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Abstract

We discuss the weak form of the Ramberg/Osgood equations for nonlinear elastic
materials on a 3-dimensional domain and show that the stress tensor is Hölder
continuous on an open subset whose complement is of Lebesgue-measure zero. We
also give an estimate for the Hausdorff-dimension of the singular set.

1 Introduction

In this paper we investigate the smoothness properties of weak solutions of the Ram-
berg/Osgood equations defined on a bounded Lipschitz domain Ω ⊂ R3. To be precise,
we fix q ∈ (2,∞), define the conjugate exponent p = q/(q − 1), and consider the spaces
(see[GS], [Kn] or [FuS])

Lq,2(Ω) :=
{
σ : Ω → S3 : σD ∈ Lq(Ω), tr σ ∈ L2(Ω)

}
,

Up,2(Ω) := {v : Ω → R3 : u ∈ Lp(Ω), εD(u) ∈ Lp(Ω), div u ∈ L2(Ω)} ,

where

S3 := space of all symmetric 3× 3-matrices,

σD := σ − 1

3
tr σ1 for σ ∈ S3,

ε(u) :=
1

2
(∇u +∇uT ) for u: Ω → R3.

The spaces Lq,2(Ω), Up,2(Ω) are normed in a standard way, we again refer to [GS], [Kn]
or [FuS] for details. Finally, we let Up,2

0 (Ω) denote the closure of C∞
0 (Ω;R3) in Up,2(Ω)

w.r.t. the corresponding norm.

DEFINITION 1.1. A pair (σ, u) ∈ Lq,2(Ω) × Up,2(Ω) is called a weak solution of the
Ramberg/Osgood equations iff

∫

Ω

[
Aσ + α|σD|q−2σD

]
: τ dx =

∫

Ω

ε(u) : τ dx (1.1)

and ∫

Ω

σ : ε(v) dx =

∫

Ω

f · v dx (1.2)

hold for any (τ, v) ∈ Lq,2(Ω)× Up,2
0 (Ω).

In (1.1), (1.2) the symbols “:” and “·” denote the scalar products in S3 and R3, respec-
tively. A is a symmetric linear operator S3 → S3 such that

Aσ : σ ≥ λ|σ|2 (1.3)
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for all σ ∈ S3 and a constant λ > 0. The volume forces f : Ω → R3 are assumed to be in
the space Lq(Ω), and α > 0 is a given parameter. If we introduce the potential

W (τ) :=
1

2
Aτ : τ +

α

q
|τD|q, τ ∈ S3,

then (1.1) is equivalent to
ε(u) = DW (σ). (1.4)

The above equations were first introduced by Ramberg and Osgood [OR] as constitutive
relations describing the behaviour of aluminium alloys. Generally speaking, (1.1) and (1.2)
are adequate for physically nonlinear elastic materials with constitutive law of power-law
type. The physical and historical background of the subject is carefully explained in the
thesis [Kn], where also the existence of weak solutions is established. Moreover, a large
part of the work [Kn] is devoted to the investigation of the local regularity of the stress
and the strain tensor, for example weak differentiability and higher integrability results
are discussed (partially up to the boundary).

In our recent paper [BF] we gave a slight improvement of these regularity results by
showing using methods developed in [BFZ] that the tensors σ and ε(u) satisfy a local
Hölder condition provided the case of plane domains is considered. Here we are going to
discuss the 3D-case for which we will prove

THEOREM 1.1. Let all the hypotheses stated before hold and suppose that (σ, u) ∈
Lq,2(Ω)× Up,2(Ω) is a weak solution in the sense of Definition 1.1. Suppose further that

f ∈ L∞loc(Ω) (1.5)

and
p > 6/5 (1.6)

hold. Then there is an open subset Ω0 of Ω of full Lebesgue measure such that σ and ε(u)
are locally Hölder continuous on Ω0.

REMARK 1.1. It will be shown that

Ω0 =

{
x ∈ Ω : lim sup

r→0
|(σ)x,r| < ∞ and

lim inf
r→0

∫
−

Br(x)

|σ − (σ)x,r|2 dy +

∫
−

Br(x)

|σD − (σD)x,r|q dy = 0

}
.

Here (·)x,r and
∫−

Br(x)
· dy denote mean values over the ball Br(x). Note that in this

description of Ω0 only the stress tensor σ is considered. In fact, we will first prove the
continuity of σ on Ω0, the continuity of ε(u) then follows from equation (1.4).

REMARK 1.2. Condition (1.6) means q < 6, and we can avoid this restriction in The-
orem 1.2 (but not for free). Technically (1.6) enters via the fact that we need compactness

of the embedding
◦

W 1,p(Ω) ↪→ L2(Ω), where
◦

W 1,p(Ω) is the standard Sobolev space of
functions with zero trace, see, e.g. [Ad].
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REMARK 1.3. From the description of the regular set Ω0 given in Remark 1.1 it is
immediate that L3(Ω−Ω0) = 0. Using results of [Kn] we will actually have that H1+ε(Ω−
Ω0) = 0 for any ε > 0, H1+ε being the (1 + ε)-dimensional Hausdorff-measure.

REMARK 1.4. Of course we can consider domains Ω ⊂ Rd with d ≥ 4 and get the
result of Theorem 1.1 under the condition p > 2d/(d + 2).

Next we like to discuss how to get rid of the unpleasant assumption that p > 6/5.
This can be achieved by increasing the regularity of the function f and by allowing a
different regular set Ω∗

0 (still open and of full L3-measure), where now also the mean
oscillation of ε(u) comes into play so that Ω∗

0 ⊂ Ω0, Ω0 denoting the set defined in
Remark 1.1. To be precise, we first observe that according to [Kn], Lemma 2.18, the
function u from a pair (σ, u) ∈ Lq,2(Ω)× Up,2(Ω) of solutions to (1.1) and (1.2) is in the
space W 2,r

loc (Ω), r := 3p/(p + 1). Obviously r < 2 and by Sobolev’s embedding theorem
it follows ∇u ∈ L3r/(3−r)(Ω), i.e. ∇u ∈ L3p

loc(Ω), which gives u ∈ W 1,2
loc (Ω) so that the

definition of the set Ω∗
0 in the next result makes sense.

