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Abstract

This thesis consists of two independent parts. In the first part of the thesis, we develop
a Riemann-Roch theory for sublattices of the root lattice An extending the work of
Baker and Norine (Advances in Mathematics, 215(2): 766-788, 2007) and study ques-
tions that arise from this theory. Our theory is based on the study of critical points of a
certain simplicial distance function on a lattice and establishes connections between the
Riemann-Roch theory and the Voronoi diagrams of lattices under certain simplicial dis-
tance functions. In particular, we provide a new geometric approach for the study of the
Laplacian of graphs. As a consequence, we obtain a geometric proof of the Riemann-Roch
theorem for graphs and generalise the result to other sub-lattices of An. Furthermore,
we use the geometric approach to study the problem of computing the rank of a divisor
on a finite multigraph G to obtain an algorithm that runs in polynomial time for a fixed
number of vertices, in particular with running time 2O(n logn)poly(size(G)) where n is the
number of vertices of G. Motivated by this theory, we study a dimensionality reduction
approach to the graph automorphism problem and we also obtain an algorithm for the
related problem of counting automorphisms of graphs that is based on exponential sums.

In the second part of the thesis, we develop an approach, based on complex-valued
hash functions, to count cycles in graphs in the data streaming model. Our algorithm is
based on the idea of computing instances of complex-valued random variables over the
given stream and improves drastically upon the näıve sampling algorithm.



Zusammenfassung

Diese Dissertation besteht aus zwei unabhängigen Teilen. Im ersten Teil entwickeln wir
auf der Arbeit von Baker und Norine (Advances in Mathematics, 215(2): 766-788, 2007)
aufbauend eine Riemann-Roch Theorie für Untergitter (sublattices) des Wurzelgitter
(root lattice) An und untersuchen die Fragestellungen, die sich daraus ergeben. Unsere
Theorie basiert auf der Untersuchung kritischer Punkte einer bestimmten simplizia-
len (simplicial) Metrik (distance function) auf Gitter und zeigt Verbindungen zwischen
der Riemann-Roch Theorie und Voronoi-Diagrammen von Gittern unter einer gewis-
sen simplizialen Metrik. Insbesondere liefern wir einen neuen geometrischen Beweis des
Riemann-Roch Theorems für Graphen und generalisieren das Resultat für andere Unter-
gitter von An. Des Weiteren verwenden wir den geometrischen Ansatz um das Problem
der Berechnung des Rang (rank) eines Teilers (divisor) auf einem endlichen Multigra-
phen G und erhalten einen Algorithmus, der für eine fixe Anzahl von Knoten in Po-
lynomialzeit, genauer in Zeit 2O(n logn)poly(size(G)) mit n ist die Anzahl der Knoten
in G, läuft. Von dieser Theorie ausgehend untersuchen wir einen Anzatz für das Gra-
phautomorphismusproblem über eine Dimensionalitätsreduktion und erhalten ebenfalls
einen Algorithmus für das verwandte Problem des Zählens von Automorphismen eines
Graphen, der auf exponentiellen Summen basiert.

Im zweiten Teil der Dissertation entwickeln wir einen auf komplexwertigen Hashfunk-
tionen basierenden Ansatz um in einem Streaming-Modell die Zyklen eines Graphen zu
zählen. Unser Algorithmus basiert auf der Idee Instanzen von komplexwertigen Zufallsva-
riablen über dem gegebenen Stream zu berechnen und stellt eine drastische Verbesserung
über den naiven Sampling-Algorithmus dar.
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Introduction

This thesis consists of two independent parts. The first part is devoted to developing
a Riemann-Roch theory on sublattices of the root lattice An and towards studying
problems that are motivated by this theory. In the second part, we develop an algebraic
approach to counting cycles in the datastreaming model. Chapters 1 and 2 are based
on joint work with Omid Amini ([3]), Chapter 6 is based on joint work with Vikram
Sharma ([61]) and Chapter 8 is based on joint work with Kurt Mehlhorn, Konstantinos
Panagiotou and He Sun [60]. In this chapter, we discuss the motivation and context of
our work and, then summarise the contributions of the thesis.

I. Riemann-Roch Theory for Sublattices of An

We start with a brief exposition on the history and motivation behind Riemann-Roch
theory in discrete mathematics. There has been a surge of recent activity in promoting
the viewpoint of a graph as the discrete analogue of a Riemann surface. In this context,
the Laplacian matrix of a graph plays the key role of the Laplacian operator on a
Riemann surface and there has been a lot of work on developing combinatorial analogues
of results on Riemann surfaces. The article “Discrete Geometric Analysis” [79] of Sunada
gives a broad survey of this perspective. Towards this direction, Baker and Norine [12]
pioneered analogues of the Riemann-Roch theory in algebraic geometry and complex
analysis in the context of graphs. Subsequently, the Rieman-Roch theorem on graphs
played a key role in the development of a Riemann-Roch theory for tropical curves, see
[63] and [39] for more details on the connections to tropical geometry. For a finite graph,
the theory is best described in the language of chip-firing games.

A chip-firing game is a solitary game played on an undirected connected graph and is
defined as follows: Each vertex of the graph is assigned an integer (positive or negative),
refered to as “the number of chips” and this assignment of chips is called the initial
configuration. At each move of the game, an arbitrary vertex v is allowed to either lend
or borrow one chip along each incident edge resulting in a new configuration. We define
two configurations C1 and C2 to be linearly equivalent if C1 can be reached from C2 by
a sequence of chip firings. The Laplacian matrix Q of the graph naturally comes into
the picture as follows:

Lemma 1. Configurations C1 and C2 are linearly equivalent if and only if C1 −C2 can
be expressed as Q · w for some vector w with integer coordinates.
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We can ask some natural questions on such a game:

1. Is a given configuration linearly equivalent to an effective configuration, i.e., a
configuration where each vertex has a non-negative number of chips?

2. More generally, given a configuration, what is the minimum number of chips that
must be removed from the system so that the resulting configuration is not linearly
equivalent to an effective configuration?

The Riemann-Roch theorem of Baker and Norine provides insights into answering
these questions. We need a couple of definitions before we can state the theorem. For
a configuration C, one less than the minimum number of chips that must be removed
from the configuration C so that the resulting configuration is not linearly equivalent to
an effective configuration is called the rank of the configuration C, denoted by r(C). For
a configuration C, the total number of chips, i.e., the sum of chips over all the vertices
of the graph, is called the degree of the configuration C, denoted by deg(C).
Theorem 1. (Riemann-Roch theorem for graphs [12]) For any undirected con-
nected graph G, there exists a special configuration K called the canonical divisor such
that for any configuration C we have

r(C)− r(K − C) = deg(C)− g + 1. (1)

Here g is the genus of G (also known as the cyclotomic number of G) and is equal to
m− n+ 1 where m is the number of edges and n is the number of vertices of G.

The proof of Theorem 1 by Baker and Norine is combinatorial and the main compo-
nent of the proof is the existence and uniqueness of certain normal forms called reduced
divisors.

Our work started with the observation that the set-up can be generalised to an arbi-
trary full-rank sublattice of the root latticeAn defined asAn = {(x1, . . . , xn+1)| ∑n+1

i=1 xi =
0, xi ∈ Z} and that the Riemann-Roch theorem for graphs can be rephrased in terms
of the lattice generated by the rows of the Laplacian matrix of a graph. We call this
lattice the Laplacian lattice of a graph. This led to the question of whether a Riemann-
Roch type theorem is true for an arbitrary full-rank sublattice of An. A computer check
showed that this is not true in general. Hence, the problem of characterizing the geomet-
ric properties of a sublattice of An for which the Riemann-Roch theorem holds arises.
In fact, one of our main results is a characterization of sublattice of An that satisfy a
Riemann-Roch formula. We now briefly set up the reformulation of the Riemann-Roch
theory for graphs in terms of the Laplacian lattice and then state our main results.

Reformulation in Terms of the Laplacian Lattice. Recall that a lattice is a
discrete subgroup of the group (Rn,+) for some integer n (for instance, the lattice
Zn ⊂ Rn), and the rank of a lattice is its rank considered as a free Abelian group. We
call a sublattice of Zn an integral lattice.
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Let G = (V,E) be a given undirected connected (multi-)graph and V = {v0, . . . , vn}.
The Laplacian of G is the matrix Q = D − A, where D is the diagonal matrix whose
(i, i)−th entry is the degree of vi, and A is the adjacency matrix of G whose (i, j)−th
entry is the number of edges between vi and vj. Some basic facts about Q are that it is
symmetric and has rank n for a connected graph G, and that the kernel of Q is spanned
by the vector whose entries are all equal to 1, cf. [16].

The Laplacian lattice LG of G is defined as the image of Zn+1 under the linear map
defined by Q, i.e., LG := Q(Zn+1), c.f., [10]. Since G is a connected graph, LG is a
sublattice of the root lattice An of full-rank equal to n, where An ⊂ Rn+1 is the lattice
defined as follows1:

An :=
{
x = (x0, . . . , xn) ∈ Zn+1 |

∑
xi = 0

}
.

Note that An is a discrete sub-group in the hyperplane

H0 =
{
x = (x0, . . . , xn) ∈ Rn+1|

∑
xi = 0

}
of Rn+1 and has rank n.

Once we fix a labelling of the vertices of G, it is straightforward to associate a point
DC in Zn+1 to each configuration C as follows: DC is the vector with coordinates equal
to the number of chips given to the vertices of G. For a sequence of chip-firings on
C resulting in another configuration C ′, then there exists a vector v ∈ LG such that
DC′ = DC + v. Conversely, if DC′ = DC + v for a vector v ∈ LG, then there is a sequence
of chip-firings transforming C to C ′. Using this equivalence, we transform the chip-firing
game and the statement of the Riemann-Roch theorem to a statement about Zn+1 and
the Laplacian lattice LG ⊆ An.

Remark 1. (The Laplacian matrix of a graph) The Laplacian matrix of graph and
its spectral theory have been well studied. The Laplacian matrix captures information
about the geometry and combinatorics of the graph G, for example, it provides bounds
on the expansion of G (we refer to the survey [48]) or on the quasi-randomness properties
of the graph, see [28]. The famous Matrix Tree Theorem states that the cardinality of
the (finite) Picard group Pic(G) := An/LG is the number of spanning trees of G. We
refer to classic books on algebraic graph theory such as [41] and [16] for more details.

Remark 2. (Lattices associated with graphs) A substantial body of work is de-
voted to the study of lattices constructed from graphs, the most well studied ones being
the lattice of integral cuts and the lattice of integral flows. This line of investigation
was pioneered by the work of Bacher, Harpe and Nagnibeda [10] where they provide a
combinatorial interpretation of various parameters of the lattice of integral flows and
the lattice of integral cuts in the Euclidean distance function, for example they show
that the square norm of the shortest vector of the lattice of integral flows is equal to the
girth of the graph.

1Root refers here to root systems in the classification theory of simple Lie algebras [21]
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Linear Systems of Integral Points and the Rank Function. Let L be a sublattice
of An of full-rank (for example, L = LG for a finite graph G). Define an equivalence
relation ∼ on the set of points of Zn+1 as follows: D ∼ D′ if and only if D − D′ ∈ L.
This equivalence relation is referred to as linear equivalence and the equivalence classes
are denoted by Zn+1/L. We say that a point E in Zn+1 is effective or non-negative, if all
the coordinates are non-negative. For a point D ∈ Zn+1, the linear system associated to
D is the set |D| of all effective points linearly equivalent to D:

|D| =
{
E ∈ Zn+1 : E ≥ 0, E ∼ D

}
.

The rank of an integral point D ∈ Zn+1, denoted by r(D), is defined by setting
r(D) = −1, if |D| = ∅, and then declaring that for each integer s ≥ 0, r(D) ≥ s if and
only if |D − E| 6= ∅ for all effective integral points E of degree s. Observe that r(D) is
well-defined and only depends on the linear equivalence class of D. Note that r(D) can
be defined as follows:

r(D) = min
{

deg(E) | |D − E| = ∅, E ≥ 0
}
− 1.

Obviously, deg(D) is a trivial upper bound for r(D).

Remark 3. A natural question that arises with the set-up of the Riemann-Roch ma-
chinery on a finite graph is its connection to the classical Riemann-Roch machinery on a
Riemann surface, more generally on an algebraic curve and this question is addressed in
Baker’s Specialization Lemma [11]: the rank of a divisor on an algebraic curve is upper
bounded by its “specialisation” to the rank of a divisor on a finite graph, see [11] for a
more precise statement.

Our Contributions

Extension of the Riemann-Roch Theorem to Sublattices of An. In Chapter 1,
we provide a characterization of the sublattices of An which admit a Riemann-Roch theo-
rem with respect to the rank-function defined above. Furthemore, our approach provides
a geometric proof of the Riemann-Roch theorem of Baker and Norine (Theorem 1).

We show that Riemann-Roch theory associated to a full rank sublattice L of An is
related to the study of the Voronoi diagram of the lattice L in the hyperplane H0 under
a certain simplicial distance function which we refer to in this chapter as “the simplicial
distance function”2. The whole theory is then captured by the corresponding critical
points of this simplicial distance function.

2Let S be a full dimensional simplex in Rn that contains the origin, that we call the center of S, in
its interior. For two points P1, P2 ∈ Rn, the simplicial distance function induced by S is the smallest
factor by which we need to scale the translated copy of S centered at P1 so that it contains P2. The
Euclidean distance can be obtained by replacing the simplex by a sphere centered at the origin. Given
a lattice, the simplicial distance function of a point with respect to a lattice is the minimum simplicial
distance of the point to any lattice point.

7



We associate two geometric invariants to each such sublattice of An, the min- and the
max-genus, denoted respectively by gmin and gmax. Two main characteristic properties
for a given sublattice of An are then defined. The first one is what we call Reflection
Invariance (Definition 1.5.1 of Chapter 1), and one of our results here is a weak Riemann-
Roch theorem for reflection-invariant sublattices of An of full-rank n.

Theorem 2. (Weak Riemann-Roch)(Theorem 1.5.2) Let L be a reflection invariant
sublattice of An of rank n. There exists a point K ∈ Zn+1, called canonical point, such
that for every point D ∈ Zn+1, we have

3gmin − 2gmax − 1 ≤ r(K −D)− r(D) + deg(D) ≤ gmax − 1 .

The second characteristic property is called Uniformity and simply means gmin =
gmax. It is straightforward to derive a Riemann-Roch theorem for uniform reflection-
invariant sublattices of An of rank n from Theorem 2 above.

Theorem 3. (Riemann-Roch) Let L be a uniform reflection invariant sublattice of
An. Then there exists a point K ∈ Zn+1, called canonical, such that for every point
D ∈ Zn+1, we have

r(D)− r(K −D) = deg(D)− g + 1,

where g = gmin = gmax.

We then show, in Chapter 2, that Laplacian lattices of undirected connected graphs
are uniform and reflection invariant, obtaining a geometric proof of the Riemann-Roch
theorem for graphs. As a consequence of our results, we provide an explicit description
of the Voronoi diagram of lattices generated by Laplacians of connected graphs. In
the case of Laplacian lattices of connected regular digraphs, we also provide a slightly
stronger statement than the weak Riemann-Roch Theorem (Theorem 2) above. The
results lead us into two natural directions: (i) Obtaining a complete understanding of
the structure of the Laplacian lattice under the simplicial distance function and (ii)
Algorithmic aspects.

The Laplacian lattice of a Graph under the Simplicial Distance Function.
In Chapter 3, we describe important geometric invariants of the Laplacian lattice under
the simplicial distance function, namely the minimal vectors, the covering and packing
radius, the local maxima of the simplicial distance function and the Delaunay triangu-
lations. It turns out that most of these invariants have combinatorial interpretations in
terms of parameters of the underlying graph.

In Chapter 4 we study some applications of the combinatorial interpretation of the
geometric invariants of the Laplacian lattice. A natural question that arises with the
construction of the Laplacian lattice is whether it determines the underlying graph com-
pletely up to isomorphism. More precisely, are Laplacian lattices LG and LH congruent
if and only if G is isomorphic to H. The answer to this question is “no” since, every
tree on n + 1 vertices has An as its Laplacian lattice. Nevertheless, for a graph G we
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associate a convex polyope HDelG(O), which is in fact the Delaunay polytope of LG
under the simplicial distance function and show that HDelG(O) characterizes the graph
completely up to isomorphism. More precisely,

Theorem 4. (Theorem 4.1.20) Let G1 and G2 be undirected connected graphs. The poly-
topes HDelG1

(O) and HDelG2
(O) are congruent if and only if G1 and G2 are isomorphic.

As we prove Theorem 4.1.20, we undertake a detailed study of the combinatorial
structure of the polytope HDelG(O), determining its vertices, edges and facets. Another
related question is to count graphs with a given lattice as their Laplacian lattice. In fact
by the Matrix-Tree theorem we know that for the root lattice An, this number is equal
to (n + 1)n−1, the number of spanning trees of the complete graph Kn+1. We show the
following generalisation of this observation:

Theorem 5. (Theorem 4.2.2) For a Laplacian lattice LG, let NGr(LG) be the number
of graphs with LG as their Laplacian lattice and let NDel(LG,4) be the number of dif-
ferent Delaunay triangulations of LG under the simplicial distance function, we have
NGr(LG) ≤ NDel(LG,4).

Furthermore, we use the combinatorial interpretation of the geometric invariants of
the Laplacian lattice to relate the connectivity properties of the graph to the covering and
packing density of the corresponding Laplacian lattice in the simplicial distance function.
In particular, we show that in the space of Laplacian lattices of undirected connected
graphs, Laplacian lattices of graphs with high-connectivity such as Ramanujan graphs
possess good packing and covering density. More precisely, we show the following:

Theorem 6. (Theorem 4.3.6) Let G be a d-regular Ramanujan graph, then the covering
density of LG under the simplicial distance function is at most d

4(d−2
√
d−1)

.

Theorem 7. (Theorem 4.3.8) Let G be a d-regular Ramanujan graph, then the packing

density of LG under the simplicial distance function is at least (d−2
√
d−1)

2(n+1)(d+2
√
d−1)

.

The above result is also motivated by the fact that explicit constructions of lattices
with optimal packing and covering densities are known only in some small dimensions
[31].

Algorithmic Aspects. A central quantity in the Riemann-Roch theorem is the rank
of a divisor and the efficient computation of rank is a natural question. The problem of
deciding if the rank of a divisor on a finite multigraph is non-negative has been considered
by several authors independently and the problem can be solved in polynomial time in
the size of the input, see [32], [80] and [13]. On the other hand, the problem of computing
the rank of a divisor seems to be harder in terms of computational complexity. Hladkỳ,
D. Král and Norine [46] construct an algorithm, i.e., a procedure that terminates in a
finite number of steps, to compute the rank of a divisor on a tropical curve and the
algorithm also computes the rank of a divisor on a finite multigraph. However, the
algorithm does not run in polynomial time in the number of bits needed to encode the
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Laplacian matrix of the multigraph even when the number of vertices are fixed since
the algorithm involves iterating over all the spanning trees in the graph (see proof of
Theorem 23 in [46]) and the number of spanning trees in not polynomially bounded
in the size of the multigraph even if the number of vertices are fixed. We obtain an
algorithm (Chapter 5) for computing the rank of a divisor on a finite multigraph that
runs in polynomial time for a fixed number of vertices. More precisely,

Theorem 8. (Theorem 5.1.17) There is an algorithm that computes the rank of a divisor
on a finite multigraph G on n vertices with running time 2O(n logn)poly(size(G)) and
hence, runs in time polynomial in the size of the input for a fixed number of vertices.

The key ingredients of the algorithm include a new geometric interpretation of rank
(Theorem 5.1.13) combined with Kannan’s algorithm for integer programming from the
geometry of numbers [51]. On the other hand, we show that computing the rank of a
configuration on a general sublattice of An i.e., the corresponding decision problem is
NP-hard.

The correspondence between lattices and graphs raises the question of whether we
can use geometric methods to better understand computational problems on graphs; one
such example is the Graph Isomorphism problem. The Graph Isomorphism problem, i.e.
the computational problem of testing if two graphs are isomorphic, is a standard example
of a problem in the complexity class NP that is neither known to have a polynomial time
algorithm nor is known to be NP-hard. We refer to [54] for a detailed survey on the
complexity theoretic aspects of the problem. Another problem closely related to the
Graph Isomorphism problem is the Graph Automorphism problem, the computational
problem of testing if a graph has a non-trivial automorphism. It is another example of
a problem in NP that is neither known to have a polynomial time algorithm nor known
to be NP-hard. In Chapter 6, we focus on the graph automorphism problem.

We start with the result that we obtained while studying Laplacian lattices namely that
the polytope of the Laplacian lattice with respect to the simplicial distance function
characterizes the graph completely up to isomorphism. We further observe that this
result can be “simplified” in the following sense: the Laplacian simplex, i.e., the convex
hull of the rows of the Laplacian matrix, also characterizes the graph completely up
to isomorphism. This observation raises the question of whether we can apply high-
dimensional geometry techniques such as dimensionality-reduction to solve the graph
automorphism problem efficiently. In particular, can we project the vertices of the
simplex onto a low-dimensional space and then use a congruence testing algorithm to test
the “approximate congruence” of the projected point sets? A priori, even the existence
of such low-dimensional spaces is not clear. We show (Theorem 6.1.9) the existence of
low-dimensional subspaces that preserve graph automorphisms and characterize them
as certain low-dimensional invariant subspaces of automorphisms that we call “cross-
invariant subspaces”. The question of efficient construction of these spaces, however, is
still open.

In the second part of Chapter 6, we provide an exponential sum formula to count the
number of automorphisms of a graph and study its complexity. Let us now briefly
outline the construction of the exponential sum formula. Given a graph G, we start
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by constructing a function on the set of permutations σ on the vertex set of G with
the following property: the function vanishes for a permutation if and only if σ is an
automorphism of G. The desired function is:

f(σ) =
1

2

n+1∑
i=1

n+1∑
j=1

(ai,j − aσ(i),σ(j))
2; (2)

where ai,j is an entry in the vertex to vertex adjacency matrix of G. It follows that f(σ)
has the following property:

Lemma 2. If σ is an automorphism of G, then the function f(σ) = 0; otherwise f(σ)
counts the number of edges violated by the permutation σ, i.e., the number of edges that
are mapped to non-edges and vice-versa.

Thus, we can interpret f(σ) as an indicator function for being an automorphism over
the set of all permutations. Suppose f(σ) was equal to some c for all non-automorphisms
then the quantity

∑
σ∈Sn f(σ)/c will give us the number of non-automorphisms, and the

number of automorphisms can also be computed from this information. However, this
assumption may not be true in general. To salvage this approach, we use the following
property of exponential sums: For an integer m and a prime p we know that

p−1∑
k=0

exp(2πikm/p) =

{
p if p | m,

0 otherwise.
(3)

Using this property we have the following formula to count the number of automor-
phisms.

Theorem 9. (Theorem 6.2.5) For a sufficiently large prime p, the number of automor-
phisms NA, is equal to

1

p

∑
σ∈Sn

p−1∑
k=0

exp(2πikf(σ)/p). (4)

In particular, we can choose p to be larger than max f(σ) over all σ ∈ Sn.

We then study the computation of the Formula (4) and show that the lower order
terms of its Taylor series expansion can be computed efficiently. As a consequence, we
obtain the following algorithmic result:

Theorem 10. (Theorem 6.2.7) For any graph G and a fixed prime p, there is an al-
gorithm that counts, modulo p, the number of permutations that violate a multiple of p
edges in G, and the running time of the algorithm is polynomial in the size of the input.

This is perhaps the best that can be done in polynomial time, since it is known
that counting the number of automorphisms modulo two is at least as hard as Graph
Automorphism, and also counting the exact number of automorphisms is at least as
hard as Graph Isomorphism [6].
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II. Counting Cycles in the Data Streaming Model

We now introduce the second part of the thesis where we develop an approach to counting
subgraphs based on complex-valued hash functions, in particular to counting cycles of
a graph presented as a data stream. Counting the number of occurrences of a graph H
in a graph G has wide applications in uncovering important structural characteristics
of the underlying network G, for example in revealing information of the most frequent
patterns. We are particularly interested in the situation where G is very large. It is then
natural to assume that G is given as a data stream, i.e., the edges of the graph G arrive
consecutively and the algorithm uses only limited space to return an approximate value.
Exact counting is not an option for massive input graphs. Indeed counting triangles
exactly already requires us to store the entire graph.

We now briefly formalise our model of computation. Let S = s1, s2, · · · , sN be a
stream that represents a graph G = (V,E), where N is the length of the stream and
each item si is associated with an edge in G. Typical models [66] in this topic include
the Cash Register Model and the Turnstile Model. In the cash register model, each item
si expresses one edge in G, and in the turnstile model each item si is represented by
(ei, si) where ei is an edge of G and si ∈ {+,−} indicates that ei is inserted to or deleted
from G. As a generalization of the cash register model, the turnstile model supports
dynamic insertions and deletions of the edges.

In a distributed setting the stream S is partitioned into sub-streams S1, . . . , St and
each Si is fed to a different processor. At the end of the computation, the processors
collectively estimate the number of occurrences of H with a small amount of communi-
cation.

Counting subgraphs in a data stream was first considered in a seminal paper by Bar-
Yossef, Kumar, and Sivakumar [81]. There, the triangle counting problem was reduced
to the problem of computing frequency moments. After that, several algorithms for
counting triangles have been proposed [49].

Jowhari and Ghodsi presented three algorithms in [49], one of which is applicable
in the turnstile model. Moreover, the problem of counting subgraphs different from
triangles has also been investigated in the literature. Bordino, Donato, Gionis, and
Leonardi [20] extended the technique of counting triangles [22] to all subgraphs on three
and four vertices. Buriol, Fahling, Leonardi and Sohler [56] presented a streaming algo-
rithm for counting K3,3, the complete bipartite graph with three vertices in each part.
However, except the one presented in [49], most algorithms are based on sampling tech-
niques and do not apply to the turnstile model.

Our Contributions

We present a general framework for counting cycles of arbitrary size in a massive graph.
Our algorithm runs in the turnstile model and the distributed setting, and for any
constants 0 < ε, δ < 1, our algorithm achieves an (ε, δ)-approximation, i.e., the output
Z of the algorithm and the exact value Z∗ = #Ck, the number of occurrences of Ck,
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satisfy Pr [|Z − Z∗| > ε · Z∗] < δ. We also provide an unbiased estimator for general
d-regular graphs. This considerably extends the class of graphs that can be counted
in the data streaming model and answers partially an open problem proposed by many
references, see for example the extensive survey by Muthukrishnan [66] and the 11th open
question in the 2006 IITK Workshop on Algorithms for Data Streams [69]. Besides that,
we initiate the study of complex-valued hash functions in counting subgraphs.

Remark 4. Complex-valued estimators have been successfully applied in other con-
texts such as approximating the permanent, see [53]. In the data streaming setting,
Ganguly [38] used a complex-valued sketch to estimate frequency moments.

Our main result is as follows:

Theorem 11. (Theorem 8.3.5) Let G be a graph with n vertices and m edges. For
any k, there is an algorithm using S bits of space to (ε, δ)-approximate the number of

occurrences of Ck in G provided that S = Ω
(

1
ε2
· mk

(#Ck)2 · log n · log 1
δ

)
. The algorithm

works in the turnstile model.

A näıve approach for counting the number of occurrences of a k-cycle would either
sample independently k vertices (if possible) or k edges from the stream. Since the prob-
ability of k vertices (or k edges) forming a cycle is #Ck/n

k (or #Ck/m
k), this approach

needs space Ω
(
nk logn

#Ck

)
and Ω

(
mk logn

#Ck

)
, respectively. Thus, our algorithm improves

upon these two approaches, especially for sparse graphs with many k-cycles, and has
the additional benefit that it is applicable in the turnstile model and the distributed
setting. Moreover, note that our bound is essentially tight, as there are graphs where
the space complexity of the algorithm is O(log n): consider for example the “extremal
graph” with a clique on Θ(

√
m) vertices, where all other vertices are isolated. Moreover,

as a corollary of Theorem 11, when the number of occurrences of Ck is Ω
(
mk/2−α) for

0 ≤ α < 1/2, our algorithm with sub-linear space O
(

1
ε2
·m2α · log 1

δ

)
suffices to give a

good approximation.
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Part I

Riemann-Roch Theory for
Sublattices of An
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Chapter 1

Riemann-Roch for Sublattices of An

In this chapter, we establish a Riemann-Roch theorem for sublattices of the root lattice
An. Let us start by briefly discussing the notation that we will frequently use in this
chapter as well as in the upcoming chapters.

1.1 Basic Notations

A point of Rn+1 with integer coordinates is called an integral point. By a lattice L, we
mean a discrete subgroup of H0 of maximum rank. Recall that H0 is the set of all points
of Rn+1 such that the sum of their coordinates is zero. The elements of L are called
lattice points. The positive cone in Rn+1 consists of all the points with non-negative
coordinates. We can define a partial order in Rn+1 as follows: a ≤ b if and only if b− a
is in the positive cone, i.e., if each coordinate of b− a is non-negative. In this case, we
say that b dominates a. Also we write a < b if all the coordinates of b − a are strictly
positive.

For a point v = (v0, . . . , vn) ∈ Rn+1, we denote by v− and v+ the negative and positive
parts of v respectively. For a point p = (p0, . . . , pn) ∈ Rn+1, we define the degree of p
as deg(p) =

∑n
i=0 pi. For each k, by Hk we denote the hyperplane consisting of points

of degree k, i.e., Hk = {x ∈ Rn+1 | deg(x) = k}. By πk, we denote the projection from
Rn+1 onto Hk along ~1 = (1, . . . , 1). In particular, π0 is the projection onto H0. Finally
for an integral point D ∈ Zn+1, by N(D) we denote the set of all neighbours of D in
Zn+1, which consists of all the points of Zn+1 which have distance at most one to D in
`1 norm.

In the following, to simplify the presentation, we will use the convention of trop-
ical arithmetic, briefly recalled below. The tropical semiring (R,⊕,⊗) is defined as
follows: As a set this is just the real numbers R. However, one redefines the ba-
sic arithmetic operations of addition and multiplication of real numbers as follows:
x ⊕ y := min (x, y) and x ⊗ y := x+ y. In words, the tropical sum of two numbers
is their minimum, and the tropical product of two numbers is their sum. Similarly we
denote the maximum of two real numbers x, y by x⊕max y. We extend the tropical sum,
tropical product and the maximum to vectors by doing the operations coordinate-wise.
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1.2 Preliminaries

All through this section L will denote a full rank integral sublattice of H0 i.e., a sublattice
of An.

1.2.1 Sigma-Region of a Given Sublattice L of An

Every point D in Zn+1 defines two “orthogonal” cones in Rn+1, denoted by H−D and H+
D ,

as follows: H−D is the set of all points in Rn+1 which are dominated by D. In other words

H−D = {D′ | D′ ∈ Rn+1, D −D′ ≥ 0 }.

Similarly H+
D is the set of points in Rn+1 that dominate D. In other words,

H+
D = {D′ | D′ ∈ Rn+1, D′ −D ≥ 0 }.

For a cone C in Rn+1, we denote by C(Z) and C(Q), the set of integral and rational points
of the cone respectively. When there is no risk of confusion, we sometimes drop (Z) (resp.
(Q)) and only refer to C as the set of integral points (resp. rational points) of the cone
C. The Sigma-Region of the lattice L is, roughly speaking, the set of integral points of
Zn+1 that are not contained in the cone H−p for any point p ∈ L. More precisely:

Definition 1.2.1. The Sigma-Region of L, denoted by Σ(L), is defined as follows:

Σ(L) = {D | D ∈ Zn+1 & ∀ p ∈ L, D � p } = Zn+1 \
⋃
p∈L

H−p . (1.1)

The following lemma shows the relation between the Sigma-Region and the rank of
an integral point as defined in the previous section.

Lemma 1.2.2.

(i) For a point D in Zn+1, r(D) = −1 if and only if −D is a point in Σ(L).

(ii) More generally, r(D) + 1 is the distance of −D to Σ(L) in the `1 norm, i.e.,

r(D) = dist`1(−D,Σ(L))− 1 := inf{||p+D||`1 | p ∈ Σ(L)} − 1,

where ||x||`1 =
∑n

i=0 |xi| for every point x = (x0, x1, . . . , xn) ∈ Rn+1.

Before presenting the proof of Lemma 1.2.2, we need the following simple observation.

Observation 1. ∀ D1, D2 ∈ Zn+1, we have D1 ∈ Σ(L) − D2 if and only if D2 ∈
Σ(L)−D1.

We shall usually use this observation without sometimes mentioning it explicitly.
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Figure 1.1: A finite portion of the Sigma-Region of a sublattice of A1. All the black
points belong to the Sigma-Region. The integral points in the grey part are out of the
Sigma-Region.

Proof of Lemma 1.2.2.

(i) Recall that r(D) = −1 means that |D| = ∅. This in turn means that D � p for
any p in L, or equivalently −D � q for any point q in L (because L = −L). We
infer that −D is a point of Σ(L). Conversely, if −D belongs to Σ(L), then −D � q
for any point q in L, or equivalently D � p for any p in L (because L = −L). This
implies that |D| = ∅ and hence r(D) = −1.

(ii) Let p∗ be a point in Σ(L) which has minimum `1 distance from −D, and define
v∗ = p∗ + D. Write v∗ = v∗,+ + v∗,−, where v∗,+ and v∗,− are respectively the
positive and the negative parts of v∗. We first claim that v∗ is an effective integral
point, i.e., v∗,− = 0. For the sake of a contradiction, let us assume the contrary,
i.e., assume that ||v∗,−||`1 > 0. Since −D+v∗,+ +v∗,− = −D+v∗ = p∗ is contained
in Σ(L), and because v∗,− ≤ 0, the point p∗,+ = −D + v∗,+ has to be in Σ(L).
Also ||v∗,+||`1 < ||v∗||`1 (because ||v∗||`1 = ||v∗,+||`1 + ||v∗,−||`1 and ||v∗,−||`1 > 0).
We obtain ||D + p∗,+||`1 = ||v∗,+||`1 < ||D + p∗||`1 , which is a contradiction by the
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choice of p∗. Therefore, we have

r(D) = min{ deg(v) | |D − v| = ∅, v ≥ 0 } − 1

= min{ deg(v) | v −D ∈ Σ(L), v ≥ 0 } − 1 (By the first part of Lemma 1.2.2)

= min{ ||v||`1 | v −D ∈ Σ(L), v ≥ 0 } − 1

= min{ ||D + p||`1 − 1 | p ∈ Σ(L) and D + p ≥ 0 }
= dist`1(−D,Σ(L))− 1 (By the above arguments).

Lemma 1.2.2 shows the importance of understanding the geometry of the Sigma-
Region for the study of the rank function. This will be our aim in the rest of this section
and in Section 1.4. But we need to introduce another definition before we proceed.
Apparently, it is easier to work with a “continuous” and “closed” version of the Sigma-
Region.

Definition 1.2.3. ΣR(L) is the set of points in Rn that are not dominated by any point
in L.

ΣR(L) =
{
p | p ∈ Rn+1 and p � q, ∀q ∈ L

}
= Rn+1 \

⋃
p∈L

H−p .

By Σc(L) we denote the topological closure of ΣR(L) in Rn+1.

Remark 1.2.4. One advantage of this definition is that it can be used to define the same
Riemann-Roch machinery for any full rank sublattice of H0. Indeed for such a sublattice
L, it is quite straightforward to associate a real-valued rank function to any point of
Rn+1. The main theorems of this thesis can be proved in this more general setting. As
all the examples of interest for us are integral lattices (lattices whose elements all have
integer coordinates), we have restricted the presentation to sublattices of An.

1.2.2 Extremal Points of the Sigma-Region

We say that a point p ∈ Σ(L) is an extremal point if it is a local minimum of the degree
function. In other words

Definition 1.2.5. The set of extremal points of L denoted by Ext(L) is defined as
follows:

Ext(L) := {ν ∈ Σ(L) | deg(ν) ≤ deg(q) ∀ q ∈ N(ν) ∩ Σ(L)}).

Recall that for every point D ∈ Zn+1, N(D) is the set of neighbours of D in Zn+1, which
consists of all the points of Zn+1 which have distance at most one to D in `1 norm.
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We also define extremal points of Σc(L) as the set of points that are local minimum of
the degree function and denote it by Extc(L). Local minimum here is understood with
respect to the topology of Rn+1: x is a local minimum if and only if there exists an
open ball B containing x such that x is the point of minimum degree in B ∩Σc(L). The
following theorem describes the Sigma-Region of L in terms of its extremal points.

Theorem 1.2.6. Let L be a sublattice of An with full rank. Every point of the Sigma-
Region dominates an extremal point. More precisely, Σ(L) = ∪ν∈Ext(L)H

+
ν (Z). Recall

that H+
ν (Z) is the set of integral points of the cone H+

v .

Indeed, we first prove the following continuous version of Theorem 1.2.6.

Theorem 1.2.7. For any (integral) sublattice L of H0, we have Σc(L) = ∪ν∈Extc(L)H
+
ν .

And Theorem 1.2.6 is derived as a consequence of Theorem 1.2.7. The proof of these
two theorems are presented in Section 1.3. The proof shows that every extremal point
of Σc(L) is an integral point and Σ(L) = Σc

Z(L) + (1, . . . , 1), where Σc
Z(L) denotes the

set of integral points of Σc(L). We refer to Section 1.3 for more details.

Proposition 1.2.8. We have Σ(L) = Σc
Z(L) + (1, . . . , 1) and Ext(L) = Extc(L) +

(1, . . . , 1). In particular, π0(Extc(L)) = π0(Ext(L)).

