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Abstract

Matrix fields are becoming increasingly important in digital imag-
ing. In order to perform shape analysis, enhancement or segmenta-
tion of such matrix fields, appropriate image processing tools must
be developed. This paper extends fundamental morphological opera-
tions to the setting of matrices, in the literature sometimes referred
to as tensors despite the fact that matrices are only rank two tensors.
The goal of this paper is to introduce and explore two approaches to
mathematical morphology for matrix-valued data: One is based on a
partial ordering, the other utilises nonlinear partial differential equa-
tions (PDEs).
We start by presenting definitions for the maximum and minimum of
a set of symmetric matrices since these notions are the cornerstones
of the morphological operations. Our first approach is based on the
Loewner ordering for symmetric matrices, and is in contrast to the
unsatisfactory component-wise techniques. The notions of maximum
and minimum deduced from the Loewner ordering satisfy desirable
properties such as rotation invariance, preservation of positive semidef-
initeness, and continuous dependence on the input data.
These properties are also shared by the dilation and erosion processes
governed by a novel nonlinear system of PDEs we are proposing for
our second approach to morphology on matrix data. These PDEs are
a suitable counterpart of the nonlinear equations known from scalar
continuous-scale morphology. Both approaches incorporate informa-
tion simultaneously from all matrix channels rather than treating them
independently. In experiments on artificial and real medical positive
semidefinite matrix-valued images we contrast the resulting notions
of erosion, dilation, opening, closing, top hats, morphological deriva-
tives, and shock filters stemming from these two alternatives. Using a
ball shaped structuring element we illustrate the properties and per-
formance of our ordering- or PDE-driven morphological operators for
matrix-valued data.

Keywords: Mathematical morphology, dilation, erosion, matrix-valued im-
ages, diffusion tensor MRI, Loewner ordering, nonlinear partial differential
equation

Introduction

0.1 Motivation and Short Overview

Mathematical morphology has met the needs of the image processing com-
munity for nearly four decades. The story of success has started in the
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sixties with Serra’s and Matheron’s pioneering work on binary morphology
[26, 35], and continued with generalisations to greyscale morphology in the
eighties and proposed extensions of morphological concepts to vector-valued
images and image sequences. The variety in mathematical morphology is well
documented in many monographs, e.g. [20, 27, 36, 37, 38] and conference
proceedings, e.g. [16, 21, 39, 25, 15].

Nevertheless, the treatment of matrix-valued images is still at its infancy,
despite the fact that matrix fields have gained importance in recent years:

• First, diffusion tensor magnetic resonance imaging (DT-MRI) [4] is a
modern but commonly used medical imaging technique that measures
a 3×3 positive semidefinite matrix-field: A so-called diffusion tensor is
assigned to each voxel. This diffusion tensor describes the diffusive
property of water molecules. As such it reflects the geometry and
organisation of the tissue under examination and is a very valuable
tool for the diagnosis of multiple sclerosis and strokes [30].

• Second, the concept of tensors has been established as fruitful in image
analysis itself [17]: The structure tensor [13], for instance, (also called
Förstner interest operator, second moment matrix or scatter matrix)
is used for corner detection [19], but also for motion [5] and texture
analysis [31].

• Third, in civil engineering and solid mechanics anisotropic behaviour
is often described satisfactorily by inertia, diffusion and permittivity
tensors and stress-strain relationships

This variety of applications creates the need to develop appropriate tools for
the processing and analysis of tensor respectively matrix data: As in the
scalar case edges and shapes must be detected, noise removed and structures
must be enhanced. Treating the channels independently is a strategy which
is simple and close at hand. Along this line shift-invariant linear filters [44]
and adaptive nonlinear filters [18] for DT-MRI data have been designed, with
the drawback of ignoring any relation between the different matrix channels.
More advanced approaches have been based on the smoothing of derived
joint expressions such as the eigenvalues and eigenvectors of the matrix field
[11, 40] or its fractional anisotropy [29]. Again this boils down to scalar-
or/and vector-valued filtering with all its serious shortcomings.
Unlike vectors, matrices can be multiplied making, in effect, matrix-valued
polynomials and even functions of matrices a very useful notion that deci-
sively rely on the strong interplay between the different matrix entries. We
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emphasise once more that in our opinion only concepts of morphological fil-
ters for matrix data that take full advantage of the rich algebraic structure
offered by matrices will lead to convincing results.
Matrix-valued image processing methods that actually exploit the interaction
of the different matrix channels have been introduced for nonlinear regulari-
sation methods and related diffusion filters [40, 42]. The resulting nonlinear
structure tensor [42] has shown its use in motion estimation [7], texture
analysis [32] and unsupervised segmentation [6]. Matrix-channel interaction
also is an essential part in the approaches to median filtering [43], to active
contour and mean curvature motion models for tensor fields [12].

