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Abstract

We consider a recently developed conservative shock filter model

in order to postprocess numerical solutions of the 1-D Euler equations

of gas dynamics. The shock filtering process involves the definition

of an indicator selecting the data regime where the filter is applied.

Illustrated by several classical numerical test problems, we show that

the use of simple indicators based on physical principles results in very

accurate approximations of shocks and contact discontinuities.

Keywords: finite difference methods, shock filter, hyperbolic conservation
laws, Euler equations

AMS subject classification: 35L65, 65M06

1 Introduction

This paper is concerned with postprocessing numerical approximations of the
onedimensional Euler equations of gas dynamics

ut(x, t) + f (u(x, t))x = 0, x ∈ R, t > 0, (1)

where u = [ρ, ρv, ρE] is the vector of conserved quantities and f (u) =
[ρv, ρv2 + p, ρvH] is the flux function. Thereby, the symbols ρ, ρv, ρE, p
and H denote density, momentum, energy density, pressure and enthalpy,
respectively, and H := E + (p/ρ). The described system is supplemented by
an equation of state defining the properties of the gas whose flow is modeled.
Since (1) describes an evolution in time, one needs to define an initial con-
dition u0(x) ≡ u(x, 0), and, when appropriate, suitable boundary conditions
[9, 10].
Solutions of the Euler equations feature discontinuities, i.e., shocks and con-
tact discontinuities. Numerical approximations usually incorporate a diffu-
sive mechanism in order to capture shocks at the correct location, resulting, in
general, in a blurring effect at strong data gradients. While a shock involves
a compression naturally stabilising numerically obtained shock profiles, the
approximation of a contact discontinuity usually suffers from relatively strong
blurring artefacts. Many recipes were developed during the last decades to
fix the adressed problems, see e.g. [7, 13, 16] and the references therein for
an overview.
We now turn to the method we employ for the accurate reconstruction of
discontinuities, i.e., we use a shock filter to remove blurring artefacts at dis-
continuities by a postprocessing procedure at the end of a simulation. In
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contrast to the classical shock filter proposed by Osher and Rudin [15], given
by

qτ (x, τ) = − |qx(x, τ)| signum (qxx(x, τ)) , (2)

the new filter we consider here is in divergence form. This is important in the
context of the approximation of conservation laws as it is a crucial property
for capturing discontinuities at correct positions. For a scalar quantity of
interest q ≡ q(x, τ), x ∈ R, τ > 0, with a given function q0(x) ≡ q(x, 0), the
onedimensional PDE identical with the shock filter model used within this
paper reads

qτ (x, τ) = G (signum (qx(x, τ)) qx(x, τ))x . (3)

Thereby, G is defined as

G(a) =

{

0 : a ≤ 0
1 : a > 0

, (4)

and signum(·) denotes as usual the function given by

signum(a) =







−1 : a < 0
0 : a = 0
1 : a > 0

. (5)

Note that G(·) is with the exception of its definition at G(0) identical with
the Heaviside-function; however, we use the letter G here in order not to
mess with the usual notation of enthalpy. Recently, see [4], the modeling
of the PDE (3) was given as well as its rigorous validation, i.e., solutions of
the initial value problem given by (3) together with q(x, 0) = q0(x) are to
be understood in a distributional sense. Two numerical results concerned
with scalar conservation laws were presented in [4] in order to show that a
reasonable numerical realisation of (3) is possible, however, the aim of [4]
was to give a solid theoretical foundation for further work. In this paper,
our aim is to apply by (3) a recently developed, mathematically rigorously
justified sharpening process in the context of a relevant system of equations.
The main reference concerned with related topics contains algorithms derived
on a heuristic basis on the discrete level [5], however, let us note that the
recipes given there are primarily useful for reducing spurious oscillations and
not for deblurring. Other significant attempts relying on the use of strategies
from image processing are focused on the use of diffusion filters treating
oscillations, see e.g. [8] and the references therein.
Considering alternative approaches to (3) for conservative shock filtering, a
possible candidate is stabilised inverse diffusion. However, processes relying
on stabilised inverse diffusion introduce the so-called staircasing phenomenon
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[2, 3, 11]: depending on given data, piecewise constant structures reminiscent
of a staircase come out as typical filtering results which can spoil a solution
completely. It is a conceptual advantage of the process described via (3) that
this cannot occur in corresponding solutions.
Let us now briefly comment on the computational ingredients used in this pa-
per. Concerning the application of shock filtering within a numerical method,
we prefer at the moment this paper is written a final postprocessing over a
predictor-corrector-type formulation, as the need for an indicator selecting
the filtering region makes the latter choice inefficient when used every time
step. Thinking of a sharpening of discontinuities, a principle idea is to use
a computationally inexpensive and robust method approximating the Euler
equations, and to filter the numerical solution at the end, gaining accu-
racy. As long as the underlying numerical method introduces some amount
of numerical viscosity at discontinuous solution features, this is a reason-
able option. We show this by applying the same postprocessing routine for
improving results generated by a monotone scheme and a second-order high-
resolution central TVD method, respectively. Especially, the results show
that the application of the described postprocessing procedure at a numeri-
cal solution computed using a second-order high-resolution TVD scheme can
be a reasonable alternative to higher-order methods.
The content of this paper is as follows. In the second section we describe a
suitable discretisation of (3). The third paragraph is devoted to a detailed
description of the indicator, using a typical numerical solution of the shock
tube problem in order to illuminate basic filter properties. We discuss further
test cases in the numerical tests section. The paper is finished by conclusive
remarks and acknowledgements.

