
Discretization of Backward
Stochastic Volterra Integral

Equations

Dissertation
zur Erlangung des Grades

des Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

von

Stanislav Pokalyuk

Saarbrücken

2012



Tag des Kolloquiums: 18.06.2012

Dekan: Univ.-Prof. Dr. Mark Groves

Gutachter: Univ.-Prof. Dr. Christian Bender

Univ.-Prof. Dr. Ralf Korn

Vorsitzender: Univ.-Prof. Dr. Martin Fuchs

Akademischer Beisitzer : Dr. Darya Apushkinskaya

ii



Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.
Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind
unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im
In- noch im Ausland in gleicher oder ähnlicher Form in einem Verfahren zur
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Abstract

The aim of this thesis is to generalize a numerical method, presented in [18], to
solve the stochastic differential equation of Itô’s type of the form

Yt = f(W ; t)−
T∫
t

h(s, Ys)ds−
T∫
t

Zt,sdWs, t ∈ [0, T ], (1)

defined on a filtered probability space (Ω,F,F,P), where W is a d-dimensional
Brownian motion and F the corresponding augmented Brownian filtration. Equa-
tion (1) is called a backward stochastic Volterra integral equation (BSVIE, for
short) firstly introduced in general form in [33], f and h are called the free term
and the generator, respectively, of (1).

We show that under certain regularity conditions the solution of (1) can be
approximated by the sequence of discrete BSVIEs

Y
(n)
ti = f(W (n); ti)−

n−1∑
j=i

h(tj, Y
(n)
tj )∆tj+1 −

n−1∑
j=i

Z
(n)
ti,tj∆W

(n)
tj+1

(2)

with solutions (Y (n), Z(n))n∈N. In particular, we will prove that the sequence of
discrete solutions (Y (n))n∈N converges weakly to the continuous process Y in the
Skorokhod topology. As a main tool for the proof we relate the M-solution of (1)
to a non-standard system of quasilinear partial differential equations of parabolic
type.

Finally, we illustrate the convergence result by a numerical example.
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Zusammenfassung

Das Ziel dieser Arbeit ist ein numerisches Verfahren, eingeführt in [18], zu verall-
gemeinern, um stochastische Differentialgleichungen vom Itô Typ, definiert auf
einem filtrierten Wahrscheinlichkeitsraum (Ω,F,F,P), von der Form

Yt = f(W ; t)−
T∫
t

h(s, Ys)ds−
T∫
t

Zt,sdWs, t ∈ [0, T ], (3)

zu lösen, wobei W eine d-dimensionale Brownsche Bewegung und F die zugehörige
erweiterte Brownsche Filtration ist. Gleichung (3) nennt man rückwärts stochastis-
che Volterra Integralgleichung (kurz BSVIE), die in allgemeiner Form in [33]
definiert wurde. Dabei nennt man f und h den freien Term, bzw., den Generator
von (3).

Wir zeigen, dass unter gewissen Glattheitsbedingungen die Lösung von (3)
durch eine Folge von diskreten BSVIEs

Y
(n)
ti = f(W (n); ti)−

n−1∑
j=i

h(tj, Y
(n)
tj )∆tj+1 −

n−1∑
j=i

Z
(n)
ti,tj∆W

(n)
tj+1

(4)

mit Lösungen (Y (n), Z(n))n∈N approximiert werden kann. Insbesondere, zeigen
wir, dass die Folge von diskreten Lösungen (Y (n))n∈N schwach gegen den steti-
gen Prozess Y in der Skorokhod Topologie konvergiert. Für den Beweis wird es
wichtig sein, dass wir die M-Lösung von (3) mit quasilinearen partiellen Differ-
entialgleichungen vom parabolischem Typ verknüpfen können.

Zum Schluß werden wir das Konvergenzresultat noch mit einem numerischen
Beispiel veranschaulichen.
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Introduction

In the theory of stochastic differential equations (SDEs, for short) numerical
methods, allowing to solve these equations, play an important role, because in
most cases it is impossible to obtain explicit solutions for SDEs.

In this thesis we generalize a numerical method originally designed for back-
ward stochastic differential equations (BSDEs, for short) to solve backward stochas-
tic Volterra integral equations (BSVIE, for short) of the form

Yt = f(W ; t)−
T∫
t

h(s, Ys)ds−
T∫
t

Zt,sdWs, t ∈ [0, T ]. (5)

Remark that the BSVIE (5) differs similar as a BSDE from a forward SDE in the
following main features: instead of an initial condition, it has a terminal condition
started at time T (namely, YT = f(W ;T )), and the solution of (5) is a pair of
processes (Y, Z).

The theory of BSDEs and BSVIEs is a relatively modern part of the theory of
stochastic differential equations. Intensive research on BSDEs started in the 90s
when the well-posedness results were established (see [22]) and the connection
between BSDEs and partial differential equations (PDEs, for short) – in fact a
generalization of the well-known Feynman-Kac formula to quasilinear PDEs –
was understood (see [23], [24]).

In mathematical finance the theory of BSDEs plays an important role, when
questions are focused around pricing and optimal hedging problems for contingent
claims in models of financial markets; see for general information [10]. Further,
BSDEs can also be used to solve utility maximization problems with backward
stochastic dynamics or to describe dynamic risk measures (see [10, 25, 26, 29]),
etc.

If one considers a family of BSDEs parameterized in time, one arrives at the
so called backward stochastic Volterra integral equation. In the general form
these equations cannot be reduced to BSDEs. We will introduce these equations
in Subsection 1.2.2.

The first works dedicated to stochastic Volterra integral equations were pre-
sented by Berger and Mizel in 1980 ([4]). In 2002, Lin introduced a class of

xv



INTRODUCTION

nonlinear BSVIEs in [17], where he proved the existence and uniqueness of the
solutions to these BSVIEs under uniform Lipschitz conditions on the generator.

Thereafter, Yong ([33]) formulated BSVIEs in a generalized form and de-
scribed their connections to stochastic optimal control theory. In [35] he proposed
the well-posedness of adapted M-solutions for these types of BSVIEs (see Theorem
1.2.9) and mentioned in addition about applications of BSVIEs in mathematical
finance and risk management (see also [30, 31, 34]).

There are several attempts to provide numercial methods to solve BSDEs,
which we can basically be divided into two types:

The first type is based on a four step scheme to solve general forward-backward
stochastic differential equations via solutions of quasilinear parabolic PDEs pro-
posed in 1994 by Ma, Protter and Yong ([19]). In 1996 Douglas, Ma and Protter
([8]) and in 2006 Milstein and Tretyakov ([20]) developed two numerical methods
using this scheme by approximating numerically the solutions of the correspond-
ing parabolic PDEs.

Bally ([2]) and Chevance ([7]) developed another approach for a numerical
solution based on a random time discretization which requires strong regularity
conditions. In the same spirit are the papers by Ma, Protter, San Martin, Torres
([18]), and by Briand, Delyon and Memin ([6]), where, in addition, the Brownian
motion is replaced by a binary random walk.

So far numerical methods for BSVIEs are missing. Here, we want to close
this lack and present an approximative scheme for the solutions of BSVIEs which
generalizes the results from [18]. Actually, we approximate the solution of (5) by
the sequence of discrete BSVIEs (DBSVIEs, for short)

Y
(n)
ti = f(W (n); ti)−

n−1∑
j=i

h(tj, Y
(n)
tj )∆tj+1 −

n−1∑
j=i

Z
(n)
ti,tj∆W

(n)
tj+1

(6)

with solutions (Y (n), Z(n))n∈N. In particular, we will show that the sequence
of discrete solutions (Y (n))n∈N converges weakly to the continuous process Y
in the Skorokhod topology. As a main argument we use that certain systems
of quasilinear PDEs of parabolic type, to which the M-solution of (5) can be
connected, are well approached by its discrete analogs under sufficient regularity
constraints.

The rest of the thesis we organize as follows:
Chapter 1 is an introduction to the theory of stochastic analysis needed for

our research problem (Section 1.1). Besides, in this chapter we present the well-
posedness results for BSDEs and BSVIEs (Section 1.2), and formulate the main
result of this thesis (Section 1.3).

In Chapter 2 it is shown Lemma 1.3.3, in which we construct implicit equations
for the discrete process Z(n), and proven the Main Convergence Theorem 1.3.6,

xvi



INTRODUCTION

stating the weak convergence of the sequence of discrete solutions (Y (n))n∈N to
the continuous process Y in the Skorokhod topology. The proof of Theorem
1.3.6 is divided into five sections. In the second and third section of Chapter
2 we show that the proposed DBSVIEs (6) are well-posed and give an estimate
for the difference of two solutions of BSVIEs (DBSVIEs, resp.) depending on
the generator and free term. In the fourth section we prove the tightness of the
sequence (Y (n))n∈N. In the fifth section we show the weak convergence of the
sequence (Y (n))n∈N to Y , if f does not depend on the whole trajectory of the
Brownian motion but only on finitely many points and both, the generator and
free term, are smooth. This convergence relies on the fact, that in this case the
solution (Y, Z) can be constructed via solutions of systems of PDEs of parabolic
type. Together with some lemmas from Section 2.3 we can show the convergence
in the general case in Section 2.6.

In Chapter 3 we illustrate the numerical approximation with an example.
Here we also obtain the speed of convergence of our algorithm.

In the final Chapter 4 we summarize the results of this thesis and state some
open questions for further research.
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Chapter 1

Preliminaries

In this chapter we briefly introduce the main concepts from stochastic analysis
which are the basement for our research problem in this thesis. In Section 1.1 we
present some well-known definitions and basic results from the theory of probabil-
ity. Section 1.2 is devoted to the well-posedness problems for backward stochastic
differential equations (BSDEs, for short) and backward stochastic Volterra inte-
gral equations (BSVIE, for short), which are the main research object of this
work. At last, in Section 1.3 we formulate the main result of this thesis.

1.1 Basic Notations

Let

d, k, ki, l, p, q, qi ∈ N = {1, 2, . . .}, i = 1, . . . p,
T ∈ (0,∞),

R, S, R̃, S̃ ∈ [0, T ], R < S, R̃ < S̃,
r ∈ [1,∞],
α ∈ (0, 1)

be some variables.

Function spaces

We use the following standard notations for the function spaces:

R+ the space of all non-negative real numbers.

Rk k-dimensional real space with the Euclidean norm
||x||2 :=

√
x∗x and inner product 〈x,y〉 := x∗y,

where [·]∗ denotes matrix/vektor transposition,
x := (x1, . . . , xk)

∗, y := (y1, . . . , yk)
∗ ∈ Rk.

1



1. PRELIMINARIES

Rk×d the Hilbert space of all (k × d) real matrices with
the Euclidean norm ||A||2 :=

√
tr(AA∗) and inner

product 〈A,B〉 := tr(AB∗), A,B ∈ Rk×d.

C([R, S];Rk) the space of all continuous functions ϕ : [R, S]→
Rk with the norm ||ϕ||∞ := sup

t∈[R,S]

||ϕ(t)||2 .

C∞(X1 × . . .×Xp;Rk) the space of all smooth functions ϕ : X1 × . . . ×
Xp → Rk, such that Xi = R or Xi = [R, S], i =
1, . . . , p.

C∞b (X1 × . . .×Xp;Rk) the space of those ϕ ∈ C∞(X1× . . .×Xp;Rk) such
that all derivatives are uniformly bounded.

Probability spaces and random variables

Let (Ω,F,P) be a probability space, where Ω is a nonempty set of elementary
events ω, F ⊆ 2Ω (2Ω is the set of all subsets in Ω) is a σ-field on Ω and the
map P : F → [0, 1] is a probability measure on the measurable space (Ω,F). We
assume that (Ω,F,P) is complete, i.e. if A ∈ F, P[A] = 0 and B ⊂ A then it
holds that also B ∈ F.

Any A ∈ F is called an event. We say that an event A holds P-a.s. (a.s. =
almost surely) if P[A] = 1; if P[A] = 0 then A is called P-null event. Denote by
σ(A) the smallest σ-field containing A (σ-field generated by A), for any A ⊆ 2Ω.

Considering stochastic processes we need to specify on the probability space
a filtration F := (Ft)t∈[0,T ], i.e. (Ft)t∈[0,T ] is a family of sub-σ-fields Ft ⊆ F with
Ft1 ⊆ Ft2 , ∀ 0 ≤ t1 ≤ t2 ≤ T . Under Ft one understands the collection of events
observed up to the moment t. We say that F is right continuous if

Ft =
⋂
s>t

Fs

for all t ∈ [0, T ]. We call F complete if F0 contains all the P-null events in F.
Note that a filtration F can be made complete by augmentation procedure, i.e.
denoting by

N := {A ∈ F : P[A] = 0}

the set of P-null events in F, we define F̂t := σ(Ft∪N) and F̂ := (F̂t)t∈[0,T ]. Then

it holds that (Ω,F, F̂,P) is a complete filtered probability space. We call F̂ the
augmented filtration of F.
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1.1 Basic Notations

Throughout this work we consider the filtered probability space (Ω,F,F,P)
satisfying the usual conditions, that is F is complete and right continuous.

For a topological space (U,T) the smallest σ-field containing all open sets in
T is called the Borel σ-field of (U,T) and denoted by BT(U), or shortly B(U).

Further, let (Ω,F), (Ω′,F′) be two measurable spaces. For a (F,F′)-measurable
map X : Ω→ Ω′ we define by

σ(X) := X−1(F′) := {X−1(A′) : A′ ∈ F′},

the σ-field generated by random element X. If (Ω′,F′) = (Rk,B(Rk)) we say that
X is F-measurable and X is called a (k-dimensional) random variable.

Similarly, for a family of random elements (Xi)i∈I from (Ω,F) to (Ω′,F′) we
define

σ(Xi : i ∈ I) := σ

(⋃
i∈I

σ(Xi)

)
= σ

(⋃
i∈I

X−1
i (F′)

)
as the smallest sub-σ-field of F under which all Xi are (F,F′)-measurable, i ∈ I.

Next, denote by PX on (Ω′,F′) the distribution of the random variable X and
by E[X] the expectation relative to the measure P.

Taking a sub-σ-field G ⊆ F and integrable random variable X, i.e. with
E[|Xi|] <∞, i = 1, . . . , k, we denote by E[X|G] the conditional expectation of X
given G.

Stochastic processes

We say that a family of random variables (Xt)t∈[0,T ] from (Ω,F,P) to Rk is a
stochastic process on (Ω,F,F,P). We will write (Xt)t∈[0,T ], X(·), or sometimes X
to denote a stochastic process.

A stochastic process (Xt)t∈[0,T ] is said to be F-adapted if the mapping ω 7→
Xt(ω) is an Ft-measurable random variable for all t ∈ [0, T ]. (Xt)t∈[0,T ] is
called F-progressively measurable if the mapping (ω, s) 7→ Xs(ω) is Ft⊗B([0, t])-
measurable for t ∈ [0, T ] and s ∈ [0, t].

The filtration F = (Ft)t∈[0,T ] is called natural if it is generated by a stochastic
process X, i.e. Ft = σ(Xs : s ∈ [0, t]).

For any ω ∈ Ω, the map t 7→ Xt(ω) is called a sample path of the process
X. One says that X has càdlàg paths if P-a.s. the path t 7→ Xt(ω) is right-
continuous in t ∈ [0, T ] and there exist left limits in t > 0. The space of all
functions defined on [0, T ] with càdlàg paths we will denote by D([0, T ];Rk), also
called the Skorokhod space (see [5] for a more general construction).

An R-valued stochastic process (Xt)t∈[0,T ] is called a martingale with respect
to the filtration F (shortly, F-martingale), if it is integrable for each t ∈ [0, T ], i.e.

3



1. PRELIMINARIES

E[|Xt|] <∞, F-adapted with P-almost all càdlàg paths, and it holds E[Xt|Fs] =
Xs P-a.s. for every s ∈ [0, t].

Let (Ω,F,F,P) satisfy the usual conditions. An F-adapted stochastic process
(Xt)t∈[0,T ] with càdlàg paths is called a semimartingale, if it can be represented
as a sum

Xt = X0 +Mt + At,

where (Mt)t∈[0,T ] is an F-martingale, (At)t∈[0,T ] is an F-adapted process with paths
of finite variation and M0 = A0 = 0.

If (Xt)t∈[0,T ] is a Rk-valued process in the above definitions the conditions
must hold for every coordinate.

Further, we define some important spaces:

LrFS(Ω;Rk) the space of FS-measurable random variables X :
Ω→ Rk such that E[||X||r2] <∞.

L2
F(R, S;Rk) the space of all F-adapted processes Y : Ω ×

[R, S] → Rk such that

∫ S

R

||Y (·, t)||22dt < ∞, P-

a.s.

L2
F(C([R, S]);Rk) the space of all F-adapted continuous pro-

cesses Y : Ω × [R, S] → Rk such that

E
[

sup
t∈[R,S]

||Y (·, t)||22
]
<∞.

L2
FS

(R, S;Rk) the space of FS ⊗ B([R, S])-measurable pro-
cesses Y : Ω × [R, S] → Rk such that

E
[∫ S

R

||Y (·, t)||22dt
]
<∞.

L2
FS

(C([R, S];Rl)× [R, S];Rk) the space of B(C([R, S];Rl)) ⊗ B([R, S])-
measurable processes f : C([R, S];Rl)× [R, S] →
Rk such that f(W (·); t) is FS-measurable for all

t ∈ [R, S] and it holds E
[∫ S

R

||f(W (·); t)||22dt
]
<

∞ with B(C([R, S];Rl)) the Borel σ-field induced
by the topology, generated by the || · ||∞-norm on
C([R, S];Rl).

