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Abstract

In the calculus of variations one prominent problem is minimizing anisotropic
integrals with a (p, q)-elliptic density F : Rn ⊃ Ω → RN . The best known
sufficient bound for regularity of solutions is q < p (n + 2)/n. On the other
hand, if we allow an additional x-dependence of the density we have the
much weaker result q < p (n + 1)/n. If one additionally imposes the local
boundedness of the minimizer, then these bounds can be improved to q < p+2
and q < p + 1. In this paper we give natural assumptions for F closing the
gap between the autonomous and non-autonomous situation.

1 Introduction

In these paper we investigate regularity results for local minimizers of func-
tionals

J [w] :=

∫
Ω

F (·,∇w) dx (1.1)

with a function F : Ω×RnN → [0,∞) and a domain Ω ⊂ Rn. Before Esposito,
Leonetti und Mingione found rather surprising counterexamples (see [ELM]),
it was a wide-spread meaning, that the theorems valid for the autonomous
situation extend to the case of x-dependence are portable and therefore most
authors ignored x-dependence for technical simplification of their proofs. We
are interested in anisotropic growth conditions. In the following we assume

λ(1 + |Z|2)
p−2
2 |Q|2 ≤ D2

PF (x, Z)(Q,Q) ≤ Λ(1 + |Z|2)
q−2
2 |Q|2 (1.2)

for all Z,Q ∈ RnN and all x ∈ Ω with positive constants λ,Λ and exponents
1 < p ≤ q <∞. From (1.2) we can deduce

|DPF (x, Z)| ≤ Λ1(1 + |Z|2)
q−1
2 and

c1 |Z|p − c2 ≤ F (x, Z) ≤ c3 |Z|q + c4

with further constants Λ1, c1, c2, c3 and c4. Furthermore we assume for all
Z ∈ RnN and all x ∈ Ω

|∂γDPF (x, Z)| ≤ Λ2(1 + |Z|2)
q−1
2 (1.3)

with Λ2 > 0 and γ ∈ {1, ..., n}. In [ELM] Esposito, Leonetti and Mingione
examine the Lavrentiev gap functional which is defined as

L := inf
u0+W 1,q

0 (B,RN )
J − inf

u0+W 1,p
0 (B,RN )

J
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on a ball B b Ω with boundary data u0 ∈ W 1,p(B,RN). The results of the
studies from [ELM] provide the sharpness of the bound

q < p
n+ α

n

for higher integrability of solutions (assuming that DPF (x, Z) is α-Hölder
continuous with respect to x) and without this condition they have examples
for the Lavrentiev-phenomenon. If (1.2) and (1.3) (with at least continuous
derivatives) hold together with

q < p
n+ 1

n
, (1.4)

Bildhauer and Fuchs proved full C1,α-regularity for N = 1 or n = 2 and
partial regularity in the general vector case. This statement is in accordance
with the results of [ELM]. Under several structure conditions Bildhauer and
Fuchs can improve the last result to full regularity (see [BF1]). Without
x-dependence we know from [BF3] that the better bound

q < p
n+ 2

n
(A1)

is sufficient for regularity. Having a look at the proof in [BF1], two main
differences to the autonomous case become obvious. The first obstacle is
that the standard-regularization uδ does not converge against the minimum u
without (1.4). Thus we work with a regularization from below which is based
on a construction from [CGM] (see [BF1], section 3, for its presentation).
This regularization FM (M � 1) has the properties

• FM(x, P ) ≤ F (x, P ) for all P ∈ RnN ;

• for |P | ≤M is FM(x, P ) = F (x, P );

• FM(x, P ) growth isotropic: i.e.

a |P |p − b ≤ FM(x, P ) ≤ AM |P |p +BM (1.5)

for all P ∈ RnN with uniform constants a > 0, b ∈ R and constants
AM and BM depending on M .

• FM(x, P ) is uniform (p, q)-elliptic, which means we have for Z,Q ∈ RnN

and γ ∈ {1, ..., n}

λ(1 + |Z|2)
p−2
2 |Q|2 ≤ D2

PFM(x, Z)(Q,Q) ≤ Λ3(1 + |Z|2)
q−2
2 |Q|2 ,

|∂γDPFM(x, Z)| ≤ Λ3(1 + |Z|2)
q−1
2 (1.6)

with constants λ,Λ3 > 0.
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In order to introduce this regularization we have to assume

F (x, P ) = g(x, |P |). (A2)

If (A2) holds, then (1.1) reads as

λ(1 + t2)
p−2
2 ≤ g′(x, t)

t
≤ Λ(1 + t2)

q−2
2 ,

λ(1 + t2)
p−2
2 ≤ g′′(x, t) ≤ Λ(1 + t2)

q−2
2 .

(A3)

The second obstacle in the proof of [BF1] is estimating the term∫
∂γDPF (·,∇u) : ∂γ∇u dx.

Motivated from [Bi] (section 4.2.2.2) we now require

|∂γg
′′(x, t)| ≤ Λ4

[
g′′(x, t)(1 + t2)

ε
2 + (1 + t2)

p+q
4
−1

]
(A4)

for all (x, t) ∈ Ω× [0,∞) and γ ∈ {1, ..., n} with 0 ≤ ε� 1 in order to handle
this integral. All of our assumptions have to be satisfied by the regularization
function FM uniformly in M and this can be achieved by requiring

|∂2
γg

′′(x, t)| ≤ Λ5(1 + t2)
q−2
2 . (A5)

Additionally to (1.5) and (1.6) we now get for the sequence FM , constructed
in [BF1] (section 3), the following estimates:

Lemma 1.1 Under the conditions for g above ((A2)-(A5) and continuity of
the derivatives) we have for all γ ∈ {1, ..., n} and uniform in x ∈ Ω

• FM(x, P ) is p-elliptic, i.e. for Z,Q ∈ RnN is

λ(1 + |Z|2)
p−2
2 |Q|2 ≤ D2

PFM(x, Z)(Q,Q) ≤ ΛM(1 + |Z|2)
p−2
2 |Q|2 ,

|∂γDPFM(x, Z)| ≤ ΛM(1 + |Z|2)
p−1
2

with a uniform constant λ and a constant ΛM depending on M .

• For all P,Z ∈ RnN it holds∣∣∂2
γDPFM(x, Z)

∣∣ ≤ Λ6(1 + |Z|2)
q−1
2 ,∣∣∂γD

2
PFM(x, Z)(P,Z)

∣∣ ≤ Λ6

∣∣D2
PFM(x, Z)(P,Z)

∣∣ (1 + |Z|2)
ε
2

+Λ6(1 + |Z|2)
p+q−2

4 |P |

uniform in M with Λ6 ≥ 0.
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The proof of Lemma 1.1 is presented in section 2.
In the isotropic situation, full regularity in the general vector case under
modulus-dependence is only possible, if we know∣∣D2F (x, P )−D2F (x,Q)

∣∣ ≤ c(1 + |P |2 + |Q|2)
q−2−α

2 |P −Q|α (A6)

for all P,Q ∈ RnN , all x ∈ Ω with α ∈ (0, 1) (a first theorem in this context
can be found in [Uh]). Therefore we need such a condition in the anisotropic
case, too. With these preparations we define the regularization uM of the
problem (1.1) as the unique minimizer of

JM [w] =

∫
B

FM(·,∇w) dx

in u + W 1,p
0 (B,RN) with a ball B = B2R b Ω. This is the solution of a

isotropic problem and so we get

Lemma 1.2 • ∇uM belongs to the space Lt
loc(B,RnN) for t = pn/(n−2)

if n ≥ 3 and t arbitrary if n = 2.