THEOREM 1.2. Let the assumptions of Theorem 1.1 hold with the exception that (1.5)
is replaced by

f ∈ W 1,∞
loc (Ω) (1.7)

and that p ∈ (1, 2) is arbitrary. Then, if (σ, u) ∈ Lq,2(Ω) × Up,2(Ω) is a weak solution
according to Definition 1.1, the set

Ω∗
0 :=

{
x ∈ Ω : lim sup

r→0
|(σ)x,r| < ∞ and

lim inf
r→0

[ ∫
−

Br(x)

|σ − (σ)x,r|2 dy +

∫
−

Br(x)

|σD − (σD)x,r|q dy

+

∫
−

Br(x)

|ε(u)− (ε(u))x,r|2 dy

]
= 0

}

is open (and of full Lebesgue-measure). Moreover, σ and ε(u) are locally Hölder continuous
on Ω∗

0.

REMARK 1.5. According to (1.4) the quantities ε(u) and σ are related through ε(u) =
DW (σ) but this formula does not imply that a point x from the set Ω0 defined in Remark
1.1 belongs to Ω∗

0, i.e. the vanishing of the mean oscillation of σ at x ∈ Ω does not
necessarily imply the same for ε(u). Hence the “new regular set” Ω∗

0 is a strict subset of
Ω0, and involves the stress tensor as well as the strain tensor.

REMARK 1.6. At the end of Section 5 we will discuss the size of the singular set Ω−Ω∗
0

with the result that H3/(p+1)(Ω−Ω∗
0) = 0, and from the definition of Ω∗

0 a priori no better
estimate is available. This also shows (besides the stronger requirement (1.7) concerning
f) that the removal of the condition p > 6/5 is not for free.

REMARK 1.7. As outlined in [Kn], Section 1.3.2, under appropriate boundary condi-
tions the function u from a pair (σ, u) of weak solutions of (1.1) and (1.2) is a minimizer
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of the total deformation energy E, whose leading part is given by E(v) =
∫

Ω
Wel(ε(v)) dx.

Here Wel denotes the stored energy density for Ramberg/Osgood materials being defined
as the conjugate function of W , i.e.

Wel(ε) := W ∗(ε) := sup
τ∈S3

(ε : τ −W (τ)), ε ∈ S3.

In Lemma 1.22 of [Kn] the growth of Wel is analyzed leading to the inequalities

c0 + c1| tr ε|2 + c2|εD|p ≤ Wel(ε) ≤ c3| tr ε|2 + c4|εD|p (1.8)

with constants c0 ∈ R, ci > 0, i = 1, . . . , 4. In his paper [Se] on the theory of plastic
deformations with power-law hardening, Seregin – besides other things – considers the
minimization problem in Up,2(Ω) (plus boundary conditions) for the energy (K0 a positive
constant)

J [v] =

∫

Ω

[K0

2
(div v)2 + g0(|εD(v)|)

]
dx

with a function g0 of class C2 such that g′′(t) behaves like (1+t2)(p−2)/2 for some p ∈ (1, 2).
Theorem 1.3 of [Se] then gives partial C1-regularity of a J-minimizer u, and the growth
of g′′ implies an estimate like (1.8) for the density of the energy J . So one might think
of applying Seregin’s result to the E-minimizer u. But in general, neither Wel can be
computed explicitely, nor does D2Wel(ε)(ε, ε) behave like (tr ε)2 + (1 + |εD|2)(p−2)/2|εD|2,
which is true for the density of J , and which of course is strongly used throughout Seregin’s
proof. We wish to remark that only in the exceptional case, that the tensor A is a constant
multiple of the identity, our situation can be reduced to the setting studied in [Se]: if for
example

W (τ) =
β

2
|τ |2 +

α

q
|τD|q, β > 0,

then

Wel(ε) =
1

2

1

3β
(tr ε)2 +

[1

2
βψ(|εD|)2 + α(1− q−1)ψ(|εD|)q

]

with ψ := ϕ−1, ϕ(t) := βt + αtq−1, and (1.1) of [Se] holds for all t ≥ 0. For A 6= β1 it is
impossible to get such a representation of Wel(ε), and from the general formula for D2Wel

(see, e.g. [Kn], (A.12)), i.e. from the identity D2W ∗(ε) = (D2W (DW ∗(ε)))−1, it is not
clear how to derive a suitable ellipticity estimate for D2Wel.

REMARK 1.8. From the proofs of Theorems 1.1 and 1.2 it will become evident that
relation (1.1) can be replaced by the slightly more general equation ε(u) = DF (σ) for a
potential F : S3 → R having the form F (σ) = F1(σ) + F2(σ

D) with C2-functions F1, F2

for which

λ1|τ |2 ≤ D2F1(σ)(τ, τ) ≤ λ1|τ |2,
λ2|τD|2(κ + |σD|2) q−2

2 ≤ D2F2(σ
D)(τD, τD) ≤ λ2|τD|2(κ + |σD|2) q−2

2

holds with constants λ1, λ1, λ2, λ2 > 0 and another constant κ ≥ 0.

REMARK 1.9. The statement of Theorem 1.2 holds in the case that Ω ⊂ Rd with
dimension d ≥ 4.
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Our paper is organized as follows: the proof of Theorem 1.1 uses a blow-up argument
which is presented in Section 2 and in Section 3. The iteration of this process is shortly
sketched in Section 4 and finally leads to the formula for the regular set given in Remark
1.1. Moreover, Section 4 contains the estimate for the Hausdorff-dimension of the singular
set. In Section 5 we will prove Theorem 1.2 by indicating the changes which have to be
carried out in Sections 2 and 3.