The important point about Theorem 1.2.6 is that one can use it to express r(D) in
terms of the extremal points of Σ(L). For an integral point D = (d0, . . . , dn) ∈ Zn+1,
let us define deg+(D) := deg(D+) =

∑
i : di≥0 di and deg−(D) := deg(D−) =

∑
i : di≤0 di.

We have:

Lemma 1.2.9. For every integral point D ∈ Zn+1,

r(D) = min { deg+(ν +D) | ν ∈ Ext(L) } − 1 .

Proof. First recall that

r(D) = min{ deg(E) | |D − E| = ∅ and E ≥ 0 } − 1

= min{ deg(E) | E −D ∈ Σ(L) and E ≥ 0 } − 1 (By Lemma 1.2.2).

Let E ≥ 0 and p = E −D be a point in Σ(L). By Theorem 1.2.6, we know that p is a
point in Σ(L) if and only if p = ν + E ′ for some point ν in Ext(L) and E ′ ≥ 0. So we
can write E = p+D = ν + E ′ +D where ν ∈ Ext(L) and E ′ ≥ 0. Hence we have

r(D) = min{ deg(ν + E ′ +D) | ν ∈ Ext(L), E ′ ≥ 0 and ν + E ′ +D ≥ 0 } − 1.

We now observe that for every ν ∈ Zn+1, the integral point E ′ ≥ 0 of minimum degree
such that E ′ + ν +D ≥ 0 has degree exactly deg+(−ν −D). We infer that

deg(ν + E ′ +D) = deg(E ′) + deg(ν +D) = deg+(−ν −D) + deg(ν +D)

= deg−(ν +D) + deg(ν +D) = deg+(ν +D).

We conclude that r(D) = min{deg+(ν+D)|ν ∈ Ext(L)}−1, and the lemma follows.
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1.2.3 Min- and Max-Genus of SubLattices of An and Uniform
Lattices

We define two notions of genus for full-rank sublattices of An, min- and max-genus, in
terms of the extremal points of the Sigma-Region of L. (The same definition works for
full-rank sublattices of H0.)

Definition 1.2.10. (Min- and Max-Genus) The min- and max-genus of a given sublat-
tice L of An of rank n, denoted respectively by gmin and gmax, are defined as follows:

gmin(L) = inf { − deg(ν) | ν ∈ Ext(L) }+ 1 .

gmax(L) = sup{ − deg(ν) | ν ∈ Ext(L) }+ 1 .

Remark 1.2.11. There are some other notions of genus associated to a given lattice, for
example., the notion spinor genus for lattices developed by Eichler (see polyhedraEic52
and [31]) in the context of integral quadratic forms. Every sublattice of An provides a
quadratic form in a natural way. But a priori there is no relation between these notions.

It is clear by definition that gmin ≤ gmax. But generally these two numbers could be
different.

Definition 1.2.12. A sublattice L ⊆ An of rank n is called uniform if gmin = gmax. The
genus of a uniform sublattice is g = gmin = gmax.

As we will show later in Chapter 2, sublattices generated by Laplacian of graphs are
uniform.

1.3 Proofs of Theorem 1.2.6 and Theorem 1.2.7

In this section, we present the proofs of Theorem 1.2.6 and Theorem 1.2.7.

Recall that ΣR(L) is the set of points in Rn+1 that are not dominated by any point
in L and Σc(L) is the topological closure of ΣR(L) in Rn+1. Also, recall that Extc(L)
denotes the set of extremal points of Σc(L). These are the set of points which are local
minimum of the degree function. As we said before, instead of working with the Sigma-
Region directly, we initially work with Σc(L). We first prove Theorem 1.2.7. Namely,
we prove Σc(L) = ∪ν∈Extc(L)H

+
ν . To prepare for the proof of this theorem, we need a

series of lemmas.

The following lemma provides a description of Σc(L) in terms of the domination order
in Rn+1. Recall that for two points x = (x0, . . . , xn) and y = (y0, . . . , yn), x ≤ y (resp.
x < y) if xi ≤ yi (resp. xi < yi) for all 0 ≤ i ≤ n.

Lemma 1.3.1. Σc(L) = { p | p ∈ Rn+1 and ∀ q ∈ L : p ≮ q }.

Proof. Let Σ̄c(L) := {p|p ∈ Rnand∀p′ ∈ L : p ≮ p′}. We write Σc(L) = ΣR(L)∪∂ΣR(L).
For a point p is in ΣR(L), we have p ≮ p′ for all p′ in L and so ΣR ⊆ Σ̄c(L). We now

20



prove that ∂ΣR(L) ⊆ Σ̄c(L). Let p be a point in ∂ΣR(L) and suppose that p is not
contained in ΣR(L). We have p ≤ p′ for some points p′ in L, and that p+ δ(1, . . . , 1) is
contained in ΣR(L) for all δ > 0. But this means that for any point p′ in L such that
p ≤ p′, there exists some i such that (p)i = (p′)i and hence p ≮ p′. This proves that
∂Σc(L) ⊆ Σ̄c(L), and so Σc(L) ⊆ Σ̄c(L). We now verify that Σ̄c(L) ⊆ Σc(L). We
conclude that Σc(L) = { p | p ∈ Rn and ∀ p′ ∈ L : p ≮ p′ }.
Lemma 1.3.2. Extremal points of Σc(L) are contained in ∂(Σc(L)).

Let p be a point in Σc(L) and let d be a vector in Rn+1. We say that d is feasible for
p, if it satisfies the following properties:
1. deg(d) < 0.
2. There exists a δ0(p, d) > 0 such that for every 0 ≤ δ ≤ δ0(p, d), p + δd ∈ Σc(L). By
Lemma 1.3.1, this means that p+ δd ≮ p′ for all lattice points p′ ∈ L.

Furthermore, we define the function εp,d : L→ R ∪ {∞} as follows:

εp,d(q) = inf { ε | ε > 0 and p+ εd < q }.

Let I = { i | 0 ≤ i ≤ n and pi ≥ qi }. We have the following explicit description of εp,d.

εp,d(q) =


0 if I = ∅.
maxi∈I

(qi−pi)
di

if I 6= ∅, ∀ i ∈ I, di < 0, and ∃ ε > 0 such that p+ εd < q,

∞ otherwise.

(1.2)
We verify that

Lemma 1.3.3. For a point p in Σc(L), εd,p(q) ≥ εd−,p(q) for all q ∈ L . In the only
cases when the inequality is strict, we must have εd,p(q) =∞ and εd−,p(q) > 0.

We now prove the following lemma which links the function εd,p to the feasibility of d at
p.

Lemma 1.3.4. For a point p in Σc(L) and d in Rn+1 with deg(d) < 0, d is not feasible
for p if and only if εp,d(q) = 0 for some q ∈ L.

Proof. Let p be a point of Σc(L).

(⇒). Assume the contrary, then we should have the following properties:

1. deg(d) < 0 ,

2. εp,d(q) > 0 for all q ∈ L ,

We claim that infq∈L { εp,d(q) } > δ0 , for some δ0 > 0 . By the definition of εp,d and the
fact that L is a sublattice of An we know that if εp,d(q) 6= 0, then since L is a sublattice
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of An and hence every element of L has integer coordinates, we know that εp,d(q) is at

least min{i: di<0}
{pi}
|di| , where 0 < {pi} = pi − dpi − 1e ≤ 1 is the rational part of pi if pi

is not integral, and is 1 if pi is integral. As the number of indices is finite, we conclude
that δ0 = min{i: di<0} |{pi}di | and the claim holds. It follows that p + εd ≮ q for all q in L
and for all 0 ≤ ε ≤ δ0. This implies that d is feasible for p.

(⇐). If εp,d(q) = 0 for some q ∈ L, then there exists a δ0 > 0 such that p + δd < p′ for
every 0 < δ ≤ δ0. This shows that d is not feasible for p.

Remark 5. Note that in the proof of Lemma 1.3.4 the argument that εp,d(q) is at least

min{i: di<0}
{pi}
|di| requires that L is a sublattice of An. The argument can be modified to

handle arbitrary sublattices of H0 by using the fact that a lattice is a discrete subset
of H0. The argument is as follows: fix an ε0 > 0 and observe that there can only a
finite number of lattice points S in L that satisfy ε(p, d)(q) ≤ ε0. We can now pick the
minimum ε(p, d)(q) among points in S to conclude that infq∈L { εp,d(q) } > 0.

Corollary 1.3.5. For a point p in Σc(L), p is an extremal point if and only if for every
vector d ∈ Rn+1 with deg(d) < 0, we have εp,d(q) = 0 for some q in L.

Combining Lemma 1.3.3 and Corollary 1.3.5, we obtain the following result:

Lemma 1.3.6. If p is not an extremal point of Σc(L), then there exists a vector d in
H−O which is feasible for p.

Proof. If p is not an extremal point of Σc(L), then there exists a vector d0 in Rn+1 that
is feasible for p. By Corollary 1.3.5, d0 has the following properties:

1. deg(d0) < 0 ,

2. εd0,p(q) > 0 for all q ∈ L ,

Let d := d−0 . We have deg(d) < 0, since deg(d0) < 0 and d = d−0 . By Lemma 1.3.3, we
have εd0,p(q) ≥ εd,p(q) for all q ∈ L, and in the only cases for q when the inequality
is strict we have εd,p(q) > 0. We infer that d also satisfies Properties 1 and 2. By
Corollary 1.3.5, d is also feasible for p and by construction, d belongs to H−O ; the lemma
follows.

Consider the set deg(Σc(L)) = { deg(p) | p ∈ Σc(L) }. The next lemma shows that
the degree function is bounded below on the elements of Σc(L) (by some negative real
number).

Lemma 1.3.7. For a rank n sublattice L of An, inf(deg(Σc(L)) is finite.

Proof. It is possible to give a direct proof of this lemma. But using our results in
Section 1.4 allows us to shorten the proof. So we postpone the proof to Section 1.4.

We are now in a position to present the proofs of Theorem 1.2.7 and Theorem 1.2.6.

22



Proof of Theorem 1.2.7. Consider a point p in Σc(L). We should prove the existence of
an extremal point ν ∈ Extc(L) such that ν ≤ p.

Consider the cone H−p . As a consequence of Lemma 1.3.7, we infer that the region
Σc(L) ∩ H−p is a bounded closed subspace of Rn+1, and so it is compact. The degree
function deg restricted to this compact set, achieves its minimum on some point ν ∈
Σc(L) ∩ H−p . We claim that ν ∈ Extc(L). Suppose that this is not the case. By
Lemma 1.3.6, there exists a feasible vector d ∈ H−O for ν, i.e., such that ν + δd ∈ Σc(L)
for all sufficiently small δ > 0. Now we verify that

• ν + δ d ∈ H−p and hence ν + δd ≤ p ,

• deg(ν + δ d) < deg(ν).

This contradicts the choice of ν.

Proof of Theorem 1.2.6. In order to establish Theorem 1.2.6, we first prove that every
point in Extc(L) is an integral point. For the sake of a contradiction, suppose that
there exists a non integral point in Extc(L). Let p = (p0, . . . , pn) be such a point and
suppose without loss of generality that p0 is not integer. We claim that the vector
d = −e0 = (−1, 0, 0, . . . , 0) is feasible. We have εp,d(q) > 0 for all q ∈ L, and so by
Corollary 1.3.5 we conclude that p could not be an extremal point of Σc(L).

Let Σc
Z(L) be the set of integral points of Σc(L). We show that Σc

Z(L)+(1, . . . , 1) = Σ(L).
Note that as soon as this is proved, Theorem 1.2.7 and the fact that extremal points of
Σc(L) are all integral points implies Theorem 1.2.6.

We prove Σc
Z(L) + (1, . . . , 1) ⊆ Σ(L).— Let u = v+ (1, . . . , 1) ∈ Σc

Z(L) + (1, . . . , 1), for a
point v ∈ Σc

Z(L). To show u ∈ Σ(L) we should prove that ∀q ∈ L : u � q. Suppose that
this is not the case and let q ∈ L be such that u ≤ q. It follows that u− (1, . . . , 1) < q
and hence, v /∈ Σc(L), which is a contradiction.

We prove Σ(L) ⊆ Σc
Z(L) + (1, . . . , 1).— A point u in ∂Σc(L) is contained in H−(q) for

some q in L and hence u ≤ q. We infer that Σ(L) is contained in the interior of Σc(L),
and so for each point p of Σ(L), every vector in Rn+1 of negative degree will be feasible.
By Lemma 1.3.7, there exists a point pc ∈ ∂Σc(L) such that p = pc + t(1, . . . , 1) for
some t > 0. It follows that p > pc. By Theorem 1.2.7, pc ∈ H+

ν for some ν in Extc(L).
This implies that p > ν for some ν ∈ Extc(L). By definition, p is an integral point
and we just showed that ν is also an integral point. Hence we can further deduce that
p ≥ ν + (1, . . . , 1). We infer that p− (1, . . . , 1) ≥ ν and therefore, p− (1, . . . , 1) ∈ Σc(L)
(because H+

ν ⊂ Σc(L)). It follows that p ∈ Σc
Z(L) + (1, . . . , 1).

We finally show that every ν ∈ Extc(L) + (1, . . . , 1) must be have minimum degree
among all points in N(ν) ∩ Σ(L), the set of integer points that are at distance at most
one in the `1-norm since, otherwise suppose that there a point in q in N(ν)∩Σ(L) with
deg(q) < deg(ν). Hence, we know that q ≤ ν. Now, consider a point ν ′ ∈ Ext(L)
such that q ≥ ν ′, this means that ν ≥ ν ′. But, this contradicts our assumption that
ν ∈ Ext(L).
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1.4 Lattices under a Simplicial Distance Function

In this section, we provide some basic properties of the Voronoi diagram of a sublattice
L of An under a simplicial distance function d4(., .) which we define below. The distance
function d4(. , .) has the following explicit form, and as we will see in this section, is
the distance function having the homotheties of the standard simplex in H0 as its balls
(which explains the name simplicial distance function). For two points p and q in H0,
the simplicial distance between p and q is defined as follows

d4(p, q) := inf
{
λ | q − p+ λ(1, . . . , 1) ≥ 0

}
.

The basic properties of d4 are better explained in the more general context of polyhedral
distance functions that we now explain.

1.4.1 Polyhedral Distance Functions and their Voronoi Dia-
grams

Let Q be a convex polytope in Rn with the reference point O = (0, . . . , 0) in its interior.
The polyhedral distance function dQ(. , .) between the points of Rn is defined as follows:

∀ p, q ∈ Rn, dQ(p, q) := inf{λ ≥ 0 | q ∈ p+ λ.Q}, where λ.Q = { λ.x | x ∈ Q }.
dQ is not generally symmetric, indeed it is easy to check that dQ(. , .) is symmetric if
and only if the polyhedron Q is centrally symmetric i.e., Q = −Q. Nevertheless dQ(. , .)
satisfies the triangle inequality.

Lemma 1.4.1. For every three points p, q, r ∈ Rn, we have dQ(p, q)+dQ(q, r) ≥ dQ(p, r).
In addition, if q is a convex combination of p and r, then dQ(p, q) + dQ(q, r) = dQ(p, r).

Proof. To prove the triangle inequality, it will be sufficient to show that if q ∈ p + λ.Q
and r ∈ q+ µ.Q, then r ∈ p+ (λ+ µ).Q. We write q = p+ λ.q′ and r = q+ µ.r′ for two
points q′ and r′ in Q. We can then write r = p+λ.q′+µ.r′ = p+(λ+µ)( λ

λ+µ
.q′+ µ

λ+µ
.r′).

Q being convex and λ, µ ≥ 0, we infer that λ
λ+µ

.q′+ µ
λ+µ

.r′ ∈ Q, and so r ∈ p+(λ+µ).Q.
The triangle inequality follows.

To prove the second part of the lemma, let t ∈ [0, 1] be such that q = t.p + (1 − t).r .
By the triangle inequality, it will be enough to prove that dQ(p, q) + dQ(q, r) ≤ dQ(p, r).
Let dQ(p, r) = λ so that r = p + λ.r′ for some point r′ in Q. We infer first that
q = t.p + (1 − t).r = t.p + (1 − t)(p + λ.r′) = p + (1 − t)λ.r′, which implies that
dQ(p, q) ≤ (1− t)λ. Similarly we have t.r = t.p+ tλ.r′ = q − (1− t)r + tλ.r′. It follows
that r = q + tλr′ and so dQ(q, r) ≤ tλ . We conclude that dQ(p, q) + dQ(q, r) ≤ dQ(p, r),
and the lemma follows.

We also observe that the polyhedral metric dQ(. , .) is translation invariant, i.e.,

Lemma 1.4.2. For any two points p, q in Rn, and for any vector v ∈ Rn, we have
dQ(p, q) = dQ(p− v, q − v). In particular, dQ(p, q) = dQ(p− q, O) = dQ(O, q − p).
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Proof. If q ∈ p+ λ.Q, then q − v ∈ p− v + λ.Q, and vice versa.

Remark 1.4.3. The notion of a polyhedral distance function is essentially the concept
of a gauge function of a convex body that has been studied in [77]. Lemmas 1.4.1 and
1.4.2 can be derived in a straight forward way from the results in [77]. We include them
here for the sake of reference.

Consider a discrete subset S in Rn. For a point s in S, we define the Voronoi cell of s
with respect to dQ as VQ(s) = {p ∈ Rn |dQ(p, s) ≤ dQ(p, s′) for any other point s′ ∈ S } .
The Voronoi diagram VorQ(S) is the decomposition of Rn induced by the cells VQ(s), for
s ∈ S . We note however that this need not be a cell decomposition in the usual sense.

We state the following lemma on the shape of cells VQ(s).

Lemma 1.4.4. [25] Let S be a discrete subset of Rn and VorQ(S) be the Voronoi cell
decomposition of Rn. For any point s in S, the Voronoi cell VQ(s) is a star-shaped set
with s as a kernel.

Proof. Assume the contrary. Then there is a line segment [s, r] and a point q between
s and r such that r ∈ VQ(s) and q /∈ VQ(s). Suppose that q is contained in V (s′) for
some s′ 6= s. We should then have dQ(q, s) > dQ(q, s′). By Lemma 1.4.1, dQ(r, s) =
dQ(r, q) + dQ(q, s). We infer that

dQ(r, s) = dQ(r, q) + dQ(q, s) > dQ(r, q) + dQ(q, s′) ≥ dQ(r, s′), contradicting r ∈ VQ(s).

Definition 1.4.5. (Voronoi Neighbours) We say that distinct points p, q ∈ S are
Voronoi neighbours if the intersection of their Voronoi cells is non-empty.

1.4.2 Voronoi Diagram of SubLattices of An

Voronoi diagrams of root lattices under the Euclidean metric have been studied previ-
ously in literature. Conway and Sloane [30, 31], describe the Voronoi cell structure of
root lattices and their duals under the Euclidean metric.

Here we study Voronoi diagrams of sublattices of An under polyhedral distance functions
(and later under the simplicial distance functions d4(. , .)). We will see the importance
of this study in the proof of Riemann-Roch Theorem in Section 1.5, and in the geometric
study of the Laplacian of graphs in Chapter 2.

Let L be a sublattice of An of full rank. Note that L is a discrete subset of the hyperplane
H0 and H0 ' Rn. Let Q ⊂ H0 be a convex polytope of dimension n in H0. We will
be interested in the Voronoi cell decomposition of the hyperplane H0 under the distance
function dQ(. , .) induced by the points of L. The following lemma, which essentially uses
the translation-invariance of dQ(. , .), shows that these cells are all simply translations
of each other.
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Lemma 1.4.6. For a point p in L, VQ(p) = VQ(O) + p . As a consequence, VorQ(L) =
VQ(O) + L.

Proof. Let p1 and p2 be two points of L, and q1 ∈ VQ(p1) be a point of the Voronoi cell
of p1. By definition, we should have dQ(q1, p1) ≤ d(q1, p) for every point p in L. Let
q2 := q1 − p1 + p2. By the translation invariance of dQ, we have dQ(q2, p2) = dQ(q1, p1).
We claim that q2 ∈ VQ(p2). We should prove that dQ(q2, p2) ≤ dQ(q2, p) for every point
p ∈ L. Let p be in L. As L is a lattice, and p1, p2 ∈ L, the point p − p2 + p1 is also in
L. We infer that

dQ(q2, p2) = dQ(q1, p1) ≤ dQ(q1, p− p2 + p1) = dQ(q2, p),

and the claim follows. Note that the last equality above comes again from the translation-
invariance of dQ. The above arguments show that VQ(p1) + p2− p1 ⊆ VQ(p2). Replacing
the role of p2 by p1, we finally infer that VQ(p2) = VQ(p1) + p2 − p1. For p1 = O and
p2 = p ∈ L, we obtain V (p) = V (O) + p.

By Lemma 5.1.7, to understand the Voronoi cell decomposition of H0, it will be enough
to understand the cell VQ(O). We already know that VQ(O) is a star-shaped set. The
following lemma shows that VQ(O) is compact, and so it is a (not necessarily convex)
star-shaped polytope.

Lemma 1.4.7. The Voronoi cell VQ(O) is compact.

Proof. It is sufficient to prove that VQ(O) does not contain any infinite ray. Indeed,
VQ(O) being star-shaped and closed, this will imply that VQ(O) is bounded and so we
have the compactness.

Assume, for the sake of a contradiction, that there exists a vector v 6= O in H0 such
that the ray t.v for t ≥ 0 is contained in VQ(O). This means that

For every t ≥ 0 and for every p ∈ L, we have dQ(t.v, O) ≤ dQ(t.v, p). (1.3)

Choose a real number λ such that 0 < λ < dQ(v,O). By Lemma 1.4.1, dQ(t.v, O) =
tdQ(v,O) > λt for t > 0. By the definition of dQ, the choice of λ and Property (1.3),
the polytope t.v + tλ.Q = t.(v + λQ) does not contain any point p ∈ L for t > 0. Let
C =

⋃
t≥0 t.(v + λ.Q). We verify that C is the cone generated by v + λ.Q. It follows

that C does not contain any lattice point apart from O (for t = 0). In addition, Q being
a polytope of dimension n, C should be a cone of full dimension in H0. But this will
provide a contradiction, because as we will show below for any vector v̄ with rational
coordinates in H0, the open ray t.v̄ for t > 0 contains a lattice point in L. (And since,
rational numbers are dense in the space of real numbers, we know that any cone C of
full dimension in H0 contains a rational vector.) To see this, observe that a basis for
L is also a basis for the n-dimensional Q-vector space H0(Q). Here H0(Q) denotes the
rational points of the hyperplane H0. This means that v̄ can be written as a rational
combination of some points in L. Multiplying by a sufficiently large integer number N ,
N.v̄ can be written as an integral combination of the same points in L, i.e., N.v̄ ∈ L,
and this finishes the proof of the lemma.
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Lemma 1.4.8. Any shortest vector of a lattice L under the polyhedral distance function
dQ is a Voronoi neighbour of the origin under the same distance function.

Proof. Let p be a shortest vector of L in the distance function dQ. Consider the inter-

section pI of the ray
−→
Op with the Voronoi cell VQ(O) of the origin under the distance

function dQ and by Lemma 1.4.7, we know that the ray
−→
Op intersects VQ(O) at some

point pI 6= p. By Lemma 1.4.1, we have: dQ(O, p) = dQ(O, pI) + dQ(pI , p). Assume for
contradiction that p is not a Voronoi neighbour of the origin under the distance function
dQ. This means that there is a lattice point p′ such that dQ(pI , p

′) < dQ(pI , p). Hence
we have:

dQ(O, p′) ≤ dQ(O, pI) + dQ(pI , p
′) < dQ(O, pI) + dQ(pI , p) = dQ(O, p). (1.4)

This contradicts our assumption that p is a shortest vector of L.

We will mainly be interested in two special polytopes 4 and 4̄ in H0. They are both
standard simplices of H0 under an appropriate isometry H0 ' Rn. The n-dimensional
regular simplex 4(O) centered at the origin O has vertices at the points b0, b1, . . . , bn.
For all 0 ≤ i, j ≤ n, the coordinates of bi are given by:

(bi)j =

{
n if i=j,

−1 otherwise.

The simplex 4̄(O) is the opposite simplex to 4(O), i.e., 4̄(O) := −4(O). The
simplicial distance functions d4(. , .) and d4̄(. , .) are the distance functions in Rn+1

defined by 4 and 4̄ respectively. It is easy to check the following anti-symmetric
property for the above distance functions: For any pair of points p, q ∈ Rn+1, we have
d4(p, q) = d4̄(q, p). (This is indeed true for any convex polytope Q: dQ(p, q) = dQ̄(q, p),
where Q̄ = −Q.)

1.4.3 Geometric Invariants of a Lattice with respect to Poly-
hedral Distance Functions

We will define some important invariants of a lattice with respect to polyhedral distance
functions.

Definition 1.4.9. An element q of L is called a shortest vector with respect to the
polyhedral distance function dP if dP(O, q) ≤ dP(O, q′) for all q′ ∈ L/{O}, where O is
the origin. We denote dP(O, q) by νP(L).

Note that the shortest vector with respect the distance functions dP and dP̄ can be
potentially different.

Definition 1.4.10. For a lattice L, we define packing and covering radius of L with
respect P as:

PacP(L) = sup{R| P(q1, R) ∩ P(q2, R) = ∅, ∀q1, q2 ∈ L q1 6= q2}
CovP(L) = inf{R| every p ∈ Span(L) is contained in P(q, R) for some q ∈ L}
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Note that for polyhedral distance functions it is no longer true that PacP(L) =
νP(L)/2. We will see examples in Chapter 3

Notation. In the following we will use the following terminology: For a point v ∈ H0,
we let 4(v) = v +4(O) and 4̄(v) = v + 4̄(O). More generally given a real λ ≥ 0 and
v ∈ H0, we define 4λ(v) = v + λ · 4(O), and similarly, 4̄λ(v) = v + λ · 4̄(O). We can
think of these as balls of radius λ around v for d4 and d4̄ respectively.

x

y

Figure 1.2: The shape of a Voronoi-cell in the Laplacian lattice of a graph with three
vertices. The multi-graph G has three vertices and 7 edges. The lattice A2 is generated
by the two vectors x = (1,−1, 0) and y = (−1, 0, 1). The corresponding Laplacian
sublattice of A2, whose elements are denoted by •, is generated by the vectors (−5, 3, 2) =
−3x+ 2y and (3,−5, 2) = 5x+ 2y (and (2, 2,−4) = −2x− 4y), which correspond to the
vertices of G.

The following lemma shows that the definition given in the beginning of this section
coincides with the definition of d4 given above. We can explicitly write a formula for
d4(. , .) and d4̄(. , .) in the hyperplane H0:

Lemma 1.4.11. For two points p = (p0, p1, . . . , pn) and q = (q0, q1, . . . , qn) in H0, the
4-simplicial distance from p to q is given by d4(p, q) = | ⊕n

i=0(qi − pi) |. And the
4̄-simplicial distance from p to q is given by d4̄(p, q) = | ⊕n

i=0(pi− qi) |. Here the sum⊕
i(xi − yi) denotes the tropical sum of the numbers xi − yi.
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Proof. By the anti-symmetry property of the distance function d4(., .) (namely d4(p, q) =
d4̄(q, p), ∀p, q), we only need to prove the lemma for d4(. , .). By definition, d4(p, q)
is the smallest positive real λ such that q ∈ p + λ.4. The simplex 4 being the convex
hull of the vectors bi defined above, it follows that for an element x ∈ λ.4, there should
exist non-negative reals µi ≥ 0 such that

∑n
i=0 µi = λ and x = µ0b0 + µ1b1 + · · ·+ µnbn.

From the definition of the vector bi’s, we obtain x = (n+1)(µ0, µ1, . . . , µn)−λ(1, . . . , 1).
It follows that d4(p, q) is the smallest λ such that q − p + λ.(1, . . . , 1) becomes equal
to (n + 1)(µ0, µ1, . . . , µn) for some µi ≥ 0 such that

∑
i µi = λ. Let λ0 be the smallest

positive real number such that the vector µ := 1
n+1

(q − p + λ0.(1, . . . , 1)) has non-
negative coordinates. As p, q ∈ H0, a simple calculation shows that the other condition∑

i µi = λ0 holds automatically, and hence such λ0 is equal to d4(p, q). By construction
λ0 = maxi (pi − qi) = −mini (qi − pi). It follows that d4(p, q) = |⊕n

i=0(qi − pi)|.

1.4.4 Vertices of Vor4(L) that are Critical Points of a Distance
Function.

For a discrete subset S of H0 (for example., S = L), the simplicial distance function
h4,S : H0 → R is defined as follows:

h4,S(x) =
⊕
p∈S

d4(x, p) = min
p∈S

d4(x, p).

By definition, it is straightforward to verify that h4,S(x) = sup{λ | (x+λ ·4)∩S = ∅}.
Note that our definition above exactly imitates the classical definition of a distance
function [40]. In what follows, we restrict ourselves to S = L.

Remark 6. The notion of a simplicial distance function with respect to a lattice is
sometimes captured in the language of ”lattice point free simplices”, see [74] for more
details on this viewpoint. The author is indebted to Bernd Sturmfels for pointing out
this connection. In joint work with Bernd Sturmfels is currently investigating this topic.

Let L be a full-rank sublattice of An and h4,L be the distance function defined by L.
We first give a description of ∂Σc(L) (see Section 1.2.2) in terms of h4,L. The lower-
graph of h4,L is the graph of the function h4,L in the negative half-space of Rn+1, i.e.,
in the half-space of Rn+1 consisting of points of negative degree. More precisely, the
lower-graph of h4,L, denoted by Gr(h4,L), consists of all the points y−h4,L(y)(1, . . . , 1)
for y ∈ H0.

Lemma 1.4.12. The lower-graph of h4,L and ∂Σc(L) coincide, i.e., Gr(h4,L) = ∂Σc(L).

In order to present the proof of Lemma 1.4.12, we need to make some remarks. Let
p be a point of L. The function fp : H0 → Rn+1 is defined as follows:

∀ y ∈ H0, fp(y) := sup {yt | yt = y − t.(1, . . . , 1), t ≥ 0, and yt ≤ p }.
Note that sup is defined with respect to the ordering of Rn+1, and is well-defined because
yt ≥ yt′ if and only if t ≤ t′. Remark also that fp(y) is finite.
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Remark 1.4.13. The above notion has the following tropical meaning: Let λp =
min {t ∈ R | t � p ⊕ y = y}. Then yp = (−λp) � y. The numbers λp are used
in [33] to define the tropical closest point projection into some tropical polytopes. For
a finite set of points p1, . . . , pl with the tropical convex-hull polytope Q, the tropical
projection map πQ at the point y is defined as πQ(y) = λp1 � p1⊕· · ·⊕λpl � pl. It would
be interesting to explore the connection between the work presented here and the theory
of tropical polytopes.

A simple calculation shows that fp(y) = y − |⊕i(pi − yi)|.(1, . . . , 1), and hence by
Lemma 1.4.11, we obtain fp(y) = y − d4(y, p).(1, . . . , 1). In other words, fp(y) is the
lower-graph of the function d4(., p). We claim that for all y ∈ H0, y−h4,L(y)(1, . . . , 1) =
supp∈L fp(y). Here, sup is understood as before with respect to the ordering of Rn+1.
In other words, the lower-graph Gr(h4,L) is the lower envelope of the graphs Gr(fp)
for p ∈ L. To see this, remark that supp∈L fp(y) = supp∈L(y − d4(y, p).(1, . . . , 1)) =
y − (minp∈L d4(y, p)).(1, . . . , 1) = y − h4,L(y).(1, . . . , 1).

Proof of Lemma 1.4.12. By construction, for every point y ∈ H0, the intersection of the
half-ray {y−t(1, . . . , 1)|t ≥ 0} with ∂Σc(L) is the point y−h4,L(L).(1, . . . , 1) ∈ Gr(h4,L).
More precisely, by the definition of Σc(L) (see Section 1.2.2), we have

∂Σc(L) = { z | z ≤ p for some p ∈ L and z ≮ p, ∀p ∈ L}
= { sup

p∈L
fp(y) | y ∈ H0 } = Gr(h4,L) (By the discussion above).

It is possible to strengthen Lemma 1.4.12 and to obtain a description of the Voronoi
diagram Vor4(L) in terms of the boundary of the Sigma-Region. The following lemma
can be seen as the simplicial Voronoi diagram analogue of the classical result that the
Voronoi diagram under the Euclidean metric is the orthogonal projection of a lower
envelope of paraboloids [35].

Lemma 1.4.14. The Voronoi diagram of L under the simplicial distance function
d4(. , .) is the projection of ∂Σc(L) along (1, . . . , 1) onto the hyperplane H0. More pre-
cisely, for any p ∈ L, the Voronoi cell V4(p) is obtained as the image of H−p ∩ ∂Σc(L)
under the projection map π0.

Proof. By definition, H−p consists of the points which are dominated by p. It follows that
the intersection H−p ∩ ∂Σc(L) consists of all the points of ∂Σc(L) which are dominated
by p. By Lemma 1.4.12, the boundary of Σc(L), ∂Σc(L) coincides with the graph of the
simplicial distance function h4,L. It follows that the intersection H−p ∩ ∂Σc(L) consists
of all the points of the lower-graph of h4,L that are dominated by p. By definition, any
point of the lower-graph of h4,L is of the form y−h4,L(y).(1, . . . , 1) for some y ∈ H0. By
definition of the function fp, such a point is dominated by p if and only if h4,L(y) ≥ fp(y).
By definition, we know that h4,L(y) ≤ fp(y) for all y ∈ H0. We infer that for y ∈ H0,
y − h4,L(y).(1, . . . , 1) ∈ H−p ∩ ∂Σc(L) if and only if h4,L(y) = fp(y), or equivalently, if
and only if y ∈ V4(p). We conclude that V4(p) = π0(H−p ∩ ∂Σc(L)) and this completes
the proof of the lemma.
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As we show in the next two lemmas, it is possible to describe Voronoi vertices that
are local maxima of h4,L as the projection of the extremal points of the Sigma-Region
onto the hyperplane H0 (see below, Lemma 1.4.17, for a precise statement).

Let us denote by Crit(L) the set of all local maxima of h4,P . (In the example given in
Figure 1.2, these are all the vertices of the polygon drawn in the plane H2 (the right
figure) having one concave and one convex neighbours on the polygon. There are six of
them.)

Lemma 1.4.15. The critical points of L are the projection of the extremal points of
Σc(L) along the vector (1, . . . , 1). In other words, Crit(L) = π0(Extc(L)).

Proof. Let c be a point in Crit(L), and let x = c−h4,L(c).(1, . . . , 1), be the corresponding
point of the lower-graph of h4,L, Gr(h4,L) (= ∂Σc(L) by Lemma 1.4.12). Note that
π0(x) = c. We claim that x ∈ Extc(L). Assume the contrary. Then there should
exist an infinite sequence { xi }∞i=1 such that (i) xi ∈ ∂Σc(L), (ii) deg(xi) < deg(x), and
(iii) limi→∞ xi = x. By (i) and Lemma 1.4.12, we can write xi = pi−h4,L(pi).(1, . . . , 1)
for some pi ∈ H0. By (ii), we should have −(n + 1)h4,L(pi) = deg(xi) < deg(x) =
−(n + 1)h4,L(c) for every i, and so h4,L(pi) > h4,L(pi). By (iii) and by the continuity
of the map π0, we have limi→∞ pi = c. All together, we have obtained an infinite
sequence of points {pi} in H0 such that h4,L(pi) > h4,L(c) and limi→∞ pi = c. This is a
contradiction to our assumption that c ∈ Crit(L) is a local maximum of h4,L. A similar
argument shows that for every point x ∈ Extc(L), π0(x) is in Crit(L), and the lemma
follows.

By Proposition 1.2.8, we have π0(Extc(L)) = π0(Ext(L)), and so

Corollary 1.4.16. We have Crit(L) = π0(Ext(L)).

The following lemma gives a precise meaning to our claim that the critical points are
the Voronoi vertices of the Voronoi diagram, and will be used in Chapter 2 in the proof
of Theorem 2.1.9.

Lemma 1.4.17. Each v ∈ Crit(L) is a vertex of the Voronoi diagram Vor4(L): there
exist n+1 different points p0, . . . , pn in L such that v ∈ ⋂i V (pi). More precisely, a point
v ∈ H0 is critical, i.e., v ∈ Crit(L), if and only if it satisfies the following property: for
each of the n + 1 facets Fi of 4̄h4,L(v)(v), there exists a point pi ∈ L such that pi ∈ Fi
and pi is not in any of Fj for j 6= i.

Remark that this shows that every point in Crit(L) is a vertex of the Voronoi diagram
Vor4(L).

Proof. We first prove that for every v ∈ Crit(L), there exist (n + 1) different points
pi ∈ L, i = 0, . . . , n, such that the corresponding Voronoi cells V4(pi) shares v, i.e., such
that v ∈ V4(pi) for i ∈ { 0, . . . , n}. By Lemma 1.4.15, we know that there exists a point
x ∈ Extc(L) such that π0(x) = v. We will prove the following: there exist (n+1) different
points pi ∈ L, i = 0, . . . , n such that x ∈ H−pi for all i ∈ { 0, . . . , n }. Once this has been
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proved, we will be done. Indeed by Lemma 1.4.14, we know that that every Voronoi cell
V4(p), for p ∈ L, is of the form π0(H−p )∩ ∂Σc(L). So v ∈ π0(H−pi ∩ ∂Σc(L)) = V4(pi) for
each point pi, and this is exactly what we wanted to prove.

To prove the second part, it will be enough to show that the points pi have the desired
property. Remark that we have d4̄(pi, v) = d4(v, pi) = h4,L(v), so pi ∈ ∂4̄h4,L(v)(v) for
all i. By the choice of pi, we have (pi)j > xj for all j 6= i and (pi)i = xi. Since v = π0(x),
we know that pi is in the facet Fi of 4̄h4,L(v)(v) defined by

Fi = { u ∈ 4̄h4,L(v)(v) | ui = vi − h4,L(v) and uj ≥ vj − h4,L(v) }.

