
Incremental Decision Procedures for

Modal Logics with

Nominals and Eventualities

Mark Kaminski

Dissertation zur Erlangung des Grades

des Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Saarbrücken, 2012

Dissertation zur Erlangung des Grades
des Doktors der Naturwissenschaften
der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes,

eingereicht von
Mark Kaminski, B.Sc., M.Sc.,
geboren am 23. Februar 1982 in Woronesch, Russland.

Berichterstatter:

Prof. Dr. Patrick Blackburn, Roskilde Universitet
Dr.-Ing. Renate A. Schmidt, Reader, University of Manchester
Prof. Dr. Gert Smolka, Universität des Saarlandes

Dekan:

Prof. Dr. Holger Hermanns

Prüfungsausschuss:

Prof. Dr. Patrick Blackburn
Dr. Alexey Pospelov
Dr.-Ing. Renate A. Schmidt
Prof. Dr. Gert Smolka
Prof. Dr. Christoph Weidenbach (Vorsitz)

Tag des Kolloquiums:

24. Januar 2012

Textfassung vom 6. Februar 2012
Copyright © 2012 Mark Kaminski

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus an-
deren Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe der
Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in glei-
cher oder ähnlicher Form in einem Verfahren zur Erlangung eines akademischen Grades
vorgelegt.

Saarbrücken, 6. Februar 2012

Mark Kaminski

iii

Abstract

This thesis contributes to the study of incremental decision procedures for modal log-
ics with nominals and eventualities. Eventualities are constructs that allow to reason
about the reflexive-transitive closure of relations. Eventualities are an essential feature
of temporal logics and propositional dynamic logic (PDL). Nominals extend modal log-
ics with the possibility to reason about state equality. Modal logics with nominals are
often called hybrid logics. Incremental procedures are procedures that can potentially
solve a problem by performing only the reasoning steps needed for the problem in the
underlying calculus.

We begin by introducing a class of syntactic models called demos and showing how
demos can be used for obtaining nonincremental but worst-case optimal decision pro-
cedures for extensions of PDL with nominals, converse and difference modalities. We
show that in the absence of nominals, such nonincremental procedures can be refined
into incremental demo search procedures, obtaining a worst-case optimal decision pro-
cedure for modal logic with eventualities. We then develop the first incremental decision
procedure for basic hybrid logic with eventualities, which we eventually extend to deal
with hybrid PDL.

The approach in the thesis suggests a new principled design of modular, incremental
decision procedures for expressive modal logics. In particular, it yields the first incre-
mental procedures for modal logics containing both nominals and eventualities.

v

Zusammenfassung

Diese Dissertation untersucht inkrementelle Entscheidungsverfahren für Modallogiken
mit Nominalen und Eventualities. Eventualities sind Konstrukte, die erlauben, über den
reflexiv-transitiven Abschluss von Relationen zu sprechen. Sie sind ein Schlüsselmerk-
mal von Temporallogiken und dynamischer Aussagenlogik (PDL). Nominale erweitern
Modallogik um die Möglichkeit, über Gleichheit von Zuständen zu sprechen. Modallogik
mit Nominalen nennt man Hybridlogik. Inkrementell ist ein Verfahren dann, wenn es ein
Problem so lösen kann, dass für die Lösung nur solche Schritte in dem zugrundeliegen-
den Kalkül gemacht werden, die für das Problem relevant sind.

Wir führen zunächst eine Klasse syntaktischer Modelle ein, die wir Demos nennen. Wir
nutzen Demos um nichtinkrementelle aber laufzeitoptimale Entscheidungsverfahren
für Erweiterungen von PDL zu konstruieren. Wir zeigen, dass im Fall ohne Nominale
solche Verfahren durch algorithmische Verfeinerung zu inkrementellen Verfahren aus-
gebaut werden können. Insbesondere erhalten wir so ein optimales Verfahren für Modal-
logik mit Eventualities. Anschließend entwickeln wir das erste inkrementelle Verfahren
für Hybridlogik mit Eventualities, welches wir schließlich auf hybrides PDL erweitern.

Die Dissertation vermittelt einen neuen Ansatz zur Konstruktion modularer, inkre-
menteller Entscheidungsverfahren für expressive Modallogiken. Insbesondere liefert
der Ansatz die ersten inkrementellen Verfahren für Modallogiken mit Nominalen und
Eventualities.

vii

Acknowledgements

This thesis reports the results of several years of research. There are many people
who have contributed to this research in different ways, and I would like to take this
opportunity to thank those I feel most obliged to.

First of all, I want to express my deepest gratitude to my advisor, Gert Smolka. All of
the results in this thesis were obtained in close collaboration with Gert. Almost every-
thing I know about scientific thinking and writing I owe to him. In countless discussions,
he offered constant support, encouragement, and invaluable advice on all aspects of my
research. I would also like to thank Renate Schmidt and Patrick Blackburn for agreeing
to give their expert opinion on this thesis.

During the work on this thesis, I was employed at the Programming Systems Lab at
Saarland University. As part of my work, I had the privilege to advise three excellent
students: Daniel Götzmann, Sigurd Schneider, and Tobias Tebbi. Working with them
was a thoroughly gratifying and a very educational experience for me. In particular, the
work with Sigurd on his bachelor’s thesis had a great influence on the development of
my own thesis.

The Programming Systems Lab has been a great working environment thanks to the
other members of the lab who were always willing to share their knowledge and offer
their help. For this, I would like to thank all of my current and former colleagues: Gert,
Chad E. Brown, Ralph Debusmann, Christian Doczkal, Marco Kuhlmann, Mathias Möhl,
Sandra Neumann, Andreas Rossberg, Sigurd, Thomas Schneider, Jan Schwinghammer,
Guido Tack, and Ann Van de Veire. Special thanks goes to Thomas, who is also a coau-
thor of one of the papers underlying this thesis. Thanks also to our student assistants
Robert Künnemann, Hannes von Haugwitz, and Bibek Paudel, who helped with system
administration at the Lab.

I would also like to mention Guillaume Hoffmann and Florian Widmann who visited
me at the Lab to discuss aspects of their and my work. I greatly enjoyed our discussions
and benefited from them.

Last but not least, I would like to thank my parents for their support and their pa-
tience.

Saarbrücken, October 2011 Mark Kaminski

ix

Contents

1 Introduction 1

1.1 Modal Logic . 1

1.2 Tableau Method . 4

1.3 Questions Asked . 10

1.4 Overview of the Thesis . 10

1.5 Contributions . 14

2 Modal and Hybrid Logics 17

2.1 Basic Modal Logic . 18

2.2 Propositional Dynamic Logic . 20

2.3 Hybrid Logic . 25

2.4 Global and Difference Modalities . 26

2.5 Related Logics . 28

3 Demos and Pruning 31

3.1 Formulas and Hintikka Systems . 32

3.2 Formula Universe . 33

3.3 Demos . 34

3.4 Pruning and Decision Procedure . 39

3.5 Nominals . 41

3.6 Difference Modalities . 44

3.7 Tests . 48

3.8 Converse . 50

3.9 Related Work . 50

4 Graph Search for Modal Logic with Eventualities 53

4.1 Formulas and Demos . 54

4.2 Pruning Revisited . 58

4.3 Graph Tableaux . 59

4.4 Evidence . 61

4.5 Eager Pruning . 64

4.6 Cautious Pruning . 66

4.7 Decision Procedure . 69

4.8 Related Work . 71

5 Tree Search for Hybrid Logic with Eventualities 73

5.1 Tree Search . 75

xi

Contents

5.2 Disjunctive Normal Forms . 78
5.3 Procedure for K . 82
5.4 Eventualities . 84
5.5 Nominals . 91
5.6 Discussion . 96
5.7 Related Work . 99

6 Tree Search for Test-Free Hybrid PDL 101

6.1 Decomposition Tables . 101
6.2 Language-Theoretic Semantics . 104
6.3 Diamond and Box Decompositions . 105
6.4 Branches and Evidence . 109
6.5 Demos . 112
6.6 Expansion Rules . 115
6.7 Related Work . 118

7 Tree Search for Hybrid PDL 119

7.1 Language-Theoretic Semantics . 119
7.2 Diamond and Box Decompositions . 123
7.3 Branches and Evidence . 127
7.4 Demos . 128
7.5 Expansion Rules . 130

8 Conclusion 131

8.1 Summary . 131
8.2 Future Research . 132

Bibliography 135

xii

1 Introduction

This thesis studies incremental decision procedures for expressive modal logics that
combine features known from propositional dynamic logic [67, 104] with those of hybrid
logic [28, 10]. The procedures studied in this thesis are based on the tableau method,
which reduces the satisfiability problem for a formula s to the task of finding a syntactic
model of s. We explore two different tableau-based approaches to incremental decision
procedures and devise the first such procedure for a hybrid extension of propositional
dynamic logic.

This chapter outlines the motivation behind the thesis and surveys some related work.
After that, it provides an overview of the thesis and its main contributions.

1.1 Modal Logic

The term “modal logic” denotes a broad family of languages that vary in expressiveness,
complexity, and application areas.

1.1.1 Basic Modal Logic

All of the logics treated in this thesis are based on relational semantics. Relational
semantics for modal logic is usually attributed to Kripke [139, 140], and is hence also
known as Kripke semantics. Relational models can be seen as transition systems where
the states are labeled with atomic propositions. Formulas are evaluated at a state of
a transition system, where an atomic proposition p holds at a state w if w is labeled
with p.

The basic modal logic with a relational semantics is called K. K extends propositional
logic by allowing existential and universal quantification over the direct successors of
a state (with respect to a transition relation) using diamond and box formulas. The
diamond formula ✸s is true at states that have a successor satisfying s, while the box
formula ✷s holds at states all of whose successors satisfy s. The satisfiability problem

is the problem of finding out whether a given formula is satisfiable, i.e., whether there
is a model and a state of the model where the formula is true. Many typical reasoning
tasks for modal logic can be reduced to the satisfiability problem. When speaking of the
decidability or complexity of a logic, one usually means the decidability or complexity of
its satisfiability problem.

The basic technique for establishing the decidability of modal logics is filtration, de-
veloped by Lemmon and Scott [144]. In fact, filtration establishes a stronger property,
called the small model property. A logic has the small model property if every satisfiable

1

1 Introduction

formula of the logic has a finite model whose size is bounded by some function in the
size of the formula. Given a model M of a formula s, filtration as used by Lemmon
and Scott obtains a small model of s as a quotient of M by an equivalence relation that
relates two states of M if and only if they satisfy the same subformulas of s. Filtration
yields a NExpTime upper bound on the complexity of K. As later shown by Ladner [142],
the satisfiability problem for K is PSpace-complete.

1.1.2 Propositional Dynamic Logic

For the present thesis, two extensions of modal logic will be of particular importance.
The first extension is known under the name propositional dynamic logic (PDL). PDL
was introduced by Fischer and Ladner [66, 67] based on earlier work by Pratt [159] as
a decidable logic for reasoning about program correctness and program equivalence.
Besides seeing some use in program verification [180] (along with more expressive dy-
namic logics; see [21]), PDL has applications in areas like planning [162] or synthesis of
web services [23]. A comprehensive introduction to PDL is given by Harel et al. [104].

In PDL, diamond formulas have the form 〈α〉s and box formulas the form [α]s,
where α is called a program. Intuitively, a diamond formula 〈α〉s is read as “there
is a terminating execution of the program α that leads to a state satisfying s”, while
a box formula [α]s is interpreted as “every terminating execution of α ends in a state
satisfying s”. Formally, programs denote transition relations. They are built over a set
of atomic programs, called actions, using three possible constructions:

• Nondeterministic choice between two programs, written α + β (where α and β are
programs), denotes the union of the relations denoted by α and β.

• Program composition, written αβ, denotes the composition of the relations denoted
by α and β.

• Iteration, written α∗, denotes the reflexive-transitive closure of the relation denoted
by α.

In addition, programs can contain tests. A test is a formula s that is interpreted as a pro-
gram that tests if s holds. The program proceeds if s is true and fails otherwise. To see
how tests can be put to use, consider the program pa+(¬p)b, where p, ¬p are tests and
a, b are actions. The program executes a whenever p is true, and b whenever p is false.
In other words, the program encodes the conditional if p then a else b. A while-loop of
the form while p do a can then be represented as the program (pa)∗(¬p). The sub-
program (pa)∗ ensures that a can be executed repeatedly, but only as long as p is true.
The test ¬p then ensures that the execution does not leave the loop unless p is false.

PDL represents a decidable fragment of Hoare logic [106] since a Hoare triple of the
form {s}α{t} (where s, t are formulas of PDL and α a program) corresponds to the for-
mula s → [α]t (see [104], § 5.1 and § 5.7). Although PDL is decidable, it is not subsumed
by first-order logic. In particular, unlike first-order logic, PDL is not compact (consider
the infinite set {〈a∗〉p, [a]p, [a][a]p, . . . }). The non-compactness of PDL can be traced
back to diamond formulas of the form 〈a∗〉s. Following an established tradition in tem-
poral logics [158, 44, 58, 59, 57], we call such formulas eventualities because a formula
〈a∗〉s expresses that after finitely many a-transitions s will eventually become true.

2

1.1 Modal Logic

The satisfiability problem for PDL is ExpTime-complete. While decidability and Exp-

Time-hardness were already shown by Fischer and Ladner (by filtration and a reduc-
tion from linear space bounded alternating Turing machines, respectively), the first de-
cision procedure for PDL that runs in deterministic exponential time was devised by
Pratt [160].

1.1.3 Hybrid Logic

The second extension of modal logic considered in this thesis is known as hybrid logic.
Hybrid logic originates in the work of Prior [163, 164] in the 1960s. The first rigorous
treatment of hybrid logic was given by Bull [36]. In the 1980s, hybrid logic was rein-
vented by Passy and Tinchev [153, 155] in the context of (an expressive variant of) PDL.
The name “hybrid logic” was coined by Blackburn and Seligman [28]. Hybrid logic has
applications in linguistics, where it can be used to represent temporal reference [26],
and in the processing of semistructured data [72]. For more background on hybrid
logic, see [27, 10, 34].

Hybrid logic extends modal logic by the ability to refer to individual states of the
model. The simplest hybrid logic is obtained by extending modal logic with nominals.
Nominals are atomic propositions that are true at exactly one state of the model. Thus,
nominals serve as names for states. Nominals can be used to express equality and dise-
quality constraints between states. For instance, the formula x∧¬y , where x and y are
nominals, is satisfiable if and only if x and y denote different states. Another common
feature of hybrid logic are satisfaction operators. They allow to form satisfaction formu-

las x : s (also written as @xs) where x is a nominal and s a formula. The satisfaction
formula x : s expresses that s holds at the state denoted by x.

The expressiveness of hybrid logic can also be obtained via difference modalities. Dif-
ference modalities (see, for instance, [179, 134, 54, 76, 27]), which consist of an exis-

tential difference modality D and its universal dual D̄, are expressive modal operators
that combine equality reasoning as provided by nominals with global quantification over
states. Intuitively, a formula Ds means that s holds “somewhere else” in the model (i.e.,
at some state of the model different from the current state), while D̄s means that s
holds “everywhere else”. Difference modalities can express global modalities (see [89]),
written E and A. Intuitively, Es expresses that s holds at some state of the model, while
As expresses that s holds everywhere in the model. This semantics is captured in terms
of difference modalities by the equivalences Es ≡ s ∨Ds and As ≡ s ∧ D̄s. More interest-
ingly, difference modalities can express both nominals and satisfaction operators. So,
the formula E(p ∧ D̄¬p) (or, equivalently, (p ∧ D̄¬p)∨ D(p ∧ D̄¬p)) enforces that p is
true at exactly one state. Once this is the case, we have p : s ≡ E(p ∧ s).

Also, every formula with difference modalities can be translated to an equisatisfiable
formula with nominals and global modalities [76, 5].

Adding nominals and satisfaction operators to K or PDL does not change the com-
plexities of the logics. While K extended with nominals and satisfaction operators
remains PSpace-complete [4], PDL extended with the two hybrid features is still Exp-

Time-complete [155]. For other logics, however, adding these features may result in

3

1 Introduction

a jump in complexity [4], or even in undecidability [31]. Since difference modalities
can express global modalities, adding them to K already results in an ExpTime-complete
logic [185, 5]. Extending hybrid logic with more expressive features like quantifiers [163,
164, 36, 154] or the downarrow binder [87] typically results in undecidability [4, 10].

1.2 Tableau Method

1.2.1 Incremental Decision Procedures and the Tableau Method

A key factor for the applicability of an algorithm in practice is its efficiency. But how
do we measure efficiency? A common practice is to call an algorithm efficient if it has
polynomial worst-case complexity. This, however, does no justice to algorithms like the
simplex method in linear programming (see, e.g., [176]) or Hindley-Milner type inference
for ML (see [48, 157]). Although the worst-case running time of the two algorithms is ex-
ponential, both are highly successful in applications since they perform well on practical
problems. Therefore, our efficiency measure for an algorithm shall be its performance
on practical problems.

Efficient decision procedures for the satisfiability problem are of central importance
in many application areas of modal logic (see, for instance, [20]). A property that is es-
sential for the practical efficiency of decision procedures for expressive logics is incre-

mentality. We call a decision procedure incremental if the reasoning steps it performs
in order to solve a given problem are determined by the structure of the problem. This
way, if the problem is relatively simple, an incremental procedure may be able to solve
it fast regardless of the worst-case complexity of the logic the problem is stated in.
Thus, even for logics with prohibitive worst-case complexity incremental methods often
perform well on fairly large problems, and hence may be used as a basis for practical
systems [113, 100, 190, 111].

One of the most successful approaches to incrementally deciding modal logics is
known as the tableau method. The origins of the tableau method can be traced back
to sequent systems introduced by Gentzen [79]. In its original form, the tableau method
was developed by Beth [25] and Hintikka [105]. The first application of the method to
modal logic is due to Kripke [139, 140]. In [140], Kripke devises the first decision proce-
dures for modal logic based on the tableau method. In the following, we will ignore the
proof-theoretic aspects of tableau systems and their applications to undecidable logics,
and only look at tableaux as a basis for incremental decision procedures for satisfiabil-
ity. Decision procedures based on the tableau method we will call tableau procedures.

Given a formula s, a tableau procedure searches for a syntactic model of s, i.e., a
syntactic representation of a transition system satisfying s. If it succeeds in finding a
model, s is satisfiable. Otherwise, s is unsatisfiable.

1.2.2 Formula Decomposition

To guarantee termination, it is essential that tableau procedures work within a finite
search space. This is achieved by exploiting a key property of the tableau method known

4

1.2 Tableau Method

as analyticity. In our setting, analyticity means that one only searches for models built
over a finite syntactic closure induced by the decomposition of the initial formula into
simpler formulas. For K, the formula decomposition can be described by the following
table (assuming all formulas are in negation normal form):

formula type constituents

s ∧ t α s, t

s ∨ t β s, t

✸s µ s

✷t µ s

The satisfiability of the formulas on the left-hand side of the table is determined from
the satisfiability of their constituents on the right-hand side, possibly in combination
with other formulas. So, to determine if a state satisfies a conjunction s ∧ t, a tableau
system will typically decompose the conjunction into its two conjuncts s and t, and
check if both are satisfied. For disjunctions, one proceeds dually. To check the satisfia-
bility of a formula ✸s at a state that is also required to satisfy the boxes ✷t1, . . . ,✷tn, it
suffices to check the satisfiability of the set {s, t1, . . . , tn}.

The table distinguishes between propositional decomposition rules (α, β) and modal

decomposition rules (µ). Following Smullyan [184], propositional decomposition rules
can be further classified into alpha rules for conjunctive formulas and beta rules for
disjunctive formulas. Formulas that cannot be decomposed by propositional decompo-
sition rules we call literals (they are called elementary formulas in [22, 57]).

The formula decomposition for K terminates in the sense that there is no infinite chain
of decompositions of a formula into its constituents. This is easy to see since the rules
always decompose formulas into proper subformulas. In fact, the syntactic closure of a
formula s induced by the above decomposition rules is precisely the subformula closure
of s.

Fischer and Ladner [67], extended the formula decomposition for K to PDL. Besides
conjunctions and disjunctions, the Fischer-Ladner decomposition introduces alpha and
beta rules for diamond and box formulas over complex programs, decomposing them
into formulas over simpler programs. For instance, formulas over programs of the form
γ∗ are decomposed as follows.

formula type constituents

[γ∗]s α s, [γ][γ∗]s

〈γ∗〉s β s, 〈γ〉〈γ∗〉s

While the formula s is a subformula of [γ∗]s, [γ][γ∗]s is not. Therefore, the syntactic
closure of a formula s induced by the Fischer-Ladner decomposition, known as the
Fischer-Ladner closure of s, is generally larger than the subformula closure of s. Still,
like the subformula closure of s, the Fischer-Ladner closure of s is finite, its size being
linear in the size of s.

As noted by Abate et al. [3, 200], the alpha and beta rules of the Fischer-Ladner decom-
position are not terminating (in contrast to the decomposition rules for K). On certain

5

1 Introduction

〈a∗∗〉p

p 〈a∗〉〈a∗∗〉p

〈a〉〈a∗〉〈a∗∗〉p

a∗∗

ε a∗a∗∗

aa∗a∗∗

Figure 1.1: A formula decomposition cycle
and the underlying program decomposition cycle

diamond and box formulas, they may run into cycles, as demonstrated in Figure 1.1 for
the formula 〈a∗∗〉p. Abate et al. call them “at a world” cycles. Such cycles can occur
for diamond and box formulas over complex programs and are caused by cycles in the
underlying program decomposition (shown for the program a∗∗ in Figure 1.1).

1.2.3 Candidate Models and Demos

Tableau procedures search for syntactic models of a given formula by working with
intermediate representations we call candidate models. A candidate model is a model
whose states are labeled with formulas from the syntactic closure of the initial formula.
The set of all formulas labeling a state is called the label set of the state. Candidate mod-
els all of whose states satisfy all formulas in their respective label sets we call demos.

Given a formula s, a tableau procedure typically starts with a candidate model con-
sisting of a single state labeled with s. The goal of the procedure is to extend this
initial candidate model to a demo. Every demo extending the initial candidate model
will satisfy s since it will contain s in the label set of one of its states.

For instance, consider the following derivation.

step 0: ✸✸p ∧✷¬p

w1

step 1: ✸✸p ∧✷¬p, ✸✸p, ✷¬p

w1

step 2: ✸✸p ∧✷¬p, ✸✸p, ✷¬p ✸p, ¬p

w1 w2

step 3: ✸✸p ∧✷¬p, ✸✸p, ✷¬p ✸p, ¬p p

w1 w2 w3

Beginning with with a candidate model consisting of a statew1 labeled with ✸✸p∧✷¬p,
we derive in three steps a demo witnessing the satisfiability of ✸✸p ∧✷¬p.

6

1.2 Tableau Method

Based on how they represent candidate models, we classify tableau procedures into
two basic approaches. The prefixed approach works with prefixed formulas, i.e., with
pairs of the form σ : s asserting that the formula s is required to hold at the state de-
noted by the prefix σ . The label set of a state denoted by a prefix σ is then the set
of all formulas prefixed with σ . A major advantage of the prefixed representation is
its flexibility. In particular, the prefixed representation allows a dynamic handling of
label sets in the sense that the label set of a state is allowed to grow over time (the
above example derivation is dynamic in step 1). Assuming we want to extend the label
set of a state denoted by a prefix σ with a formula s, we can always do so by intro-
ducing the prefixed formula σ : s. A disadvantage of the prefixed approach is that it
often requires additional techniques to ensure termination. While the label sets are
contained within the finite syntactic closure induced by the analytic formula decom-
position, there is no a priori bound on the number of prefixes. The techniques used
in tableau procedures to limit the number of prefixes that have to be considered are
known as blocking techniques [111] or loop-checks [30, 29]. For expressive logics, com-
plex blocking techniques are necessary, which may significantly complicate termination
arguments for decision procedures [29, 117, 129]. In its modern form, the prefixed ap-
proach is due to Fitting [68, 70] and Massacci [146]. Earlier tableau systems as studied
by Kripke [139, 140] (see also [70, 90, 71]) can be seen as precursors of the prefixed ap-
proach. While they do not work with explicit prefixes (and hence do not achieve the full
flexibility of the prefixed approach), they are conceptually similar to prefixed systems.
In particular, they often rely on blocking for termination.

A different approach to representing candidate models, pioneered by Pratt [160, 161],
is motivated by filtration. Filtration can be seen as a technique that, given a model M and
a formula s, maps every state w of M to the set of formulas from the syntactic closure
of s that are satisfied byw. Thus, the states of a model M′ obtained from M by filtration
correspond to sets of formulas from the syntactic closure of s. We will call such formula
sets clauses (not to be confused with the disjunctive clauses used by resolution meth-
ods). While clauses form the states of M′, they can also be interpreted as label sets. Since
every clause of M′ satisfies all of its formulas, M′ is in fact a demo. Procedures that use
clauses for representing states of candidate models we will call clausal. Since clauses
are formed over a finite syntactic closure and since no model obtained by filtration may
contain the same clause twice, the number of states in a clausal demo is (exponentially)
bounded in the size of the syntactic closure. Since they work within a bounded search
space, clausal procedures terminate without additional blocking mechanisms.

In contrast to the prefixed approach, the clausal approach is inherently static, mean-
ing that the label set of a state is fixed on creation and cannot be changed afterwards
(indeed, the approach makes no distinction between a state of a candidate model and
its label set).

1.2.4 Graph Procedures for PDL

The first tableau procedure for PDL was devised by Pratt [161]. Pratt’s procedure works
with an explicit representation of the search space as an AND/OR graph whose nodes

7

1 Introduction

are labeled with sets of formulas. We call such graphs graph tableaux. The label sets
of graph tableau nodes form the states of a clausal candidate model. To extract a demo
from such a candidate model, the procedure relies on a technique we call pruning.
Pruning proceeds by iteratively removing states of the candidate model that do not
satisfy their labels until it arrives at a demo. Pruning takes polynomial time with respect
to the size of the candidate model, which results in the overall procedure running in
deterministic exponential time (which is optimal). In its simplest form, pruning appears
in a second decision procedure by Pratt [160], developed for showing the ExpTime upper
bound on the complexity of PDL.

Procedures based on graph tableaux we call graph procedures. Pratt’s graph proce-
dure is not incremental since before it can apply pruning it always needs to construct
a complete graph tableau, while the satisfiability of many formulas can be decided by
only looking at a small fraction of the complete tableau.

Pratt’s graph procedure was later reformulated by Nguyen and Szałas [151], who
adapted it to reasoning problems in description logics [18, 15]. Nguyen and Szałas’
presentation differs in several aspects from Pratt’s original formulation. In particular,
their presentation of pruning employs a so-called graph of traces to distinguish satis-
fiable diamond formulas from unsatisfiable ones. Being essentially a representational
variant of Pratt’s procedure, Nguyen and Szałas’ approach has the same advantages and
disadvantages. In particular, Nguyen and Szałas’ procedure is not incremental.

The first incremental decision procedure for PDL based on graph tableaux was de-
vised by Goré and Widmann [93, 200]. Goré and Widmann’s procedure is also the first
decision method for PDL that achieves incrementality while retaining worst-case opti-
mality. Their approach combines Pratt-style pruning with incremental tableau construc-
tion techniques introduced in [91]. Their procedure is backtracking-free, exploring the
search space using graph search, and caching intermediate results to avoid recomputa-
tion. It stops as soon as it can determine that the graph tableau contains a demo satisfy-
ing the input formula, or that no such demo exists. An implementation of the procedure
by the authors demonstrates a high practical potential of the approach. In [95, 200],
Goré and Widmann extend their approach to PDL extended with converse modalities,
which make it possible to talk about the predecessors of a state. It should be noted
that the presentation of Goré and Widmann’s approach in [93, 200] is algorithmically
involved, which also shows in the complexity of the correctness proofs in [200]. While
the algorithmic details of the presentation may facilitate efficient implementation, they
also make it difficult to understand the abstract principles behind the procedure, which
is essential if one wants to extend the procedure to more expressive logics.

1.2.5 Tree Procedures for PDL

Incremental decision procedures for PDL predating Goré and Widmann’s approach are
all based on tree search (see, for instance, [149, 141, 186]). Unlike graph search, tree
search organizes the search space as a tree. In the case of tableau procedures, every
branch of the tree corresponds to a candidate model of the initial formula s. The search
tree is explored until one either finds a branch corresponding to a demo or rejects

8

1.2 Tableau Method

all candidate models, in which case s is unsatisfiable. Incremental tableau procedures
typically explore the search tree branch by branch, backtracking on failure. Since for
ExpTime-complete logics search trees produced by the tableau method are typically at
least double exponential in the worst case, decision procedures for such logics that are
based on tree search are usually not optimal. Still, being incremental, they often display
good performance on practical problems [113, 100, 190].

We use the term tree procedures as a shorthand for “tableau procedures based on tree
search”. Historically, tree procedures predate graph procedures as decision methods for
modal logic. Indeed, Kripke’s [140] first tableau procedures for modal logic employ tree
search.

The first tree procedure for PDL (without tests) was devised by Baader [12]. To dis-
tinguish demos from non-demos, the procedure introduces a loop detection mecha-
nism, distinguishing between “good” and “bad” loops. To deal with complex programs,
the procedure relies on automata-theoretic methods. Since the construction of the au-
tomata needed by the procedure may require exponential time, the method cannot be
considered fully incremental.

Later, De Giacomo and Massacci [52] presented a fully incremental tree procedure for
PDL with converse modalities. Overall, De Giacomo and Massacci’s approach resembles
that of Baader, but does not involve automata-theoretic techniques. The procedure runs
in NExpTime. While a way is sketched to transform the procedure into one that runs in
ExpTime, the discussion leaves some open questions.

Yet another incremental tree procedure was presented by Abate et al. [3, 200]. Their
procedure improves on several aspects of Baader’s and De Giacomo and Massacci’s pro-
cedures but retains their essential features: suboptimal complexity due to tree search
and the use of a loop detection mechanism to distinguish demos from non-demos. To
deal with cycles in the alpha-beta formula decomposition, Abate et al. develop a ded-
icated loop detection mechanism. A modification of this mechanism is later used by
Goré and Widmann [93] in their graph procedure.

1.2.6 Tableau Procedures for Hybrid Logic

Existing tableau procedures for hybrid logic are all based on tree search. The first
attempt at a tableau procedure for hybrid logic with satisfaction operators is due to
Tzakova [191]. Bolander and colleagues [30, 29] observed and fixed a flaw in Tzakova’s
procedure, eventually giving a range of tableau procedures for hybrid logics of varying
expressiveness. Extensions to even stronger logics as well as algorithmic refinements of
the procedures are explored in [126, 127, 124, 39, 107]. The different approaches have
been implemented in the provers HTab [109], Spartacus [97, 98], Herod and Pilate [42].
In a parallel line of work, tableau procedures for description logics (which are syntactic
variants of hybrid logic) were developed by Horrocks and Sattler [115, 117]. Their calculi
have been implemented in systems like FaCT++ [189] or Pellet [182].

All existing tableau procedures for hybrid logic are based on the prefixed approach.
The prefixed approach facilitates a dynamic handling of the state equality constraints
introduced by nominals. Suppose, for instance, we derive that two existing prefixes σ

9

1 Introduction

and τ must denote the same state of the candidate model (this constraint can be ex-
pressed by the two prefixed formulas σ :x and τ :x for some nominal x). This equality
constraint can be realized by propagating every formula associated with σ to τ and vice
versa, thus making the annotations of σ and τ equal. Once the two annotations are
equal, the two prefixes can be mapped to the same state of the model.

1.3 Questions Asked

As we have seen, there are practical incremental decision procedures for both PDL and
hybrid logic. However, none of the existing procedures can deal with the combination
of PDL and nominals. In this thesis, we investigate the question of whether and how
the treatment of complex programs as they occur in PDL can be combined with the
treatment of nominals in an incremental way.

More specifically, we are interested in obtaining an incremental tableau procedure for
PDL extended with nominals. On the one hand, the procedure should allow efficient
implementation. On the other hand, it should be modular and have clean correctness
proofs to facilitate possible adaptation or extension to other logics.

To come up with such a procedure, we will have to answer questions such as:
• How do nominals interact with programs as it comes to decision procedures?
• Should we base our procedure on graph search or on tree search? More generally,

what are the trade-offs between the two approaches for the logics we consider?
• Should we base our procedure on the prefixed or the clausal approach? Should we

adopt a dynamic or a static handling of constraints on candidate models?
• How do we deal with cycles produced by the alpha and beta rules of the Fischer-

Ladner decomposition?

1.4 Overview of the Thesis

Rather than trying to devise a procedure for the combination of PDL and hybrid logic in
one go, we approach our goal in stages. In particular, we look at different sublogics to
see what techniques are necessary to deal with the constructs specific to these logics.
The main logics that are of relevance in this thesis can be summarized as follows.

nominals

K ⊆ H

⊆ ⊆

eventualities K∗ ⊆ H∗

⊆ ⊆

programs PDL ⊆ HPDL

The extension of the basic modal logic K with nominals is called the basic hybrid logic H.
By extending K and H with eventualities we obtain K∗ and H∗, the basic modal and basic

hybrid logic with eventualities. The extension of PDL with nominals we call hybrid PDL

10

1.4 Overview of the Thesis

(HPDL). We will also consider some extensions and restrictions of the logics in the
table, most importantly a variant of (H)PDL that is obtained by restricting the syntax of
programs, disallowing tests. We call the logic test-free (H)PDL.

Our work can be separated in two main parts. The first part is concerned with decision
procedures based on pruning and graph search. The second part is dedicated to pro-
cedures based on tree search. All of the procedures developed in this thesis are based
on the clausal approach since this allows a transparent presentation of the correctness
arguments and simplifies termination proofs.

Existing clausal approaches [161, 151, 93] distinguish between two types of clauses,
which we call state clauses and auxiliary clauses. State clauses represent states of a
candidate model, whereas auxiliary clauses represent intermediate stages in computing
state clauses. We adopt this idea when looking at graph procedures. In our case, state
clauses are defined to be literal, i.e., to contain only literals, while auxiliary clauses may
also contain nonliteral formulas. When we come to tree procedures, it turns out that in
the presence of eventualities, the uniqueness constraints imposed on auxiliary clauses
affect the correctness of tree search. A similar problem occurring with graph search and
converse modalities is addressed by Goré and Widmann [94] by relaxing the uniqueness
constraints on auxiliary clauses. We solve the problem differently by separating proposi-
tional reasoning represented by auxiliary clauses from modal reasoning. This results in
a procedure with two interleaved stages. The top-level modal stage searches for demos,
working exclusively with literal state clauses. To compute the successors of a clause
C , the modal stage relies on a propositional stage, which, for every diamond formula
s ∈ C , yields a set of clauses serving as candidates for the state required by s.

The tableau procedures developed in this thesis can be related to existing approaches
as shown in the following table.

tree search graph search

prefixed [146, 29, 117]

clausal (flat) [161, 151, 94, 93, 95], this thesis

clausal (staged) this thesis

1.4.1 Pruning and Graph Search

We begin our investigations by looking at Pratt’s [160] abstract worst-case optimal pro-
cedure for PDL. While not incremental, it introduces pruning, which is essential for the
graph tableau approach to PDL. Hence, extending the method to deal with nominals
may provide the insights necessary for treating nominals within incremental graph pro-
cedures. We begin by introducing the notion of a demo. Similarly to Pratt’s original
representation in [160], we define a demo as a set of Hintikka sets that satisfies certain
consistency criteria. Hintikka sets are sets of formulas saturated under alpha-beta de-
composition (named after Hintikka [105], who introduced them under the name “model
sets”). Unlike Pratt, who for the correctness of his approach relies on the assumption
that Fischer and Ladner’s [67] filtration technique for PDL adapts to his representation,

11

1 Introduction

we establish all the necessary small model properties within our framework. We begin
by formulating and proving correct a Pratt-style abstract decision procedure for test-free
PDL. When we then extend this language with nominals, we observe that the determin-
istic pruning algorithm underlying the procedure becomes incomplete. However, if we
are, like Pratt, just interested in worst-case optimality, the incompleteness of pruning
can be remedied with a guessing stage, which essentially reduces the decision problem
with nominals to the case without nominals. We exploit this fact to obtain a Pratt-style
worst-case optimal procedure for test-free HPDL. By further extending the guessing
technique, we obtain a worst-case optimal procedure for an extension of the language
with difference modalities. Finally, we look into what needs to be done to extend the ap-
proach to tests and converse modalities. Put together, the extensions yield a worst-case
optimal procedure for HPDL extended with converse and difference modalities.

Just like Pratt’s original method, however, our abstract procedure is nonincremental.
One source of nonincrementality is that the procedure performs pruning starting from
a candidate model that consists of all Hintikka sets over some formula universe. This
issue is addressed and resolved by Goré and Widmann’s [93] graph tableau approach.
However, our procedure has an additional source of nonincrementality not present in
Pratt’s original method, namely the guessing stage we introduce to deal with nominals.

To see whether the nonincrementality introduced by guessing can be eliminated, we
first need to understand the connection between Pratt’s abstract procedure and the
graph procedures for PDL in the absence of nominals. To improve this understand-
ing, we study how the abstract procedure can be stepwise refined to incremental graph
procedures while preserving worst-case optimality. Since for our purposes it is not nec-
essary to consider full PDL, we restrict ourselves to K∗. We first obtain a variant of
Pratt’s tableau procedure from [161], which we then refine further to a variant of Goré
and Widmann’s [93] incremental procedure.

We achieve incrementality by refining pruning into two complementary mechanisms:
eager pruning, used to compute the set of clauses provably satisfiable in the current
graph tableau, and cautious pruning, which yields the clauses provably unsatisfiable in
the current graph tableau. To facilitate correctness proofs, we introduce a representa-
tion of demos based on literal clauses (rather than Hintikka sets). The representation
is complemented by an inductively defined notion of support, which allows to infer the
satisfaction of nonliteral formulas from literals.

Our incremental procedure is a simpler and more abstract variant of Goré and
Widmann’s [93] procedure (restricted to K∗) that makes explicit the connections be-
tween incremental graph procedures for logics with eventualities and Pratt’s [160, 161]
nonincremental procedures. However, even after making this connection explicit, we
still cannot see a way of obtaining incremental graph procedures that could handle nom-
inals without relying on a guessing stage. Hence, we turn our attention to tree search.

1.4.2 Tree Search

Our goal is now to show that tree procedures for PDL can be extended to deal with nom-
inals. For clarity of exposition, we first restrict ourselves to H∗, the simplest logic that

12

1.4 Overview of the Thesis

has both nominals and eventualities. To combine tree search with a clausal representa-
tion in the presence of eventualities, we separate modal reasoning from propositional
reasoning. This results in a procedure with two interleaved stages: a modal stage work-
ing with literal state clauses and a propositional stage. To introduce the approach,
we start with a procedure for K, and stepwise extend it to deal with eventualities and
nominals. To deal with nominals, we develop a technique that we call nominal prop-

agation. Unlike previous approaches [115, 30, 29, 117, 127, 39, 107], which all rely
on dynamic propagation of equational constraints, nominal propagation allows nomi-
nals to be treated completely statically, without any a posteriori modification of label
sets. Thus, the approach is compatible with our clausal representation and with a loop
detection mechanism in the style of Baader [11].

Finally, we extend our procedure for H∗ to full HPDL. For clarity, we first restrict
ourselves to test-free HPDL, whereafter we present the extensions necessary to deal
with tests. As with H∗, the procedure decomposes into modal reasoning on literal
state clauses and the computation of literal state clauses using alpha-beta decompo-
sition rules. The main complication that we encounter with HPDL as compared to H∗ is
caused by the fact that an alpha-beta decomposition à la Fischer and Ladner [67] does
not terminate. This destroys an essential representation invariant for clausal demos
and graph tableaux, namely that every Hintikka set is equivalent to the set of its literals.
For instance, consider the Hintikka set H = {q, 〈a∗∗〉(p ∧ ¬p), 〈a∗〉〈a∗∗〉(p ∧ ¬p)}.
While H is clearly unsatisfiable (both of its diamond formulas require the existence of a
reachable state satisfying p ∧ ¬p), the only literal in H is q. Clearly, {q} is satisfiable.
At the same time, the nontermination of the naive alpha-beta decomposition affects the
definition of support, which is of central importance for our approach. It turns out that
the notion of support induced by the naive decomposition is too weak to infer the sat-
isfaction of all relevant formulas. For instance, we cannot inductively infer that every
state satisfying p and [a][a∗][a∗∗]p also satisfies [a∗∗]p. We deal with the problem
by devising a terminating formula decomposition that refines the naive alpha-beta de-
composition. Unlike the naive decomposition, the terminating decomposition induces
a well-founded order on formulas. This order allows to reestablish the correspondence
between Hintikka sets and literal clauses, at the same time forming a basis for a new
inductive definition of support. To argue the correctness of the revised decomposition
in a modular way, we employ a language-theoretic semantics for programs. While in the
test-free case we can use regular languages, to deal with tests, we adapt the language-
theoretic semantics for Kleene algebra with tests [130, 137]. Once the termination of the
alpha-beta decomposition is reestablished, we obtain the decision procedure for HPDL
by extending our approach for H∗.

1.4.3 Chapter Breakdown

Chapter 2 gives a survey of modal and hybrid logic with the focus on languages playing
a role later in the thesis.

Chapter 3 introduces the notions of demos and pruning, and uses them to develop
worst-case optimal decision procedures for HPDL extended with converse and difference

13

1 Introduction

modalities.

Chapter 4 extends the pruning technique to graph tableaux, obtaining an incremental
decision procedure for K∗.

Chapter 5 develops the first incremental decision procedure for H∗ based on tree
search.

Chapter 6 extends the procedure for H∗ to deal with complex programs without tests,
thus obtaining the first incremental decision procedure for test-free HPDL.

Chapter 7 extends the results of Chapter 6 to programs with tests, obtaining the first
incremental decision procedure for HPDL.

Chapter 8 concludes the thesis with a discussion of the results and an outlook to future
work.

1.5 Contributions

The main contributions of this thesis are as follows.

1. We introduce a class of syntactic models called demos and use them to give a mod-
ular analysis of decidability results and abstract worst-case optimal procedures for
extensions of PDL. In particular:
a) We simplify and modularize the proof of Fischer and Ladner’s [67] filtration

theorem for PDL compared to its presentations in the literature [67, 103, 138,
104], as well as extend the result to nominals and difference modalities.

b) We extend Pratt’s [160] worst-case optimal decision procedure for PDL to a
richer logic with converse, nominals, and difference modalities and prove its
correctness.

2. We develop a basic theory explaining the construction and the correctness of in-
cremental worst-case optimal decision procedures based on graph tableaux. Using
this theory we obtain a decision procedure for K∗, which is a simplified and more
abstract variant of Goré and Widmann’s [93, 200] procedure for PDL.

3. We develop the first incremental decision procedures for modal logics containing
both nominals and eventualities. After devising an incremental procedure for H∗

based on tree search, we extend it to deal first with test-free HPDL, and then with
full HPDL. Our procedures are the first to combine the clausal approach with tree
search. The most important innovations of our approach are as follows.
a) We separate modal reasoning from propositional reasoning. The modal level

works with literal state clauses, interacting with the propositional level via an
abstract interface. Given a clause C and a diamond formula s ∈ C , the interface
returns clauses serving as candidates for the state required by s. This modu-
larization reconciles tree search in the presence of eventualities with a clausal
representation of candidate models. Moreover, it allows to replace the naive
approach to propositional reasoning taken in the thesis by any algorithm imple-
menting the abstract propositional interface while preserving the correctness of
the overall procedure.

14

1.5 Contributions

b) We introduce nominal propagation as a technique that allows to deal with equa-
tional constraints introduced by nominals without relying on fine-grained dy-
namic propagation rules used by existing hybrid tableau systems [115, 30, 29,
117, 127, 39, 107].

c) We devise a novel terminating formula decomposition for HPDL. The decom-
position allows to obtain a clausal representation and an inductive definition
of support that are essential for our approach to HPDL. We prove the ade-
quacy of the decomposition by adapting some basic results for Kleene algebra
with tests [136, 137]. Unlike techniques based on a naive Fischer-Ladner-style
decomposition [161, 151, 3, 93, 200], the terminating formula decomposition
combines naturally with our clausal approach and allows transparent and mod-
ular correctness proofs.

1.5.1 Published Results

Parts of this thesis revise and extend material that has already been published.

• The analysis of demos and pruning as a means of obtaining modular decidability
and complexity results in Chapter 3 extends the following paper.

Mark Kaminski, Thomas Schneider, and Gert Smolka. Correctness and worst-case op-

timality of Pratt-style decision procedures for modal and hybrid logics. In TABLEAUX

2011, Kai Brünnler and George Metcalfe, editors, vol. 6793 of LNCS, pp. 196–210.
Springer, 2011.

• The decision procedure for K∗ presented in Chapter 4 extends the following paper.

Mark Kaminski and Gert Smolka. Correctness of an incremental and worst-case opti-

mal decision procedure for modal logic with eventualities. Technical report, Saarland
University, 2011.

• The decision procedure for H∗ presented in Chapter 5 is based on the following
paper.

Mark Kaminski and Gert Smolka. Terminating tableaux for hybrid logic with eventu-

alities. In IJCAR 2010, Jürgen Giesl and Reiner Hähnle, editors, vol. 6173 of LNCS,
pp. 240–254. Springer, 2010.

• Precursors of clausal demos in Chapters 4 and 5, as well as some of the techniques
used to deal with nominals and difference modalities in Chapter 3 first appear in
the following paper.

Mark Kaminski and Gert Smolka. Clausal graph tableaux for hybrid logic with even-

tualities and difference. In LPAR-17, Christian Fermüller and Andrei Voronkov, edi-
tors, vol. 6397 of LNCS, pp. 417–431. Springer, 2010.

• The decision procedure for hybrid PDL presented in Chapters 6 and 7 is a thorough
revision and extension of the following paper.

Mark Kaminski and Gert Smolka. Clausal tableaux for hybrid PDL. In M4M-7, Hans
van Ditmarsch, David Fernández Duque, Valentin Goranko, Wojtek Jamroga, and
Manuel Ojeda-Aciego, editors, vol. 278 of ENTCS, pp. 99-113. Elsevier, 2011.

15

2 Modal and Hybrid Logics

Modal logic as we see it today can be traced back to the work of Lewis [145] published
in 1918. However, it was not until 1959 when modal logic obtained a natural and widely
accepted relational semantics through the work of Kripke [139, 140] (see [27, 85] for a
discussion of Lewis’ and Kripke’s contributions). All of the logics treated in this thesis
are based on relational semantics. For our purposes, a relational model will be a struc-
ture consisting of unary and binary relations over a nonempty domain. Depending on
the particular application, these structures can be given different intuitive interpreta-
tion. For instance, elements of the domain can be seen as possible worlds, points in
time, or objects of an ontology. We will view relational structures as transition systems,
that is, directed labeled graphs. Elements of the domain are seen as states of the tran-
sition system (i.e., vertices of the graph). Unary relations are seen as state labels, and
binary relations are seen as transition labels (i.e., edge labels), where every transition is
required to have at least one label.

Consider, for instance, the following structure over the three-element domain
{w1, w2, w3}:

• p = {w1, w3}

• q = {w2, w3}

• a = {(w1,w1), (w1,w2), (w2,w2), (w2,w3)}

• b = {(w1,w2), (w2,w3), (w3,w1)}

The structure consists of two unary relations, called p and q, and two binary relations, a
and b. The corresponding transition system can be represented graphically as follows:

w1 w2 w3

p q p, q

a,b a,b

b

a a

Interpreted over transition systems, formulas denote sets of states. While the inter-
pretation of purely propositional formulas depends solely on state labels, modal logic
allows reasoning about the structure of the transition system, i.e., about how the states
are connected with each other by transitions. The logics treated in this thesis will all
have full propositional power but will differ in their modal expressiveness, their ability
to describe structural properties of transition systems.

17

2 Modal and Hybrid Logics

In this chapter, we introduce the logics covered by our decision methods. We give
their syntax and semantics, discuss their expressive power and their relationship to
each other. Also, we give an overview of the available decision methods for the logics.
At the end, we briefly discuss some related logics not covered so far by our methods.

2.1 Basic Modal Logic

The basic modal logic K is the simplest modal logic discussed in this thesis. All other
logics we will look at can be seen as extensions of K.

2.1.1 Syntax and Informal Semantics

We assume a nonempty set of propositional variables, or predicates for short, and a
nonempty set of relational variables, also called actions. We will denote predicates by
the letters p and q, and actions by the letters a and b. For every action a, the logic
K introduces two modal operators: a diamond operator 〈a〉, and a box operator [a].
Formulas of K are defined using propositional connectives and the two modal operators
with the grammar

s ::= p | ¬s | s ∨ s | s ∧ s | 〈a〉s | [a]s

The formulas have the following intuitive semantics:
• p denotes all states labeled by p.
• ¬s denotes the complement of (the denotation of) s.
• s ∨ t and s ∧ t denote the union and the intersection of s and t, respectively.
• 〈a〉s denotes all states that have an a-successor in s.
• [a]s denotes all states all of whose a-successors are in s.
For instance, on the transition system on p. 17, the formula 〈b〉[a]q denotes the states
w1 and w2. For w1, this is the case because it has a b-successor (w2) all of whose a-
successors (w2 and w3) are labeled with q. On the other hand, w3 is not denoted by
〈b〉[a]q since its only b-successor (w1) has an a-successor (w1) that is not labeled by q.