4



1.1 Basic Notations

L2
F(R, S;Rk) the space of FS ⊗ B([R, S])-measurable processes

Y : Ω × [R, S] → Rk such that Y is F-adapted

and it holds E
[∫ S

R

||Y (·, t)||22dt
]
<∞. We define

||Y ||L2
F(R,S;Rk) :=

(
E
[∫ S

R

||Y (·, t)||22dt
]) 1

2

.

M2
F(R, S;Rk) the space of those Y ∈ L2

F(R, S;Rk) such that Y
is a martingale with respect to the filtration F and
it holds Y (·, 0) = 0, P-a.s.

L2(R, S;L2
F(R̃, S̃;Rk×d)) the space of all processes Z : Ω× [R, S]× [R̃, S̃]→

Rk×d such that Z(·, t, ·) ∈ L2
F(R̃, S̃;Rk×d) for a.e.

t ∈ [R, S] and E
[∫ S

R

∫ S̃

R̃

||Z(·, t, s)||22dsdt
]

<

∞. We define ||Z||L2(R,S;L2
F(R̃,S̃;Rk×d)) :=(

E
[∫ S

R

∫ S̃

R̃

||Z(·, t, s)||22dsdt
]) 1

2

.

L2,∞
F (R, S;Rk) the space of FS ⊗ B([R, S])-measurable processes

Y : Ω × [R, S] → Rk such that Y is F-adapted
and it holds E

[
sup
t∈[R,S]

||Y (·, t)||22
]
< ∞. We define

||Y ||L2,∞
F (R,S;Rk) :=

(
E
[

sup
t∈[R,S]

||Y (·, t)||22
]) 1

2

.

Let on (Ω,F,F,P) the filtration F be the augmented Brownian filtration and
Wt be an d-dimensional Brownian motion. A k-dimensional stochastic process
Xt such that X0 is F0-measurable with bt ∈ L2

F(0, T ;Rk) and σt = (σijt ) ∈
L2

F(0, T ;Rk×d) of a form

Xt = X0 +

t∫
0

bsds+

t∫
0

σsdWs, t ∈ [0, T ], P-a.s., (1.1)

is called an Itô process , where

Xt :=

 X1
t

...
Xk
t

 , Wt :=

 W 1
t

...
W d
t

 ,

t∫
0

σsdWs :=


∑d

j=1

t∫
0

σ1j
s dW

j
s

...∑d
j=1

t∫
0

σkjs dW
j
s



5



1. PRELIMINARIES

and
∫ t

0
σkjs dW

j
s is an Itô integral. Note that we always deal with an Itô integral;

see details in construction and basic properties of Itô integrals, for instance, in
[12].

Martingale representation theorem

Suppose that for some fixed terminal time T > 0 a standard d-dimensional
Brownian motion Wt, t ∈ [0, T ], is defined on (Ω,F,F,P), where we assume that
F is the augmented Brownian filtration. Then the following theorem holds:

Theorem 1.1.1. (Martingale representation theorem) Assume that Xt ∈
M2

F(0, T ;Rk). Then there exists a unique process ϕt ∈ L2
F(0, T ;Rd) such that

Xt = X0 +

t∫
0

〈ϕs, dWs〉, ∀t ∈ [0, T ], P-a.s.

A proof of the martingale representation theorem can be found, for example,
in [15], Chapter 3, Theorem 4.15.

Martingale representation theorem in discrete time

There is an analogous version of Theorem 1.1.1 for the discrete-time martin-
gales.

Given a discretization 0 = t0 < t1 < . . . < tn = T of the time interval
[0, T ] with time-step T

n
(ti := iT

n
, i = 0, . . . , n, n ∈ N), replace the d-dimensional

Brownian motion Ws in Theorem 1.1.1 by a simple symmetric random walk W
(n)
s ,

whose increments are
√
T/n and −

√
T/n; i.e. if the number ns/T is an integer

W (n)
s :=

 W
1,(n)
s

...

W
d,(n)
s

 :=

√
T

n


∑ns/T

j=1 ε1
j

...∑ns/T
j=1 εdj


{εdj} is an i.i.d. {-1,1}-symmetric sequence, and if ns/T is not an integer then

W
(n)
s is defined by linear interpolation between the values of W

(n)
s′ and W

(n)
s′′ for

which ns′/T and ns′′/T are integers and the nearest points to the left and right
of ns/T .

By F(n) := (F
(n)
ti )i=0,...,n we denote the natural filtration of W (n), where F

(n)
ti :=

σ(W
(n)
ti : i = 0, . . . , n).

Then it holds:
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Theorem 1.1.2. (Discrete martingale representation theorem) Assume
that (Xti)i=0,...,n is a martingale in L2

F(n)(t0, tn;Rk) (see definition in Section 1.3).

Then there exists a predictable sequence (ϕti)i=1,...,n (that is ϕti are (F
(n)
ti−1

)i=1,...,n-

measurable) in L2
F(n)(t1, tn;Rd) such that

Xti = Xt0 +
i∑

j=1

〈ϕtj ,∆W
(n)
tj 〉, i = 1, . . . , n,

where ∆W
(n)
tj := W

(n)
tj −W

(n)
tj−1

with ∆W
J,(n)
tj := W

J,(n)
tj −W J,(n)

tj−1
=
√

T
n
εJj for all

J ∈ {1, . . . , d}.

A proof of the discrete martingale representation theorem can be found, for
example, in [27].

Itô’s formula

Here, we would like to recall one of the most important tools in stochastic
calculus called Itô’s formula. In our case Itô’s formula allows to see the connection
between the solutions of one special type of stochastic differential equation and
the solutions of the system of partial differential equations.

More precisely, the formulation of Itô’s formula (for simplicity, one dimen-
sional) is the following:

Theorem 1.1.3. (Itô’s formula) Let F (x, t) be twice continuously differentiable
in x, and continuously differentiable in t and Xt be an Itô process. Then F (Xt, t)
is also an Itô process and it holds

F (Xt, t) = F (X0, 0)

+

t∫
0

[
∂F

∂t
(Xs, s) +

∂F

∂x
(Xs, s)bs +

1

2

∂2F

∂x2
(Xs, s)σ

2
s

]
ds

+

t∫
0

∂F

∂x
(Xs, s)σsdWs, ∀t ∈ [0, T ], P-a.s.

A proof of the Itô’s formula can be found in [12].
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Weak convergence

In this part we consider the convergence of sequences of processes valued
in the space of càdlàg functions D([0, T ];Rk) in

”
weak“ sense which means in

distribution.
Let (U, π) be a Polish space (that is a complete separable metric space) with

its Borel σ-field B(U). Denote by P(U) the set of all probability measures on the
measurable space (U,B(U)). A sequence (Pn)n∈N ⊆ P(U) is said to be weakly
convergent to P ∈ P(U) if for any bounded continuous function f : U → R it
holds that

lim
n→∞

∫
U

f(u)Pn(du) =

∫
U

f(u)P(du).

Weak convergence of random variables is defined from the weak convergence
of probability measures. Namely, considering a sequence X, (Xn)n∈N of U -valued
random variables, defined on the spaces (Ω,F,P), respectively, (Ωn,Fn,Pn), we
say that (Xn)n∈N converges weakly to X if (PXn)n∈N converges weakly to PX in
P(U).

A set A ⊆ P(U) is said to be relatively compact if any sequence (Pn)n∈N ⊆ A
contains a weakly convergent subsequence; A is tight if for any ε > 0 there exists
a compact set K ⊆ U so that

inf
P∈A

P[K] ≥ 1− ε.

The famous Prokhorov’s theorem (see [28]) states that the sequence (Pn)n∈N
is relatively compact in P(U) if and only if the sequence (Pn)n∈N is tight. Recall,
that we need here to be (U, π) a Polish space.

Hence, to define weak convergence of a family of measures

(Pn)n∈N ⊆ P(D([0, T ];Rk))

we have to define a metric δ on D([0, T ];Rk) so that (D([0, T ];Rk), δ) is a Polish
space.

Let Λ be the space of all continuous functions λ : [0, T ] → [0, T ] such that
they are strictly increasing with λ(0) = 0. For α, β ∈ D([0, T ];Rk) we define a
distance δ on D([0, T ];Rk) as

δ(α, β) := inf
λ∈Λ

max

{
sup
t∈[0,T ]

||λ(t)− t||2, sup
t∈[0,T ]

||α(t)− β(λ(t))||2
}
.

Using, for example, [5] or [14] it follows that (D([0, T ];Rk), δ) is a Polish space.
The topology on (D([0, T ];Rk) induced by δ is called the Skorokhod topology.
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1.2 From BSDEs to BSVIEs

1.2 From BSDEs to BSVIEs

This section gives an introduction to the theory of terminal value problems of
stochastic differential equations involving the Itô stochastic integral. In Subsec-
tion 1.2.1 we formulate the main well-posedness result for backward stochastic
differential equations and show a connection between a family of those equations
and backward stochastic Volterra integral equations. In Subsection 1.2.2 we show
the well-posedness result for backward stochastic Volterra integral equations.

1.2.1 BSDEs

In this subsection we would like to introduced BSDEs in detail and state the
well-posedness theorem for solutions of BSDEs.

Existence and uniqueness results

Let W = (Wt)t∈[0,T ] be a standard d-dimensional Brownian motion defined on
(Ω,F,F,P), where F = (Ft)t∈[0,T ] is the natural filtration of W , and T > 0 is a
fixed terminal time. Note that we use these assumptions throughout this thesis
if nothing changes.

Definition 1.2.1. For ξ : Ω → Rk and h : [0, T ] × Rk × Rk×d → Rk we call a
stochastic integral equation of Itô’s type of the form

Yt = ξ −
T∫
t

h(s, Ys, Zs)ds−
T∫
t

ZsdWs, t ∈ [0, T ], (1.2)

a backward stochastic differential equation. The function h is called the generator
and the random variable ξ the terminal condition.

Remark 1.2.2. In general the generator h can also depend on ω ∈ Ω in a non-
anticipative way, but throughout this thesis we consider only generators which are
independent on ω.

Assume that in (1.2) the terminal condition ξ and generator h satisfy the
following conditions:

(B1) ξ ∈ L2
FT

(Ω;Rk).

(B2) h is a B([0, T ]) ⊗ B(Rk) ⊗ B(Rk×d)-measurable map fulfilling a Lipschitz
condition, i.e. there exists a constant L > 0 such that for all t ∈ [0, T ],
yi ∈ Rk, zi ∈ Rk×d, i = 1, 2, it holds that

||h(t, y1, z1)− h(t, y2, z2)||2 ≤ L(||y1 − y2||2 + ||z1 − z2||2).

9
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Defining by

H2[R, S] := L2
F(C([R, S]);Rk)× L2

F(R, S;Rk×d),

we formulate the following existence and uniqueness result of the solutions (Y, Z).

Theorem 1.2.3. Let (B1) and (B2) hold. Then there exists a unique pair
(Y, Z) ∈ H2[0, T ] which solves the BSDE (1.2).

Proof. The proof is based on the martingale representation theorem 1.1.1 for the
Brownian motion (to obtain a unique F-adapted solution (Y, Z) in the linear case)
and the contraction mapping theorem (to switch over from linear BSDEs to the
unique solution (Y, Z) in the nonlinear case). For details see, for example, [9].

Note that the condition of F-adaptedness on (Y, Z) in Theorem 1.2.3 natu-
rally appears as solutions of Itô stochastic differential equations are assumed to
be F-adapted and the process Z is constructed by a martingale representation,
see also [9, 32] for some counter-examples.

Families of BSDEs

In this part we want to show a connection between backward stochastic
Volterra integral equations and a family of BSDEs parameterized in time. This is
a useful result for proving the well-posedness Theorem 1.2.9 for backward stochas-
tic Volterra integral equations in general form.

Denoting the sets

∆[R, S] := {(t, s) ∈ [R, S]2 : R ≤ s ≤ t ≤ S},

∆c[R, S] := {(t, s) ∈ [R, S]2 : R ≤ t < s ≤ S},

we introduce the following stochastic equation:

Definition 1.2.4. For f : C([R, T ];Rd) × [R, T ] → Rk and h : [S, T ] × Rk×d ×
[R, T ] → Rk we say that a family of stochastic integral equations of Itô’s type of
the form

λt,r = f(W ; t)−
T∫
r

h(s, µt,s; t)ds−
T∫
r

µt,sdWs, r ∈ [S, T ], t ∈ [R, T ], (1.3)

is a family of BSDEs on [S, T ] parameterized by t ∈ [R, T ], or a family of stochas-
tic Fredholm integral equations (SFIEs, for short) on [R, T ] parameterized by
r ∈ [S, T ].

10



1.2 From BSDEs to BSVIEs

In (1.3) we are looking for processes (λ, µ) such that λt,· and µt,· are F-adapted
for almost all t ∈ [R, T ] under the following assumptions for the free term f and
generator h:

(F1) f ∈ L2
FT

(C([R, T ];Rd)× [R, T ];Rk).

(F2) h is a B([S, T ])⊗B(Rk×d)⊗B([R, T ])-measurable map fulfilling a Lipschitz
condition, i.e. there exists a constant L > 0 such that for all (t, s) ∈
[R, T ]× [S, T ], zi ∈ Rk×d, i = 1, 2, it holds that

||h(s, z1; t)− h(s, z2; t)||2 ≤ L(||z1 − z2||2).

Using the previous assumptions we state the well-posedness result for SFIEs
(1.3):

Theorem 1.2.5. Let (F1) and (F2) hold. Then there exists a unique adapted
solution (λt,·, µt,·) ∈ H2[S, T ] for almost all t ∈ [R, T ] which solves the SFIE (1.3).

Proof. The proof can be found in [35], Lemma 3.3.

Remark 1.2.6. We want to mention one interesting thing about the equation
(1.3). Namely, for R = S we denote{

Yt := λt,t, t ∈ [S, T ],

Zt,s := µt,s, (t, s) ∈ ∆c[S, T ].
(1.4)

Thus, one obtains from (1.3) the equation

Yt = f(W ; t)−
T∫
t

h(s, Zt,s; t)ds−
T∫
t

Zt,sdWs, t ∈ [S, T ], (1.5)

which is a special case of a BSVIE (1.6) (see Definition 1.2.7). Defining Zt,s for
(t, s) ∈ ∆[S, T ] by (1.7) below we get the well-posedness result for (1.5) (see [35],
Corollary 3.6).

1.2.2 BSVIEs

Similar to the previous subsection, the aim of this part is to present BSVIEs in
the general form and to state the well-posedness theorem for solutions of such
equations.

Well-posedness of BSVIEs

In what follows, we define a backward stochastic Volterra integral equation:

11
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Definition 1.2.7. For f : C([0, T ];Rd)× [0, T ]→ Rk and h : [0, T ]×Rk×Rk×d×
Rk×d× [0, T ]→ Rk we call a stochastic integral equation of Itô’s type of the form

Yt = f(W ; t)−
T∫
t

h(s, Ys, Zt,s, Zs,t; t)ds−
T∫
t

Zt,sdWs, t ∈ [0, T ], (1.6)

a backward stochastic Volterra integral equation. The process f is called the free
term and the function h the generator.

Note, that equation (1.6) cannot be reduced to a BSDE in general because
the free term f or the generator h may depend on t.

Equation (1.6) has in general infinitely many adapted solutions. To achieve
uniqueness, as pointed out in [35], we consider only adapted M-solutions. Such
solutions of the BSVIE fulfill a martingale representation property, which deter-
mines the process Zt,s for t ≥ s. Namely, denoting by

H2[R, S] := L2
F(R, S;Rk)× L2(R, S;L2

F(R, S;Rk×d)),

we formulate the following definition:

Definition 1.2.8. Let S ∈ [0, T ). A pair (Y, Z) ∈ H2[S, T ] is called an adapted
M-solution of the BSVIE (1.6) on [S, T ] if (1.6) holds in the usual Itô’s sense
for almost all t ∈ [S, T ] and Yt has the following martingale representation:

Yt = E[Yt|FS] +

t∫
S

Zt,sdWs, a.e. t ∈ [S, T ]. (1.7)

To obtain the well-posedness for the BSVIE (1.6) we introduce the assump-
tions for the free term f and generator h:

(V1′) f ∈ L2
FT

(C([0, T ];Rd)× [0, T ];Rk).

(V2′) h is a B([0, T ])⊗B(Rk)⊗B(Rk×d)⊗B(Rk×d)⊗B([0, T ])-measurable map
fulfilling a Lipschitz condition, i.e. there exists a constant L′ > 0 such that
for all (t, s) ∈ ∆c[0, T ], yi ∈ Rk, zi, z̄i ∈ Rk×d, i = 1, 2, it holds that

||h(s, y1, z1, z̄1; t)−h(s, y2, z2, z̄2; t)||2

≤ L′(||y1 − y2||2 + ||z1 − z2||2 + ||z̄1 − z̄2||2).

Theorem 1.2.9. Let (V1′) and (V2′) hold. Then there exists a unique adapted
M-solution (Y, Z) ∈ H2[0, T ] which solves the BSVIE (1.6).
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Sketch of the proof. We give here the main four steps of the proof. In step (i) the
process Zt,s is constructed on the subset Ai ⊂ [0, T ]2, i = 1, . . . , 4, defined below
(see Figure 1.1). For details of the proof see [35].

Figure 1.1: The sets A1,...,A4 in [0, T ]2 for
the values of the process Z.

