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Abstract

Detecting optical flow means to find the apparent displacement
field in a sequence of images. As starting point for many optical flow
methods serves the so called optical flow constraint (OFC), that is the
assumption that the gray value of a moving point does not change
over time. Variational methods are amongst the most popular tools
to compute the optical flow field. They compute the flow field as min-
imizer of an energy functional that consists of a data term to comply
with the OFC and a smoothness term to obtain uniqueness of this
underdetermined problem. In this article we replace the smoothness
term by projecting the solution to a finite dimensional, affine subspace
in the spatial variables which leads to a smoothing and gives a unique
solution as well. We explain the mathematical details for the quadratic
and nonquadratic minimization framework, and show how alternative
model assumptions such as constancy of the brightness gradient can
be incorporated. As basis functions we consider tensor products of
B-splines. Under certain smoothness assumptions for the global min-
imizer in Sobolev scales, we prove optimal convergence rates in terms
of the energy functional. Experiments are presented that demonstrate
the feasibility of our approach.

Keywords: optical flow, optical flow constraint, variational methods, pro-
jection methods, tensor product B-spline

MSC2000 Classification: 65F22, 68T45

1 Introduction

In digital image analysis, motion detection in image sequences is an impor-
tant problem for tasks ranging from robot navigation to video compression.
A key concept for characterizing motion in an image sequence is the no-
tion of optical flow, the apparent displacement field between corresponding
structures in subsequent images. The existing literature about optical flow
problems is enormous. Thus, we only give a short overview which by far is
not complete and refer the reader to [28, 38, 41] for more detailed surveys.
Horn and Schunck [20] were the first to present an approach for a solution of
the optical flow problem by minimizing an energy functional. The formula-
tion of this functional relies on two fundamental assumptions: the constancy
of brightness over time and a smoothness assumption. These requirements
have been modified in numerous ways [1, 2, 4, 14, 15, 22, 29, 30, 32, 36, 42],
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but are still the starting point for todays variational solvers. Also in 1981
Lucas and Kanade [24] presented another approach which computes the opti-
cal flow field by solving a local least squares problem. The idea to see optical
flow problems in the framework of inverse problems is not far fetched. Yet
in 1988 Bertero, Poggio, and Torre [7] published a very nice overview of
ill-posed problems in image analysis. They formulated the computation of
optical flow as inverse problem and presented an approach by minimizing a
Tikhonov-Phillips functional. Since the development of new solvers for the
optical flow determination was very rapid in recent years, criteria to evalu-
ate and compare the different methods became of growing importance. We
quote Barron, Fleet, and Beauchemin [6] and Galvin et al. [16] as standard
references concerning the evaluation of a number of classical optical flow
methods. More recently, a variational method by Brox et al. [10] and subse-
quent modifications [3, 11, 12, 33] have led to highly accurate results. In spite
of their complexity, at the heart of such methods is still the minimization of
an energy functional consisting of a data and a regularization term.

The popularity of variational methods for regularizing the ill-posed problem
of optical flow estimation serves also as starting point for our considerations.
The goal of the present paper is to introduce an alternative regularization
concept into the application field of optical flow estimation. In the ill-posed
problems community, Natterer proved in [31] that projection methods have
a regularizing effect, see also Louis [23]. Although such a regularizing effect
has also been mentioned by Szeliski and Coughlan in a paper on spline-based
image registration [39], a mathematical investigation of projection methods
for optical flow estimation is missing so far. In the present work we address
this problem. The idea is to minimize a functional in a finite dimensional,
affine subspace. Thus, the resulting optical flow field is uniquely determined
as solution of a system of equations and has any desired properties if we
only choose the subspace and the corresponding basis functions properly. In
order to make the basic principles as clear as possible, we stick to relatively
simple optical flow assumptions. Thus, our goal is rather to introduce a new
direction of optical flow methods than to compete with the current state-
of-the-art. Projection methods offer a number of properties that might be
appealing in the optical flow context, for example regularity estimates or the
flexibility to incorporate certain constraints in an elegant way. In the area
of inverse problems projection methods are also used to get asymptotic error
estimates for solvers as e.g. in the article of Rieder and Schuster [34].

Our paper is organized as follows. In section 2 we give a short description
of general variational approaches for optical flow computation. Section 3
outlines how projection methods can be used to solve the variation problem,
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where the energy functional to be minimized essentially consists of the data
term. We present ideas how to solve the arising system of linear or nonlinear
equations. In section 4 we prove that the residual error always is optimal
in the sense that the error is bounded by a multiple of the approximation
module of the applied basis functions. In case of the application of tensor
product B-splines we are able to present the convergence rates explicitly.
Finally section 5 contains some numerical experiments with tensor products
of piecewise linear splines which show the performance of the method. The
paper is concluded with a summary in section 6.