2 Discretisation of the filter model

In this section, we develop a method suitable for discretising (3). We would
like to stress that there is a certain freedom in designing an algorithm as the
one we describe in the following; the motivation for our choice was coding
simplicity in 1-D.

Let
{

Qn
j

}

, j ∈ I, where I ⊂ Z is an index set, be a set of scalar-valued data
with

Qn
j ≈ q (j∆x, n∆t) , (6)

where ∆t and ∆x are uniform parameters defining an equidistant mesh. In
accordance with (6),

{

Q0
j

}

, j ∈ I, defines suitable initial data for the filtering
process, obtained by a numerical approximation of conservation laws.
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Ql

Qr

Qj

Qj+1

Figure 1: The figure shows a sketch of a typical data situation encountered
when approximating a discontinuity.

For simplicity of the presentation, we suppose that qx(x, τ) ≤ 0 holds within
the region of our interest. The case qx(x, τ) ≥ 0 can be dealt with anal-
ogously. At data extrema with qx(x−, τ) · qx(x+, τ) < 0 no filtering takes
place. Having in mind this simplification, the PDE (3) reduces to

qτ (x, τ) = G (−qx(x, τ))x . (7)

Let us now consider the situation shown in Figure 1. The result of our
filtering process, applied at data as sketched there, is to move the amount
Qj+1 − Qr onto Qj, ideally filling up the difference Ql − Qj. Then a discon-
tinuity represented by the data in Figure 1 is represented as accurate as the
given mesh enables. Consequently, the presence of an inflow due to (7) from
cell j + 1 into cell j is detected by Qj+2 − Qj+1 < 0, while no outflow from
cell j into cell j − 1 is present since Qj−1 − Qj−2 = 0; if Qj−1 − Qj−2 < 0
would hold, the amount Qj+1 − Qj+2 must be added to Qj−1, compare (7).
Thus, a valid discretisation of (7) for the case depicted in Figure 1 is given
by

Qn+1

j = Qn
j +

∆τ

∆x

[

G
(

Qn
j+1 − Qn

j+2

)

− G
(

Qn
j−2 − Qn

j−1

)]

. (8)

We omitted divisions by ∆x within the arguments of G since these do not
change the resulting function values. The degree of freedom introduced by
∆τ we use here for stabilisation.
Within the discussion of the case depicted in Figure 1, a suitable definition
for ∆τ is

∆τ = ∆x min
(

Qn
j−1 − Qn

j , Qn
j+1 − Qn

j+2

)

(9)

since this choice obviously prevents oscillations. However, note that (9) is a
local definition, valid at the index j. In general, the region where the discrete
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filter given by (8) is to be applied needs to be detected by an indicator, see
the next paragraph for a concrete example.
Let us for the moment assume that the indicator yields an interval defined by
indices jleft and jright; in Figure 1, we would have {jleft, jright} = {j, j + 1}.
Within our code, we have defined a marker variable we may call here M ,
setting M = 1 if the indicator is met and M = 0 otherwise. Considering a
grid featuring indices {0, . . . , N}, we find jleft and jright as follows, described
in pseudocode:

for i = 1 to N − 1 :
{

jleft := i if Mi−1 = 0 ∧ Mi = 1 ∧ Mi+1 = 1
jright := i if Mi−1 = 1 ∧ Mi = 1 ∧ Mi+1 = 0