(Remark that d4̄(x, v) = | ⊕j (xj − vj)| so this is a facet of 4̄h4,L(v)(v).) And pi is not
in any of the other facets Fj (since (pi)j > vj − h4,L(v) for j 6= i). So the proof of one
direction is now complete. To prove the other direction, let v be a point such that each
of the n+ 1 facets Fi of 4̄h4,L(v)(v) has a point pi ∈ L and pi is not in any of the other
facets Fj for j 6= i. We show that v is critical, i.e., v is a local maxima of h4,L. It will
be enough to show that for any non-zero vector d ∈ H0 of sufficiently small norm, there
exists one of the points pi such that d4(v + d, pi) < h4,L(v) = d4(v, pi). For all j, by
the characterization of the facet Fj (see above) and by pj /∈ Fk for all k 6= i, we have
d4(v + d, pj) = d4̄(pj, v + d) = |⊕k(pj)k − vk − dk| = dj + vj − (pj)j = h4,L(v) + dj if
all dk’s are sufficiently small (namely if for all k, |dk| ≤ ε where ε > 0 is chosen so that
2ε < minj,k:k 6=j

[
(pj)k − vk + h4,L(v)

]
). As d ∈ H0 and d 6= 0, there exists i such that

di < 0. It follows that h4,L(d + v) ≤ d4(v + d, pi) < h4,L(v). And this shows that v is
a local maximum of h4,L. The proof of the lemma is now complete.

1.4.5 Proof of Lemma 1.3.7

We end this section by providing the promised short proof of Lemma 1.3.7, which claims
that the degree function is bounded below in the region Σc(L).

In Section 1.4.4 we obtained the following explicit formula for fp(y):

∀y ∈ H0, fp(y) = y − d4(y, p)(1, . . . , 1).

We infer that
∀ y ∈ V4(p) : fp(y) = y − h4,L(y).(1, . . . , 1). (1.5)

By Lemma 1.4.12, we have ∂Σc(L) = Gr(h4,L). It follows from Equation 1.5 that

∂Σc(L) = { fp(y) | y ∈ V4(p) and p ∈ L}.

We now observe that:

∀ y ∈ H0 : deg(fp(y)) = deg(y)− (n+ 1)d4(y, p) = − (n+ 1)d4(y, p).

This shows that deg(fp(y)) depends only on the simplicial distance d4 between y and p.
By translation invariance of the simplicial distance function (Lemma 1.4.2), translation
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invariance of the Voronoi cells (Lemma 5.1.7), and the above observations, we obtain

inf(deg(Σc(L))) = inf
y∈V4(p)

{ −(n+ 1)d4(y, p) }
= inf

y∈V4(O)
{ −(n+ 1)d4(y,O) }

= −(n+ 1) sup
y∈V4(O)

{ d4(y,O) }.

By Lemma 1.4.7, we know that V4(O) is compact. Also the function d4(O, y) is con-
tinuous on y. Hence supy∈V4(O){d4(y,O)}} is finite and the lemma follows.

1.5 Uniform Reflection Invariant Sublattices

Consider a full dimensional sublattice L of An and its Voronoi diagram Vor4(L) under
the simplicial distance function. From the previous sections, we know that the points
of Crit(L) are vertices of Vor4(L). We know that V4(O) is a compact star-shaped set
with O as a kernel, and that the other cells are all translations of V4(O) by points in
L. Consider now the subset CritV4(O) of vertices of V4(O) which are in Crit(L). The
sublattices of An of interest for us should have the following symmetry property:

Definition 1.5.1 (Reflection Invariance). A sublattice L ⊆ An is called reflection
invariant if −Crit(L) is a translate of Crit(L), i.e., if there exists t ∈ Rn+1 such
that −Crit(L) = Crit(L) + t. Furthermore, L is called strongly reflection invariant
if the same property holds for CritV4(O), i.e., if there exists t ∈ Rn+1 such that
−CritV4(O) = CritV4(O) + t.

By translation invariance, we know that every strongly reflection invariant sublattice
of An is indeed reflection invariant. Also, note that the vector t in the definition of
reflection invariance lattices above is not uniquely defined: by translation invariance, if
t′ is linearly equivalent to t, t′ also satisfies the property given in the definition.

Reflection Invariance and Involution of Ext(L). Let L be a reflection invariant
sublattice and t ∈ Rn+1 be a point such that −Crit(L) = Crit(L)+t. This means that for
any c ∈ Crit(L) there exists a unique c̄ ∈ Crit(L) such that c+ c̄ = −t. By Lemma 1.4.15
and Corollary 1.4.16, for every point c in Crit(L), there exists a point ν in Ext(L) such
that c = π0(ν). Thus, for every point ν in Ext(L), there exists a point ν̄ in Ext(L) such
that π0(ν + ν̄) = −t. This allows to define an involution φ(= φt) : Ext(L)→ Ext(L):

For any point ν ∈ Ext(L), φ(ν) := ν̄.

Note that φ is well defined. Indeed, if there exist two different points ν̄1 and ν̄2 such
that π0(ν+ ν̄i) = −t for i = 1, 2, then π0(ν̄1) = π0(ν̄2) and this would imply that ν̄1 > ν̄2

or ν̄2 > ν̄1 which contradicts the hypothesis that ν̄1, ν̄2 ∈ Ext(L). A similar argument
shows that φ is a bijection on Ext(L) and is an involution.
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1.5.1 A Riemann-Roch Inequality for Reflection Invariant Sub-
Lattices

In this subsection, we prove a Riemann-Roch inequality for reflection invariant sublat-
tices of An. We refer to Section 1.2.3 for the definition of gmin and gmax.

Let L be a reflection invariant sublattice of An. We have to show the existence of a
canonical point K ∈ Zn+1 such that for every point D ∈ Zn+1, we have

3gmin − 2gmax − 1 ≤ r(K −D)− r(D) + deg(D) ≤ gmax − 1 . (1.6)

K is defined up to linear equivalence (which is manifested in the choice of t in the
definition of reflection invariance).

Construction of a Canonical Point K.

We define the canonical point K as follows: Let ν0 ∈ Ext(L) be an extremal point such
that ν0 +φ(ν0) has the maximum degree, i.e., ν0 = argmax{deg(ν+φ(ν)) |ν ∈ Ext(L)}.
The map φ is the involution defined above. Define K := −ν0 − φ(ν0).

Theorem 1.5.2. (Weak Riemann-Roch) Let L be a reflection invariant sublattice of
An of rank n. There exists a point K ∈ Zn+1, called canonical point, such that for every
point D ∈ Zn+1, we have

3gmin − 2gmax − 1 ≤ r(K −D)− r(D) + deg(D) ≤ gmax − 1 .

Proof. We first observe that K is well-defined and for any point ν in Ext(L), ν+ν̄ ≤ −K.
This is true because all the points ν + ν̄ are on the line −t+ α(1, . . . , 1), α ∈ R, and K
is chosen in such a way to ensure that −K has the maximum degree among the points
of that line. We infer that for any point ν ∈ Ext(L), there exists an effective point Eν
such that ν + ν̄ = −K −Eν . Using this, we first derive an upper bound on the quantity
deg+(K −D + ν̄)− deg+(ν +D) as follows:

deg+(K −D + ν̄)− deg+(ν +D) = deg+(−ν − ν̄ − Eν −D + ν̄)− deg+(ν +D) (1.7)

= deg+(−ν − Eν −D)− deg+(ν +D) (1.8)

≤ deg+(−ν −D)− deg+(ν +D) (1.9)

= deg(−ν −D) = − deg(ν)− deg(D) (1.10)

≤ gmax − deg(D)− 1. (1.11)

To obtain Inequality (1.8), we use the fact that if E ≥ 0 then deg+(D−E) ≤ deg+(D).
Also remark that Inequality (1.11) is a simple consequence of the definition of gmax.

Now, we obtain a lower bound on the quantity deg+(K−D+ ν̄)−deg+(ν+D). In order
to do so, we first obtain an upper bound on the degree of Eν , for the effective point Eν
such that ν + ν̄ = −K − Eν . To do so, we note that by the definition of K and by the
definition of gmin, we have deg(K) = min(deg(−ν − ν̄)) ≥ 2gmin − 2. Also observe that
by the definition of gmax, we have deg(−ν − ν̄) ≤ 2gmax − 2. It follows that

deg(Ev) = − deg(K) + deg(−ν − ν̄) ≤ 2(gmax − gmin).
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We proceed as follows

deg+(K −D + ν̄)− deg+(ν +D) = deg+(−ν − Eν −D)− deg+(ν +D)

≥ deg+(−ν −D)− deg(Eν)− deg+(ν +D)

≥ 2(gmin − gmax) + deg+(−ν −D)− deg+(ν +D)

≥ 2(gmin − gmax)− deg(ν +D)

= 2(gmin − gmax)− deg(ν)− deg(D)

≥ 3gmin − 2gmax − deg(D)− 1.

The last inequality follows from the definition of gmin. Now since the map φ(ν) = ν̄ is
a bijection from Ext(L) onto itself, we can easily see that

3gmin − 2gmax − deg(D)− 1 ≤ min
ν∈Ext(L)

deg+(K + ν̄ −D)− min
ν∈Ext(L)

deg+(ν +D)

≤ gmax − deg(D)− 1.

By Lemma 1.2.9 and the fact φ is a bijection, we know that:

r(D) = minν∈Ext(L) deg+(ν +D)− 1,
r(K −D) = minν̄∈Ext(L) deg+(K −D + ν̄)− 1.

Finally we infer that 3gmin−2gmax−deg(D)−1 ≤ r(K−D)−r(D) ≤ gmax−deg(D)−1,
and the Riemann-Roch Inequality follows.

Remark 1.5.3. As the above proof shows, we indeed obtain a slightly stronger inequality

gmin − deg(D)− 1− max
ν∈Ext(L)

deg(Eν) ≤ r(K −D)− r(D).

In particular if Eν = 0 for all ν ∈ Ext(L) (see Section 2.2 for example regular digraphs),
we have:

gmin − deg(D)− 1 ≤ r(K −D)− r(D) ≤ gmax − deg(D)− 1.

We remark that the proof technique used above is quite similar to the one used by
Baker and Norine [12].

Remark 1.5.4. From Lemma 1.2.9, it is easy to obtain the inequality deg(D)− r(D) ≤
gmax, for all sublattices L of An and all D ∈ Zn+1. This inequality is usually referred to
as Riemann’s inequality. Note that the Riemann-Roch inequality (1.6) is more sensitive
to (and contains more information about) the extent of “un-evenness” of the extremal
points, while the above trivial inequality does not provide any such information.

1.5.2 Riemann-Roch Theorem for Uniform Reflection Invari-
ant Lattices

Recall that a lattice L is called uniform if gmax = gmin, i.e., every point in Ext(L) has the
same degree. By Corollary 1.4.16 and the definition of h4, this is equivalent to saying
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that the set of critical values of h4,L is a singleton. We call g = gmax = gmin the genus
of the lattice.

The following is a direct consequence of Theorem 1.5.2. However we give it as a
separate theorem.

Theorem 1.5.5. Every uniform reflection invariant sublattice L ⊆ An of dimension n
has the Riemann-Roch property.

Proof. Let D ∈ Zn+1. If L is a reflection invariant lattice, we can apply Theorem 1.5.2
to obtain 3gmin − 2gmax − 1 ≤ r(K −D) − r(D) + deg(D) ≤ gmax − 1, where K is the
canonical point defined as in the proof of Theorem 1.5.2. Since L is uniform we have
gmax = gmin = g and we obtain r(K −D)− r(D) + deg(D) = g − 1. It remains to show
that deg(K) = 2g−2. But, we know from the construction of K that K = −(ν+ ν̄) for a
point ν ∈ Ext(L). Since L is uniform, we infer that deg(K) = − deg(ν)−deg(ν̄) = 2g−2
(and also that K = −ν − ν̄, ∀ ν ∈ Ext(L)).

We say that a sublattice L of An has a Riemann-Roch formula if there exists an
integer m and an integral point Km, or simply K, of degree 2m− 2 (a canonical point)
such that for every integral point D, we have:

r(D)− r(K −D) = deg(D)− (m− 1).

The following result shows the amount of geometric information one can obtain from
the Riemann-Roch Property.

Theorem 1.5.6. A sublattice L has a Riemann-Roch formula if and only if it is uniform
and reflection invariant. Moreover, for a uniform and reflection invariant lattice m = g
(the genus of the lattice).

The rest of this section is devoted to the proof of this theorem. One direction is
already shown, we prove the other direction.

We first prove that

Claim 1.5.7. If L has a Riemann-Roch formula, then m = gmax.

Proof. The Riemann-Roch formula for a point D with deg(D) > 2m − 2 implies that
deg(D)− r(D) = m. On the other hand, using the formula for rank obtained in Lemma
1.2.9, we also know that deg(D) > 2gmax − 2 then deg(D) − r(D) ≤ gmax. This for
D with deg(D) ≥ 2 max{m, gmax} − 2 shows that m ≤ gmax. By the Riemann-Roch
formula, we have r(D) ≥ 0 for any D with deg(D) ≥ m. Let D = −νmax, where νmax
is an extremal point of minimal degree. Remark that we have r(D) = −1. This shows
that m ≥ gmax. And we infer that m = gmax.

We now prove that

Claim 1.5.8. If L has a Riemann-Roch formula, then L is uniform and m = g.
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Proof. Let N be the set of points of Σ(L) of degree −gmax + 1. We note that every
point in N is extremal, i.e., N ⊂ Ext(L). To prove the uniformity, we should prove that
N = Ext(L). We claim that Σ(L) = ∪ν∈NH+

ν , and this in turn implies that N = Ext(L).
Indeed, if the claim holds, then every extremal point ν ∈ Ext(L) should dominate a point
u in N , and so u = ν, meaning that N = Ext(L).

To prove the claim, we proceed as follows. Let −D be a point in Σ(L). We know that
r(D) = −1. We should prove the existence of a point ν in N such that ν ≤ −D. We
now claim that there exists E ≥ 0 with deg(E) = gmax−1−deg(D) and r(D+E) = −1.
Assume the contrary, then for every point E ≥ O such that deg(E) = gmax−1−deg(D),
we have r(D + E) ≥ 0. By the Riemann-Roch formula on the divisor D + E, we have
r(K −D−E) ≥ 0 and hence r(K −D) ≥ gmax− deg(D)− 1. Now, using the Riemann-
Roch formula on the divisor K − D, we have: r(D) ≥ 0. A contradiction. The point
−D − E has degree −gmax + 1 and so is in N . In addition −D − E ≤ −D. And this is
what we wanted to prove. The proof of the uniformity is now complete.

To finish the proof of the theorem, it remains to show that

Claim 1.5.9. If a uniform sublattice L of An of full rank has a Riemann-Roch formula,
then it is reflection invariant.

Proof. Consider a uniform lattice satisfying the Riemann-Roch property. By Lemma 1.2.2,
we know that for a point ν in Ext(L), r(−ν) = −1. Now, if we evaluate the Riemann-
Roch formula for D = −ν, we get r(−ν) = r(K + ν). Hence, we have r(−ν) =
r(K + ν) = −1. Again by Lemma 1.2.2, this implies that −K − ν is a point in Σ(L).
By the Riemann-Roch property and Claim 1.5.8 above, deg(K) = 2g − 2. Since L is
uniform and ν ∈ Ext(L), we have deg(ν) = g − 1. We infer that deg(K + ν) = g − 1,
and it follows that −K − ν is an extremal point of Σ(L). We now define ν̄ = −K − ν.
Clearly, the map ν → ν̄ is a bijection from Ext(L) onto itself. Let t = π0(−K). We
obtain t = π0(−ν − ν̄) = −π0(ν) − π0(ν̄) for all ν ∈ Ext(L). By Corollary 1.4.16, we
have Crit(L) = π0(Ext(L)) and hence t = −c − c̄ for every c in Crit(L). This implies
that −c̄ = t+ c. To finish the proof, observe that c̄→ c is a bijection from Crit(L) onto
itself, and so we have −Crit(L) = Crit(L) + t.

The proof of Theorem 1.5.6 is now complete.
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Chapter 2

Examples

In this chapter, we study the machinery that we presented in the previous chapter
through various classes of examples. We start with the class of examples that originally
motivated our work: Laplacian lattices of undirected graphs.

2.1 Lattices Generated by the Laplacian matrix of

Connected Graphs

Probably the most interesting examples of the sublattices of An are generated by Lapla-
cian of connected multi-graphs (and more generally directed multi-graphs) on n + 1
vertices. In this subsection, we provide a geometric study of these sublattices. We prove
the following result:

Theorem 2.1.1. For any connected graph G, the sublattice LG of An generated by the
Laplacian of G is strongly reflection invariant and uniform.

Theorem 2.1.1 will be a direct consequence of Theorem 2.1.9 below. Combining this
theorem with Theorem 1.5.5 gives the main result of [12].

Corollary 2.1.2. (Theorem 1.12 in [12]) For any undirected connected graph G on n+1
vertices and with m edges, the Laplacian lattice LG has the Riemann-Roch property.
In addition, we have gmax = gmin = m − n and the canonical point K is given by
(δ0 − 2, δ1 − 2, . . . , δn − 2) of Zn+1 where δi’s are the degrees of the vertices of G.

Remark 2.1.3. Using reduced divisors, and the results of [12], it is probably quite
straightforward to obtain a proof of Theorem 2.1.1. (This is not surprising since, as we
pointed out in the previous section, a lattice with a Riemann-Roch formula has to be
uniform and reflection invariant.) The proof we will present for Theorem 2.1.1 indeed
gives more than what is the content of this theorem. We give a complete description of
the Voronoi-diagram and its dual Delaunay triangulation (we will give a precise definition
in Chapter 3). And we do not use reduced divisors, which is the main tool used in the
previous proofs of the Riemann-Roch theorem. As we will see, the form of the canonical
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divisor for a given graph (and the genus) as defined in [12] comes naturally out of this
explicit description.

Let G be a connected graph on n+ 1 vertices v0, v1, . . . , vn and m edges. Let LG, or
simply L if there is no risk of confusion, be the Laplacian sublattice of An. We summarise
the main properties of the lattice LG and the matrix Q. LG is a rank n sublattice of An
with {b0, . . . , bn−1} as a basis such that the (n+ 1)× (n+ 1) matrix Q has {b0, . . . , bn−1}
as the first n rows and bn = −∑n−1

i=0 bi as the last row. In addition, the matrix

Q =


δ0 −b01 −b02 . . . −b0n

−b10 δ1 −b12 . . . −b1n
...

...
. . .

−bn0 −bn1 −bn2 . . . δn

 (2.1)

has the following properties:

(C1) bij’s are integers, bij ≥ 0 for all 0 ≤ i 6= j ≤ n and bij = bji, ∀i 6= j.

(C2) δi =
∑n

j=1,j 6=i bij =
∑n

j=1,j 6=i bji (and is the degree of the i-th vertex).

We denote by B the basis {b0, . . . , bn−1} of LG.

2.1.1 Voronoi Diagram Vor4(LG) and the Riemann-Roch The-
orem for Graphs

We first provide a decomposition of H0 into simplices with vertices in L such that the
vertices of each simplex forms an affine basis of LG. Recall that a subset of lattice points
X ⊂ L of size n + 1 is called an affine basis of L, if for v ∈ X, the set of vectors u− v,
u ∈ X and u 6= v, forms a basis of L. In other words, if the simplex defined by X
is minimal (which means it is full-dimensional and has minimum volume among all the
(full-dimensional) simplices whose vertices lie in L). The whole decomposition is derived
from the symmetries of the affine basis B, and describes in a very nice way the Voronoi
decomposition Vor4(LG). What follows could be considered as an explicit construction
of the “Delaunay dual”, Del4(LG) of Vor4(LG).

We consider the family of total orders on the set { 0, 1, . . . , n }. A total order <π on
{ 0, 1, . . . , n } gives rise to an element π of the symmetric group Sn+1, defined in such
a way that π(0) <π π(1) <π · · · <π π(n − 1) <π π(n). It is clear that the set of all
total orders on {0, . . . , n} is in bijection with the elements of Sn+1. In addition, the
total orders which have n as the maximum element are in bijection with the subgroup
Sn ⊂ Sn+1 consisting of all the permutations which fix n, i.e., π(n) = n. In the following
when we talk about a permutation in Sn, we mean a permutation of Sn+1 which fixes
n. For π ∈ Sn, we denote by π̄ the opposite permutation to π defined as follows: we
set π̄(n) = n and π̄(i) = π(n − 1 − i) for all i = 0, . . . , n − 1. In other words, for all
i = 0, . . . , n− 1, i <π j if and only if j <π̄ i, and j ≤π̄ n for all j. Let Cn+1 denotes the
group of cyclic permutations of {0, . . . , n}, i.e., Cn+1 =< σ > where σ is the element of
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Sn+1 defined by σ(i) = i + 1 for 0 ≤ i ≤ n − 1 and σ(n) = 0. It is easy to check that
Sn+1 = SnCn+1.

Let <π be a total order such that π ∈ Sn, i.e., π ∈ Sn+1 and π(n) = n. We first define
a set of vectors Bπ = { bπ0 , . . . , bπn } as follows:

∀ i ∈ { 0, . . . , n }, bπi :=
∑
j≤πi

bj .

In particular, note that bπn = bππ(n) :=
∑

j≤ππ(n) bj =
∑n

j=0 bj = 0.

Lemma 2.1.4. For any total order <π with n as maximum, or equivalently for any π
in Sn, the set Bπ = { bπ0 , . . . , bπn } forms an affine basis of LG.

Proof. We first observe that the matrix of {bππ(0), . . . , b
π
π(n−1)} in the base B is upper

triangular with diagonals equal to 1. It follows that the set {bππ(0), . . . , b
π
π(n−1)} is an

affine basis of L. As bππ(n) = 0, it follows that Bπ is a basis.

We denote by 4π the simplex defined by Bπ. In other words, 4π := Conv(Bπ),
the convex-hull of Bπ. Consider the fundamental parallelotope F (B) defined by the
basis B of LG. Note that F (B) is the convex-hull of all the vectors bπi for π ∈ Sn and
i ∈ {0, . . . , n}. We next show that the set of simplices {4π}π∈Sn provides a simplicial
decomposition (i.e., a triangulation) of F (B). But before we need the following simple
lemma attributed to Freudenthal:

Lemma 2.1.5. Let �n = { (x0 . . . , xn−1) | 0 ≤ xi ≤ 1} be the unit hypercube in Rn. For
a permutation π ∈ Sn, let 4̄π

n = { x = (x0, . . . , xn−1) ∈ Rn | 0 ≤ xπ(n−1) ≤ xπ(n−2) ≤
· · · ≤ xπ(0) ≤ 1}. The set of simplices { 4̄π

n }π∈Sn is a simplicial decomposition of �n.

We have

Lemma 2.1.6. Let G be a connected graph and L ⊂ An be the corresponding Laplacian
lattice. The set of simplices {4π}π∈Sn is a simplicial decomposition of F (B).

Proof. Since B is a basis of the rank n lattice LG, which is contained in H0, it is also
a basis of H0. By definition, F (B) is the unit cube with respect to the basis B. By
Lemma 2.1.5, the family of simplices {4̄π}π∈Sn is a simplicial decomposition of F (B),
where 4̄π = {x = x0b0 + · · ·+xn−1bn−1) ∈ H0 | 0 ≤ xπ(n−1) ≤ xπ(n−2) ≤ · · · ≤ xπ(0) ≤ 1}
and the vectors are written in the B-basis. Now recall that the vertices of 4π are given
by the points bπj . Recall also that ∀ i ∈ { 0, . . . , n }, bπi :=

∑
j≤πi bj , and that bπn = 0.

A simple calculation shows that 4π coincides with the simplex 4̄π above, and the proof
follows.

A combination of this lemma with the simple fact that F (B) +LG is a tiling of H0 gives
us:

Corollary 2.1.7. The set of simplices {4π + p |π ∈ Sn, p ∈ LG } forms a triangulation
of H0.
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In the simplicial decomposition {4π + p | π ∈ Sn & p ∈ L} of H0, consider the set
SimO consisting of all the simplices that contain the origin O as a vertex. We have

Lemma 2.1.8. A simplex is in SimO if and only if it is spanned by Bπ for some π in
Sn+1. (Remark that we do not assume that π(n) = n.)

Proof. By Corollary 2.1.7, we know that every simplex in SimO is of the form: 4π0 + q
for some π0 in Sn and q in L. Recall that the element π of Sn is regarded as an element
of Sn+1, with the property that π(n) = n. Since, the vertex set of 4π0 is V (4π0) =
{bπ0

0 , . . . , b
π0
n−1, O}, we should have q = −bπ0

i for some 0 ≤ i ≤ n − 1. Let 0 ≤ j ≤ n be
such that π0(j) = i. A straightforward calculation shows that V (4π0) − bπ0

i = V (4π),
where π = π0σ

j and σ is the cyclic permutation (0, 1, 2, .., n)→ (1, . . . , n, 0). The lemma
follows because every element π ∈ Sn+1 can be written uniquely in the form σiπ0 for
some π0 ∈ Sn (Sn+1 = SnCn+1).

Remark also that |SimO| = |Sn+1| = (n+ 1)!.

Our aim now will be to provide a complete description of the set Extc(LG) of extremal
points of Σc(L) (and equivalently the set Ext(LG) = Extc(LG)− (1, . . . , 1)) in terms of
this triangulation. Actually we obtain an explicit description of the set CritV4(O).
Before we proceed, let us introduce an extra notation. Let π be an element of the
permutation group Sn+1. We do not suppose anymore that π(n) = n. We define the
point νπ ∈ Zn+1 as the tropical sum of the points of Bπ, i.e., νπ :=

⊕n
i=0 b

π
i . (And

recall that bπi =
∑

j≤πi bj.) We have the following theorem.

Theorem 2.1.9. Let G be a connected graph and LG be the Laplacian lattice of G.

(i) The set of extremal points of Σc(LG) consists of all the points νπ + p for π ∈ Sn+1

and p ∈ LG, i.e., Extc(LG) = { νπ + p | π ∈ Sn+1 and p ∈ LG }. As a consequence,
we have Ext(LG) = { νπ + p+ (1, . . . , 1) | π ∈ Sn+1 and p ∈ LG }.

(ii) We have CritV4(O) = π0({ νπ | π ∈ Sn+1 }).

We verify that the set {νπ} has the following properties (c.f. Theorem 2.1.1 below.)

(P1)- Reflection Invariance. For all π ∈ Sn+1, νπ + ν π̄ = (−δ0,−δ1, . . . ,−δn) where
π̄ is the opposite permutation to π, and δi denotes the degree of the vertex vi.
Since CritV4(O) = π0({ νπ | π ∈ Sn+1 }), it follows that LG is strongly reflection
invariant. More precisely we have CritV4(O) = −CritV4(O)+π0((−δ0, . . . ,−δn)).
(Recall that π0 is the projection function.)

(P2)- Uniformity. For all π ∈ Sn+1, deg(νπ) = −m. In other words, the Laplacian
lattice LG is uniform.

The proof of the results of this section will be given in the next subsection. However,
let us quickly show how to calculate g and K in the above corollary. The vertices
νπ all belong to Extc and have degree −m. It follows that the vertices of Ext(L) =
Extc + (1, . . . , 1) have all degree −m + n + 1, and so by the definition of genus, we
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obtain gmin = gmax = m − n. In particular g coincides with the graphical genus of G
(which is the number of vertices minus the number of edges plus one). Since the points
of Ext(LG) are of the form νπ + (1 . . . , 1), and as we saw in the proofs of Theorem 1.5.2
and Theorem 1.5.5, we have K = −(νπ + (1, . . . , 1)) − (ν π̄ + (1, . . . , 1)) = (δ0 − 2, δ1 −
2, . . . , δn − 2).

2.1.2 Proofs of Theorem 2.1.9 and Theorem 2.1.1

Observe that the point νπ =
⊕n

i=0 b
π
i has the following explicit form:

νπ = (−
∑
j<π0

bj0,−
∑
j<π1

bj1, . . . ,−
∑
j<πn

bnj). (2.2)

It follows that

νπ = (−δ0 +
∑
j>π0

bj0,−δ1 +
∑
j>π1

bj1, . . . ,−δn +
∑
j>πn

bnj)

= (−δ0, . . . ,−δn)− (−
∑
j<π̄0

bj0,−
∑
j<π̄1

bj1, . . . ,−
∑
j<π̄n

bnj)

= (−δ0, . . . ,−δn)− ν π̄.

And we infer that

Lemma 2.1.10. For every π ∈ Sn+1, we have νπ + ν π̄ = (−δ0, . . . ,−δn).

Second, we calculate the degree of the point νπ. We compute

deg(νπ) = −
∑

i,j : j<πi

bij = −m,

where m denotes the number of edges of G, or equivalently in terms of the matrix Q,
m = 1

2

∑
i δi = trace(Q)/2. It follows that

Lemma 2.1.11. All the points νπ have the same degree.

We now show that νπ ∈ Σc(L) for every π ∈ Sn+1. Assume for the sake of contradic-
tion that there exists a point p ∈ L such that p > νπ. By the definition of the Laplacian
lattice L, we know that there are integers α0, . . . , αn such that p = α0b0 + . . . , αnbn, and
so we can write

p = (
n∑
j=0

(α0 − αj)bj0, . . . ,
n∑
j=0

(αn − αj)bjn).

for some αi ∈ Z. Among the integer numbers αi, consider the set of indices Sp consisting
of the indices i for which αi is minimum. Remark that as p is certainly non zero (since
there is a coordinate of νπ which is zero, we cannot have 0 > νπ), we cannot have
Sp = {0, . . . , n}. Now in the set Sp consider the index k which is the minimum in the
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total order <π. By construction of k, we have αk−αj ≤ −1 for all j <π k and αk−αj ≤ 0
for all j ≥π k. It follows that pk, the k−th coordinate of p, is bounded above by

pk =
n∑
j=0

(αk − αj)bjk ≤
∑
j<πk

−bjk = νπk .

And this contradicts our assumption p > νπ.

Next, we need to show that νπ is a local minimum of the degree function. We already
know that deg(νπ) = −m. We will prove that for every point x ∈ Σc(L), we have
deg(x) ≥ −m. By Lemma 1.4.12, it will be enough to prove that h4,L(x) ≤ m

n+1
for

every point x ∈ L. By the definition of the simplicial distance function h4,L, this is
equivalent to proving that the simplex x+ m

n+1
4 contains a lattice point p ∈ L, i.e.,

∀x ∈ H0, (x+
m

n+ 1
4) ∩ L 6= ∅. (2.3)

Here we use the following perturbation trick to reduce the problem to the case when
all the entries of Q are non-zero. We add a rational number ε = s

t
, s, t ∈ N, to each

bij, i 6= j, to obtain bεij. We also define δεi in such a way that
∑

i b
ε
ij = δεi . Remark that∑

j δ
ε
j = tr(Qε)

2
. The new matrix Qε is not integral anymore (but if we want to work

with integral lattices, we can multiply every coordinate by a large integer t to obtain an
integral matrix tQε). If we know that our claim is true for all Laplacians with non-zero
coordinates, then the function h associated to tQε satisfies the property

h4,Lt,ε ≤ tr(tQε)

2(n+ 1)
. (2.4)

Where Lt,ε denotes the lattice generated by the matrix tQε. Let Lε be the (non
necessarily integral ) lattice generated by the matrix Qε. We have t.h4,Lε = h4,Lt,ε .
Equation 2.4 implies then

h4,Lε ≤ tr(Qε)

2(n+ 1)
=

m

n+ 1
+

nε

2(n+ 1)
. (2.5)

Using characterization of Equation 2.3, one can see that, varying ε, the above property
for all sufficiently small rational ε > 0 will imply that h4,L ≤ m

n+1
, and that is what we

wanted to prove. Indeed one can easily show that the distance function h4,Lε(p) is a
continuous function in ε and p.

So at present, we have shown that we can assume that all the bij’s are strictly pos-
itive. This is the assumption we will make for a while. In this case, using the explicit
calculation of νπ, we have:

Lemma 2.1.12. The point νπ has the following properties:
1. νπi = bπii for 0 ≤ i ≤ n.
2. νπj < bπij for i 6= j and 0 ≤ i, j ≤ n.
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As a corollary we obtain:

Corollary 2.1.13. Let {e0, . . . , en} be the standard orthonormal basis of Rn, i.e., e0 =
(1, 0, . . . , 0) , . . . , en = (0, . . . , 0, 1). Let ej be a fixed vector. For every δ > 0, νπ− δej <
bπj .

Furthermore, as a direct consequence of Corollary 2.1.13 we obtain:

Lemma 2.1.14. For every non-zero vector w in H+
O and for every δ > 0, there exists a

point p in L such that νπ − δw < p.

It follows now easily that

Corollary 2.1.15. The point νπ is an extremal point of Σc(L).

Proof. Follows by combining Lemmas 2.1.14 and 1.3.6.

We will now prove the following: every extremal point of Σc(L) can be written as the
tropical sum of the vertices of a simplex of the form 4π + q, for some π ∈ Sn and some
q in L. Again we will first assume a stronger condition that bij > 0 for all i, j such that
i 6= j and 1 ≤ i, j ≤ n − 1. And then we do a limiting argument similar to the one we
did above to obtain the general statement. Let π ∈ Sn a fixed permutation. Using the
assumption bij > 0 for i 6= j, we have the following property:

Lemma 2.1.16. For any total ordering <π, π ∈ Sn+1, we have bπij 6= 0 for all 0 ≤ i, j ≤ n
and i 6= π(n). (Remark that bππ(n) = 0.) Here bπij is the j−th coordinate of the vector bπi .

In addition, if bπij > 0 (resp. bπij < 0 ), then j ≤π i (resp. i <π j <π π(n)).

As we saw in Lemma 2.1.8, the set of simplices ∆π, π ∈ Sn+1, coincides with SimO,
the set of all simplices of the triangulation which are adjacent to O. The simplices of
SimO naturally define a fan F , the maximal elements of which are the set of all cones
Cπ generated by ∆π for π ∈ Sn+1. In other words if Bπ denoted the affine basis {bπi }ni=0,
the cone Cπ is the cone generated by Bπ. In particular every element of H0 is in some
Cπ for some π ∈ Sn+1. We have

Lemma 2.1.17. Let q be a point in L, and q 6= bπi for all π ∈ Sn+1 and 0 ≤ i ≤ n. Let
Cπ be a cone in F which contains q. There exists a vector bπi in Bπ such that p < bπi for
every point p in H−O ∩H−q . In particular, no point in H−O ∩H−q is contained in Σc(L).

Proof. Since q is a point in L ∩ Cπ, there exists non-negative integers αi ≥ 0, 0 ≤ k ≤
n − 1, such that we can write q =

∑n−1
k=0 αkb

π
π(k). In addition, since q /∈ Bπ, we have∑

l αl ≥ 2. Let j = min{ k | αk 6= 0 }, i.e., the minimum index such that αk 6= 0, and
let i = π(j). We show that the point bπi satisfies the condition of the lemma. For this, it
will be enough to prove that bπi > O ⊕ q. Indeed p ∈ H−O ∩H−q implies that p ≤ O ⊕ q,
and so if bπi > O ⊕ q, then we have p < bπi , which is the required claim.

We should prove that bπik > (O ⊕ q)k for all k. As i = π(j) 6= π(n), by Lemma 2.1.16
we know that bπik 6= 0 for all k. There are two cases: if bπik > 0, then easily we have
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bπik > 0 ≥ (O ⊕ q)k. If bπik < 0, then by Lemma 2.1.16, we have bπlk < 0 for all l ≥π i. By
the choice of i, we have αl = 0 for all l <π i. We infer that bπjk >

∑
l αlb

π
lk = (O ⊕ q)k,

and the lemma follows.

We obtain the following corollary: the simplices of our simplicial decomposition form
the dual of the Voronoi diagram. More precisely

Corollary 2.1.18. Let q be a point in L that is not a vertex of a simplex in SimO, i.e.,
q 6= bπi for all π ∈ Sn+1 and 0 ≤ i ≤ n. Then V (O) ∩ V (q) = ∅. Hence, for every two
points p and q in L, we have V (p) ∩ V (q) 6= ∅ if and only if p and q are adjacent in the
simplicial decomposition of H0 defined by {4π+p |π ∈ Sn&p ∈ L} i.e., V (p)∩V (q) 6= ∅
if and only if there exists π ∈ Sn+1 such that q is a vertex of ∆π + p.

Proof. We prove the first statement by contradiction. So for the sake of a contradic-
tion, assume the contrary and let p ∈ V (O) ∩ V (q). By definition, we have h4,L(p) =
d4(p,O) = d4(p, q) ≤ d4(p, q′) for all points q′ ∈ L. By Lemma 1.4.14 this implies that
the point y = fO(p) = fq(p) is a point in ∂Σc(L) (c.f. Section 1.4 for the definition of fp).
By the definition of fp, the point y is in H−O ∩H−q . On the other hand, Lemma 2.1.17
implies that no point in H−(O) ∩H−(q) can be contained in Σc(L). We obtain a con-
tradiction. To see the second part, by translation invariance we can assume p = O. And
in this case, the results follows by observing that for q ∈ ∆π, π0(νπ) ∈ V (O)∩V (q).