2 Variational computation of optical flow

Let Ω ⊂ R
2 denote a rectangular image domain. We assume that a sequence

of images
f(x1, x2, t) , (x1, x2) ∈ Ω , t ∈ [0, T ]

is given, where f(x1, x2, t) denotes the gray value of the pixel x = (x1, x2) at
time t. Recovering the optical flow field u = (u1(x1, x2, t), u2(x1, x2, t), 1)>

means to find the apparent velocity

(u1, u2)
> =

(
∂x1

∂t
,
∂x2

∂t

)>

of a structure that moves along its trajectory (x1(t), x2(t))
>. Many optical

flow computations are based on the so-called optical flow constraint that
assumes that the gray value of a pixel does not change over time. In this
case we have

0 =
df(x1(t), x2(t), t)

dt
= fx1

u1 + fx2
u2 + ft = 〈u,∇f〉 , (1)

where ∇ := (∂x1
, ∂x2

, ∂t) denotes the spatiotemporal nabla operator. Obvi-
ously the optical flow constraint (1) is not sufficient for a full reconstruction
of u. Thus, one furthermore postulates smoothness conditions for u. In gen-
eral, variational optical flow computation with a spatiotemporal smoothness
constraint aims at minimizing an energy functional E(u) of the form

E(u) =

T∫

0

∫

Ω

(
M(Dkf,u) + α S(∇f,∇u)

)
dx dt . (2)

The expression M(Dkf,u) involves a k-th order differential operator Dkf of
f and u and is called data term. It is connected to conservation assumptions
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such as the optical flow constraint. A simple and obvious choice would be
M(D1f,u) = 〈u,∇f〉2. To get uniqueness a regularization term S(∇f,∇u)
is added which also guarantees smoothness of the optical flow field u. In
that sense α can be seen as a regularization parameter. The regularizer
S(∇f,∇u) also causes filling-in effects. In regions with almost constant
gray values, the data term is rather small and E(u) is dominated by the
smoothness term which fills in information from other locations. Thus, no
further interpolation is necessary. We refer to Horn and Schunck [20] for
this topic. A list of different data and regularization terms can be found in
Weickert et al. [41].
So far we have not assumed any smoothnes conditions for f and u. In view
of (1) f has to be at least differentiable. The smoothness assumptions also
depend on the particular choice of M and S in (2). We will specify the
smoothness conditions in section 4.
Subject of variational optical flow computation is the global minimization of
E(u). If E is convex, then there exists a global minimum which we denote
by u∗. Very efficient methods to calculate u∗ numerically can be achieved by
discretizing the Euler–Lagrange equation associated to E and a subsequent
solution of the arising system of linear or nonlinear equations by multigrid
methods. These techniques are amongst the most accurate solvers for optical
flow problems; see e.g. [18, 17, 43, 9, 27, 13].

3 Projection methods for solving the mini-

mization problem

Let us now present a novel variational approach for optical flow estimation
using projection methods. Instead of minimizing E we consider the functional

EΨ(u) =
1

2

T∫

0

∫

Ω

Ψ
(
〈u,∇f〉2

)
dx dt (3)

for an admissible function Ψ. A strictly increasing function Ψ is admissible
if Ψ ∈ C2([0, +∞)) and Ψ(s2) is convex in s. The functional EΨ is convex for
admissible Ψ and hence has a unique minimizer which we again denote by
u∗. The simplest choice of an admissible Ψ is Ψ(t) = t leading to quadratic
minimization problems, but also nonquadratic approaches such as Ψ(t) =√

ε + t with ε > 0 are possible in order to obtain higher robustness against
outliers [21]. Such robust strategies are frequent in optical flow estimation;
see e.g. [5, 8, 19, 26].
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The idea behind projection methods is as follows: We search for a solution
u∗

n = ((u∗
n)1, (u

∗
n)2, 1) in a finite dimensional, affine space Vn = e3⊕ Ṽn, where

Ṽn is a linear subspace of Lp(Ω, R3) with dim Ṽn = dn < ∞ and 1 ≤ p ≤ +∞.
We define

u∗
n := arg min

v∈Vn

EΨ(v) . (4)

In order to get a meaningful solution and to yield convergence results for
n → ∞, the union of the linear subspaces Ṽn is supposed to be dense. To be
precise,

∞⋃

n=1

Ṽn = (Lp(Ω, R3) ∩ {e⊥3 } . (5)

Since Ṽn is a finite dimensional subspace, there is a basis {φn
1 , . . . , φ

n
n} with

Ṽn = span {φn
1 , . . . , φ

n
n}. To solve problem (4) we use the expansion

u∗
n = e3 +

n∑

n=1

β∗
i φn

i (6)

to get a minimization problem over R
n:

min
v∈Vn

EΨ(v) = min
β∈Rn

1

2

T∫

0

∫

Ω

Ψ
(
(〈e3 +

n∑

i=1

βi φ
n
i ,∇f〉)2

)
dx dt .

