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Abstract

While shock filters are popular morphological image enhancement
methods, no well-posedness theory is available for their corresponding
partial differential equations (PDEs). By analysing the dynamical
system of ordinary differential equations that results from a space
discretisation of a PDE for 1-D shock filtering, we derive an analytical
solution and prove well-posedness. We show that the results carry
over to the fully discrete case when an explicit time discretisation is
applied. Finally we establish an equivalence result between discrete
shock filtering and local mode filtering.

Shock filters, analytical solution, well-posedness, dynamical systems, mode
filters

1 Introduction

Shock filters are morphological image enhancement methods where dilation is
performed around maxima and erosion around minima. Iterating this process
leads to a segmentation with piecewise constant segments that are separated
by discontinuities, so-called shocks. This makes shock filtering attractive for
a number of applications where edge sharpening and a piecewise constant
segmentation is desired.
In 1975 the first shock filters have been formulated by Kramer and Bruck-
ner in a fully discrete manner [8], while first continuous formulations by
means of partial differential equations (PDEs) have been developed in 1990
by Osher and Rudin [10]. The relation of these methods to the discrete
Kramer–Bruckner filter became clear several years later [6, 14]. PDE-based
shock filters have been investigated in a number of papers. Many of them
proposed modifications with higher robustness under noise [1, 4, 7, 9, 14],
but also coherence-enhancing shock filters [19] and numerical schemes have
been studied [13].
Let us consider some continuous d-dimensional initial image f : IRd → IR.
In the simplest case of a PDE-based shock filter [10], one obtains a filtered
version u(x, t) of f(x) by solving the evolution equation

∂tu = −sgn(∆u) |∇u| (t ≥ 0)

with f as initial condition, i. e. u(x, 0) = f(x). Experimentally one observes
that within finite “evolution time” t, a piecewise constant, segmentation-like
result is obtained (see Fig. 1).
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Figure 1: Left: Original image. Right: After applying the Osher–Rudin
shock filter.

Specialising to the one-dimensional case, we obtain

∂tu = −sgn(∂xxu) |∂xu| =







|∂xu| , ∂xxu < 0,
− |∂xu| , ∂xxu > 0,

0, ∂xxu = 0.
(1)

It is clearly visible that this filter performs dilation ∂tu = |∂xu| in concave
segments of u, while in convex parts the erosion process ∂tu = −|∂xu| takes
place. The time t specifies the radius of the interval (a 1-D disk) [−t, t] as
structuring element. For a derivation of these PDE formulations for classical
morphological operations, see e.g. [2].
While there is clear experimental evidence that shock filtering is a useful
operation, no analytical solutions and well-posedness results are available
for PDE-based shock filters. In general this problem is considered to be
too difficult, since shock filters have some connections to classical ill-posed
problems such as backward diffusion [10, 9].
The main goal of the present paper is to we show that it is possible to establish
analytical solutions and well-posedness as soon as we study the semidiscrete
case with a spatial discretisation and a continuous time parameter t. This
case is of great practical relevance, since digital images already induce a
natural space discretisation. For the sake of simplicity we restrict ourselves
to the 1-D case. We also show that these results carry over to the fully
discrete case with an explicit (Euler forward) time discretisation, and we
establish an equivalence result between shock filtering and a specific image
enhancement method called mode filtering.
Our paper is organised as follows: In Section 2 we present an analytical
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solution and a well-posedness proof for the semidiscrete case, whereas corre-
sponding fully discrete results are given in Section 3. An equivalence result
between shock and mode filters is presented in Section 4, and the paper is
concluded with a summary in Section 5.
A shorter version of the current paper appeared at the 2005 International
Symposium on Mathematical Morphology [20]. The present paper extends
these results by investigations on signals with flat pixels and by establishing
an equivalence between shock and mode filters.

2 The Semidiscrete Model

2.1 Problem Statement

In this section, we are concerned with a spatial discretisation of (1) which we
will describe now. The time variable remains continuous here. Throughout
the paper, the notion semidiscrete will refer to this setting.

Problem. Let (. . . , u0(t), u1(t), u2(t), . . .) be a time-dependent bounded real-
valued signal which evolves according to

u̇i =







max(ui+1 − ui, ui−1 − ui, 0), 2ui > ui+1 + ui−1,
min(ui+1 − ui, ui−1 − ui, 0), 2ui < ui+1 + ui−1,
0, 2ui = ui+1 + ui−1

(2)

with the initial conditions
ui(0) = fi. (3)

Assume further that the signal is either of infinite length or finite with re-
flecting boundary conditions.

