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Short Abstract

Speaker Classification, i.e. the automatic detection of certain characteristics of a person
based on his or her voice, has a variety of applications in modern computer technology and
artificial intelligence: As a non-intrusive source for user modeling, it can be employed for
personalization of human-machine interfaces in numerous domains.

This dissertation presents a principled approach to the design of a novel Speaker Classifica-
tion system for automatic age and gender recognition which meets these demands. Based on
literature studies, methods and concepts dealing with the underlying pattern recognition task
are developed. The final system consists of an incremental GMM-SVM supervector archi-
tecture with several optimizations. An extensive data-driven experiment series explores the
parameter space and serves as evaluation of the component. Further experiments investigate
the language-independence of the approach.

As an essential part of this thesis, a framework is developed that implements all tasks
associated with the design and evaluation of Speaker Classification in an integrated develop-
ment environment that is able to generate efficient runtime modules for multiple platforms.
Applications from the automotive field and other domains demonstrate the practical benefit
of the technology for personalization, e.g. by increasing local danger warning lead time for
elderly drivers.
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Kurzzusammenfassung

Die Sprecherklassifikation, also die automatische Erkennung bestimmter Merkmale einer Per-
son anhand ihrer Stimme, besitzt eine Vielzahl von Anwendungsméglichkeiten in der moder-
nen Computertechnik und Kiinstlichen Intelligenz: Als nicht-intrusive Wissensquelle fir die
Benutzermodellierung kann sie zur Personalisierung in vielen Bereichen eingesetzt werden.

In dieser Dissertation wird ein fundierter Ansatz zum Entwurf eines neuartigen Sprecher-
klassifikationssystems zur automatischen Bestimmung von Alter und Geschlecht vorgestellt,
welches diese Anforderungen erfiillt. Ausgehend von Literaturstudien werden Konzepte und
Methoden zur Behandlung des zugrunde liegenden Mustererkennungsproblems entwickelt,
welche zu einer inkrementell arbeitenden GMM-SVM-Supervector-Architektur mit diversen
Optimierungen fithren. FEine umfassende datengetriebene Experimentalreihe dient der Er-
forschung des Parameterraumes und zur Evaluierung der Komponente. Weitere Studien un-
tersuchen die Sprachunabhéngigkeit des Ansatzes.

Als wesentlicher Bestandteil der Arbeit wird ein Framework entwickelt, das alle im Zusam-
menhang mit Entwurf und Evaluierung von Sprecherklassifikation anfallenden Aufgaben in
einer integrierten Entwicklungsumgebung implementiert, welche effiziente Laufzeitmodule fiir
verschiedene Plattformen erzeugen kann. Anwendungen aus dem Automobilbereich und weit-
eren Doméanen demonstrieren den praktischen Nutzen der Technologie zur Personalisierung,
z.B. indem die Vorlaufzeit von lokalen Gefahrenwarnungen fiir dltere Fahrer erhoht wird.
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Abstract

The human voice is a very efficient communication medium that we depend on each day to
transfer messages. By taking a closer look, it turns out that the speech we produce is never
just a message, but always contains additional, more unconsciously perceived cues about
the speaker, the so-called paralinguistic information. The field of Speaker Classification, a
sub-field of artificial intelligence, computational linguistics, signal processing, and others, is
concerned with the extraction of this information from the speech signal. Examples of such
speaker characteristics that manifest themselves in the voice are the person’s age, gender,
physics, emotion, personality, attention, cognitive load, or even identity.

The main goal of this dissertation is to develop a novel Speaker Classification system for
automatic age and gender recognition that allows this information be used in applications
for various purposes. One particular motivation is drawn from the aim to utilize the non-
intrusively obtained knowledge for personalization of functions and services in the automotive
context, which is a very active domain for human-machine interaction research.

One aspect of this thesis deals with the question of how current Speaker Classification
systems can be improved. The methodology consequently follows a principled approach,
motivating the investigation through analyses of how the speech apparatus is affected by
age and gender, instead of looking only at the decision problem. An extensive study and
comparison of several recent and early approaches points out where research is heading, what
the most promising leads are, and where the culprits are located. Based on this survey,
an approach named FRISC is developed and presented in detail. It combines the promising
GMM-SVM supervector pattern recognition system with frame-based cepstral voice features
(MFCCs) and applies further optimizations to source, feature, and score domain. To be a
suitable choice for time-critical on-line application, the system was further designed to process
incoming data and update knowledge in incremental manner and with real-time efficiency.

A further focus of this principled approach lies in the way the evaluation of the system is
performed. As part of the contribution of this work, a carefully designed parameter space ex-
ploration experiment is conducted to discover the impact of each of a large number of different
parameters to the overall classification performance. Parameters include MFCC extraction
settings, GMM training parameters, SVM kernel function, background model impact, feature
and silence filtering ratio, and more. Best practices with respect to data set generation and
balancing are particularly emphasized. In spite of the complexity introduced, the procedure
ensures that the complete system is always tested using a large number of samples, and only a
single parameter is changed between any two experiments. It is believed that the very specific
results presented in this thesis are more valuable in the long run than an unstructured or less
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transparent evaluation. Nevertheless, the absolute results (51% accuracy for seven classes in
the best case) also represent an improvement over earlier systems.

Given the system and the optimal parameter configuration determined experimentally, a
subsequent study investigates whether the approach is independent from language and culture
of the speaker. Since the voices of people in different parts of the world also have unique
regional attributes, age and gender cues could be overlaid by these effects. Based on a South
African speech corpus, a cross-cultural study examines how several long-term features change
for speakers of different language families. Using these results, as well as a cross-language
regression test, confirmation is obtained that FRISC itself is language-independent, but the
actual age and gender models are not.

As an essential part of this thesis, a framework is developed that implements all tasks as-
sociated with the design and evaluation of Speaker Classification in general in an integrated
development environment. The initial motivation for the development of a comprehensive
framework was that none of the existing tools could provide the flexibility, performance,
and ease of use to make development of efficient runtime modules for Speaker Classification
feasible. Using the platform named SPEACLAP, speech technology experts and application
designers alike can explore speech corpora and construct classification pipelines for arbitrary
speaker properties. The concise application allows complex experiment series to be run and
archived with little effort, and surpasses the memory and performance limitations of some
tools using specialized data structures and storage providers. Possibly the most distinguishing
feature is its ability to automatically build so-called embedded modules, which are portable
runtime classification components based on classifiers trained in the development environ-
ment, and that are optimized towards resource-efficiency and can easily be integrated into
other applications. The various details of this concept and the build process are explained
thoroughly in the corresponding chapter.

A final aspect of this work is to take a closer look at the way user knowledge obtained
from speech can assist in personalizing the human-machine interface. This includes a more
general view on personalization and its challenges, such as the creation and maintenance of
user models, concepts of knowledge modeling, customization, and adaptation. Focusing on
the automotive domain for most part, several practical fields are identified where Speaker
Classification can increase safety or comfort. For instance, elderly drivers might prefer visual
presentations to be larger and warnings to be issued earlier. Women might want navigation
systems to avoid specific types of parking areas at night. One demonstrator implemented
as part of this work does exactly that: it adapts the in-car systems to the driver. A dif-
ferent application generalizes the classification approach from individual user properties to a
“voiceprint”, and illustrates how speaker positions, e.g. seats in the vehicle, can be associated
with identities. Two further domains studied with respect to personalization are telephone-
based services and mobile devices. In case of the latter, a personalized shopping application
is presented which recommends different products and features for different speakers.



Zusammenfassung

Die menschliche Stimme ist ein duflerst effizientes Kommunikationsinstrument, auf welches
wir téglich zur Ubermittelung von Nachrichten angewiesen sind. Bei genauerer Betrachtung
stellt man fest, dass die Sprache nie auf die Nachricht beschrénkt ist, sondern immer auch
weitere, eher unterschwellig wahrgenommene Hinweise auf den Sprecher enthilt, die soge-
nannte paralinguistische Information. Das Gebiet der Sprecherklassifikation, ein Teilgebiet
der kiinstlichen Intelligenz, Computerlinguistik, Signalverarbeitung, sowie weiterer Bereiche,
befasst sich mit der Extraktion dieser Information aus dem Sprachsignal. Beispiele fiir solche
Sprechermerkmale, die sich in der Stimme manifestieren, sind das Alter, Geschlecht, Physis,
Emotion, Personlichkeit, Aufmerksamkeit, kognitive Belastung, und sogar die Identitét.

Das Hauptziel dieser Dissertation besteht in der Entwicklung eines neuartigen Sprecher-
klassifikationssystems zur automatischen Erkennung von Alter und Geschlecht, welches diese
Information fiir zahlreiche Anwendungen nutzbar macht. Eine besondere Motivation leitet
sich aus dem Wunsch ab, dieses nicht-intrusiv erhaltene Wissen zur Personalisierung von
Funktionen und Diensten im Automobilkontext zu verwenden, welcher einen besonders ak-
tiven Forschungsbereich fiir Mensch-Maschine-Interaktion darstellt.

Ein Aspekt dieser Arbeit behandelt die Frage, wie sich aktuelle Sprecherklassifikations-
systeme verbessern lassen. Die Vorgehensweise folgt durchgehend einem fundierten Ansatz,
der die Nachforschungen durch Analysen der Auswirkung von Alter und Geschlecht auf die
Sprachproduktion vorantreibt, anstatt sich auf das Entscheidungsproblem zu beschrinken.
Eine umfangreiche Studie mit Vergleich mehrerer aktueller und fritherer Anséitze zeigt, in
welche Richtung sich die Forschung bewegt, was die aussichtsreichsten Verfahren sind, und wo
die Schwiichen liegen. Ausgehend von dieser Ubersicht wird ein Ansatz namens FRISC entwi-
ckelt und im Detail vorgestellt. Er verbindet das vielversprechende GMM-SVM-Supervector
Mustererkennungsverfahren mit frame-basierten cepstralen Stimmmerkmalen (MFCCs) und
optimiert zusétzlich Aspekte der Quelldaten, Merkmale und Scores. Um als praktikable Lo-
sung fir zeitkritische Anwendungen in Betracht zu kommen, wurde das System in Hinblick
auf die Verarbeitung eingehender Daten und Wissensbildung in inkrementeller Weise und
Echtzeit-Effizienz entworfen.

Ein weiterer Schwerpunkt dieses fundierten Ansatzes liegt in der Methodik, mit welcher
die Evaluierung des Systems durchgefiihrt wurde. Als Teil des Beitrags dieser Arbeit wurde
ein sorgfiltig ausgearbeitetes Experiment zur Erforschung des Parameterraumes durchge-
fihrt, um den Einfluss verschiedener Parameter auf die Klassifikationsleistung zu erfassen.
Parameter beinhalten MFCC-Extraktionseinstellungen, SVM-Kernelfunktion, Einfluss des
Background-Modells, Anteil der Merkmals- und Pausenfilterung usw. Bestmogliche Praktiken
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werden in Hinblick auf die Erzeugen von Datensétzen ihrer Ausbalancierung in den Vorder-
grund gestellt. Trotz der involvierten Komplexitat stellt das Verfahren sicher, dass stets das
gesamte System mit einer groflen Anzahl von Datensétzen getestet und nur ein einzelner Pa-
rameter zwischen zwei Experimenten verandert wird. Es wird davon ausgegangen, dass die
in dieser Arbeit vorgestellten spezifischeren Ergebnisse langfristig von gréflerem Wert sind
als andere weniger strukturierte und transparente Evaluierungen. Dennoch stellt auch das
absolute Ergebnis (51% Genauigkeit bei sieben Klassen im besten Fall) eine Verbesserung
gegeniiber fritheren Systemen dar.

Mit Verfiigbarkeit des Systems und experimentell erhaltener Kenntnis der optimalen Pa-
rameter beschéftigt sich eine Anschlussstudie damit, ob der Ansatz unabhéngig von Sprache
bzw. Kultur des Sprechers ist. Da sich die Stimme von Menschen in den verschiedenen Teilen
der Erde in regional einzigartigen Attributen unterscheidet, konnten Alter und Geschlecht
von diesen Effekten iiberlagert werden. Mit Hilfe eines siidafrikanischen Sprachkorpus wird in
einer interkulturellen Studie untersucht, wie sich Langzeit-Merkmale zwischen Sprachfamilien
unterscheiden. Anhand dieser Ergebnisse, sowie eines sprachiibergreifenden Regressionstests,
lasst sich die Sprachunabhéngigkeit des FRISC-Ansatzes als Ganzes, aber auch die Sprachab-
héngigkeit der eigentlichen Alters- und Geschlechtsmodelle nachweisen.

Als wesentlicher Bestandteil der Arbeit wird ein Framework implementiert, das alle im
Zusammenhang mit Entwurf und Evaluierung von Sprecherklassifikation anfallenden Auf-
gaben in einer integrierten Entwicklungsumgebung biindelt. Der urspriingliche Grund fiir die
Entwicklung des umfassenden Frameworks liegt darin, dass kein bestehendes Werkzeug allen
Anforderungen an Flexibilitédt, Leistung und Bedienung gerecht werden konnte, um zum Ent-
wurf effizienter Sprecherklassifikationsmodule herangezogen zu werden. Mithilfe der Platt-
form namens SPEACLAP konnen sowohl Experten aus der Sprachforschung, als auch Anwen-
dungsentwickler Korpora studieren und Klassifikationssysteme fiir beliebige Sprechereigen-
schaften konstruieren. Die kompakte Anwendung erlaubt die miihelose Durchfithrung und
Archivierung komplexer Experimentalreihen, wobei sie die Speicher- und Performanzbeschrén-
kungen einiger anderer Werkzeuge durch Einsatz spezieller Datenstrukturen und Speicherver-
fahren umgeht. Das vielleicht herausragendste Merkmal ist die M6glichkeit, automatisch so-
genannte eingebettete Module zu erzeugen, welche portable Laufzeitklassifizierer darstellen,
die in der Entwicklungsumgebung trainiert und fiir die einfache Integration in andere Anwen-
dungen in Bezug auf Ressourceneffizienz optimiert werden. Die zahlreichen Details dieses
Konzepts und des Kompilierungsvorgangs werden im entsprechenden Kapitel ausfithrlich
beschrieben.

Ein letzter Aspekt dieser Arbeit ist die genauere Betrachtung der Art und Weise, wie das
aus Sprache erhaltene Wissen die Personalisierung der Mensch-Maschine-Schnittstelle un-
terstiitzen kann. Dies beinhaltet eine allgemeinere Betrachtung von Personalisierung und
ihrer Herausforderungen, wie die Erstellung und Verwaltung von Benutzerprofilen, Konzepte
der Wissensmodellierung sowie der Adaption. Mit Fokus auf der Automobildoméne iiber
weite Teile werden viele praktische Einsatzmoglichkeiten fiir Sprecherklassifikation aufgezeigt,
aus denen sich Steigerungen von Sicherheit oder Komfort ergeben. So bevorzugen &ltere
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Fahrer beispielsweise evtl. eine groflere Darstellung von Inhalten und friithzeitigere Aus-
gabe von Warnhinweisen. Frauen wére es moglicherweise lieber, wenn das Navigationssystem
bestimmte Parkpldtze nachts nicht vorschlidgt. Ein Demonstrator, der als Teil der Arbeit
implementiert wurde, folgt diesem Prinzip: er adaptiert die Bordsysteme in Bezug auf den
Fahrer. Eine weitere Anwendung verallgemeinert den Klassifikationsansatz von individuellen
Sprechereigenschaften hin zu einem “Sprachabdruck”, und veranschaulicht, wie damit die
Sprecherposition, d.h. Sitze im Fahrzeug, mit der Identitdt in Verbindung gebracht werden
kénnen. Zwei weitere in Hinblick auf Personalisierung untersuchte Bereiche sind telefon-
basierte Dienste und mobile Gerdte. Im Fall von letzteren wird ein personalisierter Einkaufs-
Assistent vorgestellt, welcher je nach Sprecher unterschiedliche Produktempfehlungen gibt
und einzelne Produktmerkmale hervorhebt.
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Figure 1.1: The number of functions and services in the vehicle, including those that go
beyond driving, has recently been multiplying.

1.1 Motivation

Speech is probably the most natural and well-mastered means of communication between
humans. We use speech every day to deliver messages, to communicate in business and
private life, to give or receive information, to make compliments or express annoyance, with a
clear goal or simply to chat. But what seems like a relatively easy performance for humans is
on closer examination a very complex process. Not only does the number of languages, words,
and grammatical rules testify this complexity, but we can also quickly convince ourselves by
studying the intricate path a sentence takes from our brain through the speech production
apparatus to a vocal utterance.

Since long, computer science has tried to utilize the potential of speech for human-computer
interaction. In automatic speech recognition, we have tried to convert the vocal sound into
written words with the aid of a computer. With the help of linguistics and statistics, this works
fairly well today. By connecting ASR with the discipline of natural language understanding,
we can even interpret the spoken words and have computers react to them in an intelligent,
human-like manner. This is for example exactly what happens when users talk to the Siri
voice system on their {Phones. With slightly different motivations, researchers have also been
able to convert a written sentence into sound that closely resembles the human voice. For
some sophisticated systems, it is difficult to tell the difference between machine and human.

In recent years, computing has finally entered the remaining and most complex areas of
everyday life, thus becoming truly “ubiquitous”: The home being the location where the
digitization of equipment generally started in the eighties, is now followed by the places we
visit on foot. Modern mobile phones, becoming more and more smart phones, are the key
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factor in this episode. They combine the user’s data, a connection to the rest of the world,
color displays, and substantial processing power in a small device. And finally, there is the
place where Americans spend on average 6% (approximately 1.5 hours per day) of their time
(Klepeis et al., 2001)!, and where phones are not so convenient, which is in their car. Through
computer technology, the vehicle is currently making the transition to a new level of driver
support, communication, and comfort (see Figure 1.1).

In many of these areas, speech is more than just another input modality. It has a property
that most other modalities cannot offer: It works “hands-free” and “eyes-free”, which means
that the users can keep their eyes on the environment, which is of vital importance in the car,
but also important when walking around with a mobile device. Since adding more functions —
some helpful, others merely entertaining — also requires more attention from the users, it can
also mean distraction from other tasks, possibly causing them to run into other people, or,
in case of the vehicle, provoking accidents. Using modalities that allow a safer manipulation
of the technology is a clear advantage. This increasing importance of the speech channel in
future HMI applications is the main motivation of this work for having a closer look at its
potential and characteristics.

At the same time, we see a trend towards personalization of end-user devices and services.
The technology we interact with is no longer static, but will react completely different de-
pending on who is using it. Today, users impose much more intelligence on their systems —
they expect software to figure out their intentions without explicitly specifying them and take
care of possible complications. Without an appropriate model of the user and background
knowledge of her skills, abilities, and preferences, this is not possible without bothering the
user. Personal computers and mobile devices have already been affected by this development
in recent years. As vehicles are accumulating more advanced technological components, it is
clear that they are heading in the same direction.

As of today, even though the importance of speech is increasing, its potential for person-
alization is greatly underused. As we all know but often do not realize, speech carries a lot
more information than just a series of words with a semantic meaning. It also reveals plenty
about the speaker, the so-called paralinguistic information. We can confirm this by thinking
about how we imagine the person behind an unfamiliar voice on the phone, where no other
modality can be consulted. We probably have an idea of the person’s gender and approximate
age. We might even guess some aspects of the person’s physics, which the voice also contains.
With the corresponding knowledge, we might be able to determine the country in which the
person grew up. Also, we can tell if the person is happy, angry, bored, tired, or drunk — all
this without actually understanding the words. And much of the way we speak with another
person depends on exactly this information, i.e. we adapt to them.

The goal of this thesis is to teach the computer to perform the same task when it works
with human speech: extract paralinguistic information so that it can serve as a basis for
adaptation, or more generally personalization (which is not the only possible use). In the

LOther studies further show that the amount is increasing, see e.g. NHTS BRIEF — National Household
Travel Survey (2006).
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“shopping scenario of tomorrow” (Wahlster et al., 2010) for instance, customers communicate
naturally with anthropomorphous objects in a shop. Here, a cell phone should probably
introduce itself quite differently to men and women, talking design for women and pointing
out the software specifications for the male customers. Likewise, we expect that wine bottles
won’t advertise themselves to children. With the amount of technology loaded into phones
as well as cars, the older generations are often neglected, and may have trouble finding the
basic functions. A system that pro-actively aids by providing further guidance or adapts
itself simplifying the interface could be a decisive factor for many people. Particularly in the
vehicle, where virtually everything can impact the safety of drivers and passengers, choosing
the most appropriate settings for font sizes, speech output volume and talking speed, display
times of warnings, selection of information, etc. does indeed matter. We will see several
examples of personalization based on speech similar to the aforementioned situations being
realized in this work.

The field of Speaker Classification deals with the technical method of extracting this para-
linguistic information from speech. It has been active since shortly after 2000, although it
has not received as much attention as other major speech technologies. This is partly due to
the absence of influential applications prior to this time, and vice versa also due to the early
stages of the technology and lack of robust implementations, making it an uneasy choice
for actual products. It has recently received a push with Interspeech 2010 Paralinguistic
Challenge (Schuller et al.; 2010). Yet, there are overall still very little systematic studies
of the acoustic features and concepts. This work attempts to reach a further milestone in
Speaker Classification research by presenting a conceptual foundation and architecture that
is evaluated in a principled evaluation according to a rigorous design and a focus on its
suitability for upstream application. It further does what no other authors to our knowledge
have attempted before, namely to study the automatic recognition of age and gender in a
cross-lingual and cross-cultural context.

Most other work on Speaker Classification ends with a report on recognition performance.
The step to personalization in a real-world scenario is still enormous, because results achieved
with a research implementation in the lab cannot simply be transfered due to the require-
ments that actual application impose, such as real-time performance, scalability, and resource-
adaptivity. The scenarios previously mentioned present demands at the technology that need
to be considered during the whole design process. Even then, for the technology to actually
find its way into homes, devices, and cars, a certain level of tool support is essential. A
truly comprehensive solution would provide a convenient framework for researchers to set up
and conduct experiments, while at the same time enabling application designers to configure
Speaker Classification modules that suit their needs and are ready to be integrated into their
existing software. Such a framework is an integral part of the author’s vision.



1.2 Research Questions 5

1.2 Research Questions

The previously presented motivation leads to the following scientific research questions that
guided the work on this thesis:

1. What are the components of a Speaker Classification approach for the esti-
mation of speaker age, gender, and other characteristics, that is designed to
deliver high classification performance, yet be sufficiently flexible to be ap-
plied to a variety of classification problems in multiple application domains?
Speaker age and gender classification systems have not been extensively investigated
until approximately half a decade ago. By applying new signal processing or pattern
recognition methods or optimizing the feature set, there is still considerable room for
improvement. This thesis attempts to construct a classification pipeline from a novel
selection of components, thereby pushing forward research in this area. As opposed to
other, often heavily engineering-focused performance tuning approaches, the bottom-up
approach followed in this thesis builds on existing knowledge about the inner workings
of voice aging whenever possible. Therefore, while still an important benchmark, clas-
sification accuracy is not the only success criterion. In order to be functional in the
domains brought forward in the application part of the thesis, the objectives are com-
plemented by the prerequisite of flexibility, i.e. the ability to build implementations
satisfying domain-specific runtime requirements and to be extensible to other speaker
properties such as emotion, height, cognitive load, sleepiness, etc.

2. Which are the parameters that affect the performance of such a Speaker

Classification system, and how can a principled approach be created to em-
pirically determine the relative impact of each of them?
A single good performance number, which could be the result of heavy engineering and
meticulous fine-tuning, is certainly respectable, but by itself not overly beneficial to
the scientific progress. Even the final architecture of a Speaker Classification system is
not as insightful as the stepwise illustration of how it was obtained and configured that
way. In this thesis, we want to present a principled approach, a transparent strategy by
which the main parameters that affect the classification performance are investigated
and iteratively improved. By closely following the relative improvements on a constant
data set, we hope to gain better insights that further work can benefit from.

3. Which aspects of the approach can ensure the incremental processing of
information, i.e. a fast initial estimation and a continuously increasing ex-
pected performance with the arrival of additional speech data?

Several Speaker Classification algorithms require complete turns before they return an
estimate. This makes them unsuitable for many on-line scenarios, which depend on a
steady incremental update of the current system belief right from the first data. Such
applications may not even have the concept of a defined instance to be classified, but
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consider a continuous voice stream as input. An example is the automotive domain,
where many default settings (e.g. seat configuration, font size on screen) should be
personalized as soon as possible after the user enters the car. We will point out several
aspects of the design which — in conjunction with the development framework — have
been optimized for this purpose.

. Is speaker age and gender estimation or the Speaker Classification approach
as a whole influenced by the speaker’s language or culture?

It is known that language and culture (or ethnical background) have an impact on the
human speech production. Not only does it affect the vocabulary, which obviously differs
between languages, but also the prosody or basic acoustic features. In a global society, it
should be a prime concern to confirm whether an approach like the one developed would
work for people living in other regions as well. Languages and language families are
the most obvious boundaries for such regional differences, but there may be additional
influences, e.g. ethnic or socially motivated, which are often collectively called cultural
influences, and which we should consider as well. Regarding Speaker Classification,
there are three possible cases: (1) The features used in our approach are not affected
at all, i.e. there are no language dependencies whatsoever. (2) The feature space is
affected, but in a consistent way requires only an adjustment of the model. (3) The
effects override those from characteristics such as age and gender, making it necessary to
find different features for the latter and possibly change the approach. Our hypothesis
is that the employed Speaker Classification approach is generally language and culture
independent; however, there is sufficient evidence that different training data will be
required for different groups of speakers. A number of analyses are performed to confirm
this hypothesis.

. How can the approach developed for age and gender be used to recognize
the identity of a user through his or her voiceprint?

Speech-based biometry is closely related to personalization, and is particularly helpful
in the automotive domain to solve the problem of passenger positioning, as will be
demonstrated in Section 6.2.6. Since the concepts used for age and gender estimation
have their origins in speaker recognition, it is a natural question to investigate whether
the same architecture can be used to detect speaker identity, i.e. to move from specific
characteristics like age and gender to the more generic concept of a voiceprint. In this
regard, we want to examine the feasibility in general and determine what performance
can be reached with a basic system, rather than introduce new concepts to improve the
performance.

. How can an architecture or framework be designed that allows speech-based
classification technology to be created, evaluated, and deployed according
to the diverse requirements in desktop, server, and embedded scenarios?

The contribution of this work goes beyond the development of a specific speaker age
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and gender recognition approach. To ensure its versatile use, a more general Speaker
Classification framework is needed that allows the concepts to be applied to different
speech-based classification problems, characteristics, data, features etc. This framework
should be able to adjust a given design to the requirements of different domain and
platforms, essentially “building” a resource-aware implementation based on the design
specification. Additionally, the framework provides a rapid development process and
a consistent approach to system evaluation and experiment design. As part of this
research question, the framework requirements need to be formalized, and a number of
particular issues that makes Speaker Classification training challenging (e.g. the high
volume of data) have to be solved through engineering. The resulting framework should
be made available to the public domain to foster wide adoption.

7. How can non-intrusively acquired speech-based user characteristics such as
age and gender help to personalize the user experience in user-centered
domains with different characteristics and demands?

Personalization based on non-intrusively obtained information is probably the most
important application of Speaker Classification technology. Adapting the design or
function of a system to the user can — among other things — increase comfort, usability,
and efficiency. Resorting to the user’s voice allows personalization to be performed
in situations when no other data is available. Based on the previous achievements,
age and gender are the most prominently examined properties, providing many clues
with respect to preferences or requirements of the user. Three particular domains are
investigated: automotive HMI, phone-based services, and mobile devices. In each of
these domains, concrete examples for the benefit of the technology will be given. The
automotive domain is studied in more depth through the introduction of domain-specific
concepts, sample applications, and a middleware for the exchange of user profile data.

1.3 Outline

The chapters of this dissertation are organized as follows.

Chapter 2 contains the theoretical foundation and backgrounds of all concepts related to
Speaker Classification as a research field. These backgrounds consist of the phonetic aspects
of human speech production, from which we will also draw the motivation for considering age
and gender as speaker properties, digital (speech) signal processing basics, a description of
the Speaker Classification task and the acoustic features, and finally an introduction to the
pattern recognition methods applied.

Chapter 3 gives a comparative survey of other Speaker Classification work that deals par-
ticularly with age and gender recognition. A focus will be on the AGENDER system (Miiller,
2005), which accounts for much of the theoretic and practical motivation of this thesis, and
represents a notable milestone in Speaker Classification research.

The novel approach developed in this thesis is introduced in Chapter 4, starting with
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the general architecture and then detailing the individual concepts. Subsequently, multiple
experiments are described in the chapter, each dealing with separate aspects. The majority
of experiments belongs to the main experiment series that explores numerous parameters in
a single contiguous set-up. A second experiment shows how meta-level fusion impacts the
overall result. Further, cross-cultural influences are analyzed in a study that is based on a
multi-lingual speech corpus. Finally, a study is presented where the system is challenged by
synthesized voices that are rated in parallel by the computer and human listeners.

These former three chapters deal mainly with the theoretic and methodologic aspects of
age and gender recognition. The following Chapter 5 moves on to the details of the im-
plementation, presenting a complete Speaker Classification framework (SPEACLAP) that is
generically applicable and not limited to those two speaker properties. The chapter closes
with an evaluation of the runtime performance of the classifiers.

Chapter 6 finally gives a survey of several applications of the technology. These applica-
tions are stemming from three different domains (automotive, mobile devices, phone-based
services), but share a common goal, namely personalization based on the knowledge obtained
from speech. As part of this chapter, multiple implementations of working systems created
for this thesis are presented.

Chapter 7 concludes with a summary and an outlook.



2 Theoretical Foundation of Speaker
Classification
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2.1 How is Individuality Expressed in Voice?

There is no doubt that when we speak, we want to transfer a message: traditionally, a message
to one or more other humans, or, since more recently, also a command targeted at a computer.
In any case, it is the content and in effect the intention which is perceived as the essence of
spoken words. It is therefore easy to overlook the other attributes that are transmitted as
part of the speech, but not as part of the content. What actually happens when speaking
is that the message is created as a sequence of sounds on the speaker’s side, transmitted
as acoustic waves over the medium air, and received, decoded and interpreted by a listener.
The content is only a small part of what is encoded in the voice. The sound that makes
up the speech contains much more information, as it will have a different shape for every
speaker. This information is also called paralinguistic information, since it is transferred in
parallel to the content. It is affected by many characteristics, such as physical properties (e.g.
height or size of the head), gender, age, illnesses, drugs, language backgrounds (e.g. dialect
or experience), culture, and others. The possible range of effects is as large as the individual
differences in people. They can occur on multiple “levels” of the processing apparatus: It
can be a general transformation affecting the overall “color” of the sound (e.g. a “higher”
or more “breathy” voice), it can be an effect on the rhythm or intonation of specific sounds
and syllables (e.g. an accent or stuttering from nervousness), or it can be a word-level effect
(e.g. speaking under the influence of alcohol or using outdated vocabulary). Closely related
to the possible impact is the place where they emerge: For instance, some result directly
from physiological circumstances in the speech production system. These are usually rather
constant over time, although they can still change considerably over a whole life, in the same
way other biological aspects change as part of the aging process. Some others are related to
the brain and nervous system, and are subject to more frequent change, even between two
sentences as a reaction to stress.

Even though these characteristics are there, we often do not perceive them consciously. For
example, we associate and remember these voice “features” for people we have spoken to, and
use them — possibly in conjunction with visual and other impressions — to recognize a person,
without being able to actually name these unique voice features. For human listeners, their
ability to do this varies widely, and the details of this process, e.g. which features play what
role under which circumstances, are barely understood even today (Hill, 2007). As studies
indicate, even voices with strong phonetic differences can be difficult to associate with people
by humans, and vice versa (see ibd.). Nevertheless, the same basic idea has been followed for
a long time in speaker verification and speaker identification: By looking at particular, steady
features of the voice, a match is attempted with a reference model, the so-called voiceprint.
Obviously, for the deterministic machine-based solution, it can always be clearly explained
which features are considered and why they lead to a specific decision result.

For more concrete properties of the speaker like the examples given earlier, the basic process
is similar. When we hear a voice for the first time, we more or less unconsciously perceive
the features that indicate age and gender, and compare them to the reference models we have
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built up over time. This will happen in a more conscious manner when we have little other
sensory information, e.g. when the voice is talking on the phone, or when there is a mismatch
between our expectation and the actual voice heard. Even then, it is not easy to explain why
exactly we judge a voice as “happy” in one occasion and as “sad” in another.

When we talk about reference models for speaker properties, the question arises whether
they are globally valid, or whether they are only valid among a certain group of people,
such as a group speaking the same language or sharing cultural aspects. It is known that
intonation, rhythm, and even more obviously words are affected by culture and language.
Hence, it may likewise be possible that any speaker characteristic for which these features
serve as source of information could also be affected.

In this section, we look more closely at the stages of speech production to understand how
individuality manifests itself in these stages. The walk-through however will not be a detailed
primer on speech production, for which further literature from phonetics should be consulted.

2.1.1 Human Speech Production

For a better understanding of how individuality influences articulation, a general knowledge
of the basic speech production process is needed. The human vocal organs are shown in
Figure 2.1. Ladefoged (2006) divides the human speech production system into four main
parts: the airstream process, the phonation process, the oro-nasal process, and the artic-
ulatory process. The airstream process describes how air is pushed out of the lungs and
forms the “carrier” for producing sounds. The pressure built up by the lungs (or rather the
indirectly connected intercostal muscles and diaphragm) provides the required energy. The
vocal organs of the phonation process are centered around the larynx (see Figure 2.1 on the
right side). When the air from the lungs is pushed through the larynx, the positioning of
the vocal folds determine whether a voiced or a voiceless sound is created. A voiced sound is
generated when the vocal folds are close together (adducted), blocking the air flow through
the opening that is also called glottis and being set into vibration. This vibration effectively
creates pulses of air that can be observed as sound waves. Apart from the voiced and voiceless
states, a number of other states can be arranged by the larynx by changing the configuration
of the vocal folds, their tension and degree of adduction, adjusting parameters such as pitch,
loudness, breathiness, or creakiness (Dellwo, Huckvale, & Ashby, 2007). Switching between
mouth and nose for the escape of air is part of the oro-nasal process, in which the soft palate
is arranged accordingly to direct the air low. When it is pressed against the pharynx wall, air
cannot exit through the nose. If it is open and the mouth is closed, it can be used to produce
nasals. The articulatory process is controlled mostly by parts which are found in the vocal
tract. They can be thought of as giving a certain “shape” to the sound. The most prominent
parts are the lip, teeth and tongue, which, through their positioning and movement, have a
critical impact on what type of consonant or vowel is produced. In particular the tongue is
highly mobile and allows extremely precise positioning (Ladefoged, 2006). The other parts
are the alveolar ridge (behind the upper teeth), the hard palate, the soft palate, the uvula,
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Figure 2.1: Overview of the organs of the speech production system. (Source: Dellwo et al.,
2007, p. 3)

the tongue back, and the tongue root, with all ending in the pharynx.

At this point, only the articulation step, i.e. the process to form individual sounds, which
can be used as the phonemes or phoneme combinations in words, has been described. To
actually produce meaningful words or even sentences, several more steps are required, which
run earlier and at a higher cognitive level than the basic processes described in this section.
Due to their complexity, a description of these linguistic processes is not provided in this
work, but is subject of other literature where it can be found in detail (see e.g. Levelt, 1991,
1999; Pechmann & Habel, 2004).

2.1.2 Impact of Individuality on Speech Production

Speech production consists of multiple stages (e.g. sound production, word forming, sentence
forming), and the areas of influence of individuality described by Dellwo et al. (2007) roughly
reflect these stages: the anatomical influences, control of the speech production, the sound
system, and language use. Apart from the affected area of speech production, we can also
take into account the origin of the effect, which can be divided into four categories: It could
be caused purely by the individual’s anatomy and completely out of the speaker’s control (e.g.
a generally high voice), it could have been acquired over time through training and practice
(e.g. dialect), it may be a consciously exerted effect chosen by the speaker in a specific
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Production Area Type of Cause Variables Observed Effect
e.g. adjustment of Sound Production Anatomical Gender Change of Pitch
the vocal folds, Word Forming Experience Culture Breathiness
laryngeal changes... Sentence Forming Context (conscious) Stress Vocabulary
State (unconscious)

Table 2.1: Scheme for describing and classifying effects of individuality in human speech.

context (e.g. selection of a language), or it can be an automatic context and state dependent
effect (e.g. stuttering due to nervousness). Then, most effects are not completely random,
but interact with other characteristics of the speaker, such as the age, gender, background,
so we can also consider such influential variables. And finally, of course, we can attempt to
describe the appearance of the effect, i.e. how it affects the vocal sound (such as changing its
pitch), which can be done in more or less formal manner, and which is also an important step
when we want to take the reverse path of concluding from an observed effect to its cause, as
we do in Speaker Classification. (This description of the perceived effect is in turn subject
to its own scheme, reaching from subjective perception to formal measures and features that
can be determined automatically. These aspects are described in the next section.) This
scheme is summarized in Table 2.1. In explaining the individual’s parameters that affect the
speech production, we are closely following the article by Dellwo et al. (2007), from which
this section has also inherited part of its title.

Language-related choices are one of the areas where individuality can have an impact.
According to Dellwo et al. (2007), the effects reach from the choice of language, the mother
tongue, and the number of secondary languages, to the choice and pronunciation of words.
This includes dialect, which are linguistic variations specific to a group, such as a geographic
region or social grouping. The latter are two examples of variables influencing (supporting
or overriding) individuality. Another variable is the decade of birth, since the language and
vocabulary changes over time. A further example is — to some extent — gender, i.e. a difference
in the words chosen by women and men. Choice of words and language may also depend on
the situation, most importantly the conversation partner.

The sound system can be divided into the segmental component and the supra-segmental
component. The former deals with the mapping from words to phonetic segments and is part
of the speaker’s accent, which could again depend on the speaker’s environment or which
other languages are spoken. Supra-segmental parameters are “stress pattern, timing and
intonation of the sequence” (Dellwo et al., 2007), which are mostly impacted by the intention
of the speaker. They can also be affected by emotion or other parameters of the speaker’s
state. A phenomenon witnessed among young English speakers in certain regions is a rising
intonation called “uptalk” (see ibd.).

The speech production process control refers to the exact positioning and interplay of ar-
ticulators such as tongue and teeth, but also vocal folds. There are many ways of producing
vowels, some creating rather different sounds for the same phoneme, and others changing
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aspects of quality. Examples are whispering, shouting, or otherwise speaking with a higher
pitch than usual. Slow and fast speaking rates will have effects in this area, too, with fast
speaking frequently leading to coarticulation (overlapping of phonetic segments). Consump-
tion of drugs and alcohol are typical conditions that can temporarily affect the articulation
process as well.

Intermediately responsible for observing effects of age, gender and other more “static”
speaker properties are mostly the physiological or anatomical influences. The differences in
speech organs for these classes result in measurable variations of the speech signal which
always overlay the short-term variations that depend on the situation and state. Some of the
parameters pointed out by Dellwo et al. (2007) are the length of the vocal tract, length and
tension of the vocal folds, capability of the respiratory system, and form of the soft palate.
Vocal tract and vocal folds have a particular impact on the default pitch of the voice and the
frequencies the speaker is able to produce, and they differ clearly on average between women
and men. For instance, the vocal tract length of women is about 87% of the length of that of
a man. Likewise, this factor is 80% for the vocal folds (Wu & Childers, 1991). Many of the
anatomical changes related to vocal aging beyond the age of 12 years have been consolidated
by Miiller (2005). This includes the growing and stiffening of the larynx, the gain and loss
of brain and nervous system mass, the changes in flexibility of the lungs and chest, and the
general involution of muscles with age. Finally, pathological conditions, such as from a cold
or chronical disease, including the consequences of smoking, can also impact the physiological
characteristics of the vocal organs and thus the voice. A well-known effect is the disturbance
of the oro-nasal process, resulting in the typical “nasal” voice.

2.1.3 Observations on Age and Gender Regarding Acoustic Features

From knowing how individuality manifests itself in speech production to presenting methods
that can measure these effects, there is still a way to go, because not all physiological variables
can easily be measured. This is indeed one of the particular challenges of the age recognition
task: finding appropriate measurable effects data, also known as features, that can be acquired
in a non-invasive way. For example, prior to the discovery of signal-based methods, the airflow
waveform at the glottis, or volume velocity, and with it several glottal features, could only be
measured by pneumotachograph at the mouth or specialized microphones (Rothenberg, 1973).
Nowadays, methods such as pitch synchronous iterative adaptive inverse filtering (PSIAIF)
allow us to extract such features directly from the signal (Mendoza, Cataldo, Vellasco, & Silva,
2010; Pulakka, 2005). Yet, for many effects, we still rely on approximations and empirical
studies to confirm relationships between features and effects, or between feature and speaker
property. This is even more complicated by the facts that the effect is typically not linear, is
subject to large overlapping between age classes, and usually contains traits of many other
speaker properties as well.

There is a high quantity of different types of features. Reynolds et al. (2003) categorize
features into five layers, from low-level to high-level cues, which are spectral, prosodic, pho-
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netic, idiolectal, dialogic, and semantic features. By tendency, the lower-level features can
be attributed rather to physical traits, while the upper-level features are learned. Miiller
and Wittig (2003) distinguish between the three levels of acoustic, prosodic, and linguistic
features, from low to high abstraction layer. In some cases, the boundaries between these
layers are blurred, yet in general, this work does not look at features above the acoustic
level. The reason for this is twofold: For once, these features are part of a closed group of
attributes, since they share many aspects and are based on a similar accessory of methods
for their extraction and processing. Working with linguistic features takes the task into a
completely different area of speech science. The second reason is that the lower-level features
are more likely to ensure the general applicability of the approach, as the high-level features
are often language-dependent.

For this work, the main foundation for the observation of aging effects in speech features is
the study by Miiller (2005). According to his findings, pitch is one the most suitable features
for gender discrimination, particularly for the adults class. Voices are generally higher and
their difference becomes smaller for younger people. Seniors expose a lower minimum pitch,
while the average increases for men and decreases for women. Teenagers have a higher jitter
and shimmer value than adults, which supposedly reflects the changes in the vocal system
during puberty. The same effect can be noticed for seniors, where the two features are even
higher. The harmonicity-to-noise ratio, which is low for children and teenagers, is on average
higher for adults and seniors.

A comprehensive survey on age and gender related changes with respect to a number
of acoustic features is provided by Schotz (2007). In addition to the chronological age,
dependencies on the perceptual age are also considered in her study (see Section 2.3 for
a definition of these age specifications). We learn that almost all features have a generally
higher variation for seniors. This also includes otherwise less considered features such as vocal
tremor (the standard deviation of pitch). Observations on the different changes of average
FO with aging for women and men is similar to those reported by Miiller (2005). Although
not quite an acoustic feature, the speech rate is another good indicator of age as confirmed
by several studies, with a decrease of 20-25% with older age (Schotz, 2007). Other features
that have shown to correlate with age and/or gender mentioned in the survey are the sound
pressure level (SPL), which increases for men over 70 years; spectral features like spectral tilt,
spectral emphasis, and spectral balance; and the long-term average spectrum (LTAS), which
shows a tendency to rise or fall in certain frequency bands for elderly women and different
frequency bands for men. Changes in vocal tract length due to age are often assumed to
manifest themselves in resonance features. Therefore the formant frequencies F1 and above
could allow conclusions to be drawn, although the author points out that this interrelation
may depend on the vowel.

MFCC features (Mel-frequency cepstral coefficients, see also Section 2.4.4) have a strong
relationship to the shape and configuration of the vocal tract. This includes aspects relevant
to the sound currently being generated, to the individual speaker, and more general speaker
properties such as the age and gender. The speaker-specific characteristics contained in the
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MFCC can be quite prevalent, which is why techniques such as vocal tract length normal-
ization (VTLN) are applied to remove these traces. On the other hand, MFCC have been
quite popular in speaker recognition for some time. The coefficients are a more abstract
feature than most others mentioned in this section, due to the numerous transformations
applied, therefore the impact on MFCCs cannot usually be grasped by the human eye and
ear. Instead, computers are much better at analyzing this complex type of data and drawing
conclusions.

2.1.4 Inter-cultural Aspects

This thesis puts a special focus on influence factors of vocal sound that are relevant in
conjunction with globalization, an important quality of I'T software today. The most obvious
are language-related factors, which Schultz (2007) enumerates as being language, accent,
dialect, idiolect, and sociolect of a person. The aforementioned factors are usually more
or less dependent on each other, e.g. a dialect is typically considered a sub-category of a
language. In spite of this, there are also similar phenomena in dialects across languages. One
reason for this is that an official “language” is a clearly defined construct, while dialects and
even more accents are not. Several Chinese dialects are not promoted to languages merely for
political motivations (Schultz, 2007). Language-related effects can impact speech production
on multiple levels, including dialogic (choice of discourse strategy), linguistic (choice of words,
grammar, vocabulary), prosodic, and acoustic. The average length of words and sentences is
one effect that is different in every language. Choice of words can depend on factors like the
social structure, as is the case in Japanese (ibd.). Referring to prosody, the consonant-vowel
pattern is very characteristic for some languages: Turkish is a common example of a language
with a very regular CV-pattern, while many eastern European languages are well-known for
the extensive use of consonants. The fact that phoneme n-grams are commonly used for
language identification (Miiller & Feld, 2006) supports this observation. There are differences
between vowels, too, such as the nasalized version of some vowels used in French (Dellwo et al.,
2007). The airstream process normally involves the so-called egressive pulmonic airstream,
which produces sounds for all languages. Special constructs used in only some languages
are generated using non-pulmonic airstreams. These constructs are ejectives, implosives and
clicks (see ibd.). On the acoustic level, tonal languages such as Mandarin Chinese show
a very characteristic intonation pattern, with a specific pitch movement for each syllable.
Other languages have their custom intonation patterns as well, but it is generally applied
rather at sentence level to convey a particular function or emphasis (see ibd. and Sorin et
al., 2004). Concerning statistics, Schotz (2007) reports on “language-related, dialectal and
attitudinal differences in habitual FO, HNR and shimmer levels®. With respect to pitch,
tonal languages seem to show considerably higher standard deviation in pitch, so-called FO0-
excursions (Traunmiiller & Eriksson, 1994).