2 Blow-up: scaling and properties of the weak limit

Let the assumptions of Theorem 1.1 hold and for technical simplicity replace (1.5) by the
stronger condition that f ∈ L∞(Ω) – otherwise we consider a domain Ω′ with compact
closure in Ω. Crucial for the proof of Theorem 1.1 is the following

LEMMA 2.1. Given a positive number L, define the constant C∗ = C∗(L) according to
(2.25). Then, for any τ ∈ (0, 1) there exists ε = ε(τ, L) > 0 such that the validity of

|(σ)x,r| ≤ L and E(x, r) ≤ ε (2.1)

for some ball Br(x) b Ω implies the estimate

Ẽ(x, τr) ≤ C∗τ 2E(x, r). (2.2)

Here we have abbreviated

Ẽ(x, r) :=

∫
−

Br(x)

|σ − (σ)x,r|2 dy +

∫
−

Br(x)

|σD − (σD)x,r|q dy,

E(x, r) := Ẽ(x, r) + r2µ.

In the definition of E(x, r) the exponent µ denotes any number in (0, 1) which will be
fixed from now on. Actually, the quantity ε will also depend on this parameter.

The proof of Lemma 2.1 argues by contradiction. So let us suppose that the statement
is wrong. Then, for L > 0 fixed and for some τ ∈ (0, 1) there exists a sequence of balls
Brm(xm) b Ω such that

|(σ)xm,rm| ≤ L , E(xm, rm) =: λ2
m → 0 (2.3)

as m →∞ but
Ẽ(xm, τrm) > C∗τ 2λ2

m. (2.4)

We introduce the scaled functions (z ∈ B1 = B1(0))

σm(z) :=
1

λm

(σ(xm + rmz)− ωm), ωm := (σ)xm,rm ,

um(z) :=
1

λmrm

(
u(xm + rmz)− (u)xm,rm − rm(ε(u))xm,rmz

)

and get from (2.3) ∫
−
B1

|σm|2 dz + λq−2
m

∫
−
B1

|σD
m|q dz +

r2µ
m

λ2
m

= 1, (2.5)
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whereas (2.4) implies
∫
−
Bτ

|σm − (σm)0,τ |2 dz + λq−2
m

∫
−
Bτ

|σD
m − (σD

m)0,τ |q dz ≥ C∗τ 2. (2.6)

Thus, after passing to subsequences, we deduce from (2.3) and (2.5)

ωm →: ω in S3; (2.7)

σm ⇁: σ in L2(B1) and λmσm → 0 a.e.; (2.8)

λ
1− 2

q
m σD

m ⇁ 0 in Lq(B1). (2.9)

For (2.9) we observe the boundedness of λ
1−2/q
m σD

m in Lq(B1), hence λ
1−2/q
m σD

m ⇁: τ in
Lq(B1), but the first part of (2.8) gives τ = 0. We also claim that

um ⇁: u in W 1,p(B1), u ∈ Up,2(B1) and div um ⇁ div u in L2(B1). (2.10)

To prove (2.10) we observe that from (1.4) it follows that (εm := (ε(u))xm,rm
)

ε(um)(z) =
1

λm

[
A(λmσm(z) + ωm) + α|λmσD

m(z) + ωD
m|q−2(λmσD

m(z) + ωD
m)− εm

]

= Aσm(z) +
1

λm

[
DW0(λmσD

m(z) + ωD
m)− (DW0(λmσD

m + ωD
m))0,1

]
,

where W0(τ) := α
q
|τ |q. Since tr[. . . ] = 0, it follows div um = tr(Aσm), hence (see (2.8))

sup
m

∫

B1

(div um)2 dz < ∞. (2.11)

Now we write

ε(um)(z) = Aσm(z) +
1

λm

[
DW0(λmσD

m(z) + ωD
m)−DW0(ω

D
m)

]

+
1

λm

[
DW0(ω

D
m)− (DW0(λmσD

m + ωD
m))0,1

]

=: Aσm(z) + T1 + T2,

T1 =
1

λm

∫ 1

0

D2W0(ω
D
m + sλmσD

m(z))(λmσD
m(z), ·) ds,

T2 = − 1

λm

∫
−
B1

[
DW0(λmσD

m(z) + ωD
m)−DW0(ω

D
m)

]
dz.

We have the formula

D2W0(η)(θ, τ) = α|ηD|q−2θD : τD + α(q − 2)|ηD|q−4(ηD : θD)(ηD : τD), (2.12)

η, θ, τ ∈ S3, thus

|T1| ≤ c

∫ 1

0

|ωD
m + sλmσD

m(z)|q−2|σD
m(z)| ds,

and by (2.7) and (2.9) we get that T1 = Tm
1 (z) stays bounded in Lp(B1) uniformly w.r.t. m.

With a similar argument we deduce that T2 = Tm
2 is a bounded sequence in S3. Recalling

(2.11), (2.10) is established.
We remark that up to now the condition (1.6) has not been used. This is also true for
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PROPOSITION 2.1. (limit equations)
The weak limits u and σ satisfy

∫

B1

D2W (ω)(σ, τ) dz =

∫

B1

ε(u) : τ dz, (2.13)

∫

B1

σ : ε(w) dz = 0 (2.14)

for any τ ∈ L2(B1) and all w ∈ ◦
W1,2(B1). Moreover, ε(u) is in the space L2(B1).

Proof of Proposition 2.1. Consider τ ∈ Lq,2(B1) and observe that (1.1) implies after
scaling

∫

B1

1

λm

[
DW (λmσm + ωm)− (DW (σ))xm,rm

]
: τ dz =

∫

B1

ε(um) : τ dz, (2.15)

where we have replaced εm = (ε(u))xm,rm by (DW (σ))xm,rm . We claim

lim
m→∞

∫

B1

ε(um) : τ dz =

∫

B1

ε(u) : τ dz. (2.16)

In fact, we may write

∫

B1

ε(um) : τ dz =
1

3

∫

B1

div um tr τ dz +

∫

B1

εD(um) : τD dz,

and (2.16) follows from (2.10). For discussing the l.h.s. of (2.15) we observe

∫

B1

1

λm

[
DW (λmσm + ωm)− (DW (σ))xm,rm

]
: τ dz

=

∫

B1

1

λm

[
DW (λmσm + ωm)−DW (ωm)

]
: τ dz

+

∫

B1

1

λm

[
DW (ωm)− (DW (σ))xm,rm

]
: τ dz =: T ∗

1 + T ∗
2 ,

where we have

T ∗
1 =

1

λm

∫

B1

∫ 1

0

D2W (ωm + sλmσm)(λmσm, τ) ds dz

=

∫

B1

D2W (ωm)(σm, τ) dz

+

∫

B1

∫ 1

0

[
D2W (ωm + sλmσm)−D2W (ωm)

]
ds(σm, τ) dz =: T ∗

3 + T ∗
4 .

