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Abstract

We prove interior C1,α-regularity of minimizing displacement fields for a class of
nonlinear Hencky materials in the 2D-case.

Let Ω ⊂ R2 denote a bounded open set on which the displacements u of an elastic body
are defined. If the case of linear elasticity is considered, then the elastic energy of the
deformation is given by

J0[u] =

∫

Ω

[1

2
λ(div u)2 + κ|ε(u)|2

]
dx, (1)

where λ, κ > 0 denote physical constants and ε(u) = 1
2
(∇u + ∇uT ) is the symmetric

gradient of u. In order to model a nonlinear material behaviour, in particular the nonlinear
Hencky material, see [Ze], (1) is replaced by the energy

J [u] =

∫

Ω

[1

2
λ(div u)2 + ϕ

(
|εD(u)|2

)]
dx (2)

for some nonlinear function ϕ. Here εD(u) is the deviatoric part of ε(u), i.e. εD(u) =
ε(u)− 1

2
(div u)1. The purpose of our short note is to investigate the regularity properties

of local minimizers of the functional J under suitable assumptions on the function ϕ.
To be precise and to have more flexibility, we replace the quantity ϕ(|εD(u)|2) in the
expression (2) for the energy by F (εD(u)), where F : S2 → [0,∞) is a function of class
C2 defined on the space S2 of all symmetric (2× 2)-matrices satisfying for some exponent
s ∈ (1,∞) and with positive constants a, A the ellipticity estimate

a
(
1 + |ε|2

) s−2
2 |σ|2 ≤ D2F (ε)(σ, σ) ≤ A

(
1 + |ε|2

) s−2
2 |σ|2 (3)

for all ε, σ ∈ S2.

DEFINITION 1 A function u from the Sobolev class W 1
1,loc(Ω;R2) is called a local min-

imizer of the functional

I[v,Ω] :=

∫

Ω

[λ
2

(div v)2 + F (εD(v))
]

dx (4)

iff I[u,Ω′] <∞ and I[u,Ω′] ≤ I[v,Ω′] for all v ∈ W 1
1,loc(Ω;R2) such that spt(u− v) b Ω′,

Ω′ being an arbitrary subdomain with compact closure in Ω.

Then we have
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THEOREM 1 Let u denote a local minimizer of the functional I[·,Ω] defined in (4)
with F satisfying (3). Then u is in the local Hölder space C1,α(Ω;R2) for any 0 < α < 1
provided that s ∈ (1, 4).

REMARK 1 In the case that s ≤ 2 the result from Theorem 1 in principle is a con-
sequence of the work of Frehse and Seregin [FrS] on plastic materials with logarithmic
hardening. They consider the function F (ε) = |ε| ln(1 + |ε|) but it is not hard to show
that their arguments actually cover the case of exponents s ≤ 2.

REMARK 2 For s ∈ (1, 2] the functional I[·,Ω] also serves as a model for plasticity
with power hardening, we refer to [Ka], [Kl] and [NH]. It is worth remarking that Seregin
proved partial regularity in the 3D-case for the above mentioned range of exponents, see
e.g. [Se1], [Se2].

Proof of Theorem 1. Let f(ε) := λ
2
(tr ε)2 + F (εD), ε ∈ S2. Here tr ε is the trace of the

matrix ε and εD = ε − 1
2
tr ε1. Clearly f : S2 → [0,∞) is of class C2 and satisfies for all

ε, σ ∈ S2

D2f(ε)(σ, σ) = λ(trσ)2 +D2F (εD)(σD, σD). (5)

If s ≥ 2, then (3) and (5) imply with positive constants ν and µ

ν|σ|2 ≤ D2f(ε)(σ, σ) ≤ µ
(
1 + |ε|2

) s−2
2 |σ|2 (6)

for arbitrary matrices ε, σ ∈ S2. If 1 < s < 2, then we observe (see (3) and (5))

D2f(ε)(σ, σ) ≥ λ
(
1 + |ε|2

) s−2
2 (trσ)2 + a

(
1 + |ε|2

) s−2
2 |σD|2

which follows from (1 + |ε|2)(s−2)/2 ≤ 1 and (1 + |ε|2)(s−2)/2 ≤ (1 + |εD|2)(s−2)/2. Thus, for
a suitable constant ν > 0 we find that

D2f(ε)(σ, σ) ≥ ν
(
1 + |ε|2

) s−2
2

[
|σD|2 + (tr σ)2

]
≥ ν

(
1 + |ε|2

) s−2
2 |σ|2,

and (see again (3))
D2f(ε)(σ, σ) ≤ λ(tr σ)2 + A|σD|2 ≤ µ|σ|2

for some µ > 0. Putting together both cases by letting q := max{2, s}, p := min{2, s} we
deduce from (6) and the calculations following (6) that