• uM belongs to the space W 2,2
loc ∩W

1,∞
loc (B,RN) if n = 2 or N = 1.

• Γ
p−2
4

M |∇2uM | belongs to the space L2
loc(B) and ∇2uM ∈ Lt

loc(B,Rn2N)
for t := min {p, 2}.

• uM is in W 1,p(B,RN) uniformly bounded.

• If we have u ∈ L∞loc(Ω,RN) then ∇uM ∈ Lp+2
loc (B,RnN)

and supM ‖uM‖∞ <∞.

The first and the third part can be found for example in [BF1] (Lemma 2.3
and 2.5 for p = q). The second statement follows from [BF1] Thm. 1.1 (which
is a classical result for N = 1, see [LU]). For the uniform boundedness of uM

in W 1,p(B,RN) we see by (1.5)∫
B

|∇uM |p dx ≤ c

[ ∫
B

FM(·,∇uM) dx+ 1

]
≤ c

[ ∫
B

FM(·,∇u) dx+ 1

]
≤ c

[ ∫
B

F (·,∇u) dx+ 1

]
≤ c.

The Poincaré-inequality supplies

‖uM‖Lp(B) ≤ c
[
‖∇(uM − u)‖Lp(B) + ‖u‖Lp(B)

]
4



≤ c
[
‖∇uM‖Lp(B) + ‖u‖W 1,p(B)

]
≤ c.

supM ‖uM‖∞ < ∞ is received by quoting the maximum-principle of [DLM],
since we assume (A2). For the last statement we quote [BF1] (proof of Lemma
2.8 for α = 0). Note that it is not necessary to have Lipschitz-regularity for
the regularization in [BF1] to proof this. Hence, one can choose there q ≥ p+2
(therefore we do not need (A6) at this point). �
In the following, we formulate the new results valid for local minimizers of
(1.1):

THEOREM 1.1 Under the assumptions (A1)-(A5), where all involved deri-
vatives are assumed to be continuous, we have:

(a) for a local minimizer u ∈ W 1,p
loc (Ω,RN) of (1.1) there is an open sub-

set Ω0 with full Lebesgue-measure such that u belongs to the space
C1,α(Ω0,RN) for any α ∈ (0, 1).

(b) If we have additionally for n ≥ 5 one of the following conditions

(i) q < p
n− 1

n− 2
(A7)

(ii) g′(x, t) ≤ cg′′(x, t)(1 + t2)
ω
2 for ω <

(
pn

n− 2
− q

)
+ 1 (A8)

for all t ≥ 0 as well as (A6) if n ≥ 3 and N ≥ 2, then any local
minimizer u ∈ W 1,p

loc (Ω,RN) of (1.1) belongs to the space C1,α(Ω,RN)
for all α < 1.

Remark 1.3 • Considering the situation F (x, Z) = f(x)g(|Z|) with two
C2-functions f and g, where f is strictly positive and g shares suitable
anisotropic growth conditions, it is easy to see, that F satisfies all as-
sumptions necessary for Theorem 1.1. But even in this case there is no
possibility to argue any simpler than in our proof of higher integrability
(see Lemma 2.1). The critical point is the integral∫

η2∂γfg
′(|∇u|) ∇u

|∇u|
: ∂γ∇u dx.

Since the estimate g′(|∇u|) ≤ c(1 + |∇u|2)(q−1)/2 is not sharp enough,
one must integrate by parts to handle this term.
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• The motivation for allowing small ε > 0 in (A4) is the minimization of∫
Ω

(
1 + |∇w|2

) f(x)
2 dx

for f ∈ C2. The density satisfies the growth condition (A4) for every
ε > 0.

Remark 1.4 • The condition (A7) is necessary to ensure the uniform
boundedness of the integral∫

(1 + |∇uM |2)q− p
2 ln(1 + |∇uM |2) dx.

The higher integrability of Theorem 2.1 provides (A7), which follows
from (A1) for n ≤ 4. Alternatively, if we assume (A8) we have another
possibility to argue at the critic point.

• In the proof of full regularity we return our problem to an integral with
isotropic growth conditions, so that we get the claim from (A2) and
(A6).

• Under assumption (A7) or (A8) we get Theorem 1.1 a) directly from
the proof of part b). There we show local boundedness of ∇u without
(A6), which is the reason why we can quote another time the results of
the isotropic situation to get partial regularity (and full regularity for
n = 2 or N = 1).

• Fuchs [Fu] shows regularity for minimizers of variational integrals which
depend on the modulus of the gradient, too. He gets an arbitrary range
of anisotropy. His results are dedicated to the autonomous situation,
but with a little modification and adaption of the hypotheses they extend
to the case of x-dependence, too. In contrast to our assumption they are
very restrictive, which can easily be seen by consideration of the func-
tions g1 and g3 from of 6. In both cases the functions must be strictly
increasing, convex and must satisfy limt→0 g(x, t)/t = 0. Indeed, our
functions do not necessarily perform a ∆2-condition. Considering the
hypothesis (a ≥ 0)

g′(x, t)

t
≤ g′′(x, t) ≤ a(1 + t2)

ω
2
g′(x, t)

t
,

with an arbitrary ω ≥ 0, claimed for in [Fu], the second inequality is
surely always fulfilled. But the first inequality is very restrictive. Even
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if we allow constants smaller than 1 this is in general false in our con-
text. Fuchs does not only need this condition for having superquadratic
growth, which is consistent with p ≥ 2 in our case. He requires the
monotonicity of t 7→ g′(·, t)/t, which he needs for (2.5) and (2.6) of
[Fu]. Another possibility for this argumentation is a ∆2-condition for
g′(x, t). In case of g3 this is false again.

• Obviously we can choose ω > 1 in (A8), where the difference ω − 1 is
the margin between q and the maximal integrability which we get from
Lemma 2.1.

For locally bounded minimizers we get dimensionless conditions between p
and q: Without x-dependence Bildhauer and Fuchs proved full regularity for
N = 1 and in the general vector case with structure conditions under the
assumption (see [BF3])

q < p+ 2, (A9)

whereas the non-autonomous situation requires the much more restrictive
bound (see [BF1])

q < p+ 1.

Our new statement is

THEOREM 1.2 We assume (A2)-(A5), where all involved derivatives are
assumed to be continuous and (A6) if n ≥ 3 and N ≥ 2. Then any local
minimizer u ∈ W 1,p

loc ∩ L∞loc(Ω,RN) of (1.1) belongs to the space C1,α(Ω,RN)
for all α < 1, if we have (A9) and

g′(x, t) ≤ cg′′(x, t)(1 + t2)
ω
2 for ω < (p+ 2− q) + 1. (A10)

Remark 1.5 • Analogous to (A8) we can allow ω > 1 in (A10), where
the difference ω − 1 is again the range between q and the maximal
integrability p+ 2.
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2 Regularization & higher integrability

Following [BF1] we consider for a fixed number M � 1 a cut-off function
η ∈ C1([0,∞)) with η ≡ 1 on [0, 3/2M ], η ≡ 0 on [2M,∞) and

∣∣η′∣∣ ≤ c/M .
We define

h(x, t) := η(t) + (1− η(t))λ
(1 + t2)

p−2
2

g′′(x, t)
.

Then h is a continuous function with the following properties:

• h(x,M) = η(M) = 1 for all x ∈ Ω;

• for all (x, t) ∈ Ω× [0,∞) follow 0 ≤ h(x, t) ≤ 1;

• g′′(x, t)h(x, t) ≥ λ(1 + t2)
p−2
2 and g′′(x, t)h(x, t) ≤ c(M)(1 + t2)

p−2
2 .