Apart from these language-related factors, which we can describe as being defined by the
individual’s environment, i.e. what he or she learns to speak, there are also more general or
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even orthogonal aspects. For example, women in certain parts of Asia (China, Japan...) do
have a basically higher pitch than women in the western world. Hao (2002) found significant
differences in vocal tract length, pharyngeal volume, other physiological measures, as well
as formant frequencies between white American, African American, and Chinese speakers.
Traunmiiller and Eriksson (1994) confirm this by noting that the range of spoken pitch in a
language is usually chosen according to physical considerations, i.e. to produce as little effort
as possible. On the other hand, the social environment can have a further effect on intentional
modification of the voice spectrum. Bezooijen (1995) attributes the raised voice of Japanese
women to such factors. Deutsch et al. (2009) found that for speakers in different villages
within China, pitch tends to differ significantly between the villages, but falls into given
clusters within a village. All these effects, which are mostly of ethnical or social nature, do
also have a relevancy for globalization, as they often overlay the language factors and show
an even stronger effect in the attributes. Nevertheless, languages, or even more language
families, and ethnical groups, are often related in terms of geographic distribution, hence the
language is still an appropriate criterion for setting speaker class boundaries for comparison
when needed.

While it is difficult to measure both types of effects independently, literature provides a
sufficient evidence to consider either as source for local effects. In our studies, we will refer
to both categories of aspects as aspects of language and culture or just cultural aspects. In
general, these cultural aspects are mostly influenced by a combination of geographical regions,
ethnical, political, and social factors. Studying these effects, one should also be aware that
language and culture are always in flux, changing with generations and fashion. Younger
generations for example often use language as a practical means to distinguish themselves
from their parents (Schotz, 2007).

2.2 Digital Signal Processing

Physically, sound is generated by moving molecules in a medium such as air. This movement
always happens in waves and occurs with a material and condition specific velocity ¢ (usually
343 m/sec. in air). Based on shape and occurrence, we can distinguish different types of
sound, such as tones or noise. In this thesis, we are interested in one particular type of
sound, which is speech sound, i.e. sound generated by speaking. Speech sound has very
particular characteristics that do not apply to sound in general, and many of the features
and algorithms we will consider can only be applied to this type of sound.

Sound is a continuous phenomenon in nature. And since it can have arbitrary complexity,
there is no way to accurately describe every possible sound digitally. However, for any type
of machine-based processing of audio, we need to transfer it into some digital or binary form,
e.g. a file on disk. This transformation is actually a two-step process: In the first step, the
sound is recorded using a microphone, which converts it into an analog signal consisting of
electric impulse waves. The amount of the original sound characteristics preserved, i.e. the
quality of the signal, depends on the type and quality of microphone and conductors used
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Figure 2.2: Close-up view of a raw digital audio signal, showing the individual samples as
generated by pulse code modulation, and the (demodulated) continuous signal.

(Plichta, 2002). In the second step, the analog signal is converted into a digital signal by a
so-called A/D converter. This process is referred to as digitizing. For sound waves, the by far
most common procedure is to capture the analog signal at discrete points in fixed intervals
and then map it to a finite set of values, which is also called sampling and quantization,
respectively. (Generating a mathematical function that describes the signal would be an
alternative digitizing method.) Following this, there are two main parameters describing this
process: the interval length and the target range of values. In conjunction with digital sounds,
the first is called the sampling frequency or sampling rate (specified in Hertz) and the second
is the bit depth (specified in bits per sample). For completeness, a third relevant parameter
is the number of channels, which is greater than one if multiple sound sources are processed
in parallel, e.g. to produce stereo sounds. A single data point in the digital signal is called a
sample (see Figure 2.2).

Digitizing is a lossy transformation: Both the number of samples, as well as the precision
of a single sample, limit the accuracy with which the original signal can be modeled. In
nature, an accurate power value can be determined between every two instants of time and
has virtually infinite precision. From the digital signal, such values between two samples can
only be estimated, for example by interpolation. Some types of digital codings support this
interpolation by storing additional data. These considerations affect the reconstruction of the
original signal, e.g. when the recorded sound is played back or processed. There are certain
well-known side effects that can occur during digitization, especially if either sampling rate
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Range Description

85- 180 Hz average male voice FOfor speech

165 - 255 Hz average female voice FOfor speech

75 - 500 Hz total FOfrequency range for speech

80- 1,100 Hz typical FOfrequency range for singing (E2 to C6)

4,000 Hz maximum frequency for many telephone applications
60 - 7,000 Hz total voice frequency range for speech (incl. harmonics)
15,000 Hz highest frequencies produced in singing

20- 20,000 Hz Human hearing range

44,100 Hz Sampling rate of a typical audio CD

192,000 Hz Maximum sampling rate of many high-definition media

Table 2.2: Frequencies and ranges relevant to the digital processing of human voice. F0 refers
to the fundamental frequency.

or bit depth are chosen too low or are set to an incompatible setting. An important one is
aliasing, which can be the result of a sampling rate that is too low to represent a frequency
from the original signal. The Nyquist—Shannon sampling theorem states that only frequencies
below or equal to half of the sampling rate of the digital signal (the Nyquist frequency) can
be reconstructed without distortion. Thus, to achieve perfect reconstruction of the original
signal, the sampling rate would have to be chosen at least twice as high as the highest
frequency in the continuous signal. For arbitrary sounds, which are not band-limited, this
is not possible. However, for speech, and particularly the features we want to consider, we
can make a helpful assumption about the frequency range: Since most frequencies of speech
sound are below 7 kHz (including the harmonics), we can expect sound sampled at 14 kHz
or higher to capture all features related to the waveform. Other important frequencies are
listed in Table 2.2.

Common bit depths today are 16, 24, and 32 bits per sample. Higher values can be
perceived as showing a greater acoustic dynamics. For the algorithms we will use later,
16 bits is sufficient. Other types of digitization effects include noise, DC offset, clipping,
and skewing. Further, to reduce the required bandwidth, compression is sometimes applied,
which can have a critical impact on the data. Voice processing applications should therefore
do without compression if possible.

When interpreting or processing an audio signal, there are two major representations uti-
lized in speech sciences: the waveform view and the spectral view. The waveform is probably
the most natural representation. It consists of the raw values representing the air pressure
measured as power or emergy, and expressed as displacement from zero in either direction.
It is also called amplitude because of this oscillating shape. While the value range in digital
form is normalized, e.g. to the interval [—1, 1] for 32 bit PCM audio, a more common measure
is the logarithmic decibel (dB) scale, which reflects the human perception of sound volume.
This view more clearly exposes loud and silent passages of the waveform, and intensity-based
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measures can be directly extracted from this representation. On the other hand, frequencies,
especially when they overlap, are difficult to detect. A much more convenient view in this case
is the spectrogram, which shows the energy in various frequencies (or rather frequency bands)
on the time axis. To get from the power signal in LPCM notation (i.e. the raw, absolute sam-
ple power values) to the spectrogram, a discrete Fourier transform (DFT) is performed. This
very common method in signal processing breaks down a signal in its frequency components,
resulting in a mapping from frequencies to energy, but ignoring any dynamic aspects. The
most popular algorithm is the fast Fourier transform (FFT). To arrive at the spectrogram
view, the FFT has to be performed on different parts of the signal using a sliding window.
In this case, it has to be ensured that the window is sufficiently large to capture the desired
frequencies. Figure 4.4 on page 111 shows a waveform and a spectrogram view of the same
sound.

2.3 Age and Gender as User Characteristics

As we have seen, the information content present in a person’s voice is high. From all possible
types of paralinguistic characteristics that could be extracted, this thesis focuses on two: age
and gender. These two particular properties have been selected for both theoretical and
practical reasons. One of the former type are the plethora of interesting applications that
can be realized when we have the ability to non-intrusively detect a persons’s age or gender.
A high concentration of these applications falls into the domains of automotive services,
telephone-based applications, and mobile devices, hence the choice of these domains for a
more in-depth look at practical examples in Chapter 6. More application-related aspects will
be discussed further down in this section.

Then, there is a “quality vs. quantity” kind of argument: The number of properties was
limited to be able to focus on the parameters and performance of the approach instead of
broadening it to further properties. This “broadening” is actually done on the conceptual
level in Chapter 5 and Chapter 6, without implementing the methods. It is believed that the
concepts developed here are easily transferred to other speaker characteristics since they share
many patterns, i.e. that the foremost challenge is the optimization of a single classification
pipeline, and the minor challenge is the adaptation to other properties.

A further point for their consideration is that the recognition of age and gender is working
well enough to be suitable for practice. It is an active field in which a substantial amount of
progress has been made in recent time, including the numbers in Miiller (2005). While we
can think sufficiently abstract to see the potential of other methods which are not yet that
accurate, the effect of personalization is easier to demonstrate when all parts are working
together live. Related to this, it should also be stated that the know-how and experience
present in the field of age and gender classification was supportive of the decision as well,
although not decisive.

A more practical reason for choosing these speaker properties is the availability of data. The
persons that are in charge of the application of Speaker Classification, but not the method,
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are often initially not aware of the importance of this matter. To be able to learn to recognize
paralinguistic information, a large database — a training corpus — of spoken material has to
be present illustrating the property to be recognized using a variance resembling realistic
conditions. For example, to learn how to estimate age, a corpus of utterances from different
speakers of varying ages is required, including sufficient old speakers. To yield acceptable
results, annotation is usually a requirement as well, so only a corpus where the age was
specified during recording can be used. For age and gender, such corpora can be created
with limited effort, and several ones are available for scientific use (see Section 4.1.1). It
is considerably more difficult to create a large corpus for certain other properties such as
emotion, stress, arousal, or alcohol level, because of the issue of how to reliably put the
speaker into the desired condition, where full confidence in the correctness of the ground
truth annotation is usually not granted. A common example is emotion, which is hard to
provoke or simulate (see e.g. Schuller, Batliner, Steidl, & Seppi, 2011). And if none of the
available corpora is suitable for the task, recording a new one is difficult, time-consuming,
and expensive.

When we refer to the “age” of a person in this study, we always refer to the chronological
age or calendar age (Schotz, 2006) of a person unless stated otherwise, i.e. the amount of
time that has passed since the date of birth. This is an objective measure and is relevant
for many applications. Nevertheless, there are other common meanings of age as well, which
should be mentioned for completeness. The biological age refers to the relative position of an
individual with respect to its expected life span, and it corresponds to the maturity and aging
of cells, organs, and body functions (see ibd.). It is “influenced by factors like psychological,
biochemical, and neurological condition” (Porat, Lange, & Zigel, 2010). The biological age
is difficult to measure. The term perceptual age or perceived age (sometimes divided into
subjective age, personal age, and other-perceived age (Barak & Schiffman, 1981)) is used to
describe how old a person appears to be, i.e. how his or her age is perceived. Schiotz (2007)
defines it as “the mean age of a speaker as estimated by a group of listeners”. This may
include perception based on the voice of a person. The social age is related to the progression
of an individual in social structures, which depends on his or her social environment (Barak
& Schiffman, 1981).

2.3.1 General Applicability

The question of what paralinguistic information a voice contains and how we can extract it
would be purely academical if it were not for the applications it enables. There are numerous
scenarios in which the non-intrusive acquisition of user information is beneficial. Some ex-
amples have already been given in the introduction. Here, four major application categories
shall be discussed.

User Adaptation. The user interface of today’s applications is much more forged to suit the
user’s need than ever before, especially with respect to constrained environments, including
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cars. User adaptation, i.e. the presentation of a different interface or behavior depending
on who is using the system and in what state he is, is one way of how this personalization
can be achieved that does not depend on the user’s explicit cooperation. In the automotive
context, an example might be an increased lead time to a warning for elderly people. This
type of adaptation occurs in many other areas as well. For instance, applications which run
on mobile devices can adjust their services to the speaker’s demands. Also, user adaptation
is not limited to hardware in the user’s possession. A speech-enabled public ticket terminal
could automatically suggest special tariffs and bonus programs for young people. A native
application domain of Speaker Classification are phone-based services, such as call centers.
Here, the caller can be forwarded to an agent (automatic call distribution, ACD) based on
gender or age, which is a type of personalization as well. In all of these scenarios, asking
the user for their age/gender information is possible, but constitutes a poor option. It would
introduce an extra step that requires additional explanation of a sometimes rather subtle
effect, so the use of a non-intrusive classification method is crucial. The most promising
strategy is likely to be a combination of both: to begin with anonymous profile containing
only the estimated demographic data, and allow the user to customize the initial estimates
later on (including logging in to reveal his identity). Chapter 6 deals with these aspects in
much greater detail.

Semantic Labeling. For tasks in semantic computing or data mining, it might be necessary
to annotate speech recordings with age, gender, and other characteristics off-line. This can
be used for statistical purposes (e.g. to discover the average age of people calling in to
a phone-based service), which has applications in demographic analysis and marketing. It
could also be used with recordings of meetings or other arrangements with multiple speakers,
which allows a better idea of the situation to be formed, e.g. we could distinguish between
adults talking to a child, a man speaking with a woman, or seniors having a discussion. In
the latter case, there lies an additional problem in associating voices to different people (the
diarization problem), which can be solved separately or cooperatively with the determination
of paralinguistic information.

Supportive Technology. Directly following from the diarization example in the last para-
graph is the possibility to use knowledge about age and gender of a voice to aid other mod-
ules in their work. For instance, diarization algorithms could use the information about
age and gender in a short voice segment to improve speaker separation. Similarly, speech
recognition could also be improved by such background knowledge, e.g. by loading speaker
class-dependent recognition profiles.

Forensics. Related to crime or security in general, identifying the age or gender of a speaker
can be quite useful. When a particularly suspicious phone call is analyzed, the system can
support a human expert in assessing a speaker’s profile or identity, by using a completely
different and thus complementary approach. System support is even more desperately needed
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when hundreds or thousands of calls have to be analyzed, e.g. to filter candidates for a possible
match with a particular identity or person profile.

2.3.2 Age and Gender in the Automotive Domain

People have very different driving styles, communication habits with other road users, pref-
erences as to what locations they want to visit, where they would go shopping, and so an.
Compared to a mobile phone, where personality usually affects only “soft” aspects such as
menu design or maybe messaging, a car has a much stronger “presence” in the environment,
resulting from its size, motion, social, and safety implications: For example, it can be used
to travel with others, and of course it can also have serious effects on safety if not handled
properly. Finally, it can also contain much of the other electronic equipment that would be
subject for personalization today (phones, media players, navigation devices...). Even though
every single person shows a different behavior and taste, both age and gender are good indi-
cators for what they might be like for an unknown individual as long as there is no contrary
evidence. A simple example of how to exploit the user characteristics this way would be
a recommendation of shopping locations or sights based on the gender information, or the
choice of a different voice for the (possibly rented) car’s speech synthesis. Men and women
are known to prefer different cues for spatial orientation, so an advanced navigation system
could point to the appropriate structures in the environment according to the gender.

Even more needed than the last examples are systems that adjust themselves to the user’s
limitations and physical needs. Age and gender can both indicate such needs. Most obviously,
age tells us something about the driver’s skills: An elderly driver is much more likely to suffer
under bad lighting conditions, drowsiness, and also has a lower reaction time on average.
Warning delays, lighting settings, volume, and choice of modality are examples of areas where
adjustments can prove helpful and even reduce accidents. A young person may have better
reaction, but may also have less experience and drive more risky, so certain hints given by the
car, provided in the right style, can be effective. Nasoz, Lisetti, and Vasilakos (2010) claim
that with respect to gender, the most common reason for accidents is also slightly different
between the genders: While men drive more aggressively and more often break rules such
as speed limits, women suffer from lower confidence and errors in perception or judgment.
Apart from that, there are roads or stops that should be avoided by women, but also parking
lots especially reserved for them. A user-adaptive navigation system would respect this in its
recommendations.

As it becomes evident in these examples, it does not take much effort to realize that both
the age and gender information have a lot of potential in practice. The next step will be to
study how we can obtain it automatically and without disturbing the user.
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2.4 Automatic Recognition of Speaker Characteristics

Speaker Classification is the subject with the goal set to find solutions to the question of
how a machine can determine characteristics of a speaker, such as age and gender. In this
context, Speaker Classification always refers to an automated process, and not the neuronal
and mental processes that a human would initiate upon hearing a voice. A definition could
be given as follows:

Speaker Classification deals with the automatic assignment of a segment of
recorded speech data from a single speaker to a fixed set of classes, which describe
certain properties of the speaker or his/her state.

This definition is a slightly refined version of the definition given in the introduction to the
Speaker Classification book series by Miiller (2007). Note that in this definition, the speaker’s
state is explicitly included, which, in addition to primary properties like gender or height,
also allows emotion or the language currently spoken to be used as possible class-defining
criteria. To reach its goal, Speaker Classification research deals with a larger set of problems
(see Hill, 2007). This involves a study of the properties which are being examined, collection
of data, extraction and analysis of possible features, building of a classification apparatus,
and the experimental investigation of different system and parameter configurations. After
putting the field into the scientific context, the next sections will detail on the tasks involved
with Speaker Classification.

2.4.1 Embedding in Speech Science

Speaker Classification is an interdisciplinary research area. Therefore it would not be ade-
quate to treat it as a sub-field of a single other field. Rather than that, it uses knowledge and
techniques from many other areas of science. These particular areas and their connections
are illustrated in Figure 2.3. For better structuring, the illustration distinguishes between
those aspects of Speaker Classification that investigate the causes of differences in the human
voice (left side), the core aspects dealing with the development and testing of classification
systems (center), and the aspects related to applications of the technology (right side).

Among the foundations, phonetics, a sub-field of linguistics, explains the essence of speech
and how it is generated. Our language system consists of phonemes, intonation, rhymes, and
other constructs, and phonetics provides the link between the message and the sound that it
generates. When it comes to factors that influence the speech generation, we also have to look
into other areas. One of them is cognitive psychology, which can help us explain for instance
how and why certain emotions or an increased cognitive load influence our speech. Similarly,
when we are interested in the natural processes changing the speech production system during
our life, pathological circumstances or other anatomical differences, the field of phoniatrics,
a sub-field of medicine, will provide valuable insight into the anatomical or medical reasons
for certain behavior that we observe. Both have a direct and indirect (through phonetics)
impact on Speaker Classification (Miiller, 2005).
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Figure 2.3: Placement of Speaker Classification in the family of sciences. Here, we do not
only include the methodological aspects of Speaker Classification, but also the
theoretical foundation investigating why voices differ, as well as the most com-
mon application field, which is human-computer interaction. The four areas next
to Speaker Classification can be considered as sibling fields, although there are
special relationships to some of them.

In terms of methods, there is a strong connection to computer science since the process
itself is an automated one. Speaker Classification implies that machine learning and pattern
recognition techniques are an essential part of the design. Both treat essentially the same
topic, albeit the former is generally attributed rather to artificial intelligence as an area of
computer science and is more generic, while the latter more to mathematics and statistics, as
explained at the beginning of Section 2.5. Computational linguistics is also very relevant when
it comes to the identification of speech-based features and their extraction, since that field
has been actively developing these methods for some time. Speech recognition and speech
synthesis are examples of similar technologies that are usually attributed to computational
linguistics. Due to the kind of data that is being worked with, and being an interdisciplinary
field itself, this in turn falls back to the basics of signal processing, another sub-field of
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mathematics. It explains how digital signals can be filtered and processed, such as through
DFT. Finally, the development of robust algorithms and frameworks, which is particularly
important for this thesis, requires a considerable amount of software engineering knowledge.
This area of computer science handles, among other things, the creation of complex systems
and optimization of the efficiency of the implementation.

The application possibilities of Speaker Classification are manifold. Yet, almost all of them
involve some form of Human-Computer Interaction (HCI), which is a further sub-field of
computer science, but also has strong trails to cognitive psychology. Generally speaking,
computer science gives the answers to technical questions (e.g. How can age adaptivity be
integrated into an existing shopping application?), while psychology evaluates which solution
should be preferred from the user’s point of view (e.g. What is the user’s reaction to the
adaptation of this interface to his/her age?). As Speaker Classification is about particular
properties of the speaker, the applications typically also perform wuser modeling, which is a
special topic of HCI, and one of the types of applications it enables is personalization.

There are some fields and technologies that are directly related to Speaker Classification
and share many aspects. Probably the closest relative is speaker recognition. The latter,
being older and subdivided into speaker verification (generating a binary decision of whether
an unlabeled sample is from a reference speaker) and speaker identification (determining
by which of a set of reference speakers — if any — some unlabeled sample was produced),
can even be seen as a sub-field of Speaker Classification “in which the respective class has
only one member (Speaker vs Non-Speaker)” (Miiller, 2007). This means that from the
task point of view, the speaker identities correspond to the classes representing a collection
of characteristics and features, to which an individual voice is then assigned. However, the
argument could also go vice versa: From the approaches’ point of view, Speaker Classification
is more specific, as it will always consider features for selected user properties, e.g. emotion.
This is a subset of the features which are used to describe the identity of a person, which
would be the sum of all single user properties. In either case, the connections between both
fields are very strong, which necessarily has an effect on the techniques which are used. These
similarities are part of the reason why this work also attempts to apply the newly developed
Speaker Classification concepts to a speaker identification task (see Section 6.2.6).

Very similar to speaker recognition and therefore also highly relevant is speaker diarization.
Its goal is to distinguish the turns of different speakers, either in recorded material (e.g. from
meetings) or in an on-line scenario. Providing the identity of the speaker is an optional
addition; the main goal is to simply assign segments to a first speaker, second speaker,
and so on. The main question it tries to answer is “Who spoke when?” (Wooters, Fung,
Peskin, & Anguera, 2004; Reynolds & Torres-Carrasquillo, 2005) (or “Who speaks when?” in
case of on-line diarization). Because the method is dependent on features that can separate
speakers, it can benefit from the research in Speaker Classification, or even integrate Speaker
Classification systems directly to aid in the segmentation process.

Language identification shall be mentioned as an example of one topic that is actually
a special case of Speaker Classification, as are dialect identification, speech-based emotion
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recognition, and many others known under their individual names, even though most of them
exist longer. Obviously, all of these topics have a lot in common, and can all be employed for
personalization.

Last, automatic speech recognition as one of the largest and oldest speech-based processing
topics, should not be omitted in this catalog. It may have a lower relevance than the afore-
mentioned ones, because the goal is rather different (i.e. analyzing the contents of a message
and not the properties of its speaker). Nevertheless, some insight gained on speech features
and methods are valuable to Speaker Classification as well. In a more indirect way, the two
technologies can also benefit from each other: ASR can benefit from Speaker Classification
by using (or favoring) an acoustic or even language model that matches the speaker profile,
such as a senior female model. And vice versa, when linguistic features are considered for
Speaker Classification, an ASR may actually provide their extraction, something that was
already attempted by Metze et al. (2007) through the use of parallel phoneme recognizers.

Given this demarcation of Speaker Classification against other fields, the following sections
introduce its most important aspects and sub-topics.

2.4.2 Fundamental Aspects

There are at least two technical aspects that all Speaker Classification approaches share: (1)
They take one or more voice samples as the input. (2) For each of the speaker properties
they are designed to detect, they can return the most likely class after an input sample was
provided.

This merely defines some sort of a “minimal interface” for Speaker Classification technology.
There can be further input a Speaker Classification system could consider, such as visual
input and context knowledge, and it could also provide a more detailed output, such as
likelihoods for each class. The part in between input and output is where the approaches
differ. This core part resembles a decision-theoretical problem (choice under uncertainty), a
very common problem handled in artificial intelligence. There are many strategies of dealing
with such problems, and one of the main choices characterizing them is whether the rules for
solving the problem are specified entirely by a human expert (hence called ezpert knowledge)
or whether the system is at least to some part involved in the creation of the rules used in
decision making. In the first case, one can also speak of an expert system, while the second
is a data-driven approach that falls into the Al subfield of machine learning. The following
paragraphs in conjunction with Figure 2.4 point out the differences.

Expert systems are a type of knowledge-based decision systems that can be consulted in-
stead of a human expert. An example would be a system that can advise a pilot in operating a
plane under difficult conditions, where the rules have been created manually by incorporating
knowledge of experts in beforehand. A common method of implementing such a scenario are
rule-based or production systems, which are rich and expressive. Examples are the rule-based
languages Jess' and Prolog. This top-down approach has the advantage of being very trans-

"http://www. jessrules.com
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parent and predictable, as long as the number of factors, variables, and outputs is relatively
low, and — even more important — perfectly understood by the experts. The human experts
can incorporate background knowledge that would otherwise be difficult to capture for a ma-
chine, especially since it does not require actual data to be present for each special case. In
other words, the system can predict solutions for conditions not observed. If the relationship
among the factors or between factors and decisions is unclear, there is no advantage in having
human experts. On the contrary, if decisions are based on observations only, they may even
exhibit a worse performance than a machine in detecting subtle patterns.

Machine learning is the second approach to problem solving such as the Speaker Classifica-
tion problem. Here, algorithms are not only used to return a decision for a concrete situation,
but also to build the structures a priori bottom-up that will determine how to arrive at a
decision in such a case later, which is what gives this approach its name. Observations are
used to derive those structures, and they are required to be in an appropriately formalized
manner. The degree to which the process is influenced by a human expert varies from select-
ing only basic parameters to fine-tuning the data structures. The available structures and
corresponding learning methods are very diverse and their performance depends a lot on the
data and the parameters of the problem.

Considering the characteristics of Speaker Classification, the bottom-up method seems as
the only viable practice for the task. It is unlikely that there are any experts which could
specify a working top-down solution to the problem without resorting to trial and error, as the
knowledge is missing in the first place. The features we could consider as input to the system
are real-numbered low-level attributes, which are sometimes hard to grasp for a human, e.g.
MFCC coefficients. Also, we can hardly benefit from the expressiveness of a complex rule-
based system. Finally, we are also not capable of finding the rules that will give optimal
results by hand. This is due to the massive amount of data that we would have to analyze in
the absence of a simple and reliable relationship between features and results. It is also due
to the fact that some of the factors are highly correlated, so that the problem becomes an
optimization problem of finding a global maximum over a potentially large value range and
large set of input factors. On the contrary, methods from machine learning are more focused
on computational solving of problems and hence less accessible to humans. Typical examples
are artificial neural networks and support vector machines. More information on the relevant
aspects of machine learning are given in Section 2.5. Some structures like Bayesian networks
are suitable for both the machine learning and the manual approach.

There are some basic principles one has to be aware of. First, there is no perfect “solution”
to the problem of Speaker Classification. The performance of a system can only be as good
as the data it’s based on. And unless someone discovers a feature in the human voice which
undoubtedly exposes the speaker’s attributes, which is highly unlikely according to the reasons
given in 2.3 (and generally not true in biology), there will always be wrong answers from the
system. In the opposite, speaker gender and even more age represent particularly difficult
problems. And with increasing difficulty of a decision problem, the difference in performance
of various methods also becomes more significant. The reason lies inter alia in the complexity
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Figure 2.4: Expert systems vs. machine learning systems: The main difference lies in the way
decision-supporting data structures are created.

of the decision process, the amount of knowledge involved, and the fact that some systems
can deal far better with uncertainties than others.

2.4.3 Tasks Associated With Speaker Classification

Hill (2007) gives a good introduction to Speaker Classification and its challenges by connecting
it to speaker recognition, a related field in which there is already a lot of experience present.
The following paragraphs summarize the most important tasks that are worked on in Speaker
Classification for specific classification problems.

Domain Analysis. The first task when dealing with a Speaker Classification problem is to
build an understanding of the speaker property or properties which are going to be estimated,
and how they should be used. If we want to classify the emotion of a speaker, we first need to
think about which emotion model we want to apply, which also determines the classes that
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we will define. If we want to classify intoxication, we first need to do research on what types
of substances we want to detect and with what granularity. When trying to classify age, we
have to think about how many age classes are required and what ages they should span. As a
result of thinking about the problem domain, an initial set of classes is created. After repeated
experimentation, the final class set may still look different, for example because combining
certain classes that cannot be distinguished well is more rewarding. In this context, we
should also get an initial idea of how critical errors are, i.e. what error rate is still acceptable.
Overall, a document detailing the specifications of the task should be the outcome of the first
step.

Data Acquisition. The next step comprises ensuring that the required data is available.
This can turn out to be an actual blocking criterion, since the number of available corpora
that are large, well-balanced, recorded in clean manner, and conscientiously annotated is
limited. Recording a new corpus that adheres to these criteria is usually too time- and cost-
intensive. When investigating speech corpora, it should be ensured that the desired classes
are present with a sufficient number of speakers and length of material for each speaker and
class. Preferably, the classes should not be biased towards a certain gender or age. If there
is a bias, the results cannot necessarily be generalized. This is also true when the corpus is
language-specific.

Feature Analysis. As Hill (2007) states, coming up with a good selection of features is
probably the core task of Speaker Classification, as opposed to the classification of some
“random” multi-dimensional vector (this would merely be part of a pattern classification
task). Hence, the initial selection of features should be made manually and according to our
knowledge of the speaker properties. As a simple example, consider that, for the detection
of gender, the different vocal fold length for men and women results in a different pitch, so
we might want to focus our first analyses on pitch-based features. There may be multiple
ways to choose from how the feature can be obtained, such as through cross-correlation or
auto-correlation. Plotting the feature for different samples may reveal derived measures that
are worth studying, such as extrema, percentiles, or periodicity. Finally, statistical analyses,
e.g. value distributions or correlation with other features, complete the picture.

Classification Approach Set-up. This is where the main engineering work is needed to put
together a system that can learn and apply a model based on the features, and also fulfill
any other conditions specified by the task. Like for the feature selection, choice of a method
should always be guided by a hypothesis of why certain methods are expected to work better.
The suitability of classification algorithms depends very much on the feature values and the
general type of feature. For instance, GMMs (Gaussian Mixture Models, a type of classifier
explained in detail later) work well with normally distributed frame-based features such as
MFCC coefficients, while HMMSs are preferred to model the “shape” that phonemes represent
in case of speech recognition. Based on the feature analysis, an elaborate choice of features
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to include can be made. It is still possible to add automatic feature selection in order to
optimize the outcome and deal with those aspects that are not easy to see with the eye.

Experimentation and Result Analysis. This comprises the task of testing a system under
different parameter configurations, comparing the results, and drawing the appropriate con-
clusions. These, of course, can present further reason to change the approach or the features
in another iteration. Finally, it might be a good idea to consider the capabilities of human
beings in the quest to improve the machine’s performance. This means that studies on how
well humans perform characterizing certain speaker qualities and what features they base
their decisions on can lead to greater insight and also puts the results into a meaningful
relation to natural skills. In Section 4.6, we will follow up on a specific aspect of this, namely
how a human characterizes the same quality in synthesized voices, which can in turn be
used to confirm certain findings about the features that are believed to affect human decision
regarding speaker classes.

Quite often, all of the aforementioned aspects are considered in this order for a particular
problem at hand. Sometimes however, only selected tasks are covered, while the others are
assumed as solved. This is the case for example in classification “challenges” (see Section 3.4),
where data is provided externally and mainly existing background theory is applied to a new
domain. Conversely, progress on features for Speaker Classification can also be made without
evaluating the whole system.

2.4.4 Acoustic Features Used to Model Aspects of Voice

This section provides an overview of some of the most frequently used acoustic short and long
term features in Speaker Classification applications, including those explored in the AGENDER
and FRISC experiments.

Fundamental frequency. More commonly known under the term pitch?, the fundamental
frequency is the lowest frequency in the speech signal. It is also called F0 in reference to
the formant with index 0. Sounds with a higher FO are also perceived as sounding “higher”.
Because of vocal tract resonance, frequencies of integer multiples of FO are additionally present
in the signal, and are called harmonics. Pitch is computed for a window, of which the size
depends on the smallest frequency to detect (for voice, 75 Hz is a common value). A common
window function for pitch computation is the Hanning window. One method of obtaining
the pitch value involves computing the normalized auto-correlation of the signal and dividing
it through that of the window function (Boersma, 1993). The cross-correlation represents an
alternate method. The result is interpolated and scanned for local maximums. The largest
maximum is the best candidate for the frequency. The interpolation depth determines the

2Some authors also distinguish between pitch for auditory and fundamental frequency for acoustic properties,
e.g. Ladefoged (2006, p. 23)
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precision of the result. Computing pitch in this manner for a complete utterance, i.e. by
applying a sliding window, the pitch contour of the signal is created. This curve may have
gaps, as there will be no pitch in unvoiced regions. Most work related to Speaker Classification
uses pitch as a global feature. The most common actual metrics are its mean, median,
minimum, maximum, and standard deviation per utterance. The latter can be considered a
measure of the frequency tremor. Another functional is the first order derivative or slope of
the pitch.

Formants. In the vocal tract, some harmonics that are close to its resonance frequency
will be amplified and represent further peaks in the spectrum of the voice. Their location
is roughly predictable within a certain Hertz range. These formants, called F1, F2, and so
on, are said to describe the quality of vocal sounds. Similar to pitch, their exact location
and energy can be characteristic for individual speakers, although a strong correlation to the
former can be expected (Assmann & Nearey, 2007).

Jitter. While changes in the fundamental frequency and also formants have a clearly audible
impact heard as the pitch of the voice, there are also much smaller frequency variations known
as jitter. Although these variations affect the pitch as well, the changes occur so rapidly that
they are neither measured through the above F0 metrics, nor are they perceived as such, but
rather as an “unsteadiness” or less “clean” voice. In the data, it can be measured by looking
for changes of pitch in successive windows. Jitter is often specified relative to the average FO
in the signal. Apart from the simple mean, Praat, a free speech analysis tool commonly used
by phoneticians (Boersma, 2001), also defines the several measures of jitter: relative average
perturbation (RAP), which considers the mean difference to two adjacent windows; five-point
period perturbation quotient (PPQ5), which is “the average absolute difference between a
period and the average of it and its four closest neighbors, divided by the average period”;
and the difference of differences of periods (DDP), which computes “the average absolute
difference between consecutive differences between consecutive periods, divided by the average
period” (Boersma & Weenink, 2011).

Intensity. The intensity describes how loud a signal is perceived. It measures the mean

1t
ta—t1 tf
t in the continuous signal. This follows the definition used by Praat. Both intensity and

amplitude in a given region, i.e. x(t) dt, where z(t) returns the amplitude at point
amplitude are measured in dB. A popular derived measure is the log energy, which the
Hidden Markov Model Toolkit’ (HTK) computes as log >N | 2?7, where z = {x1,...,zx} is
the discrete signal. In conjunction with the audio signal, the terms energy and power are used
interchangeably with intensity unless stated otherwise. The intensity contour, which can be
obtained in analogy to the pitch contour, is essentially a smoothed absolute value version of
the signal. A problem with intensity is that it strongly depends on the recording situation,

3http://htk.eng.cam.ac.uk
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such as the type of microphone and the distance from the speaker to the microphone. Even
when only relative values are used, the feature is less robust than most others to noise and
recording conditions, which easily outweigh the influence of speaker properties.

Shimmer. In the same way that jitter describes micro-variations in the frequency domain,
the shimmer measures equally small variations of the amplitude. Since the ability of people to
produce sounds with a smooth amplitude varies and depends on physiological characteristics,
the feature carries speaker-specific information. As opposed to intensity, there is far less
external interference present in this metric. Apart from the mean value specified either in
absolute dB units or as a percentage of the average amplitude, Praat supports the n-point
amplitude perturbation quotient (APQn), which is “the average absolute difference between
the amplitude of a period and the average of the amplitudes of its neighbors, divided by the
average amplitude” (n = 3,5, 11, Boersma & Weenink, 2011).

Harmonics-to-noise ratio (HNR). Named after the signal-to-noise ratio from statistics, the
HNR. describes the amount of harmonic content, measured as the degree of periodicity, in
a segment of speech. Praat calls this feature Harmonicity. It is expressed in dB. A low
harmonics-to-noise ratio can make the voice sound hoarse (Yumoto, Gould, & Baer, 1982).

Mel-frequency cepstral coefficients (MFCCs). While the spectrum of a signal expresses
how energy is allocated to the different frequencies in the signal, the cepstrum does the
same for the spectrum, hence it is also called “spectrum-of-a-spectrum”. In other words, it
reveals short-term periodicity that occurs in the frequency dimension of the spectrum®. The
MFCCs (see S. B. Davis & Mermelstein, 1980 for some of the most original work on the
coefficients) are a special type of cepstrum representation: They map the spectral powers
to the Mel scale, which is a logarithmic scale that describes how frequencies are perceived
by the human ear. Hertz can be converted into Mel by using the formula 2595 - log;,(1 +
7{;—0), where f is the frequency in Hz. As a consequence, large changes in the Mel-frequency
domain also correspond to large perceived changes of frequency, which is a clear advantage of
this representation. Further, multiplicative channel effects become additions in the cepstral
domain and can easily be removed through cepstral mean subtraction (Young et al., 1999).
The MFCCs are typically computed in frame-wise manner by first applying an FFT to a
window of the original signal (see Section 2.2), then converting the Hertz scale to the Mel
scale by applying a triangular filter band with N channels (see Figure 2.5), and then applying
a linear cosine transformation on the resulting values. This transformation uses the following
formula in HTK (see Young et al.,; 1999, ch. 5.6):

P T
¢ = ”Nj;mj cos <N(j - 0.5)) ,

4In the time domain, similar features are called temporal patterns or TRADPs.
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Figure 2.5: Triangular filter banks used by HTK to spread frequencies across the Mel scale
(binning). (Source: Young et al., 1999, p. 65)

where IV is the number of channels in the filter bank and m; are the log filter bank amplitudes.
MFCCs are used in all types of speech processing due to their high discriminability, but they
are known to be particularly related to the vocal tract configuration and therefore a preferred
feature in speaker recognition and related areas. Here, they often outperform the spectral
features.

MFCC deltas and acceleration. The first and second order derivatives (regression coeffi-
cients) of the MFCC features, or delta and acceleration features in short, are often included
to account for the change in cepstral activity over time (Kockmann, Burget, & Cernocky,
2010). Some applications do even consider third and higher order derivatives. The formula
to compute each coefficient in HTK has the following form (see Young et al., 1999, ch. 5.9):

_ 61 0(ciro — cio)
256 62

where d; is the delta coeflicient at time ¢, ¢;_g and c;1¢ are static coefficients, and © is the

dy

)

window size.

2.5 Pattern Classification

Having discussed the basic tasks of Speaker Classification and some of the options to solve
them, this section provides the background knowledge for one of its most vital methods.
One of the commonly encountered tasks in computer science today deals with the auto-
matic, i.e. computer-based recognition of structures. The topic in which solutions to these
tasks are systematically developed is called pattern recognition, or more specifically pattern
classification if the result represents a set of discrete “categories”. The topic has changed from
a niche topic that it was approximately forty years ago to a core topic of Al (Duda, Hart, &
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Stork, 2000, p. xvii). Some examples where pattern recognition problems are usually involved
include speech and speaker recognition, optical character recognition, face recognition, scene
analysis, gesture recognition, plan recognition, energy pattern classification, network attack
detection, and many others.

Pattern recognition is one aspect of machine learning that deals with the mathematical
and statistical backgrounds of the models used to solve the problem of detecting patterns in
empirical data. Both machine learning and pattern recognition grew out of different sciences
and motivations around forty years ago, but as of today, they can be considered simply two
different views on a the same or at least a similar problem. Pattern recognition highlights
the statistical aspects, while machine learning highlights the algorithmic, computer science
motivated aspects (Bishop, 2007; Cornuéjols & Miclet, 2008). This is why in many situations
these terms may be used interchangeably.

This section gives an introduction into pattern classification by explaining terms and pre-
senting the most vital concepts, including several classification algorithms. For a more in-
depth look, the book by Duda et al. (2000), on which several of the following descriptions are
based, is highly recommended, in addition to the book by Witten and Frank (2005).

2.5.1 The Pattern Classification Task

Any pattern classification problem is centered around a question of the following form: Given
a sample (also called instance in machine learning) X and a finite set of classes (also called
labels) {1,...,n}, how can we determine to which of the classes the sample X belongs? Clas-
sification assumes that there is a clearly defined truth, which is the “correct” assignment of
the sample to a single class, even if the relationship between both is not so clear. Normally,
when the truth is a natural, objective, and non-ambiguous choice, such as the chronological
age of a speaker, we also speak of ground truth. In some other cases, the relationship is purely
based on assumptions, in which case we have to define a truth. For instance, when emotion
is generated in speech, there is no way to objectively tell for certain what emotion is present
in a given segment of speech, neither by the speaker, nor by the experimenter.

When the classes we can distinguish are siblings to each other, the problem is also said to
be an identification problem (identification of the right class to which the sample belongs),
while a binary (yes/no) classification problem with one class and one “rest” class is called a
detection problem (detect if the sample is of type T" or not). The reason why this distinction
is important is because an identification task can also be transformed into a series of detection
tasks, i.e. for each class the truth is obtained separately. As we will see in Section 2.5.7, this
has a number of implications on the system design and evaluation.

To have a computer make a decision involving classification, it needs a model of the problem,
and a system component to read and apply the model, which is the classifier. The model
describes the knowledge of the system about a problem. The model can have an arbitrary
contents, but the basic purpose is to describe a relationship between aspects of the input data,
the features or attributes, and the classes. There are two basic types of models: generative
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and discriminative. The first kind contains information used to sketch the properties that
all samples of the class share. This knowledge could be used to generate samples that are
members of this class, hence the name. Generative models are usually constrained to a single
class and have no knowledge of other classes or feature values that are explicitly not an
indicator of class membership. In contrast to this, a discriminative model stores knowledge
about features that distinguish class samples from non-class samples (or multiple classes from
each other). Only differences that are reflected in the features can be used for discrimination.
These characteristics, which are illustrated in Figure 2.6, give both types of model quite
diverse classification properties and their respective limitations. The system that will be
proposed in Chapter 4 shows how both can be combined for increased performance. Features
can be essentially anything, such as the size or shape of objects to be classified. In an actual
system, the choice and value range of features will be fixed to the feature space. The most
common value types for features are real-numbered, integer-valued, nominal (categorized),
or binary (nominal with two categories). More complex features, such as the description of
a gesture or the words in an utterance, need to be broken down into more basic attributes,
such as distance values. This is sometimes called filtering. The classifier itself is limited to
those features provided by the system, which are called feature vector due to the fact that
the ordering of features usually remains identical for each sample in any given system. The
algorithm that classifiers use is also known as the classification algorithm®, and there are
several well-known algorithms such as kNN, Naive Bayes, and SVM.

Before we attempt to create a model, we should study the available features in sufficient
detail. Determining quality metrics on the feature level after the initial selection instead of
starting right away with classification is preferred, as features usually allow a much clearer
and distinctive insight than models or final classification results do. It is part of the bottom-
up approach that is fostered in this thesis. One basic method is a histogram-based analysis
of the feature space. Thereby, for a single feature, one curve is created for each class in the
same chart (see Figure 2.7). The amount of visual overlap between the curves gives a good
impression of how well this single feature can contribute to the separation of these classes.
Even if not all classes are set apart from each other, the feature may still be good at separating
a single class from the rest, so it may be useful to also visually combine certain classes in a
single curve. Instead of the typical bar shape histograms, the Gaussian probability densities
of the features can also be plotted (see Figure 4.18 on page 143). Instead of the histogram
“bins”, only the mean and standard deviation of the value range are plotted as a Gaussian

curve with the shape
fo) = e
xT) = e 20 s
V2ro?

where p denotes the mean and o the standard deviation of the actual feature values. Ac-

cording to this formula, the curves are normalized to cover an area of 1. Besides being more
concise and easier to read, they depict already an approximation of the performance of a
simple GMM classifier (univariate with a single mixture). However, the view may also be too

S5A classification algorithm is often also called classifier for simplicity.
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Figure 2.6: Generative versus discriminative models. In this example, a training set consists

of 2 classes (A and B) with 3 instances in each class. There are 3 features (size,
color, shape). The lower half displays a simplified view on the possible relations
stored in a generative and a discriminative model trained on the same instances.
In the case of two classes, the two discriminative models could also be merged
into one.

imprecise or misleading when the feature values are not approximately normally distributed.
A third feature analysis method is the correlation chart. Features that strongly correlate con-
tain redundant information, which could make the training process slower or even decrease
the classification performance. This chart plots the values of two features against each other
for all samples in a two-dimensional graph (see Figure 2.8). The features must either have
the same scale or be normalized first. If the samples are all arranged close to one of the
diagonals, a high correlation is present.

Apart from applying a model, an important part of pattern classification is to have the
model created automatically. This process is often called training and involves processing
a number of training samples for which the truth is known. In addition to this supervised
training, there is also a type of training without labels known as unsupervised training or
clustering. In this case, the classes or clusters are not known in advance (except for rough
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Figure 2.7: Comparison of feature values measured for two different classes in histogram form.

In this example, the values are by and large separate, but there is also some
overlap. (Source: Duda et al., 2000, p. 4)
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Figure 2.8: Linear correlation as observable in 2D feature plots. Left picture: no correlation.
Right picture: strong correlation.
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Figure 2.9: Samples of a hypothetical classification problem, plotted with respect to two fea-
ture values. The truth is indicated by color (black vs red). A black line denotes
a possible decision boundary. (Source: Duda et al., 2000, p. 5)

constraints such as regarding their number), but generated in conjunction with the model.
The classification algorithm is responsible for building the model based on the feature vector.
Generative models are usually trained only with samples stemming from their corresponding
class, while discriminative models are trained with all data.

Models often impose mathematical relations on a subset of the feature space. For example,
a simple web-cam image processor could classify the time as “day” when the brightness
is above a certain decision threshold, and as “night” otherwise — feature values below the
threshold result in a different decision than values above. Normally, the decision process is
more complex, because (a) there are multiple thresholds or ranges, and (b) we consider more
than one feature, i.e. dimension. Therefore, we speak more generally of decision boundaries.
If, for instance, we add a second feature, e.g. the amount of activity between two images, and
create a relationship between the two features involving a single combined threshold, we get
a linear 2-dimensional decision boundary that could be plotted as seen in Figure 2.9. One of
the criteria that makes classification algorithms different in their ability to produce certain
decision boundaries, not only in complexity, but also in general shape. Some algorithms have
a very characteristic appearance when plotted in a 2D chart. For instance, some decision
trees can only produce rectangular (axis-parallel) boundaries.