For the sake of simplicity we also write EΨ(β) for β ∈ R
n instead of EΨ(v)

for v ∈ Vn. We set
β∗ := arg min

β∈Rn
EΨ(β)

and compute β∗ by solving

∇EΨ(β∗) = 0 . (7)

We will see that this can be done by applying direct methods or iterative tech-
niques such as the Newton method. The case Ψ(s2) = s2 plays a particular
role since here β∗ can be described as solution of a system of linear equations.

Remark 3.1 Natterer proved in [31] that projection methods have a regu-
larizing effect and that is why we have no additional smoothing term in (3).
Furthermore we only consider the spatial approach for optical flow computa-
tion, that means our searched approximation u∗

n does not depend on the time

t. That is why there is no temporal variable in Ṽn ⊂ Lp(Ω, R3).
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3.1 The case Ψ(t) = t

For Ψ(t) = t we compute

∂EΨ(β)

∂βj

=

T∫

0

∫

Ω

{
(ft +

n∑

i=1

βi 〈φn
i ,∇f〉) 〈φn

j ,∇f〉
}

dx dt , (8)

j = 1, . . . , n. Hence, (7) is equivalent to solving the system of linear equations
Aβ∗ = b with

Ajj′ =

T∫

0

∫

Ω

〈φn
j ,∇f〉 〈φn

j′,∇f〉 dx dt , 1 ≤ j, j ′ ≤ n

and

bj = −
T∫

0

∫

Ω

ft 〈φn
j ,∇f〉 dx , 1 ≤ j ≤ n .

Since

〈β,Aβ〉 =

n∑

j=1

β2
j

T∫

0

∫

Ω

〈φn
j ,∇f〉2 dx dt ≥ 0 , β ∈ R

n ,

the matrix A is symmetric and positiv semidefinite. If we use basis functions
φn

i with small, compact support, A furthermore is sparse and thus iterative
solvers as the CG- or CGS-method are appropriate for solving the system.
The choice Ψ(t) = t is the case which we will study thoroughly in section
4. There, we will use tensor product B-splines which have all the desired
properties and which are also used for the numerical experiments in section
5. The projection method to solve the variational optical flow problem in
case Ψ(t) = t finally reads as follows:

• Choose a linear, finite dimensional subspace Ṽn and an appropriate
basis {φn

1 , . . . , φ
n
n}.

• Compute A and b, e.g. by using numerical integration.

• Solve Aβ∗ = b, e.g. by iterative solvers such as CG or CGS [35].

• Compute

u∗
n = e3 +

n∑

n=1

β∗
i φn

i .
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3.2 The case, where Ψ is an arbitrary, admissible func-
tion

For arbitrary Ψ equation (7) represents a system of nonlinear equations. Such
systems can be solved e.g. by Newton’s method. The gradient and Hesse
matrix of EΨ read

∂EΨ(β)

∂βj
=

T∫

0

∫

Ω

{
Ψ′

(
(ft +

n∑

i=1

βi 〈φn
i ,∇f〉)2

)
(ft +

n∑

i=1

βi 〈φn
i ,∇f〉) 〈φn

j ,∇f〉
}

dx dt ,

∂2EΨ(β)

∂βj ∂βj′
= 2

T∫

0

∫

Ω

{
Ψ′′

(
(ft +

n∑

i=1

βi 〈φn
i ,∇f〉)2

)
×

(ft +
n∑

i=1

βi 〈φn
i ,∇f〉)2 〈φn

j ,∇f〉 〈φn
j′,∇f〉

}
dx dt

+

T∫

0

∫

Ω

{
Ψ′

(
(ft +

n∑

i=1

βi 〈Φi,∇f〉)2
)
〈Φj,∇f〉 〈Φj′,∇f〉

}
dx dt ,

where 1 ≤ j, j ′ ≤ n. The system of nonlinear equations (7) can be solved
numerically by the Newton method: Choose an initial guess β(0) ∈ R

n and
iterate

β(k+1) = β(k) + δβ(k) , k = 0, 1, 2, . . .

where δβ(k) solves

∇2EΨ(β(k))δβ(k) = −∇EΨ(β(k)) .

3.3 More general data terms

We observe that the functional (3) may also be written as

EΨ(u) =
1

2

T∫

0

∫

Ω

Ψ
(
〈u,Jfu〉

)
dx dt (9)

with the structure tensor Jf = ∇f ⊗ ∇f . Defining EΨ as in (9) for a
symmetric tensor field Jf of rank 2 related to f and defined on Ω× [0, T ] we
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can also apply more general data terms. For instance, instead of the optical
flow constraint 〈u,∇f〉 = 0 we could assume constancy of the brightness
gradient [40] leading to

Jf =
2∑

i=1

(∇fxi
⊗∇fxi

) . (10)

Again using expansion (6) we find for Ψ(t) = t that

∂EΨ(β)

∂βj
=

T∫

0

∫

Ω

{
〈e3,Jfφ

n
j 〉 +

n∑

i=1

βi〈φn
i ,Jfφ

n
j 〉

}
dx dt , (11)

j = 1, . . . , n. This results in the system of linear equations Aβ∗ = b with

Ajj′ =

T∫

0

∫

Ω

〈φn
j ,Jfφ

n
j′〉 dx dt , 1 ≤ j, j ′ ≤ n

and

bj = −
T∫

0

∫

Ω

〈e3,Jfφ
n
j 〉 dx , 1 ≤ j ≤ n .