After these preparations we define

gM(x, t) :=


g(x, t), for 0 ≤ t ≤M

g(x,M)+ g′(x,M)(t−M) +
t∫

M

ρ∫
M

g′′(x, τ)h(x, τ)dτdρ, for t > M

and finally FM(x, Z) := gM(x, |Z|).
Proof of Lemma 1.1: Obviously only the case |Z| > M is of interest for
the growth estimates. Assuming this we get

DPFM(x, Z) = g′(x,M)
Z

|Z|
+

∫ |Z|

M

g′′(x, τ)h(x, τ)dτ
Z

|Z|
,

∂γDPFM(x, Z) = ∂γg
′(x,M)

Z

|Z|
+

∫ |Z|

M

∂γ [g′′(x, τ)h(x, τ)] dτ
Z

|Z|
,

∂2
γDPFM(x, Z) = ∂2

γg
′(x,M)

Z

|Z|
+

∫ |Z|

M

∂2
γ [g′′(x, τ)h(x, τ)] dτ

Z

|Z|
.

By (A4) and the definition of h we see

|∂γDPFM(x, Z)| ≤ c(M) +

∣∣∣∣∣
∫ |Z|

M

∂γg
′′(x, τ)η(τ)dτ

∣∣∣∣∣
≤ c(M) +

∫ 2M

M

|∂γg
′′(x, τ)|dτ ≤ c(M)

≤ c(M)(1 + |Z|2)
p−1
2 .
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For the uniform bound of ∂2
γDPFM we obtain in the same way from (A4) and

(A5)

∣∣∂2
γDPFM(x, Z)

∣∣ ≤ c(1 +M2)
q−1
2 +

∫ |Z|

M

|∂2
γg

′′(x, τ)η(τ)|dτ

≤ c

{
(1 + |Z|2)

q−1
2 +

1

M

∫ 2M

M

(1 + τ 2)
q−1
2 dτ

}
≤ c

{
(1 + |Z|2)

q−1
2 + (1 +M2)

q−1
2

}
.

Because of |Z| > M we finally receive∣∣∂2
γDPFM(x, Z)

∣∣ ≤ c(1 + |Z|2)
q−1
2 .

The uniform growth conditions of ∂γDPFM and the uniform (p, q)-ellipticity
are already established in [BF1]. We only have to show thatD2

PF is p-elliptic.
We have

D2
PFM(x, Z)(P, P ) =

g′(x,M)

|Z|

[
|P |2 − |Z : P |2

|Z|2

]

+

∫ |Z|

M

g′′(x, τ)h(x, τ)dτ
1

|Z|

[
|P |2 − |Z : P |2

|Z|2

]

+ g′′(x, |Z|)h(x, |Z|) |Z : P |2

|Z|2

:= T1 + T2 + T3.

For the first term we see by (A3) in case p ≥ 2

T1 ≤
g′(x,M)

M
|P |2 ≤ c(M)|P |2 ≤ c(M)(1 + |Z|2)

p−2
2 |P |2

and for p < 2

T1 ≤ c(M)
(1 + |Z|2) 2−p

2

|Z|
(1 + |Z|2)

p−2
2 |P |2

≤ c(M)(1 + |Z|2)
p−2
2 |P |2.

For T2 we conclude from the properties of g′′h (remember M ≥ 1)

T2 ≤ c(M)(1 + |Z|2)
p−2
2 |P |2
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and in an analogous way

T3 ≤ c(M)(1 + |Z|2)
p−2
2 |P |2

which shows the p-ellipticity.
Considering the derivatives ∂γD

2
PFM we get

∂γD
2
PFM(x, Z)(P,Q) =

∂γg
′(x,M)

|Z|

[
P : Q− (Z : P )(Z : Q)

|Z|2

]
+

∫ |Z|

M

∂γ [g′′(x, τ)h(x, τ)] dτ
1

|Z|

[
P : Q− (Z : P )(Z : Q)

|Z|2

]
+ ∂γ [g′′(x, |Z|)h(x, |Z|)] (Z : P )(Z : Q)

|Z|2

for arbitrary P,Q,Z ∈ RnN . In case Q = Z we see by (A4)∣∣∂γD
2
PFM(x, Z)(P,Z)

∣∣
= |∂γ [g′′(x, |Z|)h(x, |Z|)]Z : P | = |η(|Z|)∂γg

′′(x, |Z|)| |Z : P |

≤ c
[
|η(|Z|)g′′(x, |Z|)| (1 + |Z|2)

ε
2 |Z : P |+ (1 + |Z|2)

p+q
4
−1 |Z| |P |

]
≤ c

[
|g′′(x, |Z|)h(x, |Z|)Z : P | (1 + |Z|2)

ε
2 + (1 + |Z|2)

p+q−2
4 |P |

]
= c

[∣∣D2
PFM(x, Z)(P,Z)

∣∣ (1 + |Z|2)
ε
2 + (1 + |Z|2)

p+q−2
4 |P |

]
which finally proves Lemma 1.1. �

Lemma 2.1 Under the assumptions of Theorem 1.1 we get for local mini-
mizers u ∈ W 1,p

loc (Ω,RN) of (1.1)

∇u ∈

{
L

pn
n−2

loc (Ω,RnN) if n ≥ 3
Ls

loc(Ω,RnN), for all s <∞, if n = 2.

Also u belongs to the space W 2,t
loc (Ω,RN) for t := min {p, 2}.

For the proof of Lemma 2.1 we need a Caccioppoli-type inequality:

Lemma 2.2 There is a constant c > 0 independent from M such that∫
B

η2Γ
p−2
2

M

∣∣∇2uM

∣∣2 dx ≤ c ‖∇η‖2
∞

∫
spt∇η

Γ
q
2
Mdx+ c

∫
spt η

Γ
q
2
Mdx

for all η ∈ C1
0(B).
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Proof: The growth of D2
P implies (sum over γ)∫

B

η2Γ
p−2
2

M

∣∣∇2uM

∣∣2 dx ≤ c

∫
B

η2D2
PFM(·,∇uM)(∂γ∇uM , ∂γ∇uM)dx

≤ c

−2

∫
B

ηD2
PFM(·,∇uM)(∂γ∇uM , ∂γuM ⊗∇η)dx

− 2

∫
B

η∂γDPFM(·,∇uM) : ∂γuM ⊗∇ηdx

−
∫
B

η2∂γDPFM(·,∇uM) : ∂γ∇uMdx


:= I1 + I2 + I3,

where we used the method of difference quotients for the second inequlity
(see [BF2], Lemma 3.1, for details) and Lemma 1.2 (part 3). Using Young-
inequality and Lemma 1.1 we can calculate all terms except for I3. For this
one we write

I3 =

∫
B

∂γ

{
η2∂γDPFM(·,∇uM)

}
: ∇uMdx

=

∫
B

η2∂2
γDPFM(·,∇uM) : ∇uMdx

+

∫
B

η2∂γD
2
PFM(·,∇uM)(∂γ∇uM ,∇uM)dx

+

∫
B

∂γDPFM(·,∇uM) : ∇uM∂γη
2dx

:= I1
3 + I2

3 + I3
3 .