Note that the diamond operator allows existential quantification and the box opera-
tor universal quantification over the successors of a state. And indeed, the standard
translation (see [27], § 2.4) of modal logic into classical first-order logic expresses ev-
ery diamond by an existential quantifier and every box by a universal quantifier. Like
the two classical first-order quantifiers, 〈a〉 and [a] are dual to each other, obeying the
following equivalence:

[a]s ≡ ¬〈a〉¬s

The formal semantics of K justifying this fact will be introduced in § 2.2.
It is common to restrict attention to only one action a and to consider only transition

systems with a single transition relation labeled by a. In this case, one can omit the
relational annotation of the modal operators, writing simply ✸ for 〈a〉 and ✷ for [a]. In
most cases, results obtained for such unimodal logics easily scale to their counterparts
with multiple actions.

18

2.1 Basic Modal Logic

2.1.2 Satisfiability Problem and Decision Methods

A transition system is said to satisfy a formula s if the denotation of s in the system is
nonempty. A formula is satisfiable if it has at least one satisfying transition system. In
the following, we will primarily be interested in answering the following question:

Given a formula s, is s satisfiable?

This question is known under the name satisfiability problem. The dual problem to
satisfiability is determining the validity of a given formula. A formula s is valid if it
is satisfied by every state in every transition system. Since a formula s is valid if and
only if ¬s is not satisfiable, checking validity is reducible in constant time to checking
satisfiability and vice versa. In the following, whenever we speak of deciding a logic, we
mean deciding the satisfiability of formulas of the logic, and whenever we speak of the
complexity of a logic, we mean the complexity of its satisfiability problem.

Ladner [142] showed that the complexity of unimodal K is PSpace-complete. The
result was then extended to the multimodal case by Halpern and Moses [101].

How do we decide K? One of the most successful approaches to deciding K and
modal logics in general is the tableau method. The first tableau procedures for modal
logic are due to Kripke [140]. Tableau procedures for K appear in [167, 168, 70]. Also,
Ladner’s [142] worst-case optimal decision procedure for K can be seen as a tableau pro-
cedure. More modern presentations can be found in [146, 90]. Due to their simplicity,
tableau procedures lend themselves to implementation. Currently, most implemented
systems can deal with logics that are much more expressive than K. We will mention
some of them when we come to these logics. While Ladner’s decision procedure demon-
strates that a tableau system for K can be implemented in polynomial space, efficient
implementations often choose to use more space in order to cache intermediate results.
As reported in [113, 83, 92], caching can considerably improve the performance of de-
cision procedures, for modal logics, even in the case of K.

To speed up propositional reasoning in modal tableau procedures, Giunchiglia and
colleagues [84, 81] propose to make use of the solver technology available for the propo-
sitional satisfiability problem (SAT). Somewhat misleadingly, the resulting approach is
often called SAT-based or DPLL-based (DPLL standing for the Davis-Putnam-Logemann-
Loveland [50, 49] algorithm for propositional satisfiability). More precisely, it can be
seen as a hybrid approach, in which modal reasoning is done using a tableau calculus
while propositional reasoning is delegated to a DPLL-based SAT solver. Provers based
on this approach include KSAT [84] and its successor *SAT [82, 81].

Closely related to tableau systems are sequent calculi, also called Gentzen systems
after their inventor [79]. There is a natural correspondence between tableau systems
and sequent calculi, which, in particular, allows an easy transfer of results between the
two approaches. For the special case of modal logic this correspondence is discussed
in [90, 71]. As far as proof search is concerned, modal sequent calculi are considered
largely equivalent to tableau systems and hence, in their traditional form, have not
received much attention in the field of automated reasoning.

19

2 Modal and Hybrid Logics

Another established decision method for K is resolution, which can be performed
either directly on modal formulas [63, 148, 6] or after translating them into a decidable
fragment of first-order logic [172, 53, 121, 173]. Implementations are available for both
the direct [9] and the translational approach [120, 199].

Besides encodings into first-order logic, encodings into constraint satisfaction prob-
lems [32], quantified Boolean formulas [152], and even directly into SAT [178] have been
proposed as decision methods for K.

Other notable approaches include the inverse method (a variant of a sequent calculus
with an inverted proof search strategy) proposed by Voronkov [197, 198] and BDD-based
procedures proposed by Pan et al. [152].

2.2 Propositional Dynamic Logic

Propositional dynamic logic (PDL) was introduced by Fischer and Ladner [66, 67] as a
decidable fragment of dynamic logic [159, 102]. For a comprehensive introduction to
PDL, see [104].

2.2.1 Syntax

As we have seen before, K allows us to quantify over the successors of a state that are
reachable by a single action. PDL extends modal quantification to states reachable by
complex sequences of actions. To describe such sequences, the language is extended by
a new kind of terms called programs. Programs are defined by mutual recursion with
formulas as follows:

α ::= a | α+α | αα | α∗ | s programs

s ::= p | ¬s | s ∨ s | s ∧ s | 〈α〉s | [α]s formulas

Note that K is a proper syntactic fragment of PDL, which is obtained by restricting the
syntax of programs to actions.

Programs of the form s are called tests. Before we look at the full language, let us
consider the sublanguage of PDL without tests, which we call test-free PDL. Test-free
PDL is the language originally introduced by Fischer and Ladner in [66] and is studied
in [27] under the name “regular PDL”. Without tests, programs are nothing but regular
expressions over actions. Hence, intuitively, a program denotes a regular language over
transitions. In particular:
• a denotes all transitions labeled with a.
• α+ β denotes the union of α and β.
• αβ denotes the set of all concatenations of the words in α with those in β.
• α∗ denotes the reflexive-transitive closure of α.
With this, we can already express fairly complex transition sequences. For instance,
〈(a + b)b∗〉p denotes all states that can reach a state satisfying p by a nonempty se-
quence of transitions whose first transition is labeled with a or b and all of whose
remaining transitions are labeled with b.

20

2.2 Propositional Dynamic Logic

What we cannot express are sequences that depend on state labels. For instance,
we cannot quantify over states reachable by transition sequences that only go through
states satisfying some predicate p. Tests allow us to do exactly this. Tests denote
partial identity relations on states. The partial identity relation denoted by a test s is
defined on all states that satisfy s and undefined everywhere else. With this intuition,
we can justify the following two equivalences:

〈s〉t ≡ s ∧ t [s]t ≡ ¬s ∨ t

For the first equivalence, the justification is as follows. Suppose a state w satisfies 〈s〉t.
Then w has an s-successor satisfying t. Since the transition relation denoted by s is
defined on w, w satisfies s. Since s denotes a partial equivalence relation, w is its only
successor, and hence, by assumption, satisfies t. Therefore,w satisfies s∧t. Conversely,
it is easy to see that a state satisfying s ∧ t has an s-successor satisfying t.

Remark 2.2.1 In the literature, one often uses a different notation for programs, writing
α∪ β for α+ β, α;β for αβ, and s? for s when s is a test. ◭

By exploiting De Morgan’s laws, the equivalence ¬¬s ≡ s for double negation, and the
equivalences ¬〈α〉s ≡ [α]¬s and ¬[α]s ≡ 〈α〉¬s for modal operators, every formula of
PDL can be translated into negation normal form where the negation operator is only
applied to predicates. Note that both the time needed to perform the translation and
the size of the negation normal form are linear in the size of the initial formula.

2.2.2 Semantics

Let us now give the formal semantics of PDL. For this purpose, we fix some notations
for binary relations. Let → ⊆ X ×X.

→0 := { (x,x) | x ∈ X } →∗ :=
⋃

n≥0

→n →−1 := { (y,x) | (x,y) ∈ →}

→n+1 := → ◦→n →+ := → ◦→∗

For all relations shown above we use infix notation (i.e., x →n y for (x,y) ∈ →n).
A model M of PDL consists of the following components:

• A nonempty set |M| of states. We call |M| the domain of M.
• A transition relation

a
-→M ⊆ |M| × |M| for every action a.

• A set Mp ⊆ |M| for every predicate p.
The transition relations for complex programs and the satisfaction relation M,w ⊨ s

between models M, states w ∈ |M|, and formulas s are defined by mutual induction on
the structure of formulas and programs as shown in Figure 2.1. The satisfaction relation
defines what it means for a state to satisfy a formula. Intuitively, we have M,w ⊨ s if
and only if w is contained in the set of states denoted by s. Another useful intuition
is to think of satisfaction as an evaluation function. For every model M and every state
w ∈ |M|, satisfaction defines a function from formulas to truth values. The function
evaluates a formula s to true if and only if M,w ⊨ s.

21

2 Modal and Hybrid Logics

α+β
-→M =

α
-→M ∪

β
-→M

αβ
-→M =

α
-→M ◦

β
-→M

α∗
-→M =

α
-→
∗
M

s
-→M = { (w,w) |M,w ⊨ s }

M,w ⊨ p ⇐⇒ w ∈Mp

M,w ⊨ ¬s ⇐⇒ not M,w ⊨ s

M,w ⊨ s ∨ t ⇐⇒ M,w ⊨ s or M,w ⊨ t

M,w ⊨ s ∧ t ⇐⇒ M,w ⊨ s and M,w ⊨ t

M,w ⊨ 〈α〉s ⇐⇒ ∃v : w
α
-→M v and M, v ⊨ s

M,w ⊨ [α]s ⇐⇒ ∀v : w
α
-→M v implies M, v ⊨ s

Figure 2.1: Satisfaction relation for PDL

〈s〉t ≡ s ∧ t [s]t ≡ ¬s ∨ t

〈α+ β〉s ≡ 〈α〉s ∨ 〈β〉s [α+ β]s ≡ [α]s ∧ [β]s

〈αβ〉s ≡ 〈α〉〈β〉s [αβ]s ≡ [α][β]s

〈α∗〉s ≡ s ∨ 〈α〉〈α∗〉s [α∗]s ≡ s ∧ [α][α∗]s

Figure 2.2: Semantic equivalences for PDL

Now the notion of satisfiability from § 2.1.2 can be made formal. A model M satisfies

(or is a model of) a formula s if M,w ⊨ s for some state w ∈ |M|. A formula is
satisfiable if it has a model.

Another notion we were so far using intuitively is semantic equivalence. Formally,
two formulas s and t are equivalent, written s ≡ t, if for all models M and all w ∈ |M|
we have M,w ⊨ s ⇐⇒ M,w ⊨ t. Some important equivalences, including the ones we
have seen for tests, are given in Figure 2.2.

2.2.3 Decision Methods

The satisfiability problem for PDL is ExpTime-complete. The lower bound was shown
by Fischer and Ladner [67] by reduction from linear space bounded alternating Turing
machines. Fischer and Ladner also show that PDL is decidable by proving that it has
the small model property. More precisely, they show that every satisfiable formula s
has a model of size exponential in the size of s. Thus, the satisfiability of a given for-

22

2.2 Propositional Dynamic Logic

mula s can be decided by a simple guess-and-check procedure: One guesses a model and
checks if it satisfies s. Besides being unpractical, the procedure requires nondetermin-
istic exponential time, and hence does not match Fischer and Ladner’s lower complexity
bound.

The first worst-case optimal decision procedures for PDL were devised by Pratt [160,
161]. Pratt’s approach in [161] was later reformulated by Nguyen and Szałas [151]. Nei-
ther Pratt’s procedures nor Nguyen and Szałas’ procedure are incremental. Incremental
but nonoptimal tableau procedures for (variants of) PDL were proposed by Baader [12],
De Giacomo and Massacci [52], and Abate et al. [3]. The procedure by Abate et al. is
implemented within the Tableau Workbench (TWB) [1] framework. Finally, an incre-
mental and worst-case optimal tableau procedure for PDL was presented by Goré and
Widmann [93]. Their implementation of the procedure is currently the arguably most
efficient system for PDL (see [122]).

Although PDL is decidable via automata-theoretic methods (as shown by Vardi and
Wolper [195]), we are not aware of any implementations explicitly based on automata.
This is due to the fact that a naive implementation of automata-based methods is highly
nonincremental, usually resulting in worst-case behaviour on all inputs. However, as
observed by Emerson and Sistla [62, 56], Gerth et al. [80] or Baader et al. [16], there is a
close correspondence between the tableau method and automata-based methods, which
often allows to interpret tableau procedures as optimized automata-based procedures.

Game-theoretic decision methods can be seen as a combination of a tableau-based
construction phase producing candidate models with an automata-based pruning phase
eliminating candidate models that fail to satisfy the input formula. Game-theoretic
methods that apply to PDL were proposed by Lange [143] and Cîrstea et al. [45]. A
recent implementation of a generic game-theoretic decision procedure by Friedmann
and Lange [73] can decide PDL as a special case.

2.2.4 Modal Logic with Eventualities

Note that the equivalences in Figure 2.2 allow us to convert every formula that does
not contain programs of the form α∗ to an equivalent formula of K. For instance,
〈ap + b〉q ≡ 〈a〉(p ∧ q)∨ 〈b〉q. On the other hand, even very simple formulas that use
the reflexive-transitive closure like 〈a∗〉p cannot be finitely expressed in K. Intuitively,
this is the case since formulas of K can see only finitely far ahead.

More formally, given a model M, a state w ∈ |M| and a number n, we can think of
the n-step environment of w in M as a the largest submodel of M that contains only
states reachable from w by at most n transitions. For every formula of K there is a
bound n such that the formula is satisfied by a given model M at a state w if and only
if it is satisfied by the n-step environment of w in M (or by any model that agrees with
M on its n-step environment of w; see [27], § 2.3 for details and general results). It is
easy to see that the formula 〈a∗〉p does not have this property. For every number n
there is a model M and a state w satisfying 〈a∗〉p such that every state satisfying p is
more than n a-transitions away from w, and hence 〈a∗〉p is not satisfied by the n-step
environment of w in M.

23

2 Modal and Hybrid Logics

In this sense, quantification over reachable states as realized by the operators 〈a∗〉
and [a∗] can be seen as the distinguishing feature of PDL compared to K. What happens
if we try to isolate this feature? We arrive at the language K∗. For simplicity, let us
restrict ourselves to the unimodal case. There, K∗ can be obtained by extending K with
two additional operators: ✸∗ and ✷∗. The semantics of ✸∗ is equivalent to that of
〈a∗〉 and the semantics of ✷∗ to that of [a∗], assuming the unique transition relation
of unimodal K∗ is labeled with a.

Since, intuitively, a formula of the form ✸∗s means that s needs to hold eventually,
we call such formulas eventualities (the name can be traced back to Clarke, Emerson
and Halpern [44, 58, 59, 57]; Emerson and Halpern [59] study K∗ under the name UB−).
So, K∗ can be characterized as the basic modal logic with eventualities.

It turns out that K∗ shares essential semantic and computational properties with PDL.
Like PDL, K∗ is not compact (consider the set ✸∗¬p, ✷p, ✷✷p, . . .) and hence has no
semantics-preserving translation into first-order logic. Also, K∗ is ExpTime-complete.
While the upper bound is directly inherited from PDL, the lower bound follows from
Fischer and Ladner’s original hardness proof for PDL (see [27], Theorem 6.52 and the
following remark).

2.2.5 Converse

In the logics considered so far we can quantify over successors in a transition system.
What if we want to quantify over predecessors? To add this possibility to PDL, we extend
the syntax of programs by a new operator, called converse. The converse of a program

α, written α−, denotes the converse of the relation denoted by α. Formally:

α−
-→M =

α
-→
−1
M

Propositional dynamic logic extended with converse is often called Converse-PDL. We
abbreviate Converse-PDL as PDL−.

Note that converse satisfies the following equations:

(αβ)− = β−α− (α∗)− = (α−)∗ (α−)− = α

(α+ β)− = α− + β− s− = s

The equations suggest that by pushing converse in, every program of PDL− can be
brought into converse normal form where the converse operator is only applied to
actions.

The basic modal logic with converse (written K−) is the fragment of PDL− obtained
by restricting programs to actions a and their converse a−.

Adding converse does not increase the computational complexity of K or PDL (see,
respectively, [111], § 4.5 and [193]). In fact, De Giacomo [51] showed that formulas
of PDL− can be polynomially translated to PDL without converse preserving satisfia-
bility. As it comes to practical tableau procedures, however, adding converse is not
trivial. The first practical tableau procedure for PDL− is presented in recent work by
Goré and Widmann [95] (earlier approaches by De Giacomo and Massacci [52] and by

24

2.3 Hybrid Logic

Nguyen and Szałas [150] employ analytic cut rules and hence do not easily lend them-
selves to efficient implementation). To the best of our knowledge, Goré and Widmann’s
implementation of their procedure is currently the only system that supports PDL with
converse.

Even for simpler logics, obtaining incremental decision procedures that can deal with
converse often requires new techniques [114, 111, 29, 127, 94]. While we are not aware
of any tableau systems specifically for K−, there are various provers for stronger log-
ics [99, 189, 109, 182, 94] that can decide K− as a sublanguage. Also, since converse
happens to pose no problems to resolution (see [111]), converse is generally supported
by resolution-based provers.

2.3 Hybrid Logic

Hybrid logic is an extension of modal logic that allows to refer to individual states of
the model. For background on hybrid logic, see [27, 10, 34].

2.3.1 Nominals

Hybrid logic extends the syntax of modal logic by introducing a second kind of pred-
icates called nominals. We denote nominals by the letters x, y and z. In contrast
to ordinary propositions, which may be true at arbitrarily many states of the model, a
nominal must be true at exactly one state. Formally, we require that for every model M

and every nominal x, we have |Mx| = 1. So, a nominal x can be seen as a name for the
unique state in Mx:

M,w ⊨ x ⇐⇒ Mx = {w}

In other words, nominals allow us to express equality of states. A state satisfies a
nominal x if it is equal to the state denoted by x. With this, we can state properties of
transition systems that can otherwise not be expressed in modal logic. For instance, the
formula

x ∧✸x

is satisfiable if and only if the state named x has a reflexive transition. Such a property
is not expressible in K since it has the tree model property, meaning that every satisfiable
formula of K is satisfied in a tree model (a model whose transition system forms a tree;
see [27], § 2.1 or [88], § 2.2).

We define the basic hybrid logic (H for short) as K extended with nominals. The logic
resulting from adding nominals to PDL we call hybrid PDL (HPDL).

2.3.2 Satisfaction Operators

Satisfaction operators provide a uniform and convenient means of evaluating formulas
at named states. For each nominal x, we extend the syntax by a satisfaction operator

x: that allows us to construct satisfaction formulas of the form x : s (often satisfaction

25

2 Modal and Hybrid Logics

operators are also written as @x and satisfaction formulas as @xs). Intuitively, a formula
x : s states that the formula s is true at the state named x. Formally, we require:

M,w ⊨ x : s ⇐⇒ M, v ⊨ s where Mx = {v}

Note that the value of a satisfaction formula does not depend on the point of evaluation:
x : s is true at one state of the model if and only if it is true everywhere. Note also
that satisfaction operators are self-dual: ¬(x : s) ≡ x : ¬s. Thus, the computation of
negation normal forms naturally extends to formulas with satisfaction operators.

2.3.3 Complexity and Decision Methods

The additional expressiveness provided by nominals and satisfaction operators does
not increase the computational complexity of K or PDL. Hybrid PDL extended with sat-
isfaction operators is still ExpTime-complete [155] and H with satisfaction operators is
still PSpace-complete [4]. Interestingly, adding satisfaction operators to H− (i.e., H with
converse) results in a jump in complexity to ExpTime-completeness (see § 2.4.1).

Tableau procedures based on tree search are arguably the most successful approach
to deciding hybrid logic. Incremental tree procedures for hybrid logic were devised
by Bolander and colleagues [30, 29]. Different variants and refinements of the proce-
dures are studied in [126, 127, 39, 107], and implemented in the provers HTab [109],
Spartacus [97, 98], Herod and Pilate [42]. Tableau procedures for hybrid extensions of
description logics (see § 2.5.2) were developed by Horrocks and Sattler [115, 117] and
implemented in systems like FaCT++ [189] or Pellet [182].

While tree procedures for hybrid logic have proven successful in practice, none of the
existing approaches has optimal complexity. Recent work by Goré and Widmann [93,
94, 95, 200] suggests that practical and worst-case optimal procedures for expressive
modal logics can be obtained based on graph search. However, as observed in [128, 200],
obtaining worst-case optimal graph procedures for hybrid logic is a nontrivial task.

Besides tableau procedures, a notable decision method for hybrid logic is resolution.
Resolution for hybrid logic, proposed by Areces et al. [7] and further developed by
Areces and Gorin [96, 8], is implemented in the prover HyLoRes [9].

2.4 Global and Difference Modalities

2.4.1 Global Modalities

Analogously to how ordinary modal operators allow talking about the successors of a
state in a transition system, global modalities allow to quantify over all states of the
transition system. Global modalities comprise of two modal operators: the existential

modality E and its dual, the universal modality A. A formula Es means that s is satisfied
in at least one state of the model, while As means that s holds in every state of the

26

2.4 Global and Difference Modalities

model. Formally, we define:

M,w ⊨ Es ⇐⇒ ∃v ∈ |M| : M, v ⊨ s

M,w ⊨ As ⇐⇒ ∀v ∈ |M| : M, v ⊨ s

Analogously to ordinary modal operators, global modalities satisfy the equivalence
As ≡ ¬E¬s. So, E and A are nothing but ordinary modal operators, but defined over
the universal relation (i.e., the Cartesian product of the states) instead of an ordinary
transition relation.

Hence, instead of enriching the syntax by additional operators, we could alternatively
introduce a special relation U (for “universal relation”), and require, for every model M,

that
U
-→M= |M| × |M|. Then E would be semantically equivalent to 〈U〉 and A equivalent

to [U]. This approach is taken, for instance, by Passy and Tinchev [155] in the context
of PDL or by Horrocks et al. [112] in the context of description logics (see § 2.5.2).

Given a modal logic L, we write LE for the logic obtained by extending L with global
modalities.

Global modalities significantly increase the expressiveness of K by allowing to state
global assumptions and constraints on models. For instance, the formula A✸(p ∨ ¬p)

requires that every state of the transition system has a successor. In other words, it
enforces the transition system to be serial.

As shown by Spaan [185], the additional expressiveness provided by global modalities
comes at a price. Adding global modalities to K results in an ExpTime-complete logic.
Adding global modalities to PDL (or HPDL), which is already ExpTime-complete, does
not further increase the complexity [155].

In combination with nominals, global modalities can express satisfaction operators:
x : s ≡ E(x ∧ s) (see [5]). More interestingly, Areces et al. [4] showed, using Blackburn
and Seligmann’s [28] spy-point technique, that H− can simulate universal quantification
over all states as provided by the universal modality. Since universal quantification over
all states is responsible for the ExpTime-completeness of KE, satisfiability in H− is also
ExpTime-complete.

2.4.2 Difference Modalities

Difference modalities are powerful constructs that combine the expressiveness of global
modalities with that of nominals. The existential difference modality D and its univer-
sal dual D̄ quantify over states that are distinct from the point of evaluation. Intuitively,
a formula Ds means that s holds “somewhere else”. Dually, a formula D̄s means that s
holds “everywhere else”. Formally, we have:

M,w ⊨ Ds ⇐⇒ ∃v ∈ |M| : v 6= w and M, v ⊨ s

M,w ⊨ D̄s ⇐⇒ ∀v ∈ |M| : v 6= w implies M, v ⊨ s

Clearly, D̄s ≡ ¬D¬s. Given a logic L, we write LD for the logic obtained by extending L
with difference modalities.

27

2 Modal and Hybrid Logics

Difference modalities were studied by von Wright [196] and Segerberg [179] as isolated
modalities. Their expressive power and possible applications as additional modalities
were later investigated in [170, 86, 134, 54, 76].

Difference modalities can express global modalities: Es ≡ s ∨ Ds and As ≡ s ∧ D̄s.
At the same time, they can express nominals. A hybrid formula s can be translated into
modal logic with difference modalities by conjunctively adjoining a formula E(x∧ D̄¬x)

for every nominal x that occurs in s (where we use Et as an abbreviation for t ∨ Dt).
The formula E(x ∧ D̄¬x) ensures that the predicate x is interpreted as a nominal (i.e.,
is satisfied at exactly one state).

As shown by Gargov and Goranko [76] (see also [5]), there exists a polynomial satisfi-
ability-preserving translation from modal logic with difference modalities to hybrid logic
with global modalities. For this reason, all logics that include difference modalities, be-
ginning with KD and including HPDL−D (i.e., hybrid Converse-PDL with difference modal-
ities), have the same complexity as their counterparts with global modalities, namely
ExpTime (the ExpTime-completeness of HPDL−E was shown by Areces et al. [5]).

The first prefixed tableau procedure for hybrid logic with difference modalities is
presented in [126] and extended to converse in [125, 127]. The techniques developed
in [126, 125, 127] to deal with difference modalities were adapted by Hoffmann [108,
107] to tableau procedures in the style of [30, 29].

2.5 Related Logics

2.5.1 Graded Modal Logics

Graded modal logic is an expressive extension of ordinary modal logic obtained by gen-
eralizing modal operators to cardinality constraints. A formula ✸s of ordinary modal
logic states that s holds in at least one successor state. Clearly, this is equivalent to
saying that s holds in more than 0 successors. A formula ✸ns (where n ∈ N) of graded
modal logic states that s holds in more than n successors. Dually, the formula ✷ns

means that s holds in all but at most n successors (i.e., ¬s holds in at most n succes-
sors). It is easily seen that ✸s ≡ ✸0s, ✷s ≡ ✷0s and ✷ns ≡ ¬✸n¬s. Thus, graded
modal operators correspond to counting first-order quantifiers in the same way as ordi-
nary modal operators correspond to ordinary quantifiers.

Graded modal logic in its modern form was introduced by Fine [65] and then redis-
covered by Fattorosi-Barnaba and De Caro [64]. As shown by Tobies [187] (and earlier
by van Der Hoek and de Rijke [192] for unary coding of numbers in the input), the basic
modal logic extended with graded modalities is still PSpace-complete. A comprehensive
investigation into the complexity of graded modal logics can be found in [131].

Tableau procedures based on tree search have been developed for various expressive
(syntactic variants of) graded logics in [118, 115, 117, 112, 129, 124]. While graded
modalities allow a natural treatment via tree search using a prefixed representation
of candidate models, as it comes to graph tableaux and a clausal representation, they
pose a considerable challenge. Currently, no graph procedures for graded modal logic

28

2.5 Related Logics

are known. Adapting the graph tableau approach to graded modal logic is conjectured
nontrivial [200].

2.5.2 Description Logics

Description logics are a family of knowledge representation languages that were de-
veloped from earlier formalisms like semantic networks [166] or frame systems [147].
Description logics allow to reason about ontological data in terms of concepts, which
are structured descriptions for sets of ontological objects. For a comprehensive intro-
duction to description logics, see [15, 18].

While initially developed independently from modal logic, description logics are now
known to be syntactic variants of modal logic [171]. In particular, the basic description
logicALC [174], which forms the basis for modern expressive logics like SROIQ [112],
is equivalent, up to notation, to multimodal K. The syntax for concepts inALC is given
by the grammar

C ::= A | ¬C | C ⊔ C | C ⊓ C | ∃R.C | ∀R.C

where A ranges over a nonempty set of atomic concepts and R ranges over a nonempty
set of roles. Now, the correspondence to the usual modal syntax is straightforward.
Atomic concepts correspond to predicates and roles to actions. Concepts of the form
¬C , C ⊔ C , and C ⊓ C correspond to negations, disjunctions, and conjunctions, respec-
tively. Finally, a concept ∃R.C (∀R.C) corresponds to the formula 〈a〉s ([a]s) where a
is the action corresponding to R and s the formula corresponding to C .

Due to the immediate correspondence between modal and description logics, results
obtained for modal logics often equally apply to description logics and vice versa. When
this is the case, we tend not to distinguish between modal and description logics. For
instance, we consider Horrocks and Sattler’s [115] tableau algorithm for the description
logic SHOQ as a decision procedure for graded hybrid logic with global modalities
since formulas of this logic can be translated to SHOQ.

The development in description logics was always primarily driven by applications.
This resulted in the development of very expressive description logics like SROIQ,
which contains features like converse, nominals, global and graded modalities, while at
the same time including features that have no immediate counterparts in modal logic.
For SROIQ, such a feature are role inclusion axioms, which are inclusion assertions of
the form R1 . . . Rn ⊑ R (with some additional restrictions; see [114, 116, 112]) specifying
that the composition of the relations denoted by R1, . . . , Rn is contained in the relation
denoted by R.

More recently, considerable interest re-emerged in lightweight description logics, in
which many reasoning tasks are tractable. While the expressiveness of such logics is
restricted to achieve tractability, it still suffices for practical applications (see [14]). Cur-
rent research on lightweight description logics concentrates around two main families
of logics: the EL family initially studied by Baader and colleagues [17, 13, 33, 14] and
the DL-Lite family proposed by Calvanese et al. [37, 38].

29

2 Modal and Hybrid Logics

2.5.3 Temporal Logics and Modal µ-Calculus

Temporal logics interpret relational models as consisting of points in time that are
related to each other by an ‘earlier-later’ relation. Depending on the structure of ad-
missible models, one can classify temporal logics into linear-time and branching-time
logics.

The most common linear-time logic, propositional linear-time logic (LTL), was intro-
duced in its modern form by Pnueli and colleagues [158, 75] as a framework for speci-
fying correctness properties of programs. In LTL, formulas are interpreted over infinite
time sequences s0, s1, . . . where each state si describes the situation at the point i in
time. In other words, models of LTL are serial transition systems where the transitive
closure of the transition relation forms a linear order on states.

Unlike linear-time logics, branching-time logics allow a state to have more than one
successor, which is intended to capture nondeterminism. Influenced by the work of
Ben-Ari et al. [22] on the branching-time logic UB, Clarke and Emerson [44] introduced
computational tree logic (CTL). Emerson and Halpern [60] showed that LTL and CTL
are incomparable with respect to expressiveness (see also [43]) and introduced the logic
CTL∗, which directly subsumes both LTL and CTL. Thus, CTL∗ unifies linear-time and
branching-time logics. The expressiveness of CTL∗ comes at the expense of its com-
plexity. While LTL is PSpace-complete [183] and CTL is ExpTime-complete [59], CTL∗ is
2ExpTime-complete [194, 61]. In parallel to the work on temporal logics, Kozen [135]
introduced the modal µ-calculus as an expressive program logic based on earlier work
by Scott, De Bakker, Park, Pratt and others. While being ExpTime-complete [61], in its
expressiveness the modal µ-calculus subsumes CTL∗ [47] (the translation from CTL∗

into the µ-calculus being doubly exponential in the worst case).
Besides automata-theoretic methods, graph tableaux have long been a method of

choice for deriving decision procedures for temporal logics. Graph procedures have
been developed for both for LTL [201, 132] and CTL [58, 59]. Since K∗ is a sublanguage
of UB (see [59] for a comparison), PDL is closely related to branching-time temporal log-
ics. In the same sense as Pratt’s procedures for PDL, graph procedures for temporal
logics are not incremental and hence unpractical.

More recently, incremental tree procedures were developed for LTL [177], CTL [2],
and even CTL∗ [169] and the modal µ-calculus [123]. As is often the case with tree
procedures, however, none of the systems is worst-case optimal. An even more recent
approach by Friedmann and Lange [74] for the µ-calculus is worst-case optimal but lacks
incrementality. Thus, obtaining incremental but at the same time optimal procedures
for expressive temporal logics or the µ-calculus remains a challenging open problem.

30

3 Demos and Pruning

This chapter introduces the notion of a demo and a technique for constructing demos
that we call pruning. Using demos and pruning, we give a modular construction of
worst-case optimal decision procedures for extensions of PDL and Converse-PDL with
nominals and difference modalities.

Our approach is based on Pratt’s [160] worst-case optimal decision procedure for PDL.
Variants of Pratt’s procedure can be found with correctness proofs in [103, 138, 104, 27].
Given a formula s, Pratt’s procedure constructs a model M of all satisfiable formulas
within the finite formula universe given by the Fischer-Ladner closure of s. It returns
satisfiable if s is satisfied by M and unsatisfiable otherwise.

Our view of Pratt’s procedure is as follows. The procedure works with candidate mod-
els that use Hintikka sets as states. First, the procedure constructs an initial candidate
model H consisting of all Hintikka subsets of the formula universe. It then proceeds
by pruningH , i.e., by stepwise removing fromH Hintikka sets that contain unsatisfied
diamond formulas. Pruning terminates with a demo satisfying all satisfiable formulas
from the formula universe.

We extend Pratt’s procedure to nominals and difference modalities, eventually obtain-
ing a worst-case optimal decision procedure for HPDL−D . We observe that in the presence
of nominals or difference modalities, Pratt-style pruning becomes incomplete. To deal
with this problem, we introduce an additional guessing stage that is performed after
the construction of the initial candidate model but before pruning. What we guess is a
subset of all constructed Hintikka sets that is consistent with the semantics of nominals
and difference modalities. The desired demo is then obtained by pruning the guessed
subset. We argue that this approach preserves worst-case optimality by showing that the
number of consistent subsets that can be selected by the guessing stage is exponential
in the size of the input formula.

The approach is presented in a modular way. We begin with a decision procedure
for test-free PDL and extend it stepwise to deal with nominals, difference modalities,
tests, and converse. We show that all of these extensions are modular in the sense that
their combination requires no more effort than the combined cost of adding each of the
features separately. We refactor standard proofs to achieve a clean separation of syntax
and semantics and to use simple induction on terms.

Structure of the chapter. We begin by introducing alpha-beta formula decomposition
rules for PDL, which we then use to define Hintikka sets (§ 3.1) and to introduce the
notion of a formula universe (§ 3.2). We then introduce demos as a syntactic class of
models (§ 3.3). After formulating pruning and the decision procedure for test-free PDL
(§ 3.4), we discuss the extensions necessary to deal with nominals (§ 3.5), difference

31

3 Demos and Pruning

α α1 α2

s ∧ t s t

〈s〉t s t

[α+ β]s [α]s [β]s

[αβ]s [α][β]s [α][β]s

[α∗]s s [α][α∗]s

β β1 β2

s ∨ t s t

[s]t ∼s t

〈α+ β〉s 〈α〉s 〈β〉s

〈αβ〉s 〈α〉〈β〉s 〈α〉〈β〉s

〈α∗〉s s 〈α〉〈α∗〉s

Figure 3.1: Alpha and beta formulas

modalities (§ 3.6), tests (§ 3.7), and converse (§ 3.8). We conclude with a discussion of
related work (§ 3.9).

3.1 Formulas and Hintikka Systems

For simplicity of presentation, we consider only formulas in negation normal form and
only programs in converse normal form. In other words, we assume the syntax of
formulas and programs of HPDL−D to be given by the grammar

α ::= a | a− | α+α | αα | α∗ | s

s ::= p | s ∨ s | 〈α〉s | Ds

| ¬p | s ∧ s | [α]s | D̄s

where p ranges over both ordinary predicates and nominals. We call formulas of the
form p, ¬p, 〈a〉s, [a]s, 〈a−〉s, [a−]s, Ds and D̄s literals.

Following Smullyan [184], we observe that every nonliteral formula can be viewed
as a conjunctive formula α ≡ α1 ∧ α2 or as a disjunctive formula β ≡ β1 ∨ β2 (see
also [70, 57, 71]). The partition of nonliteral formulas into alpha and beta formulas
is shown in Figure 3.1. Note that this so-called unifying notation conflicts with our
notation for programs, which we also denote by α and β. In the following, we will make
the intended interpretation of the letters α and β clear whenever we want to use the
unifying notation. Every line of the tables in Figure 3.1 can be seen as a decomposition

rule mapping a formula α (β) to two constituents α1 and α2 (β1 and β2).
Since 〈αβ〉s ≡ 〈α〉〈β〉s ≡ 〈α〉〈β〉s∧〈α〉〈β〉s ≡ 〈α〉〈β〉s∨〈α〉〈β〉s, a formula 〈αβ〉s can

be classified both as alpha and as beta. The same holds for formulas [αβ]s. For con-
sistency of the presentation we classify boxes [αβ]s as alpha formulas and diamonds
〈αβ〉s as beta formulas.

One case in Figure 3.1 requires additional explanation, namely the one for box formu-
las of the form [s]t. There, we use the notation ∼s for the negation normal form of ¬s
(this notation being used by Hintikka [105] for first-order logic). We need normalizing
negation because we are restricting ourselves to negation normal formulas. Assuming
[s]t is in negation normal form, the equivalence [s]t ≡ ∼s ∨ t contains only negation

32

3.2 Formula Universe

normal formulas. We should remark that box formulas [s]t are the only reason why
we need normalizing negation. In particular, normalizing negation is not needed for
test-free PDL.

We define a Hintikka set as a set H of formulas that satisfies the following properties.
• For every predicate p: {p, ¬p} 6⊆ H.
• If a formula α ∈ H, then α1 ∈ H and α2 ∈ H.
• If a formula β ∈ H, then β1 ∈ H or β2 ∈ H.
A Hintikka system S is a finite set of Hintikka sets. A formula s is contained in S if
s is contained in some H ∈ S. Candidate models constructed by our approach will be
represented as Hintikka systems. Demos will be defined as a class of Hintikka systems.

We extend the satisfaction relation to sets A of formulas, writing M,w ⊨ A if M,w ⊨ s

for every s ∈ A. A model M satisfies a set A of formulas if M,w ⊨ A for somew ∈ |M|.
A model M satisfies a Hintikka system S (or is a model of S) if M satisfies all of its
elements.

3.2 Formula Universe

All of our constructions will be carried out within a finite formula universe induced
by a variant of the Fischer-Ladner closure of the input formula (see [67, 138, 104]).
This provides an exponential upper bound on the size of Hintikka systems that need
to be considered. This bound is later exploited to show the termination and worst-case
optimality of our procedures.

A formula universe is a finite, nonempty set F of formulas satisfying the following
closure properties:
• If s ∈ F and t is a subformula of s, then t ∈ F .
• If α ∈ F , then {α1, α2} ⊆ F .
• If β ∈ F , then {β1, β2} ⊆ F .
Note that the first closure property overlaps to some extent with the other two since
formulas α1, α2 (β1, β2) are often subformulas of α (β).

Since every formula contains at least one predicate (as a subformula) and F is non-
empty and subformula closed, F always contains at least one predicate. For simplicity
of presentation, we further assume that F always contains at least one nominal when-
ever we look at a logic with nominals.

Remark 3.2.1 Our closure properties differ from those in [67, 138, 104] for the Fischer-
Ladner closure in two minor aspects:
1. Our closure is defined on negation normal formulas that have all of the operators
∨, ∧, 〈α〉 and [α] as syntactic primitives while the Fischer-Ladner closure is defined
on arbitrary formulas that have only one binary propositional connective and one
modal operator.

2. The Fischer-Ladner closure does not necessarily contain ∼s (or ¬s) whenever it con-
tains [s]t. This is easily changed by slightly extending the closure, additionally clos-
ing under single negations (see, for instance, [27], § 4.8). This extension preserves
all relevant properties of the closure. ◭

33

3 Demos and Pruning

Remark 3.2.2 It is possible to further restrict the closure properties of a formula uni-
verse by replacing the first condition (closure under subformulas) with
• If 〈a〉s ∈ F or [a]s ∈ F , then s ∈ F .
To see a difference between the two definitions, consider the formula [p]q. The small-
est formula universe containing this formula is {[p]q, ¬p, q, p}, where ¬p and q are
required by the closure under beta decomposition and p (and q) by the closure under
subformulas. If we weaken the closure under subformulas as suggested above, it will
no longer apply and hence {[p]q, ¬p, q} will be the smallest formula universe contain-
ing [p]q.

Since all of the decision procedures in the thesis can be shown to stay within the
smaller closure, the restricted definition of a formula universe would suffice to argue
their termination and complexity. We use the larger closure since it saves us from having
to state and prove some technical properties of formula universes that are nonobvious
with the restricted closure but clearly hold with the full subformula closure. ◭

Let X be a set. We write |X| for the cardinality of X. As argued in [67, 138, 104], the
cardinality of the Fischer-Ladner closure of a formula s is linear in the size of s. This
argument can be adapted to our case (the proof seems straightforward but tedious):

Proposition 3.2.3 For every formula s, one can compute a formula universe F such that
s ∈ F and |F| is linear in the size of s.

Hence, for simplicity of our termination and complexity arguments, we reformulate the
satisfiability problem as follows:

Given a formula universe F and a formula s ∈ F , is s satisfiable?

This way, the formula universe becomes part of the input for the satisfiability problem.
In the following, we assume F to be a global parameter and tacitly assume s ∈ F

and A ⊆ F for every formula s and every set of formulas A. Thus, a set of formulas
is always finite, and every Hintikka system is a subset of 2F , thus containing at most
exponentially many sets with respect to |F|.

3.3 Demos

We define demos as Hintikka systems satisfying an additional criterion. Demos pro-
vide a convenient syntactic representation of models that allows for purely syntactic,
modular and extensible correctness proofs for our decision procedures.

We show that every demo corresponds to a model that has exactly the Hintikka sets
of the demo as states, with every Hintikka set satisfying all of its formulas. Conversely,
we show that every satisfiable formula s is contained in a demo.

Since the cardinality of a demo is at most exponential in that of the formula universe
F , and F can be chosen linear in s, the two directions taken together constitute a small
model theorem.

In this section, we introduce demos for test-free PDL. The extensions to nominals,
difference modalities, tests and converse will be discussed separately in §§ 3.5–3.8.

34

3.3 Demos

3.3.1 Definition and Example

Not every Hintikka system has a model. For instance, the system {{〈a〉(p ∧ ¬p)}} is
clearly unsatisfiable because the formula 〈a〉(p ∧ ¬p) requires the existence of a state
satisfying p ∧ ¬p. The definition of demos should include only satisfiable Hintikka
systems. To achieve this, we require that in a demo every diamond formula must be
realized in the following sense. If D is a demo and 〈α〉s ∈ H ∈ D, then D must
contain some H′ such that s ∈ H′ and, moreover, one can connect H and H′ by an
α-transition without violating any box formulas. Let us first see how we can express the
latter property.

For every program α, every Hintikka system S induces a maximal transition relation
α
-→S that contains all α-transitions between elements of S that are compatible with their
box formulas.

Definition 3.3.1 Let S be a Hintikka system. The transition relation
α
-→S ⊆ S × S is

defined by induction on α as follows.

a
-→S = { (H,H

′) ∈ S × S | ∀s : [a]s ∈ H =⇒ s ∈ H′ }

α+β
-→S =

α
-→S ∪

β
-→S

αβ
-→S =

α
-→S ◦

β
-→S

α∗
-→S =

α
-→
∗
S ◭

Note that
α
-→S is monotone in S in the following sense.

Proposition 3.3.2 Let S ⊆ S′ be Hintikka systems. Then
α
-→S ⊆

α
-→S′ .

Proof Straightforward induction on α. �

Once we have
α
-→S, the definition of a demo is straightforward. We call a Hintikka set

H ∈ S✸-admissible (in S) if for every 〈α〉s ∈ H there is someH′ ∈ S such thatH
α
-→S H′

and s ∈ H′. A Hintikka system is ✸-admissible if so are all of its sets.

Definition 3.3.3 (Demo) Nonempty and ✸-admissible Hintikka systems are called de-

mos. ◭

Remark 3.3.4 For our results to hold, it would suffice to work with a weaker notion
of ✸-admissibility that requires the existence of an α-accessible state H′ containing s
only for diamonds 〈α〉s where α is an action (α = a) or an iteration (α = β∗). The
remaining cases would then follow by the conditions for Hintikka sets. We do not make
this restriction for simplicity of presentation. ◭

Example 3.3.5 Below, we show a graphical representation of a demo D consisting of
three Hintikka sets: H1 = {〈a∗〉p, 〈a〉〈a∗〉p, [a]¬p}, H2 = {〈a∗〉p, 〈a〉〈a∗〉p, ¬p} and
H3 = {p}. The arrows between the sets depict the transition relation

a
-→D.

35

3 Demos and Pruning

〈a∗〉p, 〈a〉〈a∗〉p, [a]¬p 〈a∗〉p, 〈a〉〈a∗〉p, ¬p p

H1 H2 H3

Note the following facts:
• We have H2

a
-→D H2 since H2 contains no box formulas.

• We do not have H1
a
-→D H1 since [a]¬p ∈ H1 but ¬p ∉ H1.

• We have H1
a∗
-→D H3 since H1

a
-→D H2 and H2

a
-→D H3.

• The set H1 is ✸-admissible since

1. H1
a∗
-→D H3 and p ∈ H3 (condition for 〈a∗〉p ∈ H1),

2. H1
a
-→D H2 and 〈a∗〉p ∈ H2 (condition for 〈a〉〈a∗〉p ∈ H1). ◭

3.3.2 Demo Satisfaction

We now show that every demo is satisfiable. First, observe that every nonempty Hintikka
system S induces a model MS as follows:

|MS| = S

a
-→MS =

a
-→S

MSp = {H ∈ S | p ∈ H }

The model MS induced by some Hintikka system S does not necessarily satisfy S, even
if S is satisfiable (consider, for instance, S = {{✸p}}). This is different for demos. As
we show in the following, MD satisfies D whenever D is a demo. For this we need two
lemmas.

Lemma 3.3.6 Let S be a Hintikka system and α a program. Then
α
-→S =

α
-→MS .

Proof Let S and α be as required. We only show the inclusion
α
-→S ⊆

α
-→MS (the other

inclusion follows analogously). The proof proceeds by induction on α. For α = a, the
claim is immediate by the definition of MS. The remaining cases are as follows.

Let α = β + γ. Suppose H
β+γ
-→S H′. Then H

β
-→S H′ or H

γ
-→S H′. By the inductive

hypothesis, we obtain H
β
-→MS H

′ or H
γ
-→MS H

′, and hence H
β+γ
-→MS H

′.

Let α = βγ. Suppose H
βγ
-→S H′. Then there is some H′′ ∈ S such that H

β
-→S H′′

γ
-→S

H′. By the inductive hypothesis, H
β
-→MS H

′′ γ
-→MS H

′ and hence H
βγ
-→MS H

′.

Let α = β∗. Suppose H
β∗

-→S H′, i.e., H
β
-→

n
S H

′ for some n ≥ 0. We proceed by

induction on n. The case n = 0 is trivial. If n > 0, we have H
β
-→S H′′

β
-→

n−1
S H′ for

some H′′ ∈ S. By the outer and the inner inductive hypothesis, we obtain H
β
-→MS H

′′

and H′′
β
-→

n−1
MS

H′, respectively. Hence, H
β
-→
∗
MS
H′. �

36

3.3 Demos

Note that in the following, we will only need the direction
α
-→S ⊆

α
-→MS of Lemma 3.3.6.

Lemma 3.3.7 Let S be a Hintikka system, {H,H′} ⊆ S, and [α]s ∈ H
α
-→MS H

′. Then
s ∈ H′.

Proof Let S, H, H′ and [α]s be as required. We proceed by induction on α. For α = a,
the claim is immediate by the definition of MS. The remaining cases are as follows.

Let α = β + γ. Since H is a Hintikka set, we have [β]s ∈ H and [γ]s ∈ H. Moreover,

we have H
β
-→MS H

′ or H
γ
-→MS H

′. In either case, s ∈ H′ follows by the inductive
hypothesis.

Let α = βγ. Then there is some H′′ ∈ S such that H
β
-→MS H

′′ γ
-→MS H

′. Moreover,
since H is a Hintikka set, we have [β][γ]s ∈ H. Applying the inductive hypothesis to β
and then γ yields [γ]s ∈ H′′ and s ∈ H′.

Let α = β∗. Since H is a Hintikka set, we have (a) s ∈ H and (b) [β][β∗]s ∈ H. Since

H
β∗

-→MS H
′, we have H

β
-→

n
MS
H′ for some n ≥ 0. We proceed by induction on n. The case

n = 0 is immediate by (a). If n > 0, there is someH′′ ∈ S such thatH
β
-→MS H

′′ β-→
n−1
MS

H′.
By (b) and the outer inductive hypothesis for β, we have [β∗]s ∈ H′′. The claim, s ∈ H′,
follows by the inner inductive hypothesis for n− 1. �

Lemma 3.3.8 Let D be a demo. Then ∀H ∈ D : MD,H ⊨ H.

Proof LetD be a demo and s ∈ H ∈ D. We show MD,H ⊨ s by induction on s. The case
s = p follows by the definition of MDp. The Boolean cases are straightforward. The
remaining cases are as follows.

Let s = 〈α〉t. Since H is ✸-admissible, there is a set H′ ∈ D with H
α
-→D H′ and

t ∈ H′. By the inductive hypothesis this yields MD,H
′ ⊨ t, while by Lemma 3.3.6 we

have H
α
-→MD H

′. Consequently, MD,H ⊨ 〈α〉t.

