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Abstract

Optic flow describes the displacement field in an image sequence. Its reliable computation
constitutes one of the main challenges in computer vision, and variational methods belong
to the most successful techniques for achieving this goal. Variational methods recover the
optic flow field as a minimiser of a suitable energy functional that involves data and smooth-
ness terms. In this paper we present a survey on different model assumptions for each of
these terms and illustrate their impact by experiments. We restrict ourselves to rotationally
invariant convex functionals with a linearised data term. Such models are appropriate for
small displacements. Regarding the data term, constancy assumptions on the brightness, the
gradient, the Hessian, the gradient magnitude, the Laplacian, and the Hessian determinant
are investigated. Local integration and nonquadratic penalisation are considered in order to
improve robustness under noise. With respect to the smoothness term, we review a recent
taxonomy that links regularisers to diffusion processes. It allows to distinguish five types
of regularisation strategies: homogeneous, isotropic image-driven, anisotropic image-driven,
isotropic flow-driven, and anisotropic flow-driven. All these regularisations can be performed
either in the spatial or the spatiotemporal domain. After discussing well-posedness results
for convex optic flow functionals, we sketch some numerical ideas in order to achieve real-
time performance on a standard PC by means of multigrid methods, and we survey a simple
and intuitive confidence measure.

Key Words: computer vision, optic flow, variational methods, partial differential equations.
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1 Introduction

Finding the displacement field between subsequent frames of an image sequence has become a
classical computer vision problem. This displacement field is called optic flow. Solving the optic
flow problem does not only have an impact in fields like video coding or robot navigation, it is
also a prototype for the entire class of correspondence problems, where one seeks a sufficiently
smooth mapping that maps the features in one image to the structures in another one. Other
applications where such problems appear include the fields of stereo reconstruction and medical
image registration.
Already in 1981, Horn and Schunck introduced the first variational method for computing the
optic flow field in an image sequence [44]. This method is based on two assumptions that
are characteristic for many variational optic flow methods: a brightness constancy assumption
and a smoothness assumption. These assumptions enter a continuous energy functional whose
minimiser yields the desired optic flow field.
Performance evaluations such as [9, 35] showed that variational methods belong to the best
performing techniques for computing the optic flow field. It is thus not surprising that a lot
of research has been carried out in order to improve these techniques even further: These
amendments include refined model assumptions with discontinuity-preserving constraints [2,
28, 42, 62, 65, 73, 91] or spatiotemporal regularisation [11, 61, 92], improved data terms with
modified constraints [3, 26, 62, 74] or nonquadratic penalisation [11, 43, 56, 26], and efficient
multigrid algorithms [15, 22, 39, 38, 78, 95] for minimising these energy functionals.
The goal of the present chapter is to analyse the data term and the smoothness term in detail
and to survey some of our recent results on variational optic flow computation. For the sake of
simplicity we focus on small displacements, where Taylor linearisations of the data term are valid
approximations. This restriction allows to consider convex functionals where many theoretical
and practical aspects become significantly easier and more transparent.
Our chapter is organised as follows: In Section 2 we sketch the general structure of these
techniques. While Section 3 analyses the data term in more detail, a discussion of the different
possibilities for smoothness constraints is given in Section 4. Suitable combinations of data and
smoothness tersm are investigated in Section 5, well-posedness results are presented in Section
6, and algorithmic aspects are sketched in Section 7. A simple but general confidence measure
for energy-based optic flow methods in discussed in Section 8. Our chapter is concluded with
a summary in Section 9. A significantly shorter early version of the present chapter has been
presented at a workshop [90].

2 General Structure

Let f(x1, x2, x3) denote some scalar-valued image sequence, where (x1, x2) is the location and x3

denotes time. Often f is obtained by preprocessing some initial image sequence f0 by convolving
it with a Gaussian Kσ of standard deviation σ:

f = Kσ ∗ f0. (1)

Let us assume that Dkf describes the set of all partial (spatial and temporal) derivatives of f of
order k, and that the optic flow field u(x1, x2, x3) = (u1(x1, x2, x3), u2(x1, x2, x3), 1)

> gives the
displacement rate between subsequent frames with temporal frame distance 1. In the present
paper we consider variational methods that are based on the minimisation of the continuous
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energy functional

E(u) =

∫

Ω

(M(Dkf, u)
︸ ︷︷ ︸

data term

+α S(∇f,∇u)
︸ ︷︷ ︸

regulariser

) dx (2)

where the integration domain Ω is either a spatial or a spatiotemporal domain. In the spatial case
we have x := (x1, x2)

> and ∇ := ∇2 := (∂x1
, ∂x2

)>, and in the spatiotemporal case we use the
notations x := (x1, x2, x3)

> and ∇ := ∇3 := (∂x1
, ∂x2

, ∂x3
)>. The optic flow field u(x1, x2, x3) is

obtained as a function that minimises E(u). The energy functional E(u) penalises all deviations
from model assumptions. Typically is consists of a data term M(Dkf, u) which expresses e.g.
a brightness constancy assumption, and a regulariser S(∇f,∇u) with ∇u := (∇u1,∇u2)

> that
penalises deviations from (piecewise) smoothness. The weight α > 0 serves as regularisation
parameter: Larger values correspond to more simplified flow fields.
The simplest and oldest representative of the class (2) is given by the method of Horn and
Schunck [44]. It is based on the minimisation of the spatial functional

E(u) =

∫

Ω

(

(u>∇3f)2 + α

2∑

i=1

|∇ui|2
)

dx. (3)

As will be detailed in the forthcoming sections, the Horn–Schunck functional combines a data
term that describes the brighness constancy of moving patterns with a smoothness term which
involves homogeneous (Tikhonov [79]) regularisation.
It should be noted that continuous energy functionals of type (2) may be formulated in a rota-
tionally invariant way: Apart from very few exceptions such as [6, 28, 52], almost all continuous
optic flow functionals that have been proposed are rotationally invariant. Results from numerical
analysis then show that consistent discretisations approximate this invariance under rotations
arbitrarily well if the sampling is sufficiently fine. Moreover, if the energy functional is convex,
a unique minimiser exists that can be found in a relatively simple way by globally convergent
algorithms. Variational optic flow methods are global methods: If there is not sufficient local
information, the data term M(Dkf, u) is so small that it is dominated by the smoothness term
αS(∇f,∇u) which fills in information from more reliable surrounding locations. Thus, in con-
trast to local methods, the filling-in effect of global variational approaches always yields dense
flow fields and no subsequent interpolation steps are necessary: Everything is automatically
accomplished within a single variational framework.