We can clearly see that the linear decision boundary in Figure 2.9 is suboptimal. Assuming
that we use a classification algorithm that allows sufficiently complex decision boundaries,
we could theoretically create an “optimal” boundary in terms of classification accuracy as
shown in Figure 2.10. While this classifier could perfectly separate the training examples, it
might do worse than the linear classifier under real conditions, i.e. on new examples not seen
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Figure 2.10: The classification problem from Figure 2.9 now uses a different, (too) complex
decision boundary. (Source: Duda et al., 2000, p. 6)

during training. What this model suffers from is a problem of over-fitting: The boundaries
are tailored to the training samples in too much detail. One can also say that it learns the
actual training instances by heart, instead of learning the general properties that distinguish
the classes. Duda et al. (2000, p. 7) call this quality generalization. A model that might
reflect a better compromise between training performance and generalization is depicted in
Figure 2.11.

In practice, many classification tasks cannot be solved perfectly. There are a number of
reasons for this. One is related to the task itself: For some tasks, it is impossible to build a
perfect classifier. If for example we want to classify an email into spam and ham (not spam)
based on only the message subject, then it is obvious that a perfect accuracy can never be
achieved on this data alone. But even if we have the whole message available, we can imagine
that there will always be false positives. This is the classification-inherent uncertainty, which
can only be mitigated by changing the input data or specification of the problem. Yet, even if
a perfect feature existed in theory, which is arguably unlikely for most classification problems,
we are limited to the features and extraction methods at our disposal. With most features,
there is some overlap remaining between classes that we can observe in the data, even for
features that appear to be good. This is often related to natural outliers, i.e. samples that
have feature values out of the usual range: For example, when classifying gender based on
voice, we might associate higher voices with women and lower voices with men. But there
are also men with particularly high and women with particularly low voices, which even a
good model does not cover using this feature — neither do humans. And then of course, there
is uncertainty caused by a suboptimal choice of features and algorithms. A positive aspect
is that we are able to quantify the collective uncertainty associated with classification: By
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Figure 2.11: A decision boundary that represents a trade-off solution to the classification
problem from Figure 2.9. (Source: Duda et al., 2000, p. 6)

measuring the classification performance in an evaluation, we can predict how accurate the
model is in general. For instance, we might state that a given speaker gender classification
system statistically fails for every 10th speaker.

A pattern classification system generally is expected to assign instances to classes (the
actual classification), but there is more to it. Because of the uncertainty mentioned in the
previous section, the system has to solve a more generalized type of decision problem: It
must decide which result is actually better according to some external metric. A common
metric is the unweighted average accuracy over all classes, which essentially means that the
system should try to classify as many instances as possible correctly. But there are also cases
where this “equality” of classes is not given. Duda et al. (2000) present the example of a
fish processing plant separating salmon from sea bass. Obviously, due to the value of the
fish, a misclassification of sea bass as salmon is less critical (from the customer’s view) than
the other way round. A pattern classification system can integrate such a constraint in its
decision process. In the general detection task, the corresponding metrics that are traded
against each other are misses and false alarms. More generally, we speak of a cost measure.

According to Duda et al. (2000), the classification of an instance by a pattern recognition
system can be divided into different consecutive phases or components, which are depicted
in Figure 2.12: sensing, segmentation, feature extraction, classification, and post-processing.
This arrangement is also called the classification pipeline. Each of these phases is described
in the following. Afterwards, we give some insight into the evaluation procedure for such
systems.
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Figure 2.12: The basic components of a pattern recognition system as by Duda et al. (2000, p.
10), also called the classification pipeline. Even though the name and the arrows
indicate an uni-directional data flow, it is also possible that systems utilize a
feedback channel going in the reverse direction.

2.5.2 Sensing

Before data can be processed, it has to be made available to the system in some manner.
This is called the sensing or acquisition step. In often involves recording from some kind of
analog sensor, such as recording speech through a microphone, images through a camera, or
gestures by using an acceleration sensor. Analog data is digitized in this phase. Mechanical
pre-processing tasks, such as the resampling of audio data, can also be counted to the sensing
phase. If the data to be classified is already available in digital form, the sensing phase is
reduced to a copying of data.

2.5.3 Segmentation

In the segmentation phase, the raw data undergoes an initial selection and recognition proce-
dure, which is also part of the pre-processing. There are two main aspects of segmentation,
which are filtering and grouping. The goal of filtering is to remove noise that would otherwise
interfere with and complicate the successive steps. Technically, this aspect of segmentation
can indeed be a type of classification, usually a simple one, which distinguishes between data
and background instead of the actual classes. For example, for the classification of facial
expressions, the segmentation consists of a basic detection of the area of the face and removal
of the background. In speech processing, a common segmentation task is the selection of
segments (frames) which contain actual speech data. Grouping refers to the separation of
samples, either in temporal or spatial manner. For instance, a classifier for shapes in images
might get an input image with multiple objects in a single picture which it has to split up
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(spatial case). In speaker recognition, we want to detect if two utterances belong to the same
person (temporal case). Segmentation can also be used to detect overlapping samples.

Duda et al. (2000) note that segmentation can actually be a quite difficult problem, since
classification can depend on it, but also vice versa at the same time. They also recognize
one aspect of grouping that is the choice of the appropriate group size, or the problem of
subsets and supersets (mereology). For example, in speech recognition, it is all but clear to
decide when a complete word is spoken — the sounds that make up the word “weaken” could
equally be segmented into the two parts “we” and “can”. Confirming this already requires a
considerable amount of feature and model knowledge.

It should be noted that many pattern classification systems do not care about segmentation
and the potential issues arising from it; they rather circumvent the issue by setting the system
specifications to require pre-segmented input data. For example, most Speaker Classification
systems require the boundaries of an utterance to be specified externally.

2.5.4 Feature Extraction

Once the pre-processed, but still “raw” data of a single sample is available, it can be converted
into something more meaningful. At the end, data should be available in the structured form
of a feature vector. Feature extraction is all about transforming data from one format into
another, thereby adding abstraction and itemizing information. It would be obsolete if the
raw data already had this form, which may even be true for some very simple classification
problems. However, this is mostly not the case. For example, an image that is stored as a
matrix of color values, while technically also a feature vector, is not compatible with most
classification algorithms. (In addition, the vector would have a varying size, which is also
unsupported by most algorithms.) Instead, the actual feature vector might be based on
particular regions of interest in the image, such as the Haar features commonly used for
face detection, which are either present or not. The vector would then be a sequence of
binary values, e.g. 1-0-0-0-1-1-0 (Haar features 1, 5, and 6 present). Another example is
text classification, e.g. document types. While the source data is the document text, the
feature vector would rather be a list of word or word combination frequencies. In Speaker
Classification, various algorithms can be applied to the speech signal to extract numeric
features such as pitch or noise levels.

As Duda et al. (2000) argue, the distinction between feature extraction and the subsequent
classification step is not clearly defined. It is rather a practical design concept, which roughly
states that feature extraction works on the raw data and classification outputs a class decision.
Computing a feature may involve as much classification work as the next step, or even more.
In an extreme scenario, it would be possible to put all the classification intelligence into the
feature extraction and create a feature vector consisting of single integer feature “class index”
that denotes the output class. The classifier would have a trivial job to do. Or conversely, we
could have our black-box classifier work on the raw data and generate all intermediate feature
representations internally. In these examples, it would even be difficult to decide whether the
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label feature extractor or classifier was the appropriate one. Or, as Duda et al. (2000) state
it, “an ideal feature extractor would yield a representation that makes the job of the classifier
trivial; conversely, an omnipotent classifier would not need the help of a sophisticated feature
extractor”. For the reasons mentioned earlier, it is definitely a good idea to have two distinct
steps instead of a single monolithic one: It adds transparency and allows us to check the
vector of actually relevant features, and possibly add further filtering steps, before turning
to the next stage. Finally, feature extraction and classification algorithms usually originate
from different algorithm libraries, with feature extraction often being more domain-specific,
and the given architecture allows to connect them more easily.

The choice of the features best suitable for discrimination is possibly the most critical task
in designing a pattern recognition system, and it is a manual task at its core. There is a
strong connection between features and classifiers — some classifiers do not work well with
certain features, correlation properties, large or sparse feature vectors etc. For instance, a
single feature always containing the correct class index could still perform miserably when
used with a classifier that cannot model the corresponding decision boundary. As a rough
guideline though, several simple and intuitive feature are usually a better choice than fewer
complex or encoded values.

Although a number of feature selection aspects can be automated to some extent, e.g.
the restriction to a particular subset of good features or even the generation of derived
features, as is the intention of Deep Learning (Bengio, 2009), the real breakthroughs in
performance are usually achieved by a level of abstract intelligence that machines currently
are not able to provide. Some of the traditional feature selection algorithms are principal
component analysis (PCA), factor analysis, nuisance attribute projection (NAP), hill climbing
and random multinomial logit (RMNL).

2.5.5 Classification

In the next step, a feature vector is processed by an algorithm that outputs the class to
which the input data has the closest resemblance. In most cases, this decision is subject
to uncertainty and is only accurate to a certain degree. Therefore, some classifiers return a
confidence value or other type of score in addition to the class decision.

The choice of the appropriate classification algorithm is another central question of the
pattern recognition system as a whole. There are actually numerous criteria which can play
a role in this choice, some of which are the following:

e Decision Boundaries: The ability to model a certain type or “shape” of decision
boundaries is one of the main parameters that influences the classification performance.
If the decision problem has a different form than the classifier can model, then a satisfy-
ing performance can be reached neither on the training samples, nor on real data. This
property only refers to the theoretical capability of the algorithm to model a problem,
it does not indicate whether appropriate boundaries will actually be chosen.
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e Generalization Behavior: Each classifier uses a different strategy to transfer the
training samples into a model. It usually makes some assumptions about the feature
ranges that have not been observed, such as by interpolating. For instance, a GMM
with a single mixture assumes a normal distribution of values, hence it would work
best for normally distributed values. The generalization behavior describes the ability
of the algorithm to choose optimal boundaries for a given training set considering the
underlying mathematical restrictions. This cannot be confirmed on the training set,
because a classifier that learns the feature vectors from training by heart would achieve
a flawless performance during training, but most likely not on other data.

e Runtime/Complexity: For many applications, the speech with which a sample is
classified also plays an important role. To ensure scalability for a large number of
samples or features, the computational complexity of the algorithm has to be taken into
account in addition to benchmarks using actual data in a real setting. For example, the
kNN algorithm has linear complexity with respect to the number of training samples.

e Training Duration: Although the fact, that training has to be performed only once
in an off-line configuration, may seem to be a secondary aspect at first sight, it could
also prove to be of critical importance under some circumstances. For a large volume
of data, a single training phase can easily take days or weeks and therefore become an
exclusion criterion for certain algorithms. In addition, especially for modern CPUs, the
ability to take advantage of parallel processing can make one algorithm the preferred
choice over another.

e Incremental Training: Some scenarios require the ability of a model to be extended
dynamically, i.e. to perform on-line training. Not all algorithms can fulfill this require-
ment.

e Model Size (Memory): The data structure used to store the models can occupy a
certain amount of space in working memory and on disk, which depends on the algorithm
and possibly on the number of features and training samples. For applications running
pattern recognition on embedded devices with limited resources, this is a decisive factor.
Typically, the size can be traded against performance for many models, such as by
introducing additional pruning for decision tree algorithms.

e Feature Compatibility: As outlined earlier, features are not generally compatible
with all algorithms. For instance, most SVMs kernels work only well with real-numbered
features.

e Treatment of missing values: In some cases, one or more features cannot be com-
puted, and the value is said to be missing in the feature vector, which is different from
being zero or some other default value. For example, pitch cannot be computed for
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unvoiced segments. Algorithms (or sometimes implementations) tend to treat miss-
ing values differently: some can handle them better while others will show decreased
performance. A few algorithms are even optimized for sparse feature vectors.

Duda et al. (2000, p. 7) distinguishes between three types of pattern recognition: sta-
tistical, neural, and syntactical. Statistical pattern recognition observes what patterns a set
of features produced in the past, and based on this information, attempts to make proba-
bilistic predictions for future samples under the assumption that they may be impacted by
noise. This is the most relevant type of pattern recognition for Speaker Classification. Neural
pattern recognition originates from a science even older than machine learning, which is the
understanding and artificial reconstruction of processes in the brain and nervous system. Not
surprisingly, its main representative algorithm are ANNs. It can also be considered a close
descendant of statistical pattern recognition (see ibd.). The third category, syntactical or
structural pattern recognition, is based less on approximate relationships, but rather on exact
logical rules or grammars. Methods of this kind usually work with a much smaller, discrete
feature space (i.e. using only nominal features), but can therefore infer more complex re-
lations. An example would be the prediction of system failures in trains based on various
possible system states.

Section 2.5.1 introduced the difference between generative and discriminative classifiers. A
further distinction that can be made for discriminative methods is between binary classifiers
or dichotomizers, which support exactly two classes, and multi-label classifiers, which support
any number of classes. SVMs are natively binary classifiers. The reason for having binary
classifiers usually lies in restrictions of the algorithm that is used, as a multi-label classifier
represents a superset in terms of functionality. Yet, binary classifiers are the better choice for
a detection task, since they allow the independent evaluation of single targets, which is not
possible with an opaque multi-label classifier (unless it gives additional insight by providing
scores for each class as part of the output). The multi-label classifier, on the other hand,
resembles the identification task more closely. It is always possible to “simulate” a multi-
label classifier by arranging multiple binary classifiers in the appropriate way. Two popular
strategies are one-against-one and one-against-the-rest. One-against-the-rest is the simpler
strategy (see Figure 2.13 B): For n classes, n binary models are trained. The samples of the
first class correspond to the target samples and the second class to the non-target samples,
i.e. the “rest”. For an unknown sample, each model would compute a score for its target class.
The multi-label result is the model that produces the highest score (or a similar metric). The
same technique can be used to create a discriminative wrapper around generative (i.e. single-
class) models. In the one-against-one method (see Figure 2.13 C), Z?;lli binary classifiers
are generated, each discriminating a different pair of classes. For a new training sample, a
majority voting is performed on the number of “duels” a class is able to win. While both
methods work well for many tasks, a “true” multi-label classifier can potentially achieve a
better performance since it has more extensive knowledge about the problem, while the two
aforementioned approaches treat the model as a “black box”.
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Figure 2.13: Two methods for creating multi-label classifiers from dichotomizers. Circles rep-
resent binary classifiers, the two incoming arrows are the labels they are trained
with, and the box at the bottom end denote pro-class decisions. This examples
uses four classes, with each color representing a different class.

The following sub-sections introduce the learning algorithms applied in the remainder of
this thesis, in addition to a short overview on other popular methods at the end.

Gaussian Mixture Models

The Gaussian Mizture Model (GMM) is a straight application of Bayesian decision theory us-
ing a specific probability density function, the Gaussian density. It is a probabilistic method
since the model is defined by the probability distribution of features, as opposed to a dis-
crimination function. One of the earliest utilizations of these generative models for speaker
recognition was done by Reynolds and Rose (1995). The overview in this section is partially
based on their descriptions, as well as on Duda et al. (2000) and Reynolds, Quatieri, and
Dunn (2000).

Bayesian decision theory attempts to describe a decision problem as completely as possible
using a probabilistic approach. Let a given classification problem be defined by a list of C'
classes and F' features. The probability that a sample & (a feature vector {x1,xa,...,xf})
belongs to class w, is written as

p(wwf) = P(wc‘f)p(f).

In this equation, P(w.|Z) is the posterior probability, i.e. the probability of class w, given that
feature vector Z was observed, and p(Z) = Z]C:l p(Z|w;)P(wj) is the evidence factor, which
scales the probabilities so that they sum up to 1 across classes. w, refers to a world state and
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can be read as the event that the sample is of class w.. Using Bayes’ theorem®, P(w,|Z) can
be rewritten, resulting in

Plwddp(@) = PAP@e) P,

p(Z)
where P(w.) is the prior probability for class w. (with all P(w.) summing up to one), and
p(Z|we) is the likelihood or class-conditional probability density function, i.e. the probability
that feature vector I is produced by samples of class w.. This last function is the core aspect
of the model. Before we look at how GMMSs implement this density, let us see how we arrive
at a classification result ¢ (class index). One option is to simply choose the model with the
highest probability, i.e.

¢=c,ie{l,..,.C}|plw;, %) = mgx(p(wc,f))

This however is rather rigid in terms of performance and does not allow custom cost met-
rics. Therefore, another approach is to use a likelihood ratio, which is given for the binary
classification case (C' = 2) as

p(&|wi) P(wr)

p(Z|w2) P(w2)

and a decision can be obtained by comparing this ratio to a pre-defined decision threshold ©

L(T) =
that represents the cost metric:

L1 itcze
]2 if£L <O

As pointed out by Reynolds et al. (2000), the log likelihood ratio A is a common alternative
to the likelihood ratio £, and it is defined (without priors) as:

A(Z) = log p(F|w:) — log p(Z|wa).

In case of GMMs, which are generative models (C' = 1), either likelihood ratios are actually
not defined. Reynolds et al. (2000) suggests to use an additional background speaker model
that represents the rejection of the hypothesis wq as class wo. This model should represent
the whole feature space — it can also include the knowledge from w;. Such a model is called
a universal background model (UBM).

Returning to the probability density function, the GMM employs a basic function that —
in case of a single feature (F' = 1) — has the following form known as univariate Gaussian
probability density (see Section 2.5.1):

p(z) = e 2

P(A|B) = ZELIEA if P(B) #0
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If we consider multiple features, the more complex multivariate density is used:

1= 1 1 Y A
= = Y E - 5
P'(7) 2n)F S exp(—3(7 — iy S (7 - i)

where i is the mean vector, Y is the covariance matrix, and 1 is its inverse. This equation
defines a single mizture or Gaussian. Instead of a full covariance matrix, only a diagonal
matrix (i.e. the variances) is often used for efficiency reasons or because they actually perform
better. It is also possible to use the same covariance matrix for all Gaussians or even for all
speakers (see Reynolds & Rose, 1995). Using the above function, a single normal distribution
can be modeled. By combining multiple mixtures into one model using a weighted sum, this
can be extended to almost arbitrary distributions. The final density function of a GMM with
G mixtures has the following form:

(Z|lwe) = Z w;pi(T),

where w; are the Gaussian weights that sum up to 1, and p} is the multivariate density
function for the i-th Gaussian.

In order to train a GMM, i.e. to learn the mixtures, maxzimum-likelihood estimation is used
to determine the optimal parameters of the likelihood function. This method is not specific
to GMMs, but can be used with any classifier with a parameterized likelihood function. Let
p(Z]0) be the likelihood function for a parameter configuration 6. As suggested by Duda et
al. (2000), we can write the likelihood that a parameter configuration 6 produces on set of N
independent training instances D = {Z1, ..., Zn} as

p(D|9) = Hp Z)0).

Based on this, the optimal parameter configuration 6 is the one that maximizes the log
likelihood”, i.e.
0 = arg mgx(logp(D\@)).

Some types of functions can be more easily maximized than others. We can for example show
(Duda et al., 2000, p. 89) that a model consisting of a single mixture and parameter vector
9 = (ji,%) can be maximized as

R 1 N R N
b={p=2>@S=> (@ - @ —n)"
Nk:l k=1

However, a direct maximization of multiple mixtures is not possible due to the non-linearity of
the expression (see Reynolds & Rose, 1995). Instead, the iterative expectation mazximization

“the logarithm guarantees monotony
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(EM) algorithm (Dempster, Laird, & Rubin, 1977) can be applied to find a good approxima-
tion. A quality of the algorithm is that is has a good convergence on the optimal values. Let

G
0= U (wi, fii, %) be the mixture parameters (including the weights) of the GMM. Then the
EM algorlthm performs the following steps:

1. Determine an initial configuration 6 = 6.

2. Compute the (log) likelihood of the current configuration on the training set, i.e. p(D|0)
(Ezxpectation step).

3. Estimate new parameters 6’ such that p(D|0") > p(D|6) (Mazimization step).

4. Set § = ¢, and continue with step 2 until convergence or a predefined number of
iterations is reached.

For GMMs, Reynolds and Rose (1995) use the following formulas to derive the new param-
eter estimates for the i-th Gaussian in the maximization step:

1 N
N; |£Uk,

o > i1 P, 0) T
b SRLp(ilE, 0)

S e p(ilZ, 0)[@ — fii] [F — i
' SN p(il @, 0)

The posterior probability for a single Gaussian ¢ can be derived from the GMM likelihood

]T

given earlier:
wip'(Z0) _ wip'(£]0)
p(f|9) Z] lep](xw)

Reynolds et al. (2000) suggest that five EM iterations are usually sufficient for speaker recog-

p(i|Z,0) =

nition. The number of Gaussians G is not learned by the algorithm and must be specified
manually by consideration of the problem or through experimentation. Figure 2.14 illustrates
the EM-based learning process using an example with only a single feature®. The upper im-
age shows a histogram of the actual feature distribution on 1000 samples. The next image
shows the normal probability density using the mean and variance of the samples, which
corresponds to a GMM with a single mixture. As can be seen, the value distribution is not
approximated very well with this single mixture. The following images show a GMM trained
using 15 mixtures and varying numbers of EM iterations. Each of the last images plots the in-
dividual Gaussians, as well as the combined, weighted distribution. The sequence shows how
the GMM slowly adapts to the actual shape, which bears great resemblance to the combined
function in the last image.

8The sample data depicts the power consumption of a running washing machine appliance in Watts.
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Figure 2.14: Example of expectation maximization (EM) algorithm application to sample
data. A: Histogram of actual values (X axis = value, Y axis = number of

instances). B: Mean and standard deviation of the samples displayed as a single

univariate Gaussian density function. C: 15 Mixtures in a GMM trained on the

data using one iteration of EM. The black curve is their weighted sum. D: The
same GMM after 3 iterations of EM. E: The GMM after 7 EM iterations.
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A question that remains is how to perform the initialization of the GMM, i.e. the choice of
mixtures for the first EM step. Initializing all mixtures with a static configuration (w, f, i)
is possible, but usually does not work very well. Instead, a common approach is to set
w = 1/G, use randomly selected training samples from D to compose /i, and set ¥ to the actual
covariances of all training samples. This usually provides quite good performance already, but
for specific problems, more systematic methods may be preferred. One such method, which
is also applied in this thesis, is the K-means algorithm. K-means is a clustering algorithm.
It attempts to partition any number of instances into K clusters, which are characterized by
their means, or centroids. It also works iteratively in a way quite similar to EM. It consists

of the following steps:

1. Initialization: Assign the first K samples to the K-th cluster. The remaining samples
are assigned to the cluster with the closest distance.

2. Recomputation: Compute the new centroids for each cluster based on the most recent

assignments.

3. Reassignment: Each sample is re-assigned to the cluster with the closest centroid. A
feature-compatible distance metric such as the mean Euclidean distance can be used.
If the number of sample-cluster associations which have changed in this step is zero,
the final configuration is reached. Otherwise, continue with step 2. Breaking is also
possible when a predefined number of iterations is reached.

When K-means is used to initialize a GMM, the number of clusters K is chosen identical
to the number of mixtures G. Then, the mixture weights can be set to the percentage of
instances assigned to a cluster, means are identical to the centroids, and the variance can also
be computed from the samples assigned to the cluster.

We have previously seen how we can arrive at a class decision by comparing (log) likelihoods
directly, or by additionally subtracting the likelihood of a UBM. There is also a third com-
mon approach: Instead of evaluating the UBM directly, the class-specific models are created
by adapting samples to the UBM. Reynolds et al. (2000) have used a Bayesian adaptation
technique that is often referred to as mazimum a posteriori (MAP) adaptation to accomplish
this. In practice, these adapted models, which are closer to the background features space,
have proven to be superior in many scenarios. They do however require a large amount of
background material. To perform MAP adaptation, a UBM is first trained on all material
D using EM. For any given class w, indicated by its class index ¢ € {1,...,C}, let D, denote
the training samples of this class with N. = |D.|. According to Reynolds et al. (2000), the
new GMM is initialized with the UBM parameters 6, and the procedure is performed in the
same way as in the EM algorithm, but with a modified maximization step. Also, typically
only a single iteration is performed. The maximization uses the same posterior probabilities
p(i|Z, 8) as before, but with the following estimation formulas for 6”:
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where v denotes a scaling factor that simply normalizes all weights to sum up to 1. Each
of these formulas estimates the corresponding parameter partially on new training data and
partially on UBM data. The balance is controlled by the separate adaptation coefficients «;’,
o, and of for weights, means, and variances, respectively. From here, we will focus only on
the adaptation of the means, since only they are relevant for the following chapters of this
thesis. The data-dependent coefficient is defined as

Ne (il
am _ Zk:lp(z‘xkue)

LN plil . 0) + 1

where r is a static parameter called the relevance factor. 1t is often set to a default value of 16,

but it can be changed to control whether the UBM or the class-specific data is emphasized.
In addition, this equation expresses that the coefficient will automatically fall back to the
background model if only little new training data is provided, which is particularly helpful
for cases of insufficient data.

GMDMs are often favored due to their good ratio of simplicity versus effectiveness. They are
faster than many other methods, and can be flexibly adjusted to more complex problems by
adding Gaussians. Moreover, a large number of small and independent random noise effects
that occur to a set of samples form a Gaussian distribution (Central Limit Theorem, see Duda
et al., 2000, p. 33), which can be considered as an analogy to how the variation in samples
is actually produced.

Support Vector Machines

Support Vector Machines (SVMs) tackle a classification problem quite differently to GMMs.
The first and most obvious difference is that the SVM is a discriminative approach that
models exactly two classes instead of one. SVMs belong to the family of linear discriminant
functions, although they are not limited to linear decision boundaries, as we will see later.
Discriminant functions differ from probabilistic methods such as GMMs in that they do not
make an assumption about the probabilities that produce the feature space, but rather about
how the classes can be separated. Linear discriminant functions are linear either to the
features or functions based on them. They often show a good trade-off between simplicity,
generalization, and performance (Duda et al., 2000, p. 215).
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Figure 2.15: Training examples of two classes from which the optimal support vectors (full
circles) are derived. The distance of the hyperplane from these samples (the
margin) is equal for each. (Source: Duda et al., 2000, p. 262)

The linear discriminant function is typically written as

d
g(%) = wo + @' F = wo + Z w;ix;,
i=1
where ¥ is a sample consisting of F features (like in the previous section), @ is an F-
dimensional vector of weights, and wg is a decision threshold. This function is linear in
Z. In contrast to this, the general discriminant function describes an expansion of Z into a
different feature space of dimension d using functions ¢ and is written as

ST

d
9@ =a'j=> aipi(@),
i=1
where now @ is the d-dimensional weights vector. Even this general function is considered
linear with respect to the mapped space §¥ = ¢(Z). Interpreted algebraically, g(¥) = 0
describes a plane in d or d dimensional space with orientation  or @ — a hyperplane — that
separates two classes w; and we. The plane can be said to divide the space into regions Rq
and R, and ¢g(¥) measures the distance from a sample to the plane. The closest distance
from a training sample to the plane is also called margin.
SVMs are a special case of the generalized linear discriminant function. In contrast to
other methods, which accept any hyperplane separating the feature space, the SVM attempts
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to find the optimal plane in terms of margin size h. This is illustrated in Figure 2.15. The
hyperplane is defined through the use of support vectors — training instances which represent
particularly difficult patterns (i.e. resulting in a low likelihood) and which all have the same,
smallest possible distance from the hyperplane. Training of a SVM is complicated by the
fact that finding the support vectors requires a steady evaluation of the current model to
determine this likelihood. The following distance condition is satisfied by such a hyperplane
according to Duda et al. (2000):

where k € {1, ..., N} refers to a training sample, zj := £1 depending on the class index of T,
and b is a positive margin. Thus, the goal is to maximize b by finding the appropriate vector
d. By rearranging, we can derive the function L, which maximizes the margin and minimizes
the training error at the same time:

1
min L(d@,@) = Zlal” = 3" k = 1V ax [z g - 1],

where a;, are so-called Lagrange multipliers. Further reorganization removes the dependency
of this term on @ and transforms it to what is known as the unconstrained dual form:

N
max L(d) = Z a; — %Zakajzkzjgj;gk.
k=1 k.j
A common way to solve this equation is by using quadratic programming (QP).

Choosing the functions ¢ is an important aspect of SVM design. Many discrimination
problems cannot be solved by a linear function in the original feature space. This function
transforms the problem into a higher dimensional space where this may be possible. In fact
for all dichotomization problems there exists such a mapping (Duda et al.; 2000, p. 259).
Figure 2.16 shows a simple example where the transformation from one to two dimensions
allows to solve a problem in a linear way. In practice, the new feature space mostly has a
considerably larger number of features. The mapping ¢ is usually described in terms of a single
kernel function, which is defined as K(Z;, %)) = Q}ng’k. This more specialized representation
of the mapping is a computational optimization, as only the inner products are needed for
SVM operation (as part of the above L(&) maximization term).

The most widely used kernel functions and their parameters are:

e Linear kernel: K(&;, ) = —»ijk
e Polynomial kernel: K (7}, 7)) = (Z; - Tk + a)?

e Radial basis function (RBF, Gaussian) kernel: K (7}, 7x) = exp(—7|Zj — Z%||?)

Other Machine Learning Methods

The previous sections have introduced the classification algorithms most relevant to this
thesis. This section should give a brief overview of some alternate methods.
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Figure 2.16: Feature space transformation as a means to simplify classification problems. In
the left image (one dimension), no single threshold (which corresponds to a linear
function) can separate the two classes blue and orange. In the right image, the
addition of a feature y = |2(z — 6)| 4 1 allows a simple linear separation of the
classes (dashed line).

Naive Bayes. Naives Bayes is technically not a classification algorithm, but rather a general
probabilistic model that includes several premises. It is based on the same Bayesian decision
theory as the GMM. There are two main differences: (1) The model is not bound to a specific
probability distribution. Choice of the likelihood function p(Z|w.) is up to the implementation,
although a simple normal distribution is quite common in practice. (2) The model assumes
the statistical independence of features, hence it is “naive”. For example, in face recognition,
the size of eyes, nose, and mouth could be considered independent from each other — even
though it may not be true. Because probability theory allows the individual properties to be
multiplied in this case, it simplifies the class model to

F

p(we, T) = Hp(l’iWC)P(WC)
i=1

and the likelihood for all features to

— o Hzel p(xi’wc)P(wc)
p(l“wc) - p(i}) ’

where p(Z) is simply an evidence scaling factor. An advantage of this method is its simplicity,
which makes it fast to compute and prone to overfitting. On the downside, the method is not
capable of modeling complex relationships.

Multilayer Perceptron Networks. Multilayer perceptron networks (MLP), the most com-
mon type of artificial neural networks (ANN), can be considered an extension of the basic logic
that was motivated for SVMs. As detailed in that section, the linear discriminant function
used other functions ¢ to map the input features into a higher-dimensional space to allow
nonlinear problems to be solved. While SVMs depend on a manual choice of the suitable
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kernel function — an experimental exploration of possible functions would create too large a
parameter space —, ANNs try to determine the degree of nonlinearity automatically (Duda
et al., 2000, p. 283). This may yield better results, but can also lead to arbitrariness, as the
mapping process is no longer transparent. The motivation of ANNs can be found in neuro-
biology: In the central nervous system, multiple neurons are connected via synapses. When
the sum of the inputs (dendrites) surpasses some threshold, the output (axon) is activated
and sends an electric signal. ANNs in artificial intelligence attempt to recreate this biological
process in software. Technically, an MLP can be sketched as a multi-layered interconnected
graph with nodes in each layer: the input layer, the output layer, and one or more hidden
layers. An example is shown in Figure 2.17. We will limit the formalization to networks with
three layers, since adding more layers does not add expressiveness (although it can optimize
the learning process). In fact, the three-layered network can be used to model any possible
decision boundary (Duda et al.; 2000, p. 287). The number of nodes in the input layer
corresponds to the feature vector size F', the number of nodes in the output is equal to the
number of classes C'; and the number of hidden units ng is chosen according to the difficulty
of the problem. Each node in the MLLP computes a value called net function, denoted simply
net, which is a weighted sum of all inputs into the node from the previous layer, and which is
transformed by another function called activation function f. Formally, these functions can
be specified as (see Duda et al., 2000, p. 285):

F
Hidden layer: y; = f(net;(Z)) = f(lﬁ;rf) = f(z TiWji)
=0
Output layer: z. = f(net.(¥)) = f(@, Z) = f(f: YjWej)
=0

ny F
= [ D wef (Z wjiT; + wj()) + weo | = g¢(Z),
j=1 i=0

where j = 1,...,nyg is the index of a hidden unit and ¢ = 1,...,C is the index of an output
node. As can be seen, ANNs are multi-label classifiers, other than SVMs. The function f
is often chosen as the signum function sgn(z) = +1 or a continuous sigmoid function. Note
that the 0-th feature index, zg, is a formal shortcut to account for a decision threshold like in
earlier descriptions. To train an ANN, the backpropagation algorithm can be used (see Duda
et al., 2000, p. 288). Their slow training is generally considered one of the disadvantages of
ANNS.

Decision Trees. Decision trees model a sequence of sub-decisions, often of binary kind (two
alternates per decision). Each item in the sequence depends on the answer chosen for the
previous sub-decision. At the end of the sequence, an output (i.e. class) decision is generated.
The more general problem is referred to as classification and regression trees (CART, see Duda
et al.,, 2000, p. 396). Decision trees can be represented as nested if statements with simple
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Figure 2.17: Example of a multilayer perceptron network with a single hidden layer. The
bias node represents the static decision threshold. Solid lines indicate excitatory
weights, dashed lines inhibitory, and the line width indicates the amount of the
weight, which is also noted next to each arrow. (Source: Duda et al.; 2000, p.
284)

comparisons. As this is a primary construct in all programming languages, their runtime
performance is usually very good. They can also be visualized in tree shape as in Figure 2.18
because there is exactly one root and cycles are not allowed. The features in the tree can
be real numbers, but decision trees are one of the algorithms that also work very well with
nominal features. Finally, their compact memory footprint is another advantage of these
models.

Nearest Neighbor. k-Nearest-Neighbor (kNN) is a straightforward classification algorithm.
Like SVMs, the algorithm does not assume any probability distribution, but rather models
the discrimination function (Duda et al., 2000, p. 161). Different to the former, kNN is
natively able to discriminate between multiple classes. The nearest-neighbor rule is based
on a distance metric d, where d(Z,Z2) computes the distance between two samples. For
numerical features in F-dimensional space, the Euclidean distance is the most common metric
used. In the simple case of kK = 1, an unlabeled sample & is assigned to the same class as the
closest training sample &; € D, = {Z1, ..., £y} and class indices ¢y, ..., cn:

¢=c¢ |i=mind(Z, %), i=1,..,N
K3

Since this may easily become inaccurate for large numbers of training samples, a majority
voting is often performed on the k closest samples according to the metric. The default kNN
does not perform an actual training, it merely stores the training vectors, which is very fast.
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Figure 2.18: Visualization of a C4.5 decision tree modeling a simple two-class speaker age
classifier based on acoustic features.

However, the runtime performance is O(N) and can be low for large training sample counts.
Also, model memory consumption can be high. To improve the speed, the training instances
of a single class can be combined to fewer prototype instances. kNN may be an appropriate
choice if the distance metric closely resembles the problem, e.g. a geometric classification
problem. Otherwise, the algorithm is well-known rather because of its simplicity than for its
classification performance.

Markov Models. All of the previously presented classification methods have no concept of
time. Each sample models only a single instant. This can be a problem when a sample actually
consists of a series of dependent frames, such as a gesture or a spoken word. Obviously, these
can only be recognized as a whole. There are some techniques how the algorithms can still
be used, such as by concatenating all samples in a single feature vector. Because the vector
has to be of a fixed size, this preserves some but not all aspects of time: either the data has
to be truncated or it has to be compressed. A model that does not have these drawbacks
is the Markov model, which is actually a family of models. In these models, each sample is
represented by a series of states which can have arbitrary and dynamic length. For many
processes, Markov chains can be used to describe the model. If the process has some states
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which cannot be observed, a hidden Markov model (HMM) is used instead. Like GMMs,
Markov models are generative: each model describes only a single class. A Markov chain is
defined by states, transition probabilities and prior probabilities, formally § = (Q, A, P). In
this model, @ is a set of states {q1,...,qnm}, A is a transition matrix with A;; = P(q¢;|q;), and
P defines the initial probabilities, i.e. P(q1),..., P(qar). Assuming that each state reflects
a feature vector, let X = (71,...,7;) denote a sequence of states with Vi : #; € Q. The
probability of each subsequent state depends only on the previous state (or on the k last
states for k-th order Markov models), i.e. P(Z;|Zj-1,...,71) = P(Zj|Zj—1). Markov models
are associated with a number of recurring tasks, which are the evaluation task, the decoding
task, and the learning task. Classification is based on the evaluation task, which computes
the probability that a given sequence X was produced by a model as a simple product:

t

P(X|9) = P(fl) HAfi—hfi
=2

To solve an actual classification problem, multiple models have to be evaluated with the
same sequence and their values have to be compared using the known techniques. Training
a Markov chain 0 with a given set of states @ is straightforward, since only the transitions
that occur in a given set of observed training sequences X1, ..., Xy need to be counted and
normalized to obtain A and P. Learning states is more involved. For this information and
for HMMs, see e.g. Duda et al. (2000, p. 128).

2.5.6 Post-Processing

Some pattern recognition systems end as soon as the output class has been determined by
the classifier, but there are also cases where further steps become necessary before the result
can be reported to the system. These steps are called post-processing. The most common
post-processing task is a kind of fusion.

Some systems apply multiple classifiers in parallel to the same or related input data, possi-
bly with completely different features and algorithms. Since they may report different classes,
a final decision has to be found, i.e. the individual results need to be fused (classifier fusion).
This process can be as simple as a majority voting (reporting back the class with most hits),
but this would assume that all classifiers were equally good and the outcome was indepen-
dent from the input. It is often possible to get a better result if another classifier is trained
using the decisions of the main classifiers as feature vector. This classifier is said to run on a
different layer, or be a meta classifier. It is also possible to add the original features to the
meta classifier or to cascade into multiple meta layers. Another case where a meta classifier
can be useful is when the main classifier is a simple multi-label wrapper around binary or
generative models that report scores for each class. In this case, the meta classifier could be
trained on the individual scores to return a better overall class decision. All these types of
classifier fusion are also called late fusion or score-level fusion, in order to distinguish them
from early or feature-level fusion. Miiller (2005) also calls them the static aspect of fusion.
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A further optional post process is the temporal fusion of results. In several scenarios,
multiple instances are known to belong to the same entity. For example, when a speaker
utters multiple sentences, these may be forwarded to the system as separate samples to allow
initial results to be obtained as early as possible, or to limit the maximum size of a single
sample. Some applications also use a fixed frame size and process each frame as a separate
sample. In both cases, the results of multiple samples have to be merged into a single result.
This aspect is particularly important for incremental systems. An implementation might
consist of a temporal smoothing function. Another popular method for merging multiple time
slices are dynamic Bayesian networks, which have been used by Miiller (2005) for temporal
fusion of multiple utterances (therein called dynamic aspect). It is also possible that the
cohesiveness between two samples is likely, but not for certain — e.g., the speaker could also
change in the aforementioned example.

A third purpose of post-processing is the inclusion of external knowledge. This knowledge
(also called top-down knowledge, expert knowledge, domain knowledge, or contextual knowl-
edge) is independent from the input samples and therefore impossible for a system to learn
automatically. It includes aspects such as the cost metric or cost of misclassification. For
example, if we know that false positives are worse for one class than for another, we might
shift the decision function slightly away from that class. A different aspect concerns the prior
probability of classes. If the engineer has knowledge about the statistical frequency of classes
in a given situation, she might want to configure prior probabilities to favor the class with
the greater likelihood. For example, if we use age detection in a call center that provides a
technical hot-line for agricultural engines, decreasing the prior probabilities of children and
teenagers can probably improve the performance.

2.5.7 Evaluation

The word evaluation, standing by itself, is unfortunately quite an overloaded term in machine
learning. In this work, the actual procedure involved is very similar for each context in which
the term is used, which explains why they are collectively covered in this section. However,
for clarification, it should be distinguished at this point between the different contexts and
meanings in which the word is used in the remainder of this work:

System Evaluation A qualitative benchmarking of all components of a system in their en-
tirety. The goal of this procedure is to get an idea of how well the system is performing.

Component Evaluation A qualitative benchmarking of the component’s performance by us-
ing an appropriate method. This can also be extended to multiple connected compo-
nents.

Evaluation Data Set The global data set used to perform a so-called “one-shot” system
evaluation.
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Figure 2.19: Scheme of system and component evaluation of an example system consisting of
four components (blue squares). Each evaluation generates different measures
and can be performed individually.

Evaluation Run A single execution of a system or component evaluation with given input
data set.

Technical Evaluation Process This refers to the technical process of applying a component
(usually a classifier) to some data set and then computing appropriate performance
statistics on the result. This can be done as part of a system or component evaluation,
but the output could also be used as input to another component.

General Procedure

A large subfield in machine learning science deals with the evaluation of systems. Ways to
objectively measure the performance of systems are needed in order to rate the system, to
compare the different parameter settings and design choices, and to compare it with other
systems. As such, the evaluation is an integral part of the machine learning design process.
The result of the evaluation process is a set of human-interpretable numbers, tables, and
charts.

The general procedure for a whole system is to take a data set specifically created for
the evaluation, hence called evaluation data set (or short eval set), and apply the machine
learning components in a similar way as during creation of the system. This time, however,
the labels are stripped from the data set and classifier training steps are replaced with classifier
application steps, i.e. the missing labels are predicted, or removed (e.g. in case of feature
selection). At the end, there is an additional step where the classifier predictions are compared
with the true class labels.

Each system or component evaluation has two associated points that define its scope: A
data input point and a results measurement point. In the classifier evaluations considered
here, the data at the results measurement point corresponds to the input data with an added
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Figure 2.20: Example of a configuration that uses different units (frames) for training and

evaluation than for the definition of ground truth (speakers). The data sets
must preserve this association; therefore, the left (green) assignment of frames
to sets is good while the right (red) assignment causes overlap.

prediction (score or label) for each instance. Figure 2.19 illustrates different components
that can be evaluated within the FRISC pattern recognition system. It also illustrates the
difference between the evaluation of the system and a single component. At each input point,
the data set used for testing is specified. This set should be different from all other data
sets used to train or optimize other components in the system with respect to the labeled
source data. This has to be respected even when the actual structure of the data differs. For
example, in Figure 2.20, the evaluation of the system uses audio files as input and predicts
the speaker’s class for each. On the other hand, the evaluation of the SVM works merely on
supervectors (vectors constructed by concatenating other vectors, as will be explained later)
for which scores are supplied by the classifier. Still, both audio files and supervectors can
refer to the same ground truth data. When the actual evaluation is performed, this is also
called an evaluation run.

The technical evaluation process plays an important role for the optimization of system
components. It serves as a feedback channel in an automated procedure trying to find an
optimal threshold or other parameter setting, e.g. the level of nuisance attribute filtering.
In this case, the relevant result is not the performance on a particular parameter setting,
but which parameter setting performed best, no matter what the actual result is. As the
name suggests, it otherwise works just like a component evaluation. The data set for this
type of evaluation is frequently called development test data set (or short devtest or test
set). It is a perfectly legal strategy, even for the whole system. There is however one rule
that is good practice in pattern recognition system design: The data set which is used for
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the final performance rating of the system, i.e. the evaluation set, should not be used for
optimization of any kind. “Optimization” or “tuning” in this sense has to be defined very
strictly as any repeated technical evaluation process with a different system or parameter
configuration. In other words, the final performance evaluation is to be done only once, and
with data that has not been used before. This may seem like a stringent requirement, but
it has clear advantages. It is very much for the same reason that training and evaluation
sets differ: It avoids that the parameters are coined on the set that is used to measure the
performance, which is a special type of overfitting introduced not by the classifier but this
time by the experimenter tuning the parameters (e.g. the SVM kernel function). Some
may argue that cross-validation would serve the same purpose, but this is only partially
true. While it certainly improves the robustness, a true objectiveness is only guaranteed for
a single evaluation run. The parameter tuning occurring between the runs is still subject
to adaptation effects, since — even with fully randomized sets — some data used for system
evaluation now was used for training and thus for determination of the current parameters at
some point before. Also, a naive implementation of cross-validation as implemented by most
tool suites would be suboptimal even for a single evaluation run, unless it takes into account
the disjunctiveness of speakers and the length of the material during the randomization part
as well (see Section 5.5.3)7. Nevertheless, there is a downside to the training-evaluation-set
split-up as well: Having a static, random evaluation set bears the risk of using data for
performance measurement that is not statistically representative. It could for example have
artifacts such as multiple pathological voices. While randomization reduces this risk, the only
real solution is a careful manual selection of the set by the evaluation site, which may not be
feasible in practice. As a rule of thumb, in a single evaluation run, cross-validation might give
a better idea of the absolute performance, while fixed sets facilitate a comparison between
runs or between systems.

Since the temptation not to follow these guidelines can be considerable, often bringing up
the argument that the data could be of better use to improve the system when in the tuning
process (which is usually true to some extent), a widely accepted measure goes one step
further: A neutral party is needed to maintain the whole available data, with no other party
having access to it. The data is split in two disjunctive sets by this so-called evaluation site,
and one of the sets (the training set) is sent out to the research site including full labels. It is
up to the research site if it wants to split off any number of own test and evaluation sets from
this data. Finally, the evaluation site releases the unlabeled evaluation set and collects the
predictions or raw scores from the research site. It can then compute the evaluation metrics
locally using the correct labels. Once a result has been submitted, no further submission is
allowed. This is also called a “one-shot” evaluation, and one of the main promoters of this
approach is the National Institute of Standards and Technology (NIST) with its annual NIST
Speaker Recognition Evaluation (SRE) series. This ensures a fair and transparent process
when more than one party is taking part in a comparative evaluation or challenge, such as the

9Even if it does, cross-validation is not practical for FRISC since the speaker grouping/speech balancing
combined with equally sized, disjunctive validation sets considerably reduces the amount of available data.
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aforementioned series, the NIST Language Recognition Evaluation series, or the Interspeech
2010 and 2011 Paralinguistic Challenges.