Note that A remains positive semidefinite, since Jf was supposed to be
symmetric. A lot of different data terms can be involved in that way. We
again refer to [41] for an overview of various constancy assumptions.

4 Convergence rates for tensor product B-

splines and Ψ(t) = t

In this section we investigate the deviation of the projected solution u∗
n from

the global minimizer u∗ of EΨ, where Ψ(t) = t and Jf = ∇f ⊗ ∇f . Par-
ticularly we will use tensor product B-splines of arbitrary order m as basis
functions φi and show optimal convergence with respect to the residual. To
this end we first prove continuity of EΨ in Lp(Ω, R3) for all 2 ≤ p ≤ ∞, if
the image sequence f satisfies certain smoothness conditions. These condi-
tions are expressed by means of the Sobolev spaces W α,p(Ω × [0, T ]), α ≥ 0.
They consist of functions f ∈ Lp(Ω × [0, T ]) which have weak derivatives in
Lp(Ω × [0, T ]) up to the order α. For integers α and 2 ≤ p < ∞ the norm is
given as

‖u‖α,p =

( T∫

0

∫

Ω

∑

|k|≤α

‖Dku(x, t)‖p
2 dx dt

)1/p

,
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where k ∈ N
3
0 is a multi-index. For p = ∞ and integer α we have

‖u‖α,∞ = max
|k|≤α

‖Dku‖∞ .

We have that W α,2 = Hα. For a detailed treatise of Sobolev spaces we refer
to Maz’ja [25].

Lemma 4.1 (Continuity of EΨ)
Let Ψ(t) = t. The functional EΨ : Lp(Ω, R3) → [0, +∞) is continuous for
any 2 ≤ p ≤ ∞, if f satisfies

• f ∈ W 1,2q′(Ω× [0, T ]), (q′)−1 + (p′)−1 = 1, p′ = p/2 in case 2 < p < ∞

• f ∈ W 1,∞(Ω × [0, T ]) in case p = 2

• f ∈ W 1,2(Ω × [0, T ]) in case p = ∞
More explicitly, under these smoothness conditions for f there exists a con-
stant Cp > 0 such that

|EΨ(u)| ≤ Cp ‖u‖2
p , u ∈ Lp(Ω, R3) . (12)

Proof: Obviously the boundedness estimate (12) implies the continuity of
EΨ, hence it is sufficient to prove (12). For Ψ(t) = t and u ∈ Lp(Ω, R3) we
have

|EΨ(u)| ≤ 1

2

T∫

0

∫

Ω

|〈u(x),∇f(x, t)〉|2 dx dt

≤ 1

2

T∫

0

∫

Ω

‖u(x)‖2
2 ‖∇f(x, t)‖2

2 dx dt

by the Cauchy-Schwartz inequality. To continue we take into account the
smoothness conditions for f as listed in the theorem. Note that all these
conditions imply the existence of ∇f .
In case p = 2 we postulate f ∈ W 1,∞(Ω × [0, T ]) and thus

|EΨ(u)| ≤ 1

2
T ‖f‖2

1,∞

∫

Ω

‖u(x)‖2
2 dx ,

which yields (12) with Cp := T‖f‖2
1,∞/2.

In case p = ∞ we have that f ∈ W 1,2(Ω × [0, T ]) and immediately obtain

|EΨ(u)| ≤ 1

2
‖f‖2

1,2 ‖u‖2
∞

9



and therefore Cp := ‖f‖2
1,2/2 in (12).

For all other p with 2 < p < ∞ we use the Hölder inequality. Define p′ :=
p/2 and let q′ the reciprocal of p′, that is the unique number q′ satisfying
1/p′ + 1/q′ = 1. An application of the Hölder inequality gives

|EΨ(u)| ≤ 1

2

( T∫

0

∫

Ω

‖u‖2p′

2 dx dt

)1/p′ ( T∫

0

∫

Ω

‖∇f‖2q′

2 dx dt

)1/q′

=
1

2
T 2/p ‖f‖2

1,2q′

( ∫

Ω

‖u‖p
2 dx

)2/p

and we again obtain (12), where Cp := T 2/p‖f‖2
1,2q′/2 in this case. �

Under the smoothness conditions of lemma 4.1 the functional EΨ is Fréchet
differentiable.

