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Preface

We live in the Information Age. The amount of information created, pro-
cessed, and transferred day by day is enormous. The speed at which this is
taking place is changing our world dramatically. In fact, the almost instanta-
neous availability of information around the world is arguably the strongest
force of globalization; it is influencing our way of thinking, our way of work-
ing and our way of living. Not surprisingly understanding how information
spreads quickly is therefore of great importance. Think of a company that is
advertising for a new product, a party that is planning an election campaign,
or a news agency that is seeking to broaden its reach.

So what are the processes that enable such fast spread of information
in practice? And can we identify simple mechanics that facilitate a fast
information spread?

To answer these questions, we distinguish two aspects of information
spread. In the model view we analyze the existing processes that enable
a fast spread of information. This is done by defining theoretical models
that try to capture the main mechanics of information dissemination. In
the algorithmic view we design new algorithms that guarantee a fast spread
of information. In a sense both perspectives are related to each other. A
better understanding of the existing processes can help us to design new
algorithms. On the other hand, simple algorithms can serve as models for
existing processes.

In this thesis, we contribute to both aspects from a rigorous mathemat-
ical point of view. In the first part, we study a very natural information
dissemination process on preferential attachment graphs, which are a pop-
ular theoretical model for real-world networks. The theoretical analysis of
this simple process allows us to identify characteristic properties of such net-
works that arguably help the fast spread of information. At the same time,
the protocol that we propose lends itself to spread information efficiently in
such networks.

In the second part, we propose a simple and asymptotically optimal so-
lution to the classical telephone call problem. Here, the setting is that a
person has a piece of information and wants to spread it among a group of
people, say the town or a club, as fast as possible. Although this problem
is well-known and has received a lot of attention in the research community,
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our algorithm surprisingly outperforms previous solutions in terms of run-
ning time, scalability and robustness. Our algorithm is also simple and easy
to implement. In this sense, despite the maturity of this field, we strongly
believe that there are still a lot of neat algorithmic ideas waiting to be dis-
covered.

All the protocols that we study make use of randomness. This means
that we allow the process at certain steps during the execution to choose
among different options according to a well-defined probability distribution.
The use of randomness has led to a large number of probabilistic algorithms
that utilize random choices to perform difficult tasks efficiently. Often, these
probabilistic algorithms beat deterministic algorithms not only in terms of
running time, but also in terms of simplicity. These advantages are usu-
ally traded against a small uncertainty in terms of running time (Las-Vegas
algorithms) or the correctness of the result (Monte-Carlo algorithms). In
this thesis, this uncertainty becomes arbitrarily small the larger our input
is; we say that the protocols run in the stated bounds with high probabil-
ity. When we adopt the model view, randomness is used to represent the
non-determinism in real-world processes.
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Abstract

This thesis deals with two rumor spreading problems. In the first part, we
study the rumor spreading problem in social networks modelled by pref-
erential attachment graphs. We consider the push-pull strategy by Karp,
Schindelhauer, Shenker, and Vöcking [49], where in each round, each vertex
chooses a random neighbor and exchanges information with it. We prove
the following. The push-pull strategy delivers a message to all nodes within
Θ(log n) rounds with high probability, where n is the number of nodes in the
graph. The best known bound so far was O(log2 n) by Chierichetti, Lattanzi,
and Panconesi [19]. If we slightly modify the protocol so that contacts are
chosen uniformly from all neighbors but the one contacted in the previous
round, then this time reduces to Θ(log n/ log log n). This is asymptotically
optimal since it matches the diameter of the graph. In an asynchronous ver-
sion of the protocol, the running time is shown to be even O(

√
log n). Parts

of these results are published in [29] and accepted for publication in [30].
In the second part, we consider the rumor spreading problem on the

complete graph. We propose a new push protocol that achieves an asymp-
totically optimal time of (1+o(1)) log2 n. It needs only O(nf(n)) calls, where
f(n) = ω(1) can be arbitrary. The protocol is robust against random node
failures. We also extend it to deal with adversarial node failures efficiently.
These results were published in [23].
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Zusammenfassung

Diese Promotionsarbeit beschäftigt sich mit zwei Problemstellungen im Zu-
sammenhang mit dem Verbreiten von Informationen.

Im ersten Teil untersuchen wir die Verteilung von Informationen auf so-
zialen Netzwerken anhand des “Preferential Attachment” Modells. Hierzu
betrachten wir das “Push-Pull” Protokoll von Karp, Schindelhauer, Shenker,
and Vöcking [49]: In jeder Runde wählt ein Knoten einen zufälligen Nach-
barknoten aus und tauscht sich mit ihm aus, d.h., wenn einer der beiden
Knoten eine Information hat, erhält sie der andere. Wir zeigen folgende Re-
sultate. Das Push-Pull Protokoll verbreitet mit hoher Wahrscheinlichkeit eine
Nachricht an alle Knoten innerhalb von Θ(log n) Runden, wobei n die Zahl
der Knoten im Graph darstellt. Die beste bisher bekannte Laufzeitschran-
ke war O(log2 n) von Chierichetti, Lattanzi, and Panconesi [19]. Wenn wir
das Protokoll leicht anpassen, so dass jeder Knoten bei der zufälligen Wahl
eines Nachbarknoten den zuletzt kontaktierten ausschlieÃ§t, verbessert sich
diese Schranke auf Θ(log n/ log log n). Dies ist asymptotisch optimal, da es
dem Durchmesser des Graphen entspricht. In einer asynchronen Fassung des
Protokolls reduziert sich die Laufzeit sogar auf O(

√
log n). Diese Ergebnisse

wurden teilweise in [29] veröffentlicht oder sind zur Veröffentlichung in [30]
angenommen worden.

Im zweiten Teil betrachten wir die Verteilung von Informationen auf dem
vollständigen Graphen. Wir führen ein neues “Push” Protokoll ein, das eine
asymptotisch optimale Laufzeit von (1 + o(1)) log n erreicht. Dabei benötigt
es nur O(nf(n)) Anrufe, wobei f(n) = ω(1) beliebig ist. Das Protokoll ist
zudem robust gegenüber zufälligen Knotenausfällen. Ferner erweitern wir das
Protokoll, so dass es auch bei gezielten Knotenausfällen effizient bleibt. Diese
Ergebnisse sind in [23] veröffentlicht worden.
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Chapter 1

Introduction to

Rumor Spreading

Broadcasting a piece of information (“rumor”) from one node (“source”) to
all nodes of a network is a classical problem in computer science. There are
different reasons why this rumor spreading problem is interesting.

First, it serves as a simple model for many processes like the spread
of rumors, computer viruses and diseases. It is therefore instructional to
understand basic information dissemination processes before analyzing more
complex models for epidemics.

Second, it serves as a basic algorithmic paradigm to consensus prob-
lems where different parties are seeking to compute a common value. There
are many applications for such problems. One important example is that
of databases that are replicated at different locations (see, e.g., [22]). To
maintain consistency among the different copies, a protocol is required that
forwards any update to all locations. Such synchronization processes are
ubiquitous in data centers, but also in peer-to-peer networks. Another im-
portant application is the distributed computation problem where a network
of processors must compute a common function. An example would be a
network of sensors each of which measures the temperature at its location
and the goal is to compute the average of these values (see, e.g., [13]).

Third, from a research perspective, it is a good field to try out new ideas
and develop techniques for randomized algorithms. For example, ideas from
the quasirandom protocol by Doerr, Friedrich, and Sauerwald [24] were later
successfully applied for evolutionary algorithms by Doerr, Fouz, and Witt
[27].

Thus, not surprisingly, rumor spreading has received a lot of attention in
the research community and remains a very active topic of research. Hedet-
niemi, Hedetniemi, and Liestman [46] give an excellent survey of older results.
More references can be found in the seminal papers by Feige, Peleg, Ragha-
van, and Upfal [37] and Karp, Schindelhauer, Shenker, and Vöcking [49].

7



For reports on the actual use of such protocols, see Demers, Greene, Hauser,
Irish, Larson, Shenker, Sturgis, Swinehart, and Terry [22] and Kempe, Do-
bra, and Gehrke [50].

In this thesis, we assume that we are given a graph G and that at the
beginning exactly one node has a rumor. The goal is to spread this rumor to
all nodes in the graph. In all protocols, we only allow neighboring nodes to
exchange information. We will call such broadcasting algorithms also rumor
spreading strategies or processes.

The standard model assumes that each node calls at most one node per
unit of time (round). In consequence, if only informed nodes place a call,
the number of informed nodes can at most double in each round; thus, at
least �log2 n� rounds are needed to spread a rumor to n nodes. Using a
broadcast tree that spans the network this bound can be achieved. Such
deterministic protocols, however, are vulnerable to failures. In addition, the
broadcast tree depends on the source; for each source, each node has to
compute or store which neighbors to contact upon receiving the rumor from
that source. In consequence, when the network grows, the broadcast tree
has to be recomputed.

Feige et al. [37] identify three desirable properties of broadcasting algo-
rithms: simplicity, scalability and robustness. Simple algorithms allow for an
easy, less error-prone implementation. Usually, such algorithms are local, i.e.,
each node carries out a protocol without the need to know the whole network
structure or how far the rumor has spread already. Scalable algorithms need
no or only minor modifications when the network grows. Robustness ensures
that the algorithm also works under certain failure models. No efficient de-
terministic algorithm is known to achieve these properties together. On the
other hand, there are several randomized protocols that perform surprisingly
well.

Probably the simplest of these protocols is called randomized rumor
spreading (or push strategy), see, e.g., the works by Feige et al. [37], Frieze
and Grimmett [43], Karp et al. [49]. It has been used to transmit infor-
mation in computer networks [22, 50]. The protocol proceeds in rounds as
follows: in each round, each node that already knows the rumor chooses a
communication partner uniformly at random and sends her a copy of this
rumor. Thus, each node runs the same randomized process independent of
the source node.

For many network topologies, this strategy is a very efficient way to
spread a rumor. Let n denote the number of vertices of a graph. Then the
push model with high probability (i.e., with probability 1− o(1)) sends the
rumor to all vertices in time Θ(log n), if the graph is a complete graph [43,
61], a hypercube [37], an Erdős-Rényi random graph Gn,p with p ≥ (1 +
ε) ln(n)/n [37, 44], a random regular graph [41], or an expander graph [41,
63]. Recently, Chierichetti, Lattanzi, and Panconesi [18] showed that ru-
mor spreading is doable in logarithmic time for graphs of bounded conduc-
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tance if the degrees of neighboring nodes have a constant ratio. For Cayley
graphs [35] and random geometric graphs [14], the bounds of O(diam(G) +
log n) are known, where diam(G) denotes the diameter of the graph. In
contrast to this, Chierichetti, Lattanzi, and Panconesi [19] showed that the
push model with non-vanishing probability needs Ω(nα) rounds in preferen-
tial attachment graphs for some α > 0.

Opposite to the push strategy is the pull strategy : each vertex in each
round contacts a random neighbor and learns the rumor if its contact knows
the rumor. There is a symmetry between the two models. This was observed
for a quasirandom version of the two models by Doerr, Friedrich, and Sauer-
wald [26], but similar arguments apply to the two random models discussed
so far. Thus, the results also hold for the pull model.

Karp et al. [49] pointed out that for complete graphs, the pull strategy
is inferior to the push strategy until roughly n/2 vertices are informed, and
then the pull strategy becomes more effective. This motivates to combine
both approaches. In this so-called push-pull strategy of Demers et al. [22]
(see also [49]), in each round, each vertex contacts another vertex chosen
uniformly at random among its neighbors. It pushes the rumor in case it
has the rumor, and pulls the rumor in case the neighbor has the rumor.
For complete graphs this protocol also needs Θ(log n) rounds, though with
better implicit constants [22, 34, 49]. Elsässer [34] also proved a bound of
Θ(log n) rounds for Erdős-Rényi random graphs Gn,p with p ≥ polylog(n)/n.
Chierichetti et al. [18] relate the broadcast time of the push-pull strategy to
the conductance of graphs; graphs with conductance Φ have a broadcast time
of O

�
log2(Φ−1)Φ−1 log n

�
with high probability. Giakkoupis [45] recently

improved this bound to O(Φ−1 log n) which is tight.
For preferential attachment graphs, the push-pull strategy is much bet-

ter than push or pull alone. Chierichetti et al. [19] showed that with this
strategy, O(log2 n) rounds suffice with high probability. Apart from the ad-
vantages in terms of its running time, the push-pull protocol also captures
the effect of gossipping in social networks better than a push or pull strategy
alone.

All these results assume a synchronous model where all nodes take action
simultaneously at discrete time steps. In many applications and certainly
in real world social networks, this assumption is not very plausible. One
can also argue (see, e.g., [13, 25]) that time-synchronization contradicts the
idea of a self-organized broadcasting protocol. Boyd, Ghosh, Prabhakar, and
Shah [13] therefore proposed an asynchronous time model with a continuous
time line. Each node has its own clock that ticks at the times of a rate 1
Poisson process independent from the clocks of other nodes. It is well-known
(see, e.g., [58]) that the time between two ticks (interarrival times) is expo-
nentially distributed with the same parameter as the corresponding Poisson
process. The protocol now specifies for each node what to do whenever its
own clock ticks. Note that the idea of using a Poisson distribution to model
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events that occur continuously and independently from each other is not
new. It is often used to model the arrival of customers in a queue (see, e.g.,
[58]), incoming telephone calls, etc.

The rumor spreading problem in the asynchronous time model has so far
received less attention. The push-pull protocol in this model, however, turns
out to be closely related to Richardson’s model for the spread of a disease
[62] and to first-passage percolation. In this sense, for the hypercube, Fill
and Pemantle [38] and Bollobás and Thomason [11] showed that the asyn-
chronous push-pull protocol spreads a rumor to all nodes in time Θ(log n).
Similarly, for the complete graph, Janson [48] showed a bound of Θ(log n).
Note that these bounds match the same asymptotics as in the synchronous
case. We also suspect that the same bounds hold in case all but o(n) nodes
are to be informed.

Fountoulakis, Panagiotou, and Sauerwald [42] have recently studied the
push-pull protocol in the asynchronous time model for random graphs with
a given expected degree distribution that follows a power law with exponent
in (2, 3). These are quite different from preferential attachment graphs, e.g.,
their average diameter is known to be Θ(log log n) (see [20]), whereas for pref-
erential attachment graphs the average diameter is also Θ(log n/ log log n)
(see [31]). For these random power law graphs, they show a constant runtime
to inform n− o(n) nodes.

1.1 Overview

This thesis has two parts. Although both parts study an information dis-
semination process, they are self-contained and can be read independently
from each other.

In the first part, we study the performance of the push-pull strategy in
preferential attachment graphs that serve as a model for social networks.

In Chapter 3, we prove the following. The push-pull strategy delivers a
message to all nodes within Θ(log n) rounds with high probability. The best
known bound so far was O(log2 n) by Chierichetti, Lattanzi, and Panconesi
[17]. We prove the lower bound in Section 3.1 and the upper bound in
Section 3.2. If we slightly modify the protocol so that contacts are chosen
uniformly from all neighbors but the one contacted in the previous round,
then this time reduces to Θ(log n/ log log n), which is the diameter of the
graph. This is the first time that a sublogarithmic broadcast time is proven
for a natural setting. Also, this is the first time that avoiding double-contacts
reduces the runtime to a smaller order of magnitude (see Section 3.2).

In Chapter 4, we study the push-pull protocol in a continuous time setting
where each vertex takes action at times given by an independent Poisson
process with rate 1. We show that this asynchronous push-pull protocol
spreads a message in preferential attachment graphs in time O(

√
log n) to
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all but a lower order fraction of the nodes with high probability.
In Chapter 6, we conduct an experimental investigation, where we con-

firm that memory indeed reduces the runtime of the synchronous push-pull
protocol already for small network sizes. We observe that one memory cell
per node suffices to reduce the runtime significantly. Besides extremely
sparse graphs, preferential attachment graphs perform faster than all other
graph classes examined. We complement our findings on theoretical network
models by the corresponding experiments on crawls of popular online social
networks. Here again, we observe extremely rapid information dissemination.
We also consider the asynchronous version of the rumor spreading protocol.
Here, we cannot confirm the theoretically predicted asymptotic advantage.

In the second part, we propose a new protocol for the fundamental prob-
lem of disseminating a piece of information to all members of a group of
n players that are all connected to each other. It builds upon the classi-
cal randomized rumor spreading protocol and several extensions. The main
achievements are the following.

Our protocol spreads a rumor from one node to all other nodes in the
asymptotically optimal time of (1 + o(1)) log2 n. The whole process can
be implemented in a way such that only O(nf(n)) calls are made, where
f(n) = ω(1) can be arbitrary (see Chapter 9).

In spite of these quantities being close to the theoretical optima, the
protocol remains relatively robust against failures; for random node failures,
our algorithm again comes arbitrarily close to the theoretical optima (see
Section 9.2).

The protocol can be extended to also deal with adversarial node failures
(see Chapter 10). The price for that is only a constant factor increase in the
runtime, where the constant factor depends on the fraction of failing nodes
the protocol is supposed to cope with. It can easily be implemented such
that only O(n) calls to properly working nodes are made.

In contrast to the push-pull protocol, our algorithm only uses push oper-
ations, i.e., only informed nodes take active actions in the network. On the
other hand, we discard address-obliviousness. To the best of our knowledge,
this is the first randomized push algorithm that achieves an asymptotically
optimal running time.

1.2 Notation and Basic Tools

The following are some mainly probabilistic tools that we use in this the-
sis. For an excellent introduction to randomized algorithms containing these
results, we refer the reader to the books by Mitzenmacher and Upfal [58]
and Motwani and Raghavan [59]. For a more detailed survey on large devi-
ation bounds that are essential in the analysis of randomized algorithms we
recommend the book by Dubhashi and Panconesi [32].
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We start with a very rough, yet surprisingly useful estimate. The union
bound is an essential tool in the analysis of randomized algorithms. Its
strength lies in its simplicity; there are no special assumptions needed.

Lemma 1.2.1 (Union Bound). For any finite or countably infinite sequence
of events E1, E2, . . . , we have

P[
�

i≥1

Ei] ≤
�

i≥1

P[Ei].

A main difficulty in the analysis of randomized algorithms comes from
dependencies between different random variables. A simple way to deal with
such problems is to compute the expectation, which is linear regardless of
the dependencies between the random variables.

Lemma 1.2.2 (Linearity of Expectation). For any finite collection of dis-
crete random variables X1, X2, . . . , Xn, with finite expectations,

E[
n�

i=1

Xi] =
n�

i=1

E[Xi].

Once we have computed the expectation, we can easily convert it to
a rough probabilistic bound by Markov’s inequality. Note however that it
only bounds the probability that a nonnegative random variable exceeds its
expected value by much. It can not be used to bound the probability that
it is significantly smaller than the expected value.

Lemma 1.2.3 (Markov’s Inequality). Let X be a random variable that as-
sumes only nonnegative values. Then, for all a > 0,

P[X ≥ a] ≤ E[X]

a
.

For random variables that are independent, we can get much stronger
bounds on their sum. It is usually highly concentrated around the expecta-
tion.

For independent Bernoulli random variables, i.e., variables that take only
values 0 or 1, we can bound their sum by Chernoff ’s bound.

Lemma 1.2.4 (Chernoff’s Inequality). Let X1, X2, . . . , Xn be independent
Bernoulli random variables. Let X =

�
n

i=1Xi and µ := E[X]. Then for any
δ > 0, we have

P[X ≥ (1 + δ)µ] ≤ exp(−min{δ, δ2}µ/3),

and

P[X ≤ (1− δ)µ] ≤ exp(−δ
2
µ/2).
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Chernoff’s bound can also be used to bound the sum of geometric random
variables, i.e., random variables that take on an integer value i > 0 with
probability p(1− p)i−1, where p ∈ [0, 1] is a parameter. Such variables have
an expected value of 1/p.

Lemma 1.2.5. Let X1, X2, . . . , Xn be independent geometric random vari-
ables with parameter p ∈ [0, 1]. Let X =

�
n

i=1Xi. Then for any δ > 0, we
have

P[X ≥ (1 + δ)n
p
] ≤ exp(− δ2

2(1+δ)n),

Since this bound is not found in the given references, we give a quick
proof here.

Proof. Let k := (1 + δ)n
p
. We reduce the event X ≥ k to an equivalent

event with Bernoulli random variables and then apply Chernoff’s bound.
Let Y =

�
k

i=1 Yi be the sum of k independent and identically distributed
Bernoulli variables with P[Yi = 1] = p. But then,

P[X ≥ k] = P[Y ≤ n].

For the latter term, we can now apply Chernoff’s bound and obtain:

P[Y ≤ n] = P[Y ≤ (1− δ

1+δ
)kp]

≤ exp(−( δ

1+δ
)2 E[Y ]/2)

= exp(− δ2

2(1+δ)n).

In case the random variables are bounded arbitrarily, we use Hoeffding’s
bound.

Lemma 1.2.6 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be independent
bounded random variables such that Xi ∈ [ai, bi] with probability 1. Let
X =

�
n

i=1Xi. Then for any t > 0, we have

P[X − E[X] ≥ t] ≤ exp
�
− 2t2�

n

i=1(bi − ai)2

�
,

and

P[E[X]−X ≥ t] ≤ exp
�
− 2t2�

n

i=1(bi − ai)2

�
.

Sometimes we want to bound the probability that some function defined
on a set of independent random variables deviates significantly from its ex-
pectation, when the value of the function is affected only slightly if a single
argument is changed. Such a bound is provided by Azuma’s inequality. We
will use it in the following version (see, e.g., [32, Corollary 5.2]).
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Lemma 1.2.7 (Azuma’s Inequality). Let X1, . . . , Xn be independent random
variables, with Xi taking values in a set Ωi for each i. Suppose that the
(measurable) function f :

�
n

i=1Ωi → R satisfies

|f(x)− f(x�)| ≤ ci,

whenever the vectors x and x� differ only in the ith coordinate. Let Y :=
f(X1, . . . , Xn). Then for any t > 0,

P(|Y − E(Y )| ≥ t) ≤ 2 exp
�
− 2t2�

n

i=1 c
2
i

�
.

Finally, we will also need the following inequality that holds for x ∈ (0, 1):

1− e
−x ≥ x

2 . (1.2.1)

Throughout the thesis, we denote by log n the logarithm to base 2 and
by lnn the natural logarithm.
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Part I

Randomized Rumor Spreading

in Social Networks
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Chapter 2

Introduction to Rumor

Spreading in Social Networks

Social networks like Facebook and Twitter are reshaping the way people take
collective actions. They have played a crucial role in the recent uprisings
of the ‘Arab Spring’ and the ‘London riots’. It has been argued that the
‘instantaneous nature’ of these networks influenced the speed at which the
events were unfolding [4].

It is quite remarkable that social networks spread news so fast. Both
the structure of social networks and the process that distributes the news
are not designed with this purpose in mind. On the contrary, they are not
designed at all, but have evolved in a random and decentralized manner.

So is our view correct that social networks ease the spread of informa-
tion (“rumors”), and if so, what particular properties of social networks are
the reason for this? To answer these questions, we analyze a simple ru-
mor spreading process on an abstract model of social networks, the so-called
preferential attachment graphs introduced by Barabási and Albert [3]. We
assume that the rumor is sufficiently interesting so that people learn it when
talking to someone knowing it. This is substantially different to the proba-
bilistic virus spreading model [5], where the probability of becoming infected
is proportional to the number of neighbors being infected.

We obtain a mathematical proof that rumors in such networks spread
much faster than in many other network topologies—even faster than in
networks having a communication link between any two nodes (complete
graphs). As an explanation, we observe that nodes of small degree build a
short-cut between those having large degree (hubs), which due to their large
number of possible communication partners less often talk to each other
directly.

We also simulate this process on several graphs having the structure of
existing large social networks. We see, for example, that a rumor started at
a random node of the Twitter network in average reaches 45.6 million of the
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total of 51.2 million members within only eight rounds of communication.
We note that the communication process is different in each social net-

work. The push-pull model we regard naturally captures best a personal
communication between two individuals as by phone or exchanging text mes-
sages, emails or other directed communications. Many online social networks
allow also other ways of communication like posts on user’s personal pages,
possibly resulting and his friends to be notified of the post when they next
log in, and them forwarding the news given that it is sufficiently interesting.
Such forms of communication can be modelled only by more complicated
mechanisms than the push-pull protocol.

2.1 Social Networks

Social networks arise in a variety of contexts. They are formed by people,
who are connected by knowing each other, Facebook members by agreeing on
being friends (in Facebook), scientific authors by having a joint publication,
or actors appearing in the same movie.

Despite this diversity, many networks share characteristic properties.
Well known is the observation that any two individuals are connected by
just “six degrees of separation”, which was first formulated by Karinthy (see
Barabási [2]) and became known to a broad audience through Milgram’s
“small world study” [56]. Similarly for the world wide web, Albert, Jeong,
and Barabasi [1] predicted a diameter (maximum distance between two nodes
in the graph) of only 19 in the network formed by web pages and links be-
tween them.

Several experimental studies [1, 15, 52] revealed another intrinsic prop-
erty of social networks: the histogram of the node connectivity follows a
power-law; the number of nodes with k neighbors is inversely proportional
to a polynomial in k.