Like (1), this filter switches between dilation and erosion depending on the
local convexity or concavity of the signal. Dilation and erosion themselves
are modeled by upwind-type discretisations [11], and u̇i denotes the time
derivative of ui(t).
It should be noted that in case 2ui > ui+1+ui−1 the two neighbour differences
ui+1 − ui and ui−1 − ui cannot be simultaneously positive; with the opposite
inequality they cannot be simultaneously negative. In fact, always when the
maximum or minimum in (2) does not select its third argument, zero, it
returns the absolutely smaller of the neighbour differences.
No modification of (2) is needed for finite-length signals with reflecting bound-
ary conditions. In this case, each boundary pixel has one vanishing neighbour
difference.
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In order to study the solution behaviour of this system, we have to specify
the possible solutions, taking into account that the right-hand side of (2)
may involve discontinuities. We say that a time-dependent signal u(t) =
(. . . , u1(t), u2(t), u3(t) . . .) is a solution of (2) if

(I) each ui is a piecewise differentiable function of t,

(II) each ui satisfies (2) for all times t for which u̇i(t) exists,

(III) for t = 0, the right-sided derivative u̇+

i (0) equals the right-hand side of
(2) if 2ui(0) 6= ui+1(0) + ui−1(0).

2.2 Well-Posedness Results

The following theorem contains our main result.

Theorem 2.1 (Well-Posedness) For our Problem, assume that the equal-
ity fk+1 − 2fk + fk−1 = 0 does not hold for any pixel fk which is not a local
maximum or minimum of f . Then the following are true:

(i) Existence and uniqueness: The Problem has a unique solution for
all t ≥ 0.

(ii) Maximum–minimum principle: If there are real bounds a, b such
that a < fk < b holds for all k, then a < uk(t) < b holds for all k and
all t ≥ 0.

(iii) l∞-stability: There exists a δ > 0 such that for any initial signal f̃
with ‖f̃ − f‖

∞
< δ the corresponding solution ũ satisfies the estimate

‖ũ(t) − u(t)‖
∞

< ‖f̃ − f‖
∞

for all t > 0. The solution therefore depends l∞-continuously on the
initial conditions within a neighbourhood of f .

(iv) Total variation preservation: If the total variation of f is finite,
then the total variation of u at any time t ≥ 0 equals that of f .

(v) Steady state: For t → ∞, the signal u converges to a piecewise
constant signal. The jumps in this signal are located at the steepest
slope positions of the original signal.

All statements of this theorem follow from an explicit analytical solution of
the Problem that will be described in the following proposition.
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Proposition 2.2 (Analytical Solution) For our Problem, let the segment
(f1, . . . , fm) be strictly decreasing and concave in all pixels. Assume that the
leading pixel f1 is either a local maximum or a neighbour to a convex pixel
f0 > f1. Then the following hold for all t ≥ 0:

(i) If f1 is a local maximum of f , u1(t) is a local maximum of u(t).

(ii) If f1 is neighbour to a convex pixel f0 > f1, then u1(t) also has a convex
neighbour pixel u0(t) > u1(t).

(iii) The segment (u1, . . . , um) remains strictly decreasing and concave in all
pixels. The grey values of all pixels at time t are given by

uk(t) = C ·

(

1 + (−1)ke−2t − e−t

k−2
∑

j=0

tj

j!
(1 + (−1)k−j)

)

+ e−t

k−2
∑

j=0

tj

j!
fk−j − (−1)kf1e

−t

(

e−t −

k−2
∑

j=0

(−t)j

j!

) (4)

for k = 1, . . . , m, where C = f1(0) if f1 is a local maximum of f , and
C = 1

2
(f0(0) + f1(0)) otherwise.

(iv) At no time t ≥ 0, the equation 2ui(t) = ui+1(t) + ui−1(t) becomes true
for any i ∈ {1, . . . , m}.

Analogous statements hold for increasing concave and for convex signal seg-
ments.

In a signal that contains no locally flat pixels (such with 2fi = fi+1 + fi−1),
each pixel belongs to a chain of either concave or convex pixels led by an ex-
tremal pixel or an “inflection pair” of a convex and a concave pixel. Therefore
Proposition 2.2 completely describes the dynamics of such a signal. Let us
prove this proposition.