Lemma 1.1 (part 2) delivers

I1
3 ≤ c

∫
spt η

Γ
q
2
Mdx

and from (1.6) we deduce

I3
3 ≤ c ‖∇η‖∞

∫
spt∇η

Γ
q
2
Mdx ≤ c ‖∇η‖2

∞

∫
spt∇η

Γ
q
2
Mdx+ c

∫
spt η

Γ
q
2
Mdx.
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For I2
3 we conclude from Lemma (1.2), part 2,

I2
3 ≤ c

∫
B

η2
∣∣D2

PFM(·,∇uM)(∂γ∇uM ,∇uM)
∣∣ (1 + |∇uM |2)

ε
2 dx

+ c

∫
B

η2Γ
p+q−2

4
M

∣∣∇2uM

∣∣ dx.
We can bound the first integral by

τ

∫
B

η2D2
PFM(·,∇uM)(∂γ∇uM , ∂γ∇uM)dx

+ c(τ)

∫
B

η2D2
PFM(·,∇uM)(∇uM ,∇uM)(1 + |∇uM |2)εdx.

If we know

ε <
1

2

(
p
n+ 2

n
− q

)
,

we can increase q to q + 2ε w.l.o.g. Now we can absorb the first term and
bound the second one by

c

∫
spt η

Γ
q
2
Mdx.

For arbitrary τ > 0 we obtain by Young’s inequality∫
B

η2Γ
p+q−2

4
M

∣∣∇2uM

∣∣ dx ≤ τ

∫
B

η2Γ
p−2
2

M

∣∣∇2uM

∣∣2 dx+ c(τ)

∫
spt η

Γ
q
2
Mdx

which we handle conventionally. �
Proof of Lemma 2.1: We follow the lines of [BF2]. We chose η ∈ C∞

0 (Br+ρ)
with η ≡ 1 on Br and ‖∇η‖∞ ≤ c/ρ (asking for 0 < r ≤ R′ < 2R and

0 < ρ ≤ R′ − r). For α := pn/2(n − 2) (n ≥ 3) and hM := Γ
α(n−2)/2n
M we

clearly get by Lemma 2.2

∫
Br

Γα
Mdx ≤ c

 1

ρ2

∫
Br+ρ−Br

Γ
q
2
Mdx+

∫
Br+ρ

Γ
q
2
Mdx


n

n−2

. (2.1)

12



Since p < q < 2α (compare (A1)), there is a θ ∈ (0, 1) such that

1

q
=
θ

p
+

1− θ

2α
. (2.2)

Using interpolation inequality (compare [GT], 7.9, p. 146) we obtain

‖∇uM‖q ≤ ‖∇uM‖θ
p ‖∇uM‖1−θ

2α ,

where the norms are taken over Br+ρ −Br. It follows

1

ρ2

∫
Br+ρ−Br

Γ
q
2
Mdx ≤

c

ρ2

 ∫
Br+ρ−Br

Γ
p
2
Mdx


θq
p

 ∫
Br+ρ−Br

Γα
Mdx


(1−θ)q

2α

+
c

ρ2

∫
B2R

Γ
p
2
Mdx.

(2.3)

Now (A1) shows

(1− θ)
q

p
=
n

2

(
q

p
− 1

)
< 1

and so we can find positive exponents β1 and β2 such that

1

ρ2

∫
BR

Γ
q
2
Mdx ≤

c

ρβ1

 ∫
B2R

Γ
p
2
Mdx

β2

+

 ∫
Br+ρ−Br

Γα
Mdx


n−2

n

. (2.4)

Apply this into (2.1), for suitable β3, β4 > 0 we see

∫
Br

Γα
Mdx ≤

c

ρβ3

 ∫
B2R

Γ
p
2
Mdx

β4

+ c

 ∫
Br+ρ

Γ
q
2
Mdx


n−2

n

+ c

∫
Br+ρ−Br

Γα
Mdx

and the “hole filling technique” provides for a ϑ̃ ∈ (0, 1)

∫
Br

Γα
Mdx ≤

c

ρβ3

 ∫
B2R

Γ
p
2
Mdx

β4

+ c

 ∫
Br+ρ

Γ
q
2
Mdx


n−2

n

+ ϑ̃

∫
Br+ρ

Γα
Mdx. (2.5)

13



Exactly as in (2.3) we can calculate the second term and can follow

∫
Br

Γα
Mdx ≤

c

ρβ3

 ∫
B2R

Γ
p
2
Mdx

β4

+ ϑ

∫
Br+ρ

Γα
Mdx (2.6)

for a ϑ ∈ (0, 1). From a well-known Lemma by Giaquinta (see [Gi], Lemma
5.1, p. 81) we deduce

∫
Br

Γα
Mdx ≤

c

(R′ − r)β3

 ∫
B2R

Γ
p
2
Mdx

β4

,

and therefore the uniform boundedness of ∇uM in L2α
loc(B,RnN). In case

n = 2 we argue similarly (see [Bi] or [BF2]) for an arbitrary α > 1
2

p2

2p−q
. To

transfer the integrability to the solution u we have to show the convergence
uM → u. For p ≥ 2 we get the uniform boundedness of ∇2uM in L2

loc by a
combination of Lemma 2.2 and the uniform W 1,q

loc (B,RN)-bound of uM . In
case p < 2 it appears by Young-inequality, the uniform W 1,p

loc (B,RN)-bound
of uM and Lemma 2.2 for an arbitrary r < 2R∫

Br

|∇2uM |pdx =

∫
Br

Γ
p−2
4

M |∇2uM |pΓ
2−p
4

M dx

≤
∫

Br

Γ
p−2
2

M |∇2uM |2dx+

∫
Br

Γ
p
2
Mdx ≤ c(r).

In both cases uM is uniformly bounded in W 2,t
loc (B,RN) for t := min {2, p},

so we can follow after passing to a subsequence

uM ⇁: v in W 2,t
loc (B,R

N) and

∇uM → ∇v almost everywhere on B

for a function v ∈ W 2,t
loc (B,RN). So we achieve

FM(·,∇uM) → F (·,∇v) almost everywhere on B

and by the Lemma of Fatou and the minimality of uM we see∫
B

F (·,∇v)dx ≤ lim inf
M→∞

∫
B

FM(·,∇uM)dx ≤ lim inf
M→∞

∫
B

FM(·,∇u)dx

≤
∫

B

F (·,∇u)dx

on account of FM ≤ F . By uniqueness of local minimizers of (1.1) this implies
u = v and so the result of Lemma 2.1. �
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3 Partial regularity

A first preparation for proving Theorem 1.1 a) is

Lemma 3.1 Let HM := Γ
p
4
M , Γ := 1 + |∇u|2 and H := Γ

p
4 . Than we have

• H ∈ W 1,2
loc (B),

• HM ⇁ H in W 1,2
loc (B) for M →∞ and

• ∇uM → ∇u almost everywhere B for M →∞.

Proof: The second statement we get from Lemma 2.2 and 2.1 under obser-
vation of

|∇HM | ≤ Γ
p−2
4

M |∇2uM |.

This shows the first part directly, whereas the third point was shown at the
end of the last section.
By lower semicontinuity of the map v 7→ ‖∇v‖2

2 for v ∈ W 1,2 and Lemma 2.2
we obtain∫

B

η2|∇H|2 dx ≤ lim inf
M→∞

∫
B

η2|∇HM |2 dx

≤ lim inf
M→∞

c

‖∇η‖2
∞

∫
spt∇η

Γ
q
2
Mdx+

∫
spt η

Γ
q
2
Mdx

 .

Since q < pn/(n − 2) we see by the higher integrability of ΓM , the conver-

gence Γ
q
2
M → Γ

q
2 almost everywhere on B (see Lemma 3.1) and the Vitali

convergence theorem Γ
q
2
M → Γ

q
2 in L1(spt η) and thus

Lemma 3.2 For η ∈ C∞
0 (B) and arbitrary balls B b Ω we have∫

B

η2|∇H|2 dx ≤ c ‖∇η‖2
∞

∫
spt∇η

Γ
q
2dx+ c

∫
spt η

Γ
q
2dx.