By (2.7) and (2.8) we have

lim
m→∞

T ∗
3 =

∫

B1

D2W (ω)(σ, τ) dz. (2.17)
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Suppose that we are given δ > 0. Then there exists δ′ = δ′(δ) such that L3(A) ≤ δ′ for a
measurable subset A ⊂ B1 implies

∫

A

|τ |2 dz ≤ δ. (2.18)

Since by (2.8) λmσm → 0 a.e. we may apply Egoroff’s theorem to find a subset S of B1

such that L3(B1 − S) ≤ δ′ and λmσm → 0 uniformly on S. This implies

∣∣∣∣∣
∫

S

∫ 1

0

[
D2W (ωm + sλmσm)−D2W (ωm)

]
ds(σm, τ) dz

∣∣∣∣∣

≤ sup
S

∣∣∣∣∣
∫ 1

0

[
D2W (ωm + sλmσm)−D2W (ωm)

]
ds

∣∣∣∣∣
∫

B1

|σm||τ | dz

=: θm → 0 as m →∞

since
∫

B1
|σm||τ | dz stays bounded. Moreover, recalling (2.12), we have

∫

B1−S

∫ 1

0

[
D2W (ωm + sλmσm)−D2W (ωm)

]
ds(σm, τ) dz

= α

∫

B1−S

∫ 1

0

[|ωD
m + sλmσD

m|q−2 − |ωD
m|q−2

]
dsσD

m : τD dz

+α(q − 2)

∫

B1−S

∫ 1

0

. . . ds dz,

where the integrals on the r.h.s. are of the same type. If we split the integrand in
α

∫
B1−S

∫ 1

0
. . . ds dz, then we get the integrals

∫

B1−S

|σD
m||τD| dz, λq−2

m

∫

B1

|σD
m|q−1|τD| dz

as an upper bound for the α-term. Since by (2.9)

λq−2
m

∫

B1

|σD
m|q−1|τD| dz → 0,

we get (recall (2.8) and (2.18))

lim sup
m→∞

∣∣∣∣∣
∫

B1−S

∫ 1

0

[
D2W (ωm + sλmσm)−D2W (ωm)

]
ds(σm, τ) dz

∣∣∣∣∣

≤ c

[ ∫

B1−S

|τ |2 dz

] 1
2

≤ c
√

δ,

and since δ is arbitrary, it is shown that

lim
m→∞

T ∗
4 = 0. (2.19)
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It remains to discuss the sequence T ∗
2 = T ∗

2
m ∈ S3. We have

T ∗
2 =

∫

B1

τ dz :
1

λm

[
DW (ωm)− (DW (ωm + λmσm))0,1

]

= −
∫
−
B1

∫ 1

0

D2W (ωm + sλmσm)(σm, τ0) ds dz,

where τ0 :=
∫

B1
τ dy, hence

T ∗
2 = −

∫
−
B1

∫ 1

0

[
D2W (ωm + sλmσm)−D2W (ωm)

]
ds(σm, τ0) dz

−
∫
−
B1

∫ 1

0

D2W (ωm)(σm, τ0) ds dz =: (a) + (b).

The quantity (a) corresponds to T ∗
4 if we replace τ by the constant tensor τ0 in this

expression, therefore limm→∞(a) = 0. Moreover,

(b) = −D2W (ωm)

( ∫
−
B1

σm dz, τ0

)
= 0,

and if we combine (2.15), (2.16), (2.17) and (2.19) with the latter convergences, (2.13)
is established with the restriction that τ is from the space Lq,2(B1). But (2.13) implies
ε(u) = D2W (ω)(σ, ·). Now, since the tensor D2W (ω) is constant and strictly elliptic (see
(1.3) and (2.12)), and since σ is in L2(B1), it follows that ε(u) also belongs to this space,
and by approximation (2.13) is valid for τ ∈ L2(B1).

For proving (2.14) let us consider w ∈ ◦
W 1,2(B1). Then we get from (1.2) (note:

Up,2
0 (B1) ⊃

◦
W1,2(B1))

∫

B1

σm : ε(w) dz = λ−1
m rm

∫

B1

w · f(xm + rmz) dz,

hence ∣∣∣∣∣
∫

B1

σm : ε(w) dz

∣∣∣∣∣ ≤ ‖f‖L∞(Ω)
rm

λm

∫

B1

|w| dz

→ 0 as m →∞,

since r2
mλ−2

m = r2µ
m λ−2

m r2−2µ
m → 0 by (2.5). (Note that on account of λ2

m → 0 and r2µ
m λ−2

m ≤ 1
it clearly holds that rm → 0.) On the other hand (2.8) gives

∫

B1

σm : ε(w) dz →
∫

B1

σ : ε(w) dz,

hence (2.14) follows. ¤
In order to continue with the proof of Lemma 2.1 let us define the linear operator A:

S3 → S3 through the equation

Aη : η = D2W (ω)(η, η), η, η ∈ S3.
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Then (2.13) implies ε(u) = Aσ, and we get from (2.14)
∫

B1

A−1ε(u) : ε(w) dz = 0 for all w ∈ ◦
W

1,2(B1). (2.20)

But (2.20) is a linear elliptic system with constant coefficients depending on ω whose upper
and lower ellipticity bounds are determined by L (and λ, q). Quoting Campanato-type
estimates stated for example in [GM] or [FuS], we get