To explain this phenomenon, Barabási and Albert [3] suggested the pref-
erential attachment (PA) model for real-world networks that show a power-
law. The model is widely used, also because of its simplicity. The paper [3]
is currently the fifth most cited article in “Science” according to ISI Web of
Knowledge. In the preferential attachment model, the graphs are constructed
in a random, ‘rich-get-richer’ fashion: a newly entering node connects to m

existing ones chosen randomly, but gives preference to nodes that are already
popular, that is, have many neighbors. Note that the parameter m controls
the density of the graph, i.e., the ratio of the number of present edges to the
number of all possible edges. For these graphs, the authors of [3] empirically
discovered a power-law of k−3, which was later proven mathematically by
Bollobás, Riordan, Spencer, and Tusnády [12]. A number of similar mod-
els emerged at the same time, all leading to a power-law distribution. It is
known, though, that the PA model does not share all properties observed in
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the real-world networks, e.g., it is less clustered.
Still, the preferential attachment model has been successfully used to

deduce many interesting properties of social networks. Famous structural
results prove a small diameter of such graphs [10], determine their degree
distribution [12], show high expansion properties [55], and a high robustness
against random damage, but a vulnerability to malicious attacks [8, 9, 21, 39].
Algorithmic works show that in such networks, viruses spread more easily
than in many other network topologies [5], or that gossip-based decentralized
algorithms can approximate averages better [13].

2.2 Our Results

We study the push-pull protocol in both the synchronous and asynchronous
time model on PA graphs.

In the synchronous time model, we prove that the rumor is spread to all
nodes in time Θ(log n). If we assume a slightly more clever process, namely
that contacts are chosen uniformly at random among all neighbors except
the one that was chosen just in the round before, then O(log n/ log log n)
rounds suffice (see Theorem 2.6.1). This is asymptotically optimal as the
diameter of a PA graph is Θ(log n/ log log n) [12]. We note that the same
asymptotic runtime is achieved with the standard push-pull protocol without
any memory when almost all nodes are to be informed, i.e., all but o(n)
nodes. On the other hand, excluding nodes contacted in a constant number
of previous rounds has almost no effect on classic network topologies; by
checking the proofs of the results cited above, we see that also in this case the
Θ(log n) bound remains valid for complete graphs, hypercubes and random
graphs. The quasirandom protocol of Doerr et al. [24] is a way of excluding
all previous contacts. It has been investigated only in the push model, where
again many known Θ(log n) run time bounds have been verified.

The idea of excluding previously contacted nodes is not new. Elsässer and
Sauerwald [36] used the exclusion of the previous three contacts to design
protocols that reduce the number of messages sent, an aspect important
when using such protocols to disseminate information in networks, e.g., to
maintain distributed databases [22]. However, excluding previous contacts
so far did not yield a faster rumor spreading. In fact, Elsässer and Sauerwald
[36] have shown that the Ω(log n) lower bound for rumor spreading in Erdős-
Rényi random graphs Gn,p, where p > polylog(n)/n, remains true if arbitrary
exclusion schemes are used.

In the asynchronous model, we prove that the push-pull protocol spreads
a rumor in time O(

√
log n) to n nodes in the PA model with high probability.

The protocol thus beats the average distance of Θ(log n/ log log n). To inform
all nodes, however, the protocol also needs Θ(log n) time. This is mainly due
to a few nodes that require Ω(log n) time to contact or be contacted by a
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neighbor for the first time. In contrast to the synchronous model, even when
previously contacted nodes are excluded, the protocol still needs Ω(log n) to
inform all nodes.

These results show that the asynchronous push-pull protocol behaves
quite differently from the synchronous one, despite the fact that each node
still contacts one neighbor per time unit on average. The discrepancy be-
tween informing all nodes and almost all nodes reflects an often observed
‘long tail’ behavior in real world networks. Such effects are less visible in the
synchronous case.

We complement these theoretical results by the corresponding experi-
ments. In the synchronous case, these empirical results show that memory
truly reduces the runtime of the protocol already for small network sizes in
the preferential attachment model. Such a reduction is not visible for other
graph classes.

Also the asynchronous protocol shows a clear advantage over the syn-
chronous protocol. However, contrary to the theoretical findings, no asymp-
totic advantage for preferential attachment graphs over other graph classes
was observed. We expect that the theoretically proven asymptotic behavior
can only be observed for very large graphs.

To support the common observation that news spreads very fast in social
networks, we have also simulated the rumor spreading process on samples of
the Twitter and Orkut social networks (taken from [6, 53]) as well as pref-
erential attachment graphs of the same size. As most social networks have
a similar structure, we have chosen these large networks, for which data was
readily available, as instances of social networks. For comparison, we have
also included into our investigation complete graphs and random-attachment
graphs (also called m-out model, see, e.g., Bohman and Frieze [7]), in which
each node chooses m neighbors uniformly at random from all nodes. These
experiments show that news spreads much faster in the real-world networks
and the preferential attachment graphs than in the complete and random-
attachment graphs. For the Twitter experiment, a considerable difference
between the preferential attachment model and the real-world graph is vis-
ible, indicating that the Twitter graph is not captured that well by the
theoretical model.

2.3 Preferential Attachment Graphs

Preferential attachment graphs were first introduced by Barabási and Albert
[3]. In this work, we follow the formal definition of Bollobás et al. [10, 12].
Let G be an undirected graph. We denote by degG(v) the degree of a vertex
v in G.

Definition 2.3.1 (Preferential attachment graph). Let m ≥ 2 be a fixed
parameter. The random graph Gn

m is an undirected graph on the vertex set

20



V := {1, . . . , n} inductively defined as follows.

• G1
m consists of a single vertex with m self-loops.

• For all n > 1, Gn
m is built from Gn−1

m by adding the new node n together
with m edges e1n = {n, v1}, . . . , emn = {n, vm} inserted one after the
other in this order. Let Gn

m,i−1 denote the graph right before the edge
ein is added. Let Mi =

�
v∈V degGn

m,i−1
(v) be the sum of the degrees

of all the nodes in Gn
m,i−1. The endpoint vi is selected randomly such

that vi = u with probability degGn
m,i−1

(u)/(Mi +1), except for n that is
selected with probability (degGn

m,i−1
(n) + 1)/(Mi + 1).

This definition implies that when ein is inserted, the vertex vi is chosen
with probability proportional to its degree (except for vi = n). Since many
real-world social networks are conjectured to evolve using similar principles,
the PA model can serve as a model for social networks. Note that we can
generate Gn

m from Gmn
1 by identifying the nodes 1, . . . ,m to form node 1,

m+ 1, . . . , 2m to form node 2 and so on.
An important property observed in many real-world networks is a char-

acteristic degree distribution that follows a power law. For preferential at-
tachment graphs it has been formally proven that the degree distribution
follows a power law with exponent equal to 3.

Theorem 2.3.1 (Bollobás et al. [12]). Let m ≥ 1 be fixed. We denote by
#n

m(d) the number of nodes of indegree d in Gn
m. Let

αm(d) :=
2m (m+ 1)

(d+m) (d+m+ 1) (d+m+ 2)
,

and let ε > 0 be fixed. Then, with probability 1− o(1), we have

(1− ε)αm(d) ≤ #n
m(d)

n
≤ (1 + ε)αm(d),

for every d in the range 0 ≤ d ≤ n1/5.

For m = 1 the graph is disconnected with high probability; so we focus on
the case m ≥ 2. Under this assumption, Bollobás and Riordan [10] showed
that the diameter is only Θ(lnn/ ln lnn) with high probability.

With a slight abuse of notation we write (u, v) ∈ E or (v, u) ∈ E both
to denote {u, v} ∈ E. The definition of Gn

m can lead to multiple edges and
self-loops, though they typically make up only a vanishing fraction of the
edges.

2.4 The Synchronous Protocol

The synchronous push-pull protocol assumes a discrete time line. One unit
of time is called a time step or round. All nodes take action simultaneously
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in these rounds. We assume that in the beginning one node s has the rumor.

Definition 2.4.1 (Synchronous push-pull protocol). Let M ≥ 0 be a fixed
parameter. Assume that every vertex can store M vertices. The protocol
runs as follows:

• In each round t ≥ 1, every vertex u chooses uniformly at random a
neighbor v which it has not contacted in the last min{deg(u) − 1,M}
rounds. If u knows the rumor, it sends the rumor to v (“push”).
If v knows the rumor, it sends the rumor to u (“pull”).

Note that for M = 0, this is the standard push-pull strategy.

2.5 The Asynchronous Protocol

The asynchronous protocol assumes a continuous time line; each node has a
clock that ticks independently from the clocks of other nodes at the times of
a rate 1 Poisson process. A node takes action whenever its clock ticks.

Definition 2.5.1 (Asynchronous push-pull strategy). Whenever the clock
of a vertex u ticks, it chooses uniformly at random a neighbor v. If u knows
the rumor, it sends the rumor to v (“push”). If v knows the rumor, it sends
the rumor to u (“pull”).

The following lemma follows directly from [58, Theorem 8.13]

Lemma 2.5.1. Let N(t) denote the number of ticks of a Poisson process
with parameter λ in the time interval [0, t]. Then, for all s > 0, and any
integer k ≥ 0, we have,

P[N(t+ s)−N(t) = k] = e
−λt (λt)

k

k!
. (2.5.1)

We call the time span between two ticks of a clock a round. The length
of a round is exponentially distributed with mean 1 (see, e.g., [58]), i.e., if T
denotes the time span until the clock of a node ticks, then

P[T > x] = e
−x

.

Since the exponential distribution is memoryless (i.e., P[T ≥ s+ t | T > t] =
P[T > s]) the length of a round is independent over time.

The following lemma shows that also the time when a node contacts a
specific neighbor is exponentially distributed.

Lemma 2.5.2. Let u be a node of degree d that is connected to a node v.
Let T denote the time span until u contacts v. Then, P[T > x] = e−x/d.
Thus, T is also memoryless.
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The proof follows immediately from the following lemma by declaring the
event that u contacts v as type 1.

Lemma 2.5.3. [58, Theorem 8.13] Suppose that we have a Poisson process
N(t) with rate λ. Each event is independently labeled as being type 1 with
probability p or type 2 with probability 1− p. Then the type-1 events form a
Poisson process N1(t) of rate λp, the type-2 events form a Poisson process
N2(t) of rate λ(1− p), and the two Poisson processes are independent.

We say that an edge (u, v) fires, whenever the clock of node u ticks and
u contacts v.

2.6 Statement of Results and Proof Structure

For the synchronous case, we prove the following result.

Theorem 2.6.1. Let s be an arbitrary node in Gn
m. With probability 1−o(1),

the synchronous push-pull protocol broadcasts a rumor from s to all nodes in

• Θ(lnn) rounds, if M = 0,

• Θ(lnn/ ln lnn) rounds, if M ≥ 1.

For the asynchronous case, we achieve a much better running time in
informing almost all nodes.

Theorem 2.6.2. With probability 1− o(1), the asynchronous push-pull pro-
tocol broadcasts a rumor from any node of Gn

m to

• all nodes in time Θ(lnn),

• all but o(n) nodes in time O(
√
lnn).

It should be noted that the improved runtime of O(lnn/ ln lnn) in the
synchronous case is also achieved without memory if we are only interested
in informing almost nodes. On the other hand, the use of memory does
not improve the runtime in the asynchronous protocol except by constant
factors.

The proofs of the upper bounds in Theorem 2.6.1 and Theorem 2.6.2
consist of three main steps. First, we analyze the time needed until the
rumor reaches a so-called useful node. Roughly speaking, a node is useful if
its degree is at least polylogarithmic (see Section 2.8 for details).

Second, we show that once a useful node u has been informed, in the syn-
chronous and asynchronous case, within O(lnn/ ln lnn) steps and O(

√
lnn)

time, respectively, the rumor is propagated to node 1. To this aim, we show
that there is a short path from u to 1 such that every second node has degree
exactly m and that is traversed in O(lnn/ ln lnn) steps or O(

√
lnn) time,
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Figure 2.1: Example of a linear chord diagram and corresponding graph

respectively. For the synchronous case, the nodes of degree m act as ‘fast
nodes’, i.e., they forward the rumor from one informed neighbor to another
one in a constant number of steps. Since the path has length O(lnn/ ln lnn),
the result follows. For the asynchronous case, we prove a much faster traver-
sal by exploiting edges that fire fast. In particular, we use the fact that
the minimum of k i.i.d. exponential random variables with mean 1 is also
exponentially distributed with mean 1/k. Thus, by moving along fast edges,
the rumor reaches node 1 in time less than the distance to node 1.

Finally, we use a symmetry property of both protocols to show that in
O(lnn/ ln lnn) steps and O(

√
lnn) time, respectively, the rumor is sent from

node 1 to the other nodes.

2.7 Alternative Model

In the random process generating Gn
m, the random decisions made at each

step depend heavily on the previous random decisions. To deal with these
dependencies, Bollobás and Riordan [10] suggested an alternative way of
generating Gn

m, that is more accessible. We first describe the model for
m = 1. Since this case suffices to generate Gn

m for general m (by reducing
Gn

m to Gmn
1 ), it is easy to generalize the model to arbitrary m.

Consider a partition of the set {1, 2, . . . , 2n} into n pairs. We can rep-
resent such a pairing by a linear chord diagram (LCD) (see Figure 2.1a),
that consists of 2n distinct points on a horizontal line that are paired off by
chords. We can transform such a diagram into a graph as follows (see Fig-
ure 2.1b). We insert a node for each chord. Starting from the left endpoint of
each chord, we connect the corresponding node with the node corresponding
to the chord of the first right endpoint reached. We claim that an LCD with
2n distinct points where the set of chords are chosen uniformly at random
generates Gn

1 . To see this note that a random LCD with n chords can be
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generated from a random LCD with n − 1 chords by inserting a new chord
whose right endpoint is to the right of all points and its left endpoint is
inserted uniformly at random among all 2n− 1 possible places. This corre-
sponds to adding a node to the graph and connect it to another node chosen
with probabilities proportional to the degrees just like in the preferential
attachment model.

Here, we use the following way to generate a random pairing of points
in [0, 1]. Let (xi, yi) for i ∈ [n] := {1, 2, . . . , n} be n independently and
uniformly chosen pairs from [0, 1] × [0, 1]. With probability 1, all these
numbers are distinct. By reordering within each pair, we assume that xi < yi

for every i ∈ [n]. It is easy to see that if we regard each pair (xi, y1) as a
chord, we obtain an LCD with n chords that is distributed uniformly at
random among all LCDs with n chords. Suppose that after relabeling, we
have y1 < y2 < · · · < yn. We set W0 := 0 and Wi := yi for i ∈ [n]. The graph
Gn

1 is now defined by having an edge (i, j) if and only if Wj−1 < xi < Wj .
Note that this corresponds to the same transformation of an LCD to a graph
described above. Define wj := Wj −Wj−1.

Similarly, for Gn
m, we sample mn pairs (xi,j , yi,j) independently and uni-

formly from [0, 1]× [0, 1] with xi,j < yi,j for i ∈ [n] and j ∈ [m]. We relabel
the variables such that

y1,1 < y1,2 < · · · < y1,m < y2,1 < · · · < y2,m < · · · < yn,1 < · · · < yn,m.

We set W0 := 0 and Wi := yi,m for i ∈ [n]. The graph is now defined by
having an edge (i, j) for each k ∈ [m] such that Wj−1 < xi,k < Wj . As
before, define wj = Wj − Wj−1. We write �i,k for the node j such that
Wj−1 < xi,k < Wj .

Note that given y1,1, . . . , yn,m, the random variables x1,1, . . . , xn,m are
independent with xik being chosen uniformly from [0, yi,k]. For a better
readability, we will always use the following bounds. For i ≥ j, we have

P[�i,k = j] =
wj

yi,k
,

and thus,

wj

Wi

≤ P[�i,k = j] ≤ wj

Wi−1
. (2.7.1)

The bounds (2.7.1) allow us to work with the values of the Wi’s and ignore
the values of the yi,j ’s.

We give a few properties of the alternative model, which hold with high
probability and are useful in the analysis. Let s = 2a be the smallest power
of 2 larger than ln7 n, and let 2b be the largest power of 2 smaller than 2n/3.
Let It = [2t + 1, 2t+1].
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Lemma 2.7.1 (Bollobás and Riordan [10]). Let m ≥ 2 be fixed. Using
the definitions above, each of the following five events holds with probability
1− o(1):

• E1 :=
�
|Wi −

�
i/n| ≤ 1

10

�
i/n for all i, where s ≤ i ≤ n

�

• E2 :=
�
It contains at least 2t−1 nodes i with wi ≥ 1

10
√
in

for all t,
where a ≤ t < b

�

• E3 := {w1 ≥ 4
ln(n)

√
n
}

• E4 := {wi ≥ ln2(n)/n for i < n1/5}

• E5 := {wi < ln2(n)/n for i ≥ n/2}.

Note that the event E5 is slightly adjusted for our purposes. In the original
paper, the authors show that for i ≥ n/ ln5 n, we have wi < n−4/5. It is easy
to check that essentially the same proof holds for the above version. For
completeness, we provide the slightly modified proof.

Proof of E5. Suppose that E1 holds, but E5 does not hold. Let δ = ln2(n)
n

.
Then for some x, 0.6 < x < 1− δ, the interval [x, x+ δ] contains no Wi, and
hence contains at most m − 1 of the yi,j . We partition this interval into m

disjoint intervals of each of size δ� = δ/m.
Setting δ� = δ/(m + 1), each such interval contains m disjoint intervals

of the form [tδ�, (t+1)δ�) with t an integer and 0.6 < tδ� < 1δ�, one of which
must contain no yi,j . For a given t, the number of yi,j in [tδ�, (t + 1)δ�) has
a binomial distribution Bi(mn, pt) with

pt = (2t+ 1)δ�2 > 1.2δ > ln2(n)/((m+ 1)n),

where the last inequality holds for sufficiently large n. The probability that
no yi,j lies in this interval is thus

(1pt)
mn ≤ e

−mnpt < e
−m ln2 n/(m+1) = n

−O(lnn)
.

Summing over the O(n/ ln2 n) values of t shows that the probability that E1

holds, but E5 does not is o(1), completing the proof of the lemma.

Instead of working directly with the alternative model where the Wi’s are
random variables, we use the following typical social network model where we
assume the Wi’s to be fixed numbers that satisfy the properties E1, . . . , E5.
Since by Lemma 2.7.1, these properties hold with high probability, all re-
sults proven for a typical social network model carry over to Gn

m with high
probability. More precisely, Let 0 < W1 < · · · < Wn < 1 be distinct real
numbers and let wi = Wi−Wi−1. Assume that W1, . . . ,Wn satisfy the prop-
erties E1, . . . , E5. A typical social network Gm(W1, . . . ,Wn) is obtained by
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connecting each node i with the nodes �i,1, . . . , �i,m, where each �i,k is a node
chosen randomly with wj

Wi
≤ P[�i,k = j] ≤ wj

Wi−1
for all j ≤ i.

In the remainder of the paper we will always assume to have a typ-
ical social network Gm(W1, . . . ,Wn). For simplicity, we will write G :=
Gm(W1, . . . ,Wn) to denote a (random) typical social network.

2.8 Useful Nodes

We use the notion of a useful node that was introduced by Bollobás and
Riordan [10]. A node i is useful if wi ≥ ln2(n)/n. Note that we are slightly
relaxing the original definition in [10] where the authors also assumed that
i ≤ n/ ln5(n). For our purposes, by E5, we have i < n/2 for all useful nodes.
Furthermore by E4, every i < n1/5 is useful. We now prove several properties
of non-useful nodes. Remember that degG(v) denotes the degree of node v

in graph G.

Lemma 2.8.1. With probability 1− n−Ω(lnn), the following event holds

• E6 := {degG(v) ≤ 5m ln2 n for all non-useful v}.

Proof. Let i be a fixed non-useful node. So wi < ln2(n)/n and by E4,
i ≥ n1/5. Consider any node j > i. By E1, we have Wj−1 ≥ 1

2

�
(j − 1)/n.

Moreover, for any k ∈ {1, . . . ,m}, we have by (2.7.1)

P[�j,k = i] ≤ wi/Wj−1 ≤
2 ln2 n

n
�
(j − 1)/n

.

Denote by deg+
G
(i) the number of edges (j, i) ∈ E with j > i. Then degG(i) ≤

2m + deg+
G
(i), where the first term is due to the at most m self-loops at i.

We have

E[deg+
G
(i)] =

�

j>i

m�

k=1

P[�j,k = i]

≤ 2m ln2(n)n−1/2
n�

j>i

(j − 1)−1/2

≤ 2m ln2(n)n−1/2
n−1�

j≥i

j
−1/2

≤ 2m ln2(n)n−1/2
�

n

i

j
−1/2 dj

≤ 4m ln2(n).

By Chernoff’s bound, we have P[deg+
G
(i) ≥ 4.5m ln2 n] ≤ e−Ω(ln2(n)) =

n−Ω(lnn). By a union bound over all non-useful nodes, we conclude that
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with probability 1 − n−Ω(lnn) all non-useful nodes have degree at most
2m+ 4.5m ln2 n ≤ 5m ln2 n.

We call a cycle non-useful if it consists only of non-useful nodes.

Lemma 2.8.2. With probability 1− o(1), the following event holds

• E7 := {G contains (lnn)O(ln3/4 n) non-useful cycles
of length at most ln3/4 n}.

Proof. Let � ∈ [n]. We first bound the number of non-useful cycles of length
�. For simplicity, we assume that � is even. The case when � is odd is similar.
Let i1 < i2 < · · · < i� be � distinct non-useful nodes. We set i�+1 := i1. The
probability that i1, . . . , i�, i�+1 = i1 form a cycle in G in this order is

P
� ��

j=1

(ij , ij+1) ∈ E

� by (2.7.1)
≤

��

j=1

�
mmax

� wij+1

Wij−1
,

wij

Wij+1−1

��

≤ m
�

��

j=1

� ln2 n
n

max{W−1
ij−1,W

−1
ij+1−1}

�

by E1

≤ m
�

��

j=1

�10 ln2 n
9
√
n

max
�

1√
ij−1

,
1√

ij+1−1

��

≤ m
�

�/2�

j=1

��10 ln2 n
9
√
n

�2 1

ij − 1

�

≤ m
�

�10 ln2 n
9
√
n

��
�/2�

j=1

1

ij − 1
.

Note that the same upper bound holds for every other cycle consisting of
i1, i2, . . . , i�. Thus we can bound the expected number of cycles consisting
of these nodes by �!m�

�
10 ln2 n
9
√
n

����/2
j=1

1
ij−1 . In consequence, the expected

number of non-useful cycles of length � is bounded by

�

i1<···<i�

�!m�

�10 ln2 n
9
√
n

��
�/2�

j=1

1

ij − 1

≤ �!m�

�10 ln2 n
9
√
n

�� �

i�/2+1<···<i�

�

i1<···<i�/2

�/2�

j=1

1

ij − 1

≤ �!m�

�10 ln2 n
9
√
n

��

n
�/2

� n�

i=1

1
i

��/2

≤ �!m� (109 )
� (lnn)2� (1 + lnn)�/2

≤ �!m� (lnn)3�,
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where the last inequality holds for sufficiently large n.
By Markov’s inequality, we conclude that with probability at most 1

lnn
,

there are more than �!m�(lnn)3�+1 non-useful cycles of length �. By a simple
union bound, it follows that the number of non-useful cycles of length at most
ln3/4 n is at most (ln3/4 n)1+ln3/4 nmln3/4 n (lnn)3 ln

3/4(n)+1 = (lnn)O(ln3/4 n)

with probability at least 1− (lnn)−1/4 = 1− o(1).

Lemma 2.8.3. Assume that E6 holds and let K = lnn

(ln lnn)2 . With probability
1− n−1/5+o(1), the following event holds

• E8 := {for all non-useful v, there exists at most one cycle whose nodes
are all connected to v via paths of length at most K that consist only
of non-useful nodes}.

In order to prove Lemma 2.8.3, we show a few auxiliary results. The
following lemma bounds the probability that two fixed non-useful nodes (not
necessarily distinct) are neighbors.

Lemma 2.8.4. Let v, v� be two fixed non-useful nodes. Then the probability
that (v, v�) ∈ E is at most n−3/5+o(1).

Proof. W.l.o.g. assume that v ≥ v�. Since v� is not useful, we have wv� <

ln2(n)/n. By E4, we have v ≥ v� ≥ n1/5. Using E1 we obtain

Wv−1 ≥ W�n1/5�−1 ≥ 1
2n

−2/5

and thus
P[(v, v�) ∈ E] ≤ mwv�/Wv−1 ≤ n

−3/5+o(1)
. (2.8.1)

Lemma 2.8.5 (Bollobás and Riordan [10]). Let v be a fixed non-useful node.
Then for all k ∈ [m], the probability that �v,k is a useful node is at least
ln−3

n. This event is independent from all other random decisions �v�,k� with
(v�, k�) �= (v, k).

Note that in the original lemma, the authors only state a bound on the
probability that �v,1 is a useful node. However, the same proof yields the
above version. Also note that Lemma 2.8.4 and Lemma 2.8.5 remain valid
if we condition on E6.

For the next technical lemma, we need some notation. Let v be a non-
useful node. Let L0 = {v} and for k ≥ 1, we define

L
k := {i ∈ [n] | i is not useful ∧ i /∈ L

1
, . . . , L

k−1 ∧ ∃i� ∈ L
k−1 : (i�, i) ∈ E}.