Encouraged by the numerous examples mentioned above where PDE-based
filter techniques have been extended to the matrix-valued setting it seems
worthwhile to search for a matrix-valued counterpart for PDE-driven greyscale
morphology captured in (1).

0.2 Our Contribution

In [9] the basic operations dilation and erosion as well as opening and closing
have been transfered to the matrix-valued setting at least for 2× 2 matrices.
However, the proposed approaches lack the continuous dependence on the
input matrices which, confirmed by experiments, renders them useless for
the design of morphological derivatives.
The novel approach in [10] using the so-called Loewner ordering for 2×2 ma-
trices overcomes this inadequacy. The non-trivial extension to higher-order
matrices has been achieved in [8] taking into account the detailed geometric
structure of the cone associated with the Loewner ordering.
The goal of this article is two-fold: First, we present the approach to morpho-
logical operators for matrix-valued images based on the Loewner ordering.
Second, we propose a novel matrix-valued analog of the nonlinear PDE (1).
The results of the two approaches will be juxtaposed for a number of mor-
phological operators ranging from the basic dilation/erosion over top-hats to
morphological derivatives and Laplacian.
The morphological operations to be defined either via Loewner ordering or
via nonlinear PDEs should work on the set Sym(n) of symmetric n × n

matrices and have to satisfy conditions such as:

(i) Continuous dependence of the basic morphological operations on the
matrices used as input for the aforementioned reasons,

(iii) preservation of the positive semidefiniteness of the matrix field since
DT-MRI data sets posses this property,
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(iii) rotational invariance in each voxel:
V >MO(A1, . . . , An)V = MO(V >A1V, . . . , V

>AnV ) for any
orthonormal matrix V and where MO stands for a standard morpho-
logical operation.

The article is structured as follows: The subsequent Section 1 gives a brief
account of the morphological operations we aim to extend to the matrix-
valued setting. In Section 2 we present the crucial maximum and minimum
operations for matrix-valued data based on the Loewner ordering. Section 3 is
devoted to the introduction and discussion of the matrix-valued counterpart
of the nonlinear diffusion equation (1). The results of our experiments with
various morphological operators employing the ordering or PDE approach
will be juxtaposed in Section 4. We use artificial matrix-fields as test data for
the sake of better comparability and judgment. The last Section 5 provides
concluding remarks.

1 Morphological and Mathematical

Preliminaries

In order to make this article as self-contained as possible we collect in this
section basic definitions and facts from morphology, matrix theory, and con-
vex analysis. The reader interested in a more detailed exposition is referred
to the literature cited below.

1.1 Basic Flat Morphology

Standard morphological operations employ the so-called structuring element
to work on images represented by scalar functions f(x, y) with (x, y) in the
image domain Ω, (x, y) ∈ Ω ⊂ IR2. Greyscale dilation ⊕, resp., erosion 	
w.r.t. B is defined by

(f ⊕ B) (x, y) := sup {f(x−x′, y−y′) | (x′, y′)∈B},
(f 	 B) (x, y) := inf {f(x−x′, y−y′) | (x′, y′)∈B}.

The combination of dilation and erosion gives rise to various other morpho-
logical operators such as opening and closing,

f ◦B := (f 	 B)⊕ B , f •B := (f ⊕ B)	 B ,

the white top-hat and its dual, the black top-hat

WTH(f) := f − (f ◦B) , BTH(f) := (f •B)− f ,
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finally, the self-dual top-hat, SDTH(f) := (f •B)− (f ◦B) .
The boundaries of objects are the loci of high greyvalue variations in an
image which can be detected by gradient operators. The so-called Beucher
gradient

%B(f) := (f ⊕B)− (f 	 B) ,

as well as the internal and external gradient,

%−B(f) := f − (f 	 B) , %+
B(f) := (f ⊕B)− f

are analogs to the norm of the gradient ‖∇f‖ if f is considered as a differ-
entiable image.
The application of shock filtering to matrix-valued data calls for an equivalent
of the Laplace operator ∆f = ∂xxf + ∂yyf appropriate for this type of data.
A morphological Laplacian has been introduced in [41]. However, we use a
variant given by

∆Bf := %+
B(f)− %−B(f) = (f ⊕B)− 2 · f + (f 	 B) .

This form of a Laplacian acts as the second derivative ∂ηηf where η stands
for the direction of the steepest slope. Therefore it allows us to distinguish
between influence zones of minima and maxima of the image f , a property
essential for the design of shock filters.
The idea underlying shock filtering is applying either a dilation or an erosion
to an image, depending on whether the pixel is located within the influence
zone of a minimum or a maximum [24]:

SBf :=











f ⊕B , trace(∆Bf) < 0,

f , trace(∆Bf) = 0,

f 	B , trace(∆Bf) > 0.