, (10)

where ∧ is the logical and operation, and where one can define values of M
at the boundaries {0, N} corresponding to the underlying problem. Then,
the correct computation of ∆τ , analogously to (9), is given by

∆τ = ∆x min
(

Qn
jleft−1 − Qn

jleft
, Qn

jright
− Qn

jright+1

)

. (11)

A close inspection of the filter step (8) shows, that at inner points of a filtering
region, i.e., excluding jleft, jright, it holds

G
(

Qn
j+1 − Qn

j+2

)

= 1 and G
(

Qn
j−2 − Qn

j−1

)

= 1, (12)

and thus the fluxes drop out except for the changes at jleft and jright. Con-
sequently, a filter step consists of

1. Compute jleft and jright.

2. Compute (11).

3. Compute














Qn+1

jleft
= Qn

jleft
+

∆τ

∆x

Qn+1

jright
= Qn

jright
−

∆τ

∆x

. (13)

These steps need to be repeated until the indicator shows that the filtering
process has come to an end. As shown by Figure 1, already a region incorpo-
rating a profile smeared over two grid points can be used for the application
of the process, and thus the process is repeated until, in the above example,

η :=

N
∑

i=0

Mi = 1. (14)
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Two open issues are: η needs to be compared with a controlling reference
value in order to determine if the filtering process is to be stopped, and we
also have to take into account multiple filtering regions. In the remaining
part of this section, we adress exactly these points.
The computation of a reference value for η, which we call here counter
since it counts the number of filtering regions, is very easy: after initialising
counter = 0, we can set, e.g.,

for i = 1 to N : counter := counter + 1.0

if Mi−1 = 0 ∧ Mi = 1, (15)

again choosing suitable values M0, MN . The procedure (15) effectively takes
into account a filtering region if its beginning is detected: if counter = η, the
filtering process ends.
Thus, combining (14) and (15) one can treat multiple filtering regions. It
remains to fit the computation of ∆τ from (11) to this purpose. Within
the code generating the results presented in this paper we use a very simple
proceeding: we define a global filtering time step size ∆τ g, and compare ∆τ g

with ∆τ every time we compute ∆τ by means of (11). Thus, after initialising

∆τ g := 〈 large positive number compared with data differences 〉 , (16)

we compute, in pseudocode:

for i = 1 to N − 1 :


















∆τ g := min
(

∆τ g, Qn
i−1 − Qn

i

)

if {Mi−1, Mi, Mi+1} = {0, 1, 1} ,

∆τ g := min
(

∆τ g, Qn
i − Qn

i+1

)

if {Mi−1, Mi, Mi+1} = {1, 1, 0} ,

(17)

again with appropriate M0, MN . Let us note, that there is no danger in
setting a very large initial number ∆τ g because of our indicator-type strategy
from (10): either, there is a filtering region defined by at least two adjacent
points with M = 1, then we compute at least one value ∆τ , see (11), or there
is no filtering region, then counter = η holds and no filtering takes place.
Let us emphasize that the discussed discretisation refers to a scalar quan-
tity described by

{

Q0
j

}

. In a setting concerned with systems of equations
as within this paper, we apply the described filtering successively at the
quantities of interest. This is necessary anyway if we do not want to treat
algorithmically synchronisation problems arising by the coupling of variables.
We go into more details within the next paragraph.
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3 The indicator

In order to illustrate the construction of our indicator as well as the filtering
procedure described within the preceding paragraph, we now consider the
so-called shock tube problem of Sod which is a specific Riemann problem.
A Riemann problem is an initial value problem defined by constant states
left and right of a chosen spatial point x̂, for instance x̂ = 0. The physical
equivalent of the Sod shock tube problem is given by two gas chambers se-
parated by a membrane at x̂, featuring on both sides of the membrane zero
velocities but different densities and pressures. At t = 0, the membrane is
removed. The shock tube problem consists of determining the solution for
t > 0, compare [13, 16].
The initial conditions we use here are