Proof. We show in steps 1.–3. that the claimed evolution equations hold
as long as the initial monotonicity and convexity properties of the signal
segment prevail. Step 4. then completes the proof by demonstrating that
the evolution equations preserve exactly these monotonicity and convexity
requirements.
1. From (2) it is clear that any pixel ui which is extremal at time t has
u̇i(t) = 0 and therefore does not move. Particularly, if f1 is a local maximum
of f , then u1(t) remains constant as long as it continues to be a maximum.
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2. If u0 > u1, u0 is convex and u1 concave for t ∈ [0, T ). Then we have for
these pixels

u̇0 = u1 − u0 ,
u̇1 = u0 − u1

(5)

which by the substitutions y := 1

2
(u0 + u1) and v := u1 − u0 becomes

ẏ = 0 ,
v̇ = −2v .

This system of linear ordinary differential equations (ODEs) has the solution
y(t) = y(0) = C and v(t) = v(0) exp(−2t). Backsubstitution gives

u0(t) = C · (1 − e−2t) + f0e
−2t ,

u1(t) = C · (1 − e−2t) + f1e
−2t .

(6)

This explicit solution is valid as long as the convexity and monotonicity
properties of u0 and u1 do not change.
3. Assume the monotonicity and convexity conditions required by the propo-
sition for the initial signal hold for u(t) for all t ∈ [0, T ). Then we have in
all cases, defining C as in the proposition, the system of ODEs

u̇1 = −2(u1 − C) ,
u̇k = uk−1 − uk , k = 2, . . . , m

(7)

for t ∈ [0, T ). We substitute further vk := uk −C for k = 1, . . . , m as well as
w1 := v1 and wk := vk + (−1)kv1 for k = 2, . . . , m. This leads to the system

ẇ1 = −2w1 ,
ẇ2 = −w2 ,
ẇk = wk−1 − wk , k = 3, . . . , m .

(8)

This system of linear ODEs has the unique solution

w1(t) = w1(0)e−2t ,

wk(t) = e−t

k−2
∑

j=0

tj

j!
wk−j(0) , k = 2, . . . , m

which after reverse substitution yields (4) for all t ∈ [0, T ].
4. Note that (5) and (7) are systems of linear ODEs which have the unique
explicit solutions (6) and (4) for all t > 0. As long as the initial monotonicity
and convexity conditions are satisfied, the solutions of (2) coincide with those
of the linear ODE systems.

6



We prove therefore that the solution (4) fulfils the monotonicity condition

uk(t) − uk−1(t) < 0 , k = 2, . . . , m

and the concavity conditions

uk+1(t) − 2uk(t) + uk−1(t) < 0 k = 1, . . . , m

for all t > 0 if they are valid for t = 0. To see this, we calculate first

uk(t) − uk−1(t) = e−t

k−2
∑

j=0

tj

j!
(fk−j − fk−1−j)

+ 2e−t(−1)k−1

(

e−t −

k−2
∑

j=0

(−t)j

j!

)

(f1 − C)

By hypothesis, fk−j − fk−1−j and f1 − C are negative. Further, exp(−t) −
∑k−2

j=0
(−t)j/j! is the error of the (alternating) Taylor series of exp(−t), thus

having the same sign (−1)k−1 as the first neglected member. Consequently,
monotonicity is preserved by (4) for all t > 0.
Second, we have for k = 2, . . . , m − 1

uk+1(t) − 2uk(t) + uk−1(t) = e−t

k−2
∑

j=0

tj

j!
(fk−j+1 − 2fk−j + fk−j−1)

+ 4e−t(−1)k

(

e−t −
k−1
∑

j=0

(−t)j

j!