In case n = 2 an analogous argumentation is possible.
We define if q ≥ 2

E+(x, r) := −
∫

Br(x)

|∇u− (∇u)x,r|q dy + −
∫

Br(x)

|∇u− (∇u)x,r|2 dy

15



and in the other situation

E−(x, r) := −
∫

Br(x)

|V (∇u)− V ((∇u)x,r)|2 dy,

V (ξ) := (1 + |ξ|2)
q−2
4 ξ for ξ ∈ RnN .

So we get

LEMMA 3.3 Fix L > 0. Then there exists a constant C∗(L) such that for
every τ ∈ (0, 1/4) there is an ε = ε(τ, L) > 0 satisfying: if Br b BR and we
have

|(∇u)x,r| ≤ L, E(x, r) + rγ∗ ≤ ε

then

E(x, τr) ≤ C∗τ 2[E(x, r) + rγ∗ ].

Here γ∗ ∈ (0, 2) is an arbitrary number.

We follow the lines of [BF2] and so the only part which needs a comment is
the uniform bound of

∫
Bρ
|∇ψm|2 dx for ρ < 1 (the function ψm is defined in

[BF2]). For Θ(Z) := (1 + |Z|2) p
4 (Z ∈ RnN) we see∫

Bρ

|∇ψm(z)|2 dz =

∫
Bρ

|DΘ(Am + λm∇um(z)) : ∇2um(z)|2 dz

= r−n
m

r2
m

λ2
m

∫
Bρrm (xm)

|∇H|2 dz

≤ c(ρ) r2
mλ

−2
m −

∫
Brm (xm)

Γ
q
2 dz, (3.1)

where λ2
m := E(xm, rm) + r2

m. Furthermore we receive for q ≥ 2

−
∫

Brm (xm)

Γ
q
2 dz ≤ c

1 +−
∫

Brm (xm)

|∇u|q dz


≤ c

1 +−
∫

Brm (xm)

|∇u− (∇u)xm,rm|q dz +−
∫

Brm (xm)

|(∇u)xm,rm|q dz


16



≤ cE(xm, rm) + c(L).

If q < 2 we define for t ∈ (1,∞) and ξ ∈ RnN

Vt(ξ) := (1 + |ξ|2)
t−2
4 ξ and Ht(ξ) := (1 + |ξ|2)

t
2 .

By Lemma 2.3 of [Ha] then we have∣∣∣√Ht(ξ1)−
√
Ht(ξ2)

∣∣∣ ≤ c |Vt(ξ1)− Vt(ξ2)| .

Now we can calculate

−
∫

Brm (xm)

Γ
q
2 dz ≤ −

∫
Brm (xm)

[∣∣∣∣√Hq(∇u)−
√
Hq((∇u)xm,rm)

∣∣∣∣ +

∣∣∣∣√Hq((∇u)xm,rm)

∣∣∣∣]2

dz

≤ c−
∫

Brm (xm)

|Vq(∇u)− Vq((∇u)xm,rm)|2 dz + c(L)

= cE(xm, rm) + c(L)

In both cases we obtain∫
Bρ

|∇ψm(z)|2 dz ≤ c(ρ)
[
r2
m + r2

mλ
−2
m c(L)

]
.

Recalling the choice of γ∗ we have r2
mλ

−2
m → 0 for m→ and the boundedness

of
∫

Bρ
|∇ψm|2 dx follows. Now the proof can be completed as in [BF2]. �

4 Full regularity

Here we consider the standard regularization: uδ is defined as the unique

minimizer of (Fδ(Z) = F (Z) + δ(1 + |Z|2) eq
2 )

Iδ [w,B] :=

∫
B

Fδ(∇w)dx (4.1)

in (u)ε +W 1,eq
0 (B) for B b Ω and q̃ > q. Thereby (u)ε is the mollification of

u with parameter ε and

δ = δ(ε) :=
1

1 + ε−1 + ‖∇(u)ε‖2eq

Leq(B)

.

For uδ we obtain, since u is a W 1,q
loc -minimizer by Lemma 2.1 (compare [BF1],

Lemma 2.1 and 2.7):
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Lemma 4.1 • As ε→ 0 we have: uδ ⇁ u in W 1,p(B,RN),

δ

∫
B

(
1 + |∇uδ|2

) eq
2 dx→ 0;

∫
B

F (∇uδ)dx→
∫

B

F (∇u)dx;

• ∇uδ ∈ W 1,2
loc ∩ L∞loc(Ω,RN).

• If we have u ∈ L∞loc(Ω,RN) then we get supδ ‖uδ‖∞ <∞.

For the last statement we need (A2) and quote [DLM]. Exactly as in the
proof of Lemma 2.1 we can show

∇uδ ∈ L
pn

n−2

loc (B,RnN) uniformly. (4.2)

Note, that we can chose q̃ arbitrary near to q. Therefore we can replace in
all of our estimations q by q̃ and especially (A1) stays true. For showing
Theorem 1.1 b) i) we define

τ(k, r) :=

∫
A(k,r)

Γ
ν
2
δ (ωδ − k)2dx

where A(k, r) := Br ∩ [ωδ > k] for balls Br b B with the choice

ν

2
:= q̃ − p

2
<

1

2

pn

n− 2
.

Lemma 2.1 guarantees together with (A7) the uniform boundedness of τ .
Following the argumentation of [Bi] (p. 65 ff.) we see

τ(h, r) ≤ XM

∫
A(h,br)

∣∣∣∇{
ηΓ

p
4
δ (ωδ − h)

}∣∣∣2 dx,

Xδ :=

 ∫
A(h,r)

Γ
χ

χ−1
β

δ dx


χ−1

χ

for β := (ν − p)/2 and χ := n/(n− 2) if n ≥ 3. To estimate the second term
on the r.h.s. we have to handle the integrals∫

A(h,br)

|∂γDPF (·,∇uδ) : ∇
{
η2∂γuδ[ωδ − h]

}
| dx,

18



∫
A(h,br)

|∂γDPF (·,∇uδ) : ∇
{
η2∂γuδ[ωδ − h]2

}
| dx

additionally to the terms in [Bi], p. 62. So we get for the first integral the
three integrals

2

∫
A(h,br)

η|∂γDPF (·,∇uδ)||∇η||∇uδ|(ωδ − h) dx

+

∫
A(h,br)

η2|∂γDPF (·,∇uδ)||∇2uδ|(ωδ − h) dx

+

∫
A(h,br)

η2|∂γDPF (·,∇uδ)||∇uδ||∇ωδ| dx

:=S1 + S2 + S3.