[ρL, pL, vL]T = [1, 1, 0]T and [ρR, pR, vR]T = [0.125, 0.1, 0]T , (18)

where the indices L and R denote the left and right initial states of the
Riemann-problem, respectively.
As indicated, the 1-D Euler equations have to be supplemented by an equa-
tion of state. We use the equation of state for a gamma-law gas

ρE =
p

γ − 1
+

1

2
ρv2, (19)

with γ = 1.4 which is the common choice for air [13].
The content of this paragraph is as follows. First, we briefly comment on
the initial data we use for demonstrating our indicator. Then, we describe
the indicators used for selectively filtering shocks and contact discontinuities,
respectively. Finally, we address the coupling of variables within the Euler
equations and its influence on the numerical filtering procedure.

3.1 A simple approximation of the shock tube problem

For demonstration purposes we use the modified Lax-Friedrichs (mLF) scheme
which reads, for a scalar hyperbolic conservation law ut + f(u)x = 0,

Un+1

j = Un
j +

1

4

(

Un
j−1 − 2Un

j + Un
j+1

)

−
∆t

2∆x

(

f
(

Un
j+1

)

− f
(

Un
j−1

))

. (20)

The scheme (20) introduces abundant numerical diffusion into a numerical
solution, however, it is also one of the few schemes from which it is known
that it approximates the unique physically relevant entropy solution [7].
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Figure 2: Diffusive artefacts within a first-order numerical approximation of
the shock tube problem. Left column: density (top) and pressure (bottom).
Right column: velocity (top) and total energy (bottom).

Figure 2 displays a typical numerical solution of the shock tube problem,
here obtained by using (20) on a uniform mesh with a time step size deter-
mined by the CFL condition [13] so that the scheme is stable. We give the
numerical solution in terms of the primitive variables ρ, v, p and E since the
corresponding figures are most instructive. The solution consists of three eas-
ily distinguished features, namely a right moving shock followed by a contact
discontinuity and a rarefaction wave.
We observe the effect of numerical diffusion: the profile of the right mov-
ing shock, defined especially by a jump in both density ρ and pressure p
[9], as well as the profile of the contact discontinuity, defined especially by
a jump in density ρ while at the same point pressure p and velocity v are
continuous [9], are very smeared. Note in this context, that a blurring of
the contact discontinuity is usual in numerical approximations of this prob-
lem, even when using high-order schemes. The transition from the left state
[ρL, pL, vL]T to the beginning of the rarefaction wave also suffers from nu-
merical diffusion; this artefact will not be removed by shock filtering which is,
as indicated, concerned only with discontinuous solution features. It must be
dealt with by another means of reducing numerical viscosity, e.g., by use of a
high-resolution method as, for instance, by the second-order high-resolution
Nessyahu-Tadmor (NT) scheme we consider within the section on numerical
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Figure 3: Selective filtering of the shock. Left column: density (top) and
pressure (bottom). Right column: velocity (top) and total energy (bot-
tom).

tests.
In the following, we use the numerical solution displayed in Figure 2 as initial
data {Q0

j} for illustrating details of the filtering process.

3.2 The shock indicator

As an indicator for the smeared shock profile that we need in order to apply
our shock filter, we use the following properties of the corresponding data,
determined at any 3-tupel of data, with indices l, m and r:

jump in pressure: pl > pm > pr or pl < pm < pr, (21)

entropy condition: vl > vm > vr. (22)

Let us stress, that the stated conditions are directly transfered from the
physical characteristics of a shock [9]:

• Condition (21) selects data featuring a jump in pressure, which distin-
guishes a shock wave, for instance, from a contact discontinuity. How-
ever, as it is obvious by Figure 2, pressure also varies monotonically
within a rarefaction wave.
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• Condition (22) ensures directly the validity of the geometrical entropy
condition due to Lax, see e.g. [12, 13]. It excludes rarefaction waves,
complementing (19).

• Both conditions together ensure the numerical robustness of the indi-
cator.

In Figure 3 we observe the effects of the shock filtering process using the indi-
cator (21)-(22) in order to determine {Mi}i=0, ..., N , see (10)-(17). Evidently,
all shock features are approximated as sharp as possible by the given mesh.