Lemma 4.2 (Fréchet-differentiability of EΨ)
Adopt the assumptions made in lemma 4.1. Then EΨ : Lp(Ω, R3) → R is
Fréchet-differentiable for Ψ(t) = t. The Fréchet-derivative E ′

Ψ : Lp(Ω, R3) →
L(Lp(Ω, R3), R) is given by

E ′
Ψ(u)v =

T∫

0

∫

Ω

〈u,∇f〉 〈v,∇f〉 dx dt , u,v ∈ Lp(Ω, R3) .

Especially for v = u we have

E ′
Ψ(u)u = 2 EΨ(u) , u ∈ Lp(Ω, R3) . (13)

Proof: Let v ∈ C∞
0 (Ω, R3). We compute

∂EΨ(u + τ v)

∂τ |τ=0

=
1

2

{ ∂

∂τ

T∫

0

∫

Ω

〈u + τ v,∇f〉2 dx dt
}

|τ=0

=
{ T∫

0

∫

Ω

〈u,∇f〉 〈v,∇f〉 dx dt + τ

T∫

0

∫

Ω

〈v,∇f〉2 dx dt
}

|τ=0

=

T∫

0

∫

Ω

〈u,∇f〉 〈v,∇f〉 dx dt =: E ′
Ψ(u)v .
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To prove that this in fact is the Fréchet derivative we verify that

lim
‖v‖p→0

‖EΨ(u + v) − EΨ(v) − E ′
Ψ(u)v‖p

‖v‖p

= lim
‖v‖p→0

‖v‖−1
p

T∫

0

∫

Ω

〈v,∇f〉2 dx dt

≤ lim
‖v‖p→0

Cp ‖v‖p = 0 ,

where we used (12). �

Remark 4.3 By appropriate Taylor expansions one can easily show that EΨ

is Fréchet-differentiable for all admissible Ψ with

E ′
Ψ(u)v =

T∫

0

∫

Ω

Ψ′(〈u,∇f〉2) 〈u,∇f〉 〈v,∇f〉 dx dt , u,v ∈ Lp(Ω, R3) .

By now we did not specify the linear subspace Ṽn ⊂ Lp(Ω, R3) and the basis
functions {φn

1 , . . . , φ
n
n}. To get a sparse matrix A we want the functions φn

i

to be compactly supported. On the other hand they are supposed to have
good approximation properties and to be smooth to yield a smooth flow field.
B-splines satisfy all these conditions. To construct the set of knots associated
to the B-splines we set Ω := [0, 1]2 and assume f(x1, x2, t) to be given for

(x
(j)
1 , x

(j′)
2 ) =

(
(j − 1)/d, (j ′ − 1)/d

)
, 1 ≤ j, j ′ ≤ d , (14)

where d2 represents the number of pixels. The B-spline of order m corre-
sponding to the knots {x(j)

1 } is recursively defined as

Nm
j (x) = (x − x

(j)
1 ) Nm−1

j (x) + (x
(j+m)
1 − x) Nm−1

j+1 (x) m ≥ 2

and

N1
j (x) =

{
1 , x

(j)
1 ≤ x ≤ x

(j+1)
1

0 , otherwise

We have that Nm
j ∈ Cm−2([0, 1]) and supp Nm

j = [x
(j)
1 , x

(j+m)
1 ]. Moreover, the

B-splines form a partition of unity. A detailed outline of the construction
and properties of B-splines are found in the book of Schumaker [37]. Note

that our knot sequences x
(j)
1 , x

(j′)
2 are equidistant with step size d−1. With
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the help of Nm
j we define the basis of the linear subspace. For 1 ≤ j, j ′ ≤ d

and m ≥ 1 let

φ
(ν),m
j,j′ (x1, x2) := (Nm

j ⊗ Nm
j′ )(x1, x2) · eν ν = 1, 2 ,

where Nm
j′ denotes the B-spline of order m associated to the knots {x(j′)

2 }
and eν are the standard unit vectors in R

3. E.g.

φ
(1),m
j,j′ = (Nm

j ⊗ Nm
j′ , 0, 0) .

Finally we define the linear subspace Ṽn as

Ṽn := W m
d := span

{
φ

(ν),m
j,j′ : ν = 1, 2 , 1 ≤ j, j ′ ≤ d + m − 2

}

⊂
(
Lp(Ω, R3) ∩ {e⊥3 }

)
.