Let s = [α]t. Let H
α
-→MD H

′. We have to show MD,H
′ ⊨ t. By Lemma 3.3.7, we have

t ∈ H′, from which the claim follows by the inductive hypothesis. �

Theorem 3.3.9 (Demo Satisfaction) If D is a demo, then MD satisfies D.

Proof Immediate by Lemma 3.3.8. �

Remark 3.3.10 The converse direction of Theorem 3.3.9 does not hold. There are
Hintikka systems S satisfied by MS that are not demos, an example being the sys-
tem S = {H} where H = {〈a〉(p ∨ q), p}. Clearly, MS,H ⊨ p, H

a
-→MS H, and hence

MS,H ⊨ 〈a〉(p ∨ q). Still, p ∨ q ∉ H, and hence S is not a demo. ◭

3.3.3 Demo Existence

Now we show that every satisfiable formula is contained in a demo. The claim is a
variant of Fischer and Ladner’s [67] filtration theorem for PDL. Let M be a model and
w ∈ |M|. We define HM,w := { s ∈ F |M,w ⊨ s }.

37

3 Demos and Pruning

Proposition 3.3.11 HM,w is a Hintikka set for every model M and every w ∈ |M|.

Proof The claim is a straightforward consequence of the equivalences in Figure 2.2 and
the definition of the satisfaction relation for conjunctions and disjunctions. �

In the following, let us write Hw for HM,w when the model M is clear from the context.
We show that DM := {Hw | w ∈ |M| } is a demo for every model M.

Lemma 3.3.12 Let M be a model and v
α
-→M w. Then Hv

α
-→DM

Hw .

Proof Let M, v , w and α be as required. We proceed by induction on α.
Let α = a. We have to show that, for all s, [a]s ∈ Hv implies s ∈ Hw . So, let

[a]s ∈ Hv . Then M, v ⊨ [a]s. Since, by assumption, v
a
-→M w, we have M,w ⊨ s, and

hence s ∈ Hw .

Let α = β+γ. Then v
β
-→M w or v

γ
-→M w. By the inductive hypothesis, Hv

β
-→DM

Hw

or Hv
γ
-→DM

Hw . Consequently, Hv
β+γ
-→DM

Hw .

Let α = βγ. Then there is some u ∈ |M| such that v
β
-→M u

γ
-→M w. By the inductive

hypothesis, Hv
β
-→DM

Hu
γ
-→DM

Hw , and hence Hv
βγ
-→DM

Hw .

Let α = β∗. Then there is some n ≥ 0 such that v
β
-→

n
M w. We proceed by induction

on n. For n = 0, the claim is immediate since Hv = Hw . If n > 0, there is some u ∈ |M|

such that v
β
-→M u

β
-→

n−1
M w. By the outer inductive hypothesis for β and the inner

inductive hypothesis for n− 1 we obtain Hv
β
-→DM

Hu
β
-→

n−1
DM

Hw . The claim follows. �

Theorem 3.3.13 (Demo Existence) Let M be a model. Then DM is a demo.

Proof Let M be a model. Since M has at least one state, DM is nonempty. Let 〈α〉s ∈
Hv ∈ DM. It suffices to show that there is a state w such that Hv

α
-→DM

Hw and s ∈ Hw .
The claim follows with Lemma 3.3.12 since M, v ⊨ 〈α〉s. �

Note that by definition, DM contains every formula in F that is satisfied by M. We
formulate two immediate consequences of Theorems 3.3.9 and 3.3.13.

Corollary 3.3.14 A formula is satisfiable if and only if it is contained in a demo.

Corollary 3.3.15 Every satisfiable formula is satisfied by a finite model obtained from
a demo.

Corollary 3.3.15 states a small model property for our logic since the size of the model
MD obtained from a demo D is polynomial in the cardinality of D, which, in turn, is
at most exponential in that of F . Corollary 3.3.14 gives a purely syntactic decision
method. It is easy to see that demos are closed under union. Hence, there is a largest
demo that contains all satisfiable Hintikka sets.

Corollary 3.3.16 A formula is satisfiable if and only if it is contained in the largest
demo.

Remark 3.3.17 The model-theoretic counterpart to the closure of demos under union
is the closure of models under disjoint unions (see [27], § 2.1 or [88], § 2.2). ◭

38

3.4 Pruning and Decision Procedure

3.4 Pruning and Decision Procedure

Given a Hintikka system S, it is straightforward to compute the largest demo contained
in S. One starts from S and stepwise deletes sets in S that cannot occur in a demo
contained in S. We call this process pruning. In the absence of nominals or difference
modalities, pruning always terminates with the largest demo contained in S. Applied to
the set of all Hintikka sets, pruning then yields the largest demo.

Our decision procedure works by first constructing the set of all Hintikka sets and
then pruning it to the largest demo.

We define a relation
P
→ between Hintikka systems that represents a single pruning

action: S
P
→ S′ ⇐⇒ S′ ⊊ S and S′ can be obtained from S by deleting some H ∈ S that

is not ✸-admissible in S.

Example 3.4.1 Consider the following Hintikka system S.

〈a∗〉p, 〈a〉〈a∗〉p, [a]¬p 〈a∗〉p, 〈a〉〈a∗〉p, 〈b〉p, [b]¬p, ¬p p

H1 H2 H3

As in Example 3.3.5, the arrows between the sets depict the transition relation
a
-→D.

Since we have 〈b〉p ∈ H2, in order for H2 to be ✸-admissible, S needs to contain

some H such that H2
b
-→S H and p ∈ H. However, since we also have [b]¬p ∈ H2,

everyH such thatH2
b
-→S H must contain ¬p. Clearly, S contains no set containing both

p and ¬p, and hence H2 is not ✸-admissible in S. Therefore, we have S
P
→ S′ = {H1, H3}.

Without H2, we no longer have H1
a∗
-→S H3. Therefore, H1 is not ✸-admissible in S′,

and we have S′
P
→D = {H3}.

Since H3 contains no diamond formulas, it is trivially ✸-admissible in every Hintikka
system. Hence D is a demo and pruning terminates on D. ◭

Note that Proposition 3.3.2 implies that if a Hintikka set H is ✸-admissible in S, it is
also ✸-admissible in every superset of S. The following two lemmas capture important
correctness properties of the pruning relation.

Lemma 3.4.2 Let D ⊆ S be a demo and S
P
→ S′. Then D ⊆ S′.

Proof Straightforward since pruning removes only sets that are not ✸-admissible in S.
Since D is ✸-admissible and D ⊆ S, all of the sets in D are ✸-admissible in S �

Let a relation → be given. We define ֏ := { (x,y) ∈ →∗ | ∄z : y → z }.

Lemma 3.4.3 Let S
P
֏ S′. Then S′ is either empty or a demo.

39

3 Demos and Pruning

Proof Immediate since when no more pruning can be done, all sets in S′ are ✸-admissi-
ble. �

Since we have S′ ⊊ S whenever S
P
→ S′ (and Hintikka systems are finite), the pruning

relation is terminating.

The following proposition, while not necessary for the correctness of the decision
procedure, constitutes an important insight into the nature of the pruning relation. It
yields that pruning is (strongly) confluent (see [19]).

Proposition 3.4.4 If S1
P
← S

P
→ S2 such that S1 6= S2, then there is some S′ such that

S1
P
→ S′

P
← S2.

Proof Let S1
P
← S

P
→ S2 such that S1 6= S2. Then there are two distinct H1,H2 ∈ S such

that S1 = S \ {H1} and S2 = S \ {H2}. Let S′ = S \ {H1, H2}. Since H2 is not ✸-admissible

in S, it is not ✸-admissible in S1, and hence S1
P
→ S′. Analogously, since H1 is not

✸-admissible in S2, we obtain S2
P
→ S′. �

Together with termination, the confluence of
P
→ means that the relation

P
֏ is in fact

a function. For every Hintikka system S there exists exactly one system S′ such that

S
P
֏ S′. Moreover, S′ is obtained from S in at most |S| pruning steps.

Theorem 3.4.5 Let S
P
֏ S′. Then S′ is either empty or the largest demo contained in S.

Moreover, S contains a demo if and only if S′ is nonempty.

Proof By Lemma 3.4.2, S′ contains all demos contained in S. Hence, S′ is nonempty
whenever S contains a demo.

Conversely, suppose S′ is nonempty. By Lemma 3.4.3, S′ is a demo contained in S.
Hence S contains a largest demo D. Since S′ ⊆ D and, by Lemma 3.4.2, D ⊆ S′, we have
S′ = D. �

Corollary 3.4.6 LetH be the set of all Hintikka subsets of F and letH
P
֏ S. Then S is

the largest demo over F .

Proof The claim is immediate from Theorem 3.4.5, provided for every formula universe
F there is a largest demo. As observed in § 3.2, F contains at least one predicate. Let p
be such a predicate. Then {{p}} is a demo. Hence the largest demo exists. �

The decision procedure based on pruning can be summarized as shown in Figure 3.2.
Given a formula s ∈ F , it constructs a setH of all Hintikka sets and then prunesH to
obtain the largest demo D. It returns SAT if and only if s is contained in some Hintikka
set ofD. The correctness of the procedure is immediate by Corollaries 3.3.16 and 3.4.6.

Let us now convince ourselves that the procedure runs in exponential time with re-
spect to |F|. The bound easily follows from the following observations:

40

3.5 Nominals

Input: a formula s ∈ F

− ComputeH := {H | H is a Hintikka subset of F }.

− Compute D withH
P
֏D.

Output: SAT if s ∈ H for some H ∈ D and UNSAT otherwise

Figure 3.2: Decision procedure for PDL

• To computeH , one can create all the exponentially many subsets of F and remove
those that are not Hintikka sets. Checking if a given set is Hintikka is possible in
polynomial time with respect to the cardinality of the set, which in turn is linear
in |F|.

• As noted above, computing D from H takes at most |H| pruning steps. Each
such step traverses through all Hintikka sets H in the remaining system S and all
formulas 〈α〉s ∈ H, and checks whether in each case S contains some H′ such that
H

α
-→S H′ and s ∈ H′. Since for every Hintikka system S and every program α,

computing
α
-→S can be done in polynomial time with respect to |S|, each pruning

step takes exponential time with respect to |F|.
• Checking if s is contained in D can be done in time polynomial in |D| and |F|.

3.5 Nominals

3.5.1 Demos and Pruning

Let us now see what happens if we extend our language with nominals. The definition
of demos needs to be extended to account for the special semantics of nominals. A
Hintikka system S is nominally admissible if every nominal x ∈ F is contained in
exactly one H ∈ S. We extend the definition of demos (Definition 3.3.3) by adding the
additional requirement that demos be nominally admissible.

Likewise, we restrict the definition of the model MS from § 3.3.2 to nominally admis-
sible Hintikka systems S. It is easy to see that MS satisfies the semantics of nominals
(i.e., maps every nominal in F to a singleton set) if and only if S is nominally admissible.

In the presence of nominals, demos are no longer closed under union. To see this, con-
sider the two demos {{x, p}} and {{x, ¬p}}. Clearly, their union, {{x, p}, {x, ¬p}}, is
not a demo since it is not nominally admissible. Moreover, the union contains no largest
demo. The two demos it contains are mutually disjoint and hence both maximal. Hence,
Corollary 3.3.16 is no longer true.

All other claims in §§ 3.3.1–3.3.3 are unaffected. The only proof that needs to be
adapted is that of Theorem 3.3.13, where we need to check that DM is nominally ad-
missible. This is the case since every nominal x denotes a unique state wx ∈ |M|.
Therefore, HM,wx is the unique Hintikka set in DM that contains x.

So far, adding nominals has not caused any notable complications. The major com-
plication arising from the lack of closure under unions becomes apparent when we try

41

3 Demos and Pruning

to define pruning. Consider, for instance, the following Hintikka system S:

{{x, 〈a∗〉p, p}, {x, 〈a∗〉p, 〈a〉〈a∗〉p}}

The definition of pruning from § 3.4 does not apply to S since both of its sets are ✸-
admissible. Still, S is not a demo since it is not nominally admissible.

Our first idea may be to try extending pruning such that it will establish nominal
admissibility. But how should pruning behave on S? To obtain nominal admissibil-
ity, pruning would have to delete one of its sets. Let H1 = {x, 〈a∗〉p, p} and H2 =

{x, 〈a∗〉p, 〈a〉〈a∗〉p}. If we delete the set H2, we obtain the system {H1}, which is a
demo. If, however, we delete H1, the remaining set H2 will not be ✸-admissible in {H2}

since 〈a∗〉p ∈ H2 but {H2} contains no set H such that H2
a∗
-→{H2} H and p ∈ H. Hence,

{H2} contains no demo.
More generally, since in the presence of nominals a Hintikka system that contains a

demo does not necessarily contain a largest demo, we will end up with different demos
(or the empty set) depending on which set we delete to achieve nominal admissibility.
In particular, there is no way of extending pruning to nominals so that it will satisfy
Lemma 3.4.2 (consider {{x, p}, {x, ¬p}}), Proposition 3.4.4, or Theorem 3.4.5.

To avoid these problems, we work with the original definition of pruning from § 3.4.
In the following, we show that pruning remains complete when applied to nominally
admissible systems. A key prerequisite for this is that nominally admissible Hintikka
systems contain largest demos.

Lemma 3.5.1 Every nominally admissible Hintikka system that contains a demo con-
tains a largest demo.

Proof Let S be a nominally admissible Hintikka system and D1,D2 ⊆ S be two demos.
It suffices to show that D1 ∪D2 is a demo. Since D1 and D2 are nominally admissible,
both of them contain all sets in S that contain nominals, and henceD1∪D2 is nominally
admissible. The claim follows because ✸-admissibility is stable under union. �

Hence, to reestablish Lemmas 3.4.2, 3.4.3 and Theorem 3.4.5, we restrict them to nomi-
nally admissible Hintikka systems.

Lemma 3.5.2 Let S be nominally admissible, D ⊆ S be a demo and S
P
→ S′. Then S′ is

nominally admissible and D ⊆ S′.

Proof The inclusion D ⊆ S′ follows the same as for Lemma 3.4.2. The system S′ is
nominally admissible since so are both S and D, and since D ⊆ S′ ⊆ S. �

Even when applied to a nominally admissible Hintikka system, pruning is no longer
guaranteed to terminate with either an empty set or a demo. For instance, suppose x
and y are the only nominals in F . Then S = {{x}, {y, 〈a〉p}} is nominally admissible

but, at the same time, S
P
֏ {{x}}, where {{x}} is not nominally admissible (this does

not contradict Lemma 3.5.2 since S contains no demo). Hence, we have to weaken
Lemma 3.4.3 and Theorem 3.4.5 as follows.

42

3.5 Nominals

Input: a formula s ∈ F

− ComputeH := {H | H is a Hintikka subset of F }.
− Guess a nominally admissible subsetH ′ ofH .

− Compute D withH ′ P
֏D.

Output: SAT if s ∈ H for some H ∈ D and UNSAT otherwise

Figure 3.3: Decision procedure for hybrid PDL

Lemma 3.5.3 Let S
P
֏ S′ and S′ be nominally admissible. Then S′ is a demo.

Proof Let S, S′ be as required. Since S′ is nominally admissible and F contains at least
one nominal, S′ is not empty. Since no more pruning can be done, all sets in S′ are
✸-admissible. �

Theorem 3.5.4 If S is nominally admissible, contains a demo, and S
P
֏ S′, then S′ is the

largest demo contained in S.

Proof Let S, S′ be as required. The system S contains a largest demo by Lemma 3.5.1.
Let us call this demo D. Since S′ is nominally admissible (Lemma 3.5.2), it is a demo
contained in S (Lemma 3.5.3) and hence in D. By Lemma 3.5.2, S′ contains all demos
contained in S, including D. Taken together, the two inclusions yield S′ = D. �

Remark 3.5.5 In the absence of satisfaction operators, global and difference modalities,
one could weaken the notion of nominal admissibility of a Hintikka system S to require
that every nominal in F is contained in at most one H ∈ S. The relaxed definition suf-
fices to show Lemmas 3.5.1, 3.5.2, 3.5.3, and Theorem 3.5.4. The definition of MS would
need to be adapted to provide interpretation for the nominals in F that do not occur
in S. We prefer the strong notion of nominal admissibility because it allows to keep the
definition of MS unchanged compared to the nominal-free case and, more importantly,
because it scales to stronger languages. To see why weak nominal admissibility fails
when we add difference modalities, consider the Hintikka system {{x, ¬y, D̄x}}. While
the system satisfies weak nominal admissibility, it is clearly unsatisfiable since every
model of the system would need to provide a denotation for the nominal y . This is
not possible since the system restricts the domain to be a singleton set (with its only
element denoted by x) while at the same time requiring y to be different from x. ◭

3.5.2 Decision Procedure

The decision procedure is adapted to nominals by inserting a nondeterministic guessing
stage that is performed between the construction of the system H of all Hintikka sets
and pruning. One guesses a nominally admissible subsystem ofH that contains a demo
containing the input formula s, provided such a demo exists. The adapted procedure is
shown in Figure 3.3.

43

3 Demos and Pruning

The correctness of the procedure follows from Corollary 3.3.14 and Theorem 3.5.4. A
formula s is satisfiable if and only if it is contained in a demo that is contained in (and
can be obtained by pruning starting from) some nominally admissible subsystem ofH .

We now show that the procedure has a determinization that runs in exponential time.
Given that the construction and the pruning stage each take at most exponential time
with respect to |F|, it suffices to show that the guessing stage can be determinized by
trying at most exponentially many (with respect to |F|) subsystems ofH , each of which
can be constructed in exponential time with respect to |F|.

To see this, note that the guessing stage can be arranged as follows. Let x1, . . . , xn
be the linearly many nominals in F . For each i ∈ [1, n], one guesses a Hintikka set in
H that contains xi and removes all other sets that contain xi. Should the system that
remains after the n-th iteration contain no set for some xi, it is rejected. Otherwise, the
system is a nominally admissible subset ofH to which we can apply pruning.

To convince ourselves that the approach is correct, it suffices to check that for every
demo D ⊆ H , the algorithm can obtain a nominally admissible subset of H that con-
tains D. This is easy to see. Given a demo D ⊆ H , it suffices to choose in each step i
the unique set from D that contains xi. All other sets containing xi cannot occur in D
since D is nominally admissible, and hence can be safely removed.

Altogether, the approach yields at most |H|n candidate subsystems, some of which
are rejected as not nominally admissible. Since n is linear in |F| and |H| is exponential
in |F|, the overall number of candidate subsystems that have to be searched through
by a determinization of the n-step guessing stage is exponential in |F|. Moreover, once
we fix a Hintikka set for every nominal, each such system can be built from H in time
polynomial in n · |H|, i.e., exponential in |F|.

To summarize, Pratt-style decision procedures can be extended to deal with nominals
preserving the ExpTime worst-case complexity bound.

3.6 Difference Modalities

3.6.1 Demos

To deal with difference modalities, the definition of demos needs to be extended once
again. A Hintikka set H ∈ S is D-admissible (in S) if for all Ds ∈ H there is some H′ ∈ S
such that H′ 6= H and s ∈ H′.

In addition to nominal admissibility and ✸-admissibility we require a demo D to sat-
isfy the following conditions.

• D-admissibility: Every set in D is D-admissible.

• D̄-admissibility: If D̄s ∈ H ∈ D, then, for all H′ ∈ D such that H′ 6= H,
we have s ∈ H′.

As with nominals, demos for PDL with difference modalities are not closed under
union. This follows from D̄-admissibility alone, independently of whether or not we
require nominal admissibility. For instance, consider the demos, {{D̄p}} and {{¬p}}.
Clearly, their union S = {{D̄p}, {¬p}} is not a demo (and contains no largest demo)

44

3.6 Difference Modalities

since it is not D̄-admissible. This fact is not surprising given that D̄ can express nominals
(see § 2.4.2).

One may be wondering if we need nominal admissibility at all if we want to add
difference modalities without nominals. The answer to this is that in order to show
demo existence (Theorem 3.3.13), we will employ auxiliary nominals. These nominals
will be used regardless of whether we allow nominals in the input formula. And nominal
admissibility is there to ensure that these auxiliary nominals have the right semantics.

Why do we need auxiliary nominals? Suppose F = {Dp, p} and consider the model M

with |M| = {v, w} and Mp = {v, w}. Clearly, we have M, v ⊨ Dp and hence Dp ∈ Hv .
Since Hv = Hw , we have DM = {Hv}. But then DM is not D-admissible and hence not
a demo. Generally speaking, the problem is that a model M from which we obtain the
demo DM may contain several states that satisfy the same formulas from F . In DM,
all such states will be mapped to the same Hintikka set. Mapping all states in M that
satisfy a formula s (assuming there is more than one such state) to the same Hintikka
set in DM may invalidate Ds in the model obtained from DM.

To deal with the problem, we assume an injective function that assigns to every literal
Ds a nominal xDs that is isolated, i.e., occurs in no other formula in F . Intuitively, a
nominal xDs is supposed to denote a state that satisfies s, provided such a state exists.
If it does, all states that are different from the one denoted by xDs satisfy Ds. Since xDs

is satisfied by only one state, this will suffice to ensure that whenever a state w satisfies
Ds there is a state v satisfying s such that Hv 6= Hw .

It remains to ensure that the auxiliary nominals xDs denote the correct states in M.
We call a model M nice if for all Ds ∈ F , M satisfies {s, xDs} whenever M satisfies s.
Theorem 3.3.13 then adapts as follows.

Theorem 3.6.1 (Demo Existence with D) Let M be a nice model. Then DM is a demo.

Proof Nominal admissibility and ✸-admissibility are shown as before. The remaining
cases proceed as follows.

D-admissibility: Let Ds ∈ Hw ∈ DM. Then there is some v 6= w such that M, v ⊨ s,
and hence s ∈ Hv . It remains to show that Hv 6= Hw . Since M is nice, we either
have M,w ⊨ xDs or we can choose v such that M, v ⊨ xDs . In the first case, we have
xDs ∈ Hw \Hv , and in the second case, xDs ∈ Hv \Hw . In either case, Hv 6= Hw .

D̄-admissibility: Let D̄s ∈ Hw ∈ DM and let Hv ∈ DM be distinct from Hw . Then
v 6= w. Therefore, since M,w ⊨ D̄s, we have M, v ⊨ s, and hence s ∈ Hv . �

The proof of Lemma 3.3.8 is adapted by adding the following two cases (recall that we
show MD,H ⊨ s for every demo D and every s ∈ H ∈ D by induction on s).

Let s = Dt. Then, since D is D-admissible, there is some H′ ∈ D distinct from H such
that t ∈ H′. By the inductive hypothesis MD,H

′ ⊨ t. The claim follows.
Let s = D̄t. Let H′ ∈MD be distinct from H. To show: MD,H

′ ⊨ t. This follows by the
inductive hypothesis from t ∈ H′, which holds by the D̄-admissibility of D.

Corollaries 3.3.14 and 3.3.15 follow by observing that a formula s is satisfiable if
and only if it is satisfied by a nice model. Since the auxiliary nominals are isolated
by assumption, s is either an auxiliary nominal or contains no auxiliary nominals as

45

3 Demos and Pruning

subformulas. In the former case, it is easy to construct a satisfying nice model. In
the latter case, we can always make the satisfying model nice by making the auxiliary
nominals denote the right states. Since s contains no auxiliary nominals, this cannot
influence the satisfaction of s.

Summing up, the main challenge so far was reestablishing the demo existence theo-
rem (Theorem 3.6.1) in the presence of the existential difference modality D. For this
purpose we added auxiliary nominals and a concomitant restriction on demos. Once
the definitions are in place, adapting the proofs is straightforward.

3.6.2 Pruning

The existential modality D is treated analogously to diamond operators by suitably ex-

tending the pruning relation. Now, pruning is defined as follows: S
P
→ S′ ⇐⇒ S′ ⊊ S

and S′ can be obtained from S by deleting some H ∈ S that is not ✸-admissible or not

D-admissible in S. Note that this extension does not affect the confluence of
P
→.

Unlike with demo existence, where the complications are caused by D, the main chal-
lenge as it comes to pruning and the decision procedure is dealing with the universal
difference modality D̄.

It is easily seen that if a Hintikka system S is D̄-admissible, then so are all of its
subsets.

Lemma 3.6.2 Let S ⊆ S′ be Hintikka systems. If S′ is D̄-admissible, then so is S.

Proof Immediate by the definition of D̄-admissibility and the fact that S ⊆ S′. �

Lemma 3.5.1 adapts if we add D̄-admissibility as an additional assumption.

Lemma 3.6.3 Let S be a nominally admissible and D̄-admissible Hintikka system. If S
contains a demo, then S contains a largest demo.

Proof Let S be a nominally admissible, D̄-admissible Hintikka system and D1,D2 ⊆ S

be two demos. It suffices to show that D1 ∪D2 is a demo. Nominal admissibility and
✸-admissibility are established the same as for Lemma 3.5.1. Likewise, D-admissibility
is stable under union. The D̄-admissibility of D1 ∪D2 follows with Lemma 3.6.2. �

Lemmas 3.5.2, 3.5.3, and Theorem 3.5.4 are adapted as follows.

Lemma 3.6.4 Let S be nominally admissible and D̄-admissible, D ⊆ S be a demo and

S
P
→ S′. Then S′ is nominally admissible, D̄-admissible, and D ⊆ S′.

Proof Proceeds analogously to the proof of Lemma 3.5.2. The preservation of D̄-admis-
sibility follows with Lemma 3.6.2. �

Lemma 3.6.5 Let S
P
֏ S′ and S′ be nominally admissible and D̄-admissible. Then S′ is a

demo.

46

3.6 Difference Modalities

Proof Let S, S′ be as required. Since S′ is nominally admissible and F contains at least
one nominal, S′ is not empty. Since no more pruning can be done, S′ is ✸-admissible
and D-admissible. �

Theorem 3.6.6 Let S be nominally admissible and D̄-admissible. If S contains a demo

and S
P
֏ S′, then S′ is the largest demo contained in S.

Proof The proof proceeds analogously to that of Theorem 3.5.4 with Lemmas 3.6.3,
3.6.4 and 3.6.5 substituting, respectively, Lemmas 3.5.1, 3.5.2 and 3.5.3. �

3.6.3 Decision Procedure

Theorem 3.6.6 implies that we can reuse the procedure in Figure 3.3 if we reformulate
the guessing stage as follows:

− Guess a subsetH ′ ofH that is nominally admissible and D̄-admissible.

Since every demo contained in H is contained in a nominally admissible and D̄-admis-
sible subsystem ofH , the procedure is correct.

To see that this guessing stage can be determinized preserving the ExpTime complex-
ity bound on the overall procedure, we will give an algorithmic refinement of the stage
and observe the following two properties.
• For every demo D ⊆H , the refined guessing stage can obtain a nominally admissi-

ble and D̄-admissible subsystem ofH that contains D.
• The number of subsystems of H from which the refined stage has to choose is at

most exponential in |F|.
The refined stage proceeds in two steps. First, it guesses a D̄-admissible subsystem
H ′′ of H . It then applies the guessing algorithm from § 3.5.2 to obtain a nominally
consistent subsystemH ′ ofH ′′.

We now describe how we obtainH ′′. Observe that a Hintikka system S is D̄-admissible
if and only if for every formula D̄s ∈ F one of the following two cases holds.
1. The formula D̄s is not contained in S.
2. There is some H ∈ S such that D̄s ∈ H and we have s ∈ H′ for all H′ ∈ S \ {H}.

Moreover, if s ∉ H, then for all H′ ∈ S \ {H} we have D̄s ∉ H′.
Therefore, we can obtain a D̄-admissible subset ofH by nondeterministically choosing,
for every formula D̄s, one of the following two actions.
1. PruneH by removing every set that contains D̄s.
2. Choose some H ∈ H such that D̄s ∈ H and prune H by removing every set other

than H that does not contain s. If s ∉ H, additionally remove every set other than H
that contains D̄s.

By the above observation, it is immediate that performing one of the two pruning actions
for every formula D̄s indeed results in a D̄-admissible set. Moreover, since demos are
D̄-admissible, for every demoD ⊆H there is a sequence of pruning steps starting from
H that yields some H ′′ that contains D. To obtain H ′′, for every formula D̄s, one
performs action (1) if D does not contain D̄s. Otherwise, one performs action (2) for
some set in D that contains D̄s. In both cases, it is easily verified that one removes no

47

3 Demos and Pruning

set that occurs in D, and hence the resulting system is a superset of D. We conclude
that the algorithm is correct.

Example 3.6.7 Suppose F = {D̄¬p, D̄p, ¬p, p}. Then the system H of all Hintikka
sets contains 11 elements:

D̄p p ¬p D̄¬p

D̄p, p D̄p, ¬p D̄¬p, p D̄¬p, ¬p

D̄p, D̄¬p, p D̄p, D̄¬p D̄p, D̄¬p, ¬p

Clearly, H is not D̄-admissible. Consider the demo D = {{D̄p, ¬p}, {D̄¬p, p}}. Let
us extract a D̄-admissible subsystem ofH that containsD using the above algorithm (in
fact, in this particular case the algorithm will yield D). Since H contains two distinct
formulas of the form D̄s, we proceed in two steps. In the first step we consider the
formula D̄p. We choose the set {D̄p, ¬p} (since it occurs in D) and remove every other
set that does not contain p or contains D̄p (action (2)). This yields the system H1 =

{{p}, {D̄p, ¬p}, {D̄¬p, p}}. As expected, D ⊆ H1. The system H1 is still not D̄-
admissible. In the second step we consider D̄¬p. We again perform action (2), now for
the set {D̄¬p, p} (since {D̄¬p, p} occurs in D), and obtain D. ◭

Since we have to decide between no more than |H|+ 1 alternatives for every formula
D̄s ∈ F , and |H| + 1 ≤ 2|F|, the number of candidates that need to be tried by a
determinization of the first step of the guessing stage is bounded by 2|F|

2
. Each of the

candidates can be computed in time polynomial in |H| and |F|.
Once we have a D̄-admissible Hintikka system S, a nominally admissible subsystem of

S (if one exists) can be obtained as in § 3.5.2 by guessing, for each nominal in x ∈ F , a
Hintikka set in S that contains x and removing all other sets containing x. The resulting
system is still D̄-admissible by Lemma 3.6.2.

If enumerating D̄-admissible subsystems produces at most m candidates, each of
which contains at most n maximal nominally admissible subsystems, then the overall
number of D̄-admissible and nominally admissible candidates that have to be tried by
the deterministic procedure is bounded by m ·n. Since both numbers are exponentially
bounded in |F|, so is their product. Hence, the overall procedure runs in deterministic
single exponential time.

3.7 Tests

Now, let us see what needs to be done in order to add tests. Adding tests primarily
affects the proofs of demo satisfaction and demo existence in § 3.3.

First, we need to extend the definition of
α
-→S (Definition 3.3.1) by adding a case for

tests:
s
-→S = { (H,H) | s ∈ H ∈ S}.

48

3.7 Tests

To obtain demo satisfaction (Theorem 3.3.9), it suffices to reprove Lemmas 3.3.6
and 3.3.7. With tests, however, the inclusion

α
-→MS ⊆

α
-→S for Lemma 3.3.6 does no

longer hold. Consider S = {{p}} and suppose p ∨ q ∈ F . Then {p}
p∨q
-→MS {p} but

not {p}
p∨q
-→S {p} since p ∨ q ∉ {p}. Fortunately, the only inclusion needed for demo

satisfaction is
α
-→S ⊆

α
-→MS , which still holds.

Moreover, both Lemma 3.3.6 (restricted to the inclusion
α
-→S ⊆

α
-→MS) and Lemma 3.3.7

require additional assumptions. We restate the two lemmas as follows.

Lemma 3.7.1 Let S be a Hintikka system and α a program such that, for all tests t in α
and all H ∈ S, t ∈ H implies MS,H ⊨ t. Then

α
-→S ⊆

α
-→MS .

Proof Let S and α be as required. We proceed by induction on α. All cases but α = t

proceed the same as in the proof of Lemma 3.3.6. So, let α = t. Suppose H
t
-→S H′.

Then H = H′ and t ∈ H. By the additional assumption, we have MS,H ⊨ t, and hence

H
t
-→MS H. �

Lemma 3.7.2 Let S be a Hintikka system, {H,H′} ⊆ S, and [α]s ∈ H such that
• H

α
-→MS H

′ and
• for all tests t in α and all H ∈ S, ∼t ∈ H implies MS,H ⊨ ∼t.
Then s ∈ H′.

Proof Let S, H, H′ and [α]s be as required. We proceed by induction on α. All cases
but α = t proceed the same as in the proof of Lemma 3.3.7. So, let α = t. Then H = H′

and MS,H ⊨ t. Since H is a Hintikka set and [t]s ∈ H, we have ∼t ∈ H or s ∈ H. If
∼t ∈ H, then, by the additional assumption, MS,H ⊨ ∼t, which contradicts MS,H ⊨ t.
Hence, we have s ∈ H, which yields the claim since H = H′. �

Lemma 3.3.8 is then proven similarly to before with Lemma 3.7.1 in place of Lemma 3.3.6
and Lemma 3.7.2 in place of Lemma 3.3.7. Moreover, instead of proving MD,H ⊨ s by
induction on the structure of s, we now proceed by induction on a modified notion
of the size of s (notation |s|), which is defined as usual with the only exception being
|¬p| = |p|. This ensures that |∼s| = |s|. Induction on |s| works since we are working
with negation normal terms, and the case s = ¬p can be treated as a base case. We need
to modify the induction order since then, the additional assumption in Lemma 3.7.2 fol-
lows by the inductive hypothesis of the proof of Lemma 3.3.8 (the additional assumption
in Lemma 3.7.1 also follows by the inductive hypothesis of the proof of Lemma 3.3.8
with either induction order).

For demo existence (Theorem 3.3.13), we need to reprove Lemma 3.3.12, for which it
suffices to extend the proof by one additional case (recall that we show Hv

α
-→DM

Hw

assuming v
α
-→M w by induction on α):

Let α = t. Then v = w and M, v ⊨ t. Clearly, this implies Hv = Hw and t ∈ Hv .

Consequently, Hv
t
-→DM

Hw .
The formulation of the decision procedure is unaffected by the addition of tests. The

only difference is that now computing the relation
α
-→S for a given Hintikka system S

(which is necessary for pruning) may involve computing
s
-→S for some tests s. Clearly,

this can be done in polynomial time with respect to |S| and |F|.

49

3 Demos and Pruning

3.8 Converse

The extension with converse is straightforward. The definition of
α
-→S (Definition 3.3.1)

is adapted by replacing the case for
a
-→S with

a
-→S = { (H,H

′) ∈ S × S | ∀s : ([a]s ∈ H =⇒ s ∈ H′) and ([a−]s ∈ H′ =⇒ s ∈ H) }

and adding the following new case:
a−
-→S =

a
-→
−1
S . All proofs in § 3.3 and § 3.4 go

through after adding a case for converse in three places:

• Proof of Lemma 3.3.6:

The claim for α = a− follows by observing that
a−
-→S =

a
-→
−1
S ⊆

a
-→
−1
MS
=

a−
-→MS since

a
-→S ⊆

a
-→MS .

• Proof of Lemma 3.3.7:

Let α = a−. By assumption, we have [a−]s ∈ H
a−
-→MS H

′. Then H′
a
-→MS H and

hence H′
a
-→S H. The claim, s ∈ H′, follows by the definition of

a
-→S.

• Proof of Lemma 3.3.12:

The claim for α = a− follows analogously to the argument for a after observing that

v
a−
-→M w if and only if w

a
-→M v , and Hv

a−
-→DM

Hw if and only if Hw
a
-→DM

Hv .

The decision procedure requires no modifications except that now the computation
of

α
-→S, which is necessary for pruning, needs to take converse into account. Summing

up, the changes needed to incorporate converse are very minor.

3.9 Related Work

◮ The methods related to demos used in this chapter are strongly inspired by Fischer
and Ladner’s [67] filtration argument for PDL. Demos constitute a syntactic representa-
tion of the quotient structures used by Fischer and Ladner. Also, the proofs of demo
satisfaction and demo existence (Theorems 3.3.9 and 3.3.13) follow the general ideas
in Fischer and Ladner’s work. Unlike in their construction but similar to [103, 27], we
do not derive the transition relations for demos by projection of the corresponding
relations in the original model, but instead define them as the largest relations compat-
ible with the box formulas in the Hintikka sets. Using the terminology of Blackburn et
al. [27], one can say that Fischer and Ladner work with smallest filtrations while demos
correspond to largest filtrations.

Our proofs of demo satisfaction and demo existence differ notably from proofs of
Fischer and Ladner’s filtration theorem in the literature [67, 103, 138, 104]. There, tests
cause considerable technical complications as compared to the test-free case, forcing
the authors to use mutual recursion and special-purpose induction orders (two such
orders being made explicit in [67, 138]). In our case, adapting the proofs to deal with
tests turns out to require only minor changes to the formulation and the proofs of
Lemmas 3.3.6 and 3.3.7.

50

3.9 Related Work

◮ Syntactic constructions related to demos are used by Pratt [160] (see also [103, 138,
104, 27]) or, in the context of temporal logics, by Emerson and Halpern [59, 57] under
the name “Hintikka structures”. The constructions in [59, 57] are more flexible but also
more involved than demos since they represent the transition relations explicitly and
allow, in principle, to have several distinct copies of the same Hintikka set.
Further syntactic constructions related to demos include canonical models (see [144],
§ 2, [41], § 5, or [27], § 4) or model graphs [168]. While closely related to Emerson
and Halpern’s Hintikka structures, these constructions are conceptually more involved
since they build on the notion of consistency, which requires additional proof-theoretic
machinery.
◮ Alternative correctness proofs for Pratt’s decision procedure in [160] can be found
in [138, 104, 27]. Unlike our proof in § 3.4, they involve complex semantic arguments,
essentially reproving the small model property of PDL. In contrast, our correctness proof
delegates all semantic concerns to Corollary 3.3.16. By using demos as a syntactic in-
terface, we are able to reuse the small model results established by filtration for the
decision procedure.

51

4 Graph Search for Modal Logic with

Eventualities

This chapter presents a simple theory explaining the construction and the correctness
of an incremental and worst-case optimal decision procedure for modal logic with even-
tualities.

Although worst-case optimal, procedures following Pratt’s approach in [160] as pre-
sented in Chapter 3 are not incremental since they always construct all Hintikka subsets
of the formula universe. A more elaborate decision procedure for PDL was presented
by Pratt in [161]. The procedure employs graph-like structures we call graph tableaux.
Given a formula, this procedure first constructs a complete graph tableau for the for-
mula, after which it computes the largest demo contained in the tableau by pruning
(returning satisfiable if the formula is contained in the demo and unsatisfiable other-
wise). While an improvement over the procedures in Chapter 3, Pratt’s tableau proce-
dure is still nonincremental since it needs to construct a complete graph tableau before
it can apply pruning. As shown by Goré, Nguyen and Widmann [91, 93, 200], graph
tableaux can serve as a basis for incremental and worst-case optimal procedures that
are obtained by interleaving the tableau construction with pruning. Such procedures
can often decide the satisfiability of a formula without building a complete tableau.

We present a theory explaining the construction and the correctness of such an incre-
mental procedure for K∗. The procedure covered by the theory is a simplified and more
abstract variant of Goré and Widmann’s [93, 200] decision procedure for PDL. The key
idea behind our theory is to refine pruning as presented in Chapter 3 to two comple-
mentary algorithms, called eager and cautious pruning, which check whether a graph
tableau certifies the satisfiability or the unsatisfiability of a formula. The decision pro-
cedure then incrementally constructs a tableau certificate for the input formula, where
eager and cautious pruning guide the expansion of the tableau.

In the development, we first introduce eager pruning, which already suffices to for-
mulate a variant of Pratt’s tableau procedure from [161]. We then introduce cautious
pruning, which allows us to further refine the procedure to an incremental procedure in
the style of Goré and Widmann [93, 200]. We define graph tableaux based on a notion of
clauses that is more restricted than that of Hintikka sets used in Chapter 3. To simplify
correctness arguments, we also introduce a representation of demos based on clauses
and a concomitant notion of support relating clausal demos to Hintikka demos.

We do not treat full PDL, restricting ourselves to K∗, to simplify the presentation and
to separate the fundamental algorithmic problem of dealing with eventualities from
technical complications caused by the complex syntax of PDL. We expect that our theory
extends to full PDL.

53

4 Graph Search for Modal Logic with Eventualities

Structure of the chapter. We begin by introducing the notions of clauses, support,
and clausal demos (§ 4.1). We then reformulate pruning from Chapter 3 as a marking
procedure (§ 4.2). In this form, it will serve as a blueprint for the pruning operations on
tableaux. Then, we define graph tableaux (§ 4.3) and establish the subclass of evident
tableaux (§ 4.4), which certify the satisfiability of formulas. We introduce eager (§ 4.5)
and cautious pruning (§ 4.6), two complementary algorithms identifying, respectively,
satisfiable and unsatisfiable tableau nodes. Once we have eager and cautious pruning,
we formulate the incremental decision procedure (§ 4.7). We conclude with a discussion
of related work (§ 4.8).

4.1 Formulas and Demos

We consider the unimodal basic modal logic with eventualities K∗ and restrict ourselves
to formulas in negation normal form. The resulting syntax can be defined with the
following grammar.

s ::= p | s ∨ s | ✸s | ✸∗s

| ¬p | s ∧ s | ✷s | ✷∗s

We write ✸+s for ✸✸∗s and ✷+s for ✷✷∗s. Recall that in § 2.2.4, we defined eventuali-

ties as formulas of the form ✸∗s. For convenience, from now on, formulas of the form
✸+s will also be called eventualities. Diamond formulas that are not of the form ✸∗s or
✸+s are called simple. In analogy to the definitions in § 3.1, literals are now formulas
of the form p, ¬p, ✸s and ✷s (note that the definition of literals includes formulas of
the form ✸+s and ✷+s). Consequently, the only alpha formulas are those of the form
s ∧ t and ✷∗s, while the only beta formulas are s ∨ t and ✸∗s, where we have:

✷
∗s ≡ s ∧✷

+s ✸
∗s ≡ s ∨✸

+s

Note that every constituent of a nonliteral formula s is either a literal or a proper sub-
formula of s (the only case when αi is not a subformula of α is when α = ✷∗s and
αi = ✷+s, where ✷+s is clearly a literal; the same is true for beta formulas ✸∗s).

As before, we assume the formula universe F to be a global parameter of the decision
procedure and tacitly assume s ∈ F and A ⊆ F for every formula s and every set of
formulas A.

4.1.1 Clauses, Support and Demos

In § 3.3, we defined demos as Hintikka systems. While convenient for abstract proce-
dures following Pratt’s approach in [160], representing states by Hintikka sets intro-
duces redundancy. Consider two Hintikka sets H1 = {p, p ∨ q1} and H2 = {p, p ∨ q2}.
Since the two sets agree on literals, it can be shown that for every Hintikka system S

containing H1 and H2 and every formula s, we have MS,H1 ⊨ s if and only if MS,H2 ⊨ s.
The only difference between H1 and H2 is that H1 explicitly guarantees the satisfaction

54

4.1 Formulas and Demos

of p ∨ q1 while H2 does so for p ∨ q2. Suppose now we have an external mechanism
that allows us to determine if a set satisfies a given nonliteral formula by looking only
at its literal formulas. Then there is no need to distinguish between Hintikka sets like
H1 and H2. Instead, we can represent the two sets, and possibly more, by a single set of
literals that all of the represented sets agree on. Since in this section we are interested
in minimizing redundancy, this is precisely what we are going to do. We will call sets
of literals normal clauses and introduce the support relation as the external mechanism
for determining if a normal clause satisfies a given formula.

We proceed as follows. A clause is a set C ⊆ F of literals and beta formulas. Our
semantic definitions apply to clauses since they are sets of formulas. In particular,
M,w ⊨ C if and only if M,w ⊨ s for every formula s ∈ C . A clause containing only liter-
als is called a normal clause (N-clause for short) provided it contains no complementary
pair p and ¬p.

The table in Figure 3.1 induces a corresponding decomposition relation as the least
relation → on formulas such that, for every formula α (and β) and every i ∈ {1,2}, we
have α → αi (β → βi). When we restrict the language to K∗, the decomposition relation
becomes terminating since the constituents of a nonliteral formula are literals (and
→ terminates on literals) or proper subformulas of the formula. Hence, the transitive
closure of the decomposition relation for K∗ is a well-founded partial order on formulas.
We call it the decomposition order for K∗.

Definition 4.1.1 We define the upward closure of a formula set A as the least set B of
formulas containing A such that:

α ∈ B ⇐⇒ α1 ∈ B and α2 ∈ B

β ∈ B ⇐⇒ β1 ∈ B or β2 ∈ B

Let C be an N-clause and s a formula. We say C supports s and write C ⊲ s if s is
contained in the upward closure of C . We see support as a relation between N-clauses
and formulas. ◭

Note that if s is a literal, then C ⊲s ⇐⇒ s ∈ C . Given an N-clause C , the upward closure
of C satisfies the closure properties of a Hintikka set (see Proposition 4.1.4). Thus, we
can see an N-clause C as a representation of all Hintikka subsets of the upward closure
of C , and the support relation as the concomitant membership relation. We write C ⊲A
and say C supports A if C ⊲ s for every s ∈ A. A set S of clauses supports s (A) if S
contains a clause that supports s (A).

Note that given an N-clause C and a formula s, the relation C ⊲ s is decidable in time
linear in the size of s and the cardinality of C (where the decision procedure simply
follows the recursive definition of the upward closure).

Lemma 4.1.2 Let M be a model such that M,w ⊨ C and C ⊲ s. Then M,w ⊨ s.

Proof By induction on the decomposition order of s. We proceed by case analysis on s.
Let s be a literal. Then C ⊲ s implies s ∈ C , and the claim follows by assumption.
Let s = α. Then C ⊲ α1 and C ⊲ α2. By the inductive hypothesis, we have M,w ⊨ α1

and M,w ⊨ α2. The claim follows. The case s = β proceeds similarly. �

55

4 Graph Search for Modal Logic with Eventualities

We now adapt the relation
α
-→S introduced in § 3.3.1 to sets of clauses. Since K∗ does

not allow complex programs except for the reflexive-transitive closure, it suffices to de-
fine the relation for atomic transitions. The request of a clause C is RC := { s | ✷s ∈ C }.
Given a set S of N-clauses, we define the transition relation →S ⊆ S × S as follows:

C →S D ⇐⇒ D ⊲ RC

We call an N-clause C ∈ S ✸-admissible (in S) if it satisfies the following conditions:
1. If ✸s ∈ C , then C →S D ⊲ s for some D ∈ S.
2. If ✸+s ∈ C , then C →+S D ⊲ s for some D ∈ S.
With this, demos are now defined as follows.

Definition 4.1.3 A nonempty set of N-clauses is called a (clausal) demo if all of its
clauses are ✸-admissible. ◭

We call demos as defined above clausal to distinguish them from demos as defined in
§ 3.3, which we also call Hintikka demos.

Adapting Example 3.3.5 to the current setup (K∗ and clausal demos) yields the follow-
ing demo D:

✸+p, ✷¬p ✸+p, ¬p p

The demo consists of three clauses: {✸+p, ✷¬p}, {✸+p, ¬p} and {p}. The edges be-
tween the clauses depict the relation →D.

4.1.2 Demo Satisfaction and Demo Existence

We now prove demo satisfaction and demo existence for clausal demos by establishing
a correspondence between clausal demos and Hintikka demos.

First, we show that for every clausal demo S there is a Hintikka demo that contains
every formula in F that is supported by S. We define HC := { s ∈ F | C ⊲ s } and
HS := {HC | C ∈ S}.

Proposition 4.1.4 Let C be an N-clause. Then HC is a Hintikka set.

Proof {p, ¬p} 6⊆ HC sinceHC and C agree on literals and C is not clashing. The Hintikka
conditions for alpha and beta formulas follow by the definition of support. �

Lemma 4.1.5 Let S be a demo and C →S D. Then HC →HD HD.

Proof The claim follows from C →S D since C and HC agree on literals and since, by
definition, HD contains every formula supported by D. �

56

4.1 Formulas and Demos

Proposition 4.1.6 Let S be a clausal demo. ThenHS is a Hintikka demo.

Proof By Proposition 4.1.4,HS is a Hintikka system. To show thatHS is ✸-admissible,
it suffices (in the case of K∗) to show that:
1. ∀C ∈ S : ✸s ∈ HC =⇒ ∃D ∈ S : HC →HS HD and s ∈ HD.
2. ∀C ∈ S : ✸∗s ∈ HC =⇒ ∃D ∈ S : HC →

∗
HS
HD and s ∈ HD.