1.2 Continuous Morphology

In ([34, 33]) nonlinear partial differential equations were proposed that mimic
the process of dilation and erosion. For flat morphology with a ball as struc-
turing element this diffusion equation reads

∂ut = ±‖∇u‖, (1)

with initial condition u(x, y, 0) = f(x, y). Here f is the original image on the
image domain Ω and u its transformed versions. The PDE framework for
morphology has its advantages: The sophisticated machinery of numerical
solution methods for PDEs is at our disposal and, most important, this
continuous approach allows for sub-pixel accuracy.
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1.3 Convex Matrix Analysis

The set Sym(n) of symmetric n × n-matrices with real entries is a vector
space w.r.t. the usual rules for summation and multiplication by a scalar.
Sym(n) is endowed with the scalar product 〈A,B〉 :=

√

trace(A>B) giving

rise to the Frobenius norm for matrices: ‖A‖ =
√

∑n
i,j=1a

2
ij.

Symmetric matrices can be regarded as a generalisation of real numbers and
one can define functions h of those matrices [23]: Let diag(α1, . . . , αn) denote
a diagonal matrix with entries α1, . . . , αn. We define for a symmetric matrix
A ∈ Sym(n) with eigenvalue decomposition A = V diag(α1, . . . , αn)V > and
orthogonal matrix V the matrix h(A) by

h(A) := V diag(h(α1), . . . , h(αn))V > (2)

provided the αi‘s lie in the domain of definition of h. We observe that this
definition is rotational invariant and preserves symmetry, h(A) ∈ Sym(n).
The following example is of great importance for the subsequent exposition:
Specifying h as the absolute value function, h(x) = |x| associates with a
matrix A its absolute value |A|. This |A| denotes a positive semidefinite
matrix and must not be confused with the norm or determinant of A.
Symmetric matrices A that satisfy x>Ax ≥ 0 for all x ∈ IRn are commonly
called positive semidefinite. This gives rise to a natural partial ordering
on Sym(n), the so-called Loewner ordering defined via the set of positive
semidefinite matrices Sym+(n) by

A,B ∈ Sym(n) : A ≥ B :⇔ A− B ∈ Sym+(n),

i. e. A ≥ B if and only if A− B is positive semidefinite.

The notions of maximal and minimal matrices to be introduced in the fol-
lowing chapter will rely on the Loewner ordering. This makes it necessary to
give a brief account of some notions from convex analysis, for more details
the reader is referred to [2, 22], for example.

A subset C of a vector space V is called cone, if it is stable under addition
and multiplication with a positive scalar. Hence, the set Sym+(n) of positive
definite matrices is a cone, the ordering cone associated with the Loewner
ordering.
A subset B of a cone C is named base if every y ∈ C, y 6= 0 admits a unique
representation as y = r · x with x ∈ B and r > 0. For instance, the set of
positive semidefinite matrices with trace 1 form a base of Sym+(n). Observe
that this base {M ∈ Sym+(n) : trace(M) = 1} is convex and compact.

By far the most important points of a compact convex set are its extreme
points which can be characterised as follows: A point x is an extreme point
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of a convex subset S ⊂ V of a vector space V if and only if S \ {x} remains
convex.
The set of all extreme points of S is denoted ext(S). All extreme points are
necessarily boundary points, ext(S) ⊂ bd(S). The importance of the extreme
points becomes apparent in the theorems of Minkowski and Krein-Milman
which state that each convex compact set S in a finite dimensional vector
space can be reconstructed as the set of all finite convex combinations of its
extreme points [2, 22]:

S = convexhull(ext(S))

=

{

N
∑

i=1

λi ei |N ∈ IN, ei ∈ ext(S), λi ≥ 0, for i = 1, . . . , N,

N
∑

i=1

λi = 1

}

All the important information of a convex compact set is captured in its
extreme points.

The (topological) interior of Sym+(n) is the cone of positive definite matrices,
while its boundary consists of all matrices in Sym+(n) with a rank strictly
smaller than n. It is known [2] that the matrices v v> with unit vectors
v ∈ IRn, ‖v‖ = 1 are the extreme points of the base of Sym+(n). They have
by construction rank 1 and for any unit vector v we find v v>v = v · ‖v‖2 = v

which implies that 1 is the only non-zero eigenvalue, entailing trace(v v>)= 1 .
Because of this extremal property the matrices v v> with ‖v‖ = 1 carry the
complete information about the base of Loewner ordering cone and hence the
cone itself: convexhull({v v> : v ∈ IRn, ‖v‖ = 1}) is a base for the Loewner
ordering cone.

The concepts mentioned above can be visualised in the case n = 2, since it
is possible to embed Sym(2) in IR3 via the mapping

A = (aij)i,j=1,2 ←→
1√
2

(2a12, a22 − a11, a22 + a11)
> .