3.3 The contact discontinuity indicator

As an indicator for filtering the contact discontinuity, the usual numerical
blurring of such waves immediately suggests to use the

spreading condition: vl ≤ vm ≤ vr. (23)

Usually, the characteristics in the vicinity of a contact wave run nearly paral-
lel; a numerical smearing of a discontinuity carried along with the underlying
approximately linear flow indicates a slight spreading of numerical charac-
teristics, i.e., (23).
However, a problem immediately appears, compare Figure 2: condition (23)
also holds within rarefaction waves.
In order to distinguish a rarefaction wave from a numerically smeared contact
discontinuity, we employ in the situation ρx < 0 the so-called local Mach
number M determined by

M =
|v|

a
, a =

√

γ
p

ρ
, (24)

see [16]. In (24), a is the local speed of sound. The reason for the use of
(24) is given by the ingredients and the physical properties of contact and
rarefaction waves:

• Across a contact discontinuity, the pressure p and the velocity v can be
assumed to be numerically nearly constant while there is a discontinuity
in the density ρ. Thus, in such a case, the variation in a numerically
determined local Mach number is dominated by the variation in ρ: if
ρx < 0, also Mx < 0.

• Within a rarefaction wave, p and ρ are linked via a constant speed of
sound a, see (24), since the entropy remains constant [16]. As a conse-
quence, across a rarefaction wave the variation in M is not determined
by the variation in ρ, but by the variation in v.
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Thus, we employ in the mentioned case the condition

jump in Mach number: Ml > Mm > Mr, (25)

complementing (23). In the case ρx > 0, we test for the entropy S given by

S = c
v
ln

(

p

ργ

)

, (26)

where c
v

= constant is the specific heat at constant volume of a considered
gas. It is well-known, see e.g. [13, 16], that entropy, and, hence p/ργ, stays
constant across a rarefaction wave, whereas it displays a jump at a contact
wave. Thus, we complement condition (23) by testing in the indicated case,
since ln is monotone for positive arguments, for a simplified version of S, i.e.,
s := p/ργ:

entropy monotonicity: sl > sm > sr. (27)

Within Figure 4 we observe the effect of the selective filtering of the contact
discontinuity, where, in this example, the conditions (23) and (25) are in use.
Obviously, the desired outcome is achieved.
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Figure 4: Selective filtering of the contact discontinuity. Left column:

density (top) and pressure (bottom). Right column: velocity (top) and
total energy (bottom).
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3.4 Coupling of variables

As already stated, the indicators introduced within the last two sections are
used to determine the values of the marker variable M , see (10)-(17). The
question remains, how to apply the scalar filtering process to the usually
coupled variables of a system of equations.
First of all, let us emphasize, that it is necessary to save the unfiltered nu-
merical solution

{

(

ρj, (ρv)j , (ρE)j

)T
}

j=0, ..., N

(28)

for use as a reference data set throughout the filtering procedure. This is no
restriction, rather than that, it is quite natural to keep original data until a
filtering procedure is completely finished.
The reason for the creation of a reference data set is explained easily by use
of an example. For instance, if we would first filter in the density variable
ρ and afterwards in ρv, and save the corresponding, filtered new data set as
reference data for the filtering steps in the other variables, we would not filter
a shock in the energy density variable ρE anymore: the velocity v obtained
from the momentum ρv, see (22), does after application of the filter not
indicate a filtering region of two or more contiguous cells.
Having saved the initial data for the filtering as reference data set, the vari-
ables of interest can be safely decoupled and treated by the scalar filtering
process in a completely independent fashion. For instance, once having de-
fined

Q0

j := ρj, 0 = 1, . . . , N , (29)

the process described via (10)-(17) can commence, yielding finally a data set

{

ρfiltered
j

}

j=0, ..., N
. (30)

In the other variables of interest, the process can be applied, successively,
in exactly the same fashion. Thus, let us stress, that the creation of the
reference data set solves the coupling problem for filtering.
Let us also note, that by the complementing conditions (22) and (23), there
is no problem in using shock/contact postprocessing in any combination of
successively applied steps. In our algorithm, we have first filtered all shocks
creating thereby a new set of reference data, followed by filtering contact
discontinuities.
The result of a combined procedure is given via Figure 5 in comparison with
the original numerical solution featuring diffusive artefacts. As observable,
the discontinuous solution features are approximated with optimal accuracy.
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Figure 5: Filtering of all discontinuities. Left column: density (top) and
pressure (bottom). Right column: velocity (top) and total energy (bot-
tom).