)

(f1 − C)

+ e−t tk−1

(k − 1)!
(f2 − 3f1 + 2C)

which is seen to be negative by similar reasoning as above.
Concavity at um(t) follows in nearly the same way. By extending (4) to
k = m + 1, one obtains not necessarily the true evolution of um+1 since that
pixel is not assumed to be included in the concave segment. However, the
true trajectory of um+1 can only lie below or on that predicted by (4).
Third, if f1 is a maximum of f , then u1(t) remains one for all t > 0 which
also ensures concavity at u1. If f1 has a convex neighbour pixel f0 > f1, we
have instead

u2(t) − 2u1(t) + u0(t) = e−t(f2 − 2f1 + f0) + 4e−t(1 − e−t)(f1 − C) < 0

which is again negative for all t > 0.
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Finally, we remark that the solution (6) ensures u0(t) > u1(t) for all t > 0 if
it holds for t = 0. That convexity at u0 is preserved can be established by
analogous reasoning as for the concavity at u1.
Since the solutions from the linear systems guarantee preservation of all
monotonicity and convexity properties which initially hold for the consid-
ered segment, these solutions are the solutions of (2) for all t > 0.

The fact that the signal reaches its steady state only for t → ∞ stands
in contrast to the behaviour of space-continuous dilation and erosion where
extrema propagate in space with constant speed. In our semidiscrete setting,
non-extremal pixels only asymptotically approach their limit values. This
can be seen as a blurring, or approximation error, which is the price for the
performed spatial discretisation.

2.3 Signals With Flat Pixels

No uniqueness and continuous dependence on initial conditions can be proved
for initial signals f which contain non-extremal pixels fk with fk+1 − 2fk +
fk−1 = 0. We shall call such pixels non-extremal flat pixels.
In this case, it becomes clear why requirement (III) contains the relaxation
to the case of non-flat pixels. The evolution of the neighbours of a pixel uk

which is flat at t = 0 can imply that uk cannot stay flat for t > 0 with u̇k = 0;
the right-sided derivative of uk at t = 0 then necessarily deviates from 0.
With the condition as stated, we can prove the following proposition.

Proposition 2.3 (Forking Solutions at Flat Pixels) Let an initial sig-
nal f = (. . . , f1, f2, f3, . . .) be given. Let for each non-extremal flat pixel
fk a sign σk ∈ {+1,−1} be chosen. Then there exists a unique solution of
(2) in the sense of (I)–(III) with initial conditions (3) such that for each
non-extremal flat pixel fk, the right-sided derivative of uk at t = 0 is

u̇+

k (0) =

{

max(ui+1 − ui, ui−1 − ui, 0), σk = +1,
min(ui+1 − ui, ui−1 − ui, 0), σk = −1.

For none of these solutions, non-extremal flat pixels exist in u(t) for t > 0.

Proof. Assume we are given a fixed choice of the σk. Interpreting non-
extremal flat pixels with σk = +1 as convex and such with σk = −1 as
concave, we have again a segmentation of the entire signal into concave and
convex regions as for signals without non-extremal flat pixels. For each of
these regions, we proceed as in the proof of Proposition 2.2 by rewriting
the evolution into a system of linear ODEs which has verbatim the same
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analytical solutions as before. Inspecting the proof of Proposition 2.2, one
finds first that the proof of monotonicity preservation suffers no change at
all. In the concavity preservation proof one finds that some of the summands
of type (fj−1−2fj +fj+1) in the inequalities used there for uk+1(t)−2uk(t)+
uk+1(t) now vanish. However, for the entire right-hand side to vanish it is
necessary that (f1 − C) and all (fj−1 − 2fj + fj+1) for j = 1, . . . , k are zero.
This is true if and only if fk itself is extremal. Consequently, under the
evolution of the linear system, non-extremal pixels which are flat at t = 0
become convex if σk = +1 or concave if σk = −1 for any positive t.

3 Time Discretisation

3.1 Explicit Time Discretisation

In the following we discuss time discretisations of our time-continuous sys-
tem. We denote the time step by τ > 0. A straightforward explicit time
discretisation of our Problem then reads as follows:

Time-Discrete Problem. Let (. . . , ul
0, u

l
1, u

l
2, . . .), l = 0, 1, 2, . . . be a series

of bounded real-valued signals which satisfy the equations

ul+1

i − ul
i

τ
=







max(ul
i+1 − ul

i, u
l
i−1 − ul

i, 0), 2ul
i > ul

i+1 + ul
i−1,

min(ul
i+1 − ul

i, u
l
i−1 − ul

i, 0), 2ul
i < ul

i+1 + ul
i−1,

0, 2ul
i = ul

i+1 + ul
i−1

(9)

with the initial conditions
u0

i = fi . (10)

Assume further that the signal is either of infinite length or finite with re-
flecting boundary conditions.