The transform is an isometry and maps {A ∈ Sym(2) : trace(A) = 0} onto
the x-y-plane. In figure 1 (a) the the image of the cone for the Loewner
ordering is indicated.
Manipulations with this ordering cone will put us in the position to define
suitable notions for maximal and minimal matrices of a given finite set of
symmetric matrices.

2 Morphology for Tensor Fields via Ordering

Before proceeding to define suitable notions for maximum and minimum of
a set of matrices it is essential to clarify what “suitable“ means. To do so we
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will focus on a modern medical image acquisition technique: Diffusion tensor
magnetic resonance imaging, DT-MRI.
This method measures the probability density function of displacements of
particles that are subject to a Brownian motion within a sample material.
The structure of material determines the movability of the particles, which
is reflected in properties of this probability density. In biomedical DT-MRI
the particles under consideration are water molecules performing random
movements in biological tissue due to thermal fluctuations. In a first approx-
imation the probability distributions are assumed to be Gaussian determined
by positive semidefinite co-variance matrices Σ and zero mean. The corre-
sponding isoprobability surfaces describe the diffusion. They depend on the
quadratic form associated with Σ, {x ∈ IR3 : x>Σ−2x = 1}, and hence they
are ellipsoids. In this respect the ellipsoids correspond exactly to the well-
known orbits of electrons in atoms or molecules.
The shape of the ellipsoid provides information about hindering and en-
hancing influences on the diffusion of water molecules at a voxel and there-
fore about the underlying microstructure of the tissue. The maximal ellip-
soid/matrix of a finite set of ellipsoids/matrices {Ei : i = 1, . . . , n} should
now reflect, in a minimal manner, the diffusion of a water molecule that
underlies all the enhancing influences represented by the Ei. Likewise for
the minimal ellipsoid/matrix: It should mirror all the hindering influences
represented by Ei.
In other words, the maximal ellipsoid should be as small as possible and
cover all Ei while the minimal ellipsoid should be as large as possible and be
contained in all Ei.
The maximal and minimal matrices in general will not belong to the set of
matrices they are bounding, and in view of the interpretation as isoprobabil-
ity surfaces, this would not even be desirable for DT-MRI data.

It is important to remark, that this rules out the straightforward component-
wise approach: It would lead to notions of maximal/minimal matrices whose
corresponding ellipsoids fulfill neither the “covering“ nor the “containing“
property just mentioned.
For detailed information about the acquisition of DT-MRI data the reader
might consult [3] or more recently, [1] and the literature cited therein.
Note that since the Loewner ordering for symmetric matrices solely relies on
quadratic forms, it is a natural concept to consider, and we will do so in the
next subsection.
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2.1 Maximal and Minimal Matrices in the Loewner
Ordering

The ordering cone of the Loewner ordering by definition consists of all the
matrices that are larger than the zero-matrix at its vertex. A reverted and
translated version of this cone then characterises the matrices that are smaller
than the matrix marking its vertex; the penumbra P (M) of a matrix M ∈
Sym(n) is the set of matrices N that are smaller than M w.r.t. the Loewner
ordering:

P (M) := {N ∈ Sym(n) : N ≤M} = M − Sym+(n) ,

where we used the customary notation a + r S := {a + r · s : s ∈ S} for a
point a ∈ V , a scalar r ∈ IR and a subset S ⊂ V .
Using this geometric description the problem of finding the maximum of a
set of matrices {A1, . . . , Am} amounts to determining the minimal penum-
bra covering their penumbras P (A1), . . . , P (Am). Its vertex represents the
maximal matrix A we are searching for and that dominates all Ai w.r.t the
Loewner ordering.
However, the cone itself is too complicated a structure to be handled directly.
Instead we associate with each matrix M ∈ Sym(n) a ball in the subspace {A :
trace(A) = 0} of all matrices with zero trace as a completely descriptive set.
For the sake of simplicity we will assume that trace(M)≥ 0. The enclosing
ball is constructed in two steps: First, from the statements above we conclude
that the set

{

M − trace(M) · convexhull{v v> : v ∈ IR, ‖v‖ = 1}
}

is a base
for P (M) contained in the subspace {A : trace(A) = 0}. We observe that
the identity matrix E is perpendicular to the matrices A from this subspace,
〈A,E〉 =

√

trace(A) = 0, and hence the orthogonal projection of M onto
{A : trace(A) = 0} is given by

m := M − trace(M)

n
E . (3)

Second, the extreme points of the base of P (M) are lying on a sphere with
center m and radius

r := ‖M − trace(M)v v> −m‖ = trace(M)

√

1− 1

n
. (4)

Consequently, if the center m and radius r of a sphere in {A ∈ Sym(n) :
trace(A) = 0} are given the vertex M of the associated penumbra P (M) is
obtained by

M = m+
r

n

1
√

1− 1
n

E . (5)
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Figure 1: (a) Left: Image of the Loewner cone Sym+(2). (b) Middle:
Cone covering four penumbras of other matrices. The tip of each cone rep-
resents a symmetric 2 × 2 matrix in IR3. Each of the cones (and hence its
generating matrix) is uniquely determined by its circular base. The minimal
disc covering the smaller discs belongs to the selected maximal matrix A.
(c) Right: The maximum (largest ellipse) and minimum (smallest ellipse)
of two 2× 2-matrices.