For claim (2), suppose ✸∗s ∈ HC ∈HS for some C ∈ S. Then s ∈ HC or ✸+s ∈ HC since
H is a Hintikka set. In the first case, the claim follows since H →∗S H. In the second case,
the claim follows by Lemma 4.1.5 and the ✸-admissibility of S. Claim (1) is similar but
simpler. �

Next, we show that every Hintikka demo S corresponds to a clausal demo that sup-
ports every formula contained in S. We define ΛA := { s ∈ A | s literal }. Given a
Hintikka system S, we write ΛS := {ΛH | H ∈ S}. Note that restricted to unimodal K∗,
the syntactic transition relations

α
-→S as defined in § 3.3.1 reduce to only two forms: an

atomic transition relation →S and its transitive closure.

Proposition 4.1.7 ΛH ⊲H

Proof Let H be a Hintikka set and s ∈ H. We show ΛH⊲s by induction on the decompo-
sition order of s. If s is a literal, the claim is immediate since then ΛH ⊲ s ⇐⇒ s ∈ ΛH.
If s = α, then α1 ∈ H or α2 ∈ H. By the inductive hypothesis, ΛH ⊲α1 or ΛH ⊲α2, and
hence ΛH ⊲α. The case for beta formulas proceeds similarly. �

Lemma 4.1.8 Let S be a Hintikka demo and H →S H′. Then ΛH →ΛS ΛH′.

Proof It suffices to show that ΛH′ ⊲R(ΛH), which follows by the definition of →S (Def-
inition 3.3.1 restricted to K∗) and Proposition 4.1.7. �

Proposition 4.1.9 Let S be a Hintikka demo. Then ΛS is a clausal demo supporting
every formula contained in S.

Proof Let S be a Hintikka demo. We have to show that ΛS is ✸-admissible, which
follows from the ✸-admissibility of S with Lemma 4.1.8. Hence, ΛS is a demo. Now, let
s ∈ H ∈ S. It suffices to show that ΛH ⊲ s, which follows by Proposition 4.1.7. �

Together with Theorems 3.3.9 and 3.3.13, Propositions 4.1.6 and 4.1.9 yield demo
satisfaction and demo existence for clausal demos.

Theorem 4.1.10 (Demo Satisfaction) If S is a clausal demo, then MHS satisfies every
clause that S supports.

Proof Follows by Theorem 3.3.9 and Proposition 4.1.6. �

Theorem 4.1.11 (Demo Existence) Let M be a model. Then ΛDM is a clausal demo.
Moreover, ΛDM supports a formula s if and only if M satisfies s.

57

4 Graph Search for Modal Logic with Eventualities

Proof Follows by Theorem 3.3.13, Proposition 4.1.9. To show that M satisfies every
formula supported by ΛDM we additionally need Lemma 4.1.2. �

Corollary 4.1.12 A formula is satisfiable if and only if it is supported by a clausal demo.

Remark 4.1.13 While certainly an important insight, generic demo existence results like
the one in Theorem 4.1.11 will play no role for the correctness of the decision proce-
dures in the present or the following chapters. The reason for this is that such generic
results are too weak. To prove the correctness of a particular decision procedure one
needs to show demo existence with respect to the restricted class of demos that can
be produced by the procedure, which will always be smaller than the class obtained
in Theorem 4.1.11. Still, we will continue giving generic demo existence results where
appropriate since they are more elegant and much easier to establish than the results
needed for specific decision procedures. ◭

As with Hintikka demos, clausal demos are closed under union. Hence, there is a
largest demo that contains all satisfiable N-clauses. This yields the following corollary.

Corollary 4.1.14 A formula is satisfiable if and only if it is supported by the largest
clausal demo.

Since for the rest of the chapter we will not have to consider Hintikka demos, we will
refer to clausal demos simply as demos.

4.2 Pruning Revisited

In § 3.4 we detailed how to compute the largest demo contained in a given Hintikka
system S. This approach can be easily adapted to the clausal setup. We can define a
pruning relation on clause sets that stepwise removes clauses that are not ✸-admissible,
eventually terminating with the largest demo contained in S.

In the following, it will be more convenient to assume a slightly different view of
pruning. Instead of a procedure that deletes offending clauses, we will view pruning as
a marking procedure that marks offending clauses in the initial clause set.

To distinguish it from the pruning relations to be defined later, we call the relation
corresponding to this marking procedure abstract pruning. While abstract pruning will
not be used by our final decision procedure, it provides a helpful blueprint for the more
elaborate methods to be used.

Given a set X and an object x, we write X ;x for X ∪ {x}. Let U be a set of N-

clauses. We define the abstract pruning relation
AP
→U as a binary relation on clause

sets: S
AP
→U S′ ⇐⇒ S ⊊ S′ ⊆ U and there is a clause C such that S ;C = S′ and C is not

✸-admissible in U\ S.

Intuitively, we think of the clauses in S and of C in the definition of
AP
→U as clauses

that are marked in U as bad. This is equivalent to thinking of them as being pruned

from U, which is the view assumed by the pruning relation
P
→ in § 3.4. In fact, if we

58

4.3 Graph Tableaux

adapt the relation
P
→ to the current setup in the intuitive way, the two relations will

satisfy the following equivalence: S
AP
→U S′ ⇐⇒ U \ S

P
→ U \ S′. Clearly, the relation

AP
→U is terminating (since U ⊆ 2F and F is finite).

The following two lemmas restate Lemmas 3.4.2 and 3.4.3 for the current setup and

the relation
AP
→U. Their proofs proceed analogously to those of Lemmas 3.4.2 and 3.4.3.

Lemma 4.2.1 Let D ⊆U be a demo, S ⊆ U \D, and S
AP
→U S′. Then S′ ⊆ U \D.

Lemma 4.2.2 Let S
AP
֏U S′. Then U\ S′ is either empty or a demo.

Also, Proposition 3.4.4 adapts in the intuitive way (the proof remaining essentially

unchanged), meaning that
AP
→U is strongly confluent for every U. Theorem 3.4.5 is

restated as follows.

Theorem 4.2.3 Let 0
AP
֏U S. Then U \ S is either empty or the largest demo contained

in U. Moreover, U contains a demo if and only if U\ S is nonempty.

Proof Follows with Lemmas 4.2.1 and 4.2.2. �

4.3 Graph Tableaux

A decision procedure that starts from the set of all N-clauses cannot be practical. In-
stead, we aim at a procedure that starts from a clause representing the input formula
and that incrementally builds a graph tableau by adding clauses and links. A link is a
triple CξD where the annotation ξ documents how the clause D was obtained from the
clause C . The procedure stops if the tableau determines the satisfiability or unsatisfi-
ability of the input formula. Since the satisfiability or unsatisfiability of a formula can
often be determined with a small tableau, the procedure provides for a practical prover.
Figure 4.1 gives a first impression of what a graph tableau looks like.

Given a formula s, we define the induced clause ⌊s⌋ by induction on s:

⌊α⌋ := ⌊α1⌋ ∪ ⌊α2⌋

⌊s⌋ := {s} if s not an alpha formula

Intuitively, the induced clause is obtained by decomposing all top-level alpha formulas.
The induced clause ⌊A⌋ for a set A of formulas is the union of the induced clauses for
the formulas in A. We have M,w ⊨ A if and only if M,w ⊨ ⌊A⌋. The same holds for
support:

Proposition 4.3.1 C ⊲A ⇐⇒ C ⊲ ⌊A⌋

Proof Let s ∈ A. It suffices to show that C ⊲ s if and only if C ⊲ ⌊s⌋, which follows by
induction on the decomposition order of s. �

59

4 Graph Search for Modal Logic with Eventualities

✸∗p, ¬p, ✷+(q ∨¬p)

p, ¬p, ✷+(q ∨¬p) ✸+p, ¬p, ✷+(q ∨¬p)

✸∗p, q∨¬p, ✷+(q ∨¬p)

✸∗p, q, ✷+(q ∨¬p)

✸+p, q, ✷+(q ∨¬p) p, q, ✷+(q ∨¬p)

1 2

3

4

67

5

8

Figure 4.1: A complete tableau

We partition the set of clauses into clashing clauses, normal clauses and branching
clauses. A clashing clause (C-clause for short) is a clause that contains a pair p and ¬p.
A branching clause (B-clause) is a clause that is not clashing and that contains a beta
formula.

We distinguish between normal links and branching links. A normal link (N-link) is a
triple C

(

✸s
s

)

D such that C is normal, ✸s ∈ C and D = ⌊RC ; s⌋. A branching link (B-link)

is a triple C
(

β
βi

)

D (i ∈ {1, 2}) such that C is branching, β ∈ C , and D = (C \ {β})∪ ⌊βi⌋.

A tableau T is a set of clauses and links such that the following conditions are satis-
fied:

1. If CξD ∈ T , then C and D are in T .
2. If C

(

s
t

)

D and C
(

u
v

)

E are B-links in T , then s = u.

A graphical representation of a tableau is given in Figure 4.1. It contains one clashed
clause, {p, ¬p, ✷+(q ∨ ¬p)}, three branching clauses and three normal clauses. Links
are represented as arrows. More concretely, a link C

(

s
t

)

D is represented as an arrow
that departs from the formula s in C and points to the formula t in D. We see a tableau
as a directed graph where the nodes are clauses and the edges are labeled with one or
several binomial annotations. Given a tableau, we call a clause D a ξ-successor of a
clause C if the tableau contains the link CξD. Note that a B-clause can have at most two
successors in a tableau.

A path is a possibly empty sequence (C0ξ0C1)(C1ξ1C2) . . . (Cn−1ξn−1Cn) of links. We
say that a tableau contains a path or that a path is in a tableau if the tableau contains
every link of the path. Given a tableau T , a clause D is reachable from a clause C if

60

4.4 Evidence

T contains a path whose first clause is C and whose last clause is D. In the tableau in
Figure 4.1, every clause is reachable from the topmost clause, which is a B-clause with
two successors.

Let T and T ′ be two tableaux such that T ⊆ T ′. Then we call T a subtableau of
T ′ and T ′ a supertableau of T . Moreover, we call a clause C ∈ T expanded if every
link CξD that appears in some supertableau of T already appears in T . We call a
tableau complete if each of its clauses is expanded. Note that the tableau in Figure 4.1
is complete. Given a tableau T , one can compute a complete tableau that contains T .
Since only one disjunction in a B-clause can be expanded (condition (2) in the definition
of tableaux), there may be different completions of a tableau.

4.4 Evidence

The idea of a demo carries over to tableaux. We define a class of evident tableaux such
that we obtain two properties:

1. The N-clauses of an evident tableau comprise a demo supporting all clauses of the
tableau.

2. Evidence of a tableau can be checked without checking support by just looking at
the clauses and links of the tableau.

An evident tableau T must contain for every eventuality ✸∗s ∈ C ∈ T or ✸+s ∈ C ∈ T
a fulfilling path that starts at C and ends with a B-link annotated with

(

✸∗s
s

)

. We call
such paths runs. In the tableau in Figure 4.1, the eventuality ✸∗p in the topmost clause
has a run consisting of the links 2, 3, 4, and 6. The eventuality ✸+p in the clause on the
bottom left has a run consisting of the links 8, 4, and 6. Precise definitions follow.

We use the notation ✸σ s to denote eventualities of the form ✸∗s or ✸+s. A claim

✸σ s |C is a pair of a clause C and an eventuality ✸σ s ∈ C . We define inductively what
it means for a path π to be a run for a claim γ:

1. If π = C
(

✸∗s
s

)

D, then π is a run for ✸∗s |C .

2. If π = (C
(

✸+s
✸∗s

)

D)π ′ and π ′ is a run for ✸∗s |D, then π is a run for ✸+s |C .

3. If π = (C
(

✸∗s
✸+s

)

D)π ′ and π ′ is a run for ✸+s |D, then π is a run for ✸∗s |C .

4. If π = (C
(

β
βi

)

D)π ′ (i ∈ {1, 2}), π ′ is a run for ✸σ s |D, and ✸σ s ∈ C , then π is a run
for ✸σ s |C .

A tableau T is evident if it satisfies the following conditions:

1. T contains no C-clause.
2. If ✸s ∈ C ∈ T and C is normal, then T contains a link C

(

✸s
s

)

D.
3. If C ∈ T is branching, then C has at least one successor in T .
4. If ✸σ s ∈ C ∈ T , then T contains a run for ✸σ s |C .

Note that the empty tableau is evident. Also, condition (2) requires nothing other than
that every N-clause in T is expanded.

A clause C is evident in a tableau T if C is contained in an evident subtableau of T .
We use ET to denote the set of all clauses that are evident in T . Note that evident
subtableaux of a given tableau are closed under union:

61

4 Graph Search for Modal Logic with Eventualities

Proposition 4.4.1 Let T be a tableau and T1, T2 be evident subtableaux of T . Then
T1 ∪T2 is an evident subtableau of T .

Proof Let T , T1, T2 be as required. Clearly, T1 ∪T2 ⊆ T . The tableau T1 ∪T2 satisfies
condition (1) in the definition of tableaux since so do both T1 and T2. Condition (2) is
satisfied since T1 ∪T2 ⊆ T and T is a tableau. The tableau T1 ∪T2 is evident since so
are T1 and T2. �

Hence, the largest subtableau of T that contains only clauses from ET is precisely the
largest evident subtableau of T .

Example 4.4.2 Consider the tableau in Figure 4.1. The largest evident subtableau of
this tableau is obtained by deleting link 1 and the C-clause it points to. The situation
changes if we delete link 6. Then the largest evident subtableau consists of only one
clause, namely {p, q, ✷+(q ∨¬p)}. This example tells us that non-evident clauses may
still be satisfiable. ◭

Proposition 4.4.3 Let T and U be tableaux such that T ⊆ U. Then ET ⊆ EU.

Proof Follows since every evident subtableau of T is also a subtableau of U. �

Proposition 4.4.4 If CξD is a B-link and E ⊲D, then E ⊲ C .

Proof Let C
(

β
βi

)

D (i ∈ {1, 2}) be a B-link and E ⊲ D. Then D = (C \ {β}) ∪ ⌊βi⌋. Since
E ⊲ D, we immediately have E ⊲ C \ {β}. Moreover, since E ⊲ ⌊βi⌋, we have E ⊲ βi
(Proposition 4.3.1), and hence E ⊲ β. �

Lemma 4.4.5 Let T be an evident tableau and C ∈ T be a clause. Then there exists an
N-clause D ∈ T that supports C .

Proof By induction on the sum of the sizes of the beta formulas in C using Proposi-
tion 4.4.4 and the following two observations:

1. Every clause in an evident tableau that is not normal is branching and has an outgo-
ing B-link.

2. For every B-link CξD, the sum of the sizes of the beta formulas in C is strictly
greater than that in D. �

Theorem 4.4.6 The N-clauses of a nonempty evident tableau comprise a demo that sup-
ports every clause of the tableau.

Proof Let T be a nonempty evident tableau, and let D be the set of all N-clauses in T .
By Lemma 4.4.5, D supports every clause of T . It remains to show that D is a demo.
Since T is nonempty, D is nonempty (again by Lemma 4.4.5). It now remains to show
that all clauses in D are ✸-admissible.

62

4.4 Evidence

Let ✸s ∈ C ∈ D. Since T is evident, it contains a link C
(

✸s
s

)

D where D = ⌊RC ; s⌋.
Hence, by Lemmas 4.4.5 and 4.3.1, there is some E ∈ D such that E ⊲ RC ; s. Therefore,
we have C →D E ⊲ s.

Let ✸+s ∈ C ∈ D. Since T is evident, it contains a run π for ✸+s |C . By definition,
a run for ✸+s |C must contain at least one N-link. We proceed by induction on the
number n of N-links in π .

Let n = 1. Then π = λ1 . . . λk where λ1 = C
(

✸+s
✸∗s

)

C1, λk = Ck−1

(

✸∗s
s

)

Ck, and λ1 is the
only N-link in π . Let D ∈ D be an N-clause that supports Ck (D exists by Lemma 4.4.5).
Then D ⊲ s and, by Proposition 4.4.4 (applied k times), D ⊲ C1. Hence, we have C →D
C1 ⊲ s.

Let n > 1. Then π = λ1 . . . λkπ
′ where k ≥ 2, λ1 = C

(

✸+s
✸∗s

)

C1, λk = Ck−1

(

✸+s
✸∗s

)

Ck,
and all of λ2, . . . , λk−1 are branching. Since λk is normal, we have Ck−1 ∈ D. Moreover,
✸+s ∈ Ck−1 and λkπ

′ is a run for ✸+s |Ck−1. By the inductive hypothesis, we have
Ck−1 →

+
D D ⊲ s for some D ∈ D. By Proposition 4.4.4 (applied k − 1 times), Ck−1 ⊲ C1,

and hence C →D Ck−1. The claim follows. �

Combining Theorems 4.1.10 and 4.4.6, we obtain that evident tableaux certify the satis-
fiability of all of their clauses:

Corollary 4.4.7 If a clause is evident in a tableau, then it is satisfiable.

As we saw earlier (Example 4.4.2), as long as a tableau is not complete, it may contain
clauses that are non-evident but satisfiable. Now, we show that in complete tableaux,
evidence and satisfiability coincide. For this, we first lift Theorem 4.1.11 from demos to
evident tableaux. Let T be a tableau and M be a model. We define T |M as the largest
subtableau of T that contains only clauses satisfied by M.

Lemma 4.4.8 Let T be a complete tableau, M be a model, and ✸σ s ∈ C ∈ T |M. Then
✸σ s |C has a run in T |M.

Proof Given a clause D, we define ♯D as the sum of the sizes of the beta formulas in D.
Recall that ♯C > ♯D whenever CξD is a B-link (first noted in the proof of Lemma 4.4.5).

For the proof, let us restate the claim more verbosely as follows: Let T be a complete
tableau, M be a model, ✸σ s ∈ C ∈ T |M, M, v ⊨ C , v →nM w, M,w ⊨ s, and n > 0 if
σ = +. Then ✸σ s |C has a run in T |M.

We proceed by lexicographic induction on n and ♯C . Let T , M, ✸σ s ∈ C ∈ T |M,
v,w ∈ |M|, and n be as required. We show that ✸σ s |C has a run in T |M by case
analysis on n.

Let n = 0. Then σ = ∗. Therefore, C is branching and hence ♯C > 0. Since T is
complete, we have C

(

✸∗s
s

)

D ∈ T where D = (C \ {✸∗s}) ∪ ⌊s⌋. Since, by assumption,

M, v ⊨ C and M, v ⊨ s, we have M, v ⊨ D, and hence C
(

✸∗s
s

)

D ∈ T |M. The claim
follows.

Let n > 0. We distinguish two subcases.
Let ♯C = 0. Then C is normal and σ = +. Since T is complete, we have C

(

✸+s
✸∗s

)

D ∈ T

where D = ⌊RC ;✸∗s⌋. Since M, v ⊨ C and ✸+s ∈ C , there is some v′ ∈ |M| such that

63

4 Graph Search for Modal Logic with Eventualities

v →M v′ →n−1
M w. Clearly, M, v′ ⊨ D. Therefore, C

(

✸+s
✸∗s

)

D ∈ T |M. By the inductive

hypothesis for n − 1 and ♯D, ✸∗s |D has a run π in T |M. Then (C
(

✸+s
✸∗s

)

D)π is a run
for ✸+s |C in T |M.

Let ♯C > 0. Then C is branching and, since T is complete, {C
(

β
β1

)

D1, C
(

β
β2

)

D2} ⊆ T

for some β, D1 and D2. Since M, v ⊨ C , we have M, v ⊨ D1 or M, v ⊨ D2. Hence, for
some i ∈ {1, 2}, C

(

β
βi

)

Di ∈ T |M. We distinguish two subcases.
If β 6= ✸σ s, then ✸σ s ∈ Di. Since ♯Di < ♯C , the inductive hypothesis applies to n and

♯Di, yielding that ✸σ s |Di has a run π in T |M. Then (C
(

β
βi

)

Di)π is a run for ✸σ s |C

in T |M.
If β = ✸σ s, then σ = ∗. By the inductive hypothesis for n and ♯Di, ✸+s |Di has a run

π in T |M. Then (C
(

✸∗s
✸+s

)

Di)π is a run for ✸∗s |C in T |M. �

Lemma 4.4.9 Let T be a complete tableau and M be a model. Then T |M is an evident
subtableau of T .

Proof Let T and M be as required. We show that T |M satisfies the four evidence
conditions for tableaux. Clearly, T |M contains no C-clause.

Let ✸s ∈ C ∈ T |M. Since T is complete, C
(

✸s
s

)

D ∈ T where D = ⌊RC ; s⌋. Since M

satisfies C , M satisfies D, and therefore C
(

✸s
s

)

D ∈ T |M.

Let C ∈ T |M be branching. Since T is complete, we have {C
(

β
β1

)

D1, C
(

β
β2

)

D2} ⊆ T

for some β ∈ C . Since M satisfies C , M satisfiesD1 orD2. Therefore, for some i ∈ {1, 2},
C
(

β
βi

)

Di ∈ T |M.
Finally, the condition for ✸σ s ∈ C ∈ T |M follows by Lemma 4.4.8. �

Theorem 4.4.10 Let T be a complete tableau. Then a clause C ∈ T is satisfiable if and
only if C is evident in T .

Proof Follows with Lemma 4.4.9 and Corollary 4.4.7. �

Corollary 4.4.11 Let T be a complete tableau and ⌊s⌋ ∈ T , Then s is satisfiable if and
only if ⌊s⌋ is evident in T .

4.5 Eager Pruning

The idea of pruning carries over from demos to tableaux. Given a tableau, one stepwise
marks clauses that cannot appear in an evident subtableau. We call this process eager
pruning. When eager pruning terminates, exactly the non-evident clauses of the tableau
are marked. Eager pruning gives us a worst-case optimal decision method: Given a
formula s, construct a complete tableau containing ⌊s⌋ and run eager pruning. Then s
is satisfiable if and only if ⌊s⌋ has not been marked. This decision method is a variant
of Pratt’s procedure in [161].

Let T be a tableau. We define the eager pruning relation
EP
→T as a binary relation on

clause sets: S
EP
→T S′ ⇐⇒ S′ ⊊ S ⊆ T and there is a clause C such that S ;C = S′ and

one of the following conditions holds:

64

4.5 Eager Pruning

1. C is clashing.
2. C is an N-clause that is not expanded in T .
3. C is an N-clause that has a successor in T that is in S.
4. C is a B-clause all of whose successors in T are in S.
5. C contains an eventuality s such that every run for s |C in T contains a clause in S.

Note that
EP
→T is a terminating relation. The following two lemmas capture the correct-

ness of eager pruning analogously to how the correctness of abstract pruning follows
from Lemmas 4.2.1 and 4.2.2.

Lemma 4.5.1 (Soundness) Let S ⊆ T \ ET and S
EP
→T S′. Then S′ ⊆ T \ ET .

Proof Let S ⊆ T \ ET and S
EP
→T S′. Let S′ = S ;C . We proceed by case analysis on the

properties of C in the definition of
EP
→T .

Clearly, if C is a C-clause or an N-clause that is not expanded in T , it cannot possibly
occur in an evident tableau, and hence C ∉ ET .

Now suppose C is an N-clause that has a successor in T that is in S. Since S and
ET are disjoint, C cannot be expanded in any evident tableau, and hence C ∉ ET . The
remaining two cases proceed similarly. �

Let T be a tableau and S be a set of clauses. We write T−S for the largest subtableau of
T not containing a clause from S.

Lemma 4.5.2 Let S
EP
֏T S′. Then T−S′ is an evident tableau.

Proof The claim is shown by case analysis on the definition of evident tableaux. Each
of the cases easily follows by the definition of eager pruning. �

As with previous pruning relations, eager pruning is confluent, which easily follows
with the following lemma:

Lemma 4.5.3 If S ⊆ S′ and S
EP
→T S ;C , then C ∈ S′ or S′

EP
→T S′ ;C .

Proof Straightforward case analysis on the definition of
EP
→T . �

As before, the confluence of
EP
→T is not important for the following arguments, but

allows us to think of eager pruning as a function.

Theorem 4.5.4 Let T be a tableau,R ⊆ T be a set of unsatisfiable clauses, andR
EP
֏T S.

Then ET = {C ∈ T | C ∉ S }.

Proof By Lemma 4.5.1, S ∩ ET = 0 since R∩ET = 0. Thus, ET ⊆ {C ∈ T | C ∉ S }. By
Lemma 4.5.2, T−S is evident and hence {C ∈ T | C ∉ S } ⊆ ET . �

Example 4.5.5 Consider the tableau in Figure 4.1. Eager pruning starting with the empty
set of clauses marks the C-clause and no other clause. The situation changes if we apply
eager pruning to the tableau with link 6 removed. Then all clauses of the tableau but
{p, q, ✷+(q∨¬p)} are marked as non-evident. This is the case since all eventualities for
p lose their runs. Compare this to Example 4.4.2 to verify that eager pruning computes
(the complement of) the set of clauses in the largest evident subtableau. ◭

65

4 Graph Search for Modal Logic with Eventualities

Remark 4.5.6 In the absence of eventualities, ET can be computed in a more direct,

“inductive” way as the unique set E of clauses such that 0
EM
֏T E, where S

EM
→T S′ ⇐⇒

S ⊊ S′ ⊆ T and there is a clause C such that S ;C = S′ and one of the following
conditions holds:

1. C is an N-clause that is expanded and all of whose successors in T are in S.
2. C is a B-clause that has a successor in T that is in S.

Note that N-clauses that contain no diamond formulas satisfy condition (1).

Since rather than pruning clauses that are not evident in T , the relation
EM
→T marks

clauses that are evident in T , we call the relation
EM
→T eager marking. ◭

4.6 Cautious Pruning

We define cautious pruning as a constrained form of eager pruning that marks un-
satisfiable clauses. We base cautious pruning on the following consequence of Theo-
rem 4.4.10.

Corollary 4.6.1 Let T be a tableau. Then a clause C ∈ T is unsatisfiable if and only if
there is no complete supertableau of T in which C is evident.

Cautious pruning will mark a clause in a tableau if it is clear that the clause cannot
become evident by adding further links and clauses. To account for eventualities, we
need the notion of a plan. A plan is a path in a tableau that is either a run or a partial
run that ends with a non-expanded clause. If a claim has a plan, it may have a run in a
completion of the tableau. If, however, a claim has no plan, it cannot have a run in any
completion of the tableau.

We define inductively what it means that a path π in a tableau T is a plan for a claim

γ in T :

1. If ✸+s ∈ C ∈ T , C is normal and has no
(

✸+s
✸∗s

)

-successor in T , then the empty path
is a plan for ✸+s |C in T .

2. If ✸σ s ∈ C ∈ T , C is branching and not expanded in T , then the empty path is a
plan for ✸σ s |C in T .

3. If π = C
(

✸∗s
s

)

D, then π is a plan for ✸∗s |C in T .

4. If π = (C
(

✸+s
✸∗s

)

D)π ′ and π ′ is a plan for ✸∗s |D in T , then π is a plan for ✸+s |C

in T .
5. If π = (C

(

✸∗s
✸+s

)

D)π ′ and π ′ is a plan for ✸+s |D in T , then π is a plan for ✸∗s |C

in T .
6. If π = (C

(

β
βi

)

D)π ′ (i ∈ {1, 2}), π ′ is a plan for ✸σ s |D in T , and ✸σ s ∈ C , then π
is a plan for ✸σ s |C in T .

Lemma 4.6.2 Let T be a tableau and γ be a claim whose clause is in T . Then:

1. Every run for γ in T is a plan for γ in T .
2. Every plan π for γ in T such that the clause in γ and all clauses in π are expanded

in T is a run for γ.

66

4.6 Cautious Pruning

3. If γ has a plan π in a supertableau of T , then it has a plan in T that is a prefix of π .

Proof

1. Immediate from the definitions of runs and plans.
2. The only plans in T that are not runs are those whose derivation involves conditions

(1) and (2) in the definition of plans. Let π be a plan for s |C in T . If C and all clauses
contained in π are expanded in T , conditions (1) and (2) are not applicable. Hence,
π is a run. Formally, the argument proceeds by induction on the derivation of a
plan.

3. Let γ = ✸σ s |C be a claim where C ∈ T and π a plan for γ in a supertableau of T .
Let π ′ be the largest prefix of π that is contained in T . One shows that π ′ is a plan
for γ in T by induction on the derivation of π . The argument is straightforward if
π ′ = π . Otherwise, let π = π ′π ′′ and D be the last clause in π ′ if π ′ is nonempty,
and D = C otherwise.
If D is normal, then (since π ′ 6= π) it has no

(

✸+s
✸∗s

)

-successor in T , and so the empty
path is a plan for ✸+s |D in T .
If D is branching, then D is not expanded in T (since π ′ 6= π), and so the empty
path is a plan for ✸σ ′s |D in T for every ✸σ ′s ∈ D.
In both cases, the argument proceeds by induction on the derivation of π from π ′′,
with the empty plan for, respectively, ✸+s |D or ✸σ ′s |D being used in place of π ′′.�

Let T be a tableau. We define the cautious pruning relation
CP
→T as a binary relation

on clause sets: S
CP
→T S′ ⇐⇒ S ⊊ S′ ⊆ T and there is a clause C such that S ;C = S′ and

one of the following conditions holds:
1. C is clashing.
2. C is an N-clause that has a successor in T that is in S.
3. C is a B-clause that is expanded in T and all successors of C in T are in S.
4. C contains an eventuality s such that every plan for s |C in T contains a clause in S.

Consider the tableau in Figure 4.2. Cautious pruning will mark all clauses of the
tableau since they are either clashing or contain an eventuality that has no plan. Note
that the tableau is incomplete since the topmost clause has no successor for the formula
✸q. If we replace q with a complex formula, completing the tableau may be expensive.

Lemma 4.5.3 adapts to cautious pruning as follows.

Lemma 4.6.3 If S ⊆ S′ and S
CP
→T S ;C , then C ∈ S′ or S′

CP
→T S′ ;C .

Proof Straightforward case analysis on the definition of
CP
→T . �

Proposition 4.6.4 Let T be a tableau. Then
CP
→T ⊆

EP
→T . Moreover,

CP
→T is terminating

and confluent. Hence there exists a unique set R such that 0
CP
֏T R.

Proof We have
CP
→T ⊆

EP
→T since every run is a plan (Lemma 4.6.2 (1)). Cautious pruning

is terminating since there are only finitely many clauses (or since
EP
→T is terminating and

CP
→T ⊆

EP
→T). The confluence of

CP
→T follows with Lemma 4.6.3. �

67

4 Graph Search for Modal Logic with Eventualities

✸+p, ✷+¬p, ✸q

✸∗p, ¬p, ✷+¬p

✸+p, ¬p, ✷+¬p p, ¬p, ✷+¬p

1

23

4

Figure 4.2: An incomplete tableau

Given a tableauT , we useRT to denote the unique setR of clauses such that 0
CP
֏T R.

We say that a clause C is refuted in T if C ∈ RT .

Proposition 4.6.5 Let S
CP
→T S′ and S ⊆ RT . Then S′ ⊆ RT .

Proof Let S
CP
→T S′ and S ⊆ RT . Since S ⊆ RT , there is some S′′ such that S ⊆ S′′

CP
֏T

RT . By Lemma 4.6.3, we have S′ ⊆ S′′ ⊆ RT or S′′
CP
→T S′′ ∪ S′. The claim follows since,

by the confluence of cautious pruning, S′′ ∪ S′
CP
֏T RT . �

Since the idea behind cautious pruning is to mark clauses that cannot become evident
in a completion of a given tableau, on complete tableaux cautious pruning coincides
with eager pruning:

Proposition 4.6.6 If T is a complete tableau, then
CP
→T =

EP
→T .

Proof Let T be a complete tableau. Then condition (2) in the definition of eager pruning
is not applicable, and condition (4) for eager pruning coincides with condition (3) for
cautious pruning. Condition (5) for eager pruning and condition (4) for cautious pruning
coincide by Lemma 4.6.2 (1, 2). �

Lemma 4.6.7 (Progress) Let S = {C ∈ T | C ∉ RT ∪ ET }. If S 6= 0, then S contains a
clause that is not expanded in T .

Proof The claim is immediate by Proposition 4.6.6. �

Lemma 4.6.8 LetU andT be tableaux such thatU ⊆ T . Then
CP
→U ⊆

CP
→T andRU ⊆ RT .

Proof Straightforward case analysis on the definition of
CP
→U. The case for condition (4)

follows with Lemma 4.6.2 (3). �

Lemma 4.6.8 states that cautious pruning is monotone with respect to the underlying
tableau. This is not the case for eager pruning. For instance, let U = {{✸p}} and

T = {{✸p}, {✸p}
(

✸p
p

)

{p}, {p}}. Then 0
EP
→U {{✸p}} but 0

EP
֏T 0.

68

4.7 Decision Procedure

expansionsat.
b ⌊s⌋

unsat.

EP

CP

R

E

RT

ET

T

Figure 4.3: Schematic overview of IDP

Lemma 4.6.9 Let every clause in S be unsatisfiable and S
CP
→T S′. Then every clause in

S′ is unsatisfiable.

Proof Consider the four cases in the definition of
CP
→T . Except for the last case, the

claim is obvious. Now let C ∈ T be a clause that contains an eventuality s such that
every plan for s |C in T contains a clause in S. Furthermore, let T ′ be a complete
supertableau of T . Suppose C is satisfiable. By Theorem 4.4.10, C is evident in T ′.
Hence, there is an evident subtableau of T ′ that contains a run π for s |C . Since the
clauses in S are unsatisfiable, it follows with Corollary 4.4.7 that π contains no clause
in S. By Lemma 4.6.2 (1, 3), some prefix of π is a plan for s |C in T . Contradiction. �

Theorem 4.6.10 (Soundness) Every clause in RT is unsatisfiable.

Proof Follows from Lemma 4.6.9. �

4.7 Decision Procedure

We now have everything in place to formulate an incremental decision procedure. Start-
ing from an input formula s, the procedure grows a tableau T and two clause sets
R ⊆ T and E ⊆ T such that all clauses inR are refuted and all clauses in E are evident
in T . The set R is grown by cautious pruning, and the set E is grown by eager pruning
(taking complements). The procedure stops once the initial clause ⌊s⌋ appears in R or
E. Figure 4.3 gives an schematic overview and Figure 4.4 a precise formulation of the
procedure, which we name IDP.

We argue the correctness of IDP as follows:

1. Preservation of the invariant for R (i.e., R ⊆ RT) follows from Lemma 4.6.8 and
Proposition 4.6.5. Preservation of the invariant for E follows from Theorems 4.6.10
and 4.5.4, and Proposition 4.4.3.

69

4 Graph Search for Modal Logic with Eventualities

Input: a formula s ∈ F
Variables: T := {⌊s⌋}, R := 0, E := 0
Invariants:

− T is a tableau such that every clause is reachable from ⌊s⌋

− R ⊆ RT and E ⊆ ET

while ⌊s⌋ ∉R∪E do one of the following:

− Grow T by adding a link to a clause in T \ (R∪E)

− Grow R with cautious pruning, that is, R := R′ where R
CP
→T R′

− Grow E with eager pruning, that is, E := {C ∈ T | C ∉ S } where R
EP
֏T S

Output: SAT if ⌊s⌋ ∈ E and UNSAT otherwise

Figure 4.4: Incremental decision procedure IDP

2. That the loop can perform at least one of the three possible steps follows from the
loop condition, the invariants, and Lemma 4.6.7: If ⌊s⌋ ∉ R∪E, at least one of the
following three cases must hold:
• E ⊊ ET . Then we can grow E with eager pruning.
• R ⊊RT . Then we can grow R with cautious pruning.
• ⌊s⌋ ∉RT ∪ET . Then we can grow T by Lemma 4.6.7.

3. The loop terminates since each iteration grows one of the sets T ,R and E, and each
of these sets is bounded in the finite formula universe F .

4. Correctness of the output follows from the negated loop condition, the invariants,
Corollary 4.4.7 and Theorem 4.6.10.

IDP runs in deterministic exponential time with respect to the size of s. To see this, note
that every traversal of the loop adds at least one element to one of the sets T , R, and
E, and that the cardinality of each of these sets is exponentially bounded in |F| (which
can be assumed linear in the size of s). Moreover, each of the three possible actions of
the loop can be realized in polynomial time with respect to the size of T , R, and E.

We call a tableau T a certificate for a formula s and say that T determines s if
⌊s⌋ ∈ RT ∪ ET and every clause in T is reachable from ⌊s⌋. We speak of a negative

certificate if ⌊s⌋ ∈ RT and of a positive certificate if ⌊s⌋ ∈ ET . For example, the
tableau in Figure 4.2 is a negative certificate for ✸+p ∧ ✷+¬p ∧ ✸q, and the tableau
in Figure 4.1 is a positive certificate for ✸∗p ∧ ¬p ∧ ✷+(q ∨ ¬p). Note that it can be
decided in polynomial time whether a tableau is a positive or a negative certificate for a
formula (with respect to the size of the tableau).

Proposition 4.7.1 IDP always terminates with a tableau that determines the input for-
mula. Thus, every formula has a certificate.

Proof Follows from the invariants and the negated loop condition. �

Vice versa, let T determine s. Then IDP can first construct the tableau T and then
do the necessary pruning to establish T as a certificate of s. Thus, IDP can be efficient

70

4.8 Related Work

for formulas with small certificates. Of course, the question remains how IDP selects
the right tableau expansion steps to construct T . Given the complexity of the problem,
there will be no perfect answer. Nevertheless, it is a good idea to grow R and E eagerly
so that unnecessary expansions are avoided. Moreover, one can show that it is unnec-
essary to expand clauses that can only be reached from the initial clause by a path that
passes through a clause in R or E:

Lemma 4.7.2 Let C ∈ T and S = {D ∈ T | D reachable in T−(RT ∪ET) from C }. If
S 6= 0, then S contains a clause that is not expanded in T .

Proof We obtain the claim by contradiction. Let D ∈ S and suppose every clause in
S is expanded in T . Then D is expanded in T . Let U be the largest subtableau of T
that contains only the clauses in S ∪ ET . Since D violates an evidence condition for U,
there must be an eventuality s ∈ D such that s |D has no run in U. Since D ∉ RT , the
claim s |D has a plan in T that does not contain a clause in RT . By Lemma 4.6.2 (3),
s |D then has a plan in U. Since every clause in S is expanded and every eventuality
in the largest evident subtableau of T (which contains precisely the clauses in ET and
is hence a subset of U) has a run in U, the claim s |D has a run in U (follows with
Lemma 4.6.2 (2)). Contradiction. �

Let S[T , s, R, E] := {D ∈ T | D reachable in T−(R∪E) from ⌊s⌋ }. If we instantiate
the clause C in Lemma 4.7.2 with ⌊s⌋, we obtain that we can always grow T by adding a
link to a clause in S[T , s, R, E] (rather than T \(R∪E)) whenever ⌊s⌋ ∉R∪E,R = RT

and E = ET . Since S[T , s, R, E] is clearly a subset, and often a proper subset, of the
clauses in T \ (R∪E), this allows us to further narrow down the search space for IDP
without sacrificing correctness.

4.8 Related Work

◮ As already mentioned at the beginning of the chapter, the first decision method for
PDL based on graph tableaux is due to Pratt [161]. The development in this chapter
up to § 4.5 can be seen as a reformulation of Pratt’s approach and the corresponding
correctness arguments in our framework.
◮ Incremental graph procedures for description logics without eventualities are pre-
sented by Goré, Nguyen and Widmann [91, 94, 200]. These procedures do not distin-
guish between eager and cautious pruning. Instead, they have a single marking pro-
cedure that propagates both evidence and refutability. This is possible since in the
absence of eventualities, ET can be computed in much the same way as RT (see Re-
mark 4.5.6).
◮ Building on their work on logics without eventualities, Goré and Widmann [93, 200]
devise the first incremental graph tableau procedure for PDL, on which our procedure
is based. In contrast to our design, Goré and Widmann still make no explicit distinction
between eager and cautious pruning. Instead, they approach eventualities via the notion
of potential rescuers. A potential rescuer for a claim γ indicates the existence of a

71

4 Graph Search for Modal Logic with Eventualities

plan for γ that does not involve a clause in RT . The existence of a run for a claim is
represented by a special potential rescuer ⊥. Consequently, a clause can be marked as
refuted (or closed [200]) if and only if it has no potential rescuer. While the notion of
potential rescuers can be used to define eager pruning as well as cautious pruning, the
presentation of the procedure in [93, 200] is primarily concerned with cautious pruning,
elaborating it in great detail. Eager pruning is only briefly sketched as an optimization.
Without eager pruning (i.e., without an explicit set ET), the presented procedure is only
incremental on unsatisfiable inputs. On satisfiable formulas, it can only terminate after
building the complete tableau. This is due to the fact that in the absence of ET , we can
only give complete tableaux as positive certificates since there ET is implicitly given
as the complement of RT . Goré and Widmann’s implementation of their procedure,
however, performs both cautious and eager pruning.
◮ Goré and Widmann [95, 200] have extended their method to PDL with converse. The
extension to converse is not straightforward and will require a significant update of our
theory, which is future work.

72

5 Tree Search for Hybrid Logic with

Eventualities

Our next goal is to develop incremental decision procedures for modal logics with both
eventualities and nominals. Our main focus for the chapter will be on H∗ as the simplest
such logic.

Existing incremental procedures for hybrid logic [115, 30, 29, 117, 127, 40, 107] are all
based on tree search and employ a prefixed representation of candidate models. While
none of these procedures has optimal worst-case complexity, due to their incremental-
ity, they often display good performance on practical problems.

As we saw in § 3.5.1, an essential complication with the graph tableau approach as it
comes to nominals is giving a pruning relation that, on the one hand, removes enough
clauses to achieve nominal admissibility but, on the other hand, does not exclude any
potential demos. In fact, we saw that in the presence of nominals, no pruning relation
can satisfy both of these correctness properties while remaining confluent. The solution
taken in § 3.5, i.e., to introduce an additional guessing stage, is not compatible with the
idea of having an incremental procedure with good practical performance.

For this reason, we turn our attention to tree procedures. Unlike existing procedures
for hybrid logic, we want to retain a clausal representation of candidate models sim-
ilar to that in Chapter 4 since this allows for considerably simpler termination and
complexity arguments than those for prefixed approaches (compare, for instance, our
termination arguments in Chapters 3 and 4 to those in [29, 117, 127]).

But how do we combine tree search with a clausal representation? As mentioned
in § 1.2.5, tree procedures organize the search space for demos as a tree where every
branch corresponds to a candidate model. Because of the close correspondence between
branches of the search tree and candidate models, in the following we often say “branch”
when referring to the candidate model represented by a branch. Tree procedures typ-
ically search for a demo by exploring the search tree branch by branch, backtracking
as soon as they can determine that the current branch cannot be extended to a demo.
Given a branch containing a disjunction σ : s∨ t, a prefixed tree procedure will typically
explore two alternative ways of extending the branch, namely by the formula σ : s or
by σ : t. The two extensions form two different branches that are further explored in
isolation from each other.

A first idea for obtaining clausal tree procedures may be to combine branching on
disjunctive formulas as done by prefixed tree procedures with the clausal representation
of candidate models used in Chapter 4. The search would then branch on B-clauses
(admitting only one departing link per B-clause and branch) and backtrack as soon as
a branch becomes closed, i.e., as soon as it becomes obvious that the branch cannot be

73

5 Tree Search for Hybrid Logic with Eventualities

s = ✷+(✸∗p ∧✸∗¬p)

✸∗p, ✸∗¬p, s

p, ✸∗¬p, s ✸+p, ✸∗¬p, s

p, ✸+¬p, s p, ¬p, s ✸+p, ¬p, s ✸+p, ✸+¬p, s

1 5

23 6 8

4

7

9

10

Figure 5.1: A complete tableau

extended to a demo. This may be the case either because the branch contains a C-clause
or a loop, which is a cyclic path resulting from a failed attempt to construct a run. Since
a branch has at most one departing link per B-clause, and hence there is at most one
plan per claim, a branch that has a loop cannot have a run for any claim that is part of
the loop (and hence cannot be evident in the sense of Chapter 4).

For instance, applied to the formula ✸∗p ∧✷∗¬p, tree search starts with the branch
consisting of the single clause {✸∗p,¬p,✷∗¬p}, which it then extends to two branches:

✸∗p, ¬p, ✷+¬p

p, ¬p, ✷+¬p

and

✸∗p, ¬p, ✷+¬p

✸+p, ¬p, ✷+¬p

Both branches are closed. The first contains a C-clause and the second contains a loop.
Since there are no more branches to explore, tree search returns unsatisfiable. Note that
it is essential that the second branch is closed since it does not represent a model of
✸∗p ∧✷∗¬p.

It can be shown that without eventualities, the combination of tree search and the
clausal representation from Chapter 4 can be used as a basis for incremental decision
procedures. With eventualities, however, tree search on this clausal representation is
incomplete in that it may fail to find demos for satisfiable formulas. Consider the com-
plete tableau in Figure 5.1 for illustration. Tree search unrolls this tableau into four
branches containing the links {1, 2}, {1, 3, 4}, {5, 6, 7}, and {5, 8, 9, 10}, respectively.
The branch {1, 2} is closed since it contains a C-clause, and the other branches are
closed since they contain loops, leaving eventualities unfulfilled. Thus, tree search is
not able to find a demo for the formula ✷∗(✸∗p ∧ ✸∗¬p). However, the formula is
satisfiable (in fact, the tableau becomes evident if we delete the clause {p, ¬p, s}).

74

5.1 Tree Search

To solve this problem, we switch to a more modular representation. We replace B-
clauses and C-clauses, used up to now to represent propositional reasoning steps, by
an abstract DNF computation. Abstracting away from propositional reasoning makes it
possible to disallow loops while preserving the correctness of the procedure.

To extend our approach to nominals, we use a technique that we call nominal propa-

gation. When we add a new clause to the branch, we add to the new clause all formulas
that occur in clauses of the branch that have a nominal in common with the new clause.
Unlike previous approaches to nominals, nominal propagation is static since clauses
and links that are already part of the branch remain unchanged. This property of nom-
inal propagation will be important for the crucial part of the correctness proof for our
approach, which shows that loops can be safely ignored.

Structure of the chapter. First, we present a general view of tree procedures (§ 5.1)
and an abstract notion of a propositional DNF (§ 5.2) that underlie our method. To
introduce the basic ideas behind our approach to tree procedures for modal logic, we
begin with a procedure for K (§ 5.3). In the next step, we extend the procedure to deal
with eventualities (§ 5.4), after which we show how to handle nominals (§ 5.5). After-
wards, we discuss an extension of the procedure to satisfaction operators, present a
simple optimization, and relate the approach to graph tableaux (§ 5.6). The chapter
concludes with a discussion of related work (§ 5.7).

5.1 Tree Search

Before we come to the details of our approach, we present our view of tree procedures
and introduce some vocabulary for talking about tree procedures.

Central for our presentation of tree procedures is the notion of a branch. As already
mentioned at the beginning of this chapter, every branch of a search tree explored by a
tree procedure corresponds to a candidate model. Our decision procedures will work on
branches defined similarly to graph tableaux in Chapter 4 as sets of clauses and links.
We will extend the notion of satisfaction to branches, distinguishing between satisfiable
and unsatisfiable branches.

A tree procedure is commonly presented by giving expansion rules that describe the
search space that needs to be explored by the procedure. In our notation, an expansion
rule is written as

Γ

Γ1 | · · · | Γn

and specifies how a branch Γ can be extended to zero or more alternative branches
Γ1, . . . , Γn. We require that Γ ⊊ Γi for all i ∈ [1, n]. Rules that produce no extension (i.e.,
rules where n = 0) are also written as

Γ

⊗

75

5 Tree Search for Hybrid Logic with Eventualities

A branch to which we can apply a rule that produces no extension is called closed.
Branches that are not closed are called open. Branches to which no rule is applicable
are called maximal.

Consider, for instance, the following rules for propositional logic.

A

A ; s | A ; t
s ∨ t ∈ A

A

A ; s ; t
s ∧ t ∈ A

A

⊗
{p, ¬p} ⊆ A

The rules operate on branches that are sets of propositional formulas in negation nor-
mal form (which is reflected in the formulation of the rules by the use of A in place
of Γ). The first rule states that a branch A containing a disjunction s∨ t can be extended
either by adding s or by adding t. Because of the requirement that every extension of a
branch has to be a proper superset of the branch, the rule does not apply to branches
A that already contain either s or t. The second rule states that a branch containing a
conjunction s∧t can be extended by adding s and t. The rule does not apply to branches
that already contain both s and t. The third rule states that every branch containing a
pair of complementary literals p and ¬p is closed.

An incremental tree procedure searches for a maximal branch containing the initial
formula. Given an initial branch, the procedure expands the branch using expansion
rules. The rule and the formula used to expand a given branch are chosen among all
applicable rules and all formulas of the branch in a “don’t care” fashion (see [133], § 5),
meaning that the choice does not matter for the correctness of the procedure. Whenever
the branch is expanded by a rule that produces more than one extension, the procedure
has to choose one of the extended branches to work on. This decision is “don’t know”
(see [133], § 5), meaning that if the procedure fails to complete the chosen branch to a
maximal branch, it has to backtrack and try another extension. Whenever the current
branch becomes closed, the procedure backtracks to the last choice point, or returns
unsatisfiable if there are no more alternatives to explore (of course, instead of always
backtracking to the last choice point, the procedure may employ a more intelligent
backtracking strategy like backjumping; see [77, 165, 55, 119, 190]). Once the procedure
arrives at a maximal branch, it halts and returns satisfiable.