We can now present the proof of Theorem 2.1.9 in the case where all the bij’s are
strictly positive. It will be enough to prove that CritV (O) = π0({νπ | π ∈ Sn+1}). As
vπ ∈ H−O and we showed that vπ is in Extc(L), we have π0({νπ |π ∈ Sn+1}) ⊆ CritV (O).
We show now CritV (O) ⊆ π0({νπ | π ∈ Sn+1}). Let v ∈ CritV (O) and x be the point
in Extc(L) with π0(x) = v. By Lemma 1.4.17, there exist points p0, . . . , pn ∈ L such
that v ∈ V (p0) ∩ · · · ∩ V (pn). By Corollary 2.1.18, points p0, . . . , pn should be adjacent
in the simplicial decomposition of H0 defined by {4π + p | π ∈ Sn & p ∈ L}. As v is
also in Vor(O), it follows that one of the pi is O, and so there exists π ∈ Sn+1 such
that v ∈ ∩p∈BπVor(p). By the proof of Lemma 1.4.17, we also have x =

⊕
i pi. But⊕

p∈Bπ p = νπ. It follows that x = νπ. We infer that v ∈ π0({νπ | π ∈ Sn+1}) and the
theorem follows.

The proof of Theorem 2.1.1 is a simple consequence of Lemma 2.1.10, and what we just
proved, namely, Extc(L) = {νπ+q |π ∈ Sn&q ∈ L} and CritV (O) = π0({νπ |π ∈ Sn+1}).

To prove the general case, it will be enough to show that CritV (O) = π0({νπ | π ∈
Sn+1}) still holds. Indeed the rest of the arguments remain unchanged.

We consider again the ε-perturbed Laplacian Qε and do a limiting argument similar
to the one we did before. Let Lε to be the lattice generated by Qε. By Vor(Lε) and
CritVε(p), we denote the Voronoi diagram of Lε under the distance function d4 and the
Voronoi cell of a point p ∈ Lε. We also define Bπ

ε , ∆π
ε , and νπε similarly.

Theorem 2.1.9 in the case where all the coordinates are strictly positive implies that
CritVε(O) = π0({vπε | π ∈ Sn+1}). We can naturally define limits of the sets CritVε(O)
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as ε tends to zero as limits of the points π0(vπε ). Indeed this limit exists and coincides
with the set π0({νπ | π ∈ Sn+1}), as can be easily verified. We show now

Lemma 2.1.19. We have limε→0 CritVε(O) = CritV (O).

Remark 2.1.20. Unfortunately this is not true in general for non graphical lattices.
However, we always have CritV (O) ⊆ limε→0 CritVε(O).

Proof of Lemma 2.1.19. By Corollary 2.1.15, we already know that every point of π0({νπ|π ∈
Sn+1}) is critical. So we should only prove that these are the only critical points, namely
CritV (O) ⊆ limε→0 CritVε(O) = π0({νπ | π ∈ Sn+1}). Let c be a critical point of L. By
Lemma 1.4.17, we know that there exists a set of points p0, . . . , pn such for each i, the
facet Fi of 4̄h4,L(c)(c) contains pi and none of the other points pj 6= pi. We will show the
following: for all sufficiently small ε, there exists a point cε ∈ Lε and hε = h4,Lε(cε) ∈ R+

such that 4̄hε(cε) has the same property for the lattice Lε, namely, for each i, the facet
Fε,i of 4̄hε(cε) contains a point pε,i ∈ Lε which is not in any other facet Fε,j of 4̄hε(cε),
for j 6= i. In addition 4̄hε(cε) → 4̄h4,L(c)(c), and so hε → h4,L(c) and cε → c (hε
and cε being the radius and the centre of these balls 4̄hε(cε)). As each of the point cε
will be critical for Lε, we conclude that c ∈ limε→0 Crit(Lε) which is easily seen to be
enough for the proof of the lemma. To show this last statement, we argue as follows:
for small enough ε, there exist points qε,0 and pε,1, . . . , pε,n ∈ Lε such that qε,0 → p0 and
for all n ≥ i ≥ 1, pε,i → pi when ε goes to zero. These points naturally define a ball for
the metric d4̄, i.e., a simplex of the form 4̄rε(c̄ε). This is the bounded simplex defined
by the set of hyperplanes Ei,ε, where Ei,ε is the hyperplane parallel to the facet Fi of
4̄h4,L(c)(c) which contains pε,i (qε,0 for i = 0). We define the ball 4̄hε(cε) as follows.
For each ε, if the interior of 4̄rε(c̄ε) does not contain any other lattice point (a point of
Lε), we let 4̄hε(cε) := 4̄rε(c̄ε). If the interior of 4̄rε(c̄ε) contains another point of Lε, let
pε,0 be the furthest point from the hyperplane E0,ε and E ′0,ε the hyperplane parallel to
E0,ε which contains this point. The simplex (ball) 4̄hε(cε) is the simplex defined by the
hyperplanes E0,ε and E1,ε, . . . , En,ε. These simplices have the following properties:

• For all small ε, 4̄hε(cε) does not contain any point of Lε in its interior. As a
consequence, hε = h4,Lε(cε).

• When ε→ 0, the simplices 4̄hε(cε) converge to 4̄h4,L(c)(c) (in Gromov-Hausdorff
distance for example).

• The point pε,0 is in the interior of the facet Fε,0 of the simplex 4hε(cε). In addition
for sufficiently small ε, each point pε,i is in the interior of the facet Fε,i of the
simplex 4hε(cε). This is true because 4̄hε(cε) → 4̄h4,L(c)(c), pε,i → pi, and each
point pi is in the interior of the facet Fi of 4̄h4,L(c)(c).

These properties show that the point cε is critical for Lε and limε→0 cε = c, and hence,
we know that CritV (O) ⊆ limε→0 CritVε(O). Since, the lattice LG is uniform we deduce
that every point in limε→0 CritVε(O) belongs to CritV (O) which completes the proof.
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The proofs of Theorem 2.1.9 and Theorem 2.1.1 are now complete. We note that
this representation of c as a limit of cε is not in general unique. In fact, Different non-
equivalent classes of critical points, up to linear equivalence, can converge in the limit to
the same class.

Theorem 2.1.21. In the case where all bij > 0, none of the points νπ for π ∈ Sn
is linearly equivalent to another one, i.e., they define different classes in Rn+1/L. In
particular, the number of different critical points up to linear equivalence is exactly n!.

However for general graphs this number is usually strictly smaller than n!, for exam-
ples trees just have one point in CritV (O) up to linear equivalence.

2.2 Laplacian Lattices of Connected Regular Digraphs

In this section, we briefly describe how to extend partially the results of the previous
section to connected regular digraphs. A digraph D is regular if the in-degree and
out-degree of each vertex are the same. This allows to define a Laplacian matrix for D,
almost similar as in the graphic case: if the vertices of D are enumerated by {v0, . . . , vn},
the matrix representation of the Laplacian D is of the form Equation 2.1 but we do not
have symmetry any more. Namely

Q =


δ0 −b01 −b02 . . . −b0n

−b10 δ1 −b12 . . . −b1n
...

...
. . .

−bn0 bn1 −bn2 . . . δn

 (2.6)

has the following properties:

(C1) bij’s are integers and bij ≥ 0 for all 0 ≤ i 6= j ≤ n.

(C2) δi =
∑n

j=1,j 6=i bij =
∑n

j=1,j 6=i bji (and is the in-degree (= out-degree) of the vertex
vi).

We consider the lattice generated by the rows of the Laplacian matrix, denote it by L. We
obtain the simplicial decomposition of H0 defined by {4π+p |π ∈ Sn and p ∈ L}, similar
to the case of unoriented graphs. In the case where all the coordinates bij are strictly
positive, we can similarly prove the following results (the proofs remain unchanged):

• For all π ∈ Sn and p ∈ L, the point νπ + p is extremal (c.f. Corollary 2.1.15).

• For every two points p and q in L, we have V (p)∩V (q) 6= ∅ if and only if p and q are
adjacent in the simplicial decomposition of H0 defined by {4π+p|π ∈ Sn&p ∈ L}.
In other words, V (p)∩ V (q) 6= ∅ if and only if there exists π ∈ Sn+1 such that q is
a vertex of ∆π + p (c.f. Corollary 2.1.18).
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• The set of extremal points of Σc(LG) consists of all the points νπ + p for π ∈ Sn+1

and p ∈ LG, i.e., Extc(LG) = { νπ + p | π ∈ Sn+1 and p ∈ LG }. As a consequence,
we have Ext(LG) = { νπ + p + (1, . . . , 1) | π ∈ Sn+1 and p ∈ LG }. More precisely,
we have CritV4(O) = π0({ νπ | π ∈ Sn+1 }). (c.f. Theorem 2.1.9).

• We have gmin = −maxπ∈Sn deg(νπ)− n and gmax = −minπ∈Sn deg(νπ)− n.

• Riemann-Roch Inequality. Remark 1.5.3 can be applied: for K = (δ0− 2, . . . , δn−
2), we have for all D,

gmin − deg(D)− 1 ≤ r(K −D)− r(D) ≤ gmax − deg(D)− 1.

In the general case, where some of the bij’s could be zero, unfortunately the limiting
argument does not behave quite well. Indeed, there are examples of regular digraphs
for which a point νπ is not a critical point for L for some π ∈ Sn. However as the proof
of Lemma 2.1.19 shows, we always have Crit(L) ⊆ limε→0 Crit(Lε). So it could happen
that we lose (strong) reflection invariance. Although we do not know in general if such
lattices have any sort of reflection invariance, it is still possible to prove a Riemann-Roch
inequality for these lattices by taking the limit of the Riemann-Roch inequalities for the
lattices Lε. One point in doing this limiting argument is to extend the definition of the
rank function to all the points of Rn+1 (and not only for integral points). This new
rank-function will have image in {−1} ∪R+ and is continuous on the points where it is
strictly positive.

In the general case we have the following results:

• Every point of degree−minπ∈Sn deg(νπ) among the points νπ is extremal (by a sim-
ilar limiting argument as in the graphic case). So we have gmax = −minπ∈Sn deg(νπ)−
n. In addition, gmin ≥ −maxπ∈Sn deg(νπ)−n. Let ḡmin = −maxπ∈Sn deg(νπ)−n.

• (Riemann-Roch Inequality.) Taking the limit of the family of inequalities gεmin −
deg(D)− 1 ≤ rε(Kε −D)− rε(D) ≤ gεmax − deg(D)− 1, where ε goes to zero, we
get

ḡmin − deg(D)− 3 ≤ r(K −D)− r(D) ≤ gmax − deg(D) + 1.

Here rε is the rank function for the lattice Lε. This is because limε→0 g
ε
min = ḡmin;

limε→0 g
ε
max = gmax; and r(D) + 1 ≥ limε→0 rε(D) ≥ r(D)− 1 for all D ∈ Rn+1.

2.3 Two Dimensional Sublattices of A2

In this section, we consider full-rank sublattices of A2. First, we show that all these
sublattices are reflection invariant. It follows that:

Theorem 2.3.1. Every sublattice L of A2 of rank two is reflection invariant.

Indeed something quite strong holds in dimension two: every two dimensional sub-
lattice L of A2 is a Laplacian lattice of some regular digraph on three vertices.
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Lemma 2.3.2. Every full rank sublattice of A2 is the Laplacian lattice of a regular
digraph on three vertices.

Let {e0, e1, e2} be the standard basis of H0 where e0 = (2,−1,−1), e1 = (−1, 2,−1)
and e2 = (−1,−1, 2). Let the linear functional g0, g1 and g2 be defined by taking the
scaler product with e0, e1, e2 respectively. So for example for u = (u0, u1, u2), g0(u) =
2u0 − u1 − u2. Let b0, b1 be a basis of L and b2 = −b0 − b1. Let Q be the matrix having
b0, b1 and b2 as its first, second and third row, respectively. For i = 0, 1, 2, define the
cone Ci to be the set of vectors v such that gi(v) ≥ 0 and gj(v) ≤ 0 for j 6= i. As a
direct consequence of the fact that the vectors e0, e1 and e2 are, up to a positive scaling,
orthogonal projections of the standard orthogonal vectors onto H0 we have:

Lemma 2.3.3. For a sublattice of A2, the basis b0, b1, b2 is the basis defined by a regular
digraph if and only if the following holds: for each i, bi is in the cone Ci.

We now turn to the proof of Lemma 2.3.2:

Proof of Lemma 2.3.2. We should show the existence of lattice points {b0, b1, b2} such
that:

(i) {b0, b1} is a basis of L;

(ii) b0 + b1 + b2 = O;

(iii) bi is contained in the cone Ci.

First consider a shortest vector b0 of the lattice and a shortest vector of the lattice b1

that is linearly independent of b0. In the geometry of numbers literature [77], the basis
{b0, b1} is called a Gauss-reduced basis and in fact, {b0, b1} forms a basis of the lattice
L. We may now assume that b0 is contained in one of the cones C0, C1 or C2, and
without loss of generality C0. Indeed if b0 does not belong to any of these cones then
−b0 will belong to one of these cones, and we may replace b0 by −b0. So we assume
that b0 belongs to C0. By the properties of the Gauss reduced basis, we also know that
the angle between b0 and b1 is in the interval [π

3
, 2π

3
]. Since the maximum angle between

any two points in Ci is π
3
, b1 is contained in a cone different from C0 and −C0. Now, if

b1 is not contained in C1 or C2 then −b2 will be in C1 or C2, and we can replace b1 by
−b1. Remark that {b0,−b1} will remain a basis. Hence, we may assume without loss of
generality that B = {b0, b1} is a basis of the lattice such that b0 is contained in cone C0

and b1 is contained in cone C1.
This means that b0 = (b00, b01, b02) and b1 = (b10, b11, b12), where b01, b02, b10, b12 ≤ 0 and
b00 = −b01 − b02 > 0 and b11 = −b10 − b12 > 0. First, we observe that −b3 = b0 + b1 is
contained in C0 ∪ C1 ∪ −C2, and if it is in −C2, then we have our set of lattice points
{b0, b1, b2}. We now define a procedure which, by updating the set of vectors b0, b1,
provides at the end the set of lattice points {b0, b1, b2} with properties (i), (ii) and (iii)
above. The procedure is defined as follows:

(a) If b0 + b1 ∈ −C2 then stop.
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(b) Otherwise, if b0 + b1 ∈ C0 replace b0 by b0 + b1 and iterate.

(c) Otherwise, if b0 + b1 ∈ C1 replace b1 by b0 + b1 and iterate.

(d) Output {b0, b1, b2}, where b2 = −b0 − b1.

We will show that the number of iterations is finite. And this shows that the final output
has the desired properties. Indeed, at each iteration {b0, b1} form a basis of L (if {b0, b1}
is a basis of L then {b0 + b1, b1} and {b0, b0 + b1} will also be a basis of L), and so by
the definition of the procedure, the finiteness of the number of steps shows that at the
end we should have b0 + b1 ∈ −C2. To show that the procedure terminates after a finite
number of iterations, consider a step of the algorithm: if the step (b) in the procedure
happens, then b0 + b1 should be in C0 and not in −C2. This means that 0 > b01 + b11,
which implies that |g1(b0 + b1)| < |g1(b0)|. Indeed g1(b0 + b1) = 3b01 + 3b11 < 0 and so
|g1(b0 + b1)| = −3b01− 3b11 < −3b01 = |g1(b0)|. Furthermore, we have, 0 ≤ g0(b0 + b1) ≤
g0(b0), since g0(b1) ≤ 0.

Similarly, if the step (c) in the above procedure happens, then b0 + b1 should be in
C1 and not in −C2. Hence, we should have |g0(b0 + b1)| < |g0(b1)| and 0 ≤ g1(b0 + b1) ≤
g1(b1). We infer that, starting form b0 and b1, at each iteration one of the two inequalities
|g1(p)| < |g1(b0)| or |g0(p)| < |g0(b1)| for p = b0 + b1 should be satisfied. Furthermore, at
every iteration we have |g0(p)| ≤ |g0(b0)| and |g0(p)| ≤ |g0(b1)|. Hence, an upper bound
on the number of iterations is the number of lattice points p in C0 with |g0(p)| ≤ |g0(b0)|
plus the number of lattice points q in C1 with |g1(q)| ≤ |g1(b1)| and this is indeed
finite.

Remark 2.3.4. In higher dimensions, the analogue of Lemma 2.3.2 is unlikely to be
true since a simple calculation shows that the minimum angle between cones Ci and
Cj is at least π/3 (here, as in dimension two e0, . . . , en is the corresponding basis of H0

where e0 = (n,−1, . . . ,−1), . . . , en = (−1, . . . ,−1, n), and gi is the linear form defined by
taking the scaler product with ei). Indeed, let p = (

∑
i 6=0 pi,−p1, . . . ,−pn) ∈ C0 − {O}

and q = (−q0,
∑

i 6=1 qi,−q2, . . . ,−qn) ∈ C1 − {O}. We have

p · q
|p|`2|q|`2

=
−∑i 6=0 piq0 −

∑
i 6=1 qip1 + p2q2 + · · ·+ pnqn

|p|`2 |q|`2
≤ p2q2 + · · ·+ pnqn

|p|`2|q|`2
≤ p2q2 + · · ·+ pnqn

2
√
p2

2 + · · ·+ p2
n

√
q2

2 + · · ·+ q2
n

≤ 1

2
.

The two inequalities of the last line follow from the set of inequalities

|p|`2 =
√

(p1 + · · ·+ pn)2 + p2
1 + · · ·+ p2

n ≥
√

2(p2
1 + · · ·+ p2

n) ≥
√

2(p2
2 + · · ·+ p2

n)

|q|`2 ≥
√
q2

2 + · · ·+ q2
n (similarly as above),
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and the Cauchy-Schwartz inequality. Hence, if the lattice L is generated by a regular
digraph, then there exists a basis such that the pairwise angles between the elements
of the basis is at least π

3
. But, it is known that there exist lattices that are not weakly

orthogonal, see [68]. However, note that the notion of a weakly-orthogonal lattice seems
to be slightly different from the notion of a digraphical lattice.

We now characterize all the sublattices of A2 which are strongly reflection invariant.

Theorem 2.3.5. A sublattice L of A2 is strongly reflection invariant if and only if there
are two different classes of critical points up to linear equivalence or L is defined by a
multi-tree on three vertices (i.e., a graph obtained from a tree by replacing each edge by
multiple parallel edges).

Proof. Let {b0, b1} be the regular digraph basis of L and b2 = −b0− b1. We consider the
triangulation {4π + p} of H0 defined by this basis. Let T be the triangle defined by the
convex hull of {0, b0, b0 + b1} (= 4π) and let T̄ be the opposite of T , the triangle defined
by the convex hull of {0, b2, b1 + b2} (= 4π̄), and let cT and cT̄ be π0(νπ) and π0(ν π̄).
At least one of the points cT or cT̄ is critical. And in addition the set of critical points
of CritV (O) is a subset of {cT , cT − b0, cT + b2, cT̄ , cT̄ + b0, cT̄ − b2}.

(⇒) If cT and cT̄ are both critical points and they are different, we have CritV (O) =
{cT , cT − b0, cT + b2, cT̄ , cT̄ + b0, cT̄ − b2} and we can directly see that −CritV (O) =
CritV (O) + t where t = cT + cT̄ . We verify that the only case when cT and cT̄ are
equivalent is when b0 = (a, 0,−a) and b1 = (0, b,−b) for a, b > 0 (in which case cT =
π0((0, 0,−a − b) and cT̄ = π0((−a,−b, 0)), and so cT̄ − cT = b2 and the lattice is also
uniform). In this case, we also have CritV (O) = {cT , cT − b0, cT + b2, cT̄ , cT̄ + b0, cT̄ − b2}
and so again −CritV (O) = CritV (O) + t where t = −cT − cT̄ .

(⇐) If there is just one critical point up to linear equivalence, let us assume without
loss of generality that the critical point is cT . In this case, CritV (O) = {cT , cT−b0, c+b2}.
We now verify that for any bijection φ of CritV (O) onto itself, x + φ(x) cannot be the
same over all x in CritV (O).

We end this section by providing an example of a sublattice L of A2 which is not
strongly reflection invariant. By the previous theorem, L should contain only one critical
point up to linear equivalence and should not be a multi-tree. (In particular, since we
only have one class of critical points, L is uniform and reflection invariant. Hence, it
satisfies the Riemann-Roch theorem.)

Consider the rank two sublattice L of A2 defined by the vectors b0 = (7,−7, 0) and
b1 = (−3, 11,−8), and let b2 = −b0 − b1 = (−4,−4, 8). These vectors form the rows of
the 3× 3 matrix Q (which is the Laplacian matrix of a regular digraph).

Q =

 7 −7 0
−3 11 −8
−4 −4 8

 (2.7)

Let π and π̄ be the permutation corresponding to the order 0 <π 1 <π 2 and its
opposite 1 <π̄ 0 <π̄ 2 as in the proof of Theorem 2.3.5. We have νπ =

⊕{b0, b0 +

51



b1, O} = (0,−7,−8) and ν π̄ =
⊕{b1, b1 + b0, O} = (−3, 0,−8). We claim that ν π̄

is not an extremal point of Σc(L) and so π0(ν π̄) is not critical. This is true because
ν π̄ + (7,−7, 0) = (4,−7,−8) ≥ νπ, and so ν π̄ cannot be extremal. The following lemma
shows that L cannot have a multi-tree basis, more generally that L is not a graphical
lattice i.e., it is not generated by the Laplacian of an undirected connected graph.

Lemma 2.3.6. The lattice L is not a graphical lattice.

Proof. We know that |Crit(L)/L| = 1. By Lemma 2.3.5, we know that if there exists
an undirected connected graph G such that LG = L, then it must be a multi-tree. Let
us denote such a tree T (a, b, i) where a and b are the number of different multiedges and
i is the label of the vertex with degree a + b. We now enumerate the different forms of
the LT (a,b,i) and verify that they cannot generate L.

LTa,b,1 =

 a+ b −a −b
−a a 0
−b 0 b

 (2.8)

In this case the last two rows of LTa,b,1 are generated by the first two rows of Q (Equation
2.7) by a matrix of the form:

M1 =

[ −λ1 0
11λ1 7λ2

]
(2.9)

where λ1, λ2 are non-zero integers. We now verify that det(M1) = −7λ1λ2 6= ±1.

LTa,b,2 =

 a −a 0
−a a+ b −b
0 −b b

 (2.10)

In this case, the first and third rows of LTa,b,2 are generated by the first two rows of
L by a matrix of the form:

M2 =

[
λ1 0

3λ2 7λ2

]
(2.11)

where λ1, λ2 are non-zero integers. We now verify that det(M2) = 7λ1λ2 6= ±1.

LTa,b,3 =

 a 0 −a
0 b −b
−a −b a+ b

 (2.12)

In this case, the first two rows of LTa,b,2 are generated by the first two rows of L by a
matrix of the form:

M3 =

[
11λ1 7λ1

3λ2 7λ2

]
(2.13)

where λ1, λ2 are non-zero integers. We now verify that det(M2) = 56λ1λ2 6= ±1.
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Now we observe that matrix Mi does not depend on a, b and hence the argument for
Tb,a,i is the same as that of Ta,b,i. This concludes the proof.

Indeed the above example can be turned into a generic class of examples of non-
graphical lattices that are uniform and reflection invariant, that we now explain. Con-
sider a lattice defined by generators of the form b0 = (α,−α, 0) and b1 = (−γ, γ+η,−η):

Q =

 α −α 0
−γ γ + η −η
γ − α −γ + α− η η

 (2.14)

Here we suppose in addition that α, γ, η > 0 and γ < α ≤ η + γ such that the above
matrix is the Laplacian of a regular digraph. The two permutations π and π̄ are defined
as above, so for these permutations we have νπ = (0,−α,−η) and ν π̄ = (−γ, 0,−η). It
is clear that deg(νπ) < deg(ν π̄). We infer that νπ is extremal. But ν π̄ is not extremal
since ν π̄ ≥ νπ − b0.

2.4 Riemann-Roch lattices that are not Graphical.

In this section, we construct an infinite family of sublattices {Ln}∞n=2, where Ln is a
full rank sublattice of An, each Ln satisfies the Riemann-Roch theorem (we say that
it has the Riemann-Roch property), and such that none of Ln is graphical. By not
being graphical, we mean that there does not exist any basis of L which comes from a
connected unoriented multi-graph, i.e. Ln 6= LG for any connected multi-graph G on
n+ 1 vertices.

Indeed, we have already provided in the previous section such an example (and even
an infinite number of them) in dimension two: the family of sublattices of A2 defined
by b0 = (α,−α, 0) and b1 = (−γ, γ + η,−η) (we will prove this shortly below). The
construction of Ln for larger values of n is then recursive. Suppose we have already
constructed an infinite family of full rank sublattices of An which are not graphical and
have the Riemann-Roch property, and let Ln be an element of this family. Then we
construct a full rank sublattice of An+1 as follows. By taking the natural embedding
An ⊂ An+1, (x0, . . . , xn) → (x0, . . . , xn, 0), we embed Ln in An+1. The lattice Ln+1 is
obtained by adding bn = (0, 0, . . . , 0,−1, 1) to the image of Ln. Remark that if Ln comes
from a regular digraph G with vertices v0, . . . , vn, then Ln+1 is the lattice of the digraph
G′ consisting of G and a new vertex vn+1 which is connected to vn by two arcs, one in
each direction. We will see that Ln+1 will not be graphical, and in addition it will have
the Riemann-Roch property. Here we provide the details of the construction.

2.4.1 The Lattices L2

Let L2 be a sublattice of A2 defined by b0 = (α,−α, 0) and b1 = (−γ, γ + η,−η), where
α, γ, η > 0 and γ < α ≤ η + γ.
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Proposition 2.4.1. The sublattice L2 has Riemann-Roch property and L2 is not graph-
ical.

Proof. We saw in the previous section that L2 has only one class of critical points, up to
linear equivalence, is not strongly reflection invariant, and in addition |CritV (O)| = 3.
This shows that L2 cannot be graphical. However, L2 is uniform and reflection invariant,
and so it has the Riemann-Roch property.

2.4.2 The Lattices Ln

Let Ln be a full rank sublattice of An that we regard as an n-dimensional sublattice of
An+1 by taking the embedding An ⊂ An+1 described above. Define Ln+1 to be the lattice
generated by Ln and bn+1 = (0, . . . , 0,−1, 1). We first provide two correspondences: one
between the rank function rn of Ln and the rank function rn+1 of Ln+1, and the other
one, between the extremal points of Ln and the extremal points of Ln+1.

Let D be an element of Zn+2. By D|n we denote the projection of D to Zn+1 obtained
by eliminating the last coordinate. So if D = (D0, . . . , Dn+1), then D|n = (D0, . . . , Dn).

Lemma 2.4.2. Let D = (D0, . . . , Dn+1) be a point in Zn+2 and let D′ = (D−Dn+1bn+1)|n+1.
We have rn+1(D) = rn(D′).

Proof. We first prove that rn(D′) ≥ rn+1(D). Let E ′ ∈ Zn+1 be effective. We should
prove that if deg(E ′) ≤ rn+1(D), then D′ − E ′ ≥ q′ for at least one q′ ∈ Ln. Let
E = (E ′, 0). As deg(E) ≤ rn+1(D), there exists a q ∈ Ln+1 such that D−E ≥ q. By the
definition of Ln+1, there exists q′ ∈ L and α ∈ Z such that q = (q′, 0) +αbn+1. It follows
that Dn+1 ≥ α, and so D′ − E ′ = (D −Dn+1bn+1 − E)|n ≥ (D − αbn+1 − E)|n ≥ q′. So
D′ − E ′ ≥ q′ and we are done.

We now show that rn+1(D) ≥ rn(D′). Let E = (E0, . . . , En+1) ∈ Zn+2 be effective
of degree at most rn(D′). We have to prove the existence of a point q ∈ Ln+1 such
that D − E ≥ q. Let O ≤ E ′ ∈ Zn+1 be defined by E − En+1bn+1 = (E ′, 0). In other
words E ′ = (E0, . . . , En−1, En + En+1). It is clear that E ′ ≥ O and deg(E ′) ≤ rn(D′).
So there exists a point q′ ∈ Ln such that D′ − E ′ ≥ q′. We infer that D − E ≥
(q′, 0) + (Dn+1 + En+1)bn+1. So for q = (q′, 0) + (Dn+1 + En+1)bn+1 ∈ Ln+1, we have
D − E ≥ q, and we are done.

Lemma 2.4.3. The extremal points of Σ(Ln+1) are of the form (v, 0) + q where v is an
extremal point Σ(Ln) and q is a point in Ln+1. Similarly, the elements of Extc(Ln+1)
are of the form (u,−1) + q where u is a point of Extc(Ln) and q ∈ Ln+1.

Proof. The proof is similar to the proof of the previous lemma and we only prove one
direction, namely Ext(Ln+1) ⊆ Ext(Ln) × {0} + Ln+1. The other inclusions Ext(Ln) ×
{0}+Ln+1 ⊆ Ext(Ln+1), Extc(Ln+1) ⊆ Extc(Ln)×{−1}+Ln+1, and Extc(Ln)×{−1}+
Ln+1 ⊆ Extc(Ln+1) involves a similar argument as above.

Let v̄ = (v̄0, . . . , v̄n+1) be an extremal point of Ln+1, i.e., v̄ ∈ Ext(Ln+1). Let v ∈ Zn+1

be defined as follows: (v, 0) = v̄− v̄n+1bn+1. The claim follows once we have shown that
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v is an extremal point of Ln. To prove that v is an extremal point, we need to show that
for all q ∈ Ln, v � q and that v is a local minimum for the degree function. Suppose that
this is not the case and let q ∈ Ln be such that v ≤ q. We have v̄ ≤ (q, 0)+ v̄n+1bn+1 and
(q, 0)+ v̄n+1bn+1 ∈ Ln+1, which is a contradiction to the assumption that v̄ ∈ Ext(Ln+1).
The proof that v is a local minimum follows similarly.

As a corollary to the above lemmas, we obtain

Corollary 2.4.4. If Ln has the Riemann-Roch property (resp. is uniform and reflection-
invariant), then Ln+1 also has the Riemann-Roch property (resp. is uniform and reflection-
invariant). Furthermore, we have Kn+1 = (Kn, 0), where Ki is canonical for Li, i =
n, n+ 1.

We now show that if L2 is the family of lattices that we described above, then Ln is
not graphical. By applying Lemma 2.4.3 and by induction on n, we can show that Ln
is not strongly reflection invariant, provided that L2 is not strongly reflection invariant,
and we know that this is the case. Remark that the family of all Ln constructed above
is infinite (for each fixed n). Indeed, by using the fact that Pic(Ln) = Pic(Ln+1), and by
observing that the set |Pic(L2)| contains an infinite number of values, we conclude that
|Pic(Ln)| takes an infinite number of values and so the family of all Ln is infinite.
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Chapter 3

The Geometry of the Laplacian
Lattice

In this chapter, we obtain combinatorial interpretations for various geometric invariants
of the Laplacian lattice, namely the norm of the shortest vector, the covering and packing
radius, the Voronoi neighbours and Delaunay triangulation. In the next chapter, we will
use this understanding of the Delaunay triangulation to answer some natural questions
that arise from the correspondence between the graph and its Laplacian lattice.

3.1 Delaunay Triangulations

Recall that for a point q ∈ Rn+1 and λ ≥ 0, we denote the polytope λ · P + q by
P(q, λ). We begin by formalising the notion Delaunay triangulation of a point set under
a polyhedral distance function as follows:

Definition 3.1.1. (Delaunay Triangulation under a Polyhedral Distance Func-
tion) A triangulation T of a discrete point set S in Rd is a Delaunay triangulation of
S under the polyhedral distance function dS if for every point c in CritP(S) there exists
a simplex K in T such that Q(c, hP,S(c)) contains the vertices of K in its boundary.

Remark 3.1.2. The Delaunay triangulation under the simplicial distance function d4
is closely related to the notion of Scarf complex associated with a lattice [74]. In fact,
in the case of multigraphs whose Laplacian lattice has no zero entries, the Scarf com-
plex coincides with the Delaunay triangulation, but in general the Scarf complex is a
subcomplex of the Delaunay triangulation. The Scarf complex of a lattice was first con-
sidered in the context of mathematical economics and integer programming, and was
later used in commutative algebra to determine free resolutions of the associated lattice
ideal. In fact, our determination of the Delaunay triangulation can be reinterpreted as
the determination of the minimal free resolution of a generic Laplacian lattice ideal. See
Sturmfels and Peeva [70] for more details on the connection between the Scarf complex
and minimal free resolution of lattice ideals. The author is indebted to Bernd Sturmfels
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for pointing out this connection to him. In joint work with Bernd Sturmfels is currently
investigating this topic.

We now undertake a detailed study of the Laplacian lattice under the simplicial
distance function d4. Though we do not always mention it explicitly we always assume
that the underlying distance is the simplicial distance function d4.

3.2 Laplacian lattice and the Simplicial Distance Func-

tion

In this section, we describe the Voronoi diagram, Delaunay triangulation and the local
maxima of the simplicial distance function induced by the distance function d4 on the
Laplacian lattice. We draw heavily from the last chapter and in fact, repeat some of
the results. This section is intended to serve two purposes, it contributes to providing
a complete description of the geometry of the Laplacian lattice under the simplicial
distance function d4 and secondly, to collect results are frequently used in the rest of
this chapter as well as Chapter 4.

Let {b0, . . . , bn} be the rows of the Laplacian matrix of G. For each permutation
σ ∈ Sn+1, where Sn+1 is the symmetric group on n+ 1-elements. we define

uσi =
i−1∑
j=0

bσ(i) (3.1)

for i from 0 to n. Note that uπn = O for every permutation π ∈ Sn+1.

3.2.1 Local Maxima of the Simplicial Distance Function

Given a permutation π on the n+ 1 vertices of G, define the ordering π(v0) <π π(v1) <π

· · · <π π(vn) and orient the edges of graph G according to the ordering defined by
π i.e. there is an oriented edge from vi to vj if (vi, vj) ∈ E and if vi <π vj in the
ordering defined by π. Consider the acyclic orientation induced by a permutation π on
the set of vertices of G and define νπ = (indegπ(v0), . . . , indegπ(vn)), where indegπ(v)
is the indegree of the vertex v in the directed graph oriented according to π. Define
Extc(LG) = {νπ + q| π ∈ Sn+1, q ∈ LG}.
Theorem 3.2.1. (Chapter 2, Theorem 2.1.9, item (ii)) The elements of the local maxima
of the simplicial distance function h4,LG are precisely the orthogonal projections of the
elements of Extc(LG) onto H0.

3.2.2 Voronoi Diagram

We shall first consider Laplacian lattices generated by multigraphs whose Laplacian
matrix has no zero entries, in other multigraphs where every pair of vertices are connected
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by an edge (for example, the complete graph). As we already saw in the previous chapter,
these graphs are technically easier to handle than the general case. Recall that two
distinct lattice points p and q are Voronoi neighbours if the intersection of their Voronoi
cells are non-empty. From Corollary 2.1.18 of Chapter 2, have:

Theorem 3.2.2. For the Laplacian lattice of a multigraph with no zero entries in its
Laplacian matrix, a lattice point q is a Voronoi neighbour of the origin with respect to
d4 if and only if q is of the form uσi for some σ ∈ Sn+1 and an integer i from 1 to n− 1.

The case of general multigraphs is slightly more involved. Since Theorem 3.2.3 is not
used in the rest of the thesis, the reader may skip the theorem for the first reading.

Theorem 3.2.3. The Voronoi neighbours of the origin with respect to d4 are precisely
the set of non-zero lattice points that are contained in 4̄(cπ, h4,LG(cπ)) where cπ =
π0(νπ).

Proof. First, we know that the Voronoi cell of every non-zero lattice point q in
4̄(cπ, h4,LG(cπ)) shares cπ with the Voronoi cell of the origin and hence q is a Voronoi
neighbour of the origin. Conversely, consider a lattice point q that is a Voronoi neighbour
of the origin O we know that the simplices centered at q and O share a point m say in
the boundary of the arrangement of simplices4 centered at lattice points and the radius
of simplices is r for some real number r > 0. By the duality theorem (see Appendix,
Theorem 7.0.12) we know that there is a point c in Crit(LG) such that 4̄(c,Cov4(LG)−r)
contains m. Applying triangle inequality, we deduce that d4̄(c, O) ≤ Cov4(LG) but we
also know that d4̄(c, q′) ≥ Cov4(LG) for all q′ ∈ LG. Hence, d4̄(c, O) = d4(O, c) =
Cov4(LG). By item ii of Theorem 2.1.9 we know that c = cπ for some permutation
π ∈ Sn+1. Similarly, we also know that d4̄(c, q) = Cov4(LG) and hence, q is contained
in 4̄(cπ, h4,LG(cπ)).

For the case of multigraphs with no zero entries in its Laplacian matrix, Theorem 3.2.2
gives a useful characterization of the Voronoi neighbours of the origin, but for the case of
general connected graphs, the characterization obtained in Theorem 3.2.3 is not explicit
enough for our purposes. In the subsequent sections, we use the following perturbation
trick that we also used in Chapter 2 to handle the Laplacian lattice of a general connected
graph: we perturb the Laplacian lattice and scale it to the “nice” case, i.e. to the case of
lattices generated by multigraphs with no zero entries in its Laplacian matrix, and study
the limit as the perturbation tends to zero. More precisely, we consider lattices generated
by the following perturbed basis: we add a rational number ε > 0 to every non-diagonal
element bij of the Laplacian matrix and then set the diagonal elements so that the row
sum and column sum is zero. We call such a perturbation a standard perturbation and
denote the vector obtained by perturbing bi by bεi . The following lemma characterizes
the Voronoi neighbours of the perturbed Laplacian lattice:

Lemma 3.2.4. Let LG be the Laplacian lattice of the graph and LεG be the lattice obtained
by perturbing LG according to the standard perturbation. The Voronoi neighbours of Lε

under the distance function d4 are of the form uεS = bεi1 + bεi2 + · · · + bεik where ijs are
distinct.
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Proof. Since the perturbation ε is rational, we can scale the lattice by a factor λ, say
to obtain the Laplacian lattice of a multigraph with no zero entries in its Laplacian
matrix. We can apply Theorem 3.2.2 to the scaled lattice λLε to deduce that the
Voronoi neighbours of the lattice λLε are of the form λuεS for some subset S. Finally,
observe that the Voronoi neighbours of a lattice are preserved under scaling to complete
the proof.