Theorem 3.1 (Time-Discrete Well-Posedness) Assume that in the
Time-Discrete Problem the equality fk+1 − 2fk + fk−1 = 0 does not hold
for any pixel fk which is not a local maximum or minimum of f . Assume
further that τ < 1/2. Then the statements of Theorem 2.1 are valid for
the solution of the Time-Discrete Problem if only uk(t) for t > 0 is replaced
everywhere by ul

k with l = 0, 1, 2, . . .

The existence and uniqueness of the solution of the Time-Discrete Problem
for l = 0, 1, 2, . . . is obvious. Maximum–minimum principle, l∞-stability,
total variation preservation and the steady state property are immediate
consequences of the following proposition. It states that for τ < 1/2 all
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qualitative properties of the time-continuous solution transfer to the time-
discrete case.

Proposition 3.2 (Time-Discrete Solution) Let ul
i be the value of pixel i

in time step l of the solution of our Time-Discrete Problem with time step
size τ < 1/2. Then the following hold for all l = 0, 1, 2, . . .:

(i) If ul
1 is a local maximum of ul, then ul+1

1 is a local maximum of ul+1.

(ii) If ul
1 is a concave pixel neighbouring to a convex pixel ul

0 > ul
1, then

ul+1

1 is again concave and has a convex neighbour pixel ul+1

0 > ul+1

1 .

(iii) If the segment (ul
1, . . . , u

l
m) is strictly decreasing and concave in all

pixels, and ul
1 is either a local maximum of ul or neighbours to a convex

pixel ul
0 > ul

1, then the segment (ul+1

1 , . . . , ul+1
m ) is strictly decreasing.

(iv) Under the same assumptions as in (iii), the segment (ul+1

1 , . . . , ul+1
m ) is

strictly concave in all pixels.

(v) If 2ul
i = ul

i+1 + ul
i−1 holds for no pixel i, then 2ul+1

i = ul+1

i+1 + ul+1

i−1 also
holds for no pixel i.

(vi) Under the assumptions of (iii), all pixels in the range i ∈ {1, . . . , m}
have the same limit lim

l→∞

ul
i = C with C := ul

1 if ul
1 is a local maximum,

or C := 1

2
(ul

0 + ul
1) if it neighbours to the convex pixel ul

0.

Analogous statements hold for local minima, for increasing concave and for
convex signal segments.

Proof. Assume first that ul
1 is a local maximum of ul. From the evolution

equation (9) it is clear that ul+1

j ≤ ul
j + τ(ul

1 − ul
j) for j = 0, 2. For τ < 1

this entails ul+1

j < ul
1 = ul+1

1 , thus (i).

If instead ul
i is a concave neighbour of a convex pixel ul

0 > ul
1, then we have

ul+1

1 = ul
1 + τ(ul

0 − ul
1) and ul+1

0 = ul
0 + τ(ul

1 − ul
0). Obviously, ul+1

0 > ul+1

1

holds if and only if τ < 1/2. For concavity, note that ul+1

2 ≤ ul
2 + τ(ul

1 − ul
2)

and therefore ul+1

0 − 2ul+1

1 +ul+1

2 ≤ (1− τ)(ul
0 − 2ul

1 +ul
2)+ 2τ(ul

1 −ul
0). The

right-hand side is certainly negative for τ ≤ 1/2. An analogous argument
secures convexity at pixel 0 which completes the proof of (ii).
In both cases we have ul+1

1 ≥ ul
1. Under the assumptions of (iii), (iv) we then

have ul+1

k = ul
k + τ(ul

k−1 − ul
k) for k = 2, . . . , m. If τ < 1, it follows that

ul
k < ul+1

k ≤ ul
k−1

for k = 2, . . . , m which together with ul+1

1 ≥ ul
1 implies

that ul+1

k−1
> ul

k for k = 2, . . . , m and therefore (iii).
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For the concavity condition we compute

ul+1

k−1
− 2ul+1

k + ul+1

k+1
= (1 − τ)(ul

k−1 − 2ul
k + ul

k+1) + τ(ul
k−2 − 2ul

k−1 + ul
k)

for k = 3, . . . , m−1. The right-hand side is certainly negative for τ ≤ 1 which
secures concavity in the pixels k = 3, . . . , m − 1. Concavity in pixel m for
τ ≤ 1 follows from essentially the same argument. However, the equation is
now replaced by an inequality since for pixel m+1 we know only that ul+1