We define L≤k :=
�

k

i=0 L
i. Let nk := |Lk|. We say that level Li causes

a collision if there exist two nodes j, j� ∈ Li (not necessarily distinct) that
are either neighbors or share a common neighbor in Li+1, or if there exists
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a node j ∈ Li that is connected to a node in Li+1 by two links, i.e., j is
incident to a multi-edge. Note that each collision caused by Li corresponds
to a cycle that is connected to v via a path consisting only of nodes in L≤i+1

and vice versa, every such cycle corresponds to one collision in some Lj where
j ≤ i + 1. Hence, the number of collisions in L≤k is exactly the number of
cycles in L≤k+1.

Lemma 2.8.6. Assume that E6 holds and let v be a non-useful node. Let
k ≤ lnn

(ln lnn)2 and c > 0 be a constant. We have

P
�
L
k causes c collisions | L1

, . . . , L
k
�
≤ n

−3c/5+o(1)
.

Proof. In the following all probabilities are conditioned on L1, . . . , L
k. Since

all Li contain only non-useful nodes, by E6, we have

|Lk| ≤ (5m ln2 n)k. (2.8.2)

For any two fixed nodes j, j� ∈ Lk (not necessarily distinct), we have

P
�
j, j

� cause a collision
�

≤ P
�
(j, j�) ∈ E

�
+ P[∃j�� /∈ L

≤k : j�� not useful
∧ (j, j��) ∈ E ∧ (j�, j��) ∈ E]

≤ n
−3/5+o(1) + 5m ln2(n)n−3/5+o(1) by (2.8.1)

= n
−3/5+o(1)

.

Similarly, for any fixed node j ∈ Lk, using (2.8.1), we have

P
�
∃j� /∈ L

≤k : j� not useful ∧ j and j
� are connected by two edges

�

≤ 5m ln2(n)n−3/5+o(1) = n
−3/5+o(1)

.

Thus, we have

P
�
L
k causes c collisions

�
≤ (|Lk|2 + |Lk|)cn−3c/5+o(1) = n

−3c/5+o(1)
.

We are now ready to prove Lemma 2.8.3.

Proof of Lemma 2.8.3. Let v be a fixed non-useful node. By Lemma 2.8.6,
the probability that there exists a single level that causes two collisions is at
most Kn−6/5+o(1) = n−6/5+o(1). Similarly, the probability that there exist
two levels that cause a collision each is at most K2n−6/5+o(1) = n−6/5+o(1).
The result now follows from a simple union bound over all non-useful nodes.
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Chapter 3

The Synchronous Protocol

In this chapter, we analyze the synchronous protocol. To see why a single
memory slot can lead to an asymptotic speed-up, it is instructional to prove
the lower bound first.

3.1 Lower Bound

We prove the following lower bound.

Lemma 3.1.1. Let s be an arbitrary node in Gn
m. With probability 1− o(1),

the synchronous push-pull protocol broadcasts a rumor from s to all nodes in

• Ω(lnn) rounds, if M = 0,

• Ω(lnn/ ln lnn) rounds, if M ≥ 1.

For M ≥ 1, the lower bound follows immediately from the fact that Gn
m

has a diameter of Θ(lnn/ ln lnn) with high probability. For M = 0, the
proof strategy is as follows. We first show that with high probability there
are Ω(n) edges with incident nodes both of constant degree. Both nodes
of such an edge remain uninformed with constant probability in each round
since with constant probability the two nodes contact each other and are not
contacted by any other of their neighbors. It is then easy to show that at
least for one edge the incident nodes remain uninformed after Ω(lnn) rounds
with high probability.

Proof of Lemma 3.1.1. Let Xc denote the total degrees of all nodes of inde-
gree at most c for some constant c > 0. By Theorem 2.3.1, we have with
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probability 1− o(1),

Xc ≥ (1− ε)
c�

d=0

(d+m)nαm(d)

= (1− ε)2m(m+ 1)n
c+m�

d=m

1

(d+ 1)(d+ 2)

= (1− ε)2m(m+ 1)n
c+m�

d=m

� 1

d+ 1
− 1

d+ 2

�

= (1− ε)2m(m+ 1)n
�

1
m+1 − 1

c+m+2

�

= (1− ε)2mn
�
1− m+1

c+m+2

�
.

Note that each edge that connects two nodes each of degree at most c

is counted twice in Xc, whereas each edge that connects one node of degree
at most c with a node of degree larger than c is counted only once. Hence,
Xc −mn is a lower bound on the number of edges that connect two nodes
of degree at most c. So with probability 1 − o(1), we have at least (1 −
ε)2mn

�
1− m+1

c+m+2 −
1

2(1−ε)

�
such edges. Thus, for sufficiently large constant

c, we have Ω(n) such edges and therefore also Ω(n) such pairs of nodes each
of degree at most c +m that are connected to each other. Moreover, since
each of these nodes has constant degree, we can select Ω(n) pairwise disjoint
pairs so that no node appears in more than one selected pair. Let P denote
such a pairwise disjoint set of these edges.

Now consider an edge (u, v) ∈ P . Assume that both nodes are unin-
formed. Then, they remain uninformed after one round if in this round (i)
both nodes contact each other and (ii) none of the other neighboring nodes
contacts u or v. Note that the first event occurs with probability at least�

1
c+m

�2, and the second event occurs with probability at least ( 1
m+1)

2(m+c)

since in the worst case there could be m multi-edges between a neighboring
node w and u or v and only one edge from w to a different node. Since these
two events are independent, the probability that u and v remain uninformed
after one round is at least

�
1

c+m

�2
( 1
m+1)

2(m+c) =: δ.

There is a small technicality here. One of the neighbors w could be connected
only to these nodes (e.g., via a multi-edge), so event (ii) would actually
be impossible. However, in that case w can only be informed if u or v is
informed.

Note that δ ∈ Ω(1). The probability that e ∈ P remains uninformed
after α lnn rounds for α = 1/(2 ln δ−1) is therefore at least n−1/2. Let
Ie denote the event that in one of the α lnn rounds, one of the events (i)
and (ii) does not occur. So P[Ie] ≤ 1 − n−1/2. Note that two edges in P
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might have a common node incident to them. Therefore, we can not assume
that the events (Ie)e∈P are independent. However, since the edges in P are
pairwise disjoint, the events (i) for different edges in P are independent, and
furthermore, conditioning on the event (ii) for an edge in P can only reduce
the probability of event (ii) for another edge. Thus, the events (Ie)e∈P
are negatively correlated, i.e., for any subset P � ⊆ P and any e ∈ P \ P �,
P[Ie |

�
f∈P � If ] ≤ P[Ie]. Let e1, . . . , e|P | be an arbitrary ordering of the

edges in P . Then, the probability that none of the Ω(n) pairs remains
uninformed after α lnn rounds is at most

P[
�

e∈P
Ie] = P[Ie1 ] · P[Ie2 | Ie1 ] · P[Ie3 | Ie1 ∧ Ie2 ] · · ·P[Ie|P | | Ie1 ∧ · · · ∧ Ie|P |−1

]

≤ P[Ie1 ] · P[Ie2 ] · · ·P[Ie|P | ]

= (1− n
−1/2)Ω(n)

≤ e
−Ω(n1/2)

.

Note that this proof fails when nodes do not contact the same neighbor
twice in a row. For a similar argument to work in that case, one would need
to show that there exists a polynomial number of triangles that consist of
small degree nodes. In Lemma 2.8.2, we prove that this is not the case.

3.2 Upper Bound

We now prove an upper bound on the runtime of the push-pull protocol that
matches our previous lower bound (up to constant factors).

Lemma 3.2.1. Let s be an arbitrary node in Gn
m. With probability 1− o(1),

the synchronous push-pull protocol broadcasts a rumor from s to all nodes in

• O(lnn) rounds, if M = 0,

• O(lnn/ ln lnn) rounds, if M ≥ 1.

3.2.1 Informing the First Useful Node

Let G = Gm(W1, . . . ,Wn) be a typical social network. Assume that also
E6, E7, and E8 hold. In this section, all probabilities are taken over the
product space of the random graph G and the random decisions of the rumor
spreading process.

We show that with high probability, the rumor reaches a useful node
within O(lnn) steps for M = 0 and O(ln3/4(n) ln lnn) time steps for M ≥ 1.

We make use of the following simple observation that follows directly
from the definition of preferential attachment graphs.
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Fact 3.2.2. With probability 1, both neighbors of a node of degree 2 have
degree at least 3. Thus, every node either has at least three neighbors or is
connected to a node with at least three neighbors.

Lemma 3.2.3. In the synchronous push-pull protocol with M = 0, the rumor
initiated by any node reaches a useful node in O(lnn) rounds with probability
1− o(n−2).

Proof. We make some assumptions that simplify the analysis while only slow-
ing down the process. In this delayed process, we first assume that all nodes
perform only push operations. Second, we set some nodes to be inactive,
i.e., they stop informing other nodes until they are activated again. Note
that when a node is deactivated, it does not lose its memory on the node it
contacted the last.

We consider phases of several rounds. Let Dk denote the set of active
nodes in phase k and nk = |Dk|. Let K = C ln lnn for a sufficiently large
constant C. By E8, there is at most one cycle in D1∪· · ·∪DK . For simplicity,
we first assume that there is no cycle in D1 ∪ · · · ∪ DK . It follows that all
nodes in Dk have at most one informed neighbor in Dk−1.

We distinguish two stages. In the first stage, we do not fix the length of
each phase: a phase will last for a constant number of rounds in expectation.
Active nodes of degree 2 remain active until they contact one uninformed
neighbor; those of higher degree remain active until they contact two unin-
formed neighbors. A phase lasts until all active nodes stop. Then, a new
phase starts in which all nodes become active that have been informed in
the previous phase. In the first phase, only the initially informed node u is
active. The first stage ends at the earliest phase K � such that nK� ≥ C lnn
nodes. By Fact 3.2.2, both neighbors of a node of degree 2 must have degree
at least 3. Thus, we have nk+2 ≥ 2nk. It follows that K � = O(ln lnn) and
N :=

�
1≤k≤K� nk ≤ 4C lnn.

We now bound the length of the first stage. Let Xi denote the number
of rounds needed until an active node i contacts one or two uninformed
neighbors depending on whether it has degree 2 or more. We can then
bound from above the length the first stage by X =

�
1≤k<K�

�
i∈Dk

Xi.
Note that for all i, Xi is stochastically dominated by a geometric variable Yi

with parameter 1
2 in case i has degree 2 and the sum of two geometric random

variables Yi,1+Yi,2 each with parameter 1
3 in case i has degree larger than 2.

It follows that X is stochastically dominated by Y =
�

1≤i≤8C lnn
Yi where

Yi is a geometric random variable with parameter p = 1
3 . By Lemma 1.2.5,

we have

P[Y > 48C lnn] = P[Y > (1 + 1)p−18C lnn]

≤ exp(−1
2C lnn)

≤ n
−2C

.
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We conclude that the first stage lasts for at most 48C lnn iterations with
probability 1−O(n−C).

In the second stage, each phase will last for exactly five rounds. The
probability that an active node of degree 2, contacts an uninformed node
within five rounds is 1− 2−5 = 31

32 and similarly, for an active node of degree
at least 3, the probability that it contacts two uninformed nodes is at least
1 − 3(23)

5 ≥ 0.6. Assume that we are given D1, . . . , Dk and nk ≥ C lnn.
Let i ∈ Dk. If node i has degree at least 3, then let Xi be the indicator
variable for the event that it contacts two uninformed nodes in Dk+1 each
of which in turn contacts one uninformed node in Dk+2. By the previous
discussion, we have P[Xi = 1] ≥ 0.6

�
31
32

�2 ≥ 0.563. Similarly, if node i has
degree 2, let Xi be the indicator variable for the event that it contacts one
node (of degree at least 3) in Dk+1 which in turn contacts two nodes in
Dk+2. Here, we have P[Xi = 1] ≥ 31

320.6 ≥ 0.581. Let X =
�

i∈Dk
Xi. Note

that all Xi are independent from each other and nk+2 ≥ 2X. Thus, we have
E[nk+2 | nk] ≥ 1.16nk. By Chernoff’s bound, we further get

P[X ≤ 1.1nk] ≤ exp
�
− Ω(nk)

�
≤ n

−3
, (3.2.1)

where the last inequality follows from nk ≥ C lnn by choosing C sufficiently
large, but constant. Thus, by a union bound over all k ≤ K, with probability
1 − o(n−2), we have nK ≥ Ω(1.1K) ≥ Ω((lnn)10) where the last inequality
follows from K = C ln lnn by choosing C sufficiently large. Although so far
we have ignored the possibility of encountering a cycle, it is easy to check
that a single cycle does not affect this bound. Thus, by the same argument
as for Lemma 2.8.5, once phase K = C ln lnn is active, either a useful node
was already informed or the probability that a useful node is informed in
one round is 1o(n−2).

We now come to the case M = 1.

Lemma 3.2.4. Let u be any node. In the synchronous push-pull protocol
with M ≥ 1, the probability pu that the rumor initiated by u does not reach
any useful node in O(ln3/4(n) ln lnn) rounds, satisfies pu = o(1). Moreover,
the sum

�
u∈V pu of all these failure probabilities is also o(1).

Proof of Lemma 3.2.4. Let u be a node that initiates the rumor. Assume
that u is useful, as otherwise we are finished. Let C be a sufficiently large
constant. By E8, there is at most one cycle of non-useful nodes that are
connected to u via paths of length at most K, where K = lnn

(ln lnn)2 . Assume
first that there is no such cycle. Then during the first K rounds, we inform a
useful node, or due to the absence of non-useful cycles, we have the property
that whenever a node becomes informed all its neighbors except one are still
uninformed.

As before, we analyze a delayed process where only active nodes perform
operations in each round.
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We consider four stages. The first three stages last for O(
√
lnn) rounds

each. At the end of the third stage we will have informed Ω(lnn) nodes with
high probability. The fourth stage lasts for O(ln lnn) rounds and informs a
useful node with high probability. Until the last round of the third stage, we
always assume that we have not encountered a useful node so far.

The first stage. In the first 2
√
C lnn rounds, we run the following delayed

process. In the first round, only u is active and it informs one new node.
In every subsequent round, the last node that was most recently informed
becomes the only active node. Since a node never contacts the same node
twice in a row, every active node informs an uninformed node in at most two
rounds. Thus after 2

√
C lnn rounds, with probability 1, we have a path of

at least
√
C lnn informed nodes (and at most 2

√
C lnn+1 informed nodes).

The second stage. This stage again lasts for 2
√
C lnn rounds. Let I be

the path of informed nodes from the first stage. In this stage the active
nodes are all nodes in I that have degree at least 3. By Fact 3.2.2, we have
at least |I|/2 active nodes. In contrast to the first stage, most of these active
nodes have two informed neighbors. Therefore, it is not true anymore that
in every two rounds an active node contacts at least one uninformed node.
However, each active node that has not contacted an uninformed node in
this stage yet will do so in each round with probability at least 1

2 . Thus, the
probability that an active node fails to contact an uninformed node in this
stage is at most 2−2

√
C lnn. Let J denote all nodes that become informed in

this stage. We have

P[|J | ≤ |I|/4] ≤ (|I|/2)|I|/4 2−2
√
C lnn |I|/4

≤ (
√
C lnn)

√
C lnn 2−C ln(n)/2

≤ n
−0.34C

.

Thus, with probability 1 − n−0.34C , we have at least
√
C lnn/4 nodes that

were informed during the second stage. For the next stage we assume that
this is the case.

The third stage. This stage lasts for 8
√
C lnn rounds. The active nodes

are all nodes that were informed in the second stage. Similar to the first
stage, in every subsequent round, every active node becomes inactive once
it has contacted an uninformed node which in turn becomes active. Since it
takes an active node at most two rounds until it has contacted an uninformed
node, after 8

√
C lnn rounds, with probability 1, we have at least

√
C lnn/4

disjoint paths, each with at least 4
√
C lnn informed nodes. Hence, in total

we have C lnn informed nodes in this stage.

The fourth stage. Let L denote all nodes that were informed in the third
stage and have a degree of at least 3. By Fact 3.2.2, we have |L| ≥ C ln(n)/2.
We now activate all nodes in L for a single round. Let D1 denote the set
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of all nodes that were informed by the nodes in L in one round. Note that
all nodes in L have at most two informed neighbors, since otherwise there
must be a cycle. Thus, similar to the second stage, the probability that a
node in L contacts an uninformed node in one round is at least 1

2 (it cannot
contact the node it informed the last). Hence, E[|D1|] ≥ 1

2 |L| ≥ C ln(n)/4.
By Chernoff’s bound, we have

P
�
|D1| ≤ C ln(n)/6

�
≤ n

− C
72 . (3.2.2)

We now consider phases of three rounds. In the first phase only nodes in
D1 are active. For k ≥ 2, we define the set Dk of nodes active in phase k as
follows. Given D1, . . . , Dk−1, let Dk denote all nodes that become informed
by nodes in Dk−1 (i.e., in phase k − 1). Let nk = |Dk| and M = C ln lnn.
Note that at the beginning of phase k, all nodes in Dk have exactly one
informed neighbor. Thus, the probability that an active node of degree at
least 3 contacts two uninformed nodes in three rounds is easily seen to be
at least 2

3 . Assume that we are given D1, . . . , Dk and nk ≥ C ln(n)/6. Let
i ∈ Dk. If node i has degree at least 3, then let Xi be the indicator variable
for the event that it contacts two distinct nodes in Dk+1 which in turn
contact one node in Dk+2, respectively. Similarly, if node i has degree 2,
let Xi be the indicator variable for the event that it contacts one node (of
degree at least 3) in Dk+1 which in turn contacts two nodes in Dk+2. In both
cases, we have P[Xi = 1] ≥ 2

3 . Let Xk =
�

i∈Dk
Xi. Note that the Xi are

mutually independent and nk+2 ≥ 2Xk. Thus, we have E[nk+2 | nk] ≥ 4
3nk.

By Chernoff’s bound, we further obtain

P
�
nk+2 ≤ 5

4nk

�
≤ exp

�
− 1

384nk

�
≤ n

−C/2304
, (3.2.3)

where the last inequality follows from nk ≥ C ln(n)/6. Thus, with proba-
bility at least 1 −Mn−C/2304 ≥ 1 − n−C/2305, we have nM ≥ Ω

��
5
4

�M/2� ≥
Ω(ln7 n), for sufficiently large (but constant) C.

For every i ∈ DM , at most one of the nodes �i,1 and �i,2 are informed. Let
�i denote any of the nodes �i,1 and �i,2 that is not informed. Given the se-
quence D1, . . . , DM , the nodes �i, where i ∈ DM , are mutually independent.
Furthermore, conditioned on �i /∈ D1, . . . , DM , the probability that �i is use-
ful can only increase since D1, . . . , DM only contain non-useful nodes. Hence
by Lemma 2.8.5, for any i ∈ DM , we have P[�i is useful] ≥ ln−3

n. Further-
more, for any i ∈ DM , the probability that i contacts �i in one round is at
least 1/ deg(i) ≥ 1/(5m ln2 n) due to E6. Since for each i ∈ Dm both events
are independent, the probability that no node in DM informs a useful node
in one round is at most (1 − 1/(5m ln5 n))nM ≤ exp(−nM/(5m ln5 n)) ≤
n−Ω(lnn).

The total failure probability of all four stages is at most n−0.34C+n−C/72+
n−C/2305+n−Ω(lnn) = o(n−2) for sufficiently large (but constant) C. Conse-
quently, by a simple union bound over all nodes, we conclude that the total
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probability that a rumor started by any node u reaches a useful node in
O(

√
lnn) rounds is 1− o(n−1).

So far we have assumed that u is not connected to a non-useful cycle
via paths of length K. By E8, there can be at most one such cycle. We
now argue how the above argument can be easily adjusted for that case.
First we consider the case when u is not itself part of the cycle. Clearly,
if throughout the stages no cycle is detected, then the above argument still
applies. Otherwise, if the cycle is encountered in the first stage, then after the
first 2

√
C lnn rounds, we again make u the only active node and run the same

delayed process for another 2
√
C lnn rounds. Thus the first stage now lasts

for 4
√
C lnn rounds. Since u does not contact the last contacted node again

and there can be no other cycle, we obtain a new path of
√
C lnn informed

nodes that is disjoint from the nodes informed in the first 2
√
C lnn rounds.

If the cycle is encountered in the second stage, at most two active nodes
are affected. Thus, at the end of the second stage we will still have at least√
C lnn/4 − 2 newly informed nodes which is sufficient for the subsequent

stages. Similarly, if the cycle is encountered in the third stage, at most two
paths are affected and so at the end of the third stage, we will still have at
least C lnn − 8

√
C lnn informed nodes. By slightly adjusting the constant

C, it is easy to see that this is sufficient for the subsequent stages. If the
cycle is encountered in the fourth stage, we have nk+2 ≥ 2Xk − 2 for all
k ≥ 1. Again, the computation can be easily adjusted for this case.

It remains to consider the case when u lies in a cycle of length at most K.
Our goal is to bound the number of rounds needed until we reach a node that
lies outside the cycle. Since by E8 there can be only one cycle, this node itself
cannot lie in cycle and we can apply the previous case again. W.l.o.g. assume
that u has degree at least 3 (otherwise we take one of the neighbors). In
each round, the probability that u contacts a node outside of the cycle is at
least 1

3 . Thus the probability that u does so within C ln3/4(n) ln lnn rounds
is 1 − 3−C ln3/4(n) ln lnn. By E7, there are (lnn)O(ln3/4 n) = 2O(ln3/4(n) ln lnn)

cycles of length O(
√
lnn). Thus, for sufficiently large C, we obtain, by a

simple union bound, that with probability 1−o(1), all nodes that lie in such
cycles reach a node that is outside of the cycle within O(ln3/4(n) ln lnn)
rounds. By the previous case, it then takes another O(

√
lnn) rounds until a

useful node is reached.

3.2.2 Informing Node 1

What ultimately makes rumor spreading in preferential attachment graphs
fast, are vertices of small (constant) degree. Each of them, with constant
probability, has the beautiful property that, once a neighbor becomes in-
formed, it pulls the rumor from such a neighbor and pushes it to all other
neighbors in a total number of time steps equal to its degree. As we will see
in this section, this property alone suffices to spread the rumor among all
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useful nodes.
More specifically, we show that between any two useful nodes there is

a path of length O(lnn/ ln lnn) such that every second node on the path
has this property. Since these nodes (by definition with probability one)
propagate the rumor in constant time, we see that the rumor is propagated
along such a path in time O(lnn/ ln lnn).

Consider a fixed graph G and a run of the rumor spreading process started
in some node u. Let v �= u be a node of degree exactly m. Let t be the first
time when some neighbor of v is informed and v� be the smallest neighbor of
v that is informed at time t. We say that v is fast (in this run of the process)
if the following is true. (i) In time step t + 1, v contacts v� and thus pulls
the rumor from v�. (ii) In time steps t + 2, . . . , t + m, v contacts all other
neighbors without repetition and thus informs all these neighbors.

The event that a node v is fast, is independent from the random decisions
of all other nodes in the process. For this reason, the following lemma is the
key to our analysis (to be continued with Corollary 3.2.9).

Lemma 3.2.5. Let G = Gm(W1, . . . ,Wn) be a typical social network. Let
p ∈ [0, 1] be a constant. For each node v ∈

�
2
3n, n

�
of degree m decide

independently with probability p that it is marked.
Let u ∈ [n] be a useful node. Then, with probability 1 − o(n−1) in the

product space of random graph and random marks, there exists a path of
length O(lnn/ ln lnn) between u and 1 such that every second node is marked.

We start by showing that with high probability, the random graph re-
garded contains a linear number of marked nodes. Of course, the main
ingredient for this statement is the fact that there is a linear number of
nodes i ∈

�
2
3n, n

�
that have a degree equal to m. If not explicitly stated, all

probabilities in this section are taken over the product space of the typical
social network Gm(W1, . . . ,Wn) and the random marks.

Lemma 3.2.6. Let εm := 1
8pe

−3m. With probability 1− e−Ω(n), there are at
least εmn marked nodes.

Proof. Since
�

n

i=1wi = 1, at least half of the i ∈
�
2
3n, n

�
:= C have wi ≤

6/n. Let i ∈ C be such that wi ≤ 6/n. Note that i has degree equal to m if
and only if no node j > i is a neighbor of i. Even conditioning arbitrarily on
the degrees of all nodes in C \ {i}, we have for all k ∈ {1, . . . ,m}, P[�j,k =

i] ≤ wi/(Wj −
�j

r= 2
3n

wr) ≤ (6/n)/W 2
3n

≤ (6/n)/(0.9 ·
�
2/3) ≤ 9/n, using

the lower bound on W 2
3n

from property E1. Consequently, the degree of i
equals m with probability at least (1−9/n)(1/3)nm ≥ (1−o(1)) exp(−9nm

3n ) =
(1− o(1))e−3m.

Thus, the expected number of nodes in C having degree m is at least
(1− o(1))16e

−3mn. Since we allowed arbitrary conditioning on other degrees
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in C, we may apply Chernoff bounds and see that with probability 1−e−Ω(n),
at least 1

7e
−3mn of the nodes in C have degree equal to m.

Each of these nodes was marked independently with probability p. Hence
the expected number of marked nodes is at least 1

7e
−3mpn, and with prob-

ability 1− e−Ω(n), at least 1
8e

−3mpn of the nodes in C have degree equal to
m and are marked.