α
(
1 + |ε|2

)p−2
2 |σ|2 ≤ D2f(ε)(σ, σ) ≤ β

(
1 + |ε|2

) q−2
2 |σ|2 (7)

is true for all ε, σ ∈ S2 with constants α, β > 0. But in [BFZ] we showed that any local
minimizer u ∈ W 1

1,loc(Ω;R2) of the energy
∫

Ω
f(ε(v)) dx with f satisfying (7) is of class

C1,α in the interior of Ω provided that the exponents p and q are related through the
condition

q < min(2p, p+ 2). (8)

Recalling the definitions of p and q it is immediate that the latter condition on p and q
holds for s ∈ (1, 4). The reader should note that in [BFZ] all comparison functions have to
satisfy the incompressibility condition div v = 0 but of course the situation now simplifies
in comparison to [BFZ] and all results remain valid if this condition is dropped. �
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REMARK 3 If Ω is a domain in R3 and if F satisfies (3), then local minimizers u of
the functional I[·,Ω] are of class C1,α on an open subset Ω0 of Ω such that Ω − Ω0 is of
Lebesgue measure zero, provided s < 10/3. This follows from the results in [BF] if again
the incompressibility condition is neglected.

REMARK 4 If we replace the term λ
2
(div u)2 in the functional (4) by an expression like

g(div u) with function g of growth rate r ∈ (1,∞), then a regularity result like Theorem 1
follows along the lines of [BFZ] if we require (8) to hold with the choices q := max{s, r},
p := min{s, r}.

Let us now partially remove the restriction that s < 4.

THEOREM 2 Suppose that u ∈ W 1
1,loc(Ω;R2) is a local minimizer of the energy I[·,Ω]

defined in (4), where F satisfies (3) for some exponent s ≥ 4. Then the first derivatives of
u are α-continuous functions in the interior of Ω for any α ∈ (0, 1), provided we assume
that div u ∈ Lsloc(Ω).

Proof. We define the class

V :=
{
v ∈ L2(Ω;R2) : div v ∈ L2(Ω), εD(v) ∈ Ls(Ω; S2)

}

being the subspace of W 1
1,loc(Ω;R2) on which the functional I is well defined. If v ∈ V is

compactly supported in Ω, then it follows from

I[u, sptv] ≤ I[u+ tv, sptv], t ∈ R,

that ∫

Ω

[
λdiv u div v +DF (εD(u)) : εD(v)

]
dx = 0. (9)

For h ∈ R− {0} and k ∈ {1, 2} let

∆hw(x) :=
1

h
[w(x+ hek)− w(x)]

denote the difference quotient of the function w. For ϕ ∈ C∞0 (Ω) it is easy to check that
v := ∆−h(ϕ2∆h(u − Px)) is admissible in (9) for any constant matrix P . Following for
example the calculations carried out in [BF], it is not hard to show that after passing to
the limit h→ 0 the next inequality can be deduced (from now on summation w.r.t. k)

∫

Ω

D2W (ε(u))(∂kε(u), ∂kε(u))ϕ2 dx

≤ −
∫

Ω

D2W (ε(u))(∂kε(u),∇ϕ2 � ∂k[u− Px]) dx, (10)

where

W (σ) :=
λ

2
(trσ)2 + F (σD), σ ∈ S2,

� being the symmetric product of tensors. In particular, all the derivatives of u occuring
in (10) exist in the weak sense. Let

H :=
(
D2W (ε(u))(∂kε(u), ∂kε(u))

) 1
2
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and observe that H2 ∈ L1
loc(Ω) which can be justified in strength via difference quotient

technique but can be made plausible as follows: since we assume div u ∈ Lsloc(Ω), we have

ε(u) = εD(u) +
1

2
(div u)1 ∈ Lsloc(Ω; S2) ,

hence ∇u ∈ Lsloc(Ω;R2×2) by Korn’s inequality. If we apply the Cauchy-Schwarz inequality
to the bilinear form D2W (ε(u)), we get

∣∣∣D2W (ε(u))(∂kε(u),∇ϕ2 � ∂ku)
∣∣∣

≤ 2
[
D2W (ε(u))(∂kε(u), ∂kε(u))ϕ2

] 1
2
[
D2W (ε(u))(∇ϕ� ∂ku,∇ϕ� ∂ku)

] 1
2 .