m+1 ≤
ul

m+1 + τ(ul
m − ul

m+1). If ul
1 is a local maximum and therefore ul+1

1 = ul
1, we

find for pixel 2 that ul+1

1 − 2ul+1

2 + ul+1

3 = (1− τ)(ul
1 − 2ul

2 + ul
3) + τ(ul

2 − ul
1)

which again secures concavity for τ ≤ 1. As was proven above, concavity in
pixel 1 is preserved for τ ≤ 1/2 such that (iv) is proven.
Under the hypothesis of (v), the evolution of all pixels in the signal is de-
scribed by statements (i)–(iv) or their obvious analoga for increasing and
convex segments. The claim of (v) then is obvious.
Finally, addition of the equalities C−ul+1

1 = (1−2τ)(C−ul
1) and ul+1

i−1
−ul+1

i =
(1 − τ)(ul

i−1 − ul
i) for i = 2, . . . , m implies that

C − ul+1

k = (1 − τ)(C − ul
k) − τ(C − ul

1) < (1 − τ)(C − ul
k)

for all k = 1, . . . , m. By induction, we have

C − ul+l′

k ≤ (1 − τ)l′(C − ul
k)

where the right-hand side tends to zero for l′ → ∞. Together with the
monotonicity preservation for τ < 1/2, statement (vi) follows.

We remark that in the presence of non-extremal flat pixels, uniqueness fails
in a similar way as in the semidiscrete setting.

3.2 Modified Explicit Time Discretisation

A closer look at the proof of Proposition 3.2 reveals that the limitation
τ < 1/2 is made necessary by the situation of case (ii) of the proposition, i.e.
a concave pixel following a convex one within a decreasing segment, or sym-
metrical situations. In the absence of such a configuration, the statements
hold even for all τ < 1.
By a small adaptation of the time-discrete evolution rule we can therefore
obtain a scheme which satisfies well-posedness properties for time step sizes
up to 1.
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Modified Time-Discrete Problem. Let (. . . , ul
0, u

l
1, u

l
2, . . .), l = 0, 1, 2, . . .

be a series of bounded real-valued signals which is generated by the equations

ũl
i − ul

i

τ
=







max(ul
i+1 − ul

i, u
l
i−1 − ul

i, 0), 2ul
i > ul

i+1 + ul
i−1,

min(ul
i+1 − ul

i, u
l
i−1 − ul

i, 0), 2ul
i < ul

i+1 + ul
i−1,

0, 2ul
i = ul

i+1 + ul
i−1

(11)

ul+1

i =







1

2
(ũl

i+1 + ũl
i), (ũl

i+1 − ũl
i)(u

l
i+1 − ul

i) < 0,
1

2
(ũl

i−1 + ũl
i), (ũl

i−1 − ũl
i)(u

l
i−1 − ul

i) < 0,
ũl

i, else.
(12)

with the initial conditions (10) and boundary conditions as in the previous
Time-Discrete Problem.

Note that the case distinction on the right-hand side of (12) is sound since the
case (ii) of Proposition 3.2 cannot occur simultaneously on both sides of the
same pixel. Further, it is clear from Proposition 3.2 that the Modified Time-
Discrete Problem is identical with the Time-Discrete Problem for τ < 1/2.
For the Modified Time-Discrete Problem, the well-posedness statements of
Theorem 3.1 hold for all τ ≤ 1. Since the proof contains only slight mod-
ifications compared to the previous one, we do not repeat it here but state
only the suitably modified version of Proposition 3.2. The main modification
is that extremal flat pixels can now arise during the evolution. Note that
extremality of a pixel ul

i is understood strictly local here: ul
i is a local max-

imum if ul
i−1 ≤ ul

i and ul
i ≥ ul

i+1. Therefore, in the sequence of five pixels
ul

1 > ul
2 = ul

3 = ul
4 > ul

5, the pixel ul
3 would be considered as both a local

maximum and minimum and thus an extremal flat pixel.

Proposition 3.3 (Modified Time-Discrete Solution) Let ul
i be the

value of pixel i in time step l of the solution of our Modified Time-Discrete
Problem with time step size τ ≤ 1. Then the following hold for all l =
0, 1, 2, . . .:

(i) If ul
1 is a local maximum of ul, then ul+1

1 is a local maximum of ul+1.