The linear subspace W m
d is generated by tensor product B-splines and we

have dim W m
d = 2(d + m − 2)2. Figure 1 shows a B-spline of order 2, which

is a piecewise, linear spline and a graphic of a tensor product B-spline.
To make the notation clear we state three minimizing solutions of different

kind. Again

u∗ := arg min{EΨ(u) : u = e3 + Lp(Ω, R3)}

is the global minimizer. Corresponding to the space W m
d

u∗
d,m := arg min{EΨ(u) : u = e3 + W m

d }

means the solution in the finite dimensional, affine space e3 +W m
d , which was

formerly denoted by u∗
n. At last

ũ∗
d,m := arg min{‖u∗ − u‖p : u ∈ e3 + W m

d }

is the best approximation of u∗ in e3 + W m
d . Our aim is to find an estimate

for the error
|EΨ(u∗) − EΨ(u∗

d,m)| . (15)

We recall that Ψ(t) = t in our considerations. From the approximation
theory of tensor product B-splines we know that

‖u∗ − ũ∗
d,m‖p ≤ K d−min{α,m} ‖u∗‖α,p , (16)

if u ∈ W α,p(Ω, R3) for a constant K > 0, see Schumaker [37, Chapter 12.3].
The main result of this section consists of the proof that the error (15) has
a convergence of the same order as in (16).

12



Figure 1: B-splines of order 2 (left picture) and a tensor product B-spline
N2

j ⊗ N2
j′ (right picture).

13



Theorem 4.4 (Estimate of the residual error)
Adopt all notations made so far as well as the smoothness assumptions for
f stated in lemma 4.1. Let Ψ(t) = t. If u∗ ∈ W α,p(Ω, R3) for α ≥ 0 and
2 ≤ p ≤ ∞, then there exists a constant Kp > 0 such that

|EΨ(u∗) − EΨ(u∗
d,m)| ≤ Kp d−min{α,m} ‖u∗‖α,p . (17)

Furthermore we have u∗
d,m ∈ Cm−2(Ω, R3).

Proof: First we show that there exists a constant Mp > 0 satisfying

‖E ′
Ψ(u)‖Lp→R ≤ Mp ‖u‖p , (18)

if u ∈ Lp(Ω, R3). Assertion (18) results from

‖E ′
Ψ(u)‖Lp→R = sup

‖v‖p≤1

∣∣∣
T∫

0

∫

Ω

〈u,∇f〉 〈v,∇f〉 dx dt
∣∣∣

≤ sup
‖v‖p≤1

( T∫

0

∫

Ω

〈v,∇f〉2 dx dt
)1/2 ( T∫

0

∫

Ω

〈u,∇f〉2 dx dt
)1/2

≤ sup
‖v‖p≤1

√
2EΨ(v)

√
2EΨ(u) ≤

√
2Cp

√
2Cp ‖u‖p

setting Mp := 2Cp. Here, we used (12). By construction we have that

0 ≤ EΨ(u∗) ≤ EΨ(u∗
d,m) ≤ EΨ(ũ∗

d,m) . (19)

From (16) we know that ũ∗
d,m → u∗ as d → ∞ and thus

‖ũ∗
d,m‖p ≤ C , d > 0 (20)

for a certain C > 0. Furthermore, if we use the fact that E ′
Ψ is linear

as mapping between Lp(Ω, R3) and L(Lp(Ω, R3), R), then putting together
(13), (18), (19) and (20) yields

|EΨ(u∗) − EΨ(u∗
d,m)| ≤ |EΨ(u∗) − EΨ(ũ∗

d,m)|

≤
∣∣∣∣
1

2
E ′

Ψ(u∗)(u∗ − ũ∗
d,m)

∣∣∣∣ +

∣∣∣∣
1

2
E ′

Ψ(u∗ − ũ∗
d,m)ũ∗

d,m

∣∣∣∣

≤ 1

2
‖E ′

Ψ(u∗)‖Lp→R ‖u∗ − ũ∗
d,m‖p +

1

2
‖E ′

Ψ(u∗ − ũ∗
d,m)‖Lp→R ‖ũ∗

d,m‖p

≤ 1

2
Mp (‖u∗‖p + C) ‖u∗ − ũ∗

d,m‖p ,

14



what proves (17) with Kp := Mp(‖u∗‖p + C)/2.
The smoothness statement is obvious, since u∗

d,m is a finite sum of vector
fields having components which consist of tensor product B-splines of this
very regularity. �

Remark 4.5 Theorem 4.4 on the one hand shows why we could omit the
regularization term in the functional EΨ. Since the solution is a finite sum
of smooth functions, it has the same regularity as the basis functions. On the
other hand the residual error |EΨ(u∗) − EΨ(u∗

d,m)| tends to zero as d → ∞
of the same order as the approximation module of the applied B-splines. In
that sense we say that the projection method has optimal convergence rate
when using B-splines. A further advantage is the small support of the splines
which yields a sparse system matrix A. Thus, the arising system of linear
equations Aβ∗ = b can be solved iteratively, e.g. by the CG-method.

A look at the proof of theorem 4.4 shows that the residual error |EΨ(u∗) −
EΨ(u∗

n)| is always of the same order as the approximation power of the applied
basis functions, since that error can be bounded by a multiple of ‖u − u∗

n‖.

Corollary 4.6 Adopt the notations from section 3 and the smoothness as-
sumptions for f listed in lemma 4.1. Let Ψ(t) = t. Further suppose that (5)
is satisfied. Then, the residual error |EΨ(u∗)−EΨ(u∗

n)| is of the same order

as the approximation module of Ṽn.