With this information at our disposal, we can reformulate the task of finding
a suitable maximal matrix A dominating the matrices {A1, . . . , Am}: The
smallest sphere enclosing the spheres associated with {A1, . . . , Am} deter-
mines the matrix A that dominates the Ai. It is minimal in the sense, that
there is no smaller one w.r.t. the Loewner ordering which has this “covering
property” of its penumbra.
This is a non-trivial problem of computational geometry and we tackle it by
using a sophisticated algorithm implemented by B. Gaertner [14]. Given a set
of points in IRd it is capable of finding the smallest ball enclosing these points.
Hence for each i = 1, . . . , m we sample within the set of extreme points
{Ai − trace(Ai)v v

>} of the base of P (Ai) by expressing v in 3d-spherical
coordinates, v = (sinφ cosψ, sinφ sinψ, cosφ) with φ ∈ [0, 2π[, ψ ∈ [0, π[.

Again we have the opportunity of visualisation in the case of 2× 2-matrices.
Then the extreme points are the matrices vv> with v> = (cosϕ, sinϕ) where
ϕ ∈ [0, 2π[. Hence the aforementioned descriptive sets are discs in the
x-y-plane determining the penumbras associated with the set of matrices.
The penumbras of the matrices {A1, . . . , Am} are covered with the minimal
penumbral cone whose vertex represents the desired maximal matrix A, see
figure 1 (b). This minimal cone is found by calculating the smallest circle, its
descriptive set, enclosing the discs stemming from the matrices {A1, . . . , Am}.
The geometric point of view allows us to connect the maximum of matrices
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w.r.t. the Loewner ordering to the maximum of real numbers. To this end
recall the formula

max(a1, a2) =
1

2
(a1 + a2) +

1

2
|a1 − a2| (6)

valid for any real numbers a1 and a2. Then an elementary calculation, fur-
nishing the smallest enclosing sphere of two spheres, reveals that the maximal
matrix dominating A1 and A2 obtained through

max(A1, A2) =
1

2
(A1 + A2) +

1

2
|A1 − A2| (7)

indeed coincides with the maximal matrix induced by the Loewner order-
ing. Note that an extension of this algebraic approach to sets of symmetric
matrices with more than two elements is not feasible. Formula 7 and the
corresponding expression for the minimum will play a vital role in the PDE-
framework for morphology.

Let us summarise the above construction in four steps: In order to determine
the maximal matrix A to a given set of matrices {A1, . . . , Am}

1. calculate their projections ai, i = 1, . . . , m according to (3),

2. determine the radii ri, i = 1, . . . , m, of the bases of their penumbras
through (4),

3. determine the centre and radius of the smallest ball enclosing these
bases,

4. recover the vertex of the associated penumbral cone via formula (5).

The minimal element A is obtained through the formula

A =
(

max(A−1
1 , . . . , A−1

m )
)−1

inspired by its well-known counterpart for real numbers. The construction
of maximal and minimal elements ensures their rotational invariance, their
positive semidefiniteness and continuity. These properties are passed on to
the above mentioned morphological operations.

3 PDE-Based Morphology for Tensor Fields

3.1 Matrix-Valued PDEs for Dilation and Erosion

As mentioned in the introduction the nonlinear PDEs that create a dilation
and erosion process corresponding to a ball-shaped structuring element for
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greyvalue images are given in [34] and read

∂ut = ±‖∇u‖ = ±
√

|∂xu|2 + |∂yu|2 + |∂zu|2 (8)

with initial condition u(x, y, z, t) = f(x, y, z). This equation contains the
gradient operator ∇ := (∂x, ∂y, ∂z)

> with its partial derivatives and the Eu-

clidean vector norm ‖(v1, v2, v3)
>‖ :=

√

v2
1 + v2

2 + v2
3. For both we have to

find suitable analogs for matrices.