For instance, consider the formula (p ∨ q)∧ ((p ∨ r)∧ (¬p ∧ r)). A possible run of
the procedure on the formula (using the above rules) can be visualized as follows.

0. (p ∨ q)∧ ((p ∨ r)∧ (¬p ∧ r))

1. p ∨ q, (p ∨ r)∧ (¬p ∧ r)

2. p ∨ r , ¬p ∧ r

3. p 3. q

4. ¬p, r 5. p 5. r

⊗ 6. ¬p

The numbers indicate steps of the procedure, 0 being the initial state. In step 1, the
procedure applies the rule for conjunctions to the initial formula, extending the branch
by p ∨ q and (p ∨ r) ∧ (¬p ∧ r). Now, the procedure has two possibilities to extend
the branch further, namely either by applying the rule for conjunctions to p ∨ q or

76

5.1 Tree Search

the rule for disjunctions to (p ∨ r) ∧ (¬p ∧ r). It chooses “don’t care” the second
option, which yields p ∨ r and ¬p ∧ r . For step 3, the procedure chooses to apply
the rule for disjunctions to p ∨ q, which yields to two possible extensions, by p and q,
respectively. The procedure chooses “don’t know” to explore the extension by p. On
this extension, the rule for disjunctions does not apply to p∨r since the branch already
contains p. Therefore, the only possible extension of the branch is obtained by applying
the rule for conjunctions to ¬p ∧ r . The resulting branch is closed since it contains p
and ¬p. Therefore, the procedure backtracks to the last “don’t know” choice point
and explores the second possible extension of the branch constructed in step 3. The
procedure chooses “don’t care” to expand this extension using the rule for disjunctions
applied to p∨r (step 5). Then it chooses “don’t know” to explore the resulting extension
by r , which it expands using the rule for conjunctions applied to ¬p ∧ r (step 6). Since
the chosen branch already contains r , the only formula added to the branch in step 6
is ¬p. Since the resulting branch is maximal, the procedure returns satisfiable.

Note that one of the two extensions produced in step 5 remains unexplored. Depend-
ing on the “don’t know” choices made by the procedure, it may be able to find a maximal
branch without going through any closed branches. This is essential for the practical
efficiency of the procedure. Only in the worst case will it have to explore the entire
search space. With intelligent heuristics guiding the “don’t know” choices, tree search
can be efficient even when the search space is too large to be traversed completely.

Remark 5.1.1 While our presentation only uses the tree metaphor informally to visu-
alize the search space, traditional presentations of the tableau method (see, for in-
stance, [25, 184, 71]) often introduce trees as depicted above formally, calling them
tableaux. This view is helpful in the study of proof systems based on the tableau
method, but not necessary in our case. ◭

Since every branch contains the initial formula, one can show that a tree procedure
as described above is correct if it terminates and the expansion rules underlying the
procedure satisfy the following two correctness properties:
• Demonstration-soundness: Every maximal branch is satisfiable.
• Refutation-soundness: For every rule Γ

Γ1|···|Γn
we have that Γ is satisfiable if and only

if at least one of the branches Γ1, . . . , Γn is satisfiable.
Note that, in particular, refutation-soundness implies that every closed branch is unsat-
isfiable.

If the procedure halts because it has found a maximal branch, the satisfiability of the
initial formula (which is part of the branch) is immediate by demonstration-soundness.
If the procedure halts because all branches of the search tree are closed, the unsatis-
fiability of the initial formula follows with refutation-soundness by induction on the
structure of the search tree explored by the procedure. Notably, the proof does not de-
pend on the “don’t care” choices made by the procedure when constructing the search
tree.

Remark 5.1.2 In the literature, in place of demonstration-soundness one often uses a
related property called refutational completeness or simply completeness (refutation-

77

5 Tree Search for Hybrid Logic with Eventualities

soundness is then simply called soundness). A refutationally complete calculus can re-
fute every unsatisfiable formula. This notion originates in a view of the tableau method
as a refutation proof system, which we do not elaborate on in this thesis (see also Re-
mark 5.1.1). For terminating tableau systems, refutational completeness coincides with
demonstration-soundness.

Also, demonstration-soundness is commonly called model existence (for instance,
see [69]). ◭

To prove that a tree procedure terminates, it suffices to show that the search space
it explores is finite. Since expansion rules are finitely branching, with König’s lemma it
follows that a tree procedure terminates if no branch can be extended infinitely often.
In our case, this will follow from the requirement that all extensions of a branch Γ are
proper supersets of Γ since the cardinality of branches will be bounded from above
(branches will only contain syntactic material from a finite formula universe).

Remark 5.1.3 In general, detecting whether a given branch Γ is closed may be expensive
since it involves checking whether there is a way to apply some expansion rule to Γ such
that the rule produces no extension. Therefore, rather than trying to detect closed
branches as early as possible, a practical implementation may continue extending a
closed branch until it encounters a closing rule application.

Also, note that while the “don’t care” decisions do not influence the correctness of a
tree procedure, they may have a big influence on its performance. This is the case since
the decisions may change the search space explored by the procedure. For instance,
consider again the run depicted on p. 76. If in step 3 the procedure chooses to apply
the rule for conjunctions to ¬p∧r instead of the rule for disjunctions, the run simplifies
as follows.

0. (p ∨ q)∧ (p ∨ r)∧ (¬p ∧ r)

1. p ∨ q, (p ∨ r)∧ (¬p ∧ r)

2. p ∨ r , ¬p ∧ r

3. ¬p, r

4. p 4. q

⊗

In general, devising efficient rule and formula selection strategies is a nontrivial task
(see [188, 190, 97, 98]). ◭

5.2 Disjunctive Normal Forms

By the semantic equivalences for alpha and beta formulas, every nonliteral formula
of H∗ is equivalent to a formula in disjunctive normal form (DNF), i.e., to a disjunction of
conjunctions of literals. For instance, the formula s = ✸∗(p∨q)∧¬r is equivalent to the
disjunction t = (p∧¬r)∨(q∧¬r)∨(✸+(p∨q)∧¬r). Hence, the formula t is commonly
called a DNF of s. A formula may have more than one DNF. So, besides t, s has the DNF
(p ∧¬r)∨ (¬p ∧ q ∧¬r)∨ (✸+(p ∨ q)∧¬r). Since in our framework conjunctions of

78

5.2 Disjunctive Normal Forms

literals are naturally represented by N-clauses, a DNF of a formula can be represented as
a set D of N-clauses, where every clause in D corresponds to a disjunct of the DNF. For
instance, the formula t can be represented as the set {{p,¬r}, {q,¬r}, {✸+(p∨q),¬r}}.

Formally, we proceed as follows. As before, we consider only formulas in negation
normal form. We fix a formula universe F and consider only formulas from F . Let A
be a nonempty set of formulas. A set D of N-clauses is a DNF of A if D satisfies the
following conditions:
1. M,w ⊨ A ⇐⇒ ∃D ∈ D : M,w ⊨ D.
2. C ⊲A ⇐⇒ ∃D ∈ D : D ⊆ C .
Note that condition (1) implies that every set A that has an empty DNF is unsatisfiable.

Example 5.2.1

• {{✸p}} is a DNF of {✸p}.
• 0 is a DNF of {p, ¬p}.
• {{p}, {q}} is a DNF of {p ∨ q}.
• {{✸p, p}, {✸p, q}} is a DNF of {✸p, p ∨ q}. ◭

There are many ways to compute a DNF. We now present a simple procedure for
computing DNFs of sets of formulas of H∗, which is a variant of the tree procedure
for propositional logic discussed in § 5.1. The procedure is based on the following
generalization of the expansion rules in § 5.1.

A

A ;β1 | A ;β2
β ∈ A

A

A ;α1 ;α2
α ∈ A

A

⊗
{p, ¬p} ⊆ A

Note that each rule directly corresponds to a line in the definition of Hintikka sets
in § 3.1. Therefore, every branch that is maximal with respect to the expansion rules is
a Hintikka set.

As before, the procedure expands the initial branch using the rules in a depth-first
manner. Unlike the procedure in § 5.1, instead of searching for some maximal branch,
the present procedure always explores the entire search space, returning all maximal
branches it encounters.

The procedure is terminating. To see this, it suffices to convince ourselves that no
branch can be extended infinitely often. This is the case since, as always, the expansion
rules are restricted to produce only extensions of a branch A that are proper supersets
of A, while the cardinality of all branches is bounded from above by |F|.

We call the set of maximal branches returned by a run of the procedure on a set
A a Hintikka decomposition of A. The literals of each Hintikka set in a Hintikka de-
composition of A form an N-clause. All N-clauses obtained this way from a Hintikka
decomposition of A constitute a DNF of A.

Take, for instance, the set A = {✸∗p, ✷∗✸+p}. Depending on whether the rule for
alpha formulas or the rule for beta formulas is applied first, we obtain two possible runs
of the procedure.

0. ✸∗p, ✷∗✸+p

1. ✸+p, ✷+✸+p

0. ✸∗p, ✷∗✸+p

1. p 1. ✸+p

2. ✸+p, ✷+✸+p 3. ✷+✸+p

79

5 Tree Search for Hybrid Logic with Eventualities

Note that the first run ends immediately after applying the rule for alpha formulas to
✷∗✸+p since the resulting set contains ✸+p, and so the rule for beta formulas does not
apply to ✸∗p. The two runs yield the Hintikka decompositions {{✸∗p, ✷∗✸+p, ✸+p,
✸+✷+p}} and {{✸∗p, ✷∗✸+p, p, ✸+p, ✷+✸+p}, {✸∗p, ✷∗✸+p, ✸+p, ✸+✷+p}}, re-
spectively. From the two decompositions, we obtain the DNFs {{✸+p, ✷+✸+p}} and
{{p, ✸+p, ✷+✸+p}, {✸+p, ✷+✸+p}}.

We now show that the set of N-clauses obtained from a Hintikka decomposition of A
satisfies the two conditions for a DNF of A. First, observe that a Hintikka decomposition
D of a formula set A satisfies the following equivalence:

M,w ⊨ A ⇐⇒ ∃H ∈ D : M,w ⊨ H

The direction from right to left follows trivially by inclusion. The other direction follows
from the refutation-soundness of the expansion rules, which in turn follows from the
semantics of alpha and beta formulas. Therefore, for a set of N-clauses obtained from
a Hintikka decomposition to satisfy condition (1) for DNFs it suffices if we have:

M,w ⊨ H ⇐⇒ M,w ⊨ ΛH

The direction from left to right is immediate since ΛH ⊆ H. The other direction follows
with the claim

H Hintikka set and s ∈ H and M,w ⊨ ΛH =⇒ M,w ⊨ s

which follows by induction on the decomposition order of s with the semantic equiva-
lences for alpha and beta formulas.

Condition (2) for DNFs is shown as follows. The direction from right to left follows
since ΛH ⊲H (Proposition 4.1.7) and since A ⊆ H for every set H in a Hintikka decom-
position of A.

The direction from left to right follows from the implication

C ⊲ B =⇒ C ⊲ΛB ⇐⇒ ΛB ⊆ C

which holds for arbitrary formula sets B, and the claim

D Hintikka decomposition of A and C ⊲A =⇒ ∃H ∈ D : C ⊲H

This last claim follows from the following observations (we leave out the details of the
proof):
1. The computation of Hintikka decompositions terminates for every A.
2. If C ⊲ B and α ∈ B (or β ∈ B), then C ⊲ B ;α1 ;α2 (or C ⊲ B ;βi for some i ∈ {1,2}).
3. If C ⊲ B, then B contains no complementary literals.

Note that since the expansion rules for computing Hintikka decompositions are at
most binary (i.e., produce at most two alternative extensions) and properly increase the
cardinality of branches (which is bounded by |F|), the size of a Hintikka decomposition
is at most exponential in |F|. Hence, the size of a DNF is at most exponential in |F| and
can be computed in exponential time with respect to |F|.

80

5.2 Disjunctive Normal Forms

Remark 5.2.2 In practice, one is typically interested in obtaining small DNFs to reduce
the search space for the decision procedure. To reduce the size of a DNF computed
from a Hintikka decomposition, one could prune it by removing clauses that are non-
minimal with respect to inclusion. For instance, consider the set A = {✸∗p, ✸+p ∨ q}.
Depending on the order in which we apply the expansion rules, we obtain two possible
DNFs: D1 = {{✸+p}, {p, q}, {✸+p, p}} and D2 = {{✸+p}, {p, q}, {✸+p, q}}. If we
prune nonminimal clauses, both DNFs converge to D3 = {{✸+p}, {p, q}}. It is easily
seen that D3 is still a DNF of A. However, to compute D3, it seems necessary to com-
pute all of the clauses in D1 or D2 first. This does not seem practical since DNFs may
become very large and the computation of a complete DNF very expensive. Practical
implementations are more likely to compute individual clauses of a DNF incrementally,
in a demand-driven fashion.

Also, a practical procedure for computing DNFs may choose to replace the rule for
beta formulas by an asymmetric version:

A

A ;β1 | A ;∼β1 ;β2
β ∈ A

This so-called semantic branching can considerably speed up propositional reasoning,
thus improving the overall performance of tableau procedures [46, 113]. With semantic
branching, F needs to be additionally closed under normalizing negation to make sure
that it still contains all conclusions of the modified rule. Other than for this adaptation,
semantic branching is fully compatible with our abstract definition of DNFs. ◭

Finally, let us state two important properties of DNFs.

Proposition 5.2.3 Let D be a DNF of A and C ∈ D. Then C ⊲A.

Proof If C ∈ D, there trivially exists some D ∈ D such that D ⊆ C . The claim follows
by condition (2) for DNFs. �

Proposition 5.2.4 If 0 is a DNF of A, then A has no other DNF.

Proof Let A be a nonempty set of formulas and 0, D be two DNFs of A. It suffices to
show that D = 0. Since 0 is a DNF of A, by condition (2) for DNFs, A is not supported
by any N-clause. The claim follows by Proposition 5.2.3. �

Remark 5.2.5 While we are currently only interested in DNFs for H∗, the definition of
DNFs and their computation via Hintikka decompositions adapts to every logic whose
formulas can be classified into literals, alpha and beta formulas (also in cases where
nonliteral formulas decompose into more than two constituents), provided the induced
decomposition relation is terminating. We need this since we exploit the decomposition
order to prove the claims

H Hintikka set and s ∈ H and M,w ⊨ ΛH =⇒ M,w ⊨ s

81

5 Tree Search for Hybrid Logic with Eventualities

and
H Hintikka set =⇒ ΛH ⊲H

which are essential for showing that the N-clauses of Hintikka decompositions satisfy
conditions (1) and (2) for DNFs, respectively. A more detailed discussion of why termi-
nation of the decomposition relation is necessary will be given in § 6.1. ◭

5.3 Procedure for K

We start with a tree procedure for K to demonstrate the basic ideas of our approach.
Recall that we assume the following grammar for negation normal formulas of K.

s ::= p | s ∨ s | ✸s

| ¬p | s ∧ s | ✷s

5.3.1 Branches and Evidence

We begin by defining branches as used by the procedure. While branches resemble graph
tableaux as defined in Chapter 4, they only employ N-clauses and satisfy an additional
functionality condition. Similarly to graph tableaux, branches represent candidate mod-
els. To distinguish branches that describe demos, we introduce the notion of evidence.

As before, links are triples of the form CξD. For K, we allow only one type of links,
namely links of the form C

(

✸s
s

)

D where C, D are N-clauses, ✸s ∈ C , and D ∈ D for
some DNF D of RC ; s. We call such links simple.

A branch is a nonempty set Γ of N-clauses and simple links that satisfies the following
conditions:
• Link coherence: If CξD ∈ Γ , then {C, D} ⊆ Γ .
• Functionality: If C

(

✸s
s

)

D ∈ Γ and C
(

✸s
s

)

E ∈ Γ , then D = E.
Since in the following we will never have to look at B-clauses or C-clauses, for the rest
of the chapter we will use the word “clause” as a shorthand for “N-clause”.

For convenience, we extend the notation s |C from claims to arbitrary formula-clause
pairs (s, C) such that C⊲s. A branch Γ realizes ✸s |C (or realizes ✸s in C) if C

(

✸s
s

)

D ∈ Γ

for some D ∈ Γ . A branch Γ is evident if Γ realizes ✸s |C for every ✸s ∈ C ∈ Γ . A model
satisfies a branch Γ (or is a model of Γ) if it satisfies all clauses of Γ .

Example 5.3.1 Below we show a graphical representation of a branch consisting of the
clauses C1 = {✸p, ✸¬p, ✷(✸¬p ∨¬p)}, C2 = {p, ✸¬p} and C3 = {¬p}, as well as the
links C1

(

✸p
p

)

C2, C1

(

✸¬p
¬p

)

C3 and C2

(

✸¬p
¬p

)

C3.

✸p, ✸¬p, ✷(✸¬p ∨¬p)

p, ✸¬p ¬p

82

5.3 Procedure for K

As usual, links are represented with arrows. The branch is evident since it contains an
outgoing link for every diamond formula. ◭

Let us adopt the notion of demos from Chapter 4 (restricted to K). Similarly to evi-
dent graph tableaux in Chapter 4, every evident branch describes a demo that supports
all of the formulas in the branch. Hence, every evident branch is satisfiable. In the
present case, the correspondence of evident branches to demos is particularly close
since branches contain only N-clauses.

Theorem 5.3.2 The clauses of an evident branch form a demo.

Proof Let Γ be an evident branch. In the case of K, to show ✸-admissibility, it suffices to
show that for every ✸s ∈ C ∈ Γ , Γ contains a clause D such that D⊲RC ; s. This follows
by Proposition 5.2.3 from the fact that Γ realizes ✸s |C , i.e., contains a link C

(

✸s
s

)

D ∈ Γ

since D ∈ D for some DNF D of RC ; s. �

5.3.2 Expansion Rules

The tree procedure is obtained as discussed in § 5.1 from a single expansion rule:

Γ

Γ ;D1 ;C
(

✸s
s

)

D1 | · · · | Γ ;Dn ;C
(

✸s
s

)

Dn

✸s ∈ C ∈ Γ ,

Γ does not realize ✸s |C,

{D1, . . . ,Dn} DNF of RC ; s

We call it the diamond rule. Note that the the selection of ✸s ∈ C ∈ Γ as well as the
choice of a DNF of RC ; s to use with the rule is “don’t care”. The restriction that Γ does
not realize ✸s |C is needed to ensure that the rule is only applicable once per clause and
diamond formula, which is necessary to preserve the functionality of branches. Without
the restriction, the rule may apply to the same formula ✸s ∈ C ∈ Γ more than once
since RC ; s may have more than one pairwise disjoint DNF.

Note that according to the diamond rule, a branch is closed if and only if it contains a
clause C and a diamond ✸s ∈ C such that RC ; s has an empty DNF. By condition (1) for
DNFs, this is the case if and only if RC ; s is unsatisfiable. Hence, closed branches are
unsatisfiable.

Example 5.3.3 Consider the clause C = {✸p, ✷¬p}. Since ✸p |C is not realized in Γ =
{C}, the diamond rule applies to Γ . Since there is no clause supporting RC ;p = {p, ¬p},
every, DNF of RC ;p is empty (Propositions 5.2.3, 5.2.4). Consequently, the diamond rule
applied to ✸p ∈ C ∈ Γ produces no extension, meaning that Γ is closed. ◭

Moreover, note that the diamond rule applies to a branch if and only if the branch is
not evident. Together with Theorem 5.3.2, this implies that the rule is demonstration-
sound.

83

5 Tree Search for Hybrid Logic with Eventualities

Example 5.3.4 Consider the following run of the procedure.

0. C1 = {✸✸p, ✷(q ∨✷¬p)}

1. C2 = {✸p,q}, C1

(

✸✸p
✸p

)

C2 1. C3 = {✸p,✷¬p}, C1

(

✸✸p
✸p

)

C3

2. C4 = {p}, C2

(

✸p
p

)

C4 ⊗

The initial branch is {C1}. Note that {C2, C3} is a DNF of RC1 ;✸p. Application of the
diamond rule to ✸✸p |C1 with this DNF yields the branches Γ1 = {C1, C1

(

✸✸p
✸p

)

C2, C2}

and Γ2 = {C1, C1

(

✸✸p
✸p

)

C3, C3}. The branch Γ2 is closed because of clause C3 (see Exam-
ple 5.3.3). Expansion of ✸p ∈ C2 ∈ Γ1 with the set {{p}} as a DNF of RC2 ;p yields the
evident branch {C1, C1

(

✸✸p
✸p

)

C2, C2, C2

(

✸p
p

)

C4, C4}. ◭

Theorem 5.3.5 (Termination) The tree procedure for K induced by the diamond rule is
terminating.

Proof The claim follows by König’s lemma from the fact that a branch cannot be ex-
tended infinitely often. This, in turn, follows since every application of the diamond
rule strictly enlarges the branch, while the cardinality of branches (i.e., the number of
clauses and links that may occur in a branch) is exponentially bounded in |F|. �

For refutation-soundness, we show that every non-evident, satisfiable branch has a
satisfiable extension. The other direction follows trivially by inclusion.

Theorem 5.3.6 (Refutation-Soundness) Let Γ be a branch that does not realize ✸s |C

for some ✸s ∈ C ∈ Γ . Let M be a model of Γ and let D be a DNF of RC ; s. Then there is
a clause D ∈ D such that Γ ;D ;C

(

✸s
s

)

D is a branch satisfied by M.

Proof Let Γ , ✸s ∈ C ∈ Γ , M and D be as required. Since M satisfies C , it also satisfies
RC ; s. By condition (1) for DNFs, there is some D ∈ D such that M satisfies D. Let
∆ = Γ ;D ;C

(

✸s
s

)

D. Since Γ does not realize ✸s |C , ∆ is functional and hence a branch.
The model M satisfies ∆ since M satisfies Γ and D. �

Since the diamond rule is demonstration-sound and refutation-sound, the procedure
decides the satisfiability of branches. The procedure can be used to decide the satisfia-
bility of (not necessarily literal) formulas by exploiting that a given formula s is satisfi-
able if and only if so is ✸s. Hence, to decide s, it suffices to decide the branch {{✸s}}.

Alternatively, one can exploit that, given a formula s and a DNFD of s, s is satisfiable
if and only if there is some C ∈ D such that the branch {C} is satisfiable.

5.4 Eventualities

Next, we consider the logic K∗, which extends K with eventualities. To account for
eventualities, we extend our syntactic machinery by two additional types of links. This
will allow us to verify the satisfaction of eventualities in a branch via a simple cycle
check. To prove the refutation-soundness of the expansion rules, in particular of the
rule performing the cycle checks, we will give the new links a semantic interpretation.

84

5.4 Eventualities

✸+p, ✷¬p

✸+p, ¬p

p

✸+p, ✷¬p

✸+p, ¬p

✸+p

p

✸+p, ✷+¬p

✸+p, ✷+¬p, ¬p

Figure 5.2: Three branches

5.4.1 Branches and Evidence

As one would expect, realization of eventualities ✸+s is more involved that realization
of simple diamond formulas.

Example 5.4.1 Suppose we extend our definitions of branches and evidence for K to
K∗ in the intuitive way. Then Γ = {C, C

(

✸+p
✸∗p

)

C} where C = {✸+p, ✷+¬p, ¬p} is an
evident branch (Γ is a branch since {C} is a DNF of RC ;✸∗p). However, Γ is clearly not
satisfiable.

Note also that it is impossible to distinguish if the eventuality ✸+p is realized in Γ
or not just by looking at the annotation of the link C

(

✸+p
✸∗p

)

C . We additionally need to
determine whether or not C ⊲ p. If we had, for instance, C = {✸+p, p, ✷+✸+p}, then Γ
would be satisfiable. ◭

To obtain an adequate notion of realization for eventualities, we adapt the notions of
paths and runs from Chapter 4 to the current setting. To be able to distinguish when
an eventuality is realized without having to compute support, we introduce two special
types of links:

• Fulfilling links C
(

✸+s
s

)

D where ✸+s ∈ C , D ∈ D for some DNF D of RC ; s.

• Delegating links C
(

✸+s
✸+s

)

D where ✸+s ∈ C , D ∈ D for some DNF D of RC ;✸+s.

For simple diamond formulas ✸s, we still use simple links C
(

✸s
s

)

D.

Branches are essentially defined as before but may now additionally contain fulfilling
and delegating links. To account for the different types of links, we generalize the func-

tionality condition for branches as follows: If Γ is a branch, C
(

s
t

)

D ∈ Γ and C
(

s
u

)

E ∈ Γ ,

then t = u and D = E. A branch Γ realizes ✸s |C if C
(

✸s
t

)

D ∈ Γ for some t and D.

Figure 5.2 shows three branches. In all three cases, all diamond formulas are realized
with links. The first two branches describe models of the clauses. This is not the case
for the rightmost branch, where both clauses are unsatisfiable. Unlike the first two
branches, the rightmost branch contains no fulfilling link to a clause that contains p.
Instead, it has a loop formed by the delegating link from the lower clause to itself.

85

5 Tree Search for Hybrid Logic with Eventualities

A path for ✸+s in Γ is a nonempty sequence

(C1

(

✸+s
✸+s

)

C2)(C2

(

✸+s
✸+s

)

C3) . . . (Cn−2

(

✸+s
✸+s

)

Cn−1)(Cn−1

(

✸+s
t

)

Cn)

of links in Γ . A path of the above form is called a run for ✸+s |C if C1 = C and t = s,
and a loop for ✸+s if C1 = Cn and t = ✸+s. A branch Γ is evident if Γ contains no
loops and realizes ✸s |C for all ✸s ∈ C ∈ Γ . Because of the functionality restriction on
branches, a branch that has a loop (C1

(

✸+s
✸+s

)

C2) . . . (Cn−1

(

✸+s
✸+s

)

Cn) cannot have a run for
any of the claims ✸+s |Ci (i ∈ [1, n]). In the first two branches in Figure 5.2, for every
clause C that contains ✸+p we have a run for ✸+p |C . The third branch contains a loop.

Proposition 5.4.2 Let Γ be an evident branch and ✸+s ∈ C ∈ Γ . Then there is a unique
run for ✸+s |C in Γ .

Proof Let Γ be evident and ✸+s ∈ C ∈ Γ . We begin by showing that there is at most
one run for ✸+s |C in Γ . Assume for contradiction there are two distinct runs π , π ′ for
✸+s |C in Γ . Then π = λ1 . . . λm and π ′ = λ1 . . . λiλ

′
i+1 . . . λ

′
n where i ∈ [0,m − 1] and

λi+1 6= λ
′
i+1. Clearly, λi+1 = D

(

✸+s
t

)

E while λ′i+1 = D
(

✸+s
t′

)

E′ for some formulas t, t′ and
clauses D, E, E′ such that t 6= t′ or E 6= E′. Contradiction to Γ being functional.

Now assume that ✸+s |C has no run in Γ . Then, since every eventuality in every clause
is realized, Γ contains an infinite sequence π = (C1

(

✸+s
✸+s

)

C2)(C2

(

✸+s
✸+s

)

C3) . . . where C1 =

C . Since Γ is finite, there are some j > i ≥ 1 such that Ci = Cj , i.e., π contains a loop.
Contradiction to Γ being evident. �

Remark 5.4.3 By Proposition 5.4.2, a branch Γ that realizes every diamond formula
is evident if and only if Γ contains a run for every ✸+s |C such that ✸+s ∈ C ∈ Γ .
So, instead of requiring the absence of loops we could equivalently define evidence by
requiring that every claim has a run (which is also what we did in Chapter 4). The
reason for the present definition is that it better matches the algorithmic ideas behind
our present procedures. Unlike in Chapter 4, the procedures will never explicitly check
the existence of runs. Instead, they will maintain the absence of loops as an invariant,
whose violation indicates a failure in the search for an evident branch. ◭

Remark 5.4.4 We can now give an evident branch that contains all the N-clauses of the
tableau in Figure 5.1:

s = ✷+(✸∗p ∧✸∗¬p)

✸+p, ✸+¬p, s

p, ✸+¬p, s ✸+p, ¬p, s

In Figure 5.1, every path from ✸+p in the clause C1 = {✸+p, ✸+¬p, s} to the clause
C2 = {p, ✸+¬p, s} contains the link 1, while every path from C1 to C3 = {✸+p, ¬p, s}

86

5.4 Eventualities

contains the link 5. Hence, once link 1 or link 5 is removed, either C2 or C3 becomes
inaccessible from C1.

In the present case, the situation is different since the computation of a DNF is per-
formed for every claim independently. In a sense, we can now have both link 1 and
link 5 in the same branch, only that now the two links belong to two different DNF
computations, which are not explicitly represented at the level of branches. ◭

We now show that the clauses of every evident branch are satisfiable. As before, it
suffices to show the existence of a demo, with demos being defined as in § 4.1.

Theorem 5.4.5 The clauses of an evident branch form a demo.

Proof Let Γ be an evident branch and S the set of its clauses. We have to show that all
clauses in S are ✸-admissible. The condition for ✸s ∈ C follows the same as in the proof
of Theorem 5.3.2. The condition for ✸+s ∈ C proceeds as follows. Let ✸+s ∈ C ∈ S. By
Proposition 5.4.2, the claim ✸+s |C has a run (C1

(

✸+s
✸+s

)

C2) . . . (Cn−1

(

✸+s
s

)

Cn) in Γ where
C1 = C . By Proposition 5.2.3, we obtain Ci+1 ⊲ RCi ;✸+s for every i ∈ [1, n − 2] and
Cn ⊲ RCn−1 ; s. Hence, C1 →

+
S Cn ⊲ s. �

5.4.2 Expansion Rules

To treat simple diamonds and eventualities in a uniform way, we introduce the notion
of an expansion. Let C be a clause and ✸s ∈ C . An expansion of ✸s |C is defined by
case analysis on the shape of s:
• If ✸s is simple and D is a DNF of RC ; s,

then { (s |D) | D ∈ D} is an expansion of ✸s |C .
• If ✸s = ✸+t, D is a DNF of RC ; t, and E is a DNF of RC ;✸+t,

then { (t |D) | D ∈ D}∪ { (✸+t |D) | D ∈ E } is an expansion of ✸s |C .

Example 5.4.6

• 0 is an expansion of ✸p | {✸p, ✷¬p}.
• {p∨¬p | {p, q}, p∨¬p | {¬p, q}} is an expansion of ✸(p∨¬p) | {✸(p∨¬p), ✷q}.
• {✸+p | {✸+p, ¬p, ✷+¬p}} is an expansion of ✸+p | {✸+p, ✷+¬p} since the set
{p, ✷∗¬p}(= R{✸+p, ✷+¬p} ;p) has an empty DNF and {{✸+p, ¬p, ✷+¬p}} is
a DNF of {✸+p, ✷∗¬p}(= R{✸+p, ✷+¬p} ;✸+p).

• {p | {p}, ✸+p | {p, ✸+p}} is an expansion of ✸+p | {✸+p, ✷p} since {{p}} is a
DNF of {p}(= R{✸+p, ✷p} ;p) and {{✸+p, p}} is a DNF of the set {p, ✸+p}(=
R{✸+p, ✷p} ;✸+p). ◭

The tree procedure for K∗ is obtained from the expansion rules in Figure 5.3. In addition
to modifying the diamond rule to use expansions, we introduce a new rule, (loop), which
closes branches that contain loops. We call (loop) the loop rule. Note that restricted to
simple diamonds, the diamond rule behaves exactly the same as for K.

Remark 5.4.7 If one is willing to check support in order to recognize loops, one may be
tempted to simplify the overall setup as follows.

87

5 Tree Search for Hybrid Logic with Eventualities

(✸)
Γ

Γ ;D1 ;C
(

✸s
t1

)

D1 | · · · | Γ ;Dn ;C
(

✸s
tn

)

Dn

✸s ∈ C ∈ Γ ,

Γ does not realize ✸s |C,

{t1 |D1 , . . . , tn |Dn} expansion of ✸s |C

(loop)
Γ

⊗
Γ contains a loop

Figure 5.3: Expansion rules for K∗

• We do away with fulfilling and delegating links and employ simple links for even-
tualities as well as for simple diamonds (a simple link for an eventuality ✸+s ∈ C

would have the form C
(

✸+s
✸∗s

)

D). Since then every link has the form C
(

✸s
s

)

D, we can
simplify this notation to C(✸s)D.

• We define a path for ✸+s in Γ as a nonempty sequence

(C1(✸
+s)C2)(C2(✸

+s)C3) . . . (Cn−1(✸
+s)Cn)

of links in Γ . We call a path of the above form a run for ✸+s |C if C1 = C and Cn⊲s,
and a loop for ✸+s if C1 = Cn and Ci ⋫ s for every i ∈ [1, n].

• The expansion rules for K∗ then consist of the diamond rule as given in § 5.3.2 for
K and the loop rule using the new definition of loops.

The problem with this system (besides the fact that it relies on support) is that it results
in an incorrect procedure. For instance, consider Γ = {C} where C = {✸+p, ✷+✸+p}.
Clearly, C is satisfiable. Note that {C} is a DNF of RC ;✸∗p. Since C ⋫ p, the branch
Γ ;C(✸+p)C , which is the only possible extension of Γ for the chosen DNF, contains
a loop and is hence closed. Therefore, despite starting with a satisfiable clause and
choosing a valid DNF, the procedure may not be able to find an evident branch.

To restore the correctness of the procedure, we need to impose the following addi-
tional restriction on DNFs:
• For every DNF D of A ;✸∗s there is a DNF D1 of A ; s and a DNF D2 of A ;✸+s such

that D1 ∪D2 ⊆ D.
In the above example, this condition would ensure that every DNF of RC ;✸∗p contains
at least one clause containing p (since RC ;p has a nonempty DNF).

However, this restriction is not natural for DNFs. In particular, it is not satisfied by
DNFs computed via Hintikka decompositions (in § 5.2, we show that {C} is a DNF of
RC ;✸∗p that can be computed via Hintikka decompositions).

Moreover, the restriction hides the fact that there are conceptually two degrees of
freedom that are needed for a clausal tree procedure in the presence of eventualities.
First, given a satisfiable formula set A, we need to be able to find a clause supporting A.
This is achieved by DNFs. Second, given an eventuality ✸+s ∈ C such that M, v ⊨ C

and v →M w, we need to be able to find a clause supporting RC ; s if M,w ⊨ s and
a clause supporting RC ;✸+s if M,w ⊨ ✸+s. This second requirement is achieved by
our definition of expansions. It is fundamentally different from the first requirement,

88

5.4 Eventualities

which will become clearer when we look at tree procedures for HPDL in Chapter 6 (see
Remark 6.4.3). ◭

Clearly, a branch is evident if and only if it is maximal with respect to the rules in Fig-
ure 5.3. Hence, the rules are demonstration-sound (Theorem 5.4.5). The tree procedure
induced by the rules is terminating by the same argument as for K (Theorem 5.3.5).

As it comes to refutation-soundness, the loop rule causes considerable complications.
We must make sure that every branch to which the loop rule applies is unsatisfiable. The
problem is that the rule may apply to branches all of whose clauses are satisfiable. This
is shown by the next example.

Example 5.4.8 Consider the literal s = ✷+(q ∨✷¬p) and the following branch:

✸+p, ¬p, q, s

✸+p, ✷¬p, s

All clauses of the branch are satisfiable. Nevertheless, the branch contains a loop and
is hence closed. Note that the branch can be obtained by starting with the upper clause.
Essentially, the situation occurs because we choose from the possible extensions of
the upper clause for ✸+p one that delegates the satisfaction of ✸+p. If instead we
added a fulfilling link to the clause {p, q, s} or {p, ✷¬p, s} (which is possible since
{{p, q, s}, {p, ✷¬p, s}} is a DNF of R{✸+p, ¬p, q, s} ;p), the resulting branch would
be evident. ◭

We solve the problem by extending the notion of satisfaction to delegating links. The
idea is that a satisfiable delegating link for an eventuality ✸+s has to reduce the distance
to a clause satisfying s. This way, branches with loops become unsatisfiable, which
guarantees the refutation-soundness of the loop rule.

Let M be a model, A be a set of formulas, and s a formula. The distance from A to s

in M is defined as follows:

δMAs := min{n ∈ N | ∃v,w : v →nM w and M, v ⊨ A and M,w ⊨ s }

where min0 = ∞ and n <∞ for all n ∈ N.

Proposition 5.4.9 δMAs <∞ if and only if M satisfies A ;✸∗s.

Proof The claim is immediate by the definition of δ and the semantics of ✸∗s. �

A model M satisfies a link C
(

✸+s
✸+s

)

D if the following conditions are satisfied:
1. δMCs > 0 =⇒ δMCs > δMDs

2. δMDs > 0

89

5 Tree Search for Hybrid Logic with Eventualities

A model satisfies a branch Γ if it satisfies all clauses and all delegating links of Γ .

Remark 5.4.10 If we adapt the new notion of satisfiability to the setup proposed in Re-
mark 5.4.7, it turns out that the reason for the incorrect behaviour of the tree procedure
is that the diamond rule is not refutation-sound. ◭

Remark 5.4.11 Theorem 5.4.5 actually makes a weaker statement than what is needed
for demonstration-soundness if we take the new notion of branch satisfiability. Rather
than showing that every evident branch is satisfiable, it shows that the clauses of every
evident branch are satisfiable. This weaker claim suffices for the correctness of the
decision procedure since in the end, we are just interested in the satisfiability of clauses.
In fact, the stronger claim is not even true, which can be seen by looking at the branch

C1 = ✸+p

C2 = ✸+p, p

C3 = p

The branch is evident but the link C1

(

✸+p
✸+p

)

C2 is not satisfiable since for every model
M satisfying the clause C2 we have δMC2p = 0. The example shows that link satisfia-
bility differs considerably from our intuitive understanding of satisfiability and should
primarily be seen as a technical device for showing refutation-soundness. ◭

We now argue that the loop rule is refutation-sound.

Proposition 5.4.12 Satisfiable branches contain no loops.

Proof Let Γ be a branch and M a model of Γ . Assume, for contradiction, Γ has a loop
(C1

(

✸+s
✸+s

)

C2) . . . (Cn−1

(

✸+s
✸+s

)

Cn). Then Cn = C1 and n ≥ 2. Since for every i ∈ [2, n],

M satisfies the link Ci−1

(

✸+s
✸+s

)

Ci and Cn = C1, we have δMCis > 0 for every i ∈ [1, n].
Therefore, δMC1s > δMC2s > · · · > δMCns = δMC1s. Contradiction. �

The refutation-soundness of the diamond rule is obtained with the following theorem.

Theorem 5.4.13 (Refutation-Soundness of (✸)) Let Γ be a branch that does not realize
✸s |C for some ✸s ∈ C ∈ Γ . Let M be a model of Γ , and E be an expansion of ✸s |C .
Then there is some t |D ∈ E such that Γ ;D ;C

(

✸s
t

)

D is a branch satisfied by M.

Proof Let Γ , ✸s ∈ C ∈ Γ , M and E be as required. If ✸s is simple, the claim reduces to
Theorem 5.3.6. So let ✸s = ✸+s′. LetD be a DNF of RC ; s′ andD′ be a DNF of RC ;✸+s′

such that E = { (s′ |D) | D ∈ D} ∪ { (✸+s′ |D) | D ∈ D′ }. Since M satisfies C , it also
satisfies RC ;✸∗s′, i.e., M satisfies RC ; s′ or M satisfies RC ;✸+s′.

90

5.5 Nominals

Suppose M satisfies RC ; s′. Then there is some D ∈ D such that M satisfies D. Let
∆ = Γ ;D ;C

(

✸+s′

s′

)

D. Since Γ does not realize ✸+s′ |C , ∆ is functional and hence a
branch. The model M satisfies ∆ since M satisfies Γ and D.

Suppose M does not satisfy RC ; s′. Then M satisfies RC ;✸+s′. HenceD′ is nonempty
and M satisfies a clause in D′. Let D be a clause in D′ such that δMDs

′ is minimal.
Let ∆ = Γ ;D ;C

(

✸+s′

✸+s′

)

D. Since Γ does not realize ✸+s′ |C , ∆ is functional and hence a
branch. Since M satisfies some clause in D′, M satisfies D (Proposition 5.4.9). To show
that M satisfies ∆, it remains to verify that M satisfies C

(

✸+s′

✸+s′

)

D.

First, we show that δMDs
′ > 0. Assume, for contradiction, δMDs

′ = 0. Then M sat-
isfies D ; s′. Since D ∈ D′, M then satisfies RC ;✸+s′ ; s′, contradicting the assumption
that M does not satisfy RC ; s′.

Finally, suppose δMCs
′ > 0. We show that δMCs

′ > δMDs
′. Note that δMCs

′ > 1
since otherwise M would satisfy RC ; s′, contradicting our assumption. Also note that
δMCs

′ < ∞ by Proposition 5.4.9 (since M satisfies C and ✸+s′ ∈ C). Hence, there are
some v, w, u such that v →M w →

δMCs
′−1

M u, M, v ⊨ C , and M, u ⊨ s′. Then M,w ⊨ RC

and, since δMCs
′ − 1 > 0, M,w ⊨ ✸+s′. Consequently, there is a clause E ∈ D′ such

that M,w ⊨ E. Clearly, δMEs
′ ≤ δMCs

′ − 1. Since D is chosen from D′ such that δMDs
′

is minimal, we have δMDs
′ ≤ δMEs

′ < δMCs
′. The claim follows. �

Since the expansion rules are demonstration-sound and refutation-sound, the induced
tree procedure decides the satisfiability of clauses for K∗. Formula satisfiability can be
reduced to clause satisfiability as discussed in § 5.3.2.

5.5 Nominals

We now develop a tree procedure for the logic H∗, which extends K∗ with nominals.
The key observation underlying the procedure is that two clauses that contain the same
nominal must be satisfied by the same state in every model of the branch. Thus, when-
ever two clauses of a branch have a nominal in common, we can add the union of the
two clauses to the branch.

5.5.1 Branches and Evidence

Let Γ be a set of clauses and A be a set of formulas. We define the following notation to
realize what we call nominal propagation:

AΓ := A∪ { s | ∃x ∈ A∃C ∈ Γ : x ∈ C and s ∈ C }

Note that AΓ is the least set of formulas that includes A and all clauses C ∈ Γ that have
a nominal in common with A, i.e., AΓ = A ∪

⋃

{C ∈ Γ | A ∩ C contains a nominal }. In
particular, we may only have AΓ 6= A if A contains a nominal.

Proposition 5.5.1 Let A be a set of formulas, M be a model of a clause set Γ , and
w ∈ |M|. Then M,w ⊨ A ⇐⇒ M,w ⊨ AΓ .

91

5 Tree Search for Hybrid Logic with Eventualities

Proof The direction from right to left is immediate. As for the other direction, let M

be a model of a set Γ , and let M,w ⊨ A. It suffices to show M,w ⊨ A ∪ C for every
clause C ∈ Γ that has a nominal in common with A (if Γ contains no such clause, we
have AΓ = A and the claim is trivial). So, let C ∈ Γ have a nominal in common with A.
Then, by the semantics of nominals, we have M,w ⊨ C , and hence M,w ⊨ A∪ C . �

A branch is now a nonempty set Γ of clauses as well as simple, fulfilling and delegating
links that satisfies the following conditions:
• Link coherence: If CξD ∈ Γ , then {C, DΓ} ⊆ Γ .
• Functionality: If C

(

s
t

)

D ∈ Γ and C
(

s
u

)

E ∈ Γ , then t = u and D = E.

• Nominal coherence: If C ∈ Γ , then CΓ ∈ Γ .
A branch Γ may have several clauses that contain the same nominal. Nominal coherence
guarantees that for every nominal in the branch there is always a unique largest clause
that contains the nominal. This clause can be seen as the canonical representative of
the state corresponding to the nominal.

Note that link coherence no longer requires a branch Γ to contain the target clause D
of every link CξD ∈ Γ . It suffices if Γ contains DΓ . This is because now, we think of a
link CξD as pointing to the clause DΓ rather than D.

Proposition 5.5.2 If Γ is nominally coherent, then (AΓ)Γ = AΓ .

Proof The inclusion AΓ ⊆ (AΓ)Γ is immediate. We now show (AΓ)Γ ⊆ AΓ . Let s ∈ (AΓ)Γ .
Then s ∈ AΓ or s ∈ C for some C ∈ Γ such that C∩AΓ contains a nominal. In the former
case we are done. In the latter case, we distinguish two subcases.

Let C ∩A contain a nominal. Then s ∈ C ⊆ AΓ , and we are done.
Let C ∩D contain a nominal for some D such that D ∩A contains a nominal. Since Γ

is nominally coherent, C ∪D ⊆ CΓ ∈ Γ . Since D ⊆ CΓ , the set CΓ ∩A contains a nominal,
and hence s ∈ C ⊆ CΓ ⊆ AΓ . �

Our next goal is to define what it means for a branch to be evident in the presence
of nominals. First, we need to adapt our notion of paths. A path for ✸+s in Γ is a
nonempty sequence

(C1

(

✸+s
✸+s

)

C2)(C
Γ

2

(

✸+s
✸+s

)

C3) . . . (C
Γ

n−2

(

✸+s
✸+s

)

Cn−1)(C
Γ

n−1

(

✸+s
t

)

Cn)

of links in Γ . A path of the above form is called a run for ✸+s |C if C1 = C and t = s,
and a loop for ✸+s if C1 = CΓn and t = ✸+s. Realization of diamond formulas is defined
the same as for K∗. The core CΓ := {C ∈ Γ | CΓ = C } of a branch Γ is the set of all
clauses of Γ that are either maximal or contain no nominal. The clauses in the core of a
branch are the clauses that may potentially be used for the demo construction. Clauses
that are not in the core are subsumed by larger clauses containing the same nominals.
Note that no two clauses in the core of a branch contain the same nominal:

Lemma 5.5.3 Let Γ be a branch. If x ∈ C ∈ CΓ and x ∈ D ∈ CΓ , then C = D.

Proof Since x ∈ C ∩D, we have D ⊆ CΓ = C and C ⊆ DΓ = D. The claim follows. �

92

5.5 Nominals

Also note that, by Proposition 5.5.2, we have CΓ ∈ CΓ for every C ∈ Γ .

Given the new definition of loops, the formulation of evidence is almost unchanged
compared to K∗: A branch Γ is evident if Γ contains no loops and realizes ✸s |C for
every ✸s ∈ C ∈ CΓ .

Remark 5.5.4 The fact that we only require realization of diamonds in the core of a
branch can be seen as an optimization. It is equally possible to require an evident
branch to realize all of its diamond formulas, like we do for K∗. ◭

We can reprove Proposition 5.4.2 for the new definitions of loops and runs:

Proposition 5.5.5 Let Γ be an evident branch and ✸+s ∈ C ∈ CΓ . Then there is a unique
run for ✸+s |C in Γ .

Proof Let Γ be evident and ✸+s ∈ C ∈ CΓ . The proof that there is at most one run for
✸+s |C in Γ proceeds exactly the same as for Proposition 5.4.2.

Now assume that ✸+s |C has no run in Γ . Then, since every eventuality in every clause
in CΓ is realized, Γ contains an infinite sequence π = (C1

(

✸+s
✸+s

)

C2)(C
Γ

2

(

✸+s
✸+s

)

C3) . . . where

C1 = C . Since Γ is finite, there are some j > i ≥ 1 such that Ci = C
Γ

j , i.e., π contains a
loop. Contradiction to Γ being evident. �

Analogously to § 3.5, we call a clause set S nominally admissible if every nominal
x ∈ F is contained in exactly one C ∈ S. We adapt the notion of demos from § 4.1 to
H∗ by requiring that demos be nominally admissible. The proofs of demo satisfaction
and demo existence remain essentially unchanged compared to § 4.1.2:

• Demo satisfaction and demo existence now follow by establishing a correspondence
to nominally admissible Hintikka demos as defined in § 3.5.

• For Proposition 4.1.6, we additionally have to show thatHS is nominally admissible,
which is immediate since S is nominally admissible and its clauses agree on literals
with the Hintikka sets inHS.

• For Proposition 4.1.9, we have to show that ΛS is nominally admissible, which again
follows since S is nominally admissible.

We now show that the clauses of an evident branch are satisfiable by proving that the
core of the branch is contained in a demo. This suffices since every clause of the branch
is a subset of a clause in its core.

Proposition 5.5.6 If C ⊲ s and C ⊆ D, then D ⊲ s.

Proof Straightforward induction on the decomposition order of s. The base case of s
being a literal is immediate since C ⊲ s ⇐⇒ s ∈ C . �

Theorem 5.5.7 The core of an evident branch is contained in a demo.

Proof Let Γ be an evident branch and let D = CΓ ∪ {{x} | x ∈ F , ∄C ∈ CΓ : x ∈ C }.
We show that D is a demo. By construction, D is nominally admissible (provided no

93

5 Tree Search for Hybrid Logic with Eventualities

two clauses in CΓ contain the same nominal, which holds by Lemma 5.5.3). It remains
to show that all clauses in D are ✸-admissible.