Contrary to what is discussed above, there are also components which are never technically
evaluated, not even in the system evaluation. For example, in the FRISC approach, one of the
core components (a GMM) is trained during the system evaluation, but is never evaluated as
a model.

The remainder of this section will discuss the different metrics that are suitable to express
system performance. There are many different metrics, and this section focuses on some
important ones, which support the goals formulated in Section 1.2. We distinguish between
two major evaluation set-ups: the detection task and the identification task. The wording
already suggests that the task or goal is a criterion that makes them different, but their
choice is also related to metrics. In some cases, technical constraints limit us to choosing
metrics from only one of these methods. For instance, a DET curve cannot be drawn if
only class decisions are available. If sufficient data is available, as in the FRISC experimental
set-up, applying both methods yields complementary performance results that allow a more
distinguished, task-specific view on the system.

Detection Task, Detection Cost Function, and Detection Error Tradeoff Curves

The goal of the detection task is to determine whether some sample x belongs to a class ¢
or not. Or, as formulated by Lecuwen and Briimmer (2007) in terms of speaker verification:
“Given two recordings of speech, each uttered by a single speaker, do both speech excerpts
originate from the same speaker or not?”. Some tasks are native detection tasks, such as
speaker verification. Other classification tasks can be converted (e.g. scaled down or merged)
into a detection problem. For instance, instead of looking at multiple age classes, we might
just be interested in whether the speaker is a senior or not. For certain scenarios, the answer to
this question may be perfectly sufficient. And even if not, considering classes separately may
give a better insight into the classification problem because the problem space is simplified
and cleaner of possible class interferences. It is also much easier to fine-tune the behavior
with only two classes. In the identification case, it is even difficult or impossible to see which
class scored second. The possible condition that one class always has just slightly lower
scores than another class is not revealed by the purely identification-based metrics. Further
positive aspects noted by Lecuwen and Briimmer (2007) are a more standardized evaluation
and independence from a fixed number of classes.

Every identification task can be reformulated as several detection tasks, one for every class.
One might assume that an identification system can be converted easily as well, for example
into a detector for class ¢ that outputs 1 if the multi-class decision matches ¢ and 0 otherwise.
However, such a detector would neglect that in reality, a detection task might have completely
different cost associated with the decision. For example, the decision in favor of one of four
age classes, children, might have been a close one compared to the class of senior speakers
(e.g. due to their similarity in pitch). A public terminal or voice-controlled elevator, which
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could provide additional support for elderly people, might be more sensitive to this age class,
signaling a match even though the four-class classifier has a higher score for a different class.
Moreover, a detector that returns only 0 or 1 provides no insight into its workings and cannot
be tuned. If the identification system provides scores for each of the individual classes, then
we can treat the system like C' different detectors that can also be optimized for the detection
task. This configuration is quite common, probably more common than native binary tasks,
yielding the benefits mentioned above, but still allowing to test the classifier against multiple
classes. Hence, while strictly speaking the actual detection task involves only two classes, our
evaluation procedure for detection tasks can consist of multiple classes.

In such configurations, the class for which the scores are reported in the same way as from
a binary classifier is referred to as the target class, the remaining are the non-target classes. It
can also be thought of as the “active” classifier which is currently being tested. The evaluation
procedure for a detection task involving C classes is roughly as follows (see also Martin, 2007;
Leeuwen & Briimmer, 2007): A combination of sample and target class (detector) is called a
trial T = (x,t). The case when truth and target class match, i.e. ¢, = t, is called target trial.
A score si(x) is obtained for each such trial by running the target classifier on the trial. For
some metrics, an actual decision is required by the classifier. Here, it is common to interpret
scores s > 0 as accepted samples and s < 0 as rejected samples. Yet to be more generic, we
will use a class-specific decision threshold ©. instead of zero.

There are two basic metrics that can be computed from every detection task evaluation:
misses and false alarms. A false alarm (or false positive, type I error) is encountered when
the classifier accepts a negative!’ sample, i.e. si(x) > ©Oy,¢c, # t (non-target classified as
target). A miss (or false negative, type II error) occurs when the classifier rejects a positive
sample, i.e. si(x) < ©,c, =t (target classified as non-target). Based on the counts of both
types of errors, the miss probability (or simply miss rate) Phriss is defined as the number
of misses divided by the number of target trials, while the false alarm probability (or false
alarm rate) Ppy is the number of false alarms divided by the number of non-target trials.
The false alarm rate can also be split by non-target classes, i.e. Pra(c). A derived metric is
the uniform error rate, which weights both errors equally: Pg.r = 0.5 - Pygiss + 0.5 - Ppa.

Past experience with specific applications has shown that these metrics are sometimes not
sufficiently generic, for example because one error is more critical than the other. Also,
the uniform error rate does not take into account that the number of target and non-target
samples could be different, which is the case for any balanced evaluation set with more than
two classes. Therefore, NIST researchers have created the more general detection cost function
(DCF), which measures cost rather than probabilities. It is defined as (Leeuwen & Briimmer,
2007; Martin, 2007)

CDet - CMiss : PMz'ss . Ptarget + CFA : PFA . (1 - PTarget)-

Cpet is also called expected cost of detection errors (Lecuwen & Briimmer, 2007). As opposed
to the error rates, it is not limited to a fixed range. Prgrger is the prior probability of a

0Tn case of two classes in a closed world, we simply let the first class be positive and the second negative.
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Detection Task Error Rates and Cost
Target Class
AM CaE ChE cM FF MF MM RM Ne TS ]
AM 24.86% 23.91% 2.55% 41.62% 0.9% 3.35% 6% 8.65% 1.55% 12.6%
Cak 33.82% 47.22% 8.05% 47.57% 4% 6.75% 10.56% 13.41% 4.35% 19.53%
E 6.5% 47.97% 33.87% 8.45% 20.41% 26.06% 20.76% 18.21% 34.02% 24.03%
False CcM 3.25% 23.01% 34.12% 4.45% 29.96% 16.61% 23.41% 26.61% 37.72% 22.13%
Alarm FF 36.27% 40.02% 23.36% 2.45% 0.75% 2.9% 5.7% 8.7% 1.5% 13.52%
::t:(m_ F 0.85% 9.2% 14.26% 22.66% 1.65% 10.16% 25.61% 26.86% 34.62% 16.21%
target MM 495% 14.26% 27.01% 12.06% 6.9% 12.56% 8.3% 11.26% 10.91% 12.02%
. 0 . (] B 0 . 0 . (] . 0 . 0 . 0 " 0 . 0
RM 3.9% 12.76% 19.41% 21.81% 7.35% 26.86% 8.7% 58.03% 30.82% 21.07%
SC 3.25% 11.66% 18.56% 20.36% 5.45% 36.57% 10.36% 42.17% 29.86% 19.8%
TS 1.9% 8.65% 20.86% 27.01% 2.45% 42.22% 8.7% 32.07% 33.67% 19.73%
@ FA Rate 10.52% 21.38% 25.41% 16.76% 13.99% 19.36% 10.4%  19.4%  22.82% 20.59% P, =18.06%
Miss Rate 8.75% 16.01% 17.21% 13.16% 6.95% 15.21% 12.16% 16.66% 17.36% 13.01% Py =13.65%
Uniform Error 9.64% 18.69% 21.31% 14.96% 10.47% 17.28% 11.28% 18.03% 20.09% 16.8% Pg, = 15.86%
Cost 10.35 20.84 24.59 16.4 13.29 18.94 10.58 19.12 22.28 19.83 Cpet =17.62

Figure 2.21: Error rates for an example task. Each column represents an individual detection
task, while the table as a whole corresponds to an identification task (which is
however never interpreted as such by these numbers). The applied DCF uses

costs of 1 and Prgrget = 0.1.

target. It is usually obtained by counting target samples. In a case with C balanced classes,
it should be equal to % However, if the expected distribution in the target application is
different, it may be more reasonable to set the parameter to that value. The constants Cpyss
and Cr4 can be chosen arbitrarily to express the different costs of misses and false alarms.
NIST in their evaluations often chooses Cjy;ss = 10 and Cpyq = 1, i.e. misses are considered
much worse than false alarms. Figure 2.21 shows how each of these numbers can be reported
on what is originally a ten-classes speaker identification task.

The presented error and cost metrics all require “hard class decisions”, i.e. a threshold to be
defined, but do not depend on actual scores. In fact they discard all the additional information
that scores might offer. Assuming that we are dealing with a classification algorithm that
actually covers a range of scores (or at least more than two discrete values), as most algorithms
introduced in Section 2.5.5 do, the choice of a different decision threshold © might also result
in different decisions and hence different error metrics. Choosing the appropriate threshold
is a type of score-level optimization and often called calibration, and the aforementioned
metrics measure this calibration effort. When Cp,; is chosen as the error metric, then one
goal of system optimization is to find the optimal threshold © that minimizes Cp.s. Since
the cost function is linear, the global optimum can be found in O(n) with respect to a given
development test set. The minimum Cpe; is called minimum detection cost and denoted by
cpin.

According to our error metrics, the result could be better or worse with a different threshold.
It could also be better in terms of one metric and worse for the other. This is actually a kind
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Figure 2.22: Example of a detection error trade-off curve. A five-class speaker recognition
problem with each line representing the detection performance of the corre-
sponding target speaker. The dotted line that indicates the equal error rate
has been added for further illustration. Optimal P was chosen with respect to
Prarget = 0.5.

of trade-off that is often investigated for scenarios where the errors have different importance.
Also in the general case, studying which trade-offs a system can produce is very insightful.
A different way to become aware of this trade-off used by Leeuwen and Briimmer (2007) is
to plot scores for target and non-target trials and notice the overlap of both curves. It is
generally true that a reduction of misses causes an increase in false alarms, and vice versa.
However, the amount of the change varies. Plus, some systems are relatively better than other
systems in both metrics. Essentially, we would like to have an evaluation metric where the
dependency on a specific © is removed. Such a metric is also said to rate the discriminative
aspect of a system.

A way to visualize the aforementioned aspects lies in the detection error trade-off (DET)
curve (Martin, Doddington, Kamm, Ordowski, & Przybocki, 1997). An example of such a
curve is shown in Figure 2.22. First and foremost, it plots the two metrics Prp4 (on the x-axis)
and Ppr;ss (on the y-axis) against each other. Thus, in order to draw a DET curve, we need
no “hard decisions”, but merely a score where higher means better. This can be exploited to
even benchmark the performance of models that produce only a likelihood, such as generative
models. The curve is created by connecting the values for all possible thresholds of a single
target class in the chart. Similar to the way how ROC curves are created, a single iteration
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Figure 2.23: This DET curve is based on the same data as Figure 2.22, but it displays an
average performance across all classes (combined DET plot).

over all trials with accumulative statistics is sufficient to draw the curve. Its “smoothness”
then also depends on the number of samples used. Multiple classes can be compared by adding
them to the chart as separate curves. What is special about the plot is the non-linear scaling
used on the axes: It uses the quantile function of the normal distribution (or probit function),
which is defined as Q(p) = v2erf~1(2p — 1), with erf~! denoting the inverse error function
(Leeuwen & Briimmer, 2007). The function is chosen such that a normal distribution of error
rates, which can be considered ideal behavior, will result in a straight line. Obviously, this is
much easier to read and compare than bent lines and reduces visual overlap. Furthermore, it
emphasizes small changes in the upper performance area (> 5%), which appear in the lower
left corner. A special type of DET plot is the combined plot as seen in Figure 2.23. This
curve shows the average performance of all classes by using trials from all targets for miss
and false alarm rate computation, and by further averaging the resulting numbers.

From the DET curve, we can see all possible operating points of the classifier (with respect
to the data set). There are some special points in the chart to take note of. One is the
intersection point of the curve with the diagonal on which Pyy;ss = Pr 4 for all points. Because
of this relationship, this point is also called the equal error rate (EER), i.e. the point where
miss rate and false alarm rate are identical. Every system has such a point, and its location
can be seen as a very concise representation of the plot, which is completely independent
from application parameters such as cost. Another important point is the optimal decision
threshold, i.e. the point corresponding to C’Eéf (or minimal P, in the absence of a cost
function). It is usually marked with a circle on the DET curve. Finally, the actual decision
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threshold, i.e. the threshold that was used to produce the class decisions, can also be marked
in the chart, usually by a star'!. One has to be aware that this point does not need to be on
the actual curve if the threshold was chosen using different samples. This is true for most of
the DET curves in the experiment descriptions in this thesis, because it reflects the principle
of optimizing and evaluating on different sets (in this case, test! and test2).

Identification Task, Confusion Matrices, and Accuracy

When we have C classes to choose from and we want to know to which of the classes a
sample = belongs, we are performing an identification task. While this is formulated as a
closed-world problem, it can be converted into an open-word setting by adding an out-of-set
class. To solve an identification problem, we need an algorithm that outputs at least the
“winner” class index, possibly by wrapping several binary classifiers in a decision function.
Some classifiers additionally provide scores for each class; however, most identification metrics
are based on the minimal interface and rarely use this additional knowledge.

An identification-centered evaluation is performed in straightforward manner by obtaining
for each sample z a classification result r(x), which can be compared to the truth value c,.
Based on these results, the accuracy is clearly the most intuitive and widely used metric and
is defined as the percentage of correct predictions, i.e.

correctly classified instances
Acc =

total number of instances

This number also gives quite a good impression to non-experts of how good the system will
function in practice. For instance, an accuracy of 25% means that the system will be right
only in every fourth case. To judge the achievement of the classifier, the accuracy always
has to be interpreted relative to chance level, which is é and corresponds to the average
long-term accuracy of a classifier that always guesses or always reports the same class index.
The further above chance level the accuracy is located, the better the achievement. This is
obviously because more classes to decide between generally indicates a more difficult task.
If the measured accuracy is low, there is not much we can read from this number to
identify the reason for the bad performance. Therefore, a tool named confusion matriz has
been developed to be used in conjunction with accuracy to benchmark identification tasks.
As the name suggests, the matrix identifies which classes are most frequently confused with
what other classes. An example can be found in Figure 2.24. The rows of this matrix list the
true (tested) classes, while the columns list the predicted classes. Hence, the cell in row MF
and column TS refers to the instances of class MF classified as T'S. In this case, 243 speech
samples uttered by speaker MF (or 12.1% of MF’s samples) were classified wrongly as being
from speaker T'S. Typically, the matrix focuses on the relative class-wise confusions, in which
case the percentages in the cells are amounts relative to the true class, and sum up to 100%
in each row. The inverse diagonal (highlighted in green in the figure) contains the correctly

Sometimes it is denoted by a box, which additionally indicates the the 95% confidence intervals of Par;ss
and Pra.



2.5 Pattern Classification 71

Multi-label classification results (Identification Task)
19990 Classified as
100% AM CaE ChE c™m FF MF MM RM SC TS 3

1422 (7.1%) 95(0.5%) 74(0.4%) 14(0.1%) 312(1.6%) 9 (0%) 12(0.1%) 20(0.1%) 36(0.2%) 5 (0%) 1999

AM 71.14%  4.75% 3.7% 0.7% 15.61%  0.45% 0.6% 1% 1.8% 0.25% (10%)
144 (0.7%) 1110 (5.6%) 188 (0.9%) 40(0.2%) 378(1.9%) 9 (0%) 25(0.1%) 34(0.2%) 50(0.3%) 21(0.1%) 1999

Cak 7.2% 55.53%  9.4% 2% 18.91%  0.45% 1.25% 1.7% 2.5% 1.05% (10%)
37(0.2%) 325(1.6%) 915(4.6%) 145(0.7%) 57(0.3%) 41(0.2%) 157(0.8%) 66(0.3%) 77(0.4%) 179(0.9%) 1999

ChE 1.85% 16.26%  45.77%  7.25% 2.85% 2.05% 7.85% 3.3% 3.85% 8.95% (10%)
23(0.1%) 105(0.5%) 118(0.6%) 1215(6.1%) 24(0.1%) 70(0.4%) 84(0.4%) 80(0.4%) 97(0.5%) 183(0.9%) 1999

t™M 1.15% 5.25% 5.9% 60.78% 1.2% 3.5% 4.2% 4% 4.85% 9.15% (10%)
143(0.7%) 160 (0.8%) 68(0.3%) 3 (0%) 1583 (7.9%) 4 (0%) 6 (0%) 10(0.1%) 16(0.1%) 6(0%) 1999

Tested FF 7.15% 8% 3.4% 0.15% 79.19%  0.2% 0.3% 0.5% 0.8% 0.3% (10%)
G 5 (0%) 42(0.2%) 51(0.3%) 140(0.7%) 7 (0%) 1140 (5.7%) 82 (0.4%) 154 (0.8%) 135(0.7%) 243 (1.2%) 1999
MF 0.25% 2.1% 2.55% 7% 0.35% 57.03%  4.1% 7.7% 6.75% 12.16% (10%)
24(0.1%) 77(0.4%) 99(0.5%) 47(0.2%) 52(0.3%) 40(0.2%) 1533 (7.7%) 32(0.2%) 38(0.2%) 57(0.3%) 1999

MM 1.2% 3.85% 4.95% 2.35% 2.6% 2% 76.69% 1.6% 1.9% 2.85% (10%)
RM 18(0.1%) 61(0.3%) 70(0.4%) 83(0.4%) 51(0.3%) 87(0.4%) 42(0.2%) 1150(5.8%) 280 (1.4%) 157 (0.8%) 1999
0.9% 3.05% 3.5% 4.15% 2.55% 4.35% 2.1% 57.53% 14.01%  7.85% (10%)

17(0.1%) 61(0.3%) 55(0.3%) 87(0.4%) 37(0.2%) 146(0.7%) 65(0.3%) 242(1.2%) 1121(5.6%) 168 (0.8%) 1999

SC 0.85% 3.05% 2.75% 4.35% 1.85% 7.3% 3.25% 12.11%  56.08%  8.4% (10%)
TS 7 (0%) 31(0.2%) 61(0.3%) 100(0.5%) 17(0.1%) 141(0.7%) 42(0.2%) 119(0.6%) 129(0.6%) 1352 (6.8%) 1999
0.35% 1.55% 3.05% 5% 0.85% 7.05% 2.1% 5.95% 6.45% 67.63% (10%)

1840 2067 1699 1874 2518 1687 2048 1907 1979 2371 Acc=

2 (9.2%) (10.34%)  (8.5%) (9.37%)  (12.6%)  (8.44%)  (10.25%) (9.54%)  (9.9%) (11.86%)  62.7%

Figure 2.24: Confusion matrix showing the identification results for a ten-classes problem.
This exhaustive representation contains in each cell the absolute number of in-
stances, their relative number, and their class-wise relative number.

classified instances; its average is equal to the accuracy. In the remainder of this thesis, a
more condensed form of this matrix is used, in which the relative number of instances is
expressed through the size of a bubble in the background of the matrix (see Figure 4.6 on
page 127 for an example).

Other metrics

Precision and Recall. When dealing with a binary classification problem, four cases can be
distinguished for any tested sample x: (1) the sample is positive (¢, = 1) and the classifier
accepted the sample (r(x) = 1), which is called a true positive (TP); (2) the sample is positive
(c; = 1) but the classifier rejected the sample (r(z) = 0), which is called a false negative (FN,
or miss, see above); (3) the sample is negative (¢, = 0) and the classifier correctly rejected it
(r(xz) = 0), which is called a true negative (TN); and (4) the sample is negative (¢, = 0) but
the classifier accepted the sample (r(z) = 1), which is called a false negative (FN, or false
alarm, see above). A special interpretation of these values are precision and recall. Recall

(also named true positive rate, sensitivity or completeness) describes how many of the positive
TP
TP+FN"
positive predictive value) indicates how many of the accepted samples actually are positive,

items were recognized, formally Recall = On the other hand, Precision (also named

. .. TP
i.e. Precision = TPLiFP -
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Receiver Operating Characteristic (ROC) curve
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Figure 2.25: Example of a ROC curve created on the same classifiers from Figure 2.22.

F-Score. The F-score or F-measure is a combination of the precision and recall metrics
commonly used in machine learning. It is defined as

2. Precision - Recall
"~ Precision + Recall ’

i.e. both metrics are weighted equally.

ROC Curve. The receiver operating characteristics (ROC) curve (Fawcett, 2006) is a visual
collection of multiple operating points of a classifier with respect to the false alarm rate (x-
axis) and recall (y-axis). In this regards it is similar to DET, although it has been in use
for a longer time. An example is shown in Figure 2.25. In general, the further the curve is
squeezed into the upper left corner, the better the classifier.

Log-likelihood Ratio Cost Function. In the previous sections, the DET plot and DCF were
introduced as a measure for detection performance. Although they both give great insight
into discrimination and calibration, respectively, and the DCF offers comfortable flexibility
in terms of parameters, they also both face some problems: The DET plot does not plot the
full value of scores to the experimenter, while the DCF is strongly dependent on application
performance. Also, there is no combined measure for discrimination and calibration. As a
remedy, Briimmer (2004) introduced Cy,-. It measures the ability of a classifier to produce
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log-likelihoods that have particularly useful characteristics. One of them is that the range is
calibrated on a default threshold ©® = 0. As a consequence, hypothesis discrimination can
occur based on the sign of the scores (positive scores indicate acceptance, negative scores
rejection). Moreover, the scores are required to express a kind of confidence (i.e. scores closer
to zero show less confidence). This type of decision-making is also called soft decisions, as
opposed to the application-dependent hard decisions used to compute error rates. Cj,. is
calculated by integrating over all possible decision thresholds (see Leeuwen and Briimmer
(2007, p. 341) for details). In analogy to C3%", there is also an optimal CJ/" that can be
computed. In this case however, it is not reached by adjusting thresholds, but rather by

applying a warping function to the likelihood ratios.

APE Plot. Being directly based on the Cy,. metric, the applied probability of error (APE)
plot (Lecuwen & Briimmer, 2007) is a depiction intended complementary to DET that displays
the Cpetr (with Chziss = Crpa = 1) on the y-axis in relation to a threshold © on the x-axis. It
is a metric for all possible operating points. An example can be seen in Figure 2.26.
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| | |
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Figure 2.26: Example of an applied probability of error (APE) plot. The different curves
are the probabilities based on the actual likelihoods (solid), optimal likelihoods
(dashed), and based only on prior probabilities (dotted). (Source: Leeuwen &
Briimmer, 2007, p. 347)
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2.5.8 Classification vs. Regression

In machine learning, we can distinguish between classification and regression problems. A
classification problem exists if one of a countable set of labels should be assigned to an
instance in question. Examples are the detection of broken bottles in a bottle recycling plant,
the assignment of categories to pictures through image processing and understanding, or the
recognition of a fixed set of gestures. The term pattern classification is used to highlight the
statistical aspects of the topic, similarly as with pattern recognition (vs. machine learning).
A regression problem exists if we want to map an instance to a real-numbered value range.
Examples are the estimation of the mass of an object from its image or scan, the prediction
of sales numbers based on market observations, or the detection of a car’s speed based on
video. In other words, both problems differ in the domain of their outputs, which is either
nominal /cardinal or real. This difference has an impact on the algorithms that are employed:
Classification algorithms can usually only be applied to classification problems, and regression
algorithms often work better with that type of problem.

In practice, most applications involving pattern recognition are dealing with a classification
problem on the surface rather than with a regression problem. Even if we want to find out
the age of person in years, it is age classes that represent the result. This ultimately has to
do with how the information is used, and in most cases, it is used to make decisions, which is
an indicator for classification. That does not mean however that regression algorithms may
not be an appropriate way to implement the task or to represent errors, as regression results
can always be mapped to classes again in simple or more complex ways. In fact, regression
was also used for evaluation as part of this thesis (see Section 4.5.3).

There are other types of problems as well, but they are only marginally relevant to the
work at hand. Examples are interpolation, where the relationship between input and output
is known only for some ranges and a solution for the missing ranges should be inferred, and
density estimation, which is rather an inverse approach to classification in that it asks for the
probability of certain features in a new sample when its class label is known.



3 Related Work in the Area of Speaker
Classification

The work by Miiller (2005), in particular the AGENDER approach, which laid the foundation
for many of the concepts in this thesis, represents one of the first attempts to deal with
the automatic recognition of speaker age, together with the studies presented in Section 3.1.
Previous research has been done however in other areas of Speaker Classification, such as
emotion recognition. Recently, the number of publications in the field has increased, ex-
pressing a growing interest in the technology and its applications. This is at least partly
due to technological advances in hardware, or more precisely, processing power: Applications
and servers can work with large volumes of data, they can do sophisticated reasoning and
complex computations to improve the user experience, but they still need the actual data
to do so, therefore now the data acquisition methods have to keep up. And of course, the
application landscape has also changed: Non-intrusive user-adaptive behavior is more com-
mon nowadays, although it is also more subtle than in its early days. As a new milestone in
age and gender recognition, a special session on paralinguistic speech information extraction
has been organized in conjunction with the Interspeech 2010 conference. This special session
was entitled “Interspeech 2010 Paralinguistic Challenge” (Schuller et al., 2010), and it was
motivated both by the challenge in the area of language identification organized by NIST in
their annual Language Recognition FEvaluation series (see e.g. NIST Language Recognition
FEvaluation, 2011), by its Interspeech 2009 Emotion Challenge predecessor, as well as by the
numerous other “challenges” popular in the machine learning community:.

In this section, an overview is given on milestones in related work on Speaker Classification
and state-of-the-art technology. The references found herein deal with the extraction of one
or more items of paralinguistic information from speech, with a special focus on the speaker
properties age and gender. For the latter, a chronological presentation has been chosen since
they are often treated in combination, which is also reflected in the classes and features.

In machine learning, and even more in Speaker Classification, there are certain aspects
that almost all systems share. This reflects the basic layout of a machine learning system as
introduced in Section 2.5. While the building blocks of the systems are often the same, the
differences lie mostly in the details. This facilitates a meaningful comparison of the different
approaches further than in other areas. Making use of this circumstance, at the end of this
section, a table summarizes the findings and attempts to compare the methods according
to some basic criteria. The same basic scheme is applied throughout this section to analyze
and introduce the contributions individually. For some systems, concrete performance data

75
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is presented. When comparing actual numbers, however, great care must be taken, because
even small differences in the specifications, data, or other conditions that may have affected
the evaluation, cannot accurately be expressed in the summaries. An exception may be the
contributions to the Interspeech 2010 Paralinguistic Challenge, where equal conditions were
created for all participants. For completeness, the final comparison also includes the FRISC
approach that will be the main subject for the remainder of this chapter.

3.1 Early Work

One of the earliest studies on the automatic estimation of speaker age was undertaken by
Minematsu, Yamauchi, and Hirose (2003). This study does not use the chronological
age as ground truth to measure the performance, it rather compares the automatic method
to the human judgment of the age of voices and evaluates the correlation of both metrics. For
either rating, the benchmark is the perceptual age of the speakers. For human listeners, this
is by definition the more natural choice, and for the system, it can be assumed to be an easier
task, as borderline cases or pathologies are not a disturbing factor in this case. The data
originates from three Japanese-language corpora named JNAS (ages 20-60), Senior-JNAS
(ages 60-90), and CHILDREN (6-12). Apart from the missing ages 13-19, all speakers were
male. Like with AGENDER, this age-dependent combination of corpora can have an impact
on the reliability of the results. The actual implementation of the automatic recognizer uses
GMMs trained on MFCCs, their first order derivatives, and deltas of the frame-wise power.
Silent frames are removed using a method not detailed. One GMM is trained for each of the
320 speakers with 16 mixtures and diagonal covariance matrices. This regression approach
uses a weighted sum of all speakers to estimate the numeric age of a test sample consisting
of 5 seconds of speech from one speaker, and correlates to the listener’s perception by 89%.

Some additional early progress in terms of regression approaches can be attributed to
Schotz (2004) (later extended in Schotz, 2006). Based on chronological age, 724 gender-
balanced speakers between 17 and 88 years from the SweDia 2000 speech corpus produced the
Swedish word rasa 3 to 14 times. Their study was aimed at comparing spectral and prosodic
features. Prosodic features were F0, intensity (which was normalized), and duration; features
in the “spectral” group were F1 — F5, jitter, shimmer, spectral balance/emphasis/tilt, and
HNR. Features were tested individually and in appropriate groupings. Recognition was per-
formed on a per-word as well as on a per-phoneme basis, using Praat for word segmentation.
The models that were trained are CART regression trees. The best per-word result achieved
was a mean absolute error of 18.9 years for female speakers with mean F0O and 18.8 for male
speakers with the duration. The results generally show a good performance of FO and other
prosodic features. This last result in particular however also indicates a strong dependency
of the study on the chosen word.
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3.2 The AGENDER Approach

The starting point of my thesis was the AGENDER approach published by Miiller (2005), a
Speaker Classification system employing pattern recognition methods, and the most extensive
work on the automatic recognition of speaker age and gender. AGENDER builds on a thorough
study of why and how voices differ between genders and ages, and identifies several features
that have been extracted on a sample corpus. These features, which are shown to expose
significant mean value differences for a given set of eight classes, have been chosen closely
after the hypotheses on which ages are typical points of change for the human voice. These
classes and their abbreviated notation are presented in Table 4.1 on page 104. Using a two-
layered pattern classification set-up with multiple classifiers, a system has been constructed
which reports an estimate of the actual age and gender for a given input speech sample of
any length. Several combinations of features and classifiers have been evaluated.

In spite of being a separate line of research, the work at hand takes advantage of many of the
findings of AGENDER. However, it also identifies a number of shortcomings and areas where
further study and experimentation would pose major opportunities for further improvement.
In addition, it tries to establish new specifications for system evaluation that allow for better
transparency and comparison with other systems. In the following paragraphs, the approach
is presented in further detail, accompanied by various deficits.

Miiller (2005) also describes a component for experimentation and a client/server frame-
work for on-line and off-line classification using AGENDER. Facilitating the design and de-
ployment of Speaker Classification technology did not have the same importance as in this
work, where it is a major area of contribution. However, the description in this section is
limited to the methodological aspects of the main classification approach. The aspects related
to the framework and applications are discussed in Chapter 5.

3.2.1 Data

Miiller (2005) based his research on three corpora: the German corpus BAS and the English
corpora TIMIT and Scansoft. In total, there were 1164 speakers producing 38,202 utterances.
The gender is approximately balanced in the data (52% female, 48% male); however, this is
not the case with age (see Figure 3.1). Speakers younger than 10 years were not present,
which means that the age class Children was effectively composed of ages 10 to 12. The
training data was generated by obtaining a randomized selection balanced by class, length,
and dialog situation. The corpora with higher recording quality were downsampled to 8 kHz
and 16 bits sample size (telephone quality).

The heterogeneous corpus data used to train the AGENDER system poses a number of
problems: First, the distribution of ages in the data indicates an inherent bias that cannot
be prevented by balancing of data alone, since some ages are clearly underrepresented. This
applies particularly to the group of adult speakers between 40 and 60 years. It is expected
that the performance on real speech would be worse in this age class than for other ages.
However, it is not possible to predict to what extent the evaluation results might also be
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Figure 3.1: Number of speech samples for female (red) and male (green) speakers by chrono-
logical age. (Source: Miiller, 2005, p. 61)

affected. Second, there are substantial differences (i.e. diverse parameters) between the
corpora. Not only do the recording parameters and quality differ (this may be comparable to
channel effects), but also the language and dialog situation (read vs. spontaneous utterances).
This might pose a high risk of overlaying and overriding the other features, possibly making
some age and gender specific effects more or less visible. Even more critical, since there exists
an association between certain ages and corpora (i.e. each corpus contained only a specific age
range), the machine learning algorithms might inadvertently use corpus parameters to draw
conclusions about the age, which results in an over-estimation of the classification performance
(a phenomenon often called corpus effect, and one of the reasons why a direct comparison
between AGENDER and FRISC would not seem sensible). There was no experiment in the
original study to confirm or reject such a relationship. In case of language, a language-
independence of the method was hypothesized but not confirmed empirically. As will be
shown in Section 4.5, it is not safe to make this assumption. Finally, many features do
exhibit differences between language families and even languages. Last, the data sets were
not disjunctive with respect to speakers, which means that the evaluation would use the same
speakers accepted for training, even though with different samples.

Several of the issues described above were acknowledged by the author yet deemed accept-
able for the study. Nevertheless, the data used for training and evaluation of FRISC originates
from a single new corpus (SpeechDat-II'). This corpus displays a better distribution of ages
and is thus supposed to prevent adverse effects that might be caused by artifacts in the data.
Additionally, we introduce new data set selection methods.

3.2.2 Features

There are three categories of features that were used in AGENDER: The acoustic features
extracted using the tool Praat (derivatives of pitch, jitter, shimmer, and HNR), the speech
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activity metrics extracted using SRSAD (onset latency, number and duration of pauses,
articulation time), and the speech rate extracted using ENRATE. All of these features are
global or long-term features, which means that they are computed over the full length of an
utterance, implying a feature vector of a fixed size (one value per metric).

The use of only global features however completely ignores the time domain and duration
information of an utterance. At first, this might not seem to be a problem, since most speaker
properties do not change over the course of a single utterance. However, it allocates features
computed on short and long sentences an identical weight, which can cause confusion for
some types of sentences, e.g. for pitch in a short question such as “How are you?” with the
voice raised at the end. Detection and handling of such cases is not possible in AGENDER,
where any short-term information is blended into the long-term value prior to the actual
classification.

Another issue is that a system that is exclusively based on global features depends on
the external specification of utterance boundaries, and returns its belief only after the full
utterance is recorded, which reduces the application possibilities in practice. A frame-based
system like the one presented herein works on a continuous stream of speech frames in in-
cremental manner, updating its beliefs in very short, fixed intervals. This makes it possible
to obtain a result at any given time, which means that a component does not have to wait
for the complete recording, but will always receive the best possible solution available (with
respect to the expected performance).

Furthermore, it allows speaker changes to be detected by looking for changes in the classi-
fication results over a certain time window, which is useful to support multi-speaker scenarios
such as diarization.

There is also a persistent controversy about what speaker characteristics are reflected in
which features. By focusing on the raw and more low-level short-term cepstral features,
which are expected to superset several of the features investigated by Miiller (2005), we avoid
dealing with certain weak or problematic features in FRISC.

Apart from the basic choice of features, their fine-tuning can also be important. In AGEN-
DER, most features have been extracted by the corresponding tools using their default pa-
rameters or by changing them to settings that seemed reasonable. However, and as the
experiments in this thesis will confirm, slight changes in these settings can have a major im-
pact on the overall performance. Moreover, they help us to better understand the feature and
its relation to the speaker class. This type of small-scale optimization can only be performed
in a guided experimental set-up as described in Section 4.3.

3.2.3 Pre-processing and Filtering

Apart from sample rate conversion, the original AGENDER rather goes without preprocessing
or filtering, and uses all of the raw features as input to the classifiers. This seems reasonable
since the features are high-level features. For most features, pauses, noise-only segments,
or short unvoiced segments, are filtered and ignored as part of the underlying extraction
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algorithms used. For some features however, such as HNR or the speech rate, it is not clear
what effect such “silent” parts within the speech may have and whether it would have been
advantageous trying to filter them out in separate process.

3.2.4 Two-layered Classification Approach

The main part of a given AGENDER set-up follows a strict two-layered scheme: The first
layer corresponds to the classification phase of a pattern recognition system while the second
layer represents the post-processing step. For the first layer, six different types of classifier
were compared and used interchangeably as well as in combination: a GMM, a Naives Bayes
classifier, a SVM, an artificial neural network, a k-Nearest Neighbor classifier, and a C 4.5
decision tree. In the majority of scenarios, the ANN yielded the best overall recognition
accuracy. HEach of the first layer classifiers is based on a specific subset of the full list of
global features, and is trained on the final set of 8 classes, a subset, or — in most cases — a
grouping of classes. Grouping (i.e. merging) two output classes, such as female and male
children, into a single class of the model (e.g. children), can reduce the complexity of the
model and improve its accuracy. A concrete example from AGENDER (see Miiller, 2005,
p. 195) is a classifier which uses the features pitch_quant, pitch__mean, jitt_la, jitt_rap,
jitt_ddp, shim_ 1, shim Idb, shim_ apq3, shim_apqll, shim ddp, and harm_mean, and
classifies three groups: Cf+Cm+Yf+Ym+Af, Sf+Sm, and Am. The classifiers are composed
manually by studying the feature value distributions of individual classes.

The second layer is usually required to be present because most set-ups consist of more
than one classifier on the first layer, so the different results need to be combined to an overall
decision. As discussed in Section 2.5.6, it can serve both the purpose of classifier fusion and
the integration of expert knowledge. Dynamic Bayesian networks (DBNs, see Brandherm
& Jameson, 2004) were suggested and evaluated, where the classifiers are connected with
each other and conditional probabilities can be specified as appropriate. They can further
merge the results from multiple consecutive timeslices, with each timeslice representing one
utterance. Figure 3.2 shows an example of such a network. One of the main findings of
the investigation of voice aging by Miiller (2005) was a different progression for men and
women. This was modeled on the second layer by using gender-specific classifiers for age
classification, and by linking the conditional probability of the age classifier to the result of
a gender classifier (which would be a predecessor node in Bayesian network schematics).

This design is quite flexible, but faces a structural problem: It consists of numerous vari-
ables (number and type of classifiers, classes, features...) which are set only by the estimation
of the human experimenter, and could be subjective and suboptimal. For instance, the choice
of conditional probabilities for the Bayesian network is a difficult task, especially with a grow-
ing number of nodes, when it inevitably becomes very opaque. An automated experimental
parameter selection might be possible, however it is not part of AGENDER and might also
prove difficult due to the number of possible combinations. In addition, parameters of the
classification methods, such as the number of mixtures in the GMM, were not thoroughly
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Figure 3.2: First and second layer of a classification set-up in AGENDER. The depicted net-
work represents a single timeslice of the DBN. (Source: Miiller, 2005, p. 195)

investigated. The fact that a single type of classifier (the ANN) achieved the best (or next
to it) accuracy under almost all conditions, encourages the hypothesis that for similar fea-
tures, concentrating on the optimization of the parameters of a single classifier might be
more rewarding than experimenting with many different classifier types, but testing only few
configurations or even only a single default configuration. Therefore, in FRISC, only a sin-
gle combination consisting of a GMM (generative) and SVM (discriminative) classifier was
explored, but using a variety of parameter settings.

3.2.5 Experimental Design and Evaluation

The majority of experiments in Miiller (2005) aims at feature analysis, i.e. at building generic
models of feature-class-relationships. Gaussian probability distribution analysis, mean value
comparison, and correlation analysis are some of the tools applied. The performance of
the Speaker Classification itself was not used as a metric in these experiments; however, it
was evaluated in a separate series of experiments using a set of feature configurations, class
groupings, and classification methods. The method utilized cross validation of classifiers built
into the WEKA® tool (Witten & Frank, 2005).

In the work at hand, the performance evaluation of the FRISC system in the target config-
uration receives a considerably higher priority as in Miiller (2005), of which the experimental
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design is not considered sufficient. In particular, for a better comparison, the same tar-
get class configuration is used for all experiments in the main experiment series. Further,
cross validation is replaced with fixed data sets and a “one-shot” evaluation using strict re-
search/evaluation site separation (see Section 2.5.7). This theoretically allows results not
only to be compared within the series, but also with different approaches developed by other
researchers.

3.2.6 Conclusion

The AGENDER approach can be considered the “spiritual predecessor” of this work in that it
lays the groundwork of modern Speaker Classification in many ways. However, in terms of the
actual concepts applied, this work investigates a new approach and constructs a completely
novel system design from ground up using this experience. While its main goal is to make
progress in the overall performance of Speaker Classification, it also particularly tries to tackle
the deficiencies of AGENDER summarized below:

e Unbalanced (i.e. biased) distribution of age classes in the source corpora and particular
sparseness for certain ages

e Data inconsistency due to substantial differences in recording conditions, dialog situa-
tion, and language between the three corpora

e Possibility of corpus effects due to corpus-class relationships

e Missing empirical evidence for language-independence of the method

e Sensitivity to utterance length by consideration of only long-term features
e No consideration of cepstral features

e Some features computed on non-speech regions without investigation of potential ad-
verse effects

e No incremental processing of speech (streaming) and dependency on external segmen-
tation

e Manual (as opposed to algorithmic) selection of parameters and many parameters re-
maining unexplored

e Missing systematic evaluation of different configurations, in particular for the second
layer

e Parameter tuning performed on evaluation set (i.e. no “one-shot” evaluation).
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3.3 First Speaker Classification Workshop and Subsequent Studies

The next milestone after AGENDER is the study performed by Metze et al. (2007), which
describes and compares the performance of four automatic combined age and gender classi-
fication approaches, and is the first documented comparison of systems from different con-
tributors using the same data sets and separating the research from the evaluation site. The
systems participating in the study were simply named System A, B, C, and D. This evaluation
is also the first published usage of the SpeechDat-II corpus for this purpose. Seven classes
were used corresponding largely to the AGENDER age specifications as found in Table 4.1 on
page 104, with only children spanning one more year. A special condition during the evalu-
ation were the short and long evaluation sets, which consisted of particularly short and long
utterances, respectively. In addition, the VoiceClass corpus, consisting of 660 (unbalanced)
native German speakers each speaking 5 to 30 seconds to a voice server, was intended as
a special out-of-domain condition. Unfortunately, due to the summarizing character of the
paper, not all aspects of the individual systems were described on the level of detail used in
the overview and comparison tables in this chapter.

System A is a parallel phoneme recognizer (PPR) with decision layer. For each class,
a phoneme recognizer is trained, which outputs a neg-log score. For any given input, the
recognizer with the lowest score is designated the winner. The phoneme recognizers were
originally designed for use in ASR and language identification applications. They are based
on MFCCs that are reduced to 24 features using linear discriminant analysis (LDA), which
in turn feed into continuous densities hidden Markov models (CDHMMSs). The age/gender
class models are actually the phoneme bi-grams for the individual class. This system reached
54% precision and 55% recall on the SpeechDat-II evaluation set, which was the overall best
mark of the four systems. However, for the short utterances set, it declined to 45% and 46%,
respectively, which can be seen as a disadvantage compared to the other systems in the test.

System B computes multiple variations of the features jitter, shimmer, harmonics-to-
noise-ratio, and pitch, resulting in a total of 17 features. Similar to Miiller (2005), three “first
layer” classifiers, more precisely multi-layer perceptron networks (MLP), were fused using a
dynamic Bayesian network as the “second layer”: one gender classifier and two gender-specific
age classifiers. For optimization of the CPTs, the cross validation set of the gender classifier
had been used. This system reached 40% precision and 52% recall in the evaluation. For short
utterances, the decline was less than two percentage points, which shows a certain robustness
against utterance length variability.

Ajmera (2006) observed a relationship between the fundamental frequency of a speaker
and the distance between the signal power spectrum and the spectral envelope estimated
by a linear prediction (LP) analysis at the spectral peaks. Based on the presumption of a
relationship between this distance metric d and the speaker age/gender, System C models
d using a GMM. Considering that only a single feature was used effectively, some amount of
class overlap is to be expected. As test data confirmed, this overlap is large between adults

and children, therefore these two classes were merged, resulting in a lower maximum score
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for the system. With a precision of 27% and a recall of 50%, the system is worse than the
others, yet sufficiently above chance level to confirm the usefulness of the feature.

Finally, System D is related to the attempt by Minematsu et al. (2003) in that it classifies
the raw MFCC coeflicients 1-12 using a GMM. The GMM however is trained per target class,
and uses 256 mixtures for age and 128 mixtures for gender. Further, the first and second
order derivatives of the coefficients are added, resulting in a total of 36 frame-based features.
The system uses four age classifiers and 4 times 2 gender classifiers, since gender GMMs were
trained specifically for each age. In addition, a separate gender classifier distinguishes men
and women using the same MFCCs, plus pitch. Fusion of the classifiers occurs in a two-step
process (age and gender first, then gender-specific age) and employs majority voting on the
frames. Frames were also inspected for silence (pauses, breathing...) using a “power-based
criterion”, which was meant to filter out the corresponding frames. System D scored at 42%
precision and 46% recall.

In addition to the system evaluation, Metze et al. (2007) also conducted a human listener
experiment using the same data. 30 people associated with the organizers, i.e. some from the
field of speech technologies, rated different sections of the evaluation data with headphones
according to the seven-class scheme, covering about half of the data set. Explicit cues on the
target class were tagged by the subjects and discarded (about 1% of the data). The manual
annotation reached a precision of 55% and a recall of 69%, which is only slightly better than
the result of System A.

Bocklet, Maier, Bauer, Burkhardt, and N6th (2008) were the first to apply the
GMM-SVM supervector approach to the problem of age and gender classification. In their
work, they are comparing the performance of a “plain” GMM-UBM to a GMM-SVM pipeline.
Like FRrisc, they are using seven age/gender classes; however, the age boundaries were
adopted from Miiller (2005) and Metze et al. (2007). The employed corpus is also SpeechDat-II
(a secondary corpus, VoiceClass, is used for comparison) with the same definition of training
and test data sets as in Metze et al. (2007), which means that the results could potentially
be compared to the former. However, there is no mention of a separate evaluation set, so the
reported results have been obtained through tuning on the test set and might be lower on
real live data or in a “one-shot” evaluation. Only frame-based features are examined, namely
MFCCs 1-12 and their first order derivatives. A UBM with varying numbers of mixtures is
built on all training data. This UBM is MAP-adapted for each speaker. While the MAP
relevance factor is not inspected, different types of matrices are used in the EM algorithm,
such as full and diagonal covariance matrix. The supervector is built from the stacked means
of the speaker GMMs, apparently without further processing or normalization. For three sys-
tem parameters, a comparison of the performance with different settings is given: the number
of GMM mixtures, EM/MAP training parameters, and SVM kernel function. The results are
presented in terms of precision and recall. The best combination, a GMM-SVM with 512
Gaussians, full-covariance MAP adaptation, and a linear kernel, achieved 77% precision and
74% recall. However, unlike most other studies, evaluation results were collected in terms of
speakers (i.e. one instance corresponds to one speaker), which greatly simplifies the task by
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increasing the amount of material per test sample to what equals a rather long turn. While
this alleviates the conclusions drawn by the authors, it still shows that the GMM-UBM is
considerably outperformed; it achieved only 49% respective 41% in the best configuration.

