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Abstract

We prove interior C'1®-regularity of minimizing displacement fields for a class of
nonlinear Hencky materials in the 2D-case.

Let © C R? denote a bounded open set on which the displacements u of an elastic body
are defined. If the case of linear elasticity is considered, then the elastic energy of the
deformation is given by

Jo[u]:/Q [%)\(divu)2+/f|e(u)|2] da, (1)

where A, £ > 0 denote physical constants and e(u) = $(Vu + Vul) is the symmetric
gradient of . In order to model a nonlinear material behaviour, in particular the nonlinear
Hencky material, see [Ze], (1) is replaced by the energy

J[u] = /Q [%)\(divu)2+g0(|5D(u)|2)] dar 2)

for some nonlinear function . Here e”(u) is the deviatoric part of e(u), i.e. eP(u) =
e(u) — 3(divu)1. The purpose of our short note is to investigate the regularity properties
of local minimizers of the functional J under suitable assumptions on the function ¢.
To be precise and to have more flexibility, we replace the quantity ¢(|e?(u)|?) in the
expression (2) for the energy by F(eP(u)), where F: S? — [0,00) is a function of class
C? defined on the space S? of all symmetric (2 x 2)-matrices satisfying for some exponent
s € (1,00) and with positive constants a, A the ellipticity estimate

s—

S o < DF(E)(0,0) < A(L+ o)) 7 |of? (3)

a(l+e?)
for all e, 0 € S%.

DEFINITION 1 A function u from the Sobolev class W, (€ R?) is called a local min-
imizer of the functional

v, 9] = /Q [%(divv)QJrF(eD(v))] da (4)

iff Iu, V] < oo and Ifu, Q] < Ifv, Q] for all v € W}, (4 R?) such that spt(u —v) € ,
Q' being an arbitrary subdomain with compact closure in €.

Then we have
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THEOREM 1 Let u denote a local minimizer of the functional I[-,Q] defined in (4)
with F satisfying (3). Then u is in the local Holder space CH*(Q;R?) for any 0 < a < 1
provided that s € (1,4).

REMARK 1 In the case that s < 2 the result from Theorem 1 in principle is a con-
sequence of the work of Frehse and Seregin [FrS] on plastic materials with logarithmic
hardening. They consider the function F(e) = |e|In(1 + |¢|) but it is not hard to show
that their arguments actually cover the case of exponents s < 2.

REMARK 2 For s € (1,2] the functional I[-,Q] also serves as a model for plasticity
with power hardening, we refer to [Ka], [Kl] and [NH]. It is worth remarking that Seregin
proved partial reqularity in the 3D-case for the above mentioned range of exponents, see

e.g. [Sel], [Se2].

Proof of Theorem 1. Let f(g) := 3(tre)? + F(eP),e € S*. Here tre is the trace of the
matrix € and e = ¢ — Strel. Clearly f: S* — [0,00) is of class C* and satisfies for all
g,0 € §S?

D2f(e)(o,0) = Atro)? + D*F(eP) (o7, oP). (5)

If s > 2, then (3) and (5) imply with positive constants v and p

v|o? < D*(e)(0.0) < p(1+ [e[2) 7 |0 (6)

for arbitrary matrices ¢, 0 € S?. If 1 < s < 2, then we observe (see (3) and (5))

s—2

D2f(2)(0,0) = A1+ [2]?) 7 (tro) +a(1+|e2) T |02

which follows from (1 + |¢[?)(=2/2 <1 and (1 + [¢[*)=2/2 < (1 + |€P)?)=2/2. Thus, for
a suitable constant 7 > 0 we find that

s—2

D*f(e)(0,0) > 7(1+[e*) ™ [loP + (tr0)?] = (1 +]e)  Jof?

and (see again (3))
D*f(e)(0,0) < A(txo)? + AloP? < flo?

for some @ > 0. Putting together both cases by letting ¢ := max{2, s}, p := min{2, s} we
deduce from (6) and the calculations following (6) that

q—2

a(L+ %) 7 [ < D*f(e)(0.0) < B+ [e[?) 7 |of? (7)

is true for all ¢, ¢ € S? with constants @, 3 > 0. But in [BFZ] we showed that any local
minimizer v € W,,.(€;R?) of the energy [, f(e(v))dz with f satisfying (7) is of class
CYe in the interior of € provided that the exponents p and ¢ are related through the
condition

g < min(2p,p + 2). (8)

Recalling the definitions of p and ¢ it is immediate that the latter condition on p and ¢
holds for s € (1,4). The reader should note that in [BFZ] all comparison functions have to
satisfy the incompressibility condition divw = 0 but of course the situation now simplifies
in comparison to [BFZ] and all results remain valid if this condition is dropped. O

2



REMARK 3 IfQ is a domain in R and if F satisfies (3), then local minimizers u of
the functional I[-, Q)] are of class C** on an open subset Qy of Q such that Q — Qg is of
Lebesgque measure zero, provided s < 10/3. This follows from the results in [BF] if again
the incompressibility condition is neglected.

REMARK 4 If we replace the term 3(div u)? in the functional (4) by an expression like
g(divw) with function g of growth rate r € (1,00), then a reqularity result like Theorem 1
follows along the lines of [BFZ] if we require (8) to hold with the choices q :== max{s,r},
p = min{s,r}.

Let us now partially remove the restriction that s < 4.