3 Data Terms

In the design of data terms for optic flow methods prior knowledge plays an important role.
This knowledge may include information on the imaging device (e.g. the quality of the images
with respect to noise), on the conditions during the acquisition of the video material (e.g. the
occurrence of frequent illumination changes) as well as information on the expected type of
motion (e.g. mainly translational motion of cars in traffic sequences). For a specific problem,
this information may allow to select a data term that is especially appropriate and thus improves
the quality of the estimation significantly. For this reason, the following section gives an overview
on data terms that are frequently used in literature. Moreover, a detailed discussion on their
advantages and shortcomings should guide the reader to select an appropriate data term for a
specific problem.
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3.1 Constancy Assumptions

In order to analyse motion within subsequent frames of an image sequence, temporal constancy
has to be imposed on certain image features. The most frequently used feature in this context
is the image brightness. Many differential methods are based on the assumption that this
brightness is constant, i.e. that the grey value of objects does not change over time. If we denote
the motion of some image structure by (x1(x3), x2(x3))

> this assumptions can be formulated as

df(x1(x3), x2(x3), x3)

dx3

= 0. (4)

By applying the chain rule and defining fxi
:= ∂xi

f the following optic flow constraint (OFC)
is obtained:

fx1
u1 + fx2

u2 + fx3
= 0. (5)

Note that the optic flow field satisfies (u1, u2, 1)
> = (∂x3

x1, ∂x3
x2, 1)

>.
It also is instructive to derive this constraint in a second way: Assuming a frame distance of 1,
the brightness constancy constraint between two subsequent frames at time x3 and x3 + 1 can
be expressed as

0 = f(x1+u1, x2+u2, x3+1) − f(x1, x2, x3) (6)

such that (5) follows from a Taylor linearisation in the point (x1, x2, x3)
>. However, this Taylor

linearisation is only a reasonable approximation if the flow field varies sufficiently smooth and
the displacement rates are small, i.e. in the order of one pixel or below. In the following we
assume that this is the case, because it would be much more burdensome to deal with the
unlinearised constraint (6) than its linearised counterpart (5).
In order to use equation (5) within the energy functional (2), we penalise all deviations from
zero by considering the quadratic data term [44]

M1(D
1f, u) := (u>∇3f)2. (7)

As long as the image data does not violate the brightness constancy assumption, the use of M1

can give good results. In particular with regard to image data with non-constant brightness,
however, constancy assumptions should be based on image features that are less sensitive to illu-
mination changes. A simple and efficient strategy in this context is the consideration of deriva-
tives. Instead of imposing constancy to the image brightness f along the path (x1(x3), x2(x3))

>,
one may e.g. assume that the spatial brightness gradient (fx1

, fx2
)> does not change along the

same path [83]:

dfx1
(x1(x3), x2(x3), x3)

dx3

= 0, (8)

dfx2
(x1(x3), x2(x3), x3)

dx3

= 0. (9)

This gives the two equations

u>∇3fx1
= 0, (10)

u>∇3fx2
= 0. (11)

Squaring and adding them produces the data term

M2(D
2f, u) :=

2∑

i=1

(u>∇3fxi
)2. (12)
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In a straightforward way, constancy assumptions can also be imposed on higher-order derivatives,
e.g. on the (spatial) Hessian H2f . Squaring and adding the corresponding equations we obtain
the following data term:

M3(D
3f, u) :=

2∑

i=1

2∑

j=1

(u>∇3fxixj
)2. (13)

With M2 and M3 we have proposed data terms that are designed for sequences with illumination
changes. However, one should note that their performance depends significantly on the occurring
type of motion. This has the following reason: In contrast to the image brightness both gradient
and Hessian contain directional information. As a consequence, any constancy assumption
on these expressions implies a constancy assumption on their orientation. On one hand, this
property may be useful if it comes to the estimation of translational, divergent or slow rotational
motion. In this case the orientation of the features does hardly change and the combination
of two or three constraints in one data term may improve the results. On the other hand,
poor results have to be expected if fast rotations are dominating and the implied orientation
constancy does not hold.
A way to overcome this limitation is to create motion invariant image features from these
”oriented” derivatives. Instead of imposing constancy on the (spatial) brightness gradient and
therewith on its orientation, one may e.g. assume that only its magnitude is constant over time.
Then, the following data term is obtained:

M4(D
2f, u) := (u>∇3|∇f |)2. (14)

This idea can also be extended to higher-order derivatives. As an example, let us consider
the (spatial) Hessian H2f . In this case, one may either think of imposing constancy on the
(spatial) Laplacian ∆2f or on the determinant of the (spatial) Hessian H2f . While the data
term associated to the Laplacian is given by

M5(D
3f, u) := (u>∇3(∆2f))2, (15)

the data term based on the constancy of the determinant of the Hessian reads

M6(D
3f, u) := (u>∇3 det(H2f))2. (16)

This example shows that in general multiple of such scalar valued expressions can be derived
from the set of derivatives of a single order. However, there is no general rule which expression
gives the best performance. An overview of all data terms presented so far is given in Table
1. It may also be useful to combine multiple of these terms by means of a linear combination.
Moreover, one should note that M2–M6 can be more sensitive to noise than M1, since they
involve higher orders of derivatives of the image sequence.
In Figure 1 we illustrate the impact of different constancy assumptions on the computed flow
field. To this end we use the data terms M1–M6 within a spatial energy functional based on
homogeneous regularisation of Horn–Schunck type, i.e. we minimise

E(u) =

∫

Ω

(

Mj + α

2∑

i=1

|∇ui|2
)

dx. (17)

for j = 1,...,6. As test sequence we take the popular Yosemite sequence with clouds. It consists of
15 frames of size 316×252 and combines divergent and translational motion under varying illumi-
nation. Both the sequence and its ground truth flow field are available from ftp://csd.uwo.ca
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Table 1: Comparison of the data terms M1–M6.

data term constancy assumption illum. changes motion type

M1 (u>∇3f)2 brightness no any

translational

M2

2∑

i=1

(u>∇3fxi
)2 gradient yes divergent

slow rotational

translational

M3

2∑

i=1

2∑

j=1

(u>∇3fxixj
)2 Hessian yes divergent

slow rotational

M4 (u>∇3|∇f |)2 gradient magnitude yes any

M5 (u>∇3(∆2f))2 Laplacian yes any

M6 (u>∇3 det(H2f))2 Hessian determinant yes any

under the directory pub/vision. In order to allow for a quantitative comparison of the different
data terms we computed the so-called average angular error (AAE) as proposed in [9] :

AAE(uc,ue) =
1

|Ω|

∫

Ω

arccos

(
u>

c ue

|uc||ue|

)

dx. (18)

In this context the subscripts c and e denote the correct respectively the estimated spatiotem-
poral optic flow vectors uc = (uc1, uc2, 1)

> and ue = (ue1, ue2, 1)
>. Moreover, |Ω| =

∫

Ω
dx is

the integration domain, and |u| =
√

u2
1
+ u2

2
+ 1. The obtained results for optimised Gaussian

presmoothing parameter σ (cf. equation (1)) and regularsiation parameter α are presented in
Table 2. As one can see, the commonly used grey value constancy assumption is outperformed
by almost all other constraints that involve higher derivatives. This quantitative impressions
are also confirmed qualitatively by the corresponding flow fields shown in Figure 1. While M1

gives slightly better results at the mountain site, the other data terms are significantly superior
in estimating the sky region where illumination changes are present. This shows that it can
be worthwhile to replace the brightness constancy constraint by constraints that involve higher
derivatives, in particular when varying illumination has to be expected. We also observe that
constancy assumptions based on higher order derivatives require a larger Gaussian width σ in
order to give optimal results.