Considering S2 we obtain for an arbitrary τ > 0

S2 ≤ c
∫

A(h,br)

η2Γ
q−1
2

δ |∇2uδ|(ωδ − h) dx

≤ τ
∫

A(h,br)

η2Γ
p−2
2

δ |∇2uδ|2(ωδ − h)2 dx

+c(τ)

∫
A(h,br)

Γ
ν
2
δ dx

where the first term can be observed in the same way as in [Bi]. Furthermore
we have

S1 ≤ c
∫

A(h,br)

η2Γ
q
2
δ |∇η|(ωδ − h) dx

≤ c
∫

A(h,br)

Γ
ν
2
δ |∇η|

2(ωδ − h)2 dx+ c

∫
A(h,br)

Γ
ν
2
δ dx

by making use of Young’s inequality. For S3 one estimates

S3 ≤ c
∫

A(h,br)

η2Γ
q
2
δ |∇ωδ| dx

19



≤ τ
∫

A(h,br)

η2Γ
p
2
δ |∇ωδ|2 dx+ c(τ)

∫
A(h,br)

Γ
ν
2
δ dx

for all τ > 0, which allows an absorption for another time.
After estimating∫

A(h,br)

|∂γDPF (·,∇uδ) : ∇
{
η2∂γuδ[ωδ − h]2

}
| dx

in the same way, we finally have showed

τ(h, r) ≤ cXδ

 ∫
A(h,br)

|∇η|2Γ
ν
2
δ (ωδ − h)2 dx+ cτ(h, r̂) +

∫
A(h,br)

Γ
ν
2
δ dx

 .
Assuming w.l.o.g. h− k ≤ 1 now we have

τ(h, r) ≤ c

(r̂ − r)2(h− k)2
Xδτ(k, r̂). (4.3)

The choice of ν and (A7) deliver

ν <
pn

n− 2
,

or equivalently

χ

χ− 1
β <

ν

2
.

In case n = 2 we can achieve this, if we choose χ big enough. Now we receive

Xδ ≤

 ∫
A(h,br)

Γ
ν
2
δ dx


2
n

≤ c

(h− k)
4
n

τ(k, r̂)
2
n . (4.4)

Combining (4.3) and (4.4) we see

τ(h, r) ≤ c

(r̂ − r)2(h− k)2+ 4
n

τ(k, r̂)1+ 2
n ,

and u ∈ W 1,∞
loc (Ω,RN) follows by [St], Lemma 5.1, as in [Bi]. So we locally

have a variational problem with isotropic growth conditions and by (A6) the
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claim follows (compare [BF1], Lemma 2.7).

For showing Theorem 1.1 b) ii) we similarly use DeGiorgi-arguments but
with other estimates at the critical point. For a technical simplification we
assume ε = 0 in (A4). So we define (with an obvious meaning of Γδ and ωδ)

τ(h, r) :=

∫
A(h,r)

Γ
ν
2
δ (ωδ − k)2dx

for ν := q + ω − 1.

By (A8) and (4.2) we get the uniform boundedness of τ for another time.
We obtain by decomposition ν = ν1 + ν2 for ν1 := (n − 2)ν/n, ν2 := 2ν/n
and χ := n/(n− 2)

τ(h, r) =

∫
A(h,r)

Γ
ν1
2

δ (ωδ − h)2Γ
ν2
2

δ dx

≤

 ∫
A(h,r)

Γ
ν1
2

χ

δ (ωδ − h)2χ dx


1
χ

 ∫
A(h,r)

Γ
χ

χ−1
ν2
2

δ dx


χ−1

χ

≤ Xδ

 ∫
A(h,br)

{
ηΓ

p
4
δ (ωδ − h)

}2χ

dx


1
χ

.

Note, that ν1 < p since ν < pn/(n − 2). Here Xδ stands for the second
integral in the second line of the estimation and η ∈ C∞

0 (B
br) is a suitable

cut-off function. By Sobolev’s inequality we have

τ(k, r) ≤ Xδ

∫
A(h,br)

∣∣∣∇{
ηΓ

p
4
δ (ωδ − h)

}∣∣∣2 dx. (4.5)

By the choice of ν2 we have

Xδ =

 ∫
A(h,r)

Γ
ν
2
δ dx


2
n

≤ 1

(h− k)
4
n

τ(k, r̂)
2
n .

For the remaining integral we can argue as before in the proof of part b) i).
During the calculation of this integral we have to estimate the terms S2 and
S3 as in the proof of part b) i). We receive from (A4)

|∂γg
′(x, t)| ≤ c

[
g′(x, t) + (1 + t2)

p+q−2
4

]
. (4.6)
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Assuming w.l.o.g. ε = 0 we get

|∂γg
′(x, t)| ≤

∫ 1

0

|∂γg
′′(x, st)|tds+ |∂γg

′′(x, 0)|

≤ c

∫ 1

0

[
g′′(x, st)t+ (1 + (st)2)

p+q
4
−1t

]
ds+ c

≤ c
[
g′(x, t) + (1 + t2)

p+q−2
4

]
,

here we quote [AF], Lemma 2.1, if p+ q < 4. By (4.6) we have

S2 ≤ c
∫

A(h,br)

η2g′(·, |∇uδ|)|∇2uδ|(ωδ − h) dx

+c

∫
A(h,br)

η2Γ
p+q−2

4
δ |∇2uδ|(ωδ − h) dx.

For the second term we obtain the upper bound

τ

∫
A(h,br)

η2Γ
p−2
2

δ |∇2uδ|2(ωδ − h) dx+ c(τ)

∫
A(h,br)

η2Γ
q
2
δ (ωδ − h) dx

for all τ > 0 and argue is in part i). Finally we receive for the first integral
S1

2 by Young’s inequality

S1
2 ≤ τ

∫
A(h,br)

η2 g
′(·, |∇uδ|)

Γ
ω
2
δ

|∇2uδ|2(ωδ − h) dx

+c(τ)

∫
A(h,br)

η2g′(·, |∇uδ|)Γ
ω
2
δ (ωδ − h) dx.

We want to absorb the first one. First we estimate

D2F (x, P )(X,X) =
g
′
(x, |P |)
|P |

(
|X|2 − (P : X)2

|P |2

)
+ g

′′
(x, |P |)(P : X)2

|P |2

≥ min

{
g′′(·, |P |), g

′(·, |P |)
|P |

}
|X|2

for all P,X ∈ RnN . Finally we get by (A8)

g′(·, |∇uδ|)
Γ

ω
2
δ

|∇2uδ|2 ≤ cmin

{
g′′(·, |∇uδ|),

g′(·, |∇uδ|)
|∇uδ|

}
|∇2uδ|2
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≤ cD2
PF (·,∇uδ)(∂γ∇uδ, ∂γ∇uδ)

≤ cD2
PFδ(·,∇uδ)(∂γ∇uδ, ∂γ∇uδ), (4.7)

where the sum is taken over γ ∈ {1, ..., n}. Considering S1
2 , the remaining

term is

S :=

∫
A(h,br)

Γ
q−1+ω

2
δ (ωδ − h) dx ≤ τ(h, r̂) +

∫
A(h,br)

Γ
ν
2
δ dx (4.8)

by (A8). For the examination of S3 we argue similar, using (4.6)

S3 ≤ c
∫

A(h,br)

η2g′(·, |∇uδ|)Γ
1
2
δ |∇ωδ| dx

+c

∫
A(h,br)

η2Γ
p+q
4

δ |∇ωδ| dx

=:S1
3 + S2

3 .

So we can follow

S2
3 ≤ τ

∫
A(h,br)

η2Γ
p
2
δ |∇ωδ|2 dx+ c(τ)

∫
A(h,br)

η2Γ
q
2
δ dx

and absorb the first term. For S1
3 we get by Young’s inequality

S1
3 ≤ τ

∫
A(h,br)

η2 g
′(·, |∇uδ|)

Γ
ω
2
δ

Γδ|∇ωδ|2 dx

+c(τ)

∫
A(h,br)

η2g′(·, |∇uδ|)Γ
ω
2
δ dx.

The second integral is bounded by S from (4.8), whereas we obtain by (4.7)

c

∫
A(h,br)

η2D2
PFδ(·,∇uδ)(ei ⊗∇ωδ, ei ⊗∇ωδ)Γδ dx

as a upper bound for the first one (compare [Bi], (32), together with (A2)).
Now it is possible to end up the proof like before (compare [Bi] for more
details).
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5 Locally bounded minimizers

In this section we prove Theorem 1.2. In a first step we show

Lemma 5.1 Under the assumptions of Theorem 1.2 we have
∇u ∈ Lp+2

loc (Ω,RnN).