Sedaaghi (2009) presents a further empirical, heavily engineering-driven approach to
optimize the performance of age and gender classification. It is based on the two corpora
English Language Speech Database for Speaker Recognition (ELSDSR, containing 23 speakers)
and Danish Emotional Speech (DES, containing 4 speakers). The speakers are approximately
gender-balanced, but insufficient information is given regarding the age. The overall low
number of speakers could lead to a potential inaccuracy. The age decision is a binary one in
this work, discriminating between young and old with an age threshold set at 33 respective
45 years due to age distribution in each corpus. The strategy applied is a common one in
result-oriented machine learning: A large accessory of possible features adopted from another
publication is created, upon which multiple types of classifiers are trained and compared.
Contrary to the bottom-up approach followed in FRisc, the major amount of work is put
into the evaluation of different learning strategies. A disadvantage of that approach is that
it assumes that a great deal of intelligence is already part of the classification algorithm,
although practice shows that this is often not the case. The features comprise 16 formant
features, 35 pitch-based features, 34 intensity-based features, and 28 spectral features, which
makes a feature vector size of 113 global features. As classifiers, the author experimented
with Naive Bayes, ANN, SVM, kNN, and GMM. The best gender classification was achieved
with a linear SVM (96% accuracy), while age performed better using an ANN (89%).

3.4 Interspeech 2010 Paralinguistic Challenge And Beyond

This section summarizes the contributions of the Interspeech 2010 Paralinguistic Challenge
and selected subsequent work. The actual challenge was organized by Schuller et al. (2010)
and took place prior to the Interspeech event, where the results were presented. It consisted
of three sub-challenges: age, gender, and affect, of which the first two could optionally be
merged into a combined-classes task by the participants. The four age classes are defined
using the same boundaries as in FRISC (see Table 4.1 on page 104). The gender property
consists of three classes (male, female, children), since the detection of gender for children
was beyond the challenge. The corpus used for the age and gender classification tasks was
called “aGender”, but it must not be confused with the AGENDER approach. It is actually a
refinement of SpeechDat-II for this particular challenge. In addition to the corpus, a set of
450 acoustic features supposedly relevant to the task of paralinguistic information extraction
was provided by the organizers, consisting of MFCCs, loudness, LSP frequencies, pitch, jit-
ter, shimmer, voicing probability, and others. The features were extracted using openSMILE
(Eyben, Wollmer, & Schuller, 2009), which is part of the open-source Emotion and Affect
Recognition toolkit and was already employed in the Interspeech 2009 Emotion Challenge, al-
though this time with a slightly extended feature set. Throughout the challenge, classification
performance is reported as weighted (with respect to instances per class) and unweighted av-
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erage recall, with the latter being the decisive criterion for determining the challenge winner.
A “baseline” result obtained on the 450-feature set using sequential minimum optimization
learned pairwise SVMs with a linear kernel trained with WEKA was 49% unweighted average
recall (UAR) for age and 81% for gender. As the goal of the challenge was clearly defined
as the optimization of this metric, application-driven criteria such as complexity, scalability,
and resource-adaptivity were rarely picked up by the contributions.

Bocklet, Stemmer, Zeissler, and No6th (2010) participated in the challenge with
an extension of their earlier concepts (Bocklet et al., 2008). They created five different
back-ends and fused the results of these into an aggregate score. Three of these back-ends
are GMM-SVM supervector systems, one is based on long-term prosodic features, and a
fifth uses an iterative frame-based approach. For the GMM-SVMs, three different feature
sets were examined: The first set uses MFCCs as described in their previous work. The
second set explores a revised variant of perceptual linear prediction (PLP) (Hermansky, 1990),
which differs from the MFCC features mainly in that linear prediction (LP) smoothing is
applied on the Mel filter bank spectrum (hence perceptual). 13 PLP coefficients are adopted.
The third set is called TempoRAl PatternS or TRAPS (Hermansky & Sharma, 1998). It
considers a longer temporal context (310ms) than the other features, in which it computes
time trajectories “smoothed by a Hamming window and transformed into frequency domain”.
The 558-dimensional feature vector is reduced to 24 features through linear discriminant
analysis (LDA). The GMM modeling step appears to be largely identical to their original work;
however, this time utterances instead of speakers are used for building the GMMSs, which puts
more focus on the SVM. The fourth back-end consists of a a feature vector of dimensionality
219, including features based on pitch, energy, jitter, shimmer, speech pauses etc., and that
was also used in previous work. Computation of the prosodic features differs, yet they are
all aggregated over a complete utterance before being processed by the classifier. Finally, a
so-called Glottal Excitation System was tested, which follows a completely different and more
bottom-up approach: An existing glottis model from acoustic phonetics was evaluated in
conjunction with changes of the speech production system that are indicative of age, such as
“increased harshness or hoarseness, increased strain, higher incidence of voice breaks, vocal
tremor and increased breathiness”. For a detailed description, we refer to the paper and the
references cited therein. Of all five single models, the GMM-SVM using MFCCs performed
best with 42% UAR for the 7-combined-classes problem. For the fusion, two approaches are
compared: early and late fusion. Early fusion refers to fusion on the feature level, in which
case a single large feature vector is generated from all models (including three supervectors),
resulting in a total of 3878 features, and is classified using the SVM. For late fusion, a meta-
level regressor (multi-class logistic regression, MCLR) is trained on the scores of the individual
SVMs, which also serves as a means of score optimization. The late fusion outperforms early
fusion and achieves 48% UAR on the test set (a result for the combined problem on the eval
set was not available).

Gajsek et al. (2010) explored a plain GMM approach similar to Minematsu et al. (2003)
for gender recognition, modeling three full-covariance GMMs with 512 mixtures and using
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the Linde-Buso-Gray algorithm for initialization. Features for the GMM were the 12 lower
MFCQCs, their first order derivatives, and a short-term energy value. These features were
normalized by cepstral mean and variance normalization (CMVN). In addition, 33% of the
frames with the lowest energy are removed. The result on the eval set corresponds to 83%
UAR. Unfortunately, the authors do not report what the impact of the parameters they chose
(frame filtering, GMM initialization...) was, as it would otherwise be possible to compare
their findings to those in the work at hand. Gajsek et al. (2010) also state that they tried a
GMM-SVM approach, but the result was worse.

A further combination of different classifiers was presented by Kockmann et al. (2010).
A total of six different sub-systems was tested both individually and with score-level (or
decision-level) fusion. The first and best-performing single system is a GMM-UBM based on
13 MFCCs (with cepstral mean subtraction), first and second order deltas, resulting in 39
features. The authors further removed slow and very fast changes in the spectrum since they
believe that this is not indicative of natural speech. They used a RelAtive SpecTrAl (RASTA)
filter to accomplish this. In addition, silent frames were removed with the aid of a phoneme
recognizer. Channel compensation was attempted, but did not improve any results. From a
UBM trained on the whole training set, target class GMMs are MAP-adapted. Results for
64, 128, 256, and 512 mixtures are reported, with a steady increase being observed reaching
46% UAR for 512 mixtures on the 7-class problem. The authors also determined that for
the separate detection of age and gender, the combined-classes model with the appropriate
mappings performs better than four- respectively three-class models. The second sub-system
uses the same features, but performs discriminative maximum mutual information (MMI)
based training on class-specific GMMs (versus the MAP applied to the UBM in the first
sub-system). The result appears not much different from the GMM-UBM. Next, a SVM
operating in one-versus-one mode is trained on the challenge baseline set of 450 features,
which are first rank-normalized. As an additional measure, the SVM is not only evaluated
directly, but the scores of the individual models are meta-classified using a GMM for mapping
to the target classes. This score domain optimization clearly improves the performance in
almost all cases. Another subsystem, like in Bocklet et al. (2010), uses 16 PLP features.
Again, these feautres perform worse than the other sub-systems by themselves. Two more
sub-systems with similar results were the MFCC-JFA-Eigenvoice-SVM, which is similar to
a plain GMM but also incorporates feature space optimization through joint factor analysis
(JFA) (Kenny, Ouellet, Dehak, Gupta, & Dumouchel, 2008), and the MFCC-JFA-Anchor-
SVM, which introduces anchor models covering prototypic data and adapt the rest similar to
the idea of MAP adaptation. Fusion of the systems is executed only on the score level through
MCLR. Since the authors both tune and evaluate their system on the same development set,
a clean data set separation is not preserved and overestimation has to be expected. Despite
this flaw, the contribution of Kockmann et al. (2010) scored best for the age task in the
challenge with 52% UAR.

Similar in general procedure is the study performed by Li, Jung, and Han (2010).
They developed five different sub-systems, which they combine on the score level. These
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sub-systems are a GMM-UBM, three GMM-SVM supervector systems, and a SVM based
on long-term acoustic features. The frame-based feature vector used in the first four sub-
systems is almost identical to the previous study, consisting of 13 MFCCs including first
and second order derivatives, and applying CMVN. The UBM consists of 256 Gaussians
in each condition and was MAP-adapted with a relevance factor of 12 to each target class
(for the GMM-UBM) or training utterance (for the GMM-SVMs). It is not stated whether
those parameters were chosen experimentally. Unlike most other work, Li et al. (2010) use
separate sets for UBM training and MAP adaptation (approximately 2.5:1 ratio). For the
GMM-SVM systems, the 9984 stacked means were used and normalized prior to the SVM
training. To reduce the computational complexity, the discriminative part employs a two-
step approach, starting with 21 one-against-one classifiers, followed by seven one-against-
the-rest classifiers. A variant of the GMM-SVM uses maximum likelihood linear regression
(MLLR), which is also common in speaker recognition, instead of MAP adaptation. Like
the latter, it adapts a general “background” model to individual speakers. Since the MLLR
matrix itself is used to build the feature vector, this method produces a smaller supervector
space, which is further compacted by a LDA. As the method is also more efficient, it might
show a better runtime performance. For the third GMM-SVM variant, the authors consider
the tandem posterior probability (TPP) supervector. Since the UBM additionally models
phoneme-related properties, this vector works like a histogram of class characteristics. Details
on this method are given in the paper. The fifth system consists of a SVM trained on the long-
term challenge baseline features without further modifications. Fusion occurs by applying a
linear weight function to the scores. Here, the weights correspond to the inverse entropy,
which however violates the strict tuning set separation criterion in the way it was performed.
Concerning single systems, GMM-UBM and GMM-SVM perform similar on seven classes
(43% UAR). However, all frame-based models were outperformed by the long-term features
(45%). The fusion improved the individual results considerably (53% on the development
set).

One contribution to the contest, submitted by Lingenfelser, Wagner, Vogt, Kim, and
André (2010), deals almost exclusively with the fusion aspect. First, a classifier ensemble
consisting of n + 1 classifiers (n corresponds to the number of classes) is built based on the
450 baseline features according to certain feature selection and diversity criteria. The method
used for feature selection is the correlation-based feature subset selection (CFS) provided by
WEKA. Ensembles are known to be helpful in situations with relatively few training instances
compared to the number of features. Two classification methods were tested: Naive Bayes
and SVMs. The fusion methods, which all work at decision level, are mean rule and cascading
specialists (CS). Several variations of these methods are compared. Details are beyond this
consideration and can be found in the paper. Most results were reported on the Naive Bayes
classifier, which was preferred due to computational complexity aspects. The final UAR
on the test set was 37%. The relatively low number even after score optimization can be

2The SVM contains one more dummy dimension of 1 values for more efficient training.
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attributed to the choice of the classification algorithm. However, using the SVM did not
improve the results. The authors suspect that the method used for feature selection might
not be compatible with the SVM.

Meinedo and Trancoso (2010, 2011) present another meta-system engineered from
multiple sub-systems. In addition to the aGender corpus, three other corpora were used
for training: CMU Kids, PF STAR children, and Broadcast News (BN ALERT). Separate
strategies have been followed for age and gender, however, all of the sub-systems train 7
classes and combine the output probabilities accordingly to meet the age or gender challenge
specifications. The first two sub-systems for age estimation use the challenge feature set,
while one applies a linear kernel SVM, and the other an ANN (more precisely a multilayer
perceptron feed-forward architecture with two hidden layers). There is another front-end
taking as input 12 PLP coefficients, deltas, energy, and frame-wise pitch, which no other
system has used in this combination before. The idea of this design was to pick up the
speaking rate of the speaker. Different from most other frame-based systems seen before,
seven contiguous frames of features were directly fed into the ANN. In fact, and surprisingly
if we consider the other studies, it performs better than the other sub-systems. However,
there is another fourth front-end following the more common GMM-UBM approach: A total
of 1024 mixtures is built from 28 MFCC-based features, and one GMM is MAP-adapted for
each of the seven target classes. Finally, the scores of the four systems are combined using
linear logistic regression. For gender, a similar architecture is used, however with slightly
different parameters. The challenge results were 49% UAR for age and 84% for gender, the
latter being the best result in this category.

Nguyen, Le, Tran, Huang, and Sharma (2010) show how the performance of a
traditional SVM can be improved by adding fuzzy membership functions to each of the
classes, which is a more advanced way of compensating for noise and outliers than using
the C' parameter of the SVM. The main challenge however lies in the computation of the
fuzzy memberships, for which the authors have previously proposed a solution that promotes
the data points in overlapping regions. Three remaining SVM parameters, C' and «, and the
kernel function (linear and RBF kernels were compared) were determined experimentally. All
450 challenge baseline features were used after being normalized, and one SVM was trained for
each of 7 target classes on the training set. Regarding fuzzy class memberships, the authors
found that setting the same weight for all vectors, but a different value for the highly-confused
Children class, improved the performance by one percent absolute over the baseline to 45%
UAR. Learning all feature vector weights following the idea mentioned earlier resulted in
approximately the same gain.

A purely GMM-SVM-focused approach to age recognition is explored by Porat et al.
(2010) as part of the challenge. The authors’ hypothesis states that the high-dimensional
feature vector usually involved with the GMM-SVM concept poses a potential problem to this
approach, and refer to several feature reduction strategies that may be applied. However, in
their paper, they investigate a different method in order to avoid the dimension reduction step
altogether: Instead of using MAP to create utterance-specific models from the background
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model, they calculate a supervector consisting of Gaussian weights. These weights express
the average relative importance of each UBM Gaussian for a particular utterance. Since there
is one weight for each Gaussian, the supervector is smaller than the stacked means vector of
a traditional GMM-SVM; its dimension corresponds to the number of mixtures, which is 512
in the reported study. As features, 12 normalized MFCC coefficients and their deltas were
used from only the frames containing speech. The SVM was trained with linear, RBF, and
polynomial kernels. In this 4-classes age identification task, the UAR was improved from 51%
to 59% percent by using the weights supervector and a cubic SVM. However, these results
were obtained using the whole speaker material, which represents very idealized conditions.
This seems to be the main reason for the decrease to 43% UAR on the challenge test set,
suggesting that the method might not be equally suitable for shorter utterances.

Although not as numerous, there are other recent publications on automatic age and gender
estimation apart from the Interspeech 2010 Paralinguistic Challenge. In the work presented
by Mendoza et al. (2010), which follows a more theoretically motivated line, the impact
of glottal features on three age groups is examined: 15-30, 31-60, and 61-90 years. These
features are related to the air pulses produced by the vocal folds and glottis, and are obtained
using a method called pitch synchronous iterative adaptive inverse filtering (PSIAIF, see
Pulakka, 2005). They include closing and opening phase of the glottis (Ko, Ka), opening
and closing quotient (OQ, CIQ), amplitude quotient (AQ), and others. More well-known
features like FO, jitter, shimmer, and HNR are also considered. Although the features are
individually analyzed with respect to their impact on the age classes using common methods,
the authors use automatic feature selection involving a generic algorithm combined with an
ANN to come up with two final sets of features, one for women and one for men. For the
training and evaluation, data from a Portuguese corpus is used, about which unfortunately
not much is documented. 60 female and 60 male speakers are selected to form three data
sets (training, test, eval). The employed classifier, a MLP, achieves 83% accuracy for women
and 92% for men. However, due to the low number of samples, these results are not overly
indicative.

Most of the systems that have been presented to this point use classification into discrete
classes for age. Considering the applications, this appears sound. Nevertheless, Wada,
Shinozaki, and Furui (2010) argue that the age transition is naturally continuous, and
so the performance should become better if regression is used, which is also a reasonable
argument. Consequently, their work compares discrete and continuous estimators, in this
case SVM and SVR (support vector regression). Comparing these poses a challenge for
the definition of performance specifications. The authors opt to go with a seamless target
space, therefore an artificial mapping from SVM classes to absolute ages is needed. This
is accomplished by using ten overlapping age classes centered on the nominal label, with a
window size of 15 years. A second novel aspect in this paper is MLLR based adaptation,
which is compared to MAP based adaptation. While Li et al. (2010) also applied MLLR at
roughly the same time, the study by Wada et al. (2010) is the first direct comparison. 300
speakers from the Corpus of Spontaneous Japanese (with a male/female ratio of 2:1) form
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the training and evaluation data, with only a single sample per speaker that is composed of
10 concatenated utterances of 3 seconds each. Cross validation is chosen instead of fixed data
sets, but a special algorithm is used to guarantee disjunct speakers. As features, the authors
take advantage of 12 MFCCs, their first and second order derivatives, and the log energy.
Following the experiment, the SVR always outperforms the corresponding SVM, which is not
a real surprise as the error metric is more natural to this type of task. Furthermore, the
MLLR variant has a slightly lower mean absolute error (MAE) (9.4 years) compared to MAP
(9.9) when using classification, but a higher MAE (8.4) than MAP (7.3) for regression. As an
alternative to adapting a GMM, initializing from a HMM is also attempted, which performs
slightly better. A plain GMM used for comparison produces the worst estimation (10.9 years
MAE). Overall, it remains questionable whether a study like the aforementioned is really
suitable to attest a general advantage of regression over classification.

3.5 Summary and Comparison of Related Work on Age and
Gender

This section provides a summary of all systems presented in the previous sections. The first
part puts the focus on a fact comparison of the different architectures, while the second
part attempts to compare the systems in a qualitative way, particularly with respect to this
thesis. Table 3.1 A and B use a fixed scheme to relate the work to each other to the extent
possible. In cases where multiple sub-systems or parameter configurations were evaluated,
the description was usually limited to the best performing one to avoid overloading the table.
A question mark denotes items that could not be determined from the quoted publications,
while a dash signals that a feature is not available.
The criteria used in this analysis scheme are the following;:

Classes: Number and type of target classes used. A stands for age classes, G for gender
classes, and A/G for combined age/gender classes.

Age Boundaries: Age boundary scheme that was applied. See Table 4.1 on page 104 for the
AGENDER and FRISC age class definitions. z — y — z denotes ranges ¢ — y and y — 2.

Corpora: The corpora which were used for training, evaluation, or both.

Frame Filtering: Any filters applied to the raw, segmented audio signal to remove less useful
frames (usually those without speech).

Score Optimization: Methods for optimizing the system’s decision on a meta level, i.e. based
on classifier scores.

Evaluation Method: The evaluation strategy applied. This is usually either cross validation
or the definition of fixed sets. One-shot refers to fixed sets including a special eval set
that is available only in unlabeled form to the research site.
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Frame Features: Lists the frame-based features employed, such as MFCCs. Deltas refers to
the first order derivatives and acc (acceleration) to those of second order.

Frame Step/Win: Indicates the step width (interval) in which frames were extracted, and
the size of the window that was applied.

Frame-based Cls.: Denotes the classifier applied to frame-based features. The most common
methods are GMM and the GMM-UBM and GMM-SVM combinations.

Global Features: Any global features that are used in the approach (in some cases given as
an excerpt).

Global Feat. Cls.: Denotes the classifier applied to global features.

Fusion: Any fusion methods that are applied at the post-processing stage, e.g. to fuse the
results of multiple classifiers.

Feature Vector Size: The total number of features. If both global and frame-based features
are used, the number refers to the frame-based features.

Feature Reduction: Any automated approaches applied to reduce (optimize) the number of
features.

UBM: If a universal background model is used, this column describes the data set on which
it is based as well as additional training parameters mentioned.

UBM Mixtures: The number of mixtures in the UBM (and instance GMMs).

Instance GMM: Describes how the instance GMMs are derived from the UBM (e.g. through
MAP adaptation), and how much data is used for each instance.

Supervectors: Contains the type of supervector used, if any.

Supervector Size: The dimension of the supervector, which typically depends on the Feature
Vector Size, UBM Miztures, and Supervectors columns.

SVM Composition: Indicates how a multi-class decision is derived from the binary SVM
classifiers. The two common approaches are sets of one-versus-one SVMs or one-versus-
the-rest SVMs.

SVM Normalization: The normalization method applied to the SVM input features.

SVM Kernel: The best performing SVM kernel function.

Table 3.2 compares the systems described in the previous sections in a binary manner,
highlighting areas where the approach taken in this thesis has potential advantages and
outperforms the other systems. The criteria for this comparison are defined as follows:
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Bottom-up Argument: Assesses whether the design of the approach, in particular the choice

of features, was motivated by actual empirical evidence on the aging of the human
voice. Following the argument of Hill (2007, p. 35), it is our belief that a comprehensive
understanding the underlying processes affecting the features is vital if the results are to
be re-used in further work and serve as a basis for continuing scientific progress. Bottom-
up studies thoroughly build up their hypotheses before validating or optimizing on the
data. Opposed to this, many approaches using the top-down method accept existing
sets of features commonly used in other speech-related tasks and focus on the pattern
recognition algorithms instead, possibly attempting to explain the observations later.
This criterion does not simply consider the outcome, but rather the argument followed
in the presentation of the system.

Experimental Parameter Space Exploration: Assesses the presence of a well-founded exper-

Best

imental procedure that provides valuable insight into the meaning and impact of indi-
vidual parameters. For a system description, this requires that (1) a substantial amount
of parameters is tested with different settings, (2) a clear order or optimization strategy
is identifiable, (3) conditions are identical for all evaluation runs except for a single
parameter being changed, and (4) the presentation is complete, i.e. all results of the
various settings are documented.

Practices Evaluation: Confirms whether the evaluation process described strictly fol-
lows the scientific practice for an objective and comparable system evaluation. This
includes the “one-shot” evaluation principle (research and evaluation site separation)
and using no grouping larger than utterances as test samples for the majority of exper-
iments. Those systems submitted as part of a public challenge such as the Interspeech
2010 Paralinguistic Challenge (Schuller et al., 2010) usually fulfill this requirement by
design, while others usually do not.

Identification and Detection Task: This criterion expresses whether the system evaluation

considers both the identification as well as the detection task characteristics. Both
types of tasks have different applications in practice, and favoring one may reduce the
performance in the other. Similar to the reason for studying ROC and DET curves,
comparing both types of tasks gives a more complete idea of the general performance
of the method than looking at only a single result.

Clean and Transparent Data Selection: Past experience and preliminary studies show that

the selection of training data plays an essential role for meaningful results. This is even
more important when the strict evaluation criterion is not satisfied. For a system to
meet this requirement, it needs to report on balancing of classes, speaker disjunctiveness
of data sets, and balancing of material per speaker.

Frame-based Features: Indicates whether the suggested solution evaluates or uses frame-

based features. Frame-based features contain short-term temporal information that
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adapted means), utterance
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conveys information not present in aggregated features. Details on this will be presented
in Section 4.1.4.

Long-term Features or Fusion: Indicates whether the suggested solution evaluates or uses
long-term features, i.e. features aggregated over a full utterance. While not part of the
main design presented in this thesis, these features are expected to contain supplemen-
tary information that might improve the classification result when combined with the
short-term information. The FRISC approach was extended with such information in
an auxiliary study presented in Section 4.4.

Generative and Discriminative Classification: This column denotes whether the design em-
ploys both types of classification methods. Due to the diverse nature of features related
to vocal individuality, it is expected that a single type of classifier may not provide
optimal results. This is especially true when frame-based features are used, which can
model speaker differences well using generative models, but need to be combined to a
set of target classes using a discriminative method. The GMM-SVM supervector ap-
proach is the most obvious application of this logic, although studies exploring the use
of GMM and SVM (or other generative / discriminative methods) in a different way do
also fulfill this criterion.

Training Focus on Discriminative Aspects: Examines whether the generative models pro-
vide sufficient material for the discriminative step. A system that trains more than
a single GMM per target class formally meets this aspect. Obviously, this only ap-
plies when generative and discriminative methods are used successively, such as in the
GMM-SVM-supervector approach.

Background vs. Utterance GMM Weighting: Our studies have shown that the details of
the adaptation step when a GMM-UBM approach is used do have an impact. More
precisely, our conclusion is that the preference of new training material over the back-
ground model has a positive impact on the classification performance, therefore this
weighting is a performance characteristic of the solution. However, all solutions explor-
ing this parameter (often expressed through the so-called MAP relevance factor) have
been accepted in this category.

Source Domain Optimization: Summarizes optimizations performed on the raw signal level
before or independent from the feature extraction. A typical example is silence frame

removal.

Score Domain Optimization: Assesses whether the system performs a separate step to op-
timize the system on a score-level to account for different requirements in the scenario,
such as an identification task or a detection task. Specification of a parametrized de-
tection cost function is another example.
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Feature Domain Optimization: Reduction of a large feature space can potentially improve
the classification performance. This column summarizes all systems implementing one
or more automated methods for feature space optimization, such as PCA.

Incremental: Being able to supply a result incrementally with increasing expected accuracy
is an important requirement in some domains, such as automotive applications. Many
systems can only work on full turns, i.e. they need to wait until an “end-of-speech”
signal is given. The systems given a check mark in this category are reported to work
in incremental manner. Systems for which the information is not given are expected to
not offer this functionality.

Real-time: This category is used to denote systems satisfying the high-performance demands
of on-line domains. More precisely, implementations for which the computation perfor-
mance is no worse than real-time on desktop hardware, will meet the criterion, while
those with lower performance or systems for which no performance information is re-

ported fail this criterion.

Resource-adaptive: If the system provides an implementation that enables its optimal use
on a wide range of platforms, such as large servers but also embedded platforms, by
respecting the resources that are available on the platform, it passes this criterion. This
is related to the scalability of the approach.

It should be pointed out that these criteria are aligned to the research questions of this
thesis. This is in no way supposed to narrow the contributions of these related studies in other
areas not covered by this scheme. Also, the scheme is not intended as a direct benchmark
using a single metric, which — apart from being very dependent on the one metric — would
not have been possible due to the different specifications (e.g. classes, data) underlying the
systems.

A study of these tables reveals that there are some aspects which are rare or not present
in other work. Most noteworthy, many of the contributions neither build hypotheses on how
the aging process is supposed to affect the features they are using, nor do they seek to find or
confirm such relationships in their data. Also, there are only few contributions that perform a
systematic iterative exploration of a multi-parameter space. Some studies do present results
on certain parameters, but combining these findings with other studies is hardly possible
because of the different specifications. Judging parameters against each other requires a
single set-up in which all other conditions remain fixed. Instead of such a “deep” evaluation
(i.e. the investigation of many different settings), the “broad” path (i.e. the fusion of rather
different methods) is more popular in literature. One conclusion that we can draw from the
entirety of challenge submissions is that the fusion of several systems nearly always prevails
in terms of classification performance. This is to be expected, but it actually encourages
our strategy to not exclusively follow the optimization of the global maximum, but to tackle
the problem of optimizing a single system through thorough research and experimentation,
independently from the meta layer.
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System Procedure Design Aspects of the solution positively influencing...
...Classification Performance ...Processing Performance

Incremental

Bottom-up Argument

Experimental Parameter Space Exploration
Best Practices Evaluation (e.g. one-shot)
Identification and Detection Task

Clean and Transparent Data Selection
Frame-based Features

Long-term Features / Fusion

Generative + Discriminative Classification
Training Focus on Discriminative Aspects
Background vs. Utterance GMM Weighting
Source Domain Optimization

Score Domain Optimization

Feature Domain Optimization
Resource-adaptive (embedded, scalable)

Minematsu et al. (2003) ~ X X X X|v X X - - ~ X X X X X
Miiller (2005) &AG |V X X X X[ X V X - -— X X = X X ~
Metze et al. (2007) - A w"AIG | X X VO X ~ |V X S - - 2 X J| X X X
Metze et al. (2007) - B wAG |~ X VX ~ X VvV X - - X X X X X X
Metze et al. (2007) - C w"AG | X X /X ~ |/ X X - - 7?7 X X| X X X
Metze et al. (2007) - D wAG | X X VX ~ |V /X - - XX XX X X
Bocklet et al. (2008) wAG | X~ X X ?2 |V X V X X X X X X X X
Sedaaghi (2009) 2A+2G6 | X X X X X | X V X —-— — X X X X X X
Schuller et al. (2010) MA+NG| X X S X ~ | X VS X - - X X X X X X
Bocklet et al. (2010) KA+NG| ~ X S X ~ |V S L X X v X X X X
Gajsek et al. (2010) 3xG X X v x ~|\v x v ?2 v J X X X X X
Kockmann et al. (2010) wA+XG| X X /X X |V V VO X X V V V| X X X
Lietal. (2010) wAlG | X X VO OX ~ |V Vv V V ~ J ~ X X X
Lingenfelser et al. (2010) xAIG | X X v X ~ | X V X - - - S S X X =
Meinedo et al. (2010) wA+G | X X L X ~ |V S S - - S /X X X X
Nguyen et al. (2010) MA+XG| X X S X ~ | X vV X - - - X X X X X
Porat et al. (2010) axA X X x x ~|v X Vv - - J X X X X X
Mendoza et al. (2010) 3xA voXxX X x x| Xx v X -— - X X JV| X X X
Wada et al. (2010) Aregress.| X X X X V|V X Vv X X X X X X X X
Feld (2011) waG |V S N Y S S v v
Key V4 Feature is present / requirement satisfied
~ Requirement is partially satisfied
X Feature is not present / requirement not satisfied
? Feature cannot be confirmed (absence not reasonable to assume)
—-— Not applicable (depends on another criterion)

Table 3.2: Feature comparison of related approaches in the area of age and gender classifica-
tion. Metze et al. (2007) A — D refers to systems A, B, C, and D presented in the
paper. In the Classes column, A refers to age classes, G to gender classes, and
A /G to combined classes as used in FRrIsC. In the cases where three gender classes
are used, Children are counted as their own class.
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Apart from the challenge contributions, rigorous evaluations and accurate data selection
are also surprisingly rare, which questions the whole result of these studies. Bad source data
(heterogeneous or unbalanced) are among the most common problems, closely followed by
overlapping data sets (tuning on the evaluation set) and per-speaker evaluations. Looking
at the design aspects, it is also easy to see that virtually no other system explores all the
different areas of design and optimization within a single system. Especially the feature
selection seems to be an under-investigated area.

Finally, the most obvious deficit of the other systems is their non-consideration of processing
performance related aspects. It is not realistic to believe that the selection of a system only
depends on its recognition performance. Its cost and flexibility, to which these runtime criteria
are immediately related, are qualities of an approach at least as important. For instance, it
cannot be confirmed that any of the previous systems can work incrementally and in real-
time. Algorithm restrictions and complexity boundaries may prevent such an approach to
scale accordingly if an on-line application with fast response time requirements demands it.
The absence of these last aspects does not diminish the contribution of these other systems,
it rather points out an area where little progress has been made yet, and which is one of
the main areas where this thesis delivers results. Overall, the work at hand provides a more
complete view of the classification task than most other systems.

As the last row in Table 3.2 indicates, this work clearly attempts to resolve a number
of the issues left open by previous work in order to make progress in the overall goal of
bringing forward Speaker Classification research, or more precisely the challenges formulated
in Section 1.2.
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Figure 4.1: Concepts (blue) and methods (orange) that are the foundation of FRISC.

The FRISC approach is built on several main pillars, which refers to both the concepts used
to construct the system, as well as the methodology, these concepts are based upon and which
affect the way how the system is assembled. Figure 4.1 portrays these building blocks that
compose the system as a whole, graphically indicating their relationship. The basic methods
(the orange blocks in the figure) were already introduced in Section 3.5. This chapter focuses
on the results of the application of these methods, which are the FRISC system design and
the experimental investigation of parameters and other aspects.

The AGENDER approach was presented extensively in Miiller (2005) and performed re-
spectably well considering its novelty. However, it focuses on a single class of features, namely
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long-term (or global) features, such as pitch, jitter and shimmer, which are determined over a
whole utterance of arbitrary (though typically short) length. Recent progress in speech-based
classification and established concepts of speech recognition serve as a motivation to return to
the feature selection step and broaden our view into a different direction than before. That
direction is frame-based features, which makes up the first pillar of the FRisC approach.
These features are computed in much smaller, fixed intervals, which means that they carry
more information and their number is not constant. In consequence, the procedure used for
long-term features is not applicable anymore, hence some other way of processing was im-
plemented: the GMM-SVM-supervector approach. The name of this method already implies
the choice of two specific pattern recognition methods, which are a Gaussian mixture model
for frame-based features and a support vector machine for global features. The shift to a
GMM-SVM concept is another part of the foundation of FRrRisc. In its default configuration,
it also reduces the complexity of the classification and post-processing layer, thereby favoring
parameter optimization over model selection.

The third major concept introduced is the filtering of frames and supervector features.
The common idea behind filtering is that in machine learning, additional information can
sometimes degrade the performance of the learning algorithm, by introducing artifacts which
blur decision boundaries or, conversely, favor overfitting. Filtering out frames with low energy
levels, i.e. silence frames, which are supposed to contribute little information to the decision,
is one example. Another example is the high-dimensional supervector. With tens of thousands
of features, it is beyond any option for manual analysis, yet it is hypothesized that not all of
the GMM-derived features are actually meaningful.

The fourth pillar is the optimization of classifier performance on the score level, which is
also a type of meta-classification. A classifier that makes a decision can usually be tuned to
be biased more towards the one or other decision (see Section 2.5.7), resulting in different
performance metrics. The native, unaltered output of the classifier, can sometimes already
be the desired optimum in a two-class (binary) classification scenario, but very often, it is
not. Sometimes, the native classifier scores are not meaningful or do not represent a decision
at all — it is up to the application to interpret the value range in terms of an actual decision.
And even if they are, it may be necessary to adjust them to favor misses over false alarms
or vice versa. In the multi-class case such as the age and gender recognition, we face an
additional complexity by distinguishing between identification and detection performance,
which are two sometimes mutually exclusive goals that can be optimized for separately.

Finally, the runtime considerations of the system complete the list of major FRISC concepts.
While this aspect does not transfer into a single concept, it is rather an endeavor propagated
into the design of the other concepts. It means, for example, that the selected algorithms
have to allow incremental processing of audio data, which is not true for some algorithms
such as cepstral mean subtraction. For the main part however, the idea manifests itself in the
development platform and the build process used to compile the actual classification modules
to be efficient and resource-adaptive (see Chapter 5).

In the following sections, the complete FRISC scheme is explained in detail.
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4.1.1 Task Description

The motivation behind this work, the driving force for dealing with and improving Speaker
Classification, has been stated in the previous chapters. It envisions many possible applica-
tions for the technology in various domains. Despite this variety, the classification technology
developed in this work has emerged from a concrete task in a specific project. The goal of
this project was to enable the use age and gender recognition for applications in call centers.
This task is basically an advancement of the task that was promoted by AGENDER, but some
details, such as class definitions and the available data, have changed. The task obviously
has a strong influence on the specifications of the classes, suitability of data, performance
metrics, runtime properties, certain parameter configurations, etc., which has to be taken
into account when considering different application areas.

The fundamental goal remains the estimation of the age and gender of speakers. For age, a
set of four classes has been chosen. This number seems reasonable with respect to the initial
results that were obtained in this range. However, contrary to Miiller (2005), the classes were
not motivated by the feature data and the biological relationships that manifest themselves
within, but by the requirements of the application. In other words, the age boundaries have
been placed where it is interesting to know the class membership, but not necessarily where
it is easy to determine. Such externally imposed restrictions, which are rather pragmatically
than scientifically motivated, are common in industry projects. One effect is that it most
certainly makes the task more difficult. A positive effect is that the outcome is usually more
useful in practice, e.g. for personalization of in-car services. In our case, we distinguish
Children (speakers under 15 years), Young people (speakers between 15 and 24 years), Adults
(speakers between 25 and 54 years), and Seniors (speakers over 54 years). It can be assumed
that these age boundaries reflect market research that shows for example an interest into a
similar range of products among the members of a class.!. For gender, we distinguish between
male and female for all classes except for children, because their voices do not yield sufficient
features to guarantee at least a minimal accuracy above chance level (see Miiller (2005) for
literature or Metze et al. (2007) for empirical evidence for human raters).

The resulting set of seven classes is listed in Table 4.1. For comparison, the age boundaries
from AGENDER are shown as well. Within this thesis, classes are commonly abbreviated
using the two-letter notation, using one capital letter for the age and a second small letter
for the gender, e.g. Sf denotes Senior female.

The main corpus used to train and evaluate this system is called SpeechDat-II. This corpus
is rather new and was not available for the AGENDER experiments. It was provided as part of
the task and shares many characteristics with the intended target environment. It contains
the voices of 954 German speakers, each taking part in 18 turns of up to six sessions. Each
speaker called in to an automatic recording system, where they had to speak some text.

'Because the distribution of ages still remotely resembles the original classes, the names of the age groups
were kept, even though they are no longer accurately describe their members. In case of the class between
Children and Adults, the term Young was preferred over the also occasionally used Teenagers
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Class Ages (AGENDER) Ages (FRISC)
Children (C) <13 <15
Young female (Yf) Young male (Ym) 13-19 15-24
Adults female (Af) Adults male (Am) 20—-64 25-54
Seniors female (Sf) Seniors male (Sm) > 64 >54
Table 4.1: The seven-class scheme used in FRISC. Due to the (acoustic) gender-

indiscriminability of children before puberty, children form a single class. The
age boundaries used in AGENDER (Miiller; 2005), where female and male children
are separate classes (Cf and Cm), are presented for reference.

The data consists of an altered version of the original SpeechDat text material, containing
short fixed and free text typical for automated call centers, including single-word commands,
digits, and full sentences. The audio was recorded over cell phones and landline connections in
8000 Hz, 16 bit mono format. By looking at the digital signals, the recording quality seems
to be on the upper end of the scale within these specifications. The selection of speakers
is approximately evenly distributed over the seven target classes, with children also being
balanced for gender. A typical utterance is about 2 seconds in length, but there are also
some utterances between 3 and 6 seconds. In total, the corpus consists of 47 hours of speech.
90% of the speakers were provided with labels for training and testing, the remaining 10%
were only disclosed in unlabeled form before the “one-shot” evaluation.

When dealing with multilingual aspects in Section 4.5, another more specialized corpus
named Lwazi will be introduced. This will however not be relevant outside of the aforemen-
tioned section.

There are other general corpora available containing speech samples with age and genders
annotated. Examples are the well-known TIMIT corpus (Garofolo et al., 1998), GlobalPhone
(Schultz & Waibel, 2001), and BAS (Schiel, 1998). However, all of these corpora are inferior
to SpeechDat-1I in several respects: Some of them do not contain the full range of required
speakers (ages), or they are unevenly balanced, so that certain classes cannot be examined
due to sparseness issues. Merging several corpora into one would be a theoretic option, but
it bears the risk of introducing undesired artifacts that will cause corpus features to overlay
the actual age/gender features, as a result of differences in recording hardware, environment,
situation, and post-processing. In addition, quality can also be an issue: On the one hand,
the recording format of these older corpora is not always on par with today’s standards, which
manifests itself in a higher amount of static noise, varying loudness, or a dynamic DC offset.
On the other hand, natural background and channel noise may be missing if the recording
was made in a “sterile” studio environment (e.g. in case of TIMIT), so the quality could even
be too high in this regard, i.e. not resemble realistic conditions.
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4.1.2 Data Sets

Choosing appropriate data sets is almost as important as having suitable data in first place.
The following factors determine the selection of data sets from the whole corpus:

Processing Stages For each stage in the process that works with source data, it must be
determined if an existing data set should be re-used or if a new data-set is needed.
One case in which a new set should be chosen is when a classification meta layer is
introduced, e.g. when optimization (tuning) takes place. A set re-use would correspond
to 100% overlap, which leads to the next factor.

Overlap/Disjunctiveness Where data independence is required, an overlap of data must be
avoided. There are several degrees to which this concept can be applied. For the Frisc
experiments, we distinguish three cases: (1) Non-disjunctive: Any overlap is allowed.
(2) Sample-disjunctive: Samples used in one set cannot occur in the other set. (3)
Speaker-disjunctive: If a set contains one or more samples from a given speaker, no

other samples from that same speaker can occur in the other set.

Volume The amount of data in each set must be chosen cautiously. In general, the more
data we include in a set, the better the results. In most cases, data selected for one set
cannot be re-used in another data set (see above). Enlarging one set will automatically
shrink all other sets, so the sets will “compete” with each other for data. Hence, it has
to be considered where data will have the most beneficial effect, and what the minimal
size for each set has to be in order to function.

Balance No target class should be over-represented. The amount of material should be
approximately equal for all classes and groups. Any bias introduced in the classes can
cause a bias of the resulting classifier. Even if such a bias is desired, for instance due
to different prior probabilities, controlling it through data selection is less transparent
than adjustment of the probabilistic component of the model.

Variance The data has to contain all relevant cases with respect to variables that are or-
thogonal to the class-dependent effects, i.e. represent an adequately large variation of
features. For example, if we choose our training set only from speakers from one geo-
graphic region, but apply the classifier to data from different regions, we might see a
decreased performance due to missing regional variance in the data.

Reproducibility In multiple stages of the data selection process where an automated selection
of items occurs, the items are selected randomly in order not to prefer some pattern or to
adapt to structures from the original data. This random selection should however work
in a way that identical parameters produce identical sets, in order to make evaluation
runs more comparable. This is also called the “randomly but not arbitrarily” guideline.
It can for instance be achieved by initializing random number generation algorithms
with a constant so-called seed value.
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Table 4.2 lists the five data sets that have been created for the different stages in the
FRISC experimental set-up. The universal background model training set (ubm), as the name
suggests, is used to train the UBM. It contains a class-balanced selection of speakers, with
roughly the same amount of material per speaker, even though the model blends everything
into just a single class. In total, 36% of the corpus or 40% of the labeled data have been
exploited for this set. The training set (¢rain) is the set on which the training of the SVM
is performed after MAP adaptation of the UBM. In the final configuration, it is equal to
the ubm set. Early experiments have shown that the amount of data for ubm and train is
more cruicial than their disjunctiveness. The latter property is not critical in case of these
two sets because they do not build on each other in terms of decision making. In fact it is
quite common to use “as much as possible” material for a UBM (although it is still strongly
discouraged to use material on which numbers are reported). The first development test set
(test1) is applied in the score optimization process of the SVM. Using this data, the untuned
SVM is evaluated and the optimal decision threshold is obtained with respect to error or
accuracy. The set comprises 27% of the corpus (30% of labeled data) and is balanced by
speakers per target class and again by frames per speaker (the latter is done on the basis of
an approximation). The second development test set (test2) is what most numbers in the
main experiment series are reported on. Technically, it is another test set because the series
itself is an optimization process, this time in terms of various global parameter configurations.
It has the same size and balancing applied as testl. The evaluation set (eval) consists of 10%
of the corpus balanced by class. It represents a special case, because its labels were never
available to the author at any time, and its unlabeled data not until after the experimentation
phase of the project was complete. This strict separation is a core concept of the NIST “one-
shot” evaluation paradigm, and it ensures that no unorthodox tuning of scores is performed
on the evaluation set, which was maintained safely by a third party. This is also why most
figures presented in this thesis do not show data from the ewval set, but rather from test2.
Further technical details on the balancing of speech material are provided in Section 5.5.3.

4.1.3 Overview of the GMM-SVM-Supervector Concept

The GMM-SVM supervector approach was adopted from speaker verification (Kharroubi,
Petrovska-Delacretaz, & Chollet, 2001; Campbell, Sturim, Reynolds, & Solomonoff, 2006) and
first applied to the problem of speaker age recognition by Bocklet et al. (2008). It combines
the strengths of the generative Gaussian mixture model adapted from a universal background
model (GMM-UBM) and the discriminative power of a support vector machine as margin-
maximizing discriminative method. It is particularly the MFCC-based features that seem to
be much more fruitful when presented with this combination of algorithms. The GMM-UBM
was already quite successful as a classification method in speaker recognition, but its strong
dependency on a probabilistic model seems to prevent it from achieving maximum accuracy
for MFCCs. On the other hand, the raw MFCC coeflicients could not be successfully employed
in SVMs directly as they are too undescriptive. One could say that the GMM can successfully
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Name Description Share

ubm Training material for the universal 36%
background model.

train Material used to train the SVM based on the 36%
utterance-specific adaptation of the UBM.

Share (graphically)

® train/ ubm

testl Material used for score-level optimization of  27% " testd
the SVM. test2

test2 Data set on which the results of the 27% u eval
parameter space exploration are reported.

eval Unlabeled, "one-shot" evaluation set. 10%

Table 4.2: Data sets which are used in the FRISC system, including the amount of corpus
data they consist of in the main experiment series. Percentages are given relative
to the whole corpus. Data is overlapping for the ubm and train sets.

reduce the structural complexity of the problem at the cost of increased dimensionality, while
the SVM is good at solving the high-dimensional but structurally simpler problem.

Figure 4.2 depicts the general procedure. On a background data set, which contains data
from all target classes’, a GMM called the universal background model (UBM) is trained
with the frame-based features. This GMM is not very useful as a classifier by itself, it is
merely a model of the feature space for the whole (open or closed) world. The number of
mixtures has to be set to accommodate the complexity of the feature space and the number
of available frames. For each input utterance, another GMM is trained with the same features
and the same number of mixtures. It is created by modifying the mixtures of the background
model according to the data present in the frames for the current input utterance (MAP
adaptation). The newly created GMM contains thus a portion of the background model and
a portion of the utterance model. (Instead of utterances, another boundary can be chosen,
such as speakers or even target classes, but this is a less realistic unit for evaluation and
also requires more evaluation data. On the other hand, in a real-time scenario, there is
no conceptual requirement to collect data from a complete turn or utterance.) Again, the
utterance-specific GMMs are not evaluated at any time; instead, their means and optionally
variances are the components that make up the feature vector of the next classification layer.
This vector is created by simply stacking together the means of all Gaussians for all features in
a fixed order, so that the vector, also called supervector, according to the way it is composed,
has a size of n x m (n = number of Gaussians, m = number of features). Consequently,
there will be one supervector for each of the original voice samples. With the vectors, a SVM
is trained, which uses the original target classes as labels (which correspond to the label of
the utterance that produced the vector, see Figure 2.20 on page 63). As originally, a SVM
is a dichotomizer, some technique must be applied to enable discrimination between more
than two classes. Testing a speech sample then works as follows: After the same frame-based

2for open-world setups even from classes that are not included in the target scheme
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Figure 4.2: General concept of the GMM-SVM supervector approach. In step 1, the GMMs
are trained for UBM (la) and individual utterances (1b). In step 2, vectors for
SVM training are generated from the utterance-based GMMs.

features are extracted from the sample as during the training case, a single GMM is MAP-
adapted in equal manner as before. The supervector is constructed by stacking together the
means/variances, and it is classified with the SVM. The SVM result corresponds to the final
class assignment of the input sample.