3.2 Increasing the Robustness of the Data Term

With M1–M6 we have proposed data terms for different illumination conditions and different
types of motion. Let us now discuss by the example of M1 how these data terms can be modified
such that they become more robust. To this end we investigate three strategies: local least square
fitting, adaptive averaging with nonlinear diffusion, and nonquadratic penalisation.
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Figure 1: From left to right, and from top to bottom: (a) Frame 8 of the Yosemite sequence with
clouds of size 316× 256. (b) Ground truth. (c) Computed flow field for a spatial approach with
data term M1 (brightness constancy) and homogeneous regularisation as smoothness term. (d)
Data term M2 (gradient constancy). (e) Data term M3 (constancy of Hessian). (f) Data term
M4 (gradient magnitude constancy). (g) Data term M5 (constancy of Laplacian). (h) Data term
M6 (constancy of Hessian determinant).
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Table 2: Impact of the constancy assumption on the quality of the optic flow field. We used
a spatial energy functional with homogeneous regularisation, and computed the average angu-
lar error (AAE) for the Yosemite sequence with clouds. The parameters σ and α have been
optimised.

constancy assumption data term σ α AAE

brightness M1 1.30 500 7.17◦

gradient M2 2.10 20 5.91◦

Hessian M3 2.70 1.8 6.46◦

gradient magnitude M4 1.90 14 6.37◦

Laplacian M5 2.50 3.0 6.18◦

Hessian determinant M6 3.00 0.1 8.10◦

3.2.1 Local Least Square Fitting

A useful strategy to make optic flow estimation more robust under noise is the consideration of
neighbourhood information within the data term [26]. To this end one may e.g. assume that
the optic flow is constant within some spatial or spatiotemporal neighbourhood of size ρ. Then,
simple statistical methods such as least square regressions can be applied to estimate the flow
vector from the considered neighbourhood [54]. In this context it is common to decrease the
weight of neighbours with increasing distance to the center. Let us now apply such a Gaussian
weighted least square fit to M1 = u>∇3f ∇3f

>u. Then the corresponding data term reads

M7(D
1f, u) := u>Jρ(∇3f)u (19)

where the structure tensor (see e.g. [10, 33, 69]

Jρ(∇3f) := Kρ ∗ (∇3f ∇3f
>) (20)

results from componentwise Gaussian convolution of the tensor product J0 = ∇3f ∇3f
>. In this

case the standard deviation ρ of the Gaussian Kρ is called integration scale. One should note
that for ρ = 0 this least square fit by minimising M7 comes down to the original data term M1.

3.2.2 Adaptive Averaging with Nonlinear Diffusion

Although the preceding integration of local information by means of a Gaussian convolution is
a good concept for achieving robustness under noise, the integration relies on the underlying
assumption that the optic flow field is constant within the local neighbourhood described by
the Gaussian kernel. Especially in the area of discontinuities in the flow field this assumption
is not valid, and thus the Gaussian convolution compromises the flow estimation. As a remedy,
one can assume that the flow field is only piecewise constant. Then one replaces the (linear)
structure tensor in (20) that is based on Gaussian convolution – or equivalently linear diffusion
– by a nonlinear structure tensor [89, 20] that uses nonlinear tensor-valued diffusion for the local
integration. Since nonlinear diffusion reduces the amount of smoothing at discontinuities, it
avoids the integration of unrelated data beyond these discontinuities and therefore leads to less
ambiguity in the least square regression.
Since the structure tensor is a matrix field, a matrix-valued scheme for nonlinear diffusion is
needed. Such a scheme is proposed in [81] where the matrix channels are coupled by a joint
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Table 3: Comparison of data terms M1, M2, M7 and M8 under noise. We added Gaussian noise
with varying standard deviations σn to the Yosemite sequence with clouds and used a spatial
energy functional with homogeneous regularisation to compute the average angular error (AAE).
The parameters σ, α, ρ, and t have been optimised.

noise data term σ α integration parameter AAE

σn = 0 M1 1.30 500 - 7.17◦

M2 2.10 20 - 5.91◦

M7 1.30 500 ρ = 1.80 7.14◦

M8 1.30 300 t = 250 6.97◦

σn = 20 M1 2.08 2200 - 12.17◦

M2 3.60 35 - 12.26◦

M7 2.09 1600 ρ = 10.70 11.71◦

M8 2.10 1600 t = 225 11.76◦

σn = 40 M1 2.45 4100 - 16.80◦

M2 4.20 55 - 18.00◦

M7 2.38 2000 ρ = 17.60 15.82◦

M8 2.40 2500 t = 500 16.29◦

diffusivity. With J0 = ∇3f∇3f
> as initial value for the nonlinear diffusion process

∂tĴij = div
(

g
( 3∑

k,l=1

|∇Ĵkl|2
)

∇Ĵij

)

(i, j = 1, 2, 3) (21)

the solution Ĵt constitutes a nonlinear structure tensor for a certain diffusion time t. The
diffusion time is the scale parameter of the nonlinear structure tensor, similar to the standard
deviation of the Gaussian kernel used in (20), and steers the size of the local neighbourhood. The
so-called diffusivity function g is a decreasing function that reduces the amount of smoothing
at discontinuities in the data. An appropriate choice is the regularised total variation (TV)
diffusivity [5]

g(s2) = ε1 +
1

√

s2 + ε2
2

(22)

where the small positive constants ε1 and ε1 are introduced for theoretical reasons and in order
to avoid unbounded diffusivities. In practice they can be set, for instance, to 0.001.
If we apply the nonlinear structure tensor to M1, we obtain the data term

M8(D
1f, u) := u>Ĵt(∇3f)u, (23)

which is a nonlinear alternative to M7.
Alternative ways of creating adaptive structure tensors are studied in [63] and [19]. It is also
worth noting that if one chooses the diffusivity function

g(s2) = 1 (24)

one ends up with homogeneous diffusion, which does not adapt to the data. Homogeneous
diffusion with diffusion time t is equivalent to Gaussian convolution with standard deviation

9



Figure 2: (a) Left: Frame 8 of the Yosemite sequence with clouds degraded by Gaussian of
standard deviation σn = 40. (b) Right: Computed flow field for a spatial approach with data
term M7 (least squares) and homogeneous smoothness term.

ρ =
√

2t. This shows the direct relation between the employment of the structure tensor Jρ and
the nonlinear structure tensor Ĵt.

In our second experiment we compare different data terms regarding their robustness under noise.
To this end we have added Gaussian noise with zero mean and varying standard deviation σn

to the Yosemite sequence with clouds. Apart from the data terms M7 and M8 that are based
on the concept of local integration, we also considered the ordinary data terms M1 and M2.
As expected, the results in Table 3 show a better performance of the data terms M7 and M8

when noise is present. Figure 2 depicts the corresponding flow field for the data term M7 and
σn = 40. Although the original sequence was degraded severely, the computed flow field still
looks reasonable. In this context one should also note the worse performance of M2. It shows
that higher-order derivatives are more sensitive to noise.