It is important not to consider a matrix norm as the extension of the vector
norm in (8). We rather give the expressions on the right hand side of (8)
a new meaning in the framework of symmetric matrices aiming at a truly
matrix-valued nonlinear partial differential equation as the counterpart of
the scalar PDE (8).
To this end we have to clarify what a partial derivative, the absolute value
and a square root of a symmetric matrix is.
We define the equivalent ∂α of the partial derivative ∂α, spatial or temporal,
of a scalar function for a matrix-valued function U(x, y, z, t) = (Ui,j)i,j=1,...,n

by componentwise application of ∂α:

∂αU := (∂αUi,j)i,j=1,...,n (9)

Due to the linearity of matrix multiplication and differentiation the applica-
tion of ∂α

• preserves symmetry: U ∈ Sym(n) =⇒ ∂αU ∈ Sym(n),

• is rotational invariant:
∂α(WUW>) = W (∂αU)W> holds for any constant orthogonal matrix
W .

We remember the definition of a function of a symmetric matrix given in
2. Then, by using the specifications h(x) = |x|2 and h(x) =

√
x, we

have equipped the matrix-valued expression
√

|∂xU |2 + |∂yU |2 + |∂zU |2 with

meaning. With this at our disposal it is now possible to establish the matrix-
valued counterpart of (8):

∂Ut = ±
√

|∂xU |2 + |∂yU |2 + |∂zU |2 (10)

where “+“ governs the dilation-like, and “–“ rules the erosion-like diffusion
process.
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The expression on the right again is rotational invariant and produces pos-
itive, resp., negative semidefinite matrices depending on the choice of the
positive , resp., negative sign. Equation (10) truly exploits the matrix struc-
ture of the data since it describes a highly correlated system of nonlinear
partial differential equations in n× n unknowns.

3.2 A Matrix-Valued Variant of the Osher-Sethian-

Scheme

Inspired by numerical schemes for hyperbolic conservation laws Osher and
Sethian [28] proposed for the two-dimensional scalar dilation equation ∂tu =
√

(∂xu)2 + (∂yu)2 the numerical approximation

u(i, j)(n+1) − u(i, j)(n)

τ
=

=

[

(

min

(

u(i, j)(n) − u(i− 1, j)(n)

h1
, 0

))2

+

(

max

(

u(i+ 1, j)(n) − u(i, j)(n)

h1
, 0

))2

+

(

min

(

u(i, j)(n) − u(i, j − 1)(n)

h2

, 0

))2

+

(

max

(

u(i, j + 1)(n) − u(i, j)(n)

h2

, 0

))2
]1/2

=





(

(

u(i, j)(n) − u(i− 1, j)(n)

h1

)−
)2

+

(

(

u(i+ 1, j)(n) − u(i, j)(n)

h1

)+
)2

+

(

(

u(i, j)(n) − u(i, j − 1)(n)

h2

)−
)2

+

(

(

u(i, j + 1)(n) − u(i, j)(n)

h2

)+
)2




1/2

.

where, for instance, u(i, j)(n) stands for the value of the function u at (i ·
h1, j · h2) at n-th time step of size τ . We have also used the abbreviations
u+ = max(u, 0) and u− = min(u, 0). Aside from the obvious extension to
three dimensions we realise, that this scheme can be reinterpreted in terms
of symmetric matrices:
The scheme requires to perform subtractions and scalar multiplications, to
rise to the power of 2, to take the square roots, and to determine the maxi-
mum and minimum of two matrices. With the preparations in the subsection
above all these operations are at our disposal also in the case of symmetric
matrices. So we are allowed to replace the scalar function u by the n × n

matrix U to obtain a matrix-valued scheme for the matrix-valued PDE (10):
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U(i, j, k)(n+1) − U(i, j, k)(n)

τ
=

=





(

(

U(i, j, k)(n) − U(i− 1, j, k)(n)

h1

)−
)2

+

(

(

U(i + 1, j, k)(n) − U(i, j, k)(n)

h1

)+
)2

+

(

(

U(i, j, k)(n) − U(i, j − 1, k)(n)

h2

)−
)2

+

(

(

U(i, j + 1, k)(n) − U(i, j, k)(n)

h2

)+
)2

+

(

(

U(i, j, k)(n) − U(i, j, k − 1)(n)

h3

)−
)2

+

(

(

U(i, j, k + 1)(n) − U(i, j, k)(n)

h3

)+
)2




1/2

.

It is convenient to use formula (7) to calculate the maximum and its well-
known analog min(A1, A2) = 1

2
(A1+A2−|A1−A2|) to calculate the minimum

of two matrices A1, A2 ∈ Sym(n).
The numerical approximation for the PDE of the erosion differs from the one
for dilation only by a factor −1 and the exchange of minimum and maximum
operations. Hence it poses no further challenge and a detailed exposition is
skipped here for the sake of brevity.

