitioning structure, the potential bounding boxes of the left and right
child of a node are defined solely by the sweep plane, independent of the primitives
in them. On the contrary, in BVH construction these bounding boxes are defined
only through the primitives. They are the tightest AABBs around the primitives in
the left and right subtrees respectively.

Again as before, we place M + 1 samples v0, v1, . . . vM regularly along the candi-
date split axis d. Since the sweep plane events are the centroids themselves (see Sec-
tion 3.4.1), we choose v0 and vM to be the minimum/maximum along d of the AABB
around the centroids (i.e. v0 = Bdmin(SC) and vM = Bdmax(SC)). Here SC denotes
the set of the centroids of all primitives in S(N). In order to compute the SAH cost
at position v we need to know the number of primitives to the left and right of v
(i.e. |SL(v)| and |SR(v)|). We also need the two AABBs around the primitives with
centroids to the left respectively right of v (i.e. B(SL(v)) and B(SR(v))).

CHAPTER 5. FAST CONSTRUCTION OF BVHS 66

As with SAH sampling for KD-trees, we use bins to compute both the counts and
the AABBs to the left and right of each sample. In bin Bi we keep the number C(Bi)
of primitives whose centroids fall in the range [vi, vi+1). Again, we use the following
formula to compute the bin index i(x) from an offset x:

i(x) =

⌊
M

x− v0

vM − v0

⌋
We also keep the tightest bounding box B(Bi) around the primitives that go into
Bi. We fill the bins using a single pass over S(N). If the centroid of a primitive p
falls inside bin Bi, we add one to C(Bi) and extend B(Bi) to contain B(p) by using
AABB union.

Once the bins are filled, we need to reconstruct the counts |SL(v)| and |SR(v)| as
well as the bounding boxes B(SL(v)) and B(SR(v)) for each event v. We observe that

|SL(vi)| =
i−1∑
j=0

C(Bj)

B(SL(vi)) =
i−1⋃
j=0

B(Bj)

Thus |SL(vi)| can be expressed as the i-th element of a prefix sum over C(Bj) and
B(SL(vi)) – as the i-th element of a prefix union over B(Bj). We compute |SL(vi)|
and B(SL(vi)) simultaneously by performing the two scans together, in a single pass
over the bins. Similarly, we compute |SR(vi)| and B(SR(vi)) for all events using a
single pass over the bins in the opposite direction.

At this point we have enough data to compute the SAH cost at the sampling
locations. We do so by visiting each location in a loop. Furthermore, for efficiency
reasons we process all three dimensions in parallel, using the SIMD extensions of the
CPU.

5.2 Sifting

After determining the optimal split plane, we need to sift the primitives into the
children of the node. To reduce memory usage and improve data access locality, we
again do in-place primitive sifting. In contrast to KD-trees however, this process
is much simpler as primitives can not be duplicated. Furthermore, allocation of
additional memory, such as the one to store duplicated primitives in KD-tree sifting,
is not needed. We do the sifting using Hoare’s partition method [Cormen et al., 2009].
Our goal is to order the memory M holding the primitives corresponding to the node
into M = LR, where L contains SL and R contains SR. To do that, we keep two
pointers l and r initially pointing to the first and last primitives of M respectively.
Then, we perform the following steps in a loop: First, we move l to the right (increase
the pointer) as long as l points to a primitive that must go into SL. Then, we move
r to the left (decrease the pointer) as long as r points to a primitive that must go
into SR. At this point, if l points to a location beyond r we exit the loop. Otherwise,

67 5.3. RESULTS AND DISCUSSION

l points to a primitive that must go into SR and r points to a primitive that must
go into SL, so we swap the pointed memory locations and continue with the next
iteration of the loop.

To reduce the passes over the primitives, we search for the split plane of both
children while sifting their primitives from the parent. One issue that arises is that
we need to know the bounding boxes around the centroids that go in the left and right
children respectively, but we can only find them after the sifting is complete. Thus,
we use the AABB around the centroids in the parent and we split this bounding box
among the children using the split plane. This will of course result in a AABB that is
not tight around the centroids, so some of the first or last bins might remain empty.
In turn, this might eventually reduce the quality of the approximation by little, but
the algorithm will still produce a correct result.

An alternative solution is to keep track of the bounding box around the centroids
that fall in each bin. The centroid AABBs of the children can then be reconstructed
using prefix unions over the bins. This however turned out to slow down the con-
struction as more operations are needed to update a bin and the increased memory
size of a bin permits less bins to be kept in the L1 caches. Furthermore, the dif-
ference of quality of the trees produced with the first approach and those produced
with second one was subtle.

A further issue with binning BVH construction is the numerical stability of evalu-
ating the sample positions. Again as in Section 4.5.4, computing vi using the reverse
function of i(x) does not guarantee that a centroid x which goes into bin Bi will keep
the property vi ≤ xd < vi+1. Even though less fatal than in KD-tree construction
(as we don’t rely on it for memory allocations), this instability can sometimes create
empty BVH nodes. In our paper, to avoid this issue we also keep in each bin the
maximum offset along the split axis of all centroids that fall into the bin. We than
use this value as the split plane position. We could have also used the approach
from Section 4.5.4, however this would have limited our implementation to 32-bit
architectures only, as the FP87 unit is not available on x64 architectures.

5.3 Results and Discussion

In this section, we present the results of running the above described algorithm on
an Intel 2.4Ghz Core 2 workstation.

The number of bins is an essential parameter controlling the trade-off between
construction speed and traversal performance. More bins lead to more accurate
sampling, but they also increase the work needed to calculate the SAH function from
the binned data. For the bin data to fit into the 64 kB L1 cache of the CPU, there
should be at most 256 bins per dimension. Additionally, binning becomes inefficient
if the number of bins is close to the number of to-be-binned primitives. Therefore we
adaptively choose the number of bins M per dimension linearly, depending on number
of primitives N and a bin-ratio constant R: M = N

R and clamp it to [Mmin,Mmax].
We have experimented with different parameter sets representing a trade-off between
speed and accuracy. We have found that the settings Mmax = 128, Mmin = 8, and
R = 6 present an optimal trade-off with almost no loss of traversal speed, while the
settings Mmax = 32, Mmin = 4, and R = 16 favor faster construction.

CHAPTER 5. FAST CONSTRUCTION OF BVHS 68

The results of our builder are summarized in Table 5.1. There, we compare the
build times of our algorithm in the two settings described above to an implementation
of the exact BVH builder as well as to the KD-tree builders from [Popov et al., 2006]
and [Hunt et al., 2006] and the BVH builders described in [Lauterbach et al., 2006]
and [Wald et al., 2007]. Our measurements show that we consistently outperform
all previous published algorithms, including [Hunt et al., 2006] who use significantly
fewer primitives as they do not tessellate quads into triangles. Comparing to the
previously published data for a sweep plane BVH builder [Wald et al., 2007], our
streamed binning approach is one order of magnitude faster at almost the same BVH
quality. Furthermore, using the fast settings, we gain additional 20% of construction
performance at almost the same BVH quality.

For their BVH-based ray tracer Lauterbach et al. [Lauterbach et al., 2006] favored
construction speed over ray tracing performance to support dynamic scenes. With
split-in-the-middle they chose the probably fastest approach to select a partition
plane during BVH construction, which unfortunately also decreases ray tracing per-
formance by 50% — 90% [Lauterbach et al., 2006] compared to building the BVH
according the SAH . Approximating the SAH with our binning approach achieves
faster construction times (also due to faster hardware) while retaining high ray trac-
ing performance.

5.4 Summary

In this chapter we presented a fast and accurate construction algorithm which extends
our work from Chapter 4 onto BVHs. Based on cost function approximation through
binning, this algorithm consistently outperformed all previous published ones.

Recently our sampling approach was successfully implemented on the GPU [Lauter-
bach et al., 2009], which addressed the only future work we had left in our paper.
Also a much faster BVH construction approach known as LBVH was shown in that
paper and later on extended in [Pantaleoni and Luebke, 2010]. Despite their speed
however, the trees constructed from those two approaches suffer from a considerably
lower traversal performance for scenes with moderate depth complexity.

KD-tree data BVH data Our BVH measurements
Opteron
2.6GHz

Core2
2.4GHz

P4
2.8GHz

Opteron
2.6GHz Core2 2.4GHz

scene #tris Popov06 Hunt06 Lauterbach06 Wald07 Exact SAH Binning Exp Fast Binning Exp
Bunny 69,451 513 ms 250 ms 90 ms — 168 ms 48 ms 99.8% 37 ms 98.9%
Fairy Forest 174,117 1.15 s 0.3 s — 2.8 s 0.47 s 0.12 s 100.2% 0.10 s 98.8%
Conference 282,641 1.41 s — — 5.06 s 0.80 s 0.20 s 99.4% 0.15 s 92.5%
Buddha 1,087,716 — — 1.7 s 20.8 s 4.38 s 0.84 s 100.0% 0.66 s 98.9%
Soda Hall 2,169,132 — 5.14 s — 53.2 s 8.78 s 1.59 s 101.6% 1.28 s 103.5%
Power Plant 12,748,510 — — — — 119 s 8.1 s 100.5% 6.6 s 99.4%
Boeing 777 348,216,139 — — — — 5605 s 667 s 98.1% 572 s 94.8%

Table 5.1: Comparing the performance of KD-tree and BVH construction on similar hardware with different algorithms: [Popov
et al., 2006], [Hunt et al., 2006], [Lauterbach et al., 2006], [Wald, 2007]. Due to its huge size the Boeing 777 was measured on
a 2GHz Opteron with 64GByte RAM, 35 of which were consumed during construction. Note that [Hunt et al., 2006] support
quads and thus use considerably fewer primitives for construction. All acceleration structures are built according to SAH with the
exception of [Lauterbach et al., 2006], which uses a quick split-in-the-middle and thus suffers from a loss of traversal performance
in the order of 50%–90%, compared to a SAH built structure. The reported quality of our proposed binned BVH construction is
measured as the ratio of its surface area cost to the surface area cost of a classically built BVH (as in Section 3.4.1). We denote the
latter with Exact SAH.

CHAPTER 5. FAST CONSTRUCTION OF BVHS 70

71

Chapter 6

Construction of High Quality
BVHs

Whereas the previous two chapters were focused on fast construction of acceleration
structures with minimal loss of quality, in this chapter we will try to build the best
possible acceleration structure, disregarding construction times.

We are going to work with BVHs initially, and the final framework will be able
to produce both KD-trees and BVHs. Even though several years ago BVHs were
thought of as inferior to KD-trees w.r.t. traversal performance [Havran, 2000], Wald
et al have shown that they can perform on par to KD-trees if built properly [Wald
et al., 2007]. Later research hints that they can even be superior to KD-trees when
used for traversal of large coherent packet [Overbeck et al., 2008] or for ray-tracing
on GPUs [Aila and Laine, 2009] due to being more shallow than KD-trees.

Our work in this chapter was motivated by the fact that in order to avoid the
exponential search time needed to partition the set of primitives in a node, all of the
existing BVH construction algorithms used some sort of heuristic. Thus, we started
there and developed an approach that can exhaustively explore in polynomial time
all ways of partitioning the set of primitives of a node.

By allowing splitting of triangles, we then extended this approach into a construc-
tion framework that is able to build any practically used binary tree-based acceler-
ation structure. Initially we were not able to improve the quality of the BVHs with
this approach. However, we used the framework to study different building strategies
and to evaluate their impact on rendering performance. This helped us discover a
very important complementary requirement to SAH, which is needed to construct
fast trees for ray tracing and is present in all other known construction algorithms.
Based on our observations we finally developed a new BVH construction algorithm.
The trees produced from the latter enabled ray tracing to perform 2 to 6 times faster
compared to the ones constructed by the previous approaches and the speed of con-
struction was comparable to the speed of KD-tree construction. We will present our
research in this chapter, following the exposition of our paper [Popov et al., 2009].

CHAPTER 6. CONSTRUCTION OF HIGH QUALITY BVHS 72

Figure 6.1: Comparing the nodes created by BC (left) to the optimal ones (right).
The SAH cost of the right solution is much lower, as the ABBB around the red child
is tighter and has smaller surface area. The right solution can not be produced by
BC since the children are nested in each other and the centroids of their primitives
can not be separated by a plane.

6.1 Geometric Partitioning

The classical top-down construction algorithm for BVHs from Section 3.4.1 (BC from
now on), which is also the one that gave best rendering performance prior to this
work, uses sweep plane partitioning. It has been adopted from KD trees and approx-
imates primitives by the centroids of their bounding boxes. This approach considers
only a fraction of all possible ways to partition the set of primitives correspond-
ing to a node. BVHs allow for simultaneous subdivision along multiple dimensions,
including spatial nesting of sibling nodes. Thus, the classical approach can miss par-
titions with significantly lower cost (Figure 6.1). With a few exceptions, i.e. triangle
pre-splitting [Ernst and Greiner, 2007; Dammertz and Keller, 2008] and tree post-
processing [Kensler, 2008], there has been little research on how to construct BVHs
more optimized for rendering.

As discussed in Section 3.4, the BVH construction algorithm needs to explore
all possible ways to partition the set of primitives S(N) of the node N into S(N) =
SL(N)⊕SR(N) and it needs to choose the partitioning with minimum cost according
to a cost function (usually SAH). Due to the exponential time complexity of this
algorithm, exploring all possible ways to partition the set is impossible except in
trivial cases.

Our first approach at improving the search for a partitioning was similar to [Ng
and Trifonov, 2003]. We used the SAH as a cost function and started by generating a
random partitioning S(N) = SL ⊕ SR(N). Than, we looped over the primitives and
tried to move each primitive p into the other set (i.e. if p was in SL – into SR and vice
versa). If moving the primitive resulted in a lower cost, we kept it in its new set and
restarted the iteration over the primitives. Iteration stopped when no primitive could
be moved to improve the cost. At this point a local minimum was reached. Thus,
to escape it we repeated the randomized partitioning process several times per node.
Furthermore, we also generated one partition using a centroid plane sweep. Finally,
the partitioning of the node was chosen to be the one with minimum cost from all

73 6.1. GEOMETRIC PARTITIONING

generated ones. Generating the centroid plane sweep partitioning as well guaranteed
us that the cost of a split will not exceed that of classical construction [Wald and
Havran, 2006].

We were not able to measure a difference in the final rendering performance of
the trees generated with our approach and the ones produced from the classical
one. However, even though the approach was based on random decisions, it was
able to improve the SAH cost of the partitions generated from the plane sweep for
approximately 2% of the nodes, sometimes considerably. This motivated us to search
for a more reliable way to explore the full space of possible partitions for S(N).

6.1.1 From NP Complete to Polynomial

A key observation for the method presented below is that, if a primitive is overlapped
by both children of a node, according to the SAH it should go to the child with the
smaller probability (i.e. the one with smaller surface area). While this observation is
SAH-specific, the algorithm below will work for any cost function that can determine
the set into which a primitive should go, based only on the bounding boxes of the
left and right child nodes.

According to the observation, if we know the AABBs of the children, we know
exactly how to form SL and SR. This also gives us the basis for an alternative
partitioning algorithm: Instead of testing all 2|S(N)| possibilities of partitioning S(N),
we can test all possible configurations of child AABBs and form SL and SR for each
configuration, in order to calculate the cost. Additionally, each configuration should
be tested for feasibility, i.e. whether the AABB of each primitive in S(N) is contained
in at least one child AABB.

Since we do not allow primitives to be split, the bounding boxes B(NL) and B(NR)
can only start and end at the boundaries of the AABBs of the primitives (Figure 6.2b).
We can interpret an AABB as the volume enclosed by the intersection of six half-
spaces, with planes perpendicular to the major axes Ox, Oy, and Oz. For the
bounding boxes of the child nodes B(NL) and B(NR), each such plane can be chosen
among 2|S(N)| candidates. Thus, for a given S(N), there are O(|S(N)|6) ways to
choose B(NL) and exactly that much for B(NR), which results in O(|S(N)|12) ways
to choose the bounding boxes of both children of N . From now on, we will refer to
a pair of chosen bounding boxes as a configuration.

The number of possible configurations can be further reduced by the observation
that each side of the AABB of the parent is shared by at least one of the child AABBs.
Thus, we have six degrees of freedom for choosing the twelve half-spaces that form
the AABBs of the children.

Once a configuration is formed, in order to form a partitioning of S(N), we need
to distribute the primitives into the AABBs of the configuration according to the
cost function and we need to test the configuration for feasibility. If O(Q) is the
complexity for performing the latter two, finding the best partitioning of a node
w.r.t. SAH requires O(|S(N)|6Q) time. As the build time is dominated by the time
for partitioning the root, the whole build process completes in O(N6Q) time for N
primitives.

CHAPTER 6. CONSTRUCTION OF HIGH QUALITY BVHS 74

S1

Figure 6.2: Geometric partitioning. The set of objects, their bounding boxes and
their boundaries are shown on a). Candidate AABBs picked at object boundaries in
b). Alternatively, candidate AABBs are picked on a grid in c). In d), objects fully
contained in both AABBs are put into the one with smaller surface area, and the
bounds are tightened around the contained sets.

6.1.2 A Grid Approximation

Even though we were able to bring down the cost of construction from exponential to
polynomial the proposed algorithm is still not practically feasible because of the high
degree of the polynomial. We address the issue by introducing an approximation.
Instead of picking the half-space planes at the boundaries of the primitives, we pick
them on a regular grid that divides the corresponding region of space of the parent
node (see Figure 6.2c).

By changing the resolution of the grid we can to control the complexity of the
algorithm. If we choose a resolution that results in a grid with V voxels, the time
for finding the optimal configuration becomes O(V 2Q). Furthermore, by choosing
V = |S(N)|

α
2 , we achieve an adaptive grid resolution and an optimal configuration

can be found in O(|S(N)|αQ). For α ≥ 1, the search time in the root dominates
the build process, and thus the whole construction process takes O(NαQ) with N
being the number of the primitives in the tree. For practical reasons, we aim at a
run time of O(NQ). Thus, we take α = 1 and limit the number of grid voxels to
V = KR

√
|S(N)|, where KR is a constant controlling the grid resolution.

To achieve a voxel shape that is as cubic as possible, we determine the actual
resolution RX ×RY ×RZ of the grid using a binary search on the size of the cube’s

75 6.1. GEOMETRIC PARTITIONING

Algorithm 6.1 Determine the Optimal Grid Resolution

1: function ComputeResolution(N, v)

2: Rx =

⌈
Bxmax(N)− Bxmin(N)

v

⌉
3: Ry =

⌈
Bymax(N)− Bymin(N)

v

⌉
4: Rz =

⌈
Bzmax(N)− Bzmin(N)

v

⌉
5: return (Rx, Ry, Rz)
6: end function
7:

8: function ComputeRightBound(N,K)
9: v ← 1

10: loop
11: (Rx, Ry, Rz)← ComputeResolution(N, v)
12: c← RxRyRz
13: if c ≤ K then break
14: v ← 2v
15: end loop
16: return v
17: end function
18:

19: function ComputeOptimalResolution(N,K, ε)
. K ≡ the desired voxel count
. N ≡ the node
. ε ≡ the epsilon (e.g. 10−6)

20: l← ε
21: r ← ComputeRightBound(N,K)
22: while r − l > ε do
23: m← (l + r)/2
24: (Rx, Ry, Rz)← ComputeResolution(N,m)
25: c← RxRyRz
26: if c < K then r ← m else l← m
27: end while
28: return ComputeResolution(N, l)
29: end function

CHAPTER 6. CONSTRUCTION OF HIGH QUALITY BVHS 76

side v (see Algorithm 6.1). For a fixed v and a node bounding box B(N), we calculate
the resolution of the grid using

Rd =

⌈
Bdmax(N)− Bdmin(N)

v

⌉
, d ∈ {X,Y, Z}

This way we guarantee that the ratio of the resolution of each side is approximately
the same as the ratio of the size of each side of the bounding box: RX : RY : RZ ≈
BXsize(N) : BYsize(N) : BZsize(N).

We search for the value of v that will result in the product RXRYRZ being closest
to KR

√
|S| but not exceeding it if possible. Since decreasing v increases the product,

we set the left boundary of the binary search to some small ε (e.g. 10−5). We than
find a value of v for which the product becomes below KR

√
|S| by starting from v = 1

and doubling v as long as the product is above that limit. We use the so found value
for the right boundary. Finally, we perform the binary search with the so chosen
boundaries and we terminate the search if the distance between the boundaries falls
below ε.

6.1.3 Cost and Feasibility of a Configuration

Until now we have ignored the complexity of determining the cost of a configuration
and whether it is feasible and we have simply denoted it with Q. If we take the naive
approach and examine each primitive, we would obtain Q = N and a total build
run-time of at least O(N2) even after using a grid approximation with α = 1.

Thus, to accelerate the cost and feasibility calculations in the context of SAH we
use an auxiliary BVH over the primitives in S(N). For efficiency reasons, this BVH is
built using a centroid-based split in the middle approach. Each node of the auxiliary
BVH stores the tight bounds of its children as well as the count of primitives in the
sub-tree rooted at the node. Its construction takes O(N logN), with N being the
number of primitives in the node, and does not impact the overall complexity of the
algorithm as we will see below.

To test if a configuration is feasible we need to know if each primitive is covered by
at least one node. To compute the SAH cost of a configuration we need to know the
number of primitives that go into the left respectively right child. We use the auxiliary
BVH to compute both of them. We keep two counters CL and CR for |SL(N)| and
|SR(N)| respectively. Starting from the root of the auxiliary BVH, each traversed
node NA is tested against a number of trivial accept and reject tests, as illustrated in
figure 6.3. If NA is trivially rejected, the configuration is declared as infeasible. If NA

passes an accept test, one of the counters (|CL| or |CR|) is increased with the number
of primitives in the sub-tree below NA. If NA was neither rejected nor accepted, its
children are processed recursively. Once in a leaf, the contained primitives are tested,
and either all primitives are accepted (and |CL| and |CR| updated accordingly) or
the whole configuration is rejected.

Our empirical measurements show that the described algorithm performs a query
in O(

√
N) time on average, with N being again the number of primitives in the node.

Since the number of configurations in a node is Nα with α ≥ 1, finding the optimal
partitioning of the set of primitives is done in at least O(N

3
2). Thus, the O(N logN)

complexity for creating the auxiliary BVH in every node can be ignored.

77 6.2. A GENERIC CONSTRUCTION ALGORITHM

Figure 6.3: Feasibility tests. In a), the node B6 from the auxiliary tree will be
trivially accepted, the node B8 will lead to rejecting the whole configuration, and
the node B7 is undecided and its children will be processed recursively. In b), the
primitives B3, B4, and B5 will be accepted, while the primitives B1 and B2 will lead
to the configuration being rejected.

6.2 A Generic Construction Algorithm

The algorithm from the previous section made it possible to inspect the full search
space of possible ways to partition the primitives of a node in a BVH. In this section,
we are going to extend it to support sharing of primitives in the leafs of a BVH (we
name this an extended BVH).

Besides speed, choosing the bounding boxes of the children on a grid gives us
another very important advantage: we can choose them independent of the actual
primitives in the node. This makes no difference in the context of BVH construction.
The cost function there is piece-wise constant w.r.t. the boundaries of the AABBs of
the children, and thus only changes on the boundary of a primitive. It does however
make a difference in the context of an extended BVH as the cost function becomes
piece-wise linear w.r.t. each side of the child nodes’s AABBs.

In KD-tree construction the cost function was one dimensional and we were able
to identify its potential minimum points. Here, the cost function is rather six di-
mensional and we have no easy way of identifying those locations (nor a guarantee
on their count). Thus, we use our grid approximation and construct a piece-wise
constant approximation of the cost function on it.

The result of modifying our algorithm to handle extended BVHs is a generic con-
struction algorithm that can construct any known and practically usable SAH based
binary tree acceleration structure (e.g. KD-trees, BVHs, BKD-tree [Woop et al.,
2006], BIHs [Wächter and Keller, 2006], etc) by simply tuning a few parameters.