Proof: We show the uniform boundedness of ∇uM in W 1,t
loc ∩ L

p+2
loc (B,RnN)

(t := min {2, p}). Then the claim of Lemma 5.1 follows as at the end of
section 2. We fix η ∈ C∞

0 (Br) with 0 ≤ η ≤ 1, η ≡ 1 on Bρ b Br b B and
|∇η| ≤ c/(r−ρ)−1 and get by integrating by parts, following the lines of [Bi],
p. 155, (let h ≡ 1, k = 1 and α = 0)∫

Bρ

Γ
p+2
2

M dx ≤ c
∫

Br

η2Γ
p−2
2

M |∇2uM |2 dx+
1

4

∫
Br

η2Γ
p+2
2

M dx

To calculate the only critical integral we use Lemma 2.2 and see for a suitable
β > 0

c

∫
Br

η2Γ
p−2
2

M |∇2uM |2 dx ≤ c(r − ρ)−2

∫
Br

Γ
q
2
M dx

≤ c(r − ρ)−β +
1

4

∫
Br

Γ
p+2
2

M dx (5.1)

because q < p+ 2, using Young’s inequality. Finally we obtain∫
Bρ

Γ
p+2
2

M dx ≤ c(r − ρ)−β +
1

2

∫
Br

Γ
p+2
2

M dx. (5.2)

By [Gi], Lemma 5.1, p. 81, one can follow from (5.2) the uniform bounded-
ness of ∇uM ∈ Lp+2

loc (B,RnN). Now we can deduce from (5.1) the uniform
boundedness of ∇uM in W 1,t

loc (B,RnN). �
So the existence of a W 1,q

loc -minimizer is proved and therefore we can work
with the δ-regularization from the proof of Theorem 1.1 b) ii) and Lemma
4.1. Analogous to Lemma 5.1, we can show

∇uδ∈ Lp+2
loc (B,RnN) uniformly, (5.3)

since the additional term δ
∫

B
Γ

eq
2
δ dx is not critical by Lemma 4.1, part 1.

Now we can show

Lemma 5.2 Under the assumptions of Theorem 1.2 we have
∇uδ ∈ Lt

loc(Ω,RnN) for all t <∞ uniformly in δ.
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Proof: We quote for another time [Bi] and get for α ≥ 0 and k � 1∫
B

η2kΓ
p+α+2

2
δ dx ≤ c(η) + c

∫
B

η2kΓ
p−2+α

2
δ |∇2uδ|2 dx. (5.4)

For calculating the |∇2uδ|-integral we need an inequality of Caccioppoli-type:

Lemma 5.3 Under the assumptions of Theorem 1.2 for all α ≥ 0 and all
η ∈ C∞

0 (B) there is a constant c = c(α, η) independent of δ with∫
B

η2kΓ
p−2+α

2
δ |∇2uδ|2 dx ≤ c

[
1 +

∫
B

η2k−2Γ
p+α

2
δ dx

]
.

Proof: Inserting φ := ∂γuδΓ
α
2
δ η

2k and summing up over γ ∈ {1, ..., n}, we
only have one term of interest (compare [BF5], p. 326):∫

B

∣∣∣∂γDPF (·,∇uδ) : ∇
{
∂γuδΓ

α
2
δ η

2k
}∣∣∣ dx. (5.5)

Using (1.3) and (4.6) one obtains the three integrals

R1 :=

∫
B

|∇η|Γ
q+α

2
δ η2k−1 dx,

R2 :=

∫
B

η2kg′(·, |∇uδ|)|∇2uδ|Γ
α
2
δ dx,

R3 :=

∫
B

η2kΓ
p−2+q+2α

4
δ |∇2uδ| dx.

For k � 1 we get by Young’s inequality

R1 ≤ τ

∫
B

η2kΓ
p+α+2

2
δ dx+ c(η, τ),

since q < p + 2. By (5.4) we can handle the r.h.s. for τ small enough.
Considering R3 we see

R3 ≤ τ

∫
B

η2kΓ
p−2+α

2
δ |∇2uδ|2 dx+ c(τ)

∫
B

η2kΓ
q+α

2
δ dx.

We absorb the first integral by (5.4) and see∫
B

η2kΓ
q+α

2
δ dx ≤ τ ′

∫
B

η2kΓ
p+2+α

2
δ dx+ c(τ ′)
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for the second one by Young’s inequality and q < p + 2. Obviously, the
critical term is R2: For this integral we get

R2 ≤ τ

∫
B

η2k g
′(·, |∇uδ|)

Γ
ω
2
δ

|∇2uδ|2Γ
α
2
δ dx+ c(τ)

∫
B

η2kg′(·, |∇uδ|)Γ
ω+α

2
δ dx.

The first term on the r.h.s. can be absorbed in the l.h.s. of (5.5) for τ � 1
if we note (4.7) and (A10). For the remaining integral we have the estimate∫

B

Γ
q+ω−1+α

2
δ ≤ τ ′

∫
B

Γ
p+α+2

2
δ dx+ c(τ ′)

if we use Young’s inequality and ω < (p+ 2− q) + 1. This ends up the proof
of Lemma 5.3 and we have showed∫

B

η2kΓ
p+α+2

2
δ dx ≤ c(η)

[
1 +

∫
B

η2k−2Γ
p+α

2
δ dx

]
(5.6)

by (5.4). Iteratively we can follow the claim of Lemma 5.2. As a starting
point one can choose α = 2 by Lemma 5.3. �

In the next step we show

Lemma 5.4 Under the assumptions of Theorem 1.2 ∇uδ is uniformly bounded
in L∞loc(Ω,RnN).

The claim of Theorem 1.2 follows by reducing our problem to a variational
integral with isotropic growth.
Proof of Lemma 5.4: We consider the function

τ(h, r) :=

∫
A(h,r)

Γ
q− p

2
+1

δ (Γδ − h)2 dx

where A(h, r) := Br ∩ [Γδ > h] and proof

τ(h, r) ≤ c

(r̂ − r)
n

n−1
1
s (h− k)

n
n−1

1
s

1
t

τ(k, r̂)
1
2

n
n−1

1
s [1+

1
t ]

for 0 < k < h and 0 < r < r̂ < R with s, t > 1 and c independent of
h, k, r, r̂, δ. For an arbitrary s > 1 we calculate (compare [Bi], p. 157, for
details)

τ(h, r) ≤ c(s)

[
I

n
n−1

1
s

1 + I
n

n−1
1
s

2

]
. (5.7)
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By a later choice of t > 1 we get

I
n

n−1
1
s

1 ≤ c

(r̂ − r)
n

n−1
1
s (h− k)

n
n−1

1
s

1
t

τ(k, r̂)
1
2

n
n−1

1
s [1+

1
t ]. (5.8)

For I2 one obtains with sum over j ∈ {1, ..., N)

I
n

n−1

2 ≤ c

 ∫
A(h,br)

η2D2Fδ(·,∇uδ)(ej ⊗∇Γδ, ej ⊗∇Γδ)dx


1
2

n
n−1

×

c

(h− k)
n

n−1
1
t

τ(k, r̂)
1
2

n
n−1

1
t . (5.9)

For the term in brackets we show

Lemma 5.5 Suppose the assumptions of Theorem 1.2. Then there is a con-
stant c > 0 for which we have the estimate∫

A(h,br)

η2D2F (∇uδ) (ej ⊗∇Γδ, ej ⊗∇Γδ) dx ≤
c

(r̂ − r)2(h− k)2
τ(k, r̂)

for all η ∈ C∞
0 (B

br(x0)).