We now construct a path from a useful node u to node 1 that has each
second node marked. We say a node i is good if

i ∈ [s+ 1, 2b] and wi ≥
1

10
√
in

, (3.2.4)

where, as before, s = 2a is the smallest power of 2 larger than ln7 n and 2b is
the largest power of 2 smaller than 2

3n. We consider sets Γk and Γ�
k

defined
recursively as follows. We set Γ0 = {u}. Given Γk, Γ�

k
is defined to be the

set of all marked nodes i ≥ 2
3n that have a neighbor in Γk and have not been

included in any Γ�
�

with � ≤ k − 1. Similarly, Γk is defined as the set of all
good nodes that have a neighbor in Γ�

k−1 and have not been included in any
Γ� with � ≤ k − 1. Note that for all k ≥ 0, Γk only contains nodes i <

2
3n,

while Γ�
k

only contains nodes i ≥ 2
3n. This is true for Γ0 since u is useful

and by E5, all useful nodes are smaller than n/2. We define the weight of a
set Γk by

fk :=

�
wu if k = 0
�

i∈Γk

1√
in

if k ≥ 1.
(3.2.5)

Since for k ≥ 1, Γk only contains good nodes, and by definition, wu = f0,
we have for k ≥ 0,

�

i∈Γk

wi ≥ fk/10. (3.2.6)

Let Nk =
�

0≤i≤k
Γi and N �

k
=

�
0≤i≤k

Γ�
i
. We denote by C0 ⊆

�
2
3n, n

�
the set

of marked nodes and for k ≥ 1, by Ck = C0 \N �
k−1 the set of marked nodes

excluding nodes in Γ�
0,Γ

�
1, . . . ,Γ

�
k−1. By Lemma 3.2.6, we have C0 ≥ εmn

with probability 1− e−Ω(n). We also need the following technical lemma.

Lemma 3.2.7 (Bollobás and Riordan [10]). Let ε > 0, and K := (1/2 +
ε) (ln(n)/ ln ln(n)) − 1. Let f0, f1, . . . be a sequence of real numbers with
f0 ≥ ln2(n)/n and

fk+1 ≥ min{2 log2(εmfkn/ lnn)− 29, b− a}εmfk/3564 (3.2.7)

for all k ≥ 0. Then, for n sufficiently large, � = min{k : fk ≥ ln3(n)/
√
n}

exists and is at most K.
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Note that in the original paper the authors assume

fk+1 ≥ min{2 log2(fkn/ lnn)− 32, b− a− 1}fk/1000

and obtain that � = min{k : fk ≥ ln2(n)/
√
n} is at most K. It is easy

to check that essentially the same proof holds for the above version. For
completeness, we provide the proof here.

Proof. Provided n is sufficiently large we have

log2(εmf0n/ lnn) ≥ log2(εm lnn) ≥ 4015/εm.

Thus (3.2.7) implies that f12f0. It follows inductively that fk+1 ≥ 2fk
and fk ≥ 2kf0 hold for all k ≥ 0. This shows that � exists. As ba ≥
lnn8 ln lnn, the minimum in (3.2.7) is different from the first term only if
fk ≥ (lnn)−3/

√
n. If this first happens at k = k0, say, then for k ≥ k0 we

have
fk+1 ≥ (ba)εmfk/3564 = (log2 n)

1−o(1)
fk,

which implies that � ≤ k0 + 7. Thus

fk+1 ≥
log2(εmfkn/ lnn)15

1782
fk, (3.2.8)

for 0 ≤ k < �6. As fk ≥ 2kf0 and log2(εmf0n/ lnn) ≥ 16 (if n is large
enough), we have log2(εmfkn/ lnn) ≥ k + 16. Combined with (3.2.8) this
implies that fk+1 ≥ fk(k + 1)/1782 for 0 ≤ k < �6, and hence that

f�−6 ≥
(�6)!

1782�6
f0 ≥

�
�− 6

1782e

��−6
f0,

using StirlingâĂŹs formula. As f�6 < (lnn)3/
√
n ≤

√
nf0 this implies that

�6 ≤ (1/2 + ε/2) lnn/ ln lnn < K6, and the lemma follows.

Remember that It := [2t + 1, 2t+1] for t ∈ [a, b).

Lemma 3.2.8. Let k ≥ 0 be such that fk ≥ ln2(n)/n and |Ck| ≥ εmn/2.
Then given Ck and Γ0,Γ�

0,Γ1,Γ�
1, . . . ,Γk, with a probability of at least 1 −

O(n−6/5), one of the following is satisfied:

• |Nk+1 ∩ It| ≥ 2t−2, for some t ∈ [a, b), or

• fk+1 ≥ min{2 log2(εmfkn/ lnn)− 29, b− a}εmfk/3564.

Proof. All probabilities are conditioned on the assumptions in the lemma.
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We first show that |Γ�
k
| = Ω(nfk) holds with high probability. Let j ∈ Ck.

By definition, node j can not be connected to any node in Nk−1 or C0 via
its first link (i.e., �j,1 /∈ Nk−1 ∪ C0). Thus, we have

P[�j,1 ∈ Γk] =
��

i∈Γk

wi

�
/

�
Wj −

�

i∈Nk−1

wi −
�

i : i∈C0, i≤j

wi

�

≥
��

i∈Γk

wi

�
/Wj ≥ fk/10,

where the last inequality follows from (3.2.6). Hence,

E[|Γ�
k|] ≥ |Ck|fk/10 ≥ εmnfk/20.

By Chernoff’s bound, we obtain

P[|Γ�
k| ≤ εmnfk/21] ≤ exp(−Ω(εmnfk)) ≤ n

−Ω(lnn)
, (3.2.9)

where the last inequality follows from fk ≥ ln2(n)/n. In the following, we
assume

|Γ�
k| ≥ εmnfk/21. (3.2.10)

We now show that either |Nk+1 ∩ It| ≥ 2t−2 for some t ∈ [a, b), or
with high probability, for sufficiently many t ∈ [a, b), we have |Γk+1 ∩ It| =
Ω
�
|Γ�

k
|
�
2t/n

�
. Let t ∈ [a, b). By E2, It contains at least 2t−1 good nodes.

Let S be initially the set of good nodes in It \Nk. So |S| ≥ 2t−1 − |Nk ∩ It|.
We consider the elements of Γ�

k
one by one in any order. Let �Γ be an initially

empty set. Whenever we encounter some node i ∈ Γ�
k

that is connected to
some node j ∈ S via its second link (i.e., �i,2 = j), we remove j from S and
include it into �Γ. Note that �Γ ⊆ Γk+1 throughout this process. Moreover,
�i,2 has not been revealed before i is considered (�i,1 is independent from �i,2

given all Wj values). Hence, as long as |S| ≥ 2t−2, we have for every node
i ∈ Γ�

k
,

P[�i,2 ∈ S] ≥ 2t−2

10Wi

√
2t+1n

≥
√
2t

60
√
n
.

If |S| < 2t−2 at some point, then |Nk+1 ∩ It| ≥ 2t−2 and we are finished.
Otherwise

E[|Γk+1 ∩ It|] ≥ E[|�Γ|] ≥ |Γ�
k|

√
2t

60
√
n
=: µt. (3.2.11)

Let Y =
�

1≤i≤|Γ�
k|
Yi where Y1, . . . , Y|Γ�

k| are mutually independent 0/1-

random variables with P[Yi = 1] =
√
2t

60
√
n
, where 1 ≤ i ≤ |Γ�

k
|. Note that

|Γk+1 ∩ It| stochastically dominates Y , i.e., P[|Γk+1 ∩ It| > t] ≥ P[Y > t].
Now, if µt ≥ 10 lnn, we have by Chernoff’s bound P[Y ≤ µt/2] ≤ n−5/4, and
thus P[|Γk+1 ∩ It| ≤ µt/2] ≤ P[Y ≤ µt/2] ≤ n−5/4. Taking a union bound
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over all indices t ∈ [a, b) with µt ≥ 10 lnn, we conclude that with probability
at least 1− log2(n) · n−5/4 = 1−O(n−6/5), we have for all these t ∈ [a, b),

�

i∈Γk+1∩It

1√
in

≥ µt

2
· 1√

2t+1n
=

|Γ�
k
|

120n
√
2
≥ εmfk

3564
,

where the last inequality follows from (3.2.10). Let T be the set of indices
t ∈ [a, b) with µt ≥ 10 lnn. Since 2b ≥ n/3, we have

|T | ≥ min{2 log2(εmfkn/ lnn)− 29, b− a}.

Therefore fk+1 ≥ min{2 log2(εmfkn/ lnn)− 29, b− a}εmfk/3564. The total
failure probability is at most n−Ω(lnn)+O(n−6/5) = O(n−6/5) which finishes
the proof.

We can now show our key lemma that there exists a ‘fast’ path between
a useful node u and node 1 with high probability.

Proof of Lemma 3.2.5. The idea is to apply Lemma 3.2.8 consecutively for
k = 0, . . . ,K, where K = (1/2 + ε) lnn/ ln lnn. The probability that the
event considered in Lemma 3.2.8 holds for all k = 0, . . . ,K is at least 1 −
O(K n−6/5) = 1−O(n−7/6). In the following we assume that this is the case.

Note that f0 = wu ≥ ln2(n)/n since u is useful. Also, by Lemma 3.2.6,
we have |C0| ≥ εmn with probability 1−e−Ω(n). Assume that this is the case.
Hence, we can apply Lemma 3.2.8 for k = 0. Since min{2 log2(εmfkn/ lnn)−
29, b−a}εmfk/3564 ≥ fk (for large enough n), the only way we fail to apply
Lemma 3.2.8 for some k�, where 0 < k� < K, is when |Ck� | < εmn/2 or
|Nk� ∩ It| ≥ 2t−2 for some t ∈ [a, b).

If |Ck� | < εmn/2, then there must be a k��, 0 ≤ k�� ≤ k�, with |Γ�
k�� | ≥

εmn/2
K

≥ n

lnn
for n sufficiently large. We stop the sequence at Γ�

k�� as soon as
we encounter such a k��. Given the sequence Γ0,Γ�

0,Γ1, . . . ,Γ�
k�� , the second

links of the nodes in Γ�
k�� are mutually independent random variables. So the

probability that no node in Γ�
k�� connects to 1 via its second link is at most

(1− w1)
|Γ�

k�� | ≤
�
1− 4

ln(n)
√
n

�n/ lnn

≤ exp
�
− 4

√
n

ln2 n

�
= n

−Ω(
√
n/ ln3 n)

,

where the first inequality follows from E3. Thus, we can assume that |Ck| ≥
εmn/2 for all k = 0, . . . ,K − 1.

Similarly, if |Nk� ∩ It| ≥ 2t−2 for some t ∈ [a, b), there must be a k��

where 0 < k�� ≤ k�, with |Γk�� ∩ It| ≥ 2t−2/K. We stop the construction
of the sequence Γ0,Γ�

0,Γ1, . . . at Γ�
k�� . By (3.2.9) we have with probability

1− n−Ω(lnn),

|Γ�
k�� | ≥ εmnfk��/21 ≥ εmn|Γk�� ∩ It|/(21

√
2t+1n)

≥ εmn2t−2
/(21K

√
2t+1n) ≥ εm2t/2

√
n/ lnn ≥ εm ln5/2(n)

√
n,
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where the last inequality follows from 2t ≥ ln7 n. So given Γ�
0,Γ1, . . . ,Γ�

k�� ,
the probability that no node in Γ�

k�� connects to 1 by its second link is at
most

(1− w1)
|Γ�

k�� | ≤
�
1− 4

ln(n)
√
n

�εm ln5/2(n)
√
n ≤ exp

�
−4εm ln3/2 n

�
≤ n

−Ω(
√
lnn)

,

where the last inequality holds since εm is a constant.
So assume now that |Ck| ≥ εmn/2 and fk+1 ≥ min{2 log2(εmfkn/ lnn)−

29, b − a}εmfk/3564 ≥ fk, for all k, 0 ≤ k < K, where K =
�
1
2 + ε

�
lnn

ln lnn
.

Then, by Lemma 3.2.7, we have f� ≥ ln3(n)/
√
n, for some � ≤ K. Again,

by (3.2.9), we have |Γ�
�
| ≥ εmnf�/21 ≥ εm

√
n ln3(n)/21 with probability

1 − n−Ω(lnn). Furthermore, given Γ0,Γ�
0,Γ1, . . . ,Γ�

�
, the probability that no

node in Γ�
�

connects to 1 by its second link is at most

(1− w1)
|Γ�

�| ≤
�
1− 4

ln(n)
√
n

�εm√
n ln3(n)/21 ≤ exp

�
− 4εm

21 ln2 n
�
≤ n

−Ω(lnn)
.

The total failure probability is O(n−7/6)+e−Ω(n)+n−Ω(
√
n/ ln3 n)+n−Ω(lnn)+

n−Ω(
√
lnn) + n−Ω(lnn) = O(n−7/6).

We can now use Lemma 3.2.5 to show that the rumor quickly proceeds from
a useful node to node 1.

Corollary 3.2.9. Let G = Gm(W1, . . . ,Wn) be a typical social network. Let
u ∈ [n] be a useful node. With probability 1− o(n−1), a rumor present at u
reaches node 1 in O(lnn/ ln lnn) steps.

Proof. Consider a run of the process started with a rumor in u. Let v ∈�
2
3n, n

�
=: C be a node of degree m. Note that u �= v, since u is useful and

thus u ≤ n/2 by E5.
The probability p that v is fast is at least (m − 1)!/mm. This remains

true if we condition arbitrarily on random decisions of other nodes during
the run of the process. In consequence, the set of fast nodes is a random
subset of the nodes of degree m in C with each such node being included
independently with probability p ≥ (m− 1)!/mm.

Applying Lemma 3.2.5 with fast nodes being marked, we see that with
probability 1 − o(n−1), there is a path of length O(lnn/ ln lnn) such that
every second node is fast. Even ignoring all rumor transmissions by nodes
that are not fast, the rumor is propagated along the path in O(lnn/ ln lnn)
time steps.

3.2.3 Informing All Nodes

The following lemma allows us to invert the spread of the rumor: from
node 1 to all other nodes. Note that the lemma has been shown for the
simple push-pull protocol in [18].
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Lemma 3.2.10. Assume that if initially node u is informed, then node v is
informed in k time steps with probability p. Then also the reverse statement
is true, i.e., if initially node v is informed, then u is informed in k time steps
with probability p.

Proof of Lemma 3.2.10. We define a snapshot of the process to be a vector
s = (s1, . . . , sn) where si denotes a neighbor of i. We call a (finite) vector
of snapshots S = (S1, . . . , S�) a series. Note that by interpreting a snapshot
as the ordered set of nodes that were contacted in one time step, a series
corresponds to a (possibly infeasible) run of the process. Moreover, a series
S = (S1, . . . , S�) corresponds to a feasible run of the process if and only
if for any i > 1, k ∈ [n] and j ∈ {1, . . . ,min{deg(i) − 1,M}}, we have
(Si)k �= (Si−j)k.

Let S be the set of all series S of snapshots such that if the rumor is
initiated by node u and the process follows S, then node v is informed for
the first time after |S| steps. Since v is informed with probability 1 after
finitely many steps, S naturally defines a probability space if we associate
with every series S ∈ S the probability that the process follows S (infeasible
series have probability 0). Note that the probability that node v is informed
in k steps is just

�
S∈S
|S|=k

P[S].

We give a mapping φ : S → S such that for all S ∈ S,

(i) |S| = |φ(S)|,

(ii) P[S] = P[φ(S)],

(iii) if the rumor is initiated by node v and the process follows φ(S), then
node u is informed after |φ(S)| = |S| steps.

It follows that if the rumor is initiated from node v, then the probability
that node u is informed in k steps is (at least)

�
S∈S
|S|=k

P[S]. Equality then

follows by a symmetric argument.
The mapping is defined as follows. For S = (S1, . . . , S�), let φ(S) =

(S�, S�−1, . . . , S1), i.e., φ simply inverts the series. It remains to check that
all three properties are indeed satisfied. Property (i) and (iii) are immediate.
For (ii), note that there exists ρ1, ρ ∈ [0, 1], such that for all series, P[S] = 0
if S is infeasible, and P[S] = ρ1ρ

|S|−1 if S is feasible. Since S is feasible if
and only if φ(S) is feasible, (ii) follows.

We are now ready to prove Lemma 3.2.1.

Proof of Lemma 3.2.1. By Lemmas 2.7.1, 2.8.1, 2.8.2, and 2.8.3, assump-
tions E1, . . . , E8 hold with probability 1 − o(1). Hence we can assume that
this is the case.
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We first consider the case M ≥ 1. By Lemma 3.2.4, with probability
1 − o(1), we have for all nodes v that a rumor initiated by v reaches a
useful node u in O(ln3/4(n) ln lnn) time steps. By Corollary 3.2.9, a rumor
starting from a useful node u reaches node 1 in O(ln(n)/ ln ln(n)) time steps
with probability 1− o(n−1).

Corollary 3.2.9, Lemma 3.2.10, and a simple union bound show that with
probability 1−o(1) after another O(lnn/ ln lnn) time steps, all useful nodes
are informed. Similarly, Lemmas 3.2.4 and 3.2.10 together with a union
bound prove that another O(ln3/4(n) ln lnn) time steps suffice to have all
nodes informed with probability 1− o(1).

The case M = 0 is similar. The only difference is that instead of using
Lemma 3.2.4, we use Lemma 3.2.3 which requires O(lnn) rounds.

The total failure probability is bounded by the sum of the probability
that anyone of E1, . . . , E8 does not hold and the probability that a node does
not get informed within O(lnn/ ln lnn) and O(lnn) rounds for M ≥ 1 and
M = 0, respectively, conditioned on E1, . . . , E8. Since both probabilities are
o(1), the result follows.
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Chapter 4

The Asynchronous Protocol

We now consider the asynchronous protocol where each node takes action
at times independently from the other nodes. In particular, we prove Theo-
rem 2.6.2.

Theorem 2.6.2. With probability 1− o(1), the asynchronous push-pull pro-
tocol broadcasts a rumor from any node of Gn

m to

• all nodes in time Θ(lnn),

• all but o(n) nodes in time O(
√
lnn).

As in the synchronous case, throughout this section we consider a typical
social network G = Gm(W1, . . . ,Wn) that satisfies E1, . . . , E5 as well as E6

and E7. The proof is structured in a similar way as in the synchronous case.
First, we show that in time O((ln lnn)2) a useful node is informed. Then, we
prove that starting from a useful node, node 1 is informed in time O(

√
lnn).

Finally, using the symmetry lemma, we can extend these results to all nodes.

4.1 Informing the First Useful Node

In this section, all probabilities are taken over the product space of the
random graph G and the random decisions of the rumor spreading process.

Lemma 4.1.1. Let u be a fixed node. The rumor initiated by u reaches a
useful node in time O((ln lnn)2) with probability 1− o(1).

Proof of Lemma 4.1.1. As in the proof of Lemma 3.2.3, we analyze a delayed
protocol, i.e., we assume that all nodes perform only push operations and
set some nodes to be inactive.

We consider phases of 33 ln lnn units of time. In the first phase, only u

is active. In every subsequent phase, we assume that only the nodes that
became informed in the previous phase are active. In other words, we assume
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that nodes that became informed in one phase delay their actions till the
beginning of the next phase, and remain active only for that phase.

Let Dk be the set of all nodes that are active in phase k and let nk = |Dk|.
Let K = 25 ln lnn. Suppose that there is no useful vertex in any Dk for
k < K. Then by E7, we encounter at most one cycle consisting solely of
nodes in D1∪ · · ·∪DK (including self-loops or cycles due to multiple edges).
To ease the presentation, we first regard the case that there is no such cycle
and that m ≥ 3 (i.e., every node has degree at least 3).

Note that a node of degree at least three contacts three distinct neighbors
(and thus at least two uninformed neighbors) in at most 1+ 3

2+3 = 11
2 rounds

in expectation. Since each round lasts for one unit of time in expectation, the
expected time until such a node contacts three distinct neighbors is also 11

2 .
By Markov’s inequality, the probability that this does not happen within 33
units of time is at most 11

2·33 = 1
6 . Thus, for each node in Dk independently,

the probability that it does not contact three distinct nodes in one phase is
at most (16)

ln lnn. Let X denote the set of such ‘bad’ nodes. Then, we have
E[X] ≤ (16)

ln lnnnk. By Markov’s inequality, we conclude that

P[X ≥ nk/3] ≤ 3E[X]/nk ≤ 3(16)
ln lnn ≤ 1/ lnn,

where the last inequality holds for sufficiently large n. Thus, with probability
at least 1 − 1/ lnn, we have nk+1 ≥ 4

3nk. By a simple union bound, we
conclude that with probability 1−K/ lnn = 1−o(1), we have nK ≥ (43)

K =
Ω(ln7 n). Assume that this is the case.

For each i ∈ DK , only one of the nodes �i,1 and �i,2 can be informed
(otherwise there would be a cycle). Let �i denote any of the nodes �i,1 and
�i,2 that is not informed. Given the sequence D1, . . . , DK , the nodes �i,
with i ∈ DK , are mutually independent. Conditioned on �i /∈ D1, . . . , DK ,
the event that �i is useful can only become more likely since D1, . . . , DK

only contain non-useful nodes. So by Lemma 2.8.5, for any i ∈ DK , we
have P[�i is useful] ≥ ln−3

n. Also, for any i ∈ DK , by Lemma 2.5.2, the
probability that i contacts �i in one unit of time is at least 1−exp−1/ deg(i) ≥
1 − exp−1/(5m ln2 n) ≥ 1/(10m ln2 n), where the first inequality is due to E6

and the second follows from (1.2.1). Since both events are independent, the
probability that no node in DK informs a useful node in one unit of time is
at most (1− 1/(10m ln5 n))nK ≤ exp(−nK/(10m ln5 n)) ≤ n−Ω(lnn). Thus,
the total failure probability is o(1) + n−Ω(lnn) = o(1).

So far we have assumed that there is no cycle in D1, . . . , DK and that
m ≥ 3. It is easy to see that a single cycle reduces nK only by a constant
factor. Moreover, in case m = 2, note that both neighbors of a node of
degree 2 must have degree at least 3. Using this fact, we can easily adjust
the above argument.

To reduce the error probability to o(n−2), we need logarithmic time.
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Lemma 4.1.2. Let u be a fixed node. The rumor initiated by u reaches a
useful node in time O(lnn) with probability 1− o(n−2).

Proof. The proof is almost identical to the proof of Lemma 3.2.3 in the syn-
chronous case. As before we consider the same two stages. For the first
stage, let Xi denote the time needed until an active node i contacts one or
two uninformed nodes depending on whether it has degree 2 or more. Then,
similar to the synchronous case, Xi is stochastically dominated by a geomet-
ric variable with parameter 1/3 or a sum of two geometric variables each
with paramter 1/4. To see this, note that by Lemma 2.5.2, the probability
that i contacts a (specific) uninformed neighbor within one unit of time is
1−e−1/2 ≥ 1

3 and 1−e−1/3 ≥ 1
4 if i has degree 2 or more, respectively. Since

the distribution of the time to contact a specific neighbor is memoryless, we
can bound it by a geometric distribution with these parameters. For the sec-
ond stage, the probability that a node of degree 2 contacts a specific neighbor
within five time units is at least 1− e−5/2 ≥ 0.91. Similarly, the probability
that a node of degree at least 3 with only one informed neighbor contacts
two uninformed neighbors within five time units is 1− e−5/3 (5/3)2

2 ≥ 0.73 re-
spectively, which follows from Lemma 2.5.1 and Lemma 2.5.3 by defining the
event that an uninformed node is contacted to be a type-1 event. Modifying
the proof of Lemma 3.2.3 with these numbers, the result follows.

4.2 Informing Node 1

Similar to the synchronous case, we use constant degree nodes to establish
fast links between large degree nodes. More precisely, once a neighbor of
a constant degree node is informed, the time until it has pulled the rumor
from this neighbor and pushed it to one specific neighbor is (essentially)
exponentially distributed. Thus, independent of their own degrees, two nodes
that are connected via a third node of constant degree exchange information
in time exponentially distributed.

Starting from one informed useful node, we study how fast the rumor
spreads to the surrounding ‘neighborhoods’ of nodes. We consider ‘levels’
alternating between small degree nodes and good nodes i of relatively large
weight wi. The small degree nodes act as fast links between the levels of
good nodes that ensure a large expansion. In particular, we make use of
the fact that the good nodes in one level have a large neighborhood and
since every small node in this neighborhood independently pulls the rumor
in time exponentially distributed, we can argue that a considerable fraction
of the neighborhood will be informed very fast. The larger this neighborhood
is, the faster the rumor spreads to a sufficiently large fraction of it. These
informed nodes then form the next level. In contrast, in the synchronous
case, it would always take at least one time step for a neighbor to pull the
rumor.
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We consider informed neighborhoods at suitably chosen time steps on
the continuous time line. The smaller these steps are chosen, the smaller the
achieved expansion factor is at each step. On the other hand, smaller time
steps allow us to progress faster through the different neighborhood levels.
By carefully choosing each step size, we can balance out these opposing
effects in order to achieve the following runtime.

Theorem 4.2.1. Let G = Gm(W1, . . . ,Wn) be a typical social network. Let
u ∈ [n] be a useful node. With probability 1−o(n−1), using the asynchronous
push-pull protocol, a rumor present at v reaches node 1 in time O(

√
lnn).

If not explicitly stated, all probabilities in this section are taken over the
typical social network G.

For our argument using fast links, we will need many nodes of constant
degree. We call nodes i ∈

�
2
3n, n

�
that have a degree equal to m small. In

the proof of Lemma 3.2.6, we have already shown that there exists a linear
number of small nodes with high probability.