6.2.1 Primitive Splitting

Up to this point, we have considered a configuration feasible, if each primitive is
fully contained in at least one of the child AABBs. We now relax this condition and
require each primitive to be fully contained in the union volume of the child AABBs,

CHAPTER 6. CONSTRUCTION OF HIGH QUALITY BVHS 78

Figure 6.4: Primitive splitting. Even though B(T2) is not completely covered by
either B(NL) or B(NR), the configuration is still considered feasible in a), since T2 is
fully covered by the volume B(NL)∪B(NR). One way to split T2 is to clip it against
each child’s AABB individually as shown in b). Another is to clip it against the
bounding box with smaller surface area and then to form the second bounding box
over the part of the polygon that remains outside as shown in c).

and allow primitives to be split (Figure 6.4). To calculate the SAH cost of a given
configuration, we count each split primitive twice – once in the left and once in the
right child.

The actual splitting can be done in more than one ways. For triangles, we do it by
clipping each triangle with both child AABBs independently. Alternatively, triangles
could be clipped against the AABB of the child with smaller probability and the
remaining geometry stored in the other child (Figure 6.4). Although this will not
affect the SAH cost immediately, it might reduce it in descendant nodes, as their
surface area might shrink. However, numerical instabilities prevented us from using
this method.

6.2.2 Defining the Search Space

When primitive splitting is allowed, the two bounding boxes of a configuration are not
anymore constrained to the bounds of the primitives and can be chosen arbitrarily
inside the parent AABB. To explore this continuous space we approximate it by
a uniform grid. A very important property of this search approach is that if the
grid is fine enough, the search space will examine the configurations used in all
known construction algorithms, including classic BVH construction and KD tree
construction. Thus, in this case the generic algorithm will create the perfect split
according to SAH and no other construction algorithm can create a split with lower
cost.

We can easily force the generic algorithm produce any SAH binary tree based
acceleration structure by modifying the feasibility condition only. To produce a
centroid built BVH for example, we need to modify the feasibility condition to test
that there exists a plane which separates the centroids of the sets SL(N) and SR(N).
To produce a KD-tree, we need to modify the condition to only accept configurations
that partition the space of the parent. A BKD tree would only accept configurations

79 6.2. A GENERIC CONSTRUCTION ALGORITHM

in which the sides of the two AABBs along two of the dimensions coincide with the
parent’s AABB sides.

In practice, we can not afford a fine-enough grid that would capture all known
algorithms. Thus, to make sure we don’t skip configurations with potentially good
costs, we artificially add to the search space the configurations considered by other
well known construction algorithms: the configurations from KD tree construction
and those from classical (centroid based) BVH construction.

6.2.3 The Algorithm

In this section, we summarize the generic construction algorithm. First, as noted in
Section 6.1, besides being able to calculate costs, the cost function needs to be able
to tell if a primitive has to go in NL or NR based only on B(NL) and B(NR). Thus
we use two functions to abstract the cost function:

fC
(
BL,BR, SBVH(N)

)
→ C

fdistr
(
BL,BR, SBVH(N)

)
→ (SL, SR)

Both functions take as parameters the AABBs of a configuration and the set of all
primitives corresponding to the node N , indexed in the auxiliary BVH. The first
function returns the cost of the configuration, where as the second one returns the
sets of primitives of the left and right nodes respectively for the configuration. A
third function

ffeas
(
BL,BR, SBVH(N)

)
→ {true, false}

checks if a configuration is feasible or not. We pass SBVH(N) instead of S(N) to
the above functions for efficiency reasons. If a cost function can not make use of
the BVH, it can still enumerate all primitives in it efficiently, which would be the
equivalent of passing S(N). The function fdistr(.) is equivalent to the sifting process
in previous construction algorithms.

In the context of SAH fC(.) uses the auxiliary BVH, as described in Section 6.1.3, to
efficiently count the number of primitives that fall into the left and right child. Since
the decision whether primitive splitting is allowed is left to the feasibility function,
fC(.) only works with the bounding boxes of the primitives while counting. The cost
is calculated from the counts according to SAH (see equation (3.3)). Pseudo code for
fC(.) can be found in Algorithm 6.2.

In our experiments we used several feasibility functions. We used two basic feasi-
bility functions: fpart and fsplit. The first one accepts a configuration if the AABB
of each primitive is covered by at least one of the children. The second – if each
primitive is covered by the union of the volumes corresponding to the two children.
Furthermore we used the fkd feasibility function that does not allow the bounding
boxes of a configuration to overlap. Since the feasibility functions are boolean, they
can be combined using normal boolean operations. Notice also that the cost, distribu-
tion, and feasibility function are sometimes tightly coupled. This becomes apparent
if we want to mimic the behaviour of classic BVH construction. In that case, all
three functions will need to find a plane that separates the centroids of the primi-
tives going in the left respectively right bounding box. Again, while determining if

CHAPTER 6. CONSTRUCTION OF HIGH QUALITY BVHS 80

Algorithm 6.2 Calculate SAH Cost of Configuration

1: function GetCounts(NA,BL,BR)
2: Bc ← BL ∩ BR . common AABB
3: c← PrimitiveCount(NA)
4: if B(NA) ⊂ Bc then
5: return A(BL) < A(BR) ? {c, 0} : {0, c}
6: else if B(NA) ⊂ BL then
7: return {c, 0}
8: else if B(NA) ⊂ BR then
9: return {0, c}

10: else
11: CL ← 0, CR ← 0
12: if IsLeaf(NA) then
13: for all p ∈ GetPrimitives(NA) do
14: if B(p) ⊂ Bc then
15: if A(BL) < A(BR) then CL ← CL + 1 else CR ← CR + 1
16: else if B(NA) ⊂ BL then
17: CL ← CL + 1
18: else if B(NA) ⊂ BR then
19: CR ← CR + 1
20: else
21: CL ← CL + 1
22: CR ← CR + 1
23: end if
24: end for
25: else
26: (C ′L, C

′
R)← GetCounts(LeftChild(NA),BL,BR)

27: (C ′′L, C
′′
R)← GetCounts(RightChild(NA),BL,BR)

28: CL ← C ′L + C ′R
29: CR ← C ′′L + C ′′R
30: end if
31: return (CL, CR)
32: end if
33: end function
34:

35: function fC(BL,BR, SBVH)

36: (CL, CR)← GetCounts(Root(SBVH),BL,BR)

37: cost← CT + CI
CLA(BL) + CRA(BR)

A(BL ∪ BR)
. According to SAH (3.3)

38: if T
(
cost,BL,BR,PrimitiveCount

(
Root

(
SBVH

)))
then

39: return ∞ . T (.) ≡ termination criteria
40: else
41: return cost
42: end if
43: end function

81 6.2. A GENERIC CONSTRUCTION ALGORITHM

Algorithm 6.3 Generic Construction Algorithm

1: function ConstructTree(B, S(N), SB(N),O, fC , ffeas, fdistr)
2: best← {cost =∞}
3: SBVH ← ConstructAuxilaryBVH (SB(N))

4: for all (BL,BR) ∈ O do

5: if ffeas(BL,BR, SBVH) then

6: c← fC(BL,BR, SBVH)
7: if c < best.cost then best← {BL,BR, cost = c}
8: end if
9: end for

10: if best.cost =∞ then
11: return CreateLeaf(B, S(N))
12: else
13: (SL, SR, SB(NL), SB(NR))← fdistr(best.BL, best.BR, SBVH)

14: NL ← ConstructTree(best.BL, SL, SB(NL),O, ffeas, fdistr)
15: NR ← ConstructTree(best.BR, SR, SB(NR),O, ffeas, fdistr)
16: return ConstructNode(BL,BR, NL, NR)
17: end if
18: end function

a configuration is feasible, we use the auxiliary BVH to reduce the running time of
the algorithm.

Another aspect of our algorithm is the search space. To be able to explore differ-
ent construction algorithms, we have an oracle O(N) which enumerates all possible
configurations for a given node. We used three different basic oracles: OKD(N) ,
OCBVH(N), and OGrid(N), corresponding to the search spaces of a KD tree builder,
a centroid based plane sweep BVH builder, and to the regular grid search space de-
fined in Section 6.2.2 respectively. Furthermore, since an oracle practically returns a
set of configurations, oracles can be combined by using an union over their sets. We
used one compound oracle in our work: OGen = OGrid(N)∪OKD(N)∪OCBVH(N). It
considers all configurations taken by BVH and KD-tree construction and then aug-
ments this search space with a regular grid one, whose resolution is only limited by
the available computational power and the time we are willing to spend in construc-
tion. This guarantees that OGen will always visit at least one configuration which
is as at least as good as the best configuration visited by any previous construction
algorithm.

Our generic algorithm has four parameters: the search space oracle and the three
functions fC , fdistr, and ffeas described above. The algorithm itself is rather simple
(see Algorithm 6.3). It is based on standard recursive top-down construction. For
each processed node, it iterates over all configurations offered by the oracle, and
selects the cheapest feasible one (using ffeas and fC). It then forms the child sets
and bounding boxes through fdistr and recurses. To accelerate the computation of
the cost and feasibility functions, it constructs an auxiliary BVH in advance for each
node.

CHAPTER 6. CONSTRUCTION OF HIGH QUALITY BVHS 82

Early ray Centroid Grid w/ recursive
termination sweep cost evaluation

Surface Area Cost Exp - 142.6 124.0

Traversal Steps yes 62.5 81.0
Intersection Steps yes 15.2 8.0
Ray Cost yes 85.3 93.0

Traversal Steps no 122.3 137.4
Intersection Steps no 48.7 26.7
Ray Cost no 195.3 177.5

Table 6.1: Performance of Sponza with recursive cost evaluation vs. classic con-
struction. The surface area cost does not correlate to the rendering performance (ray
cost) if the rays terminate.

6.3 Patching the SAH

As discussed in the results Section 6.4 below, we implemented the generic construction
algorithm and tested it on a variety of scenes with a variety of settings, measuring
the surface area cost Exp(T) and the traversal characteristics of the produced trees.

To our greatest surprise, not only did the algorithm not improve the traversal
quality of the produced trees, it actually degraded it. Since, our initial goal was
to build better BVHs, we used in our experiments the instance BGP of the generic
algorithm with the following settings: O = OGrid ∪ OCBVH, ffeas = fpart, and for
fdistr and fC we used functions that would put each shared primitive according to
the SAH in the child with smaller surface area (Section 6.1). With the so chosen
oracle, at every node our algorithm did a partitioning that was at least as good as
the one from a centroid based plane sweep construction (a.k.a. BCBVH). For some
of the scenes, it was actually able to find a partition with lower SAH cost for up to
20% of the nodes. However, the produced trees had a higher surface area cost (see
Table 6.2). Puzzled by the behaviour of the algorithm, we also ran experiments with
the more general BGPS instance of the generic algorithm, which uses ffeas = f split,
O = OGen, and functions fdistr and fC that clip each primitive to the bounding box
of the child and take the AABB of the result. Since, this instance of the builder used
a finer oracle, it was able to find even cheaper partitionings of S(N) for some nodes.
The traversal characteristics of the produced trees were however again worse.

The above results showed an inconsistency with the common belief that SAH cost
and surface area cost correlate. Even more, as visible from the table, the better search
resolution we used and the more we improved the SAH at every node, the worse trees
we obtained from our algorithm. Thus the produced trees exposed actually an inverse
correlation. Of course the SAH is only a heuristic, but until now it had functioned
well for all previously known construction algorithms. This lead us to suspect that
the previous algorithms had some unidentified invariant complementary to the SAH
that our algorithm didn’t.

Before searching for this property, we decided to first try to improve the cost
function. The SAH represents an upper limit for the optimal surface area cost which

83 6.3. PATCHING THE SAH

is computed by one level of look-ahead. To improve on SAH, we modified the cost
function to actually build centroid based SAH BVHs for both SL and SR and then
to take the surface area cost of the built trees as their cost (instead of just using the
number of primitives). This way we gave each configuration a much tighter upper
bound for the best possible surface area cost. As we anticipated this new cost function
did improve the surface area cost of the trees produced. Some of the results, namely
for the Sponza scene, are shown in Table 6.1.

Using the new cost function however, we observed an even more interesting fact:
traversal performance and surface area cost of the built trees did not correlate any
more. Similar results have been also reported in [Ng and Trifonov, 2003; Kensler,
2008]. To find the reason of this discrepancy, we modified the traversal algorithm
that we used for testing to conform to the assumptions of the surface area cost
model: namely to enumerate all intersections instead of only the first one. With this
modification, we managed finally to achieve the desired correlation of surface area
cost and traversal performance.

Up to this point, in contrast to the common belief, our experiments had confirmed
that: 1) minimizing SAH locally can have a noticeably adverse effects on the cost of
the whole tree, and 2) minimizing the surface area cost does not by itself guarantee
better rendering performance. On the other hand, with the exception of [Ng and
Trifonov, 2003; Kensler, 2008], all other SAH based construction algorithms do not
seem to have the above two problems. Looking into them, we identified one major
difference. Since they were all based on a plane-sweep, they actually tried to enforce
as good as possible space separation of the child nodes. In our algorithm on the other
hand it was perfectly fine to nest children in each other, as long as the SAH cost was
lower.

Considering the above observations, we formed our main hypothesis: to achieve
good rendering performance of the produced trees, a construction algorithm should
not only aim at minimizing the SAH cost, but also at separating the children of a
node in space. Our intuition is that by doing so, we increase the chances of a ray
to terminate early, which works around the unrealistic assumption in the cost model
that rays will miss all geometry and will never terminate. In contrast, when two child
nodes are nested in each other, even if the ray finds an intersection in one of them,
it still has to process the other one as there might be a closer intersection in it.

To verify our hypothesis, we modified the BGPS builder to enforce space partition-
ing by setting the feasibility function to fkd∧ fsplit. As the results in the next section
show, we were finally able to achieve our goal – i.e. to construct better trees.

6.3.1 Overlap-Aware SAH

Enforcing space partitioning through ffeas is one way of guaranteeing space parti-
tioning but it is unfortunately too restrictive. Similar to centroid plane sweep based
construction, we would like to allow nodes to overlap to some degree. Furthermore,
even though BGP produced worse trees in general, it did produce a better BVH for
the Shirley6 scene. Due to the geometric symmetry in this scene, the classic al-
gorithm [Wald et al., 2007] produced two siblings contained in each other, resulting
in significant overlap (Figure 6.1). The geometric partitioner again found two nodes

CHAPTER 6. CONSTRUCTION OF HIGH QUALITY BVHS 84

nested in each other, but the inner node had much smaller surface area and thus
probability of being hit. Since the partitioning in question was at the root of the
BVH, the traversal performance of the tree built from BGP was around 10% higher
than the one from BCBVH.

To control the overlap, we propose to modify the cost function. To detect if and
to what extent two bounding boxes of a configuration overlap, we look at the ratio
of the volume of their intersection to the volume of their union. If the two boxes do
not overlap, this ratio will be 0. If they coincide with each other, the ratio will be 1.
In all other cases, the ratio will be a value between 0 and 1.

The new cost function is derived from (3.3). If we denote the volume of the
bounding box B with V (B), the cost becomes:

Exp
ESAH

= CT + CI

(
CO

V (BL ∩ BR)

V (BL ∪ BR)
+ 1

)
A(BL)|SL|+A(BR)|SR|

A(BL ∪ BR)
(6.1)

Here, the parameter CO controls the overlap. Setting CO to 0, would make Exp
ESAH

equivalent to Exp
SAH

. Setting it to +∞ (or a very large number), would be equivalent

to using classical SAH as the cost function and to using fkd as the feasibility function
(in the context of the generic construction algorithm). We will show the effect of
values different from 0 and ∞ on various scenes later on in Section 6.4.

Notice that if we use extended SAH as the cost function fC in the generic algorithm,
we also need to account for that in fdistr. Fortunately, we can use the same sifting
function as we use with SAH. If a primitive is shared between the AABBs of a
configuration, fC for Exp

ESAH

will count it in the bounding box with smaller surface area,

which matches the behaviour of fC for Exp
SAH

.

6.4 Results and Discussion

We implemented the above presented generic algorithm in C++. Since even an
O(N

3
2) complexity can result in very large construction times for reasonably large

scenes and large search grid resolutions, we used OpenMPI to make it parallel over
a cluster of computers. We exploited parallelism in both the configuration search
process, by distributing the search for large grids, as well as over the the nodes, by
distributing the construction of sub-trees with relatively few primitives. Since the
target of our research was to create the “perfect” tree, we have not measured exact
build times, which in some cases were very high: for some scenes and grid resolutions
they were as high as 10 hours on over 100 CPU cores.

Our measurements are summarized in Table 6.2 and Table 6.3. We used the fol-
lowing scenes to perform the tests, with respective triangle counts given in brackets:
Bunny (69.5K), Sponza(67.5K), Fairy Forest(191.8K), Conference(282.7K),
Venice(1M), and Soda Hall(2.2M).

We used four types of builders: a classical centroid based builder BCBVH for ref-
erence and three builders based on the generic algorithm. The first one, BGP uses
OGrid ∪ OCBVH as an oracle, SAH for fdistr and fC , and fpart for feasibility. This
builder corresponds to the geometric partitioning algorithm described in Section 6.1

85 6.4. RESULTS AND DISCUSSION

Figure 6.5: The effect of CO in BGen on the tree quality and on the required storage
size. Setting CO to 1.5 (the vertical red line) results in an almost optimal quality,
where as the size increase over BCBVH remains in the range of 1.25× to 2× (the red
rectangle on the right).

and is the one that can find the cheapest way to partition S(N) w.r.t. SAH (from all
possible 2|S(N)| ways to do so). The second builder BGen is the most general of all
builders. It uses the extended SAH from Section 6.3.1 for the cost and distribution
functions and fsplit for feasibility. Its oracle is OGen. Finally we also look at BGenKD

which uses the oracle OKD, a feasibility function fkd ∧ fsplit and the normal SAH for
cost calculation and sifting. The trees produced from this last builder roughly cor-
respond to KD trees, however no empty space nodes are produced, as the bounding
boxes of the nodes are always tight.

In both tables we were interested in the traversal characteristics of the constructed
trees. Beside the surface area cost Exp(T), we also measured the cost Crand1 of
traversing a randomly chosen ray throught the tree. We did so by averaging over one
million rays for each tree. The cost of a ray is computed by counting the number of
traversed tree nodes and the number of intersected primitives and adding the counts,
weighted by the traversal cost CT and the intersection cost CI from (3.1). The same
costs are used during tree construction for the automatic termination criteria. For
all trees we have chosen the commonly accepted values of CI = 1.5 and CT = 1.
Furthermore, we measured the real traversal performance in million rays per second
(MRays/s). We did so for completely random rays (denoted as FPSrand1) as well
as for packets of rays. We measured traversal speed FPS4 for primary rays using
plain 4-wide SIMD packet traversal, range packet traversal FPSrange256 as discussed in
[Wald et al., 2007; Overbeck et al., 2008], and partition packet traversal FPSpart256 as
discussed in [Overbeck et al., 2008]. All measurements were done on a single core of
a Core2 Duo processor, with 6MB of L2 cache and running at 2.5GHz.

Table 6.2 compares the traversal characteristics of BCBVH and BGP. For the
small and mid-sized scenes we used two grid resolution multipliers: KR = 26 and
KR = 212, where as for the large ones, due to excessive construction times, we used
only KR = 26. Note that even with 1 primitive, the grid will have at least 8 cells,
resulting in a fine grid with resolution of 2 × 2 × 2 (for a primitive with uniformly
sized AABB). As discussed in Section 6.3, even though BGP finds cheaper ways to

CHAPTER 6. CONSTRUCTION OF HIGH QUALITY BVHS 86

partition S(N) for many of the nodes, the performance of the built trees is in contrast
inferior to those built by BCBVH.

Table 6.2 compares the traversal characteristics of BCBVH, BGen, BGenKD, and
finally BKD, which is a KD tree builder whose tree has been converted into a BVH,
its nodes refitted to the contained geometry, and empty leafs deleted. For BGen we
use a high overlap value in this set of experiments (CO = 1016). As can be noted from
the table, BGen always produces the best possible trees. In some cases, it increases
the performance of the produced trees by up to 50%. Closely behind is the BGenKD

algorithm. Based on the latter, we will develop in Section 6.5 a new much faster
construction algorithm, that produces identical trees.

One apparent disadvantage of the trees constructed by the builders that allow
primitive sharing is their relatively high storage requirements when compared to
BCBVH. The primary factor that influences the tree size is the overlap factor. Thus,
we ran BGen with different values of CO. Figure 6.5 summarizes our measurements.
Apparently, CO has most effect on the tree quality when its value is in the range
[0, 2]. Values larger than 2 improve the quality only little, but the tree size increases
considerably. Thus, based on our experiments we have found a value of CO = 1.5
to be optimal. With this value, the BVH quality is almost optimal, while its size
increases at most two times for the tested scenes.

Scene Build type Exp Crand1 Trav.rand1 Int.rand1 FPSrand1 FPS4 FPSrange256 FPSpart256

Bunny BCBVH 66.6 32.5 24.7 5.2 0.7 4.4 13.0 11.0
BGP (KR = 26) 68.1 33.7 26.6 4.7 0.7 4.2 12.8 10.4

Sponza BCBVH 142.6 68.3 46.7 14.4 0.4 1.4 8.1 4.8
BGP (KR = 26) 167.1 85.5 54.6 20.6 0.3 0.9 7.7 3.6
BGP (KR = 212) 150.0 75.8 51.0 16.5 0.4 0.8 7.2 3.4

Fairy Forest BCBVH 58.5 33.5 23.6 6.6 1.0 1.9 5.9 5.3
BGP (KR = 26) 68.9 46.9 29.5 11.6 0.7 1.0 3.4 3.6
BGP (KR = 212) 80.7 44.3 27.8 11.0 0.7 1.0 3.3 3.5

Conference BCBVH 86.2 51.3 35.1 10.8 0.6 1.9 6.5 5.8
BGP (KR = 26) 88.0 57.9 40.8 11.4 0.6 1.8 4.8 5.5
BGP (KR = 212) 85.2 54.8 40.8 9.3 0.6 1.9 4.6 5.3

Venice BCBVH 95.0 38.3 29.7 5.7 0.8 1.7 1.9 3.3
BGP (KR = 26) 108.8 61.8 51.1 7.1 0.5 1.0 1.9 2.8

Soda Hall BCBVH 166.0 43.1 36.5 4.4 0.8 2.0 6.6 5.3
BGP (KR = 26) 167.5 56.8 46.7 6.7 0.5 1.5 4.4 4.1

Table 6.2: Performance comparison of several BVHs produced by the geometric partitioner BGP to a BVH built by the classic
centroid sweep construction BCBVH. We have used two different grid resolutions for the BVHs produced by BGP: KR = 26 and
KR = 212.The traversal algorithms we have used for determining the quality of the built BVHs are described in Section 6.4. It
can be seen, that although BGP considers partitions taken from BCBVH at each step and chooses the one with lower SAH cost, the
resulting trees have higher expected cost and lower ray tracing performance. Statistics have been gathered on a single core of an
Intel Core2 Duo processor with image resolution of 10242.