Let ✸s ∈ C ∈ D. Then C ∈ CΓ . Since Γ realizes ✸s |C , by Proposition 5.2.3, there is
some D ∈ Γ that supports RC ; s. Then CΓ ∈ CΓ ⊆ D. By Proposition 5.5.6, DΓ ⊲ RC ; s.
The claim follows.

Let ✸+s ∈ C ∈ D. Then C ∈ CΓ . By Proposition 5.5.5, the claim ✸+s |C has a run
(C1

(

✸+s
✸+s

)

C2) . . . (C
Γ

n−1

(

✸+s
s

)

Cn) in Γ where C1 = C . By Propositions 5.2.3 and 5.5.6, we

obtain CΓi+1 ⊲ RCΓi ;✸+s for every i ∈ [1, n − 2] and CΓn ⊲ RCΓn−1 ; s. Clearly, all of the
clauses CΓi (i ∈ [2, n]) are in CΓ and hence in D. So, C1 = C

Γ

1 →
+
D C

Γ
n ⊲ s. �

Corollary 5.5.8 The clauses of an evident branch are satisfiable.

5.5.2 Expansion Rules

Let Γ be a branch and A a nonempty set of formulas. We call a clause setD a nominally

consistent DNF (nc-DNF) of A in Γ if there is a DNF D′ of A such that D = {C ∈

D′ | CΓ N-clause }. Condition (1) in the definition of DNFs still holds for nc-DNFs in the
following form.

Proposition 5.5.9 Let M be a model of the branch Γ , A a nonempty set of formulas, and
D an nc-DNF of A in Γ . Then, for all w ∈ |M|: M,w ⊨ A ⇐⇒ ∃D ∈ D : M,w ⊨ D.

Proof The direction from right to left follows from condition (1) for DNFs. As for the
other direction, suppose M,w ⊨ A. By the definition of nc-DNFs, there is a DNF E of A
such that D = {C ∈ E | CΓ N-clause }. By condition (1) for DNFs, there is some D ∈ E
such that M,w ⊨ D. By Proposition 5.5.1, M,w ⊨ DΓ , and hence DΓ is a clause (i.e., is
not clashing). Consequently, D ∈ D. �

Let ✸s ∈ C ∈ Γ . We define nominally consistent expansions (nc-expansions) of ✸s |C

in Γ by case analysis on the shape of s:
• If ✸s is simple and D is an nc-DNF of RC ; s in Γ ,

then { (s |D) | D ∈ D} is an nc-expansion of ✸s |C in Γ .
• If ✸s = ✸+t, D is an nc-DNF of RC ; t in Γ , and E is an nc-DNF of RC ;✸+t in Γ , then
{ (t |D) | D ∈ D}∪ { (✸+t |D) | D ∈ E } is an nc-expansion of ✸s |C in Γ .

Note that nc-expansions are defined from nc-DNFs in exactly the same way as expan-
sions are defined from DNFs. Since, by definition, for every nc-DNF D of a formula set
A there is a DNF D′ of A such that D ⊆ D′, for every nc-expansion E of ✸s |C there is
an expansion E′ of ✸s |C such that E ⊆ E′.

The expansion rules for H∗ are adapted from the rules for K∗ as shown in Figure 5.4.
The only change to the rules for K∗ (Figure 5.3) is that now the diamond rule introduces
only nominally propagated clauses. This is done to maintain the nominal coherence
of branches. To make sure that nominal propagation introduces no clashing clauses,
we work with nc-expansions rather than ordinary expansions. Also, our definition of
evidence for H∗ allows us to restrict the diamond rule to clauses in the core of the
branch.

94

5.5 Nominals

(✸)
Γ

Γ ;DΓ1 ;C
(

✸s
t1

)

D1 | · · · | Γ ;DΓn ;C
(

✸s
tn

)

Dn

✸s ∈ C ∈ CΓ ,

Γ does not realize ✸s |C,

{t1 |D1 , . . . , tn |Dn} nc-expansion
of ✸s |C in Γ

(loop)
Γ

⊗
Γ contains a loop

Figure 5.4: Expansion rules for H∗

Example 5.5.10 Here is a derivation of an evident branch from an initial clause with
eventualities. The numbers indicate the order in which the links and clauses are intro-
duced (clause 0 being the initial clause).

✸+p, ¬p, ✷(x ∧✸+p ∧¬p), ✸✷¬p
0

x, ✸+p, ¬p
1

x, ✸+p, ¬p, ✷¬p
3

p
2

✸+p, ¬p
4

1

2

3

4

5

In the final branch, the links 1, 4, 5 constitute a run for ✸+p in clause 0.
The dashed link is used to indicate the implicit redirection of link 1 (due to nominal

propagation) that occurs when clause 3 is added. Note that before clause 3 is added,
the links 1, 2 constitute a run for ✸+p in clause 0. When clause 3 is added, this run
disappears since clause 1 is no longer in the core. ◭

Once again, we have that a branch is evident if and only if it is maximal. Hence, by
Corollary 5.5.8, the rules are demonstration-sound (with respect to the weak notion of
branch satisfaction that does not require the satisfaction of links). The termination of
the tree procedure induced by the rules is once again immediate since the rules only
introduce clauses and links over F (see Theorem 5.3.5).

The proof of refutation-soundness needs some adaptations. Note that adding nomi-
nals to the language does not affect the validity of Proposition 5.4.9. The most impor-
tant additional observation that we need for nominals is that distance is invariant under
nominal propagation:

Proposition 5.5.11 Let M be a model of a branch Γ . Then δMAs = δMA
Γ s.

Proof Immediately follows from Proposition 5.5.1 by the definition of δ. �

With this, we can reprove Proposition 5.4.12 as follows.

95

5 Tree Search for Hybrid Logic with Eventualities

Proposition 5.5.12 Satisfiable branches contain no loops.

Proof Let Γ be a branch and M a model of Γ . Assume, for contradiction, Γ has a loop
(C1

(

✸+s
✸+s

)

C2) . . . (C
Γ

n−1

(

✸+s
✸+s

)

Cn). Then C1 = C
Γ

1 = C
Γ
n and n ≥ 2. Since for every i ∈ [2, n],

M satisfies the link CΓi−1

(

✸+s
✸+s

)

Ci, by Proposition 5.5.11, we have δMC
Γ

i s > 0 for every

i ∈ [1, n] (the claim for i = 1 follows with CΓ1 = C
Γ
n). Therefore, δMC

Γ

i s > δMCi+1s =

δMC
Γ

i+1s for all i ∈ [1, n], which contradicts CΓ1 = C
Γ
n. �

Proposition 5.5.12 justifies the refutation-soundness of the loop rule. Since the di-
amond rule now employs nominally consistent expansions, its proof of refutation-
soundness also needs to be adapted.

Theorem 5.5.13 (Refutation-Soundness of (✸)) Let Γ be a branch that does not realize
✸s |C for some ✸s ∈ C ∈ CΓ . Let M be a model of Γ , and E be an nc-expansion of ✸s |C
in Γ . Then there is some t |D ∈ E such that Γ ;DΓ ;C

(

✸s
t

)

D is a branch satisfied by M.

Proof To obtain the claim, we need to adapt the proofs of Theorems 5.3.6 and 5.4.13 in
the following places:

1. Assuming that M satisfies RC ; s (or RC ; s′ where ✸s = ✸+s′), we select a clause
D ∈ D (where D is now an nc-DNF of RC ; s or RC ; s′, respectively) such that M

satisfies D. The existence of D now follows by Proposition 5.5.9.
2. Assuming that M satisfies RC ;✸+s′, we select a clause D ∈ D′ (where D′ is now

an nc-DNF of RC ;✸+s′) such that δMDs
′ is minimal. Since M satisfies RC ;✸+s′,

every DNF of RC ;✸+s′ contains a clause D such that δMDs
′ <∞ (Proposition 5.4.9).

Therefore, by Proposition 5.5.9, our choice of D is not restricted by going from
ordinary DNFs to nc-DNFs in Γ .

3. Given a clause D satisfied by M, we have to show that DΓ is satisfied by M, which is
immediate by Proposition 5.5.1.

4. We have to show that ∆ = Γ ;DΓ ;CξD (where ξ is one of
(

✸s
s

)

,
(

✸+s′

s′

)

and
(

✸+s′

✸+s′

)

) is

nominally coherent. This follows from the nominal coherence of Γ since (DΓ)∆ =
(DΓ)Γ = DΓ ∈ ∆ (Proposition 5.5.2). �

We conclude that the expansion rules induce a decision procedure for H∗.

5.6 Discussion

5.6.1 Satisfaction Operators

It is straightforward to extend our system for H∗ to the logic H∗@, which extends H∗

with satisfaction operators. We introduce satisfaction links of the form C
(

x:s
s

)

D where
x : s ∈ C and D ∈ D for some DNF D of {x, s}. A branch Γ realizes (x : s) | C if it
contains a link C

(

x:s
s

)

D. Evident branches are now those that realize every diamond
and every satisfaction formula in their core.

96

5.6 Discussion

Demos for H∗@ are defined as for H∗ with the additional condition that a demo D has
to contain a clause D with D ⊲ {x, s} for every x : s ∈ C ∈ D. Together with nominal
admissibility, this suffices to show demo satisfaction and demo existence.

The adaptation of Theorem 5.5.7 is also straightforward: Since an evident branch Γ
contains a link C

(

x:s
s

)

D for every x : s ∈ C ∈ CΓ , we also have DΓ ∈ Γ . This entails the

additional demo condition for H∗@ since DΓ ⊲ {x, s} (Propositions 5.2.3 and 5.5.6).
The expansion rule for satisfaction formulas looks as follows.

Γ

Γ ;DΓ1 ;C
(

x:s
s

)

D1 | . . . | Γ ;DΓn ;C
(

x:s
s

)

Dn

x : s ∈ C ∈ CΓ ,
Γ does not realize (x : s) |C,
{D1, . . . ,Dn} nc-DNF of {x, s} in Γ

When the rule is added to the rules for H∗ (Figure 5.4), we again have that a branch is
evident if and only if it is maximal. Hence, the rules are demonstration-sound. Since
the new rule respects F , the termination of the procedure is unaffected. For refutation-
soundness, we have to show the following proposition:

Proposition 5.6.1 Let Γ be a branch that does not realize (x : s) |C for some x : s ∈ C ∈
CΓ . Let M be a model of Γ and D be an nc-DNF of {x, s}. Then there is a clause D ∈ D
such that Γ ;DΓ ;C

(

x:s
s

)

D is a branch satisfied by M.

Proof Analogous to the case for simple diamonds in the proof of Theorem 5.5.13. �

Since the treatment of satisfaction operators is largely orthogonal to that of other con-
structs, the present approach can also be used to extend the procedures in Chapters 6
and 7 to satisfaction operators. Therefore, in the following, we restrict our considera-
tions to logics without satisfaction operators.

5.6.2 Pattern-Based Blocking

For simplicity and uniformity of presentation, we omitted several optimizations that
may considerably reduce the number of clauses and branches that need to be explored
by the decision procedure. Let us now discuss one such optimization that is known as
pattern-based blocking (see [126, 127]).

Consider the following branch:

✸p, ✷(¬p ∨ q), p ✸p, ✷(¬p ∨ q), q

p, q

Clearly, the diamond ✸p in the upper right clause (C2) can be realized by a link to the
bottom clause (C3). How can we determine this without computing a DNF of RC2 ;p? We
can look at the upper left clause (C1) and observe that RC2 ;p = RC1 ;p. Since ✸p |C1 is
realized with a link to C3, we can realize ✸p |C2 in the same way.

97

5 Tree Search for Hybrid Logic with Eventualities

In general, we have that a simple diamond ✸s can be realized in a clause in C by a
link to an existing clause if there is some ✸t ∈ D ∈ Γ such that ✸t is realized in D and
RC ; s = RD ; t.

Moreover, all of our results still hold if we allow links of the form C
(

✸s
s

)

D where D is a
superset of some clause in a DNF of RC ; s. If we do this, we can realize a simple diamond
✸s in C if there is some ✸t ∈ D ∈ Γ such that ✸t is realized in D and RC ; s ⊆ RD ; t.
Extending the idea to eventualities and fulfilling links, we arrive at the following two
expansion rules:

Γ

Γ ;C
(

✸s
s

)

E

✸s ∈ C ∈ CΓ simple,
Γ does not realize ✸s |C,

D
(

t
u

)

E ∈ Γ , RC ; s ⊆ RD ;u

Γ

Γ ;C
(

✸+s
s

)

E

✸+s ∈ C ∈ CΓ ,

Γ does not realize ✸+s |C,

D
(

t
u

)

E ∈ Γ , RC ; s ⊆ RD ;u

We call these rules blocking rules. In practice [98], pattern-based blocking is realized by
maintaining a data structure containing a set RC ; s for every ✸s ∈ C ∈ Γ such that ✸s |C
has been previously realized with the diamond rule. Before applying the diamond rule
to some unrealized ✸t |D, we check if RD ; t is contained (possibly as a subset) in the
data structure. If so, we know that ✸t |D can be realized. Actually realizing ✸t |D by
inserting a link is not necessary as long as one is just interested in deciding satisfiability
and not in obtaining a satisfying model.

Remark 5.6.2 The name “pattern-based blocking” originates in the notion of a pattern,
which is used in [126, 127] for sets of the form RC ; s (where ✸s ∈ C). ◭

What about delegating links? A blocking rule in the spirit of the above two rules for
delegating links would look as follows.

Γ

Γ ;C
(

✸+s
✸+s

)

E

✸+s ∈ C ∈ CΓ ,

Γ does not realize ✸+s |C,

D
(

t
u

)

E ∈ Γ , RC ;✸+s ⊆ RD ;u

However, this rule is not refutation-sound. Consider, for instance, the first branch in
Figure 5.2 up to the second clause, i.e., Γ = {C1, C1

(

✸+p
✸+p

)

C2, C2}. Clearly, Γ is satisfiable.

Since C1

(

✸+p
✸+p

)

C2 ∈ Γ and RC2 = 0 ⊆ {¬p} = RC1, the rule introduces the unsatisfiable

link C2

(

✸+p
✸+p

)

C2, after which the branch becomes closed.

5.6.3 Tree Search on Graph Tableaux

Finally, let us relate tree search and graph tableaux by describing how tree search can
be realized as a tableau construction and search strategy on top of graph tableaux. We
restrict our attention to the procedure for K∗.

Although we did not make it explicit in § 5.2, graph tableaux as defined in Chapter 4
also provide an intuitive way to compute DNFs of formula sets. Let T be a graph tableau
and C ∈ T . We call an N-clause D ∈ T an N-successor of C in T if D is reachable from
C by a path in T that contains no N-clauses besides D and possibly C . Let T be a

98

5.7 Related Work

complete graph tableau containing ⌊A⌋ for some formula set A. It is easily seen that the
set of all N-successors of ⌊A⌋ in T is a DNF of A.

With this in mind, a tableau branch Γ can be seen as a graph tableau T together with
a partial function ϕ, which represents the links of Γ . We have ϕ(✸s, C) = (t, D) if and
only if Γ contains the link C

(

✸s
t

)

D. For compatibility with the underlying graph tableau,
we require D to be an N-successor of ⌊RC ; s⌋ if ✸s is simple, and an N-successor of
⌊RC ; t⌋ or ⌊RC ;✸+t⌋ if ✸s = ✸+t. Note that the functionality of Γ corresponds to ϕ
being a function.

Schematically, the correspondence can be depicted as follows:

✸s, ✸+t, . . .

s, . . . ✸+t, . . .

✸s, ✸+t, . . .

.

.

s, . . . ✸+t, . . .

The branch on the left-hand side is represented as the graph tableau on the right-hand
side (links being depicted by solid arrows) together with the function ϕ, represented by
the two dashed arrows (one for every link of the branch). As suggested by the picture,
ϕ can be thought of as a set of paths between N-clauses of the graph tableau. For every
N-clause C and every formula ✸s ∈ C , ϕ is allowed to contain at most one path.

A tree procedure can be seen as a backtracking procedure that combines an incre-
mental construction of a graph tableau with the construction of ϕ. The goal of the
procedure is to make ϕ total on diamonds in N-clauses that are ϕ-reachable from some
initial N-clause (where a clauseD is aϕ-successor of C ifϕ(✸s, C) = (t, D) for some ✸s
and t, and ϕ-reachability is the reflexive-transitive closure of the ϕ-successor relation)
without introducing any cycles of the form ϕ(. . .ϕ(✸+s, C)) = (✸+s, C). The under-
lying graph tableau only needs to be extended incrementally and on demand, namely
when the construction of ϕ rejects all N-successors of a clause in the tableau but there
are potentially more N-successors in a completion of the tableau. When ϕ is loop-free
and total on the reachable clauses, the graph tableau is a positive certificate for the
satisfiability of the initial clause. When the search for ϕ fails, the tableau is a nega-
tive certificate. In both cases, we can obtain small certificates (provided they exist) by
suitably guiding the search for ϕ.

5.7 Related Work

◮ Existing tableau procedures for hybrid logic [115, 30, 29, 117, 125, 127, 39, 107] all
employ prefixes. This is because they rely on fine-grained propagation of equational

99

5 Tree Search for Hybrid Logic with Eventualities

information introduced by nominals. To make such propagation possible, one needs
prefixes as a syntactic representation of states that is independent from the formulas
that are assumed to hold at the states. Two prefixes are usually seen as equivalent
(denoting the same state) if they carry the same formulas. One consequence of this rep-
resentation is that prefixes may grow over time by accumulating new formulas, which
also means that two equivalent prefixes may at some time lose their equivalence. In
the presence of eventualities, this poses a problem since it conflicts with the refutation-
soundness of the loop rule. We cannot reject a loop unless we know that the loop is
persistent, i.e., cannot disappear if we propagate new formulas to one of the prefixes on
the loop.
Our procedure differs from existing procedures for hybrid logic in that it does not em-
ploy prefixes. It is static in that, once part of the branch, clauses and links remain
unchanged. Nominal propagation is realized by creating new clauses and hence does
not interfere with the refutation-soundness of the loop rule.
Also, the clausal representation considerably simplifies our termination argument com-
pared to the arguments for prefixed calculi. The reason is that, unlike with prefixes,
there can be no two distinct clauses that contain the same formulas. Hence, the termi-
nation of the procedure is immediately implied by the finiteness of the formula universe.
◮ The fundamental idea behind our refutation-soundness arguments for the tree pro-
cedures for K∗ and H∗ evolved in work with Sigurd Schneider [175]. It builds on an
idea in Baader’s [11] correctness proof (Proposition 4.7) for a tree procedure for test-
free PDL. Besides the extension to hybrid logic, the present approach differs from the
arguments in [11] and [175] in that, by assigning semantics to delegating links, we are
able to argue the refutation-soundness of our system in a largely standard way, without
introducing special-purpose invariants on branches.
◮ Besides the connections to Baader’s and Schneider’s work, our loop rule resembles
the criterion for the ignorability of branches in De Giacomo and Massacci’s [52] tableau
system for CPDL. Technically, however, our system is quite different from De Giacomo
and Massacci’s. In particular, De Giacomo and Massacci’s correctness proof relies on
complex model transformations that are unnecessary in our case.
◮ Yet another approach to tree procedures for PDL is taken by Abate et al. [3]. Their
procedure is rather different from our system in that it decides the satisfiability of a
branch not only based on the structure of the branch itself but also based on informa-
tion from previously explored branches. This allows Abate et al. to avoid proving the
refutation-soundness of the loop rule. Rather than seeing branches with loops as unsat-
isfiable, they view their satisfiability as not yet determined. The obligation to determine
the satisfiability of eventualities causing loops can then be passed on to later branches.
By reasoning over multiple branches, the system incorporates certain aspects of graph
procedures. This is also the reason why, similarly to graph procedures, it does not scale
easily to hybrid logic. Since satisfying models produced by the procedure may include
material from multiple branches, one would have to enforce that these branches taken
together satisfy some form of nominal coherence, which is a nontrivial task.

100

6 Tree Search for Test-Free Hybrid PDL

In this chapter, we extend our incremental procedure for H∗ to HPDL. While the overall
design of the procedure and its correctness proofs at the modal level remain the same,
the computation of DNFs needs to be refined considerably.

The reason for this is that, while terminating when the language is restricted to K∗

or H∗, the decomposition relation induced by the table in Figure 3.1 (see § 4.1.1) is
not terminating for full (H)PDL. If the decomposition relation does not terminate, the
definitions of upward closure, support, and Hintikka decompositions no longer ensure
the desired correspondence between clauses and Hintikka sets. In particular, a Hintikka
set H no longer satisfies ΛH ⊲H (Proposition 4.1.7), which is crucial for establishing a
connection between clausal demos and Hintikka demos.

To reestablish the required properties, we refine the decomposition table (i.e., the set
of decomposition rules) in Figure 3.1 so as to make the induced decomposition relation
terminating. Since the refined table yields different constituents for diamond and box
formulas than the original table, we need to argue the correctness of the new table.
We base the correctness argument on a straightforward language-theoretic semantics
of programs. Once the new table is in place, the construction of the procedure and the
proof of its correctness proceed following the ideas in Chapter 5.

Since tests cause additional complications, for clarity of presentation we restrict our-
selves to the test-free case. The extension of the procedure to HPDL with tests will be
discussed separately in Chapter 7.

Structure of the chapter. We begin by detailing the problems caused by the lack of
termination of the decomposition relation and formulate requirements on a refined de-
composition table (§ 6.1). Next, we make a brief excursion into the theory of regular
languages (§ 6.2). The theory is used to state and prove the correctness properties of
the refined decomposition table that we devise in § 6.3. We then introduce the notions
of expansion, links, branches, and evidence (§ 6.4). To show that evident branches are
satisfiable, we adapt the definition of demos to work with the refined decomposition
table (§ 6.5). With all the prerequisites in place, we state the expansion rules under-
lying the decision procedure and argue their correctness (§ 6.6). We conclude with a
discussion of related work (§ 6.7).

6.1 Decomposition Tables

Like in Chapters 4 and 5, and unlike in the more theoretical approach in Chapter 3,
we want to determine the satisfaction of nonliteral formulas from the satisfaction of

101

6 Tree Search for Test-Free Hybrid PDL

literals. In Chapters 4 and 5, this is achieved via the notion of support. As noted in § 4.1,
in the case of K∗ and H∗, we have ΛH ⊲H for every Hintikka set H (Proposition 4.1.7).
Hence, the following three claims are equivalent:

1. M,w ⊨ s

2. ∃C : M,w ⊨ C and C ⊲ s
3. ∃H : H Hintikka set and s ∈ H and M,w ⊨ ΛH

It is precisely these equivalences that allow us to reduce the satisfaction of nonliteral
formulas to the satisfaction of literals. Equivalence (1) ⇐⇒ (2) is a key property of
support and follows for K∗ and H∗ by Lemma 4.1.2, Proposition 3.3.11, and Proposi-
tion 4.1.7. Equivalence (1) ⇐⇒ (3) is an essential prerequisite for the correctness of the
DNF computation via Hintikka decompositions in § 5.2 (see Remark 5.2.5). The implica-
tion (2) =⇒ (3) follows sinceHC is a Hintikka set for every N-clause C (Proposition 4.1.4),
while Proposition 4.1.7 is used to show the converse implication.

When we go to HPDL, Proposition 4.1.7 is no longer true and hence (2) and (3) are no
longer equivalent. More importantly, neither of the equivalences (1) ⇐⇒ (2) and (1) ⇐⇒
(3) is true. The reason for this is that the alpha-beta decomposition rules in Figure 3.1
may not terminate on formulas 〈α∗〉s or [α∗]s where α is a complex program. For
instance, 〈a∗∗〉p decomposes into p and 〈a∗〉〈a∗∗〉p, while 〈a∗〉〈a∗∗〉p decomposes
into 〈a〉〈a∗〉〈a∗∗〉p and 〈a∗∗〉p, the original formula (see Figure 1.1).

For the equivalence (1) ⇐⇒ (2), decomposition cycles affect the implication from left
to right. For instance, consider the formula [a∗∗]p. Although the formula is clearly
satisfiable, it is not supported by any N-clause. For contradiction, suppose C ⊲ [a∗∗]p.
Consider the shortest derivation of [a∗∗]p ∈ A where A is the upward closure of C .
Clearly, the derivation contains as a subderivation a derivation of [a∗][a∗∗]p ∈ A.
However, every derivation of [a∗][a∗∗]p ∈ A must contain a strictly shorter derivation
of [a∗∗]p ∈ A. Contradiction.

For the equivalence (1) ⇐⇒ (3), the implication from left to right holds. What fails is
the converse implication. Consider the formula 〈a∗∗〉(p ∧ ¬p). Clearly, the formula
is unsatisfiable. At the same time, H = {q, 〈a∗∗〉(p ∧ ¬p), 〈a∗〉〈a∗∗〉(p ∧ ¬p)} is a
Hintikka set containing 〈a∗∗〉(p∧¬p). We have ΛH = {q}, and {q} is clearly satisfiable.
Note also that {q} = ΛH ⋫ H.

We call a set of alpha-beta decomposition rules as given in Figure 3.1 a decomposition

table. Both the definition of Hintikka sets and that of support build on the decompo-
sition table in Figure 3.1. To deal with the above anomalies, we will adopt a second,
more general decomposition table that will allow to decompose an alpha formula α into
constituents α1, . . . , αn and a beta formula β into β1, . . . , βn (where n ≥ 1 may vary for
different formulas) such that:

• If F is a formula universe and s ∈ F decomposes into t1, . . . , tn,
then {t1, . . . , tn} ⊆ F .

• If α is an alpha formula, then M,w ⊨ α ⇐⇒ M,w ⊨ αi for every i ∈ [1, n].
• If β is a beta formula, then M,w ⊨ β ⇐⇒ M,w ⊨ βi for some i ∈ [1, n].

We view these three conditions as fundamental compatibility properties that should be
satisfied by every decomposition table.

102

6.1 Decomposition Tables

Analogously to the table in Figure 3.1, every decomposition table induces a notion
of literals, decomposition relation, Hintikka sets, Hintikka decompositions, upward clo-
sure and support in the intuitive way. For instance, given a decomposition table, a
Hintikka set defined with respect to the table is a nonempty set H of formulas that
satisfies the following properties.
• For every predicate p: {p, ¬p} 6⊆ H.
• If α ∈ H, then {α1, . . . , αn} ⊆ H.
• If β ∈ H, then {β1, . . . , βn} ∩H 6= 0.

We call a decomposition table admissible if for every Hintikka set H it holds ΛH ⊲H,
where Hintikka sets and support are defined with respect to the table. As we mentioned
above, this entails the equivalence of the claims (2) and (3). From this, it follows that
the equivalences (1)⇐⇒ (2) and (1)⇐⇒ (3) are both valid for every admissible table with
the following two observations.
• The proof of Proposition 4.1.2 (i.e., the implication (2) =⇒ (1)) generalizes to arbi-

trary decomposition tables (not necessarily admissible). The generalized proof is
mostly analogous to the proof of Proposition 4.1.2 but proceeds by induction on
the derivation of s ∈ A where A is the upward closure of C (this induction order
does not require the decomposition relation to be terminating).

• The implication (1) =⇒ (3) immediately follows from the property M,w ⊨ s =⇒

∃H ∈ D : M,w ⊨ H, satisfied by every Hintikka decomposition D of {s}. While in
§ 5.2, the property is argued for H∗ and Hintikka decompositions with respect to
the table in Figure 3.1, the argument extends to HPDL and arbitrary decomposition
tables as long as they satisfy the fundamental compatibility properties from above
(containment in the formula universe and compatibility with the semantics of alpha
and beta formulas).

A decomposition table is called terminating if so is the induced decomposition rela-
tion. As we already noted in § 4.1.1, the transitive closure of a terminating decomposi-
tion relation forms a well-founded decomposition order. So, a decomposition table is
terminating if and only if it induces a well-founded decomposition order.

Let us now show that the termination of a decomposition table is a sufficient criterion
for its admissibility.

Proposition 6.1.1 If a decomposition table is terminating, then it is admissible.

Proof Let the notions of Hintikka sets, upward closure and support be defined with
respect to some terminating decomposition table. Let H be a Hintikka set, s ∈ H, and C
be the set of all literals in H. We show C⊲s by induction on the decomposition order of
s as induced by the table. We distinguish three cases. If s is a literal, the claim follows
since s ∈ C . So, let s = α decompose into n constituents α1, . . . , αn. By the inductive
hypothesis, we have C ⊲ αi for all i ∈ [1, n]. Hence, by the definition of the upward
closure, C ⊲α. The case for s = β proceeds similarly. �

Our goal for the next two sections will be to define a terminating decomposition table
that we can use for the decision procedure. It will coincide with the table in Figure 3.1 on
conjunctions and disjunctions but will differ on nonliteral diamond and box formulas.

103

6 Tree Search for Test-Free Hybrid PDL

Remark 6.1.2 Instead of modifying the decomposition table to enforce termination, it
is possible to work with the original decomposition table in Figure 3.1 (complemented
by the notion of demos from Chapter 3.3). However, instead of clauses, we would have
to represent states by Hintikka sets. Moreover, to check that a Hintikka set H is “admis-
sible” (in the sense that the satisfaction of all of its literals entails that of its nonliteral
formulas), the decision procedure would have to explicitly compute the relation

α
-→S

for every 〈α〉s ∈ H. Previous tableau-based approaches to PDL [161, 52, 3, 93, 200] all
rely on explicit admissibility checks. We choose modifying the decomposition table over
explicit admissibility checks since it is conceptually simpler and more modular in that
the correctness of the modified decomposition table can be proven in isolation from the
correctness of the overall procedure. ◭

6.2 Language-Theoretic Semantics

In this section, we give a brief summary of regular languages (see [110, 156, 181]),
which we use as a semantics for programs of test-free HPDL. Based on this semantics,
we state some properties that we will need to justify the correctness of our terminating
decomposition rules for diamond and box formulas. We do not give any proofs. Proofs
will be given in § 7.1 for a more general semantics that also accounts for tests.

A word is a finite sequence of actions a1 . . . an where n ≥ 0. We denote the empty
word by ε. The letters σ and τ range over words. A language is a set of words. We write
L · L′ for the concatenation of the languages L and L′ (i.e., for {στ | σ ∈ L, τ ∈ L′ }).
Given a language L, we define:

L0 := {ε} Ln+1 := L · Ln L∗ :=
⋃

n∈N

Ln

To every test-free program α, we assign a language Lα:

La := {a} L(α+ β) := Lα∪Lβ L(αβ) := Lα · Lβ L(α∗) := (Lα)∗

Proposition 6.2.1 Let L1, L2, L3 be languages. Then:
1. (L1 ∪ L2) · L3 = (L1 · L3)∪ (L2 · L3)

2. (L1 · L2) · L3 = L1 · (L2 · L3)

3. L1 · {ε} = {ε} · L1 = L1

4. L∗1 = {ε} ∪ (L1 · L
∗
1)

Given a model M, we define the relations
σ
-→M ⊆ |M| × |M| by induction on σ :

v
ε
-→M w ⇐⇒ v = w

v
aσ
-→M w ⇐⇒ ∃u : v

a
-→M u and u

σ
-→M w

Lemma 6.2.2 v
στ
-→M w ⇐⇒ ∃u : v

σ
-→M u and u

τ
-→M w

Proposition 6.2.3

1. v
α
-→M w ⇐⇒ ∃σ ∈ Lα : v

σ
-→M w

2. M, v ⊨ 〈α〉s ⇐⇒ ∃σ ∈ Lα∃w : v
σ
-→M w and M,w ⊨ s

3. M, v ⊨ [α]s ⇐⇒ ∀σ ∈ Lα∀w : v
σ
-→M w implies M,w ⊨ s

104

6.3 Diamond and Box Decompositions

6.3 Diamond and Box Decompositions

We now introduce the terminating decomposition rules for diamond and box formulas
and argue their correctness with respect to the criteria formulated in § 6.1. We begin by
formulating the central properties that we require of our construction.

A setD of formulas is a decomposition of 〈α〉s if it satisfies the following conditions:

1. If t ∈ D, then:
a) t ∈ F for every formula universe F containing 〈α〉s.
b) t = s or t = 〈a〉〈β1〉 . . . 〈βn〉s for some action a and programs β1, . . . , βn (n ≥ 0).

2. Lα =
⋃

〈β1〉...〈βn〉s∈D

Lβ1 · . . . · Lβn

Note that the inclusion 〈β1〉 . . . 〈βn〉s ∈ D in condition (2) also applies to formulas of
the form s (i.e., formulas where n = 0). Note also that condition (1.b) implies that every
formula in D is either a literal (as defined with respect to the table in Figure 3.1) or a
proper subformula of 〈α〉s.

The definition of box decompositions (i.e., decompositions of box formulas) is ob-
tained from the above definition for diamonds by replacing every occurrence of the for-
mulas 〈α〉s, 〈a〉〈β1〉 . . . 〈βn〉s, and 〈β1〉 . . . 〈βn〉s by the formulas [α]s, [a][β1] . . . [βn]s,
and [β1] . . . [βn]s, respectively.

Conditions (1.b) and (2) ensure that the constituents of s contained in a diamond or a
box decomposition of s satisfy the semantic equivalences for beta and alpha formulas,
respectively:

Proposition 6.3.1 LetD be a decomposition of 〈α〉s and E be a decomposition of [α]s.
1. M,w ⊨ 〈α〉s ⇐⇒ ∃t ∈ D : M,w ⊨ t

2. M,w ⊨ [α]s ⇐⇒ ∀t ∈ E : M,w ⊨ t

Proof We show claim (1) (claim (2) follows analogously). For the direction from left
to right, let M,w ⊨ 〈α〉s. By Proposition 6.2.3 (2), there is some σ ∈ Lα and some
v such that w

σ
-→M v and M, v ⊨ s. By condition (2) for diamond decompositions,

σ ∈ Lβ1 · . . .·Lβn for some 〈β1〉 . . . 〈βn〉s ∈ D. By n applications of Proposition 6.2.3 (2)
and Lemma 6.2.2, we obtain M,w ⊨ 〈β1〉 . . . 〈βn〉s.

For the other direction, let t ∈ D and M,w ⊨ t. By condition (1.b) for diamond
decompositions, t = 〈β1〉 . . . 〈βn〉s for some n ≥ 0 and β1, . . . , βn. By n applications of
Proposition 6.2.3 (2) and Lemma 6.2.2, there is some σ ∈ Lβ1 · . . . ·Lβn and v such that
w

σ
-→M v and M, v ⊨ s. By condition (2) for diamond decompositions, σ ∈ Lα. Hence,

by Proposition 6.2.3 (2), M,w ⊨ 〈α〉s. �

Once again, let us fix a formula universe F and consider only formulas from F .
We now give a construction that, given a diamond or a box formula s, yields a de-

composition of s. We will use this construction to define the decomposition rules for
diamonds and boxes. Taken together with the decomposition rules for conjunctions and
disjunctions, they will yield a terminating decomposition table for HPDL. Intuitively, we
define the diamond and box decomposition rules as “macro rules” based on multiple
applications of the rules in Figure 3.1.

105

6 Tree Search for Test-Free Hybrid PDL

We define the alpha-beta closure of a formula set A (with respect to the table in
Figure 3.1) as the least set B of formulas containing A such that
• {α1, α2} ⊆ B whenever α ∈ B, and
• {β1, β2} ⊆ B whenever β ∈ B.
We write AA for the alpha-beta closure of A. Clearly, AA ⊆ F whenever A ⊆ F .
Consequently (Proposition 3.2.3), AA is finite whenever so is A, its cardinality being at
most linear in the sum of the sizes of the formulas in A.

The algorithm for computing diamond and box decompositions employs a restriction
of the alpha-beta closure that we define as follows. Given a formula s and a set A,
we define the alpha-beta closure of A halting at s (written AsA) as the least set B of
formulas containing A such that
• {α1, α2} ⊆ B whenever α ∈ B and α 6= s, and
• {β1, β2} ⊆ B whenever β ∈ B and β 6= s.
Clearly, for every s and A, we haveAsA ⊆AA. Let s = 〈α〉t or s = [α]t. We define:

Ds := {u ∈At{s} | u = t or u literal }

Example 6.3.2 Consider the formula 〈(a+ b)∗〉p. We have:

Ap{〈(a+ b)
∗〉p} = {〈(a+ b)∗〉p, p, 〈a+ b〉〈(a+ b)∗〉p,

〈a〉〈(a+ b)∗〉p, 〈b〉〈(a+ b)∗〉p}

D(〈(a+ b)∗〉p) = {p, 〈a〉〈(a+ b)∗〉p, 〈b〉〈(a+ b)∗〉p} ◭

As we will show in the following, D(〈α〉s) is a decomposition of 〈α〉s and D([α]s) is a
decomposition of [α]s. Since the argument proceeds analogously for diamond and box
decompositions, we will only detail the claim for D(〈α〉s). The argument for D([α]s)

is then obtained simply by replacing diamonds by boxes everywhere in the argument
for D(〈α〉s).

We begin by observing that Ds satisfies condition (1.a) for diamond (and box) decom-
positions. This holds since, as noted above,A{s} ⊆ F whenever s ∈ F , and Ds ⊆A{s}.

For conditions (1.b) and (2), it is essential that D(〈α〉s) is defined based onAs{〈α〉s}

rather thanA{〈α〉s}, which is demonstrated by the following example.

Example 6.3.3 Consider the formula 〈a∗〉〈b∗〉p. We have:

A〈b∗〉p{〈a
∗〉〈b∗〉p} = {〈a∗〉〈b∗〉p, 〈b∗〉p, 〈a〉〈a∗〉〈b∗〉p}

D(〈a∗〉〈b∗〉p) = {〈b∗〉p, 〈a〉〈a∗〉〈b∗〉p}

However, A{〈a∗〉〈b∗〉p} = A〈b∗〉p{〈a∗〉〈b∗〉p} ∪ {p, 〈b〉〈b∗〉p}. Hence, if we replace
As by A in the definition of D, we obtain the set D = {〈b∗〉p, 〈a〉〈a∗〉〈b∗〉p, p,

〈b〉〈b∗〉p} as a candidate decomposition of 〈a∗〉〈b∗〉p. Clearly, the set violates con-
dition (1.b) for diamond decompositions because it contains p. Moreover, it violates
condition (2) because it contains 〈b〉〈b∗〉p but Lb 6⊆ L(a∗). ◭

106

6.3 Diamond and Box Decompositions

Condition (1.b) for diamond decompositions follows for D(〈α〉s) by the following
lemma.

Lemma 6.3.4 If t ∈As{〈α〉s}, then t = 〈β1〉 . . . 〈βn〉s for some n ≥ 0 and β1, . . . , βn.

Proof Straightforward induction on the derivation of the formulas inAs{〈α〉s}. �

Finally, we show that D(〈α〉s) satisfies condition (2) for diamond decompositions.

Lemma 6.3.5 If 〈β1〉 . . . 〈βn〉s ∈As{〈α〉s}, then Lβ1 · . . . · Lβn ⊆ Lα.

Proof Let 〈β1〉 . . . 〈βn〉s ∈ As{〈α〉s}. We proceed by induction on the derivation of
〈β1〉 . . . 〈βn〉s ∈ As{〈α〉s}. The base case is trivial, so let 〈β1〉 . . . 〈βn〉s ∈ As{〈α〉s} \

{〈α〉s}. Then there is some formula t ∈ As{〈α〉s} such that 〈β1〉 . . . 〈βn〉s is ob-
tained from t by the application of one of the decomposition rules in Figure 3.1. By
Lemma 6.3.4, t has the form 〈γ1〉 . . . 〈γm〉s. By the inductive hypothesis, we have
Lγ1 · . . . · Lγm ⊆ Lα. Moreover, since we may not apply any rules to s, we have m > 0.
The claim follows by a case analysis on γ1 with Proposition 6.2.1. �

Lemma 6.3.6 A〈β〉s{〈α〉〈β〉s} ⊆ As{〈α〉〈β〉s}

Proof Let t ∈ A〈β〉s{〈α〉〈β〉s}. We show that t ∈ As{〈α〉〈β〉s} by induction on the
derivation of t ∈ A〈β〉s{〈α〉〈β〉s}. The base case follows since, clearly, 〈α〉〈β〉s ∈
As{〈α〉〈β〉s}. For the inductive step, suppose t ∈ A〈β〉s{〈α〉〈β〉s} \ {〈α〉〈β〉s}. Then
there is some formula u ∈ A〈β〉s{〈α〉〈β〉s} such that t is obtained from u by the ap-
plication of one of the decomposition rules in Figure 3.1. By the inductive hypothesis,
u ∈As{〈α〉〈β〉s}. By Lemma 6.3.4, u has the form 〈γ1〉 . . . 〈γn〉〈β〉s. Moreover, since we
may not apply any rules to 〈β〉s, we have n > 0. The claim follows by a straightforward
case analysis on γ1. �

Proposition 6.3.7 Lα =
⋃

〈β1〉...〈βn〉s∈D(〈α〉s)

Lβ1 · . . . · Lβn

Proof The inclusion
⋃

〈β1〉...〈βn〉s∈D(〈α〉s)

Lβ1 · . . . · Lβn ⊆ Lα follows with Lemma 6.3.5. As

for the other inclusion, let α be a program. We show ∀s∀σ ∈ Lα : σ ∈ Lβ1 · . . . ·

Lβn for some 〈β1〉 . . . 〈βn〉s ∈ D(〈α〉s) by induction on α. We distinguish four cases
depending on the shape of α. Each of these cases except for the first one has two
subcases depending on the shape of σ .

Let α = a. Then the claim is trivial since D(〈a〉s) = {〈a〉s} (which is the case since
〈a〉s is a literal).

Let α = β + γ. Let σ = ε ∈ L(β + γ). Then ε ∈ Lβ or ε ∈ Lγ. Without loss of
generality, let ε ∈ Lβ. By the inductive hypothesis for β, we have ε ∈ Lβ1 · . . . · Lβn for
some 〈β1〉 . . . 〈βn〉s ∈ D(〈β〉s). Since ε ∉ La · L for any action a and language L, β1 is
not an action. Hence, we have n = 0. It now suffices to show that s ∈ D(〈α〉s), which
follows since s ∈As{〈β〉s} and 〈β〉s ∈As{〈α〉s}.

107

6 Tree Search for Test-Free Hybrid PDL

Let σ = aτ ∈ L(β + γ). Then σ ∈ Lβ or σ ∈ Lγ. Without loss of generality, let
σ ∈ Lβ. By the inductive hypothesis for β, we have σ ∈ Lβ1 · . . . · Lβn for some
t = 〈β1〉 . . . 〈βn〉s ∈ D(〈β〉s). Since aτ ∉ {ε}, t is a literal (such that β1 = a). It
remains to show that t ∈ D(〈α〉s), which follows since t is a literal, t ∈ As{〈β〉s}, and
〈β〉s ∈As{〈α〉s}.

Let α = βγ. Let σ = ε ∈ L(βγ). Then ε ∈ Lβ and ε ∈ Lγ. By the inductive hypothesis
for β, we have ε ∈ Lβ1 · . . . ·βm for some 〈β1〉 . . . 〈βm〉〈γ〉s ∈ D(〈β〉〈γ〉s). As in the case
for ε ∈ L(β+γ), β1 is not an action, and hencem = 0. So, 〈γ〉s ∈A〈γ〉s{〈β〉〈γ〉s}. By the
inductive hypothesis for γ, we have ε ∈ Lγ1 · . . . · γn for some 〈γ1〉 . . . 〈γn〉s ∈ D(〈γ〉s).
Again, since γ1 is not an action, we have n = 0. It remains to show that s ∈ D(〈α〉s).
By the above, 〈γ〉s ∈ A〈γ〉s{〈β〉〈γ〉s} ⊆ As{〈β〉〈γ〉s} (Lemma 6.3.6) and s ∈ As{〈γ〉s}.
Hence, s ∈ As{〈β〉〈γ〉s}. Since 〈β〉〈γ〉s ∈ As{〈α〉s}, we have s ∈ As{〈α〉s}. The claim
follows.

Let σ = aτ ∈ L(βγ). We distinguish two possible subcases.
• Let τ = τ1τ2 such that aτ1 ∈ Lβ and τ2 ∈ Lγ. By the inductive hypothesis for β,

we have aτ1 ∈ Lβ1 · . . . · Lβn for some t = 〈β1〉 . . . 〈βn〉〈γ〉s ∈ D(〈β〉〈γ〉s). Since
aτ1 ∉ {ε}, t is a literal. Then aτ ∈ Lβ1 · . . . · Lβn · Lγ. It remains to show that
t ∈ D(〈α〉s), which follows since t is a literal, t ∈ A〈γ〉s{〈β〉〈γ〉s} ⊆ As{〈β〉〈γ〉s}

(Lemma 6.3.6), and 〈β〉〈γ〉s ∈As{〈α〉s}.
• Let ε ∈ Lβ and aτ ∈ Lγ. By the inductive hypothesis for β, we have ε ∈ Lβ1 ·

. . . · Lβm for some t = 〈β1〉 . . . 〈βm〉〈γ〉s ∈ D(〈β〉〈γ〉s). Since β1 may not be an
action, we have m = 0. Hence, 〈γ〉s ∈ A〈γ〉s{〈β〉〈γ〉s}. By the inductive hypothesis
for γ, we have aτ ∈ Lγ1 · . . . · Lγn for some t = 〈γ1〉 . . . 〈γn〉s ∈ D(〈γ〉s). Since
aτ ∉ {ε}, t is a literal. It remains to show that t ∈ D(〈α〉s), which follows since t is
a literal, t ∈ As{〈γ〉s}, 〈γ〉s ∈ A〈γ〉s{〈β〉〈γ〉s} ⊆ As{〈β〉〈γ〉s} (Lemma 6.3.6), and
〈β〉〈γ〉s ∈As{〈α〉s}.

Let α = β∗. Let σ = ε ∈ L(β∗). Then s ∈ D(〈α〉s). The claim follows since ε ∈ {ε} =
(Lβ)0 ⊆ (Lβ)∗ = L(β∗).

Finally, let σ = aτ ∈ L(β∗). Since aτ ∉ {ε}, we have τ = τ1τ2 such that aτ1 ∈ Lβ

and τ2 ∈ (Lβ)∗. By the inductive hypothesis for β, we have aτ ∈ Lβ1 ·. . .·Lβn for some
t = 〈β1〉 . . . 〈βn〉〈β∗〉s ∈ D(〈β〉〈β∗〉s). Again since aτ ∉ {ε}, t is a literal. It remains
to show that t ∈ D(〈α〉s), which follows since t is a literal, t ∈ A〈β∗〉s{〈β〉〈β∗〉s} ⊆
As{〈β〉〈β∗〉s} (Lemma 6.3.6), and 〈β〉〈β∗〉s ∈As{〈α〉s}. �

We have shown that D(〈α〉s) is a decomposition of 〈α〉s. By an analogous argument for
boxes, we conclude that D([α]s) is a decomposition of [α]s. Finally, note that since
A{s} is linear in the size of s, Ds can be computed in polynomial time.

By Proposition 6.3.1, we have:

Corollary 6.3.8

1. M,w ⊨ 〈α〉s ⇐⇒ ∃t ∈ D(〈α〉s) : M,w ⊨ t

2. M,w ⊨ [α]s ⇐⇒ ∀t ∈ D([α]s) : M,w ⊨ t

The terminating decomposition table for test-free HPDL then looks as shown in Fig-
ure 6.1. Note that the table yields the same notions of alpha formulas, beta formulas

108

6.4 Branches and Evidence

α {α1, . . . , αn}

s ∧ t {s, t}

[γ]s D([γ]s) γ not an action

β {β1, . . . , βn}

s ∨ t {s, t}

〈γ〉s D(〈γ〉s) γ not an action

Figure 6.1: Terminating decomposition table for test-free HPDL

and literals as the table in Figure 3.1. By Corollary 6.3.8, the rules for diamonds and
boxes satisfy the respective semantic equivalences. The table is terminating since every
constituent of a nonliteral formula s is either a literal or a proper subformula of s. Since
the table is terminating, it induces a well-founded decomposition order on formulas.

6.4 Branches and Evidence

We now introduce the notions of branches and evidence. The definitions follow the
general pattern developed for K∗ and H∗ in Chapter 5. Given the terminating decompo-
sition table in Figure 6.1, the upward closure of a formula set A induced by the table is
the least set B of formulas containing A such that:

α ∈ B ⇐⇒ {α1, . . . , αn} ⊆ B

β ∈ B ⇐⇒ {β1, . . . , βn} ∩ B 6= 0

The notion of support adapts accordingly. From now on, we will consider only support
based on the terminating decomposition table. A DNF of a set A is defined in the same
way as in for H∗ (§ 5.2), now with the new notion of support. Thus, the validity of
Propositions 5.2.3 and 5.2.4 remains unaffected. Also, the computation of DNFs via
Hintikka decompositions adapts in the intuitive way (see Remark 5.2.5).