(ii) If ul
1 is a concave pixel neighbouring to a convex pixel ul

0 > ul
1, then

ul+1

1 is again concave and has a convex neighbour pixel ul+1

0 ≥ ul+1

1 .

(iii) If the segment (ul
1, . . . , u

l
m) is strictly decreasing and concave in all

pixels, and ul
1 is either a local maximum of ul or neighbours to a convex

pixel ul
0 > ul

1, then the segment (ul+1

2 , . . . , ul+1
m ) is strictly decreasing,

and ul+1

1 ≥ ul+1

2 .

(iv) Under the same assumptions as in (iii), the segment (ul+1

2 , . . . , ul+1
m ) is

strictly concave in all pixels. Pixel ul+1

1 is strictly concave except if ul
1

is a local maximum, and τ = 1.

12



(v) If 2ul
i = ul

i+1 +ul
i−1 holds for no pixel i for which ul

i−1 = ul
i = ul

i+1 does
not hold, then 2ul+1

i = ul+1

i+1
+ ul+1

i−1
also holds for no pixel i for which

ul+1

i−1 = ul+1

i = ul+1

i+1 does not hold.

(vi) Under the assumptions of (iii), all pixels in the range i ∈ {1, . . . , m}
have the same limit lim

l→∞

ul
i = C with C := ul

1 if ul
1 is a local maximum,

or C := 1

2
(ul

0 + ul
1) if it neighbours to the convex pixel ul

0.

Analogous statements hold for local minima, for increasing concave and for
convex signal segments.

The special case τ = 1 deserves a closer consideration. Straightforward
calculations reveal that a pixel neighbouring to a local maximum attains
the same value as the maximum in the next time step. Moreover, a pair
of a convex pixel followed by a concave one in a decreasing segment aligns
to equal values within one time step, turning both pixels into discrete local
extrema. These facts give rise to the following corollary.

Corollary 3.4 Consider the Modified Time-Discrete Problem with τ = 1. If
at time step k = l the segment (ul

1, u
l
2, . . . , u

l
m) has the properties required in

Prop. 3.3, (iii), then each pixel uk of this segment becomes constant after not
more than k time steps.

In the case of finite-length signals, or infinite signals in which there exists a
finite upper bound to the length of monotonic concave or convex segments,
this corollary implies that the steady state is reached in finite time.
Since the modified time-discrete filter propagates grey-values in x direction
one pixel per time step, it turns out to reflect particularly well the ideal
behaviour of dilations and erosions on a continuous domain. In the light of
our remark at the end of Subsection 2.2 one can say that the approximation
error introduced by spatial discretisation has been compensated exactly by
the time discretisation.

A further view on the modified scheme is that it can be related to locally
analytic schemes. Schemes of this type compose analytic solutions for certain
dynamical systems in a neighbourhood of each location into approximate
solutions on the entire grid. Examples are the numerical scheme for 1-D
total variation (TV) flow introduced in [15, Sec. 4.2] which relies on analytic
solutions for TV flow on two pixels, or its 2-D extension set forth in [21]
which is based on four-pixel systems.
Our modified time-discrete shock filtering scheme can be understood as a
locally analytic scheme built on the analytical solution (for 0 ≤ τ ≤ 1) of a
space-continuous shock filter where the signal is linearly interpolated between
subsequent pixels.
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4 Equivalence to Local Mode Filtering

Now that we have derived well-posedness properties for semidiscrete and fully
discrete shock filters, let us also establish an equivalence result between shock
filters and a class of discrete filters based on local signal statistics, namely
so-called mode filters.
Discrete filters exploiting local signal statistics evaluate signal values from
a sliding window neighbourhood to determine a new value for each pixel.
Commonly used representatives of this class are box-average filters, median
filters and generally M-smoothers, but also discrete dilation and erosion.
One statistical parameter of the local greyvalue distribution that is not used
in one of the aforementioned filters is the mode. The mode of a continuous
distribution is defined as its most probable value. Analogous as above, de-
termining the mode of the grey-values within a sliding window or structuring
element constitutes a local mode filter for images [3, 16, 5].
However, applying this procedure to spatially discretised signals faces a prob-
lem because the distribution is now given only by finitely many values. Defin-
ing the mode simply as the most frequent value is not helpful since in generic
cases there are no duplicates among the values.
Instead, we combine a polynomial approximation together with local his-
togram properties to find the mode value within a sliding window containing
three pixels.
Assume we have a one-dimensional discrete signal (. . . , ul

0, u
l
1, u

l
2, . . .). By our

sliding window we select three subsequent values ul
i−1, u

l
i, u

l
i+1. The value at

pixel i of the signal filtered by our local mode filter should be the mode value
of ul

i−1, u
l
i, u

l
i+1.