Scene Builder Size Exp Crand1 Trav.rand1 Int.rand1 FPSrand1 FPS4 FPSrange256 FPSpart256

Bunny BCBVH 1.0 Mb 66.6 32.6 24.7 5.2 0.7 4.4 13.0 11.0
BGen 3.1 Mb 67.2 31.6 26.0 3.7 0.8 4.1 7.3 9.3
BGenKD 3.1 Mb 69.0 32.3 26.4 3.9 0.8 4.0 7.5 9.3
BKD 6.6 Mb 95.3 43.7 39.2 3.0 0.7 3.0 6.0 7.0

Sponza BCBVH 1.0 Mb 142.6 68.3 46.7 14.4 0.4 1.4 8.1 4.8
BGen 2.6 Mb 121.2 43.2 32.8 6.9 0.8 2.0 7.6 5.9
BGenKD 2.8 Mb 119.3 43.0 33.5 6.3 0.8 2.0 7.4 5.8
BKD 8.0 Mb 120.7 43.1 38.0 3.4 0.8 1.8 7.3 5.2

Fairy Forest BCBVH 2.5 Mb 58.5 34.0 23.6 6.9 1.0 1.9 5.9 5.1
BGen 12.2 Mb 69.9 36.4 25.1 7.5 1.0 1.9 3.8 5.1
BGenKD 11.6 Mb 70.0 36.3 25.2 7.4 1.0 1.9 3.7 5.1
BKD 15.4 Mb 73.2 37.6 30.8 4.5 0.9 1.7 3.5 4.3

Conference BCBVH 4.1 Mb 86.2 51.3 35.1 10.8 0.6 1.9 6.5 5.8
BGen 4.4 Mb 74.5 36.2 29.9 4.2 1.0 2.1 4.6 5.8
BGenKD 4.2 Mb 74.0 37.2 30.9 4.2 1.0 2.1 4.2 5.7
BKD 30.0 Mb 77.0 39.1 33.1 4.0 0.9 2.0 5.8 5.6

Venice BCBVH 17.7 Mb 95.0 38.3 29.7 5.7 0.8 1.7 2.0 3.3
BGen 86.7 Mb 84.0 29.2 25.0 2.8 1.1 2.1 1.8 3.7
BGenKD 66.8 Mb 86.7 29.6 25.4 2.8 1.2 2.2 1.9 3.9
BKD 141.0 Mb 102.7 35.5 32.3 2.1 1.0 1.9 1.9 3.4

Soda Hall BCBVH 32.4 Mb 166.0 43.1 36.5 4.4 0.8 2.0 6.6 5.3
BGen 152.0 Mb 121.3 23.6 19.5 2.7 1.2 3.2 10.8 8.7
BGenKD 80.0 Mb 126.2 24.6 20.1 3.0 1.2 3.1 10.7 8.7
BKD 252.0 Mb 136.0 29.3 27.6 1.1 1.0 2.8 11.0 7.7

Table 6.3: Comparison of different configurations of our generic BVH construction algorithm. The construction and traversal
algorithms are described in Section 6.4. Performance can be dramatically improved for small packets and incoherent rays, when
space subdivision is enforced. This can also increase tree size which can in turn reduce coherence for large ray packets. All traversal
algorithms benefit from space subdivision on scenes with high geometric and/or depth complexity. Statistics have been gathered
on a single core of an Intel Core2 Duo processor with image resolution of 10242.

89 6.5. A SPATIAL CONSTRUCTION ALGORITHM

6.5 A Spatial Construction Algorithm

The results in Table 6.3 show that BGenKD achieves a quality very close to this of
BGen, which in turn is the algorithm that produces the best trees so far. On the other
hand BGenKD has an important advantage over the latter: due to the oracle we used
in it, the number of configurations that need to be examined in a node is relatively
small: exactly 2|S(N)|. Based on this observation, we have designed a construction
algorithm that produces the same trees as BGenKD but in a much faster way with a
total run-time of O(N log2N). Furthermore, this run-time can further be reduced to
O(N logN) by using the approach from [Wald and Havran, 2006]. And finally the
algorithm can further benefit from the approximate construction methods described
in Chapter 4.

The algorithm is a hybrid between KD-tree construction and BVH construction.
It inherits the event positions and the primitive splitting from KD-tree construction.
That is, it keeps for each node, beside the set of primitives S(N) corresponding to
the node, the set SB = {B(p∩B(N)) | p ∈ S(N)}. From BVHs, it inherits the ability
to have tight bounding boxes around the geometry contained in the children. To this
end, the status of the sweep plane consists of the counts of primitives to the left and
right of the sweep plane, as well as the tightest respective AABB around them. As
with BVHs, to efficiently perform the sweep in O(N), the algorithm does two passes
in both directions to compute the tightest AABBs to the left/right of all events. The
result of this construction process is an extended BVH.

We implemented the above described spatial split builder (a.k.a. BSS) as a proof
of concept. As expected, it performed slightly faster than traditional O(N log2N)
KD-tree construction and much faster than BGenKD. Interestingly it also produced
slightly better trees than BGenKD (and not identical as expected). Investigating the
issue, we found out that this was due to BSS being more numerically stable then
BGenKD. Since the results of BSS were almost identical to BGenKD, we don’t present
them separately here.

One disadvantage of the new algorithm is that it produces trees with large storage
requirements as discussed in the previous section. Unfortunately, it is not possible to
use the overlap penalty in this case to control the tree size. Thus, we used another
solution: Since the increase of storage came primarily because the trees were getting
too deep, we tried to create more shallow trees by tuning the termination threshold
TT of the automatic termination criteria (Section 3.2.2): we stopped construction
once rQ(N) > TT . We were able to find a value for TT for each scene, such that the
increase of size was under two times and the quality of the tree was near the one from
BGenKD, but unfortunately those values were scene dependent. Table 6.4 shows the
results of running our algorithm with different values for TT on the Sponza scene.

Table 6.4 also compares our spatial split algorithm to existing previous work,
namely early split clipping [Ernst and Greiner, 2007] and the edge volume heuristic
[Dammertz and Keller, 2008], on two variants of Sponza scene: the original one and
one rotated around two major axes. It can be seen from the table that on the original
version the pre-split algorithms can not improve the produced BVHs, whereas BSS

improves the rendering performance by more than 50%. Furthermore, no choice of
parameters for the pre-splitting methods can increase performance by more than a

CHAPTER 6. CONSTRUCTION OF HIGH QUALITY BVHS 90

Scene Type Size Exp(T) Costray FPS

Sponza BCBVH 1.0 MB 142 85 0.60
original BEVH (t = 14) 1.0 MB 142 85 0.60

BEVH (t = 16) 1.0 MB 142 85 0.60
BESC (80) 1.1 MB 185 103 0.50
BESC (200) 1.1 MB 167 96 0.55
BGen 2.6 MB 121 63 0.95
BSS 2.8 MB 119 63 0.96

Sponza BCBVH 1.0 MB 144 396 0.11
rotated BEVH (t = 14) 1.3 MB 148 190 0.25

BEVH (t = 16) 1.6 MB 154 170 0.28
BESC (80) 1.3 MB 155 179 0.29
BESC (200) 1.2 MB 147 196 0.26
BGen 11.4 MB 86 100 0.59
BSS 1.5 MB 134 199 0.24
BSS 2.6 MB 120 175 0.27
BSS 4.3 MB 101 134 0.36
BSS 7.7 MB 89 105 0.54
BSS 10.3 MB 87 100 0.57

Table 6.4: Comparison of our construction algorithms to pre-split methods for single
primary rays on two variations of Sponza. The pre-split methods are denoted as
BEVH for the method from [Dammertz and Keller, 2008] and as BESC for the method
from [Ernst and Greiner, 2007]. The parameter in the brackets is the threshold t from
[Dammertz and Keller, 2008] in the first case and the surface area limit SAmax from
[Ernst and Greiner, 2007] in the second. Our algorithms achieve larger speed-up on
both scenes, and pre-splitting methods only help for non-axis-aligned geometry. The
size and quality of SS-BVH can be controlled by the termination criterion.

factor of 3 over BCBVH. Depending on the termination criterion, our spatial split
builder can achieve up to 6 times speed-up, and for the same storage requirements,
the tree performance is comparable to that of the pre-splitting methods.

6.6 Summary

In this chapter we tried to develop a construction algorithm that would create the
“perfect” acceleration structure. To do this, we developed a theoretical framework
that unifies all previously known construction algorithms for SAH based binary tree
acceleration structures. Furthermore, this framework can explore a much larger space
of possible ways to distribute the primitives of a node into its children and it can find
the true optimal split w.r.t. to SAH, which sometimes has a much lower cost then
the ones found by traditional KD-tree and BVH construction.

Based on results obtained from the implementation of this framework, we were also
able to identify a hidden invariant of previous construction algorithms that actually
allowed the surface area cost model, despite being based on false assumptions, to

91 6.6. SUMMARY

correlate with rendering performance. Furthermore, we were able for the first time
to consistently produce trees which had an inverse correlation of surface area cost
and rendering performance.

Based on experiments with the generic algorithm, we have concluded that the
optimal partition strategy for most scenes is to perform space subdivision. Finally,
we have developed a simple and robust SAH-based BVH construction algorithm that
creates trees with close to optimal rendering performance.

Throughout the chapter we point out many directions for future work. We believe
that the most relevant open problem remains the development of a better cost model
for tree construction that can account for early ray termination. This way, explicit
enforcement of space subdivision would no longer be needed, and more optimal trees
could be obtained w.r.t. size and ray tracing performance.

Another possible direction of research is to improve the spatial split building algo-
rithm to produce smaller trees by extending its search space and taking into account
the overlap factor as well. This issue has been addressed partly in [Stich et al., 2009].

CHAPTER 6. CONSTRUCTION OF HIGH QUALITY BVHS 92

93

Part II

GPU Ray Tracing

95

Chapter 7

GPU Ray Tracing Background

The second part of the thesis is dedicated to our contribution to interactive GPU ray
tracing. We present it in Chapter 8 and Chapter 9, but before that we introduce the
necessary background on GPU ray tracing in this chapter. We look into traversal
of acceleration structures in greater detail, as efficient traversal has been the major
show stopper for GPU ray tracing prior to our work. We then discuss the relevant
GPU architectures, their application to general purpose problem solving, and their
limitations. Finally, we present the related work on GPU ray tracing.

7.1 Acceleration Structure Traversal

Given a tree based acceleration structure and a ray R, the job of a traversal algorithm
is to identify the sequence of the leafs intersected by R. A good traversal algorithm
should be efficient, robust, and simple to implement.

For KD-trees the first ray traversal algorithm was developed by Kaplan [1985]. He
also was the the first to use a BSP tree to accelerate ray tracing. The algorithm did
a repetitive computation of a point-location query along the ray path within the KD-
tree and was later called the sequential ray traversal algorithm. Later, Jansen [1986]
introduced a recursive ray traversal algorithm which significantly differed from the
sequential algorithm in the way it identified the nodes of the KD-tree to be visited.
Instead of starting at the root each time, this algorithm recursively descended in
the children of a node along the ray path. Thus, it visited each node at most once
per ray. The algorithm was later on improved in terms of efficiency and robustness
in [Havran, 2000]. Finally, MacDonald and Booth [1989] described a ray traversal
algorithm that uses neighbor-links (a.k.a. ropes) on the faces of the leafs to eliminate
recursion completely. This work was later improved by Havran and Bittner [1998a].

In this section, we look into both sequential and recursive KD-tree traversal. The
first one is the base of previous work on GPU ray tracing, while the second one is
the de facto standard way to traverse a KD-tree on the CPU. We also discuss packet
KD-tree traversal, as it is similar to our work presented in Chapter 8. We leave
the discussion of rope traversal for that chapter as well, so we can look at it after
introducing the programming model limitations of the GPU and after discussing the
previous work in GPU ray tracing. Finally, to give the necessary background for
Chapter 9, we discuss single ray and packet BVH traversal.

CHAPTER 7. GPU RAY TRACING BACKGROUND 96

Algorithm 7.1 Sequential KD-tree Traversal

1: function Intersect(R) . ray R = (RO, RD)
2: (te, tx)← IntersectAABB (R,B(tree root)) . [Kay and Kajiya, 1986]
3: te ← max(0, te)
4: if tx < te then return no intersection
5: PE ← RO + teRD, P ′X ← RO + txRD
6: P = PE

. Step 1 - point location query
7: while P 6= P ′X do
8: N ← tree root
9: PX ← P ′X

10: while N is not leaf do
11: (v, d)← SplitPlane(N)

12: PP ← RO +RD
v −RdO
RdD

13: if PP ∈ B(P, PX) then PX ← PP
14: if P d < v then
15: N ← NL

16: else
17: N ← NR

18: end if
19: end while

. Step 2 - intersect with contained geometry
20: C ← (t =∞) . Best found intersection, t denotes the distance
21: for all p ∈ GetPrimitives(N) do
22: ti ← GetIntersectionDistance(R, p)
23: if ti < C.t then C ← (ti, p)
24: end for
25: Pi ← RO +RD C.t
26: if Pi ∈ B(PE , PX) then return C . Early ray termination

. Step 3 - exit leaf
27: P ← PX
28: end while
29: return no intersection
30: end function

97 7.1. ACCELERATION STRUCTURE TRAVERSAL

7.1.1 Sequential Traversal of KD-trees

One way to regard traversal is as motion, where a point P moves continuously along
the ray, until it either hits a surface or exits the acceleration structure. This is the
principle behind sequential traversal (Algorithm 7.1), which repeats three distinct
steps in a loop. In the first step, it uses a point location query to find the leaf that
contains P . In the second, it intersects the ray with the geometry contained in that
leaf. If an intersection is found, the traversal loop is terminated. Finally, in the
third step, P is advanced along the ray, just past the exit point of the ray from the
leaf. The traversal loop continues as long as P is inside the AABB of the KD-tree.
Sequential traversal assumes that P is initially contained in the tree. In case it is
not, it advances it along the ray to the entry point of the ray in the root’s AABB.

To perform a point location query, the sequential algorithm starts at the root of
the tree and descends down (line 8). Since a split plane Π partitions the space of its
node among the two children, sequential traversal looks at the relation between P
and Π. If P is contained in the positive half-space w.r.t. Π, the algorithm descends
to the right node, otherwise – to the left one. The search terminates, once a leaf is
reached. Since the leafs of a KD-tree form a partitioning of the space of the root,
each point from the scene is contained in exactly one leaf, and it is the one found by
the described search process.

To determine the exit point from a leaf, the sequential traversal algorithm needs
to intersect the ray with the AABB of the leaf. One option would be to store this
AABB together with the leaf, however this would increase the storage requirements
of the tree. A better approach is to compute the intersection implicitly. To do so,
the algorithm keeps a point PX while descending down in the point location step,
such that at any point in time, PX is the exit point of the ray from the currently
processed node. Initially, PX is computed by intersecting the ray with the AABB of
the root (line 9). At each node, it is updated (line 13) by computing the intersection
point of the ray with the current split plane, and assigning it to PX if it lies between
P and PX (i.e. if the intersection point is contained in the AABB defined by P and
PX).

The obvious disadvantage of sequential traversal is that it performs many redun-
dant steps during the point-location search. Even though the paths from the root to
successively visited leafs share usually much of the nodes, the point-location search
still starts from the root and visits each shared node multiple times. Furthermore,
except for the leafs, the exit point calculations are thrown away instead of being
reused for the next point location query.

7.1.2 Early Ray Termination

The sequential algorithm above terminates traversal as soon as it encounters an
intersection contained in the current leaf. This leads to a correct result in this case,
since the leafs of a KD-tree form a space partitioning. Thus, due to the fact that
traversal enumerates the leafs along the ray’s direction, any intersection found in a
leaf beyond will be further away from the ray’s origin and can be safely ignored. This
technique is known as early ray termination.

CHAPTER 7. GPU RAY TRACING BACKGROUND 98

Figure 7.1: Ray distance intervals. In the left picture, the ray intersects the split
plane and its movement is constrained by the interval [te, tp] in NL and by [tp, tx] in
NR. On the right, the ray only intersects NL and its movement is constrained by
[te, tx] for both by NL from N . Furthermore, the traversal order can be determined
by looking at the sign of the ray’s direction along Ox. It is left-to-right for the left
picture and right-to-left for the right one.

As we will see below, early ray termination can be applied to most cases of BSP
traversal, due to the space partitioning nature of the tree. Furthermore, a form of
early ray termination can also be applied to BVH traversal, even though BVHs do not
partition space (see Section 7.1.5). In this case however, it is less efficient, as there
might be leafs that are still unvisited but can contribute with a closer intersection.

For binary visibility queries (i.e. the V (X,Y) function), early ray termination can
be relaxed to accept any intersection contained in the line segment X̄Y . Thus, traver-
sal can terminate even sooner, which further improves the performance (especially
for BVHs).

7.1.3 Recursive Traversal of KD-trees

The disadvantages of sequential traversal are avoided by the recursive ray traver-
sal algorithm (see [Jansen, 1986]) through an interval based approach. Recursive
traversal represents the motion of P as function of the distance t along the ray:
P = RO + tRD with RO being the ray’s origin and RD – its direction. For every
node N intersected by the ray, the movement of P inside N is constrained by the
interval [te, tx], with te and tx being the signed distances to the entry and exit points
(PE and PX) respectively. If the ray intersects the split plane of N , this interval is
partitioned into [te, tp]⊕ [tp, tx] by the node’s children (see Figure 7.1), with tp being
the signed distance to the intersection point PP of the ray with the split plane. If
the ray does not intersect the split plane, it only intersects one of the children of N
and the motion of P is constrained by [te, tx] in this child.

Based on the above observation, the traversal algorithm (Algorithm 7.2) recursively
partitions the ray into segments and visits them in order (w.r.t. the signed distance
along the ray). At each point in time, it keeps the currently visited segment, specified
as a distance interval [te, tx], and the current node N . Initially N is chosen to be the
tree’s root and the interval is computed by intersecting the ray with B(N). If the
ray origin is contained in the AABB of the root, the entry distance is set to 0.

99 7.1. ACCELERATION STRUCTURE TRAVERSAL

Algorithm 7.2 Distance Based Recursive KD-tree Traversal

1: function Intersect(R) . ray R = (RO, RD)
2: travStack ← new stack for storing traversal data
3: N ← tree root

. Using slabs [Kay and Kajiya, 1986]
4: (te, tx)← IntersectAABB (R,B(N))
5: te ← max(0, te)
6: if tx < te then return no intersection
7: loop
8: if N is leaf then
9: C ← (t =∞) . closest intersection, t denotes distance

10: for all p ∈ GetPrimitives(N) do
11: ti ← GetIntersectionDistance(R, p)
12: if ti < C.t then C ← (ti, p)
13: end for
14: if 0 < C.t < tx then return C . Early exit
15: if Empty(travStack) then return no intersection
16: (N, te, tx)← Pop(travStack)
17: else
18: (v, d)← SplitPlane(N)
19: Nnear ← NL, Nfar ← NR

20: if RdD < 0 then Swap(Nnear, Nfar)

21: tp ←
v −RdO
RdD

22: if tx < tp then
23: N ← Nnear

24: else if te > tp then
25: N ← Nfar

26: else
27: Push(travStack, (Nfar, tp, tx))
28: N ← Nnear

29: tx ← tp
30: end if
31: end if
32: end loop
33: end function

CHAPTER 7. GPU RAY TRACING BACKGROUND 100

At each visited node N , the algorithm orders the children as “near” and “far”
w.r.t. to the ray’s direction (line 20; also see Figure 7.1). It does so by looking at
the sign of the ray’s direction along the axis perpendicular to the split plane. It then
computes the distance tp to the intersection of the ray with the node’s split plane.
If tp < te then the near child is not intersected by the ray and thus the algorithm
searches for an intersection in the far child only (line 25). Similarly, if tp > tx the
algorithm searches for intersection in the near child only. If tp ∈ [te, tx] then both
children are visited and the algorithm recursively searches for an intersection in both
of them. It visits first the “near” interval [te, tp], descending into the near child (line
28) and upon return from the recursion, if no intersections has been found, it visits
[tp, tx], descending into the far child (line 16).

Since the traversal algorithm is tail recursive, it is usually implemented in iterative
manner and the tail calls are eliminated. This is also the way we present it in
Algorithm 7.2. The iterative implementation also allows for an efficient early exit
once the closest intersection has been found (line 14), as no stack needs to be unwind.

The above algorithm becomes numerically unstable if any component of the ray
direction approaches 0. Furthermore, if the ray is parallel to any split plane, it doesn’t
work at all. An improved variant of recursive traversal has been presented in [Havran,
2000, Section 5.4.2]. Instead of working with distances along the ray, this algorithm
represents the ray intervals using points (Algorithm 7.3). For each visited segment
of the ray, it keeps the entry and exit points PE and PX . When processing a node,
the algorithm looks at the location of the split plane w.r.t. PX and PE . Assuming
the latter is at offset v from the origin and perpendicular to the axis d, if v < P dE
then the ray only intersects the right child of the current node (line 24). Similarly, if
v > P dX , the ray only intersects the left child (line 22). In both cases the algorithm
descends in the intersected child, keeping the current ray segment unchanged (i.e.
PE and PX). Finally, if P dE ≤ v ≤ P dX , the ray intersects both children, and they are
both traversed recursively (line 25). Again, the order of the children is determined
by the direction of the ray.

Besides numerical stability, the improved recursive traversal has one further ad-
vantage. In the distance based variant, the signed distance to the plane is always
computed, even if the ray only ever traverses one of the children. When working with
points however, this case is detected in advance, saving in this way the computations
required for the ray/plane intersection.

7.1.4 Packet Traversal of KD-trees

As discussed in Section 2.4, packet techniques attempt to emulate multi-threading
using the SIMD units of a processor. In this section, we discuss how to “packetize”
recursive KD-tree traversal (see also [Wald et al., 2001]).

Packet traversal (Algorithm 7.4) is mostly the same as the point variant of recursive
traversal, but processes all rays in the packet against each visited node. Thus, beside
the segments of all rays in the packet (defined through PE and PX for each ray)
and the currently traversed node, the algorithm also keeps an active ray mask. The
latter is a boolean mask, specifying which rays from the packet intersect the currently
processed node. In its original formulation (in [Wald et al., 2001]), the algorithm

101 7.1. ACCELERATION STRUCTURE TRAVERSAL

Algorithm 7.3 Point Based Recursive KD-tree Traversal

1: function Intersect(R) . ray R = (RO, RD)
. Using slabs [Kay and Kajiya, 1986]

2: (te, tx)← IntersectAABB (R,B(N))
3: te ← max(0, te)
4: PE ← RO + teRD, PX ← RO + txRD
5: travStack ← new stack for storing traversal data
6: N ← tree root
7: if tx < te then return no intersection
8: loop
9: if N is leaf then

10: C ← (t =∞) . closest intersection, t denotes distance
11: for all p ∈ GetPrimitives(N) do
12: ti ← GetIntersectionDistance(R, p)
13: if 0 < ti < C.t then C ← (ti, p)
14: end for
15: Pi ← RO +RD C.t
16: if Pi ∈ B(PE , PX) then return C . Early exit
17: if Empty(travStack) then return no intersection
18: (N,PE , PX)← Pop(travStack)
19: else
20: (v, d)← SplitPlane(N)
21: if v > P dX then
22: N ← NL

23: else if v < P dE then
24: N ← NR

25: else
26: Nnear ← NL, Nfar ← NR

27: if RdD < 0 then Swap(Nnear, Nfar)

28: PP ← RO +RD
v −RdO
RdD

29: Push(travStack, (Nfar, PP , PX))
30: N ← Nnear

31: PX ← PP
32: end if
33: end if
34: end loop
35: end function

CHAPTER 7. GPU RAY TRACING BACKGROUND 102

Algorithm 7.4 Packet Traversal for KD-trees

1: function PacketIntersect(~R) . ray packet ~R = (~RO, ~RD)
2: N ← tree root
3: (~te, ~tx)← PacketIntersectAABB

(
~R,B(N)

)
4: ~te ← max((0, 0, . . .), ~te)
5: ~PE ← ~RO + ~te ~RD, ~PX ← ~RO + ~tx ~RD
6: travStack ← new stack for storing traversal data
7: ~C ← (~t = (∞,∞, . . .)) . closest intersection, t denotes distance
8: ~mt ← ~tx < ~te . terminated ray mask
9: ~ma ← ¬ ~mt . active ray mask

10: if All(~mt) then return C
11: loop
12: if N is leaf then
13: for all p ∈ GetPrimitives(N) do
14: ~ti ← PacketGetIntersectionDistance(~R, p)
15: ~mu ← (0, 0, . . .) < ~ti < ~C.t . ~mu ≡ update mask
16: ~C.t← Blend(~mu, (~ti, (p, p, . . .)), ~C.t)
17: end for
18: ~Pi ← ~RO + ~RD ~C.t
19: ~mt ← ~mt ∨ ~Pi ∈ B(~PE , ~PX)
20: if All(~mt) ∨Empty(travStack) then
21: return C . nothing more to traverse
22: else
23: (N, ~PE , ~PX , ~ma)← Pop(travStack)
24: ~ma ← ~ma ∧ ¬ ~mt . account for terminated rays
25: end if
26: else
27: (v, d)← SplitPlane(N)

28: if All
(

(v, v, . . .) > ~P dX ∧ ~ma

)
then

29: N ← NL

30: else if All
(

(v, v, . . .) < ~P dE ∧ ~ma

)
then

31: N ← NR

32: else
33: Nnear ← NL, Nfar ← NR

34: if Any
(
~RdD < 0 ∧ ~ma

)
then Swap(Nnear, Nfar)

35: ~PP ← ~RO + ~RD
(v, v, . . .)− ~RdO

~RdD
36: ~mf ← ma ∧ (~P dX > (v, v, . . .)) . far child active ray mask

37: Push(travStack, (Nfar, ~PP , ~PX , ~mf))

38: ~ma ← ~ma ∧ (~P dE < (v, v, . . .))