∫
−
Bτ

|ε(u)− (ε(u))0,τ |2 dz ≤ C1(L)τ 2

∫
−
B1

|ε(u)− (ε(u))0,1|2 dz, (2.21)

where C1(L) is a constant depending on L and where (ε(u))1 = limm→∞(ε(um))0,1 = 0.
Retransformation of (2.21) shows

∫
−
Bτ

|σ − (σ)0,τ |2 dz ≤ C2(L)τ 2

∫
−
B1

|σ − (σ)0,1|2 dz, (2.22)

where as above (σ)1 = 0. Suppose now that we know the strong convergences

σm → σ in L2
loc(B1), λ

1− 2
q

m σD
m → 0 in Lq

loc(B1). (2.23)

(For the proof of (2.23) we will make use of p > 6/5.) Then, by lower semicontinuity, we
first observe that (2.5) and (2.8) imply

∫
−
B1

|σ|2 dz ≤ 1, (2.24)

whereas (2.23) together with the choice

C∗(L) := 2C2(L) (2.25)

turns (2.6) into ∫
−
Bτ

|σ − (σ)0,τ |2 dz ≥ 2C2(L)τ 2.

This clearly is in contradiction to (2.22) if we use (2.24) on the r.h.s. of (2.22). Thus
the proof of Lemma 2.1 is complete with the exception that (2.23) has to be established
which is done in the next section. ¤

3 Blow-up: strong convergences of the scaled sequence

First we note that the the limit function u introduced in Proposition 2.1 actually is of
class C∞(B1), and since σ = A−1ε(u), the same is true for σ. We return to (2.15) choosing
τ := η2(σm − σ) ∈ Lq,2(B1) with η ∈ C∞

0 (B1), 0 ≤ η ≤ 1. We get
∫

B1

1

λm

[
DW (λmσm + ωm)−DW (λmσ + ωm)

]
: η2(σm − σ) dz

+

∫

B1

1

λm

[
DW (λmσ + ωm)− (DW (σ))xm,rm

]
: η2(σm − σ) dz

=

∫

B1

ε(um) : η2(σm − σ) dz,

10



or equivalently (Xm := ωm + λmσ + sλm(σm − σ))

∫

B1

∫ 1

0

D2W (Xm)(σm − σ, σm − σ)η2 ds dz

= −
∫

B1

1

λm

[
DW (λmσ + ωm)− (DW (σ))xm,rm

]
: η2(σm − σ) dz

+

∫

B1

ε(um) : η2(σm − σ) dx =: −I1 + I2. (3.1)

We have by (2.14)

I2 =

∫

B1

ε(η2um) : (σm − σ) dz −
∫

B1

(um ¯∇η2) : (σm − σ) dz

=

∫

B1

ε(η2um) : σm dz −
∫

B1

(um ¯∇η2) : (σm − σ) dz

=: J1 − J2,

and as in the proof of (2.14)

|J1| ≤ ‖f‖L∞(Ω)
rm

λm

∫

B1

η2|um| dz → 0 as m →∞,

whereas J2 → 0 follows from σm ⇁ σ in L2(B1) together with um → u in L2(B1) (recall
(1.6)), hence

lim
m→∞

I2 = 0. (3.2)

We discuss I1:

−I1 = − 1

λm

∫

B1

[
DW (ωm)− (DW (σ))xm,rm

]
: η2(σm − σ) dz

− 1

λm

∫

B1

[
DW (ωm + λmσ)−DW (ωm)

]
: η2(σm − σ) dz

=: −H1 −H2,

where we have

H2 =

∫

B1

η2

∫ 1

0

D2W (ωm + sλmσ) ds(σ, σm − σ) dz

→ 0 as m →∞,

which follows from D2W (ωm + sλmσ) → D2W (ω) uniformly on [0, 1]× spt η and σm ⇁ σ
in L2(B1). Moreover,

H1 =

∫

B1

η2(σm − σ) dz :
1

λm

[
DW (ωm)− (DW (σ))xm,rm

] → 0

since again σm ⇁ σ in L2(B1) and λ−1
m [. . . ] can be discussed with the same arguments as

used for the quantity T ∗
2 after (2.19). This shows

lim
m→∞

I1 = 0. (3.3)

11



Combining (3.1)–(3.3) we find

lim
m→∞

∫

B1

∫ 1

0

D2W (Xm)(σm − σ, σm − σ)η2 ds dz = 0. (3.4)

The formula for D2W together with (3.4) first shows that

∫

B1

η2A(σm − σ) : (σm − σ) dz → 0,

hence σm → σ in L2
loc(B1) as m → ∞. From formula (2.12), (3.4) and the definition of

Xm we also get

lim
m→∞

∫

B1

∫ 1

0

η2
∣∣ωD

m + λmσD + sλm(σD
m − σD)

∣∣q−2|σD
m − σD|2 ds dz = 0. (3.5)

Now we use the elementary inequality (τ , τ ∈ S3)

∫ 1

0

|τ + sτ |q−2 ds ≥
(1

4

)q−1

|τ |q−2

in order to deduce from (3.5)

lim
m→∞

∫

B1

η2λq−2
m |σD

m − σD|q dz = 0.

The local boundedness of σ then finally shows λ
1−2/q
m σD

m → 0 in Lq
loc(B1) and (2.23) is

established. ¤

4 Iteration and proof of Theorem 1.1

Let us fix µ ∈ (0, 1). We introduce the set

Ω0 =
{

x ∈ Ω : lim sup
r→0

|(σ)x,r| < ∞ and lim inf
r→0

Ẽ(x, r) = 0
}

,

and consider x0 ∈ Ω0. Let L := 2 lim supr→0 |(σ)x0,r| and calculate C∗ = C∗(L) according
to (2.25). Finally, τ is defined through C∗τ 2 = 1/2, and by enlarging C∗(L) we may
assume that θ := τ 2µ is in (0, 1/2). With L and τ fixed we can calculate ε = ε(τ, L) as in
Lemma 2.1. Next we choose a radius R according to