4 Experimental Results

and their Comparison

In our numerical experiments we use an artificial 20 × 20 × 20-field as well
as an 128× 128× 30 field of 3-D positive definite matrices originating from
a 3-D DT-MRI data set of a human head, see figures 2, 7.
The data are represented as ellipsoids via the level sets of the quadratic form
{x>Ax : x ∈ IR3} associated with a matrix A ∈ Sym+(3). In using A−2 the
length of the semi-axes of the ellipsoid correspond directly with the three
eigenvalues of the positive definite matrix.
The artificial data constitute a cross-like structure where the ellipsoids in
the center of the cross are lense-shaped, the ones in the arms of the cross are
strongly elongated, while those outside the cross are simple balls.
For the ordering-based morphological operators a ball-shaped structuring
element of radius 2, in the sequel abbreviated by BSE(2), was used. As
pointed out in the previous section 3.2 the proposed matrix partial differential
equations (10) are solved numerically by a matrix-valued version of the Osher-
Sethian-scheme for dilation and erosion.
In general 4 iterations with a time step size of 0.5 were performed, resulting in
a stopping time of 2 which corresponds to the size of the structuring element.
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In the scalar setting the diffusion processes governed by (8) are followed by
a threshold operation. However, we refrained from doing so in order to avoid
additional parameters and their arbitrariness, especially in the matrix-valued
setting. The price to pay will be the presence of blurring, since the Osher-
Sethian-scheme already creates blurring in the scalar case, and one cannot
expect any better in the more complicated matrix-valued setting.
Due to the complexity of the not yet fully optimised procedures the running
time to obtain dilation and erosion is about two orders of magnitude longer
than in the case of comparable calculations with grey value data.

This blurring effect of the the numerical scheme is responsible for discrepan-
cies in the experimental results for the artificial data in the case of closing
and opening operations, figure 3, and consequently also in the case of the
top hat operations, figure 4. However, this discrepancy is not as prominent
for the medical images as can be seen in figures 8 and 9.
The image at the top of figure 2 displays the central slice of the original data
cube where the z-direction is perpendicular to the image plane. Figure 7 (a)
exhibits a 128× 128 layer of the medical data while (b) displays an enlarged
section near the upper right corner of (a).
In both cases the images below show the effect of dilation and erosion with
both the ball-shaped structuring element BSE(2) and their imitations with
the nonlinear PDEs (10). The results of both approaches are quite similar
and reasonable. As it is expected from scalar-valued morphology, the shape
of details in the dilated and eroded images correspond to the shape and size
of the structuring element.
Clearly visible in the images of the right column of figures 2 and 7 is the
blurring effect of the PDE-based approach. In view of the diffusive properties
of the Osher-Sethian scheme, this does not come as a surprise.
However, we believe this blurring effect of the the numerical scheme to be
responsible for discrepancies in the experimental results concerning the arti-
ficial data in the case of closing and opening operations, figure 3, and con-
sequently also in the case of the top hat operations, figure 4. However, this
discrepancy is not as prominent for the medical images as can be seen in fig-
ures 8 and 9. Obviously the concatenation of dilation and erosion enhances
the negative effects of the blurring introduced by the numerical scheme.
Fortunately, when it comes to the Beucher gradient as well as the internal
and the external gradient, the results from both approaches offer a striking
similarity. As visible in figures 5 and 10 the gradients (especially the one-
sided gradients) stemming from both approaches are able to detect edge-like
features. The PDE-based results look like slightly blurred versions of the
ordering based outcome.
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Figure 2: (a) Top: Central 2-D layer of an artificial 3-D positive definite
matrix field. (b) Middle left: Dilation based on Loewner ordering. (c)
Middle right: Dilation driven by PDE. (d) Bottom left: Erosion based
on Loewner ordering. (e) Bottom right: Erosion driven by PDE. We chose
the ball-shaped structuring element BSE(2) and stopping time 2.
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Figure 3: (a) Top left: Closing based on Loewner ordering. (b) Top
right: Closing driven by PDE. (c) Bottom left: Opening based on Loewner
ordering. (d) Bottom right: Opening driven by PDE. We chose the ball-
shaped structuring element BSE(2) and stopping time 2.
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Figure 4: (a) Top left: WTH based on Loewner ordering. (b) Top right:
WTH driven by PDE. (c) Middle left: BTH based on Loewner ordering.
(d) Middle right: BTH driven by PDE. (e) Bottom left: SDTH based
on Loewner ordering. (f) Bottom right: SDTH driven by PDE. We chose
the ball-shaped structuring element BSE(2) and stopping time 2.
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Figure 5: (a) Top left: Beucher gradient based on Loewner ordering. (b)
Top right: Beucher gradient driven by PDE. (c) Middle left: Internal
gradient based on Loewner ordering. (d) Middle right: Internal gradient
driven by PDE. (e) Bottom left: External gradient based on Loewner
ordering. (f) Bottom right: External gradient driven by PDE. We chose
the ball-shaped structuring element BSE(2) and stopping time 2.
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Figure 6: (a) Top left: Morphological Laplacian based on Loewner ordering.
(b) Top right: Morphological Laplacian driven by PDE. (c) Bottom left:
Shock filtering based on Loewner ordering. (d) Bottom right: Shock fil-
tering driven by PDE. We chose the ball-shaped structuring element BSE(2)
and stopping time 2.
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The Laplacian ∆m which is computed as the difference of the external and
internal gradient, produces positive definite matrices as well as indefinite
and negative definite ones. This is the explanation for the void areas in the
figures 6 (a) and 11 (b): Non-positive definite matrices cannot be displayed
as ellipsoids and hence are omitted. The effect of the Laplacian ∆B and its
use for steering a shock filter can be seen in figures 6 and 11: While applying
dilation in pixels where the trace of the Laplacian is negative, the shock filter
acts as an erosion wherever the trace of the Laplacian is positive. The output
are images where regions with larger and smaller eigenvalues are separated
more clearly than in the original image. This is true for both approaches
since there is a strong similarity between the corresponding results.