Lemma 4.2.2. Let εm := 1
8e

−3m. With probability 1− e−Ω(n), there are at
least εmn small nodes in

�
2
3n, n

�
.

Crucial for a large expansion in each step are good nodes of large weight.
As in the synchronous case, we say a node i is good if

i ∈ [s+ 1, 2b] and wi ≥ 1/(10
√
in),

where, as before, s = 2a is the smallest power of two larger than ln10 n and
2b is the largest power of two smaller than 2

3n. Let u be a useful node. Let
t0 < t�0 < t1 < t�1 < . . . denote discrete time steps to be specified later. We
consider neighborhoods of u that are informed in the time intervals defined
by any two consecutive time steps of these. In particular, we define sets Γk

and Γ�
k

recursively as follows. We set Γ0 = {u}. Given the set Γk, Γ�
k

consists
of all small nodes i ≥ 2

3n that contact a neighbor in Γk in time [tk, t�k] and
have not been included in any Γ�

�
with � ≤ k − 1. Similarly, Γk is defined as

the set of all good nodes that are contacted by a neighbor in Γ�
k−1 in time

[t�
k−1, tk] and have not been included in any Γ� with � ≤ k − 1. Note that

for all k ≥ 0, Γk only contains nodes i <
2
3n, while Γ�

k
only contains nodes

i ≥ 2
3n. This is true for Γ0 since u is useful and by E5, all useful nodes are

smaller than n/2, and for k > 0, it holds by the definition of the sets. Thus,
all these sets are pairwise disjoint. The following definitions are identical to
the synchronous case. We define the weight of a set Γk by

fk :=

�
wu if k = 0
�

i∈Γk

1√
in

if k ≥ 1.
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Since for k ≥ 1, Γk only contains good nodes, and by definition, wu = f0,
we have for k ≥ 0,

�

i∈Γk

wi ≥ fk/10. (4.2.1)

Let Nk =
�

0≤i≤k
Γi and N �

k
=

�
0≤i≤k

Γ�
i
. We denote by C0 ⊆

�
2
3n, n

�
the

set of small nodes and for k ≥ 1 and by Ck = C0\N �
k−1 the set of small nodes

excluding nodes in Γ�
0,Γ

�
1, . . . ,Γ

�
k−1. By Lemma 4.2.2, we have C0 ≥ εmn

with probability 1− e−Ω(n).
The next lemma shows that we achieve an exponential expansion in terms

of fk in each level as long as there is still a linear number of small nodes
in Ck and similarly, as long as for each interval It := [2t + 1, 2t+1], where
t ∈ [a, b), there are still 2t−2 good nodes not in Nk.

Lemma 4.2.3. Let c > 0 be a sufficiently large constant, k ≥ 0 be such that
ln4(n)/

√
n ≥ fk ≥ ln2(n)/n and |Ck| ≥ εmn/2. Let

∆k = m ln(1− c log−1/2
2 (fkn/ ln

2
n)).

Set t�
k
:= tk +∆k and tk+1 := t�

k
+∆k. Given Ck and Γ0,Γ�

0,Γ1,Γ�
1, . . . ,Γk,

with probability 1−O(n−6/5), one of the following is satisfied:

• |Nk+1 ∩ It| ≥ 2t−2, for some t ∈ [a, b), or

• fk+1 ≥ 2fk.

Proof. All probabilities are conditioned on the assumptions in the lemma.
We first bound |Γ�

k
| from below. Let C �

k
⊆ Ck denote the set of all j ∈

Ck such that j contacts �j,1 in time [tk, t�k]. For each j ∈ Ck indepen-
dently, by Lemma 2.5.2, the probability that j ∈ C �

k
is 1 − e−∆k/m =

c log−1/2
2 (fkn/ ln

2
n). Let

d := c log−1/2
2 (fkn/ ln

2
n)/2

. Thus, we have E[|C �
k
|] ≥ 2d|Ck| and by Chernoff’s bound, we have P[|C �

k
| ≤

d|Ck|] ≤ exp(−Ω(d|Ck|)) = e−Ω(n/
√
lnn), where the last inequality follows

from

d = c

2 log
−1/2
2 (fkn/ ln

2
n) ≥ c

2 log
−1/2
2 (ln2(n)

√
n) = Ω(1/

√
lnn), (4.2.2)

where we have used fk ≤ ln4(n)/
�
(n). So assume that |C �

k
| ≥ d|Ck|. Let

j ∈ C �
k
. The event that �j,1 ∈ Γk can only become more likely if we condition

on j ∈ C �
k

since this implies that either �j,1 /∈ Nk−1 or for all k� < k, we have
j /∈ C �

k� . Thus, we have

P[�j,1 ∈ Γk] ≥
��

i∈Γk

wi

�
/Wj ≥ fk/10,
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where the last inequality follows from (4.2.1). Then, E[|Γ�
k
|] ≥ |C �

k
|fk/10 ≥

d εmnfk/20. By Chernoff’s bound, we obtain

P[|Γ�
k| ≤ dεmnfk/21] ≤ exp(−Ω(dεmnfk)) ≤ n

−Ω(
√
lnn)

, (4.2.3)

where the last inequality follows from (4.2.2) and fk ≥ ln2(n)/n. In the
following, we assume

|Γ�
k| ≥ dεmnfk/21. (4.2.4)

Similarly, let �Γ�
k
⊆ Γ�

k
be the set of nodes j ∈ Γ�

k
such that j contacts �j,2 in

time [t�
k
, tk+1]. Again we have E[|�Γ�

k
|] ≥ 2d|Γ�

k
| and by Chernoff’s bound,

P[|�Γ�
k| ≤ d|Γ�

k|] ≤ exp(−Ω(d|Γ�
k|)) = exp(−Ω(d2 ln2(n))) = n

−2
, (4.2.5)

where the last inequality holds for sufficiently large, but constant c > 0 (note
that d depends on c). So, assume that

|�Γ�
k| ≥ d|Γ�

k| ≥ d
2
εmnfk/21, (4.2.6)

where the last inequality follows from (4.2.4).
We now show that either |Nk+1 ∩ It| ≥ 2t−2 for some t ∈ [a, b), or

with high probability, for sufficiently many t ∈ [a, b), we have |Γk+1 ∩ It| =
Ω
�
|�Γ�

k
|
�
2t/n

�
. Let t ∈ [a, b). By E2, It contains at least 2t−1 good nodes.

Let S be initially the set of good nodes in It \Nk. So |S| ≥ 2t−1 − |Nk ∩ It|.
Let �Γ be initially an empty set. We consider the elements of �Γ�

k
one by one

in any order. Whenever we encounter some node i ∈ �Γ�
k

that is connected to
some node j ∈ S via its second link (i.e., �i,2 = j), we remove j from S and
include it into �Γ. Note that �Γ ⊆ Γk+1 throughout this process. Moreover,
�i,2 has not been revealed before i is considered (�i,1 is independent from �i,2

given all Wj values). Since S only contains good nodes from [2t + 1, 2t+1],
we have for every i ∈ S, wi ≥ 1/(10

√
2t+1n). Hence, as long as |S| ≥ 2t−2,

we have for every node i ∈ �Γ�
k
,

P[�i,2 ∈ S] ≥ 2t−2

10Wi

√
2t+1n

≥
√
2t

60
√
n
.

If |S| < 2t−2 at some point, then |Nk+1∩It| ≥ 2t−2 and we are finished. Oth-
erwise let Y =

�
1≤i≤|�Γ�

k|
Yi, where Y1, . . . , Y|�Γ�

k|
are mutually independent

0/1-random variables with P[Yi = 1] =
√
2t

60
√
n

for all 1 ≤ i ≤ |�Γ�
k
|. Note that

|Γk+1 ∩ It| stochastically dominates Y , i.e., P[|Γk+1 ∩ It| > t] ≥ P[Y > t].
We have

E[Y ] = |�Γ�
k|

√
2t

60
√
n
=: µt. (4.2.7)
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Now, if µt ≥ 10 lnn, we have by Chernoff’s bound P[Y ≤ µt/2] ≤ n−5/4, and
thus

P[|Γk+1 ∩ It| ≤ µt/2] ≤ P[Y ≤ µt/2] ≤ n
−5/4

.

Let T be the set of indices t ∈ [a, b) with µt ≥ 10 lnn. Taking a union
bound over all indices t ∈ T , we conclude that with probability at least
1− log2(n) · n−5/4 = 1−O(n−6/5), we have for all these t ∈ [a, b),

�

i∈Γk+1∩It

1√
in

≥ µt

2
· 1√

2t+1n
=

|�Γ�
k
|

120n
√
2
≥ d2εmfk

3564
,

where the last inequality follows from (4.2.6). Since 2b ≥ n/3, we have
|T | ≥ min{2 log2(d2εmfkn/21824 lnn), b− a}. Therefore

fk+1 ≥ min{2 log2(d2εmfkn/21824 lnn), b− a}d2εmfk/3564

≥ min{2 log2(fkn/ ln2 n), b− a}d2εmfk/3564

≥ 2 ( c2)
2
εmfk/3564 ≥ 2fk,

where the last two inequalities hold for sufficiently large, but constant c.
The total failure probability is e−n/

√
lnn + n−Ω(

√
lnn) + n−2 + O(n−6/5) =

O(n−6/5).

We can now use Lemma 4.2.3 to show that the rumor quickly proceeds
from a useful node to node 1.

Proof of Theorem 4.2.1. Consider a run of the process started with a rumor
in u. We apply Lemma 4.2.3 consecutively for k = 0 until K, where K =
ln(n). The probability that we can do so K times is at least 1−O(K n−6/5) =
1−O(n−7/6). In the following we assume this is the case.

Note that for k = 0, fk = wu ≥ ln2(n)/n holds since u is useful. Also,
by Lemma 4.2.2, we have |C0| ≥ εmn/2 with probability 1−e−Ω(n). Assume
that this is the case. Then we can apply Lemma 4.2.3 for k = 0. The only
way we fail to apply Lemma 4.2.3 for some k�, where 0 < k� < K, is when
fk� ≥ ln4(n)/

√
n or |Ck� | < εmn/2.

If |Ck� | < εmn/2, then there must be a k��, 0 ≤ k�� ≤ k�, with |Γ�
k�� | ≥

εmn/2
K

≥ Ω( n

lnn
). We stop the sequence at Γ�

k�� as soon as we encounter
such a k��. Given the sequence Γ0,Γ�

0,Γ1, . . . ,Γ�
k�� , the second links of the

nodes in Γ�
k�� are mutually independent random variables. Moreover, for

each j ∈ Γ�
k�� , the probability that j contacts �j,2 within m units of time is

1− e−m/m = 1− e−1 (independent from �j,2).
So the probability that no node in Γ�

k�� contacts node 1 within m units
of time is at most

(1− (1− e
−1)w1)

|Γ�
k�� | ≤

�
1− 4(1−e−1)

ln(n)
√
n

�Ω(n/ lnn)

≤ exp
�
−Ω(

√
n/ ln2 n)

�
= n

−Ω(
√
n/ ln3 n)

,

53



where the first inequality follows from E3. We can therefore assume that
|Ck| ≥ εmn/2 for all k = 0, . . . ,K − 1.

Similarly, if |Nk� ∩ It| ≥ 2t−2 for some t ∈ [a, b), there must be a k��

where 0 < k�� ≤ k�, with |Γk�� ∩ It| ≥ 2t−2/K. We stop the construction
of the sequence Γ0,Γ�

0,Γ1, . . . at Γ�
k�� . By (4.2.3) we have with probability

1− n−Ω(
√
lnn),

|Γ�
k�� | ≥ d εmnfk��/21 ≥ d εmn|Γk�� ∩ It|/(21

√
2t+1n)

≥ d εmn2t−2
/(21K

√
2t+1n) ≥ Ω(d 2t/2

√
n/ lnn)

≥ Ω(ln3(n)
√
n),

where the last inequality follows from 2t ≥ ln10 n and (4.2.2). So, by the
same argument as above, given Γ�

0,Γ1, . . . ,Γ�
k�� , the probability that no node

in Γ�
k�� contacts node 1 within m time units is at most

(1− (1− e
−1)w1)

|Γ�
k�� | ≤

�
1− 4(1−e−1)

ln(n)
√
n

�Ω(ln3(n)
√
n)

≤ exp
�
−Ω(ln2 n)

�
= n

−Ω(lnn)
.

Similarly, if fk� ≥ ln4(n)/
√
n, then by (4.2.3), we have

|Γ�
k� | ≥ d εmnfk�/21 ≥ Ω(

√
n ln3(n)) (4.2.8)

with probability 1−n−Ω(lnn). Given Γ0,Γ�
0,Γ1, . . . ,Γ�

k� , the probability that
no node in Γ�

k� contacts node 1 within m time units is at most

(1− (1− e
−1)w1)

|Γ�
k� | ≤

�
1− 4(1−e−1)

ln(n)
√
n

�Ω(
√
n ln3(n))

≤ exp(−Ω(ln2 n)) ≤ n
−Ω(lnn)

.

So assume now that |Ck| ≥ εmn/2 and fk+1 ≥ 2fk, for all k, 0 ≤ k < K,
where K = ln(n). But then since 2Kf0 ≥ ln2 n, we conclude that there must
be a 0 ≤ k�� < K such that fk�� ≥ ln4(n)/

√
n and we can apply the previous

argument.
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Thus the total time needed to inform node 1 is at most

2
K�

k=0

∆k = 2m
K�

k=0

ln(1− c log−1/2
2 (fkn/ ln

2
n))

≤ 2mc

K�

k=0

log−1/2
2 (fkn/ ln

2
n) by 1− x ≤ e

−x

≤ 2mc

K�

k=0

log−1/2
2 (2kf0n/ ln

2
n)

≤ 2mc

K�

k=0

log−1/2
2 (2k) by f0 ≥ ln2(n)/n

= O

� K�

k=1

k
−1/2

�

= O

�� K

0
x
−1/2 dx

�
= O(

√
lnn).

The total failure probability is O(n−7/6)+e−Ω(n)+n−Ω(
√
n/ ln3 n)+n−Ω(lnn)+

n−Ω(
√
lnn) + n−Ω(lnn) = O(n−7/6).

4.3 Informing All Nodes

As in the synchronous case, the ‘symmetry lemma’ (Lemma 3.2.10) also
holds for the asynchronous case. The proof is almost identical to the proof
for the synchronous push-protocol with M = 0 [18]. The only difference is
that instead of considering time steps, we consider a time span.

Lemma 4.3.1. In the asynchronous push-pull protocol, assume that if the
rumor starts in node u, it reaches node v in time t with probability p. This
implies the reverse statement: if the rumor is initiated by v, then it reaches
u in time t with probability p.

We are now ready to prove the main result.

Proof of Theorem 2.6.2. By Lemmas 2.7.1, 2.8.1, and 2.8.2, assumptions
E1, . . . , E7 hold with probability 1 − o(1). Hence, we can assume that this
is the case. Let v be any node that initiates the rumor. By Lemma 4.1.1,
we have with probability 1− o(1) that the rumor reaches a useful node u in
O((ln lnn)2) units of time. By Theorem 4.2.1, after another O(

√
lnn) units

of time node 1 is informed with probability 1− o(n−1).
Theorem 4.2.1, Lemma 4.3.1, and a simple union bound show that with

probability 1−o(1) after another O(
√
lnn) units of time, all useful nodes are

informed. Similarly, Lemmas 4.1.1 and 4.3.1 prove that another O((ln lnn)2)
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units of time suffice to inform each non-useful node with probability 1−o(1).
Thus, by Markov’s inequality, we conclude that with probability 1 − o(1),
(1− o(1))n nodes are informed after O(

√
lnn) units of time.

By a simple union bound, we can bound the total failure probability
by o(1). By using Lemma 4.1.2 instead of Lemma 4.1.1 in the previous
argument, it follows that all nodes are informed after O(lnn) units of time
with probability 1− o(1).

For the lower bound, note that the probability that the clock of a node
ticks for the first time after x units of time is e−x. Thus, for a node u

of degree m, with probability at least e−(m+1)x, it takes at least x units
of time until u contacts or is contacted by any of its neighbors. Since by
Lemma 4.2.2, there are Ω(n) such small nodes with probability 1− o(1), we
conclude that the probability that no small node remains uninformed after

lnn

2(m+1) units of time is at most (1−e− ln(n)/2)Ω(n) = (1− 1√
n
)Ω(n) ≤ e−Ω(

√
n).

It follows that with probability 1 − o(1), after Ω(lnn) units of time, there
are still uninformed nodes.
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Chapter 5

Excursus: The Alternative

Model Revisited

This section is special. We have included it only because it puts the alter-
native model that was a crucial part in the analysis of the protocol into a
more systematic perspective. The alternative model allowed us to deal with
the dependencies in the definition of the preferential attachment graph in
a very convenient way. Once we conditioned on the Wi values, all depen-
dencies were resolved. It turns out that this seemingly ad-hoc solution can
be seen as an application of a more general framework. We now introduce
this framework and then apply it to preferential attachment graphs. The
material covered in this section can be found in more detail in [33] and [47].

As a warm-up consider the following simple example. Let p ∈ [0, 1] be a
random variable. Let X1, X2, . . . , Xn be the indicator random variables, each
for a new random experiment that succeeds with probability p and fails with
probability 1 − p. If p was fixed, then these are just independent Bernoulli
trials with parameter p. We therefore call such a distribution a mixture of
independent and identically distributed (i.i.d.) Bernoulli variables. In our
case, the Xi’s are not independent. However, their order does not matter;
for any permutation σ of {1, . . . , n}, the sequence

Xi1 , Xi2 , . . . , Xin

has the same joint probability distribution. Such sequences are called ex-
changeable. Infinite sequences of random variables are said to be exchange-
able if every finite collection of its variables is exchangeable.

Interestingly, not only is a mixture of i.i.d. Bernoulli random variables
exchangeable, but also the converse is true; every exchangeable sequence of
Bernoulli random variables is a mixture of i.i.d. Bernoulli variables. This is
the statement of De-Finetti’s Theorem.

Theorem 5.0.2. Let X1, X2, . . . , be an infinite sequence of exchangeable
Bernoulli random variables. Then there exists a random variable U , called
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the mixing measure, with P[U ∈ [0, 1]] = 1 such that, for all 1 ≤ k ≤ n,

P[X1 = · · · = Xk = 1, Xk+1 = · · · = Xn = 0] = E[Uk(1− U)n−k].

Let Sn :=
�

n

i=1Xi. Then, if

lim
n→∞

nP[Sn = �un�] = f(u), (5.0.1)

then f(u) is the density of U .

We now apply this framework to the preferential attachment graph model.
We describe the preferential attachment graph with the following urn model.
For simplicity, we consider the case m = 1, i.e., every newly added node con-
nects to exactly one of the existing nodes using the preferential attachment
rule. Thus, we start with a single node with one loop. We can model this
case by an urn containing two balls numbered 1. In step k > 1, we draw
a ball uniformly at random and return it to the urn with a copy of it and
a new node numbered k. This procedure is equivalent to choosing a node
proportional to its current degree in the PA model. Therefore, in each step,
the number of balls numbered i is sampled exactly like the degree of node i

in the preferential attachment graph after the same number of steps.
Suppose now that we stop this process at step k; so we have 2k balls

in the urn. We color all balls j < k blue, and the ball numbered k red.
We then proceed according to the following rule. In each step, we choose
one ball uniformly at random and return it with another ball of the same
color. Note that this corresponds to the selection of a node under the PA
rule if we condition on the event that the node selected is among the first
k nodes selected and if we identify all nodes j < k. Thus, in each step, the
probability of choosing a red ball is the same as the conditional probability
of choosing node k when we assume that the node selected is among the first
k nodes. This modified process is the well-known Polya urn scheme (see [54])
where we start with r = 1 red balls and b = 2k − 1 blue balls.

Let Xi be the indicator random variable for the event that the i-th draw
in this process is a red ball. We argue that X1, X2, . . . is an exchangeable
sequence. To see this, note that the probability that the first n1 draws are
red balls, and the following n2 = n− n1 draws are blue is

r

r + b

r + 1

r + b+ 1
· · · r + n1 − 1

r + b+ n1 − 1

b

r + b+ n1

b+ 1

r + b+ n1 + 1
· · · b+ n2 − 1

r + b+ n− 1
.

Note that we have the same probability for any order of the n1 draws of
red balls. It follows that the probability of any particular sequence of draws
only depends on the number of red balls in this sequence, and not on the order
of these draws. Thus, the sequence is exchangeable. By Theorem 5.0.2, the
sequence is conditionally independent and identically distributed. To obtain
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the mixing measure, we compute the probability that Sn :=
�

n

i=1Xi = n1.
This probability is given by

�
n

n1

�
(r + n1 − 1)!

(r − 1)!

(b+ n2 − 1)!

(b− 1)!

(r + b− 1)!

(r + b+ n− 1)!

=
(r + b− 1)!

(r − 1)!(b− 1)!

(r + n1 − 1)!

n1!

(b+ n2 − 1)!

n2!

n!

(r + b+ n− 1)!
.

The last three factors can be rewritten as

(r + n1 − 1)(r + n1 − 2) · · · (n1 + 1)(b+ n2 − 1) · · · (n2 + 1)

(r + b+ n− 1)(r + b+ n− 2) · · · (n+ 1)
.

So for fixed r and b and n1/n → u, the whole term converges to

(r + b− 1)!

(r − 1)!(b− 1)!
u
r−1(1− u)b−1 1

n
.

By (5.0.1), we conclude that U has density

f(u) =
(r + b− 1)!

(r − 1)!(b− 1)!
u
r−1(1− u)b−1

.

This is the so-called beta(r, b) distribution. Thus, by Theorem 5.0.2, the
Polya urn scheme with r = 1 red balls and b = 2k−1 blue balls is equivalent
to first sampling ψk ∼ beta(1, 2k − 1) and then, in each round indepen-
dently, adding to the urn a red ball with probability ψk and a blue ball with
probability 1 − ψk. Similarly, we can simulate the original urn model with
numbered balls by first setting ψ1 = 1 and sampling ψk ∼ beta(1, 2k − 1)
for k > 1. Then, in the j-th step, we draw a ball numbered k ≤ j with
probability

ψk

j�

i=k+1

(1− ψi), (5.0.2)

since with probability
�j

i=k+1(1 − ψi) we draw a ball numbered at most
k, and with probability ψk we draw a ball numbered k conditioned on the
event of drawing a ball numbered at most k. Alternatively, we can define for
1 ≤ k ≤ n,

φk = ψk

n�

i=k+1

(1− ψi).
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Then, by a simple induction on n, we see that
�

n

k=1 φk = 1. Then, the term
in (5.0.2) is equivalent to φk�j

i=1 φi
for k ≤ j, since

φk�j

i=1 φi

=
ψk

�
n

i=k+1(1− ψi)
�j

�=1 ψ�

�
n

i=�+1(1− ψi)

=
ψk

�j

i=k+1(1− ψi)
�j

�=1 ψ�

�j

i=�+1(1− ψi)

= ψk

j�

i=k+1

(1− ψi),

where the last equality follows from noting that
�j

�=1 ψ�

�j

i=�+1(1−ψi) = 1
since it is the sum of the probabilities that we draw a ball numbered k ≤ j

in the j-th step over all possible k.
In conclusion, it follows that the preferential attachment graph Gn

1 can
be obtained by first sampling the ψk values, and then for each node i inde-
pendently, we add an edge to node j ≤ i where j is chosen with probability
φj/

�
i

k=1 φk. Thus, the φj values correspond exactly to the wj values in the
alternative model that we used in the analysis.
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Chapter 6

Experiments

To the hard-core theoretician this chapter might come as a surprise. After
all, we have proved rigorously bounds on the running time of the protocols
in social networks. However, the theoretical analysis falls short of telling us
whether the proven asymptotical advantage of using memory also translates
to a better performance already for practical graph sizes. Or whether, in
practice, such a speed-up is special for preferential attachment graphs at all.
The same question can also be asked for the asynchronous protocol.

We conducted an experimental investigation in order to (a) better under-
stand the performance of randomized rumor spreading protocols in preferen-
tial attachment networks which might help in the design of efficient commu-
nication networks, and (b) to better understand the advantage of equipping
nodes with a fixed amount of memory to avoid contacting a constant num-
ber of previous contacts; this is interesting from the viewpoint of algorithm
design.

In summary, our main findings are the following. Generally, rumor
spreading is very fast in preferential attachment networks, significantly faster
than in random-attachment networks (same density) and hypercubes (much
denser), and faster than in complete networks (unless the density is very
small).

There is a clearly visible advantage of keeping track of the most recently
contacted neighbor (using a memory of size one) in preferential attachment
networks, particularly if the density is small. There is less to be gained from
memory on random attachment networks and almost no gain in complete
networks and hypercubes. Additional memory is of some benefit, but not
very much.

Furthermore, our experiments show that the asynchronous model is faster
on all graph classes, but a clearly greater advantage for preferential attach-
ment graphs is not visible.

We conducted similar experiments on crawls of the Twitter and Orkut
online social network. Interestingly, we observe an even faster information
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dissemination than in preferential attachment graphs of corresponding size
and density. These experiments also confirm that tracking one neighbor
(memory of size one) leads to a significant improvement, whereas using ad-
ditional memory to track more neighbors does not produce significant gains.

In each experiment, we chose a new random source node per run. Also
for the experiments on random graphs, we sampled a new graph per run.