Proof We choose the test function ϕ := η2∂γuδ[Γδ − h]+ and get

Q1 :=

∫
A(h,br)

ηΓ
q
2
δ |∇η|(Γδ − h) dx

Q2 :=

∫
A(h,br)

η2Γ
q−1
2

δ |∂γ∇uδ|(Γδ − h) dx

Q3 :=

∫
A(h,br)

η2Γ
q
2
δ |∇Γδ| dx.

as the interesting terms (see [BF1]). It follows

Q1 ≤
c

(r̂ − r)(h− k)

∫
A(h,br)

Γ
q− p

2
+1

δ (Γδ − h)2 dx

≤ c

(r̂ − r)2(h− k)2
τ(k, r̂),
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since we can assume w.l.o.g. h− k ≤ 1. The Young’s inequality delivers

Q2 ≤ τ

∫
A(h,br)

η2Γ
p−2
2

δ |∂γ∇uδ|2(Γδ − h) dx

+ c(τ)

∫
A(h,br)

η2Γ
q− p

2
δ (Γδ − h) dx.

The growth of D2
PFδ allows us to absorb the first term (compare [BF1],

(2.41)). The other term can be bounded by

c

(r̂ − r)2(h− k)2
τ(k, r̂).

For Q3 we obtain by Young’s inequality

Q3 ≤ τ

∫
A(h,br)

η2Γ
p−2
2

δ |∇Γδ|2 dx+ c(τ)

∫
A(h,br)

η2Γ
q− p

2
+1

δ dx.

The inequality∫
A(h,br)

η2Γ
q− p

2
+1

δ dx ≤ c

(h− k)2
τ(k, r̂) ≤ c

(r̂ − r)2(h− k)2
τ(k, r̂)

ends up the proof of Lemma 5.5.
By recapitulating (5.7)-(5.9) and Lemma 5.5 we have

τ(h, r) ≤ c

(r̂ − r)
n

n−1
1
s (h− k)

n
n−1

1
s

1
t

τ(k, r̂)
1
2

n
n−1

1
s [1+

1
t ].

Since s, t are arbitrary numbers in (1,∞), we can achieve

1

2

n

n− 1

1

s

[
1 +

1

t

]
> 1

and the claim follows by [St], Lemma 5.1. �

6 Examples

Let η ∈ C∞([0,∞), [0, 1]) and θ > 0 such that

η(t) =

{
0, on [4kθ, (4k + 1)θ]
1, on [(4k + 2)θ, (4k + 3)θ]
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for all k ∈ N0. We define for 1 < p ≤ q <∞ and t ≥ 0

gθ(t) :=

∫ t

0

∫ ρ

0

[
η(τ)(1 + τ 2)

p−2
2 + (1− η(τ))(1 + τ 2)

q−2
2

]
dτdρ

Then we have

Lemma 6.1 The function gθ satisfies the condition (A3).

Whereas the estimates for g′′θ are trivial, we need for handling g′θ the inequality

(1 + t2)
2−p
2

1

t

∫ t

0

(1 + τ 2)
p−2
2 dτ ≥ c (6.1)

for a c > 0, which delivers directly the first of the two requested estimates.
We see

lim
t→0

(1 + t2)
2−p
2

1

t

∫ t

0

(1 + t2)
p−2
2 = 1

and lim
t→∞

(1 + t2)
2−p
2

1

t

∫ t

0

(1 + τ 2)
p−2
2 =

1

p− 1
,

which proves (6.1). By similar arguments we get

(1 + t2)
2−q
2

1

t

∫ t

0

(1 + τ 2)
q−2
2 dτ ≤ c

and thereby the estimate from above. A trivial way to receive a spatial
dependence is

g1(x, t) := α(x)gθ(t)

for a C2-function α which is bigger than ε0 > 0. Now it is easy to see, that
g1 satisfies the assumptions (A3), (A4) for ε = 0 and (A5).
A possibility which is not as trivial is

g2(x, t) := (1 + t2)
f(x)

2

for a C2-function f satisfying f(x) > 1 for all x ∈ Ω. Than we obtain

Lemma 6.2 The function g2 satisfies (A3), (A4) for any ε > 0, (A5) and
if f(x) ≥ 2 on Ω we have (A6) for

F2(x, P ) := g2(x, |P |).
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Proof: W.l.o.g. let f(x) > 2. Note

g′8(x, t) = f(x)(1 + t2)
f(x)

2
−1t

and g′′8(x, t) = f(x)(f(x)− 2)(1 + t2)
f(x)

2
−2t2 + f(x)(1 + t2)

f(x)
2
−1.

So we see (A3) by p := inf f and q := sup f . Furthermore we get

∂γg
′′
8(x, t) = 2∂γf(x) [f(x)− 1] (1 + t2)

f(x)
2
−2t2

+
1

2
f(x)(f(x)− 2)∂γf(x) ln(1 + t2)(1 + t2)

f(x)
2
−2t2

+ ∂γf(x)(1 + t2)
f(x)

2
−1

+
1

2
f(x)∂γf(x) ln(1 + t2)(1 + t2)

f(x)
2
−1.

We can bound ∂γg
′′
8 by

ln(1 + t2)(1 + t2)
f(x)

2
−1.

Using the estimate

ln(1 + t2) ≤ c(ε)(1 + t2)
ε
2

takes (A4). If we derive ∂γg
′′
8(x, t) once again we receive (A5) for q := sup f+

2ε. Now we prove (A6):

DF8(x, P ) = g′(x, |P |) P
|P |

,

D2F8(x, P ) =
g′(x, |P |)
|P |

(
I − P ⊗ P

|P |2

)
+ g′′(x, |P |)P ⊗ P

|P |2

= f(x)(1 + |P |2)
f(x)

2
−1I + f(x)(f(x)− 2)(1 + |P |2)

f(x)
2
−2P ⊗ P.

Thereby we have for P,Q ∈ RnN

|D2F8(x, P )−D2F8(x,Q)| ≤ f(x)
√
n

∣∣∣(1 + |P |2)
f(x)

2
−1 − (1 + |Q|2)

f(x)
2
−1

∣∣∣
+ f(x)|f(x)− 2|

∣∣∣(1 + |P |2)
f(x)

2
−2P ⊗ P − (1 + |Q|2)

f(x)
2
−2Q⊗Q

∣∣∣
=: α1 + α2.

Estimating α1 and α2 seperatly and using [AF], Lemma 2.1, if 2 < f(x) < 3
we obtain (i ∈ {1, 2})

αi ≤ c(1 + |P |2 + |Q|2)
f(x)−2−γ

2 |P −Q|γ
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for an arbitrary γ ∈ (0, 1). This shows for q := sup f the requested Hölder-
condition for D2F .
Due to a local argumentation it is possible to choose p and q arbitrarily near
and to quote older regularity results for minimizers of

∫
Ω
g2(·, |∇w)| dx. This

motivates the following construction: let

g3(x, t) :=

∫ t

0

∫ ρ

0

[
η(τ)(1 + τ 2)

p+f(x)−2
2 + (1− η(τ))(1 + τ 2)

q+f(x)−2
2

]
dτdρ

for an η as in the definition of gθ and a function f ∈ C2(Ω,R+
0 ). Here we

can produce an arbitrarily wide range of anisotropy with a non-trivial x-
dependence. Following the arguments of the two examples before, it is easy
to see, that all of our assumptions are satisfied.
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