3.2.3 Nonquadratic Penalisation

So far we have only considered data terms that penalise deviations from constancy assumptions
in a quadratic way. From a statistical viewpoint, however, it seems desirable to penalise outliers
less severely than in a quadratic setting. In particular with regard to the preservation of discon-
tinuities in the data term, this concept from robust statistics [41, 45] proves to be very useful;
see e.g. [11, 43, 56]. In order to guarantee well-posedness for the remaining problem and allow
the construction of simple globally convergent algorithms it is advantageous to use penalisers
Ψ(s2) that are convex in s. Such penalisers comprise e.g. the regularised TV penaliser [70, 64]

Ψ(s2) = ε2
1 s2 + 2

√

s2 + ε2
2
, (25)

where ε1 and ε2 are small positive constants.
In Figure 3 the graphs of the corresponding functions are depicted. Apart from TV penalisation
also an example for a nonconvex function is shown. However, one should note that in the case of
such nonconvex functions multiple minima have to be expected. As a consequence, minimisation
strategies do usually not succeed in finding the global minimum. Let us now replace the quadratic

10



Table 4: Comparison of data terms M7–M10 and their suitability for respecting discontinuities
in the image sequence.

data term concept discontinuities

M7 u>Jρ(∇3f)u least squares no

M8 u>Ĵt(∇3f)u nonlinear diffusion yes

M9 Ψ((u>∇3f)2) nonquadratic penaliser yes

least squares
M10 Ψ(u>Jρ(∇3f)u) and yes

nonquadratic penaliser

penaliser in M1 and M7 by one of the proposed convex functions. Then we obtain the data terms
given by

M9(D
1f, u) := Ψ((u>∇3f)2),

M10(D
1f, u) := Ψ(u>Jρ(∇3f)u).

An overview on the data terms M7–M10 and their capability of handling discontinuities in the
data is given in Table 4.
In our last experiment on the impact of data terms we investigate the advantages of nonquadratic
penalisers. This is done in Table 5 where the terms M1, M9 and M10 are compared. Again,
the listed results refer to the Yosemite sequence with clouds. Obviously, one can improve the
average angular error by replacing the quadratic penaliser with a nonquadratic one. The reason
for this improvement can be found in Figure 4. It depicts a zoom into the lower left corner of
frame 8 and 9, the ground truth as well as the computed flow fields for the different data terms.
As one can see, those boundary pixels from frame 8 that are not present in frame 9 have a large
impact on the estimated flow field when penalised in a quadratic way. By using a nonquadratic
approach, however, their influence is reduced significantly. As a consequence, the estimation at
these locations becomes more precise and the average angular error decreases.

Figure 3: Comparison of different penalising functions. From left to right: (a) Tikhonov
(quadratic). (b) Total variation (linear). (c) Example of a nonconvex function.
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Table 5: Comparison of quadratic and nonquadratic penalisers for the data term M1 (brightness
constancy). We used a spatial energy functional with homogeneous regularisation, and computed
the average angular error (AAE) for the Yosemite sequence with clouds. The parameters σ, α

and ρ have been optimised.

penaliser data term σ α ρ AAE

quadratic M1 1.30 500 - 7.17◦

nonquadratic M9 1.40 190 - 7.08◦

nonquadratic + least squares M10 1.40 200 2.0 6.76◦

Figure 4: From left to right: (a) Detail from Frame 8 of the Yosemite sequence with clouds
(48×128 pixels). (b) Frame 9. (c) Ground truth. (d) Computed flow field for a spatial approach
with data term M1 (quadratic penaliser) and homogeneous regularisation. (e) Data term M9

(nonquadratic penaliser). (f) Data term M10 (nonquadratic penaliser and least squares).

4 Smoothness Terms

So far we have analysed different possibilities for modelling the data term. Let us now explore
different models for the smoothness term. This is done in two steps: First we survey a taxonomy
that links the regularisers in optic flow functionals to vector-valued diffusion processes. In
a second step we investigate the impact of replacing a spatial smoothness assumption by a
spatiotemporal one.

4.1 A Diffusion Taxonomy for Smoothness Terms

A taxonomy of the different possibilities to design smoothness constraints has been presented
in [91]. It exploits the connection between regularisation methods and diffusion filtering. In
order to describe this taxonomy we derive the steepest descent equations for the optic flow
functionals. Since they come down to a diffusion–reaction system, we analyse diffusion filters
for vector-valued images. Finally we transfer this classification into the optic flow setting.
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4.1.1 From Energy Functionals to Diffusion–Reaction Systems

Minimising the energy functional (2) can be done in two ways:
One possibility is to compute the so-called Euler–Lagrange equations. They constitute necessary
conditions a minimiser of E(u) has to satisfy [29, 36]. In the specific case of a spatial energy
functional (2) they are given by the two-dimensional system of partial differential equations
(PDEs)

0 = ∂x1
Su1x1

+ ∂x2
Su1,x2

− 1

α
∂u1

M, (26)

0 = ∂x1
Su2x1

+ ∂x2
Su2,x2

− 1

α
∂u2

M (27)

equipped with homogeneous Neumann (reflecting) boundary conditions. The term Sui,xj
denotes

the partial derivative of S with respect to ∂xj
ui.

Alternatively we can minimise E(u) by means of the steepest descent method. In the case of
a spatial functional we obtain a system of two-dimensional diffusion–reaction equations, where
the diffusion term results from the regulariser S(∇f,∇u), and the reaction term is induced by
the data term M(Dkf, u):

∂tu1 = ∂x1
Su1,x1

+ ∂x2
Su1,x2

− 1

α
∂u1

M, (28)

∂tu2 = ∂x1
Su2,x1

+ ∂x2
Su2,x2

− 1

α
∂u2

M (29)

The parameter t is a pure numerical parameter that should not be confused with the time x3 of
the image sequence. If E(u) is strictly convex, a unique minimiser exist and the steepest descent
evolution is globally convergent, i.e. its steady–state does not depend on the initialisation.
For t → ∞, this steady–state of the diffusion–reaction system is given by the Euler–Lagrange
equations (26)–(27).
Since we are interested in a taxonomy for optic flow regularisers, it it sufficient to restrict
ourselves to the diffusion part of (28)–(29). This leads to the vector-valued diffusion process

∂tui = ∂xi
Sui,x1

+ ∂xi
Sui,x2

(i = 1, 2). (30)

In order to get a better understanding of such processes, it is instructive to make a little excursion
to diffusion filters for multichannel images. This shall be done next, following the description in
[89].

4.1.2 Diffusion of Vector-Valued Images

Vector-valued images arise for example as colour images, multispectral satellite images and multi-
spin echo MR images. Diffusion filtering of some multichannel image f = (f1(x), ..., fm(x))>

with x ∈ IR2 may be based on one of the following evolutions:

(a) Homogeneous diffusion (introduced in [46] in the scalar case):

∂tui = ∆ui (i = 1, ...,m) (31)

(b) Linear isotropic diffusion (introduced in [34] in the scalar case):

∂tui = div
(

g
( ∑

j

|∇fj|2
)

∇ui

)

(i = 1, ...,m) (32)
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(c) Linear anisotropic diffusion (introduced in [47] in the scalar case):

∂tui = div
(

D
( ∑

j

∇fj∇f>
j

)

∇ui

)

(i = 1, ...,m) (33)

(d) Nonlinear isotropic diffusion [37]:

∂tui = div
(

g
( ∑

j

|∇uj |2
)

∇ui

)

(i = 1, ...,m) (34)

(e) Nonlinear anisotropic diffusion [87]:

∂tui = div
(

D
(∑

j

∇uj∇u>
j

)

∇ui

)