THEOREM 2 Suppose that u € W}, (% R?) is a local minimizer of the energy I|-, <]
defined in (4), where F' satisfies (3) for some exponent s > 4. Then the first derivatives of
u are a-continuous functions in the interior of Q for any o € (0, 1), provided we assume

that divu € L, ().
Proof. We define the class
V={ve L’ (R : divv € L*(Q), e”(v) € L} (;S?)}

being the subspace of W, .(€;R?) on which the functional I is well defined. If v € V is
compactly supported in €2, then it follows from

Iu,sptv] < Iu + tv,spto], t € R,

that
/Q [divudive + DF(P () : £ (0)] do = 0 ()

For h € R —{0} and k € {1,2} let
Apw(z) == %[w(x + hey) — w(z)]

denote the difference quotient of the function w. For ¢ € C§°(Q) it is easy to check that
v:=A_,(¢*An(u — Pz)) is admissible in (9) for any constant matrix P. Following for
example the calculations carried out in [BF], it is not hard to show that after passing to
the limit 2 — 0 the next inequality can be deduced (from now on summation w.r.t. k)

/ﬂ DPW (2(w)) Oz (), Bre ()2 dr
< _ / D2W (£(u)) (9he (1), Vo © By u — Pa]) da, (10)
Q

where )
W(o) := E(tra)2 + F(o?), 0€§?

® being the symmetric product of tensors. In particular, all the derivatives of u occuring
in (10) exist in the weak sense. Let

NI

H = (D*W(e(u))(Ope(u), he(u)))
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and observe that H? € L} () which can be justified in strength via difference quotient
technique but can be made plausible as follows: since we assume divu € L7 (§2), we have

e(u) =e”(u) + (dIVU)l € Line (57,

hence Vu € L; (Q; R?*?) by Korn’s inequality. If we apply the Cauchy-Schwarz inequality
to the bilinear form D?*W (g(u)), we get

’DZW(z—:(u))(ﬁks(u), Vel o 8ku)’
< 2[DMW (e(u)) (Ohe(u), Ahe(w))e?)E [D*W (e(w)) (Vg © B, Vip © D) .

MI»—‘

Applying this estimate on the r.h.s. of (10) (choosing P = 0 for the moment) and using
Young’s inequality we obtain

/QOQHle‘ = /QOQDQW( (u))(Oke(u), Ore(u)) dx
Q

< o [ IDWE)ITeP Vil do

< c/ V21 + [Vu2)? dz < oo
Q

on account of our assumption. This “shows” the local integrability of the function H?2,
and a similar argument gives that the integral on the r.h.s. of (10) is well defined. Note
that H? € L} () is equivalent to

divagu € L2,(Q),  (1+]eP(@)?) T [0heP(w)| € L3, (9). (11)
In fact, the definition of W implies for any e, 7, o € S?
DQW(E)(T, o) = Atr7)(tro) + DQF(gD)(TD, oD),

thus
H? = \|Vdivul|® + D?*F(£P (1)) (0pe” (1), O (u))

and therefore (11) is immediate. Moreover, we have
/ | DT (2 (w)) (he (), Vi ® Dy u — Pa)| de

/[\deuuw||vu—p\+(1+\a (w[?) 7 [V ()| Vgl [V~ P] da

< o [ (IR EP) TV PVl [Vaival + (1410 ) T Ve do
Q
s—2
< c/ (1+ [P (w)?) T |Vu — P|H|V| du.
Q
Letting h := (1 + [P (u)[?)*~2/* and returning to (10) it is shown that

H2dz < % hH|Vu — P|dz, (12)

Br Bar
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provided we choose ¢ € C§°(Bsr), ¢ =1 on By, |V¢| < ¢/R, where By is any open disc
with compact closure in Q2. Now (12) exactly corresponds to (2.4) in [BFZ], and with v :=
4/3 we end up with (2.5) of [BFZ], i.e. we deduce from (12) (choosing P = fBQR Vudx)

][szxgc[ ]fwwdxr ]fvzmr. )

Bar Bar

Noting that
|V2u| < c|Ve(u)| < c(|Vdivu| + |[VeP(u)|) < cHh,

(13) turns into

X
2

][H2 d:c] <c ][(hH)V dr. (14)

Br Br

But (14) is the starting inequality for applying Lemma 1.2 of [BFZ], provided we let
d:=2/y, f:= H", g := h" in the lemma. Note that as in Section 2 of [BFZ]| all the
assumptions of the lemma are satisfied since by (11)

O = (14 |2())) T € Wi ()

and therefore

/ exp(Bh?) dz < c(p, B) < 00
By

follows as outlined after (2.7) in [BFZ]. We conclude from the lemma that (with a suitable
constant cg)
H?1og®" (e + H)dx < ¢(8, p) < o0 (15)
By

is valid for any § > 0 and all p < 2R. Finally, let 0 := DW(e(u)). Then

Vol < e[| Vdiva| + (1 + P w)]?) " |VeP ()] < chH,

and we may proceed as in [BFZ] (see the calculations after (2.11)) to combine the latter
inequality with (15) in order to get

/ |Vo|?log®(e + |Vo|)dr < ¢(R, a) (16)
Br

for any o > 0 (compare (2.11) of [BFZ]). By results outlined in [KKM] (in particular
Example 5.3) (16) shows the continuity of o. Since e(u) = (DW)~!(o), the continuity of
e(u) follows as well. If v := Opu, k =1, 2, then

0= / DW (=(u)) (£(v) £(p)) dz (17)
Q

for all ¢ € C5°(2;R?), and (17) can be seen as an elliptic system with continuous coef-
ficients. Then we use Campanato-type estimates for systems with constant coefficients
(see, e.g. [GM]) combined with a freezing argument to deduce v € C%*(; R?), 0 < a < 1.
A detailed proof can be found for example in [ABF], Corollary 5.1, where of course the
incompressibility condition can be dropped. O
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