39: ~PX ← ~PP , N ← Nnear

40: end if
41: end if
42: end loop
43: end function

103 7.1. ACCELERATION STRUCTURE TRAVERSAL

assumes that either the direction vectors of all rays in the packet belong to the same
octant, or all rays have a common origin. This assumption is necessary to guarantee
that the children of a node will always be processed in the same order by all rays in
the packet.

A node is processed as follows. Using SIMD operations, PX of all rays in the packet
is tested against the split plane. If P dX < v for all rays, then the packet descends
into the left child, keeping the ray segments and the active mask unchanged (line 29).
Similarly, if P dE > v for all rays, the algorithm descends into the right child. If neither
of these is true, then at least one ray of the packet has to traverse both nodes. Thus,
the algorithm first descends recursively in the near child with all rays, updating the
active mask and PX for the rays that require it (line 39). After returning from the
recursion, if a ray in the packet that has to traverse the far child has still found no
intersection, the algorithm descends into the right child (line 23). Which child is near
and which is far is determined by looking at the direction sign of any active ray from
the packet (line 34).

It is easy to see that packet traversal works correctly. Each ray in the packet will
visit at least the nodes that it would visit during single-ray recursive traversal. A
little less obvious is the benefit of using packets. Packet traversal relies on the fact
that SIMD operations execute approximately as fast as scalar operations on current
processor architectures. Thus, if the rays in the packet are coherent (e.g. primary or
shadow rays), then they will most probably visit the same tree nodes and traversal
will be accelerated up to SIMD-width times. In case the packets are fully incoherent,
traversal will still be as fast as single ray traversal.

Another option to emulate multi-threaded traversal using SIMD would be to allow
the rays to traverse the tree independently. This option requires however that the
hardware provides scatter and gather instructions, which is not the case even on the
latest CPU architectures. Furthermore, it is not yet clear whether allowing the rays
to be independent will not hurt other efficiency aspects, such as caching and branch
prediction.

7.1.5 BVH Traversal

The intuition behind BVH traversal (Algorithm 7.5) is simple: if a ray does not
intersect a node, it will not intersect any of its children. Thus, the simplest way to
traverse a BVH is to test if the ray intersects the AABB of the current node, and
in case it does – to descend into both children. A more efficient approach is to also
account for early ray termination, by traversing the BVH in a similar fashion to a
KD-tree. In this case, there are two major differences that have to be accounted for.
First, since the nodes of a BVH can overlap, the segments that they divide the ray
into can overlap as well. Thus, traversal can not terminate as soon as it finds an
intersection in the current leaf. It can however still terminate early, by remembering
the closest found intersection distance, and by only processing subtrees whose entry
distance is smaller than the remembered one (line 8).

The second difference is that each node of a BVH knows its AABB explicitly, which
allows to compute the entry/exit distances directly from the node. This fact can be
used in packet traversal [Wald et al., 2007], to reduce the storage requirements for

CHAPTER 7. GPU RAY TRACING BACKGROUND 104

Algorithm 7.5 BVH Traversal

1: function Intersect(R) . ray R = (RO, RD)
2: travStack ← new stack for storing traversal data
3: C ← (t =∞) . closest intersection, t denotes distance
4: N ← tree root
5: (te, tx)← IntersectAABB (R,B(N))
6: te ← max(0, te)
7: loop
8: if tx < te ∨ C.t < te then

. the node is either not intersected
. or it is behind the closest found primitive

9: if Empty(travStack) then break
10: (N, te, tx)← Pop(travStack)
11: continue
12: end if
13: if N is leaf then
14: for all p ∈ GetPrimitives(N) do
15: ti ← GetIntersectionDistance(R, p)
16: if 0 ≤ ti < C.t then C ← (ti, p)
17: end for
18: if Empty(travStack) then break
19: (N, te, tx)← Pop(travStack)
20: continue
21: else

. Using slabs [Kay and Kajiya, 1986]
22: (te, tx)← IntersectAABB (R,B(NL))

23: (tfe , t
f
x)← IntersectAABB (R,B(NR))

24: N ← NL, Nfar ← NR

25: if te < tne then

26: Swap(te, t
f
e), Swap(tx, t

f
x), Swap(N,Nfar)

27: end if
28: Push(travStack, (Nfar, t

f
e , t

f
x))

29: end if
30: end loop
31: end function

105 7.2. GRAPHICS PROCESSING UNITS

the stack. Since there is no need to store the distances, and since the active ray mask
can also be computed from the AABB of the node, packet traversal only needs to
store a singe node on the stack for the entrire packet (the far one). Furthermore,
computations can also be re-organized, so that the entry distance of a node is com-
puted only once. Alternatively, the direction of the split axis could be stored in the
node [Mahovsky, 2005, Section 4.5]. In this case, the order of the children can be
determined from the ray directions only (in most cases), similar to KD tree traversal.

7.2 Graphics Processing Units

Besides traversal, an equally important ingredient of GPU ray tracing is the under-
standing of the GPU architecture and its applications to general purpose problem
solving. This is the focus of our discussion in this section.

Because of the high demands of graphics applications, GPUs were designed to have
much higher raw computation power and bandwidth than CPUs. However, this was
achieved at the expense of flexibility, and harnessing this power for general purpose
problem solving is hard even with the latest generation of GPUs. Historically, GPUs
have emerged as dedicated rasterization hardware (see also Section 2.2.4). They
offered a fixed function illumination algorithm with fixed function shading, that was
controlled by user specified parameters. Due to the increasing demand on rendering
quality and flexibility, the GPU hardware has evolved since then, first allowing small
programs to run and transform the vertices of the geometry and later on allowing
programmable shading. Current GPUs can be programmed to execute arbitrary
programs, and thus can be viewed as powerful general purpose co-processors with
graphics capabilities.

The first attempts to execute general purpose code on a GPU were made on fixed
function devices. Through clever combinations of blending and texturing logic, the
GPU was treated as a vector machine [Trendall and Stewart, 2000] and was used for
calculating interactive caustics. Adding programmable shading to the GPU lead to
the next step in the general purpose GPU programming (GPGPU), as it broadened
the problems that could be solved there. It also inspired a new wave of GPGPU
research aiming to adapt the solutions to existing computationally intensive problems
to the GPU. In turn, this has lead to the next generation of fully programmable
hardware, as well as to mature programming environments, such as CUDA [NVIDIA
Corporation, 2007], Micrsoft’s Direct Compute, and OpenCL.

For the purposes of this thesis, we will discuss two successive GPU architectures in
detail: GPUs based on Shader Model 3 and those based on the Tesla architecture from
NVIDIA. For completeness, we will also discuss briefly newer NVIDIA architectures
(i.e. Fermi) and architectures from other vendors (i.e. ATI and Intel).

7.2.1 Shader Model 3

Probably the most important step in the GPU evolution w.r.t. ray tracing was the
introduction of hardware that supports DirectX9’s Shader Model 3 (SM3). It added
support for true branching and looping in the pixel shaders, which allowed for a
large class of algorithms with non-trivial branching logic to be executed in a single

CHAPTER 7. GPU RAY TRACING BACKGROUND 106

kernel call. In turn, this considerably reduced the bandwidth requirements of such
programs, as well as the overhead due to multiple kernel launches.

The GPUs from that generation have several limitations. As with any GPU, in
order to deal with the enormous computational demands, they require high amounts
of independent work, which they execute in parallel. Furthermore, they are imple-
mented as very wide SIMD processors, with a SIMD width reaching as high as 1024
for some GPUs. Thus, GPGPU algorithms have to expose very coherent branching
decisions across the independent units of work. Finally, GPUs have no caches and
hide memory access latencies through hardware multi-threading. In order for the
latter to work well, GPGPU programs have to typically perform many arithmetic in-
structions for every word transferred from memory to the chip. A coherent memory
access pattern, at least inside the a SIMD unit of pixels is also advisable, in order
to minimize the high-latency memory requests to the main GPU memory from the
memory controller.

With SM3 hardware, the unit of work is a pixel shader. A GPGPU program
is executed by binding the program to the pixel shader’s stage, binding the input
data to textures and drawing a screen aligned quad. This launches a 2D array of
independent program instances (one for every pixel in the quad). After the draw
operation completes, the render targets contain the output data, which in turn could
be used again as input data to a next draw call by binding it to a texture.

For many algorithms a severe limitation of SM3 hardware is that shaders can
not make any global changes (i.e. write to memory). All values they compute are
discarded, except those that remain stored in a special set of registers upon program
termination. In turn, those registers get eventually written to the render targets.
Shaders in SM3 can be regarded as pure register programs, and since indirect register
addressing is also not allowed in SM3, many common data structures, such as a stack
or queue for example, can not be implemented efficiently inside a shader.

With respect to Whitted style ray tracing, the major SM3 limitation is the inability
to implement a stack. Thus, standard recursive traversal of KD-trees and BVHs can
not be implemented directly. Apart from that, Whitted style ray tracing fits well to
the other requirements and limitations of SM3. It is inherently parallel, so there is
enough independent work to feed the GPU. The rays it traces are to a high degree
coherent, and thus it exposes high coherency in the branching decisions and memory
accesses among neighbouring rays. Finally, even though ray traversal is considered
data intensive, our experiments show that there are enough arithmetic operations to
cover the latency of memory reads (see Section 8.4.3).

7.2.2 The Tesla Architecture

The Tesla architecture [NVIDIA Corporation, 2007] lifted most of the limitations of
previous GPUs. Programs running on it can read and write freely from and to GPU
memory. They can synchronize and communicate among each other. The SIMD
width was reduced substantially to only 32. Finally, Tesla made the transition from
a VLIW architecture (see [Fisher, 1983]) to a more RISC like one, enabling finer
compiler optimizations for non-graphics workloads in this way.

107 7.2. GRAPHICS PROCESSING UNITS

The Tesla GPU is mixture of a SIMD and MIMD machine: it consists of multiple
independent SIMD cores (a.k.a. SMs). The unit of work is a thread and each thread
executes an instance of the same program. Threads are grouped in chunks (a.k.a.
warps) of width 32, which are always executed in SIMD fashion. The chunks them-
selves are grouped into blocks. Computations on the GPU are started from the host
processor, by specifying the program (a.k.a. kernel) that will execute, the number of
threads in a block and the number of blocks.

Each SM can process several blocks in parallel, using time slicing. This allows
the SM to schedule the chunks in an order, that can cover memory and instruction
latencies. As there might be more blocks specified in the launch configuration than
the GPU can handle simultaneously, the GPU waits until an SM has a free block
slot, and assigns the next block to the SM.

The rationale of grouping threads into blocks is to enable efficient inter-block com-
munication. For this purpose, the GPU has a very high bandwidth and low latency
on-chip memory, known as the shared memory. The threads of a block can commu-
nicate with each other using this memory. Additionally, the threads within a block
can synchronize their execution with a block wide barrier. Finally, since the threads
in a chunk are processed in SIMD fashion, any data read or written to the shared
or global memory from one of the threads, will be immediately visible in the next
instruction to all other threads of the chunk. Thus, the execution of the chunk can be
viewed as a CRCW PRAM machine [Fortune and Wyllie, 1978] with 32 processors.

The off-chip memory of Tesla GPUs is logically partitioned into four regions. The
first region, local memory, is itself equally partitioned among all running threads.
It is used to store thread private data. The second one, global memory, is shared
among all threads. The third region, texture space, holds textures and the last one
holds constant memory, which can not be written to during execution.

The different regions of memory are accessed using different instructions with dif-
ferent trade-off. Global memory is the most general type of memory and is accessible
by all threads, but requests to global memory have a very high latency (around 600
processor cycles). Thus, having a high ratio of arithmetic to memory instructions and
a coherent access pattern is very important. On a Tesla GPU, if sequential threads
of a chunk access sequential and suitably aligned addresses (a.k.a. coalesced access),
then the memory controller optimizes the access and issues a large and therefore
efficient and fast request to the off-chip memory. In all other cases, the controller
issues 32 requests, resulting in a memory operation that is 32× more expensive. On
newer class NVIDIA’s GPUs (starting with the GT200 architecture), the memory
controller tries to group the accesses into as few as possible requests, but a coherent
memory access pattern is still very important.

Requests to local memory on the other hand are almost always coalesced. Typically,
all threads of a chunk access the same address in their part of the local memory,
which leads to sequential addresses in physical memory and to a coalesced access.
The design purpose of local memory is to have memory space for spilling registers.
The advantage of using it over manually implementing the same in global memory, is
that local memory is allocated and managed automatically, and less instructions are
needed to calculate the address. The obvious disadvantage of using local memory is
that it is thread private.

CHAPTER 7. GPU RAY TRACING BACKGROUND 108

Texture memory and reading from textures is suitable for reading and filtering
data organized in a 2D or 3D array. Furthermore, texture reads are cached, though
the latter is used for decreasing bandwidth and not latency (as with the CPU). The
disadvantage of textures is that they are read-only.

Finally, constant memory is best suited for passing uniform parameters to the
kernels. It is also cached, and this time for latency, but it is read-only and has a
very limited size (64 KBytes). If the requested data is in the caches, reading from
constant memory is practically free.

The on-chip memory consists of a register file and shared memory. Upon starting
a kernel, the register file is partitioned to all threads that will run on a particular SM
and each thread receives its own set. This way, the SM does not need to save and
restore the state of a thread when switching chunks, since the states of all threads
are disjoint. Similarly, shared memory is partitioned among the blocks running on
the same SM.

The number of running threads on a SM is determined by three factors: the number
of registers requested by the kernel, the size of the shared memory requested by each
block and the number of threads in a block. The above three parameters are known
at kernel launch time and determine the occupancy of the GPU. The latter is the ratio
of the number of threads that a GPU can run simultaneously with these parameters
to the maximum number of threads that a GPU can run. A large ratio helps the
GPU to better cover the instruction and memory latencies. A kernel that requires a
lot of registers or a lot of shared memory will reduce the occupancy, which usually
leads to under utilization of the GPU and lower performance. An explanation of
how to best choose the block size, given the other two parameters, as well as a more
in-depth description of the Tesla architecture is available in [NVIDIA Corporation,
2007]. The first generation of Tesla hardware (a.k.a. the G80) has a 32Kb register
file and 16KB of shared memory per core. Each SM can run up to 768 threads with
hyper-threading. Thus, 100% occupancy can only be reached if each thread does not
use more than 10 registers and 5 words of shared memory.

7.2.3 Fermi and Beyond

Above, we only talk about DX9 GPUs and the Tesla architecture from NVIDIA.
While there are more recent NVIDIA architectures, as well as architectures from
other manufactures (i.e. Intel and AMD), we decided to omit them for reasons stated
below.

At the time of writing, GPUs produced by Intel target the low-cost market seg-
ment. Their computational performance and bandwidth are more than an order of
magnitude lower than current discrete high-end solutions from NVIDIA and AMD.
In fact, Intel’s GPUs share the memory controller with the CPU currently, so their
bandwidth to memory is not higher than the one of the CPU. Furthermore, the the-
oretical peak performance of Intel GPUs is approximately the same as the CPU’s
one (counting all cores). Thus, it is questionable if there is any benefit of using cur-
rent Intel GPUs for ray tracing. There are two further GPU architectures from Intel
that are potentially interesting for ray tracing, namely Larabee [Seiler et al., 2008]

109 7.2. GRAPHICS PROCESSING UNITS

and MIC. Unfortunately, the first one has been cancelled, while processors from the
second are not yet available on the market.

From the perspective of computational power and memory bandwidth, GPUs from
AMD and NVIDIA are more or less equal. However, until recently they differed sig-
nificantly in their architecture. While NVIDIA’s architectures (starting from Tesla)
are more RISC like, those from AMD were still based on VLIW. As a consequence,
AMD GPUs were less suited for programs that involve significant data dependencies
[Zhang et al., 2011] and ray tracing is one of them. This situation might have changed
with the very latest generation of AMD GPUs, which was released recently and has
also transitioned to a RISC like architecture. There is still however not enough data
to confirm that.

Finally, there are newer architectures from NVIDIA as well, but they are simi-
lar to Tesla and we see the changes they introduce as rather incremental. Fermi
[NVIDIA Corporation, 2009], the generation after Tesla adds many performance and
functionality enhancements, including a two level cache hierarchy, new mechanisms
for efficient inter-thread communications, and many performance enhancements for
integer and double precision operations.

7.2.4 CUDA

While the G80 can be seen as the first GPU designed to support general purpose
computing natively, the real breakthrough in the programming model of the GPU
can be attributed to NVIDIA’s CUDA toolkit [NVIDIA Corporation, 2007]. The
latter allows a GPU to be programmed in C++ and in a manner very similar to
multi-threaded CPU programming.

With CUDA, the programmer specifies the kernel using serial code. A GPU pro-
gram is then executed by creating multiple GPU threads, each of which runs the
same kernel. To simplify these tasks, CUDA provides a unified C++ compiler that
allows mixing of CPU (a.k.a. host) and GPU (a.k.a. device) code in the same source
file as well as calls to GPU kernels directly from the host code. It is the task of the
compiler to separate the host and device code and to generate the necessary glue
code.

CUDA introduces several new keywords to C++, which allow the compiler to
distinguish between host and device code and between the different types of memory
used on the GPU. GPU specific run-time operations, such as memory allocation,
device-to-host and host-to-device memory copies, and texture creation, are handled
on the host through a provided run-time library. CUDA also offers a run-time library
for the GPU, which mainly includes mathematical and synchronization routines.
Most of the latter are implemented as intrinsics and are directly converted to their
corresponding GPU instructions by the compiler.

Following the success of CUDA, there have been a number of other frameworks
for native GPU programming, including OpenCL, Microsoft’s DirectCompute, and
lately OpenACC. Their main goal is to address portability between different GPU
architectures. With the first two frameworks, the GPU is programmed in a very
similar fashion to graphics programming: the programmer writes compute shaders
in a domain specific language and manages the GPU memory through buffer-like

CHAPTER 7. GPU RAY TRACING BACKGROUND 110

objects. This has the advantage of a familiar programming model. In fact, Direct-
Compute is part of DirectX and OpenCL has an interface very similar to OpenGL.
There are however some disadvantages to this model: The domain specific language
is less powerful than C++ and does not expose less common instructions (e.g. for
video encoding), which can be very useful for specific tasks; The programmer is bur-
dened with more glue code and more state management; Code for data structures
and functions has to be duplicated for the GPU and the CPU.

The third framework (OpenACC) takes an approach which is similar to OpenMP. It
provides a C++ compiler and allows portions of the code to be annotated as parallel
using pragmas. It is the task of the compiler then to extract the GPU code and
to create the glue code. In many cases using OpenACC is even easier then CUDA,
but the latter is still required in some scenarios, for finer control over the parallelism
and resource management. Unfortunately, OpenACC is currently only supported on
NVIDIA GPUs and on multi-core CPUs, so it can not yet be considered as portable.

7.3 GPU Ray Tracing

Having discussed the common traversal algorithms and the current GPU architec-
tures, we now proceed to GPU ray tracing. In this section we introduce the previous
work, and we will show our contribution in chapters 8 and 9.

The first step toward GPU ray tracing was made in 2002 with the Ray Engine [Carr
et al., 2002]. At that time, the programmability of the GPUs was severely limited
and thus traversing an acceleration structure on the GPU was impractical, and in
most cases even impossible (i.e. for hierarchical structures). Thus, the Ray Engine
implemented only the ray-triangle intersection on the GPU while streaming geometry
from the CPU. This division of labor resulted in high communication costs, which
greatly limited performance.

In the same year Purcell et al. [2002] showed through hardware simulation that
it is indeed possible to overcome this limitation by moving essentially all computa-
tions of ray tracing onto the GPU. The GPU was treated as a stream processor and
each of the different tasks, primary ray generation, acceleration structure traversal,
triangle intersection, shading, and secondary ray generation, was implemented as a
separate streaming kernel. Due to the difficulty of implementing efficient kd-trees,
they chose a simple regular grid as their acceleration structure. A concrete imple-
mentation of their GPU ray tracer was later shown in [Purcell, 2004], running on a
new generation of hardware. The implementation was able to achieve a performance
of roughly 125k rays/s for non-trivial scenes. Its main bottlenecks were the subop-
timal acceleration structure as well as the high bandwidth requirements. This basic
approach to ray tracing on the GPU was the base for several other implementations,
including [Christen, 2005; Karlsson, 2004].

Usage of a better acceleration structure was shown in [Foley and Sugerman, 2005].
They implemented two algorithms: sequential traversal and KD-Backtrack. The first
one is described in Section 7.1.1 and for the second one they store in each node a
pointer to its parent. This way their algorithm does not have to restart at the root
each time, but can rather walk up the tree to locate the next node with unprocessed
children. The back tracking technique was able to improve the absolute performance

111 7.4. SUMMARY

by roughly a factor of 2 (compared to sequential traversal), reaching speeds as high
as 350K rays/second. As with previous GPU ray-tracers, both algorithms remained
heavily bandwidth-limited. Another attempt of using KD-trees for GPU ray tracing
was shown in [Ernst et al., 2004], but the paper does not show any performance
results for non-trivial scenes.

Carr et al. implemented a limited ray tracer on the GPU, based on geometry
images [Carr et al., 2006]. Their implementation supports only a single triangle mesh
without sharp edges, which is difficult to create from most models. For an acceleration
structure, they use a bounding volume hierarchy with a predefined structure. Due
to the limited model support comparing performance is difficult, but for reasonable
model sizes it was not much higher than the above approaches.

The high computation power of the GPU was also utilized to implement ray casting
of piecewise quadratic surfaces [Stoll et al., 2006] and NURBS [Pabst et al., 2006].
However, these papers do not use an acceleration structure.

7.4 Summary

Compared to the CPU ray tracers at that time, and especially to the packet traversal
ones, the above implementations performed consistently slower (by more than an
order of a magnitude). This was despite the fact that GPUs were an order of a
magnitude faster than CPUs, measured in floating point operations per second. Thus,
all research so far was showing that GPUs were not suited for interactive ray tracing.

With the introduction of shader model 3 GPUs, true branching and looping con-
structs became possible. This allowed to substantially reduce the bandwidth re-
quirements of many multi-pass algorithms by reformulating them in a single kernel.
Unfortunately, recursive traversal was not one of them, as shader model 3 did not
provide the means necessary to implement a stack.

The above problem was addressed and solved in two independent publications: our
own [Popov et al., 2007] and [Horn et al., 2007]. They both showed for the first time
that GPU ray tracing is indeed feasible and can be competitive and even superior
to its CPU counterpart. The first publication is part of the research presented in
this thesis. It relies on rope traversal and we present it in detail in Chapter 8. The
second one is an extension of sequential traversal, which it augments with a short
stack containing the last few nodes of the tree path.

In Chapter 8 we also present our research on stackless packet traversal on the
GPU for KD-trees. This work is targeted at the Tesla architecture and uses shared
memory to keep the packet synchronized. Finally in Chapter 9 we present our work
on GPU packet traversal for BVHs. Its results are notable for showing for the first
time that GPU ray tracing is not restricted to small models only. We demonstrated
that by rendering the Power Plant model, consisting of 12 million primitives, at
interactive frame rates. Also, at the time of publication, our BVH ray tracer was the
fastest GPU ray tracer available.