Ẽ(x0, R) + R2µ = E(x0, R) < ε2, |(σ)x0,R| < 2

3
L, (4.1)

where ε is determined by the requirement

ε2 ≤ min
{1

4
,
1− 2θ

2

}
ε2, τ−

3
2

∞∑
i=0

2−
i
2

1√
1− 2θ

ε <
L

3
. (4.2)

Then we have
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PROPOSITION 4.1. If (4.1) holds with ε according to (4.2), then for any k ∈ N

Ẽ(x0, τ
kR) ≤ 2−kẼ(x0, R) +

k∑
j=1

2−jθk−jR2µ. (4.3)

Proof. If k = 1, then (4.1) and (4.2) clearly imply (2.1), thus by (2.2)

Ẽ(x0, τR) ≤ C∗τ 2E(x0, R) =
1

2
(Ẽ(x0, R) + R2µ),

hence we have (4.3) for k = 1.
The inductive step is carried out exactly as in [FL], Proposition 5.2, using the inequality

|(σ)x0,τ l+1R| ≤ |(σ)x0,R|+ τ−
3
2

l∑
i=0

Ẽ(x0, τ
iR)

1
2 .

We also note that in [FL] during the inductive step the following inequality is established
(see (5.8) of [FL])

Ẽ(x0, τ
kR) ≤ 2−k

[
Ẽ(x0, R) +

1

1− 2θ
R2µ

]
. (4.4)

Now it is standard to show (see, e.g. [Gi]) how to get from (4.4) the estimate

Ẽ(x0, r) ≤ c
( r

R

)β[
Ẽ(x0, R) + R2µ

]
(4.5)

for some exponent β ∈ (0, 1) and for radii r ≤ R. Recall that (4.5) is valid under the
hypothesis (4.1). But (4.1) clearly holds for centers x0 close to x0 (with R fixed), thus
(4.5) is valid for all centers x0 ∈ Bρ(x0), ρ ¿ 1. In particular we get

∫
−

Br(y)

|σ − (σ)y,r|2 dx ≤ crβ

for y ∈ Bρ(x0) and r ≤ R, hence σ ∈ C0,β/2(Bρ(x0)). The continuity of σ on Bρ(x0) implies
Bρ(x0) ⊂ Ω0, hence the set Ω0 is open, and we haved proved the Hölder continuity of σ
on Ω0. Finally, L3(Ω − Ω0) = 0 is immediate, and the continuity of ε(u) on Ω0 follows
from (1.4).

In order to give the better estimate for the singular set stated in Remark 1.3, we observe
that in [Kn] the following weak differentiability results are established:

σ ∈ W 1,2
loc (Ω), |σD| q2 ∈ W 1,2

loc (Ω) and |σD| q−2
2 ∇σD ∈ L2

loc(Ω). (4.6)

From (4.6) it follows that F := |σD|(q−2)/2σD also is in the space W 1,2
loc (Ω). The weak

differentiability of σ implies (see [Gi], Theorem 2.1, p. 100)

H1+ε
({

x ∈ Ω : lim sup
r→0

|(σ)x,r| = ∞
})

= 0

for any ε > 0. Moreover,
∫
−

Br(x)

|σ − (σ)x,r|2 dy ≤ cr2

∫
−

Br(x)

|∇σ|2 dy → 0
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as r → 0 for H1-a.a. x ∈ Ω ([Gi], Theorem 2.2, p. 101) and

∫
−

Br(x)

|σD − (σD)x,r|q dy ≤
∫
−

Br(x)

|σD − ξ|q dy

≤ c

∫
−

Br(x)

|F − |ξ| q−2
2 ξ|2 dy

≤ cr2

∫
−

Br(x)

|∇F |2 dy → 0

as r → 0 again for H1 a.a. x ∈ Ω, provided we choose ξ in such a way that |ξ|(q−2)/2ξ =
(F )x,r. This implies H − dim(Ω − Ω0) ≤ 1 and completes the proof of Theorem 1.1 and
of the subsequent remarks. ¤

5 Proof of Theorem 1.2

Assume that the hypotheses of Theorem 1.2 hold, and define the new excess functions on
balls Br(x) ⊂ Ω

ẽ(x, r) := Ẽ(x, r) +

∫
−

Br(x)

|ε(u)− (ε(u))x,r|2 dy,

e(x, r) := ẽ(x, r) + r2µ

with 0 < µ < 1 and with E, Ẽ according to Lemma 2.1. Then we claim that Lemma 2.1
remains true with e replacing E and ẽ replacing Ẽ. If this is not the case, then we get
(2.3) and (2.4) for the modifies excess functions, and if we define σm, um as before, (2.5)
has to be replaced by

∫
−
B1

|σm|2 dz + λq−2
m

∫
−
B1

|σD
m|q dz +

∫
−
B1

|ε(um)|2 dz +
r2µ
m

λ2
m

= 1, (5.1)

whereas (2.6) now reads

∫
−
Bτ

|σm−(σm)0,τ |2 dz+λq−2
m

∫
−
Bτ

|σD
m−(σD

m)0,τ |q dz+

∫
−
Bτ

|ε(um)−(ε(um))0,τ |2 dz > C∗τ 2. (5.2)

(2.7)–(2.9) remain unchanged, and (2.10) can obviously be written as

um ⇁: u in W 1,2(B1) (5.3)

which follows directly from
∫−

B1
|ε(um)|2 dz ≤ 1. The proof of the limit equations stated

in Proposition 2.1 requires no changes, and as outlined at the end of Section 2 we will
arrive at a contradiction to (5.2) if besides the strong convergences (2.23) we can show
that

ε(um) → ε(u) in L2
loc(B1) (5.4)
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is true. Note that from (5.3) we already get

um → u in L2(B1), (5.5)

and therefore

lim
m→∞

∫

B1

(um ¯∇η2) : (σm − σ) dz = 0,

which gives (3.2) without the hypothesis p > 6/5. This means that the modified assump-
tion (5.1) closes the gap in the proof of (2.23) for exponents p ≤ 6/5 but at the same
time requires the proof of a second strong convergence leading to the desired contradic-
tion. We like to remark explicitely that all the other calculations needed for (2.23) remain
unchanged – they just use the convergences (2.7) – (2.9).