6

-

t

s

T

T

S

S

0

A1

A2

A3

A4

r

r
r

r r

(1) Note that for each pair of processes (y, z), taken from an appropriate space
(see [35]), the BSVIE

Yt = f(W ; t)−
T∫
t

h(s, ys, Zt,s, zs,t; t)ds−
T∫
t

Zt,sdWs, t ∈ [S, T ],

has a unique F-adapted M-solution (Y, Z) due to Remark 1.2.6 for any S ∈
[0, T ). If T−S is small enough, one can show that the map (y, z) 7→ (Y, Z) is
a contraction in H2[T −S, T ]. Hence, by the contraction mapping theorem,
we find a unique F-adapted M-solution{

Yt , t ∈ [S, T ],

Zt,s, (t, s) ∈ {(t, s) ∈ [0, T ]2 : t, s ≥ S} =: A1.

of Equation (1.6) on [S, T ].

(2) The martingale representation theorem, see Theorem 1.1.1, determines

Zt,s for (t, s) ∈ {(t, s) ∈ [0, T ]2 : t ≥ S, s ∈ [0, S]} =: A2

in L2(S, T ;L2
F(0, S;Rk×d)).
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(3) Using Theorem 1.2.5, the SFIE of the form

Y S
t = f(W ; t)−

T∫
S

hS(s, Zt,s; t)ds−
T∫
S

Zt,sdWs, t ∈ [0, S], (1.8)

where hS(s, z; t) := h(s, Ys, z, Zs,t; t), (s, z, t) ∈ [S, T ]×Rk×d× [0, S], admits
a unique adapted solution

(Y S, Z) ∈ L2
FS

(0, S;Rk)× L2(0, S;L2
F(S, T ;Rk×d)).

Note that the values Ys and Zs,t were already determined in the steps (1)
and (2). Thus, we have uniquely found

Zt,s for (t, s) ∈ {(t, s) ∈ [0, T ]2 : t ∈ [0, S], s ≥ S} =: A3.

(4) For R ∈ [0, S) small enough one obtains by induction the solvability of the
equation

Yt = Y S
t −

S∫
t

h(s, Ys, Zt,s, Zs,t; t)ds−
S∫
t

Zt,sdWs, t ∈ [R, S],

where Y S is the solution from (1.8).

Repeating this procedure we end with the solution{
Yt , t ∈ [0, S],

Zt,s, (t, s) ∈ {(t, s) ∈ [0, T ]2 : t, s ∈ [0, S]} =: A4.

1.3 Main Result of this Thesis

We consider a special case of (1.6), namely, the equation

Yt = f(W ; t)−
T∫
t

h(s, Ys)ds−
T∫
t

Zt,sdWs, t ∈ [0, T ], (1.9)

which will be used later throughout this thesis. To obtain the well-posedness for
the BSVIE (1.9) we introduce the assumptions for the free term f and generator
h:
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(V1) f ∈ L2
FT

(C([0, T ];Rd)× [0, T ];Rk).

(V2) h is a B([0, T ])⊗B(Rk)-measurable map fulfilling a Lipschitz condition, i.e.
there exists a constant L > 0 such that for all s ∈ [0, T ], yi ∈ Rk, i = 1, 2,
it holds that

||h(s, y1)− h(s, y2)||2 ≤ L(||y1 − y2||2).

We construct a numerical method to approximate the M-solution of (1.9). In
[18] a numerical method is presented to approximate usual BSDEs, where the
solutions are related with solutions of quasilinear PDEs of parabolic type. Our
aim is to generalize this method to BSVIEs.

The discretization of the BSVIEs (1.9) is based upon replacing the d-dimen-

sional Brownian motion Ws by a simple symmetric random walk W
(n)
s (see The-

orem 1.1.2). Note that from Skorokhod’s representation theorem we can assume
that W (n), W are defined on the same space Ω and W (n) converges a.s. uniformly
on [0, T ] to W .

We introduce the following discretized version of BSVIE (1.9):

Definition 1.3.1. For f : C([0, T ];Rd)× [0, T ]→ Rk, h : [0, T ]× Rk → Rk and
the discretization 0 = t0 < t1 < . . . < tn = T of the time interval [0, T ] with
time-step T

n
(ti := iT

n
, i = 0, . . . , n, n ∈ N), we call an equation from (1.9) of the

form

Y
(n)
ti = f(W (n); ti)−

n−1∑
j=i

h(tj, Y
(n)
tj )∆tj+1 −

n−1∑
j=i

Z
(n)
ti,tj∆W

(n)
tj+1

(1.10)

a discrete backward stochastic Volterra integral equation (DBSVIE, for short),
where

Y
(n)
ti :=

 Y
1,(n)
ti
...

Y
k,(n)
ti

 ,

n−1∑
j=i

Z
(n)
ti,tj∆W

(n)
tj+1

:=


∑d

J=1

∑n−1
j=i Z

1J,(n)
ti,tj ∆W

J,(n)
tj+1

...∑d
J=1

∑n−1
j=i Z

kJ,(n)
ti,tj ∆W

J,(n)
tj+1


with ∆tj+1 := tj+1 − tj = T

n
.

Define discrete spaces of the DBSVIE (1.10) for i0, i1 ∈ {0, . . . , n}:
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L2

F
(n)
tn

(C([ti0 , ti1 ];Rl)× [ti0 , ti1 ];Rk) the space of B(C([ti0 , ti1 ];Rl)) ⊗ B([ti0 , ti1 ])-
measurable processes f : C([ti0 , ti1 ];Rl) ×
[ti0 , ti1 ] → Rk such that f(W (n)(·); ti) is

F
(n)
tn -measurable for all i = i0, . . . , i1 and it

holds E
[
T

n

i1−1∑
i=i0

||f(W (n)(·); ti)||22
]
< ∞ with

B(C([ti0 , ti1 ];Rl)) the Borel σ-field induced by
the topology, generated by the || · ||∞-norm on
C([ti0 , ti1 ];Rl).

L2
F(n)(ti0 , ti1 ;Rk) the space of processes Y (n) :

Ω × {ti0 , . . . , ti1} → Rk such
that Y (n) is F(n)-adapted and it

holds E
[
T

n

i1−1∑
i=i0

||Y (n)(·, ti)||22
]

< ∞.

We define ||Y (n)||L2

F(n)
(ti0 ,ti1 ;Rk) :=(

E
[
T

n

i1−1∑
i=i0

||Y (n)(·, ti)||22
]) 1

2

.

L2,(n)(ti0 , ti1 ;Rk×d) the space of all processes Z(n) :
Ω × {ti0 , . . . , ti1}2 → Rk×d such

that Z(n)(ω, ti, tj) is (F
(n)
tj )j=i0,...,i1-

adapted for all ti, i = i0, . . . , i1, and

E
[(

T

n

)2 i1−1∑
i=i0

i1−1∑
j=i0

||Z(n)(·, ti, tj)||22
]

< ∞.

We define ||Z(n)||L2,(n)(ti0 ,ti1 ;Rk×d) :=(
E
[(

T

n

)2 i1−1∑
i=i0

i1−1∑
j=i0

||Z(n)(·, ti, tj)||22
]) 1

2

.

L2,∞
F(n)(ti0 , ti1 ;Rk) the space of processes Y (n) :

Ω × {ti0 , . . . , ti1} → Rk such that
Y (n) is F(n)-adapted and it holds
E
[

sup
i∈{i0,...,i1}

||Y (n)(·, ti)||22
]

< ∞.

We define ||Y (n)||L2,∞
F(n)

(ti0 ,ti1 ;Rk) :=(
E
[

sup
i∈{i0,...,i1}

||Y (n)(·, ti)||22
]) 1

2

.
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Analogously to (1.6) also equation (1.10) can be solved uniquely by a pair
(Y (n), Z(n)) if the pair (Y (n), Z(n)) fulfills a “discrete” martingale representation
property. Namely, denoting by

H2,(n)[ti0 , ti1 ] := L2
F(n)(ti0 , ti1 ;Rk)× L2,(n)(ti0 , ti1 ;Rk×d)

with the norm

||(Y (n), Z(n))||H2,(n)[ti0 ,ti1 ] :=

(
||Y (n)||2L2

F(n)
(ti0 ,ti1 ;Rk) + ||Z(n)||2L2,(n)(ti0 ,ti1 ;Rk×d)

) 1
2

,

we formulate the following definition:

Definition 1.3.2. Let S ∈ {0, 1, . . . , i − 1}. A pair (Y (n), Z(n)) ∈ H2,(n)[0, T ] is
called an adapted M-solution of the DBSVIE (1.10), if (Y (n), Z(n)) solves (1.10)

and Y
(n)
ti has the following discrete martingale representation:

Y
(n)
ti = E

[
Y

(n)
ti

∣∣F(n)
tS

]
+

i−1∑
j=S

Z
(n)
ti,tj∆W

(n)
tj+1

. (1.11)

Lemma 1.3.3. Suppose that the DBSVIE has an adapted M-solution (Y (n), Z(n)).
Then Z(n) can be expressed in forms of Y (n) as follows: For S = 0, 1, . . . , i− 1 it
holds

Z
(n)
ti,tS

=


1

∆tS+1

E
[
Y

(n)
ti (∆W

(n)
tS+1

)∗
∣∣F(n)

tS

]
, S < i

1

∆tS+1

E
[(
f(W (n); ti)−

n−1∑
j=i

h(tj, Y
(n)
tj )∆tj+1

)
(∆W

(n)
tS+1

)∗
∣∣∣∣F(n)

tS

]
, S ≥ i

The proof of this lemma is given in Chapter 2, Section 2.1.
To obtain the well-posedness for the discrete BSVIE (1.10) we introduce the

assumptions for the free term f and generator h:

(D1) f ∈ L2

F
(n)
tn

(C([0, T ];Rd)× [0, T ];Rk).

(D2) h is a B([0, T ])⊗B(Rk)-measurable map fulfilling a Lipschitz condition, i.e.
there exists a constant L > 0 such that for all s ∈ [0, T ], yi ∈ Rk, i = 1, 2,
it holds that

||h(s, y1)− h(s, y2)||2 ≤ L(||y1 − y2||2).
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Theorem 1.3.4. Let (D1) and (D2) hold. Then for n large enough (depending
on the Lipschitz constant L) there exists a unique adapted M-solution (Y (n), Z(n)) ∈
H2,(n)[0, T ] which solves the discrete BSVIE (1.10).

A proof of this theorem can be found in Section 2.2.
The main result of this thesis is to show the weak convergence of the sequence

(Y (n))n∈N to Y . For this purpose we need the following assumptions:

(V3) The free term f is a Lipschitz function, i.e. there exists a constant K > 0
such that for all gi ∈ C([0, T ];Rd) and ti ∈ [0, T ], i = 1, 2, it holds that

||f(g1; t1)− f(g2; t2)||2 ≤ K(||g1 − g2||∞ + |t1 − t2|). (1.12)

(V4) The free term f and the generator h are functions bounded by a constant
D > 0, and h is continuous.

Remark 1.3.5. In fact, we do not have to require that h is bounded, since one
can show with analogous arguments as in Lemma 3.1 from [18] that the processes
Y and Y (n) are bounded under the assumptions (V1)-(V3) with a bounded free
term f .

Theorem 1.3.6. (Main Convergence Theorem) Assume that in the BSVIE
(1.9) the assumptions (V1)-(V4) are fulfilled. Denote by (Y (n), Z(n))n∈N the se-
quence of discrete M-solutions from (1.10) and by (Y, Z) the adapted M-solution
of (1.9). Then the sequence (Y (n))n∈N converges weakly in the Skorokhod topology

to Y , if it is piecewise constant interpolated between the points Y
(n)
ti and Y

(n)
ti+1

for
all i = 0, . . . , n− 1.

Note that there exists a unique adapted M-solution (Y, Z) of (1.9) as condi-
tions (V1′) and (V2′) of Theorem 1.2.9 are fulfilled, if the conditions (V1) and
(V2) hold.

The sequence of processes (Y (n), Z(n))n∈N can be approximated by a sequence
of processes (Ŷ (n), Ẑ(n))n∈N given by explicit equations. To understand this, re-

mark that Y
(n)
ti from (1.10) can be written as

Y
(n)
ti = Y

(n)
ti+1

+ f(W (n); ti)− f(W (n); ti+1)− h(ti, Y
(n)
ti )∆ti+1

+
n−1∑
j=i+1

Z
(n)
ti+1,tj∆W

(n)
tj+1
−

n−1∑
j=i

Z
(n)
ti,tj∆W

(n)
tj+1

. (1.13)

Taking the conditional expectation of Y
(n)
ti given F

(n)
ti one obtains

Y
(n)
ti = E

[
Y

(n)
ti+1

+ f(W (n); ti)− f(W (n); ti+1)
∣∣F(n)

ti

]
− h(ti, Y

(n)
ti )∆ti+1.

18



1.3 Main Result of this Thesis

In addition, denoting by

X0
i := E

[
Y

(n)
ti+1

+ f(W (n); ti)− f(W (n); ti+1)
∣∣F(n)

ti

]
the map Θ

(n)
i : L2

F
(n)
ti

(Ω;Rk)→ L2

F
(n)
ti

(Ω;Rk) which maps

V 7→ X0
i − h(ti, V )∆ti+1

is a contraction for large n with fixed-point Y
(n)
ti , since taking two different random

variables V and Ṽ it holds

||Θ(n)
i (V )−Θ

(n)
i (Ṽ )||2 ≤ ||h(ti, V )∆ti+1−h(ti, Ṽ )∆ti+1||2 ≤

LT

n
||V − Ṽ ||2 P-a.s.,

where LT
n
< 1 for large n. Furthermore,

||Y (n)
ti −(X0

i −h(ti, X
0
i )∆ti+1)||2 = ||X0

i −h(ti, Y
(n)
ti )∆ti+1−X0

i +h(ti, X
0
i )∆ti+1||2

≤ LT

n
||Y (n)

ti −X
0
i ||2 ≤

DLT 2

n2
P-a.s.

This motivates us to propose the following explicit numerical scheme for the
BSVIE (1.9):

Ŷ
(n)
tn = f(W (n); tn), Ẑ

(n)
tn,tn = 0,

X̂
(n)
ti = E

[
Ŷ

(n)
ti+1

+f(W (n); ti)−f(W (n); ti+1)
∣∣F(n)

ti

]
,

Ŷ
(n)
ti = X̂

(n)
ti −h(ti, X̂

(n)
ti )∆ti+1,

Ẑ
(n)
ti,tS

=


1

∆tS+1

E
[
Ŷ

(n)
ti (∆W

(n)
tS+1

)∗
∣∣F(n)

tS

]
, S < i

1

∆tS+1

E
[(
f(W (n); ti)−

n−1∑
j=i

h(tj, Ŷ
(n)
tj )∆tj+1

)
(∆W

(n)
tS+1

)∗
∣∣∣∣F(n)

tS

]
, S ≥ i

With analogous arguments as in [18], we can estimate the error between Y (n) and
Ŷ (n) as well as between Z(n) and Ẑ(n). Namely,

||Y (n)
ti −Ŷ

(n)
ti ||2 = ||E

[
Y

(n)
ti+1
−Ŷ (n)

ti+1

∣∣F(n)
ti

]
−(h(ti, Y

(n)
ti )−h(ti, X̂

(n)
ti ))∆ti+1||2

≤ ||E
[
Y

(n)
ti+1
− Ŷ (n)

ti+1

∣∣F(n)
ti

]
||2 + ||h(ti, Y

(n)
ti )− h(ti, Ŷ

(n)
ti )||2∆ti+1

+||h(ti, Ŷ
(n)
ti )− h(ti, X̂

(n)
ti )||2∆ti+1 ≤

D(e2L − 1)

n
P-a.s.

19



1. PRELIMINARIES

and

||Z(n)
ti,tS
−Ẑ(n)

ti,tS
||2

=


1

∆tS+1

||E
[
(Y

(n)
ti − Ŷ

(n)
ti )(∆W

(n)
tS+1

)∗
∣∣F(n)

tS

]
||2 , S < i

1

∆tS+1

∣∣∣∣∣∣∣∣E[(n−1∑
j=i

(h(tj, Ŷ
(n)
tj )− h(tj, Y

(n)
tj ))∆tj+1

)
(∆W

(n)
tS+1

)∗
∣∣∣∣F(n)

tS

]∣∣∣∣∣∣∣∣
2

, S ≥ i

≤


1√
T
D(e2L − 1)
√
n

, S < i
√
TLD(e2L − 1)√

n
, S ≥ i

P-a.s.

From this immediately follows with Theorem 1.3.6 the next corollary:

Corollary 1.3.7. The assertion of Theorem 1.3.6 also holds true if we consider,
instead of the sequence (Y (n))n∈N, the sequence (Ŷ (n))n∈N.

The proof of Theorem 1.3.6 is given in Chapter 2 and divided into three parts
in Sections 2.3, 2.4 and 2.5. Section 2.3 is devoted to the estimations for the
difference between different solutions from BSVIEs (1.9) and (1.10), respectively.
In Section 2.4 we show the tightness of the sequence (Y (n))n∈N from (1.10). In
Section 2.5 we present the weak convergence of the solution of Equation (1.10)
to the solution of Equation (1.9) for n→∞ under certain regularity conditions,
if the free term depends not on the whole trajectory of the Brownian motion but
only on finitely many points.

The rest of the thesis is structured in Chapter 3 with one numerical example
illustrating the speed of convergence of our algorithm and Chapter 4, in which we
summarize all the results given in this thesis and formulate some open questions
for further work.
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Chapter 2

Proofs

This chapter is a collection of proofs for the problems formulated in Section 1.3.
In Section 2.1 we construct the implicit equations for the process Z(n). In Section
2.2 we show the existence and uniqueness for the solutions from the discrete
BSVIE (1.10). The proofs in Sections 2.3, 2.4 and 2.5 help us to show the Main
Convergence Theorem 1.3.6. As a result, in Section 2.6 we prove Theorem 1.3.6.