Example 6.4.1

• {{p}, {〈a〉〈(a+ b)∗〉p}, {〈b〉〈(a+ b)∗〉p}} is a DNF of {〈(a+ b)∗〉p}
(see Example 6.3.2).

• {{[a]¬p, ¬p, [b][b∗]¬p}} is a DNF of {[a+ b∗]¬p}.
• {{〈a〉〈(a+ b)∗〉p, [a]¬p, ¬p, [b][b∗]¬p},

{〈b〉〈(a+ b)∗〉p, [a]¬p, ¬p, [b][b∗]¬p}}

is a DNF of {〈(a+ b)∗〉p, [a+ b∗]¬p}. ◭

As in Chapter 5, we consider only N-clauses, and hence often abbreviate “N-clauses”
to “clauses”. The request of a clause C with respect to an action a is defined as RaC :=
{ s | [a]s ∈ C }.

Let C be a clause and 〈a〉s ∈ C . An expansion of 〈a〉s |C is defined by case analysis
on the shape of s:
• If s is not a diamond formula and D is a DNF of RaC ; s,

then { (s |D) | D ∈ D} is an expansion of 〈a〉s |C .

109

6 Tree Search for Test-Free Hybrid PDL

• If s is a diamond formula and, for every t ∈ Ds, Dt is a DNF of RaC ; t,
then

⋃

t∈Ds

{ (t |D) | D ∈ Dt } is an expansion of 〈a〉s |C .

Example 6.4.2

• {〈a〉〈b〉p | {〈a〉〈b〉p, q}, 〈a〉〈b〉p | {〈a〉〈b〉p, ¬q}}

is an expansion of 〈a〉〈ab〉p | {〈a〉〈ab〉p, [a](q ∨¬q)}.
• {〈a〉p | {〈a〉p}, p | {p}, 〈b〉〈b∗〉p | {〈b〉〈b∗〉p}}

is an expansion of 〈a〉〈a+ b∗〉p | {〈a〉〈a+ b∗〉p}.
• {〈a〉p | {〈a〉p, ¬p}, 〈b〉〈b∗〉p | {〈b〉〈b∗〉p, ¬p}}

is an expansion of 〈a〉〈a+ b∗〉p | {〈a〉〈a+ b∗〉p, [a]¬p}. ◭

Remark 6.4.3 Note that we define an expansion E of 〈a〉〈α〉s |C such that it explicitly
captures all ways of reaching s via

aα
-→S (since Lα =

⋃

(〈β1〉...〈βn〉s |D)∈E Lβ1 · . . . · Lβn).
In this sense, expansions are defined to respect the regular semantics of programs,
which is not necessarily respected by the purely propositional computation of DNFs
(see Remark 5.4.7). ◭

Links are now triples C
(

〈a〉s
t

)

D where C is an N-clause, 〈a〉s ∈ C , and t |D is contained

in some expansion of 〈a〉s |C . We call links of the form C
(

〈a〉s
〈b〉t

)

D delegating, and links

C
(

〈a〉s
t

)

D where t is not a diamond formula fulfilling.
Note that we no longer have a notion of a simple link. This is because the complex

syntax of PDL blurs the difference between simple diamonds and eventualities. For K∗

and H∗, we consider diamond literals of the form ✸+s as eventualities since they can
be obtained by beta decomposition from eventualities ✸∗s. Now, consider the diamond
literal 〈a〉〈b〉〈(ab)∗〉p. The literal cannot be seen as simple according to the intuition
for H∗ since it is contained in D(〈(ab)∗〉p). On the other hand, the literal 〈a〉〈b∗〉p is
not an eventuality since there is no program α such that 〈a〉〈b∗〉p ∈ D(〈α∗〉p).

Note also that many links that would be considered fulfilling in the context of H∗

are now delegating (for instance, the link C
(

〈a〉〈a∗〉〈b〉p
〈b〉p

)

D). For H∗, the distinction be-
tween the two types of links is done such that a link is delegating if it can possibly
occur in a loop, while a fulfilling link marks the end of a run, and hence cannot oc-
cur in a loop. For HPDL, we need to be more cautious since now links of the form
C
(

〈a〉〈a∗〉s
s

)

D can occur in loops. For instance, consider the link C
(

〈a〉〈a∗〉〈b〉〈(a∗b)∗〉p
〈b〉〈(a∗b)∗〉p

)

D

where C = {〈a〉〈a∗〉〈b〉〈(a∗b)∗〉p} and D = {〈b〉〈(a∗b)∗〉p}. While the overall shape
of the link corresponds to that of a fulfilling link for H∗ (i.e., C′

(

✸+s
s

)

D′), the triple

D
(

〈b〉〈(a∗b)∗〉p
〈a〉〈a∗〉〈b〉〈(a∗b)∗〉p

)

C is also a link. Taken together, the two links clearly form a loop
(in the intuitive sense; the formal definition of loops will be given later). Hence, neither
of the two links can be seen as fulfilling.

Given the new definition of links, branches are defined the same as for H∗, namely as
nonempty sets Γ of clauses and links that satisfy the link coherence, functionality and
nominal coherence conditions, all defined exactly the same as in § 5.5.1. The mechanism
of nominal propagation and the notion of a core are also unchanged compared to § 5.5.1.
A branch Γ realizes 〈a〉s |C if C

(

〈a〉s
t

)

D ∈ Γ for some t and D.

110

6.4 Branches and Evidence

A path for 〈a〉s in Γ is now a nonempty sequence

(C1

(

〈a1〉s1
〈a2〉s2

)

C2)(C
Γ

2

(

〈a2〉s2
〈a3〉s3

)

C3) . . . (C
Γ

n−2

(

〈an−2〉sn−2
〈an−1〉sn−1

)

Cn−1)(C
Γ

n−1

(

〈an−1〉sn−1
t

)

Cn)

of links in Γ such that 〈a1〉s1 = 〈a〉s. A path of the above form is called a run for 〈a〉s |C

if C1 = C and t is not a diamond formula (i.e., if the last link of the path is fulfilling).
The path is called a loop for 〈a〉s if C1 = CΓn and t = 〈a1〉s1 = 〈a〉s. A branch Γ is called
evident if Γ contains no loops and realizes 〈a〉s |C for all 〈s〉 ∈ C ∈ CΓ .

Example 6.4.4 Consider the following branch:

〈a〉〈(a+ b)∗〉p, ¬p, 〈b〉〈(a+ b)∗〉p, [a][a∗](¬p ∧ 〈a〉〈(a+ b)∗〉p)

p

Note that the link departing from the formula 〈a〉〈(a+ b)∗〉p in the upper clause does
not form a loop despite pointing to the same clause from which it departs since it points
to a different formula. Therefore, the branch is evident since every claim is realized with
a link. On the other hand, the branch

〈a〉〈(a+ b)∗〉p, ¬p, [a][(a+ b)∗]¬p, [b][(a+ b)∗]¬p

〈b〉〈(a+ b)∗〉p, ¬p, [a][(a+ b)∗]¬p, [b][(a+ b)∗]¬p

contains a loop. ◭

As for K∗ and H∗ (see Propositions 5.4.2 and 5.5.5, respectively), an evident branch
has a unique run for every claim:

Proposition 6.4.5 Let Γ be an evident branch and 〈a〉s ∈ C ∈ CΓ . Then there is a unique
run for 〈a〉s |C in Γ .

Proof Let Γ be evident and 〈a〉s ∈ C ∈ CΓ . Both the uniqueness and the existence
of runs are shown analogously to the corresponding claims in Proposition 5.5.5. For
the uniqueness proof, we observe that every two distinct runs for the same claim must
contain, respectively, two distinct links D

(

〈b〉t
u

)

E and D
(

〈b〉t
u′

)

E′, which is impossible
since Γ is functional (see the proof of Proposition 5.4.2).

For the existence proof, assume 〈a〉s |C has no run in Γ . Then, since every diamond
in every clause in CΓ is realized, Γ contains an infinite sequence π = (C1

(

〈a1〉s1
〈a2〉s2

)

C2)

(C2

(

〈a2〉s2
〈a3〉s3

)

C3) . . . where C1 = C and 〈a1〉s1 = 〈a〉s. Since Γ is finite, there are some

j > i ≥ 1 such that Ci = C
Γ

j , i.e., π contains a loop. Contradiction to Γ being evident. �

111

6 Tree Search for Test-Free Hybrid PDL

6.5 Demos

We now show that every evident branch is satisfiable. As usual, we proceed by showing
that every evident branch describes a demo.

Unlike in Chapters 4 and 5, we now bypass clausal demos and build directly on
Hintikka demos. We do so because, unlike for K∗ and H∗, the definition of clausal
demos for HPDL becomes very similar to that of Hintikka demos. One introduces a
clausal version of the relation

α
-→S for complex programs α and defines a clause C to

be ✸-admissible (in a clause set S) if for every 〈α〉s supported by C there is some D ∈ S
such that C

α
-→S D and D ⊲ s. Because there is only little difference between clausal

demos and Hintikka demos, the overhead of using clausal demos as an intermediate
representation outweighs their usefulness in modularizing the proofs.

Unlike the construction in Chapter 3, now our notion of demos will be based on the
terminating decomposition table. We do this to facilitate the construction of demos
from the clausal representation given by evident branches, which was not necessary in
Chapter 3.

The definition of the syntactic transition relations
α
-→S (Definition 3.3.1) remains un-

changed. Demos are now defined as nonempty Hintikka systems that are ✸-admissible
(where ✸-admissibility is defined as in § 3.3.1) and nominally admissible (nominal ad-
missibility defined as in § 3.5.1).

The proof of demo existence adapts in a straightforward way. First, observe that the
set HM,w = { s ∈ F | M,w ⊨ s } is still a Hintikka set for every model M and every
w ∈ |M|, which follows by the semantic equivalences for diamond and box decom-
positions (which, in turn, follow by Corollary 6.3.8). The proofs of Lemma 3.3.12 and
Theorem 3.3.13 remain unchanged.

Showing demo satisfaction requires some adaptations, which we detail in the follow-
ing section.

6.5.1 Demo Satisfaction

Recall that every nonempty nominally admissible Hintikka system S induces a model MS

as defined in § 3.3.2. Since the definition of MS does not depend on the decomposition
table underlying the Hintikka system and the definition of

α
-→S is unchanged, the validity

of Lemma 3.3.6 is unaffected.

The proof of Lemma 3.3.7, however, now requires more work. The reason for this
is that now, decomposition of boxes no longer corresponds to the equations in the
definitions of

α
-→S and

α
-→M. To relate the modified Hintikka conditions with the two

relations, we resort once again to the language-theoretic view of programs from § 6.2.

First, we restate Lemma 3.3.7 as follows.

Lemma 6.5.1 Let S be a Hintikka system, {H,H′} ⊆ S, [α1] . . . [αn]s ∈ H (n ≥ 0), and
H

σ
-→MS H

′ for some σ ∈ Lα1 · . . . · Lαn. Then s ∈ H′.

112

6.5 Demos

Proof We proceed by lexicographic induction on the length of σ and the decomposition
order of [α1] . . . [αn]s. If n = 0, the claim is trivial. Let n ≥ 1. Depending on the shape
of α1, we distinguish two cases.

If α1 = a, we have σ = aτ . Hence, there is some set H′′ ∈ S such that H
a
-→MS H

′′

and H′′
τ
-→MS H

′. By the definition of
a
-→MS , we have [α2] . . . [αn]s ∈ H′′. Moreover, τ ∈

Lα2 · . . . · Lαn. The claim follows by the inductive hypothesis for τ and [α2] . . . [αn]s.

Otherwise, we have t ∈ H for all t ∈ D([α1] . . . [αn]s). By condition (2) for box decom-
positions, there is some [β1] . . . [βm]s ∈ D([α1] . . . [αn]s) such that σ ∈ Lβ1 · . . . ·Lβm.
The claim follows by the inductive hypothesis for σ and [β1] . . . [βm]s ([β1] . . . [βm]s

is a constituent of [α1] . . . [αn]s and is hence smaller according to the decomposition
order). �

From this, we conclude the original formulation of Lemma 3.3.7:

Lemma 6.5.2 Let S be a Hintikka system, {H,H′} ⊆ S, and [α]s ∈ H
α
-→MS H

′. Then
s ∈ H′.

Proof By Proposition 6.2.3 (1), we have H
σ
-→MS H

′ for some σ ∈ Lα. The claim follows
with Lemma 6.5.1. �

With Lemma 6.5.2 in place, the proof of Lemma 3.3.8 proceeds the same as before.
Theorem 3.3.9 follows.

6.5.2 Satisfaction of Evident Branches

Let C be an N-clause. Since the terminating decomposition table is admissible, the set
H = { s ∈ F | C ⊲s } is the largest Hintikka set over F such that ΛH = C . We prove that
every evident branch Γ is satisfiable by showing that the Hintikka system obtained from
the clauses in the core of an evident branch is a demo.

For this, we need an equivalent of Proposition 6.2.3 (1) for the syntactic transition
relations

α
-→S. Given a Hintikka system S, we define the relations

σ
-→S ⊆ S × S by

induction on the structure of σ :

H
ε
-→S H

′ ⇐⇒ H = H′

H
aσ
-→S H

′ ⇐⇒ ∃H′′ : H
a
-→S H

′′ and H′′
σ
-→S H

′

Proposition 6.2.3 (1) can then be adapted as follows.

Proposition 6.5.3 H
α
-→S H′ ⇐⇒ ∃σ ∈ Lα : H

σ
-→S H′

The adaptation of the proof is straightforward (see § 7.1 for a related proof).

Recall that by Proposition 5.5.2, whose validity does not depend on the definition of
the decomposition table, implies that, for every clause C ∈ Γ , we have CΓ ∈ CΓ . Also,
Proposition 5.5.6 still holds for the new decomposition table.

113

6 Tree Search for Test-Free Hybrid PDL

We call a Hintikka system S ✸-preadmissible if for every H ∈ S, every n ≥ 0 and every
〈a〉〈α1〉 . . . 〈αn〉s ∈ H there is some H′ ∈ S such that H

aα1...αn
-→S H′ and s ∈ H′. We view

✸-preadmissibility as auxiliary in proving ✸-admissibility.

Recall the notations HC := { s ∈ F | C ⊲ s } and HS := {HC | C ∈ S} introduced
in § 4.1.2.

Lemma 6.5.4 If Γ is evident, thenHCΓ is ✸-preadmissible.

Proof Let Γ be evident and 〈a〉〈α1〉 . . . 〈αn〉s ∈ C ∈ HCΓ . By Proposition 6.4.5, the
claim 〈a〉〈α1〉 . . . 〈αn〉s |C has a run π = (C

(

〈a〉〈α1〉...〈αn〉s
t

)

D)π ′ in Γ . We proceed by

induction on the length of π . By Propositions 5.2.3 and 5.5.6, DΓ ⊲ RaC ; t, and hence
HC

a
-→HCΓ HDΓ . We distinguish two cases.

If n = 0, it suffices to show that DΓ ⊲ s. This is trivial if t = s (since DΓ ⊲ t), and
otherwise follows from DΓ ⊲ t and t ∈ Ds (t 6= s means s is a diamond formula) by the
definition of the upward closure.

If n ≥ 1, we have t ∈ D(〈α1〉 . . . 〈αn〉s), and hence t = 〈β1〉 . . . 〈βm〉s (Lemma 6.3.4).
If m = 0, the claim follows since DΓ

α1...αn
-→HCΓ D

Γ (follows with condition (2) for diamond
decompositions and Proposition 6.5.3), t = s and DΓ ⊲ t. So, let m ≥ 1. Then β1 is
a literal and π ′ is a run for 〈β1〉 . . . 〈βm〉s |DΓ . Hence, by the inductive hypothesis for

π ′, there is some H ∈ HCΓ such that HDΓ
β1...βm
-→HCΓ H and s ∈ H. By condition (2) for

diamond decompositions and Proposition 6.5.3, HDΓ
α1...αn
-→HCΓ H. Hence HC

aα1...αn
-→HCΓ H,

and we are done. �

By the following lemma, a Hintikka system is ✸-preadmissible if and only if it is ✸-
admissible. Note that the implication from left to right (which is also the important
direction for us) holds only because our present decomposition table is terminating.

Lemma 6.5.5 A Hintikka system is ✸-preadmissible if and only if it is ✸-admissible.

Proof The direction from right to left is straightforward. Given a diamond formula
〈a〉〈α1〉 . . . 〈αn〉s ∈ H ∈ S, the existence of some H′ ∈ S such that H

aα1...αn
-→S H′ and

s ∈ H′ follows by n+ 1 applications of ✸-admissibility and the definition of
α
-→S.

As for the other direction, let S be a ✸-preadmissible Hintikka system and 〈α〉s ∈
H ∈ S. We do a case analysis on the shape of α. If α is an action, the claim follows
since S is ✸-preadmissible. Otherwise, we have t ∈ H for some t ∈ D(〈α〉s), where
t = 〈β1〉 . . . 〈βn〉s for some n ≥ 0 and β1, . . . , βn (Lemma 6.3.4).

If n = 0, then ε ∈ Lα (condition (2) for diamond decompositions), and hence the
claim follows by Proposition 6.5.3.

If n ≥ 1, then β1 = b (for some action b). Since S is ✸-preadmissible, there is some

H′ ∈ S such that H
bβ2...βn
-→S H′ and s ∈ H′. The claim follows by condition (2) for diamond

decompositions and Proposition 6.5.3. �

Theorem 6.5.6 The core of an evident branch can be extended to a demo.

114

6.6 Expansion Rules

(✸)
Γ

Γ ;DΓ1 ;C
(

〈a〉s
t1

)

D1 | . . . | Γ ;DΓn ;C
(

〈a〉s
tn

)

Dn

〈a〉s ∈ C ∈ CΓ ,

Γ does not realize 〈a〉s |C,
{t1 |D1 , . . . , tn |Dn} nc-expansion

of 〈a〉s |C in Γ

(loop)
Γ

⊗
Γ contains a loop

Figure 6.2: Expansion rules for (test-free) HPDL

Proof Let Γ be an evident branch. by Lemmas 6.5.4 and 6.5.5, the Hintikka systemHCΓ

is ✸-admissible. Moreover, sinceHCΓ contains only clauses from CΓ , every nominal x ∈
F is contained in at most one C ∈HCΓ (Lemma 5.5.3). To obtain nominal admissibility,
it suffices to add to HCΓ all nominals in F that do not occur in any clause of HCΓ . Let
D =HCΓ ∪{{x} | x ∈ F , ∄C ∈HCΓ : x ∈ C }. Clearly,D is nominally admissible. Since
the clauses in D\HCΓ contain no diamond formulas, D is still ✸-admissible. Hence, D
is a demo. �

Corollary 6.5.7 The clauses of an evident branch are satisfiable.

6.6 Expansion Rules

Let nc-DNFs be defined from ordinary DNFs as described in § 5.5.2, and nc-expansions
be defined from nc-DNFs analogously to how expansions are defined from DNFs (com-
pare the definition of expansions in § 5.4.2 to that of nc-expansions in § 5.5.2). Proposi-
tion 5.5.9 still holds for HPDL and our modified decomposition table (the proof remains
unchanged).

Figure 6.2 shows the expansion rules for test-free HPDL. Clearly, a branch is evident if
and only if it is maximal. Hence, the rules are demonstration-sound by Corollary 6.5.7.
Just as for K (Theorem 5.3.5) and H∗, the termination of the procedure induced by the
rules is immediate since the number of clauses and links is still exponentially bounded
in |F|.

Example 6.6.1 Figure 6.3 shows a derivation of an evident branch. As in Example 5.5.10,
the numbers indicate the order in which the links and clauses are introduced, clause 0
being the initial clause. Note that the construction of clauses 1 and 2 involves nominal
propagation. Once again, the dashed link indicates the implicit redirection of a link (the
redirection of link 1 that occurs when clause 2 is added).

Since clauses 0 and 1 are not in the core of the final branch, the only relevant runs are
the one formed by link 4 for 〈b〉〈(a+ b)∗〉p in clause 2 and the one for 〈a〉〈(a+ b)∗〉p
in clause 2 (consisting of the links 3, 4). ◭

To prove that the rules induce a decision procedure for test-free HPDL, it remains to
show that they are refutation-sound. For this, we adapt our approach from Chapter 5.

115

6 Tree Search for Test-Free Hybrid PDL

〈a〉〈(a+ b)∗〉p, [a][a∗](x ∧¬p), x
0

〈a〉〈(a+ b)∗〉p, [a][a∗](x ∧¬p), x, ¬p
1

〈b〉〈(a+ b)∗〉p, 〈a〉〈(a+ b)∗〉p, [a][a∗](x ∧¬p), x, ¬p
2

p
4

1

2

34

Figure 6.3: Derivation of an evident branch

We begin with the definition of δ, which we adapt to match our new definition of ful-
filling and delegating links. Let 〈α1〉 . . . 〈αn〉s be a formula where n ≥ 0 and s is not
a diamond formula. We define the depth of A with respect to 〈α1〉 . . . 〈αn〉s in M as
follows:

δMA(〈α1〉 . . . 〈αn〉s) := min{ |σ | | σ ∈ Lα1 · . . . · Lαn and

∃v,w : v
σ
-→M w and M, v ⊨ A and M,w ⊨ s }

where we write |σ | for the length of σ and assume min0 = ∞ and n <∞ for all n ∈ N.

Proposition 6.6.2 δMAs <∞ if and only if M satisfies A ; s.

Proof If s is not a diamond formula, the claim is immediate by the definition of δ. Oth-
erwise, we have s = 〈α1〉 . . . 〈αn〉t where n ≥ 1, and the claim follows by n applications
of Proposition 6.2.3 (2) (and n− 1 applications of Lemma 6.2.2). �

Using δ, we extend the notion of satisfaction to links (now including fulfilling links) as
follows. A model M satisfies a link C

(

s
t

)

D if δMCs > δMDt. A model satisfies a branch

if it satisfies all of its clauses and links.

Remark 6.6.3 Note that the satisfaction condition for links is now simpler than the
corresponding condition in Chapter 5. For every link C

(

s
t

)

D, we have δMCs > 0 since s
is always a diamond literal of the form 〈a〉〈α1〉 . . . 〈αn〉s′ and La · Lα1 · . . . · Lαn does
not contain ε (it contains only words beginning with a). For the same reason, we have
δMDt > 0 whenever C

(

s
t

)

D is delegating. If C
(

s
t

)

D is fulfilling, we have δMCs > 0 =
δMDt whenever M satisfies D ; t. Hence, a fulfilling link is satisfied by M whenever so
are both of its clauses. Although technically not necessary, the extension of satisfaction
to fulfilling links makes the definition more uniform.

To transfer these simplifications back to H∗, however, we would have to complicate
the definition of δ in Chapter 5, which would make the overall setup less intuitive. ◭

116

6.6 Expansion Rules

Note that the validity of Proposition 5.5.1 is unaffected by going from H∗ to HPDL.
Hence, Proposition 5.5.11 holds in its original formulation for the new definition of δ.
With this, we reprove Proposition 5.5.12 as follows.

Proposition 6.6.4 Satisfiable branches contain no loops.

Proof Let Γ be a branch and M a model of Γ . Assume, for contradiction, Γ has a loop
(C1

(

s1
s2

)

C2) . . . (C
Γ

n−1

(

sn−1
sn

)

Cn). Then s1 = sn, C1 = CΓ1 = CΓn and n ≥ 2. With Propo-

sition 5.5.11, we obtain δMC1s1 > δMC2s2 = δMC
Γ

2s2 > · · · > δMCnsn = δMC
Γ
nsn =

δMC1s1. Contradiction. �

Proposition 6.6.4 justifies the refutation-soundness of the loop rule. It remains to argue
the refutation-soundness of the diamond rule.

Lemma 6.6.5 Let Γ be a branch, 〈a〉s ∈ C ∈ Γ , and E be an nc-expansion of 〈a〉s |C
in Γ . Let M be a model of all clauses in Γ . Then there is some t |D ∈ E such that
δMDt < δMC(〈a〉s).

Proof Let Γ , 〈a〉s ∈ C ∈ Γ , E, and M be as required. If s is not a diamond formula,
let D be an nc-DNF of RaC ; s such that E = { (s |D) | D ∈ D}. The claim follows
since, by Proposition 5.5.9, M satisfies some clause D ∈ D, and hence δMDs = 0 < 1 =
δMC(〈a〉s).

If s is a diamond formula, we have s = 〈α1〉 . . . 〈αn〉t for some n ≥ 1. By Propo-
sition 6.6.2, δMC(〈a〉s) < ∞. Let v,w ∈ |M| and σ ∈ Lα1 · . . .Lαn be such that
v

aσ
-→M w, M, v ⊨ C , M,w ⊨ t, and |σ | = δMC(〈a〉s) − 1. Let u ∈ |M| be such

that v
a
-→M u and u

σ
-→M w. By condition (2) for diamond decompositions, there

is some 〈β1〉 . . . 〈βm〉t ∈ Ds such that σ ∈ Lβ1 · . . . · Lβm. Since M, u ⊨ RaC , we
have δM(RaC)(〈β1〉 . . . 〈βm〉t) ≤ |σ |, and hence M, u ⊨ RaC ;〈β1〉 . . . 〈βm〉t (Proposi-
tion 6.6.2). Let D be an nc-DNF of RaC ;〈β1〉 . . . 〈βm〉t such that { (〈β1〉 . . . 〈βm〉t |D) |

D ∈ D} ⊆ E. By Proposition 5.5.9, there is some D ∈ D such that M, u ⊨ D. Hence,
〈β1〉 . . . 〈βm〉t |D ∈ E and δMD(〈β1〉 . . . 〈βm〉t) ≤ |σ | = δMC(〈a〉s)− 1. �

Theorem 6.6.6 (Refutation-Soundness of (✸)) Let Γ be a branch that does not realize
〈a〉s |C for some 〈a〉s ∈ C ∈ Γ . Let M be a model of Γ , and E be an nc-expansion of
〈a〉s |C in Γ . Then there is some t |D ∈ E such that Γ ;DΓ ;C

(

〈a〉s
t

)

D is a branch satisfied
by M.

Proof Let Γ , 〈a〉s ∈ C ∈ Γ , M and E be as required. By Lemma 6.6.5, there is some
t |D ∈ E such that M satisfies C

(

〈a〉s
t

)

D. Let ∆ = Γ ;DΓ ;C
(

〈a〉s
s

)

D.
We first show that ∆ is a branch. Since Γ does not realize 〈a〉s |C , ∆ is functional.

Since Γ is nominally coherent, we have (DΓ)∆ = (DΓ)Γ = DΓ (Proposition 5.5.2), and
hence ∆ is nominally coherent.

Since M satisfies Γ (by assumption) and C
(

〈a〉s
t

)

D (by construction), it remains to

show that M satisfies DΓ . This follows from the satisfaction of C
(

〈a〉s
t

)

D with Propo-
sitions 6.6.2 and 5.5.1. �

117

6 Tree Search for Test-Free Hybrid PDL

6.7 Related Work

◮ Unlike in previous work on PDL by Pratt [161] and Widmann [200], we introduce a
language-theoretic semantics of programs and exploit it in our correctness proofs. The
main motivation for introducing a language-theoretic semantics is the need to capture
the inductive nature of diamond formulas, which becomes nontrivial when the naive
decomposition table is not terminating. Both Pratt and Widmann are faced with the
same problem and solve it in different ways.
Pratt introduces a nonstandard semantics for formulas that explicitly describes the in-
ductive nature of diamond satisfaction. He then shows that his nonstandard semantics
is equivalent to the standard semantics of PDL with respect to satisfiability. Thus, he
only needs to show the correctness of his procedure with respect to the nonstandard
semantics.
Widmann faces the problem by strengthening the notion of satisfiability to what he
calls annotated-satisfiability (Definition 4.26 in [200]). Annotated-satisfiability requires,
besides satisfiability in the usual sense, the existence of specific sequences of state-
formula pairs satisfying, for every eventuality s, a given chain of alpha-beta decomposi-
tions starting at s. While the technical realization differs from Pratt’s approach, the idea
is still the same: to introduce a well-founded characterization of diamond satisfaction.
Having a language-theoretic semantics allows us to prove the correctness of the termi-
nating decomposition table without modifying the usual model-theoretic semantics of
formulas.
◮ Diamond and box decompositions developed in this chapter are closely related to
the notion of derivatives introduced by Brzozowski [35]. In particular, it is easily seen
that conditions (1.b) and (2) of diamond and box decompositions directly correspond to
Theorem 4.4 in [35]. At the same time, our algorithm for computing diamond and box
decompositions is not based on Brzozowski’s construction, instead building directly on
the language-theoretic semantics of programs. Work by Berry and Sethi [24] suggests
that computing diamond and box decompositions for test-free (H)PDL can be efficiently
realized via translation into deterministic finite automata. We expect that similar con-
structions are also possible for the case with tests.

118

7 Tree Search for Hybrid PDL

What happens if we add tests? While extending our approach to tests does not require
new fundamental insights, it causes considerable technical complications, which is what
we deal with in this chapter.

In the presence of tests, regular languages no longer suffice as a semantics for pro-
grams. Therefore, we introduce a more general language-theoretic semantics, which is
a variant of the language-theoretic semantics of Kleene algebras with tests [137].

As it comes to diamond and box decompositions, the main complication that arises
with tests is that a diamond or a box formula can no longer be understood as a pure
beta or alpha formula with respect to the corresponding decomposition. Instead, a di-
amond formula decomposes into a disjunctively interpreted set of conjunctions, while
a box formula decomposes into a conjunctively interpreted set of disjunctions. To rep-
resent such complex decompositions, we introduce guarded formulas, which can be
seen as sets of formulas with a distinguished element. We redefine the alpha-beta clo-
sure used in Chapter 6 to compute diamond and box decompositions as a closure on
guarded formulas. Expansions are then redefined to use the modified diamond and box
decompositions.

Once the modified definition of expansions is in place, the formulation of the expan-
sion rules is unchanged from Chapter 6. The corresponding correctness proofs require
only minor adaptations.

Structure of the chapter. We will follow the structure of Chapter 6, detailing the
changes necessary to deal with tests. We begin by presenting a language-theoretic
semantics for programs with tests (§ 7.1). After this, we devise a decomposition ta-
ble for full HPDL and use the new language-theoretic semantics to argue its correct-
ness (§ 7.2). We then outline the changes to the definitions of expansions, branches and
evidence (§ 7.3), as well as extensions to the notion of a demo (§ 7.4) necessary to deal
with tests. Finally, we present the expansion rules for full HPDL and discuss the changes
in the correctness arguments for the decision procedure (§ 7.5).

7.1 Language-Theoretic Semantics

The language-theoretic semantics of regular expressions, which we crucially exploit in
our proofs for test-free HPDL, does not account for tests. To deal with tests, we define
a more general semantics, which is an adaptation of the language-theoretic model of
Kleene algebras with tests [137] (initially introduced independently of Kleene algebras
with tests by Kaplan [130]).

119

7 Tree Search for Hybrid PDL

A guarded string is a finite sequence Aa1A1 . . . anAn where n ≥ 0 and A,A1, . . . , An
are sets of formulas. The letters σ and τ range over guarded strings. The length |σ | of

a guarded string σ = Aa1A1 . . . anAn is n. A language is a set of guarded strings. Let
L and L′ be languages and A a set of formulas. We define:

LA := {B | A ⊆ B ⊆ F }

L · L′ := {ωAω′ |ωA ∈ L, Aω′ ∈ L′ }

L0 := L0

whereω andω′ range over partial, possibly empty guarded strings. The notations Ln+1

and L∗ are then defined from L0 and L · L′ as in § 6.2. To every program α, we assign a
language Lα:

La := {AaB | A, B ⊆ F } L(α+ β) := Lα∪Lβ

Ls := L{s} L(αβ) := Lα · Lβ

L(α∗) := (Lα)∗

Example 7.1.1

• L(pa+¬pb) = {AaA′, BbA′ | p ∈ A, ¬p ∈ B }

• L((pa)∗¬p) = {A0aA1 . . . aAn | n ≥ 0, p ∈ A0 ∩ · · · ∩An−1, ¬p ∈ An } ◭

Proposition 7.1.2 Let L1, L2, L3 be languages. Then:
1. (L1 ∪ L2) · L3 = (L1 · L3)∪ (L2 · L3)

2. (L1 · L2) · L3 = L1 · (L2 · L3)

3. L1 · L0 = L0 · L1 = L1

4. L∗1 = L0∪ (L1 · L
∗
1)

Proof The proofs are straightforward. For instance, consider the inclusion from left to
right of (1). Let σ ∈ (L1∪L2)·L3. Then σ =ωAω′ such thatωA ∈ L1∪L2 and Aω′ ∈ L3.
ThenωA ∈ L1 orωA ∈ L2. Consequently, σ ∈ L1·L3 or σ ∈ L2 · L3. The claim follows.�

Lemma 7.1.3 If ωAω′ ∈ Lα and A ⊆ B, then ωBω′ ∈ Lα.

Proof Let α be a program, ωAω′ ∈ Lα, and A ⊆ B. We show ωBω′ ∈ Lα by induction
on α.

Let α = a. Then ωAω′ = A1aA2 where A = A1 or A = A2. The claim follows since
{BaA2, A1aB} ⊆ La.

Let α = s. Then ω and ω′ are empty and s ∈ A. The claim follows since A ⊆ B.
Let α = β+γ. Then ωAω′ ∈ Lβ or ωAω′ ∈ Lγ. By the inductive hypothesis for β or

γ, we have ωBω′ ∈ Lβ or ωBω′ ∈ Lγ. The claim follows.
Let α = βγ. Then either ω = ω1A1ω2 such that ω1A1 ∈ Lβ and A1ω2Aω

′ ∈ Lγ or
ω′ = ω′1A2ω

′
2 such that ωAω′1A2 ∈ Lβ and A2ω

′
2 ∈ Lγ. Let us consider the first case

(the second case is shown analogously). There, by the inductive hypothesis for γ, we
obtain A1ω2Bω

′ ∈ Lγ. Hence, ω1A1ω2Bω
′ ∈ L(βγ). The claim follows.

120

7.1 Language-Theoretic Semantics

Let α = β∗. Then, for some n ≥ 0, ωAω′ ∈ (Lβ)n. If n = 0, then ω and ω′ are empty
and the claim holds since B ∈ 2F = L0 = (Lβ)0. If n > 0, then ω = ω1A1ω2 and ω′ =
ω′1A2ω

′
2 such that A1ω2Aω

′
1A2 ∈ Lβ and, for some m ∈ [0, n − 1], ω1A1 ∈ (Lβ)m

and A2ω
′
2 ∈ (Lβ)

n−1−m. By the inductive hypothesis for β, we have A1ω2Bω
′
1A2 ∈ Lβ.

Hence, ω1A1ω2Bω
′
1A2ω

′
2 ∈ (Lβ)

n. The claim follows. �

Given a model M, we define the relations
σ
-→M ⊆ |M| × |M| by induction of σ :

v
A
-→M w ⇐⇒ v = w and M, v ⊨ A

v
Aaσ
-→M w ⇐⇒ M, v ⊨ A and ∃u : v

a
-→M u and u

σ
-→M w

Lemma 7.1.4

1. v
AωB
-→M w ⇐⇒ v

0ωA
-→M w and M, v ⊨ A

2. v
AωB
-→M w ⇐⇒ v

Aω0
-→M w and M,w ⊨ B

Proof Claim (1) is shown by case analysis on the length n of AωB. Let n = 0. Then ω

is empty and A = B. We have v
A
-→M w ⇐⇒ v = w and M, v ⊨ A ⇐⇒ v

0
-→M w and

M, v ⊨ A since M, v ⊨ 0 is vacuously true.
Let n > 0. Then ω = aA′ω′ for some a, A′ and ω′. Hence, we have

v
AaA′ω′B
-→M w ⇐⇒ M, v ⊨ A and ∃u : v

a
-→M u and u

A′ω′B
-→M w

⇐⇒ M, v ⊨ A and v
0aA′ω′B
-→M w

where the second equivalence follows since M, v ⊨ 0 is vacuously true.
For claim (2), we proceed by induction on the length n of AωB. If n = 0, the claim

coincides with claim (1), which we have already established. So, let n > 0. Then ω =

aA′ω′ for some a, A′ and ω′. Hence, we have

v
AaA′ω′B
-→M w ⇐⇒ M, v ⊨ A and ∃u : v

a
-→M u and u

A′ω′B
-→M w

⇐⇒ M, v ⊨ A and ∃u : v
a
-→M u and u

A′ω′0
-→M w and M,w ⊨ B

⇐⇒ v
AaA′ω′0
-→M w and M,w ⊨ B

where the second equivalence holds by the inductive hypothesis for A′ω′B. �

Lemma 7.1.5 v
ωAω′
-→M w ⇐⇒ ∃u : v

ωA
-→M u and u

Aω′
-→M w

Proof Straightforward induction on the length of ωA. Proceeds similarly to the proof
of Lemma 7.1.4. �

Proposition 7.1.6

1. v
α
-→M w ⇐⇒ ∃σ ∈ Lα : v

σ
-→M w

2. M, v ⊨ 〈α〉s ⇐⇒ ∃σ ∈ Lα∃w : v
σ
-→M w and M,w ⊨ s

3. M, v ⊨ [α]s ⇐⇒ ∀σ ∈ Lα∀w : v
σ
-→M w implies M,w ⊨ s

121

7 Tree Search for Hybrid PDL

Proof Claims (2) and (3) follow from (1) and the definition of the satisfaction relation
for diamonds and boxes. Hence, it suffices to prove (1).

The direction from left to right is shown as follows. Let v
α
-→M w. We show the

existence of σ ∈ Lα such that v
σ
-→M w by induction on α.

Let α = a. Then σ = 0a0 ∈ La. The claim follows since v
σ
-→M w ⇐⇒ v

a
-→M w.

Let α = s. Then σ = {s} ∈ Ls. The claim follows since v
σ
-→M w ⇐⇒ v

s
-→M w ⇐⇒

v = w and M, v ⊨ s.

Let α = β + γ. Then v
β
-→M w or v

γ
-→M w. By the inductive hypothesis for β or γ,

there is some σ ∈ Lβ ∪ Lγ such that v
σ
-→M w. The claim follows since L(β + γ) =

Lβ∪Lγ.

Let α = βγ. Then there is some u such that v
β
-→M u and u

γ
-→M w. By the inductive

hypothesis for β and γ, there are ωA ∈ Lβ and A′ω′ ∈ Lγ such that v
ωA
-→M u and

u
A′ω′
-→M w. Let B = A ∪ A′. By Lemma 7.1.3, ωB ∈ Lβ and Bω′ ∈ Lγ. Hence, ωBω′ ∈

L(βγ). It remains to show that v
ωBω′
-→M w. Since M, u ⊨ A and M, u ⊨ A′, we also

have M, u ⊨ B, and hence v
ωB
-→M u and u

Bω′
-→M w (Lemma 7.1.4). The claim follows by

Lemma 7.1.5.

Let α = β∗. Then, for some n ≥ 0, v
β
-→

n
M w. We proceed by induction on n. If n = 0,

then v = w, and hence v
0
-→M w. The claim follows since 0 ∈ L0 ⊆ L(β∗). If n > 0,

then there is some u such that v
β
-→M u and u

β
-→

n−1
M w. By the outer and the inner

inductive hypothesis, there are, respectively, ωA ∈ Lβ and A′ω′ ∈ L(β∗) such that

v
ωA
-→M u and u

A′ω′
-→M w. Let B = A∪A′. As in the previous case, we have ωB ∈ Lβ and

Bω′ ∈ L(β∗) (Lemma 7.1.3), and hence ωBω′ ∈ L(β∗). Also, we have M, u ⊨ B, and

hence v
ωB
-→M u and u

Bω′
-→M w (Lemma 7.1.4). Again, the claim follows by Lemma 7.1.5.

As for the direction from right to left, let σ ∈ Lα and v
σ
-→M w. We show v

α
-→M w

by induction on α.

Let α = a. Then σ = AaB for some A,B ⊆ F . Hence, in particular v
a
-→M w.

Let α = s. Then σ = A where s ∈ A. Then v = w, M, v ⊨ A, and hence M,w ⊨ s. The
claim follows.

Let α = β + γ. Then σ ∈ Lβ or σ ∈ Lγ. By the inductive hypothesis for β or γ, we

have v
β
-→M w or v

γ
-→M w. Hence, v

β+γ
-→M w.

Let α = βγ. Then σ = ωAω′ where ωA ∈ Lβ and Aω′ ∈ Lγ. By Lemma 7.1.5, there

is some u such that v
ωA
-→M u and u

Aω′
-→M w. By the inductive hypothesis for β and γ,

we have v
β
-→M u and u

γ
-→M w. Hence, v

γβ
-→M w.

Let α = β∗. Then, for some n ≥ 0, we have σ = A0ω1A1ω2 . . . An−1ωnAn where
An ∈ L0 and, for all i ∈ [1, n], Ai−1ωiAi ∈ Lβ. We proceed by induction on n. If n = 0,

then σ = A0. Thus v = w, and hence v
β∗

-→M w. If n > 0, we have σ = A0ω1A1ω
′

where A1ω
′ ∈ (Lβ)n−1 ⊆ L(β∗). By Lemma 7.1.5, there is some u such that v

A0ω1A1
-→M u

and u
A1ω

′

-→M w. By the outer and the inner inductive hypothesis we obtain, respectively,

v
β
-→M u and u

β∗

-→M w. Hence, v
β∗

-→M w. �

122

7.2 Diamond and Box Decompositions

7.2 Diamond and Box Decompositions

Without tests, the decomposition D(〈α〉s) of a diamond formula 〈α〉s is a set of formu-
las that is equivalent to 〈α〉s when interpreted disjunctively, while the decomposition
D([α]s) of a box formula [α]s is equivalent to [α]s when seen as a conjunction. Hence,
every diamond formula is treated as a beta formula while every box formula is seen as
an alpha formula. If we add tests, this simple view is no longer adequate. So, a diamond
formula 〈s〉t is seen as the conjunction of s and t, while a formula [s]t is equivalent to
the disjunction of ∼s and t. Hence, for instance, 〈(p+q)a〉p ≡ (p∧〈a〉p)∨(q∧〈a〉p). In-
tuitively, the solution to this problem is to let diamond and box decompositions return
sets of formulas where, in the case for diamonds, the overall set is interpreted disjunc-
tively, while the element sets are interpreted conjunctively (and dually for boxes). Then,
for instance, D(〈(p + q)a〉p) may be defined as the set {{p, 〈a〉p}, {q, 〈a〉p}}.

If done naively, however, this approach causes some complications that become ap-
parent when we try to define expansions. Let 〈a〉〈α〉s ∈ C . Following our approach
in the test-free case, we would like an expansion of 〈a〉〈α〉s |C to consist of pairs t |D
where t is a single formula obtained using a decomposition of 〈α〉s. This is essential
for our approach since it allows us to give a meaningful definition of links, paths and
loops. Now, however, diamond decompositions consist of sets of formulas. Suppose
D is a decomposition of 〈α〉s. Intuitively, we want t |D be such that t ∈ A ∈ D and
D is a DNF of Ra ∪ A. But how do we select t ∈ A? Consider, for instance, the for-
mula s = 〈(〈a〉〈a∗〉p)b∗〉p. The set D = {A1, A2} where A1 = {〈a〉〈a∗〉p, p} and
A2 = {〈a〉〈a∗〉p, 〈b〉〈b∗〉p} looks like a reasonable decomposition of s. Which of the
formulas do we select for an expansion of 〈a〉s? Is the choice “don’t know” or “don’t
care”? If the choice is “don’t care”, the set D induces four possible expansions of
〈a〉s | {〈a〉s}, one of which is {〈a〉〈a∗〉p |A1, 〈b〉〈b∗〉p |A2}. If the choice is “don’t
know”, the set D induces one expansion of 〈a〉s | {〈a〉s} that consists of four elements:
{〈a〉〈a∗〉p |A1, p |A1, 〈a〉〈a∗〉p |A2, 〈b〉〈b∗〉p |A2}. It can be shown by an argument
similar to that in Remark 5.4.7 that choosing the formulas “don’t care” destroys the
refutation-soundness of the expansion rules. Choosing “don’t know”, on the other hand,
seems unnecessarily inefficient since, as we will see in the following (Example 7.3.1), the
smaller set {p |A1, 〈b〉〈b∗〉p |A2} is already an expansion of 〈a〉s | {〈a〉s}.

To address this issue, we define diamond and box decompositions as sets of guarded
formulas, where a guarded formula is a pair At such that A is a set of formulas and t
is a formula.

A set D of guarded formulas is a decomposition of 〈α〉s if it satisfies the following
conditions:

1. If At ∈ D, then:
a) A ; t ⊆ F for every formula universe F containing 〈α〉s.
b) t = s or t = 〈a〉〈β1〉 . . . 〈βn〉s for some action a and programs β1, . . . , βn (n ≥ 0).
c) Every formula in A is a proper subformula of 〈α〉s.

2. Lα =
⋃

B〈β1〉...〈βn〉s∈D

LB · Lβ1 · . . . · Lβn

123

7 Tree Search for Hybrid PDL

Similarly to the test-free case, condition (1.b) implies that every formula t such that
At ∈ D is a literal or a proper subformula of 〈α〉s. Additionally, every formula in A
(where At ∈ D) is required by condition (1.c) to be a proper subformula of 〈α〉s.

The definition of a decomposition of [α]s is now obtained from the above defini-
tion by replacing every occurrence of 〈α〉s, 〈a〉〈β1〉 . . . 〈βn〉s, and 〈β1〉 . . . 〈βn〉s by [α]s,
[a][β1] . . . [βn]s, and [β1] . . . [βn]s, respectively, and adding the following condition:

1. d) If D is a decomposition of [α]s and At ∈ D,
then {∼u | u ∈ A } ⊆ F for every formula universe F containing [α]s.

As in the test-free case, conditions (1.b) and (2) ensure that diamond and box decom-
positions have the intended semantics.

Proposition 7.2.1 LetD be a decomposition of 〈α〉s and E be a decomposition of [α]s.

1. M,w ⊨ 〈α〉s ⇐⇒ ∃At ∈ D : M,w ⊨ t and ∀u ∈ A : M,w ⊨ u

2. M,w ⊨ [α]s ⇐⇒ ∀At ∈ E : M,w ⊨ t or ∃u ∈ A : M,w ⊨ ∼u

Proof We show the direction from left to right in claim (1) by adapting the correspond-
ing argument for Proposition 6.3.1 (the other direction adapts similarly and claim (2)
follows analogously). Let M,w ⊨ 〈α〉s. By Proposition 7.1.6 (2), there is some σ ∈ Lα
such that w

σ
-→M v and M, v ⊨ s. By condition (2) for diamond decompositions,

σ ∈ LA · Lβ1 · . . . · Lβn for some A〈β1〉 . . . 〈βn〉s ∈ D. By n applications of Propo-
sition 7.1.6 (2) and Lemma 7.1.5, we obtain that there is some τ ∈ LA and some u such
that w

τ
-→M u and M, u ⊨ 〈β1〉 . . . 〈βn〉s. Since τ ∈ LA, we have u = w and M,w ⊨ A.

The claim follows. �

How do we compute diamond and box decompositions? Since a decomposition no
longer consists of single formulas, simply taking some restriction of the alpha-beta
closure no longer does the trick. Instead, we work with the closure under the following
rules for guarded formulas.

A〈t〉s

(A ; t)s

A〈α+ β〉s

A〈α〉s, A〈β〉s

A〈αβ〉s

A〈α〉〈β〉s

A〈α∗〉s

As, A〈α〉〈α∗〉s

A[t]s

(A ; t)s

A[α+ β]s

A[α]s, A[β]s

A[αβ]s

A[α][β]s

A[α∗]s

As, A[α][α∗]s

Given a set G of guarded formulas, we call the closure of G under the above rules the
guarded alpha-beta closure of G (notationAgG).

Note that for test-free formulasAg coincides with the ordinary alpha-beta closure A
as defined in § 6.3. More generally,Ag is related to F andA by the following lemma.

Lemma 7.2.2

1. If A ; s ⊆ F and Bt ∈Ag{As}, then B ; t ⊆ F .
2. If Bt ∈Ag{A〈α〉s}, then t ∈A{〈α〉s} and B \A ⊆A{〈α〉s}.
3. If Bt ∈Ag{A[α]s}, then t ∈A{[α]s} and {∼u | u ∈ B \A } ⊆ A{[α]s}.

124

7.2 Diamond and Box Decompositions

Proof All three claims are shown by straightforward induction on the derivation of,
respectively, Bt ∈Ag{As}, Bt ∈Ag{A〈α〉s}, and Bt ∈Ag{A[α]s}. �

Given a formula s, we can restrict the above rules such that they do not apply to any
guarded formula of the form As. We call the closure of a set G under the restricted
version of the rules the guarded alpha-beta closure of G halting at s (notation A

g
sG).

Clearly, for every s and G, we haveA
g
sG ⊆ AgG. Let s = 〈α〉t or s = [α]t. We define:

D(As) := {Bu ∈A
g
t{As} | u = t or u literal }

We abbreviate D(0s) as Ds.