CHAPTER 7. GPU RAY TRACING BACKGROUND 112

113

Chapter 8

Stackless KD-Tree Traversal

Prior to the work in this chapter, limitations in the programming and memory models
of GPUs have kept the performance of GPU ray tracers well below that of their CPU
counterparts. Due to the main bottleneck, namely visibility queries, GPU ray tracers
were not able to process more than a few hundred thousand rays per second. Here,
we present two new algorithms for single ray and packet traversal, that completely
eliminate the need for maintaining a stack during KD-tree traversal and that reduce
the number of traversal steps per ray. While CPUs benefit moderately from the
stackless approach, it improves GPU performance significantly.

The presentation in this chapter follows our paper [Popov et al., 2007]. Even
though the algorithm itself is less relevant in practice today, due to much better ones
being available (see Chapter 9 and [Aila and Laine, 2009]), the work is important
since it was one of the first to show that GPU ray tracing is really competitive to
its CPU counterpart. Furthermore, the single ray rope traversal algorithm presented
here is still the preferred way to achieve interactive frame rates for ray tracing on
DirectX 9 class hardware. According to several unpublished experiments, it seems
to still be the most effective way to perform ray tracing on GPUs based on VLIW
AMD architectures.

We present three main contributions in this chapter: (1) We review and adapt
an efficient, stackless ray traversal algorithm for kd-trees [Havran et al., 1998a]. (2)
Based on this algorithm we present a novel, stackless packet traversal algorithm that
supports arbitrary ray bundles and can handle complex ray configurations efficiently.
(3) We present a GPU implementation of these algorithms that achieves higher per-
formance than comparable CPU ray tracers. The GPU implementation uses the
Compute Unified Device Architecture (CUDA) framework [NVIDIA Corporation,
2007] to compile and run directly on the latest generation of GPUs.

8.1 Related Work

At the time we performed the research in this chapter, KD-trees built according
to SAH were considered as the best known acceleration structure for ray tracing of
static scenes on the CPU. The preferred traversal algorithm in practical applications
was the point version of recursive traversal, presented in Section 7.1.3. As already
discussed, in order to increase memory coherence and save per-ray computations,

CHAPTER 8. STACKLESS KD-TREE TRAVERSAL 114

this algorithm was extended to support tracing of entire ray packets using the SIMD
features of modern CPUs and to even larger groups of rays with the help of frustum
traversal. Because of the success on the CPU, several attempts exist to implement
KD-trees on the GPU. Having introduced them partially in the previous chapter, we
are going to discuss them here in more detail, in order to analyze their weak points.

Ernst et al. [2004] showed an implementation of a (parallel) stack for kd-tree traver-
sal on the GPU, using several kernels executed in a multi-pass fashion. The traversal
procedure was broken in many small kernels, most of which ended at the points
where traversal would do a memory write in the normal algorithm. Each kernel was
executed on all rays and stencil buffers were used to mask kernels for rays that are
currently not active (i.e. have terminated, or want to take a different branch). In
addition, occlusion queries were used to detect if a branch had to be visited at all.
Thus, the algorithm could be viewed indeed as CPU traversal, whose operations are
performed using very wide-SIMD instructions, executed on the GPU. The frequent
kernel switches introduced a high overhead, the bandwidth requirements for storing
intermediate results were huge, and there was a large penalty introduced by the di-
vergence of the taken branches across all rays. Thus, the resulting frame rates were
much too low for interactive ray tracing even for small scenes. Additionally, the
parallel stack consumed large amounts of memory.

One year later, Foley and Sugerman [2005] presented two implementations of stack-
less kd-tree traversal algorithms for the GPU, namely the sequential traversal algo-
rithm (called KD-restart in the paper) and KD-backtrack. Both algorithms clearly
outperformed earlier regular grids on the GPU (i.e. [Purcell et al., 2002]). How-
ever, despite the high GPU compute power and despite the efficient acceleration
structure, they were still not able to outperform the CPU implementations. They
achieved a peak performance of around 300k rays/s for reasonably complex scenes
(i.e. BART Robots and BART Kitchen) on high-end hardware, which was several
times smaller than what CPU ray-tracers could achieve on a single core at that time
[Wald et al., 2003]. Besides bandwidth limitations, another reason for their relative
low performance was the high number of redundant traversal steps.

Independently, and in parallel to the work presented in this chapter, Horn et
al. [2007] developed an interactive GPU ray tracer that achieved similar high per-
formance to ours. They extended the kd-restart algorithm, adding a short stack in
order to avoid some but not all of the redundant traversal steps.

For bounding volume hierarchies Thrane and Simonsen [2005] demonstrated stack-
less BVH traversal on the GPU. They outperformed both regular grids and the kd-
restart and kd-backtrack variants for kd-trees. They used traversal with no early
termination, which allowed them to use one traversal order for all visited nodes for
all rays. To avoid the stack, they simulated a stack “pop” operation by pre-processing
the BVH, adding an “escape link” to each node. Their performance was still inferior
to CPU ray tracing and was limited mainly by the absence of early termination.

8.2 Efficient Stackless KD-Tree Traversal

As demonstrated above, implementing an efficient ray tracer on the GPU that takes
full advantage of its raw processing power is challenging. In particular, an efficient

115 8.2. EFFICIENT STACKLESS KD-TREE TRAVERSAL

Figure 8.1: Ropes of a KD-tree in 2D. The ropes assigned to the left and top sides
of the bounding box of the leaf L3 point to the leafs L1 and L2 respectively. Since
the right side of the bounding box is adjacent to both L5 and L6, its rope points to
the node N5, which contains them both. The bottom side of the bounding box has
no neighbours and thus its rope points to nil.

implementation needs to be based on a stackless design. While the latest GPUs
would allow for a stack to be implemented in a fast but small on-chip memory (a.k.a.
shared memory on NVIDIA’s Tesla architecture), the memory requirements of such
an implementation would most likely prohibit good parallelism. A viable stackless
algorithm should outperform existing algorithms, and should be simple and small
enough to comfortably be implemented in a single GPU kernel in order to avoid
the bandwidth and switching overhead of multi-pass implementations. Additionally,
register usage should be minimized such that optimal parallelism can be achieved on
the latest GPUs (see [NVIDIA Corporation, 2007]).

We base our GPU ray tracing solution on a seemingly little noticed previous ap-
proach to stackless traversal of spatial subdivision trees, which uses the concept of
neighbor cell links [Samet, 1984, 1989; MacDonald and Booth, 1989], or ropes [Havran
et al., 1998a]. In the following, we first discuss the kd-tree with ropes as the basis for
a single ray traversal algorithm. Later, we present our new extension that efficiently
supports the stackless traversal of kd-trees with packets of rays.

8.2.1 Single Ray Stackless KD-Tree Traversal

The main goal of any traversal algorithm is the efficient front-to-back enumeration of
all leaf nodes pierced by the ray. From that point of view, any traversal of inner nodes
of the tree (also called “down traversal”) by a recursive algorithm can be considered
overhead that is only necessary to locate the leafs themselves.

The recursive down traversal step for a KD-tree is only necessary because of the
irregular structure of the latter. In a regular grid for example, all neighbouring
voxels are always known and thus grids are usually traversed using a simple digital
differential analyzer. Something similar can be accomplished for KD-trees using
ropes.

CHAPTER 8. STACKLESS KD-TREE TRAVERSAL 116

Ropes are pointers stored on the six sides of the bounding box of a leaf. A rope
R for the side s of the bounding box of a leaf L, points to a node from the tree that
contains all leafs adjacent to L and shares the plane of s (see Figure 8.1). Faces that
have no adjacent leafs lie on the border of the scene and their ropes point to a special
nil node.

Ropes can be used to eliminate the need of a stack for single ray traversal (see Algo-
rithm 8.1). To this end, motion has to be again represented through the movement of
a point. As with sequential traversal, the first step is to locate the leaf that contains
the current position of the point. This is done through a point location query, which
is a form of binary search and does not require stack. If the ray does not intersect
anything in the leaf, traversal has to continue by advancing the point and locating
a suitable start node for the next point location query (a.k.a. the exit step). This is
where the stack comes into play with recursive traversal, and for sequential traversal
the query always starts at the root. To locate a deep entry node without the use of a
stack, rope traversal first determines the exit point and the exit side, by intersecting
the ray with the AABB of the leaf (line 15). It then follows the rope and starts the
next point location query at the node pointed by it.

With a suitable choice of ropes, the sequence of traversed nodes will match that
of recursive traversal (see Section 8.2.2). Furthermore, we show how to optimize the
ropes for even more efficient traversal than the recursive one (w.r.t. traversal steps).
This idea is discussed in[Havran, 2000, Section 5.3.3] and it is further extended by
placing multiple exit links on each side of the AABB, organized in a two dimensional
KD-tree. With respect to the GPU however, multiple exit links would be less efficient.
Even though they further reduce the total count of traversal steps per ray, their
implementation is more complex and increases the register pressure of the kernels. It
also introduces further points of divergence.

8.2.2 Rope Construction

The only requirement for a rope is to point to a node, that contains all leafs adja-
cent to the rope’s side. This node can be chosen arbitrary as long as it fulfils the
requirement. One option is to set all ropes, excluding those on the boundaries of the
scene, to point to the root. In this case, rope traversal will perform the same steps as
sequential traversal. When constructing a KD-tree with ropes, we will be interested
however if we can reproduce the traversal sequence of recursive KD-tree traversal,
and whether we can do better than that.

Rope construction relies on a simple fact: During construction, each node inherits
five of the six planes of its parent’s AABB. Thus, if we assume that each node can
have ropes attached to its AABB, five of the six ropes can be inherited from the
parent as well. This will not break the above adjacency requirement for the ropes,
as the corresponding five sides of the AABB are smaller or equal to the parent’s
ones. The sixth side lies on the split plane in the parent. Thus, a safe choice for the
rope there is the node’s sibling. This is the base of the rope construction algorithm
(Algorithm 8.2), which works as a post processing step after construction. It starts
initially with the AABB of the root, initializing the six ropes to nil, and visits the
tree in depth-first manner. It computes the AABBs and the nodes as described above
and only stores them in the leafs.

117 8.2. EFFICIENT STACKLESS KD-TREE TRAVERSAL

Algorithm 8.1 Single Ray Stackless KD-Tree Traversal

1: function Intersect(R) . ray R = (RO, RD)
2: N ← the root node . N ≡ current traversed node
3: (te, tx)← IntersectAABB (R,B(N)) . Entry/exit distances

. Computed according to [Kay and Kajiya, 1986]
4: te ← max(0, te)

5: C ← (t =∞) . Best found intersection, t denotes the distance
6: while te < C.t do

. Down traversal (point location query)
7: P ← RO + teRD
8: while ¬ IsLeaf(N) do

9: N ←
{

LeftChild(N) , if P is on left of split plane
RightChild(N) , otherwise

10: end while

. At a leaf. Check for intersection with contained triangles
11: for all p ∈ GetPrimitives(N) do
12: ti ← GetIntersectionDistance(R, p)
13: if 0 < ti < C.t then C ← (ti, p)
14: end for

. The exit step. Use a modified slabs method

15: pe ← PerComponentIf (RD < (0, 0, 0), Bmin(N), Bmax(N))

16: λexit ← pe−RO
RD

. Per-component vector operations

17: sexit ← arg mins∈{1..3}(λexit[s])

18: te ← λexit[sexit]
19: N ← RopeValue(pe[sexit])
20: end while

21: return C
22: end function

CHAPTER 8. STACKLESS KD-TREE TRAVERSAL 118

Algorithm 8.2 Rope Construction and Optimization

1: function OptimizeRope(R, s,B)
. R ≡ the rope, passed by reference

. s ≡ the side of R – 1..3 for Bmin, the rest for Bmax
2: while R does not point to a leaf leaf do
3: N ′ ← node pointed to by R
4: (v, d)← split plane of N ′ (offset and axis)
5: if d = s ∨ d+ 3 = s then . Split plane is parallel to s
6: if s ≤ 3 then R← N ′R else R← N ′L
7: else if Bdmin > v then . The split plane is above B
8: R← N ′R
9: else if Bdmax < v then . The split plane is below B

10: R← N ′L
11: else
12: break
13: end if
14: end while
15: end function

16: procedure ProcessNode(N,R,B)
. N ≡ current node, R ≡ ropes of N

17: if N is leaf then
18: Store RS and B with N
19: Nbounding-box ← AABB
20: else
21: if Rope optimization required then
22: for s ∈ {1..6} do OptimizeRope(R[s], s, B)
23: end if
24: (v, d)← split plane of N (offset and axis)
25: RL ← R, RR ← R,
26: BL ← B, BR ← B,
27: RL[d+ 3]← NR, BL[d+ 3]← v
28: RR[d]← NL, BR[d]← v

29: ProcessNode(NL, RL, BL)
30: ProcessNode(NR, RR, BR)
31: end if
32: end procedure

33: procedure CreateRopes(T)
34: N ← GetRootNode(T)
35: ProcessNode(N, {nil, ...nil︸ ︷︷ ︸

6

}, B(N))

36: end procedure

119 8.2. EFFICIENT STACKLESS KD-TREE TRAVERSAL

Figure 8.2: Rope optimization. Recursive traversal will continue with N1 after
leaving L3 trough the top side. Instead, rope traversal can link the top side of L3

to N3, and can thus continue from a deeper node after exiting L3, resulting in less
traversal steps.

It is easy to see that rope traversal with the above construction algorithm will visit
the exactly same nodes as the recursive one. More interesting is that the ropes can
be “optimized”, so that traversal performs even better than that. The ropes can be
created in such a way, that they point to the deepest possible entry point into the
tree (see Figure 8.2).

To this end, we modify the rope creation (see Algorithm 8.2, function Optimize-
Rope). After assigning the ropes to the AABBs of a node N as described previously,
we try to push each of them as much as possible down the tree. For a rope R pointing
to a node N ′, we look whether it is possible to reroute R to one of the children of N ′.
For this, it is sufficient to look at the split plane of N ′. If the split plane is parallel to
the side s where R is attached, we can safely reroute R (line 5). To decide whether
to take the left or right child, we look whether s is at the minimum or maximum of
the AABB. In case the split plane is perpendicular to s, we can still push down R as
long as the split plane does not intersect s. In this case, if the AABB of N is below
the split plane we push R to the right child (line 7), and otherwise (i.e. when it is
above) – to the left one.

Both the standard way of constructing ropes (which we will refer to as “unopti-
mized”) and the “optimized” one run in O(N) w.r.t. the number of nodes in the
tree.

8.2.3 Stackless Traversal for SIMD Packets of Rays

As we have seen in the previous chapter, packet traversal is a very successful technique
on the CPU. Thus, taking into account that the GPU is in essence a multi-core
SIMD machine, we have developed a new packet rope traversal algorithm for it. Our
algorithm borrows ideas from [Wald et al., 2001] and [Reshetov, 2006]. The purpose
of using packets on the GPU is to reduce off-chip bandwidth, avoid memory fetch
latencies, and eliminate incoherent branches [Houston, 2006]. The algorithm achieves
the above goals by exploiting ray coherence whenever it is present.

CHAPTER 8. STACKLESS KD-TREE TRAVERSAL 120

Our packet traversal algorithm is an extension of its single ray counterpart. It
operates on packets of 32 rays (the SIMD width of the GPU) and processes all rays
in the packet against one node at a time. It works similar to the packet traversal
described in Section 7.1.4, in the sense that it traverses the same sequence of nodes
(if all ray directions are in the same quadrant). As we will discuss below, our packet
algorithm requires unoptimized ropes to work efficiently.

In order to implement the traversal algorithm, each ray of the packet maintains
a separate state. For each ray R, this state consists of the currently traversed node
NC and the corresponding entry point PE . Our stackless packet traversal algorithm
operates on one node NT at a time by processing all rays of the packet against it.
However, only rays that are currently in NT (i.e. where NT = NC) participate in the
computations. We name such rays active rays.

As with single ray rope traversal, our algorithm works in two stages: the down
traversal or point location stage and the exit stage. The first one descends down the
tree, starting from NC until it reaches a leaf. The decision of which child to take for
a particular value of NC (i.e. NL or NR) is taken according to the rules below. These
rules are designed to maximize traversal efficiency. The rules are also illustrated on
Figure 8.3.

1. If the entry points of all active rays are contained in only child A (i.e. they lie
on the same side of the split plane), we descend into that child. In this case,
all rays will either only traverse A or they will first traverse A and then the
sibling node B (Figure 8.3, cases 10 through 15). Thus, by descending into A
we guarantee that it will be visited only once with the packet.

2. If the directions of all active rays, which have their entry point in child node
B, do not point toward the other child A with respect to the splitting axis, we
choose descend into A. In this case, all rays with entry point in A will either
want to only traverse A or they will want to traverse first A and then B (figure
8.3, cases 1, 4, 8, and 9). Those, with entry point in B will only traverse B, so
traversing first A with the packet and then B, will guarantee that each child
will be visited only once.

3. In all other cases, one of the children needs to be traversed twice, whereas the
other – only once. Thus, similar to [Reshetov, 2006], we descend into the child
containing more entry points.

Down traversal stops once a leaf is reached. At this point the algorithm intersects
all rays with the contained geometry. Any ray from the packet that terminates in
this leaf is marked as permanently inactive, by setting its NC to the special outside
node nil. The mark is permanent, since a packet can not visit the nil node, unless
all rays have terminated (see below). As in the single ray case, we determine the
exit point and exit node for each active ray by intersecting it with the axis-aligned
bounding box of the leaf and by following the rope of the exit face. This defines the
new entry points PE and the new current nodes NC for all active rays.

To continue traversal, we now have to exit the leaf (perform an exit step) with
the whole packet. In general, the active rays will not all leave through the same
face, which makes the choice of the next NT hard. Obviously, we need to choose

121 8.2. EFFICIENT STACKLESS KD-TREE TRAVERSAL

Figure 8.3: All cases of entry points and directions of the packet with respect to
the child nodes. In Rows 1-3, both children of the current node contain entry points
of rays. In row 1, all rays with entry points in NL want to traverse first NL and then
NR. In row 2, some of those rays want to traverse first NL then NR and the others
– only NL. In row 3 all such rays want to traverse only NL. For rows 1-3, column 1
contains the cases where all rays with entry points in NR want to traverse only NR,
column 2 – the cases where some want to traverse only NR, while others want to
traverse both NR and NL, and column 3 – those in which all rays with entry points
in NR want to traverse first NR and then NL. In cases 1 and 4, the packet traversal
can save work if it first descends into NL and then NR, where as in cases 8 and 9
– NR and then NL. In cases 2, 3, 5, 6, and 7, the traversal order is not important.
Rows 4 and 5 contain the cases when the entry points of all rays fall within the same
node. Thus in row 4, the traversal algorithm has to descend first in NL, while in row
5 – in NR.

CHAPTER 8. STACKLESS KD-TREE TRAVERSAL 122

from the set S of current nodes for the non-terminated rays of the packet (i.e. S =
{NC | NC 6= nil}). If all rays have terminated S will be empty and we can terminate
the traversal for the whole packet.

We can choose any node from S and still obtain correct traversal behavior. How-
ever, we want to guarantee efficiency, at least in the coherent case (i.e. when the
directions of all rays in the packet belong to the same quadrant). Thus, we want to
regroup the rays of the packet so that no node is processed twice. To this end, we
assume that the rays are indeed coherent. We observe that according to the above
rules, the rays can only regroup at a node Nfar, if the packet has finished processing
the subtree of its sibling Nnear. This has two consequences: we need to always choose
the deepest node in S for the next TC , and we need to use unoptimized ropes. The
latter is required in order to detect when the subtree Nnear has been fully processed.
With unoptimized ropes, this check is performed by simply looking at the deepest
node in S. If that node is Nfar or higher, processing of Nnear has finished. With
optimized ropes, the rays that finish working in the sub-tree of Nnear might skip Nfar

and jump directly somewhere deep in its sub-tree. Note also, that no two distinct
elements of S can be at the same depth (which can be proven by induction). This
guarantees that the deepest node is only one.

For efficiency reasons, we do not keep the depth of the nodes explicitly in our
algorithm. We rather rely on a property of the construction algorithm. Since the
tree is constructed in depth first order, the memory occupied by a node precedes any
memory of its descendants. Thus, nodes deeper in the tree are at higher memory
addresses than their ancestors. To choose the deepest node from S, we simply choose
the node with largest address. Also, to simplify the detection of packet termination,
we give the special node nil an address in memory that is smaller than the address
of the root of the tree. Thus, checking if S is empty becomes equivalent to checking
if NT is nil.

Our packet traversal algorithm was designed for NVIDIA’s Tesla architecture.
Thus, we use the PRAM programming model for a concurrent read concurrent write
(CRCW) machine [Fortune and Wyllie, 1978] to describe it in pseudo-code (Algo-
rithm 8.3). As already discussed (see Section 7.2.2), this model is very close to the
actual hardware implementation of the latest GPUs. In the algorithm, we make use
of standard PRAM reduction techniques to perform parallel OR, parallel SUM, and
parallel maximum over the SIMD unit of the GPU. A parallel OR returns the dis-
junction of a given condition over all processors of the PRAM machine and runs in
O(1). The other two reduction operations return the sum respectively the maximum
of a given value over the processors. They are known as scan operations and run in
O(logP), with P being the number of processors.

8.3 Implementation

We implemented two variants of the ray tracing algorithm: One based on single ray
rope traversal and one based on packet rope traversal. Both variants were imple-
mented on top of CUDA [NVIDIA Corporation, 2007] and as a proof of concept
we implemented the single ray variant on top of DirectX 9. We also implemented
Whitted style ray tracing on top of each traversal method. In the CUDA versions,

123 8.3. IMPLEMENTATION

Algorithm 8.3 PRAM Stackless Packet Traversal for KD-Trees

1: function FindIntersection(R) . ray R = (RO, RD)
2: NC ← the root node of the KD-tree . NC ≡ current node for ray
3: (te, tx)← R ∩ B(NC) . Entry/exit distance for ray
4: te ← max(0, te)
5: C ← (t =∞) . Best found intersection, t denotes the distance
6: loop
7: if tx ≥ te then NC ← nil . Ray has terminated

. NT ≡ node processed by packet
. Choose deepest NC from all rays. Part of exit stage

8: NT ← PramMax(AddressInMem(NC))
9: if NT = nil then break . No more active rays

10: PE ← RO + teRD

11: while ¬IsLeaf(NT) do . The down traversal stage
12: (v, d)← SplitPlane(NT) . (offset, axis)
13: (NL, NR)← GetChildren(NT)
14: active← NC = NT

15: if active then . Ray is active. Advance NC

16: if P dE < v then NC ← NL else NC ← NR

17: end if

18: b1← PramOr
(
active ∧ P dE < v ∧RdD > 0

)
. Rule 1

19: b2← ¬PramOr
(
active ∧ P dE ≥ v

)
. Rule 2

20: v3←


−1 , active ∧ P dE < v
1 , active ∧ P dE ≥ v
0 , ¬active

21: b3← PramSum(v3) < 0 . Rule 3

22: if b1 ∨ b2 ∨ b3 then NT ← NL else NT ← NR

23: end while
. The exit step

24: if NC = NT then
25: Intersect R with NC ’s geometry; update CT . Alg. 8.1, ln. 11
26: Update te and NC as with single ray . Alg. 8.1, ln. 15
27: end if
28: end loop
29: return CT
30: end function

CHAPTER 8. STACKLESS KD-TREE TRAVERSAL 124

Figure 8.4: Organizing the KD-tree nodes in treelets in memory allows for higher
memory coherence and increases the cache hit ratio.

the entire ray tracing routine was implemented in a single kernel, whereas the DX9
version was implemented using the multi-pass approach with the following kernels:
primary ray generation, ray-scene intersection, shading, and secondary ray genera-
tion. The implementation of the single ray traversal follows Algorithm 8.1 literally.