2.1 Proof of Lemma 1.3.3

Proof of Lemma 1.3.3. In the case S < i, multiplying Equation (1.11) by ∆W
(n)
tS+1

and taking the conditional expectation of this expression given F
(n)
tS

one obtains

E
[
(Y

(n)
ti −E

[
Y

(n)
ti

∣∣F(n)
tS

]
)(∆W

(n)
tS+1

)∗
∣∣F(n)

tS

]
=

i−1∑
j=S

E
[
(Z

(n)
ti,tj∆W

(n)
tj+1

)(∆W
(n)
tS+1

)∗
∣∣F(n)

tS

]
.

On the other hand, using the martingale property of the random walk and the
tower property of conditional expectation, it follows that

E
[
(Y

(n)
ti − E

[
Y

(n)
ti

∣∣F(n)
tS

]
)(∆W

(n)
tS+1

)∗
∣∣F(n)

tS

]
= E

[
Y

(n)
ti (∆W

(n)
tS+1

)∗
∣∣F(n)

tS

]
and

E
[
(Z

(n)
ti,tj∆W

(n)
tj+1

)(∆W
(n)
tS+1

)∗
∣∣F(n)

tS

]
=

{
Z

(n)
ti,tS

∆tS+1 , j = S

E
[
E
[
(Z

(n)
ti,tj∆W

(n)
tj+1

)(∆W
(n)
tS+1

)∗
∣∣F(n)

tj+1

]∣∣F(n)
tS

]
= 0 , j > S
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Hence,

Z
(n)
ti,tS

=
1

∆tS+1

E
[
Y

(n)
ti (∆W

(n)
tS+1

)∗
∣∣F(n)

tS

]
.

In the same spirit, for the case S ≥ i we multiply Equation (1.10) by ∆W
(n)
tS+1

and

take the conditional expectation given F
(n)
tS

. One obtains

E
[
Y

(n)
ti (∆W

(n)
tS+1

)∗
∣∣F(n)

tS

]
= 0

= E
[(
f(W (n); ti)−

n−1∑
j=i

h(tj, Y
(n)
tj )∆tj+1

)
(∆W

(n)
tS+1

)∗
∣∣∣∣F(n)

tS

]

−
n−1∑
j=i

E
[
(Z

(n)
ti,tj∆W

(n)
tj+1

)(∆W
(n)
tS+1

)∗
∣∣F(n)

tS

]
,

where

E
[
(Z

(n)
ti,tj∆W

(n)
tj+1

)(∆W
(n)
tS+1

)∗
∣∣F(n)

tS

]

=


Z

(n)
ti,tS

∆tS+1 , j = S

(Z
(n)
ti,tj∆W

(n)
tj+1

)(E
[
∆W

(n)
tS+1

∣∣F(n)
tS

]
)∗ = 0 , j < S

E
[
E
[
(Z

(n)
ti,tj∆W

(n)
tj+1

)(∆W
(n)
tS+1

)∗
∣∣F(n)

tj+1

]∣∣F(n)
tS

]
= 0 , j > S

Thus,

Z
(n)
ti,tS

=
1

∆tS+1

E
[(
f(W (n); ti)−

n−1∑
j=i

h(tj, Y
(n)
tj )∆tj+1

)
(∆W

(n)
tS+1

)∗
∣∣∣∣F(n)

tS

]
.

2.2 Well-posedness of Discrete BSVIEs

The proof of Theorem 1.3.4 relies on the fact that the discrete version of a BSDE
of the form

Y
(n)
ti = ξ(W (n))− T

n

n−1∑
j=i

h(tj, Y
(n)
tj )−

n−1∑
j=i

Z
(n)
tj ∆W

(n)
tj+1

(2.1)

can be solved uniquely:
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Lemma 2.2.1. Let

ξ ∈ L2

F
(n)
tn

(C([0, T ];Rd);Rk)

and (D2) hold. Then for n large enough (depending on the Lipschitz constant

L) there exists a unique F(n)-adapted solution (Y
(n)
ti , Z

(n)
ti ) ∈ H2,(n) which solves

(2.1).

Proof. A proof can be found in [25].

Proof of Theorem 1.3.4. In the proof of this theorem we use similar ideas to con-
struct the sequences on subsets of {t0, . . . , tn}2 (t0 = 0, tn = T ) on every step (i)
(see Figure 2.1) as in Theorem 1.2.9 in the continuous case, i = 1, . . . , 4.

Figure 2.1: The sets A
(n)
1 ,...,A

(n)
4 in [0, T ]2

for the values of the process Z(n).

6

-

ti

tj

T

T

ti0

ti0

0

A
(n)
1

A
(n)
2

A
(n)
3

A
(n)
4

r

r
r

r r

(1) We can solve the DBSVIE on a set

A
(n)
1 := {(ti, tj) ∈ {t0, . . . , tn}2 : ti, tj ≥ ti0}

for an appropriate ti0 , see below.

Consider a (discrete time) process y(n) ∈ L2
F(n)(0, T ;Rk) and the equation

λ
(n),y(n)

ti,tp = f(W (n); ti)−
T

n

n−1∑
j=p

h(tj, y
(n)
tj )−

n−1∑
j=p

Z
(n),y(n)

ti,tj ∆W
(n)
tj+1

. (2.2)

This is a family of discrete BSDEs parameterized by ti ∈ {ti0 , . . . , tn} which

can be solved uniquely for each ti on A
(n)
1 due to Lemma 2.2.1 if n is
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sufficiently large. Especially for ti = tp we obtain a unique solution of the
discrete BSVIE of the form

Y
(n),y(n)

ti = f(W (n); ti)−
T

n

n−1∑
j=i

h(tj, y
(n)
tj )−

n−1∑
j=i

Z
(n),y(n)

ti,tj ∆W
(n)
tj+1

. (2.3)

In addition, the map θ(n) : H2,(n)[0, T ]→ H2,(n)[0, T ] which maps

(y(n), z(n)) 7→ (Y (n),y(n) , Z(n),y(n))

is a contraction, if T − ti0 is small enough. To show this remark that taking

two different solutions (Y (n),y(n) , Z(n),y(n)) and (Y (n),ỹ(n) , Z(n),ỹ(n)) of (2.3)
one obtains

||Y (n),y(n)

ti −Y (n),ỹ(n)

ti ||22 = ||E[Y
(n),y(n)

ti −Y (n),ỹ(n)

ti |F(n)
ti ]||22

=

(
T

n

)2∣∣∣∣∣∣∣∣E[n−1∑
j=i

(h(tj, y
(n)
tj )− h(tj, ỹ

(n)
tj ))

∣∣∣∣F(n)
ti

]∣∣∣∣∣∣∣∣2
2

≤
(
T

n

)2

E
[∣∣∣∣∣∣∣∣n−1∑

j=i

(h(tj, y
(n)
tj )− h(tj, ỹ

(n)
tj ))

∣∣∣∣∣∣∣∣2
2

∣∣∣∣F(n)
ti

]

≤
(
LT

n

)2

E
[
2(n− i)

n−1∑
j=i

∣∣∣∣y(n)
tj − ỹ

(n)
tj

∣∣∣∣2
2

∣∣∣∣F(n)
ti

]
and, thus,

||Y (n),y(n) − Y (n),ỹ(n) ||L2

F(n)
(ti0 ,tn;Rk) =

(
E
[
T

n

n−1∑
i=i0

||Y (n),y(n)

ti − Y (n),ỹ(n)

ti ||22
]) 1

2

≤ LT

n

(n−1∑
i=i0

2(n− i)E
[
T

n

n−1∑
j=i0

∣∣∣∣y(n)
tj − ỹ

(n)
tj

∣∣∣∣2
2

]) 1
2

≤ LT

n

(n−1∑
i=i0

2n

) 1
2

||y(n) − ỹ(n)||L2

F(n)
(ti0 ,tn;Rk)

= LT

√
2(n− i0)

n
||y(n) − ỹ(n)||L2

F(n)
(ti0 ,tn;Rk).
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Next, denoting by ∆Z
(n)
i,j := Z

(n),y(n)

ti,tj − Z
(n),ỹ(n)

ti,tj and ∆Y
(n)
i := Y

(n),y(n)

ti −
Y

(n),ỹ(n)

ti we obtain

E
[∣∣∣∣∣∣∣∣n−1∑

j=i0

∆Z
(n)
i,j ∆W

(n)
tj+1

∣∣∣∣∣∣∣∣2
2

]

= E
[( d∑

J=1

n−1∑
j=i0

∆Z
1J,(n)
i,j ∆W

J,(n)
tj+1

)2

+. . .+

( d∑
J=1

n−1∑
j=i0

∆Z
kJ,(n)
i,j ∆W

J,(n)
tj+1

)2]

=
T

n

n−1∑
j=i0

E
[ d∑
J=1

(∆Z
1J,(n)
i,j )2 + . . .+

d∑
J=1

(∆Z
kJ,(n)
i,j )2

]
=
T

n

n−1∑
j=i0

E
[∣∣∣∣∆Z(n)

i,j

∣∣∣∣2
2

]
,

since, using the martingale property of the random walk, it holds that for
k̃ ∈ {1, . . . , k}

E
[( d∑

J=1

n−1∑
j=i0

∆Z
k̃J,(n)
i,j ∆W

J,(n)
tj+1

)2]
= E

[ d∑
J=1

(n−1∑
j=i0

∆Z
k̃J,(n)
i,j ∆W

J,(n)
tj+1

)2

+2
d∑

J,J̃=1

J<J̃

(n−1∑
j=i0

∆Z
k̃J,(n)
i,j ∆W

J,(n)
tj+1
·
n−1∑
j=i0

∆Z
k̃J̃ ,(n)
i,j ∆W

J̃ ,(n)
tj+1

)]

=
d∑

J=1

n−1∑
j=i0

E
[(

∆Z
k̃J,(n)
i,j

)2]
∆tj+1

+2
d∑

J,J̃=1

J<J̃

n−1∑
j=i0

E
[
∆Z

k̃J,(n)
i,j ∆Z

k̃J̃ ,(n)
i,j ∆W

J,(n)
tj+1

∆W
J̃ ,(n)
tj+1

]

=
T

n

n−1∑
j=i0

E
[ d∑
J=1

(
∆Z

k̃J,(n)
i,j

)2
]
.

As (Y (n),y(n) , Z(n),y(n)) and (Y (n),ỹ(n) , Z(n),ỹ(n)) are M-solutions, using mar-
tingale representation (1.11) and (2.3)

||Z(n),y(n)−Z(n),ỹ(n)||L2,(n)(ti0 ,tn;Rk×d) =

(
E
[(

T

n

)2 n−1∑
i=i0

n−1∑
j=i0

||∆Z(n)
i,j ||22

]) 1
2

=

(
T

n

n−1∑
i=i0

E
[∣∣∣∣∣∣∣∣ i−1∑

j=i0

∆Z
(n)
i,j ∆W

(n)
tj+1

+
n−1∑
j=i

∆Z
(n)
i,j ∆W

(n)
tj+1

∣∣∣∣∣∣∣∣2
2

]) 1
2
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=

(
T

n

n−1∑
i=i0

E
[∣∣∣∣∣∣∣∣∆Y (n)

i −E[∆Y
(n)
i |F

(n)
ti0

]

−∆Y
(n)
i − T

n

n−1∑
j=i

(h(tj, y
(n)
tj )− h(tj, ỹ

(n)
tj ))

∣∣∣∣∣∣∣∣2
2

]) 1
2

≤
(

2E
[
T

n

n−1∑
i=i0

∣∣∣∣∆Y (n)
i

∣∣∣∣2
2

]) 1
2

≤ LT

√
4(n− i0)

n
||y(n)−ỹ(n)||L2

F(n)
(ti0 ,tn;Rk).

At last, we can estimate

||(Y (n),y(n)−Y (n),ỹ(n) , Z(n),y(n)−Z(n),ỹ(n))||H2,(n)[ti0 ,tn]

≤ LT

√
6(n− i0)

n
||y(n) − ỹ(n)||L2

F(n)
(ti0 ,tn;Rk).

For n large and n − i0 small enough we obtain LT
√

6(n−i0)
n

< 1, from

which it follows that θ(n) is a contraction on H2,(n)[ti0 , T ] and, therefore,

one can solve Equation (1.10) on the set A
(n)
1 with solution (Y (n), Z(n)) in

H2,(n)[ti0 , T ].

Note, further, that the solution (Y (n),y(n) , Z(n),y(n)) lies in H2,(n)[ti0 , T ] be-

cause for all solutions (λ
(n),y(n)

ti,tp , Z
(n),y(n)

ti,tp )p∈{i0,...,n} of the family of discrete
BSDEs (2.2) it holds for all i ∈ {i0, . . . , n}

E
[
T

n

n−1∑
p=i0

(∣∣∣∣λ(n),y(n)

ti,tp

∣∣∣∣2
2

+
∣∣∣∣Z(n),y(n)

ti,tp

∣∣∣∣2
2

)]
<∞.

(2) Discrete martingale representation theorem, see Theorem 1.1.2, determines

Z
(n)
ti,tj on

A
(n)
2 := {(ti, tj) ∈ {t0, . . . , tn}2 : ti ≥ ti0 , tj ∈ {t0, . . . , ti0−1}}.

In addition, from the previous step

||Y (n)||L2

F(n)
(ti0 ,tn;Rk) <∞

and, thus,

E

[(
T

n

)2 n−1∑
i=i0

i0−1∑
j=0

||Z(n)
ti,tj ||

2
2

]
≤ E

[(
T

n

)2 n−1∑
i=i0

i−1∑
j=0

||Z(n)
ti,tj ||

2
2

]
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= E

[
T

n

n−1∑
i=i0

∣∣∣∣∣∣∣∣ i−1∑
j=0

Z
(n)
ti,tj∆W

(n)
tj+1

∣∣∣∣∣∣∣∣2
2

]
= E

[
T

n

n−1∑
i=i0

∣∣∣∣Y (n)
ti −E

[
Y

(n)
ti |F

(n)
t0

]∣∣∣∣2
2

]

≤ E
[
T

n

n−1∑
i=i0

∣∣∣∣Y (n)
ti

∣∣∣∣2
2

]
= ||Y (n)||2L2

F(n)
(ti0 ,tn;Rk) <∞.

(3) Z
(n)
ti,tj and Y

(n)
ti are already determined for (ti, tj) ∈ {ti0 , . . . , tn}×{t0, . . . , tn}.

To compute Z
(n)
ti,tj on

A
(n)
3 := {(ti, tj) ∈ {t0, . . . , tn}2 : ti ∈ {t0, . . . , ti0−1}, tj ∈ {ti0 , . . . , tn}}

consider the equation

ψti,tj = f(W (n); ti)−
n−1∑
p=j

h(tp, Y
(n)
tp )−

n−1∑
p=j

Z
(n)
ti,tp∆W

(n)
tp+1

.

This is a family of discrete BSDE parameterized by ti ∈ {t0, . . . , ti0−1}. For

each ti it has a unique solution (ψti,tj , Z
(n)
ti,tj)j∈{i0,...,n} with

E

[i0−1∑
i=0

n−1∑
j=i0

||Z(n)
ti,tj ||

2
2

]
<∞,

as for all i ∈ {0, . . . , i0}

E
[
T

n

n−1∑
j=i0

(∣∣∣∣ψti,tj ∣∣∣∣22 +
∣∣∣∣Z(n)

ti,tj

∣∣∣∣2
2

)]
<∞,

using that ||Y (n)||L2

F(n)
(ti0 ,tn;Rk) <∞.

(4) Continue by induction considering for i < i0

Y
(n)
ti = ψti,ti0 −

i0−1∑
p=i

h(tp, Y
(n)
tp )−

i0−1∑
p=i

Z
(n)
ti,tp∆W

(n)
tp+1

.
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2.3 Estimations for BSVIEs and DBSVIEs

The next lemma estimates the difference of solutions Y and Ȳ of Equation (1.9),
if Y (Ȳ ) has the free term f (f̄) and the generator h (h̄).

Lemma 2.3.1. Let f, f̄ be two free terms and h, h̄ be two generators satisfying
(V1) and (V2). Let (Y, Z) and (Ȳ , Z̄) be two adapted M-solutions of (1.9) with
f and h replaced by f̄ and h̄, respectively. Then it holds

||Y − Ȳ ||L2,∞
F (0,T ;Rk) ≤

√
C
(
E
[
||f − f̄ ||2∞

]
+ ||h− h̄||2∞

)
for some constant C < ∞ depending only on the Lipschitz constant of h and h̄,
where

||f − f̄ ||∞(ω) := sup
s∈[0,T ]

||f(ω; s)− f̄(ω; s)||2

and
||h− h̄||∞ := sup

(s,y)∈[0,T ]×Rk
||h(s, y)− h̄(s, y)||2.

Proof. Notice that

||Yt − Ȳt||2 ≤ E
[
||f − f̄ ||∞ +

T∫
0

||h(s, Ys)− h̄(s, Ȳs)||2ds
∣∣∣∣Ft] := Nt.

Nt is a martingale, since for all times t1 and t2 with t1 > t2 it fulfills

E[Nt1|Ft2 ] = E
[
||f − f̄ ||∞ +

T∫
0

||h(s, Ys)− h̄(s, Ȳs)||2ds
∣∣∣∣Ft2].