Applying this estimate on the r.h.s. of (10) (choosing P = 0 for the moment) and using
Young’s inequality we obtain

∫

Ω

ϕ2H2 dx =

∫

Ω

ϕ2D2W (ε(u))(∂kε(u), ∂kε(u)) dx

≤ c

∫

Ω

|D2W (ε(u))||∇ϕ|2|∇u|2 dx

≤ c

∫

Ω

|∇ϕ|2(1 + |∇u|2)
s
2 dx <∞

on account of our assumption. This “shows” the local integrability of the function H 2,
and a similar argument gives that the integral on the r.h.s. of (10) is well defined. Note
that H2 ∈ L1

loc(Ω) is equivalent to

div ∂ku ∈ L2
loc(Ω),

(
1 + |εD(u)|2

) s−2
4 |∂kεD(u)| ∈ L2

loc(Ω). (11)

In fact, the definition of W implies for any ε, τ , σ ∈ S2

D2W (ε)(τ, σ) = λ(tr τ)(tr σ) +D2F (εD)(τD, σD),

thus
H2 = λ|∇div u|2 +D2F (εD(u))(∂kε

D(u), ∂kε
D(u))

and therefore (11) is immediate. Moreover, we have
∫

Ω

∣∣D2W (ε(u))(∂kε(u),∇ϕ2 � ∂k[u− Px])
∣∣dx

≤ c

∫

Ω

[
|∇div u||∇ϕ||∇u− P |+

(
1 + |εD(u)|2

) s−2
2 |∇εD(u)||∇ϕ||∇u− P

]
dx

≤ c

∫

Ω

(
1 + |εD(u)|2

) s−2
4 |∇u− P ||∇ϕ|

[
|∇div u|+

(
1 + |εD(u)|2

) s−2
4 |∇εD(u)|

]
dx

≤ c

∫

Ω

(
1 + |εD(u)|2

) s−2
4 |∇u− P |H|∇ϕ| dx.

Letting h := (1 + |εD(u)|2)(s−2)/4 and returning to (10) it is shown that
∫

BR

H2 dx ≤ c

R

∫

B2R

hH|∇u− P | dx, (12)
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provided we choose ϕ ∈ C∞0 (B2R), ϕ ≡ 1 on BR, |∇ϕ| ≤ c/R, where BR is any open disc
with compact closure in Ω. Now (12) exactly corresponds to (2.4) in [BFZ], and with γ :=
4/3 we end up with (2.5) of [BFZ], i.e. we deduce from (12) (choosing P =

∫
−
B2R
∇u dx)

∫
−
BR

H2 dx ≤ c

[ ∫
−
B2R

(Hh)γ dx

] 1
γ
[ ∫
−
B2R

|∇2u|γ dx

] 1
γ

. (13)

Noting that
|∇2u| ≤ c|∇ε(u)| ≤ c(|∇div u|+ |∇εD(u)|) ≤ cHh,

(13) turns into [ ∫
−
BR

H2 dx

] γ
2

≤ c

∫
−
BR

(hH)γ dx. (14)

But (14) is the starting inequality for applying Lemma 1.2 of [BFZ], provided we let
d := 2/γ, f := Hγ, g := hγ in the lemma. Note that as in Section 2 of [BFZ] all the
assumptions of the lemma are satisfied since by (11)

Φ :=
(
1 + |εD(u)|2

) s
4 ∈ W 1

2,loc(Ω)

and therefore ∫

Bρ

exp(βh2) dx ≤ c(ρ, β) <∞

follows as outlined after (2.7) in [BFZ]. We conclude from the lemma that (with a suitable
constant c0) ∫

Bρ

H2 logc0β(e +H) dx ≤ c(β, ρ) <∞ (15)

is valid for any β > 0 and all ρ < 2R. Finally, let σ := DW (ε(u)). Then

|∇σ| ≤ c
[
|∇div u|+

(
1 + |εD(u)|2

) s−2
2 |∇εD(u)|

]
≤ chH,

and we may proceed as in [BFZ] (see the calculations after (2.11)) to combine the latter
inequality with (15) in order to get

∫

BR

|∇σ|2 logα(e+ |∇σ|) dx ≤ c(R, α) (16)

for any α > 0 (compare (2.11) of [BFZ]). By results outlined in [KKM] (in particular
Example 5.3) (16) shows the continuity of σ. Since ε(u) = (DW )−1(σ), the continuity of
ε(u) follows as well. If v := ∂ku, k = 1, 2, then

0 =

∫

Ω

D2W (ε(u))(ε(v), ε(ϕ)) dx (17)

for all ϕ ∈ C∞0 (Ω;R2), and (17) can be seen as an elliptic system with continuous coef-
ficients. Then we use Campanato-type estimates for systems with constant coefficients
(see, e.g. [GM]) combined with a freezing argument to deduce v ∈ C0,α(Ω;R2), 0 < α < 1.
A detailed proof can be found for example in [ABF], Corollary 5.1, where of course the
incompressibility condition can be dropped. �
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