(i = 1, ...,m) (35)

where f(x) acts as initial condition for the solution u(x, t):

ui(x, 0) = fi(x) (i = 1, ...,m). (36)

Here, g denotes a scalar-valued diffusivity, and D is a positive definite diffusion matrix. The
diffusivity g(s2) is a decreasing function in its argument. Moreover, we assume that the flux
function g(s2)s is nondecreasing in s. One may e.g. use the regularised TV diffusivity (22). In
the linear case this ensures that at edges of the initial image f , where

∑

j |∇fj|2 is large, the

diffusivity g(
∑

j |∇fj|2) is close to zero. Consequently, diffusion at edges is inhibited. In the
nonlinear case one introduces a feedback by adapting the diffusivity g to the evolving image u. In
physics, a diffusion process with a scalar-valued diffusivity is called isotropic, since its diffusive
behavior does not depend on the direction. Anisotropic diffusion with a direction depending
behavior may be realised by replacing the scalar-valued diffusivity g by some positive definite
diffusion matrix D. One may design the diffusion matrix D such that diffusion along edges of f

or u is preferred and diffusion across edges is inhibited. This may be very useful in cases when
noisy edges are present.
How can edge directions in some vector-valued image f be measured? Di Zenzo [30] has proposed
to consider the matrix

∑

j ∇fj∇f>
j . It serves as a structure tensor for vector-valued images since

its eigenvectors v1, v2 describe the directions of highest and lowest contrast. This contrast is
given by the corresponding eigenvalues µ1 and µ2.
A natural choice for the design of some diffusion matrix D as a function of a vector-valued image
f would thus be to specify its eigenvectors as the eigenvectors v1, v2 of

∑

j ∇fj∇f>
j , and its

eigenvalues λ1, λ2 via

λ1 = g(µ1), (37)

λ2 = g(µ2), (38)

with a diffusivity function g as e.g. in (22).
Three remarks are in order here:

1. The fact that in the preceding models the same diffusivity or diffusion matrix is used for all
channels ensures that the evolutions between the channels are synchronised. This prevents
e.g. that discontinuities evolve at different locations in each channel.
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2. Let J ∈ IR2×2 be symmetric with eigenvectors v1, v2 and eigenvalues µ1, µ2:

J = µ1v1v
>
1 + µ2v2v

>
2 . (39)

A formal way to extend some scalar-valued function g(s2) to a matrix-valued function g(J)
is to define

g(J) := g(µ1)v1v
>
1 + g(µ2)v2v

>
2 . (40)

With this notation we may characterise the linear and nonlinear isotropic models by their
diffusivities g(

∑

j ∇f>
j ∇fj) and g(

∑

j ∇u>
j ∇uj), while their anisotropic counterparts are

given by g(
∑

j ∇fj∇f>
j ) and g(

∑

j ∇uj∇u>
j ). Hence, isotropic and anisotropic models

only differ by the location of the transposition.

3. The preceding models are not the only PDE methods that have been proposed for pro-
cessing vector-valued images. For alternative approaches the reader is referred to [14, 50,
72, 82, 88] and the references therein. Our classification is based on diffusion processes in
divergence form that can be derived as steepest descent methods for minimising suitable
energy functionals.

Figure 5 illustrates the effect of the different smoothing strategies for a noisy color image with
three channels corresponding to the red, green and blue components. We observe that homo-
geneous diffusion performs well with respect to denoising, but does not respect image edges.
Space-variant linear isotropic diffusion, however, may suffer from noise sensitivity as strong
noise may be misinterpreted as an important edge structure where the diffusivity is reduced.
Anisotropic linear diffusion allows smoothing along edges, but reduces smoothing across them.
This leads to a better performance than isotropic linear diffusion if images are noisy. We can
also observe that nonlinear models give better results than their linear counterparts. This is not
surprising, since the nonlinear models adapt the diffusion process to the evolving image instead
of the initial one.

4.1.3 From Vector-Valued Diffusion to Optic Flow Regularisation

Having discussed a taxonomy for vector-valued diffusion, we can transfer it to the optic flow
setting. The idea is to identify the optic flow regularisers S(∇f,∇u) that produce homogeneous,
linear isotropic, linear anisotropic, nonlinear isotropic, and nonlinear anistropic diffusion. It
should be noted that now that we returned to the optic flow setting, f denotes the image
sequence again, and u is the flow field.
The simplest optic flow regulariser is the homogeneous regularisation of Horn and Schunck
[44]. This quadratic regulariser of type S(∇u) = |∇u1|2 + |∇u2|2 penalises all deviations from
smoothness of the flow field. It can be related to linear diffusion with a constant diffusivity.
Thus, the flow field is blurred in a homogeneous way such that motion discontinuities may
loose sharpness and get dislocated. It is thus not surprising that people have tried to construct
a variety of discontinuity-preserving regularisers. Depending on the structure of the resulting
diffusion term, we can classify a regulariser S(∇f,∇u) as image-driven or flow-driven, and
isotropic or anisotropic.
For image-driven regularisers, S is not only a function of the flow gradient ∇u but also of the
image gradient ∇f . This function is chosen in such a way that it respects discontinuities in the
image data. If only the gradient magnitude |∇f | matters, the method is called isotropic. It can
avoid smoothing at image edges. An anisotropic technique depends also on the direction of ∇f .
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Figure 5: Diffusion filtering of colour images. (a) Top left: Noisy color image. (b) Top right:
Homogeneous diffusion. (c) Middle left: Linear isotropic diffusion. (d) Middle right: Linear
anisotropic diffusion. (e) Bottom left: Nonlinear isotropic diffusion. (f) Bottom right: Nonlinear
anisotropic diffusion. From [89].
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Table 6: Vector-valued diffusion processes and their corresponding optic flow regularisers. In
the diffusion context, f denotes the vector-valued initial image and u its evolution. In the optic
flow setting, f is the scalar-valued image sequence and u describes the optic flow field.

vector-valued diffusion process optic flow regulariser
∂tui = ∂x1

Suix1
+ ∂x2

Suix2
S(∇f,∇u)

homogeneous homogeneous

∂tui = ∆ui S1 =
2∑

i=1

|∇ui|2

(scalar case: Iijima 1959 [46]) (Horn/Schunck 1981 [44])

linear isotropic image-driven, isotropic

∂tui = div
(

g(
∑

j |∇fj|2) ∇ui

)

S2 = g(|∇f |2)
2∑

i=1

|∇ui|2

(scalar case: Fritsch 1992 [34]) (Alvarez et al. 1999 [2])

linear anisotropic image-driven, anisotropic

∂tui = div
(

g(
∑

j ∇fj∇f>
j ) ∇ui

)

S3 =
2∑

i=1

∇u>
i D(∇f)∇ui

(scalar case: Iijima 1962 [47]) (Nagel 1983 [60])

nonlinear isotropic flow-driven, isotropic

∂tui = div
(

Ψ′(
∑

j |∇uj |2) ∇ui

)

S4 = Ψ
( 2∑

i=1

|∇ui|2
)

(Gerig et al. 1992 [37]) (Schnörr 1994 [73])

nonlinear anisotropic flow-driven, anisotropic

∂tui = div
(

Ψ′(
∑

j ∇uj∇u>
j ) ∇ui

)