Also, from

||h(s, Ys)−h̄(s, Ȳs)||2 ≤ ||h(s, Ys)−h(s, Ȳs)||2+||h(s, Ȳs)−h̄(s, Ȳs)||2

≤ L||Ys − Ȳs||2 + ||h− h̄||∞
one obtains that

||h(s, Ys)− h̄(s, Ȳs)||22 ≤ 2(L2||Ys − Ȳs||22 + ||h− h̄||2∞)

and using the properties for the conditional expectation

E[||Yt−Ȳt||22] ≤ E[N2
t ] ≤ 2E

[
||f−f̄ ||2∞+T

T∫
0

||h(s, Ys)−h̄(s, Ȳs)||22ds
]
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≤ 2E
[
||f − f̄ ||2∞

]
+ 4TE

[ T∫
0

(L2||Ys − Ȳs||22 + ||h− h̄||2∞)ds

]

≤ C1 + 4TL2E
[ T∫

0

||Ys − Ȳs||22ds
]
,

with

C1 := 2E
[
||f − f̄ ||2∞

]
+ 4T

T∫
0

||h− h̄||2∞ds

= 2E
[
||f − f̄ ||2∞

]
+ 4T 2||h− h̄||2∞.

Moreover, by Gronwall’s inequality in [21]

E[||Yt − Ȳt||22] ≤ C1e

T∫
t

4TL2ds
= C1e

(T−t)4TL2 ≤ C1e
4T 2L2

,

and using Doob’s inequality for martingales from [16] given in Theorem 7.31 one
obtains

||Y−Ȳ ||2
L2,∞
F (0,T ;Rk)

= E
[

sup
t∈[0,T ]

||Yt−Ȳt||22
]
≤ E

[
sup
t∈[0,T ]

N2
t

]
≤ 4E[N2

T ]

≤ 8E
[
||f − f̄ ||2∞

]
+ 16T 2||h− h̄||2∞ + 16TL2

T∫
0

E[||Ys − Ȳs||22]ds

≤ 8E
[
||f − f̄ ||2∞

]
+ 16T 2||h− h̄||2∞ + 16T 2L2e4T 2L2

C1

≤ C(E
[
||f − f̄ ||2∞

]
+ ||h− h̄||2∞),

for some finite constant C depending only on L and T .

The next lemma is the analogous version of Lemma 2.3.1 in the discrete case.

Lemma 2.3.2. Let f, f̄ be two free terms and h, h̄ be two generators satisfy-
ing (D1) and (D2). Let (Y (n), Z(n))n∈N and (Ȳ (n), Z̄(n))n∈N be two discrete M-
solutions of (1.10) with f and h replaced by f̄ and h̄, respectively. Then it holds

lim sup
n→∞

||Y (n) − Ȳ (n)||L2,∞
F(n)

(0,T ;Rk) ≤
√
C
(
E
[
||f − f̄ ||2∞

]
+ ||h− h̄||2∞

)
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for some constant C < ∞ depending only on the Lipschitz constant of h and h̄,
where

||f − f̄ ||∞(ω) := sup
s∈[0,T ]

||f(ω; s)− f̄(ω; s)||2

and
||h− h̄||∞ := sup

(s,y)∈[0,T ]×Rk
||h(s, y)− h̄(s, y)||2.

Proof. The proof is the discrete analogon to the proof of Lemma 2.3.1, i.e. we
estimate ||Y (n)

ti − Ȳ
(n)
ti ||2 with the martingale

Nti := E
[
||f − f̄ ||∞ +

T

n

n−1∑
j=0

||h(tj, Y
(n)
tj )− h̄(tj, Ȳ

(n)
tj )||2

∣∣∣∣F(n)
ti

]
and apply the discrete Gronwall inequality and Doob’s inequality together with
the fact that W (n) converges weakly to W by Donsker’s Theorem to show the
required estimation.

2.4 Tightness

To prove the weak convergence of the sequence (Y (n))n∈N from (1.10) in the
Skorokhod topology we have to show that this sequence is tight.

Lemma 2.4.1. Assume that the assumptions (V1)-(V4) are fulfilled. Let
(Y (n), Z(n))n∈N be the sequence of discrete M-solutions from (1.10). Then the
sequence (Y (n))n∈N is tight in the Skorokhod topology.

For the proof we need the next lemma.

Lemma 2.4.2. The jumps of Y (n) in (1.10) converge uniformly to zero, more
precisely, it holds

||Y (n)
ti+1
− Y (n)

ti ||2 ≤
Ke2L

√
n

+
KT +D

n
P-a.s.

Proof. From Chapter 1, Subsection 1.2.1, we can interpret (1.9) as a parameter-
ized BSDE in the following sense:

Yt,r = f(W ; t)−
T∫
r

h(s, Ys,s)ds−
T∫
r

Zt,sdWs, r ∈ [t, T ],

with Yt,·, Zt,· being F-adapted for almost all t ∈ [0, T ] and Ys := Ys,s.
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From above we can write the following discretization of the solution Yt,r:

Y
(n)
ti,tk

= f(W (n); ti)−
T

n

n−1∑
j=k

h(tj, Y
(n)
tj ,tj)−

n−1∑
j=k

Z
(n)
ti,tj∆W

(n)
tj+1

and, in particular, Y
(n)
ti,ti coincide with (1.10).

Thus, we obtain

||Y (n)
ti+1
−Y (n)

ti ||2 = ||Y (n)
ti+1,ti+1

−Y (n)
ti,ti+1

+Y
(n)
ti,ti+1

−Y (n)
ti,ti ||2

≤ ||Y (n)
ti+1,ti+1

− Y (n)
ti,ti+1

||2 + ||Y (n)
ti,ti+1

− Y (n)
ti,ti ||2 =: A+B,

where due to adaptiveness of Y (n), Z
(n)
ti+1,·, Z

(n)
ti,·

A =
∣∣∣∣E[Y (n)

ti+1,ti+1
−Y (n)

ti,ti+1

∣∣F(n)
ti+1

]∣∣∣∣
2

=

∣∣∣∣∣∣∣∣E[f(W (n); ti+1)− T

n

n−1∑
j=i+1

h(tj, Y
(n)
tj )−

n−1∑
j=i+1

Z
(n)
ti+1,tj∆W

(n)
tj+1

−f(W (n); ti) +
T

n

n−1∑
j=i+1

h(tj, Y
(n)
tj ) +

n−1∑
j=i+1

Z
(n)
ti,tj∆W

(n)
tj+1

∣∣∣∣F(n)
ti+1

]∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣E[f(W (n); ti+1)− f(W (n); ti)

∣∣F(n)
ti+1

]∣∣∣∣
2

≤ K|ti+1 − ti| =
KT

n

and, using Lemma 3.2 in [18] for the parameter r = ti,

B ≤ Ke2L

√
n

+
D

n
.

Hence, for all i = 0, . . . , n,

||Y (n)
ti+1
− Y (n)

ti ||2 ≤
Ke2L

√
n

+
KT +D

n
,

which proves the lemma.

Proof of Lemma 2.4.1. Consider the following decomposition for the discretized
solution Y

(n)
ti , i = 0, . . . , n:

Y
(n)
ti = U

(n)
ti + A

(n)
ti ,
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where

U
(n)
ti :=

i−1∑
j=0

(
Y

(n)
tj+1
− E

[
Y

(n)
tj+1

∣∣F(n)
tj

])
and

A
(n)
ti := Y

(n)
ti − U

(n)
ti .

It holds that A(n) is a predictable process with finite variation (and this varia-
tion is bounded independently of n), because using tower property of conditional
expectation to the sum with j ≤ i− 2 we obtain that

A
(n)
ti = Y

(n)
ti −

i−1∑
j=0

(
Y

(n)
tj+1
−E
[
Y

(n)
tj+1

∣∣F(n)
tj

])

= Y
(n)
ti − Y

(n)
ti + E

[
Y

(n)
ti

∣∣F(n)
ti−1

]
−

i−2∑
j=0

(
Y

(n)
tj+1
− E

[
Y

(n)
tj+1

∣∣F(n)
tj

])
= E

[
Y

(n)
ti

∣∣F(n)
ti−1

]
−

i−2∑
j=0

(
Y

(n)
tj+1
− E

[
Y

(n)
tj+1

∣∣F(n)
tj

])
is F

(n)
ti−1

-measurable and

n−1∑
i=0

∣∣∣∣A(n)
ti+1
−A(n)

ti

∣∣∣∣
2

=
n−1∑
i=0

∣∣∣∣∣∣∣∣E[Y (n)
ti+1

∣∣F(n)
ti

]
−

i−1∑
j=0

(
Y

(n)
tj+1
− E

[
Y

(n)
tj+1

∣∣F(n)
tj

])
−E
[
Y

(n)
ti

∣∣F(n)
ti−1

]
+

i−2∑
j=0

(
Y

(n)
tj+1
− E

[
Y

(n)
tj+1

∣∣F(n)
tj

])∣∣∣∣∣∣∣∣
2

=
n−1∑
i=0

∣∣∣∣E[Y (n)
ti+1

∣∣F(n)
ti

]
− Y (n)

ti

∣∣∣∣
2

=
n−1∑
i=0

∣∣∣∣∣∣∣∣E[f(W (n); ti+1)
∣∣F(n)

ti

]
− E

[
f(W (n); ti)

∣∣F(n)
ti

]
+
T

n
h(ti, Y

(n)
ti )

∣∣∣∣∣∣∣∣
2

≤
n−1∑
i=0

(
KT

n
+
DT

n

)
= T (K+D),

where K and D do not depend on n.
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Moreover, U (n) is a square integrable martingale, since U (n) is a martingale,
i.e. for any n ∈ N we have that

E
[
U

(n)
ti

∣∣F(n)
ti−1

]
=

i−1∑
j=0

E
[
Y

(n)
tj+1

∣∣F(n)
ti−1

]
−

i−1∑
j=0

E
[
E
[
Y

(n)
tj+1

∣∣F(n)
tj

]∣∣∣∣F(n)
ti−1

]

= E
[
Y

(n)
ti

∣∣F(n)
ti−1

]
+

i−2∑
j=0

Y
(n)
tj+1
− E

[
Y

(n)
ti

∣∣F(n)
ti−1

]
−

i−2∑
j=0

E
[
Y

(n)
tj+1

∣∣F(n)
tj

]
= U

(n)
ti−1

and

sup
i

E
[
||U (n)

ti ||
2
2

]
= sup

i

( i−1∑
j=0

E
[∣∣∣∣Y (n)

tj+1
− E

[
Y

(n)
tj+1

∣∣F(n)
tj

]∣∣∣∣2
2

]
+

i−1∑
j,j̃=0
j 6=j̃

E
[
〈Y (n)

tj+1
− E

[
Y

(n)
tj+1

∣∣F(n)
tj

]
, Y

(n)
tj̃+1
− E

[
Y

(n)
tj̃+1

∣∣F(n)
tj̃

]
〉
])

<∞

due to boundness of Y
(n)
ti .

Thus, Y
(n)
ti is a square integrable semimartingale and, as pointed out in [18],

we can use Theorem 2.3 (with condition C2) in [13] for the function

G(n) := [U (n), U (n)] + V (A(n))

with [U (n), U (n)] and V (A(n)) being the quadratic, resp., total variation of U (n)

and A(n).
Namely, one can see that G(n) is bounded by a constant because V (A(n)) is

bounded by T (K +D) not depending on n, and using Lemma 2.4.2 it holds that

[U
(n)
ti , U

(n)
ti ] =

i−1∑
J=0

||U (n)
tJ+1
−U (n)

tJ
||22 =

i−1∑
J=0

||Y (n)
tJ+1
−E
[
Y

(n)
tJ+1

∣∣F(n)
tJ

]
||22

=
i−1∑
J=0

∣∣∣∣∣∣∣∣Y (n)
tJ+1
− Y (n)

tJ
− T

n
h(tJ , Y

(n)
tJ

) + E
[
f(W (n); tJ)− f(W (n); tJ+1)

∣∣F(n)
tJ

]∣∣∣∣∣∣∣∣2
2

≤
i−1∑
J=0

(
Ke2L

√
n

+
KT +D

n
+
T (K +D)

n

)2

≤ C

for some constant C.
Hence, from [13] the sequence (Y (n)) is relatively compact in the Skorohod

topology and, by Prokhorov’s theorem, it is tight.
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2.5 Weak Convergence in Special Case

In this section we present the central result to prove the Main Convergence The-
orem.

Generalizing the ideas of [18] from BSDEs to BSVIEs, in Subsection 2.5.1 it
will be given a method of constructing the M-solutions of (1.9) via solutions of
quasilinear PDEs of parabolic type (for general information about the theory of
PDEs of parabolic type see [11]), if the free term depends only on finitely many
points of the trajectory of the Brownian motion and both, the free term and
generator, are sufficiently smooth. The problem of smoothness for solutions of
such PDEs of parabolic type we solve in Subsection 2.5.2.

Denote by τ := (τ0, . . . , τm) a partition of [0, T ] of length m, i.e. 0 = τ0 <
τ1 < . . . < τm = T , and consider the BSVIE

Y
[m]
t = f [m](Wτ1 , . . . ,Wτm ; t)−

T∫
t

h[m](s, Y [m]
s )ds−

T∫
t

Z
[m]
t,s dWs, t ∈ [0, T ], (2.4)

where f [m] : Rl × [0, T ]→ Rk with l := dm and h[m] : [0, T ]× Rk → Rk are given
maps.

Similarly, for a given partition τ (n) := (τ
(n)
0 , . . . , τ

(n)
m ) of [0, T ] of length m with

τ
(n)
λ := bτλnc

n
, λ = 0, . . . ,m, we consider the DBSVIE

Y
(n),[m]
ti = f [m](W

(n)

τ
(n)
1

, . . . ,W
(n)

τ
(n)
m

; ti)−
T

n

n−1∑
j=i

h[m](tj, Y
(n),[m]
tj )−

n−1∑
j=i

Z
(n),[m]
ti,tj ∆W

(n)
tj+1

.

(2.5)
For simplicity, in the argument of the free terms we sometimes write Wτm :=

(Wτ1 , . . . ,Wτm) and W
(n)

τ
(n)
m

:= (W
(n)

τ
(n)
1

, . . . ,W
(n)

τ
(n)
m

).

To obtain the weak convergence of the solution Y (n),[m] from (2.5) to the
solution Y [m] from (2.4) we introduce the following assumptions for the free term
f [m] and generator h[m]:

(M1) f [m] is a B(Rl)⊗B([0, T ])-measurable map such that f [m](Wτm(·); t) is FT -

measurable for all t ∈ [0, T ] and it holds E
[∫ T

0

||f [m](Wτm(·); t)||22dt
]
<∞.

(M2) f [m] ∈ C∞b (Rl × [0, T ];Rk) and h[m] ∈ C∞b ([0, T ]× Rk;Rk).

Then one obtains the following result:
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Lemma 2.5.1. Assume that in (2.4) and (2.5) the assumptions (M1) and (M2)
are fulfilled. Let m ∈ N, (Y (n),[m], Z(n),[m])n∈N be the sequence of discrete M-
solutions from (2.5) and (Y [m], Z [m]) be the adapted M-solution of (2.4). Then
the sequence (Y (n),[m])n∈N converges weakly in the Skorokhod topology to Y [m], if

it is piecewise constant interpolated between the points Y
(n),[m]
ti and Y

(n),[m]
ti+1

for all
i = 0, . . . , n− 1.

The proof of Lemma 2.5.1 is proceeded in Subsection 2.5.3 with preliminaries
results in Subsection 2.5.1 and Section 2.4.

Remark 2.5.2. Note that Equation (2.4) and Equation (2.5) are special cases of
Equation (1.9) and (1.10), respectively, if the free term f depends only on finitely
many points of the trajectory of the Brownian motion W . Hence the existence and
uniqueness of the adapted M-solutions follow from Theorem 1.2.9 and Theorem
1.3.4 as well as tightness for the sequence (Y (n),[m])n∈N from Lemma 2.4.1.

2.5.1 Construction for the Solutions of BSVIEs with PDEs

For the sake of simplicity take T = d = k = 1. Further, suppose that the free
term f [m] in (2.4) depends only on two points of the trajectory of a Brownian
motion, i.e. τ2 = 1 (and so m = 2), and the assumptions on f [2] and h[2] from
(2.4) for the uniqueness and existence of the adapted M-solution (Y [2], Z [2]) hold.

Our purpose is to show that the M-solution of (2.4) can be represented via so-
lutions of six systems of PDEs of parabolic type, if f [2] and h[2] are smooth. Each
system of PDEs is defined on one of the following subsets of [0, 1]2 (see Figure 2.2):

S2,2 := {(t, s) ∈ [0, 1]2| t, s ≥ τ1, t ≤ s},
S1,2 := {(t, s) ∈ [0, 1]2| t < τ1, s ≥ τ1},
S1,1 := {(t, s) ∈ [0, 1]2| t < τ1, s ≤ τ1, t ≤ s},
S2,2 := {(t, s) ∈ [0, 1]2| t, s ≥ τ1, t ≥ s},
S2,1 := {(t, s) ∈ [0, 1]2| t ≥ τ1, s ≤ τ1},
S1,1 := {(t, s) ∈ [0, 1]2| t < τ1, s ≤ τ1, t ≥ s}.
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Figure 2.2: The sets S2,2,...,S1,1 in [0, 1]2

for the values of the process Z [2].
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To construct PDEs for the upper triangle of [0, 1]2 we consider (t, s) in all
subsets of this domain.