Remark 3.2.5. Note that there are different ways of perturbing the basis to obtain a
“nice” lattice. For example, we can add an ε > 0 only to the non-diagonal elements that
are zero and then set the diagonal elements such that the row sum and column sum is
zero.

3.2.3 Delaunay Triangulation

From the study of Laplacian lattices in Chapter 2 we have:

Theorem 3.2.6. Let Sσ be the convex hull of uσ0 , . . . , u
σ
n. The set {Sσ + p}σ∈Sn+1,p∈LG

is a Delaunay triangulation of LG and is a unique Delaunay triangulation if G is a
multigraph with no zero entries in its Laplacian matrix.

We shall see in Section 4.2 that the number of different graphs that have LG as their
Laplacian lattice upper bounds the number of “different” Delaunay triangulations of LG.

3.3 Packing and Covering Radius of the Laplacian

Lattice

We will show that the packing radius of the graph under the distance function 4 (and
4̄) is essentially (up to a factor depending on the number of vertices) the minimum cut
of a graph.

Definition 3.3.1. (`1-Minimum Cut) For a non-trivial cut S of V (G), define the
weight of the cut µ1(S) =

∑
v∈S degS,S̄(v) where degS,S̄(v) is the degree of the vertex v

across the cut S. Now define the `1-minimum cut MC1(G) as the minimum of µ1(S)
over all non-trivial cuts S i.e. S is neither empty nor equal to V (G).

Remark that `1-minimum cut of a graph is the same as the minimum cut of a graph.
We call it the `1-minimum cut to distinguish from a variant the “`∞-minimum cut” that
we will encounter in the next section. Recall that for points p, q ∈ Rn+1, the tropical
sum p⊕ q is defined as (min(p1, q1), . . . ,min(pn+1, qn+1).

Lemma 3.3.2. For any point p in H0, 4-midpoint m of p and the origin O is the
projection of the max-sum of the two points onto H0 and d4(p,m) = d4(O,m) = || −
p⊕O||1/(n+ 1).
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Proof. For a point r ∈ Rn+1 let H+
r be the domination cone defined as: H+

r = {r′| r′ ∈
Rn+1, r′ − r ≥ O}. Consider H+

p and H+
O and observe that the point closest to H0 in

their intersection is −(−p⊕O). Project the system onto H0 along the normal (1, . . . , 1).
A simple computation shows that the projection of the cones onto H0 are simplices and
these simplices are dilated and translated copies of4 and the only point of intersection of
the simplices is the projection of the max-sum. Hence, we obtain d4(O,m) = d4(p,m) =
|| − p⊕O||1/(n+ 1).

Lemma 3.3.3. For a subset S of the rows of the Laplacian matrix of the graph, let
uS =

∑
bi∈S bi. The `1-norm of the max-sum of uS and O is the size of the cut defined

by S.

Proof. The max sum of uS and O is given by:

(−uS ⊕O)i =

{
−(uS)i, if (uS)i > 0,

0, otherwise.
(3.2)

Hence, we consider the positive coordinates of uS. Now note that since the sum of
coordinates of uS is zero, the absolute sum of the positive coordinate is equal to absolute
sum of negative coordinates. Furthermore, the negative coordinates are characterized
by vertices that do not belong to the cut and the sum of the absolute values of the
negative-valued coordinates of uS is the size of the cut S.

Theorem 3.3.4. The packing radius of LG under the simplicial distance function d4 is

equal to MC1(G)
n+1

where MC1(G) is the size of the `1-minimum cut.

Proof. First, observe that the lattice point that defines the packing radius under the
distance function d4 is a Voronoi neighbour of the origin under d4. Hence, we only
restrict to the Voronoi neighbours. Now for the case of general connected graphs, the
characterization of the Voronoi neighbours of the origin obtained in Theorem 3.2.3 is not
explicit enough. Hence, we perform the standard perturbation of the Laplacian matrix
(see Subsection 3.2.2) and consider lattices generated by these perturbed matrices. Using
Lemma 3.2.4, we know that the packing radius of the perturbed lattice LεG is defined
by a point of the form uS =

∑
i∈S b

ε
i for some non-trivial subset S of V (G) and bεi being

the perturbed vector of bi. Using the fact that the packing radius is preserved under
perturbation (see Appendix Lemma 7.0.13), we deduce that the packing radius is defined
by a point of the form uS for a non-trivial subset S of V (G). By Lemma 3.3.2 and the
definition of packing radius we have Pac4(LG) = minS || − uS ⊕ O||1/n+ 1 where the
minimum is taken over all the non-trivial cuts S. We now use Lemma 3.3.3 to deduce
that minS || − uS ⊕O||1 is equal to the size of the minimum cut of G.

Since we know that the Laplacian lattice is uniform and every extremal point has
degree equal to g, the genus of the graph we have the following theorem.

Theorem 3.3.5. The covering radius of the Laplacian lattice is equal to g+n
n+1

.
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3.4 The Shortest Vector of the Laplacian Lattice

We will provide a combinatorial interpretation of the norm of the shortest vector of the
Laplacian lattice under the simplicial distance function d4. We will see that the length
of the shortest vector of the Laplacian lattice is in fact a certain variant of the minimum
cut in the graph. A precise definition follows:

Definition 3.4.1. (`∞-Minimum Cut) For a non-trivial cut S of V (G), define the
weight of the cut as µ∞(S) = max{degS,S̄(v)| v ∈ S̄} where degS,S̄(v) is the degree of the
vertex v across the cut S. Now define the `∞-minimum cut MC∞(G) as the minimum
of µ∞(S) over all non-trivial cuts S i.e. S is neither empty nor equal to V (G).

Note that for a simple connected graph G, we have MC∞(G) = 1.

Theorem 3.4.2. The length of the shortest vector ν4(LG) of the Laplacian lattice under
the simplicial distance function d4 is equal to MC∞(G).

Proof. First let us consider the case where G is a multigraph with no zero entries in its
Laplacian matrix. By Lemma 1.4.8, we know that every shortest vector in the distance
function d4 must be a Voronoi neighbour of the origin under d4. We know that the
Voronoi neighbours of the origin under d4 are of the form: uS =

∑
i∈S bi for some non-

trivial subset S of V (G). For the case of general connected graphs, the characterization of
the Voronoi neighbours of the origin obtained in Theorem 3.2.3 is not explicit enough.
Hence, we perform the standard perturbation (see Subsection 3.2.2) of the Laplacian
matrix and consider lattices generated by these perturbed matrices. By Lemma 3.2.4,
we know that the shortest vector of the perturbed lattice LεG is defined by a point of the
form uS =

∑
i∈S b

ε
i for some non-trivial subset S of V (G) and bεi being the perturbed

vector of bi. Using the fact that the quantity ν4(.) is preserved as the perturbation
tends to zero (See Appendix Lemma 7.0.13), we deduce that the shortest vector for the
general lattice must be of the form: uS =

∑
i∈S bi for some non-trivial subset S of V (G).

Consider a subset S such that uS is a shortest vector. First, recall that d4(O, uS) =
|minj uSj|. Now, since uS 6= O only the negative coordinates of uS define d4(O, uS)
and the negative coordinates are indices j such that vj /∈ S. Hence d4(O, uS) =
max{degS,S̄(v) |v ∈ S̄}. We have:

ν4(LG) = min
S
{d4(O, uS)} = min

S
max{degS,S̄(v) |v ∈ S̄} = MC∞(G). (3.3)

Corollary 3.4.3. For a simple connected graph G, we have ν4(LG) = 1.
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Chapter 4

Applications of the Geometric Study

In this chapter, we exploit our understanding of the Laplacian lattice to answer some
natural questions that arise from the correspondence between the graph and its Laplacian
lattice.

4.1 The Delaunay Polytope of the Laplacian Lattice

A natural question that arises with the correspondence between the Laplacian lattice and
a graph is whether the Laplacian lattice characterizes the underlying graph completely up
to isomorphism? The first observation towards answering this question are the following
lemmas:

Lemma 4.1.1. [13] The covolume of the Laplacian lattice of G with respect to An is
equal to the number of spanning trees of G.

Lemma 4.1.2. The Laplacian lattice of any tree on n+ 1 vertices is the root lattice An.

Proof. We know from Lemma 4.1.1 that the Laplacian lattice is a sublattice of the root
lattice An and the covolume of a Laplacian lattice with respect to An is equal to the
number of spanning trees of the graph. This implies that in the case of trees the covolume
of the Laplacian lattice is equal to one. Hence, the Laplacian lattice of a tree is the root
lattice An itself.

Lemma 4.1.2 shows that the Laplacian lattice itself does not characterize a graph
completely up to isomorphism. However, we will now see that the Delaunay triangula-
tions of the Laplacian lattice L with respect to the simplicial distance function provide
more refined information about the graphs that have L as their Laplacian lattice. More
precisely, each graph provides a Delaunay triangulation of its Laplacian lattice and the
Delaunay polytope of the origin characterizes the graph completely up to isomorphism.
In the course of showing this result, we also study the structure of the Delaunay polytope
in particular determine its vertices, facets and edges. Recall that as we noted in Remark
3.1.2, in the case of graphs with no zero entries in the Laplacian matrix our study of the
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Delaunay triangulation is in fact a study of the Scarf complex of the Laplacian lattice
and in general, the Delaunay triangulation contains the Scarf complex of LG.

4.1.1 The Structure of the Delaunay Polytope

We mainly rely on the following simple facts to study the structure of the Delaunay
polytope:

1. The Separation theorem for closed convex sets [75]: two non-empty disjoint com-
pact convex sets can be separated by a hyperplane. Equivalently, for two non-
empty disjoint compact convex sets C1, C2, there is a linear functional f such that
f(x) < 0 for all x ∈ C1 and f(y) > 0 for all y ∈ C2.

2. The Laplacian matrix of an undirected graph is symmetric.

3. If G is a connected graph on n + 1-vertices then the Laplacian matrix Q(G) has
rank n and hence, its Laplacian lattice has dimension n.

We know from Theorem 3.2.6 that each graph provides a Delaunay triangulation of
its Laplacian lattice in the following manner: Recall that {b0, . . . , bn} are the rows of the
Laplacian matrix of G. For each permutation σ ∈ Sn+1, we define uσi =

∑i
j=0 bσ(j) for i

from 0 to n. Note that uπn = (0, . . . , 0) for every permutation π ∈ Sn+1. We define the
simplex 4σ as the convex hull of uσ0 , . . . , u

σ
n. The Delaunay polytope of the origin i.e.

the set of Delaunay simplices with the origin as a vertex, is given by {4σ}σ∈Sn+1 . See
Figure 4.1 for the Delaunay polytope of some small graphs. We denote this polytope by
HDelG(O).

We first describe the vertex set of HDelG(O). A study of low-dimensional examples
leads us to the claim that every vertex of HDelG(O) is of the form uσk for some integer k
from 0 to n− 1 and a permutation σ ∈ Sn+1. In order to show this claim, we proceed as
follows: we consider the convex hull H ′(G) of points uσk for k from 0, . . . , n and σ ∈ Sn+1.
We then show that every point of the form uσk for k from 0, . . . , n−1 is a vertex of H ′(G)
and that H ′(G) = HDelG(O).

Lemma 4.1.3. Every point of the form uσk is a vertex of H ′(G) where k varies from 0
to n− 1 and σ ∈ Sn+1.

Proof. We show that for every point of the form uσk =
∑k

i=0 bσ(i) for k from 0 to n− 1
there exists a point w such that the linear functional f(x) = w · xt has the property:

f(bσ(i)) =

{
> 0 if 0 ≤ i ≤ k,

< 0 otherwise.

The details of the construction of the functional f are as follows. Consider the set
Cσ,k of points (p0, . . . , pn) ∈ H0 such that

pσ(i) =

{
> 0 if 0 ≤ i ≤ k,

< 0 otherwise.
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Figure 4.1: The Delaunay polytope of a path on two edges (left) and a triangle.

We make the following observations:

1. Cσ,k is a cone.

2. Cσ,k is not empty for k from 0 to n− 1.

Take a point q in Cσ,k. Since G is connected, LG is a lattice of dimension n and a
basis of LG spans H0. Consider the basis {b0, . . . , bn−1} (the first n rows of Q(G)). Let
q =

∑n−1
i=0 vi ·bi. Set wi = vi for i from 0 to n−1 and wn = 0. Using the symmetry of the

Laplacian matrix, we can easily verify that the functional f has the desired properties.
By the properties of f , it follows that uσk is the unique maximum of f(x) among vertices
of the form uπj for an arbitrary permutation π ∈ Sn+1. This implies that uσk is also the
unique maximum of f(x) over the polytope H ′(G). Using standard arguments in linear
optimization [76], this implies that uσk is a vertex of H ′(G).

Next, we characterize points in the simplex 4σ.

Lemma 4.1.4. A point p is contained in 4σ if and only if it can be written as p =∑n
i=0 λibσ(i) where 1 = λ0 ≥ λ1 ≥ · · · ≥ λn ≥ 0.

Proof. If p is contained in 4σ, then we can write: p =
∑n

i=0 µiu
σ
i where µi ≥ 0 and∑n

i=0 µi = 1. We can plug in uσk =
∑k

i=0 bσ(i) to the equation p =
∑n

i=0 µiu
σ
i to obtain:

p =
∑n

i=0 λibσ(i) where λk =
∑n

i=k µi. Observe that 1 = λ0 ≥ λ1 ≥ · · · ≥ λn ≥ 0.

Conversely, suppost that a point can be written as p =
∑n

i=0 λibσ(i) where 1 = λ0 ≥
λ1 ≥ · · · ≥ λn ≥ 0. We set µi = λi − λi+1 for 0 ≤ i ≤ n − 1 and µn = λn and we have
p =

∑n
i=0 µiu

σ
i . We finally verify the following properties: i. µi ≥ 0, since λi ≥ λi+1 for

i from 0 to n− 1, ii. λn ≥ 0 and iii.
∑n

i=0 µi = λ0 = 1. This shows that p is contained
in 4σ.

Corollary 4.1.5. The set HDelG(O) is convex.
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Proof. Consider points p1 and p2 in simplices 4σ1 and 4σ2 for some σ1, σ2 ∈ Sn+1. By
Lemma 4.1.4, we can write: p1 =

∑n
i=0 λ

1
i bσ1(i) and p2 =

∑n
i=0 λ

2
i bσ2(i) where 1 = λi0 ≥

λi1 ≥ · · · ≥ λin ≥ 0 for i ∈ {1, 2}. Each point p in the line segment joining p1 and p2

can be written as µp1 + (1 − µ)p2 for some 0 ≤ µ ≤ 1. We can write: p =
∑n

i=0 λibi
and there exists a permutation σ such that 1 ≥ λσ(0) ≥ λσ(2) ≥ · · · ≥ λσ(n) ≥ 0. We add
O = (1 − λσ(0))

∑n
i=0 bi to the right hand side of the equation to obtain a point of the

form stated in Lemma 4.1.4. This concludes the proof.

Lemma 4.1.6. For any undirected connected graph G, we have H ′(G) = HDelG(O).

Proof. Consider a point p in HDelG(O). By definition, p belongs to some simplex of the
form 4σ. Observe that all the vertices of 4σ except possibly the origin are contained
in H ′(G). Now, let p =

∑n−1
i=0 λiu

σ
i + λn · O for some λi ≥ 0 and

∑n
i=0 λi = 1. We

have p =
∑n−1

i=0 λiu
σ
i + λn · O =

∑n−1
i=0 λiu

σ
i + λn(b0 +

∑n
j=1 bj)/2. This shows that p

can be written as a convex combination of points in H ′(G) and hence p is contained
in H ′(G). We show the converse by contradiction. Assume that there exists a point
p in H ′(G) \ HDelG(O). By Corollary 4.1.5, HDelG(O) is a convex polytope and hence, a
closed subset of H0 equipped with the Euclidean topology. By the separation theorem
for closed convex sets [75], there exists a linear functional f(x) such that f(p) < 0 and
f(y) > 0 for all y ∈ HDelG(O). Since uσk is contained in HDelG(O), we know that f(uσk) > 0
for all 0 ≤ k ≤ n and σ ∈ Sn+1. But since, p is contained in H ′(G) it can be written as
a convex combination of the vertices of H ′(G) and the vertices of H ′(G) are points of
the form uσk for k from 0 to n− 1 and hence f(p) > 0. We obtain a contradiction.

Corollary 4.1.7. The set HDelG(O) is a convex polytope and has 2n+1 − 2 vertices.

We now describe the facet structure of HDelG(O). We know that every vertex of
HDelG(O) is of the form:

v =
k∑
j=0

bij , for k = 1 . . . n and bijs are all distinct. (4.1)

We define the set Vi for i = 0 . . . n as the subset of vertices that contain bi in their
representation of the form stated in (4.1). Define the set Fi,j = Vi \ Vj.
Lemma 4.1.8. For each integer 0 ≤ i, j ≤ n and i 6= j, the affine hull of the elements
of Fi,j is an n− 1-dimensional affine space.

Proof. For the sake of convenience, we consider F0,n. The set S = {b0, b0 + b1, . . . , b0 +
b1 + b2 + · · · + bn−1} is contained in F0,n. Since G is connected, the elements of S are
linearly independent and hence their affine hull is an n− 1-dimensional affine space.

We show that every element of F0,n is contained in the affine hull of S. The affine hull
of S consists of elements of the form

∑n
i=0 αiui where ui =

∑i
k=0 bk and

∑n
i=0 αi = 1.

This information can be written as
∑n

i=0 λibi where λi =
∑n

j=i αj. This means that
λ = Tα where λ = (λ0, . . . , λn), α = (α0, . . . , αn) and T is the lower triangular matrix
with unit entries. By definition, the elements of F0,n are of the form: b0 + bi1 + · · ·+ bik
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where ij /∈ {0, n}. Consider an element u = b0 + bj1 + · · · + bjk in F0,n+1 and let
S ′ = {0, j1, . . . , jk}. Set λ′ = iS′ , the indicator vector of the set S ′ and since T is
invertible there exists a unique vector α′ = T−1λ′ and we verify that

∑n
i=0 α

′
i is the

coefficient of b0 in u and is hence equal to 1. This shows that u is contained in the affine
hull of S. The same argument can be done for any Fi,j by replacing 0 by i and n by
j.

Lemma 4.1.9. For each integer 0 ≤ i, j ≤ n and i 6= j, the convex hull of the elements
of Fi,j is a facet of HDelG(O). Furthermore, each element of Fi,j is in convex position.

Proof. For the sake of convenience, we consider F0,n. By Lemma 4.1.8, the affine hull of
the elements of F0,n spans a n− 1-dimensional space K and we know that HDelG(O) is
a n-dimensional polytope. In order to show that F0,n is a facet of HDelG(O) we need to
show that the affine hull of the elements of F0,n supports HDelG(O). This can be seen as
follows: since G is connected we know that {b0, . . . , bn−1} is a basis of H0. Hence, every
point in H0 can be uniquely written as

∑n−1
i=0 αibi for some αi ∈ R and the hyperplane

K is given by α0 = 1. Consider a vertex v of HDelG(O) not contained in F0,n. Let

v =
∑k

j=1 bij . Since v is not contained in F0,n, either b0 is not contained in the sum
representing v or bn is contained in the sum. If b0 is not contained in the sum and bn is
contained in the sum then α0 = −1. If b0 and bn are contained in the sum, then α1 = 0
and also, if b0 and bn are not contained in the sum then α0 = 0. This shows that all the
vertices of HDelG(O) that are not in F0,n−1 are strictly contained in K−, the halfspace
α0 ≤ 1. This suffices to conclude that K ∩ HDelG(O) = F0,n. By Lemma 4.1.3, all the
elements of F0,n are in convex position and this concludes the proof.

Lemma 4.1.10. The facets of HDelG(O) are exactly of the form Fi,j for 0 ≤ i, j ≤ n
and i 6= j.

Proof. By construction, the facets of HDelG(O) must be contained in the affine hull of
the facets of 4σ. By Lemma 4.1.9, we know that the affine hull of any facet of 4σ not
containing the origin contains a facet of HDelG(O). It suffices to show that the affine hull
of a facet of 4σ containing the origin does not contain a facet of HDelG(O). Consider a
facet F of 4σ. We may assume, without loss of generality, that F contains all vertices
of 4σ apart from uσk for some 0 ≤ k ≤ n − 1. Assume that F is a facet of HDelG(O).
This means that there is an affine function f such that

P1. f(uσi ) = c for all i 6= k.

P2. f(v) > c for all vertices of HDelG(O) that are not contained in the affine hull of
F .
Note that by the property P1, we have f(O) = c. Consider the linear function g(x) =
f(x) − f(O). We have g(uσi ) = 0 for all i 6= k. Now, suppose that g(uσk) = 0, then
f(uσk) = f(uσj ) for all j 6= k, but since G is connected, uσk is not contained in the affine
hull of F and this contradicts the property P2. If g(uσ(k)) < 0, then f(uσk) < c and hence
again contradicts property P2. On the other hand, if g(uσ(k)) > 0, then g(−uσ(k)) < 0
and f(−uσk) < c and −uσk is indeed a vertex of HDelG(O). This again contradicts the
property P2. This concludes the proof.
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Corollary 4.1.11. The number of facets of HDelG(O) is n · (n+ 1).

We now characterize the edges of HDelG(O).

Lemma 4.1.12. The edges of HDelG(O) are of the form eσk = (uσk , u
σ
k+1) for k from 0 to

n− 1 and σ ∈ Sn+1.

Proof. The proof is along the same lines as the proof of Lemma 4.1.3. We show that for
each eσk , there exists a linear function f(x) = w · xt such that f(uσk) = f(uσk+1) = c and
f(v) < c for all other vertices v of HDelG(O).

Consider the set Ceσk of points (p1, . . . , pn+1) ∈ H0 such that

pσ(i) =


> 0 if 0 ≤ i ≤ k,

= 0 if i = k + 1,

< 0, otherwise.

We make the following observations:

1. Ceσk is a cone.

2. Ceσk for 0 ≤ k ≤ n− 1 is not empty.

Take a point q in Cσ,k. Since G is connected, LG is a lattice of dimension n and a
basis of LG spans H0. Consider the basis {b0, . . . , bn−1} (the first n rows of Q(G)) and
write q =

∑n−1
i=0 vi · bi. Set wi = vi for i from 0 to n− 1 and wn = 0.

The functional f(x) = w · xt attains its maximum precisely on the edge eσk . Using
standard arguments in linear optimization [76], this implies that eσk is an edge of H ′(G).

It remains to show that there are no other edges of HDelG(O). By construction of
HDelG(O), an edge of HDelG(O) is contained on the affine hull of an edge of 4σ for some
σ ∈ Sn+1. An edge of 4σ is of the form (uσi , u

σ
j ) for some 0 ≤ i, j ≤ n and i 6= j. We

know that (uσk , u
σ
k+1) is an edge for 0 ≤ k ≤ n − 1 and σ ∈ Sn+1. Consider an edge ei,j

of 4σ of the form (uσi , u
σ
j ) where j 6= i+ 1 and i < j. Assume that the affine hull of ei,j

contains an edge of HDelG(O). This implies that there exists an affine function f such
that

P1. f(uσi ) = f(uσj ) = c.

P2. f(v) ≤ c for all other vertices of HDelG(O) not contained in the affine hull of ei,j.
Let g be the linear function g(x) = f(x)− f(O). By property P1, we have f(uσj −uσi ) =
g(uσj − uσi ) = 0. This means that f(bσ(j) + · · ·+ bσ(i+1)) = g(bσ(j)) + · · ·+ g(bσ(i+1)) = 0.
Either g(bσ(j)) = g(bσ(j−1)) = · · · = g(bσ(i+1)) = 0 or there exists j ≤ k1, k2 ≤ i + 1
such that g(bσ(k1)) > 0 and g(bσ(k2)) < 0. In the first case, we have f(uσi+1) = f(uσi ) +
g(bσ(i+1)) = c but by property P2, this means that uσi+1 is contained in the affine hull of
ei,j and hence uσi+1 = λ · (uσi −uσj ) for some λ ∈ R. But this contradicts the connectivity
of G. In the second case, we have f(uσ(i) + bσ(k1)) = f(uσi ) + g(bσ(k1)) > c and since
uσ(i) + bσ(k1) is a vertex of HDelG(O), we obtain a contradiction. This concludes the
proof.

Problem 4.1.13. We have characterized the zero, one and n − 1 dimensional faces of
HDelG(O). Can we obtain similar characterizations of the other faces of HDelG(O)?

67



4.1.2 Combinatorics of HDelG(O).

Recall that the f -vector of an n-dimensional polytope P is the vector (f0, . . . , fn−1)
where fk is the number of k-dimensional faces of P . In the previous section, we showed
that f0(HDelG(O)) = 2n+1 − 2 and fn−1(HDelG(O)) = n · (n+ 1).

For each vertex v, we denote by dk(v), the number of k-dimensional faces incident to
v.

Lemma 4.1.14. For a vertex v of the form
∑k−1

j=0 bij where the indices ijs are all distinct,
we have dn−1(v) = k · (n+ 1− k).

Proof. Consider a vertex v of the form
∑k−1

j=0 bij where ijs are all distinct and let Sv =
{i0, . . . , ik−1}. The facets that contain v are of the form Fi,j where i ∈ Sv and j /∈ Sv.
There are k · (n+ 1− k) such facets.

Corollary 4.1.15. Let g(k) = k · (n + 1 − k), if g(k1) = g(k2) for k1 6= k2 then
k1 + k2 = n+ 1.

4.1.3 A Property of Affine Maps

Let M(x) = A · x + t for some non-singular linear transformation A and t ∈ H0. Let
P be an n-dimensional polytope in H0. Then M(P), the image of M on P , is an n-
dimensional polytope in H0. Let Fk(P) be the set of k dimensional faces of a polytope
P . We have the following property:

Lemma 4.1.16. The map M : Fk(P) → Fk(M(P)) is a bijection for k from 0 to n.
Hence, if F is a k-dimensional face of P then M(F) is also a k-dimensional face of
M(P).

Corollary 4.1.17. If v is a vertex of P, then M(v) is a vertex of M(P) and dk(v) =
dk(M(v)) for k from 0 to n.

Recall that the polytopes P1 and P2 in H0 are congruent if there exists an isometry
M such that P2 = M(P1). By an isometry, we mean a map of the form M ·x = A ·x+ t
where A is an orthogonal transformation and t ∈ H0

4.1.4 Correspondence between G and HDel(G)(O)

For a convex polytope P in H0, let Aut(P) denote the automorphism group of P . The
following simple lemmas turn out to be useful.

Lemma 4.1.18. Let P be a polytope in Rn, let M be an element of Aut(P), then M
permutes the vertices of P.

Lemma 4.1.19. Every element of Aut(4) is an orthogonal transformation, i.e., the
translation part of the isometric map is zero.
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Proof. By Lemma 4.1.18, a transformation M ∈ Aut(S) permutes the vertices of P .
Let σ ∈ Sn+1 be the permutation induced by M on the vertices set of S. We have
M(ti) = tσ(i). But then for all the vertices of S, we have:

ti · tj =

{
n2 + n, if i = j,

−(n+ 1), if i 6= j.

Since σ is permutation, σ(i) = σ(j) if and only if i = j. Hence, M(ti) ·M(tj) = ti · tj.
Furthermore, since the set {t0, ..., tn} spans H0, it follows that M(v) ·M(u) = v · u for
all v, u in H0. Hence, M is an orthogonal transformation.

Theorem 4.1.20. Let G1 and G2 be undirected connected graphs. The polytopes HDelG1
(O)

and HDelG2
(O) are congruent if and only if G1 and G2 are isomorphic.

Proof. If G1 and G2 are isomorphic, then we know that there exists a permutation map
or in other words σ ∈ Aut(S) such that Q(G2) = σ · Q(G1) · σ−1. This implies that
we have bG2

i = σ · bG1

σ−1(i). We now claim that HDelG2
(O) = σ.HDelG1

(O). In order to

see this observe that 4σ1(G2) = σ · 4σ−1σ1
(G1). By the definition of HDelG(O), we

have HDelG2
(O) = ∪σ1∈Sn+14σ1(G2) = ∪σ1∈Sn+1σ4σ−1σ1

(G1) = σ.HDelG1
(O). By Lemma

4.1.19, we know that σ is an orthogonal transformation and hence this implies that
HDelG1

(O) and HDelG2
(O) are congruent.

Conversely, if HDelG1
(O) and HDelG2

(O) are congruent, then there exists an isom-
etry M(x) = A(x) + t for some orthogonal transformation A and t ∈ H0 such that
HDelG2

(O) = M(HDelG1
(O)). We know by Lemma 4.1.16 that M induces a bijection

between the facets of HDelG1
(O) and HDelG2

(O). By Lemma 4.1.9 we know that a facet

of HDelG(O) is of the form FG
i,j for some 0 ≤ i, j ≤ n. Consider an arbitrary facet

FG2
i,j of HDelG2

(O) and let the facet M(FG2
i,j ) of HDelG1

(O) be FG1

i′,j′ . By Corollary 4.1.17,

we know that M induces a bijection between the vertices of FG2
i,j and the vertices of

FG1

i′,j′ . By Corollary 4.1.17 we know that the (n − 1)-th degree dn−1 is conserved and

by Corollary 4.1.15 this means that either bG2
i = M(

∑n
l=0 b

G1
l − bG1

i′ ) = M(−bG1

i′ ) or
bG2
i = M(bG1

i′ ). In the first case, consider the map M ′(x) = −M(x). Indeed M ′ is an
orthogonal transformation and since HDelG1

(O) is a centrally symmetric polytope, we
have HDelG2

(O) = M(HDelG1
(O)). Hence, we may assume without loss of generality that

bG2
i = M(bG1

i′ ). By Corollary 4.1.15, this implies that bG2
j = M(bG1

j′ ). We know that for

every edge e of facet FG2
i,j , M(e) is an edge incident on FG1

i′,j′ . Moreover M induces a bijec-

tion between the edges of FG2
i,j with bi as a vertex and the edges of FG1

i′,j′ with b′i as a vertex.

We know from Lemma 4.1.12 that the edges of FG
i,j incident on bGi are (bGi , b

G
i + bGk ) for

k /∈ {i, j}. With this information, we deduce that M induces a bijection between the ver-
tices of the form bG2

k where k /∈ {i′, j′} and the vertices of the form bG1
k where k /∈ {i, j}.

Hence, M induces a permutation σ between the vertices of HDelG2
(O) that are of the

form bG2
j and the vertices of HDelG1

(O) of the form bG1
j for 0 ≤ j ≤ n. Hence, we have

M(
∑n

k=0 b
G1
k ) = M(O) =

∑n
k=0 b

G2
k = O. Hence, t = O and M is an orthogonal trans-

formation and we have M(bG1
i ) ·M(bG1

j ) = bG1
i · bG1

j . Putting these together, we have a

permutation σ ∈ Sn+1 such that bG2
i ·bG2

j = bG1

σ(i)·bG1

σ(j) for all integers 0 ≤ i, j ≤ n. This im-
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plies that Q(G2)Qt(G2) = Q(G2)2 = σQ2(G1)σ−1 = (σQ(G1)σ−1)(σQ(G1)σ−1). But, we
know that Q(G1) and Q(G2) are positive semidefinite and hence σQ(G1)σ−1 = σQ(G1)σt

is also positive semidefinite. By the unique squares lemma [47], we can conclude
that σQ(G1)σ−1 is the unique positive semidefinite square root of Q2(G2) and hence
Q(G2) = σQ(G1)σ−1. This shows that G1 and G2 are isomorphic.

Remark 4.1.21. There are simpler constructions that also have the property shown in
Theorem 4.1.20. For example for every connected graph G on n+1 vertices, associate an
n-dimensional simplex given by S(G) = CH(b0, . . . , bn) where b0, . . . , bn are the rows of
the Laplacian of G. A argument similar to last part of the proof of Theorem 4.1.20 shows
that: Let G1 and G2 be connected graphs S(G1) is congruent to S(G2) if and only if G1

and G2 are isomorphic. We will explore this direction in more detail in Chapter 6. On
the other hand, Theorem 4.1.20 is more “canonical” in connection to the scarf complex
and the polytopes HDel(G)(O) have a geometric interpertation in terms of the Laplacian
lattice while the simplex S(G) does not seem to have any direct interpertation.

Remark 4.1.22. We know that the lengths of the edges of HDelG(O) is essentially the
degrees of different vertices of G. The volume of HDelG(O) is essentially the number of
spanning trees of HDelG(O). Is there such an interpretation for the volumes of the other
faces of HDelG(O) in the appropriate measures?

4.2 On the Number of Graphs with a given Lapla-

cian Lattice

In Lemma 4.1.2 of the previous section, we observed that the Laplacian lattice of any
tree is the root lattice An. This observation raises the problem of counting the number
of graphs that have An as their Laplacian lattice. The matrix-tree theorem gives an
answer to the problem.

Lemma 4.2.1. The number of graphs that have An as their Laplacian lattice is exactly
(n+ 1)n−1, i.e., the number of labelled trees on n+ 1 vertices.

Proof. By Lemma 4.1.2 of the previous section, we know that the root lattice An is the
Laplacian lattice of any tree on n+1 vertices. Conversely, any connected graph on n+1
vertices that is not a tree must contain at least two spanning trees and hence by Lemma
4.1.1 its Laplacian lattice must have covolume (with respect to An) strictly greater than
one.

Lemma 4.2.1 raises the following natural problem:

Given a sublattice L of An. Count the number of labelled connected graphs whose
Laplacian lattice is L.

We denote the number of undirected connected graphs that have L as their Laplacian
lattice as NGr(L). Note that NGr(L) is non-zero only if L is the Laplacian lattice of
a connected graph. Our main result in this section is an upper bound on the number
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NGr(LG) for a Laplacian lattice LG in terms of the number of different Delaunay trian-
gulations of LG under the simplicial distance function d4. As a corollary, we show that
for a Laplacian lattice LG of a multigraph with no zero entries in its Laplacian matrix,
we have NGr(LG) = 1.

From now on, when we say Delaunay triangulation, we mean that the Delaunay tri-
angulation under the simplicial distance function d4, see Subsection 3.1 for a discussion
on Delaunay triangulation under polyhedral distance function and Subsection 3.2.3 for
a discussion on the Delaunay triangulation of Laplacian lattices under the simplicial
distance function d4.

We now make precise what “two triangulations are different” means.

For a triangulation T , let HT (O) be the union of simplices in the triangulation that
have the origin O as a vertex. We say T1 and T2 are the same if HT1(O) = HT2(O),
otherwise they are different.

Theorem 4.2.2. Let Del(G) be the Delaunay triangulation of LG defined by the graph
G under the distance function d4 and NDel(LG,4) be the number of different Delaunay
triangulations of LG, we have NGr(LG) ≤ NDel(LG,4).

4.2.1 Proof of Theorem 4.2.2

We know that every graph provides a Delaunay triangulation of its Laplacian lattice
(Theorem 3.2.6). We show that if HDelG1

(O) = HDelG2
(O) then the Laplacian matrices

Q(G1) and Q(G2) of G1 and G2 are equal. In other words, G can be uniquely recovered
from HDelG(O). This would imply that two graphs cannot give rise to the same Delaunay
triangulation and Theorem 4.2.2 then follows.

Lemma 4.2.3. Let G1, G2 be connected graphs, HDelG1
(O) = HDelG2

(O) if and only if
Q(G1) = Q(G2).

Proof. Indeed if Q(G1) = Q(G2) then HDelG1
(O) = HDelG2

(O). To show the converse,
we describe an algorithm to uniquely recover Q(G1) from HDelG1

(O).

Define the set Ci as follows:

Ci = {p = (p0, . . . , pn) ∈ Rn+1| pi ≥ 0 and pj ≤ 0 for all j 6= i}.
Indeed, we verify that Ci is a cone. Consider the set HDelG1

(O)|Ci of vertices of
HDelG1

(O) that are contained in the cone Ci. Pick a vertex v, say in HDelG1
(O)|Ci that

maximizes the value of the i-th coordinate.

First, a vertex with this property exists since the vertex bi(G1) is contained in Ci
and bij(G1) the j-th coordinate of bi(G1) satisfies bij(G1) ≤ 0 for i 6= j. Furthermore,
we claim that v is unique and is equal to bi(G1). Now, assume that v 6= bi(G1). By
Lemma 4.1.3, we know that v = bi0(G1) + · · · + bik(G1) for some 0 ≤ k ≤ n− 1, ijs all
being distinct. Denote Sk = {i0, . . . , ik}. Since bij(G1) ≤ 0 for all i 6= j we know that
vi = bii(G1) and hence, i ∈ Sk and bij(G1) = 0 for all j ∈ Sk \ {i}. We know that vj ≥ 0
for all j ∈ Sk. But since v ∈ Ci, this means that vj = 0 for all j ∈ Sk \ {i}. This means
that bjk(G1) = 0 for all j ∈ Sk \ {i} and k ∈ (V (G) \Sk)∪{i}. Hence, there are at least
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two components of G that are not connected, namely the induced subgraphs of vertex
sets Sk \{i} and (V (G)\Sk)∪{i}. This contradicts our assumption that G is connected.
This shows that if HDelG1

(O) = HDelG2
(O), then bi(G1) = bi(G2) for all 0 ≤ i ≤ n and

hence Q(G1) = Q(G2). This concludes the proof of the lemma.

This shows that each graph G with LG = L contributes to a different Delaunay
triangulation of L and hence, NGr(LG) ≤ NDel(LG,4). This concludes the proof of
Theorem 4.2.2. We know from Theorem 3.2.6 that a multigraph with no zero entries in
its Laplacian matrix has a unique Delaunay triangulation. As a corollary we obtain:

Corollary 4.2.4. If LG is the Laplacian lattice of multigraph G such that every pair of
vertices are connected by an edge, then NGr(LG) = 1.