For our packet traversal algorithm we map one ray to one thread and we exploit
the SIMD structure provided by the GPU by mapping one packet to one SIMD unit.
Horizontal operations, such as choosing the next node to traverse by the packet are
carried through PRAM reduction operations over the high-bandwidth low-latency
shared memory of the GPU.

At the time we wrote our paper presented in this chapter, GPUs had very limited
memory caching support through L2 texture caches, and this support was not exposed
in CUDA. Thus, to speed-up our traversal algorithm, we implemented a mechanism
for read-ahead to shared memory, whose purpose was to reduce the number of round
trips to off-chip memory required to bring in the data of the nodes. The mechanism
works by reading a block of data simultaneously, using all threads of a SIMD unit and
reading consecutive addresses in consecutive threads (base address + thread index in
warp). This way, the data of a whole node can be brought into shared memory with
a single request only. Furthermore, the mechanism also achieves read-ahead, since
it reads more data then the node actually requires. Since the tree is constructed in
DFS manner, the data for few of the nodes on the path starting from the current
node and going only left is brought in as well. This increases the chances that the
data required for the next traversal or intersection steps is already in shared memory
when requested and no further memory request will be required.

We also reorganized the storage of the tree to benefit further from the read-ahead.
First, we store the geometry data of the leaf together with its AABB and its ropes,
to increase the chance of having the data in shared memory at the beginning of an
exit step. Second, we store the internal nodes in treelets similar to [Havran, 1997].
A treelet is a sub-tree of fixed depth with nodes stored together in memory (see
Figure 8.4). Thus, because of the read-ahead optimization, accessing the root of a
treelet during down traversal, will also bring in the nodes that will be accessed in the
next few down traversal steps, saving bandwidth and round-trips to off-chip memory.
Even though we change the memory layout of the tree in this way, the argument that
deeper nodes will have larger addresses than their ancestors still hold.

125 8.4. RESULTS AND DISCUSSION

Figure 8.5: The test scenes and their respective view points: Shirley6, Bunny,
Fairy Forest, ans Conference. The frame rates for rendering the above images
on a GeForce 8800GTX, at a resolution of 512 × 512 with full illumination and
materials were 3.5, 18.7, 10.3, and 15 respectively.

8.4 Results and Discussion

To evaluate the proposed stackless traversal algorithms we implemented them both
on the GPU and also on the CPU as a reference. For the measurements presented in
this section we used an AMD 2.6GHz Opteron workstation for the CPU implemen-
tation and for the GPU one we used another workstation equipped with a NVIDIA
GeForce 8800 GTX graphics card. Both the CPU and GPU were considered high-end
hardware at the time this research was performed.

We tested our implementations using a variety of scenes, ranging from simple to
reasonably complex: Shirley6, Bunny, Fairy Forest, and Conference. The
scenes and the viewpoints for the tests can be seen on Figure 8.5. More statistical
data for the scenes is available in Table 8.2.

8.4.1 Memory Requirements

One apparent disadvantage of stackless traversal is the increased storage requirements
for the ropes and the bounding boxes of the leafs. However, assuming a compact
representation with 8 bytes per node [Wald, 2004], the KD-tree with ropes can not
be more than a factor of 4 larger. To show this, we take the ratio of the size SN of a
kd-tree without ropes to the size SR of a kd tree with ropes:

1 ≤ SR
SN

=
48N + 8(2N − 1) + 4

∑
ri

8(2N − 1) + 4
∑

ri
< 4 for

∑
ri > 2

were N is the number of leafs and ri is the number of triangles referenced by leaf i.
We assume that we need 4 bytes per reference. The first term in SR is the overhead
of the rope storage.

In practice we encountered a ratio of about 3 (Table 8.2). Although this factor
seems high in relation to the kd-tree alone, if all the other data is regarded, such as
precomputed data for fast triangle intersections, vertex attributes and textures, the
factor becomes substantially lower. Thus, the memory overhead of storing the ropes
is often reasonable in comparison to the overall memory requirements.

CHAPTER 8. STACKLESS KD-TREE TRAVERSAL 126

8.4.2 Traversal Steps

Table 8.3 summarizes the average number of traversal steps needed to intersect a ray
with the scene for several algorithms: recursive traversal, sequential traversal, single
ray rope traversal with optimized ropes and finally packet rope traversal. We also
compare to sequential traversal as it is the traversal algorithm used in the previously
fastest GPU ray tracer [Foley and Sugerman, 2005].

The measurements clearly show that single ray rope traversal saves up to 5/6 of
all down traversal steps compared to sequential traversal. Furthermore, the down
traversal of kd-restart/kd-backtrack from [Foley and Sugerman, 2005] is more expen-
sive as both algorithms need to intersect the ray with the split plane, in contrast to
the simple point location query, performed by our stackless traversal algorithm.

Ray traversal can be further optimized by using the fact that single ray rope
traversal does not require a stack to keep track of what needs to be visited next.
Instead the state of a ray only consists of its current node and its entry point. Thus,
if the traversal knows a deeper initial entry node it can start directly there.

This fact can be exploited for rays with common origin (as in the case of a pinhole
camera) to drastically reduce the number of down traversal steps. Instead of starting
from the root for every ray, we can first find the leaf that contains the common origin
and then start there with each ray. Combined with optimized ropes, this saves up
to 2/3 of the down traversal steps in practice, compared to recursive traversal (see
Table 8.3). Furthermore, a similar trick can be applied to secondary rays: We know
the leaf where traversal should start, since the origin of the ray is actually the result
of a ray/scene intersection.

Similar approaches have also been taken in [Reshetov et al., 2005] and later on
in [Benthin, 2006; Wald et al., 2006a, 2007]. In particular, the entry point search
of [Reshetov et al., 2005] is close to the above optimization. However it does not
start at a leaf in the general case and it thus amortizes the down traversal cost over
a smaller number of rays.

Packet Traversal

Compared to single ray, packets perform more traversal steps (see Table 8.3). On the
other hand, packet traversal is characterized by very coherent memory access and
by coherent branch decisions. Thus, on the GPU it outperforms single ray traversal
for most scenes (Table 8.1). Its main disadvantage when implemented on a GPU
becomes the large packet size, dictated by the SIMD size of the GPU.

On the CPU, stackless packet traversal is slower than single ray traversal. One
reason is the relatively large size of the CPU cache and the implicit read-ahead. Thus,
a coherent memory access pattern is not as important as on the GPU. Another reason
is the code divergence within a GPU warp with single ray traversal. This is not an
issue on the CPU, which is MIMD, but can seriously reduce performance on the
GPU. Also, using SIMD for the packets on the CPU cannot improve performance
a lot, since the single ray implementation already uses SIMD instructions where
appropriate. Thus, the overhead introduced by packets becomes an issue.

127 8.4. RESULTS AND DISCUSSION

OpenRT CPU GPU

Scene FPf FPs FPp FPs FPp FSs FSp
Shirley6 6.6 3.80 3.49 10.6 36.0 4.8 12.7
Bunny — 2.16 1.71 8.9 12.7 4.9 5.9
FairyForest 3.6 1.57 1.27 5.0 10.6 2.5 4.0
Conference 3.9 2.14 1.78 6.1 16.7 2.7 6.7

Table 8.1: Absolute performance for single ray and packet stackless traversal on the
CPU and the GPU. Performance is given in frames per second at resolution 1024×
1024, including shading. A subscript “s” denotes single ray stackless traversal, “p”
denotes packet stackless traversal, and “f” denotes frustum stack based traversal. A
superscript “P” denotes primary rays only, while “S” denotes primary and secondary
rays. For the latter we use one point light source for all scenes. Conference was ray
traced with a reflective table, taking approximately 1/6 of the screen. For comparison
we also list the OpenRT performance data with 4×4 rays/packet and frustum culling
from [Wald et al., 2007].

8.4.3 Absolute Performance

The absolute performance of our GPU ray tracer in frames per second is summarized
in Table 8.1. For the most complex of the tested scenes, namely Conference, we
achieve nearly 17 FPS for primary rays with eye-light shading. At the time the
research was performed, this was a large improvement over the maximum of 400
thousand rays per second achieved by previous work. Furthermore, our algorithm
was not bound by bandwidth like previous ones. To reach to this conclusion, we
performed tests by under and overclocking separately the GPU and its memory. We
noticed that the performance of our algorithm scales with the GPU clock but not
with the memory one.

Our results were also an improvement over CPU ray tracing. Comparing to
OpenRT [Wald, 2004] running on a single core of a high-end Opteron CPU, we were
able to achieve a speedup of 3-6× for most scenes. At that time OpenRT was one
of the industry standard CPU based ray tracers. Our GPU ray tracer had similar
performance to a CPU ray tracer running on four CPU cores. Note however that
in contrast to the wide availability of GPUs, machines with four CPU cores at the
time of writing were uncommon, expensive and primarily used as high end worksta-
tions or servers. Interestingly, the situation has not changed with time. With the
latest generation of hardware, today’s GPU ray tracers are still almost an order of
magnitude faster than their GPU counterparts.

In general CPU based ray tracers have been shown to achieve higher perfor-
mance by using more advanced traversal methods, most notably frustum culling
techniques [Reshetov et al., 2005; Benthin, 2006; Wald et al., 2006a, 2007]. However,
these frustum methods are usually not flexible, since all rays of a packet have to share
a common origin and their directions need to have the same signs. Furthermore, even
if secondary rays are supported, tracing them with frustums will be much slower than
for primary rays [Boulos et al., 2007]. Our implementation kept an almost constant
ray throughput independent of the ray generation, which was not the case with the

CHAPTER 8. STACKLESS KD-TREE TRAVERSAL 128

CPU implementation (not shown in the table). Secondary rays were almost twice
slower in OperRT, due to the fact that OpenRT used frustum culling for primary
rays (as showed in [Wald et al., 2007]), which it could not use for secondary rays.

We also compare our performance to the work of Horn et al [Horn et al., 2007],
a competing GPU ray tracer which was independently developed in parallel to ours.
Their ray tracer achieves 15.2M primary rays/s in the Conference scene. Using
the same view our GPU implementation traces 22M rays/s. However, note that the
difference in speed might be due to the different hardware we have used.

8.5 Summary

Probably the biggest contribution of the work presented in this chapter was to show
that in fact real-time GPU ray tracing is possible and feasible. Furthermore, ropes are
probably still the best way to do fast ray tracing on hardware that can not support
a stack (i.e. DX9 class hardware).

The packet traversal algorithm shown here has been superseded by our shared
stack BVH traversal (see Chapter 9). Later on, research has shown that unlike on
CPUs, packets on the GPU make less sense, because of the large SIMD width, and
that the fastest traversal is indeed a single ray one [Aila and Laine, 2009].

Our implementation for this paper was limited in many ways. The occupancy was
low due to the small register file of the Tesla architecture, texture caches were not
available, and the CUDA compiler was still in a pre-release stage, and thus it was
unstable and did not optimize code well. Furthermore, there was no profiler available,
and the coalescing rules of the GPU were not documented. Thus, as it turned out
later, our algorithm was in practice doing uncoalesced reads.

In the light of the above, it would be interesting to revisit single rope traversal on
the GPU. The optimized traversal sequence that it offers, together with the ability
to start traversal at a leaf might offer better performance than even the one in [Aila
and Laine, 2009].

Another interesting direction for future work is the development of packet traversal
algorithms that exploit ideas of frustum test and interval arithmetic to amortize
traversal decisions over many rays and thus to further improve performance for certain
sets of rays (e.g. primary and shadow).

Scene Tris Leafs Empty Leafs References Size Size w/ Ropes Rope Overhead

Shirley6 0.8 K 3 K 1 K 1.86 82.4 KB 266 KB 3.23
Bunny 69 K 349 K 183 K 2.53 6.9 MB 23 MB 3.30

Fairy Forest 174 K 721 K 382 K 3.01 14.9 MB 48 MB 3.22
Conference 282 K 1.24 M 515 K 3.13 27.8 MB 85 MB 3.06

Table 8.2: Used test scenes together with statistical data of the SAH KD-tree. The average number of references to triangles per
non-empty leaf is denoted as “references’. Ropes increase the KD-tree size approximately 3 times.

Recursive Trav. Sequential Trav. Single Ray Stackless Trav. Packet Stackless

Scene Ndown Npops Ndown Nrestart Ndown NENS
down NOPT

down Nexits Ndown Nexits

Shirley6 17.5 3.64 30.9 3.64 17.5 11.5 6.23 3.64 12.0 3.64
Bunny 24.3 4.82 81.0 4.94 24.5 24.5 20.9 4.94 31.0 7.57
FairyForest 38.9 7.97 105 7.97 39.0 33.0 25.3 7.97 39.9 10.6
Conference 33.2 6.64 82.9 6.64 33.2 22.2 13.0 6.64 25.6 7.71

Table 8.3: Number of steps for the different kd-tree traversal algorithms for primary rays. The down traversal steps are denoted
with Ndown, whereas the up-traversal steps that rely on a stack pop, restart, or leaf exit are denoted with Npops, Nrestart, and Nexits

respectively. The down traversal steps for traversal that starts at a leaf (due to initial entry node search) are further marked with
“ENS”, and those for optimized ropes – with “OPT”. All numbers are given as per ray average.

CHAPTER 8. STACKLESS KD-TREE TRAVERSAL 130

131

Chapter 9

Shared Stack BVH Traversal

The work in this chapter follows our paper [Günther et al., 2007], where we present a
new BVH packet traversal algorithm designed especially for the GPU. By allowing the
rays to share the same traversal stack, our algorithm makes it possible to recursively
traverse a BVH while keeping the stack in on-chip memory.

9.1 Background

As discussed in Section 7.3, the traversal of hierarchical acceleration structures has
been historically difficult on the GPU, because of its recursive nature. To efficiently
support recursion, traversal algorithms require a stack, but the limitations of Di-
rectX9 and older hardware have made its implementation nearly impossible. With
the introduction of the Tesla architecture from NVIDIA, it became possible to sup-
port random writes to GPU memory. However, due to the high latency of off-chip
memory and the absence of memory caches, an efficient stack implementation was
sill regarded as infeasible.

Before the method presented here, there have been multiple attempts at GPU ray
tracing (see Sections 7.3 and 8.1). Among them only our work from the previous
chapter and the work of Horn et al. [2007] were able to really achieve interactive
frame rates. However, both of them were limited to medium-sized static scenes,
mostly due to the use of KD-trees as an acceleration structure. This is because, on
one hand KD-trees are slow to build and do not allow dynamic changes and refitting
like BVHs, and on the other – their storage requirement is high due to the primitive
duplication in the leafs. Additionally, using ropes as we did in the previous chapter
further increases this requirements.

Recently, BVHs have become the acceleration structure of choice for interactive
ray tracing. Built the right way, their performance is similar to the one of a KD-tree
[Wald et al., 2007]. Furthermore, in contrast to a KD-tree, their size is determined
only by the number of primitives as there is no primitive duplication in the leafs.
Finally, they are much better suited for accelerating the ray tracing of animated
scenes [Wald et al., 2007].

This is why we focus on GPU traversal of BVHs in this chapter. As already
discussed, there have been two previous attempts for that: [Carr et al., 2006] and
[Thrane and Simonsen, 2005]. The first work was based on geometry images and

CHAPTER 9. SHARED STACK BVH TRAVERSAL 132

was thus limited to scenes consisting of a single closed mesh only. The second work
did not have scene limitations, but its performance was limited. This was mainly
because it did not support ordered BVH traversal and early ray termination.

9.2 The Traversal Algorithm

In our approach, we use BVHs built according to SAH and in contrast to [Thrane
and Simonsen, 2005] we support ordered, view dependent traversal.

To avoid the per-ray stack, previous GPU ray tracing implementations augmented
the spatial indexing data structure in a way such that they could directly traverse
from one node to another along the ray direction (see Chapter 8 and [Thrane and
Simonsen, 2005]). Alternatively, they needed to restart traversal after each visited
leaf [Foley and Sugerman, 2005]. This resulted in either a large spatial indexing
structure or in sub-optimal traversal.

We solve the above problems by taking a different approach. Instead of fully
removing the stack, we reduce its size to the point where it can fit in the shared
memory of a GPU. We achieve this by using a BVH as an acceleration structure and
by tracing the rays together in a packet.

As discussed in Section 7.1.5, BVHs are traversed in recursive manner, starting
from the root and visiting only the subtrees of nodes that are intersected by the ray.
The order of visiting the nodes is not important in the sense that any order will lead
to the correct result. However, the most efficient traversal is obtained by ordering
the nodes along the ray, according to the ray’s entry distance. As discussed, this is
achieved by looking locally at the entry distance to the two children while processing
a node. Alternatively, the axis of maximum separation could be stored [Mahovsky,
2005] in the node, which saves computations during traversal but can sometimes lead
to incorrect order for the children.

The key observation that enables our algorithm to work is that BVH traversal does
not need to store the entry or exit distances or points in the traversal stack. They
can be computed on the fly, since the AABB is always stored with the node. Thus,
the per-ray traversal stack only holds pointers to the far nodes that still need to be
traversed. Applied to packet traversal, this means again that the stack needs to hold
only the far nodes that have to be visited by the packet in the future. Thus, if we use
32 bit pointers to the nodes (which is the case, because of the limited GPU memory),
the amortized storage requirement of a ray becomes exactly 1 bit per node.

Our algorithm (see Algorithm 9.1) maps one ray to one thread and thus one packet
to one SIMD width warp. It traverses the tree synchronously with the whole packet,
working on one node at a time and processing the whole packet against it. If the node
is a leaf, it intersects the rays in the packet with the contained geometry. Each thread
keeps the distance to the closest intersected primitive found so far in a variable. If a
closer primitive is found in the leaf, this variable is updated.

If the currently visited node is not a leaf, the algorithm intersects all rays of the
packet with both children to determine the entry/exit distances. Each ray determines
for itself which of the two children it intersects and in case it intersects both, in which
order it wants to visit them (line 18). We use the slabs test [Kay and Kajiya, 1986]
to determine if a ray intersects a node. In case it does, we also compare the entry

133 9.2. THE TRAVERSAL ALGORITHM

Algorithm 9.1 Shared Stack BVH Traversal

1: function ParallelRead(D)
. Reads D in parallel, assuming that |D| < 32

2: it ← index of thread in warp
3: T ← shared memory of size |D|
4: if it < |D| then T [it]← D[it]
5: return T
6: end function

7: function Intersect(R) . ray R = (RO, RD)
8: N ← pointer to the BVH root . Currently processed node
9: C ← (t =∞) . Closest intersection, t denotes distance

10: S ← the traversal stack stored in shared memory
11: loop
12: if N is leaf then
13: Intersect R with contained geometry, updating C if necessary
14: if StackIsEmpty(S) then break
15: N ← PopFromStack(S) . Only thread 0 updates the top of S
16: else

. NL and NR are stored in shared memory
17: (NL, NR)← ParallelRead(GetChildPointers(N))
18: (λ1, λ2)← R ∩ B(NL) . using [Kay and Kajiya, 1986]
19: (µ1, µ2)← R ∩ B(NR)
20: b1 ← (λ1 < λ2) ∧ (λ1 < C.t) ∧ (λ2 ≥ 0) . Ray visits NL

21: b2 ← (µ1 < µ2) ∧ (µ1 < C.t) ∧ (µ2 ≥ 0) . Ray visits NR

22: B1 ← PramOr(b1) . Packet visits NL

23: B2 ← PramOr(b2) . Packet visits NR

24: if B1 ∧B2 then

25: v ←


−1 , b1 ∧ (λ1 < µ1 ∨ ¬b2)
0 , ¬b1 ∧ ¬b2
1 , otherwise

. v ≡ ray’s vote

26: (NN , NF)← (NL, NR)
27: if PramSum(v) ≤ 0 then Swap(NN , NF)
28: if first thread in warp then PushStack(S,NF)
29: N ← NN

30: else if B1 then
31: N ← NL

32: else if B2 then
33: N ← NR

34: else
35: if StackIsEmpty(S) then break
36: N ← PopFromStack(S) . Only thread 0 updates the top of S
37: end if
38: end if
39: end loop
40: end function

CHAPTER 9. SHARED STACK BVH TRAVERSAL 134

distance of the ray to the closest so far found intersection distance. A ray only visits
a node if the latter distance is larger than the first. Each ray that visits both children
determines their order by comparing the respective entry distances.

Once each ray knows which children it wants to visit and in what order, the
algorithm has to decide how to continue with the whole packet. If none of the
rays wants to visit any of the two children, the algorithm takes the next node from
the stack. In case some rays want to visit one child and none wants to visit the other
one, this child becomes the next traversed node. Otherwise, if both nodes have to
visited and all rays agree on a traversal order, the far node is put on the stack and the
near one becomes the next visited node. Finally, if none of the previous conditions
are met, then both nodes have to be traversed and the order of traversal is irrelevant
(traversal is correct with any order, but potentially slower).

After the algorithm processes a leaf or if it processes a node where none of the rays
wants to visit any of the two children, the next node to be traversed is taken from
the stack. If the stack is empty at that point the algorithm terminates.

9.2.1 Voting

To order the children of a node, based on the traversal preferences of packet’s rays,
we use a voting process and PRAM reduction (line 25). Each thread votes with -1 if
it wants to visit the left node first or only the left node, with 1 if it wants to visit the
right one first (or only the right one) and with 0 if it does not want to visit any of
the nodes. Then, the packet takes the sum of all votes and visits the left one first, if
this sum is smaller than 1 and the right one otherwise. The sum is computed using a
PRAM prefix sum in O(logN) and takes exactly 5 steps for the 32-wide SIMD unit
of the Tesla architecture.

It is easy to see that the above presented voting scheme always takes the right
decision when both nodes have to be traversed. In case all rays that visit the current
node (a.k.a. active rays) want to intersect both its children and they want to do it
in the same order, the voting scheme will choose the near node correctly and the
traversal will be able to make use of the entry distance in the far node for early ray
termination. In case there is an incoherent decision, i.e. one ray wants to traverse
left-to-right while another wants to traverse right-to-left, both children have to be
visited anyway, so the order is not important. In case some of the active rays want to
traverse only the child N1 and the rest want to traverse both, but with N1 first, the
voting will again choose N1 as near, enabling the traversal to skip the sibling of N1

using early termination. In case some active rays want to traverse again only N1 and
the rest want to traverse both nodes but with N1 as a far child, both children must
be visited anyway, so their order does not matter. Finally, if some nodes want to
traverse only the left child and some want to traverse only the right one, the traversal
order is again not important.

The above voting scheme is used to determine the traversal order only in case both
children have to be traversed. To determine which of the two children need to be
actually traversed, our algorithm again uses voting implemented through a PRAM
OR operation, running in O(1). First, each ray votes with one if it wants to traverse

135 9.3. RESULTS AND DISCUSSION

KD-Tree w/ Ropes Shared Stack BVH
scene primary +2ndary primary +shadow

Fairy Forest 10.6 4.0 13.2 (14.6) 4.8
Conference 16.7 6.7 16 (19) 6.1
Soda Hall — — 13.6 (16.2) 5.7
Power Plant — — 6.4 2.9

Table 9.1: Absolute ray tracing performance of our BVH-based GPU ray tracer.
We measure the frames per second (FPS) on a NVIDIA Geforce GTX 8800 GPU
at resolution 1024×1024. We compare it to the fastest previous GPU ray tracer
(Chapter 8). Primary rays are eye-light shaded. Additionally we report performance
numbers when illuminating with a single point light and tracing shadow rays. The
numbers in brackets denote the FPS when using a precomputed triangle projection
test [Wald et al., 2001].

the left node. Then, in a second vote, it votes with one it it wants to traverse the
right node.

9.3 Results and Discussion

We implemented the above algorithm inside a Whitted style ray-tracer. We used
NVIDIA’s CUDA [NVIDIA Corporation, 2007] and implemented the whole ray trac-
ing pipeline in a single kernel. Even though we used the same CUDA compiler version
as in the previous chapter, which was still in beta and did not aid us too much in
reducing the register count, we were able to reach 63% occupancy of the GPU for
primary rays with eye light shading and 38% with full Phong shading with shadows
and multiple light sources. We did not tune our code additionally to reduce the
register count.