Suppose that (t, s) ∈ S2,2. Then, according to Remark 2.5.2, Equation (2.4)

admits an adapted M-solution (Y
[2]
t , Z

[2]
t,s). We consider the ansatz

Y
[2]
t = u2,2(t,Wτ1 ,Wt; t), Z

[2]
t,s =

∂u2,2

∂y
(s,Wτ1 ,Ws; t)

for some deterministic function u2,2.
If the partial derivatives

∂u2,2

∂s
(s, x, y; t),

∂2u2,2

∂y2
(s, x, y; t)

exist and are continuous we can apply Itô’s formula to u2,2 and the Brownian
motion, and for r ∈ [t, 1] get the following equation:

u2,2(1,Wτ1 ,W1; t) = u2,2(r,Wτ1 ,Wr; t)

+

1∫
r

[
∂u2,2

∂s
(s,Wτ1 ,Ws; t)+

1

2

∂2u2,2

∂y2
(s,Wτ1 ,Ws; t)

]
ds+

1∫
r

∂u2,2

∂y
(s,Wτ1 ,Ws; t)dWs.

Comparing (2.4) and the previous equation, we obtain that u2,2 is required to
solve 

∂u2,2

∂s
(s, x, y; t) +

1

2

∂2u2,2

∂y2
(s, x, y; t) = h[2](s, u2,2(s, x, y; s))

u2,2(1, x, y; t) = f [2](x, y; t)
(2.6)
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Theorem 2.5.3 below states that for appropriate conditions on the free term
f [2] and the generator h[2] a solution u2,2 exists and fulfills enough regularity con-
ditions to guarantee that our application of Itô’s formula was correct. Therefore,
Y

[2]
t and Z

[2]
t,s can really be written in terms of u2,2 and the Brownian motion.

In a similar way we want to find corresponding systems of PDEs for the other
subsets on [0, 1]2. So in the following we again suppose that f [2] and h[2] fulfill
the requirements of Theorem 2.5.3. Then the obtained solutions of the PDE’s
systems are differentiable enough in order to apply Itô’s formula.

For t ∈ [0, τ1) we write (2.4) as follows:

Y
[2]
t = ψτ1t −

τ1∫
t

h[2](s, Y [2]
s )ds−

τ1∫
t

Z
[2]
t,sdWs, (2.7)

where

ψτ1t = f [2](Wτ1 ,W1; t)−
1∫

τ1

h[2](s, Y [2]
s )ds−

1∫
τ1

Z
[2]
t,sdWs, (2.8)

which is Fτ1-measurable for almost all t ∈ [0, τ1).
If (t, s) ∈ S1,2 we set

ψτ1t = u1,2(τ1,Wτ1 ,Wτ1 ; t), Z
[2]
t,s =

∂u1,2

∂y
(s,Wτ1 ,Ws; t),

and, applying Itô’s formula, we obtain with equation (2.8) the system
∂u1,2

∂s
(s, x, y; t) +

1

2

∂2u1,2

∂y2
(s, x, y; t) = h[2](s, u2,2(s, x, y; s))

u1,2(1, x, y; t) = f [2](x, y; t)
(2.9)

For (t, s) ∈ S1,1 set

Y
[2]
t = u1,1(t,Wt; t), Z

[2]
t,s =

∂u1,1

∂z
(s,Ws; t),

and from (2.7) we get the last system
∂u1,1

∂s
(s, z; t) +

1

2

∂2u1,1

∂z2
(s, z; t) = h[2](s, u1,1(s, z; s))

u1,1(τ1, z; t) = u1,2(τ1, z, z; t)
(2.10)

Consequently, the solution of (2.4) is given by

Y
[2]
t =

{
u2,2(t,Wτ1 ,Wt; t) , t ∈ [τ1, 1]
u1,1(t,Wt; t) , t ∈ [0, τ1)

(2.11)
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Z
[2]
t,s =



∂u2,2

∂y
(s,Wτ1 ,Ws; t) , (t, s) ∈ S2,2

∂u1,2

∂y
(s,Wτ1 ,Ws; t) , (t, s) ∈ S1,2

∂u1,1

∂z
(s,Ws; t) , (t, s) ∈ S1,1

(2.12)

To obtain systems of PDEs for the lower triangle we have to use the M-
condition (1.7), because this condition determines the process Z

[2]
t,s.

Suppose that (t, s) ∈ S2,2, and that from (1.7) with S = τ1 for a.e. t ∈ [τ1, 1]
we have

Y
[2]
t = E[Y

[2]
t |Fτ1 ] +

t∫
τ1

Z
[2]
t,sdWs. (2.13)

Set

Y
[2]
t = u2,2(t,Wτ1 ,Wt; t), Z

[2]
t,s =

∂u2,2

∂y
(s,Wτ1 ,Ws; t).

Applying Itô’s formula to u2,2 and the Brownian motion we get for r ∈ [τ1, t] the
following equation:

u2,2(r,Wτ1 ,Wr; t) = u2,2(τ1,Wτ1 ,Wτ1 ; t)

+

r∫
τ1

[
∂u2,2

∂s
(s,Wτ1 ,Ws; t)+

1

2

∂2u2,2

∂y2
(s,Wτ1 ,Ws; t)

]
ds+

r∫
τ1

∂u2,2

∂y
(s,Wτ1 ,Ws; t)dWs,

where u2,2(τ1,Wτ1 ,Wτ1 ; t) = E[u2,2(r,Wτ1 ,Wr; t)|Fτ1 ].
Comparing the previous equation and (2.13), we can write

∂u2,2

∂s
(s, x, y; t) +

1

2

∂2u2,2

∂y2
(s, x, y; t) = 0

u2,2(t, x, y; t) = u2,2(t, x, y; t),
(2.14)

from which it follows that

Y
[2]
t = u2,2(t,Wτ1 ,Wt; t) = u2,2(t,Wτ1 ,Wt; t)

= u2,2(τ1,Wτ1 ,Wτ1 ; t) +

t∫
τ1

∂u2,2

∂y
(s,Wτ1 ,Ws; t)dWs
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2.5 Weak Convergence in Special Case

= E[Y
[2]
t |Fτ1 ] +

t∫
τ1

Z
[2]
t,sdWs.

Hence, (2.13) is satisfied.

For (t, s) ∈ S2,1 consider ϕτ1t := E[Y
[2]
t |Fτ1 ]. In order to get (1.7) with S = 0,

we require in view of (2.13) that

ϕτ1t = E[Y
[2]
t ] +

τ1∫
0

Z
[2]
t,sdWs.

Setting

ϕτ1t = u2,1(τ1,Wτ1 ; t), Z
[2]
t,s =

∂u2,1

∂z
(s,Ws; t),

from Itô’s formula we get the next system of PDE:
∂u2,1

∂s
(s, z; t) +

1

2

∂2u2,1

∂z2
(s, z; t) = 0

u2,1(τ1, z; t) = u2,2(τ1, z, z; t),
(2.15)

since for r ∈ [0, τ1] we have

u2,1(r,Wr; t) = u2,1(0,W0; t) +

r∫
0

∂u2,1

∂z
(s,Ws; t)dWs.

For p ∈ [τ1, 1] one obtains

u2,1(0,W0; t) = E[u2,1(τ1,Wτ1 ; t)] = E[u2,2(τ1,Wτ1 ,Wτ1 ; t)]

= E
[
u2,2(p,Wτ1 ,Wp; t)−

p∫
τ1

∂u2,2

∂y
(s,Wτ1 ,Ws; t)dWs

]
= E[u2,2(p,Wτ1 ,Wp; t)].

In particular, for p = t we have that u2,1(0,W0; t) = E[u2,2(t,Wτ1 ,Wt; t)] =

E[Y
[2]
t ], and

ϕτ1t = E[Y
[2]
t ] +

τ1∫
0

Z
[2]
t,sdWs.

At last for (t, s) ∈ S1,1 we obtain from (1.7) the equation

Y
[2]
t = E[Y

[2]
t ] +

t∫
0

Z
[2]
t,sdWs,
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for a.e. t ∈ [0, τ1].
Setting

Y
[2]
t = u1,1(t,Wt; t), Z

[2]
t,s =

∂u1,1

∂z
(s,Ws; t),

Itô’s formula gives 
∂u1,1

∂s
(s, z; t) +

1

2

∂2u1,1

∂z2
(s, z; t) = 0

u1,1(t, z; t) = u1,1(t, z; t)
(2.16)

Hence, the solution of (1.7) is given by

Y
[2]
t =

{
u2,2(t,Wτ1 ,Wt; t) , t ∈ [τ1, 1]
u1,1(t,Wt; t) , t ∈ [0, τ1)

(2.17)

Z
[2]
t,s =



∂u2,2

∂z
(s,Wτ1 ,Ws; t) , (t, s) ∈ S2,2

∂u2,1

∂z
(s,Ws; t) , (t, s) ∈ S2,1

∂u1,1

∂y
(s,Ws; t) , (t, s) ∈ S1,1

(2.18)

Here, of course, (2.17) coincides with (2.11).
If the interval [0, 1] is divided into m parts at the points τ1, . . . , τm (0 < τ1 <

. . . < τm = 1) then Y
[m]
t and Z

[m]
t,s are computed with the next algorithm:

Consider (2.4) and a partition of [0, 1]2 into 2m−1+m(m+1)
2

intervals as shown

in Figure 2.3. Thus, one has to solve 2m − 1 + m(m+1)
2

PDEs on the following
subsets:

S1,j := {(t, s) ∈ [0, 1]2| 0 ≤ t < τj−1, τj−1 ≤ s ≤ τj}, j = 2, . . . ,m,

S2,j :=

{
{(t, s) ∈ [0, 1]2| τm−1 ≤ t ≤ τm, τm−1 ≤ s ≤ τm, t ≤ s}, j = m

{(t, s) ∈ [0, 1]2| τj−1 ≤ t < τj , τj−1 ≤ s ≤ τj , t ≤ s}, j = 1, . . . ,m− 1,

Si,j :=


{(t, s) ∈ [0, 1]2| τm−1 ≤ t ≤ τm, τj−1 ≤ s ≤ τj}, i = m, j = 1, . . . ,m− 1, i 6= j,

{(t, s) ∈ [0, 1]2| τi−1 ≤ t < τi, τj−1 ≤ s ≤ τj}, i = 1, . . . ,m− 1, j = 1, . . . ,m, i 6= j,

{(t, s) ∈ [0, 1]2| τm−1 ≤ t ≤ τm, τm−1 ≤ s ≤ τm, t ≥ s}, i = j = m,

{(t, s) ∈ [0, 1]2| τi−1 ≤ t < τi, τj−1 ≤ s ≤ τj , t ≥ s}, i = j = 1, . . . ,m− 1.
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2.5 Weak Convergence in Special Case

Figure 2.3: The algorithm of the con-
struction in the general case. The ter-
minal conditions of the systems of PDEs
are defined on the thick lines.
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We start in the right upper corner S2,m. Denoting a vector (x1, . . . , xm) by
xm, u2,m is given by the system

∂u2,m

∂s
(s,xm; t) +

1

2

∂2u2,m

∂x2
m

(s,xm; t) = h[m](s, u2,m(s,xm; s))

u2,m(1,xm; t) = f [m](xm; t)

with Y
[m]
t = u2,m(t,Wτm−1 ,Wt; t), Z

[m]
t,s =

∂u2,m

∂xm
(s,Wτm−1 ,Ws; t).

With this we can solve on S1,m

ψ
τm−1

t = f [m](Wτm ; t)−
1∫

τm−1

h[m](s, Y [m]
s )ds−

1∫
τm−1

Z
[m]
t,s dWs,

which can be translated to a parabolic equation u1,m with terminal condition f [m]

and nonhomogeneous term being equal to h[m](s, u2,m(s,xm; s)).

The most right column of the lower triangle can be solved using the M-
condition (1.7). Namely, we write the solution on Sm,m in the following way:

Y
[m]
t = E[Y

[m]
t |Fτm−1 ] +

t∫
τm−1

Z
[m]
t,s dWs,

which can be translated with Itô’s formula into an homogeneous parabolic equa-
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tion of the form 
∂um,m
∂s

(s,xm; t) +
1

2

∂2um,m
∂x2

m

(s,xm; t) = 0

um,m(t,xm; t) = u2,m(t,xm; t).
(2.19)

Iteratively um,i on Sm,i is given by an homogeneous parabolic equation of the
form (2.19) with terminal condition um,i+1.

With this we computed Y
[m]
t and Z

[m]
t,s in the regions S1,m, S2,m and Sm,j, j =

1, . . . ,m. The next step is to compute this solution in the regions S1,m−1, S2,m−1

and Sm−1,j, j = 1, . . . ,m− 1.
Observing that

Y
[m]
t = ψ

τm−1

t −
τm−1∫
t

h[m](s, Y [m]
s )ds−

τm−1∫
t

Z
[m]
t,s dWs,

we can compute Y
[m]
t and Z

[m]
t,s on S1,m−1, S2,m−1 and Sm−1,j, j = 1, . . . ,m − 1,

in an analogous way as on S1,m, S2,m and Sm,j, j = 1, . . . ,m, with new boundary

condition ψ
τm−1

t instead of f [m]. Proceeding in this way we can find Y
[m]
t , Z

[m]
t,s on

the whole square.

2.5.2 Regularity Problem for the Solutions of PDEs

In this part we study the well-posedness of the PDEs from the previous subsection,
i.e. we show that the PDE has a unique classical solution. In addition, we show
that even higher order derivatives exist, are continuous and bounded. We will
need these derivatives in the proof of Lemma 2.5.1.

Our regularity result for the solutions of PDEs constructed on the sets from
Figure 2.2 is the following:

Theorem 2.5.3. Let for the BSVIE (2.4) the conditions from Lemma 2.5.1 on
f [m] and h[m] be fulfilled and l = m = 2, k = T = 1. Then there exist unique
classical solutions ui1,i2 and uj1,j2, j1 ≥ j2, defined on the subsets S1,i2, S2,i2, Sj1,j2
(see Figure 2.2), i1, i2, j1, j2 ∈ {1, 2}, belonging to C∞b ([0, 1]×Ri2 × [0, 1];R) and
C∞b ([0, 1]× Rj2 × [0, 1];R), respectively.

Obviously one can extend the result to the general case:

Corollary 2.5.4. Let for the BSVIE (2.4) the conditions from Lemma 2.5.1
on f [m] and h[m] be fulfilled. Then there exist unique classical solutions ui1,i2

and uj1,j2, j1 ≥ j2, defined on the subsets S1,i2, S2,i2, Sj1,j2 (see Figure 2.3),
i1 ∈ {1, 2}, i2, j1, j2 ∈ {1, . . . ,m}, belonging to C∞b ([0, T ]× Ri2·d × [0, T ];Rk) and
C∞b ([0, T ]× Rj2·d × [0, T ];Rk), respectively.
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2.5 Weak Convergence in Special Case

Before proving Theorem 2.5.3 we show the next lemma:

Lemma 2.5.5. Let g ∈ C∞b ([t, 1] × R3;R) depending on the variables (s, y, z, x)
be a bounded function, t ∈ [0, 1]. Then for all (s, y) the unique bounded classical
solution v(s, y;x) of

∂v

∂s
(s, y;x) +

1

2

∂2v

∂y2
(s, y;x) = g(s, y, v(s, y;x);x), (s, y;x) ∈ [t, 1]× R× R

v(1, y;x) = 0.

(2.20)
is ∞-times differentiable in x with uniformly bounded derivatives.

In addition, the mixed partial derivatives ∂i1+i2+i3v
∂si1∂yi2∂xi3

exist, are continuous and
bounded for i3 ≥ 1 and i1, i2 ∈ N0.

Proof. We use some ideas from [1] to achieve the claimed differentiability of v in
the variable x. Namely, using Theorem 4.5, Chapter 7, from [36], the solution of
(2.20) has for x fixed and (t, y) ∈ [0, 1]× R the following representation:

v(t, y;x) = E[Y x,y,t
t ] ≡ Y x,y,t

t ,

where (Y x,y,t
s , Zx,y,t

s ) is the unique adapted solution of the family of BSDEs
Y x,y,t
s =

1∫
t

g(s,W t,y
s , Y x,y,t

s ;x)ds+

1∫
t

Zx,y,t
s dWs,

Y x,y,t
1 = 0

(2.21)

with W t,y
s := y+ (Ws−Wt) being the unique solution X t,y

s of the following SDE:{
dX t,y

s = dWs, s ∈ [t, 1]

X t,y
t = y.

Theorem 2.2 in [1] states that if conditions (C1)−(C3) below are fulfilled then
Y x,y,t
s is a.s. continuous in s for all (y, t) and that Y x,y,t

s , Zx,y,t
s are continuously

differentiable in x.

(C1) The function g : [0, 1]×R3 → R with (s, y, z, x) 7→ g(s, y, z;x) is a B([0, 1])⊗
B(R3) measurable function. Moreover, it is globally Lipschitz in (y, z) and
continuously differentiable in (y, z;x); for all (s, y, z) the mapping x 7→
g(s, y, z;x) is differentiable and for all x ∈ R and all r ≥ 1 it holds that

(i) lim
x′→x

E
[( 1∫

t

|g(s, y, Y x,y,t
s ;x′)− g(s, y, Y x,y,t

s ;x)|ds
)r]

= 0.
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(ii) lim
x′→x

E
[( 1∫

t

|∂g
∂x

(s, y, Y x′,y,t
s ;x′)− ∂g

∂x
(s, y, Y x,y,t

s ;x)|ds
)r]

= 0.

(C2) The random variables Y x,y,t
1 are F1-measurable and for every compact set

K ⊂ R there exist a constant c ∈ R such that

sup
x∈K

sup
ω∈Ω
|Y x,y,t

1 (ω)| ≤ c;

for all r ≥ 1 and (y, t) ∈ R× [0, 1] the mapping R→ LrF1
(Ω;Rk), x 7→ Y x,y,t

1

is differentiable.