4.3 Covering and Packing problems

Covering and Packing problems on lattices have been widely studied, see Sloane and
Conway [31] for a general introduction and Zong and Talbot [82] or Martinet [62] for a
more specialised treatment of the subject.

Given a lattice L and a convex body P (typically this is a sphere), we study to how
“optimally” do L-translates of C pack or cover Rn+1. For a sublattice L of An, we define
the packing density γC(L) and the covering density θC(L) as:

γC(L) = PacC(L)/((n+ 1)Cvol)1/n(L)

θC(L) = CovC(L)/((n+ 1)Cvol)1/n(L)
(4.2)

where PacC(L) and CovC(L) is the packing and covering radius of L with respect to C
and Cvol(L) is the covolume of the lattice with respect to An.

Remark that in the standard definition of packing and covering density, the volume
of the lattice L appears in the place of n+ 1 times the covolume of L. Observe that the
two notions are “equivalent” up to a factor that depends only on the rank of L and are
interchangeable since we are interested in determining lattices with good packing and
covering densities in a given rank and the order of the quotient group An/L is equal
to the ratio of the volumes of An and L i.e. Vol(L) = Vol(An).|An/L| (see Lecture V,
Theorem 20 of Siegel [77] for a proof).

The lattice packing and covering problem respectively is to find lattices that pack
Rn most densely and cover Rn most economically i.e., lattices that maximise γC(.) and
minimise θC(.). Explicit constructions of lattices that solve the sphere packing and
covering problems are known only for lower dimensions [31].

We will use the fact that the covering and packing radius of the Laplacian lattice have
a combinatorial interpretation in terms of the underlying graph to obtain a formula for
the covering and packing density of the Laplacian lattice. We will use this information to
show that the Laplacian lattices of graphs that are highly connected such as Ramanujan
graphs have good packing and covering properties among Laplacian lattices of graphs.
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Proposition 4.3.1. The packing radius and covering radius of the Laplacian lattice LG
respectively are:

γ4(LG) = MC1(G)/((n+ 1)(
n∏
i=1

λi)
1/n) (4.3)

θ4(LG) = (
n∑
i=1

λi)/(2(n+ 1)(
n∏
i=1

λi)
1/n) (4.4)

where λ1 ≤ λ2 · · · ≤ λn are the non-zero eigenvalues of the Laplacian matrix of G.

This immediately gives a lower bound for the covering density of a Laplacian lattice

Theorem 4.3.2. (Lower bounds for the covering density of Laplacian lattices)
The covering density of the Laplacian lattice is at least n/2(n+ 1).

Proof. By Corollary 4.3.1, we know that θ4(LG) = (
∑n

i=1 λi)/(2(n + 1)(
∏n

i=1 λi)
1/n)

where λ1 ≤ λ2 · · · ≤ λn are the non-zero eigenvalues of the Laplacian matrix. Now we
use the fact that the Laplacian matrix is a positive semidefinite matrix along with the
AM-GM inequality to obtain that θ4(LG) ≥ n/2(n+ 1).

We consider the problem of minimising the covering density and maximising the
packing density of the Laplacian lattice over all connected graphs with a given number
of vertices. First we consider the covering density case. Suppose that λ1, . . . , λn are
arbitrary positive real numbers then the quantity Cov4(LG) is minimised if λ1 = λ2 =
· · · = λn. But then in our case, these numbers are eigenvalues of the Laplacian matrix.
Nevertheless, we would like the eigenvalues of the Laplacian matrix to be “clustered”.
This suggests that graphs with good expansion properties would be suitable. To make
this intuition precise, we need the notion of a Ramanujan graph, see the survey of Horory
et al. [48] for a more detailed discussion of the topic.

Definition 4.3.3. A d-regular graph is called a Ramanujan graph if λA(G) ≤ 2
√
d− 1,

where λA(G) = max{|λA2 |, |λAn+1|} and d = λA1 ≥ · · · ≥ λAn+1 are the eigenvalues of the
adjacency matrix of G.

Using the fact that λi = d− λAi we have:

Lemma 4.3.4. The non-zero eigenvalues of the Laplacian matrix of a Ramanujan graph
are located in the interval [d− 2

√
d− 1, d+ 2

√
d− 1].

Suppose that a d-regular graph is a Ramanujan graph, then we know that the eigen-
values of its Laplacian matrix are concentrated around d (the degree of the graph) in an
interval of width 2

√
d− 1. More precisely, we have: d − 2

√
d− 1 ≤ λi ≤ d + 2

√
d− 1

for every non-zero eigenvalue of the Laplacian. Using this information, we will obtain
an upper bound on the covering density of a Ramanujan graph.

Lemma 4.3.5. Let G be a d-regular Ramanujan graph, we have d+2
√
d− 1 ≥ (

∏n
i=1 λi)

1/n

≥ d− 2
√
d− 1
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Proof. Since G is a d-regular Ramanujan graph we have d−2
√
d− 1 ≤ λi ≤ d+2

√
d− 1

for every i from 1 . . . n. Using this information, we have (d+ 2
√
d− 1) ≥ (

∏n
i=1 λi)

1/n ≥
(d− 2

√
d− 1).

Theorem 4.3.6. (Covering Density of Ramanujan graphs) Let G be a d-regular
Ramanujan graph then θ4(LG) ≤ ( d

4(d−2
√
d−1)

).

Proof. We have
∑n

i=1 λi = (n+ 1) · d/2 and by Lemma 4.3.5 we have
∏n

i=1 λi ≥ d −
2
√
d− 1. By Corollary 4.3.1, we know that θC(LG) = (

∑n
i=1 λi)/(2(n + 1)(

∏n
i=1 λi)

1/n)
where λ1 ≤ λ2 · · · ≤ λn are the non-zero eigenvalues of the Laplacian matrix. Hence, we
obtain θ4(LG) ≤ ( d

4(d−2
√
d−1

)).

Remark 4.3.7. Note that we crucially use the fact that the eigenvalues of a Ramanujan
graph are concentrated in a small interval. It is not clear if we can obtain upper bounds
on the covering density for a general graph.

We now consider the problem of maximising the packing density of the Laplacian
lattice. The formula for packing density presented in Theorem 4.3.1 suggests that graphs
that maximise the packing density have high minimum cut and a relatively small number
of spanning trees. We will provide a lower bound on the packing density of Ramanujan
graphs.

Theorem 4.3.8. Let G be a d-regular Ramanujan graph, then γ4(G) ≥ (d−2
√
d−1)

2(n+1)(d+2
√
d−1)

.

Proof. By Corollary 4.3.1 we have γ4(G) = MC1(G)

(n+1)(
Qn
i=1 λi)

1/n . By Lemma 4.3.5 we have:∏n
i=1 λi ≤ d+ 2

√
d− 1. We now obtain a lower bound on MC1(G). We observe that the

size of the cut S can be written as uS ·Q(G) ·utS/2 where is the indicator vector of S i.e.

uSi =

{
1, if the vertex with index i is in S,

−1, otherwise.

We now observe that:

min
S/∈{V,∅}

uS ·Q(G) · utS
2

≥ min
u∈Sn+1

u ·Q(G) · ut/2
2

· min
S/∈{V,∅}

uS · uS ≥ min
u∈Sn+1

u ·Q(G) · ut
2

= λn/2

Now since the graph is a Ramanujan graph, we know that λn ≥ d − 2
√
d− 1. Hence,

γ4(G) ≥ d−2
√
d−1

2(n+1)(d+2
√
d−1)

.

We do not know if the converse of Theorem 4.3.6 and Theorem 4.3.8 also holds. More
precisely, suppose that the covering density of the Laplacian lattice of a graph is upper
bounded by a suitably chosen constant c, then is it true that the graph is Ramanujan?
Similarly, suppose that the Laplacian lattice of a d-regular graph has a high packing
density then does the graph have “high” connectivity? Another natural question is that
whether the lower bound on the packing density that we obtained for the Laplacian
lattice of a Ramanujan graph is the best possible. Note that a trivial upper bound for
γ4(G) is d for a d-regular graph G.
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Chapter 5

Algorithmic Aspects of
Riemann-Roch

We now turn to algorithmic questions related to the Riemann-Roch theory. In this
chapter, we construct algorithms for computing the rank with the main result being
an algorithm for computing the rank of a divisor on a finite multigraph that runs in
polynomial time when the number of vertices of the multigraph is fixed. In particular,
we obtain an algorithm for computing the rank of a divisor on a finite graph that runs
in time O(2n logn) where n is the number of vertices of the graph. The key ingredients
are a new geometric interpretation of rank combined with algorithms from the geometry
of numbers. We conclude the chapter by showing that computing the rank of a divisor
on a general sublattice of An i.e., the corresponding decision problem is NP-hard.

5.1 Computing the Rank of a divisor on a finite

Graph

5.1.1 A Simplification

We shall first observe that by using the Riemann-Roch theorem we can restrict our
attention to divisors of degree between zero and g − 1. Firstly, a divisor of negative
degree must have rank minus one. Furthermore, by the Riemann-Roch formula we have:

Lemma 5.1.1. If the degree of D is strictly greater than 2g−2, then r(D) = deg(D)−g.

Proof. Observe that if the degree of D is strictly greater than 2g − 2 then the rank of
K −D is −1 and apply the Riemann-Roch theorem.

Furthermore, we can compute the rank of divisors of degree between g and 2g− 2 by
computing the rank of K−D, a divisor that has degree between zero and g−1 and then
applying the Riemann-Roch theorem. Hence, we consider the problem of computing the
rank of a divisor of degree between zero and g − 1. In fact, we consider the decision
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version of the problem i.e., we want to decide (efficiently) if r(D) ≤ k for every k
between zero and g − 1; observe that such a procedure combined with a binary search
over the parameter k will compute the rank in time O(ln(g)) times the running time of
the procedure.

5.1.2 A First Attempt at Computing the Rank

Let us discuss a first attempt at computing the rank. We will compute rank directly
from its definition. We will use the fact that there is a polynomial time algorithm for
testing if r(D) ≥ 0 due to the independent work of Dhar [32] and Tardos [80].

Algorithm 1. 1. Enumerate all effective divisors of degree at most the degree of the
divisor D.

2. Find an effective divisor E of smallest degree such that r(D − E) = −1 by using
Dhar’s algorithm.

Theorem 5.1.2. The running time of Algorithm 1 is O(2n ln g).

The running time of the Algorithm 1 is not polynomial in the size of the input even for
a fixed number of vertices since the quantity 2n ln g is not polynomially bounded in the size
of the input. There is general interest in obtaining an algorithm that runs in polynomial
time for a fixed number of vertices and furthermore, in obtaining a singly exponential
time algorithm i.e., an algorithm with running time 2O(n)poly(size(G)). We will now
undertake a deeper study of rank to obtain an algorithm that runs in time polynomial
in the size of the input provided that the number of vertices is fixed. More precisely,
our algorithm has running time 2O(n logn)poly(size(G)). An important ingredient is a
geometric interpretation of rank that we shall obtain in the following section.

5.1.3 A Geometric Interpretation of Rank

We start with the following formula for rank from Chapter 1, first shown in Baker and
Norine [12].

Theorem 5.1.3. For any divisor D, we have:

r(D) = min
ν∈Ext(LG)

deg+(D − ν)− 1 (5.1)

where deg+(D) =
∑

i:Di>0Di.

5.1.4 A Sketch of the Approach

Let us now briefly sketch our approach to computing the rank: We start with the formula
to compute the rank and proceed as follows: we run over all the permutations π ∈ Sn+1

and for each permutation π suppose that we could compute minq∈LG deg
+(D − vπ + q)
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in time that is possibly exponential but only in n, then we would obtain an algorithm
with running time O(f(n)poly(size(G))) for some function f . But, how do we compute
minq∈LG deg

+(D−vπ + q)? One hope would be to reduce the problem to a closest vector
problem on lattices or more generally to integer programming. Fortunately, the integer
programming problem has an algorithm that runs in time that is exponential only in n
(the rank of the lattice). Such an algorithm would run in time O(2n lognpoly(size(G))).
This approach requires a better understanding of the deg+ function that we now obtain.

Definition 5.1.4. (Orthogonal projections onto Hk) For a point P ∈ Rn+1 we
denote by πk(P ) the orthogonal projection of P onto the hyperplane Hk.

For the sake of simplicity, we first consider the case where the divisor has degree
g − 1. In this case, we observe that deg+(D − ν) = `1(D−ν)

2
, and that `1(D − ν) =

`1(π0(D)−π0(ν)). We denote the set π0(Ext(LG)) the orthogonal projection of Ext(LG)
onto the hyperplane H0 by Crit(LG) and indeed, the orthogonal projections of Ext(LG)
are the local maxima of the distance function h4,LG we refer to Chapter 1 for more
details.

Corollary 5.1.5. For any divisor D with deg(D) = g − 1, we have:

r(D) = min
c∈Crit(LG)

`1(π0(D)− c)
2

− 1. (5.2)

Taking cue from Corollary 5.1.5, it is natural to ask if there is a similar “distance
function” type interpretation for divisors of degree between zero and g − 1. We will
answer this question in the affirmative, the relevant distance function, actually a family
of distance functions is the following:

Definition 5.1.6. (Degree-Plus Distance) Let k be a positive real number. For
points P and Q in H0, we define the degree-plus distance between P and Q as

d+
k (P,Q) = sup

{
r |4(P, r) ∩4(Q, r + k) = ∅

}
.

where for a point R ∈ H0 and a real number r > 0, 4(R, r) = r · 4(O) +R.

Note that though d+
k does not appear to be a distance function at first glance, we will

actually show that it can be realised by a sequence of polyhedral distance functions

We will now note some basic properties of the function d+
k .

Lemma 5.1.7. (Translation Invariance) For any points P , Q, and T in H0 and
for any positive real numbers r1 and r2 we have 4(P, r1) ∩ 4(Q, r2) = ∅ if and only if
4(P + T, r1) ∩4(Q+ T, r2) = ∅.

Proof. Assume that 4(P, r1) ∩ 4(Q, r2) 6= ∅ and consider a point S ∈ 4(P, r1) ∩
4(Q, r2). Now, S = r1

∑n+1
i=1 αivi + P = r2

∑n+1
i=1 βivi + Q for some αi ≥ 0, βi ≥ 0

and
∑

i αi =
∑

i βi = 1. Now this implies that S + T = r1

∑n+1
i=1 αivi + P + T =

r2

∑n+1
i=1 βivi + Q + T . Hence, S + T ∈ 4(P + T, r1) ∩4(Q + T, r2) 6= ∅. The converse

follows by symmetry.
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k+r

r Q

P

Figure 5.1: The distance function d+
k

Lemma 5.1.8. (Projection Lemma) Let R be a point in Rn+1 with deg(R) ≥ 0, let
O be the origin and let π0(R) be the orthogonal projection of R onto H0. We have

inf
Z∈H+(R)∩H+(O)

deg(Z) = (n+ 1) sup
{
r |4(π0(R), r) ∩4(O, r +

deg(R)

n+ 1
) = ∅

}
+ deg(R).

Proof. Consider a point X, say, in the intersection of H+(O) and H+(R) and consider
the intersection of the hyperplane Hdeg(X) with H+(O) and H+(R). Observe that the
intersection of Hdeg(X), the hyperplane (1, . . . , 1)⊥ translated by deg(x) and H+(O) is a

simplex that is a scaled and translated copy of 4, call it 41, centered at deg(X)
n+1

(1, . . . , 1)

and scaled by a factor of deg(X)
n+1

. Similarly, the intersection of Hdeg(X) and H+(R) is
also a simplex that is a scaled and translated copy of 4, call it 42 centered at R +
deg(X−R)

n+1
(1, . . . , 1) scaled by a factor of deg(X−R)

n+1
. Observe that deg(X) ≥ deg(R) ≥

deg(O). Indeed simplices41 and42 intersect at X and deg(X) is equal to n+1 times the
radius of 42 plus deg(R). We now project the simplices 41 and 42 onto H0 and obtain

inf{deg(Z)| Z ∈ H+(R) ∩ H+(O)} ≥ (n + 1) sup{r| 4(π0(R), r) ∩ 4(O, r + deg(R)
n+1

) =

∅} + deg(R). Now, consider a point P in 4(π0(R), r) ∩ 4(O, r + deg(R)
n+1

) and observe

that the point X = P + (r + deg(R)
n+1

)(1, . . . , 1) is a point in the intersection of H+(O)
and H+(R). This shows that inf{deg(Z)| Z ∈ H+(R) ∩ H+(O)} ≤ (n + 1) sup{r|
4(π0(R), r) ∩4(O, r + deg(R)

n+1
) = ∅}+ deg(R). This completes the proof.

We are now ready to establish the connection between the deg+ function and the
function d+

k .

Lemma 5.1.9. For any pair of points P and Q in Rn+1 with deg(P ) ≥ deg(Q), we have

deg+(P −Q) = (n+ 1) d+
k (π0(P ), π0(Q)) + deg(P −Q)

for k = deg(P−Q)
n+1

Proof. First consider a point R in Rn+1. We have deg+(R) =
∑

Ri≥0Ri = −deg(−R⊕O),
where −R⊕O = −(max(R0, 0), . . . ,max(Rn, 0)). Now we have:

−deg(−R⊕O) = inf
Z∈H+(R)∩H+(O)

deg(Z).
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By Lemma 5.1.8 we have

inf
Z∈H+(R)∩H+(O)

deg(Z) = (n+1) sup
{
r |4(π0(R), r)∩4(O, r+

deg(R)

n+ 1
) = ∅

}
+deg(R).

Now, for two points P and Q in Rn+1, letting R = P − Q in the above formula and
applying Lemma 5.1.7, we obtain the relation given in the proposition.

The function d+
k is motivated naturally by the definition of the deg+ function but

is not very handy for geometric as well as computational reasons. In the following, we
will obtain a more convenient representation of d+

k . In fact, d+
k is closely related to

the following family of polytopes: For a point P ∈ H0 and m,n > 0, let Pm,n(P ) =
(4(O,m)⊕Mink 4̄(O, n)) + P , where ⊕Mink denotes the Minkowski sum. Note that we
use the notation ⊕ for the tropical sum.

Lemma 5.1.10. For any positive real numbers m and n, Pm,n(P ) is a convex polytope.

Proof. Using the fact that Minkowski sum of two convex polytopes is a convex polytope
and hence, Pm,n(O) is a convex polytope. Indeed translates of a convex polytope is also
a convex polytope and hence, Pm,n(P ) is also a convex polytope.

Lemma 5.1.11. For points P and Q in H0 and for k ≥ 0, d+
k (P,Q) = inf{r| Q ∈

(4(O, r)⊕Mink 4̄(O, r + k)) + P}, where O is the origin.

Proof. By definition d+
k (P,Q) = sup{r| 4(P, r) ∩ 4̄(Q, r + k) = ∅}. Let r0 = d+

k (P,Q)
and consider a point R in the intersection of 4(P, r0) and 4̄(Q, r0 + k). Rephrasing
d4(P,R) = r0 and d4(Q,R) = d4̄(R,Q) = r0 + k. This implies that R− P ∈ 4(O, r0)
and Q − R ∈ 4̄(O, r0 + k). This shows that Q − P ∈ 4(O, r0) ⊕Mink 4̄(O, r0 + k)
and we obtain Q ∈ (4(O, r0) ⊕Mink 4̄(O, r0 + k)) + P . Hence, d+(P,Q) ≥ inf{r| Q ∈
(4(O, r)⊕Mink 4̄(O, r + k)) + P}.

Furthermore, if Q is contained in (4(O, r)⊕Mink 4̄(O, r+k)) +P then there exists a
point R = R1 +R2 such that R1 ∈ 4(O, r) and R2 ∈ 4̄(O, r+k) with Q = R1 +R2 +P
and we take R3 such that R3 = Q−R2 = R1 + P . Therefore, the point R3 is contained
in both 4(Q, r + k) and 4(P, r) and we obtain inf{r| Q ∈ (4(O, r) ⊕Mink 4̄(O, r +
k)) + P} ≥ d+

k (P,Q). This concludes the proof.

As a corollary we obtain a handy characterization of the polytope Pm,n:

Corollary 5.1.12. Let P, Q be points in H0, a point Q belongs to the polytope Pr,r+d(P )

if and only if deg+(P + d(1,...,1)
n+1

−Q) ≤ r(n+ 1).

Proof. Let a point Q be contained in Pr,r+d(P ), then inf{r′| Q ∈ (4(O, r′) ⊕Mink

4̄(O, r′ + d)) + P} ≤ r and hence by Lemma 5.1.11 we know that r ≥ inf{r′| Q ∈
(4(O, r′) ⊕Mink 4̄(O, r′ + d)) + P} = d+

d (P,Q). By Lemma 5.1.9, we know that

deg+(P + d(1,...,1)
n+1

− Q) = (n + 1)d+
d (P,Q). Hence, deg+(P + d(1,...,1)

n+1
− Q) ≤ r(n + 1).

Conversely, if a point Q satisfies deg+(P+ d(1,...,1)
n+1

−Q) ≤ r(n+1) then, d+
d (P,Q) ≤ r and

hence, r ≥ inf{r′| Q ∈ (4(O, r′)⊕Mink 4̄(O, r′+ d)) +P} and hence Q ∈ Pr,r+d(P ).
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Now putting together, the formula for rank in Theorem 5.1.3, Lemma 5.1.9 and
Lemma 5.1.11, we obtain the following geometric interpretation of rank:

Theorem 5.1.13. (A Geometric Interpretation of rank) Consider a divisor D
of degree d between zero and g − 1, then D has rank r0 − 1 if and only if π0(D) is
contained in the boundary of the arrangement ∪c∈Crit(LG)Pr1,r2(c) where r1 = r0/(n+ 1)
and r2 = (r0 + g − 1− d)/(n+ 1).

Remark 5.1.14. The fact that Pr1,r1+k(c) ⊆ Pr2,r2+k(c) if r1 ≤ r2 is implicit in the
statement of Theorem 5.1.13.

5.1.5 Computing the Rank for Divisors of Degree between zero
and g − 1

We now give an algorithm for computing the rank that runs in polynomial time for a
fixed number of vertices. The algorithm uses two main ingredients:

1. The geometric interpretation of rank (Theorem 5.1.13).

2. Reduction to the algorithm for integer programming by Kannan [51].

For the sake of exposition, we first consider the slightly easier case of divisors with
degree exactly g − 1. We employ Theorem 5.1.5 to obtain the following algorithm:

Algorithm 2. 1. For each permutation π ∈ Sn+1, we compute minq∈LG `1(π0(D) −
q)/2−1 using Kannan’s algorithm. The `1 unit ball is given to Kannan’s algorithm
as a separation oracle (we will provide an efficient implementation of the separation
oracle in Lemma 5.1.15).

2. We minimise over all permutations π.

We now turn to the general case: we start with the geometric interpretation for rank
and we would like to reduce the problem to the integer programming problem. We
construct a preliminary algorithm as follows:

Algorithm 3. Find the smallest integer r such that π0(D) is contained in
∪c∈Crit(LG)Pr1,r2(c) where r1 = r

n+1
, r2 = r+g−1+d

n+1
by testing for all values of r from zero

to g − 1.

Using the fact that the degree of the divisor is between zero and g− 1, the algorithm
would run in time O(g · 2O(n logn) · poly(size(G))). Since, g is not polynomially bounded
in the size of the input, the algorithm does not run in polynomial time for fixed values
of n. We resolve this problem by performing a binary search over the parameter r in the
polytope Pr1,r2(c) and apply Kannan’s algorithm at each step of the binary search. Since
we know from Subsection 5.1.1, that the rank of the divisor is at most g−1 the algorithm
terminates in O(2n lognpoly(size(G))). Here is a formal description of the algorithm:
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Algorithm 4. 1. For each permutation π ∈ Sn+1, use binary search on the parameter
r along with Kannan’s algorithm to test if π0(D) is contained in ∪q∈LGPr,r+g−1−d(cπ+
q), the polytope is presented to Kannan’s algorithm as a separation oracle.

2. Repeat over all permutations π.

The straightforward way of presenting the polytope Pr,r+k to Kannan’s algorithm
is in terms of its facets. But since the number of facets of Pr,r+k is 2n+1, the factor
depending on n in the time complexity of the algorithm becomes larger than 2n logn.
Hence, we present the polytope Pr,r+k by a separation oracle to Kannan’s algorithm and
the following efficient implementation of the separation oracle ensures that the algorithm
runs in time 2O(n logn)poly(size(G)).

Lemma 5.1.15. (A separation oracle for the polytope Pm,n) There is a polynomial
time separation oracle for the polytope Pr,r+d i.e., given any point p there is a polynomial
time (in the bit length of p and the vertex description of Pr,r+d) algorithm that either
decides that p is contained in Pr,r+d or outputs a hyperplane separating the point p and
the polytope Pr,r+d.

Proof. Given a point Q, compute the function r′ = deg+(P + d(1,...,1)
n+1

−Q)/(n+ 1) and if
r′ ≤ r then Q is contained in Pr,r+d(P ) and otherwise let S+ be the set of indices such

that Pi+
d(1,...,1)
n+1

> 0, output the hyperplane HS:
∑

xi∈S+(−xi+Pi+ d(1,...,1)
n+1

) ≤ (r′+r)(n+1)
2

as a separating hyperplane. To show that HS is a separating hyperplane, assume the
contrary and since

∑
xi∈S+(−xi + Pi + d(1,...,1)

n+1
) = r′(n + 1) > (r+r′)(n+1)

2
there is a

point Q in Pm,n such that
∑

Qi∈S+(Pi + d(1,...,1)
n+1

− Qi) ≥ (n+1)(r′+r)
2

. We know that for

the point QL = Q − d(1,...,1)
n+1

we have:
∑

j∈S+(QL)j = r′(n + 1) > (r+r′)(n+1)
2

. Hence,

deg+(QL) ≥ (r+r′)(n+1)
2

> r(n+ 1) and deg(QL) = d, using Corollary 5.1.12 we obtain a
contradiction.

The correctness of the algorithm is clear from Theorem 5.1.13.

Theorem 5.1.16. For any divisor D with degree between zero to g − 1, Algorithm 4
computes the rank of the divisor D.

Theorem 5.1.17. There is an algorithm (Algorithm 3) that computes the rank of a
divisor on a finite multigraph G on n vertices with running time 2O(n logn)poly(size(G))
and hence, runs in time polynomial in the size of the input for a fixed number of vertices.

Proof. The first step in the algorithm takes time O(ln(g)2O(n logn))poly(size(G)) since a
separation oracle for Pm,n can be constructed in polynomial time in the size of G and
Kannan’s algorithm takes 2O(n logn)poly(size(G)) and we iterate ln(g) times. Since ln(g)
is polynomially bounded in the size of the input, the time complexity of the algorithm
is O(2O(n logn)poly(size(G)).
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5.1.6 The Algorithm

We now summarise the results that we obtained in the previous section to obtain an
algorithm for computing the rank of a divisor.

Algorithm 5. 1. If deg(D) < 0 then, output r(D) = −1.

2. If g ≤ deg(D) ≤ 2g− 2 then, set D′ = K −D and compute r(D′) using 4. Output
r(D) = r(D′) + deg(D)− (g − 1).

3. If deg(D) > 2g − 2, then r(D) = deg(D)− g.

4. If 0 ≤ deg(D) ≤ g − 1, then we invoke Algorithm 4 to compute r(D).

Remark 5.1.18. In Chapter 1, we defined the notion of rank of a divisor for an arbitrary
sublattice of the root lattice An. In such a general setting, we do not know if rank can
computed in polynomial time even when the rank of the lattice is fixed. In our algorithm
we crucially exploit our knowledge of the extremal points and the problem with handling
the general case is that we do not have an explicit description of the extremal points as
we have in the case of Laplacian lattices. As a consequence, we do not know how to find
the extremal points in polynomial time even when the rank is fixed.

We will end this section by determining the vertices of the polytope Pm,n.

Lemma 5.1.19. The vertices of PR1,R2 are precisely of the form wi,j = R1ti − R2tj for
i 6= j where t0, . . . , tn are the vertices of 4.

Proof. Observe that wi,j is contained in PR1,R2 for all pairs i, j from 0 to n. We now
show that PR1,R2 is contained in the convex hull of wi,j where i, j vary from 0 to n. Let
p be a point in PR1,R2 by definition it can written as R1

∑n
i=0 λivi − R2

∑n
i=0 σivi with

λi ≥ 0, σi ≥ 0 for i from 0 to n and
∑n

i=0 λi =
∑n

i=0 σi = 1. We let `ij = λi.σj and
write p =

∑n
i=0

∑n
j=0 `ijwij. We now verify that

∑
i,j `i,j = 1 and `i,j ≥ 0. This shows

that PR1,R2 is contained in the convex hull of {wi,j}i,j.
We now show that wi,i are not vertices of PR1,R2 since wi,i is contained in4(O,R1−R2)

and 4(O,R1 − R2) is contained in 4(O,R1) if R1 ≥ R2 and is contained in 4̄(O,R2)
otherwise. To conclude the proof of the lemma, it suffices to show that wi,j is a vertex
if i 6= j. To this end, we consider the linear function fi,j = xi − xj and note that wi,j is
the unique maximum of fi,j among all points in the set {wi,j}i,j.

5.2 NP hardness results in the general case

Let L be a full-rank sublattice of An. We will now show that computing the rank
function for general L is NP-hard. Actually we prove that deciding if r(D) ≥ 0 is
already NP-hard for general D and L.

By the results of Section 1.2, deciding if r(D) = −1 is equivalent to deciding whether
−D ∈ Σ(D) or not. So we will instead consider this membership problem. We will show
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below that this problem is equivalent to the problem of deciding whether a rational
simplex contains an integral point. We then use this to show that it is generally NP-
hard to decide if a given integral point D is contained in Σ(L). As every point of positive
degree is in Σ(L), we may only consider the points of negative degree.

We first state the following simple lemma.

Lemma 5.2.1. Let D be a point in Zn+1 of negative degree. We have D ∈ Σ(L) if
and only if the simplex 4̄− deg(D)

n+1

(π0(D)) contains no lattice point (a point in L) in its

interior.

Proof. We saw in Section 1.4 that ∂Σc(L) is the lower graph of the function h4,L. It

follows that D ∈ Σ(L) if and only if −deg(D)
n+1

< h4,L(π0(D)). By the definition of h4,L,

this means that D ∈ Σ(L) is equivalent to d4̄(p, π0(D)) = d4(π0(D), p) > −deg(D)
n+1

for

all p ∈ L, which is to say, 4̄− deg(D)
n+1

(π0(D)) contains no lattice point.

Hence, the question of deciding whether D ∈ Σ(L) is biols down to the following
question:

Given a simplex of the form 4̄r(x) with centre at x and radius r ≥ 0, can we decide if
there is a lattice point in the simplex?

A simple calculation shows that the vertices of 4̄−deg(D)
n+1

(π0(D)) are all integral. This

shows that with respect to the lattice L, the simplex 4̄−deg(D)
n+1

(π0(D)) is rational, i.e.,

there exists a large integer N such that N4̄−deg(D)
n+1

(π0(D)) is a polytope with vertices

all in L. (This is because L has full rank and itself integral.)

We now recall that the complexity of deciding if an arbitrary rational n-dimensional
simplex in Rn contains a point of Zn is NP-hard when the dimension n is not fixed,
and it is polynomial time solvable when the dimension is fixed [15]. In our case, we
are fixing the rational simplex, and L is an arbitrary sublattice of An. We now present
a polynomial-time reduction from the problem of deciding if an arbitrary rational n-
dimensional simplex in Rn contains a point of Zn to the problem of deciding if D ∈ Σ(L):

Given the vertices V (S) = {v1, . . . , vn} of a rational simplex S in Rn, we do the following.

1. Compute the centroid c(S) =
P
i vi

n+1
of S and let S ′ = S − c(S).

2. Define the linear map f from Rn to H0 by sending V (S ′) bijectively to V (4̄) =
{e0, . . . , en}. Let 4̄(x) be the image of S, where x = f(c(S)).

3. Let L0 = f(Zn) and N be a large integer such that NL ⊂ An (such N exists since
f and S are rational, and so L is rational). Remark that we have NL∩N4̄(x) 6= ∅
if and only if S ∩Zn 6= ∅. Remark also that N4̄(x) = 4̄N(Nx). Note that N can
be choosen as the determinant of the matrix representing the simplex S and since
the bitlength of the determinant is polynomially bounded in the total bitlength of
the matrix Nf(I) representing a basis of NL where I is the identity matrix and
Nf(I) is in turn polynomially bounded in the size of the input simplex S.
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4. Let D be the integral point in Zn+1 defined by D = Nx−N(n+1)(1, . . . , 1). Then
π0(D) = Nx, deg(D) = −N(n+ 1), and N4̄(x) = 4̄−deg(D)

n+1

(π0(D)).)

For L defined as above, we infer that 4̄−deg(D)
n+1

(π0(D))∩L 6= ∅ if and only S ∩Zd 6= ∅.
So we have

Theorem 5.2.2. For an arbitrary full rank sublattice L of An, the problem of deciding
if r(D) = −1 given a point D ∈ Zn+1 and a basis of L is NP-hard.

As a consequence, we also note that the decision version of the problem of computing
the rank is NP-hard.

Theorem 5.2.3. Given an integer k ≥ −1, a point D ∈ Zn+1 and a basis of L of a
sublattice of An. The problem of deciding if r(D) ≥ k is NP-hard.

It is interesting to note that for the case of Laplacian lattices of graphs on n + 1
vertices, with a given basis formed by the n rows of the Laplacian matrix, the problem
of deciding if an integral point belongs to the Sigma-Region can be done in polynomial
time [45]. So we are naturally led to the following questions:

Question 5.2.4. Given a full rank sublattice L of An, does there exist a special basis B
of L such that if L is given with B, then the membership problem for the Sigma-Region
of L can be solved in polynomial time ?

Question 5.2.5. Given a Laplacian sublattice of An, is it possible to find the special
basis of L in time polynomial in n ? Given a sublattice of An, is it possible to decide if
L is Laplacian in time polynomial in n?
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Chapter 6

Graph Automorphism

We start this chapter with a remark that we made in Chapter 4 that the Laplacian
simplex of a graph, namely the convex hull of the rows of the Laplacian characterizes
the graph completely up to isomorphism. Motivated by this observation, we study a
dimensionality reduction approach towards the graph automorphism problem. Another
result in this chapter is an exponential sum formula for counting automorphisms of a
graph leading to a polynomial time algorithm that counts modulo p for any fixed prime
p the number of automorphisms that violate a multiple of p-edges.

6.1 Dimensionality Reduction

6.1.1 A Simplex Associated with a Graph

Let G = (V,E) be a connected undirected graph containing n+1 vertices. The Laplacian
Q(G) associated with G is the matrix D−A, where A is the adjacency matrix of G and
D is the degree matrix, i.e., the diagonal matrix whose ith entry is the degree of the ith
vertex. Recall that if G is a connected undirected graph on n + 1 vertices, then Q(G)
has rank n over R.

Let 4(G) ⊆ Rn+1 be the convex hull of the n+1 rows of Q(G). We denote the vector
(1, . . . , 1) by 1. We know that 4(G) is contained in the hyperplane orthogonal to the
vector 1. Indeed, 4(G) is also a simplex.

Lemma 6.1.1. If G is an undirected connected graph on n+1 vertices then 4(G) forms
an n-dimensional simplex whose centroid is at the origin.

Using the fact that an isometric transformation f must induce a bijection between
the vertices of the two simplices, we deduce that it must perserve centroids; since the
centroid of every Laplacian simplex is the origin, we infer that the translation part of
the isometric transformation f between two congruent Laplacian simplices is zero, i.e.,
f is just an orthogonal map.

Similarly, for the simplex 4(G), that has its centroid at the origin, the set of all
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orthogonal transformations that map 4(G) to itself forms a group, which we call the
automorphism group of 4(G), and each such transformation is called an automorphism.

Theorem 6.1.2. Let G1 and G2 be undirected connected graphs on n+ 1 vertices. Then
4(G1) is congruent to 4(G2) if and only if G1 and G2 are isomorphic.

Proof. (⇐) If G1 and G2 are isomorphic then there exists a permutation matrix σ of
n + 1 elements such that Q(G2) = σQ(G1)σt = σ(σQ(G1))t. Since σ is an orthogonal
map, we conclude that σ is an isometric transformation that takes the Laplacian simplex
of G1 to the Laplacian simplex of G2. Hence, 4(G1) and 4(G2) are congruent.

(⇒) If 4(G1) and 4(G2) are congruent then there exists a permutation σ such that
the Gram matrices of Q(G1) and Q(G2) satisfy Q(G2)Q(G2)t = σQ(G1)Q(G1)tσt. Since
Q(G1) and Q(G2) are symmetric matrices, we have

Q(G2)2 = (σQ(G1)σt)(σQ(G1)σt).

Now, observe that the LHS is a positive semi-definite symmetric matrix and that the
matrices Q(G2) and σQ(G1)σt are also positive semidefinite. Hence, we can apply the
unique squares lemma ([47, p. 405]) to conclude that Q(G2) = σQ(G1)σt. This shows
that G1 and G2 are isomorphic as desired.

In fact, there is a family of simplices that have this property [72]1. Note that the
adjacency relationships of the graph is encoded in the Gram matrix as the inner-product.
As a direct consequence of the theorem above we have the following:

Corollary 6.1.3. The automorphism group of G is isomorphic to the automorphism
group of 4(G).