S5 = trace Ψ
( 2∑

i=1

∇ui∇u>
i

)

(Weickert 1994 [87]) (Weickert/Schnörr 2001 [91])
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Figure 6: (a) Top left: Detail from Frame 16 of the Marble sequence (128× 128 pixels). (b) Top
right: Computed optic flow magnitude for a spatial approach with data term M1 (brightness
constancy) and smoothness term S1 (homogeneous regularisation). (c) Middle left: Smoothness
term S2 (image-driven isotropic regularisation). (d) Middle right: Smoothness term S3 (image-
driven anisotropic regularisation). (e) Bottom left: Smoothness term S4 (flow-driven isotropic
regularisation) (f) Bottom right: Smoothness term S5 (flow-driven anisotropic regularisation).
From [91].
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Typically it reduces smoothing across edges of f (i.e. along ∇f), while smoothing along edges
of f is still permitted. Image-driven regularisers can be related to linear diffusion processes.
Flow-driven regularisers take into account discontinuities of the unknown flow field u by pre-
venting smoothing at or across flow discontinuities. If the resulting diffusion process uses a
scalar-valued diffusivity that only depends on |∇u|2 := |∇u1|2 + |∇u2|2, it is an isotropic pro-
cess. Cases where also the direction of ∇u1 and ∇u2 matters are named anisotropic. Flow-driven
regularisers lead to nonlinear diffusion processes.
Table 6 gives an overview of the different regularisers and their corresponding diffusion filters. As
a rule of thumb, one can expect that flow-driven regularisers offer advantages over image-driven
ones for highly textured sequences, where the numerous texture edges create an oversegmentation
of the flow field. Moreover, anisotropic methods may give somewhat better results than isotropic
ones, since the latter ones are too “lazy” at noisy discontinuities.
Figure 6 presents an experiment that illustrates the impact of the smoothness terms we have
discussed so far. We compare the regularisers S1–S5 from Table 6 within a spatial approach
based on the brightness constancy assumption M1. In order to illustrate their impact on the
flow field, we use the 512 × 512 Marble scene by Otte and Nagel. This sequence that is
available at http://i21www.ira.uka.de/image-sequences consists of 31 frames and requires
the estimation of flow discontinuities within a globally translational motion. Figure 6 depicts a
zoom into the computed flow fields, where one of these discontinuities is shown. The performance
of the different regularisers is not surprising: Homogeneous regularisation is fairly blurry and
cannot preserve the discontinuity. Flow-driven and image-driven regularisers perform better
whereby the usage of flow information offers advantages in textured regions. And finally, one
observes that anisotropic regularisation yields slightly more accurate results than the isotropic
one.

4.2 Spatiotemporal Regularisation

While our general functional (2) allows either spatial or spatiotemporal models, the regularisers
that we have discussed so far use only spatial smoothness constraints. Thus, it would be natural
to impose some amount of (piecewise) temporal smoothness as well. Let us now investigate what
happens if we consider such spatiotemporal models.
Going from spatial to spatiotemporal models is not very difficult in principle: All one has to do
is to replace the spatial integration domain Ω in (2) by a spatiotemporal one, and to consider
spatiotemporal instead of spatial derivatives. As a resulting steepest descent method, one obtains
the three-dimensional diffusion–reaction system

∂tu1 = ∂x1
Su1,x1

+ ∂x2
Su1,x2

+ ∂x3
Su1,x3

− 1

α
∂u1

M, (41)

∂tu2 = ∂x1
Su2,x1

+ ∂x2
Su2,x2

+ ∂x3
Su2,x3

− 1

α
∂u2

M (42)

instead of its two-dimensional counterpart (28)–(29).
In practice, spatiotemporal models have not been used too often so far. An early suggestion
for spatiotemporal anisotropic image-driven regularisers goes back to Nagel [61], followed by
spatiotemporal flow-driven approaches such as [11, 92]. It appears that the limited memory
of previous computer architectures prevented many researchers from studying approaches with
spatiotemporal regularisers, since they require to keep the entire image stack in the computer
memory. On contemporary PCs, however, these memory requirements are no longer a severe
restriction in most cases. With respect to the computing time, the additional requirements are
moderate if the entire sequence has to be analysed anyway. Often spatiotemporal models reward
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Figure 7: (a) Left: Detail of Frame 8 of the Copenhagen hallway sequence. (b) Middle: Com-
puted flow field for the spatial approach with data term M1 (brightness constancy) and smooth-
ness term S4 (isotropic flow-driven regularisation). (c) Right: Ditto for the spatiotemporal
approach. From [92].

their users by significantly improved optic flow estimates. It is thus likely that spatiotemporal
regularisers will become more important in the future.
In Figure 7 we study the effect of replacing spatial by spatiotemporal regularisation. This is
done by the example of the 256× 256 Copenhagen hallway sequence by Olsen and Nielsen. This
real-world sequence consists of 16 frames and shows a person who walks along a hallway towards
the camera. Comparing the quality of both flow fields, one sees that the additional assumption of
temporal smoothness may lead to significantly improved results. In particular the displacements
of fast moving body parts such as arms and legs are estimated with a much higher precision.

5 Experiments with Suitable Combinations

In the previous experiments we have focused either on the data or on the smoothness term. Let
us now present experiments that illustrate how useful suitable combinations of these terms are.
We start by considering a spatial approach with the least square regression data term M7 and
homogeneous regulariser S1. Then we replace the quadratic penalisers in both the data and the
smoothness term by nonquadratic penalising functions. Thus, a spatial approach with data term
M10 and isotropic flow-driven regulariser S4 is obtained. And finally, the energy functionals of
both the original and the modified variant are extended to the spatiotemporal domain.
A comparison of these four approaches is performed in Table 7 where average angular errors
for the Marble sequence are listed. The improvements of the results thereby clearly show that
established concepts in data and smoothness term should be combined in order to obtain the
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Figure 8: (a) Top left: Frame 16 of the Marble sequence. (b) Top right: Ground truth mag-
nitude. (c) Middle left: Computed flow field for a spatial approach with data term M7 (least
squares) and smoothness term S1 (homogeneous regularisation). (d) Middle right: Ditto with
data term M10 (nonquadratic and least squares) and smoothness term S4 (isotropic flow-driven
regularisation). (e) Bottom left: Spatiotemporal approach with data term M7 (least squares)
and smoothness term S1 (homogeneous regularisation). (f) Bottom right: Ditto with data term
M10 (nonquadratic and least squares) and smoothness term S4 (isotropic flow-driven regulari-
sation). Adapted from [26].
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Table 7: Results for different combinations based on local integration. The average angular
error (AAE) has been computed for the Marble sequence. Adapted from [26].

approach data term smoothness term AAE

2-D quadratic M7 S1 5.30◦

2-D nonquadratic M10 S4 5.14◦

3-D quadratic M7 S1 2.06◦

3-D nonquadratic M10 S4 1.70◦

Table 8: Comparison between results from the literature with 100 % density and our results using
a 3-D functional with data term M11 (nonquadratic penalised gradient constancy) and smooth-
ness term S4 (isotropic flow-driven regulariser). All data refer to the Yosemite sequence with
cloudy sky. Multiscale means that some focusing strategy using linear scale-space or pyramids
has been applied. AAE = average angular error.