Proof: This statement follows from the proof of theorem 4.4. The last es-
timate in this proof is still valid if we replace the special approximation ũ∗

d,m

by e3 + Pn(u∗ − e3), where Pn : Lp(Ω, R3) → Ṽn is the orthogonal projection

onto Ṽn. That means that |EΨ(u∗) − EΨ(u∗
n)| is bounded by a multiple of

‖u∗ − (e3 + Pn(u
∗ − e3))‖p. This factor tends to 0 for n → ∞ by (5) and

describes the approximation module of Ṽn. �

5 Numerical experiments

We perform the method described in section 3.1 by means of several test
sequences using the classical optical flow constraint with Jf = ∇f ⊗ ∇f as
well as the gradient constancy assumption with (10). In all experiments we

15



chose Ψ(t) = t. As basis functions we use piecewise linear tensor product

B-splines associated with the knots {x(j)
1 }, {x(j′)

2 } from (14),

φ
(ν),2
j,j′ (x1, x2) := (N2

j ⊗ N2
j′)(x1, x2) · eν , ν = 1, 2 (21)

which span the linear subspace

W 2
d = span

{
φ

(ν),2
j,j′ : ν = 1, 2 , 1 ≤ j, j ′ ≤ d

}

of dimension 2d2.

5.1 The classical optical flow constraint

For an image sequence f(x1, x2, t) we have to solve the system Aβ∗ = b,
where A ∈ R

2d2×2d2

, b ∈ R
2d2

are given as

A
(νµ)
(jj′),(kk′) =

T∫

0

∫

Ω

〈φ(ν),2
j,j′ ,∇f〉 〈φ(µ),2

k,k′ ,∇f〉 dx dt (22)

=

T∫

0

∫

Ω

fxν
(x1, x2, t) N2

j (x1) N2
j′(x2) fxµ

(x1, x2, t) N2
k (x1) N2

k′(x2) dx dt ,

where 1 ≤ ν, µ ≤ 2 and 1 ≤ j, j ′, k, k′ ≤ d, compare subsection 3.1. Note that
A

(νµ)
(jj′),(kk′) 6= 0, only if |j −k| ≤ 1∧ |j ′−k′| ≤ 1 since supp N 2

j ∩ supp N2
k = ∅

for |j − k| > 1. Hence, A(νµ) ∈ R
d2×d2

in fact is sparse and block tridiagonal.
The right-hand side b ∈ R

2d2

is given accordingly as

b
(ν)
(jj′) = −

T∫

0

∫

Ω

〈φ(ν),2
j,j′ (x1, x2),∇f(x1, x2, t)〉 ft(x1, x2, t) dx dt , (23)

where ν = 1, 2 and 1 ≤ j, j ′ ≤ d. Having the solution β∗ of Aβ∗ = b at hand
we may compute

(u∗
d,2)ν(x1, x2) =

d∑

j,j′=1

β∗,ν
jj′ N

2
j (x1) N2

j′(x2) , ν = 1, 2 . (24)

Since the piecewise linear B-splines N 2
j have the interpolation property, i.e.

N2
j (x

(k)
1 ) = δjk, where δjk denotes the Kronecker symbol, we deduce from

(24) that

(u∗
d,2)ν(x

(j)
1 , x

(j′)
2 ) = β∗,ν

jj′ ,
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which simplifies the visualization of u∗
d,2 at the pixels {(x(j)

1 , x
(j′)
2 )}.

In our numerical experiments we compute the matrix entries A
(νµ)
(jj′),(kk′) as

well as the right-hand side b
(ν)
(jj′) using the trapezoidal sum with step size

1/(2d) in x1 and x2 and δt = T/N in the time variable t, where N denotes the
number of image frames in the sequence f . The step size 1/(2d) was chosen to
preserve the block tridiagonal structure of A(νµ). The derivatives fxν

, ft were
computed using the central differential quotient of order 2. Finally the arising
system of linear equations Aβ∗ = b was solved applying a preconditioned
CG-method where we used the Jacobian preconditioner. All sequences f
consist of N = 20 frames of images with 64 × 64 pixels, that means d = 64.
We assumed T = 1, what means that we normalized the frame distance in

time to 1. Figures 2–4 show the first image of the sequence f(x
(j)
1 , x

(j′)
2 , 0)

as well as the field u∗
d,2 calculated as in (24). The image sequence in figure

2 consists of a Gaussian function moving from the upper left corner towards
the center of the image. The sphere sequence illuminates a rotating sphere
with bright spots. The taxi sequence finally consists of a taxi driving a right
turn. The motion field is clearly visible in all these experiments. In 3 some
regions seem to be stationary though there is a motion. The reason is, that
in these regions the brightness does not change over time. A higher order
spline or another function for Ψ might help. The optical flow in the lower left
corner of figure 4 comes from the fact that there is another car entering the
picture from the left. Figure 5 furthermore shows the optical flow between
two subsequent frames only. Especially the optical flow of the taxi sequence is
contaminated by noise. To denoise the input data we apply a pre-smoothing
step to the image sequence f(x1, x2, t) with a Gaussian filter