Remark 6.1.4. Kaibel and Schwartz [50], and Akutsu [1] have also given geometric
formulations of the graph isomorphism problem. The latter has shown that deciding
congruence of point sets is at least as hard as graph isomorphism, by associating the
following point set with a graph: each vertex is mapped to the one of the standard
orthonormal vectors in Rn, and the edge (v, w) is mapped to the midpoints of the
vectors associated with v and w. For the more structured case of polytopes, Kaibel
and Schwartz show that deciding congruence of polytopes is at least as hard as graph
isomorphism by associating a simple n-polytope with a graph on n+ 1 vertices. Clearly,
the size of the geometric object associated with the graph in both the cases is larger
than the size of 4(G) (especially in the construction of Kaibel and Schwartz, where the
simple n-polytope can have O(n3) vertices in the worst case). Besides, certain geometric
properties of 4(G) have graph theoretic interpretations; as we mentioned before, using
the Matrix-Tree Theorem (Theorem 13.2.1, [41]) we can show that the volume of 4(G)
is essentially (up to to a factor that depends on n) the number of spanning trees of G.

From now on in this chapter, we will focus on the problem of Graph Automorphism
(GA), that is deciding whether a graph has a non-trivial automorphism. Clearly, Corol-
lary 6.1.3 implies that checking GA is equivalent to checking the existence of an automor-
phism for the simplex associated with the graph. A dimensionality reduction approach

1The results here were derived independently of the results in [72].
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vi

vj = Mvi

U = Im(π)

π(vi)

π(vj)

π ◦M

M

Figure 6.1: A projection π preserving an automorphism M .

to perform this check is the following: Project the simplex 4(G) using a low distortion
projection (such as those used in the Johnson-Lindenstrauss Lemma [DG03]) onto a
space of smaller dimension, say Rk; an automorphism of 4(G) is transformed into an
approximate automorphism (that is, each point is mapped to some ε-neighbourhood of
another point) of projected simplex; we can then possibly enumerate all the approximate
automorphisms in Rk and check if any of them yields an automorphism. The obstruc-
tion to this approach is that the number of approximate automorphisms are bounded
by O(nO(k2)) [14], whereas the potential number of automorphisms of 4(G) can be n!.
Thus, a dimensionality reduction based approach has to necessarily drop automorphisms
in the process. This observation, however, motivates the following question: Given an
automorphism M of 4(G), what k-dimensional subspaces U ⊂ 1⊥ of Rn+1 “preserve”
M? More precisely, let π : Rn+1 → Rn+1 be the orthogonal projector operator with
respect to U , and suppose M takes the point vi of the simplex to the point vj (i.e.,
vj = Mvi) then we say that U preserves M if

π(vj) = π(M(π(vi))), (6.1)

as depicted in Figure 6.1. To answer our question, we will need the following notion:
A subspace V is an invariant subspace of a linear map M if for all w ∈ V , Mw ∈ V .
The theory of invariant subspaces is a rich one, and for more details we refer the reader
to [42], [73]. We now briefly recall some standard results from the theory of invariant
subspaces that turn to be useful for us and we include the proofs for the sake of reference.

The notion of U preserving M (see Equation 6.1) can be rewritten stated as

π(M(vi))− π(M(π(vi))) = 0

or equivalently π(M(vi − π(vi))) = 0. Observe that vi − π(vi) ∈ U⊥, and hence if U⊥

is an invariant subspace of M then U preserves M . Conversely, if U preserves M then
we know that for i = 1, . . . , n + 1, M(vi − π(vi)) ∈ U⊥; but clearly, the n + 1 vectors
vi − π(vi) generate U⊥; thus, M fixes a basis for U⊥, and hence U⊥ is an invariant
subspace of M . Hence, we have the following characterization:
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Lemma 6.1.5. A subspace U in Rn+1 preserves M if and only if U⊥ is an invariant
subspace of M .

For the special case of orthogonal transformations, we can replace U⊥ by U in the
result above, because of the following equivalence.

Lemma 6.1.6. For an orthogonal transformation M , U is an invariant subspace of M
if and only if U⊥ is also an invariant subspace of M .

Proof. Let v1, . . . , vk be a basis for the space U . Since M is an orthogonal map and U is
an invariant subspace of M , we know that Mv1, . . . ,Mvk forms a basis for U as well. For
all vectors w ∈ U⊥ we know that 〈w, vi〉 = 0, i = 1, . . . , k. But as M is inner-product
preserving we know that 〈Mw,Mvi〉 = 0 as well, that is, Mw is orthogonal to a basis
of U , and hence Mw ∈ U⊥, which implies that U⊥ is an invariant subspace of M . The
converse follows by replacing U by U⊥.

Another characterization of invariant subspaces of an orthogonal map is as follows.

Lemma 6.1.7. Let π be the orthogonal projection operator for a subspace U . Then U is
an invariant subspace for an orthogonal map M if and only if M and π commute with
each other.

Proof. Note that U is an invariant subspace of M if and only if πMπ = Mπ. Let us first
show that if π and M commute then U is an invariant subspace of M . Since πM = Mπ,
we get πMπ = Mπ2 = Mπ using the idempotent property of π. For the converse,
we know that both U and U⊥ are invariant subspaces of M , since M is orthogonal.
Applying the result mentioned above to π and I − π, we get Mπ = πMπ = πM .

We have thus reduced the question of checking an automorphism of a graph G to
finding invariant subspaces, possibly of low dimension, of an automorphism of 4(G).
This motivates our next section, where we study in more depth the invariant subspaces
of an automorphism of 4(G).

6.1.2 The Invariant Subspaces of an Automorphism of the Sim-
plex

An automorphism M of 4(G) induces a permutation σ on the vertex set of the simplex,
such that if M takes vi to vj then σ maps i to j. The reduced form of this permutation
gives rise to a family of invariant subspaces of M . To define these spaces, we need the
notion of an orbit of an automorphism: An orbit ω of M is a subset {v1, . . . , vk} of the
vertex set of 4(G), such that v2 = Mv1, v3 = Mv2, . . . , vk = Mvk−1 and v1 = Mvk;
thus the vectors in ω are those vectors whose indices come from an orbit in the reduced
form of the permutation σ an equivalent way of writing ω is the set {v,Mv, . . . ,Mk−1v}.
By the order of the orbit we mean the number of vectors contained in it.

For a set of vectors S :={v1, . . . , vk}, let 〈S〉 or 〈v1, . . . , vk〉 denote the linear space
(over the reals) generated by v1, . . . , vk. Then we have the following.
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Lemma 6.1.8. Let M be an automorphism of 4(G).

1. If ω is an orbit of M then the subspace 〈ω〉 is an invariant subspace of M .

2. Let ω1, . . . , ωm be the m orbits of M , and ord(M) the order of the cyclic subgroup
generated by M when considered as an element of the automorphism group of
4(G). Then LCM(|ω1|, . . . , |ωm|) = ord(M).

3. The invariant subspace spanned by an orbit ω of M contains an eigenvector cor-
responding to eigenvalue one. Let xω represent this eigenvector.

4. The invariant subspace spanned by an even order orbit ω of M contains an eigen-
vector corresponding to eigenvalue negative one. Let yω represent this eigenvector.

5. If a number ` divides the order of the orbit ω, then there exists an invariant sub-
space of dimension ` inside 〈ω〉.

6. All the eigenvectors of M corresponding to eigenvalue one are contained in the
space spanned by xωi’s, for i = 1, . . . ,m. Similarly, all the eigenvectors of M
corresponding to eigenvalue −1 are contained in the space spanned by yωi’s, where
ωi’s are the even order orbits of M .

Proof. 1. The first result follows from the definition of the orbit. In the theory of
invariant spaces, such subspaces are called cyclic invariant subspaces [42].

2. If v ∈ ω, then we know that M |ω|v = v. Since the m orbits partition the vertex
set we know that the smallest integer ` such that for all vertices v of the 4(G),
M `v = v is the LCM(|ω1|, . . . , |ωm|). But ` is also equal to ord(M), by definition.

3. The vector xω :=
∑

v∈ω v is mapped to itself by M , and hence is an eigenvector of
M corresponding to eigenvalue one.

4. Let ω = {v,Mv, . . . ,M2k−2v,M2k−1v}. Then the vector yω :=(v −Mv) + (M2v −
M3v) + · · ·+ (M2k−2v −M2k−1v) is mapped to its negation by M .

5. Let v1, . . . , vk be the vertices in ω. Then we can partition the vertices into ` sets
S0, S1, . . . , S`−1, where the vertex vi goes into the set Si (mod `). Then it can be
verified that the set

{
∑
v∈S0

v,
∑
v∈S1

v, . . . ,
∑
v∈S`−1

v}

generates a cyclic invariant subspace.

6. Let v1, . . . , vn+1 be the vertices of 4(G), and v be any vector in 1⊥ such that
Mv = v. Then since vi’s are affinely independent, we know that there is a unique
representation of v in terms of vi’s, namely v =

∑n+1
i=1 αivi, where

∑
i αi = 0;

the second property, in general, should be
∑

i αi = 1, but since the vertices satisfy
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∑
i vi = 0, we can subtract a suitable scaling of this summation to get the property

that
∑

i αi = 0. Let σ be the permutation induced by M . Then we have

Mv =
∑
i

αivσ(i) =
∑
i

ασ−1(i)vi.

Thus, Mv = v implies that ∑
i

(ασ−1(i) − αi)vi = 0.

There are two possibilities: first, for all i, ασ−1(i) − αi = 0, which implies that
the αi’s are all the same for elements in a given orbit; second possibility is that
ασ−1(i)−αi are all equal to some constant, but in this case we again claim that this
constant is zero because

∑
i ασ−1(i) =

∑
i αi = 0. Thus, v is a linear combination

of the m eigenvectors xωi , i = 1, . . . ,m. Note that the vectors xωi are not linearly
independent, since

∑n+1
i=1 vi = 0. A similar argument holds the eigenvectors with

eigenvalue −1 and the space spanned by yωi ’s; these vectors, however, are linearly
independent.

The invariant subspaces spanned by an orbit ω, though interesting, are very “local”
in nature. That is, if we were to project 4(G) orthogonally onto 〈ω〉 and say G was
mostly sparse, then most of the vertices not in ω will be mapped to the origin. As an
alternative, one can use the closure property of invariant spaces under direct sums (see
[42, p. 31]) to construct more “global” spaces; however, the dimension of these spaces
is large; if in the worst case we were to take the direct sum of the invariant subspaces
corresponding to all the orbits then we get an n-dimensional space. With dimensionality
reduction as our aim we want to find some low dimensional invariant subspaces that are
also “global” in nature. One such family of invariant subspaces is the Cross-Invariant
Subspaces: Let ω1, . . . , ωm be the m orbits of an automorphism, vi be an element in ωi,
and a1, . . . , am be m real numbers. A cross-invariant subspace is the space generated by
the vector v :=

∑m
i=1 aivi, i.e., the space 〈v,Mv,M2v, . . .〉. Let us denote this space as

Ha, where a ∈ Rm.

Clearly, cross-invariant subspaces will preserve an automorphism M of the simplex
on projection. However, to recover the permutation corresponding to M from the per-
mutation obtained by map induced by M on a cross-invariant subspace S, we need the
subspace to be non-degenerate: A subspace S ⊆ Rn+1 is said to be non-degenerate for a
simplex 4(G) if the orthogonal projection of the simplex onto S maps all the vertices to
distinct points in S, and no point is mapped to the origin. Given the freedom in choos-
ing ai’s in constructing cross-invariant subspaces, it is conceivable that non-degenerate
cross-invariant subspaces exist; since if S is degenerate then a slight perturbation of S
will restore non-degeneracy. The following theorem gives a more formal proof; the idea
of the proof is similar to the proof technique used to show that certain family of hashing
functions are universal (see [65] for more details).
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Theorem 6.1.9. An automorphism M of 4(G) has non-degenerate cross-invariant sub-
spaces Ha, a ∈ Rm.

Proof. Let ω1, . . . , ωm be the orbits of M . Suppose Ha is the cyclic invariant subspace
generated by the vector w :=

∑m
i=1 aiwi, where wi is some element in ωi and the ai’s

come from [0, . . . , N ], for sufficiently large natural number N . A vertex v ∈ 4(G) is
mapped to the origin when projected into Ha if and only if it is orthogonal to the basis
elements w,Mw,M2w . . .. We know that there is an index i such that v and wi belong
to the same orbit ωi, i.e., there is a k such that Mkwi = v.

Let us choose ai’s uniformly at random from [0, . . . , N ]. Then the probability that v
is orthogonal to each of w,Mw, . . . , is smaller than the probability that v is orthogonal
to Mkw, or equivalently that

ak = −
∑

j 6=k aj〈v, wj〉
‖v‖2

.

Since the ai’s are chosen uniformly at random from [0, . . . , N ], the probability that ak
takes this special value is 1/(N + 1). Thus, the probability that a vertex in the simplex
is projected to the origin in Ha is smaller than 1/(N + 1). We can similarly argue that
the probability that two vertices v, v′ ∈ 4(G) are mapped to the same vertex in Ha

(equivalently, that v − v′ is orthogonal to Ha) is smaller than the probability that

ak = −
∑

j 6=k aj〈v − v′, wj〉
〈v − v′, v〉 ,

where k is such that Mkwi = v; note that the denominator in the RHS is not zero
because G is connected. Clearly, this probability is at most 1/(N + 1).

Thus, the probability that Ha is non-degenerate is bounded by the sum of the prob-
ability that one of the points in 4(G) is mapped to origin, and that a pair of points in
4(G) is mapped to a single point. From the arguments above we know that this sum is
smaller than

n+ 1 +
(
n+1

2

)
N + 1

.

Thus, by making N large enough we can ensure that in the space of cross-invariant
subspaces there is a non-zero probability of picking a non-degenerate cross-invariant
subspace Ha.

From now on, we use cross-invariant subspaces to implicitly imply that they are
non-degenerate.

The results and concepts in this subsection, though developed only for orthogonal
transformations, hold for general linear maps as well, as we did not invoke the orthog-
onality of the map M . In particular, we know that for a general permutation σ on
the vertices of 4(G), there exists a linear map (not necessarily orthogonal) that maps
4(G) to itself. The results in this section also apply to this linear map. In the light
of this similarity, we naturally ask the following question: What properties distinguish

91



the invariant subspaces of an automorphism of 4(G) from the invariant subspaces of a
general linear map that maps 4(G) to itself?

Given a permutation σ, let U−σ be the subspace spanned by the eigenvectors corre-
sponding to eigenvalue −1, and U+

σ the space spanned by the eigenvectors corresponding
to eigenvalue one. We start with characterizing order two permutations first.

Theorem 6.1.10. Let σ be an order two permutation of G. Then σ is an automorphism
of G if and only if U+

σ is orthogonal to U−σ .

Proof. We first show that if σ is an automorphism of G then U+
σ is orthogonal to U−σ .

The result follows if we show that for every element v in U−σ , and for i = 1, . . . , n + 1,
〈v, vi〉 = −〈v, vσ(i)〉. Let Mσ be the linear map associated with σ. Since Mσ is inner-
product preserving, we know that

〈v, vi〉 = 〈Mσv,Mσvi〉 = −〈v, vσ(i)〉.

For the converse, let v1, . . . , vk ∈ ∆(G) be some elements from each of the k orbits of
even order. For all i = 1, . . . , n+ 1, define wji :=〈vj − vσ(j), vi + vσ(i)〉. Since U+

σ and U−σ
are orthogonal, wji = 0, for j = 1, . . . , k. We claim that wji = 0 for all j = 1, . . . , n+ 1;
since wji = −wσ(j)i, it follows that wji = 0 for all j appearing in the orbits of even
order; for orbits of order one, wji is trivially zero, since vj = vσ(j). Thus, wji = 0, for
i, j = 1, . . . , n+ 1. Summing the two equalities wij = 0 and wji = 0 we obtain that

〈vi, vj〉 = 〈vσ(i), vσ(j)〉 = 〈Mσvi,Mσvj〉
for all i, j = 1, . . . , n + 1. This implies that σ is inner-product preserving over a basis,
we infer that Mσ must be an orthogonal map and hence σ is an automorphism of G.

A complete characterization of automorphisms in terms of their invariant subspaces
is given in [9]: A permutation σ is an automorphism of the graph if and only if the
eigenspaces of the adjacency matrix are invariant subspaces of σ. However, the key dif-
ference in their approach and ours is that in their approach eigenspaces are not guaran-
teed to be non-degenerate, whereas we are interested in finding non-degenerate invariant
subspaces of the automorphism. A related question would be: Does projecting onto a
slight perturbation of the eigenspace (to guarantee non-degeneracy) and then using some
approximate congruence test (as in [4]) would suffice?

The Structure of the Invariant Subspaces Inside an Orbit Given a map M
(not necessarily orthogonal) such that Mk = I, we want to study the space spanned by
an orbit ω. As mentioned above, this space is a cyclic invariant subspace. An element
in this space can be represented as the evaluation of a matrix polynomial f(M), where
f(x) ∈ R[x] is such that deg(f) < k, evaluated at some point of the orbit. Clearly,
this space is homomorphic to the ring R[x]/(xk − 1). Moreover, the invariant subspaces
contained inside ω are homomorphic to the rings R[x]/〈g(x)〉, where g(x) ∈ R[x] is a
factor of the polynomial xk − 1. We refer the reader to any standard algebra book to
study the structure of this ring (for example [55]).
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6.1.3 Applications

In this section, we describe two applications of the results obtained. In particular,
we describe an algorithm that takes the Laplacian simplex of a graph and a cross-
invariant subspace of an automorphism M as its input and finds an automorphism
M ′ (not necessarily the same as M) in time O(nO(ord(M)2)). As a corollary we have:
given a cross-invariant subspace of an automorphism M of constant order, the algorithm
constructs an automorphism M ′ in polynomial time.

Given 4(G) and a cross-invariant subspace Ha for some automorphism of 4(G), the
algorithm proceeds as follows:

1. Project the vertices of 4(G) orthogonally onto Ha to obtain a point set P .

2. Use the congruence algorithm in [4] to enumerate every linear map Q that takes
P to itself.

3. For every such linear map Q test if the permutation induced by Q on P is an
automorphism of 4(G), until an automorphism M ′ is found.

4. Output M ′.

The correctness of the algorithm is clear from the fact that the map induced by M on
the subspace Ha induces an automorphism in 4(G). Hence, the congruence algorithm
finds an automorphism of 4(G). The time complexity of the algorithm can be analysed
as follows: The first step of the algorithm requires n + 1 (the number of vertices of
4(G)) matrix-vector multiplications and hence the time taken can be upper bounded
by O(n3). Denote the dimension of Ha by d = O(ord(M)). The second and third steps
of the algorithm together require O(n2d2+2) time, see [4]. Hence, the time complexity of
the algorithm can be upper bounded by O(nO(d2)), or O(nO(ord(M)2)).

Theorem 6.1.11. Given a non-degenerate cross-invariant subspace of an automorphism
M , it takes O(nO(ord(M)2)) time to compute an automorphism of 4(G) (not necessarily
M).

Remark 6.1.12. Using the Sylow theorem [55], we know that for a prime p, there is an
automorphism of order p if and only if p divides the order of the automorphism group.
Thus, if the order of the automorphism group is small then there are automorphisms that
have small order, and hence invariant subspaces of small dimension. Constructing such
invariant subspaces remains an open question. A possible approach for finding invariant
subspaces of an order two automorphism could be based upon Theorem 6.1.10: since we
know that projecting onto eigenvector with eigenvalue −1 preserves the automorphism,
we can choose a random vector in the sphere in n-dimensions and perhaps it is close to
one of the eigenvectors corresponding to some automorphism. This approach would have
worked with high probability if the union of suitable ε-neighborhoods of such eigenvectors
for all automorphisms was of measure at least half, however, this is not true (as the
eigenvectors corresponding to non-automorphisms might be more denser) and so a purely
random approach fails (even in the sense of getting approximate congruence).
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We now discuss a second application of our results. We apply Theorem 6.1.2 to obtain
a set of complete set of invariants that characterize a graph up to isomorphism. Consider
the set of simplices in Rn and let Tn be the equivalence class of congruent simplices in
Rn. We know that Tn is a manifold and also a semi-algebraic set of dimension n(n+1)/2
[64]. We can use embedding theorems of manifolds, for example, Whitney’s Embedding
Theorem to infer that there exists an embedding of Tn into Rn(n+1)+1. Thus, there exists
a sequence of n(n + 1) real invariants that completely characterize a point in Tn and
using Theorem 6.1.2 we have:

Theorem 6.1.13. There exists a sequence of n(n + 1) + 1 invariants that uniquely
characterize a connected undirected graph up to isomorphism.

Remark 6.1.14. We finally note that it is possible to construct “trivial” invariants
that uniquely characterize a graph up to isomorphism in the following way: since there
are a finite number of equivalence classes of graphs on n vertices up to isomorphism,
we assign a unique integer to each equivalence class. By construction these integers
uniquely characterize a graph on n-vertices up to isomorphism. But these invariants do
not vary continuously with respect to the manifold Tn, unlike the variants referred to in
the theorem above.

A similar result was shown in [43], although the method used for constructing the
invariants is different from our method.

6.2 Counting the Number of Automorphisms

In this section, we provide an exponential sum formulation for counting the number of
automorphisms of a graph and show that the “constant order” terms of the exponential
sum formulation can be computed in polynomial time. As an application of our result,
we show that for a fixed prime p, we can count, modulo p, the number of permutations
that violate a multiple of p edges in polynomial time. It is known that slightly more
information such as the number of automorphisms modulo two is GA-hard, see [6].

Given a graph G, we construct a function on the set of permutations with the following
property: the function vanishes for a permutation σ if and only if σ is an automorphism
of G. The desired function is:

f(σ) =
1

2

n+1∑
i=1

n+1∑
j=1

(ai,j − aσ(i),σ(j))
2; (6.2)

where ai,j is an entry in the adjacency matrix of G. It follows that f(σ) has the following
property:

Lemma 6.2.1. If σ is an automorphism of G then the function f(σ) = 0; otherwise
f(σ) counts the number of edges violated by the permutation σ, i.e., the number of edges
that are mapped to non-edges and vice-versa.
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Thus, we can interpret f(σ) as an indicator function over the set of all permutations,
Sn. Suppose f(σ) was equal to some c for all non-automorphisms then the quantity∑

σ∈Sn f(σ)/c will give us the number of non-automorphisms, and the number of auto-
morphisms can also be computed from this information. However, this assumption may
not be true in general. To salvage this approach, we use the following standard property
of exponential sums: For an integer m and a prime p we know that

p−1∑
k=0

exp(2πikm/p) =

{
p if p|m,

0 otherwise.
(6.3)

The proof is clear when p|m; otherwise, we observe that exp(2πikm/p) are just the p
roots of unity, and we know that their sum is zero. Using this property we have the
following desired result.

Theorem 6.2.2. For a sufficiently large prime p, the number of automorphisms NA, is
equal to

1

p

∑
σ∈Sn

p−1∑
k=0

exp(2πikf(σ)/p). (6.4)

We can choose p to be larger than max f(σ) over all σ ∈ Sn.

In number theory, the exponential sums studied are typically of the form

S :=
∑
x∈Fp

exp(2πif(x)/p),

where f is a polynomial of degree d and with coefficients in Fp. The Weil character
sum estimate states that under some mild technical conditions on the polynomial f , the
summation S is upper bounded by d

√
p; note that a trivial upper bound for S is p. This

result has applications in several other contexts, for example in derandomisation. See [8]
for an introduction to exponential sums with some applications to computation. Though
it seems like these exponential sums have the same flavour as the ones we consider, we
are unaware of a more concrete connection between these two variants.

6.2.1 Computing the Exponential Sum

Let us assume that we can compute exp(·) exactly. Then the straightforward approach
to compute the sum in Equation (6.12) is to do the two summations. We will start
by showing that the summation to p is polynomially bounded in n, or equivalently p
is polynomially bounded. By Theorem 6.2.5, we require a prime p that satisfies the
property that p|f(σ) if and only if f(σ) = 0. This can be ensured if we choose p to be
the smallest prime number greater than maxσ∈Sn f(σ). By Lemma 6.2.4, we know that

maxσ∈Sn f(σ) can be upper bounded by n(n−1)
2

. Moreover, by Bertrand’s postulate [2],
we know that there must be a prime between max f(σ) + 1 and 2 max f(σ). Hence, our
choice of p is at most n(n− 1).
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Now, let us look at the summation over Sn in Equation (6.12). If it is done naively
then it will clearly take exponential time, as |Sn| = n!. In what follows, we will show
that by interchanging the summations and expanding the exponential sum using the
Taylor expansion we can compute lower order approximations to NA efficiently. More
precisely, using this approach we can rewrite NA as

NA =
1

p

p−1∑
k=0

∑
σ∈Sn

∞∑
`=0

1

`!

(
2πikf(σ)

p

)`

=
1

p

∞∑
`=0

1

`!

p−1∑
k=0

∑
σ∈Sn

(
2πikf(σ)

p

)`
.

Since we only need to consider the real part on the RHS, i.e., only the even values of `,
we obtain

NA =
1

p

∞∑
`=0

(−1)`

(2`)!

p−1∑
k=0

∑
σ∈Sn

(
2πkf(σ)

p

)2`

=
1

p

∞∑
`=0

(−4π2)`

p2`(2`)!

p−1∑
k=0

k2`
∑
σ∈Sn

f(σ)2`.

We now ask the following question: Till what value, L, of `, do we need to expand
the summation in ` to get a one-bit absolute approximation to NA? We will show that
O(p2 +n log n) terms suffice. If L is such that the absolute value of the summation from
L onwards is smaller than half then we are done, or if

∞∑
`=L

(4π2)`

p2`(2`)!

p−1∑
k=0

k2`
∑
σ∈Sn

f(σ)2` <
1

2
.

Since p > f(σ) for all σ ∈ Sn, the above inequality will hold if

∞∑
`=L

(4π2)`

(2`)!

p−1∑
k=0

k2`|Sn| < 1

2
.

Moreover,
∑p−1

k=0 k
2` ≤ p2`+1. Thus, the above inequality follows if

∞∑
`=L

(4π2)`

(2`)!
p2`+1|Sn| < 1

2
. (6.5)

Let us choose L large enough such that for all ` ≥ L

(4π2)`

(2`)!
p2`+1|Sn| ≤ 2−`,
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because then we could use the geometric sum to obtain the Inequality ((6.5)). Using the
fact that 2`! > ``, this follows if

L > max(4π2p2, log(p|Sn|)), (6.6)

or L = O(p2 + n log n), since |Sn| = n!. Moreover, p ≤ n(n− 1), thus L is polynomially
bounded in n. This bound misleadingly suggests that it is possible to compute NA in
polynomial time. However, as we show next, this is not true in general. The hard part
in computing NA is in computing the summations

Σ` :=
∑
σ∈Sn

f(σ)`, (6.7)

for ` even. In the rest of this section we give a method to compute Σ` in time O(n`).

Let us recall the definition of f(σ) from Equation (6.10)

f(σ) =
1

2

n+1∑
i=1

n+1∑
j=1

(ai,j − aσ(i),σ(j))
2

Let
wi,jσ :=(ai,j − aσ(i),σ(j))

2. (6.8)

Then

Σ` =
∑
σ∈Sn

(
n+1∑
i=1

n+1∑
j=1

wi,jσ

)`

=
∑
σ∈Sn

(
n+1∑
i,j

wi,jσ

)`

.

Let Wσ be the (n+ 1)2 dimensional vector of all wi,jσ ’s. Using the multinomial theorem
we obtain

Σ` =
∑
σ∈Sn

∑
I∈N(n+1)2 :|I|=`

(
`

I

)
W I
σ ,

where
(
`
I

)
:= `!/(I1,1!I1,2! · · · In+1,n+1!), and |I| is the sum of all the entries in I. Since

the inner-summation does not depend on σ, we can interchange the two summations to
get

Σ` =
∑

I∈N(n+1)2 :|I|=`

(
`

I

)∑
σ∈Sn

W I
σ . (6.9)

For a given multi-index I, let SIn be the subset of those permutations σ, σ′ in Sn such
that W I

σ = W I
σ′ . The following lemma gives us a more precise detailed characterization

of SIn. For a multi-index I and a permutation σ, let us denote σ(I) as the `-dimensional
vector I ′ that is obtained as follows: for each variable W σ

ij appearing in the monomial
W I
σ we have (σ(i), σ(j)) as an entry in I ′; since there are ` entries in I, the dimension

of I ′ is 2`.

Lemma 6.2.3. For a given multi-index I, and σ, σ′ in Sn, if σ(I) = σ′(I) then W I
σ =

W I
σ′.
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Proof. The condition W I
σ = W I

σ′ holds if for all entries in I we have W σ
ij = W σ′

ij . This

would instead follow if wσji = wσ
′
ji . These two equalities follow if σ(i) = σ′(i), σ(j) = σ′(j).

Thus for each of the ` non-zero entries in I, we have two corresponding values of i, j
such that if σ and σ′ are the same on these 2` parameters then W I

σ = W I
σ′ .

We want to further simplify the term
∑

σ∈SnW
I
σ . More precisely, we want to know,

given a multi-index I, how many permutations σ can there be such that the monomialW I
σ

attains the same value? Note that given I = [Ii,j], i, j = 1, . . . , n+ 1, two permutations
σ and σ′ have the same weight W I

σ , if and only if for all non-zero entries Ii,j in I,
σ(i) = σ′(i) and σ(j) = σ′(j). Equivalently, if N (I) is the set of distinct indices i, j
appearing in the non-zero entries Ii,j in I then both σ and σ′ map N (I) to the same
vector; note that the size of N (I) is at most 2` as there can be at most ` non-zero entries
Ii,j and each can contribute two distinct values i, j to N (I). Let J ∈ {1, . . . , n + 1}2`

and NI,J be the number of permutations that maps N (I) to J then we can rewrite∑
σ∈Sn

W I
σ =

∑
J∈{1,...,n+1}2`

NI,J W I
N (I)→J ,

where W I
N (I)→J is a generic way of writing W I

σ , for any permutation σ that maps N (I)
to J .

Using this notation we can rewrite

Σ` =
∑

I∈NN :|I|=`

∑
J∈{1,...,n+1}2`

NI,J W I
N (I)→J .

Clearly, the number of terms in the second summation is (n+1)2`. The number of terms
in the first summation is (n+ 1)2`, because of the number of ways of choosing ` entries
from a vector of dimension (n+ 1)2. The crucial property of this reformulation of Σ` is
that the number of terms appearing in it is (n+1)4`, whereas the formulation in Equation
(6.9) has Ω(nn) terms. Thus, for fixed values of `, we can compute Σ` efficiently, given
NI,J can be computed efficiently. Given a graph G, we construct a function on the set
of permutations with the following property: the function vanishes for a permutation σ
if and only if σ is an automorphism of G. The desired function is:

f(σ) =
1

2

n+1∑
i=1

n+1∑
j=1

(ai,j − aσ(i),σ(j))
2; (6.10)

where ai,j is an entry in the adjacency matrix of G. It follows that f(σ) has the following
property:

Lemma 6.2.4. If σ is an automorphism of G then the function f(σ) = 0; otherwise
f(σ) counts the number of edges violated by the permutation σ, i.e., the number of edges
that are mapped to non-edges and vice-versa.

Thus, we can interpret f(σ) as an indicator function over the set of all permutations,
Sn. Suppose f(σ) was equal to some c for all non-automorphisms then the quantity
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∑
σ∈Sn f(σ)/c will give us the number of non-automorphisms, and the number of au-

tomorphisms can also be computed from this information. However, this assumption
may not be true in general. To salvage this approach, we use the following property of
exponential sums: For an integer m and a prime p we know that

p−1∑
k=0

exp(2πikm/p) =

{
p if p|m,

0 otherwise.
(6.11)

The proof is clear when p|m; otherwise, we observe that exp(2πikm/p) are just the p
roots of unity, and we know that their sum is zero. Using this property we have the
following desired result.

Theorem 6.2.5. For a sufficiently large prime p, the number of automorphisms NA, is
equal to

1

p

∑
σ∈Sn

p−1∑
k=0

exp(2πikf(σ)/p). (6.12)

We can choose p to be larger than max f(σ) over all σ ∈ Sn.

Computing NI,J and W I
N (I)→J : We first remark that the computation of NI,J is inde-

pendent of the graph and depends only on n and `, and hence they can be precomputed
based upon these parameters. More precisely, suppose we are given an I ∈ N(n+1)2

and
J ⊆ {1, . . . , n + 1}2` and we want to count the number of permutations σ in Sn that
map N (I) to J . This latter equality imposes at most 2` equalities on how σ behaves.

If there is a pair of equalities that is inconsistent, i.e., two equal elements map into
different elements or two unequal elements map into the same element then set NI,I′ to
zero. If an element i maps to j and j does not map to i, we have an inconsistency and
we set NI,I′ to zero. Assume that the map I to I ′ is consistent then, the number of
σ’s that satisfy these equalities is precisely (n+ 1−Nd(I))!, where Nd(I) is the number
of distinct elements in I. We finally note that (n + 1 − Nd(I))! can be computed in
polynomial time.

If there is a pair of equalities that is inconsistent, i.e., violate the rules of a permutation
then set NI,J to zero. In general, checking whether the map from N (I) to J comes from
a permutation can be done in time polynomial in `. Once this has been determined, it is
straightforward to see that the number of permutations NI,J that satisfy the constraints
imposed by N (I) and J is (n+1−|N (I)|)!, which can be computed in polynomial time.
Also, computing W I

N (I)→J , a calculation that depends on the adjacency matrix of the

graph, takes at most O(`) steps. Thus, we have the following key result of this section.

Theorem 6.2.6. Given ` ∈ N, the term
∑

σ∈Sn f(σ)`, where the function f is defined in

Equation (6.10) for a graph G, can be computed in time O(nO(`))poly(`). In particular,
for a constant `, the time is polynomial in n.

Based upon the theorem above, we can compute some interesting quantities.

99



Theorem 6.2.7. Given a prime p, we can compute, modulo p, the number of permuta-
tions that violate a multiple of p edges in time O(nO(p))poly(p). Hence, for a fixed prime
p the computation takes time polynomial in the size of the input.

Proof. By the construction of f(σ) (see Equation ((6.10))), we know that f(σ) counts
the number of edges that the permutation σ violates. We compute the quantity Σp−1,
which can be done in time O(nO(p))poly(p). From Fermat’s little theorem we know that
Σp−1 (mod p) counts the number of permutations σ such that f(σ) is relatively prime
to p. Hence, |Sn| − Σp−1 (mod p) counts the number of permutations that violate a
multiple of p edges.

We note that a similar approach can be used to count the number, modulo p, of
fixed-point free permutations that violate a multiple of p edges in polynomial time. The
above computation seems to be on the border of what we can compute in polynomial
time since we know that it is GA-hard to compute the number of automorphisms of a
graph modulo two (see [6]), and it is ⊕P-hard to compute the number of fixed-point free
automorphisms of order 2 of a graph modulo two, see [59, p. 16].

We conclude this section, by a brief discussion on computing the number of automor-
phisms modulo a special prime dependent on the graph.

Definition 6.2.8. A prime number p is a good prime if for all non-automorphisms σ,
p does not divide the number of edges violated by σ, i.e., p does not divide f(σ).

Using the ideas in the preceding theorem, we obtain the following:

Lemma 6.2.9. For a good prime p, Σp−1 is congruent modulo p to the number of non-
automorphisms.

We note that there exists good primes that are at most 2 maxσ∈Sn f(σ). Hence, there
exist good primes that are polynomially bounded in n. But are there good primes upper
bounded by a constant? It is unlikely that such small good primes exist since using the
above approach we can also compute the number of fixed-point-free automorphisms of
order two modulo a small prime p, but this problem is known to be #kP-complete for
all k ≥ 2 [59, Cor. 2,p. 17].
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Chapter 7

Future Directions

We conclude by briefly discussing possible extensions of our work.

1. Generalisation to higher dimensions: The critical group of a graph is defined
as the quotient group An/LG where LG is the Laplacian lattice of a graph. Re-
cently [34], the notion of critical group has been generalised to higher-dimensions,
i.e., to simplicial complexes, and higher-dimensional analogues of the Matrix-Tree
theorem have been established. This progress raises the hope of generalising the
Riemann-Roch theorem to simplicial complexes i.e., developing a discrete analogue
of the Hirzebruch-Riemann-Roch theorem.

2. Brill-Noether Theory for sublattices of An: Let us now set-up a Brill-Noether
theorem-type statement for sublattices of An. For integers r, d and g define,
ρ(g, r, d) = g − (r + 1)(g − d+ r). Is it true that if ρ(g, r, d) ≥ 0, then for any full
dimensional sublattice Λ of An with max-genus gmax = g, there exists an integral
point of degree at most d and rank equal to r? Note that this part of Brill-
Noether theorem for tropical curves is a direct corollary of Baker’s Specialization
Lemma, and the statement is true for Laplacian lattices of graphs as well [23]. We
note that these proofs are not combinatorial, and use the classical Brill-Noether
theorem; thus, they cannot be extended to more general lattices. (By using a
particular type of tropical curves, a new proof of the non-existence result in the
classical Brill-Noether theorem for algebraic curves (i.e., in the case ρ(g, r, d) < 0)
was obtained in [29].)

We believe that the geometric interpretation of rank obtained in Theorem 5.1.13
can be useful in answering this question for more general lattices.

3. Extensions to Arithmetical graphs: Recently, Lorenzini [58] considers Riemann-
Roch structures on sub-lattices of rank n in Zn+1 which are perpendicular to a given
vector R = (r0, . . . , rn) of Zn+1 with positive entries and with gcd{ri}ni=1 = 1.

He associates a genus g(Λ) to any such lattice Λ, and considers the notions of
canonical vector and Riemann-Roch structure for any such lattice.
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As it is shown in [58, Section 5], there is a procedure that associates to any such lat-
tice Λ, a sub-lattice Λ0 of An, and the existence of canonical vectors and Riemann-
Roch structure can be reduced to the corresponding questions about Λ0.