technique multiscale AAE

Horn/Schunck, original [9] no 31.69◦

Singh, step 1 [9] no 15.28◦

Anandan [9] no 13.36◦

Singh, step 2 [9] no 10.44◦

Nagel [9] no 10.22◦

Horn/Schunck, modified [9] no 9.78◦

Uras et al., unthresholded [9] no 8.94◦

Alvarez/Weickert/Sánchez [3] yes 5.53◦

Mémin/Pérez (IEEE TIP) [56] yes 5.38◦

Bruhn/Weickert/Schnörr [26] no 5.18◦

Mémin/Pérez (ICCV ’98) [57] yes 4.69◦

2-D nonquadratic / gradient constancy (M11 + S4) no 3.50◦

3-D nonquadratic / gradient constancy (M11 + S4) no 2.78◦

best performance. This is also confirmed by Figure 8, where we depict the computed flow fields.
One can see that each component contributes to the overall improvement: The non-quadratic
data term improves the estimation for outliers in the boundary region, the flow-driven isotropic
regulariser allows a better preservation of the discontinuities at the marbled blocks and the
temporal extension produces a more homogeneous estimation of the floor.
In a second experiment we replace the brightness constancy assumption within M10 by the
gradient constancy assumption used in M2. Let us denote this new data term by M11. In Table
8 the resulting spatial and spatiotemporal approach are compared to other methods from the
literature, when being applied to the Yosemite sequence with clouds. With 2.78◦ respectively
3.50◦ very low average angular errors are obtained1. The corresponding flow fields for the
spatiotemporal method are depicted in Fig. 9. Obviously, they match the ground truth very
well. This shows that sophisticated variational approaches belong to the qualitatively best
performing optic flow methods.

1This method has been further modified in [18] where it yielded the best results in the literature so far.
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Figure 9: (a) Top left: Ground truth for the Yosemite sequence with clouds. (b) Top right: Mag-
nitude of the ground truth. (c) Bottom left: Computed flow field for a spatiotemporal approach
with data term M11 (nonquadratic gradient constancy) and smoothness term S4 (isotropic flow-
driven regularisation). (d) Bottom right: Magnitude of the computed flow field.

6 Well-Posedness Results

One specific advantage of convex variational methods for optic flow computations results from
the fact that they allow a rigorous mathematical analysis. As an example, the following result
has been proven in [91] for spatial or spatiotemporal energy functionals with the brightness
constancy assumption as data term M1 and any of the smoothness terms S1,...,S5:

Theorem (Well-Posedness of Optic Flow Functionals).
Assume that the following properties hold:

(a) The penalising function Ψ(s2) is differentiable and strictly convex in s ∈ IR.

(b) There exist c1, c2 > 0 such that c1s
2 ≤ Ψ(s2) ≤ c2s

2 for all s.

(c) The initial data are sufficiently smooth: f ∈ H 1(Ω).

(d) fx1
and fx2

are linearly independent in L2(Ω) and have finite L∞(Ω) norm.

Then the (spatial or spatiotemporal) energy functional

E(u) =

∫

Ω

(

〈u,∇3f〉2 + α Sj(∇f,∇u)
)

dx (43)
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with j ∈ {1,...,5} has a unique minimiser w := (u1, u2) ∈ H1(Ω) × H1(Ω) =: H.
It depends in a continuous way on the image sequence f .

The proof of this theorem combines methods from [75] and from [91] where two essential prop-
erties are required:

1. In order to guarantee strict convexity of the smoothness term, a convexity estimate for
matrices is needed:
Let Ψ : IR → IR be strictly convex, A and B two positive semidefinite symmetric m × m

matrices with A 6= B, and β ∈ (0, 1). Then

trace Ψ(βA + (1−β)B) < β trace Ψ(A) + (1−β) trace Ψ(B). (44)

2. On the other hand, strict convexity of the data term requires to address degeneracies by
showing that there exists a constant c > 0 such that

∫

Ω

(

(∇f>w)2 + γ|∇w|2
)

dx ≥ c ‖w‖2
H , ∀w ∈ H. (45)

It should be noted that such a well-posedness proof is much more than a pure theoretical result:
In practise it also guarantees e.g. stability of the optic flow field with respect to noise that
perturbs the image data. In this sense it is the real reason behind the high robustness that
distinguishes good variational approaches from a number of alternative ways to estimate the
optic flow field. For alternative ways to obtain well-posedness results for optic flow functionals
we refer to [6, 7, 43].

7 Algorithms

For the numerical minimisation of the energy functional (2), two strategies are used very fre-
quently:
In the first strategy, one discretises the parabolic diffusion–reaction system (28), (29) and recov-
ers the optic flow field as the steady–state solution for t → ∞. The simplest numerical scheme
would be an explicit (Euler forward) finite difference scheme [58, 59, 76]. More efficient methods
include semi-implicit approaches that offer better stability properties at the expense of the need
to solve linear systems of equations.
Alternatively, one can directly discretise the elliptic Euler-Lagrange equations (26), (27), either
by finite differences [58, 59, 76] or finite elements [27, 85]. This also requires to solve large
linear or nonlinear systems of equations. Efficient methods for this task include successive
overrelaxation (SOR) methods [84, 94], preconditioned conjugate gradient (PCG) algorithms
[55, 71] and multigrid techniques [16, 17, 40, 80, 93].
Figure 10 illustrates an example of a full multigrid cycle with 4 levels. Such strategies have
been used in [22, 23] for finding the minimum of a variational approach with data term M2

and a homogeneous regulariser. Thus, it was possible to compute up to 18 dense flow fields
of size 316 × 252 pixels on 3.06 GHz Pentium 4 PC within a single second. Table 9 compares
the performance of this numerical scheme to widely used iterative solvers like the Gauß-Seidel
method or its extrapolated SOR variant. As one can see, the full multigrid cycle is almost three
orders of magnitude more efficient than the Gauß-Seidel relaxation scheme and 13 times faster
than the SOR method. Even frequently used coarse-to-fine strategies without error correction
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Figure 10: Example of a full multigrid implementation for four levels. Starting from a coarse
scale the solution is refined step by step. From [22].

Table 9: Performance benchmark for the 316×252 Yosemite sequence with clouds. FPS = frames
per second. Runtimes refer to the computation of all 14 frames with a numerical precision of
10−3. The implementation was done in C on a 3.06 GHz Pentium 4 PC. The obtained average
angular error is 7.17◦. From [22].

solver iterations/frame runtime [s] FPS [s−1] speedup

Gauß–Seidel 21931 543.799 0.026 1

SOR 286 10.140 1.381 54

Gauß–Seidel, coarse-to-fine 237 8.399 1.667 65

SOR, coarse-to-fine 25 1.723 8.125 316

full multigrid 1 0.768 18.229 708

steps are outperformed clearly. This shows that computational efficiency is no problem for
variational optic flow methods, when state-of-the-art numerical methods are used.
While this example refers to a quadratic energy functional that leads to linear Euler–Lagrange
equations, it is also possible to achieve real-time performance with nonquadratic functionals that
give rise to nonlinear Euler–Lagrange equations. This is shown in [24] as well as in [25] where a
larger variety of methods is studied.