To intersect the packet with a triangle, we use the general packet intersection
algorithm presented in [Kensler and Shirley, 2006]. Our algorithm carries out all
ray independent computations of the intersection using the first six threads of a
warp (i.e. 6-wide SIMD). We work with the raw geometry directly and the only pre-
computed data structure that our ray tracer relies on is the BVH. Even though this
decreases rendering speed by approximately 20%, compared to using a fast projected
intersection test [Wald et al., 2001], it allows us to update the geometry and ray trace
deformable scenes. Furthermore it allows us to store larger scenes in the size-limited
GPU memory.

Table 9.1 presents the absolute ray tracing performance (excluding BVH construc-
tion time) of our GPU ray tracer for the scenes and viewpoints presented in Fig-
ure 9.1. For all our tests we have used a workstation equipped with a NVIDIA
Geforce 8800GTX GPU. The table also compares the performance to the ray tracer
from the previous chapter, running on the same hardware. Although kd-trees are
usually more efficient for ray tracing than BVHs (see [Havran, 2000]) on the CPU,
the BVH ray tracer actually achieves comparable and even slightly faster frame rates
on the GPU. One obvious reason is that our parallel BVH traversal algorithm has

CHAPTER 9. SHARED STACK BVH TRAVERSAL 136

Figure 9.1: From left to right and top to bottom: Fairy Forest, Conference,
Soda Hall, and Power Plant, rendered on a GeForce 8800GTX at 1024× 1024,
with one light source and respective frame rates of 4.8, 6.1, 5.7, and 2.9 FPS.

Figure 9.2: Visualization of the SIMD utilization during traversal of the complex
Power Plant scene. Brightness indicates the percentage of inactive traversal steps.

137 9.4. SUMMARY

a less complex implementation and uses less live registers and thus we get a higher
GPU utilization of 63% compared to the 33% of Chapter 8 for primary rays. An-
other possible reason is that BVHs, being shallower than KD-trees, introduce less
divergence and are thus more packet and GPU friendly.

Naturally, the efficiency of our packet traversal algorithm depends on the coherence
of the traversal decisions of the rays in a packet. In Figure 9.2 we display the ratio of
inactive traversal steps of a ray to the number of all traversal steps of its packet. The
incoherent traversal decisions are clearly visible on the object boundaries. For the
two shown views of the complex Power Plant scene the average SIMD utilization
is still about 88% and 85%, respectively.

9.4 Summary

In this chapter we presented a packet traversal algorithm for BVHs that amortizes
the storage requirements of the traversal stack over all rays and is thus very well
adapted to GPU implementations. Besides showing the fastest GPU ray tracer at
the time this research was done, the main contributions of the work presented in this
chapter and in our paper [Günther et al., 2007] were: 1) showing for the first time
that BVHs are actually not only viable for GPU ray tracing but they are actually
the fastest alternative and 2) considerably pushing the limit of the scene size that
GPU ray tracing can handle (by almost two orders of magnitude). Currently, BVHs
are still considered as the best choice of acceleration structure for GPU ray tracing
on modern hardware.

As of today there are more efficient methods for traversing BVHs on the GPU
(e.g. [Aila and Laine, 2009]) and we discuss them in Chapter 10. Nevertheless, the
preferred acceleration structure for GPU ray tracing remains the BVH.

CHAPTER 9. SHARED STACK BVH TRAVERSAL 138

139

Part III

Conclusion

141

Chapter 10

Conclusion

In this thesis, we tried to achieve two interconnected goals: develop new fast con-
struction algorithms that would allow dynamic scenes to be ray traced at interactive
speeds; and bring interactive ray-tracing to the commodity computer. To this end, we
developed two new fast construction algorithms for KD-trees and BVHs (Chapter 4
and Chapter 5); we studied and improved the construction of acceleration structures
w.r.t. traversal performance (Chapter 6); and we developed several new traversal al-
gorithms for KD-trees and BVHs, specifically tailored to the GPU (Chapter 8 and
Chapter 9). In this chapter, we will discuss shortly to what extent we were able to
fulfill our goals with the presented work, how relevant the latter is as of today (i.e.
several years later), and how it has evolved in follow-up work.

Fast Acceleration Structure Construction

Our extended algorithm from Chapter 4 remains in our opinion the fastest way to
construct highly optimized KD-trees on the CPU.

In our implementation we were not able to achieve interactive speeds except in the
case of small models. This issue is addressed in a follow-up implementation, presented
in [Shevtsov et al., 2007], which is able to build a KD tree even for large models (i.e.
Soda Hall with 2 million polygons) several times per second. This is achieved by
a carefully optimized parallel implementation and a parallel initial decomposition.

Ideas from our KD-tree construction algorithm have also been used for parallel
construction of SAH KD-trees on the GPU in [Danilewski et al., 2010]. There, the
authors develop several alternative binning construction techniques. For each node
they select one of them, based on the number of primitives in the node. This way,
they perform efficient load balancing and achieve optimal GPU usage.

With regard to our fast BVH construction algorithm, there are two related papers
that we would like to mention, namely [Wald, 2007; Lauterbach et al., 2009]. The
first one, which was developed independently and in parallel to ours, explores the
same problem and proposes a very similar solution. The second shows among others
a GPU construction algorithm based on our work.

Performance-wise, we think that our algorithm and also [Wald, 2007], are still
the fastest ways to build a SAH based BVH on the CPU. Even though there are
two faster BVH construction algorithms, namely the LBVH [Lauterbach et al., 2009]
and HLBVH [Pantaleoni and Luebke, 2010], they are not based on SAH, but rather

CHAPTER 10. CONCLUSION 142

on a form of split in the middle. In the first one, this results in almost an order of
magnitude slower traversal on all non-scanned models. The second one is an extension
to the first that allows for deeper LBVHs to be built. Unfortunately, due to the way
the authors present the results and due to the chosen scenes, it is not known how
their traversal performance compares to a SAH built BVH.

Construction of Optimized Acceleration Structures

Interestingly, the initial goal of our work in Chapter 6 was to develop an algorithm
which can construct BVHs in a non-greedy way. We expected to improve their
traversal performance in this way. As described in that chapter however, even though
we achieved this goal, the results did not meet our expectations. This motivated
the further research presented there, which lead to a new acceleration structure, its
construction algorithm, and an interesting conclusions about the SAH cost function.

Independent and in parallel to our work, Stich et al [2009] developed an algorithm
which constructs trees with very similar performance to ours and in a similar fashion
to our spatial construction algorithm (Section 6.5). Their solution is currently built
into the Optix ray tracing framework [Parker et al., 2010] and the BVHs it produces
are regarded as the most optimal acceleration structures for GPU traversal.

GPU Ray Tracing

With regard to GPU ray tracing, we think that our work from chapters 8 and 9
achieves its goals, bringing interactive ray tracing to commodity desktop computers.
In the recent years our work has been largely superseded by [Aila and Laine, 2009].
The latter introduces several single-ray traversal algorithms that considerably out-
perform our packet based ones, even for primary rays. As a result, it further increases
the performance gap between GPU and CPU ray tracing. Even though there is no
consensus currently how large this gap is, in our opinion ray tracing based rendering
runs approximately an order of magnitude faster on the GPU than on all cores to-
gether of a modern CPU. We base this statement on recent unpublished experiments
of ours, for which we use recursive Whitted style ray tracing combined with instant
radiosity and direct Monte-Carlo illumination sampling. The hardware we test on is
a NVIDIA Quadro 6000 GPU and an Intel Core i7 2600K CPU, running at 4.3Ghz.

Final Words

At present, real-time ray tracing on commodity computers has become a fact. Even
more, it has been recognized by many big companies involved in graphics, and some
of them already provide commercially developed libraries for it (e.g. NVIDIA’s Optix
and Intel’s Embree). However, ray tracing is still not fast enough. Even the fastest
ray tracers today provide a budget of only a few rays-per-pixel-per-frame for real-
time rendering. And while this might be enough for some scenarios of Whitted style
ray tracing, it is definitely not enough for more advanced rendering algorithms (i.e.
for global illumination).

In our opinion, interactive rendering based on ray tracing will continue to evolve.
On one hand, the underlying implementation will get continually faster, through the

143

introduction of faster and more efficient hardware and through better ray-tracing
algorithms. This low-level research will be performed mainly by the hardware com-
panies. On the other hand, researchers and companies that use this technology will
be the driving force of new rendering algorithms, that push the limit of what can be
done with the currently available ray-budget.

In our opinion, it is this second direction that is currently exciting to explore.
Besides for physically correct rendering, interactive ray tracing can be used as a tool
for efficient sampling. This opens the door to a whole new and unexplored area of
interactive rendering algorithms, that render approximate solutions but are based on
physically correct principals. These algorithms will be able to correctly approximate
“difficult” light transport effects, previously impossible with rasterization, and they
will considerably further enhance the realism of interactive applications.

CHAPTER 10. CONCLUSION 144

145

Appendix A

Proofs

A.1 Numerical Stability of In-Place Sifting

As mentioned in Section 4.5.4, there is no guarantee that a point falling in bin i will
really be between the samples vi and vi+1 (i.e. x ∈

[
vi(x), vi(x)+1

)
), since calculations

are performed with limited precision. We prove here, that calculating the bin number
with the floating point unit set to round-down and calculating the sample position
in round-up mode will yield the desired results.

A floating point unit (FPU) of a CPU works on a discrete set of representable real
numbers F = f0 < f1 < . . . < fN . Usually, f0 = −∞, fN = ∞, and all other
numbers are rational. The FPU has several rounding modes, and for each of them it
uses a set of operators over F . We are interested here in the round-down and round-
up modes and their respective sets of operators ◦̂ and ◦̌ with ◦ ∈ {+,−, ∗, /, b c, d e}.
The result of a ◦̌ b for a binary operator, or respectively ◦ a for a unary one, is the
highest representable number that is less or equal to a ◦ b respectively ◦ a. The same
is true for the round up version ◦̂ of the operator, where the lowest representable
number that is greater or equal to the exact result is taken instead.

For our proof, we will need the four lemmas below. Since the first two are easy to
prove, we will only state them here.

Lemma A.1.1. Either a ◦̌ b < a ◦ b < a ◦̂ b or a ◦̌ b = a ◦ b = a ◦̂ b. In any case,
it holds that a ◦̌ b ≤ a ◦ b ≤ a ◦̂ b. Furthermore, a ◦̌ b and a ◦̂ b are two consecutive
representable numbers, and there is no representable number between them.

Lemma A.1.2. If a1 ≤ a2 then a1 ◦̌ b ≤ a2 ◦̌ b and a1 ◦̂ b ≤ a2 ◦̂ b for any ◦ ∈
{+,−, ∗, /}. Furthermore ◦̌ a1 ≤ ◦̌ a2 and ◦̂ a1 ≤ ◦̂ a2 for the unary operator ◦ ∈
{b c, d e}.

Lemma A.1.3. Let f(a, bN , . . . , b1) be a function that can be defined in the following

APPENDIX A. PROOFS 146

manner:

f(a, b1, . . . , bM) = fN (a, b1, . . . , bM)

fi(a, b1, . . . , bi) =

{
fi−1(a, b1, . . . , bi−1) ◦i bi , for binary operators
◦i fi−1(a, b1, . . . , bi) , for unary operators

f0(a) = a

with ◦i ∈ {+,−, ∗, /, b c, d e}. In this case, if a1 ≤ a2 then

f̌(a1, b1, . . . , bM) ≤ f̌(a2, b1, . . . , bM)

f̂(a1, b1, . . . , bM) ≤ f̂(a2, b1, . . . , bM)

In the above, we have denoted with f̌(.) and f̂(.) the functions obtained by replacing
each operator in f(.) with its repsective round-up and round-down equivalent

Proof. The proof follows from Lemma A.1.2 by induction.

Lemma A.1.4. Let ◦ be a binary operator from the set {+,−, ∗, /} and let � be its
inverse (i.e. (a ◦ b) � b = a). It holds that for any a and b from F

(a ◦̌ b) �̂ b ≤ a ≤ (a ◦̂ b) �̌ b (A.1)

Proof. We will first prove that (a ◦̌ b) �̂ b ≤ a. From Lemma A.1.1 we obtain that
either

f1 = (a ◦̌ b) �̌ b < (a ◦̌ b) � b︸ ︷︷ ︸
f2

< (a ◦̌ b) �̂ b = f3 (A.2)

or
f1 = (a ◦̌ b) �̌ b = (a ◦̌ b) � b︸ ︷︷ ︸

f2

= (a ◦̌ b) �̂ b = f3 (A.3)

From Lemma A.1.1, it holds that a ◦̌ b ≤ a◦b and thus f2 = (a ◦̌ b)�b ≤ (a◦b)�b = a.
It is easy to see, that if (A.3) holds then f3 = f2 ≤ a. In the case that (A.2) holds,
either f1 < f2 ≤ a < f3, or f1 < f2 < f3 ≤ a. According to Lemma A.1.1, there
is no representable number between f1 and f3. However a is representable which
makes the first inequality impossible. Thus, it holds that f3 ≤ a, which proves that
(a ◦̌ b) �̂ b ≤ a in all cases. The second part of (A.1), namely that a ≤ (a ◦̂ b) �̌ b can
be proven analogically, by applying Lemma A.1.1 to the � operator in (a ◦̂ b) � b.

We will now prove our original claim. For this purpose we revisit the functions
v(i) and i(x) and slightly modify them:

S = b -̌ a

j(x) = (M ∗ (x− a)) /S

i(x) = bj(x)c

v(i) = ((i ∗ S)/M)− a

147 A.1. NUMERICAL STABILITY OF IN-PLACE SIFTING

The modification consists in always calculating S in the same rounding mode. What
we want to prove is that

v̂
(̌
i(x)

)
≤ x < v̂

(̌
i(x) + 1

)
(A.4)

We assume here that both integers ǐ(x) and ǐ(x) + 1 are representable, which is the
case in our algorithm, since the number of bins is small and we use 32-bit floating
point numbers [IEEE, 2008].

To prove (A.4), we look at the sequence F = {f0 < f1 < . . . < fN} of all repre-
sentable numbers, such that ǐ(fk) = i0 for an arbitrary fixed i0.

We first observe that F contains all representable numbers in the range [f0, fN].
To prove this, let f be such that f0 < f < fN . Applying Lemma A.1.3 to ǐ(x), we
obtain that ǐ(f0) ≤ ǐ(f) ≤ ǐ(fN), which can only be possible if i(f) = i0.

With this observation, proving A.4 becomes equivalent to proving

f−1 < v̂
(̌
i(f0)

)
≤ f0 (A.5)

with f−1 being the previous representable number before f0.
The right side of (A.5) follows from A.1.4 and A.1.2.

v̂
(̌
i(f0)

)
= v̂

(⌊
ǰ(f0)

⌋)
≤ v̂

(
ǰ(f0)

)
= (A.6)

= (((((f0 -̌ a) *̌M) /̌S) *̂S︸ ︷︷ ︸
A.1.4

) /̂M) +̂ a ≤ (A.7)

≤ (((f0 -̌ a) *̌M) /̂M︸ ︷︷ ︸
A.1.4

) +̂ a ≤ (A.8)

≤ (f0 -̌ a) +̂ a︸ ︷︷ ︸
A.1.4

≤ f0 (A.9)

To prove the left side of (A.5), we assume the contrary, i.e. f−1 ≥ v̂
(̌
i(f0)

)
. From

Lemma A.1.3, ǰ(f−1) ≥ ǰ
(
v̂
(̌
i(f0)

))
and from A.1.4, ǰ

(
v̂
(̌
i(f0)

))
≥ ǐ(f0). Thus,

ǰ(f−1) ≥ ǐ(f0). From A.1.3, ǰ(f0) ≥ ǰ(f−1). Thus ǰ(f0) ≥ ǰ(f−1) ≥ ǐ(f0), which
implies that ǐ(f−1) = ǐ(f0), as i(.) is the floor of f(.). This is however not possible,
due to the way we defined f0 and f−1. We have reached a contradiction, which proves
that the left side of (A.5) is correct.

APPENDIX A. PROOFS 148

149

Appendix B

Common Notation

A(R) The surface are of the convex shape or region of space R.
AABB Axis Aligned Bounding Box.
B, B(p), B(N) An AABB, the tightest AABB around a primitive p, or the

AABB corresponding to a node N .
B(P1, P2) The AABB defined by the diagonal P1P2.

Bdmin,Bdmax The minimum respectively maximum of the AABB along
the axis d. Can also appear as Bdmin(.) and Bdmax(.).

Bdsize The size of an AABB along the dimension d. Can also
appear as Bdsize(.).

C(p) The centroid of the primitive p.
cost(v) The objective function to be minimized by a sweep plane

algorithm.
CT , CI The traversal and intersection costs respectively.
d A dimension (d ∈ {x, y, z} or d ∈ {0, 1, 2}).
Exp(T), Exp(N) The expected cost of the tree T or node N for ray tracing

according to the surface area cost model.
Exp
SAH

(N) The expected SAH cost of a node N .

h(x, ω) The ray tracing operator. Returns the first surface point
intersected by the ray with origin x and direction ω.

N A node from a tree based acceleration structure.
NL, NR The left respectively right child of the node N in a binary

tree acceleration structure.
p A primitive.
P, PE , PP , PX In traversal algorithms: the current position along the ray

as a point, the entry point, the exit point, and the intersec-
tion point of the ray with the split plane.

R(N) The region of space corresponding to the node N .
R,RO, RD In traversal: a ray, its origin, and its direction.
S The set of all primitives in the scene
S(N) The set of primitives in the sub-tree with root N . Typically

used during construction.
SL, SR Equivalent to S(NL) and S(NR) respectively.

APPENDIX B. COMMON NOTATION 150

SB, SB(N) A set of AABBs, obtained by clipping primitives, or alter-
natively their AABBs, with the AABB of a node. More
formally SB(N) = {B (p ∩ B(N)) | p ∈ S(N)} in the first
case, and SB(N) = {B(p) ∩ B(N) | p ∈ S(N)} – in the sec-
ond.

te, tx In traversal: the entry and exit distances of the ray w.r.t.
some node.

vstart, vend The start and end events of a sweep plane algorithm.
vi An event from the sweep plane algorithm.
V (x, y) The binary visibility operator. Has a value of 1 iff x and y

are mutually visible and 0 otherwise.
xd The value of the scalar component of the point x along the

dimension d.

151

Bibliography

Aila, T. and Laine, S. (2009). Understanding the efficiency of ray traversal on GPUs.
In Proceedings of the Conference on High Performance Graphics 2009, HPG ’09,
pages 145–149, New York, NY, USA. ACM.

Akenine-Möller, T., Haines, E., and Hoffman, N. (2008). Real-Time Rendering 3rd
Edition. A. K. Peters, Ltd., Natick, MA, USA.

Apodaca, A. and Mantle, M. (1990). RenderMan: pursuing the future of graphics.
Computer Graphics and Applications, IEEE, 10(4):44 –49.

Benthin, C. (2006). Realtime Ray Tracing on Current CPU Architectures. PhD
thesis, Saarland University.

Bigler, J., Stephens, A., and Parker, S. (2006). Design for parallel interactive ray
tracing systems. In Interactive Ray Tracing 2006, IEEE Symposium, pages 187
–196.

Blender. http://www.blender.org/.

Blinn, J. F. (1977). Models of light reflection for computer synthesized pictures.
In Proceedings of the 4th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’77, pages 192–198, New York, NY, USA. ACM.

Boulos, S., Edwards, D., Lacewell, J. D., Kniss, J., Kautz, J., Shirley, P., and Wald,
I. (2007). Packet-Based Whitted and Distribution Ray Tracing. In Proceedings of
Graphics Interface 2007.

Carr, N. A., Hall, J. D., and Hart, J. C. (2002). The ray engine. In Proceedings of
Graphics Hardware, pages 37–46. Eurographics Association.

Carr, N. A., Hoberock, J., Crane, K., and Hart, J. C. (2006). Fast GPU ray tracing
of dynamic meshes using geometry images. In Proceedings of Graphics Interface.
A.K. Peters.

Catmull, E. E. (1974). A subdivision algorithm for computer display of curved sur-
faces. PhD thesis, University of Utah. AAI7504786.

Christen, M. (2005). Ray Tracing auf GPU. Master’s thesis, Fachhochschule beider
Basel.

Clark, J. H. (1976). Hierarchical geometric models for visible surface algorithms.
Commun. ACM, 19:547–554.

http://www.blender.org/

BIBLIOGRAPHY 152

Cleary, J. G. and Wyvill, G. (1988). Analysis of an algorithm for fast ray tracing using
uniform space subdivision. The Visual Computer, 4:65–83. 10.1007/BF01905559.

Cook, R. L. and Torrance, K. E. (1982). A reflectance model for computer graphics.
ACM Trans. Graph., 1:7–24.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms. The MIT Press.

Crow, F. C. (1977). Shadow algorithms for computer graphics. SIGGRAPH Comput.
Graph., 11:242–248.

Dammertz, H., Hanika, J., and Keller, A. (2008). Shallow bounding volume hierar-
chies for fast SIMD ray tracing of incoherent rays. In Computer Graphics Forum
(Proc. 19th Eurographics Symposium on Rendering), pages 1225–1234.

Dammertz, H. and Keller, A. (2008). Edge Volume Heuristic – Robust Triangle
Subdivision for Improved BVH Performance. In IEEE/Eurographics Symposium
on Interactive Ray Tracing.

Danilewski, P., Popov, S., and Slusallek, P. (2010). Binned SAH Kd-Tree Construc-
tion on a GPU. Technical report, Saarland University, Computer Graphics Lab.

de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Computational
Geometry: Algorithms and Applications. Springer, 3rd edition.

Donnelly, W. and Lauritzen, A. (2006). Variance shadow maps. In Proceedings of the
2006 symposium on Interactive 3D graphics and games, I3D ’06, pages 161–165,
New York, NY, USA. ACM.

Dutre, P., Bala, K., Bekaert, P., and Shirley, P. (2006). Advanced Global Illumination.
AK Peters Ltd.

Erikson, C. M. (2000). Hierarchical levels of detail to accelerate the rendering of large
static and dynamic polygonal environments. PhD thesis, The University of North
Carolina at Chapel Hill. AAI9968589.

Ernst, M. and Greiner, G. (2007). Early Split Clipping for Bounding Volume Hier-
archies. Symposium on Interactive Ray Tracing, 0:73–78.

Ernst, M. and Greiner, G. (2008). Multi bounding volume hierarchies. In Interactive
Ray Tracing, 2008. RT 2008. IEEE Symposium on, pages 35 –40.

Ernst, M., Vogelgsang, C., and Greiner, G. (2004). Stack implementation on pro-
grammable graphics hardware. In VMV, pages 255–262.

Fisher, J. A. (1983). Very long instruction word architectures and the eli-512. In
Proceedings of the 10th annual international symposium on Computer architecture,
ISCA ’83, pages 140–150, New York, NY, USA. ACM.

153 BIBLIOGRAPHY

Foley, T. and Sugerman, J. (2005). Kd-tree acceleration structures for a gpu ray-
tracer. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, HWWS ’05, pages 15–22, New York, NY, USA. ACM.

Fortune, S. and Wyllie, J. (1978). Parallelism in random access machines. In STOC
’78: Proceedings of the tenth annual ACM symposium on Theory of computing,
pages 114–118. ACM Press.

Fujimoto, A., Tanaka, T., and Iwata, K. (1986). ARTS: Accelerated Ray-Tracing
System. IEEE Computer Graphics and Applications, 6:16–26.

Glassner, A. S. (1984). Space subdivision for fast ray tracing. IEEE Computer
Graphics and Applications, 4(10):15–22.

Goldsmith, J. and Salmon, J. (1987). Automatic creation of object hierarchies for
ray tracing. IEEE Computer Graphics and Applications, 7:14–20.

Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. (1984). Model-
ing the interaction of light between diffuse surfaces. In Proceedings of the 11th
annual conference on Computer graphics and interactive techniques, SIGGRAPH
’84, pages 213–222, New York, NY, USA. ACM.

Günther, J., Friedrich, H., Seidel, H.-P., and Slusallek, P. (2006a). Interactive ray
tracing of skinned animations. The Visual Computer, 22(9):785–792. (Proceedings
of Pacific Graphics).

Günther, J., Friedrich, H., Wald, I., Seidel, H.-P., and Slusallek, P. (2006b). Ray
tracing animated scenes using motion decomposition. Computer Graphics Forum,
25(3):517–525. (Proceedings of Eurographics).

Günther, J., Popov, S., Seidel, H.-P., and Slusallek, P. (2007). Realtime ray tracing on
GPU with BVH-based packet traversal. In Proceedings of the IEEE/Eurographics
Symposium on Interactive Ray Tracing 2007, pages 113–118.

Hanrahan, P. and Lawson, J. (1990). A language for shading and lighting calculations.
In Proceedings of the 17th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’90, pages 289–298, New York, NY, USA. ACM.

Havran, V. (1997). Cache sensitive representation for the BSP tree. In Compugraph-
ics’97, pages 369–376. GRASP – Graphics Science Promotions & Publications.

Havran, V. (2000). Heuristic Ray Shooting Algorithms. PhD thesis, Department
of Computer Science and Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague.

Havran, V., Bittner, J., and Žára, J. (1998a). Ray tracing with rope trees. In
Szirmay-Kalos, L., editor, 14th Spring Conference on Computer Graphics, pages
130–140.

Havran, V., Kopal, T., Bittner, J., and Žára, J. (1998b). Fast robust BSP tree
traversal algorithm for ray tracing. J. Graph. Tools, 2:15–23.

BIBLIOGRAPHY 154

Helmholtz, H. V. (1867). Handbuch der Physiologischen Optik. Leopold Voss, Leipzig.

Horn, D. R., Sugerman, J., Houston, M., and Hanrahan, P. (2007). Interactive k-d
tree GPU raytracing. In Proceedings of the 2007 symposium on Interactive 3D
graphics and games, I3D ’07, pages 167–174, New York, NY, USA. ACM.

Houston, M. (2006). Performance analysis and architecture insights. In SUPER-
COMPUTING 2006 Tutorial on GPGPU, Course Notes. http://www.gpgpu.org/
sc2006/slides/10.houston-understanding.pdf.

Hunt, W., Mark, W. R., and Stoll, G. (2006). Fast kd-tree construction with an
adaptive error-bounded heuristic. In 2006 IEEE Symposium on Interactive Ray
Tracing. IEEE.

IEEE (2008). IEEE standard for Floating-Point arithmetic. IEEE Std 754-2008,
pages 1–58.

Jansen, F. W. (1986). Data structures for ray tracing. In Proceedings of a workshop
(Eurographics Seminars on Data structures for raster graphics, pages 57–73, New
York, NY, USA. Springer-Verlag New York, Inc.

Jensen, H. W. (1996). Global illumination using photon maps. In Proceedings of the
eurographics workshop on Rendering techniques ’96, pages 21–30, London, UK.
Springer-Verlag.

Jensen, H. W. (2001). Realistic image synthesis using photon mapping. A. K. Peters,
Ltd., Natick, MA, USA.

Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. (2001). A practical
model for subsurface light transport. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, pages 511–518,
New York, NY, USA. ACM.

Kajiya, J. T. (1986). The rendering equation. SIGGRAPH Comput. Graph.,
20(4):143–150.

Kalojanov, J., Billeter, M., and Slusallek, P. (2011). Two-Level Grids for Ray Tracing
on GPUs. In Min Chen, O. D., editor, EG 2011 - Full Papers, pages 307–314,
Llandudno, UK. Eurographics Association.

Kalojanov, J. and Slusallek, P. (2009). A parallel algorithm for construction of
uniform grids. In HPG ’09: Proceedings of the 1st ACM conference on High Per-
formance Graphics, pages 23–28, New York, NY, USA. ACM.

Kaplan, M. R. (1985). Space-tracing: A constant time ray-tracer. Computer Graph-
ics, 19(3):149–158. (Proceedings of SIGGRAPH 85 Tutorial on Ray Tracing).

Karlsson, F. (2004). Ray tracing fully implemented on programmable graphics hard-
ware. Master’s thesis, Chalmers University of Technology.

http://www.gpgpu.org/sc2006/slides/10.houston-understanding.pdf
http://www.gpgpu.org/sc2006/slides/10.houston-understanding.pdf

155 BIBLIOGRAPHY

Kay, T. L. and Kajiya, J. T. (1986). Ray tracing complex scenes. In Proceedings
of the 13th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’86, pages 269–278, New York, NY, USA. ACM.

Keller, A. (1997). Instant radiosity. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’97, pages 49–56, New
York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

Kensler, A. (2008). Tree Rotations for Improving Bounding Volume Hierarchies. In
Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium on, pages 73–76.

Kensler, A. and Shirley, P. (2006). Optimizing ray-triangle intersection via automated
search. In Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing,
pages 33–38.

Lafortune, E. P. and Willems, Y. D. (1993). Bi-directional path tracing. In Proceed-
ings of the Third International Conference on Computer Graphics and Visualiza-
tion Techniques, pages 145–153.

Lafortune, E. P. F., Foo, S.-C., Torrance, K. E., and Greenberg, D. P. (1997).
Non-linear approximation of reflectance functions. In Proceedings of the 24th an-
nual conference on Computer graphics and interactive techniques, SIGGRAPH ’97,
pages 117–126, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

Lauterbach, C., eui Yoon, S., and Manocha, D. (2006). RT-DEFORM: Interactive
Ray Tracing of Dynamic Scenes using BVHs. In In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing, pages 39–45.

Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., and Manocha, D. (2009).
Fast BVH Construction on GPUs. Computer Graphics Forum, 28(2):375–384.

Lext, J. and Akenine-möller, T. (2001). Towards Rapid Reconstruction for Animated
Ray Tracing. In EUROGRAPHICS 2001/Short Presentations.

MacDonald, J. D. and Booth, K. S. (1989). Heuristics for ray tracing using space
subdivision. In Graphics Interface Proceedings 1989, pages 152–163, Wellesley,
MA, USA. A.K. Peters, Ltd.

Mahovsky, J. (2005). Ray Tracing with Reduced-Precision Bounding Volume Hierar-
chies. PhD thesis, The University of Calgary.

Musser, D. R. (1997). Introspective sorting and selection algorithms. Software:
Practice and Experience, 27(8):983–993.

Muuss, M. J. (1995). Towards real-time ray-tracing of combinatorial solid geometric
models. In Proceedings of BRL-CAD Symposium.

Ng, K. and Trifonov, B. (2003). Automatic bounding volume hierarchy generation
using stochastic search methods. In CPSC532D Mini-Workshop ”Stochastic Search
Algorithms”.

BIBLIOGRAPHY 156

NVIDIA Corporation (2007). NVIDIA CUDA Compute Unified Device Architecture:
Programming Guide.

NVIDIA Corporation (2009). Fermi Compute Architecture Whitepaper.

Overbeck, R., Ramamoorthi, R., and Mark, W. R. (2008). Large Ray Packets for
Real-time Whitted Ray Tracing. In IEEE/EG Symposium on Interactive Ray
Tracing (IRT), pages 41—-48.

Pabst, H.-F., Springer, J. P., Schollmeyer, A., Lenhardt, R., Lessig, C., and Froehlich,
B. (2006). Ray casting of trimmed NURBS surfaces on the GPU. In Proceedings
of the 2006 IEEE Symposium on Interactive Ray Tracing, pages 151–160.

Pantaleoni, J. and Luebke, D. (2010). HLBVH: hierarchical LBVH construction
for real-time ray tracing of dynamic geometry. In Proceedings of the Conference
on High Performance Graphics, HPG ’10, pages 87–95, Aire-la-Ville, Switzerland,
Switzerland. Eurographics Association.

Parker, S., Martin, W., Sloan, P.-P. J., Shirley, P., Smits, B., and Hansen, C. (1999).
Interactive ray tracing. In In Symposium on interactive 3D graphics, pages 119–
126.

Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAl-
lister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. (2010). OptiX: a
general purpose ray tracing engine. In ACM SIGGRAPH 2010 papers, SIGGRAPH
’10, pages 66:1–66:13, New York, NY, USA. ACM.

Pharr, M. and Humphreys, G. (2004). Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Phong, B. T. (1975). Illumination for computer generated pictures. Commun. ACM,
18:311–317.

Pixar (1989). The renderman interface.

Popov, S., Georgiev, I., Dimov, R., and Slusallek, P. (2009). Object partitioning
considered harmful: space subdivision for BVHs. In HPG ’09: Proceedings of the
Conference on High Performance Graphics 2009, pages 15–22, New York, NY,
USA. ACM.

Popov, S., Günther, J., Seidel, H.-P., and Slusallek, P. (2006). Experiences with
streaming construction of SAH KD-trees. In Proceedings of the 2006 IEEE Sym-
posium on Interactive Ray Tracing, pages 89–94.

Popov, S., Günther, J., Seidel, H.-P., and Slusallek, P. (2007). Stackless KD-Tree
Traversal for High Performance GPU Ray Tracing. Computer Graphics Forum,
26(3). (Proceedings of Eurographics), to appear.

Purcell, T. J. (2004). Ray Tracing on a Stream Processor. PhD thesis, Stanford
University.

157 BIBLIOGRAPHY

Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan, P. (2002). Ray tracing on
programmable graphics hardware. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH), 21(3):703–712.

Reinhard, E., Smits, B. E., and Hansen, C. (2000). Dynamic acceleration struc-
tures for interactive ray tracing. In Proceedings of the Eurographics Workshop on
Rendering Techniques 2000, pages 299–306, London, UK. Springer-Verlag.

Reshetov, A. (2006). Omnidirectional ray tracing traversal algorithm for kd-trees.
In Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, pages
57–60.

Reshetov, A., Soupikov, A., and Hurley, J. (2005). Multi-level ray tracing algorithm.
In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages 1176–1185, New York,
NY, USA. ACM.

Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., and Kautz, J.
(2008). Imperfect Shadow Maps for Efficient Computation of Indirect Illumination.
ACM Trans. Graph. (Proc. of SIGGRAPH ASIA 2008), 27(5).

Samet, H. (1984). The quadtree and related hierarchical data structures. ACM
Computing Surveys, 16(2):187–260.

Samet, H. (1989). Implementing ray tracing with octrees and neighbor finding. Com-
puters and Graphics, 13(4):445–60.

Santaló, L. A. (1976). Integral Geometry and Geometric Probability. In Rota, G. C.,
editor, Encyclopedia of Mathematics and its Applications, volume 1. Addison-
Wesley.

Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins,
S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., and
Hanrahan, P. (2008). Larrabee: a many-core x86 architecture for visual computing.
ACM Trans. Graph., 27(3):18:1–18:15.

Shevtsov, M., Soupikov, A., and Kapustin, A. (2007). Highly Parallel Fast KD-tree
Construction for Interactive Ray Tracing of Dynamic Scenes. Comput. Graph.
Forum, 26(3):395–404.

Stich, M., Friedrich, H., and Dietrich, A. (2009). Spatial splits in bounding volume
hierarchies. In Proceedings of the Conference on High Performance Graphics 2009,
HPG ’09, pages 7–13, New York, NY, USA. ACM.

Stoll, C., Gumhold, S., and Seidel, H.-P. (2006). Incremental raycasting of piecewise
quadratic surfaces on the GPU. In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing, pages 141–150.

Subramanian, K. R. and Fussell, D. S. (1991). Automatic termination criteria for
ray tracing hierarchies. In Graphics Interface ’91, pages 93–100.

BIBLIOGRAPHY 158

Sutherland, I. E. and Hodgman, G. W. (1974). Reentrant polygon clipping. Commun.
ACM, 17(1):32–42.

Teller, S. J. (1992). Visibility computations in densely occluded polyhedral environ-
ments. PhD thesis, Berkeley, CA, USA. UMI Order No. GAX93-30757.

Thrane, N. and Simonsen, L. O. (2005). A comparison of acceleration structures for
gpu assisted ray tracing. Master’s thesis, University of Aarhus.

Trendall, C. and Stewart, A. J. (2000). General calculations using graphics hard-
ware, with applications to interactive caustics. In In Eurographics Workshop on
Rendering, pages 287–298. Springer.

Tsakok, J. A. (2009). Faster incoherent rays: Multi-BVH ray stream tracing. In
Proceedings of the Conference on High Performance Graphics 2009, HPG ’09, pages
151–158, New York, NY, USA. ACM.

Veach, E. (1998). Robust monte carlo methods for light transport simulation. PhD
thesis, Stanford University, Stanford, CA, USA. Adviser-Guibas, Leonidas J.

Wächter, C. and Keller, A. (2006). Instant ray tracing: The bounding interval
hierarchy. In In Proceedings of the Eurographics Symposium on Rendering, pages
139–149.

Wald, I. (2004). Realtime Ray Tracing and Interactive Global Illumination. PhD
thesis, Computer Graphics Group, Saarland University.

Wald, I. (2007). On fast Construction of SAH based Bounding Volume Hierarchies. In
Proceedings of the 2007 Eurographics/IEEE Symposium on Interactive Ray Trac-
ing.

Wald, I., Benthin, C., and Boulos, S. (2008). Getting Rid of Packets – Efficient
SIMD Single-Ray Traversal using Multi-Branching BVHs. In Proceedings of IEEE
Symposium on Interactive Ray Tracing 2008.

Wald, I., Benthin, C., and Slusallek, P. (2003). Distributed interactive ray tracing
of dynamic scenes. In PVG ’03: Proceedings of the 2003 IEEE Symposium on
Parallel and Large-Data Visualization and Graphics, page 11, Washington, DC,
USA. IEEE Computer Society.

Wald, I., Boulos, S., and Shirley, P. (2007). Ray Tracing Deformable Scenes using
Dynamic Bounding Volume Hierarchies. ACM Transactions on Graphics, 26(1).

Wald, I. and Havran, V. (2006). On building fast kd-trees for ray tracing, and
on doing that in O(N log N). In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing, pages 61–69.

Wald, I., Ize, T., Kensler, A., Knoll, A., and Parker, S. G. (2006a). Ray tracing
animated scenes using coherent grid traversal. ACM Transactions on Graphics,
25(3):485–493. (Proceedings of ACM SIGGRAPH).

159 BIBLIOGRAPHY

Wald, I., Ize, T., Kensler, A., Knoll, A., and Parker, S. G. (2006b). Ray Tracing
Animated Scenes using Coherent Grid Traversal. ACM Transactions on Graphics,
pages 485–493. (Proceedings of ACM SIGGRAPH 2006).

Wald, I., Slusallek, P., Benthin, C., and Wagner, M. (2001). Interactive rendering
with coherent ray tracing. In Computer Graphics Forum, pages 153–164.

Walter, B., Bala, K., Kulkarni, M., and Pingali, K. (2008). Fast agglomerative
clustering for rendering. In Proceedings of the 2008 IEEE Symposium on Interactive
Ray Tracing, pages 81 –86.

Walter, B., Drettakis, G., and Parker, S. (1999). Interactive rendering using the
render cache. In Lischinski, D. and Larson, G., editors, Rendering techniques ’99
(Proceedings of the 10th Eurographics Workshop on Rendering), volume 10, pages
235–246, New York, NY. Springer-Verlag/Wien.

Ward, G. and Simmons, M. (1999). The holodeck ray cache: an interactive rendering
system for global illumination in nondiffuse environments. ACM Trans. Graph.,
18:361–368.

Ward, G. J. (1992). Measuring and modeling anisotropic reflection. In Proceedings
of the 19th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’92, pages 265–272, New York, NY, USA. ACM.

Watt, A. (1993). 3d Computer Graphics. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition.

Whitted, T. (1980). An improved illumination model for shaded display. Commun.
ACM, 23:343–349.

Williams, L. (1978). Casting curved shadows on curved surfaces. SIGGRAPH Com-
put. Graph., 12:270–274.

Woop, S., Marmitt, G., and Slusallek, P. (2006). B-KD trees for hardware accel-
erated ray tracing of dynamic scenes. In GH ’06: Proceedings of the 21st ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, pages 67–77,
New York, NY, USA. ACM.

Woop, S., Schmittler, J., and Slusallek, P. (2005). RPU: A programmable ray pro-
cessing unit for realtime ray tracing. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2005), 24(3):434–444.

Zhang, Y., Peng, L., Li, B., Peir, J.-K., and Chen, J. (2011). Architecture com-
parisons between Nvidia and ATI GPUs: Computation parallelism and data com-
munications. In Workload Characterization (IISWC), 2011 IEEE International
Symposium on, pages 205 –215.

Zhou, K., Hou, Q., Wang, R., and Guo, B. (2008). Real-time KD-tree construction
on graphics hardware. In ACM SIGGRAPH Asia 2008 papers, SIGGRAPH Asia
’08, pages 126:1–126:11, New York, NY, USA. ACM.

BIBLIOGRAPHY 160

161

List of Figures

2.1 Decomposition of the BSDF into Transmission and Reflection 8
2.2 Examples of BSDF: Diffuse, Blinn-Phong, Mirror, and Glass 9
2.3 Derivation of the Refracted and Reflected Directions 10
2.4 The Pinhole Camera . 14
2.5 Schematic Explanation of Whitted Style Ray Tracing 17
2.6 Different Types of Ambient Illumination 19
2.7 Schematic Explanation of Rasterization 20
2.8 Comparison between Images Rendered with Different Algorithms . . . 21
2.9 A Grid Acceleration Structure . 22
2.10 A KD-Tree Acceleration Structure . 23
2.11 A Bounding Volume Hierarchy Acceleration Structure 24

3.1 Testing for Overlap between a Primitive and a Bounding Box 33
3.2 Clipping Primitives According to the Overlap Test 37
3.3 Plane Sweep for KD-Tree Construction 39
3.4 Sifting Events along the Split Axis . 42
3.5 Sifting Events along an Axis Parallel to the Split Plane 43

4.1 Plot of the SAH Cost for the Root Node 51
4.2 Sampling the Cost Function through Binning 52
4.3 Memory Layout for Breadth-First Construction 56
4.4 Memory Layout for In-Place Sifting 58

6.1 Comparing Greedy and Non-Greedy BVH Construction 72
6.2 Geometric Partitioning . 74
6.3 Configuration Feasibility Tests . 77
6.4 Generic Primitive Splitting and Clipping 78
6.5 The Effect of Overlap Penalty on Tree Quality and Storage Size 85

7.1 Distance Intervals for Ray Traversal inside a Node 98

8.1 Ropes of a KD-tree in 2D . 115
8.2 Rope Optimization . 119
8.3 Cases of Packet Entry Points and Directions w.r.t. the Child Nodes . . 121
8.4 Treelet Memory Organization . 124
8.5 Test Scenes for Rope Traversal . 125

9.1 Test Scenes for Shared Stack BVH Traversal 136

LIST OF FIGURES 162

9.2 SIMD Utilization during Shared Stack BVH Traversal 136

163

List of Tables

4.1 Performance Results for Fast Construction of KD-Trees 64

5.1 Performance Results for Fast Construction of BVHs 69

6.1 Sponza with Recursive and Classic SAH Cost Evaluation 82
6.2 Performance of BVHs Built with Geometric Partitioning 87
6.3 Performance of the Generic BVH Construction Algorithm 88
6.4 Comparison to Pre-Split Methods . 90

8.1 Absolute Performance of Rope Traversal 127
8.2 Number of Traversal Steps for Rope Traversal 129
8.3 Test Scenes and Statistical Data for Rope Traversal 129

9.1 Absolute Performance for Shared Stack BVH Traversal 135

LIST OF TABLES 164

165

List of Algorithms

2.1 The Ray Tracing Algorithm . 18
3.1 Generic KD-tree Construction . 38
3.2 Optimal Split Plane for Axis d for KD-tree 44
3.3 Find Optimal Split Plane w.r.t. SAH for KD-tree 45
3.4 Optimal Split Plane w.r.t. SAH for BVH 47
4.1 Optimal Split Plane for KD-tree through Binning 53
4.2 In-Place Sifting . 59
6.1 Determine the Optimal Grid Resolution 75
6.2 Calculate SAH Cost of Configuration 80
6.3 Generic Construction Algorithm . 81
7.1 Sequential KD-tree Traversal . 96
7.2 Distance Based Recursive KD-tree Traversal 99
7.3 Point Based Recursive KD-tree Traversal 101
7.4 Packet Traversal for KD-trees . 102
7.5 BVH Traversal . 104
8.1 Single Ray Stackless KD-Tree Traversal 117
8.2 Rope Construction and Optimization 118
8.3 PRAM Stackless Packet Traversal for KD-Trees 123
9.1 Shared Stack BVH Traversal . 133

	Introduction
	Thesis Outline

	Background
	Light Transport
	Radiometric Quantities
	The Rendering Equation
	The Ray Tracing Operator
	The Bi-Directional Scattering Distribution Function

	Rendering Algorithms
	Scene Description
	Rendering with Non-Surface Light Sources
	Whitted Style Ray Tracing
	Rasterization
	Ray Tracing vs. Rasterization

	Acceleration Structures Background
	Grids
	Space Partitioning Hierarchies
	Bounding Volume Hierarchies

	Interactive Ray Tracing
	Interactive Traversal
	Animation

	Summary

	I Construction of Acceleration Structures
	Construction Background
	Basics
	Top-down Construction
	Bottom-up Construction
	The Overlap Test
	Termination Criteria

	The Surface Area Cost Model
	The Surface Area Heuristics
	Automatic Termination Criteria
	Plane Sweep Algorithms

	Construction of KD-trees
	Split in the Middle and Median Split
	Cost Based Splitting
	Construction Complexity: O(N logN) vs O(N log2N)
	Implementation Details

	Construction of BVHs
	Searching for the Optimal Split Plane

	Summary

	Fast Construction of KD-Trees
	Background
	Bottlenecks in KD-Tree Construction
	Binned Cost Function Sampling
	Sampling Accuracy

	Processing the Lower Tree Levels
	Improving Classical Construction
	Brute-Force Sampling

	Implementation Details
	Memory Management for Breadth-First Construction
	Memory Management for Depth-First Construction
	In-Place Sifting
	Numerical Stability
	Parallel and Lazy Construction

	Results
	Summary

	Fast Construction of BVHs
	SAH Evaluation Through Binning
	Sifting
	Results and Discussion
	Summary

	Construction of High Quality BVHs
	Geometric Partitioning
	From NP Complete to Polynomial
	A Grid Approximation
	Cost and Feasibility of a Configuration

	A Generic Construction Algorithm
	Primitive Splitting
	Defining the Search Space
	The Algorithm

	Patching the SAH
	Overlap-Aware SAH

	Results and Discussion
	A Spatial Construction Algorithm
	Summary

	II GPU Ray Tracing
	GPU Ray Tracing Background
	Acceleration Structure Traversal
	Sequential Traversal of KD-trees
	Early Ray Termination
	Recursive Traversal of KD-trees
	Packet Traversal of KD-trees
	BVH Traversal

	Graphics Processing Units
	Shader Model 3
	The Tesla Architecture
	Fermi and Beyond
	CUDA

	GPU Ray Tracing
	Summary

	Stackless KD-Tree Traversal
	Related Work
	Efficient Stackless KD-Tree Traversal
	Single Ray Stackless KD-Tree Traversal
	Rope Construction
	Stackless Traversal for SIMD Packets of Rays

	Implementation
	Results and Discussion
	Memory Requirements
	Traversal Steps
	Absolute Performance

	Summary

	Shared Stack BVH Traversal
	Background
	The Traversal Algorithm
	Voting

	Results and Discussion
	Summary

	III Conclusion
	Conclusion
	Proofs
	Numerical Stability of In-Place Sifting

	Common Notation
	List of Figures
	List of Tables
	List of Algorithms