For a sub-lattice Λ0 of An, Lorenzini’s g-number g(Λ0) coincides with our max-
genus. In other words, it fairly easily follows that g(Λ0) = gmax(Λ0). Lorenzini’s
definition of canonical vector is a relaxed version of our definition. Indeed, he
only considers points of degree g − 1 (=gmax − 1) and call a point K of degree
2g − 2 canonical if for any point D of degree g − 1, either both D and K −D are
equivalent to an effective point or neither is equivalent to an effective point. It is
again fairly easy to show that in the case gmin = gmax, this definition coincides
with our definition (but in general, the two definitions are different).

A nice class of examples of lattices Λ as above are given by arithmetical graphs.
An arithmetical graph A = (G,M,R) is an undirected connected graph G on
n + 1 vertices with the following additional data: M is an (n + 1) × (n + 1)
equal to D−A for a diagonal matrix D with strictly positive entries and A is the
vertex-vertex adjacency matrix of the graph, R ∈ Nn+1 is as before, so has strictly
positive entries and gcd{ri} = 1. In addition, R lies in the (right) kernel of M ,
i.e., M · R = 0. An undirected graph is “naturally” an arithmetical graph with
M being the Laplacian matrix of G and R being the vector (1, . . . , 1). Consider
now the lattice LA generated by the rows of the matrix M and let LA,0 be the
corresponding sub-lattice of An. It is easy to show that LA,0 is the ”Laplacian”
lattice of a directed graph. In other words, there exists a directed multi-graph
with “directed” adjacency matrix A0 such that LA,0 is generated by the rows of
the corresponding Laplacian matrix D0 − A0, where D0 is the diagonal matrix
whose diagonal entries are given by the out-degrees of vertices. This leaves us
with the following interesting question: is there a combinatorial interpretation of
the extremal points of LA,0 and more generally, is there a way to obtain a complete
characterization of the extremal points of a sub-lattice of An defined by Laplacian
of directed graphs? We note that, we gave a partial answer in this direction for
Laplacian lattices of regular directed graphs, i.e., in the case where the out-degree
of each vertex is equal to its in-indegree. Some partial results in this direction are
obtained by Asadi and Backman [7].

4. Zeta Function of graphs: For an integer lattice Λ, as above, equipped with a
Riemann-Roch structure, Lorenzini [58] also defines a zeta function and shows that
it satisfies a functional equation similar to the zeta function on an algebraic curve.
His construction gives rise to some natural questions about the correspondence
between a lattice and its zeta function. For example, in an analogy with the
case of projective curves, what can be said about two graphs which have the
same zeta function? Examples of graphs with the same zeta-function but with
different Jacobians are given in [58]. Understanding the relation between the Tutte
polynomial of a graph and its zeta-function in further details is another interesting
question.

It is worth mentioning that there are other natural definitions of zeta functions for
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graphs and it is not clear at all how these different notions are related.

5. Connections with other Riemann-Roch theorems and generalisations to
convex polytopes: Another intriguing general direction is to establish concrete
connections between the Riemann-Roch theorems in other areas of mathematics.
In particular, the Riemann-Roch theorem in toric geometry concerning counting
lattice points in polytopes and Ehrhart polynomials has a similar flavour to The-
orem 1. We believe that the key to making progress in this direction would be to
obtain a better understanding of the function rC(., .), perhaps an interpretation in
terms of counting lattice points in a polytope will be useful.

6. Generalisation to polyhedral distance functions: This direction is initiated
by the observation that the information needed to describe our work is an n-
dimensional lattice Λ and a regular simplex of dimension n that contains the origin
in its interior. We now describe a reformulation of the Riemann-Roch theorem.
Let Λ be a n-dimensional lattice and C(O, 1) be a convex polytope of dimension
n containing the origin, denoted by O. For a point P in the span of Λ and
a positive integer r, we denote by C(P, r) the polytope r · C(O, 1) + P i.e., the
copy of C(O, 1) scaled by a factor of r and with the origin translated to P . Let
C̄(P, r) = −r · C(O, 1) + P and hence, if C is symmetric about the origin, then
C̄(P, r) = C(P, r).

For a general convex polytope C, the distance function defined by C is dC(P1, P2) =
inf{t| P1 ∈ C(P2, t)}. Consider the function hC,Λ(P ) = minQ∈Λ{dC(P,Q)} and let
CritC(Λ) be the set of local maxima of the distance function hC,Λ(.). For a point
c ∈ CritC(Λ), the depth of c is the distance between c and a lattice point closest to
c in the distance function dC̄. For a real number d > 0 and a point P in the span
of Λ, we define:

rC(d, P ) = inf{s| (C(P, d)⊕Mink C̄(P, s)) ∩ CritC(Λ) 6= ∅}. (7.1)

Recall that the operation ⊕Mink is the Minkowski sum. The integer d essentially
plays the role of degree of a configuration. By Theorem 5.1.13, we know that the
definition of r(k,D) reduces to the definition of rank if we choose C to be the
regular simplex 4 and that Theorem 1 can be reformulated in terms of rC(k,D)
as follows:

Theorem 7.0.10. For a lattice Λ with rank n, if there is a point T in the span
of Λ such that Crit4(Λ) = −Crit4(Λ) + T and the points of Crit4(Λ) all have the
same depth gΛ then, for every point P ∈ Rn and for every positive integer k:

rC(k, P )− rC(2gΛ − k, T − P ) = k − gΛ. (7.2)

7. Characterizing graphs with well distributed invariant subspaces: Char-
acterize graphs for which a randomly sampled subspace is an invariant subspace
of an automorphism with high probability. In other words, characterize graphs for
which the invariant subspaces of automorphisms are “well-distributed”.
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Appendix

In the first section of the appendix, we discuss a reformulation of Theorem 1.2.6 as
a duality theorem for arrangement of simplices and in the second section we briefly
describe facts that we exploited in Chapter 3 about the limiting behaviour of sequences
of lattices.

A Duality Theorem for Arrangements of Simplices

Let L be a sublattice of An of rank n. For a real number t ≥ 0, define the arrangement
At as the union of all the simplices 4t(c) for c ∈ Crit(L), i.e.,

At :=
⋃

c∈Crit(LG)

4t(c).

A second arrangement Bt is defined as the union of all the simplices 4̄t(p) for p ∈ L,
i.e.,

Bt :=
⋃
p∈LG

4̄t(p).

(Recall that 4̄ = −4.)

Definition 7.0.11. The covering radius of a lattice L denoted by Cov(L) is the smallest
real k such that Bk = H0.

Let G be an undirected graph on n+ 1 and with m edges (thus, g = m− n). Let LG
be the Laplacian lattice of G. (Recall that in this case, the covering radius of Cov(LG)
is the density of the graph.)

The two arrangements A and B are dual in the following sense.

Theorem 7.0.12. (Duality between A and B) For any 0 ≤ t ≤ Cov(LG), the
arrangement Bt is the closure of the complement of the arrangement ACov(LG)−t in H0,
i.e.,

Bt =
(
H0 \ ACov(LG)−t

)c
.

In particular, for any 0 ≤ t ≤ Cov(LG), ∂Bt = ∂ACov(LG)−t.
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Proof. Let x ∈ Bt ∩ ACov(LG)−t. By the definition of the two arrangements B and A,
there exists a point p ∈ LG and a point c ∈ Crit(LG) such that x ∈ 4̄t(p)∩4Cov(LG)−t(c).
By the triangle inequality for d4 and the results of Section 2.1, it follows that d4(c, p) =
Cov(LG), d4(x, p) = t, and d4(c, x) = Cov(LG)−t. Thus, we have x ∈ ∂Bt∩∂ACov(LG)−t.

It follows that Bt and ACov(LG)−t have disjoint interiors, and so Bt ⊆
(
H0 \ACov(LG)−t

)c
.

The other inclusion H0 \ ACov(LG)−t ⊂ Bt follows from the structural theorem of the
Sigma-Region, Theorem 1.2.6 (and Theorem 1.2.7). Namely, we claim that for every
point x ∈ H0, there exists a point p ∈ LG and a point c ∈ Crit(LG), such that d4(c, x)+
d4(x, p) = d4(c, p) = Cov(LG), and this clearly implies the inclusion H0 \ ACov(LG)−t ⊂
Bt. Let p be a point of LG such that h4(x) = d4(x, p). By Proposition 1.4.12, the
point x− h4(x)(1, . . . , 1) lies on the boundary of Σc. By Theorem 1.2.7, there exists an
extremal point ν of Extc(LG) such that ν ≤ x − h4(x)(1, . . . , 1). Let c be the critical
point π0(ν) ∈ Crit(LG). Note that h4(c) = Cov(LG). By Proposition 1.4.12, we have
ν = c− Cov(LG)(1, . . . , 1). Thus, we have c− h4(c)(1, . . . , 1) ≤ x− h4(x)(1, . . . , 1), or
equivalently c − (Cov(LG) − h4(x))(1, . . . , 1) ≤ x. By the explicit definition of d4, we
have d4(c, x) ≤ Cov(LG)− h4(x) = Cov(LG)− d4(x, p). Since d(c, p) ≥ Cov(LG), this
shows that d4(c, x) = Cov(LG)− d4(x, p) and the claim follows.

Sequences of Lattices and their Limit

A sequence of lattices {Ln} is said to converge to a lattice L` if for every δ > 0 and
q ∈ L` there exists a positive integer N(δ, q) and a family of bijective maps φN : L` → LN
for N ≥ N(δ, q) such that ||q − φN(q)||2 < δ for all N ≥ N(δ, q). Similarly, a sequence
of lattices {Ln} is said to uniformly converge to a limit L` if for every δ > 0 there
exists an integer N(δ) and a family of bijective maps φN : L` → LN for N ≥ N(δ) such
that ||q − φN(q)||2 < δ for all q ∈ L` and for all N ≥ N(δ). Note that since convex
polytopes are topologically equivalent to Euclidean balls, the notion of convergence of
a sequence of lattices with respect to polyhedral distance functions is equivalent to the
above notion.

Typically, we take a basis B of the lattice and add an infinitesimal perturbation Bε
to it and consider the lattice generated by the perturbed lattice. As ε tends to zero,
the sequence of lattices converges to the lattice generated by B, but not necessarily
uniformly. Observe that there is a natural bijection φε from L` to Lε induced by the
basis B defined as φε(Bα) = Bεα. In the following lemma we prove that the shortest
vector and packing radius are preserved under the limit, see the book of Gruber and
Lekkerkerker [44] for a more detailed treatment of lattices under perturbation.

Lemma 7.0.13. Consider a sequence of lattices {Ln} that converge to a lattice L`. For
any convex polytope P, the length of the shortest vector and packing radius under the
distance function dP is preserved under limit. More precisely we have:

1. limn→∞ νP(Ln) = νP(L`)

2. limn→∞ PacP(Ln) = PacP(L`).
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Proof. i. Given an ε > 0, we show that there exists a positive integer n(ε) such that
|νP(L`) − νP(Ln)| ≤ ε for all n ≥ n(ε). Consider the set of shortest vectors M1 of the
lattice L`. Let d be the the difference between the norm of the shortest vector and second
shortest vector in the distance function dP . Let δ be the minimum of d/2 and ε/2. Take
a ball of radius R much larger than νP(L`) centered at the origin, in fact taking R to
be 2νP(L`) + d suffices. Using our assumption that {Ln} converges to L` and the fact
that number of points in L` that are contained inside the ball of radius R centered at
the origin is finite, we know that there exists a positive integer n(δ) and a bijection
φn : L` → Ln such that for n ≥ n(δ) we have dP(q, φn(q)) < δ for points q in L` that are
contained in the ball of radius R. For a point p, we call dQ(O, p) the norm of the point.
Now we claim that for all n ≥ n(δ) any shortest vector of Ln belongs to P(q′, δ) where
q′ ∈ M1. The argument is as follows: any element in Ln for n ≥ n(δ) that does not
belong to P(q′, δ) for q′ ∈ M1 must have norm strictly greater than νP(L`) + d/2. On
the other hand, we know that there exists an element of Ln that is contained in P(q′, δ)
for some q′ ∈M1 and hence has norm at most νP(L`) + δ. Since δ ≤ d/2, we arrive at a
contradiction. We finally note that every point contained in the ball P(q′, δ) for q′ ∈M1

has norm between νP(L`) + δ and νP(L`)− δ. Hence, |νP(Ln)− νP(L`| ≤ 2δ ≤ ε for all
n ≥ n(δ).

ii. For the packing radius, the argument is essentially the same as the argument for
shortest vectors except that in this case we carry out the argument on the P-midpoints
of the lattice points with the origin rather than on the lattice points. We consider the
P-midpoints of every point of L` with the origin. Let M1 be the set of P-midpoints of
every point in L` that define its packing radius. Let d be the difference between the
packing radius and the norm of P-midpoints that are closer to the origin expect to the
P-midpoints that define the packing radius. Take δ to be the minimum of d/2 and ε/2.
Take a ball of radius R much larger than PacP(L`) centered at the origin. Since {Ln}
converges to L` and since the P-midpoints vary continuously with perturbation, we know
that there exists a integer n(δ) and a bijection φn : L` → Ln such that dP(b, φN(b)) < δ
for P-midpoints in the ball of radius R. Now we claim that for n ≥ n(δ) the P-midpoint
that defines the packing radius of Ln must be contained in P(b, δ) for some b ∈ M1.
This follows from the fact that for n ≥ n(δ) any element in Ln that does not belong to
P(b′, δ) where b′ ∈ M1 must have norm strictly greater than PacP(L`) + d/2. On the
other hand, we know that the bisectors of elements of Ln that are contained in P(q′, δ)
have norm at most PacP(L`)+δ. Since δ ≤ d/2, we arrive at a contradiction. We finally
note that every element of P(q′, δ) for q′ ∈ M1 contained in the ball has norm between
PacP(L`)+δ and PacP(L`)−δ. Hence, |PacP(Ln)−PacP(L`)| ≤ 2δ ≤ ε for all n ≥ n(δ).
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Chapter 8

Counting Cycles in the
Datastreaming Model

In this chapter, we develop an algebraic approach towards counting cycles of a fixed
length in the data streaming model. The algorithm is based constructing complex-
valued hash functions have posses certain desired cancellation properties.

Notation: Let G = (V,E) be an undirected graph without self-loops and multiple
edges. The set of vertices and edges are represented by V [G] and E[G] respectively. We
will assume that V [G] = {1, · · · , n} and n is known in advance.

Given two directed graphs H1 and H2, we say that H1 and H2 are homomorphic if
there is a mapping i : V [H1]→ V [H2] such that (u, v) ∈ E[H1] if and only if (i(u), i(v)) ∈
E[H2]. Furthermore, H1 and H2 are said to be isomorphic if the mapping i is a bijection.

For any graph H, we call a not necessarily induced subgraph H1 of G an occurrence
of H, if H1 is isomorphic to H. We use #(H,G) to denote the number of occurrences
of H in G. When G is the input graph, for simplicity we use #H to express #(H,G).
Moreover, let C` be a cycle on ` edges.

8.1 A Review of Jowhari and Ghodsi’s Algorithm

Our approach is best seen as a generalisation of the approach of Jowari and Ghodsi ([49])
to counting triangles in the data streaming model. Hence we start with a brief account
of Jowhari and Ghodsi’s algorithm in order to prepare the reader for our extension of
their approach. Jowhari and Ghodsi estimate the number of triangles in a graph G. Let
X be a {−1,+1}-valued random variable with expectation zero. They associate with
every vertex w of G an instance X(w) of X; the X(w)’s are 6-wise independent. They
compute Z =

∑
{u,v}∈E[G] X(u)X(v) and output Z3/6 as the estimator for #C3.

Lemma 8.1.1 ([49]). E[Z3] = 6 ·#C3.

Proof. For any triple T ∈ E3[G] of edges and any vertex w of G, let degT (w) be the
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number of edges in T incident to w, then degT (w) is an integer no larger than 3. Also

E[Z3] = E

 ∑
{u,v}∈E[G]

X(u)X(v)

3
= E

 ∑
T=({u1,v1},{u2,v2},{u3,v3})∈E3

X(u1)X(v1)X(u2)X(v2)X(u3)X(v3)


Let VT be the set of vertices that are incident to the edges in T . Then

E[Z3] = E

[∑
T∈E3

∏
w∈VT

X(w)degT (w)

]

By the 6-wise independence of the X(w), w ∈ V , we have

E[Z3] =
∑
T∈E3

∏
w∈VT

E
[
X(w)degT (w)

]
=
∑
T∈E3

∏
w∈VT

E
[
XdegT (w)

]
Since E

[
XdegT (w)

]
= 1 if degT (w) is even and E

[
XdegT (w)

]
= 0 if degT (w) is odd, we

know that
∏

w∈VT E
[
XdegT (w)

]
= 1 if and only if the edges in T form a triangle. Since

each triangle is counted six times, we have E[Z3] = 6 ·#C3.

The crucial ingredients of the proof are (1) 6-wise independence guarantees that the
expectation-operator can be pulled inside, and (2) random variable X is defined such
that only vertices with even degree in T have nonzero expectation.

8.2 Algorithm Framework

We now generalize the algorithm in Section 8.1 and present an algorithm framework for
counting general d-regular graphs. Suppose that H is a d-regular graph with k edges and
we want to count the number of occurrences of H in G. The vertices of H are denoted by
a, b and c etc, and the vertices of G are denoted by u, v and w, etc., respectively. We will
equip the edges of H with an arbitrary orientation, as this is necessary for the further

analysis. Therefore, each edge in H together with its orientation can be expressed as
−→
ab

for some a, b ∈ V [H]. For simplicity and with slight abuse of notation we will use H to
express such an oriented graph.

For each oriented edge
−→
ab in H our algorithm maintains a complex-valued variable

Z−→
ab

(G), which is initialized to zero. The variables are defined in terms of random vari-
ables Y (w) and Xc(w), where c is a node of H and w is a node of G. The random
variables Y (w) are instances of a random variable Y and the random variables Xc(w)
are instances of a random variable X. The range of both random variables is a finite
subset of complex numbers. We will realize the random variables by hash functions from
V [G] to C; this explains why we indicate the dependence on w by functional brackets.
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We assume that the variables Xc(w) and Y (w) have sufficient independence as detailed
below.

Our algorithm performs two basic steps: First, when an edge e = {u, v} ∈ E[G]
arrives, we update each variable Z−→

ab
according to

Z−→
ab

(G)← Z−→
ab

(G) +
(
Xa(u) ·Xb(v) +Xb(u) ·Xa(v)

) · Y (u) · Y (v). (8.1)

Second, when the number of occurrences of a graph H is required, the algorithm returns
the real part of Z/(α · aut(H)), where Z is defined via

Z := ZH(G) =
∏

−→
ab∈E[H]

Z−→
ab

(G), (8.2)

α and aut(H) are constant numbers for any given H and will be determined later.

Remark 8.2.1. For simplicity, the algorithm above is only for the edge-insertion case.
An edge deletion amounts to replacing ‘+’ by ‘−’ in (8.1).

Remark 8.2.2. The first step may be carried out in a distributed fashion, i. e., we have
several processors each processing a subset of edges. In the second step the counts of
the different processors are combined.

Theorem 8.2.3. Let H be a d-regular graph with k edges. Let us assume that the
random variables defined above satisfy the following two properties:

1. The random variables Xc(w) and Y (w), where c ∈ V [H] and w ∈ V [G], are
instances of random variables X and Y , respectively. The random variables are
4k-wise independent.

2. Let Z be any one of Xc, c ∈ V [H] or Y . Then for any 1 ≤ i ≤ 2k, E [Zi] 6= 0 if
and only if i = d.

Then E[ZH(G)] = α · aut(H) ·#(H,G), where α =
(
E
[
Xd
]
E
[
Y d
])2k/d ∈ C and aut(H)

is the number of permutations and orientations of the edges in H such that the resulting
graph is isomorphic to H.

The theorem above shows that ZH(G) is an unbiased estimator for any d-regular graph
H, assuming that there exist random variables Xc(w) and Y (w) with certain properties.
We will prove Theorem 8.2.3 at first, and then construct such random variables.

Proof of Theorem 8.2.3. We first introduce some notations. For a k-tuple T = (e1, . . . , ek) ∈
Ek[G], let GT = (VT , ET ) be the induced multi-graph, i.e., GT has edge multi-set
ET = {e1, . . . , ek}. By definition, we have

ZH(G) =
∏

−→
ab∈E[H]

Z−→
ab

(G)

=
∏

−→
ab∈E[H]

 ∑
{u,v}∈E[G]

(Xa(u) ·Xb(v) +Xa(v) ·Xb(u)) · Y (u) · Y (v)

 .
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Since H has k edges, ZH(G) is a product of k terms and each term is a sum over all edges
of G each with two possible orientations. Thus, in the expansion of ZH(G), any k-tuple
(e1, · · · , ek) ∈ Ek[G] contributes 2k different terms to ZH(G) and each term corresponds

to a certain orientation of (e1, · · · , ek). Let
−→
T = (−→e1 , · · · ,−→ek ) be an arbitrary orientation

of (e1, · · · , ek), where −→ei = −−→uivi. So the term in ZH(G) corresponding to (−→e1 , · · · ,−→ek ) is

k∏
i=1

Xai(ui) ·Xbi(vi) · Y (ui) · Y (vi) , (8.3)

where (ai, bi) is the i-th edge of H and −−→uivi is the i-th edge in
−→
T . We show that (8.3) is

non-zero if and only if the graph induced by
−→
T is isomorphic to H (i. e. it also preserves

the orientations of the edges).

For a vertex w of G and a vertex c of H, let

θ−→
T

(c, w) =
∣∣{i | (ui = w and ai = c) or (vi = w and bi = c)

}∣∣ . (8.4)

Thus for any c ∈ V [H],
∑

w∈VT θ−→T (c, w) = d since every vertex c of H appears in exactly
d edges (ai, bi); recall that H is d-regular. Using the definition of θ−→

T
, we rewrite (8.3) as ∏

c∈V [H]

∏
w∈V−→

T

X
θ−→
T

(c,w)
c (w)

 ·
 ∏
w∈V−→

T

Y deg−→
T

(w)(w)

 ,

where deg−→
T

(w) is the number of edges in
−→
T incident to w. Therefore

ZH(G)

=
∑

e1,··· ,ek
ei∈E[G]

∑
−→
T =(−→e1,··· ,−→ek)

 ∏
c∈V [H]

∏
w∈V−→

T

X
θ−→
T

(c,w)
c (w)

 ·
 ∏
w∈V−→

T

Y deg−→
T

(w)(w)

 ,

where the first summation is over all the k-tuples of edges in E[G] and the second
summation is over all their possible orientations. Since each term of ZH is the product
of 4k random variables, which by assumption are 4k-wise independent, we infer by
linearity of expectation that

E[ZH(G)]

=E

 ∑
e1,··· ,ek
ei∈E[G]

∑
−→
T =(−→e1,··· ,−→ek)

 ∏
c∈V [H]

∏
w∈V−→

T

X
θ−→
T

(c,w)
c (w)

 ·
 ∏
w∈V−→

T

Y deg−→
T

(w)(w)




=
∑

e1,··· ,ek
ei∈E[G]

∑
−→
T =(−→e1,··· ,−→ek)

∏
c∈V [H]

∏
w∈V−→

T

E
[
Xθ−→

T
(c,w)

] · ∏
w∈V−→

T

E
[
Y deg−→

T
(w)
]
.

Let
α(
−→
T ) :=

∏
c∈V [H]

∏
w∈V−→

T

E
[
Xθ−→

T
(c,w)

] · ∏
w∈V−→

T

E
[
Y deg−→

T
(w)
]
.
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We will next show that α(
−→
T ) is either zero or a nonzero constant independent of

−→
T .

The latter is the case if and only if GT is an occurrence of H in G.

We have E [X i] 6= 0 if and only if i = d or i = 0. Therefore for any
−→
T and c ∈ V [H],∏

w∈V−→
T
E[Xθ−→

T
(c,w)] 6= 0 if and only if θ−→

T
(c, w) ∈ {0, d} for all w. Since

∑
w θ−→T (c, w) =

degH(c) = d, there must be a unique vertex w ∈ V−→
T

such that θ−→
T

(c, w) = d. Define
ϕ : V [H]→ V−→

T
as ϕ(c) = w. Then ϕ is a homomorphism and∏
c∈V [H]

∏
w∈V−→

T

E
[
Xθ−→

T
(c,w)

]
=

∏
c∈V [H]

E
[
Xd
]

= E
[
Xd
]|V [H]|

.

Since E[Y i] 6= 0 if and only if i = d or i = 0, so for any
−→
T ,
∏

w∈V−→
T
E[Y deg−→

T
(w)] 6= 0

if and only if every vertex w ∈ V−→
T

has degree d in the graph with edge set T . Thus
|V−→

T
| = 2k/d = |V [H]|, which implies that ϕ is an isomorphism mapping.

We have now shown that α(
−→
T ) is either zero or the nonzero constant

α =
(
E
[
Xd
]
E
[
Y d
])2k/d

.

The latter is the case if and only if G−→
T

is an occurrence of H in G. Let (G−→
T
≡ H)

be the indicator expression that is one if G−→
T

and H are isomorphic and zero otherwise.
Then

E[ZH(G)] =
∑

e1,··· ,ek
ei∈E[G]

∑
−→
T =(−→e1,··· ,−→ek)

α(
−→
T ) · (G−→

T
≡ H

)
= α · aut(H) ·#(H,G) .

For the case of cycles, we have aut(H) = 2k. We turn to construct hash functions
needed in Theorem 8.2.3. The basic idea is to choose a 8k-wise independent hash function
h : D → C and map the values in D to complex numbers with certain properties. We
first show a simple lemma about roots of polynomials of a simple form.

Lemma 8.2.4. For positive interger r, let Pr(z) = 2 + zr and zj = 21/j · eπij . The
complex number zj is a root of the polynomial Pr(z) if and only if j = r.

Proof. We first verify that zr is a root of the polynomial Pr(z): since zrr = 2 · eπ·i = −2,
we have zrr + 2 = 0. To show the converse, we consider zrj for r 6= j and verify that

|zrj | =
∣∣∣2r/jeπ·i·rj ∣∣∣ = 2r/j. Since 2r/j 6= 2 if j 6= r, the claim follows.

Let zj as in Lemma 8.2.4 and define random variable Hj as

Hj =

{
1, with probability 2/3,

zj, with probability 1/3.
(8.5)

Then E[H`
j ] =

(
2 + z`j

)
/3 = P`(zj)/3 which is nonzero if j 6= `.
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Theorem 8.2.5. For positive integers d and k, let

H =
∏

1≤j≤2k,j 6=d

Hj

where the Hj are independent. For all integers ` between 1 and 2k, E[H`] 6= 0 if and
only if d = `.

Proof. By independence, E[H`] =
∏

1≤j≤2k,j 6=d E[H`
j ]. This product is nonzero if ` is

different from all j that are distinct from d, i. e., ` = d.

8.3 Proof of the Main Theorem

Now we bound the space of the algorithm for the case of cycles of arbitrary length. The
basic idea is to use the second moment method on the complex-valued random variable
Z. We first note a couple of lemmas that turn out to be useful: the first lemma is a
generalization of Chebyshev’s inequality for a complex-valued random variable and the
second lemma is an upper bound on the number of closed walks of a given length in
terms of the number of edges of the graph. Recall that the conjugate of a complex
number z = a+ ib is denoted by z := a− ib.
Lemma 8.3.1. Let X be a complex-valued random variable with finite support and let
t > 0. We have that

Pr[|X − E [X] | ≥ t · |E [X] |] ≤ E[XX]− E [X]E [X]

t2|E [X] |2 .

Proof. Since |X−E [X] |2 = (X−E [X])(X − E [X]) is a positive-valued random variable,
we apply Markov’s inequality to obtain

Pr [|X − E [X] | ≥ t · |E [X] |] = Pr
[|X − E [X] |2 ≥ t2 · |E [X] |2]

≤ E[(X − E [X])(X − E [X])]

t2|E [X] |2 .

Expanding E[(X − E [X])(X − E [X])] we obtain that

E[(X − E [X])(X − E [X])] = E[XX]− E[XE[X]]− E[XE[X]] + E[X]E[X]

= E
[
XX

]− [X]E[X] .

The last equality uses the linearity of expectation and that E[X] = E[X].

We now show an upper bound on the number of closed walks of a given length in a
graph. This upper bound will control the space requirement of the algorithm.

Lemma 8.3.2. Let G be an undirected graph with n vertices and m edges. Then the
number of closed walks Wk with length k in G is at most 2k/2−1

k
·mk/2.
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Proof. Let A be the adjacency matrix of G with eigenvalues λ1, · · · , λn. Since G is
undirected, A is real symmetric and each eigenvalue λi is a real number. Then Wk =
1
2k
·∑n

i=1(Ak)ii where for a matrix M , Mij is the ij-th entry of the matrix. Because∑n
i=1(Ak)ii = tr(Ak) =

∑n
i=1 λ

k
i ≤

∑n
i=1 |λi|k and

(∑n
i=1 |λi|k

)1/k ≤ (
∑n

i=1 |λi|2)
1/2

=

(2m)1/2 for any k ≥ 2, we have Wk ≤ 1
2k
· (∑n

i=1 |λi|2)
k/2

= 2k/2−1

k
·mk/2.

Corollary 8.3.3. Let G be a graph on m edges and H be a set of subgraphs of G such
that every H ∈ H has properties: (1) H has k edges, where k is a constant. (2) Each
connected-component of H is an Eulerian circuit. Then |H| = O(mk/2).

Proof. Fix an integer r ∈ {1, . . . , k} and consider graphs in H that have r connected
components. By Lemma 8.3.2, the number of such graphs is at most∑

k1,··· ,kr
k1+···+kr=k

r∏
i=1

Wki ≤
∑

k1,··· ,kr
k1+···+kr=k

r∏
i=1

2ki/2−1 ·mki/2

ki
≤ f(k) · (2m)k/2,

where f(k) is a function of k. Because there are at most k choices of r, we have
|H| = O(mk/2).

Observe that the expansion of E[ZH(G)ZH(G)] consists of m2k terms and the modulus
of each term is upper bounded by a constant. So a näıve upper bound for E[ZH(G)ZH(G)]
is O(m2k). Now we only focus on the case of cycles and use the “cancellation” properties
of the random variables to get a better bound for E[ZH(G)ZH(G)].

Theorem 8.3.4. Let H be a cycle Ck with an arbitrary orientation and suppose that
the following properties are satisfied:

1. The random variables Xc(w) and Y (w), where c ∈ V [H] and w ∈ V [G] are 8k-wise
independent.

2. Let Z be any one of Xc, c ∈ V [H] or Y . Then for any 1 ≤ i ≤ 2k, E [Zi] 6= 0 if
and only if i = 2.

Then E[ZH(G)ZH(G)] = O(mk).

Proof. By the definition of ZH(G) we express ZH(G)ZH(G) as

∑
−→
T1=(−→e1,··· ,−→ek)
−→
T2=(

−→
e′1,··· ,

−→
e′k)

ei,e
′
i∈E[G]

 ∏
c∈V [H]
w∈V−→

T1

Xc(w)
θ−→
T1

(c,w)

 ·
 ∏
w∈V−→

T1

Y (w)
deg−→

T1
(w)

 ·
 ∏
c∈V [H]
w∈V−→

T2

Xc(w)
θ−→
T2

(c,w)

 ·
 ∏
w∈V−→

T2

Y (w)
deg−→

T2
(w)

 ,
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where the function θ−→
T

(·, ·) is defined in (8.4). Using the linearity of expectations and
the 8k-wise independence of the random variables Xc(w) and Y (w), we obtain

E
[
ZH(G)ZH(G)

]
=

∑
−→
T1=(−→e1,··· ,−→ek)
−→
T2=(

−→
e′1,··· ,

−→
e′k)

ei,e
′
i∈E[G]

Q−→
T1,
−→
T2
,

where

Q−→
T1,
−→
T2

=

 ∏
c∈V [H]

∏
w∈V−→

T1
∪V−→

T2

E
[
Xc(w)

θ−→
T1

(c,w)
Xc(w)

θ−→
T2

(c,w)
] ·

 ∏
w∈V−→

T1
∪V−→

T2

E
[
Y (w)

deg−→
T1

(w)
Y (w)

deg−→
T2

(w)
] .

For any c ∈ V [H] and w ∈ V−→
T1
∪ V−→

T2
, we write

R−→
T1,
−→
T2

(c, w) = E
[
Xc(w)

θ−→
T1

(c,w)
Xc(w)

θ−→
T2

(c,w)
]
.

Let R−→
T1,
−→
T2

=
∏

c∈V [H]

∏
w∈V−→

T1
∪V−→

T2

R−→
T1,
−→
T2

(c, w). Then

Q−→
T1,
−→
T2

= R−→
T1,
−→
T2
·

∏
w∈V−→

T1
∪V−→

T2

E
[
Y (w)

deg−→
T1

(w)
Y (w)

deg−→
T2

(w)
]
.

We claim that if the term Q−→
T1,
−→
T2
6= 0, then every vertex in V−→

T1
∪ V−→

T2
has even degree

in the undirected sense. First, we show that using this claim we can finish the proof
of the theorem. Note that E[ZH(G)ZH(G)] =

∑
G−→
T1,
−→
T2
∈E2k Q

−→
T1,
−→
T2

where E2k is the set

of directed subgraphs of G on 2k edges with every vertex having even degree in the
undirected sense. Observing that the undirected graph defined by G−→

T1,
−→
T2

is a Eulerian

circuit, by Corollary 8.3.3 we get E[ZH(G)ZH(G)] ≤∑G−→
T1,
−→
T2
∈E2k |Q−→T1,

−→
T2
| ≤ c ·mk. Note

that an upper bound for the constant c is maxG−→
T1,
−→
T2
∈E2k |Q−→T1,

−→
T2
|.

Let us now prove that Q−→
T1,
−→
T2
6= 0 implies that every vertex in V−→

T1
∪ V−→

T2
has even

degree in the undirected sense. We first make the following observations: For any
vertex c of Ck and w in V−→

T1
∪ V−→

T2
we have: E [X i

c(w)] 6= 0 if and only if i = 2. After

expanding ZH(G) and ZH(G), Xc(·), c ∈ V [H] appears twice in each term, so we have∑
w∈V−→

T1
∪V−→

T2

θ−→
T1

(c, w) + θ−→
T2

(c, w) = 4. Consider a subgraph G−→
T1,
−→
T2

on 2k edges such that

R−→
T1,
−→
T2
6= 0. Assume for the sake of contradiction that G−→

T1,
−→
T2

has a vertex w of odd degree.

This implies that there is a vertex c ∈ Ck such that θ−→
T1

(c, w) + θ−→
T2

(c, w) is either one
or three. However θ−→

T1
(c, w) + θ−→

T2
(c, w) cannot be one since in this case both R−→

T1,
−→
T2

and

Q−→
T1,
−→
T2

must vanish. Now consider the case where θ−→
T1

(c, w) + θ−→
T2

(c, w) = 3. This means

that R−→
T1,
−→
T2

(c, w) is either E[X2
c (w)Xc(w)] or the symmetric variant E

[
Xc(w)Xc(w)

2]
.

115



Assume that R−→
T1,
−→
T2

(c, w) = E[X2
c (w)Xc(w)]. Since

∑
w∈V−→

T1
∪V−→

T2

θ−→
T1

(c, w) + θ−→
T2

(c, w) =

4, there must be a vertex w′ 6= w in V−→
T1
∪ V−→

T2
such that R−→

T1,
−→
T2

(c, w′) = E[Xc(w′)].
This implies that R−→

T1,
−→
T2

vanishes and hence Q−→
T1,
−→
T2

must also vanish, which leads to a
contradiction.

We are now ready to prove the main result of this chapter.

Theorem 8.3.5. Let G be a graph with n vertices and m edges. For any k, there is an
algorithm using S bits of space to (ε, δ)-approximate the number of occurrences of Ck in

G provided that S = Ω
(

1
ε2
· mk

(#Ck)2 · log n · log 1
δ

)
. The algorithm works in the turnstile

model.

Proof. First, observe that

E[ZH(G)ZH(G)]− E2[ZH(G)]

|E[ZH(G)]|2 ≤ E[ZH(G)ZH(G)]

|E[ZH(G)]|2 .

We run s parallel and independent copies of our estimator, and take the average value
Z∗ = 1

s

∑s
i=1 Zi, where each Zi is the output of the i-th instance of the estimator.

Therefore E[Z∗] = E[ZH(G)] and

E[Z∗Z
∗
]− |E [Z∗]|2 =

1

s

(
E[ZH(G)ZH(G)]− |E[ZH(G)]|2

)
.

By Chebyshev’s inequality (Lemma 8.3.1), we have

Pr [|Z∗ − E[Z∗]| ≥ ε · |E[Z∗]|] ≤ E[ZH(G)ZH(G)]− E[ZH(G)]E[ZH(G)]

s · ε2 · |E[ZH(G)]|2 .

Observe that

E[ZH(G)ZH(G)]− E[ZH(G)]E[ZH(G)] ≤ E[ZH(G)ZH(G)] = O(mk).

By choosing s = O
(

1
ε2
· mk

(#Ck)2

)
, we get Pr [|Z∗ − E [Z∗]| ≥ ε · |E[Z∗]|] ≤ 1/3.

The probability of success can be amplified to 1− δ by running in parallel O
(
log 1

δ

)
copies of the algorithm and outputting the median of those values.

Since storing each random variable requires O(log n) space and the number of random
variables used in each trial is O(1), so the overall space complexity is as claimed.

8.4 Future Directions

We now briefly discuss some natural extensions of our results. We can count other graphs
by constructing hash functions that take values from non-commutative algebras such as
Clifford algebras. Interestingly, this approach of Clifford algebras has been successfully
used in approximating the permanent [27]. Another direction is to obtain lower bounds
for counting various subgraphs in the data streaming model.
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