8 A Simple and General Confidence Measure

While global, energy-based optic flow methods yield dense flow fields due to the filling-in effect,
it is clear that the flow estimates cannot have the same reliability at all locations. It would thus
be interesting to find a confidence measure that allows to assess the reliability of a dense optic
flow field. In 1994 Barron et al. [9] have identified the absence of such good measure as one
of the main drawbacks of energy-based global optic flow techniques: Simple heuristics such as
using |∇f | as a confidence measure did not work well. As a remedy, we present a confidence
measure that is not only very simple, but also suited for any variational optic flow method. In
our description we follow [26].
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Figure 11: Confidence criterion for the Yosemite sequence with clouds. (a) Left: Locations with
the lowest contributions to the energy (20 % quantile). The non-black grey values depict the
optic flow magnitude. (b) Right: Locations where the angular error is lowest (20 % quantile).

Since the energy functional E penalises deviations from model assumptions by summing up the
deviations Ei from all pixels i in the image domain, it appears natural to use Ei for assessing the
local reliability of the computation. All we have to do is to consider the cumulative histogram
of the contributions Ei of all pixels i ∈ {1,...,N} in the image domain. As an approximation to
the p percent locations with the highest reliability, we look for the p percent locations where the
contribution Ei is lowest. There are very efficient algorithms available for this purpose; see e.g.
[67, Section 8.5].
Let us now evaluate the quality of our energy-based confidence measure. To this end we consider
the spatiotemporal energy functional with the local least square fit data term M7 and the
isotropic flow-driven regulariser S4. In [26], this technique is named 3-D CLG (combined local–
global) method. Figure 11(a) depicts the 20 % quantile of locations where the 3-D CLG method
has lowest contributions to the energy. A comparison with Figure 11(b) – which displays the
result of a theoretical confidence measure that would be optimal with respect to the average
angular error – demonstrates that the energy-based confidence method leads to a fairly realistic
sparsification of flow fields. In particular, we observe that this confidence criterion is very
successful in removing the cloudy sky regions. These locations are well-known to create large
angular errors in many optic flow methods [9]. A number of authors have thus only used the
modified Yosemite sequence without cloudy sky, or they have neglected the flow values from the
sky region for their evaluations [8, 12, 13, 31, 32, 48, 49, 53, 77]. As we have seen one may get
significantly lower angular errors than for the full sequence with cloudy sky.
A quantitative evaluation of our confidence measure is given in Table 10. Here we have used the
energy-based confidence measure to sparsify the dense flow field such that the reduced density
coincides with densities of well-known optic flow methods. Most of them have been evaluated by
Barron et al. [9]. We observe that the sparsified 3-D CLG method performs very favourably: It
has a far lower angular error than all corresponding methods with the same density. In several
cases there is an order of magnitude between these approaches. At a flow density of 2.4 %, an
average angular error of 0.76 ◦ is reached. To our knowledge, these are the best values that have
been obtained for this sequence in the entire literature. It should be noted that these results
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Table 10: Comparison between the “nondense” results from Barron et al. [9], Weber and Malik
[86], Ong and Spann [66] and our results for the Yosemite sequence with cloudy sky. AAE =
average angular error. CLG = average angular error of the 3-D CLG method with the same
density. The sparse flow field has been created using our energy-based confidence criterion. The
table shows that using this criterion clearly outperforms all results in the evaluation of Barron
et al.

Technique Density AAE CLG

Singh, step 2, λ1 ≤ 0.1 97.7 % 10.03◦ 6.04◦

Ong/Spann 89.9 % 5.76◦ 5.26◦

Heeger, level 0 64.2 % 22.82◦ 3.00◦

Weber/Malik 64.2 % 4.31◦ 3.00◦

Horn/Schunck, original, |∇f | ≥ 5 59.6 % 25.33◦ 2.72◦

Ong/Spann, tresholded 58.4 % 4.16◦ 2.66◦

Heeger, combined 44.8 % 15.93◦ 2.07◦

Lucas/Kanade, λ2 ≥ 1.0 35.1 % 4.28◦ 1.71◦

Fleet/Jepson, τ = 2.5 34.1 % 4.63◦ 1.67◦

Horn/Schunck, modified, |∇f | ≥ 5 32.9 % 5.59◦ 1.63◦

Nagel, |∇f | ≥ 5 32.9 % 6.06◦ 1.63◦

Fleet/Jepson, τ = 1.25 30.6 % 5.28◦ 1.55◦

Heeger, level 1 15.2 % 9.87◦ 1.15◦

Uras et al., det(H) ≥ 1 14.7 % 7.55◦ 1.14◦

Singh, step 1, λ1 ≤ 6.5 11.3 % 12.01◦ 1.07◦

Waxman et al., σf = 2.0 7.4 % 20.05◦ 0.95◦

Heeger, level 2 2.4 % 12.93◦ 0.76◦

have been computed from an image sequence that suffers from quantisation errors since its grey
values have been stored in 8-bit precision only.
In Table 10 we also observe that the angular error decreases monotonically under sparsification
over the entire range from 100 % down to 2.4 %. This in turn indicates an interesting finding
that may seem counterintuitive at first glance: Regions in which the filling-in effect dominates
give particularly small angular errors. In such flat regions, the data term vanishes such that a
smoothly extended flow field may yield only a small local contribution to the energy functional.
If there were large angular errors in regions with such low energy contributions, our confidence
measure would not work well for low densities. This also confirms the observation that |∇f | is
not necessarily a good confidence measure [9]: Areas with large gradients may represent noise
or occlusions, where reliable flow information is difficult to obtain. The filling-in effect, however,
may create more reliable information in flat regions by averaging less reliable information that
comes from all the surrounding high-gradient regions. A more extensive experimental evaluation
of the energy based confidence measure is presented in [21].

9 Summary and Extensions

In this chapter we have outlined some basic design principles for variational optic flow methods
and studied their performance in a number of experiments. For theoretical and practical reasons
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we have restricted ourselves to convex energy functionals that use linearised data terms. They are
valid approximations when the temporal sampling is sufficiently fine such that the displacements
between subsequent frames are small. We have seen that contemporary variational optic flow
models have reached a high degree of sophistication that allows to achieve highly accurate
computations of the displacement fields. Moreover, they are mathematically well-founded, they
allow real-time computations on standard hardware, and it is possible to apply a simple and
intuitive confidence measure.
There are several possibilities to improve the performance of these methods even further: One
may for instance use data terms that renounce linearisations [3, 11, 62]. They create models
that are better suitable for large displacements between subsequent frames. Unfortunately they
lead to nonconvex functionals that may possess numerous local minimisres. In such a case one
often uses multilevel strategies that encourage convergence towards a global minimiser [3, 4, 56].
Another extension that becomes relevant for large displacements consists of using modified
functionals in order to deal with occlusion problems [1, 68]. On the numerical side, parallelisation
strategies can be investigated, e.g. domain decomposition methods [51]. A detailed discussion
of these extensions is beyond the scope of the present chapter.
It is our hope that the models we have described do not remain restricted to optic flow com-
putation, but will also prove their use in related correspondence problems such as stereo recon-
struction and image registration.
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[75] C. Schnörr. Convex variational segmentation of multi-channel images. In M.-O. Berger, R. Deriche, I. Herlin,
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