In order to derive (5.4), we will apply a scaled version of the Caccioppoli-type inequality
(summation w.r.t. i)

∫

Ω

ϕ2D2W (σ)(∂iσ, ∂iσ) dx ≤ −
∫

Ω

∂iσ : (∇ϕ2 ¯ ∂iũ) dx +

∫

Ω

∂if · ∂iũϕ2 dx (5.6)

valid for any ϕ ∈ C∞
0 (Ω). Here we have abbreviated ũ(x) = u(x) − Px for an arbitrary

matrix P ∈ R3×3. The proof of (5.6) is postponed to the end of this section.
Now let ψ ∈ C∞

0 (B1) and choose P := (ε(u))xm,rm + λmR for a rigid motion R. From
(5.6) with ϕ(x) = ψ((x − xm)/rm) we get using the boundedness of |∇f | (w.l.o.g. we
assume that f is in the global space W 1,∞(Ω))

∫

B1

ψ2D2W (λmσm + ωm)(∂iσm, ∂iσm) dz

≤
∫

B1

|∇ψ2||∇σm||∇um −R| dz + c
r2
m

λm

∫

B1

|∇um −R| dz

≤ c

[
δ

∫

B1

ψ2|∇σm|2 dz +
1

δ

∫

B1

|∇ψ|2|∇um −R|2 dz

+
r2
m

λm

(∫

B1

|∇um −R|2 dz + 1

)]
,

where δ ∈ (0, 1) is arbitrary. For δ small enough, the first term on the r.h.s. can be
absorbed in the l.h.s., hence

∫

B1

ψ2D2W (λmσm + ωm)(∂iσm, ∂iσm) dz

≤ c

[
‖∇ψ‖2

∞

∫

B1

|∇um −R|2 dz +
r2
m

λm

∫

B1

|∇um −R|2 dz +
r2
m

λm

]
, (5.7)

and we have proved
∫

Bρ

D2W (λmσm + ωm)(∂iσm, ∂iσm) dz ≤ c(ρ) < ∞ (5.8)

with c(ρ) independent of m for any ρ ∈ (0, 1) provided that we can bound
∫

B1
|∇um −

R|2 dz. But by Korn’s inequality we have

‖∇(um −Rz)‖2 ≤ c
[‖um −Rz‖2 + ‖ε(um)‖2

]
,
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moreover(see [FuS], Lemma 3.0.3 ii), p. 137)

inf
R
‖um −Rz‖2 ≤ c‖ε(um)‖2,

where the infimum is taken w.r.t. all rigid motions. So if we apply these observations
on the r.h.s. of (5.7) and use r2

m/λm → 0 together with
∫−

B1
|ε(um)|2 dz ≤ 1, then (5.8)

follows. Note that (5.8) implies (0 < ρ < 1)

∫

Bρ

[|∇σm|2 + |λmσD
m + ωD

m|q−2|∇σD
m|2

]
dz ≤ c(ρ), (5.9)

and that (5.9) together with
∫−

B1
|σm|2 dz ≤ 1 gives

sup
m
‖σm‖W 1,2(Bρ) ≤ c(ρ) < ∞,

so that the known strong convergence σm → σ in L2
loc(B1) (see (2.23)) is established in a

different way.
After these preparations we now turn to the proof of (5.4). First we use σm → σ a.e. and

the formula (see after (2.11))

ε(um) = Aσm + T1 + T2 (5.10)

to establish
ε(um) → ε(u) a.e. on B1. (5.11)

Obviously
T1 → D2W0(ω

D)(σD, ·)
a.e. (recall (2.7) and λmσD

m(z) → 0 for a.a. z ∈ B1), moreover

T2 = − 1

λm

∫
−
B1

[
DW0(ω

D
m + λmσD

m)−DW0(ω
D
m)

]
dz

= −
∫
−
B1

∫ 1

0

D2W0(ω
D
m + sλmσD

m)(σD
m, ·) ds dz

= −
∫
−
B1

∫ 1

0

[
D2W0(ω

D
m + sλmσD

m)(σD
m, ·)−D2W0(ω

D
m)(σD

m, ·)] ds dz

−
∫
−
B1

D2W0(ω
D
m)(σD

m, ·) dz,

and the last integral vanishes on account of (σm)0,1 = 0. If τ0 ∈ S3 is arbitrary, then
T2 : τ0 exactly corresponds to the quantity T ∗

2 introduced after (2.19), hence

lim
m→∞

T2 : τ0 = 0

for any τ0, thus T2 → 0. Recalling the decomposition (5.10) we have shown

ε(um) → Aσ + D2W0(ω
D)(σD, ·) = ε(u)
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a.e. (see (2.13)) and (5.11) follows.
To proceed further, we claim that

sup
m

∫

Bρ

|ε(um)|3 dz ≤ c(ρ) < ∞ (5.12)

for any ρ < 1. First, from supm ‖σm‖W 1,2(Bρ) ≤ c(ρ) and Sobolev’s embedding theorem
we find

sup
m

∫

Bρ

|σm|6 dz ≤ c(ρ) < ∞. (5.13)

Second, T2 is just a sequence of tensors in S3 with limit zero, hence |T2| ≤ 1 for m À 1,
and according to the decomposition (5.10) we have to show that

sup
m

∫

Bρ

|T1|3 dz ≤ c(ρ) < ∞. (5.14)

Let

ϕm =
1

λm

[|ωD
m + λmσD

m|
q
2 − |ωD

m|
q
2

]
.