Figure 4.3 illustrates the FRisc-specific adoption of the GMM-SVM supervector concept,
including where the different data sets come into play and also including the linking parts.
By and large, it adheres to the description given for the general case. The frame-based
features, i.e. the MFCCs, are extracted directly from all audio files in the corpus. The result
is a feature table containing all frames from the corpus. Certain frames with little or no
speech are removed from this table (see Section 4.1.5). Afterwards, the various data sets
are created by partitioning the labeled data according to the volume and balancing rules as
specified earlier. The UBM is trained from all frames in the ubm set. For all other data sets,
the utterance GMMs are generated by MAP-adapting the UBM using the frames belonging
to an utterance in the corresponding sets. All utterance GMMSs are exported to vectors of
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stacked means, which are stored intermediately in mean vector feature tables, with each row
corresponding to one utterance. The SVM is trained on the feature table from the train
set. Additionally, the vectors in this set are saved to perform normalization later on. The
supervectors in the test! and test2 set are rank-normalized prior to being classified by the
SVM. The scores from the test! set are used in conjunction with the known truth for score
optimization (see Section 4.1.7). Finally, score optimization is applied to the scores in test2,
which are also the scores used to compute the performance metrics such as accuracy and
error rates. The procedure for the eval set is mostly identical to that for test2, merely the
collection of statistics is performed separately.

4.1.4 Frame-Based Features vs. Global Features

Voice features can change very radically in even small periods of time. This is how words
are produced by the speech apparatus. At the same time, other voice characteristics are
preserved and change only slowly over time. In other words, different time intervals expose
different attributes. If our intention is to recognize linguistic information, i.e. phonemes or
words, small time intervals will have to be used to capture these phenomena. If we are rather
interested in paralinguistic information such as speaker properties, long segments should also
be considered. The left side of Figure 4.4 illustrates the extraction of the long-term features
on the example of the mean pitch. From the raw waveform data, a pitch contour is computed,
which describes points where a clear frequency was detected. The mean pitch, which is the
value used in the final feature vector, is indicated by the blue line in the chart, and is simply
an aggregate over time. In Miiller (2005), only the long-term features were considered. The
features that were found to contain age and gender information, such as the averages of pitch,
jitter and shimmer, are indeed measured over longer periods of time. The empirical results
confirm this observation. At the same time, there is sufficient evidence (see Section 2.1.3) to
believe that short-term features can also tell us much about the speaker — if not more, as they
are also considering dynamic speaker-specific aspects. Nevertheless, trying to do a frame-wise
evaluation of features such as pitch sounds far less promising, since the discrete observations
are dominated by the linguistic and functional (e.g. declarative vs. interrogative) contents of
the message as opposed to the speaker. Additionally, they are only defined in voiced parts of
the waveform (see the pitch contour in Figure 4.4).

Speaking of long-term as “global” features emphasizes the fact that some sort of aggregation
over larger segments — typically “whole utterances” or turns — occurs. Yet, an utterance can be
long or short, so they could theoretically convey short-term information as well. It is rather
a common understanding that utterances will be composed of full words or sentences and
generally are in the multi-seconds range or above. Shriberg (2007) also uses the term higher-
level features, and defines them as features computed on more than a single frame. The
foundation for global features can still be frame-based information. Common aggregation
methods (sometimes called functionals) are the arithmetical mean, minimum, maximum,
standard deviation, median, n-percent quantile, or average slope. Because global features
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Figure 4.3: Overview of the GMM-SVM supervector approach as implemented for FRIsc.
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depend on the length of the sample on which they are computed, not all features can be
handled in this way, and not all sample lengths should be considered for each feature, since
that introduces high variation, or prevents a meaningful feature value to be computed at all.

Global Features Frame-based Features
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Figure 4.4: Extraction of long-term (average pitch) and short-term (MFCC coefficients) fea-
tures on an utterance of approximately six seconds.

In frame-based processing, each frame represents one or more features computed on a small
segment (also called window) of particular location and length. As can be seen on the right
side of Figure 4.4, the original waveform is split up in windows of equal size (window size or
frame length). Formally, the term “frame-based” does not imply a certain length, so choosing
a frame length of several seconds would rather expose the long-term features (although it
would not have a good exploitation rate of the available material and would not work at all
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for short utterances). In the context of this work, and in many other papers in the speech
community as well, frames are based on windows in the milliseconds-range. In the depicted
example, the windows are exactly adjacent, which means that the step width (or interval
length) is equal to the frame length. This needs not be the case; in practice, overlapping
windows (i.e. the step width is smaller than the frame length) are used quite often to smooth
the sampling effects. The opposite can be beneficial to avoid the number of frames growing
too large. Finally, a window function is applied to reduce artifacts at the edges of the
window. There are a number of common window functions optimized for different purposes
(e.g. Hanning, Hamming, Gauss, Blackman, etc.). For the MFCC extraction is FRIsc, a
Hamming window was applied. MFCCs are based on the time-sensitive frequency domain
of the utterance, which corresponds to the spectrogram visualization in Figure 4.4. (Note
that the similarities between the spectrogram and the pitch contour are not coincidence; they
both model aspects of the frequency domain.) Even if the illustration portrays a small frame
width, the information is already sampled into frames. From each frame, multiple MFCC
coefficients (the final features) are then derived. The short-term features evaluated for FRISC,
such as MFCC coefficients, do not aid in the pattern recognition process when averaged over
whole utterances, since they lack any interpretation when used in a long-term context, even
though it would be technically possible to do so. Enhanced with the GMM on a per-frame
basis to cover a wider feature space however they are very useful, even though the means
vector in the end also represents some aggregation.

From the perspective of the implementation of feature extraction, there is not a big differ-
ence between frame-based and global features. A global feature can be extracted in the same
way as if a single frame of the size of the whole utterance was used, or it can be an aggregate
value over several frames. The main difference, apart from their information contents, lies
in the way the learning algorithms deal with the extracted features. With global features,
we know already in advance that exactly a single value for each feature will be computed
for every input sample. Even when some values are “missing” for a concrete sample, they
can be substituted by a placeholder, and the overall number and ordering of features re-
mains unchanged. This is a basic requirement of most pattern recognition approaches. In
the frame-based case, the number of features for one input sample corresponds to the number
of features per frame times the number of frames in the input sample. This means that not
only can the feature vector for a single utterance become very large, but it also loses a fixed
structure when dealing with voice segments of variable length. One way to deal with this
is to use only subsegments of a fixed length, but that has the major disadvantage of disre-
garding a large amount of potentially useful information. Another option would be to apply
dynamic time warping (Sakoe & Chiba, 1978) to map the features to a fixed-size vector, but
that would result in a loss of any temporal information and is not necessarily the best way of
dealing with speech frames. The GMM-SVM supervector approach chosen for FrRISC makes
use of the third option, which is the utilization of meta-learning techniques to separate the
frame-wise classification from the utterance-wise processing.

There is another practical advantage of frame-based processing. Global features require
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Feature Main Experiment Series Fusion Experiment Corpus Analysis
MFCC frame-based .

MFCC Deltas frame-based °

Pitch global °

Jitter global °

Shimmer global °

Intensity global °

Formants F1-F4 global °

Table 4.3: Summary of features used in one or multiple of the experiments in this work. The
features are described in Section 2.4.4.

boundaries to be specified for each utterance, and which cannot be simply guessed because
they cover a long time span. Frames on the other hand are always extracted in fixed in-
tervals, so the duration of an utterance does not have to be known. Moreover, assuming
the appropriate algorithms are used, classifying frames can theoretically start immediately
(or one window length) after the first data arrives, and then incrementally refine the result
with every frame. This enables the use of frame-based classification in situations that need
immediate response, a property that global features cannot offer.

From a machine learning perspective, the ultimate goal should be to combine both frame-
based and global features in a single classifier using fusion and meta-learning methods. While
this has also been done, the focus of this work will be indeed on the aspects of the frame-based
features, because of the exhaustive research on long-term features in prior work.

Table 4.3 lists all feature families that were considered for FRisc, including the long-term
features. The latter, although not focus of this work, are still relevant for some sections of
this thesis. In Section 4.5, they are used as part of a corpus analysis study, something for
which they are very suitable because of their strong interpretability. In Section 4.4, they
have been used in a combination system consisting of both short and long term features. A
description of the features can be reviewed in Section 2.4.4.

In Frisc, all MFCC features were extracted using the Hidden Markov Model Toolkit
(HTK). More precisely, the MFCCs are computed using the utility HCopy and parsed us-
ing the utility HList provided in the toolkit. A description of the process can be found in
Young et al. (1999, ch. 5.2). In the configuration used, HCopy initially applies a first order
pre-emphasis coefficient of 0.97, which modifies the raw signal according to the formula

sl =8, —0.97 8,1

Afterwards, the following Hamming window function performs smoothing at the edges of
the signal:

2w(n —1)
o= {051 046 cos (T )
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Energy normalization and DC offset removal on the source signal are disabled in HTK to
allow incremental (on-line) processing of audio. HCopy then employs a fast Fourier transfor-
mation to derive the MFCC from the logarithmic spectral analysis. It does so by applying
a filter bank with a certain number of channels (usually 20). Again, due to its restriction to
off-line data, cepstral mean normalization is not applied in FRIScC.

4.1.5 Silence Filtering

The input features that are obtained from an utterance are computed for every frame initially,
with the number of frames being in a constant ratio to the length of the utterance. Therefore,
the MFCC features are also computed in the same way on those parts of the sample that
contain only little or no voice at all. Figure 4.5 illustrates this. Regions without speech
are called silence regions. Frames with less than a certain amount of speech fall into these
regions as well. It appears obvious that the task of classifying a speaker cannot be improved
by the information from frames that contain no voice from that speaker at all. Including
these frames anyway adds complexity to the decision problem and bears the risk of reducing
the classification performance. The purpose of frame filtering is to remove all frames with
a silence “level” above a certain threshold Tg;jence. There are also frames based on windows
that only partially contain silence. It is difficult to hypothesize on the effect of silence in these
cases, especially with respect to the threshold of when frames are filtered out. Our hypothesis
is that with increasing threshold x for silence filtering, i.e. with more frames being removed,
the result will first improve (due to more interference eliminated) and at some maximum
start to degrade again (due to more useful information also removed). The question to be
answered experimentally is which threshold T;enee to choose.

This is not the only question. In fact the problem of finding a threshold Ti;jepce of silence vs.
speech in a frame is underspecified because there is no universal idea of what “silence” means.
There exist several definitions though, which employ power thresholds, signal-to-noise ratio
(A. Davis, Nordholm, & Togneri, 2006), or spectral energy (e.g. the G.729 standard). To
avoid introducing further parametrized methods, a simple metric based on the amplitude of
the signal was chosen: A frame is considered a silent frame if the average absolute amplitude

of the signal is below a certain threshold T’ This metric is not robust enough for

silence*
scenarios where a high recall is desired, but it reflects a compromise between complexity and

soundness. In the experiments, 77 was rarely specified explicitly, since it is not easy to

ilence

interpret. Instead, the threshold 77, .. specifying the percentage of frames to filter out was

employed. Determining the threshold 77

vilence 15 then a three-phase process: In the first phase,
the energy metric is computed for each frame in the corpus. Then, the values are sorted and

"
silence

% qantile).
were removed.

the one is picked so that percent of frames are smaller (i.e. the

"
silence

Finally, during the experiment, all frames below this threshold 7., ..
Following a similar argument, noise is an interference factor that should be removed by
eliminating frames that contain more than a certain amount of noise. Unlike silence, noise

is not exclusively occurring interchangeably with speech, i.e. detected on the time line, but
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Silent Frame

Partially Silent Frames

Candidates for filtering x

Figure 4.5: Using silence filtering, frames with less than T;jence percent of speech are consid-
ered silence and removed.

concurrently, so it can also overlap speech regions. Removing noise by filtering frames would
be possible, but there is a higher risk of filtering either too many frames or none at all.
Especially in the automotive domain, there are different levels of background noise from
the wheels, engine, and other mechanical parts to expected depending on the velocity and
road surface. Literature suggests that noisy conditions are generally dealt with using pre-
processing methods such as frequency band filters or advanced noise suppression techniques.
Researching the effect of noise is a special topic in all areas of speech research, and a lot of
literature can be found on it. However, it was not found a pressing issue more relevant for
Frisc than for these other areas, so it is not considered for these experiments. In addition,
the main research corpus did not exhibit a notable amount of noise, so that only artificial noise
would have been an option. It should be noted that the architecture can flexibly integrate
upstream noise filtering methods if available.

4.1.6 Feature Domain Optimization

The feature space of the GMM supervector is a high-dimensional one, and this leads to the
question in how far all of the features in it are helpful for our task. This general question has
also been sighted in other work before (Porat et al., 2010). In fact it is at least difficult if
not impossible to make an educated statement about an individual feature such as “the mean
of the 5th MFCC delta coefficient in the 43rd Gaussian”, without solely relying on pattern
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recognition results. In particular, there is no way of knowing what the 43rd Gaussian models
without looking at the internals of the training process, e.g. the distribution of values. We
may assume that many of the MFCC-based features carry speaker-related information, but
at the same time, it seems equally likely that not all of them do. It is well-known that,
depending on the pattern recognition scheme used, features that do not carry information
that is correlated to the target class in any way, can degrade the result of the learning process,
either due to non-exhaustive learning or due to artifacts in the training or test data. Hence,
only an algorithm considering all degrees of contributions of all subsets of features separately
would have a chance of finding and filtering out those nuisance or noisy features. In practice,
this rarely happens due to the computational infeasibility. For instance, the GMM learning
process begins with a more or less pseudo-random initialization of Gaussians, which assumes
equal importance of all features, and then applies the EM algorithm with a fixed number of
iterations. Unless there is strong contrary evidence in the data, the feature present in the
final model to some degree even after the last EM iteration.

Not only features with a negative impact on classification performance, but also features
with a low positive impact can be nuisance attributes. Every feature that is respected in
the decision process is also a possible sources of errors, due to the uncertainties with respect
to the classification problem itself (i.e. not all candidates exhibiting the same behavior for
a feature), due to the unreliabilities associated with the computation of the feature, and
the determination of its impact. Each such feature also adds complexity to the decision
boundaries of the classifier, easily resulting in overfitting if the number of features with a low
relative importance is too high, thereby decreasing the efficiency of the classifier. In addition,
some algorithms work in a way that limits the total number of respected features, e.g. a
decision tree that is pruned one or more times during the training, as it would otherwise
result in unreasonable complexity and training duration. Similar to the GMM example from
the previous paragraph, the pruning is also merely an approximation, and in some adverse
constellations, the inclusion of further weak features can result in a removal of other actually
stronger features. For these reasons, weak features are also unwanted features to some degree.
This includes groups of features with a high correlation, i.e. containing almost the same
information.

How can nuisance features be detected and removed? Obviously, each classification algo-
rithm already has its own means for determining the importance of input features (even if
it merely states that all features have equal impact). Any additional mechanics for nuisance
attribute handling must occur independently from the training prior to the SVM training
process on the supervector data. Once the nuisance attributes are identified, the correspond-
ing features need to be consistently removed from all instances before they are forwarded to
the SVM, so the SVM will never see those features.

In more general terms, at this point we are dealing with a problem of feature selection
(also known by the terms feature (space) reduction, feature filtering, or feature domain opti-
mization). There are two basic ways of nuisance attribute detection: heuristical and through
optimization on a test set. The main difference is that the heuristic approach does not need
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to apply the downstream classifier to measure actual impact of a feature set; it merely applies
a heuristic to the feature selection that is supposed to improve the classification result as well.
This can be considerably faster and becomes more suitable the larger the feature space grows
and the lengthier the classifier training process gets. In some scenarios, it is the only practical
option, even though it is typically less accurate (although a good heuristic can work better
than an exact measurement if the number of samples is small).

One of the simple yet commonly used methods for feature selection is principal component
analysis (PCA). Having been introduced at the beginning of last century, the method is
quite mature and has been applied successfully in many different pattern recognition tasks.
Some methods particularly related to the reduction of age-related supervector features have
been collected by Dobry, Hecht, Avigal, and Zigel (2009). The topic is also closely related
to nuisance variability compensation (NVC), a term which is used most often in conjunction
with attempts to compensate nuisance features or feature modifications that are caused by the
channel (such as noise, distortion, or frequency suppression introduced by mobile carriers).

The methods mentioned fall into the second category of feature selection methods, which
means that they function in an optimizing manner and work best when run in conjunction
with the classifier. For the FrRISC dataset and feature space, they were not considered because
even a few iterations would have consumed too much time. Instead, a heuristic method
was needed. Our solution was to use the statistical variance ratio. It is based on a simple
hypothesis: For every feature, the greater the variance of the feature’s values across the target
classes is versus its variance of values within a class, the more suitable it is as a discriminator
for this class. What makes this a heuristic (as opposed to a rule) is, among other things, that
the variance is neither the only nor a truly reliable characteristic that determines whether
the feature is suitable as a decision criterion, but it is often a good indicator. To formalize
this hypothesis, the average variance within any target class (vary;) for a feature f and class
c is defined as

e
vary;(f,c) = .
b ; linst.|

where inst. is the set of instances in class ¢, while the variance across target classes (vargc)
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is defined as
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Finally, the variance ratio R is defined as
varae(f)
R = —
(f:e) vary(f, c)

If vary; and var,. are equal, the ratio is 1. The ratio can become larger or smaller than 1 if
the balance shifts in the corresponding direction. With the between-classes variance growing
larger than the within-class variance, so is the ratio R, and vice versa.

How is the final list of features to be filtered determined? This problem corresponds to the
one of selecting a threshold for silence filtering Section 4.1.5. One option would consist in
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selecting a fixed threshold for R for which a motivation exists, e.g. that resembles some mini-
mum variation discrepancy. On the other hand, the absolute number of features is a relevant
output parameter of the selection process, and it would be disregarded by just considering
isolated threshold values. Instead, the decision follows the process for frame filtering: The
threshold is automatically determined in a way that when applied, a certain amount of fea-
tures remains. This amount can be chosen in a relative or absolute way. Choosing a relative
value (e.g. removal of n% of the features) is generally easier and more intuitive, but both
methods may be disadvantageous in some situations. A relative value decision emphasizes
the detection and avoidance of noise in the data, while an absolute specification emphasizes
the maximum size of an effective feature set. In the FRISC experiments, between 35 and 100%
of the features were kept.

4.1.7 Score-Level Optimization

In Section 2.5.7, the basics of classifier scores have been explained. A true binary classifier,
which was appropriate for a yes-no question (e.g. “Is this voice from a senior speaker?”) or a
detection task, would always return one of the two possible values, yes or no. A true multi-
label classifier, which is an extension of this concept, would for every input return exactly one
of the class labels it was trained with, namely the one which it predicts for the input, making
it ideal for an identification task. In practice, the pattern recognition algorithms which are
employed often do not adhere to these criteria. Instead, they usually return a numerical value
(or multiple for multi-label classifiers), a score, with the side effect or purpose to provide more
insight into the decision process. This is especially the case with generative models such as
the GMM, which provides the likelihood ratio as a measure of agreement rather than a binary
decision. That is, however, not a disadvantage, but allows to decouple the estimation from
the nominal mapping aspect. With only the nominal decision, there would be for example no
way to know how “close” the decision was or how confident the classifier is in it. When the
output value of a pattern recognition algorithm does not have a decision implied, it makes
classification a two-step task: The estimation, i.e. the computation of the initial score, is
the first step, and the mapping of the numerical score onto a class decision is a second step.
Those two steps can be attended completely independently, the second actually being a form
of meta classification (although normally a very simple, linear one). As such, it also has to
be provided with its own set of training data — a development test set — to differentiate it
from the main classifier’s training set (see Table 4.2 on page 107 for the configuration of this
set in FRISC). The effect of the second part can be critical for the classification performance.
If there is any “default” action to be performed in the absence of score mapping for binary
classifiers, it would be to assume 0 as a decision threshold, and to map positive values to yes
and all other values to no. Obviously, many classifiers, such as the GMM, do not make any
implications on their scores, so the decision threshold of 0 is arbitrary unless some evidence
indicating the opposite exists through insight into the score computation process. For this
reason, score-level optimization is essential, but there is another reason why it is often used
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for tuning.

If we assume that a classifier used in the first place puts at least some meaning in its scores,
it would be possible to accept a default threshold of zero. It would even be plausible that
the classifier did some validation during its training process to ensure that this threshold
approximates an optimum. Still, without thorough study of the algorithm, it is not clear
what the goal is that the model is optimized for. There are several different performance
metrics that can be used to define a good classification process, and there may be further
restrictions and external knowledge known as cost of errors (e.g. “not detecting a senior is
less critical then mistaking a teenager for a senior”, or vice versa) and a-priori knowledge
(e.g. “there are more in-class samples than non-class samples in the data”). The classifier,
unless it was trained with special parameters, does not reflect such goals. But since the
algorithm’s scores retain the flexibility for an adjustment of classification boundaries, the
score-level classification step provides a means to complement this goal, which is why the
step is also often called score-level optimization or tuning.

Since we are dealing with an optimization problem at the core, the performance metric that
is optimized (i.e. the cost function) has an impact on the algorithm used for the mapping. One
of the main performance metrics used in the FRISC evaluation is the detection cost function
(see Section 2.5.7). Minimizing this function corresponds to choosing an operating point on
the DET curve, i.e. a trade-off of misses versus false alarms, which fits the requirements of
the application best. More concretely, for a single-class task, the goal is to find a decision
threshold © so that the DCF is minimal. For a multi-class task, one threshold O, is to
be found for each class. For the detection task, the overall DCF score is based on the
average scores from the individual classes, so each class can be optimized separately to get
the global optimum. In turn this means that if the global optimum is found, it can be
assumed that the individual classes also perform best with respect to the detection metric.
The absence of inter-class relations is an advantage, since less computational effort is required
to get better results. In fact, the FRISC implementation of the detection task score tuning
always finds the optimum. The DFC used in these experiments always defines the parameters
Cumiss = Cra = 1 and sets Prgrger to 1/C for C classes (which roughly corresponds to the
actual distribution).

While there are many advantages to the DCF metric, there are some cases in multi-class
scenarios where a different metric is desired. These are mainly those scenarios resembling
an identification task. A common metric representing this family is the accuracy (see Sec-
tion 2.5.7). As opposed to the DCF, the accuracy focuses on the performance of the whole
system as opposed to the individual classes. With the DCF, a real multi-class decision never
occurs. This is different here: A smart way of combining the scores of multiple classes in a
final decision does not impact the error rates, but it impacts the accuracy. Also, this metric
is often applied to compare different systems, since it is the most intuitive choice for many
applications. A score tuning algorithm for accuracy has been implemented for FRISC based
on an EM-method. One major technical difference between the DCF and accuracy tuning
methods is that the class-specific parameters in the function used for the tuning of accu-
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racy are not independent, so the optimum cannot easily be retrieved. This also means that
whether the change of a single threshold has a positive or negative effect on the accuracy
depends on the other thresholds, and it is not always a linear relationship.

Identification task optimization can be useful for comparing upper boundaries, i.e. the
“best” version of a system. In practice, when used as the decisive metric for tuning, it
yields a disadvantage that should not be neglected: Since only the multi-class performance is
optimized, the performance of individual classes may suffer. What has been observed several
times during the experiments is that the performance of a single class degrades enormously
to almost zero recognition rate, while most other classes improve slightly. Even worse, a
very small improvement in the accuracy can sometimes have a radical change in the class
error rates. This type of artifact was often witnessed in the accuracy-driven experiments.
Unfortunately this behavior is difficult to control objectively. For this reason, the FRISC
experiments report both metrics, but rely on error rates for parameter space exploration.

4.2 Experiments Overview

The following paragraphs give a short overview on the different experiment series that have
been conducted in conjunction with FRISC.

The most extensive experiment used to evaluate the FRISC approach will be referred to as
the main experiment series. This experiment was set up to confirm or refute hypotheses
on the various advancements in the age and gender recognition process and to gain a better
understanding of how different parameter combinations affect the result. This series follows a
rigorous and consistent procedure, making the results directly comparable. While the results
that were achieved in the end are not the best reported in this thesis, the main contribution
lies in the investigation of the methods and parameters, and the relative improvements they
enable. This experiment is presented in Section 4.3. It was also separately published in Feld,
Burkhardt, and Miller (2010).

Following the main series in Section 4.4 will be reports of results on a modified version
of the FRrISC approach, which is actually a combination of the features from AGENDER and
Frisc, plus some fine-tuning. This hybrid approach evaluation performs two types of late
fusion: It combines frame-based and long-term features, as well as classification and regression
methods. Not surprisingly, it yields the best absolute results. Although there is no equivalent
in-depth experiment series available for this version, it mainly serves to confirm once more how
far things can go when concepts are combined using known fusion methods. The prototype
has been created and tested in collaboration with Meraka Institute in South Africa, and
has been accepted as the best-performing implementation within these specifications in the
industry project for which age and gender recognition was initially developed.

The studies on multi-cultural aspects of Speaker Classification are presented and dis-
cussed in Section 4.5. These experiments were performed on a different corpus (Lwazi) and
therefore cannot be directly compared to the other experiments. They consist of corpus
analysis and regression analysis methods.
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Finally, a study on the performance of FRISC on synthesized voices in comparison with
the human’s ability to recognize the same is introduced in Section 4.6. Since this collaborative
study had its focus on the phonetic aspects presented in different work, it is merely described
superficially.

4.3 Experimental Investigation of System Parameters

The concepts that make up the FRISC approach and that were introduced in the previous
sections of this chapter are based on literature studies, observations on the data and hypothe-
ses derived from them. It remains yet to be confirmed whether they do support the goal of
a more performing and more robust age and gender recognition. In pattern recognition, this
confirmation can only be given by actual evaluation results from the implemented system.
Because we are dealing with a very constrained scenario, e.g. specific speaker properties,
a given recording environment etc., it is also to be expected that some hypothesis will be
refuted by the data.

One purpose of this section is to detail the evaluation of the FRISC approach described in
the previous sections. It will be interesting to see if the techniques introduced earlier have
a positive effect on the numbers, and how large this effect is. A second aim is to give a
summary of the high-level exploration and optimization of certain system parameters. Some
of the parameters that were introduced earlier can only be tested to a very limited degree
when separated from the rest of the system. An example is the amount of silence frames
which is removed in the filtering phase of the approach. To measure the real effect of this
parameter, a full evaluation run of the complete system with multiple parameter settings has
to be performed.

In theory, it would be possible to evaluate all parts of the classification process separately.
The usefulness of the resulting numbers would however not be very high, for several reasons:
First, the number does not express the performance of Speaker Classification. It is for example
possible to test how well scores can be mapped to classes by using a certain score tuning
method, but this number is by itself not relevant to the problem at hand. Second, the
effect when used in conjunction with other components is not considered. Even if a changed
parameter appears to be an improvement according to some measure applied, it can still have
no effect or even a degradation on the overall result. Third, for many parts of the process
which are not classifiers, it is not clear what an expressive performance metric would be at
all. Taking for example MFCC feature extraction separately, it is very difficult to express
the quality of the resulting data without considering the classification that follows in the
architecture®.

According to these reasons given, the more relevant and beneficial to the reader should
generally be the numbers obtained by testing the whole FRiSC approach. A number of
insightful conclusions can only be drawn this way. If this is the intended procedure, it is

3There are other features for which a statistical analysis can provide some insight, see e.g. Section 4.5.2.
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essential that only a single property is modified at a time, as the cross-effects of interdependent
variables could aggravate with increasing complexity of the system. In practice, there is
one more considerable drawback of this alternative. A single experiment covering the full
FRisc system is composed of many computationally demanding tasks, both because of the
algorithmic complexity and the volume of data involved. A single experiment would run more
than 12 hours on average up to over a full day even on technically advanced hardware (see
Section 4.3.1 for details). A reduction of training data was not considered an option because
it has shown to affect the results on a scale that matters.

With such a magnitude arrives a number of related problems. First, the total number
of experiments that can be performed is obviously limited. The experiments conducted in
this series required over 20 days of processing (cumulative time according to Table 5.6 on
page 208, only counting successful runs). This in turn affects the optimization procedure; it
forbids the type of system parameter exploration that tests hundreds of settings for a single
parameter to find the best since it would take months to complete. Secondly, any errors in
the experiment configuration, such as a bad entry of settings, or an error during the execution
(e.g. errors in the code, running out of memory or disk space, network disconnection), could
often only be discovered and resolved on the next day. Unfortunately, with code that can
only really be tested in the actual experiment, such error conditions occur more often than
desired, and are the reason for much “lost” time. Third, it is normal that progress made
on core parts of the system happens over time. Feature extraction routines are optimized,
additional parameters are introduced, some concepts are changed. Obviously, during a series
of experiments that should have comparable results, incorporating such evolutionary changes
is not possible without restarting the complete series. The bottom line is that at some point,
basic changes will be prohibitive. For more information on the technical details of the FRrRISC
experimental setup including the individual share of time the components require and what
measures were taken to optimize the runtime, see Section 5.5 and Section 5.6.

4.3.1 Experimental Set-up

Technically, the main experiment series is designed as a comparative, explorative optimization
task. Due to the reasons mentioned earlier, the number of experiments was limited to 35
manually selected configurations. More precisely, the experiment series follows a guided best-
path procedure, which is a type of hill-climbing applied to a fixed, discrete search space:
Initially, the list of parameters to be explored is selected and a fixed order is created.
For reasons of clarity, this order should follow the point of occurrence of the parameter in
the architecture. Next, for each parameter, the list of settings is defined and a reasonable
starting value (i.e. default) is chosen (it should preferably be aimed for an “average” using
the background knowledge available). This list can still be changed up to a certain point
during the experiment should it become evident that further settings may provide a better
insight or a closer approximation of the optimum. The experiment series begins with all
parameters set to their defaults. Then, the experiment is run with all alternative values for
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the first parameters, and the results for each are noted. When complete, the same procedure
is repeated with the next parameter, while the setting of the first parameter now remains at
the setting which accomplished the best result in the previous step.

This “greedy” strategy is admittedly suboptimal with respect to discovering the global
maximum. It is possible that cross-dependency effects between parameters result in the
tuning of one parameter to have an effect on the already confirmed setting for a previously
evaluated parameter. It may also happen that one parameter has such a strong effect that it
“hides” the effects of values upstream in the pattern recognition process when a bad setting is
chosen, which encourages the cautious selection of defaults. For example, if a strongly counter-
intuitive kernel function is picked for the SVM, then all possible settings for the MFCC
extraction window length will produce equally mediocre results, preventing the identification
of the optimal setting. Further, the choice of only a few settings for each parameter may
cause the optimum of the single parameter to be missed as well. It is likely though that most
parameters’ performance functions are continuous, so that either a good approximation is
possible or the reverse will be revealed in the experiment.

The choice of the best-path strategy is a necessary compromise. Not being able to run an
exhaustive search on the parameter space, its single big advantage is that it requires a small
number of experiments. It is an explorative search in the absence of a goal value.

Some thought was put into the hardware set-up as well. There was a basic decision to make
between using a distributed (i.e. cluster-based) or single-machine solution. Distributing load
on different machines, possibly hundreds, is often done in other data-intensive experiments
with a gain in speed and in turn an earlier completion of the experiment. In the FRISC
evaluation, a single powerful machine with multiple cores has been utilized*. The reasons for
this decision are manifold.

First, only some parts of the architecture can be parallelized within reasonable bounds. The
MFCC feature extraction, the training of the utterance GMMs, or the training of different
target SVMs are examples of acceptable candidates for concurrency. Other components,
such as the training of a single SVM class or the UBM training, cannot be parallelized
well due to the strong relations between data at the various stages of the training process.
Section 5.5 has details on this. Having monolithic tasks that cannot well exploit the power of
multiple machines or processors is a problem that plagues other application areas too. Even
parallelizing speech recognition requires pretty smart engineering to be successful (Chong,
Friedland, Janin, Morgan, & Oei, 2010). On the other hand, with a considerable investment
in performance optimization, sometimes this can be changed by clever arrangement of shared
data and synchronization, and in a few cases, it even results in a decisive improvement. For
the task at hand, an increased attempt to optimize the process further than it was made,
would have hardly resulted in a runtime performance gain justifying the effort.

Then, even if much of the work could be done in parallel by multiple machines, there is
still the time needed to transfer the data from a shared network location to the machine

“Intel Core i7-940 with 4 cores at 2.93 GHz, 12 GB RAM, 2x 1 TB hard drives with 7200 RPM in RAID
configuration, 64-bit Windows OS
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and copy the results back to the storage. Since both ways convey massive amounts of data,
even if work is split, this would introduce a new bottleneck. Using a network site for data
storage was actually tried at some point during the experiment, and it resulted in more than
a tripling of the experiment runtime. For the same reason, an Internet / cloud based solution
was never an alternative either. It is a general observation that some parts of the system
have very high requirements as for the data link bandwidth while others have less. Both
the MFCC feature extraction as well as the training of the GMMSs are examples of the first
category, as both of them are working on frame-based data. A fast hard drive and a high
amount of working memory for caching of disk files proved to be solid basis for the handling
of these high-bandwidth tasks. They were complemented by optimized storage structures for
intermediate results and feature data (see Section 5.3.3).

As a further point, even if some tasks could be parallelized in theory, the required resources
would increase considerably. For instance, the SVM training of a single class requires a lot of
memory, because each class is trained with all data. Thus, this memory would be required
for all machines in the cluster, so a cluster of average machines would have almost certainly
had a worse performance than the single powerful machine solution. Having such resources
available cannot be taken for granted. Additionally, if a cluster was used for the parts that
benefit from it, the single powerful machine would still have been required for the monolithic
tasks. Apart from that, a complex workflow that involves combining cluster-based (parallel)
with single-machine (sequential) processes, requires an additional orchestration overhead that
poses both a challenge to engineering and robustness that does not pay off easily.

All experiments were set up using the SPEACLAP framework, which has been developed
mainly for this purpose as part of this thesis, and which will be introduced in greater detail
in Chapter 5. The whole main series of experiments is modeled as a single experiment design
that exposes the parameters of interest as the experiment configuration (see Figure 5.8 on
page 172). It is implemented as an SPEACLAP script connecting the various components as
sub-tasks, including information about which of them can be parallelized. After an experi-
ment is started, the framework gives a detailed overview on the current progress. When the
experiment is finished, or if it is aborted due to an error, an email is generated with a com-
plete report of the run. The report is also saved locally together with all evaluation results,
so that the progress of the experiment series can be tracked. In consideration of the length of
a single run, each experiment was started separately, which would also give an opportunity
to review the results. A common practice was to start an experiment configuration in the
evening and have it run over the night until later on the following day.

4.3.2 Results

Table 4.4 contains an overview of the results of the ten parameters evaluated in the FRISC
main experiment series. For each parameter and setting, which corresponds to one line
in the table and one evaluation run, the accuracy (i.e. classification performance in the
identification task) and uniform error rate (i.e. classification performance in the detection
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task) are reported. In addition, for some combinations, confusion matrices and DET plots
are presented throughout this section. Note that the scale of these DET plots was shifted
to center on the area where most changes occur. This is also supported by the fact that the
expected performance (or baseline) of this task is lower than for the majority of classification
problems for which a scale is used as in Figure 2.22 on page 68. The following section
progresses through the table in the order of system components, recalling the definition of
each parameter, summarizing the results and discussing them.

4.3.3 Discussion
Front End (Feature Extraction)

The front-end of the FRISC classification pipeline is the component that deals with the ex-
traction of features from the raw audio signal, which are the frame-based MFCCs. The step
width parameter describes the period between two sound samples and hence the sampling
rate of the output feature vectors. A smaller step width results in more feature vectors. A
step width of 10ms is common for GMM-SVM models, which is why it was chosen as the
initial setting. The other settings chosen were 5ms, 25ms and 50ms. Settings smaller than
5ms would have caused a total number of frames considered too large for further processing.
Changes of this and the next parameter affect the structure of the instances, resulting in basi-
cally different data sets. As a consequence, slight changes in the results are to be expected in
any case. The uniform error rate generally seems to increase with greater step widths, hence
a finer time resolution indeed adds information to the classification process. The best setting
with respect to the error is thus reached at 5ms. Figure 4.6 shows the confusion matrix and
DET curve at this setting. With 10ms, the accuracy has its peak at a different setting. Yet,
as it does not change more than 0.12 percentage points between 5, 10 and 25ms, this can be
considered a random artifact.

The window size corresponds to the number of samples that contribute to the MFCC
computation for a single frame or feature vector, including the samples at the edge of the
window being smoothed. If the window size is larger than the step width, which is typically
the case, then windows overlap, causing some redundancy and a smoother transition across
the signal. If the window size is smaller than the step width, then some information is
disregarded. This is usually avoided. It was seen fit to specify the window size in relation to
the step width. We evaluated a window size that is equal to the step width, a window size of
three times the step width, which was also chosen as the default setting, and a large window
setting of six times the step width. The smallest window size caused a visible degradation
in both performance metrics, which may be due to the information lost as a result of the
smoothing. Both larger, overlapping window size settings perform almost equally well, with
the largest window size doing slightly better (see Figure 4.7). This indicates that some overlap
should be present.

The number and choice of MFCCs to be used in the feature vector was varied as well. In

general, higher coefficients are known to convey more speaker-specific characteristics, whereas
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Position in System Experiment # / Accuracy Uniform Error
Parameter

5ms 40,35% 26,43%

0, 0,
(1) Step Width 10ms 40,47% 27,63%
25ms 40,37% 28,38%
50ms 37,35% 28,95%
1x step width 36,69% 30,01%
Front-end (2) Window Size 3x step width 40,35% 26,43%
6x step width 40,20% 26,09%
(3) MFCC 12 (1-12) 40,20% 26,09%
Coefficients 19(1-19) 39,01% 28,06%
8(12-19) 37,09% 26,56%
(4) Delta Coefficients Without deltas 40,20% 26,09%
With deltas 39,73% 27,66%
0% 40,20% 26,09%
. (5) Intensity-based 20% 39,86% 27,11%

Frame Filter

Removal 40% 37,69% 27,05%
60% 38,41% 26,74%
64 39,59% 26,57%
(6) Number of 128 40,20% 26,09%
Mixtures 256 39,68% 27,22%
512 40,23% 26,61%

0, 0,
GMM Training 0.1 42,54% 24,95%
(7) MAP Relevance 2 42,14% 25,19%
Factor 16 40,20% 26,09%
100 37,41% 28,03%

2,549 24,959
(8) Initialization Random 42,54% 2BV
K-Means 41,92% 26,54%
0% 42,54% 24,95%

0, 0, 0,
NVC (9) Feature Removal 10% 42,29% 25,05%
30% 41,94% 25,24%
65% 41,65% 25,57%
linear 42,54% 24,95%

ial (2 2 9 2,369
SVM Training (10) Kernel Type polynom!al (2nd) >, 98% 42,36%
polynomial (3rd) 24,51% 36,76%
radial basis 13,41% 50,00%

Table 4.4: Summary of results from the FRISC main experiment series. Bold face: initial
setting (as in previous experiments); Shaded green: setting with best result (kept
for successive experiments). Explanation and interpretation is provided in the text.
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Predicted Class

C Yf Ym Af Am Sf Sm
C| 53 | 20 7 11 2 2 4

Yl 17 | 48 1 30 1 2 2

Ym| 3 2 | 45 | 4 11 0 34

Afl 11 | 24 6 | 42 4 6 10

Tested Class
Miss probability (in %)

Am| 3 2 | 28| 5 17 | 0 | 48

sff 16 | 19 | 4 40 1 15 5

Sm| 2 2 | 20| 3 8 0 | 64

10 15 20 30 40 60
False Alarm probability (in %)

Figure 4.6: MFCC step width = bms. Measured performance: Acc = 40.35%, Ppa = 34.31%,
Puriss = 18.56%, Pgrr = 26.43%

Predicted Class

C Yf Ym Af Am Sf Sm

Cl 54 | 18 | 8 10| 0 6 4

Yf| 16 | 46 1 30 | O 6 1

Ym| 3 2 | 53| 3 1 2 | 36

Afl 9 26 9 33 0 16 7

Tested Class

Miss probability (in %)

Am| 3 2 31 3 9 2 50

sfl 13 | 20 4 33 0 25 5

Sm| 3 2 24 3 4 1 64

10 15 20 30 40 60
False Alarm probability (in %)

Figure 4.7: MFCC window size = 6x step width. Measured performance: Acc = 40.2%,
Pra = 34.73%, Parriss = 17.45%, Pgrr = 26.09%
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lower ones convey more phoneme-related information. To limit the number of experiments,
a selection of three settings was made: a lower MFCC setting covering coefficients 1-12
(a selection common in literature), a higher MFCC setting covering coefficients 12-19, and
a full setting covering the union of the former, e.g. coefficients 1-19. Considering even
higher coefficients was not deemed reasonable (see Section 2.4.4). The experimental results
showed that the information from the lower MFCCs outperformed the other settings in the
detection and even more in the identification task. Also, combining both regions degraded
the result. One reason for this could be the existence of noise or nuisance attributes in the
higher MFCCs which caused confusion. It should also be taken into account that no cepstral
mean normalization was performed due to the off-line restriction of the method, which might
have positively affected the result.

To put emphasis on the development of the MFCC over time, first order derivatives (deltas)
of the coefficients as well as higher orders can be included in the feature set, which is quite
commonly done in related work. We performed an experiment using only the deltas as
additional features in the MFCC vector, resulting in a vector of 24 features. However, neither
the accuracy nor the uniform error rate could be improved on our data by the inclusion of
deltas.

Intensity-based Frame Filtering

For the next experiment, frame filtering was applied as described in Section 4.1.5, with vary-

ing settings for the parameter T” specifying the target percentage of frames to remove.

silence
Apart from the initial setting of using all frames, settings of 20%, 40%, and 60% were tried,
with 60% being well above the share of non-speech in the data. Our hypothesis that the
removal of actual silence should improve the classification result could not be confirmed by
this experiment, since the setting without frame filtering enabled produced the best result.
This means that the models picked up useful information from frames with lower intensity.
However, there is no clear tendency in the data for the other settings, since the removal of
60% of frames works better than the removal of only 20%. This might be indicative of a
suboptimal method for choosing the silent frames, so future studies might focus on the in-
vestigation of different methods for frame filtering. Figure 4.8 shows that even though the
error differs by only approximately one percentage point for 0 and 60%, the confusion ma-
trix is quite different in the second case, e.g. more male teenagers are confused with male
seniors when the silence is removed. It would hence also be possible that some speaking rate

information was conveyed through the non-speech features.

GMM Training

Training of the four generative models used in the approach, i.e. the UBM and the utterance
GMDMs train, testl, and test2, represents another area of the system in which multiple param-
eters of interest were investigated. The first and probably most well-known parameter is the
number of mixtures (or Gaussians) in the GMMs. Due to MAP adaptation, this number is
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Predicted Class
C Yf Ym Af Am Sf Sm

C| 42 | 25 7 3 0 19| 4

Yi[ 9 47 1 14 0 27 1

Ym| 3 2 54 1 1 5 34

Afl 6 26 | 10 | 14 0 35 7

Tested Class

Am| 1 4 34 3 8 6 44

Miss probability (in %)

sff 10 | 18 5 13 0 50 | 4

Sm| 3 1 29 1 4 4 58

False Alarm probability (in %)

Figure 4.8: Intensity-based silence removal = 60%. Measured performance: Acc = 38.41%,
Pr g = 34.06%, Pariss = 19.42%, Pgyr = 26.74%

identical in all models. The optimal number must be chosen with respect to the classification
problem and the data available. Both too high and too low numbers can cause suboptimal
results due to over- or underfitting, respectively. Our initial guess at 128 mixtures is set
relatively low, which seems reasonable if we consider that the age SVM model is rather more
general than the utterance-based GMMs. Comparing this with other powers of two, namely
64, 256, and 512 Gaussians, the numbers confirm our choice, although the differences between
the settings are not overly large (and the accuracy with 512 mixtures is even slightly higher).
The number of iterations of the EM algorithm was not investigated as part of this series
since it is believed to eventually converge for a robust set of features (this was confirmed in
preliminary experiments). This number was 5 as in Reynolds et al. (2000).

Following the number of mixtures, the next position in the system concerns the degree of
MAP adaptation when deriving the utterance GMMs from the UBM. The parameter which
controls this ratio of background vs. new training material in the MAP algorithm is the so-
called MAP relevance parameter, or short M AP,.; (see Section 2.5.5). A higher value prefers
the UBM, and a common default trade-off is a value of 16. Gajsek et al. (2010) consider the
range of 8 to 16 to be a typical interval for good values; however, we chose a larger range
to also determine the response in border cases: 0.1, 2, 16, and 100 were the settings tested
in this series. In fact the numbers show that a lower setting, i.e. a preference of the new
training material, yields a better performance. Considering that the training utterances were
rather short, this makes sense. The value of 0.1 was selected for the further experiments (see
Figure 4.9).

By default, the UBM was initialized using a random selection of feature vectors. It was
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Predicted Class

C Yf Ym Af Am Sf Sm
Cl 52 | 21 | 1 5 0 7 4

Yil 16 | 54 | 2 16 0 10 1

Ym| 2 1 65 | O 3 1 27

Afl 7 27 | 13 | 20 1 25 7

Tested Class

Am| 1 2 42 1 9 1 24

Miss probability (in %)

Sff 11 | 19 7 19 0 38 5

Sm| 1 1 29 1 4 1 63

False Alarm probability (in %)

Figure 4.9: MAP relevance factor = 0.1. Measured performance: Acc = 42.54%, Prpa =
34.06%, Pariss = 15.83%, Pgrr = 24.95%

assumed that a more elaborate initialization function might be able to improve the result,
so an initialization using the K-Means algorithm with 5 iterations was explored in another
experiment. It turns out that K-Means is actually not helpful in this case and even degrades
the result. It is also possible to use an uninitialized GMM (i.e. with all mixtures set to zero
mean and variance). This however leads in most cases to considerably worse results.