(C3) For x ∈ R and ĥ 6= 0 let

ζ(x, ĥ) :=
1

ĥ
[Y x+ĥ,y,t

1 − Y x,y,t
1 ].

For all r ≥ 1 there exist a constant c > 0 such that for x, x′ ∈ R and
ĥ, ĥ′ ∈ R \ {0}

E
[
|Y x+ĥ,y,t

1 − Y x′+ĥ′,y,t
1 |2r + |ζ(x, ĥ)− ζ(x′, ĥ′)|2r

]
≤ c(|x− x′|2 + |ĥ− ĥ′|2)r.

In our case the terminal condition Y x,y,t
1 = 0, so (C2) and (C3) are trivially

fulfilled.
To show (i) from (C1) we use that g is differentiable with uniformly bounded

derivatives in all variables and, hence, is a globally Lipschitz function with Lip-
schitz constant L1 in all variables. Therefore,

|g(s, y, Y x,y,t
s ;x′)− g(s, y, Y x,y,t

s ;x)| ≤ L1|x′ − x|

and

lim
x′→x

E
[( 1∫

t

|g(s, y, Y x,y,t
s ;x′)− g(s, y, Y x,y,t

s ;x)|ds
)r]
≤ lim

x′→x
L2|x′ − x|r = 0

for some L2 > 0.
In order to prove condition (ii) let µ := P ⊗ λ[0,1] be the product measure of

P and the Lebesgue measure λ[0,1]. For each r ≥ 1 we can apply Proposition 5.1
from [10], namely, for (y, t) fixed

E
[(

sup
s∈[t,1]

|Y x′,y,t
s −Y x,y,t

s |
)r] ≤ C(r)

(
E
[ 1∫
t

|g(s, y, Y x,y,t
s ;x′)−g(s, y, Y x,y,t

s ;x)|ds
])r

,
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where C(r) is a constant depending only on r. Hence,

lim
x′→x

E
[(

sup
s∈[t,1]

|Y x′,y,t
s − Y x,y,t

s |
)r]

= 0

and, for all s ∈ [t, 1], Y x′,y,t
s converges to Y x,y,t

s in probability relative to µ (x′ →
x). Since the partial derivative ∂g

∂x
(s, y, z;x) is continuous and bounded function,

we obtain that for (y, t) fixed and all s ∈ [t, 1]

lim
x′→x

∂g

∂x
(s, y, Y x′,y,t

s ;x′) =
∂g

∂x
(s, y, Y x,y,t

s ;x)

in probability relative to µ. Thus, from Theorem 21.4 in [3], ∂g
∂x

(s, y, Y x′,y,t
s ;x′)

converges to ∂g
∂x

(s, y, Y x,y,t
s ;x) in r-th order mean relative to µ by the boundness

of ∂g
∂x

, and it holds that

lim
x′→x

E
[( 1∫

t

|∂g
∂x

(s, y, Y x′,y,t
s ;x′)−∂g

∂x
(s, y, Y x,y,t

s ;x)|ds
)r]

≤ lim
x′→x

E
[ 1∫
t

∣∣∣∣∂g∂x(s, y, Y x′,y,t
s ;x′)− ∂g

∂x
(s, y, Y x,y,t

s ;x)

∣∣∣∣rds]

= lim
x′→x

∫
Ω×[0,1]

∣∣∣∣1[t,1](s)

(
∂g

∂x
(s, y, Y x′,y,t

s ;x′)− ∂g

∂x
(s, y, Y x,y,t

s ;x)

)∣∣∣∣rdµ = 0.

Hence, v is differentiable in x.
Furthermore, denoting by (∇Y x,y,t

s ,∇Zx,y,t
s ) the derivatives of Y x,y,t

s and Zx,y,t
s

in x they solve by Theorem 2.1 in [1] the BSDE
∇Y x,y,t

s

=

1∫
t

[
∂g

∂x
(s,W t,y

s , Y x,y,t
s ;x) +

∂g

∂z
(s,W t,y

s , Y x,y,t
s ;x)∇Y x,y,t

s

]
ds−

1∫
t

∇Zx,y,t
s dWs,

∇Y x,y,t
1 = 0

(2.22)

for s ∈ [t, 1]. In particular, ṽ(s, y;x) := ∇Y x,y,s
s =

∂v

∂x
(s, y;x) solves

∂ṽ

∂s
(s, y;x) +

1

2

∂2ṽ

∂y2
(s, y;x)

=
∂g

∂x
(s, y, v(s, y;x);x) +

∂g

∂z
(s, y, v(s, y;x);x)ṽ(s, y;x),

ṽ(1, y;x) = 0.

(2.23)
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Denoting

G1(s, y;x) :=
∂g

∂x
(s, y, v(s, y;x);x), G2(s, y;x) :=

∂g

∂z
(s, y, v(s, y;x);x)

and using Theorem 4.1, Chapter 7, from [36], the unique bounded solution of
(2.23) is given explicitly by

ṽ(s, y;x) = E
[
−

1−s∫
0

G1(s+ θ,W s,y
θ ;x)e

−
θ∫
0

G2(λ+s,W s,y
λ ;x)dλ

dθ

]
. (2.24)

Note that the solution ṽ is indeed bounded as G1 and G2 are bounded. Conse-
quently, v can be differentiated a second time with second derivative

∂2v

∂x2
(s, y;x) =

∂ṽ

∂x
(s, y;x) = E

[
−

1−s∫
0

∂

∂x

(
G1(s+θ,W s,y

θ ;x)e
−
θ∫
0

G2(λ+s,W s,y
λ ;x)dλ)

dθ

]
.

Continuing iteratively under the assumptions on the function g we obtain that v
is ∞-times differentiable in x with bounded derivatives.

In addition, as ∂v
∂x

can be represented as in Equation (2.24), it follows that also
the mixed partial derivatives exist, are continuous and bounded, if the function
g fulfills the assumptions stated in the Lemma.

Proof of Theorem 2.5.3. Writing the solution of (2.6) as

u2,2(s, x, y; t) = ũ2,2(s, x, y; t) + ū2,2(s, x, y), (2.25)

we get two Cauchy problems:
∂ũ2,2

∂s
(s, x, y; t) +

1

2

∂2ũ2,2

∂y2
(s, x, y; t) = 0,

ũ2,2(1, x, y; t) = f [2](x, y; t)
(2.26)


∂ū2,2

∂s
(s, x, y) +

1

2

∂2ū2,2

∂y2
(s, x, y) = h[2](s, ũ2,2(s, x, y; s) + ū2,2(s, x, y)).

ū2,2(1, x, y) = 0

(2.27)
If we show that ũ2,2(s, x, y; t) ∈ C∞b ([0, 1] × R2 × [0, 1];R) and ū2,2(s, x, y) ∈

C∞b ([0, 1] × R2;R) then from (2.25) it follows that u2,2(s, x, y; t) ∈ C∞b ([0, 1] ×
R2 × [0, 1];R).

46



2.5 Weak Convergence in Special Case

Using Theorem 4.2, Chapter 4, from [15], the unique classical solution of
(2.26) admits the following representation

ũ2,2(s, x, y; t) =

+∞∫
−∞

f [2](x, ξ; t)Φ(s, y, 1, ξ)dξ (2.28)

for all (x, t) ∈ R× [τ1, 1], where the density Φ is given by

Φ(s, y, s̃, ξ) =
1√

2π(s̃− s)
e−

(y−ξ)2
2(s̃−s) , τ1 ≤ s < s̃, y, ξ ∈ R.

With this we can compute for l1, l2, l3 ∈ N0

∂l1+l2+l3ũ2,2

∂xl1∂yl2∂tl3
(s, x, y; t) =

1√
2π(1− s)

+∞∫
−∞

∂l1+l2+l3f [2]

∂xl1∂yl2∂tl3
(x, y − ξ; t)e−

ξ2

2(1−s)dξ,

(2.29)
and together with (2.26) it follows that ũ2,2(s, x, y; t) ∈ C∞b ([0, 1]×R2× [0, 1];R).

To see that ū2,2(s, x, y) ∈ C∞b ([0, 1] × R2;R) note the following: First it is
clear from standard theory on PDEs, that for fixed x the solution ū2,2(·, x, ·) ∈
C∞b ([0, 1]×R;R) under our assumptions on the generator h[2] and free term f [2].
Secondly, using Lemma 2.5.5 it holds that for (s, y) fixed ū2,2(s, ·, y) ∈ C∞b (R;R).
In addition, all mixed derivatives involving x in (s, x, y) exist and are continuous,
because the partial derivative in x-direction can be expressed in explicit form as
in Equation (2.24).

Consequently, the function u2,2(s, x, y; t) exhibits the required properties.
Due to the differentiability of the functions f [2], h[2] and u2,2, using Theorem

4.1, Chapter 7, from [36], the unique classical solution of (2.9) is given by

u1,2(s, x, y; t) =

+∞∫
−∞

f [2](x, ξ; t)Φ(s, y, 1, ξ)dξ

−
1−s∫
0

+∞∫
−∞

h[2](s, u2,2(s+ θ, x, ξ; s+ θ))Φ(s, y, s+ θ, ξ)dξdθ

for all x ∈ R.
Using assumption (M2) from Lemma 2.5.1, it follows that u1,2(s, x, y; t) ∈

C∞b ([0, 1] × R2 × [0, 1];R). In the same manner we show that u1,1(s, z; t) ∈
C∞b ([0, 1] × R × [0, 1];R) writing u1,1 as a sum of two functions solving easier
PDEs similar to ũ2,2 and ū2,2.
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Notice that the solutions of the PDEs (2.14), (2.15), (2.16) represent Cauchy
problems which are of the same type as the problem (2.26). We have the same
regularity properties because the terminal condition of uj1,j2 is ui1,i2 which lies in
C∞b ([0, 1]× Ri2 × [0, 1];R). Hence, uj1,j2(s, x, y; t) ∈ C∞b ([0, 1]× Rj2 × [0, 1];R).

2.5.3 Proof of Lemma 2.5.1

Proof of Lemma 2.5.1. For simplicity, we show this lemma for T = d = k = 1
and m = 2, since the proof can be easily generalized.

In order to compute a discretization of ui1,i2 , i1 ≤ i2 (i1, i2 = 1, 2), we consider
(sη, xi, yj; tκ) = (η∆s, iδ, jδ;κ∆t), where δ = δ(n) = 1/

√
n, ∆s = ∆t = 1/n.

From a Taylor expansion of u2,2 we get the following recurrence equation:

1

2

(
u2,2(sη+1, xi, yj + δ; tκ) + u2,2(sη+1, xi, yj − δ; tκ)

)
= u2,2(sη, xi, yj; tκ) +

∂u2,2

∂s
(sη, xi, yj; tκ)δ

2 +
1

2

∂2u2,2

∂y2
(sη, xi, yj; tκ)δ

2

+
1

4

(∂2u2,2

∂y2
(s+
η , xi, y

+
j ; tκ)δ

2 − ∂2u2,2

∂y2
(sη, xi, yj; tκ)δ

2
)

+
1

2

∂2u2,2

∂y∂s
(s+
η , xi, y

+
j ; tκ)δ

3 +
1

4

∂2u2,2

∂s2
(s+
η , xi, y

+
j ; tκ)δ

4

+
1

4

(∂2u2,2

∂y2
(s−η , xi, y

−
j ; tκ)δ

2 − ∂2u2,2

∂y2
(sη, xi, yj; tκ)δ

2
)

+
1

2

∂2u2,2

∂y∂s
(s−η , xi, y

−
j ; tκ)δ

3 +
1

4

∂2u2,2

∂s2
(s−η , xi, y

−
j ; tκ)δ

4

= u2,2(sη, xi, yj; tκ) + h[2](sη, u
2,2(sη, xi, yj; sη))∆s+O(δ3), (2.30)

for appropriate values (s±η , y
±
j ) ∈ [sη, sη±δ2]×[yj, yj±δ] and with u2,2(n, xi, yj; tκ) =

f [2](xi, yj; tκ), since∣∣∣∂2u2,2

∂y2
(s±η , xi, y

±
j ; tκ)δ

2−∂
2u2,2

∂y2
(sη, xi, yj; tκ)δ

2
∣∣∣

≤
∣∣∣∣∣∣∂3u2,2

∂y3

∣∣∣∣∣∣
∞
δ3 +

∣∣∣∣∣∣∂3u2,2

∂y2∂s

∣∣∣∣∣∣
∞
δ4

and the involved partial derivatives exist and are uniformly bounded in accor-
dance with the assumptions, see Theorem 2.5.3.
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This motivates us to define U2,2
n (η, i, j;κ) for k1 = bτ1nc by

1
2

(
U2,2
n (η + 1, i, j + 1;κ) + U2,2

n (η + 1, i, j − 1;κ)
)

= U2,2
n (η, i, j;κ) + h[2](η, U2,2

n (η, i, j; η)) 1
n

U2,2
n (n, i, j;κ) = f [2](xi, yj; tκ),

(2.31)

where κ = n, . . . , k1, η = n− 1, . . . , κ, i, j ∈ Z.
Using Lipschitz condition on h, the previous difference equation has a unique

solution for large n.
Similar, we approximate (2.9) and (2.10):

1
2

(
U1,2
n (η + 1, i, j + 1;κ) + U1,2

n (η + 1, i, j − 1;κ)
)

= U1,2
n (η, i, j;κ) + h[2](η, U2,2

n (η, i, j; η)) 1
n

U1,2
n (n, i, j;κ) = f [2](xi, yj; tκ), κ = k1, . . . , 0, η = n− 1, . . . , k1, i, j ∈ Z

1
2

(
U1,1
n (η + 1, j + 1;κ) + U1,1

n (η + 1, j − 1;κ)
)

= U1,1
n (η, j;κ) + h[2](η, U1,1

n (η, j; η)) 1
n

U1,1
n (k1, j;κ) = U1,2

n (k1, j, j;κ), κ = k1, . . . , 0, η = k1 − 1, . . . , κ, j ∈ Z

One easily shows that for

Y
(n),[2]
tη ,tκ =


U2,2
n (η,W

(n)

τ
(n)
1

,W
(n)
tη ;κ) , κ = n, . . . , k1, η = n, . . . , κ,

U1,2
n (η,W

(n)

τ
(n)
1

,W
(n)
tη ;κ) , κ = k1, . . . , 0, η = n, . . . , k1,

U1,1
n (η,W

(n)
tη ;κ) , κ = k1, . . . , 0, η = k1, . . . , κ,

we have that

Y
(n),[2]
tη := Y

(n),[2]
tη ,tη = E

[
f [2](W

(n)

τ
(n)
1

,W
(n)
1 ; tη)−

1

n

n−1∑
λ=η

h[2](tλ, Y
(n),[2]
tλ,tλ

)

∣∣∣∣F(n)
tη

]
and, hence,

Y
(n),[2]
tη =

{
U2,2
n (η,W

(n)

τ
(n)
1

,W
(n)
tη ; η) , tη ∈ [τ

(n)
1 , 1],

U1,1
n (η,W

(n)
tη ; η) , tη ∈ [0, τ

(n)
1 ).

(2.32)

 Note that by Remark 2.5.2 Equation (2.5) has a unique solution for
m = 2, because f [2](Wτ1 ,W1; t) is F1-measurable for all t ∈ [0, 1] and,

therefore, f [2](W
(n)

τ
(n)
1

,W
(n)
1 ; ti) is F

(n)
tn -measurable for all i = 0, . . . , n.


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Now we want to obtain an upper bound for

θ2,2
n (η) := sup

i,j∈Z

∣∣u2,2(η∆s, xi, yj;κ∆s)− U2,2
n (η, i, j;κ)

∣∣,
κ = n, . . . , k1, η = n−1, . . . , κ. From (2.30) and the definition of U2,2, see (2.31),
we find a constant C1 with

θ2,2
n (η) ≤ γ

[
θ2,2
n (η + 1) +

C1

n
√
n

]
, γ =

1

1− L∆s
,

which yields the inequality

θ2,2
n (η) ≤ γn−ηθ2,2

n (n) +
C1

n
√
n

n−η∑
p=1

γp = γn−ηθ2,2
n (n) +

C1

n
√
n
γ
γn−η − 1

γ − 1

and, therefore,

max
k1≤κ≤n

max
κ≤η≤n−1

θ2,2
n (η) ≤ e2Lθ2,2

n (n) +
C1

n
√
n
γ
e2L − 1

γ − 1
=
C1(e2L − 1)

L
√
n

, θ2,2
n (n) = 0.

Analogously, we find a constant C2, such that

θ1,2
n (η) := sup

i,j∈Z

∣∣u1,2(η∆s, xi, yj;κ∆s)− U1,2
n (η, i, j;κ)

∣∣ ≤ C1(e2L − 1) + C2√
n

,

where κ = k1, . . . , 0, η = n− 1, . . . , k1, and

max
0≤κ≤k1

max
n−1≤η≤k1

θ1,2
n (η) ≤ C1(e2L − 1) + C2√

n
.

At last consider

θ1,1
n (η) := sup

i,j∈Z

∣∣u1,1(η∆s, yj;κ∆s)− U1,1
n (η, j;κ)

∣∣,
κ = k1, . . . , 0, η = k1−1, . . . , κ. Using the fact that k1

n
= bτ1nc

n
≤ τ1 and denoting

by K1,i := C1,i|τ1−k1∆s|, where C1,i is a bound for the derivatives of the function
u1,i (in particular, for the derivatives involving x), i = 1, 2, for η = k1 we get

|u1,1(τ1, yj;κ∆s)| −K1,1 ≤ |u1,1(k1∆s, yj;κ∆s)| ≤ |u1,1(τ1, yj;κ∆s)|+K1,1.