Then

|ϕm| ≤ c
[|σD

m|+ λ
q−2
2

m |σD
m|

q
2

]
,

|∇ϕm| ≤ c|ωD
m + λmσD

m|
q−2
2 |∇σD

m|,

and by (5.9) we see

sup
m

∫

Bρ

|∇ϕm|2 dz ≤ c(ρ), (5.15)

whereas (5.1) implies

sup
m

∫

Bρ

|ϕm|2 dz ≤ c(ρ), (5.16)

and therefore we deduce from (5.15), (5.16)

sup
m
‖ϕm‖W 1,2(Bρ) ≤ c(ρ) < ∞,

so that in the end

sup
m

∫

Bρ

|ϕm|6 dz ≤ c(ρ) < ∞. (5.17)

From the definition of T1 we get

|T1| ≤
∫ 1

0

∣∣D2W0(ω
D
m + sλmσD

m)
∣∣|σD

m| ds

≤ c

∫ 1

0

|ωD
m + sλmσD

m|q−2|σD
m| ds

≤ c
[|ωD

m|q−2|σD
m|+ λq−2

m |σD
m|q−1

]

≤ c
[|σD

m|+ λq−2
m (|σD

m|q + 1)
]
, (5.18)

17



where we used the boundedness of ωm. Fix a large number M and let Um := {z ∈ Bρ :
λm|σD

m(z)| ≤ M}. On Bρ − Um we have (using |ωm| ≤ L)

ϕm(z) ≥ c

λm

λ
q
2
m|σD

m|
q
2 = cλ

q
2
−1

m |σD
m|

q
2 ,

so that ∫

Bρ−Um

ϕ6
m dz ≥ c

∫

Bρ−Um

[
λq−2

m |σD
m|q

]3
dz,

which by (5.17) implies ∫

Bρ−Um

[
λq−2

m |σD
m|q

]3
dz ≤ c(ρ).

Since by (5.13) ∫

Bρ

|σm|6 dz ≤ c(ρ),

the estimate (5.18) yields the bound
∫

Bρ−Um

|T1|3 dz ≤ c(ρ). (5.19)

On Um we have (see again (5.18))

|T1| ≤ c

∫ 1

0

|ωD
m + sλmσD

m|q−2|σD
m| ds

≤ c(L + M)q−2|σD
m|,

hence ∫

Um

|T1|3 dz ≤ c

∫

Bρ

|σD
m|3 dz ≤ c(ρ),

where (5.13) is used to get the latter inequality. This together with (5.19) finally implies
(5.14) and this leads us to (5.12), and we may combine (5.11) and (5.12) with Vitali’s
theorem to get (5.4). Therefore the blow-up procedure is complete as soon as we have
established the Caccioppoli-type inequality (5.6).

We fix a coordinate direction ei, i ≤ 3, a number h 6= 0 and let ∆hρ(x) = 1
h
(ρ(x+hei)−

ρ(x)) denote the difference quotient of the function ρ. With ϕ as in (5.6) we obtain from
(1.1) ∆hDW (σ) = ∆hε(u), and in consequence

∫

Ω

∆hDW (σ) : ∆hσϕ2 dx =

∫

Ω

∆hε(u) : ∆hσϕ2 dx. (5.20)

It is easy to show that ∆hDW (σ) : ∆hσ ≥ 0, moreover σ ∈ W 1,2
loc (Ω) implies ∆hσ → ∂iσ

in L2
loc(Ω) and a.e. (for a subsequence). From Lemma 2.17 of [Kn] we deduce the weak

differentiability of DW (σ), hence a.e.

∆hDW (σ) → ∂iDW (σ) = D2W (σ)(∂iσ, ·).
Thus we can apply Fatou’s lemma on the l.h.s. of (5.20) with the result (summation
w.r.t. i) ∫

Ω

ϕ2D2W (∂iσ, ∂iσ) dx ≤ lim inf
h→0

∫

Ω

∆hε(u) : ∆hσϕ2 dx. (5.21)
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Next we use (1.2) with v := ∆−h(ϕ
2∆hũ). Note that v is in Up,2

0 (Ω) since u ∈ W 1,2
loc (Ω),

thus ∫

Ω

∆hσ : ε(ϕ2∆hũ) dx =

∫

Ω

∆hf ·∆hũϕ2 dx.

This implies
∫

Ω

∆hε(u) : ∆hσϕ2 dx =

∫

Ω

∆hf ·∆hũϕ2 dx−
∫

Ω

∆hσ : ∇ϕ2 ¯∆hũ dx, (5.22)

and again we recall u, σ ∈ W 1,2
loc (Ω) to see that the r.h.s. of (5.22) converges to

∫

Ω

∂if · ∂iũϕ2 dx−
∫

Ω

∂iσ : ∇ϕ2 ¯ ∂iũ dx.

With (5.21) inequality (5.6) follows, and we have proved the appropriate version of Lemma
2.1.

The iteration procedure from Section 4 does not change, but the estimate of the singular
set has to be adjusted: in Ω∗

0 we additionally have to consider points x ∈ Ω such that

lim inf
ρ→0

∫
−

Bρ(x)

|ε(u)− (ε(u))x,ρ|2 dy = 0.

As stated before Theorem 1.2 the function u is in the space W 2,r
loc (Ω), r = 3p/(p + 1), and

r < 2. This implies

[∫

Bρ(x)

|ε(u)− (ε(u))x,ρ|2 dy

] 1
2

≤
[ ∫

Bρ(x)

|ε(u)− (ε(u))x,ρ|s(r) dy

] 1
s(r)

L3(Bρ(x))
1
2
− 1

s(r)

≤
[ ∫

Bρ(x)

|∇2u|r dy

] 1
r

L3(Bρ(x))
1
2
− 1

s(r) ,

s(r) denoting the Sobolev exponent of r, i.e. s(r) = 3p. We get

∫
−

Bρ(x)

|ε(u)− (ε(u))x,ρ|2 dy ≤ L3(Bρ(x))−1L3(Bρ(x))1− 2
s(r)

[∫

Bρ(x)

|∇2u|r dy

] 2
r

= cρ−
2
p

[∫

Bρ(x)

|∇2u|r dy

] 2
r

= c

[
ρ−

r
p

∫

Bρ(x)

|∇2u|r dy

] 2
r

,

and by [Gi], Theorem 2.2, p. 101, we see
∫
−

Bρ(x)

|ε(u)− (ε(u))x,ρ|2 dy → 0

for H3/(p+1)-a.a. x ∈ Ω. ¤
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