5 Conclusion

In this paper we have extended fundamental concepts of mathematical mor-
phology to the case of 3-dimensional matrix-valued data by two completely
different approaches.
Firstly, based on the Loewner ordering for symmetric matrices notions of
maximum and minimum of a set of symmetric 3× 3-matrices have been pro-
posed. These notions extend the corresponding scalar-valued concept. They
exhibit invariance, positivity, and continuity properties essential for their
use in the design of morphological operations for matrix-valued data. For
this reason we have succeeded to generalise not only standard morphological
operations but also morphological derivatives and shock filters to the matrix-
valued setting. The technique holds the potential to cope with 4×4-matrices
or larger.
Secondly, we generalised the nonlinear PDEs that simulate erosion and di-
lation to the matrix-valued setting. The corresponding nonlinear system of
PDEs provides a novel way to morphology for matrix fields.
Thirdly, in order to put these PDEs to use we introduced a matrix-valued
version of the scalar Osher-Sethian-scheme as a numerical method to solve
the proposed matrix-valued PDEs.
In the experimental part we have contrasted results achieved by the two
approaches for standard morphological operations as well as morphological
derivatives. Though completely different in their character the two methods
lead to very similar results in the case of dilation, erosion, derivatives, and
shock filtering. They feature the same characteristics as their scalar-valued
counterparts.
The resemblance in the case of morphological operations that rely on the
concatenation of dilation and erosion, namely closing, opening, and the top
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Figure 7: (a) Top left: A slice of a 3-D matrix field extracted from a DT-
MRI data set of a human head. (b) Top right: Enlargement of a section in
the upper right corner of (a). (c) Middle left: Dilation based on Loewner
ordering. (d) Middle right: Dilation driven by PDE. (e) Bottom left:
Erosion based on Loewner ordering. (f) Bottom right: Erosion driven by
PDE. We chose the ball-shaped structuring element BSE(2) and stopping
time 2.
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Figure 8: (a) Top left: Closing based on Loewner ordering. (b) Top
right: Closing driven by PDE. (c) Bottom left: Opening based on Loewner
ordering. (d) Bottom right: Opening driven by PDE. We chose the ball-
shaped structuring element BSE(2) and stopping time 2.
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Figure 9: (a) Top left: WTH based on Loewner ordering. (b) Top right:
WTH driven by PDE. (c) Middle left: BTH based on Loewner ordering.
(d) Middle right: BTH driven by PDE. (e) Bottom left: SDTH based
on Loewner ordering. (f) Bottom right: SDTH driven by PDE. We chose
the ball-shaped structuring element BSE(2) and stopping time 2.
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Figure 10: (a) Top left: Beucher gradient based on Loewner ordering. (b)
Top right: Beucher gradient driven by PDE. (c) Middle left: Internal
gradient based on Loewner ordering. (d) Middle right: Internal gradient
driven by PDE. (e) Bottom left: External gradient based on Loewner
ordering. (f) Bottom right: External gradient driven by PDE. We chose
the ball-shaped structuring element BSE(2) and stopping time 2.
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Figure 11: (a) Top left: Morphological Laplacian based on Loewner or-
dering. (b) Top right: Morphological Laplacian driven by PDE. (c) Bot-
tom left: Shock filtering based on Loewner ordering. (d) Bottom right:
Shock filtering driven by PDE. We chose the ball-shaped structuring element
BSE(2) and stopping time 2.
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hat operators, is not as striking. We see the reason for that in the blurring
effects caused by the Osher-Sethian scheme.
However, the development of discontinuity-preserving numerical schemes ca-
pable of capturing adequately the behaviour of morphological operations is
work in progress.
Ongoing research comprises also the exploration of the potential of the PDE-
driven approach involving speed functions. The development of more so-
phisticated morphological operations for matrix fields as well as methods to
improve performance is work in progress.
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