6.1 Fast Broadcasting in Preferential Attachment

Graphs, Influence of Graph Density

Our theoretical result shows that rumor spreading in the random phone
call model with memory at least one has an asymptotically faster run-
time of Θ(lnn/ ln lnn) in preferential attachment graphs, in contrast to
the Θ(lnn) time observed (i) for the no-memory version in preferential at-
tachment graphs and (ii) regardless of memory on most classic graphs like
complete graphs, hypercubes, and random attachment graphs. Since only
asymptotic results were proven, it is not clear if the proven differences are
apparent for reasonable graph sizes. This is the focus of the current section.
We have examined the average time needed to inform all vertices, starting
from a random vertex, for different graphs.

We compare our results with similar experiments on the complete graph,
hypercubes and random-attachment networks. In this network model, also
known as the m-out model [7], each node chooses m other nodes as neighbors
uniformly at random; finally, this neighbor relation is made symmetric and
multiple edges are removed. Consequently, we obtain a random graph with
average degree close to 2m and minimum degree at least m. These graphs
form a good point of comparison with preferential attachment graphs with
density parameter m, where nodes also choose m random neighbors, but
according to the preferential attachment paradigm.

In Figure 6.1, we show the broadcast times observed for complete graphs,
hypercubes, and preferential and random attachment graphs with density
parameters m = 2 and m = 10, with memory one. We observe that rumor
spreading is quite fast in preferential attachment graphs, faster than in hy-
percubes for both density parameters m = 2 and m = 10, and even faster
than in complete graphs for m = 10. The relatively sparse preferential at-
tachment graphs with m = 2, also become faster than complete graphs for
sufficiently large graph size.

We observed structurally different behavior of the information spreading
process on the different graphs. To be precise, let us consider graphs with
n = 106 vertices and m = 2, averaged over 10,000 runs. Then on average
57% of the nodes of a random attachment graph are informed with a pull
operation (and 43% via push). On the other hand, in preferential attachment
graphs 73% of the nodes are informed by a pull operation. Moreover, on
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(a) density paramter m = 2.
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(b) density paramter m = 10.

Figure 6.1: Comparison of synchronous rumor spreading with memory one on preferen-
tial attachment graph ( ), random-attachment graph ( ), complete graph ( ),
and hypercube ( ). The two charts show different density parameters of the prefer-
ential and random-attachment graph. The results for complete graphs and hypercubes
are equivalent in both charts; they are given for comparison. The x-axis corresponds to
the number of vertices n = 25 . . . 223. The y-axis corresponds to the runtime to inform
all vertices, averaged over 10,000 runs.
For m = 10 the preferential attachment graph performs faster than all other graph
classes. For the considered small (n ≤ 223) and very sparse case (m = 2), the complete
graph is even faster than the preferential attachment graph.
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average such a pull information transfers the rumor from a large degree node
(with degree 66 on average) to a node with small degree (with degree 3 on
average). This complies with our proof that makes use of small degree nodes
(fast nodes) who pull the rumor from large degree nodes (useful nodes).

The path along which a rumor is spread in a preferential attachment
graph seems to differ from the typical paths in a random attachment graph.
We measured the number of rounds needed to inform a node and compared it
with the graph distance of the node to the source. In general, it is preferable
to have a good correlation between the two measures [51]. The graph distance
from the source gives a lower bound for the number of rounds needed to
inform a node. We call the difference between the number of rounds needed
and the graph distance the delay. If the delay is small, the information is
spread on nearly shortest paths. On random attachment graphs we observed
that vertices which are less than six steps away from the source have a delay
of less than one on average. In preferential attachment graphs, nodes with
distances between two and six from the source have on average a delay of
four. This shows that in preferential attachment graphs the information is
not spread via shortest paths, but via detours. Again this complies with our
proof that constructs paths alternating between useful and fast nodes that
are not shortest.

6.2 The Effect of Short-Term Memory

Perhaps the most surprising finding of our theoretical result is that keep-
ing track of a certain small number of recently-contacted neighbors, and
avoiding selecting any of these when randomly choosing the next commu-
nication partner, significantly reduces the time needed to inform all nodes
of preferential attachment networks. Remember that for the classic random
phone call model, this time is Θ(lnn). If the communication partners are
chosen uniformly at random from all neighbors except the one called in the
previous round (short-term memory of size one), then this time decreases
to Θ(lnn/ ln lnn). Using additional memory to track more than one recent
contact, however, does not yield times better than Θ(lnn/ ln lnn).

In this section, we experimentally investigate this phenomenon. Fig-
ure 6.2 shows the average time needed to inform all nodes. We first discuss
the results on preferential attachment graphs with m = 2 shown in Fig-
ure 6.2 (a). As expected, we observe a significant improvement between
no exclusion and exclusion of one neighbor. In fact, for all graph sizes, a
memory of size one yields a speed-up between between 14% and 21% faster
compared to using no memory. Observing the curves for different graph sizes
also suggests that we have a logarithmic broadcast time in the no-memory
case and a sublogarithmic broadcast time for any memory size greater than
one. We do observe additional but very small improvements if we increase
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(c) pref. attachment (m = 10)
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Figure 6.2: Comparison of synchronous rumor spreading without memory (marked
with ), memory one (marked with – ), and unbounded memory (marked with ) on
different graphs. The x-axis corresponds to the number of vertices n = 25 . . . 223. The
y-axis corresponds to the runtime to inform all vertices, averaged over 10,000 runs.
The benefit of more than one memory is very limited for all graphs. The benefit of
memory one compared to no memory is the largest for the sparse preferential and
random-attachment graphs. The complete graph and hypercube benefit very little from
additional memory.
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90% informed 99% informed 100% informed
memory=0 15.74±0.99 16.87±1.00 23.13±2.28
memory=1 15.51±0.98 16.60±1.00 20.97±1.59
memory=2 15.47±0.98 16.55±0.99 20.31±1.30
memory=3 15.45±0.98 16.54±0.99 20.18±1.22
memory=25 15.45±0.97 16.54±0.99 20.11±1.13

Table 6.1: Comparison of the average time needed to inform a certain fraction of the
vertices on the Orkut network depending on the amount of memory. For each combi-
nation, the average and standard deviation of 100,000 runs is. With regard to the time
needed to inform all vertices, we observe a large difference between excluding none and
excluding the one most recently contacted. If only a 90% or 99% fraction should be
informed, the gap is significantly smaller.

the memory to a size larger than the runtime, that is, when avoiding all previ-
ous contacts. For the considered graph sizes the improvement of unbounded
memory compared to memory of size only one is around 2%. The advantage
of memory for preferential attachment graphs gets smaller for larger m as
shown in Figure 6.2 (c).

The results on random-attachment graphs are similar, just generally
slower. Figure 6.2 (b) shows that the difference for m = 2 between no
memory and memory of size one is between 10% and 13% while the addi-
tional improvement of unbounded memory is again around 2%. Theoretical
consideration suggests that these gains can be at most by constant factors1,
and our experiments show that this can be at most a small constant.

In contrast, for other network topologies we see little advantage from
using memory. For complete graphs, we observe in Figure 6.2 (e) barely
any advantage even with unbounded memory. The difference between no
memory and unbounded memory is less than 1% for complete graphs of
all sizes. Because of the large vertex degrees, little benefit was expected;
however, this is a notable difference from the results of using a pure push
protocol without pull. Here, Doerr et al. [25] observed at least a small
advantage for the quasirandom protocol, which, when used with random
lists, is equivalent to random choices with previous contacts excluded. The
results of Figure 6.2 (f) for hypercubes show a similarly small impact of
memory. For graphs with more than a few thousand nodes the difference
between no memory and unbounded memory is smaller than 2%.

The benefit of little memory can also be observed on real-world graphs.
We examined the time needed to spread a rumor on a crawl of the Orkut

1It is known that these graphs have a diameter of Θ(lnn) (see [60]), so this is a natural
lower bound. On the other hand, with high probability, every pair of vertices is connected
by a path such that the sum of the degrees of the vertices on the path is at most O(lnn).
Consequently, with probability 1 − o(n−1), O(lnn) rounds suffice to transmit a rumor
along such a path. This yields an upper bound of O(lnn) for the broadcast time on
random attachment graphs.
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network (for details on the network see Section 6.3). Table 6.1 shows a large
difference between no memory and memory one for the time needed to inform
all vertices. It is clearly visible that (a) more memory is of very little benefit
and (b) this difference vanishes when considering the time needed to inform
only a fraction of the vertices.

In summary, we also observe in experiments that a small memory helps a
lot for preferential and random attachment graphs, but much less for classic
network topologies like complete graphs and hypercubes.

6.3 Real-World Social Networks

Most previous statistics were based on mathematically defined graph mod-
els. To support our claim that news spreads very fast in social networks in
general, we have also simulated the rumor spreading process on crawls of the
Twitter and Orkut social networks.

Twitter is a social networking site which allows users to send and read
short messages (so-called “tweets”) of up to 140 characters. It is currently one
of the top ten most visited sites on the web2. We performed our experiments
on a snapshot of the Twitter network that was crawled in September 2009 by
Cha, Haddadi, Benevenuto, and Gummadi [16], available from [6]. It consists
of 51,217,936 nodes and 1,963,263,821 directed edges. By making all edges
undirected and considering the largest connected component, we obtained a
connected graph with 51,161,011 nodes and 1,613,927,450 undirected edges.

Orkut is a social networking site operated by Google Inc. It is one of the
top ten most visited websites in India and Brazil2. We used the data crawled
in October and November 2006 by Mislove, Marcon, Gummadi, Druschel,
and Bhattacharjee [57], which can be downloaded from [6]. The crawled
graph contains 3,072,441 nodes and 117,185,083 edges. The edges are undi-
rected, since Orkut requires consent from both users before a link between
the two is created. At the time of the crawl, new users had to be invited by
an existing user; therefore, the graph consists of a single component. The
data covers roughly 11% of the total user population. The technical reason
for this is that Orkut limits the rate at which a single IP address can down-
load information. As a result, it took more than a month to crawl even this
currently available part of the graph.

We chose these online social networks because of the available network
data and because we feel that their structure might be similar to that of
other real-world social networks. We are aware of the fact that interactions
in Twitter and Orkut are more complex than in our simple randomized rumor
spreading model.

We ran the protocol with memory one on these real-world graphs and, for
comparison, in preferential attachment, random-attachment and complete

2See “Top 500 Sites on the web” at www.alexa.com.
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(a) Orkut network
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(b) Twitter network

Figure 6.3: Comparison of synchronous rumor spreading with memory one on two
real networks ( ) with preferential attachment graph ( ), random-attachment
graph ( ), and complete graph ( ) of same size and density (where applicable).
The Orkut network in (a) has n = 3, 072, 441 vertices and density parameter m = 38,
the Twitter network in (b) has n = 51, 217, 936 vertices and density parameter m = 32.
The Orkut network behaves very similarly to the corresponding preferential attachment
graph. The Twitter network is even faster than the corresponding preferential attach-
ment graph. The complete and random-attachment graphs are significantly slower.
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graphs with size and density as close as possible to the corresponding values
of the real-world graph, that is, m = 32 for Twitter network and m = 38 for
the Orkut network. The numbers shown in Figure 6.3 are averages over 500
runs3 for the Twitter network and 100,000 runs for the Orkut network.

Figure 6.3 shows that news spreads much faster in the real-world networks
and the preferential attachment graphs than in the complete and random-
attachment graphs. Interestingly, rumor spreading in the Orkut network
and the comparable preferential attachment graph proceeds very similarly,
whereas the Twitter network leads to much faster rumor propagation.

6.4 Asynchronous Rumor Spreading

It is not surprising that asynchronous rumor spreading can be slow to inform
all vertices. Note that it takes Θ(lnn) time until every node has performed
at least one action. For this reason, in Figure 6.4 we consider the time
needed to inform 99% of the nodes. Note, however, that the time needed
to inform 100% were also lower for the asynchronous model compared to
the synchronous one. The charts clearly show a substantial speedup. Inter-
estingly, for n = 220, the speedup for preferential and random-attachment
graphs (47-48% for m = 2, 54-55% for m = 10) is smaller than for complete
graphs (57%) and hypercubes (78%).

These empirical observations for moderately sized graphs do not fully
comply with our theoretical findings. Remember that for the preferential
attachment graph, we showed that the time to inform n − o(n) vertices
without memory decreases from Θ(lnn) for the synchronous model without
memory to O(

√
lnn) for the corresponding asynchronous model. On the

other hand, it has been argued that random-attachment graphs, complete
graphs and hypercubes keep their Θ(lnn) times, while our experiments show
that the asynchronous model is faster on all graph classes. An asymptotic
advantage for preferential attachment graphs is not apparent. We expect
that the theoretically proven asymptotic behavior can be observed only for
very large graphs. For the real-world social networks Orkut and Twitter,
Figure 6.5 shows that, especially at the beginning, the asynchronous protocol
performs much faster than its synchronous counterpart.

3The reason for the relatively small number of runs is that the Twitter network has
more than one billion edges and we needed more than 50 GB of main memory to process
it. A single simulation of the process required a runtime of several hours on a Hewlett
Packard DL980 G7 server with eight eight-core Intel Xeon X7560 processors and 2048 GB
of main memory.
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(c) pref. attachment (m = 10)
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(f) hypercube

Figure 6.4: Comparison of the average number of time steps needed to inform 99% of the
vertices with synchronous (marked with ) and asynchronous (marked with ) rumor
spreading without memory on different graphs. The x-axis corresponds to the number
of vertices n = 25 . . . 223. The y-axis corresponds to the runtime to inform 99% of the
vertices, averaged over 10,000 runs.
The asynchronous protocol spreads information faster than the synchronous protocol
on all graphs. The difference is of the same order of magnitude for all graphs.
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(a) Orkut network
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(b) Twitter network

Figure 6.5: Comparison of synchronous ( ) and asynchronous ( ) rumor spreading
without memory on two real social networks. The x-axis corresponds to the time steps
(in the synchronous setting) or the time (in the asynchronous setting). The y-axis
corresponds to the number of informed vertices after this time, averaged over 1000 runs
for the Orkut network and 50 runs for the Twitter network.
In both cases, the asynchronous counterparts spread the rumor significantly faster than
the synchronous models.
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Chapter 7

Conclusion

We simulated a natural rumor spreading process on different graphs repre-
senting real-world social networks and several classical network topologies.
We also performed a mathematical analysis of this process in preferential
attachment graphs. Both works demonstrate that rumor spreading is ex-
tremely fast in social networks.

A key observation in the mathematical proof and a good explanation
for this phenomenon is that small-degree nodes quickly learn a rumor once
one of their neighbors knows it, and then again quickly forward the news to
all their neighbors. This in particular facilitates sending a rumor from one
large-degree node to another.

What does this mean for our everyday life? It partially explains why
social networks are observed to spread information extremely rapidly even
though this process is not organized centrally and the network is not designed
in some intelligent way. Crucial is the fruitful interaction between hubs,
which have many connections, and average users with few friends. The hubs
make the news available to a broad audience, whereas average users quickly
convey the information from one neighbor to another.
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Part II

Asymptotically Optimal

Randomized Rumor Spreading

in Complete Graphs
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Chapter 8

Introduction

Suppose we want to inform all people in the town of a new rumor. We do
not know the email addresses of all people, so we want to launch a telephone
chain. How can we do that quickly and still be sure that at the end all people
will have received a call? Formally, we are given a complete graph and want
to spread a rumor from one source node to all nodes in the graph. We can use
the simple push protocol: in each round, each informed node calls a random
node and informs it of the rumor. It is well-known that this protocol succeeds
to spread a rumor in (1+o(1))(log n+lnn) rounds with high probability ([37,
43]). One problem with this protocol, however, is that a node can never be
sure that the whole graph has been informed, so there is no safe termination
rule. More seriously is the large number of Θ(n log n) calls that are necessary.
The later disadvantage was overcome in the seminal work by Karp et al. [49].
They present two variations of the randomized rumor spreading protocol
which spread the rumor with O(n log log n) messages only while still using
O(log n) rounds. Their second protocol is also robust against node failures.
A central ingredient in their approach are pull operations, which allow nodes
not yet informed to call random nodes and ask for news. Pull operations,
however, have the disadvantage that they create network traffic even if there
is no news to be spread. Hence, the assumption underlying the model by
Karp et al. [49] is that new rumors are constantly injected into the network.

Here, we present an alternative solution to the problem. It completely
avoids the problematic pull operations. It achieves a broadcast time of (1 +
o(1)) log n and it uses a total number O(nf(n)) calls, where f = ω(1) can be
any function tending to infinity arbitrarily slow. This is arbitrarily close to
the theoretically optimal values of �log n� rounds and n − 1 calls. Still the
protocol is very simple; every node follows the same (randomized) process.
Due to its randomized nature, we still have a good robustness. If a constant
fraction of the nodes chosen uniformly at random crashes at arbitrary times,
the time needed to inform all properly working nodes comes still arbitrarily
close to the theoretical optimum. In case of adversarial node failures, we can
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adjust the protocol to make sure that it still performs well. Our protocol
is also scalable. If the network size changes, no significant modifications
are necessary. Finally, it has a simple termination rule that ensures in the
error-free case that all nodes are informed at the end of the protocol with
probability 1.

The only point in which we assume the protocol to be more powerful
compared to previous works is that we discard the address-obliviousness.
That is, we assume that each node has a unique label chosen arbitrarily
from some ordered set (e.g., the integers). This seems to be reasonable in
many settings.

8.1 The Protocol by Karp et al.

As described above, Karp et al. [49] showed how to modify the simple ran-
domized rumor spreading protocol such that instead of Θ(n log n) messages
only O(n log log n) are sufficient to spread a rumor. Roughly speaking, their
protocol proceeds as follows. The rumor is equipped with a time stamp (or
age counter) in such a way that all nodes that receive the rumor also know
for how many rounds it has been in the network. In each round, each node
chooses a random other node as a communication partner. The commu-
nication then proceeds in both directions, that is, any partner who knows
the rumor forwards it to the other partner. In particular, it is shown that
after only log3 n + Θ(log log n) rounds of this protocol, all nodes know the
rumor with high probability. In addition, a rumor is transmitted in this time
interval at most O(n log log n) times.

Note that this way of counting ignores all communication effort which
does not result in a rumor to be sent, i.e., all calls between two uninformed
nodes that arise due to pull operations are not counted. The way this is
usually justified is by assuming that there is sufficient traffic in the network
due to regular insertions of new rumors. Still, we feel that this is slightly
dissatisfying. Note that when using pull operations, there is no way to
avoid such communication overhead—a node that did not receive a rumor
recently has no way of finding out whether there are rumors around that
justify starting pull operations or not. Even nodes that did receive a rumor
recently cannot be sure that there is no new rumor that would justify starting
pull operations again.

Karp et al. [49] further extend the protocol just sketched to improve
its robustness. The one above greatly relies on a very precise estimate of
the time when to stop sending on the rumor (here, log3 n + Θ(log log n)).
With transmission failures present, the initial phase of exponential growth
might take longer. If this time span is not correctly guessed by the protocol,
either nodes remain uninformed, or for too long a time a linear number
of nodes keep sending out the rumor, leading to too many messages sent.
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This problem is overcome by a clever median-counting trick. Here, very
roughly speaking, nodes average their estimation on how well-known the
rumor is with the estimations of their communication partners. This allows
the following robustness result. An adversary may specify a set F of nodes
together with arbitrary times at which each of them drops out of the game.
Nevertheless, within O(log n) rounds and using O(n log log n) messages, all
but O(|F|) nodes are informed. Note that this does allow that up to O(|F|)
properly working nodes remain uninformed.

Karp et al. [49] also prove lower bounds, which show that if in each round
all communication is restricted to random matchings of communication part-
ners (i) any address-oblivious algorithm has to make Ω(n log log n) calls and
(ii) that any algorithm informing all but a o(1) fraction of the vertices in
logarithmic time has to make ω(n) calls.

8.2 Our Results

The first lower bound stated in the previous paragraph suggests that asking
for an address-oblivious protocol may result in only a limited performance
being achievable. In addition, one might also wonder if really many broad-
casting problems ask for address-oblivious protocols, or if not rather in the
majority of settings each participant naturally has a unique address, simply
to organize the transport of a message to an addressee.

In this work, we shall drop the requirement of address-obliviousness.
However, we shall keep the concept of contacting random neighbors without
any preference, as this seems to be the key to obtaining good broadcasting
times, robustness and scalability in all previous works.

Contrary to the model by Karp et al. [49], we do not perform pull op-
erations; all transmissions are initiated by nodes that know the rumor. So
the initiator of a transmission is always the informed node, which chooses
its addressee uniformly at random, but not always independently.

We do allow, however, two-way communication, in that the addressee
acknowledges his readiness to receive the rumor or his knowledge of the
rumor. Such a mechanism makes sense anyway, because it allows to reduce
the amount of data sent through the network (if the addressee cannot receive
the rumor or already knows it, we do not need to send it). In practice, most
communication protocols (e.g., the standard network protocol FTP) allow
some kind of two-way communication to ensure an error-free transmission.

In this, as we think, natural setting, we propose a protocol that informs
all nodes in only (1 + o(1)) log n rounds while using only nf(n) calls, where
f = ω(1) can be chosen arbitrarily. Note that every protocol that only uses
push operations needs at least �log n� rounds and makes at least n− 1 calls.

More precisely, we have the following tradeoff between rounds and mes-
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sages. For all f : N → N, we give a protocol that needs only

log(n) + f(n) +O(f(n)−1 log n)

rounds with high probability and O(nf(n)) calls. In terms of running time,
this is optimal for f(n) = Θ(

√
log n), leading to log n + O(

√
log n) rounds

and O(n
√
log n) calls.

The protocol in its basic version is very simple. For the presentation, let
us assume that the nodes are numbered from 1 to n, even though what we
really need is only that nodes are able (i) to compute the label of a node
chosen uniformly at random and (ii) given a label of a node, to compute a
uniquely defined successor along a cyclic order of the labels (label plus one,
modulo n).

Let f : N → N be given (to formulate the tradeoff scenario). Then the
basic protocol works as follows. Each newly informed node sends its first
message to another node chosen uniformly at random. From then on, it
does the following. If the previous message was sent to a node that was not
informed yet, then the next message is sent to the successor of that node in
the cyclic order. Otherwise, the next message is sent again to a node chosen
uniformly at random. After having encountered f(n) nodes that were already
informed, the node stops and does not transmit the rumor anymore. This
protocol can be interpreted as a variant of the quasirandom rumor spreading
protocol investigated in [24, 26]. In contrast to the latter, all nodes have the
same cyclic permutation and can re-start at a random position when they
call a node that is already informed.

Despite its simplicity, this protocol is robust against random node fail-
ures. When a randomly chosen fraction of 1−p of all nodes fails at arbitrary
times, where p ∈ (0, 1], we still have a running time of

(1 + o(1)) log1+p n

with high probability. It is easy to see that �log1+p n� is a lower bound on
the expected number of rounds needed to distribute the rumor. Thus, we
achieve an asymptotically optimal running time even under the presence of
random node failures.

Similar to the basic protocol by Karp et al. [49], however, this protocol is
not very robust against adversarial node failures. If an adversary chooses a
large consecutive segment of the nodes to be out of order (say � nodes), then
there is a reasonable chance (of �

2n) that the first transmission ever sent hits
the first half of this ‘failed’ segment, and no progress is made for the next
�/2 rounds.

We develop a number of enhancements to cope with such problems. To-
gether, they yield the following. For a given security parameter p ∈ (0, 1],
we have a protocol that is robust against adversarial node destruction of up
to (1−p)n nodes, i.e., an adversary may destruct arbitrary nodes (excluding
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the initially informed node) at the beginning of each round such that in total
up to (1 − p)n nodes are destructed. Such failed nodes do not answer calls
directed to them, nor do callers get a feedback if other nodes tried to call a
failed node before (this is what causes most of the difficulties). In spite of
this strong adversarial setting, we do inform all non-destructed nodes in

(1 + ε)(log1+p n+ 1−p

p
lnn)

rounds for any constant ε > 0, while using O(n) calls to properly-working
nodes. The main difficulty in designing such a protocol lies in balancing out
the following two effects: on the one hand, a node should not fall back to
sending a random message after encountering failed nodes too early, as this
would destroy the advantage of following the given order of nodes. On the
other hand, in order to be able to cope with long segments of failed nodes,
in particular in the early stages of the protocol, such random restarts are
necessary.

The main technical difficulty in the analysis of the proposed protocols is
that the transmission of messages at each node is not independent, and thus,
many classical tools cannot be employed. The key to the solution here is to
exploit the existing independence stemming from communications started
with random partners.

In summary, we show that considerable improvements over the fully in-
dependent rumor spreading protocol are possible if we do not require the
protocol to be address-oblivious. It is thus worth questioning whether this
assumption is really needed in previous applications of the protocol. From
the methodological side, our results again show that spicing up randomized
algorithms with well-chosen dependencies can yield additional gains. The
theoretical analysis might become more complicated, but not so much the
algorithm itself.

To come back to our motivating example with the telephone chain at the
beginning, our protocol suggests the following simple solution. We look up
our number in the phone directory and call the subsequent number. After
informing the called person, we choose a random number in the phone di-
rectory and call it. If every called person places two such calls, we inform
all nodes after (1 + o(1))(log n + lnn) rounds with high probability. Note
that this solution is slightly different than our protocol since it first makes a
non-random call and then places a random call, whereas in our protocol we
switch the order.