Also we know that u1,1(τ1, yj;κ∆s) = u1,2(τ1, yj, yj;κ∆s). Thus, we can obtain
a similar estimation for u1,2:

|u1,2(k1∆s, yj, yj;κ∆s)|−K1,2
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≤ |u1,2(τ1, yj, yj;κ∆s)|

≤ |u1,2(k1∆s, yj, yj;κ∆s)|+K1,2.

Note, we needed here that u2,2 is sufficiently smooth in x-direction because u1,2

depends on u2,2, and we can estimate as above |u1,2(τ1, yj, yj;κ∆s)| only if u1,2 is
sufficiently smooth in x-direction.

Hence,

θ1,1
n (k1) = sup

i,j∈Z

∣∣u1,1(k1∆s, yj;κ∆s)−U1,2
n (k1, j, j;κ)

∣∣
≤ θ1,2

n (k1) + 2C(τ1 − k1∆s) ≤ C1(e2L − 1) + C2 + 2C√
n

,

where C := max
i
C1,i for all i = 1, 2.

Finally, for k1 − 1 ≤ η ≤ κ we can find a constant C3

θ1,1
n (η) ≤ γ

[
θ1,1
n (η + 1) +

C3

n
√
n

]
,

which yields the upper bound

max
0≤κ≤k1

max
k1−1≤η≤κ

θ1,1
n (η) ≤ e2Lθ1,1

n (k1)+
C3(e2L − 1)

L
√
n

≤
(
e2L(C2 + 2C) +

(e2L − 1)(Le2LC1 + C3)

L

)
1√
n
.

Using a suitable constant A, we get the following estimate:

max
η

{
θ2,2
n (η), θ1,1

n (η)

}
≤ A√

n
. (2.33)

With this the weak convergence of (Y (n),[2])n∈N to Y [2] in the Skorokhod topol-
ogy follows from Remark 2.5.2, i.e. the tightness of the sequence (Y (n),[2])n∈N,
as from (2.33) follows that the finite dimensional distributions converge weakly.
To see this, remark that for any 0 ≤ t̃1 < . . . < t̃j0−1 < τ1 ≤ t̃j0 < . . . t̃p ≤ T ,
p ∈ N, j0 ∈ 1, . . . , p+ 1, the finite dimensional distributions

(u1,1(t̃1,W
(n)

t̃1
; t̃1), . . . , u1,1(t̃j0−1,W

(n)

t̃j0−1
; t̃j0−1),

u2,2(t̃j0 ,W
(n)
τ1
,W

(n)

t̃j0
; t̃j0), . . . , u

2,2(t̃p,W
(n)
τ1
,W

(n)

t̃p
; t̃p))

∗

51



2. PROOFS

converge weakly to

(u1,1(t̃1,Wt̃1 ; t̃1), . . . , u1,1(t̃j0−1,Wt̃j0−1
; t̃j0−1),

u2,2(t̃j0 ,Wτ1 ,Wt̃j0
; t̃j0), . . . , u

2,2(t̃p,Wτ1 ,Wt̃p ; t̃p))
∗ = (Y

[2]

t̃1
, . . . , Y

[2]

t̃p
)∗,

because of Donsker’s theorem and the continuous mapping theorem applied to
the continuous functions u1,1 and u2,2. In addition, it follows from (2.33) that

(Y
(n),[2]

t̃1
, . . . , Y

(n),[2]

t̃p
)∗ − (u1,1(t̃1,W

(n)

t̃1
; t̃1), . . . , u2,2(t̃p,W

(n)
τ1
,W

(n)

t̃p
; t̃p))

∗

converges to (0, . . . , 0)∗ in probability and, hence, with Slutsky’s theorem

(Y
(n),[2]

t̃1
, . . . , Y

(n),[2]

t̃p
)∗ converge weakly to (Y

[2]

t̃1
, . . . , Y

[2]

t̃p
)∗.

2.6 Proof of the Main Convergence Theorem

Proof of Theorem 1.3.6. Let m ∈ N and τ 〈m〉 := (τ
〈m〉
0 , . . . , τ

〈m〉
m ) be a partition

of [0, T ] (0 = τ
〈m〉
0 < τ

〈m〉
1 < . . . < τ

〈m〉
m = T ).

For a point x := (x1, . . . ,xm) ∈ Rl, where xi ∈ Rd, i = 1, . . . ,m, m ∈ N, we
define the linear interpolation Iτ 〈m〉,x : [0, T ]→ Rd of τ 〈m〉 and x as

Iτ 〈m〉,x(t) :=



0 , t = 0
t

τ
〈m〉
1

x1 , t ∈ [0, τ
〈m〉
1 ]

τ
〈m〉
2 − t

τ
〈m〉
2 − τ 〈m〉1

x1 +
t− τ 〈m〉1

τ
〈m〉
2 − τ 〈m〉1

x2 , t ∈ [τ
〈m〉
1 , τ

〈m〉
2 ]

...

τ
〈m〉
m − t

τ
〈m〉
m − τ 〈m〉m−1

xm−1 +
t− τ 〈m〉m−1

τ
〈m〉
m − τ 〈m〉m−1

xm , t ∈ [τ
〈m〉
m−1, τ

〈m〉
m ]

.

Define f 〈m〉 : Rl × [0, T ]→ Rk by f 〈m〉(x; t) := f(Iτ 〈m〉,x; t) and consider

Y
〈m〉
t = f 〈m〉(W

τ
〈m〉
m

; t)−
T∫
t

h(s, Y 〈m〉s )ds−
T∫
t

Z
〈m〉
t,s dWs, t ∈ [0, T ]. (2.34)

From Remark 2.5.2 Equation (2.34) has a unique adapted M-solution (Y 〈m〉, Z〈m〉).
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2.6 Proof of the Main Convergence Theorem

Assume, that (τ 〈m〉)m∈N is a sequence of partitions, such that

lim
m→∞

max
i∈{0,...,m−1}

|τ 〈m〉i+1 − τ
〈m〉
i | = 0.

Then from Lemma 2.3.1 it follows that Y 〈m〉 converges to Y in L2,∞
F

for m→∞
as f(Iτ 〈m〉,W

τ
〈m〉
m

; t) converges to f(W ; t) in L2,∞
F

.

In addition, as f is bounded also f 〈m〉 is bounded. Moreover f 〈m〉 is Lipschitz
with Lipschitz constant independent of m. Hence, we can approximate f 〈m〉 and
h by a sequence of smooth functions f 〈m〉,{p} and h{p} with uniformly bounded
derivatives, such that

lim
p→∞

sup
m
E[ sup

s∈[0,T ]

||f 〈m〉,{p}(W
τ
〈m〉
m

; s)− f 〈m〉(W
τ
〈m〉
m

; s)||22] = 0,

and

lim
p→∞
||h− h{p}||∞ = 0,

because Y 〈m〉 and Y are uniformly bounded (due to Lemma 2.3.1).
With this we consider

Y
〈m〉,{p}
t = f 〈m〉,{p}(W

τ
〈m〉
m

; t)−
T∫
t

h{p}(s, Y 〈m〉,{p}s )ds−
T∫
t

Z
〈m〉,{p}
t,s dWs, t ∈ [0, T ].

(2.35)
Again from Remark 2.5.2 and Lemma 2.3.1 we follow, that there exists a unique
M-solution (Y 〈m〉,{p}, Z〈m〉,{p}) of Equation (2.35) and that Y 〈m〉,{p} converges uni-
formly to Y 〈m〉 as p approaches ∞.

The free term f 〈m〉,{p} and the generator h{p} fulfill assumptions (M1) and

(M2) of Lemma 2.5.1, therefore define τ (n),〈m〉 := (τ
(n),〈m〉
0 , . . . , τ

(n),〈m〉
m ) with

τ
(n),〈m〉
λ :=

bτ 〈m〉λ nc
n

for λ = 0, . . . ,m, and consider

Y
(n),〈m〉,{p}
ti = f 〈m〉,{p}(W

(n)

τ
(n),〈m〉
m

; ti)

−T
n

n−1∑
j=i

h{p}(tj, Y
(n),〈m〉,{p}
tj )−

n−1∑
j=i

Z
(n),〈m〉,{p}
ti,tj ∆W

(n)
tj+1

. (2.36)

Due to Theorem 1.3.4 there exists a unique M-solution (Y (n),〈m〉,{p}, Z(n),〈m〉,{p})
of Equation (2.36) and from Lemma 2.5.1 it follows the weak convergence from
Y (n),〈m〉,{p} to Y 〈m〉,{p} when n tends to ∞.
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2. PROOFS

Further, again from Theorem 1.3.4 one obtains that there exists a unique
M-solution (Y (n),〈m〉, Z(n),〈m〉) for

Y
(n),〈m〉
ti = f 〈m〉(W

(n)

τ
(n),〈m〉
m

; ti)−
T

n

n−1∑
j=i

h(tj, Y
(n),〈m〉
tj )−

n−1∑
j=i

Z
(n),〈m〉
ti,tj ∆W

(n)
tj+1

(2.37)

and from Lemma 2.3.2 follows the uniform convergence of Y (n),〈m〉,{p} to Y (n),〈m〉

as p tends to ∞ (after n).
At last, again from Lemma 2.3.2 Y (n),〈m〉 converges uniformly to Y (n).
To sum up, if first n converges to ∞, then p and at last m, we obtain, that

Y (n) converges weakly to Y as from convergence in L2,∞
F

and L2,∞
F(n) follows weak

convergence in the Skorokhod topology.
More precisely, let G : Rr → R be a bounded continuous function, r ≥ 1, and

0 ≤ t̃1 < . . . < t̃r ≤ T some partition of [0, T ], then we obtain

E
[
|G(Yt̃1 , . . . , Yt̃r)−G(Y

(n)

t̃1
, . . . , Y

(n)

t̃r
)|
]

≤ E
[
|G(Yt̃1 , . . . , Yt̃r)−G(Y

〈m〉
t̃1

, . . . , Y
〈m〉
t̃r

)|
]

+E
[
|G(Y

〈m〉
t̃1

, . . . , Y
〈m〉
t̃r

)−G(Y
〈m〉,{p}
t̃1

, . . . , Y
〈m〉,{p}
t̃r

)|
]

+E
[
|G(Y

〈m〉,{p}
t̃1

, . . . , Y
〈m〉,{p}
t̃r

)−G(Y
(n),〈m〉,{p}
t̃1

, . . . , Y
(n),〈m〉,{p}
t̃r

)|
]

+E
[
|G(Y

(n),〈m〉,{p}
t̃1

, . . . , Y
(n),〈m〉,{p}
t̃r

)−G(Y
(n),〈m〉
t̃1

, . . . , Y
(n),〈m〉
t̃r

)|
]

+E
[
|G(Y

(n),〈m〉
t̃1

, . . . , Y
(n),〈m〉
t̃r

)−G(Y
(n)

t̃1
, . . . , Y

(n)

t̃r
)|
]
.

The first two summands converge to zero, if first p and then m, respectively,
converges to∞, because from convergence in L2,∞

F
, in particular, follows the con-

vergence of the finite-dimensional distributions. The third summand converges
due to Lemma 2.5.1, if n tends to ∞. Analogously to the first two summands,
the last two summands converge, if first p and then m, respectively, tend to ∞.
Together with the tightness of the sequences (Y (n))n∈N, we obtain that (Y (n))n∈N
converges weakly to Y .
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Chapter 3

Numerical Example

Consider for (1.9) the following example:

Yt = te
1
2 sin(W1) +

1∫
t

Ysds−
1∫
t

Zt,sdWs, t ∈ [0, 1], (3.1)

with T = d = k = 1.
As conditions (V1) and (V2) hold, Equation (3.1) admits a unique solution

(Y, Z).
Notice that Yt = e

t
2 sin(Wt), since e

t
2 sin(Wt) is a martingale and hence

E
[
te

1
2 sin(W1) +

1∫
t

Ysds

∣∣∣∣Ft] = tYt + (1− t)Yt = Yt.

Using (1.10) we find the discretization Y
(n)
ti . If we interpolate piecewise con-

stantly between values Y
(n)
ti and Y

(n)
ti+1

, from Theorem 1.3.6, we obtain that Y (n)

converges weakly to Y . In particular, for every bounded continuous function
g : D([0, 1];R)→ R, it holds, that

lim
n→∞

(
E
[
g
(
Y (n)

)]
− E

[
g
(
Y
)])

= 0. (3.2)

We examine the convergence by plotting the map

n 7→
(
E
[∫ 1

0

min{Y 2
s ,M}ds

]
− E

[
1

n

n−1∑
i=0

min{(Y (n)
ti )2,M}

])
=: X(n), M ≥ e,

see Figure 3.1, i.e. for the function g(y) :=
∫ 1

0
min{y(s)2,M}ds with y ∈

D([0, 1];R). Applying Itô’s formula to e2t sin2(Wt) and since M ≥ e, we ob-
tain that

E
[∫ 1

0

min{Y 2
s ,M}ds

]
= E

[∫ 1

0

Y 2
s ds

]
=

∫ 1

0

esE
[
sin2(Ws)

]
ds
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3. NUMERICAL EXAMPLE

=
1

2

∫ 1

0

es(1− e−2s)ds =
(e− 1)2

2e

and the expected value in X(n) is computed as

E
[

1

n

n−1∑
i=0

min{(Y (n)
ti )2,M}

]
=

1

n

n−1∑
i=0

E
[
min{(Y (n)

ti )2,M}
]
,

where the solution of the DBSVIE Y
(n)
ti can be written as

Y
(n)
ti =

n

n− 1
E
[
tie

1
2 sin(W

(n)
1 ) +

1

n

n−1∑
j=i+1

Y
(n)
tj

∣∣∣∣F(n)
ti

]
.

We plot X(n) in logarithmic scales on both the axes for n = 10, 20, 40, . . . , 400
with M = 10, linear interpolated between the values. Using least squares method,
we obtain that the slope of the map in Figure 3.1 is about −0.928, which shows
a good rate of convergence of our algorithm.

In addition, in Table 3.1 we show the convergence to zero of Y
(n)

0 , which follows
from the view of our solution for the problem (3.1). Because of computational
rounding of numbers, in simulation we obtain some additional errors, which are
not essential to show the required convergence. Note that Y

(n)
0 can take negative

values as the random walk also does.

Table 3.1: Values of X(n) and convergence of

Y
(n)

0 .

n X(n) Y
(n)

0

100 0.0339 0.0039× 10−16

200 0.0172 −0.0078× 10−16

300 0.0116 0.1067× 10−16

400 0.0087 0.0503× 10−16
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Figure 3.1: The speed of convergence of
the numerical algorithm: it is plotted the
map n 7→ X(n) in logarithmic scales on
both the axes for n = 10, 20, 40, . . . , 400
and linear interpolated between the val-
ues; the slope of the map is about −0.928
(calculated by least squares method).
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Chapter 4

Outlook

In this thesis we studied a numerical method for the BSVIE of the form

Yt = f(W ; t)−
T∫
t

h(s, Ys)ds−
T∫
t

Zt,sdWs, t ∈ [0, T ], (4.1)

which is defined on a filtered probability space (Ω,F,F,P), where W is a d-
dimensional Brownian motion and F the augmented Brownian filtration.

We showed that under certain regularity conditions on the coefficients in (4.1)
the adapted M-solution (Y, Z) can be approximated by a sequence (Y (n), Z(n))n∈N
of discrete BSVIEs driven by a binary random walk. Precisely, we proved that
the sequence of discrete solutions (Y (n))n∈N converges weakly to the continuous
process Y in the Skorokhod topology. For the proof we used the relationship of
the M-solution of (4.1) to a non-standard system of quasilinear partial differential
equation of parabolic type.

Next, we would like to discuss what parts of the numerical method still hold
for general BSVIEs of the form (1.6) and what may fail. In the general form the
function h may depend not only on s and Ys, but also on t, Zt,s and Zs,t.

(a) The implicit form of Z(n) holds also in the general case.

(b) If the generator h depends on t, Zt,s or Zs,t, we cannot explicitly construct

the process Ŷ
(n)
ti with the fixed point technique given in Section 1.3, since

Y
(n)
ti cannot be expressed via (1.13).

(c) We have shown the required regularity of the functions ui1,i2 and uj1,j2 (see
Section 2.5.2) with an application of Theorem 2.2 from [1]. If the generator
h depends on Z the derivative ∇Y x,y,t

s (see Equation (2.22)) of the process
Y x,y,t
s (see Equation (2.21)) solves a family of BSDEs involving also the
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4. OUTLOOK

derivative of Z in the generator and, hence, one cannot apply Theorem 2.2
from [1] to achieve the required regularity.

(d) If the generator h depends on Zs,t, the stepwise construction of the PDEs is
not possible, as, for example, one cannot solve the corresponding Equation
to (2.6) without solving the corresponding Equation to (2.14) and vice versa.
More precisely, we do not obtain a system of two PDEs, where the second
PDE depends on the first through the boundary condition, but a system
of PDEs which depend of each other on one side through the boundary
condition and on the other side through the inhomogeneous term. This
makes the system more complicated to understand.

To conclude, we remark that our numerical method can also be applied for
S-solutions of BSVIEs of the form (4.1). One calls a pair of processes (Y, Z)
a S-solution, if Zt,s is not defined by a martingale representation property, but
equals Zs,t (see [31]). The proof of the corresponding Main Convergence Theorem
is even easier, because one has to consider only the systems of PDEs defined on
the upper triangle.

60



Bibliography

[1] Ankirchner, S., Imkeller, P., and Gonçalo, D.R. Classical and
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