4 Further numerical tests

In this section, we show the postprocessed results of two classical numerical
test cases: the Woodward-Colella blast wave problem and the so-called Lax
test case, see [13, 16].

4.1 The Woodward-Colella blast wave problem

The so-called blast wave problem due to Woodward and Colella is defined
by use of the initial conditions

(ρ, v, p)T =







(1, 0, 1000)T : 0 < x ≤ 0.1

(1, 0, 0.1)T : 0.1 < x < 0.9

(1, 0, 100)T : 0.9 ≤ x < 1

, (31)

together with reflecting boundary conditions.
For demonstration purposes, we apply the mLF as well as the NT scheme at
the problem, and we compare the corresponding non-postprocessed numerical
solutions with their postprocessed counterparts. The solutions are given
and compared at t = 0.1. In order to achieve a reasonable resolution also
with the first-order scheme, which is necessary in order to achieve efficiently
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Figure 6: Approximation of the Woodward-Colella blast wave test case by the
mLF scheme. Comparison of states (left column) before and (right column)
after filtering. Top row: density. Middle row: velocity. Bottom row:

pressure.
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working indicator procedures, we employ ∆x = 0.000125 and the usual CFL
condition.
In Figure 6 we give a comparison between processed and non-processed solu-
tions of the mLF scheme, displayed in terms of the primitive variables. The
postprocessed solutions show analogous properties as in the test case used
within the basic discussion.
The results displayed in Figure 7 are given analogously to those in Figure 6,
using here the NT scheme from [14]. As it is observable, it is recommended
in the discussed test case to use, at least, a second-order high-resolution
scheme: the height of the peaks observable here, especially of the right one,
is strongly influenced by the accuracy of the underlying method. Evidently,
also when using the NT scheme to generate the initial data set for filtering,
the postprocessing improves the solution significantly.

4.2 The Lax test case

The Lax test case, see e.g. [16], is given by use of the initial conditions

(ρ, v, p)T =

{

(0.445, 0.698, 3.528)T : 0 < x ≤ 0.5

(0.5, 0, 0.571)T : 0.5 < x ≤ 1
, (32)

together with transparent boundary conditions.
We only show results using the mLF scheme for generating initial data for
filtering, since there is no observable difference to filtering results generated
via use of the NT scheme. The unfiltered and filtered numerical solutions are
compared at t = 0.15, see Figure 8, where we employed ∆x = 0.0005 and a
usual CFL condition within the simulation. We observe also here the desired
filter effect.

5 Conclusion

By use of basic physical principles and a simple discretisation of the shock
filter model developed in [4], we have successfully applied the shock filter to
numerical solutions of hyperbolic systems of conservation laws.
For generating unfiltered data, we have used first- and second-order schemes.
In some test cases, already a blunt application of the first-order scheme is
enough to obtain reasonable filtered solutions, while in general the use of
a second-order scheme is advantageous since it yields, especially, a more
accurate resolution of smooth parts.
It is in general necessary to employ a discretisation accurate enough to give
reliable values used for the indicator procedure; this is clear since any filter
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Figure 7: Approximation of the Woodward-Colella blast wave test case by
the NT scheme. Comparison of states (left column) before and (right column)
after filtering. Top row: density. Middle row: velocity. Bottom row:

pressure.
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Figure 8: Approximation of the Lax test case by the mLF scheme. Compar-
ison of states (left column) before and (right column) after filtering. Top

row: density. Middle row: velocity. Bottom row: pressure.
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can only filter what is actually given. Thus, in intricate test cases, the grid
has to be as fine as when using any other reasonable method. However, it
seems to be not incongruous, that in such cases the application of a postpro-
cessing as presented in this work in combination with a scheme of second or
medium order can be more efficient than the use of a method of very high
order if the latter is only chosen in order to capture discontinuities accurately.
A higher-dimensional extension of the filter is possible, however, there are
several non-trivial options for the discretisation of the shock filter. The indi-
cator we used here can be employed without a problem in higher dimensions
by selecting locally proper directions for a comparison of data. This can be
achieved, e.g., via methods from image processing.
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