8.3 Preliminaries

For the upper bounds, we make some simplifying assumptions that can only
slow down the running time of the protocol and help us to cope with the
dependencies between different nodes. In particular, we will assume that
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certain vertices stop informing (ignoring), and that other vertices do not
immediately start their own informing process after becoming informed (de-
laying). Delaying turns out to be useful as it gives us some influence on
when a node uses its first random choice. Nodes that have been informed
but have not yet begun informing new nodes play an important role in our
analysis. We will call them newly informed vertices.

The following fact holds for all protocols that we consider.

Fact 8.3.1. If a node is delayed, i.e., halted for a number of rounds, then
the protocol can only become slower.

To see why this holds, we can use the following argument for our pro-
tocols. Fix for each node the set of random addressees. Then, a simple
induction over time shows that for any set of delays the following holds. No
vertex in the delayed model is informed earlier than in the original model.
Since this is true for any choice of the random addressees, the fact follows.
This allows us to delay a node for any number of rounds in our analysis for
the upper bounds.
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Chapter 9

Quasirandom Protocol with

Restarts

Let G = (V,E) be the complete, undirected graph on n nodes. We assume
that the nodes of the complete graph are ordered and denote by i the i-th
node according to that order. Our goal is to spread a rumor known initially
to one node to all nodes in V . We call the node initiating the rumor the
starting node. A rumor can be transmitted along each edge of the graph
in both directions. Every transmission is always initiated by a node that
knows the rumor. We count every contact of a node to another node as
a call. For simplicity, we assume that two nodes never call a node exactly
simultaneously even if they both call the same node in the same round; thus,
a node is only informed by a single node.

We introduce a simple algorithm that for a certain instantiation achieves,
up to lower order terms, an optimal running time for a push protocol. The
algorithm is related to the quasirandom protocol by Doerr et al. [24]. There,
every node v is equipped with a cyclic permutation πv : V → V of all nodes
in V . Once a node v becomes informed, it chooses one position on its list
uniformly at random and contacts the corresponding node in the next round.
In each following round, v proceeds according to its permutation πv, i.e, if v
contacted u in the previous round, it now contacts πv(u). Note that different
nodes can have different permutations.

Our protocol differs from this quasirandom protocol in two main aspects.
First, the permutations of all nodes are identical. Second, we introduce the
notion of a restart : if a node calls an already informed node, it chooses a
random communication partner in the next round instead of choosing the
next one according to the permutation. Each node performs R such restarts,
where R is a parameter of the protocol that can be a function of n, and then
terminates its rumor spreading. Thus, once a node has called R+1 informed
nodes, it stops. This rule allows us to bound the total number of calls made.
Note that the aspect of keeping the number of calls small was not discussed
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in [24].
A detailed description of the protocol is given in Algorithm 1, where we

denote by j + 1 the successor of j according to the cyclic order.
There is a small technicality here. The starting node is treated as if it

is not informed at the beginning, i.e., the first node that calls the starting
node will send the rumor to it and only after this call, the starting node will
be treated as an informed node.

Algorithm 1: Procedure started by newly informed node
let R ∈ Z+ be the number of random calls per node
for i = 1 to R do

select node j uniformly at random;
while j not informed // iteration counts as call even if j

informed
do

inform j;
j ← j + 1;

9.1 Running Time And Number of Calls

We give an upper bound and an almost matching lower bound on the num-
ber of rounds and calls needed by the protocol to spread a rumor from an
arbitrary starting node to all nodes of the complete graph with high proba-
bility.

Theorem 9.1.1. Let ε > 0 be an arbitrarily small constant. With probability
1− o(1), the protocol with R random calls per node informs all nodes in

log n+ (1 + ε) ln(n)/R+R+ h(n), if R ≤
√
lnn

log n+ (2 + ε)
√
lnn, if R ≥

√
lnn

rounds and n(R+1) calls, where h(n) is a function of arbitrarily slow growth.

Note that by adjusting the stopping parameter R, we get a tradeoff be-
tween the number of rounds needed to inform all nodes and the number of
calls.

Before analyzing the protocol for general R, we describe two special cases
that achieve an (almost) optimal number of rounds and calls, respectively.
For R =

√
lnn, we achieve, up to a lower order term, an optimal running

time while using only O(n
√
lnn) calls. For R = 1, we get a very simple

broadcasting protocol that, up to constant factors, is both optimal in terms
of rounds needed as well as the number of calls.
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Corollary 9.1.2. Let ε > 0 be an arbitrarily small constant. With probability
1− o(1), the protocol with

• R =
√
lnn informs all nodes in log(n) + (2 + ε)

√
lnn rounds using

2(1 + 2ε)n
√
lnn calls,

• R = 1 informs all nodes in log(n) + (1 + ε) lnn rounds using 2n calls.

Before we prove Theorem 9.1.1, we make the following observation for
any R ≥ 1.

Fact 9.1.3. The protocol is always at least as fast as the quasirandom model
implemented with identical lists.

This observation follows from the fact that every node acts as in the
quasirandom model until it encounters an informed node. In this case, since
we assumed all lists to be the same, the node becomes useless in the quasir-
andom model as all successive nodes on its list will have also been informed
once it tries to call them. In our protocol, however, the node might still call
uninformed nodes.

Proof of Theorem 9.1.1. We distinguish three phases of the process.
The first phase lasts for log n+h(n) rounds where h(n) is a function that

is growing arbitrarily slowly. Using Fact 8.3.1, we assume that every node
is delayed to the second phase once it contacts an informed node. Note that
this delayed protocol remains at least as fast as the protocol with R = 1
and thus, by Fact 9.1.3, also at least as fast as the quasirandom model
implemented with identical lists. Fountoulakis and Huber [40] showed that
for any arbitrarily small constant ε > 0 the quasirandom model informs
(1−ε)n nodes with probability 1−o(1) in this phase. Thus, we get the same
result for our delayed protocol.

The second phase lasts for R rounds. By our delaying assumption, every
node that is informed in the first phase will remain active for at least R− 1
rounds before the second phase ends. The crucial observation is that, in
each round, each informed round either makes a random call or it must have
called an uninformed node in the previous round. The latter happens at
most εn times in total. We conclude that at the end of the second phase
the number of random calls made is at least (1 − ε)nR − εn ≥ (1 − 2ε)nR
(including the random calls made in the first phase). We use this to bound
the largest interval of uninformed nodes by (1 + 3ε) ln(n)/R.

Let I be an interval of length (1 + 3ε) ln(n)/R. Then, the probability
that no node in I becomes informed in the second phase by these random
calls is at most

�
1− (1+3ε) lnn

nR

�(1−2ε)nR ≤ exp (−(1− 2ε)(1 + 3ε) lnn)

= n
−1−ε+6ε2 = n

−1−ε�
,
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for some constant ε� > 0 (when ε is sufficiently small). By a union bound
argument, we conclude that there is no completely uninformed interval of
length (1 + 3ε) ln(n)/R after the second phase with probability at least 1−
n−ε� for some constant ε� > 0.

In the last phase, all the remaining uninformed intervals are ‘processed’.
This takes at most the length of the largest uninformed interval, which is at
most (1 + 3ε) ln(n)/R. Note that here we exploit our assumption that the
starting node is treated as if it is not informed in the beginning. Otherwise,
there could be an uninformed interval on the cyclic list after the starting
node that is not further processed, since the starting node ‘blocks’ any node
from processing this interval.

Using a simple union bound, we bound the total failure probability by
o(1).

It remains to bound the number of calls. Note that each node calls at
most R informed nodes in total. Hence, we use n calls to inform all nodes
and, in addition, at most nR calls until all nodes stop informing.

We can also show that the upper bound is essentially sharp.

Theorem 9.1.4. Let ε > 0. If the protocol with R random calls per node is
run for less than

log(n) + (1− ε) ln(n)/R+ 1
2R, if R ≤

�
2(1− ε) lnn,

log(n) +
�
2(1− ε) lnn, if R ≥

�
2(1− ε) lnn

rounds, then with probability 1− exp(−nΘ(ε)) not all nodes are informed.

Proof. W.l.o.g. we assume that n is a power of two. Otherwise, we can use
the largest power of two smaller than n instead.

We first consider the case R ≤
�
2(1− ε) lnn. Let T = log(n) + (1 −

ε) ln(n)/R+ 1
2R. We bound the probability from below that a specific node

u becomes informed within T by n−1+ε. A simple union bound then shows
that if we run the protocol for less than T rounds, there will be an uninformed
node with high probability.

We call the event that a node chooses another node to inform uniformly
at random a random call. Hence, random calls occur as first calls of a node
after the node encountered an already informed node. Clearly, u remains
uninformed if for all i ≤ T all random calls happening at time T − i avoid
u and the i vertices to the left of it. We say that u is unaffected by such a
random call.

The probability of informing u within T rounds only increases if we as-
sume that the random calls are made as early as possible. We will therefore
assume that a node that is informed in round k, makes its R random calls
in rounds k + 1, k + 2, . . . , k + R. Furthermore, note that in the i-th round
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at most 2i−1 nodes start calling. The probability that the j-th call of a
node informed in round i ≤ log n does not affect u is 1 − T−i−j

n
. Note that

T − i− j ≥ 0 by the choice of R and i.
Using 1− x ≥ e−x−x2 for x ≤ 1

2 , and the fact that all random transmis-
sions of the starting node are independent from each other, the probability
that u is not informed in T rounds is at least
log(n)�

i=1

R−1�

j=0

�
1− T−i−j

n

�2i−1

≥
log(n)�

i=1

R−1�

j=0

exp
�
−2i−1 T−i−j

n
− 2i−1(T−i−j

n
)2
�

≥
log(n)�

i=1

R−1�

j=0

exp
�
−2i−1 T−i−j

n

�
exp

�
−T 2

n

�

≥ exp
�
−

log(n)�

i=1

R−1�

j=0

2i−1 T−i−j

n

�

� �� �
X1

exp
�
− log(n)RT 2

n

�

� �� �
X2

,

Note that for T ∈ O(log n), we have X2 = 1− o(1). For X1, we first simplify
the sum in the exponent.

logn�

i=1

R−1�

j=0

2i−1 T−i−j

n
= 1

n

logn�

i=1

2i−1
R−1�

j=0

(T − i− j)

= 1
n

logn�

i=1

2i−1(R(T − i)−R(R− 1)/2)

= R

n

�
(n− 1)(T − (R− 1)/2)−

logn�

i=1

i2i−1
�

= R

n

�
(n− 1)(T − (R− 1)/2)− 1− (log n− 1)n

�

≤ R
�
T − (R− 1)/2− log n+ 1

�

= R
�
log n+ (1− ε) ln(n)/R

+ 1
2R− (R− 1)/2− log n+ 1

�

≤ (1− ε) lnn+ 3R/2

≤ (1− ε/2) lnn,

where the last inequality holds by our assumption R ≤
�

2(1− ε) lnn and n

large enough. Thus, the probability that u is not informed within T rounds
is at least

(1− o(1)) exp(−(1− ε/2) ln(n)) = n
−1+Θ(ε)

.

Now let k = � n

T+1� − 1. Let u1, . . . , uk be nodes each having distance
more than T from each other (in the cyclic order). We argue that, with
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sufficiently high probability, one such node will remain uninformed after the
first T rounds. Let Ui denote the event that node ui is informed. Note that
since these nodes have a distance of T from each other, a random call that
informs one such node ui can not lead to the informing of any other node uj

during the first T rounds. Hence, these events are negatively correlated : if
some nodes are informed, the probability that another one is also informed
decreases, or formally, for any subset S ⊆ {1, . . . , k}, and j /∈ S, we have
P(Uj |

�
i∈S Ui) ≤ P(Uj). We compute

P(no node remains uninformed) ≤ P(U1 ∧ · · · ∧ Uk)

≤
�

1≤j≤k

P(Uj)

≤ (1− n
−1+Θ(ε))k

≤ exp(−n
Θ(ε)).

So far we have considered the case R ≤
�
2(1− ε) lnn. For larger R,

inequality (9.2.1) no longer holds since the factors in the product can be-
come larger than 1. Instead we assume that for larger R, every node keeps
making random calls in every round till the end of the protocol. Clearly, this
assumption only makes the protocol faster. Thus, we have

P(u is not informed in T rounds) ≥
log(n)�

i=1

T−i�

j=0

�
1− T−i−j

n

�2i−1

.

By a similar argument as before, we can bound this probability by analyzing
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the following sum, where T := log(n) +
�
2(1− ε) lnn.

logn�

i=1

T−i�

j=0

2i−1 T−i−j

n
= 1

2n

logn�

i=1

2i
T−i�

j=0

(T − i− j)

= 1
2n

logn�

i=1

2i
T−i�

j=0

j

= 1
2n

logn�

i=1

2i(T − i)(T − i+ 1)/2

= 1
4n

logn�

i=1

2i(T 2 + T − (2T + 1)i+ i
2)

= 1
4n

�
(T 2 + T )2(n− 1)− (2T + 1)

logn�

i=1

i2i +
logn�

i=1

i
22i

�

= 1
4n

�
(T 2 + T )2(n− 1)− (2T + 1)(2 + (log n− 1)2n)

− 6 + (−2 log n+ 3 + log2 n)2n
�

≤ 1
2

�
T
2 + T − (2T + 1)(log n− 1)− 2 log n+ 3 + log2 n

�

= 1
2

�
T
2 + 3T − 2T log n− 3 log n+ 4 + log2 n

�

= 1
2

�
T
2 − T (2 log n− 3)− 3 log n+ 4 + log2 n

�

= 1
2

�
(T − 2 logn−3

2 )2 − (2 logn−3
2 )2 − 3 log n+ 4 + log2 n

�

= 1
2

�
(T − 2 logn−3

2 )2

− 4 log2 n−12 logn+9
4 − 3 log n+ 4 + log2 n

�

= 1
2

�
(T − log n+ 3

2)
2 + 7

4

�

= 1
2

�
(
�

2(1− ε) lnn+ 3
2)

2 + 7
4

�

≤ (1− ε/2) lnn.

Using the same argument then as in the first case, the result follows.

9.2 Robustness Against Random Node Failures

Despite its simplicity, our protocol offers reasonable robustness. We consider
the following natural node failure model: each node apart from the starting
node independently sampled with some constant probability p ∈ (0, 1] works
properly. Nodes that do not work properly are called failed nodes. These
nodes may stop answering calls or sending out messages at arbitrary times
(specified by an adversary). If a node contacts one that has stopped working,
it does not get a feedback and continues with the successor of the failed node
in the next round (hence a failed node does not pretend to be informed). Not
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surprisingly, we cannot hope to achieve robustness in such a situation without
any sacrifices. For example, when we are confronted with a linear number
of randomly distributed failed nodes, it is unreasonable to assume that it
is possible to inform all properly working nodes in (1 + o(1)) log n rounds.
It is easy to see that, with high probability, any push algorithm needs at
least (1− o(1)) log1+p n rounds to inform all properly working nodes, as the
following lemma shows.

Lemma 9.2.1. Let p > 0 be a constant. Any push protocol needs at least
(1−o(1)) log1+p n rounds with high probability to inform all properly working
nodes.

Proof. We consider the following equivalent failure model. Whenever a node
is contacted for the first time, we consider it to be a properly working node
with probability p, otherwise it is failed node. By Chernoff’s bound, we have
at least (1− o(1))pn properly working nodes with high probability. Assume
that this is the case.

Let ni denote the number of nodes that were informed in round i, and
Ni =

�
j≤i

nj the number of nodes informed within the first i rounds. At
best, in one round, all informed nodes contact nodes that have not been
called before. Since each of these nodes is properly working independently
with probability p, we have

E[ni | Ni−1] ≤ pNi−1.

Let ε := 1/ log n and let i be the first round such that Ni ≥ 2ε−2p−1 lnn.
Then, by Chernoff’s bound, we have for every j > i,

P[nj ≥ (1 + ε)pNj−1 | Nj−1] ≤ exp(−ε
2
pNj−1) ≤ n

−2
. (9.2.1)

So, by a simple union bound, with probability 1− (log n)2n−2 ≥ 1− n−3/2,
we can assume for each round j ∈ [i, i + (log n)2], that nj ≤ (1 + ε)pNj−1.
Thus, we need at least log1+(1+ε)p((1− ε)pn) = (1− o(1)) log1+p n rounds to
inform all properly working nodes.

It turns out that in this case the quasirandom protocol with restarts can
be instantiated to match this lower bound for push algorithms up to lower
order terms.

Lemma 9.2.2. Let p > 0 be a constant. If nodes fail independently with
probability 1− p ∈ (0, 1], then all properly working nodes are informed in

(1 + o(1))(log1+p n+ 1
Rp2

lnn) +R, if R <
1
p

√
lnn,

(1 + o(1))(log1+p n+ 2
p

√
lnn), if R ≥ 1

p

√
lnn

rounds, with probability 1−o(1). In expectation, (R+1)n/p calls are placed.
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Proof. The proof resembles the one for Theorem 9.1.1, but the analysis of
each phase is more complicated. In the following we assume that all node
failures occur at the beginning of the protocol. Note that this assumption
can only slow down the protocol since every call to such a node goes wasted.
Let ε > 0 be an arbitrarily small constant. Let W denote the set of properly
working nodes. In the following, we assume that

|W| ≥ (1− ε)pn, (9.2.2)

which, by Chernoff’s bound, holds with probability 1− e−Ω(n).
The first phase lasts for (1 + ε) log1+p n+ 1 rounds. As in the proof for

Theorem 9.1.1, we delay every node that contacts an already informed node
to the next phase. Let W1 ⊆ W denote the subset of the properly working
nodes informed in the first (1 + ε) log1+p n rounds. The additional round at
the end of the first phase only makes sure that every node in W1 has placed
exactly one random call before the second phase begins.

We use the fact that our protocol is at least as fast as the quasirandom
protocol with random node failures implemented with identical permutations.
In Lemma 9.2.3, we prove that the latter protocol informs a fraction of 1− ε

of all properly working nodes in (1 + ε) log1+p n rounds with probabililty
1− o(1). Hence, we have, with probabililty 1− o(1),

|W1| ≥ (1− ε)|W|. (9.2.3)

The second phase lasts for R − 1 rounds. We bound from below the
total number of random calls that have been made by the informed nodes at
the end of the second phase. By our delaying assumption, every node that
is informed in the first phase will remain active for at least R − 1 rounds
before the second phase ends. Number the nodes in W1 from 1 to |W1|. Let
Wi denote the set of nodes contacted by the i-th node in this ordering. We
define the function f such that

f
�
W1, . . . ,W|W1|

�
:=

�

i∈W1

|Wi ∩W|.

For convenience, we write Y := f
�
W1, . . . ,W|W1|

�
. Note that Y is the

number of properly working nodes contacted in this phase. By linearity
of expectation we have E[Y ] ≥ (R − 1)p|W1|. Furthermore, we see that for
any i and any possible set of values w1, . . . , w|W1| and w�

i
,

f
�
w1, . . . , wi, . . . , w|W1|

�
− f

�
w1, . . . , w

�
i, . . . , w|W1|

�
≤ R.
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Thus, we can apply Azuma’s inequality (Lemma 1.2.7), and get

P(Y ≤ (1− ε
�)(R− 1)p|W1|) ≤ P(Y ≤ E[Y ]− ε

�(R− 1)p|W1|)

≤ 2 exp
�
−(ε�(R− 1)p|W1|)2

|W1|R2

�

≤ 2 exp(−Ω(|W1|))
≤ exp(−Ω(n)),

where the last inequality follows from (9.2.2) and (9.2.3).
At most ε|W| of all calls made by nodes in W1 go to an uninformed

node in the second phase. So by the same argument as in the proof of
Theorem 9.1.1 we can bound the number of random calls from below by
|W1| + Y − ε|W|. It follows that with probability 1 − o(1) all the nodes
informed in the first phase will have contributed at least

|W1|+ (1− ε)(R− 1)p|W1|− ε|W|
≥ (1− 2ε)(1− ε)pn+ (1− ε)2(R− 1)p2n

≥ (1− 3ε)Rp
2
n

random calls at the end of the second phase.
We now show that the largest interval of uninformed nodes is at most

(1 + 4ε) ln(n)/(Rp2). Let I be an interval of length (1 + 4ε) ln(n)/(Rp2).
Then the probability that no node in I becomes informed in the first or
second phase by the random calls is at most

�
1− (1 + 4ε) lnn

Rp2n

�(1−3ε)Rp2n

≤ exp (−(1− 3ε)(1 + 4ε) lnn)

= n
−1−ε+12ε2

= n
−1−ε�

,

for some constant ε� > 0 (when ε is sufficiently small). Hence, by a sim-
ple union bound, there is no completely uninformed interval of length (1 +
4ε) ln(n)/(Rp2) after the second phase with probability at least 1− n−ε� for
some constant ε� > 0.

In the last phase, all the remaining free intervals are filled up. This
takes at most the length of the largest uninformed interval which is (1 +
4ε) ln(n)/(Rp2) by the previous argument.

So in total, we need

(1 + ε)(log1+p n) + 1 +R− 1 + (1 + 4ε) ln(n)/(Rp
2)

≤ (1 + 4ε)(log1+p n+ 1
Rp2

lnn) +R

rounds. Using a simple union bound, we can bound the total failure proba-
bility of all phases by o(1).

92



It remains to bound the number of calls. At most n calls go to properly
working nodes. Apart from that, each node contacts at most R informed
nodes. Furthermore, in expectation, a node contacts a properly working
node after p−1 rounds. Hence, we use at most n messages to inform all
properly working nodes and additionally, in expectation, nR/p calls until all
nodes stop informing.

In the proof of Lemma 9.2.2, we used the fact that the quasirandom
protocol with random node failures informs a fraction of 1−ε of all properly
working nodes in (1 + ε) log1+p n rounds in probability 1 − o(1). We now
prove this fact.

Lemma 9.2.3. The quasirandom protocol with random node failures and
failure probability 1 − p for p ∈ (0, 1] informs a fraction of 1 − ε of all
properly working nodes in (1 + ε) log1+p(n) rounds for an arbitrarily small
constant ε > 0 in probability 1− o(1).

Proof. We rely on the proof for the runtime of the quasirandom protocol
with random transmission failures by Doerr, Huber, and Levavi [28]. In that
model, the authors assume that each call fails independently with probability
p. We now couple our node failure model with the transmission failure
model. For each node i, we let i make the same random decisions in both
models. If i tries to contact a node j in the transmission failure model
and no other node has tried to call j before, then if this contact attempt
is successful, we set in the node failure model j to be properly working,
otherwise it is a failed node. Since each contact is successful independently
with probability p, this coupling is correct. Thus, if in the transmission
failure model we consider only the calls of nodes that were informed in the
first contact attempt (i.e., no node tried to contact them before but failed),
the runtime of both protocols is the same. It is straightforward to check that
the proof for the transmission failure model only takes into account these
contacts. Therefore, we can carry over all results to our case. Lemma 9.2.3
then follows from [28, Lemma 15].
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Chapter 10

Robustness Against an

Adversary

The main disadvantage of the previous protocol is its lack of robustness in the
face of general, non-random transmission failures. Assume for example that
a large segment of nodes that come consecutively in the permutation is not
working. Then there is a reasonable chance that the first transmission sent
by the starting node ends up in this faulty segment and hence the protocol
needs time linear in the length of that segment to get out of it again. In
particular, if we assume to have a linear number of such failed nodes, then
with constant probability the protocol will take a linear number of rounds
until all nodes are informed.

We now describe a modification of the algorithm that overcomes this
problem, still achieves a logarithmic running time and performs a linear
number of calls to properly working nodes. We assume that an adversary
specifies a set of failed nodes. In contrast to the previously studied model,
we distinguish between a successful call, i.e., a call to a properly working
node, and an unsuccessful call, i.e., a call to a failed node.

This setting turns out to be more difficult to analyse. Even the more
complex median-counter algorithm by Karp et al. [49], which relies on pull
operations by uninformed nodes, only achieves a running time of Θ(lnn)
while using Θ(n ln lnn) calls. Moreover, their algorithm only guarantees to
inform all but O(|F |) nodes, where F is the set of failed nodes.

On the other hand, our algorithm informs all properly working nodes in
O(lnn) rounds, relies only on push operations, needs only O(n) successful
calls and overall O(n lnn) calls. Moreover, in case we only have a small
(constant) fraction of failed nodes, the runtime is close to the theoretical
lower bound.

The reason why the total number of calls can be significantly larger than
the number of successful calls lies in the end phase of the protocol. Just
as in the basic protocol, the end phase is characterized by having informed
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almost all properly working nodes. An adversary could have distributed
the remaining properly working nodes in a large bunch of such failed nodes.
Since an informed node that is processing the list in such a segment of failed
nodes cannot decide whether another node already passed by these nodes,
we could end up spending a linear number of useless calls per node. To
bound the number of calls, we introduce a security parameter p that the
user can set for the fraction of properly working nodes. As long as p is a
valid lower bound, we guarantee that the rumor is spread to all properly
working nodes in at most (1 + ε)

�
log1+p n + 1−p

p
lnn

�
rounds and that at

most 1+ε

p
n ln(n)

�
2 + logp(ε/12)

�
calls are made for any constant ε > 0. For

example, if we assume that 99% of all nodes are properly working, then the
protocol runs in time 1.011 log1+p n which is again very close to the lower
bound of log1+p n.