Feature Space Reduction

The idea of the feature optimization step was to reduce the large feature space of the SVM,
removing those features that are likely to have a negative impact on the model. The method
used to select these features was described in Section 4.1.6. Our hypothesis is that there
is an optimum between 0 and 100% feature removal, which is most likely noticably apart
from each of the two extremes. For this first evaluation, four settings were chosen, which
describe the amount of features being removed: 0% (the default, i.e. all features are kept),
10% (only the most confusing features are removed), 30%, and 65%. It is really surprising
and counter-intuitive that the reduction of dimensions does not show any positive effect. In
fact the decrease in both uniform error rate and accuracy is monotonous, which supports the
validity of the procedure. Nevertheless, it is possible that the choice of inter vs. intra class
variability as the selection criterion failed to work as intended for the cepstral features, which
would follow the argument of an “incompatible” feature reduction method also mentioned by
Lingenfelser et al. (2010). A more elaborate factor analysis should be used in future studies
to confirm these observations.
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Predicted Class
C Yf Ym Af Am Sf Sm

Cl 45 | 16 | 156 2 1 16 6

60

Y| 24 | 41 5 1 1 22 7

Yym| 5 | 12 |43 | 2 | 3 | 28 | o

Aff 12 | 30 | 17 1 1 33 6 30~

Tested Class

Am| 5 11 | 35 0 5 34 9

Miss probability (in %)

20—

Sff 10 | 29 | 16 1 2 38 | 4

Sm| 2 18 | 38 1 7 25 8

10 1 1 1 1
10 15 20 30 40 60

False Alarm probability (in %)

Figure 4.10: SVM kernel type = polynomial (2nd). Measured performance: Acc = 25.98%,
Ppa = 37.79%, Prriss = 46.94%, Pgr. = 42.36%

SVM Training

Training of the support vector machine involves a number of parameters, including the SVM
implementation. For this study, only a single parameter, with however a traditionally strong
impact was varied: the kernel function. Since previous studies using the GMM-SVM ap-
proach, such as Bocklet et al. (2008), have determined the best results for the linear (or first
degree polynomial) kernel, we were assuming to make the same observation in this study. The
comparison was done with a second (square) and third degree (cubic) polynomial, as well as
a radial base function (RBF) kernel. As it turns out, the linear kernel indeed outperforms
the other kernels by a large margin. However, the kernel parameters of neither kernel were
optimized due to the experimental complexity overhead involved, which can be especially
problematic for the RBF kernel. Another observation is that detection and identification
task results do not always follow the same ordering for this experiment. For comparison, the
results for second degree polynomial SVM are shown in Figure 4.10. In the confusion matrix,
it becomes obvious that the kernel function is not able to discriminate some classes (Af, Am,
Sm) at all using the given features.

One-Shot Evaluation

As the results reported in Table 4.4 were obtained on the same test2 data set, the series as
a whole represents a parameter tuning setup and cannot be consulted for reliable absolute
results in the best configuration. As discussed in Section 2.5.7, there was an additional eval
data set whose labels were not known to the author. This “blind” data set was classified once
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Parameter Optimal Setting

Front-end Step Width 5ms
Front-end Window Size 6x step width
MFCC Coefficients 12 (1-12)
MFCC Deltas without
Intensity-based Frame Removal 0%

Number of GMM Mixtures 128

MAP Relevance Factor 0.1

UBM Initialization random
Feature Space Reduction 0%

Kernel Type linear

Table 4.5: Summary of the FRISC parameter configuration leading to the best uniform error
rate in the main experiment series.

using FRISC in the optimal parameter configuration summarized in Table 4.5. The predicted
labels were sent to the independent evaluation site, which reported the final results given in
Figure 4.11. Hence, the result is 38.0% accuracy, which is obviously lower than the 42.5%
reached on the evaluation set. The difference of 4.5 can at least partly be attributed to the
fact that utterances in the eval set were on average shorter. Unfortunately, detection error
rates are not available from this evaluation.

Conclusion

The results described in the previous sections, reported on the FRISC Speaker Classification
approach, provide new insights on the potential for positively influencing the classification
performance through various parameters of the system. Several parameters have been pointed
out which should be chosen according to the recommendations given as part of the summary
in order to achieve best results, e.g. MFCC step width, MFCC window size, number of GMM
mixtures, or MAP relevance factor. The observations made on the majority of the parameters
seems reasonable and corresponds to the expectations. On the other hand, a couple of
parameters did not behave intuitively and should be examined further. Since this experiment
series was carried out following a rather strict design, adding parameters, methods, or settings
it is not as straightforward. However, sufficient points of reference were named for upcoming
work in the Speaker Classification field to build upon and investigate further. Obviously, the
results are not completely independent from the data, which means that different conditions
might require adjustment of the findings. Still, the relative importance and approximate
direction for system design is expected to be similar even in these cases.

Taken by itself and as an absolute measure, with regard to the classification problem, the
38 respective 43% accuracy is a respectable result, although not reference. The latter was
not a primary goal of this experiment. FEven if a direct comparison with other systems is
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Caonfusion Matrix

Predicted Class
C Y Ym Af Am Sf Sm
C 41 24 5} 13 B 6 5
YE 18 42 5 24 1 8 3
Ym 3 2 44 7 25 3 18
g
(%]
T Af 7 27 3 31 2 27 4
E
Am 2 4 29 3 21 4 37
Sf 5 12 B8 26 3 36 1
Sm 1 2 14 3 27 3 21

Figure 4.11: Confusion matrix showing the results of the evaluation of FRISC on the evalua-
tion set.

difficult due to the different conditions, it is expected that further top-down engineering of
the pattern recognition aspects would lead to better absolute results. An example might be
a fusion with the baseline set of 450 acoustic features that was part of the Interspeech 2010
Paralinguistic Challenge (Schuller et al., 2010), and done in several of the contributions. The
following section presents a proof of concept by using features from the original AGENDER
approach in combination with the short-term features as presented herein.

4.4 Post-processing Level Fusion: A Hybrid System

Our main evaluation series has focused on short-term features, inter alia because they rep-
resent the less investigated aspect of Speaker Classification. These features are expected to
expose a different, partially overlapping, but essentially complementary view to long-term
features on the speech data. Therefore, it is expected that the fusion of both features in
a single system works better than either feature family in separation. In conjunction with
the main evaluation, a hybrid system was designed that combines both short and long term
features in a single system. Since both types of features have already been investigated indi-
vidually, the goal of this experiment was to determine how they would work in conjunction.
A noteworthy improvement was anticipated with respect to reports on similar configurations
in related work, and the generally known power of system fusion in the post-processing step
of pattern recognition. Furthermore, we were interested to find out whether a combination
of classification and regression approach could be used to improve the age estimation. As a
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— Utterance GMM “
Audio Data MFCC extraction
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Audio Data LTF extraction
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Figure 4.12: Experimental set-up which combines short and long term features into a single
system. The upper part corresponds to the system as evaluated in Section 4.3.

side effect, the experiment would allow us to obtain a more realistic benchmark in terms of
absolute classification accuracy. The study that is presented in this section is the outcome of
a collaboration with the Human Language Technologies group of Meraka Institute at CSIR in
Pretoria, with a major contribution of the South African partner. It was separately published
in Heerden et al. (2010).

4.4.1 Combining Short and Long Term Features

Figure 4.12 displays the system combining short and long term features in an overview. The
frame-based MFCCs were extracted according to the parameters in Table 4.5, and MAP-
adapted utterance GMMs were created from a UBM as described earlier in Section 4.1.3.
These supervectors were classified by a SVM into one of seven classes. As a further optimiza-
tion in contrast to the previous experiments, the SVMs employed RBF kernels implemented
by LIBSVM, which estimated the C' and  using a 10-fold grid search on a disjunctive subset
of the training data.

The long-term features were derivatives of pitch, jitter, shimmer, and intensity (see Sec-
tion 2.4.4), in particular mean, minimum, maximum, and deltas, which were all extracted on
the full utterance using Praat. Furthermore, the first four formats F1 — F4 were extracted
using Burg’s algorithm with a step width of 20 ms and a window size of 25 ms and added to
the feature set in terms of mean, standard deviation, and delta. The limiting upper frequency
was chosen at 5500 Hz, matching the value for adult females. The long-term feature vector
was also classified using an RBF SVM.

The classes, corpus, and data sets used for this study were the same as in the main exper-
iment series, i.e. the results reported herein were measured on the test2 data set.

The changes to the SVM kernel alone were able to improve the classification accuracy on
the MFCCs to 45.2%, which is an improvement of 2.7% absolute. This shows that the choice
of kernel parameters has a considerable effect. (It has to be noted though that the training set
was not identical due to the RBF training discussed above.) The long-term features achieved
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Age Regression

-
-
O
Audio Data MFCC extraction il / |
Gender ‘ '

Classification
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Figure 4.13: Configuration of the regression-based system. The age regressors (SVM3 and
SVMy) are combined with a gender detector (SVMs and SVMg) to form a final
seven-class result (SVMy).

45.7%, which is realistic compared with the 49% achieved on a set of 450 features by Schuller
et al. (2010). By multiplicative combination of the SVM scores, the accuracy rose to 46.9%
for the short/long term hybrid system.

4.4.2 Combining Classification and Regression

Apart from the introduction of feature fusion, the combination of classification and regression
approaches was tested in the same study. Like the classifiers, the regressors were trained on
both short and long term features as SVMs employing an RBF kernel. In this case however,
a function for age prediction in years replaced the class decision. Since the regressors only
estimate the age, a separate gender classifier for Female, Male, and Children was trained
on the same data. These three pattern recognition components were coupled using a single
seven-class output SVM (see Figure 4.13).

The result of this output SVM combining the age and gender regression results scored
a total of 48.4% accuracy, which is 1.5% absolute more than the corresponding classifiers.
Thereby, the regressors themselves were able to predict age with an average of 18.8 years root
mean squared error and a corresponding correlation coefficient of 0.48. The gender detection
reached an accuracy of 88.5%.

In a final experiment, classifiers (short and long term) and regressors (through the output
SVM) were combined using multiplicative score combination as shown in Figure 4.14. This
configuration achieved the best value measured so far on the test2 set, which is 50.7%. The
confusion matrix on this result is shown in Figure 4.15.
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MFCC Classifier

Final 7-class
decision

LTF Classifier

Regression Output

Figure 4.14: The final system, which fuses the sub-systems from Figure 4.12 and Figure 4.13
using score multiplication.

Confusion Matrix
Predicted Class
C Yt Ym Af Am Sf Sm
C 59 16 ] 8 1 8 2
YE 13 56 0 20 0 14 0
¥m 0 0 47 0 20 4 29
8
3z Al 5 18 4 38 3 30 2
E
Am 1 0 26 1 31 3 38
Sf B 13 1 24 0 o6 1
Sm 0 0 9 0 16 3 73

Figure 4.15: Confusion matrix for the system depicted in Figure 4.14. The accuracy of this
system corresponds to 50.7%.
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4.4.3 Conclusion

The supplementary experiments presented in this section as an extension to FRISC have once
more confirmed that the fusion of different methods on the post-processing layer (late fusion)
have the potential to easily lift existing results to a higher level. It also reassures us to
keep studying all feature families, since each one has its merits. However, while applications
certainly depend on high accuracies, we still argue that the foundation of good classification
results happens on the level of study and optimization of individual methods, rather than
their fusion, which is its own sub-field of science.

4.5 Influences of Language and Culture

Globalization is an important topic in the I'T world today, and part of the goal of pushing
Speaker Classification is to ensure that it is a technology that everyone can benefit from. As
stated in the research questions, we will address the issue of language and culture indepen-
dence of FRISC.

Speech is not only sensitive to age and gender, but conveys many more characteristics.
A number of these aspects are related to language and culture (see Section 2.1.4). Their
influence on speech features overlaps the age and gender related cues, which gives us suffi-
cient reason to investigate whether this has an impact on the general idea of classification.
Until today, the effects of culture on the various facets of Speaker Classification have re-
ceived comparatively little attention. When looking at speaker recognition, various authors
have reported that the typical approaches are rather insensitive to the language being spoken
(Bellegarda, 2007). On the other hand, speaker recognition can actually pick up culture as
an additional discriminating feature and benefit from it. This is unlike age and gender recog-
nition, where it has to be considered a nuisance attribute. But even some speaker verification
systems have shown statistically significant, yet relatively small in magnitude, differences in
the performance of multiple languages from the same corpus (Kleynhans & Barnard, 2005).
Emotion recognition, on the other hand, has been shown to depend strongly on the language
being spoken (Shami & Verhelst, 2007). These observations basically encourage us to believe
that the general concept, i.e. using the proposed acoustic features with a classifier for seven-
class discrimination, would be independent of language and culture. At the same time, they
generate sufficient doubt to wonder whether they will also work equally well and without
changes in all such contexts. Hence, in this section, we will conduct a set of experiments to
investigate the actual behavior.

To recapitulate, there are three possible outcomes we might observe:

e There is no effect of culture on the features and hence on the classification accuracy. If
the features were to remain unaffected by language and culture, it would be the optimal
case, since we could use an existing FRISC system anywhere without modification.
However, this case is unlikely, as certain effects on our features have already been
reported in various studies.
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e There is a measurable effect on the features, but the impact of age and gender is still
intact. In this case, language and culture would represent some kind of noise that is
mixed with the other information. It could overlay the information or shift the feature
space, something that can be corrected using the right filter. The most practical solution
in this case would be the same that is applied in other cases of noisy conditions: to train
the models with the same anticipated “noise” applied, i.e. to train a different model for
each language or cultural grouping. This case corresponds to our hypothesis.

e The effect on the features is so strong that either none of the original information is
preserved, or it becomes too weak for classification. It could also be that it affects the
features in a way that forces us to use different class boundaries. This would mean
that FRISC could not be applied without further re-engineering, e.g. choice of different
features. However, it is also rather unlikely, since our features were particularly chosen
to be independent from linguistic effects, and the acoustic impact of language and
culture is not believed to be overly strong.

Having a different model for each language case of course means that we also need to
select the right model before we can run Speaker Classification. The most straightforward
solution would be to detect the language spoken in parallel with the classification using
multiple models, and then use the result from the model that matches the detected language.
Another solution would be to reach a compromise between model generality and best possible
accuracy. For example, instead of having a model for each South African language, a single
South African or even African model could be more suitable.

We follow the same principled strategy as in previous chapters, which means that our focus
will be on observable and explainable effects. Comparing scores of the final systems might
seem like an intuitive way to approach our question, but the commitment to a particular sys-
tem, combined with a grave change in corpus data, might mix certain influences and conceal
the actual effects. Therefore, these experiments focus on the inspection of acoustic features,
in particular global features that can be explained well, and run performance experiments in
a closed set-up.

The experiments were performed in collaboration with Meraka Institute in Pretoria, South
Africa, and were separately published by Feld, Barnard, Heerden, and Miiller (2009). For the
specific case of automatic age classification, which we consider in this section, we are not aware
of any cross-cultural or multi-lingual studies, although there are a lot of useful ASR related
applications associated with this task. The experiments follow a two-step approach: First,
we have set out to investigate the influence of language on a prototypical feature set that has
been employed for age classification. In a next step, the effect of applying language-specific
models trained on one language to either the same or a different language, is evaluated.
Through this we hope to be able to find out in how far our current Speaker Classification
approach — the combination of features, classification architecture and pre-trained models —
is dependent on language. As a data basis for these experiments, we have chosen the Lwazi
corpus, which is presented in the following section.



4.5 Influences of Language and Culture 139

4.5.1 The Lwazi ASR Corpus

For an optimal investigation of the hypothesis, a corpus is needed which fulfills certain re-
quirements:

e Contain several languages from different language families with a substantial diversity
according to the aspects introduced in Section 2.1.4

e For comparison, contain several languages from the same family, with differences mainly
concentrating on the linguistic level

e An ample amount of material for each language

e Annotation of speaker ages

e A suitable distribution of ages

e Absence of corpus effects, which can occur when different corpora are merged into one.

While we obviously cannot test for differences in all possible feature dimensions, and cor-
pora with multiple ethnical groupings a fairly rare, requesting an assortment of fundamentally
different language families should give a good exemplary condition of high divergence, i.e. a
“worst case” scenario. Still, these requirements are quite strict, and the general availability
of good corpora is low, particularly with respect to cross-cultural languages.

We considered two corpora for this study: GlobalPhone and Lwazi. The former (Schultz
& Waibel, 2001) contains an assortment of fourteen languages, including some from different
families, such as German, Chinese, and Russian. The corpus is well organized and the samples
are in high quality due to in-lab recording. In spite of the high sample quality, we noticed
channel differences between certain corpora, such as English and Turkish. This can probably
be attributed to the fact that all recordings were done on site, using the same equipment and
location for a single corpus, but different resources compared to the other corpora. For ASR
and other tasks, this would not pose a big problem, but in case of these experiments, there
was a high risk of these attributes interfering with our target attributes. The Lwazi corpus’
(Barnard, Davel, & Heerden, 2009), on the other hand, contains only languages from South
Africa. Nonetheless, the official languages of the nation unite multiple language families with
very different structure, as well as different cultural backgrounds, and are perfectly suitable
in this regard. The samples are comprised of inbound phone calls to a call center, which
means that they are recorded in a central place. The recording quality is below that of
GlobalPhone, both in terms of channel and background noise; yet, these effects pose less of
a problem as they are independent from the language. Due to this consideration, the Lwazi
corpus seems like a perfect candidate to confirm or refute language and culture independence
of the approach. Both corpora unfortunately do not feature speech from children.

SInformation on the Lwazi corpus is available on-line from the website of Meraka Institute, CSIR, South
Africa: http://www.meraka.org.za/lwazi
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Language Code ETTY Sub-Family Total Speech
minutes minutes

isiZulu zul Bantu Zunda 525 407
isiXhosa xho Bantu Zunda 470 370
Afrikaans afr Germanic Low Franconian 213 182
Sepedi nso Bantu Sotho-Tswana 394 301
Setswana tsn Bantu Sotho-Tswana 379 295
Sesotho sot Bantu Sotho-Tswana 387 313
South African English eng Germanic Anglic 304 255
Xitsonga tso Bantu Tswa-Ronga 378 316
siSwati SSW Bantu Tekela 603 479
Tshivenda ven Bantu 354 286
isiNdebele nbl Bantu Sotho-Tswana 564 465

Table 4.6: The official languages of South Africa, their ISO 639-3:2007 language codes, lan-
guage families, and the amount of speech contained in the Lwazi corpus.

The Lwazi corpus was developed for ASR as part of a project that aims to demonstrate
the use of speech technology in information service delivery in South Africa. In particular,
the three-year Lwazi project (2006-2009) produced the core tools and technologies required
for the development of multilingual voice-response systems in all eleven of South Africa’s
official languages, and piloted the use of these technologies in government information service
delivery.

The Lwazi ASR corpus consists of annotated speech data in the languages listed in Ta-
ble 4.6, which also summarizes the amount of speech available in each language. This data
was collected in South Africa over the telephone, by soliciting callers in each of the languages
from a variety of backgrounds. Approximately 100 male and 100 female first-language speak-
ers contributed speech in each of the languages, and an approximate balance between mobile
and fixed-line telephones was maintained across languages. This corpus was restricted to
adult speech; details of the distribution of speaker ages are provided in Figure 4.16. Unfor-
tunately, as can be seen, there are almost no children in the corpus and only a relatively low
number of elderly people. Consequently, the results given in Section 4.5.4 do not consider the
Children class. For some languages, extensive dialectal variation exists within South Africa.
However, this variation is not well documented; for the purposes of the corpus, the intent was
to concentrate on the dominant dialects of each languages, but dialects were not rigorously
controlled.

The languages in Table 4.6 fall into two broad families, with Afrikaans and English being
Germanic languages and the remaining nine languages belonging to the Bantu family of
languages (in particular, the Southern Bantu sub-family). The co-location of these widely
different groups of families in the same country is a historical “accident”; although their many
years of co-existence have lead to some mutual influences, the two groups remain separated by
a wide linguistic gulf. For example, the Bantu languages of South Africa are tonal languages
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Figure 4.16: Distribution of ages for a subset of seven languages in the Lwazi corpus.

characterized by an extensive system of noun classes; they are strongly agglutinative, with
affixes playing a variety of syntactic and semantic roles; their syllables tend to have regular
CV or V structures. In all these respects the Southern Bantu languages differ from English
and Afrikaans, which are fairly typical Germanic languages. Hence, these languages are a
good testing ground to search for differences in the way that speaker age is expressed in
speech.

With over 14 GB of speech data, the Lwazi corpus is quite substantial and working with
it requires significant computing time and processing power. Also, it was created under
developing-world conditions, where limitations in infrastructure and the availability of skilled
personnel are expected to impact on corpus quality. An initial random listening and signal
analysis was therefore undertaken; it revealed some interesting facts about the material.
Compared to widely-used speech corpora such as GlobalPhone or TIMIT (Garofolo et al.,
1998), there is considerable background noise, which is a consequence of the fact that many
speakers were speaking on mobile telephones and from everyday locations. For the same
reasons, the amplitudes of the speakers are much more variable than in standard corpora.
On the signal level, the data contained varying DC offset and even some clipping on some
speakers. Again, that is explained by the absence of constant recording conditions with
respect to the sender’s microphone and the channel. All of this is part of the compromise
when trying to find a large number of native speakers for these languages, and it has to
be taken into account when comparing the results with evaluations done on other corpora.
Note that the effects were mostly randomly distributed over all languages — there were no
visible artifacts restricted to a single language. Thus, for a comparative study on classification

performance, these observations are not considered critical.

4.5.2 Feature Analysis

To get an initial idea of how the influence of language and culture manifests itself in a speaker’s
voice, a semi-automated corpus analysis was performed. As explained earlier, rather than
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Figure 4.17: Feature value distribution of mean pitch over the age/gender classes for South
African English speakers. The curve peaks represent the class mean while the
width indicates its inner-class variance. This Figure shows the typical separation
of female and male voices. There were no voices of children in the data.

simply taking a random collection of features and processing them with various out-of-the-
box classification algorithms, it is more purposeful to take a look at the expressiveness of
some of the available features individually. This analysis is comparable with the corpus
analyses performed by Miiller (2005). This not only saves time, but also gives a better
understanding of the decision criteria and simplifies the task of fine-tuning the classifier later
on. A representation that is well suited for this purpose is the approximation of a normal
distribution of feature values (see Section 2.5.1). Sketched over all utterances in the corpus
or a particular language, it provides a graphical comparison of the differences between the
target classes, i.e. ages and genders in our case. This task can be automated to some extent,
but many of the more interesting relations are hard to recognize by a machine and can usually
only be spotted by manually looking at the results. The class boundaries have been chosen
identical to the previous FRISC experiment series (see Table 4.1 on page 104), minus the
Children class. We had to restrict our experiments to a subset of languages as the age labels
were not yet fully available for the remaining languages.

The features that were selected for the corpus analysis are acoustic long-term features
computed on full utterances that have already proven useful before. They are derivatives of
the pitch, jitter and shimmer families of features (see Section 2.4.4) computed as averages on
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Figure 4.18: Comparison of the mean pitch distributions for isiZulu and Sepedi of speakers
in the Young female class.

whole utterances and were obtained using Praat. This decision was made in spite of FRISC
being largely based on MFCC features, which was shown to generally produce lower error
rates, for two reasons: On the one hand, the long-term features are more transparent and
expressive to humans than for instance raw MFCC coefficients, and thus the preferred way to
get an initial measure of applicability. They provide a better understanding of the phonetic
causes for speakers of some languages being classified better than those of others. On the
other hand, it is likely that there is quite some overlap concerning the information in the two
feature sets, and it is fair to assume that the observations carry over to some extent.

From the data we were looking at, a large number of distributions can be examined, com-
paring either languages grouped by age class or age groups across languages. In many of these
charts, there is indeed a notable difference in the distribution of values for the individual lan-
guages. A selection of these graphs is provided in this section in order to illustrate some of
the most interesting cases where major deviations are visible. Two of the features with a
very characteristic language-specific average are the mean and standard deviation of pitch.
Figure 4.17 shows the typical distribution for speakers of South African English, with male
speakers having generally lower pitch than female speakers. The adult female voices are a bit
higher than expected, which is probably due to the slightly uneven distribution of ages (bias
towards < 30). It confirms that pitch is a good feature for gender recognition, and to some
extent helpful to distinguish ages. In order to see how language affects this circumstance, we
next study that feature for the individual languages and a specific age class. In Figure 4.18,
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Figure 4.19: Value distributions of frequency tremor for South African English and isiZulu of
Adult female speakers. The separation is not as clear as in Figure 4.18, but it
still shows a considerable difference.

this was done for Young female speakers of isiZulu and Sepedi. Our analyses revealed that
voices of isiZulu speakers are on average 25 Hz lower than those of Sepedi speakers, which
would make them easily confusable with seniors if the system was trained only on data from
Figure 4.17. Figure 4.19 shows a similar behavior for the standard deviation of pitch with
different speakers.

The observation that some languages are more different than others in terms of long-
time features surfaces in several of the charts, and the actual ordering of languages changes
depending on the feature that is considered. The Germanic languages in the Lwazi corpus
are usually rather close. These aspects appear to be stable over a set of languages, which
is in favor of the hypothesis that different Speaker Classification models would be needed to
achieve optimal performance for each language. For example, a particularly low jitter (micro-
variations in the pitch level) can be observed for adults speaking Sepedi (see Figure 4.20),
while a high shimmer (micro-variations of the amplitude) appears to be characteristic for
adult female Zulu speakers (see Figure 4.21).

4.5.3 Regression Analysis

In order to confirm the findings obtained on the long-term features described in the previous
section using actual numbers, a simple pattern recognition set-up was created. As some age
classes were not backed by a large number of speakers, a regression task was carried out for



4.5 Influences of Language and Culture 145

Probability Distribution for jitt_rap

I I - [ I
/

<1 T
7\, Others (average) ——
100 - / \ sepedi ——-—--

Feature Value Density

0 0.005 0.01 0.015 0.02 0.025
Feature Value Range

Figure 4.20: Jitter (here: relative average perturbation, RAP) as an example of a criterion
where one language (Sepedi) has an average that is rather distant from that of all
other languages. The statistics contains only speakers of the Adult male class.
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Figure 4.21: For Adult female Zulu speakers, the value range of shimmer (here: the amplitude
perturbation quotient for 5-point periods, APQ5) is characteristically higher
than for the rest of the languages.
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training speakers/ testspeakers/ Mean age StdDev age

utterances utterances
Afrikaans 159/ 4767 40/ 1193 34.7 14.3
English 155/ 4623 37/ 1105 37.7 15.8
isiZulu 149 / 4349 38/1122 35.4 14.1
isiXhosa 131/ 3865 34 /1007 36.8 10.3
Sesotho 153/ 4576 36/ 1049 34.3 12.7
Setswana 152 / 4481 39/1149 36.0 13.6

Table 4.7: Data used for regression training and testing.

this analysis. Least-squares linear regressors were developed using training data from each of
the six languages listed in Table 4.7. These languages were selected since they span a variety
of the (sub- ) families found in the Lwazi corpus where a comparison seems of particular
interest, and reliable meta-data was available for their speakers. Two measures of predictive
accuracy (mean absolute error and correlation coefficient) were then computed, employing the
models trained on each language separately on the test data from all languages. In particular,
the following steps were carried out:

First, each of the six sub-corpora was divided into training and test sets. The ratio of
training to test data was approximately 80:20, with no speaker overlap between these sets.
The feature vectors listed in Table 4.8 were calculated for each utterance in the training and
test sets of all languages. Next, each training set was scaled separately so that each feature
has zero mean and unit variance; for each language « the regression vector w, was then
calculated as

we = (X! X)X,

where X, is the matrix formed by stacking all the scaled feature vectors (each extended with
a “bias” term of 1) together and ¢, is a vector consisting of all the true ages corresponding
to the feature vectors in X,. The ages of the speakers of all utterances in the test sets were
estimated as

Yapi = ThiWa

where x3; is the extended feature vector for speaker i from language . For each pair (a, 3),
the average of the absolute difference between the estimated and actual ages for all utterances
in the test set was calculated, as well as the Pearson correlation coefficients between the
estimated and actual ages.

4.5.4 Results

Figure 4.22 shows the mean prediction errors and correlation coefficients resulting from our
linear regression. We see that the highest accuracy by both measures is generally achieved
when training and test sets are drawn from the same language, suggesting that the age factors
are expressed differently in the different languages. When training and test languages agree,



4.5 Influences of Language and Culture 147

Number Feature Number Feature Number Feature Number Feature
1 pitch_min 8 intens_mean 12 jit_| 16 shim_|
2 pitch_max 9 intens_min 13 jit_la 17 shim_Ildb
3 pitch_quant 10 intens_max 14 jit_ppq 18 shim_apq3
4 pitch_mean 11 intens_stddev 15 jit_rap 19 shim_apg5
5 pitch_stddev 20 shim_apq1l
6 pitch_mas
7 pitch_swoj

Table 4.8: Feature vector used in the regression experiment. Definitions of these features are
available in Section 2.4.4.

the correlation coefficients range between approximately 0.2 and 0.36, suggesting that this is a
challenging task; the corresponding mean values of the absolute errors range between 7.7 and
12.8 years. (As a basis for comparison, when we apply these same methods to a previously-
used corpus of German utterances, we obtain correlation coefficients and mean absolute errors
of 0.38 and 17.2, respectively. The range of ages in that corpus is substantially larger than
in Lwazi, which explains both the higher correlation coefficient achieved — since it is easier to
predict more extreme ages — and the larger mean absolute error.)

When comparing the cross-language predictors, it is interesting to note that the language
families are apparently not particularly relevant to age prediction. Thus, the predictor for
English ages with the largest correlation coefficient is derived from Sesotho data, and the
isiZulu and Setswana predictors are quite accurate when applied to data from the other
language in this pair. In contrast, the Sesotho and Setswana regressors do not perform well
when applied to test data from the other language in this closely-related pair of languages.

Figure 4.23 shows the regression weights w,, calculated for all languages. Since all features
were normalized to have the same mean and variance, these weights are directly comparable.
Many features show significant variation across the different languages. The most consistently
important value corresponds to feature 13, which is a long-term average of the jitter in pitch
frequency; however, even that feature contributes little to the isiZulu regressor. Feature 10
(related to the minimum intensity within an utterance) has a large negative contribution for
English, but contributes somewhat positively to the age regressors for isiZulu and isiXhosa.

4.5.5 Conclusion

The cross-language comparison of the age regressors shows that the best predictions (in
terms of both measures employed in this study) are obtained when training and test data are
drawn from the same language. This confirms that the age predictors, in terms of the features
employed here, are somewhat language dependent — a conclusion that is further strengthened
by the fact that the regression vectors have significantly different shapes for the different
languages. However, the predictors are not particularly accurate when applied to test data
within the same language family. This observation may indicate that there are other relevant
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variables — possibly cultural or socio-economic — which play an important role in the observed
inter-language differences.

The results from the distribution analysis show that the various languages do not behave
in a consistent fashion with respect to age changes. Thus, even this basic paralinguistic
information source seems to have significant language-specific (or culture-specific) aspects.
The differences between features in this respect suggest that in the end, a single long-term
feature set may not provide the optimal performance for all languages.

Overall, these results confirm three important aspects of the hypothesis on inter-cultural
speaker age and gender recognition: First, there are differences visible on the feature level,
which confirms in the data what literature suggests. Second, the application of simple re-
gressors trained on one language performs better on that same language than cross-language.
Third, the result of cross language family application of classifiers is still sufficiently good to
confirm that the approach itself is not culture-dependent, i.e. can generally achieve a similar
performance in other languages.

Not all possible questions could be pursued by this initial study into the subject of inter-
cultural Speaker Classification. For instance, a study comparing actual tuned GMM-SVM
classifiers for each of the languages might show whether the feature set and classification
method play a role. Such an evaluation however would be quite substantial due to the
volume of data involved. Also, it is still an open question in how far language-specific models
can be generalized, i.e. how a model trained using background data from various languages
would perform compared to inter-language and cross-language models of a single language.
This shows that there is still potential for further investigation and follow-up studies in this
topic.

4.6 Comparison with Synthesized Speech: Analysis-by-Synthesis

This section introduces a further type of evaluation arranged in the context of FRrRisc. The
studies that were presented in the previous sections, including related work from Chapter 3,
all have in common that they were based on natural voices. There is however also a comple-
mentary approach, which draws its motivation from the fact that the classification process
makes a number of assumptions about how age and gender are expressed in speech. This can
be considered a kind of reverse model of human speech production or parts of it. Therefore,
instead of testing with noisy real-world data, it might also be appropriate to compare this
model to another model that deals with speech production. Some of the most advanced and
practical models can be found in the field of speech synthesis. Causing the voice to sound
like a particular age or gender makes it more natural and allows it to carry additional seman-
tics. A similar example is to enrich the voice with emotion, as has been done in the MARY
(Schroder, Charfuelan, Pammi, & Steiner, 2011) speech synthesis platform. By generating
speech on one side by a synthesis model that makes certain assumptions about the speaker
(e.g. her age), and then classifying that speech by an independent system also incorporating
a model of the speaker properties, but created from a different perspective, the dimension



150 The FRISC Approach

Evaluation Set
(Natural Speech) (Natural Speech)

1 training testing l

Speaker Classification System

Training Set

uonedLIAA

Human
Listeners

understanding, checking,
design improvement

UuonedLIAA

Speech Phonetics Synthetic

Application Technology (Vocal Aging) Data

Academic Questions

Figure 4.24: Scheme of the general idea behind the study on synthesized voices: Phonetics
can be used to understand and help improve the automatic age classification
system by the use of controllable synthetic data.

of the problem is reduced to a more manageable range, and influences of features are visible
much more clearly. This helps to uncover flaws in either model and is called the analysis-by-
synthesis paradigm. It has been previously applied inter alia by Schotz (2006). One piece
is still missing in this description: To prevent both models from losing contact to the actual
physiological foundation, e.g. by too much abstraction or by introducing artificial features
that support either model, but are not really existent in nature, the human has to be kept
in the loop. More precisely, the synthesized speech has to be rated according the the same
criteria that the machine applies by human listeners, and their result has to be compared to
what the system produces. Combining these three components is supposed to give a valu-
able and different kind of insight into both speech technologies and traditional speech-based
evaluations. These concepts are depicted in a more global view in Figure 4.24.

A set-up as the one just described is necessarily embedded in an interdisciplinary context
centered around a strong phonetic component that can explain the models. Such a study
on speaker age was undertaken as a collaborative effort between the Department of Com-
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putational Linguistics and Phonetics at Saarland University, which represented the speech
synthesis and phonetic expertise (Lasarcyk, 2010), and the German Research Center for Ar-
tificial Intelligence, which represented the view of automatic Speaker Classification through
the FrISc approach. The study® consisted of four steps. The first step involved creating a
phonetic age model of human voice aging. The second step was the synthesis of several test
utterances for the experiments. As a third step, the automatic recognition component was
evaluated, followed by the last step, which was an experiment on the same data but with
human listeners. Finally, both results were compared.

Model creation and synthesis were performed by the phonetics party. Essentially, the model
is based on a schematic of the human vocal tract with a particular emphasis on the glottis,
which is similar to the Glottal Ezxcitation System approach taken by Bocklet et al. (2010) in
their age and gender recognition system. Using an interactive manipulation software called
VocalTractLab (Birkholz, Kroger, & Neuschifer-Rube, 2011), findings from literature were
transferred to the model, with a focus on the long-term features pitch, jitter, and shimmer.
The exact configuration was also subject to perceptual optimization. The samples that were
synthesized consisted of 36 simulated ages (using the aforementioned model) falling into the
three classes Young male, Adult male, and Seniors male (using the same as the FRISC class
boundaries, see Table 4.1 on page 104). In order to not escalate the task onto the prosodic
and linguistic layer, three different diphthongs were selected for the speech material.

The FRIsC system was applied to each of the samples independently using the exact clas-
sifiers that were trained as part of the main experiment series on natural voices, and which
achieved the best performance (see Table 4.5 on page 132). The models included the Children
and female classes, which were not part of the evaluation data and thus introduce an addi-
tional challenge for the system. Since these classifiers use MFCC features, there was no direct
relationship between the generating and the discriminating component. Two kinds of observa-
tions were made with respect to this data: First, the scores were basically meaningful. There
was a clear relationship visible in the data between the scores and the condition, overlaying
the contents. Also, the gender was picked up correctly in almost all cases, i.e. the female (and
children) classifiers consistently produced lower scores than the male classifiers. Second, the
absolute performance was considerably worse than in the evaluation on human voices. With
an average accuracy of 29% (best class value of 54% for adult samples), the system is still well
above chance level for seven classes (14%), but also far below the levels reached in the main
evaluation. This is not really surprising, because the divergence of features between training
and evaluation, seen from a signal processing point of view, is tremendous. The variable with
the greatest influence on the scores in general is the fundamental frequency.

In contrast to the system performance, the performance of human listeners fulfilling a
similar task is considerably higher with an average accuracy of 61% at a chance level of 33%.
This number can serve as a confirmation of the basic appropriateness of the phonetic models.
It should also be noted however that, even though the samples were randomized, humans

A publication of full details is expected in the near future (Lasarcyk, 2012).
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have the ability to dynamically adapt their models to the data while they hear it (i.e. they
can decide according to the current and all previous samples), which the system does not,
and which might also have an impact on the ratings.

As a conclusion, we can take note that even the artificial voices can produce age cues that
are picked up by the system. The reference to this study is intended as a pointer into an
area with high potential to reveal more insight into Speaker Classification systems. In order
to make further progress, a more sophisticated and extensive study would be needed. In this
case, the production of synthesis material can also be considered a limiting factor, since large
amounts would be needed to simulate real text-independence. With the possibility of more
interdisciplinary studies according to the analysis-by-synthesis paradigm, this seems to be a
realistic goal.
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A large part of speech-based experimenting, i.e. the task when analyzing speech data,
exploring methods and new ideas, and putting together expressive numbers and figures, is
very practical work. Accomplishing this involves a lot of repetitive tasks that are data-
intensive and that can only be performed by a computer. There are at least three general
directions one can take here: Ome is to create a custom solution that fits the task best,
but requires a lot of so-called “boilerplate” code to be written. This is code that does not
solve the actual problem, but supports the methods used to answer the question, and that is
typically tedious to write because it consists mainly of routine matter. Such little conceived
solutions also lack a far-sighted design and can quickly run into issues because of a lack of
scalability: Resulting from deficits in architectural design, new concepts are rather realized
via modification than via extension, which can turn into an “engineering nightmare” when the
experiment design requires switching between and comparing previous and new methods. For
those parts that deal with more sophisticated functions and algorithms, it can further become
quite a challenge to create the required implementations. Moreover, it has to be ensured that
they work as intended and are compatible to what is described in other literature. And
last, a custom-forged module does not easily translate into a robust system. As time is a
valuable resource and reusability is not a goal of custom implementations, good programming
practices tend to loose priority, which fosters errors and reliability issues, and can even result
in considerable efforts spent into a complete re-organization of the whole system.

The second option is to look for existing tools that can provide the required functionality.
In practice, for complex tasks, more than a single tool will be necessary to facilitate a given
functionality. While writing boilerplate code is kept to a minimum in this approach, there
are other disadvantages to this choice: First, using different tools requires an integration
effort that can sometimes weigh out the cost of re-implementing the method, or result in a
scenario similar to the previous one. When the tools stem from different sources, integration
may fail because of compatibility issues with respect to hardware or software requirements,
data exchange formats or the interpretation of data. Then, some tools are not provided with
source code, meaning that when some functionality is missing, an alternative has to be found.
Even if they are, it is often just not feasible to start dismantling them, because learning how
they work and how they are structured has its own challenges.

Finally, the third possibility presumes the existence of a single framework that can be
used for all of the experiment-related tasks. Building on a single resource creates a certain
dependency, therefore the framework in question has to be very flexible to cover the widest
field of applications possible, yet specific enough to offer solutions to the most common
problems. In addition, it needs to be extensible by means of scripting or an add-in mechanism,
so that missing, often very specific functionality can be worked around by adding small pieces
of code. If such a framework exists however, there are clear advantages to using it: The
handling is much more homogeneous than with individual tools, and all parts of the system
cooperate more seamless. Information representation is clearer and redundant representations
can be avoided. Overall, there can be gains in the areas of usability, stability and also
performance, although of course this still depends on the individual framework as well.
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At the time AGENDER was created, there were no existing frameworks that could cover
the needs that emerged. The chosen approach was mostly a combination of custom methods
and tools. However, in the course of setting up the preliminary experiments that should form
the basis of FRISC (see Chapter 2), it became clear that all the novelties introduced and
the numerous experiments that had to be performed required a new design. Some of the
components used reached their limitations both with respect to functionality as well as the
amount of data they could handle, and the whole approach would just not scale. Neither was
the design able to handle our own requirements anymore, nor would it be usable by third
parties wanting to adjust parameters of the classifiers later on or re-train with custom data,
which was a request commonly encountered. This type of endeavor is also more difficult to
realize with a collection of loosely-coupled tools, since they expose the end user (the industry
partner in this case) to the unnecessary complexity of the internal workings and are more
likely to fail under different system configurations.

Many of the Speaker Classification systems surveyed in Chapter 3 refer to applications
with real-time requirements, but none of them did provide a solution that is actually created
with this aspect in mind. There is no attempt to optimize for efficiency or scalability known
to the author in the area of age and gender classification. One of the reasons is that such
optimizations are rarely feasible as an “add-on” to an existing approach. Rather, they re-
quire careful planning and an architecture that supports it from ground up. Since such an
architecture takes quite some effort to develop, it is purposeful to concentrate on a platform
that can be reused in other projects.

As a consequence, the author decided to start the development of a new framework that
was particularly made for speech-based classification tasks. As of this writing, the number of
frameworks and environments that are available for this type of task is increasing, with each
framework having its strengths and weaknesses, yet none sufficiently complete with respect
to our requirements. Section 5.1 motivates the same, as well as the overall reasoning behind
the framework and its design plan, by presenting a formal list of scenarios and requirements.
Section 5.2 presents the architecture of the overall framework, while Section 5.3 continues
with a description of the development environment (IDE), detailing the individual aspects
that were considered for the design of the framework and a discourse on the various areas it
provides support for. The aspects of embedded modules are given in a separate Section 5.4,
as they reach beyond the actual IDE. Section 5.5 returns to FRISC and describes in detail how
the framework was used to set up the main experiments described in the previous chapter.
Finally, Section 5.6 contains a set of technical benchmarks and performance measures that
emphasize the claim of the framework to be suitable for working with the data intensiveness
that speech represents.

5.1 Scenarios and Requirements

The conceptual design of the SPEACLAP framework, which is short for SPEAker CLAssifica-
tion Platform, was guided by several usage scenarios. All of them were immediately relevant
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to the author for either their own research activities or for collaborators from science and
industry. They were:

¢ Experimentation. Setting up and running experiments can without doubt be con-
sidered the primary use case. Researchers in the field of audio-based classification and
signal processing are among the persons that are most likely to make use of this func-
tionality. Tasks supporting this scenario are the management and basic analysis of
corpus data, extraction and storage of features computed on audio files, training end
evaluation of classifiers, and the execution of complete experiments with a predefined
parameter set. The typical workflow is depicted in Figure 5.1 (here including module
deployment).

e Deployment. Resulting from close cooperation with the industry in a number of
projects, the deployment of classification technology has always been an important
point. As long as the pattern classification happens within the development platform,
it usually can be adjusted easily, but suffers from the framework’s runtime overhead
with respect to speed and memory footprint, and cannot be integrated into applications
and other platforms very well. A deployment (or runtime) version of a classifier is
a lightweight version that is optimized with respect to the aforementioned criteria.
In SPEACLAP, this version is also called an embedded module. A vehicle’s on-board
hardware is an example where the ability to have platform-specific versions is beneficial.

e Evaluation and Comparison. Over time, an experiment set-up and also the metrics
used for evaluation may change. It can be very helpful if previous versions of classifiers
can still be accessed and compared with new ones, even if they are already archived.
Similarly, an application designer may have to decide between a number of finished
classifiers using a common evaluation instrument and metric. This use case also applies
to the role of the evaluation site in a NIST-style evaluation, which performs an evalua-
tion on classification results (predictions) instead of actual classifiers and generates the
typical statistics such as DET curves and error rates (see Section 2.5.7).

e Re-training. The performance of a pattern classification system heavily depends on
the available data. When more or better data becomes available, a simple rebuild of the
classifier can cause a considerable change in the classification performance. The idea
behind this use case is that a re-training can be performed without knowing details of
the classifier’s internals, such as pre-processing steps, audio features, or classification
algorithm. Thus, a classifier created by speech technology experts could be re-trained
even by users without background knowledge. Even an adjustment of classes is possible.
For example, if a change of age boundaries is necessary after an age classifier is deployed,
this would be enabled by doing a re-training and re-build of the module.

The application context is roughly defined as the area of audio-based classification. This
includes Speaker Classification as the most important area of Chapter 4 in this work, but also
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Figure 5.1: The most common SPEACLAP usage scenario Experimentation with the addition
of a deployment option. The depicted steps are corpus management, feature
extraction and analysis, classifier design and training, system evaluation, and
embedded module deployment.

speaker verification/identification, speaker diarization, acoustic event detection, and others.
To some extent it would even be applicable to speech recognition, although other tools are
more tailored to this special purpose. Digital sampled signals that do not represent audio, but
are stored in the same way and can be treated like audio, can also be used with the framework.
This has been done once as part of preliminary experiments for a gesture recognition task,
where the gestures were represented as acoustic signals produced by an electric field-sensing
device called Theremin (Endres, Schwartz, & Miiller, 2011). Here, the raw audio frequencies
represented distances from an antenna, which could also be interpreted as 2D coordinates for
two antennas.