fσ,τ (x, t) =
σ−2τ−1

(2π)3/2

T∫

0

∫

Ω

e−
‖x′−x‖2

2σ2 e−
|t′−t|2

2τ2 f(x′, t′) dx dt ,

x = (x1, x2) , x′ = (x′
1, x

′
2) , (25)

where we chose σ = 1/d, τ = 2δt. Figure 6 shows that the pre-smoothing
in fact leads to a better result. The bright spots of the moving sphere are
clearly visible as well as the flow field resulting from the car entering from
the left in the taxi sequence.
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Figure 2: The left image shows the first frame of a test sequence consisting
of a Gaussian function which moves from the upper left corner towards the
image center. The optical flow field which emphasizes exactly this motion is
displayed in the right image.

Figure 3: The left image shows the first frame of a test sequence consisting
of a rotating sphere. The optical flow field is displayed in the right image.
They are some stripes visible, where does not seem to be any motion though
there is one.
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Figure 4: The left image shows the first frame of a test sequence consisting
of a taxi making a right turn. From the left another car is entering the image
frame. The optical flow field can be seen in the right image. Both motions
are clearly visible.

Figure 5: Optical flow between the frames 10 and 11 of the sphere sequence
(left) and the taxi sequence (right) without a pre-smoothing step.
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Figure 6: Optical flow between the frames 10 and 11 of the sphere sequence
(left) and the taxi sequence (right) with the pre-smoothing (25) as denoising.

5.2 The gradient constancy assumption

Now we assume the gradient of brightness to be constant. That means we
minimize EΨ as in (9) with

Jf =

2∑

i=1

(∇fxi
⊗∇fxi

)

Using again the pieciewise linear tensor product B-splines (21) as basis func-
tions we have to solve the system Aβ∗ = b, where

A
(νµ)
(jj′),(kk′) =

T∫

0

∫

Ω

〈φ(ν),2
j,j′ ,Jfφ

(µ),2
k,k′ 〉 dx dt

=

T∫

0

∫

Ω

[Jf (x1, x2, t)]νµ N2
j (x1) N2

j′(x2) N2
k (x1) N2

k′(x2) dx dt

for 1 ≤ ν, µ ≤ 2, 1 ≤ j, j ′, k, k′ ≤ d, compare subsection 3.3. Again A(νµ) ∈
R

d2×d2

is sparse and block tridiagonal. The right hand side reads as

b
(ν)
(jj′) = −

T∫

0

∫

Ω

[Jf(x1, x2, t)]3ν N2
j (x1) N2

j′(x2) dx dt ,

where ν = 1, 2 and 1 ≤ j, j ′ ≤ d. We solve Aβ∗ = b. Figure 7 shows the
optical flow between the frames 10 and 11 of the sphere sequence, figure 8 that
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Figure 7: Optical flow between the frames 10 and 11 of the sphere sequence
using the gradient of brightness constancy assumption. Left: Without
smoothing. Right: Including smoothing (25).

of the taxi sequence where the gradient of brightness constancy assumption
was applied. We compared the results with and without the smoothing of the
image data according to (25). Figure 9 displays the optical flows averaged
over time of the sphere and the taxi sequence of figures 3, 4 but now with
the gradient of brightness constancy assumption as structure tensor.

6 Conclusions

This article shows how optical flow can be calculated using a variational
approach together with projection methods. If Ψ(t) = t, these projection
methods always have optimal convergence rates in the sense that the resid-
ual error is of the same order as the approximation power of the applied
basis functions. The method is easy to implement and first numerical re-
sults illustrate the feasability of the concept. In view of the error estimate
(17) improvements can be expected when applying higher order B-splines,
e.g. cubic splines (m = 4), or images with higher resolution (larger d). An
additional pre-smoothing step of f can also lead to better reconstruction
results. In order to make the basic ideas behind projections methods for
optic flow estimation as transparent as possible, we have focused on a proof-
of-concept that keeps the model assumptions relatively simple and allows a
detailed mathematical analysis of the convergence rates. However, it is clear
that projection approaches allow to integrate also more sophisticated models.
Performing more research in this direction appears to be promising as future
work. Particularly, if special properties of the optical flow field are desirable,
e.g. a certain regularity or the incorporation of additional constaints, projec-
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Figure 8: Optical flow between the frames 10 and 11 of the taxi sequence
using the gradient of brightness constancy assumption. Left: Without
smoothing. Right: Including smoothing (25).

Figure 9: Optical flow of the sphere (picture to the left) and taxi sequence
(picture to the right) with (10) as structure tensor.
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tion methods can be an adequate and mathematically elegant tool to achieve
them.
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