Algorithm 2: Procedure started by newly informed node
r ← 0, lfc ← 0, gfc ← 0, R ← logp(ε/12), L ← (1 + ε)1−p

p
ln(n),

G ← (1 + ε)1−p

p
ln(n)/p;

repeat
select node j uniformly at random;

until j properly working node;
while r < R and gfc < G do

while j not informed and lfc < L do
if j failed then

lfc ← lfc + 1;
gfc ← gfc + 1;

else
inform j;
j ← j + 1;
lfc ← 0;

r ← r + 1; select node j uniformly at random;

The protocol is very similar to the previous protocol. When a node
receives the rumor, it starts the procedure described in Algorithm 2. As
before, the starting node is treated as if it is uninformed until it is being
called for the first time. The main difference to the basic protocol is that a
newly informed node first performs random calls until it has found a properly
working node. It then proceeds just as before. Intuitively, this modification
prevents the bad scenario described above where the first call goes to a large
segment of failed nodes and gets stuck there for a long time. For the stopping
rule, we introduce three counters for each node. All these counters track the
following quantities.

96



• The restart counter r of a node counts how many informed nodes it
has called in total.

• The global failure counter gfc of a node counts how many failed nodes
it has called in total.

• The local failure counter lfc of a node counts the number of failed nodes
it has encountered in a row since its last random call.

The stopping rule is as follows. A node stops informing immediately if either
the restart counter reaches R = logp(ε/12) or the local failure counter reaches
L = (1 + ε)1−p

p
ln(n). Furthermore, if the global failure counter reaches

G = (1 + ε)1−p

p
ln(n), then the node stops informing the next time it calls

an informed node. Whereas the restart counter fulfills the same role as in
the basic protocol, the global failure counter makes sure that not too many
calls are wasted on failed nodes. The local failure counter ensures that all
properly working nodes are informed, even those that might be hidden in a
segment of failed nodes.

Theorem 10.0.4. Let ε ∈ (0, 1) and p ≤ (n − |F |)/n < 1, where F is the
set of failed nodes in a graph. Then, the quasirandom protocol with restarts
and a random start-up phase informs, with probability 1 − O(n−pε/32), all
properly working nodes in at most

(1 + ε)
�
log1+p n+ 1−p

p
lnn

�

rounds using O(n) successful calls and 2(1+ε)1−p

p
n lnn+O(n) calls in total.

In the following, we first prove the upper bound on the number of calls
and then the upper bound on the running time.

10.1 Number of Calls

Lemma 10.1.1. The number of calls is at most 2(1 + ε)1−p

p
n lnn + O(n)

with probability e−Ω(n), out of which at most n(R+ 1) are successful.

Proof. We first bound the total number of calls made by nodes initially before
they call the first properly working node. Let M init

i
denote the number

of these calls made by node i and M init the total number of these calls.
Note that M init

i
is geometrically distributed with mean p−1. By linearity of

expectation, we get E(M init) = n

p
. By Lemma 1.2.5, we have

P(M init
> (1 + ε)n

p
) < e

−Ω(n)
.

Apart from these initial calls, each node calls at most R uninformed
working nodes and at most G + L failed nodes. So we spend n calls to
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inform the properly working nodes and at most n(R +G + L) unsuccessful
calls on either failed nodes or already informed properly working nodes.

In total, at most n(G+L+R+1+ 1+ε

p
) = n

�
2(1+ε)1−p

p
lnn+logp(ε/12)+

1+ 1+ε

p

�
= 2(1 + ε)1−p

p
n lnn+O(n) calls are made with probability e−Ω(n).

Of these calls, at most n(R+ 1) are successful.

10.2 Running Time

10.2.1 Outline of Proof

The proof for the number of rounds follows the same structure as the proof
in case of random node failures. As before, we also rely on the proof for
the runtime of the quasirandom protocol with random transmission failures
by Doerr et al. [28]. In particular, we use their proof to show that after
(1 + ε) log1+p n rounds all but a constant fraction of the properly working
nodes are informed. Note that in expectation a node will make the same
number of failed contact attempts in both the adversarial model and the
random transmission failure model. Since in the proofs of most results in
the latter model, only this expectation is needed, we can transfer the results
to the adversarial failure model. Whenever this is possible, we will skip the
proof.

To obtain bounds that are precise up to the leading constant, we have to
be careful that we do not lose too much through delaying and ignoring some
nodes. For this reason, we distinguish two different types of phases.

Lazy phases were also used in the time analysis of [24]. Only nodes that
are considered active at the beginning of the phase are considered active for
the remainder of the phase. Nodes that are called during the phase, although
they are still considered to be informed, remain inactive, and are therefore
unable to spread the rumor themselves for the rest of the phase.

Since lazy phases neglect the rumor spreading potential of a significant
portion of the nodes, we also need busy phases. Here, all nodes informed
during the busy phase become active immediately. By choosing the lengths
of the busy phases suitably, we balance out the difficulties with the inherent
dependencies and the losses due to ignoring informed vertices at the end of
each phase.

We now give the outline for the proof. Let It denote the set of informed
vertices in round t. We call a node newly informed if it is informed but has
not yet started the dissemination process (either because it was just informed
or because it is delayed). We denote the set of newly informed vertices at
round t by Nt. Let p denote the security parameter and assume that it is a
lower bound on the fraction of properly working nodes.

Ideally, we would like to apply a similar proof as for Theorem 9.1.1.
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Unfortunately, the phases used there turn out to be more difficult to ac-
complish with the presence of failed nodes. This is particularly true for the
first phase. We refine the analysis by splitting the process into more phases.
In all phases except for the shooting phase, we stop an active node after it
has called at most two informed node. In the shooting phase, we make sure
that a node stops after contacting R informed nodes. Thus, the limit of the
restart counter is never violated.

1. In the start-up phases I and II, we inform in total Θ((ε lnn)2) nodes
in 1

3ε lnn rounds with high probability. Here, we exploit the fact that
nodes first perform random calls until they find a properly working
node to prevent that the process dies out early.

Lemma 10.2.1. Let ε ∈ (0, 1). After t1 := 1
3ε lnn rounds, we have

(14ε lnn)
2 ≥ |Nt1 | ≥ ( 1

12pε lnn)
2 with probability 1 − O(n−pε/32) and

|It1 | ≤ 1 + 1
4ε lnn+ |Nt1 | informed nodes.

2. In the busy phases, we still have only very few informed nodes. Hence,
the probability of a collision, in which a node calls a node that is
already informed, is still so low that only a few messages are wasted
on already informed nodes. On the other hand, in expectation only
a fraction p of all calls goes to properly working nodes (the rest is
wasted in unsuccessful calls to failed nodes). We therefore witness an
exponential growth of the number of informed nodes by a factor of
almost 1 + p in each round. After (1 + ε) log1+p n rounds, this phase
ends having informed a small constant fraction of the properly working
nodes.

Lemma 10.2.2. Let ε ∈ (0, 1). Let

k := 1+ε

ε

�
2− log1+p p

�
and ζ ≤ 1

k
(2e)

− 2k−1

p3(1+p)k−3−k−1
.

Let ζ � := 2−kζ and ε� > 0. Let t1 be such that in our model at time
t1 we have |Nt1 | ≥ (pε� lnn)2 and |It1 | ≤ min

�
ζ �n, 2k−1

p(1+p)k−2−1
|Nt1 |

�
.

Let � denote the smallest integer such that if we perform � busy phases
with k rounds we have |It1+�k| ≥ ζ �n. Then

� ≤
(1 + ε) log1+p n

k
and |It1+�k| ≤

2k − 1

p(1 + p)k−2 − 1
|Nt1+�k|

hold with probability 1− n−c for any c > 0.

Proof. The lemma is identical to [28, Theorem 14]. In these phases,
we immediately stop the nodes that call an informed node. Thus, our
protocol behaves just like the quasirandom protocol with identical lists
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analyzed in [28]. Although the failure models are different, we can still
apply their proof since it only relies on the expected number of failed
contacts for each node (which is the same in both models).

3. In the harvesting phase, we inform almost all nodes in a constant
number of rounds. In particular, we inform all properly working nodes
except for a small constant fraction.

Lemma 10.2.3. Let ε ∈ (0, 1) and k := 1+ε

ε

�
2− log1+p p

�
. Let t2 be

such that |It2 | ≤ 2k−1
p(1+p)k−2−1

|Nt2 |, and ζ, ζ � ∈ (0, 1) such that ζ �n ≤

|It2 | ≤ ζn holds. Let S := 1− 2k ln(ζ)
(1−ζ�)ζ�2(p(1+p)k−2−1)

.

After one lazy phase of S rounds starting at time t2, at least (p− 3ζ)n
nodes will be newly informed with probability 1− e−Ω(n).

4. In the shooting phase, we now exploit the large number of informed
nodes to ensure that the largest uninformed interval is small. We prove
that at the end of this phase, the largest uninformed interval has length
at most (1 + 2

3ε)
1−p

p
lnn.

Lemma 10.2.4. Let ε ∈ (0, 1) and η < εp/48. Let t3 be such that
in our model at round t3 we have |Nt3 | ≥ (p− η)n. Then, after
log1−p(ε/13) + logp(ε/12) rounds, the largest uninformed interval of
nodes is of length at most (1 + 2

3ε)
1−p

p
lnn with probability 1− n−ε/3.

5. In the fill-up phase, we have to spend at most as many rounds as the
largest interval of uninformed nodes until all properly working nodes
are informed. It follows that we need at most (1 + 2

3ε)
1−p

p
lnn addi-

tionally rounds.

In the analysis of the phases we have to take into account that nodes that
are active in some phase could stop before the end of the phase because of our
stopping rule. Note that all phases last for at most (1 + ε)1−p

p
lnn rounds

(each of the � busy phases has constant length). Hence, in those phases
where only the newly informed nodes of the previous phase are active, we
can guarantee that no active node will stop because of the limits set by the
death counters before the end of the phase. This applies to all but the last
phase. In this fill-up phase also nodes that were active in the previous phase
remain active. However, since the last two phases combined do not last for
more than (1 + ε)1−p

p
lnn rounds, we can again be sure that no active node

will stop prematurely.
We now give the proof for Theorem 10.0.4 using Lemmas 10.2.1-10.2.4.

Proof of Theorem 10.0.4. Let k := 1+ε

ε

�
2− log1+p p

�
. Furthermore, let

ζ := min

�
1
k
(2e)

− 2k−1

p3(1+p)k−3−k−1
,

pε

3·48

�
and ζ

� := 2−k
ζ.
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We start the rumor spreading protocol from Algorithm 2 with security
parameter p and with one initially informed node. After t1 := 1

3ε lnn rounds,
we have by Lemma 10.2.1, with probability 1−O(n−pε/32),

(14ε lnn)
2 ≥ |Nt1 | ≥ ( 1

12pε lnn)
2

and

|It1 | ≤ 1 + 1
4ε lnn+ |Nt1 | = (1 + o(1))|Nt1 | ≤ ζ

�
n, (10.2.1)

where the last inequality holds for sufficiently large n. Furthermore, we have

2k − 1

p(1 + p)k−2 − 1
|Nt1 | ≥

2k − 1

2k−2 − 1
|Nt1 | ≥ 4|Nt1 | ≥ (1 + o(1))|Nt1 | ≥ |It1 |.

(10.2.2)

So we can apply Lemma 10.2.2 with ε� := ε

12 . This gives us an � ≤
(1+ε) log1+p n

k
such that if we set t2 := t1 + �k, then for any c > 0, we have

with probability 1− n−c,

ζ
�
n ≤ |It2 | ≤ ζn and |It2 | ≤

2k − 1

p(1 + p)k−2 − 1
|Nt2 |.

Thus, with probability 1 − n−c, the preconditions of Lemma 10.2.3 are ful-
filled. Therefore, if we set S := 1− 2k ln(ζ)

(1−ζ�)ζ�2 and t3 := t2 + S, we get |Nt3 | ≥
(p− 3ζ)n with probability 1−n−c. We can consequently apply Lemma 10.2.4
with η := 3ζ. We conclude that after log1−p(ε/13)+ logp(ε/12) more rounds
the largest uninformed interval of nodes is of length at most (1+ 2

3ε)
1−p

p
lnn

with probability 1 − n
− 1

8 ε. Hence, we need at most (1 + 2
3ε)

1−p

p
lnn more

rounds until all nodes are informed.
Overall, we perform at most

1
3ε ln(n) + (1 + ε) log1+p n+ S + log1−p(ε/13)

+ logp(ε/12) + (1 + 2
3ε)

1−p

p
lnn

≤ (1 + ε)
�
1−p

p
lnn+ log1+p n

�

rounds in our delayed quasirandom rumor spreading protocol with message
success probability p.

The overall failure probability is at most

O(n−pε/32) + n
−c + e

−Ω(n) + n
−ε/3 ≤ O(n−pε/32).

In the next sections, we give the missing proofs for all phases.

101



10.2.2 Start-up Phases I and II - Proof of Lemma 10.2.1

The first phase is exceptional in the sense that it is neither a lazy nor a busy
phase. In particular, we assume that only one node is active in each round,
namely the most recently informed node. The second phase is a lazy phase.

Lemma 10.2.5. Let ε ∈ (0, 1). After 1
4ε lnn rounds, at least 1

8pε lnn nodes
are informed with probability 1 − n−pε/32. These nodes are distributed uni-
formly at random. Furthermore, in total, at most 1 + 1

4ε lnn nodes will be
informed by the end of this phase.

Proof. Each informed node that has not called a properly working node yet
has a probability of at least p to call such a properly working node in each
round. Once this happens, we delay the node till the next phase and let the
newly informed node continue the process. In this sense, the node gives the
baton to the next informed node. Since we start with one informed node,
there will always be just one node trying to inform a properly working node.
It follows that we can bound the number of informed nodes at the end of the
phase by 1+ 1

4ε lnn. If, during the process, a node calls an already informed
node, we consider the whole phase a failure. So clearly, if no failure occurs,
no active node will stop informing before the end of the phase. Note that
the probability of such a failure is at most (14ε lnn)

2/n. Assume now that
no such failure occurs. Then we have,

E[|It1 |] ≥ 1
4pε lnn. (10.2.3)

By Chernoff’s bound, we get

P(|It1 | < 1
8pε lnn) < exp(−E[|It1 |]/8)

≤ n
−pε/32

.

Hence, by a simple union, we conclude that with probability at least 1 −
(14ε lnn)

2/n−n−pε/32 = 1−O(n−pε/32) we will have informed at least 1
8pε lnn

nodes.
Note that apart from the initial node all nodes were informed as a result

of a random call. Hence, the nodes are distributed uniformly at random
among the properly working nodes.

Lemma 10.2.6. Let ε > 0. Assume that at time t, we have |It| ≤ 1 +
1
4ε lnn, out of which at least 1

4pε lnn nodes are distributed uniformly at
random among all properly working nodes. Then, after one lazy phase of
length 1

12ε lnn, at least ( 1
12εp lnn)

2 nodes are newly informed with probabil-
ity 1−O(n−1+ε).

Proof. The active nodes throughout this lazy phase are the nodes It. We or-
der the nodes in It arbitrarily. For i ∈ {1, . . . , |It|}, let Xi ∈ {0, . . . , 1

12ε lnn}
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be the random variable denoting the number of properly working nodes in
the interval of length 1

12ε lnn following the i-th node. Since the nodes in It

are distributed uniformly at random among all properly working nodes, we
have

E[Xi] ≥ 1
12pε lnn.

Let X =
�|It|

i=1Xi. Note that, if we assume that no collisions occur, no active
node will stop informing before the end of the phase and no node will restart
its informing process because of a collision. In this case, X is the number
of informed nodes at the end of the phase. By linearity of expectation, we
have

E(X) =

|It|�

i=1

E(Xi) ≥ (14pε lnn)(
1
12pε lnn).

Since the Xi’s are independently distributed and bounded by 1
12ε lnn, we

can apply Hoeffding’s inequality.

P[X < ( 1
12pε lnn)

2] ≤ P[X < (1− 2
3)E(X)]

≤ exp
�−2(23 E(X))2

( 1
12ε lnn)

2

�

≤ exp
�
−(pε lnn)2/18

�

≤ n
−Ω(lnn)

.

We bound the probability of a collision as follows. By our assumption, there
are at least pn properly working nodes. For every node i ∈ It, the probabil-
ity that it calls an informed node is at most 2(|It| − 1) 1

12ε ln(n)/(pn) ≤
(ε lnn)2/(pn). So, by a simple union bound, the probability of a colli-
sion is at most |It|(ε lnn)2/(pn) ≤ (ε lnn)3/(pn) ≤ n−1+ε. In total, the
probability that at least ( 1

12pε lnn)
2 nodes are newly informed is at least

1− n−Ω(lnn) − n−1+ε ≤ 1−O(n−1+ε).
Since we are considering a lazy phase, we can bound the total number of

informed nodes at the end of the phase by |It|(1+ 1
12ε lnn) ≤ (14ε lnn)

2.

Lemma 10.2.1 now follows immediately from combining Lemma 10.2.5
and Lemma 10.2.6. Note that since the second phase is a lazy phase, we
have |It1 | ≤ 1 + 1

4ε lnn + |Nt1 |, where t1 is the time step at the end of the
start-up phase.

10.2.3 Harvesting Phase - Proof of Lemma 10.2.3

Now that we have a small constant fraction of newly informed nodes, a lazy
phase of a constant number of rounds suffices to yield a large fraction of newly
informed nodes. We want to bound the probability that nodes in Nt2 fail
to inform an uninformed node from above. Remember that newly informed
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nodes keep making random calls until they contact a properly working node.
Thus, the probability of calling an uninformed node depends on the position
of these failed nodes. To simplify the analysis, we will therefore only work
with newly informed nodes that call an informed node in the first round.
These nodes then proceed just as in the basic quasirandom protocol with
restarts. In particular, they will call all nodes with the same probability.

We perform one lazy phase of S rounds starting at time t2. Let N �
t2
⊆ Nt2

denote those nodes that call an already informed node in the first round of
the phase. We have

E(|N �
t2
|) ≥ ζ

�|Nt2 | ≥ ζ
� p(1 + p)k−2 − 1

2k − 1
|It2 | ≥ ζ

�2 p(1 + p)k−2 − 1

2k − 1
n.

Since each node in Nt2 makes a random call in the first round independently
of other nodes, we can apply Chernoff’s inequality. We have

P
�
|N �

t2
| < (1− ζ

�)ζ �2
p(1 + p)k−2 − 1

2k − 1
n
�
= e

−Ω(n)
.

In the following we assume that |N �
t2
| ≥ (1− ζ �)ζ �2 p(1+p)k−2−1

2k−1
n. The nodes

in N �
t2

now proceed according to the basic quasirandom model with restarts,
i.e., they choose a random starting point (regardless of whether it is a failed
or properly working node) and try to inform new nodes from that point on.

Let v ∈ V \It2 . If there exists an informed node in [v − S, v), then v will
be informed in this phase with probability 1. Otherwise, even if we assume
that the nodes in N �

t2
stop informing immediately after calling an informed

node, the probability that a node in N �
t2

does not call v is 1 − S−1
n

. Thus,
we have

P(no node in N
�
t2

calls v in this phase) ≤
�
1− S − 1

n

�|N �
t2
|

≤ exp
�
−
(S − 1)|N �

t2
|

n

�
≤ exp

�
−(S − 1)(1− ζ �)ζ �2(p(1 + p)k−2 − 1)

2k

�
= ζ,

where the last inequality follows from S = 1− 2k ln(ζ)
(1−ζ�)ζ�2(p(1+p)k−2−1)

. We now
compute the expected number of newly informed nodes after S rounds. Let
t3 := t2 + S. We have

E (|Nt3 |) = |V \(F ∪ It2)| · P(v ∈ V \It2 is informed in this phase)
≥ (n− |F |− |It2 |) (1− ζ)

≥ (pn− ζn) (1− ζ)

≥ (p− 2ζ)n.

Using Azuma’s Inequality (see Lemma 1.2.7) we show that the prob-
ability that |Nt3 | deviates significantly from its expected value is expo-
nentially small. Number the nodes of N �

t2
from 1 to |N �

t2
|. Then for all
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i ∈ {1, . . . , |N �
t2
|}, define the random variable Xi as the set of vertices that

node i calls in this phase. We define the function f such that

f(X1, . . . , X|N �
t2
|) :=

������

|N �
t2
|�

i=1

Xi\It2

������
= |Nt3 |.

Since each node can inform at most S nodes in this phase, we have for
any set of values x1, . . . , x|N �

t2
| and x�

i
,

f(x1, . . . , xi, . . . , x|N �
t2
|)− f(x1, . . . , x

�
i, . . . , x|N �

t2
|) ≤ S.

Thus, we can apply Azuma’s inequality to bound the probability that we
inform less than (p− 3ζ)n vertices in this phase. We have

P (|Nt3 | < (p− 3ζ)n) = P (|Nt3 | < (p− 2ζ)n− ζn)

≤ P (|Nt3 − E(|Nt3 |)| ≥ ζn)

≤ 2 exp



− 2ζ2n2

�|N �
t2
|

i=1 S2





≤ 2 exp

�
−2ζ2n2

ζnS2

�

= e
−Ω(n)

.

10.2.4 Shooting Phase - Proof of Lemma 10.2.4

We analyse this phase as a lazy phase. Similar to the preceding phase, we will
first perform a constant number of rounds to get a large fraction of the newly
informed nodes to call an already informed node. If more than ηn nodes call
an uninformed properly working node during these rounds at the beginning
of the phase, then all properly working nodes must have been informed and
we are finished. Otherwise there must be at least (p−2η)n nodes in Nt3 that
did not call an uninformed properly working node in these rounds. These
nodes have a probability of p to call a properly working node in every round.
By a similar argument as in the preceding phase, we can show that a large
fraction of these nodes will call an informed node and then proceed as in the
quasirandom model with restarts. Let N �

t3
⊆ Nt3 denote those nodes that

call an informed node in the first log1−p(ε/13) rounds of the phase but do not
call an uninformed node. For each node i ∈ Nt3 independently, conditioned
on the event that i does not call an uninformed node in these rounds, the
probability that i does not call an informed node is (1−p)log1−p(ε/13) = ε/13.

By Chernoff’s bound, we get

P(|N �
t3
| < (1− ε

12)(p− 2η)n) = e
−Ω(n)

. (10.2.4)
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So assume that |N �
t3
| > (1− ε

12)(p− 2η)n.
We now bound from below the number of random calls made by nodes

after they have called an informed node in this phase. Since a random call
is always made after a node contacts an informed node, we get a bound by
considering the number of calls to informed nodes. For that, we first bound
the number of calls to properly working nodes. Since there can be at most
ηn calls to uninformed nodes, we then get a bound for the random calls. For
the lower bound, we do not count any calls made by a node in N �

t3
after it has

called a failed node. Thus, we consider the following random experiment. A
node in N �

t3
keeps making random calls until it calls a failed node or until it

has made R calls. Let Ai be the random variable denoting this number of
random calls. Note that Ai is a geometrically distributed random variable
with ‘success probability’ 1− p and an upper bound of R, i.e.,

P(Ai = k) =






pk−1(1− p) if k ≤ R− 1

pk−1 if k = R

0 else.
(10.2.5)

Let A =
�

i∈N �
t3
Ai. Note that A is a lower bound for the number of random

calls made in this phase since a node makes at most R random calls according
to our stopping rule. We have

E[Ai] = Rp
R−1 +

�

1≤k≤R−1

kp
k−1(1− p)

= Rp
R−1 + (1− p)

� �

1≤k≤R−1

p
k
��

= Rp
R−1 + (1− p)

�1− pR

1− p
− 1

��

= Rp
R−1 + (1− p)

�1− pR

1− p
− 1

��

= Rp
R−1 +

(R− 1)pR −RpR−1 + 1

1− p

=
RpR−1 −RpR + (R− 1)pR −RpR−1 + 1

1− p

=
1− pR

1− p

≥ (1− ε/12)(1− p)−1
,

where the last equality follows from our choice R = logp(ε/12). Since the
Ai’s are independent random variables and bounded by R, we can apply
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Hoeffding’s bound on the sum A. In particular, we get

P(A < (1− ε/12)|N �
t3
|(1− p)−1(1− ε/12))

< exp

�
−
2
�
ε/12|N �

t3
|(1− p)−1(1− ε/12)

�2

|N �
t3
|R2

�

< exp

�
−
2ε2|N �

t3
|(1− ε/12)2

144(1− p)2R2

�

< e
−Ω(n)

,

where the last inequality follows from our assumption that |N �
t3
| > (1 −

ε/12)(p − 2η)n. Since there are at most ηn nodes in N �
t3

that call an unin-
formed node, we conclude that we have at least

(1− ε/12)|N �
t3
|(1− p)−1(1− ε/12)− ηn

≥ (1− ε/4)(p− 4η)(1− p)−1
n

≥ (1− ε/4)(p− εp/12)(1− p)−1
n since η ≤ εp/48,

random calls in this phase. Let I be an interval of length (1 + 2
3ε)

1−p

p
ln(n).

Then the probability that no node in I becomes informed in this phase by
these random calls is at most

�
1−

(1 + 2
3ε)(1− p) lnn

pn

�(1−ε/4)(p−εp/12)n(1−p)−1

< exp
�
−(1 + 2

3ε)(1− ε/4)(1− ε/12) lnn
�

< n
−1−ε/3

.

Hence, by a union bound argument, it follows that there is no completely un-
informed interval of length (1+ 2

3ε)
1−p

p
lnn after this phase with probabililty

at least 1− n−ε/3.

10.2.5 The Fill-up Phase

Since by the previous section the largest free interval has length at most
(1 + 2

3ε)
1−p

p
lnn, we also need at most that many rounds until all nodes are

informed.
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