Resulting from these usage scenarios and the application to the context of audio-based
classification, a number of requirements for an audio classification framework aside from the
main purpose can be concretized and formalized as follows:

Tailored to Speech. Some existing frameworks are quite powerful, but for the handling of
speech data, the user has to resort to external tools, e.g. for file format conversion,
resampling, visualization, and listening. A dedicated speech signal processing frame-
work should offer solutions to these and other common tasks related to audio data. For
instance, scripts for energy computation, frequency analysis, and extraction of wide-
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spread acoustic features should already be built into the platform.

Transparency. The background rule that guided this work has always been to hand over the
computation work to the machine, but to involve the experimenter and give feedback
at every point where a smart decision can make a difference. For the framework,
this translates to giving detailed background information about all processes being
performed, allowing intermediate representations of data to be studied, and generally
enabling the experimenter to customize as many aspects of the workflow as possible.

Integrated analysis tools. Data analysis is part of almost every classification task. The tech-
niques used for this analysis are recurring and therefore should be included in the frame-
work’s toolbox. Examples of such widely used techniques are graphical and statistical
analysis functions like the Gaussian distribution analysis, histogram, or correlation
analysis.

Extensibility. Even the most extensive framework cannot satisfy all possible demands. This
limitation can be circumvented by allowing its functionality to be extended by the
user. This is quite different from connecting the application to another application:
Using integrated scripting functionality, all data remains within the framework, an
object model allows custom and application-specific functionality to be combined, and
visualizations and other tools can be applied directly. For very popular application,
a real ecosystem of extensions can emerge, as is for example the case with MATLAB,
where scripts for various kinds of problems can be found in the web when needed.

Support for large data volumes. Audio data can become very large, with some corpora en-
compassing many gigabytes of raw audio data. Even the derived features or structures,
when computed on a per-frame basis, are massive. As more data is one of the keys to
better results, the framework should avoid imposing any limitations in addition to what
the hardware of the user’s machine allows. Moreover, methods should be optimized for
high throughput and parallel processing. Not being able to process high volumes of
data is one of the drawbacks of several other tools, and was one of the most obvious
reasons to create the framework. A particular example of how SPEACLAP accomplishes
this requirement is the selection of alternate data storage engines.

Common data representations. Solutions involving multiple tools are usually plagued by
data representation problems: Each tool requires data to be provided in a different
format, which leads to a lot of parsing and formatting code to be written, which in turn
costs the researcher valuable time and lowers the system performance. This framework
was created with the goal to use canonical formats and structures for all data within the
framework, e.g. corpora, meta data, features, and evaluation results. Even the features,
which can be physically stored in many ways, use a single FeatureTable interface for
script-based access. In addition, import and export of common formats such as CSV
should be supported.
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Results Archival. From a researcher’s perspective, the formal experiment results are probably
the most valuable outcome of pattern recognition tasks. Documenting these results
properly is therefore critical. A manual documentation can be tiresome, and in long
experiment series, single results can easily get lost or be confused over time. The IDE
should therefore take care of this process, preserving all data in conjunction with the
experiment description in a persistent format. This also makes it possible to follow a
development over a longer period of time and also compare results between completely
different projects.

Integration into applications. As stated initially in the research questions, the framework is
not only about creating classification technology, but also about deploying it. Thus,
there has to be an interface that allows the technology to be integrated into applications.
Simply using scripting within the IDE or an API to access the IDE externally would
only work with a small number of applications. An IDE is generally too monolithic and
has a focus that interferes with the demand for seamless integration. Therefore, the
framework requires a concept such as that of satellite modules which can be integrated
into applications, and of a build process to generate these modules.

Application-specific classification modules. The modules referred to in the previous para-
graph are in turn subject to more specific requirements: (1) They have to be platform-
specific to make them run in various environments and to have them take advantage
of platform-specific functionality. (2) They should be optimized in terms of runtime
performance, i.e. satisfy real-time requirements and work in incremental manner, if
necessary. (3) They should be scalable or even resource-aware, which means that they
can run both on platforms with limited resources, possibly trading of accuracy versus
speed, but can also take advantage of extra memory and processor speed in high-end
environments.

Rapid development. Rather a meta-goal, the importance of creating a framework that allows
a researcher to quickly set up a classification system for any new task has influenced
many other design criteria. One of the main reasons why the custom script-patching
approach is often favored in the first place, is because it frequently initially leads to
results in less time. If the purpose of a classification task is merely to judge the feasibility
of some idea, this strategy may indeed be faster than setting up certain powerful but
complex frameworks. Therefore, one requirement to the framework was to be at least
as fast as setting up an experiment manually through batch scripts. To accomplish this,
the user interface design is of prime importance.

Integrated environment. To support productivity, it was a goal to require the designer to
leave the IDE as little as possible. Therefore, all major functions should be accessible
from inside the main application. This promotes consistency across the development
process, saving time and reducing errors. It is still possible to connect external tools
when needed, but this should happen “under the hood”, without the user having to
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start multiple programs. Even the impression of multiple “sub-applications” as part of
a single framework should be avoided if possible, as is the case with WEKA.

Intuitive usage. Another requirement linked to productivity, making the application easy
to use and easy to learn was important. One more reason for reverting to custom
solutions is the effort involved with learning a new framework. Looking at the existing
tools, this concern seems justified. Especially applications created out of the research
community show a tendency to be very powerful, highly sophisticated, but difficult to
learn, particularly for users outside the community. Unlike many other tools, usability
has a high priority for SPEACLAP, in order to make it accessible to a large audience.

This chapter is not so much a description of the internal workings of this framework (although
such information is provided, too, when particularly relevant, e.g. for embedded modules),
but rather an illustration of features from the perspective of how an experimenter using the
framework could benefit most from them. This includes a description of some of the interfaces
that can be used to extend the framework with custom scripts.

5.2 Proposed Framework Architecture

Formally, we distinguish between the SPEACLAP framework and the SPEACLAP application or
platform. The framework is a superset of the application, which encompasses the context in
which it is used, including data access and deployment scenarios. The application (which is
implicitly referred to when the term SPEACLAP is used by itself) only reflects the development
environment portion, although that is the largest and most important part of the framework.

Figure 5.2 depicts the architecture of the whole framework. We can see that it has aspects
dedicated to the design phase of a system (left) and others dedicated to the running phase
(right). The application that is used to design and test the system, the SPEACLAP application
or integrated development environment (IDE), clearly belongs to the design-time — it is not
something that end users will see, neither is it intended to run on the back-end servers in
a call center. An expanded view on this component is shown in Section 5.3. The training
corpus and feature database belong into the design phase as well, as do any external tools
utilized by the framework “under the hood”. A special type of external tool is the SPEACLAP
cluster service, which is a service executed on a remote machine to coordinate processes such
as feature extraction or classifier training across the network. When the system has been
created and the classifiers have been evaluated from within the IDE, it may be time to deploy
it into a runtime or “live” context. This is when measures such as speed and scalability start
to matter. The IDE is able to spawn so-called embedded modules by compiling them for the
target platform. The result is usually a component such as a library, which can be integrated
into other applications. There are various “levels” of integration supported by the framework.
One involves the use of a client library, which performs the classification off-board, i.e. on
a remote server, which is appropriate for low-performance devices. As a special case, the
device might also offer a hybrid solution as depicted in Figure 5.2 (lower right), where the
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Figure 5.2: SPEACLAP framework architecture overview. For a description, see the text.

embedded module is used as a fallback with lower precision in case that no connection to the
server can be established. Last, the compiled embedded module itself can also be evaluated
and benchmarked in the IDE.

5.3 The Integrated Development Environment (IDE)

The term IDE refers to the user interface portion or front-end of the framework. It emphasizes
that a single parent application hosts a variety of tasks and tools, providing a seamless
appearance and consistent interface for users to work with, as opposed to switching between
tools and windows. The term is known from other widely used development environments,
such as Microsoft Visual Studio and Eclipse.

Following the usability lead goals of integration and rapid development, an architecture
has been created that satisfies the requirements listed earlier. An overview of the various
components and sub-systems of SPEACLAP is presented in Figure 5.3. This graphic shows
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Figure 5.3: Three-layer architecture of the SPEACLAP application. The script layer, which
is extensible through custom scripts, is connected with the native layer through
interfaces. Displayed Ul items, interfaces, and scripts are selected examples.

that the main parts of the IDE can be split into three interacting layers: The user interface
layer implements dialogs and visualizations. It is used to access the functionality implemented
in the native engines layer. This layer contains the “static” aspects of the platform, such as
the logic for project management, data access, and job execution. While these concepts are
themselves static, the implementations can usually be extended through the third layer, the
script layer. The script layer is connected to the native layer via interfaces, which tell the
engines how the scripts should be called. For example, classifiers are called through a classifier
interface which describes the methods that a classifier should support. Finally, much of the
essential functionality of the IDE is implemented in terms of scripts contained in the script
layer (also called script pool). Examples are given in the Figure.
In more detail, the areas of the native layer are:

e the data storage engine, which consists of functions for corpus management and fea-
ture storage;

e the job execution engine, which takes care of running lengthy processes, parallelizing
them or running them on remote machines when required while respecting dependencies
between them;

e the project and experiment management system, which is responsible for basic
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functionality such as saving project files, setting up complex experiments, rebuilding on
demand, etc;

e the report generation and evaluation engine, which is used to display reports on
data, e.g. corpora, features, or classifier scores generated by an evaluation run;

e and the embedded module compilation engine, which implements the complete
build process that is used to generate modules for deployment with the aid of scripts.

5.3.1 General Features

In this section, several basic, task-spanning characteristics of the SPEACLAP are introduced.

User Interface

The first comprehensive overview of the IDE was given in Feld and Miller (2009). After
that publication though, the IDE received a major user interface upgrade, both improving
usability as well as giving it a more modern look and a similar experience like with other
current applications. Figure 5.4 shows the main screen of SPEACLAP with a table containing
corpus meta data from TIMIT.

One of the noteworthy interface changes that went along with this update is the use of a
tabbed document environment instead of a multiple document interface (MDI). Most modern
IDEs and even web browsers use this style, where each document or document-like window is
represented by a tab in a tab list. Tabbed documents make it much easier to navigate between
documents than using multiple windows, which can occasionally overlap or even fully occlude
each other. Also, MDI requires the user to keep adjusting the layout all the time by resizing
and moving the windows, while tabs always use the full window space. The only downside of
tabs is that users cannot see several tabs simultaneously, which they may need e.g. to perform
drag-and-drop operations. It has been discovered that in SPEACLAP, such cases are rather
rare. Even if it should become a constraint at some time, the appropriate approach nowadays
would be to add split tabs (i.e. the window is split into two tabs) or docking tabs (tabs that
can be docked to the outer part of workspace, which does not change when navigating).

A second new interface concept is the ribbon, which replaces the traditional pull-down
menus and toolbars. It has become widely known since its introduction in Microsoft Office
2007, and has since been adopted by several other applications. It is focused very much
on usability, combining the strength of menus and toolbars alike: Like menus, it allows
categorization and provides labels for most items. Like toolbars, it shows icons and allows
visible commands to be executed with a single mouse click. The core design principles of
the ribbon can be summarized as follows: (1) Although seemingly intuitive, icons alone do
not help people much in finding functions (Wiedenbeck, 1999). Internal studies conducted
at Microsoft have confirmed that only few people remember more than approximately eight
commands in a program by the icon alone (Harris, 2005). Usually, the text (e.g. in form
of a tool-tip when hovering over the command) is used as confirmation before clicking on
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Figure 5.4: The main window of SPEACLAP, which consists of the “ribbon” menu/toolbar
unit, the tabbed documents interface (showing some open tabs and the Corpus
Files tab active), the main document content (in this case a corpus table view),
and the status bar containing e.g. system metrics.

an icon. Therefore, the ribbon uses much of its space for labels shown in addition to icons.
(2) The grouping of commands into a few major topics (called ribbon tabs), which are in
turn structured into sub-topics laid out across the same ribbon tab (called group), and the
initial visibility of the default tab, aid in discovering commands that would otherwise be
hidden deep inside complex menu structures. It also makes the interface more accessible to
new users, i.e. the learning curve is less steep. The topics are most effective when chosen
in terms of tasks. In case of SPEACLAP, the tabs have been designed according to the four
task categories general project management, system design, evaluation, and deployment (see
Figure 5.5). There are also some context-sensitive tabs, which appear only when a specific
type of document is active. (3) The ribbon follows the paradigm of never removing commands
or sorting them in a different place (with the exception of contextual tabs). One of the most
frustrating user experiences is not finding an item in the place where it used to be before,
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e.g. because some function is disabled or the system is in a different mode. Commands can
be disabled on the ribbon, but the groups always stay intact. (4) Traditional toolbars cannot
very well accommodate different screen sizes, since the buttons are static. The only option is
to change the number of buttons shown, which is not very comfortable when the overhanging
controls have to be accessed through a special “extension” menu. The ribbon, on the other
hand, can flexibly readjust its layout to fit the same commands onto a smaller space. It does
so by changing icon sizes and layout flow, and can selectively turn off labels. It does so in a
prioritizing manner, i.e. it saves space on the least important commands first.
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Figure 5.5: All four basic ribbon tabs of SPEACLAP (Project, Design, Fvaluation, and Deploy-
ment) in fully expanded state, as well as a contextual tab (Data Table) that is

active when data in table format is displayed. Further contextual tabs are Code

Editor, Text Document, and Chart. Access to settings resides in the “application

menu” (not shown) accessed by the button in the upper left corner of the ribbon.

A disadvantage of the ribbon is its higher space consumption when expanded, and the
inability to show commands from several tabs at once. However, it also allows some frequently
used commands to be added to a “quick access area” in the title bar for immediate access.

Project Management

The basic unit that ties together the parts related to a classification task is called a project. A
project could refer to an actual project, or relate to a speech property that is being researched.
It can also be reasonable to have a project for a specific set of source data on which a multitude
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of experiments are run. Each project consists of its own data, feature extraction scripts,
classifiers, experiments, evaluations, and embedded modules. All of this information is stored
in an XML-based project file, which is maintained by the application. It is possible to import
complete projects (this is referred to as attaching the project) or single objects from other
projects. Each project also has some project-specific settings, such as output paths, that can
be configured. All of this can be done from the project management tab.

A typical classification experiment consists of the steps outlined in simplified form in Fig-
ure 5.1: First, a new project is created (except when the experiment is a follow-up to another
experiment, in which case the existing project can be used). For new projects, some data
storages have to be configured to tell the application where it can store features etc. Next,
the corpus data is organized. This means that all audio samples that will be relevant to the
project are selected and labels are stored in a database. This process is also called corpus
import. Then, feature extraction scripts can be configured and run. This will build up a
feature database, which can be further analyzed using the integrated statistical tools. After-
wards, classifiers can be created based on any combination of features. Some classifiers can
be tested quickly, but more complex systems are evaluated in the following step. In this step,
an experiment can be set up, which will produce evaluation reports each time it is run. These
reports can again be analyzed to perform tuning and repeat the experiment with different
parameters. Finally, an embedded module can be created to integrate the classifier into other
applications. The ribbon shown in Figure 5.5 was created in a way that follows exactly this
ordering of tasks. Of course, there are also several optional steps that can be undertaken at
each stage, such as the configuration of corpus file filters.

Sometimes, the same project should be used simultaneously on multiple machines, e.g. to
run different experiments. For this case, projects can also be opened in “real-only” mode.
This allows the project to be shared without causing conflicts.

Extensibility through Scripting and Plug-Ins

SPEACLAP heavily relies on the concept of scripts to facilitate its extensibility ambitions.
Many kinds of operations allow different implementations from which the user may choose
one, and which should be extensible without modifying the IDE’s source code. Whenever
such an operation was encountered during the development, a script interface was created
that specifies the contract for the script function. At runtime, the user is able to select
the actual script to be used from all available classes that implement the corresponding
interface. An example of a very generic script interface is the experiment (the interface
is named IScriptJobCreator), which can generate a list of jobs that make up a single
experiment, including their dependencies. All script interfaces employed throughout the
framework are listed in Table 5.1.

There are many scripts already included in the application, but the user is not limited
to these scripts. There are two ways to add new custom scripts: through the integrated
code editor shown in Figure 5.6 or as an external assembly. Using the code editor is a
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Interface Name Description

IScriptAggregationFunction General aggregation function that aggregates several numeric (Double) values. Examples are
mean, max, and standard deviation.
IScriptAudioConversionTool Represents a (usually external) tool to convert files from one format to another. This allows new

audio file formats to be supported. For example, an integrated script uses the command line
utility SOX to convert between several formats.

IScriptAudioFeatureExtraction Script for feature extraction from raw audio data, which is provided as an array of 32-bit numbers.

This can be used for simple functions, such as determining the energy in the signal.
IScriptClassifierFeatureTable- Exports a feature representation of a trained classifier. For example, a GMM classifier could be
Exporter

exported as pairs of mean and variance for each Gaussian.

IScriptClassifierScoreModifier Used for score optimization. Contains one method to compute a score modification structure
(e.g. threshold) on the provided scores, and another method to apply that structure to the
provided scores to modify them. It can also be considered a simple type of classifier.

IScriptContentSerialization Applied to classes which require a special type of serialization, such as classifiers with very large
models. Using this interface allows the data to be serialized into multiple files, for example.

IScriptCorpusMetaDataReader Imports existing meta data for corpus files. This is used to support existing corpus formats, e.g.
TIMIT or GlobalPhone .

IScriptCustom Implements a generic script that can be run without a context.

IScriptDataTableExporter Exports arbitrary data tables to another file format to be used with third party applications.

IScriptDataTableImporter Imports data tables from another file format to be used with SPEACLAP, e.g. as feature tables.

IScriptDynamicMetaDataGenerator  Generates meta data for corpus files. This is often used to define classes for numeric ranges, e.g.
to convert the 'Age' of a speakerinto an 'AgeClass .

IScriptEvaluationPerEvalHook A script that is executed once at the end of an evaluation to produce additional results.

IScriptEvaluationPerResultHook A script that is executed for each file during evaluation to produce further statistics.

IScriptExperimentSeries Sets up the workflow for multiple experiments with different parameters, including optimizing
series such as hill-climbing.

IScriptFeatureExtractor Produces features based on corpus files (audio data) or other (intermediate) features.

IScriptFeatureScriptOutputParser Parsesthe output of command scripts for feature extraction into a default table-based format.

IScriptFeatureTableExporter Exports feature tables to another file format to be used with third party applications.

IScriptFeatureTableImporter Imports feature tables from another file format to be used with SPEACLAP. Using this interface
eliminates many size limitations.

IScriptFileScoreProvider A script that is used to compute scores for each file in a corpus. This can be commonly used in
balancing, where corpus files are assigned scores based on their length.

IScriptItemListFilter Afilter that is applied to a list of string values and produces a list of 'included' values. Item list

filters can only be based on the values of s single column (the filter column). A common example
is the corpus file filter, which is applied to a list of corpus files.
IScriptJobCreator Creates a custom set of jobs for a specific task. This is mainly used to configure experiments.
IScriptLiveItemFilter Afilter that is applied to a single instance to determine whether the instance is included in the
selection or not. Live filters are sometimes slower than Item List Filters and not applicable if the
whole list of items has to be known, but require less memory and no extra table iteration.

IScriptModClassifier A classifier that can be used in an embedded module.

IScriptModComponent A generic component in an embedded module. Some other interfaces inherit from this.

IScriptModFeatureExtractor A feature extractor that can be used in an embedded module.

IScriptModInterface An additional external interface for wrapping an embedded module, e.g. a Java interface.

IScriptModPostProcessor A post-processor that can be used in an embedded module.

IScriptMultilabelClassifier- Is used in conjunction with multi-label classification results provided as class-specific scores to

WinnerDetermination determine the winner. The default is to choose the class with the highest score.

IScriptNetNodeAssignment Used to assign cluster nodes to commands when job execution is performed on remote PCs.

IScriptNormalization Used for normalization of values. Contains one method to compute the normalization dataon a
set of samples, and another method to apply the structure to a new value.

IScriptParameterscript Converts external feature extraction script parameters from one value to another before they are
sent to the script.

IScriptReportExporter Exports certain types of custom report results. For example, charts can be saved as bitmaps.

IScriptReportGenerator Genericinterface for scripts that generate any type of report. Each script can decide whether it

can work on a specific type of input, and can select between different types of output it can
provide (text, charts, images...).
IScriptTableModification Modifies the structure or contents of a data table. Can be used to pre- or post-process features.
IScriptValuePlotter Creates a chart based on a set of numeric (feature) values. Some features may have a particularly
useful visual representation.

Table 5.1: List of all script interfaces implemented in SPEACLAP. Each interface allows the
extension of the framework through writing of user-defined scripts.
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Figure 5.6: The integrated code editor of SPEACLAP.

very comfortable way of extending the framework. Each project can have one or more code
modules, which can be edited directly from within the IDE. All the user has to do is select
the desired interface from a list and fill in the functions that are created as part of a script
template. The code can be written in either C# or Visual Basic .NET, which is directly
compiled. It is even possible to write temporary scripts “in-line” at the time when the script
is needed, i.e. from the script selection dialog, such as a small value conversion function.
In case of longer scripts, the code editor may not be the best choice in terms of comfort,
as it is missing IntelliSense and other supportive functions known from major programming
environments. Therefore, it is also possible to write scripts with an editor such as Visual
Studio, compile it, and put the resulting .NET assembly in a special “plug-in” directory that
is scanned on startup. The experiments described in the previous chapter were set up this
way.

A lot of scripts are parameterized. SPEACLAP will automatically discover all public fields
of the class containing the script and list them as parameters that can be configured in the
same dialog where the user also selects the script. It is even possible to provide customized
editors for parameters of a special data type.

Listing 1 shows an example of a feature pre-processing script. The basic outline (class
definition and method frame) was created by the code editor after the IScriptFeature-
Transform script interface has been selected. The remaining code was inserted by the user



5.3 The Integrated Development Environment (IDE) 169

Listing 1 Sample feature pre-processing script for trimming value ranges.

class TrimmingScript
implements IScriptFeatureTransform

public double Range = 10.0

function double Transform(double 0ldValue)
if 0ldValue > Range then Return range
else if 0ldValue < -Range then return -Range
else return 0ldValue
end function
end class

and demonstrates a simple trimming that can be applied to any numeric feature values. The
public field Range is the script’s only parameter.

Job Execution Engine

In machine learning, we often encounter processes that need a considerable amount of time
to complete, either because they involve large amounts of data or because they are compu-
tationally expensive. In SPEACLAP, there are two concepts to mitigate the implications of
this: The first is that options for clustered computing are an integral part of the system,
which allows time-consuming computations to be distributed to other machines. The other
concept is that of job queue management, which allows the user to configure and plan several
processes in advance and then run them sequentially.

Processes that may potentially be lengthy are implemented as jobs. Common examples
for jobs are feature extraction, classifier training, classifier evaluation, and embedded module
building. Jobs can be added to a global queue, provide status information about their progress
and have an associated rich-text log containing messages, warnings and errors. The job
execution engine is responsible for executing the jobs and for distributing the commands to
different machines on the cluster (nodes). On a single machine with multiple processors,
the job engine can also schedule multiple jobs to run in parallel. While the job itself is an
integrated program that is run inside the IDE, the job can create commands, which can
be executed independently on remote nodes. There are different types of command, which
represent various script calling interfaces that will be further discussed in conjunction with
feature extraction scripts in Section 5.3.3, such as executable. Currently, executables are the
only commands that can be run remotely.

Remote execution is facilitated through the SPEACLAP Cluster Service. This service com-
ponent implemented in .NET is essentially a TCP server and platform-independent. It has
been successfully employed on a Linux cluster in conjunction with the Mono runtime. It can
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be automatically installed and started from within the IDE over an SSH connection. Once
the service is running, the node is available to SPEACLAP. A global setting specifies the num-
ber of nodes to be utilized. When the job execution engine receives new commands, it waits
until a node is idle and then sends the command to that node. The result of the command
is returned to the engine using a backchannel in the service.

As operating system and file paths may differ between the IDE and nodes, command lines
cannot be transferred 1:1. Instead, command packaging is performed. For this to work, the
commands created by jobs must be composed of individual segments. Segments that refer
to corpus files, temporary files, output files or other special items that have to be adjusted
for the remote system must be added as a special type of segment. This way, both the job
engine and the remote service can perform the required adjustments to the command line,
such as replacing a temporary file argument with a newly generated local temporary file.

SPEACLAP allows the user to view and control the status of jobs in the customizable job
queue tab (see Figure 5.7). In this tab, jobs can be started and stopped, logs can be studied,
and settings can be changed. The settings include the number of processors used and the
amount of output generated. It is also possible to have all logs sent to a specified email
address when the jobs have finished, which can be helpful with lengthy experiments. Each job
reports a status in terms of current operation, running time, percentage completed, generated
warnings and errors. It is up to the implementation of the job to provide meaningful values
for each of these (except for the running time). For jobs that run external commands, the
state of the command queue is also logged.

New jobs can be created using one of several methods: (1) By selecting the job in the
Available Jobs tab and selecting Run or Enqueue on that tab. Run will simply execute the
job immediately, while enqueue adds it to the current job queue and allows it to be executed
later together with other jobs. To understand how the Awvailable Jobs list works, one has to
know that many of the objects in SPEACLAP have jobs implicitly associated with them: A
classifier has an associated training job, an evaluation has an evaluation job, an experiment
has a whole list of associated jobs etc. The Awailable Jobs list actually scans through all
objects in the current projects which provide such implicit jobs. (2) By selecting an object
directly and then choosing the Run or Enqueue commands from the ribbon. For example,
if a classifier is selected in the Classifiers tab when Run is pressed, that classifier will be
trained. (3) Using a method specific to the type of selected object, e.g. choosing Train from
a classifier’s context menu. (4) Through code from within a script.

Between some jobs, dependencies may exist. For example, a classifier training job may
depend on a feature extraction job that computes the features used in the training. Taken
together, a job queue represents a dependency graph, where each job node can have a depen-
dency on one or more other nodes. This graph imposes an ordering in which jobs must be
executed. This ordering is especially important when parallel execution is used, because it
can sometimes prevent that the maximum number of parallel processes is started. SPEACLAP
does only start jobs when all incoming dependencies are satisfied. Some dependencies are
automatically detected by the IDE based on the data source, while others have to be specified
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Figure 5.7: The job queue window lists all jobs with their current status.

in the experiment definition.

Each job can also have child jobs, which it can create at any time during execution. In the
job queue, these are indicated by indention. When one or more child jobs are spawned, the
execution of the main job is deferred until all child jobs have completed. The advantage of
this mechanism is that the child jobs will also be parallelized if possible. An example is the
training of a multi-label classifier, where each class can be trained separately.

Experiments and Experiment Series

An experiment in the notion of SPEACLAP is a script that generates a list of jobs according
to a specified configuration. It usually combines all stages of a pattern recognition task and
ends with the creation of several report documents. Instead of running feature extraction,
classification, and evaluation manually one after the other, the experiment takes care of
this automatically. It can also configure special dependencies between scripts that are not
automatically detected by the IDE, thus allowing certain jobs to run in parallel. Experiments
are quite useful when multiple parameter configurations should be run with otherwise identical
conditions. By using an experiment script, the chance of mistakes by selecting the wrong items
or running jobs in the wrong order is considerably reduced.

Experiments can easily be set up using a wizard-style interface called the New Experiment
Wizard (see Figure 5.8), which presents a selection of experiments, a list of experiment param-
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Figure 5.8: The New FExperiment Wizard allows quick execution of existing experiments with
different parameter configurations. This screenshot shows the configuration of the
FRISC main experiment series.

eters, and allows title and description for the report to be specified. It also allows a previous
experiment to be re-run. If a large number of experiments has to be run, even this comfortable
method can become tedious at some point. Therefore, the concept of an experiment series
was additionally introduced. Experiment series are special scripts that run experiments with
multiple configurations in a specific order. The order can be adjusted dynamically during
the experiment. An example is a parameter space hill-climbing implementation: For any
number of experiment parameters, such as the MFCC extraction step width, the settings
to be examined can be configured. Like in the main experiment series, all parameters will
then be explored consecutively. The configuration for the following parameter depends on
the best-performing setting of the current one. The criterion, e.g. error rate or accuracy, can
be chosen freely.

5.3.2 Corpus Management

Before any analysis can be done, the speech needs to be available. A speech corpus is a
database of related wave samples with annotations. Each sample in the corpus is related to
exactly one audio file and has a unique file ID. There is no technical definition as to when two
files should be in the same corpus (except that they must have the same audio format); it is
up to the user and can be freely set up whichever way is most purposeful for the project. For
example, one might create corpora based on the origin of the data or the recording conditions.
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Audio Formats

One nuisance that arose several times prior to the introduction of SPEACLAP was the absence
of a common file format for both the speech corpora as well as for the feature extraction tools,
so that the audio files often had to be converted manually between different formats multiple
times. To avoid this, SPEACLAP requires a copy of the audio data in raw uncompressed linear
PCM format. It can import and convert the files from several popular formats such as WAVE,
AU, a-law, u-law, and NIST Sphere. Also, when a tool requires audio data in a different
format, the corpus system will handle the conversion into the required format automatically
and keep a cached copy of the files in this format until the disk space is needed. The corpus
data can be stored in a shared network location to be usable from multiple projects.

Each corpus has a specific “native” audio format. This format is made up of sampling
frequency, bit rate, and number of channels in the sound files. The native format is supposed
to be the original recording format and that with the best quality, so this format is always
kept. As with the file format, the speech samples can be converted on-the-fly to almost every
audio format if requested. This enables the classifier designer for instance to build speaker
classifiers for both a local as well as a phone-based scenario with a low quality voice channel
by only changing a single setting.

Meta Data

Meta data is the information associated with a single speech sample beyond the actual digi-
tized LPCM signal. There are three types of meta data: Basic data, static data, and dynamic
data. Basic meta data are fields like a unique ID, file name, timestamp, and length. This
information is present for all corpus files. Static meta data are the annotations or class labels
that are provided by an external database and that do never change. Dynamic meta data
differs from static meta data only in the way it is computed, which is using a script function
that may be based on one or more other fields. For example, the static field BirthDate may
contain the exact date of birth of the speaker and RecordingDate the date when the sample
was recorded. To retrieve a representation that is more suitable for analysis and classification
however, the dynamic meta field Age is created and computed from the other two fields using
a simple script. Further dynamic meta data might map the integer Age to a nominal Age-
Class. Values of dynamic meta data fields are cached, but can be updated when the script
changes. The dialog that is used to manage corpus meta data is shown in Figure 5.9.

Filtering Corpus Files

Corpus file filters based on meta data represent a convenient way of selecting subsets of corpus
files, e.g. for feature extraction or classification. They are implemented as human-readable
filter rules that restrict the choice of corpus files by certain conditions.

For example, in FRISC, we often want to consider only some age groups, thus, as an
alternative to creating an AgeClass meta field, a filter rule to select just adults between 25
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Figure 5.9: Corpus Properties dialog. The active tab displays a list of static and dynamic
meta properties and their data types, including commands to add more.

and 60 years could be written as:

age > 24 AND age < 61

Corpus Reports

Besides the basic functions for adding, deleting, and configuring corpora, the corpus man-
agement view provides some reports. One of them displays the complete meta data table for
a corpus. A second report computes statistics for each meta feature, such as the available
labels and their share (for nominal data), or range, mean and standard deviation (for cardinal
features). It also allows quick listening to any sample in the corpus.

5.3.3 Feature Extraction and Management

Features are the pieces of information on the basis of which a classifier makes its decisions,
hence choosing the right features is a key in creating a good classifier. The computation
process is called feature extraction. They are usually computed by applying signal processing
algorithms to the speech data, but in theory, anything can be used as features, including the
output scores of other classifiers. If dynamic meta data is used for classification, it is used as
a feature in this sense as well.

Feature Tables

The basic storage unit for features both in memory and on disk is called a feature table. It is
basically similar to database table, but with a more constrained structure and additional meta
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information. A feature table has one column for the primary key and one column for each
feature that it contains. The feature columns can be of any of the supported feature types:
nominal (string or bool), cardinal (int, long, or float), or binary. Every row (or record) in the
table needs to have a unique primary key. The type of primary key may vary depending on the
semantics of the features extracted. In many cases, when one feature is extracted per corpus
file, the primary key will be the ID of the corpus file. If features are computed for segments
within corpus files, the segment ID must also be part of the primary key. Feature tables also
support NULL values in their records, which denote a missing feature value. Further, feature
tables can have arbitrary meta properties, but a set of defined default properties is always
supported, such as their creation time, source audio format, or the script by which they were
extracted.

Extraction Scripts

The feature extraction is done by running scripts (see Figure 5.10). A feature extraction script
defines where the program or code used for computation is found and how it is executed.
SPEACLAP can run executables, integrated and custom scripts. In the future, the addition of
further interfaces like PHP scripts and Web Services is possible. The script can be configured
in several ways that allow for the quick integration of most existing tools for feature extraction.
For executables, command line parameters can be defined, which may also be feature values,
script-generated values, temporary files, input files, or output files. Small scripts written
within the IDE can be applied to feature values before they are sent to the tool or after they
are received again, so that the values can be formatted to the tool’s needs. For executables,
an output parser can be specified, which reads and interprets the information returned by the
tool — either as a text file or on the console — into a table. A default CSV parser is included.
Custom scripts implement the IScriptFeatureExtractor interface, which has an Extract
method that returns features already in table format, so there is no parsing needed.

Feature extraction scripts also can have different call semantics, which are determined by
the workings of the script and must be specified by the user. The most common pattern is
that a script is called for every single record and it outputs a single record. Some scripts
however may perform time-consuming start-up operations, but can handle multiple records
in one call. In this case, SPEACLAP can also provide all records in one call. A special case is
per-class computation, where the script receives all instances belonging to a specific class in
each call. Apart from the call pattern, the output semantics can also be different from the
input settings. For example, the script that processes all records from one class in a call may
also return one result for each record, or it can compute a single record for the whole class. In
SPEACLAP, the setting output grouping controls the semantics of the output and can be set
to None, Corpus file, Class, and Custom. As long as the output table is grouped by corpus
file, the original file meta data remains linked to the features.

In general, the commands that need to be executed to extract the features are first generated
as a single batch and then executed locally or on different machines. A special functionality is
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Figure 5.10: Assortment of feature extraction scripts in a project.

delayed input data collection. If one of the input features requires a large amount of memory
and cannot be written to a batch file in beforehand, a placeholder is instead created and
the feature is only extracted when the command is finally executed. This function works
in conjunction with storage providers, which must supply so-called “getters”, i.e. function
pointers that can be called to retrieve a single feature value, and which will only occupy the
space needed for the pointer in memory.

To perform a feature extraction, a feature extraction configuration is created. A configu-
ration consists of one or more predefined feature extraction scripts and parameters for each
script. Parameters can include custom script parameters or settings for command line argu-
ments to the executable. There are also two default parameters for every script, which are
input and output. The input to a script can either be a set of audio files on disk (i.e. a reference
to corpus files), an existing feature table, or the output of another script. When using files on
disk, the file format, audio format, meta data-based filter, and additional waveform transfor-
mations can be specified. For existing features, it is not only possible to select a feature table
present in one of the storage providers, but custom tables can also be composed on-the-fly,
which is one of the more powerful capabilities of the framework (see the sections below).
Output from scripts is kept in a special temporary feature store when it is needed as input to
other extractors. Otherwise, a storage provider can be chosen by the user. The order in which
scripts are executed is derived from dependencies between scripts. Scripts that are indepen-
dent can be executed in any order. It is possible to save feature extraction configurations and
restore them later. Each table “remembers” the complete configuration that produced it, so
that in the future, it will be possible to automatically re-extract features when needed.
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Storage Providers

As there can be many files in a corpus and a lot of interesting features to be investigated,
the amount of information that has to be processed and stored can become very large. This
is especially true when features are computed for small segments of audio data. To handle
this volume, SPEACLAP supports multiple feature storage providers. A storage provider can
handle and optimize the following aspects of feature access:

e Storage of feature table descriptions (meta information)
e Storage of the actual feature data
e Listing and retrieval of feature tables

e Caching of feature data.

There are several reasons why having multiple storage providers is useful. First and fore-
most, the performance of a storage provider can vary a lot depending on the structure and
amount of feature data and the physical platform used for storage. For example, some stor-
age engines work well with many features (columns) but are not suitable for storing a lot of
records (rows). Another example is a database engine like MySQL, which works very fast
when many small records are stored, but may become rather slow if the records or table size as
a whole get too large. To counteract this, SPEACLAP includes a storage provider that writes
records to individual binary files and is also suitable for large records. Also, some feature
extractions such as n-gram builders do not produce a fixed vector, so they cannot easily be
stored in a normal database table. Again, the IDE has a custom provider for this that can
handle dynamic feature vectors. Table 5.2 lists all providers that are currently implemented.
Another motivation is that storage providers can provide direct interoperability with other
utilities by accessing data stored in custom formats. For instance, one of the integrated
providers can read and write feature data from and to a CSV' file, so it is possible to share
this data with other tools that support that format without explicit conversion. Lastly, using
the generic interface that is exposed by all storage providers, it is easy to make any kind of
other information available to classifiers in the same way as features. Consider corpus file
meta information: The CorpusMetaStorage provider exposes all meta information as feature
tables, so the classifier can use audio duration and other data like any other feature. This
and similar providers however do only support reading existing tables, not creating new ones.

Feature Retrieval

Large feature tables do not only pose challenges to storage, but also to retrieval of their
contents. Some popular machine learning frameworks like WEKA require all features of a
table to be kept in memory for processing. This can limit the type of experiments that

LCSV = comma-separated values. A CSV file is a text file with one record per line. The actual format can
vary within certain bounds w.r.t. field separation, quotation, decimal places, and others.
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Provider Name Description

MySQL Stores features in a MySQL database using one database table for each feature table.

ESENT Uses the Extensible Storage Engine, which is a native part of Windows.

Binary File Store  Uses a custom fixed-length binary record for storing data. Multiple records can be
stored in a single file based on a secondary key to improve performance.

Multi File Store Stores one record per file, making it suitable for large but few records. Additionally,
each file can have its own fields in order to support dynamic feature vectors.

csv Stores datain a simple .csv file for maximum interoperability with other tools at the
cost of performance.

Table 5.2: Several data storage providers are already integrated into the platform.

can be performed with these tools considerably. Nevertheless, it usually is the fastest way of
accessing features. To combine both aspects, feature tables in SPEACLAP support two ways of
data retrieval: table-based and enumerator-based. The table-based method reads all records
into a single table structure that is compatible with the System.Data.DataTable class used
throughout the .NET Framework. Because physical access to the data is only needed for a
single call, traversal of the table rows is extremely fast, especially because data is kept in
RAM (if available). The enumerator-based approach maintains a pointer, which starts at the
first record and can be advanced to the next record until all data has been enumerated. As
only the current record is kept in memory, this method does not suffer from any memory
problems. It is however up to several times slower because the data structures need to be
updated for each record, and because multiple physical accesses to the same file may be
needed. This is a place where an enumerator can be optimized. For instance, the MySQL
storage enumerator always queries 1000 rows in each SQL SELECT statements instead of just
one. Obviously, the more caching is applied, the more memory is needed again. Another
disadvantage of enumeration is that there is no row count available, i.e. the total number
of rows is not known beforehand, which may require different formulas for some filtering or
feature computation algorithms. One more difference between the two versions is that the
enumerator is uni-directional, i.e. records can be traversed only in one direction, while tables
allow instant access to any row by its index. Again, this can affect the way scripts work with
the data and can also result in a performance decrease.

Each storage provider is responsible for implementing the data retrieval methods. Only the
enumerator-based method is mandatory because it is guaranteed to work independently of
the table size. Table-based access can be emulated by simply collecting the records returned
by the enumerator, although this may not exhibit the best performance possible.

Joining and Filtering Feature Tables

When working with features, it is often not sufficient to use the tables in their original form.
Feature tables from physical storages have a fixed layout, which is typically dictated by the
tool with which it was created. For example, a feature table created for FRISC using the
Praat tool would contain common Praat-based features such pitch _mean, pitch_mazx etc.
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Furthermore, the features may be distributed across multiple tables for different corpora or
subsets of audio files, because not all files are extracted in one run due to time considerations,
for the same reason that not all features may have been extracted for all files. And finally,
there often exist multiple versions of the same basic features but extracted with different
parameters.

Feature tables are used by several components such analysis tools, exporters, other feature
extraction scripts, and classifiers. Consider for example a classifier: It is created by selecting
a set of features, which may stem from different features tables. For this purpose, there is a
special compound feature table, which is accessed like any other feature table, but is dynami-
cally created from other tables. It does not contain any actual data, but rather retrieves and
parses the data from the underlying tables on-the-fly while it is being enumerated. It is also
possible to build compound tables on top of other compound tables, which is similar to the
concept of operator chaining known from YALFE (Ritthoff, Klinkenberg, Fischer, Mierswa, &
Felske, 2001).

SPEACLAP supports horizontal (or feature) joining and vertical (or instance) joining of
feature tables (see Figure 5.11). Horizontal joining is performed when multiple tables contain
different feature of the same instances, while vertical joining occurs when several tables store
identical features, but differ in primary keys. It is also possible to cope with advanced
combinations of both, which may require specification of some rules for conflict resolution.
For example, features with identical names may be different or not. Keys for which not all
features can be gathered from all tables can be dropped or be complemented with NULL
values. Joining of feature tables is done incrementally when using the enumerator-based
access and with complexity O(n). This is possible because all feature tables are already
sorted by their primary keys.

Feature Versioning and Archival

A topic that is sometimes disregarded in other tools is that of data archival. Prior to the IDE,
working with features required manual data management and archival, which translates into
giving descriptive names to files and database tables, and creating a folder structure. Doing
this manually is however both error-prone and time-consuming, and if neglected during times
when many new results arrive and need to be processed, some results may even be lost. But
even if done carefully, each experiment is subject to so many different parameters that a single
label, such as the filename, cannot hold it all. As a consequence, the researcher often has to
look at the actual data to determine — or sometimes guess — the original context. Moreover,
it is very hard to sort and filter the information to quickly find what is needed for a particular
experiment, something that has been a cause of nuisance in earlier work.

Because long-term data management is considered an important subject, SPEACLAP has
ample built-in support for it. First of all, when a feature table is created, an array of meta
information, e.g. creation date, source corpora and files, audio format, and feature extraction
configuration, is stored with it. To browse features, the feature browser depicted in Figure 5.12
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Horizontal join

[ [ f | P2 [ F3 | [ [ fra | 5 [ F6 | | F2 [ r2 | B [ Fa | F5 | F6 |

244 545 23.76 W 143 62.59 414 e 01244 545 23.76 143 6259 4.14

W27 477 2258 146 5548 477  mmwwsm |0 276 477 2258 146 5548 477

237 499 2381 118 5421 4.06 =237 499 2381 118 5421 4.06
Vertical join

[ [ f | 2 [ F3 | [ [ | 2 [ F3 | | F2 | 2 [ F3 |

WW244 545 2376 PEM260 512 2146 —— 1244 545 2376

276 477 2258 3295 478 2244 [r— 276 477 2258

237 499 2381 B263 506 2238 1237 499 2381

2.60 o1l 21.46
[ 2.95 4.78 22.44
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Combined join (with missing values)

[ [ f | P2 [ F3 | [ [ k2 | 3 [ Fa | | F2 [ F2 [ F3 [ F3 |
244 545 23.76 BEls77 2258 146 | 0244 545 23.76  NULL
276 477 2258 Bl299 2381 118 messm | 276 477 2258 146
237 499 2381 Els12 2146 131 [0 1237 499 2381 118

»JNULL 512 2146 131

Figure 5.11: The three modes of joining feature tables supported by SPEACLAP. If features or
record IDs are duplicate in the source tables, they may produce missing (NULL)
values.

provides an explorer-like user interface made up of a tree view and a sortable list view, where
features can be scanned and selected. There is also a search function for looking for features
with specific criteria across all storage providers. From the same place, the feature table can
be displayed and analyzed using the table analysis tools integrated into the IDE. It can also
be exported to CSV, Excel, and several other formats.

To conserve space and simplify management, there is a default feature table for each con-
figuration of source files and feature extraction script. If the features are extracted multiple
times, possibly with slightly different parameters, the old features are overwritten unless the
user specifies otherwise.

5.3.4 Classifier Design

Based on the features extracted in a prior step, classifiers can be trained and evaluated from
within the GUI. SPEACLAP distinguishes between design-time classifiers and runtime classi-
fiers. Design-time classifiers are only part of the development framework and are implemented
as .NET scripts, while runtime classifiers are the ones that are embedded into the final ap-
plication as C++ code and controlled via their API. Runtime classifiers cannot currently
be trained, but are created directly from existing design-time classifiers and use the stored
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Figure 5.12: The feature browser enables the user to browse all data stores, list individual
tables and also filter for particular features.

Script Name Description

RandomSubsetFilter = Randomly selects a range of files (e.g. 0% - 90%). Can be initialized with a static
seed to allow evaluation to work on the remaining part.

AbsoluteNumberFilter Selects n files, either randomly or not.

IDListFilter Selects a user-defined set of files as defined by an externally provided list of IDs.

ClassBalancingFilter Reduces the number of files per class until each class contains equally many files.

Table 5.3: List of file filter scripts already included in SPEACLAP.

model. Design-time classifiers support a more sophisticated interface, including serialization
and conversion into runtime classifiers.

For every classification problem, a design-time classifier is created, thus a project usually
consists of several classifiers. Before it can be trained, the features have to be selected from
all available data sources using the feature browser. It is also possible to apply dynamic
post-processing steps such as normalization and custom scripts, and to filter files based on
corpus and meta properties. There are also some filters which work purely on the file list
and are commonly used to select files for training and for evaluation. Some important file
filters are listed in Table 5.3. Then, the class property is picked from the list of corpus meta
properties. Finally, the classification algorithm is chosen.

In the current version of SPEACLAP, only the classifiers used as part of FRISC have been
implemented, i.e. GMMs with K-means initialization and MAP adaptation (using a custom
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«interface»
IClassifier

+BuildClassifier(eing. instances : FeatureTable, eing. parameters)
+Classify(eing. instances : FeatureTable) : double[][]

+GetName() : string

+GetFlags() : int

Figure 5.13: Interface which is implemented by all classification algorithms (UML class dia-
gram). eing. stands for input arguments.

implementation), and SVMs using either svm-lite (Joachims, 1999) or LibSVM (Chang & Lin,
2011). Both implementations have been optimized with respect to parallel and incremental
processing and size limits. Fo