To determine the mode value, we interpolate by a quadratic polynomial
through the three points

(i − 1, ul
i−1), (i, ul

i), (i + 1, ul
i+1) .

Translating, for simplicity, spatial coordinates by −i, we therefore want the
quadratic polynomial

p(z) = az2 + bz + c

to satisfy the conditions

p(−1) = ul
i−1, p(0) = ul

i, p(1) = ul
i+1 .

This gives the system of three equations

a − b + c = ul
i−1 ,

c = ul
i ,

a + b + c = ul
i+1 ,
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with the solution

a =
ul

i−1 − 2ul
i + ul

i+1

2
, b =

ul
i+1 − ul

i−1

2
, c = ul

i .

Having determined p(z), we are now interested in the location of the mode of
its values. First, if a = 0, p is a linear polynomial whose values are uniformly
distributed. In this case, we have our local mode filter not change the value
of pixel i.
If a 6= 0, the density of the distribution of values of p attains its maximum
at the (uniquely determined) stationary value of p. The extremum of p(z) is
located at

−
b

2a
=

ul
i−1 − ul

i+1

ul
i−1

− 2ul
i + ul

i+1

=: e .

However, whenever e 6∈ {−1, 0, +1}, the extremal value p(e) will lie outside
the interval Ii := [min(ul

i−1, u
l
i, u

l
i+1), max(ul

i−1, u
l
i, u

l
i+1)]; choosing p(e) as

the value of the mode filter therefore results in over- and undershoots.
This leads us to stabilise our filtering procedure by projecting p(e) to the
interval Ii, i.e. choosing as the new value of pixel i the value from the interval
Ii which is closest to p(e). We will call this procedure stabilised discrete
local mode filtering. Clearly, for p not linear this filter will always return as
its value one of the end points of Ii, namely min(ul

i−1, u
l
i, u

l
i+1) if a < 0, or

max(ul
i−1, u

l
i, u

l
i+1) if a > 0.

We have therefore arrived at the following equivalence result.

Proposition 4.1 Stabilised discrete local mode filtering of a 1-D discrete
signal (. . . , f0, f1, f2, . . .) obeys the equation

ui =











min(ul
i−1, u

l
i, u

l
i+1), ul

i−1 − 2ul
i + ul

i+1 < 0,

max(ul
i−1, u

l
i, u

l
i+1), ul

i−1 − 2ul
i + ul

i+1 > 0,

ul
i, ul

i−1 − 2ul
i + ul

i+1 = 0 .

Consequently, it is equivalent to one step of time-discrete shock filtering as
described in Subsection 3.1 with time step size τ = 1.

As a caveat we point out that τ = 1 is a time step size beyond the limit given
in Theorem 3.1. The well-posedness properties do therefore not transfer fully
to stabilised discrete local mode filtering.
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5 Conclusions

Theoretical foundation for PDE-based shock filtering has long been consid-
ered to be a hopelessly difficult problem. In this paper we have shown that
it is possible to obtain both an analytical solution and well-posedness by
considering the space-discrete case where the partial differential equation
becomes a dynamical system of ordinary differential equations (ODEs). Cor-
responding results can also be established in the fully discrete case when an
explicit time discretisation is applied to this ODE system. Last but not least,
we were able to derive equivalence results between shock filtering and local
mode filtering.
Since local mode filtering also satisfies equivalence properties to robust esti-
mation and mean shift analysis [17], it becomes clear that shock filtering is
much more than a simple image enhancement method: It is a theoretically
well-founded class of methods that can be justified in many different ways.
We are convinced that the basic idea in our paper, namely to establish well-
posedness results for difficult PDEs in image analysis by considering the
semidiscrete case, is also useful in a number of other important PDEs. While
this has already been demonstrated for nonlinear diffusion filtering [18, 12],
we plan to investigate a number of other PDEs in this manner, both in the
one- and the higher-dimensional case. This should give important theoretical
insights into the dynamics of these experimentally well-performing nonlinear
processes.
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