Example 7.2.3 Consider the formulas 〈(p+q)a〉p and 〈(〈a〉〈a∗〉p)b∗〉p that we use as
examples at the beginning of the section. We have:

A
g
p{0〈(p + q)a〉p} = {0〈(p + q)a〉p, 0〈p + q〉〈a〉p, 0〈p〉〈a〉p, 0〈q〉〈a〉p,

{p}〈a〉p, {q}〈a〉p}

D(〈(p + q)a〉p) = {{p}〈a〉p, {q}〈a〉p}

A
g
p{0〈(〈a〉〈a

∗〉p)b∗〉p} = {0〈(〈a〉〈a∗〉p)b∗〉p, 0〈〈a〉〈a∗〉p〉〈b∗〉p,

{〈a〉〈a∗〉p}〈b∗〉p, {〈a〉〈a∗〉p}p,

{〈a〉〈a∗〉p}〈b〉〈b∗〉p}

D(〈(〈a〉〈a∗〉p)b∗〉p) = {{〈a〉〈a∗〉p}p, {〈a〉〈a∗〉p}〈b〉〈b∗〉p} ◭

We now show that D(〈α〉s) is a decomposition of 〈α〉s and D([α]s) is a decomposition
of [α]s.

Condition (1.d) for box decompositions follows by Lemma 7.2.2 (3) sinceA{[α]s} ⊆ F
whenever [α]s ∈ F . Since other conditions are shown analogously for diamond and box
decompositions, we will only detail the argument for diamonds

Condition (1.a) is satisfied by Lemma 7.2.2 (1). Conditions (1.b) and (1.c) for diamond
decompositions follow with the following adaptation of Lemma 6.3.4.

Lemma 7.2.4 If Bt ∈As{A〈α〉s}, then every formula in B \A is a proper subformula of
〈α〉s, and t = 〈β1〉 . . . 〈βn〉s for some n ≥ 0 and β1, . . . , βn.

The proof of the lemma proceeds analogously to the one for Lemma 6.3.4.
To show that D(〈α〉s) satisfies condition (2) for diamond decompositions we adapt

Lemmas 6.3.5 and 6.3.6 as follows.

Lemma 7.2.5 If B〈β1〉 . . . 〈βn〉s ∈As{A〈α〉s}, then LB · Lβ1 · . . . · Lβn ⊆ LA · Lα.

Proof We proceed by induction on the derivation of B〈β1〉 . . . 〈βn〉s ∈ As{A〈α〉s}. All
cases proceed analogously to the respective cases in the proof of Lemma 6.3.5 (with
Lemma 7.2.4 in place of Lemma 6.3.4 and Proposition 7.1.2 in place of Proposition 6.2.1)
except for the case where B〈β1〉 . . . 〈βn〉s is obtained from A′〈t〉〈γ2〉 . . . 〈γm〉s where t
is a test formula. In this case, B = A′ ; t, m = n + 1, and, for all i ∈ [1, n], βi = γi+1.
The claim follows from the inductive hypothesis, LA′ ·Lt ·Lβ1 · . . . ·Lβn ⊆ LA ·Lα, by
Proposition 7.1.2 (2) since LA′ · Lt = LA′ ∪Lt = L(A′ ; t) = LB. �

125

7 Tree Search for Hybrid PDL

Lemma 7.2.6 A〈β〉s{A〈α〉〈β〉s} ⊆ As{A〈α〉〈β〉s}

Proof Let Bt ∈ A〈β〉s{A〈α〉〈β〉s}. We show that Bt ∈ As{A〈α〉〈β〉s} by induction
on the derivation of Bt ∈ A〈β〉s{A〈α〉〈β〉s}. All cases proceed analogously to the re-
spective cases in the proof of Lemma 6.3.6 except for the case when Bt is obtained
from A′〈u〉〈γ1〉 . . . 〈γn〉〈β〉s where u is a test formula. In this case, B = A′ ;u and
t = 〈γ1〉 . . . 〈γn〉〈β〉s. The claim follows since, by the inductive hypothesis, A′〈u〉t ∈
As{A〈α〉〈β〉s}. �

With the necessary prerequisites in place, condition (2) for diamond decompositions
immediately follows from the following more general claim.

Proposition 7.2.7 LA · Lα =
⋃

B〈β1〉...〈βn〉s∈D(A〈α〉s)

LB · Lβ1 · . . . · Lβn

Proof The inclusion
⋃

B〈β1〉...〈βn〉s∈D(A〈α〉s)

LB · Lβ1 · . . . · Lβn ⊆ LA · Lα follows with Lem-

ma 7.2.5. As for the other inclusion, let α be a program. We show ∀A∀s∀σ ∈ LA ·
Lα : σ ∈ LB ·Lβ1 · . . .·Lβn for some B〈β1〉 . . . 〈βn〉s ∈ D(A〈α〉s) by induction on α. We
distinguish five cases depending on the shape of α. Four of them proceed analogously
to the corresponding cases for Proposition 6.3.7, with Lemma 7.2.6 being used in place
of Lemma 6.3.6. The remaining case proceeds as follows.

Let α = t. Let σ ∈ LA ·Lt. We have (A ; t)s ∈A
g
s{A〈t〉s} and, consequently, (A ; t)s ∈

D(A〈t〉s). Hence, it suffices to show that σ ∈ L(A ; t). This follows since LA · Lt =
LA∪Lt = L(A ; t). �

Finally, note that by Lemma 7.2.2 (2,3), if s = 〈α〉t or s = [α]t, the set |Ag{0s}| is
bounded by 2|A{s}| · |A{s}|. Therefore, since A{s} is linear in the size of s, Ds can be
computed in exponential time with respect to the size of s.

Remark 7.2.8 We call a guarded formula As ∈ G minimal in G if there is no Bs ∈ G
such that B ⊊ A. To obtain a more concise program DNF, instead of taking all guarded
formulas in Ds, we can take only guarded formulas that are minimal in Ds. This suffices
since A ⊆ B implies LB ⊆ LA, and hence LB · Lα1 · . . . · Lαn ⊆ LA · Lα1 · . . . · Lαn
for every formula 〈α1〉 . . . 〈αn〉t ∈ Ds. This can significantly reduce the size of pro-
gram DNFs returned by D. For instance, consider the formula 〈(p + q)∗〉p. We have
D(〈(p + q)∗〉p) = {0p, {p}p, {q}p, {p, q}p}. Clearly, 0p is the only guarded formula
minimal in D(〈(p + q)∗〉p), and hence {0p} is a program DNF of 〈(p + q)∗〉p. More
generally, the cardinality of Dn = D(〈(p1 + · · · + pn)∗〉p) grows exponentially in n,
while, for every n, 0p remains the unique guarded formula minimal in Dn.

For clarity of presentation, this optimization is not included in the definition of D. All
our results adapt to the optimized version in a straightforward way. ◭

Together with the usual decomposition rules for conjunctions and disjunctions, D

yields a terminating decomposition table for HPDL, which may be represented as shown
in Figure 7.1. As discussed earlier, a diamond formula is now decomposed into a set

126

7.3 Branches and Evidence

formula constituents

s ∧ t α {s, t}

s ∨ t β {s, t}

[γ]s, γ not an action αβ { {∼u | u ∈ A } ; t | At ∈ D([γ]s) }

〈γ〉s, γ not an action βα {A ; t | At ∈ D(〈γ〉s) }

Figure 7.1: Terminating decomposition table for HPDL

of sets of formulas where the overall set is seen as a disjunction while the element sets
are interpreted conjunctively. Dually, a box formula is decomposed into a conjunction
of disjunctions. The correctness of this decomposition follows from Proposition 7.2.1:

Corollary 7.2.9

1. M,w ⊨ 〈α〉s ⇐⇒ ∃At ∈ D(〈α〉s) : M,w ⊨ t and ∀u ∈ A : M,w ⊨ u

2. M,w ⊨ [α]s ⇐⇒ ∀At ∈ D([α]s) : M,w ⊨ t or ∃u ∈ A : M,w ⊨ ∼u

As in the test-free case, the table is terminating because the constituents of every for-
mula s are literals or proper subformulas of s (up to ∼).

The table induces the definition of Hintikka sets as nonempty sets H of formulas that
satisfy the following properties.

• For every predicate p: {p, ¬p} 6⊆ H.
• If s ∧ t ∈ H, then s ∈ H and t ∈ H.
• If s ∨ t ∈ H, then s ∈ H or t ∈ H.
• If [α]s ∈ H where α is not an action, then for every At ∈ D([α]s):
{∼u | u ∈ A } ; t ∩H 6= 0

• If 〈α〉s ∈ H where α is not an action, then for some At ∈ D(〈α〉s): A ; t ⊆ H.

7.3 Branches and Evidence

The definitions of the upward closure and support induced by the new decomposi-
tion table adapt analogously to the definition of Hintikka sets. Given the new notion
of support, the defining conditions for DNFs are unchanged compared to § 5.2. Their
computation via Hintikka decompositions adapts in the intuitive way.

Let C be a clause and 〈a〉s ∈ C . An expansion of 〈a〉s |C is again defined by case
analysis on the shape of s:

• If s is not a diamond formula and D is a DNF of RaC ; s,
then { (s |D) | D ∈ D} is an expansion of 〈a〉s |C .

• If s is a diamond formula and, for every At ∈ Ds, DAt is a DNF of RaC ∪A ; t,
then

⋃

At∈Ds

{ (t |D) | D ∈ DAt } is an expansion of 〈a〉s |C .

127

7 Tree Search for Hybrid PDL

Example 7.3.1 Let s = 〈(〈a〉〈a∗〉p)b∗〉p. As we saw in Example 7.2.3:

Ds = {{〈a〉〈a∗〉p}p, {〈a〉〈a∗〉p}〈b〉〈b∗〉p}

Since the formulas p, 〈a〉〈a∗〉p, 〈b〉〈b∗〉p are all literals, the computation of a DNF is
trivial and the set {p | {〈a〉〈a∗〉p, p}, 〈b〉〈b∗〉p | {〈a〉〈a∗〉p, 〈b〉〈b∗〉p}} is an expan-
sion of 〈a〉s | {〈a〉s}.

For an example where the DNF computation is not trivial, let s = 〈p ∨ q〉(¬p ∨ ¬q).
Then:

A
g
¬p∨¬q{s} = {s, {p ∨ q}¬p ∨¬q}

Ds = {{p ∨ q}¬p ∨¬q}

Consider the clause C = {〈a〉s, [a]([p]r1 ∧ [q]r2)}. We have:
• D([p]r1) = {{p}r1}, and hence {{¬p}, {r1}} is a DNF of {[p]r1}.
• D([q]r2) = {{q}r2}, and hence {{¬q}, {r2}} is a DNF of {[q]r2}.
• The set {D1, D2} where D1 = {p, ¬q, r1} and D2 = {¬p, q, r2} is a DNF of
{[p]r1 ∧ [q]r2, p ∨ q, ¬p ∨¬q}(= RaC ∪ {p ∨ q} ;¬p ∨¬q).

• The set {¬p ∨¬q |D1, ¬p ∨¬q |D2} is an expansion of 〈a〉s |C . ◭

The definition of links adapts to the new notion of an expansion without changes to
its formulation, as do the definitions of branches, realization, paths, runs, loops, and
evidence. Also, the statement and the proof of Proposition 6.4.5 remain unchanged.

7.4 Demos

The notion of demos is adapted by extending the definition of syntactic transition rela-
tions

α
-→S as proposed in § 3.7.

As in the test-free case, the proof of demo existence adapts in a straightforward way.
With Corollary 7.2.9 we conclude that HM,w as defined in § 3.3.3 is a Hintikka set for
every model M and every w ∈ |M|. Demo existence then follows by adapting the proof
of Lemma 3.3.12 as described in § 3.7.

The proof of demo satisfaction requires more work. In a nutshell, we combine the
adaptations for tests in § 3.7 with those for terminating decomposition tables in § 6.5.
Lemma 3.3.6 is replaced by Lemma 3.7.1. The proof of the lemma remains unchanged.
Lemma 6.5.1 is modified as follows.

Lemma 7.4.1 Let S be a Hintikka system, {H, H′} ⊆ S, and [α1] . . . [αn]s ∈ H (n ≥ 0)
such that
• H

σ
-→MS H

′ for some σ ∈ Lα1 · . . . · Lαn and
• for all formulas t in σ and all H ∈ S, ∼t ∈ H implies MS,H ⊨ ∼t.
Then s ∈ H′.

Proof We proceed by lexicographic induction on the length of σ and the decomposition
order of [α1] . . . [αn]s. If n = 0, the claim is trivial. Let n ≥ 1. Depending on the shape
of α1, we distinguish two cases.

128

7.4 Demos

If α1 = a, we have σ = Aaτ . Hence, MS,H ⊨ A and there is some set H′′ such that
H

a
-→MS H

′′ and H′′
τ
-→MS H

′. By the definition of
a
-→MS , we have [α2] . . . [αn]s ∈ H′′.

Moreover, τ ∈ Lα2 · . . . · Lαn. The claim follows by the inductive hypothesis for τ and
[α2] . . . [αn]s.

Otherwise, for every At ∈ D([α1] . . . [αn]s) we have {∼u | u ∈ A } ; t ∩ H 6= 0. By
condition (2) for box decompositions, there is some A[β1] . . . [βm]s ∈ D([α1] . . . [αn]s)

such that σ ∈ LA · Lβ1 · . . . · Lβm. Suppose, for some u ∈ A, we have ∼u ∈ H.
Then, by assumption, MS,H ⊨ ∼u, which contradicts MS,H ⊨ u and thus (since u ∈ A
and σ ∈ LA · Lβ1 · . . . · Lβm) H

σ
-→MS H

′. Consequently, {∼u | u ∈ A } ∩ H = 0

and thus [β1] . . . [βm]s ∈ H. The claim follows by the inductive hypothesis for σ and
[β1] . . . [βm]s ([β1] . . . [βm]s is smaller than [α1] . . . [αn]s according to the decomposi-
tion order). �

From this, we immediately derive the original formulation of Lemma 3.7.2 (see the proof
of Lemma 6.5.2). With Lemmas 3.7.1 and 3.7.2 in place, Lemma 3.3.8 adapts as described
in § 3.7. Theorem 3.3.9 follows.

It remains to show that the core of an evident branch describes a demo. For this, we
first need to adapt the definition of

σ
-→S to account for tests. This is done as follows:

H
A
-→S H

′ ⇐⇒ H = H′ and A ⊆ H

H
Aaσ
-→S H

′ ⇐⇒ A ⊆ H and ∃H′′ : H
a
-→S H

′′ and H′′
σ
-→S H

′

Proposition 6.5.3 can be shown for the new definition of
σ
-→S by adapting the proof of

Proposition 7.1.6 (1). The notion of ✸-preadmissibility remains unchanged. Also, the
formulation of Lemma 6.5.4 remains unchanged and its proof adapts in a straightfor-
ward way. Lemma 6.5.5 is reproved as follows.

Lemma 7.4.2 A Hintikka system is ✸-preadmissible if and only if it is ✸-admissible.

Proof The direction from right to left follows the same as for Lemma 6.5.5. So, let S
be ✸-preadmissible and let 〈α〉s ∈ H ∈ S. If α is an action, the claim follows since
S is ✸-preadmissible. Otherwise, we have A ; t ⊆ H for some At ∈ D(〈α〉s), where
t = 〈β1〉 . . . 〈βn〉s for some n ≥ 0 and β1, . . . , βn (Lemma 7.2.4).

If n = 0, then A ∈ Lα (condition (2) for diamond decompositions), and hence the

claim follows from H
A
-→S H by Proposition 6.5.3.

If n ≥ 1, then β1 = b (for some action b). Since S is ✸-preadmissible, there is some

H′ ∈ S such that H
bβ2...βn
-→S H′ and s ∈ H′. It suffices to show H

α
-→S H′. By Propo-

sition 6.5.3 and since A ⊆ H, we have H
Abσ
-→S H′ for some σ ∈ Lβ2 · . . . · Lβn. The

claim follows by Proposition 6.5.3 since, by condition (2) for diamond decompositions,
Abσ ∈ LA · Lb · Lβ2 · . . . · Lβn ⊆ Lα. �

Theorem 6.5.6 then follows as before and we are done.

129

7 Tree Search for Hybrid PDL

7.5 Expansion Rules

The definition of nc-DNFs from DNFs remains unaffected. Also, Proposition 5.5.9 still
holds. Nominally consistent expansions are defined from nc-DNFs analogously to how
we define ordinary expansions from DNFs in § 7.3. Assuming the updated notion of
nc-expansions, the expansion rules for HPDL with tests still look as shown in Figure 6.2.
Once again, a branch is evident if and only if it is maximal. Therefore, the rules are
demonstration-sound by the results in § 7.4. To show their refutation-soundness, we
once again adapt our argument from the test-free case.

The definition of δM remains unchanged (except that the variable σ now ranges over
guarded strings rather than words and the notations |σ | and

σ
-→M are defined as in

§ 7.1). Proposition 6.6.2 follows as before, now using Proposition 7.1.6 and Lemma 7.1.5
in place of Proposition 6.2.3 and Lemma 6.2.2. Satisfaction of links and branches is
defined as before.

While the proof of Proposition 6.6.4 remains unchanged, Lemma 6.6.5 requires some
adaptations.

Lemma 7.5.1 Let Γ be a branch, 〈a〉s ∈ C ∈ Γ , and E be an nc-expansion of 〈a〉s |C
in Γ . Let M be a model of all clauses in Γ . Then there is some t |D ∈ E such that
δMDt < δMC(〈a〉s).

Proof If s is not a diamond formula, the proof proceeds the same as for Lemma 6.6.5.
So, let s be a diamond formula. Then we have s = 〈α1〉 . . . 〈αn〉t for some n ≥ 1. By
Proposition 6.6.2, δMC(〈a〉s) <∞. Let v,w ∈ |M| and σ = Aω ∈ Lα1 · . . .Lαn be such

that v
0aσ
-→M w, M, v ⊨ C , M,w ⊨ t, and |σ | = δMC(〈a〉s)− 1. Let u ∈ |M| be such that

v
a
-→M u and u

σ
-→M w. By condition (2) for diamond decompositions, there is some

B〈β1〉 . . . 〈βm〉t ∈ Ds such that σ ∈ LB · Lβ1 · . . . · Lβm. In particular, we have B ⊆ A.
Since M, u ⊨ RaC and M, u ⊨ A (the latter following from u

σ
-→M w), we have

δM(RaC ∪ B)(〈β1〉 . . . 〈βm〉t) ≤ δM(RaC ∪A)(〈β1〉 . . . 〈βm〉t) ≤ |σ |

and hence M, u ⊨ RaC ∪ B ;〈β1〉 . . . 〈βm〉t (Proposition 6.6.2). Let D be an nc-DNF of
RaC ∪ B ;〈β1〉 . . . 〈βm〉t such that { (〈β1〉 . . . 〈βm〉t |D) | D ∈ D} ⊆ E. By Proposi-
tion 5.5.9, there is some D ∈ D such that M, u ⊨ D. Hence, 〈β1〉 . . . 〈βm〉t |D ∈ E

and δMD(〈β1〉 . . . 〈βm〉t) ≤ |σ | = δMC(〈a〉s)− 1. �

Theorem 6.6.6 follows as before with Lemma 7.5.1 in place of Lemma 6.6.5. Thus, the
rules induce a decision procedure for HPDL. The procedure runs in NExpTime since
the search tree explored by the procedure has exponential depth (the size of a branch
is exponentially bounded in |F|) and an exponential branching factor (the cardinality
of an expansion is at most exponential in |F| since both diamond decompositions and
DNFs are at most exponential in |F|).

130

8 Conclusion

This thesis was dedicated to the study of incremental decision procedures for modal
logics with nominals and eventualities, with the goal of developing an incremental pro-
cedure for hybrid PDL. In this section, we review how we achieved this goal and sum-
marize our main contributions. Afterwards, we look at some possiliblities for future
research.

8.1 Summary

We began our investigations by looking at abstract, nonincremental decision procedures
as developed by Pratt [160] for PDL. We modularized Pratt’s approach and adapted it
to extensions of PDL with nominals and difference modalities. As a key technique in
Pratt’s approach we identified pruning. We observed that in the presence of nominals,
pruning becomes incomplete. To remedy this problem, we complemented pruning by a
guessing stage used to make the candidate models nominally admissible. To account for
the existential difference modality, we extended the syntax by auxiliary nominals, while
the universal difference modality was handled by suitably extending the guessing stage.

In the next step, we investigated the connections between Pratt-style nonincremental
procedures and incremental graph procedures as developed by Goré and Widmann [93,
200]. We restricted our investigations to K∗. We showed how Pratt’s approach in [160]
can be stepwise refined first to his tableau-based approach in [161] and then to a variant
of Goré and Widmann’s incremental procedure. To obtain a compact clausal represen-
tation, we introduced graph tableaux based on normal, branching, and clashing clauses.
To simplify correctness arguments, we introduced clausal demos complemented by a
notion of support used to infer the satisfaction of nonliteral formulas from literals. To
achieve incrementality, we refined Pratt-style pruning to two complementary mecha-
nisms, called eager and cautious pruning, which produce certificates for the satisfiabil-
ity and the unsatisfiability of formulas.

Faced with difficulties in extending pruning to nominals while preserving incremen-
tality, we turned our attention to tree procedures. We began by developing an incre-
mental decision procedure for H∗ as the simplest logic that contains both nominals
and eventualities. We observed that the clausal representation we had used for our
graph procedures leads to incompleteness of tree search in the presence of eventual-
ities. We solved this problem by separating modal reasoning from propositional rea-
soning, connecting the two levels via an abstract interface. To deal with eventualities
via tree search, we introduced the notion of a loop and postulated the absence of loops
as a consistency criterion for branches. To argue the correctness of this approach, we

131

8 Conclusion

strengthened the notion of satisfaction for branches by extending satisfaction to links.
We dealt with nominals by introducing nominal propagation. Unlike other approaches
to nominals [29, 127, 39], nominal propagation is static in that it does not modify ex-
isting clauses and links. This makes nominal propagation compatible with our clausal
representation and with our treatment of eventualities.

Finally, we extended the tree procedure for H∗ to HPDL, first without tests and then
with tests. When extending tree search from H∗ to HPDL, the main complication turned
out to be that the naive alpha-beta decomposition no longer terminates on all diamond
and box formulas. This destroys the correspondence between clauses as used by our
tableau methods and Hintikka sets used to relate the clauses to states of a model. To
regain the correspondence, we devised a terminating decomposition table and proved
its correctness with the help of a language-theoretic semantics of programs.

Adding tests causes two main complications. The first complication is the need for
a language-theoretic semantics that can account for tests. We dealt with this compli-
cation by developing a new language-theoretic semantics based on a model for Kleene
algebras with tests. The second complication is that the definition of a terminating de-
composition table and the computation of diamond and box decompositions become
more involved. We faced this complication by introducing guarded formulas and lifting
the computation of diamond and box decompositions to guarded formulas.

8.2 Future Research

The work reported in this thesis can be extended in many directions. The following
directions we consider of particular interest.

To evaluate the practical potential of our procedure for HPDL, an efficient implemen-
tation is required. We expect such an implementation to be comparable on hybrid logics
without eventualities to state-of-the-art systems for hybrid logic [109, 98, 42]. On PDL
(without nominals), we conjecture that Goré and Widmann’s [93, 200] worst-case op-
timal procedure will be more efficient than our approach since our approach is not
worst-case optimal.

To evaluate our procedure on HPDL, a base of benchmark formulas is needed. Ide-
ally, the formulas should come from practically relevant problems modeled in HPDL.
However, we are not aware of any application areas that would currently exploit the
full power of HPDL. Identifying such areas and generating practical problems that can
be solved by state-of-the-art or future systems is a task of great interest and practical
importance.

Another interesting direction for further research is extending the procedures in this
thesis to other expressive logics. We believe that our incremental graph procedure for
K∗ can be extended to logics with converse, possibly following Goré and Widmann’s
approach in [94, 95, 200]. We presently do not know if our tree procedures for H∗ and
HPDL can be extended to deal with converse.

We conjecture that our approach to HPDL can be adapted to the temporal logics
UB [22] and CTL [44], and possibly even to hybrid extensions of these logics. An im-

132

8.2 Future Research

portant difference of UB and CTL from K∗ and PDL is that the former logics have two
kinds of eventualities, represented in UB by formulas of the form EFs and AFs. While
formulas of the form EFs are essentially equivalent to eventualities in K∗, formulas AFs

have no counterpart in K∗ or PDL. A formula AFs holds at a state if every infinite path
starting in that state contains a state satisfying s. Dealing with formulas of the form
AFs will require a significant extension of our theory. It is not clear to us what happens
if we try to extend our approach to even more expressive logics like CTL∗ [60].

Finally, our work leaves open the question if it is possible to obtain decision proce-
dures for modal logics with nominals and eventualities that are both incremental and
worst-case optimal. Our results in § 3.5 suggest that it is impossible to give a prun-
ing relation that is both confluent and complete in the presence of nominals. Still, it
is conceivable that an incremental decision procedure may be obtained by looking at
nonconfluent pruning relations.

133

Bibliography

[1] Abate, P., and Goré, R. The tableau workbench. In M4M-5 (2009), C. Areces and
S. Demri, Eds., vol. 231 of Electr. Notes Theor. Comput. Sci., Elsevier, pp. 55–67.

[2] Abate, P., Goré, R., and Widmann, F. One-pass tableaux for computational tree
logic. In LPAR 2007 (2007), N. Dershowitz and A. Voronkov, Eds., vol. 4790 of
LNCS, Springer, pp. 32–46.

[3] Abate, P., Goré, R., and Widmann, F. An on-the-fly tableau-based decision proce-
dure for PDL-satisfiability. In M4M-5 (2009), C. Areces and S. Demri, Eds., vol. 231
of Electr. Notes Theor. Comput. Sci., Elsevier, pp. 191–209.

[4] Areces, C., Blackburn, P., and Marx, M. A road-map on complexity for hybrid
logics. In CSL ’99 (1999), J. Flum and M. Rodríguez-Artalejo, Eds., vol. 1683 of
LNCS, Springer, pp. 307–321.

[5] Areces, C., Blackburn, P., and Marx, M. The computational complexity of hy-
brid temporal logics. L. J. IGPL 8, 5 (2000), 653–679.

[6] Areces, C., de Nivelle, H., and de Rijke, M. Prefixed resolution: A resolution
method for modal and description logics. In CADE-16 (1999), H. Ganzinger, Ed.,
vol. 1632 of LNCS, Springer, pp. 187–201.

[7] Areces, C., de Nivelle, H., and de Rijke, M. Resolution in modal, description
and hybrid logic. J. Log. Comput. 11, 5 (1999), 717–736.

[8] Areces, C., and Gorín, D. Resolution with order and selection for hybrid logics.
J. Autom. Reasoning 46, 1 (2011), 1–42.

[9] Areces, C., and Heguiabehere, J. HyLoRes 1.0: Direct resolution for hybrid
logics. In CADE-18 (2002), A. Voronkov, Ed., vol. 2392 of LNCS, Springer, pp. 156–
160.

[10] Areces, C., and ten Cate, B. Hybrid logics. In Handbook of Modal Logic,
P. Blackburn, J. van Benthem, and F. Wolter, Eds., vol. 3 of Studies in Logic and

Practical Reasoning. Elsevier, 2007, pp. 821–868.

[11] Baader, F. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. Tech. Rep. RR-90-13, DFKI, 1990.

[12] Baader, F. Augmenting concept languages by transitive closure of roles: An al-
ternative to terminological cycles. In IJCAI ’91 (1991), J. Mylopoulos and R. Reiter,
Eds., Morgan Kaufmann, pp. 446–451.

135

Bibliography

[13] Baader, F. Terminological cycles in a description logic with existential restric-
tions. In IJCAI 2003 (2003), G. Gottlob and T. Walsh, Eds., Morgan Kaufmann,
pp. 325–330.

[14] Baader, F., Brandt, S., and Lutz, C. Pushing the EL envelope. In IJCAI 2005

(2005), L. P. Kaelbling and A. Saffiotti, Eds., Professional Book Center, pp. 364–369.

[15] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider,

P. F., Eds. The Description Logic Handbook: Theory, Implementation and Applica-

tions, 2nd ed. Cambridge University Press, 2007.

[16] Baader, F., Hladik, J., Lutz, C., and Wolter, F. From tableaux to automata for
description logics. Fund. Inform. 57, 2–4 (2003), 247–279.

[17] Baader, F., Küsters, R., and Molitor, R. Computing least common subsumers
in description logics with existential restrictions. In IJCAI ’99 (1999), T. Dean, Ed.,
Morgan Kaufmann, pp. 96–103.

[18] Baader, F., and Lutz, C. Description logic. In Handbook of Modal Logic,
P. Blackburn, J. van Benthem, and F. Wolter, Eds., vol. 3 of Studies in Logic and

Practical Reasoning. Elsevier, 2007, pp. 757–820.

[19] Baader, F., and Nipkow, T. Term Rewriting and All That. Cambridge University
Press, 1998.

[20] Baader, F., and Nutt, W. Basic description logics. In The Description Logic Hand-

book: Theory, Implementation and Applications, F. Baader, D. Calvanese, D. L.
McGuinness, D. Nardi, and P. F. Patel-Schneider, Eds., 2nd ed. Cambridge Univer-
sity Press, 2007, pp. 47–104.

[21] Beckert, B., Hähnle, R., and Schmitt, P. H., Eds. Verification of Object-Oriented

Software: The KeY Approach, vol. 4334 of LNCS. Springer, 2007.

[22] Ben-Ari, M., Pnueli, A., and Manna, Z. The temporal logic of branching time.
Acta Inf. 20, 3 (1983), 207–226.

[23] Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., and Mecella, M. Auto-
matic composition of transition-based semantic web services with messaging. In
VLDB 2005 (2005), K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P.-Å. Larson,
and B. C. Ooi, Eds., ACM, pp. 613–624.

[24] Berry, G., and Sethi, R. From regular expressions to deterministic automata.
Theor. Comput. Sci. 48, 3 (1986), 117–126.

[25] Beth, E. W. Semantic entailment and formal derivability. Mededelingen van de

Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde 18,
13 (1955), 309–342.

136

Bibliography

[26] Blackburn, P. Tense, temporal reference, and tense logic. J. Semantics 11, 1–2
(1994), 83–101.

[27] Blackburn, P., de Rijke, M., and Venema, Y. Modal Logic. Cambridge University
Press, 2001.

[28] Blackburn, P., and Seligman, J. Hybrid languages. J. Log. Lang. Inf. 4, 3 (1995),
251–272.

[29] Bolander, T., and Blackburn, P. Termination for hybrid tableaus. J. Log. Com-

put. 17, 3 (2007), 517–554.

[30] Bolander, T., and Braüner, T. Tableau-based decision procedures for hybrid
logic. J. Log. Comput. 16, 6 (2006), 737–763.

[31] Bonatti, P. A., Lutz, C., Murano, A., and Vardi, M. Y. The complexity of en-
riched µ-calculi. In ICALP 2006, Part II (2006), M. Bugliesi, B. Preneel, V. Sassone,
and I. Wegener, Eds., vol. 4052 of LNCS, Springer, pp. 540–551.

[32] Brand, S., Gennari, R., and de Rijke, M. Constraint methods for modal satisfia-
bility. In CSCLP 2003 (2004), K. R. Apt, F. Fages, F. Rossi, P. Szeredi, and J. Váncza,
Eds., vol. 3010 of LNCS, Springer, pp. 66–86.

[33] Brandt, S. Polynomial time reasoning in a description logic with existential re-
strictions, CGI axioms, and – what else? In ECAI 2004 (2004), R. L. de Mántaras
and L. Saitta, Eds., IOS Press, pp. 298–302.

[34] Braüner, T. Hybrid Logic and its Proof-Theory. Springer, 2011.

[35] Brzozowski, J. A. Derivatives of regular expressions. J. ACM 11, 4 (1964), 481–
494.

[36] Bull, R. A. An approach to tense logic. Theoria 36, 3 (1970), 282–300.

[37] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. DL-
Lite: Tractable description logics for ontologies. In AAAI 2005 (2005), M. M.
Veloso and S. Kambhampati, Eds., AAAI Press/The MIT Pres, pp. 602–607.

[38] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R.

Tractable reasoning and efficient query answering in description logics: The DL-
Lite family. J. Autom. Reasoning 39, 3 (2007), 385–429.

[39] Cerrito, S., and Cialdea Mayer, M. An efficient approach to nominal equalities
in hybrid logic tableaux. J. Appl. Non-Class. Log. 20, 1-2 (2010), 39–61.

[40] Cerrito, S., and Cialdea Mayer, M. Nominal substitution at work with the
global and converse modalities. In Advances in Modal Logic (2010), L. Beklemi-
shev, V. Goranko, and V. Shehtman, Eds., vol. 8, College Publications, pp. 59–76.

137

Bibliography

[41] Chagrov, A., and Zakharyaschev, M. Modal Logic. Oxford University Press,
1997.

[42] Cialdea Mayer, M., and Cerrito, S. Herod and Pilate: Two tableau provers for
basic hybrid logic. In IJCAR 2010 (2010), J. Giesl and R. Hähnle, Eds., vol. 6173 of
LNCS, Springer, pp. 255–262.

[43] Clarke, E. M., and Draghicescu, I. A. Expressibility results for linear-time and
branching-time logics. In Linear Time, Branching Time and Partial Order in Logics

and Models for Concurrency (1989), J. W. de Bakker, W.-P. de Roever, and G. Rozen-
berg, Eds., vol. 354 of LNCS, Springer, pp. 428–437.

[44] Clarke, E. M., and Emerson, E. A. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In Logics of Programs (1982), D. Kozen,
Ed., vol. 131 of LNCS, Springer, pp. 52–71.

[45] Cîrstea, C., Kupke, C., and Pattinson, D. EXPTIME tableaux for the coalgebraic
µ-calculus. In CSL 2009 (2009), vol. 5771 of LNCS, pp. 179–193.

[46] D’Agostino, M. Are tableaux an improvement on truth-tables? cut-free proofs
and bivalence. Journal of Logic, Language and Information 1, 3 (September 1992),
235–252.

[47] Dam, M. CTL∗ and ECTL∗ as fragments of the modal µ-calculus. Theor. Comput.

Sci. 126, 1 (1994), 77–96.

[48] Damas, L., and Milner, R. Principal type-schemes for functional programs. In
POPL ’80 (1982), ACM, pp. 207–212.

[49] Davis, M., Logemann, G., and Loveland, D. A machine program for theorem
proving. Commun. ACM 5, 7 (1962), 394–397.

[50] Davis, M., and Putnam, H. A computing procedure for quantification theory. J.

ACM 7, 3 (1960), 201–215.

[51] De Giacomo, G. Eliminating “converse” from converse PDL. J. Log. Lang. Inf. 5, 2
(1996), 193–208.

[52] De Giacomo, G., and Massacci, F. Combining deduction and model checking into
tableaux and algorithms for converse-PDL. Inf. Comput. 162, 1–2 (2000), 117–137.

[53] de Nivelle, H., Schmidt, R. A., and Hustadt, U. Resolution-based methods for
modal logics. L. J. IGPL 8, 3 (2000), 265–292.

[54] de Rijke, M. The modal logic of inequality. J. Symb. Log. 57, 2 (June 1992), 566–
584.

[55] Dechter, R. Constraint Processing. Morgan Kaufmann, 2003.

138

Bibliography

[56] Emerson, E. A. Automata, tableaux and temporal logics: Extended abstract. In
Logics of Programs (1985), R. Parikh, Ed., vol. 193 of LNCS, Springer, pp. 79–88.

[57] Emerson, E. A. Temporal and modal logic. In Handbook of Theoretical Computer

Science, J. van Leeuwen, Ed., vol. B: Formal Models and Semantics. Elsevier, 1990,
pp. 995–1072.

[58] Emerson, E. A., and Clarke, E. M. Using branching time temporal logic to synthe-
size synchronization skeletons. Sci. Comput. Programming 2, 3 (1982), 241–266.

[59] Emerson, E. A., and Halpern, J. Y. Decision procedures and expressiveness in
the temporal logic of branching time. J. Comput. System Sci. 30, 1 (1985), 1–24.

[60] Emerson, E. A., and Halpern, J. Y. “Sometimes” and “not never” revisited: On
branching versus linear time temporal logic. J. ACM 33, 1 (1986), 151–178.

[61] Emerson, E. A., and Jutla, C. S. The complexity of tree automata and logics of
programs. SIAM J. Comput. 29, 1 (1999), 132–158.

[62] Emerson, E. A., and Sistla, A. P. Deciding full branching time logic. Inf. Comput.

61, 3 (1984), 175–201.

[63] Enjalbert, P., and Fariñas del Cerro, L. Modal resolution in clausal form.
Theor. Comput. Sci. 65, 1 (1989), 1–33.

[64] Fattorosi-Barnaba, M., and De Caro, F. Graded modalities. I. Stud. Log. 44, 2
(1985), 197–221.

[65] Fine, K. In so many possible worlds. Notre Dame J. Form. Log. 13, 4 (1972),
516–520.

[66] Fischer, M. J., and Ladner, R. E. Propositional modal logic of programs. In STOC

’77 (1977), ACM, pp. 286–294.

[67] Fischer, M. J., and Ladner, R. E. Propositional dynamic logic of regular programs.
J. Comput. System Sci. (1979), 194–211.

[68] Fitting, M. Tableau methods of proof for modal logics. Notre Dame J. Form. Log.

13, 2 (1972), 237–247.

[69] Fitting, M. Model existence theorems for modal and intuitionistic logics. J. Symb.

Log. 38, 4 (1973), 613–627.

[70] Fitting, M. Proof Methods for Modal and Intuitionistic Logics. D. Reidel, 1983.

[71] Fitting, M. Modal proof theory. In Handbook of Modal Logic, P. Blackburn, J. van
Benthem, and F. Wolter, Eds., vol. 3 of Studies in Logic and Practical Reasoning.
Elsevier, 2007, pp. 85–138.

139

Bibliography

[72] Franceschet, M., and de Rijke, M. Model checking hybrid logics (with an appli-
cation to semistructured data). J. Appl. Log. 4, 3 (2006), 279–304.

[73] Friedmann, O., and Lange, M. A solver for modal fixpoint logics. In M4M-6

(2010), T. Bolander and T. Braüner, Eds., vol. 262 of Electr. Notes Theor. Comput.

Sci., Elsevier, pp. 99–111.

[74] Friedmann, O., and Lange, M. The modal µ-calculus caught off guard. In
TABLEAUX 2011 (2011), K. Brünnler and G. Metcalfe, Eds., vol. 6793 of LNCS,
Springer, pp. 149–163.

[75] Gabbay, D. M., Pnueli, A., Shelah, S., and Stavi, J. On the temporal analysis of
fairness. In POPL ’80 (1980), ACM, pp. 163–173.

[76] Gargov, G., and Goranko, V. Modal logic with names. Journal of Philosophical

Logic 22 (1993), 607–636.

[77] Gaschnig, J. Performance Measurement and Analysis of Certain Search Algo-

rithms. PhD thesis, Carnegie Mellon University, 1979.

[78] Gentzen, G. Untersuchungen über das logische Schließen. Mathematische

Zeitschrift 39 (1935), 176–210 and 405–431. In German.

[79] Gentzen, G. Investigation into logical deduction. In The Collected Papers of Ger-

hard Gentzen, M. E. Szabo, Ed. North-Holland, 1969, pp. 68–131. Originally pub-
lished as [78].

[80] Gerth, R., Peled, D., Vardi, M. Y., and Wolper, P. Simple on-the-fly automatic
verification of linear temporal logic. In PSTV ’95 (1996), P. Dembinski and M. Sred-
niawa, Eds., vol. 38 of IFIP Conference Proceedings, Chapman & Hall, pp. 3–18.

[81] Giunchiglia, E., Giunchiglia, F., and Tacchella, A. SAT-based decision proce-
dures for classical modal logics. J. Autom. Reasoning 28, 2 (2002), 143–171.

[82] Giunchiglia, E., and Tacchella, A. System description: *SAT: A platform for the
development of modal decision procedures. In CADE-17 (2000), D. A. McAllester,
Ed., vol. 1831 of LNCS, Springer, pp. 291–296.

[83] Giunchiglia, E., and Tacchella, A. A subset-matching size-bounded cache for
testing satisfiability in modal logics. Ann. Math. Artif. Intell. 33, 1 (2001), 39–67.

[84] Giunchiglia, F., and Sebastiani, R. Building decision procedures for modal
logics from propositional decision procedures: The case study of modal K(m).
Inf. Comput. 162, 1-2 (2000), 158–178.

[85] Goldblatt, R. Mathematical modal logic: A view of its evolution. J. Appl. Log. 1,
5–6 (2003), 309–392.

140

Bibliography

[86] Goranko, V. Modal definability in enriched languages. Notre Dame J. Form. Log.

31, 1 (1990), 81–105.

[87] Goranko, V. Temporal logic with reference pointers. In ICTL ’94 (1994), D. M.
Gabbay and H. J. Ohlbach, Eds., vol. 827 of LNCS, Springer, pp. 133–148.

[88] Goranko, V., and Otto, M. Model theory of modal logic. In Handbook of Modal

Logic, P. Blackburn, J. van Benthem, and F. Wolter, Eds., vol. 3 of Studies in Logic

and Practical Reasoning. Elsevier, 2007, pp. 249–329.

[89] Goranko, V., and Passy, S. Using the universal modality: Gains and questions.
J. Log. Comput. 2, 1 (1992), 5–30.

[90] Goré, R. Tableau methods for modal and temporal logics. In Handbook of Tableau

Methods, M. D’Agostino, D. M. Gabbay, R. Hähnle, and J. Posegga, Eds. Kluwer
Academic Publishers, 1999, pp. 297–396.

[91] Goré, R., and Nguyen, L. A. EXPTIME tableaux with global caching for description
logics with transitive roles, inverse roles and role hierarchies. In TABLEAUX 2007

(2007), N. Olivetti, Ed., vol. 4548 of LNCS, Springer, pp. 133–148.

[92] Goré, R., and Postniece, L. An experimental evaluation of global caching for
ALC: System description. In IJCAR 2008 (2008), A. Armando, P. Baumgartner,
and G. Dowek, Eds., vol. 5195 of LNCS, Springer, pp. 299–305.

[93] Goré, R., and Widmann, F. An optimal on-the-fly tableau-based decision proce-
dure for PDL-satisfiability. In CADE-22 (2009), R. A. Schmidt, Ed., vol. 5663 of
LNCS, Springer, pp. 437–452.

[94] Goré, R., and Widmann, F. Sound global state caching for ALC with inverse
roles. In TABLEAUX 2009 (2009), M. Giese and A. Waaler, Eds., vol. 5607 of LNCS,
Springer, pp. 205–219.

[95] Goré, R., and Widmann, F. Optimal tableaux for propositional dynamic logic
with converse. In IJCAR 2010 (2010), J. Giesl and R. Hähnle, Eds., vol. 6173 of
LNCS, Springer, pp. 225–239.

[96] Gorín, D. Técnicas de razonamiento automático para lógicas híbridas (Automated

Reasoning Techniques for Hybrid Logics). PhD thesis, Universidad de Buenos Aires,
2009.

[97] Götzmann, D. Spartacus: A Tableau Prover for Hybrid Logic. M.Sc. thesis, Saar-
land University, 2009.

[98] Götzmann, D., Kaminski, M., and Smolka, G. Spartacus: A tableau prover for
hybrid logic. In M4M-6 (2010), T. Bolander and T. Braüner, Eds., vol. 262 of Electr.

Notes Theor. Comput. Sci., Elsevier, pp. 127–139.

141

Bibliography

[99] Haarslev, V., and Möller, R. RACER system description. In IJCAR 2001 (2001),
R. Goré, A. Leitsch, and T. Nipkow, Eds., vol. 2083 of LNCS, Springer, pp. 701–705.

[100] Haarslev, V., and Möller, R. High performance reasoning with very large knowl-
edge bases: A practical case study. In IJCAI 2001 (2001), B. Nebel, Ed., Morgan
Kaufmann, pp. 161–168.

[101] Halpern, J. Y., and Moses, Y. A guide to completeness and complexity for modal
logics of knowledge and belief. Artif. Intell. 54 (1992), 319–379.

[102] Harel, D. First-Order Dynamic Logic, vol. 68 of LNCS. Springer, 1979.

[103] Harel, D. Dynamic logic. In Handbook of Philosophical Logic, D. M. Gabbay and
F. Guenthner, Eds., vol. 2. D. Reidel, 1984, pp. 497–604.

[104] Harel, D., Kozen, D., and Tiuryn, J. Dynamic Logic. The MIT Press, 2000.

[105] Hintikka, K. J. J. Form and content in quantification theory. Two papers on
symbolic logic. Acta Philosophica Fennica 8 (1955), 7–55.

[106] Hoare, C. A. R. An axiomatic basis for computer programming. Commun. ACM

12, 10 (1969), 576–580,583.

[107] Hoffmann, G. Lightweight hybrid tableaux. J. Appl. Log. 8, 4 (2010), 397–408.

[108] Hoffmann, G. Tâches de raisonnement en logiques hybrides. PhD thesis, Univer-
sité Henri Poincaré, Nancy 1, 2010.

[109] Hoffmann, G., and Areces, C. HTab: A terminating tableaux system for hybrid
logic. In M4M-5 (2009), C. Areces and S. Demri, Eds., vol. 231 of Electr. Notes

Theor. Comput. Sci., Elsevier, pp. 3–19.

[110] Hopcroft, J. E., Motwani, R., and Ullman, J. D. Introduction to Automata The-

ory, Languages, and Computation, 3rd ed. Prentice Hall, 2006.

[111] Horrocks, I., Hustadt, U., Sattler, U., and Schmidt, R. A. Computational
modal logic. In Handbook of Modal Logic, P. Blackburn, J. van Benthem, and
F. Wolter, Eds., vol. 3 of Studies in Logic and Practical Reasoning. Elsevier, 2007,
pp. 181–245.

[112] Horrocks, I., Kutz, O., and Sattler, U. The even more irresistible SROIQ. In
Proc. 10th Intl. Conf. on Principles of Knowledge Representation and Reasoning

(KR 2006) (2006), P. Doherty, J. Mylopoulos, and C. A. Welty, Eds., AAAI Press,
pp. 57–67.

[113] Horrocks, I., and Patel-Schneider, P. F. Optimizing description logic subsump-
tion. J. Log. Comput. 9, 3 (1999), 267–293.

[114] Horrocks, I., and Sattler, U. A description logic with transitive and inverse
roles and role hierarchies. J. Log. Comput. 9, 3 (1999), 385–410.

142

Bibliography

[115] Horrocks, I., and Sattler, U. Ontology reasoning in the SHOQ(D) description
logic. In IJCAI 2001 (2001), B. Nebel, Ed., Morgan Kaufmann, pp. 199–204.

[116] Horrocks, I., and Sattler, U. Decidability of SHIQ with complex role inclusion
axioms. Artif. Intell. 160, 1-2 (2004), 79–104.

[117] Horrocks, I., and Sattler, U. A tableau decision procedure for SHOIQ. J.

Autom. Reasoning 39, 3 (2007), 249–276.

[118] Horrocks, I., Sattler, U., and Tobies, S. Practical reasoning for expres-
sive description logics. In LPAR’99 (1999), H. Ganzinger, D. A. McAllester, and
A. Voronkov, Eds., vol. 1705 of LNCS, Springer, pp. 161–180.

[119] Hustadt, U., and Schmidt, R. A. Simplification and backjumping in modal
tableau. In TABLEAUX ’98 (1998), H. de Swart, Ed., vol. 1397 of LNCS, Springer,
pp. 187–201.

[120] Hustadt, U., and Schmidt, R. A. MSPASS: Modal reasoning by translation and
first-order resolution. In TABLEAUX 2000 (2000), R. Dyckhoff, Ed., vol. 1847 of
LNCS, Springer, pp. 514–520.

[121] Hustadt, U., and Schmidt, R. A. Using resolution for testing modal satisfiability
and building models. J. Autom. Reasoning 28, 2 (2002), 205–232.

[122] Hustadt, U., and Schmidt, R. A. A comparison of solvers for propositional
dynamic logic. In PAAR-2010 (2010), B. Konev, R. A. Schmidt, and S. Schulz, Eds.,
EasyChair Proceedings, pp. 60–69.

[123] Jungteerapanich, N. A tableau system for the modal µ-calculus. In TABLEAUX

2009 (2009), M. Giese and A. Waaler, Eds., vol. 5607 of LNCS, Springer, pp. 220–
234.

[124] Kaminski, M., Schneider, S., and Smolka, G. Terminating tableaux for graded
hybrid logic with global modalities and role hierarchies. Log. Methods Comput.

Sci. 7, 1:5 (2011).

[125] Kaminski, M., and Smolka, G. Terminating tableaux for hybrid logic with the
difference modality and converse. In IJCAR 2008 (2008), A. Armando, P. Baum-
gartner, and G. Dowek, Eds., vol. 5195 of LNCS, Springer, pp. 210–225.

[126] Kaminski, M., and Smolka, G. Hybrid tableaux for the difference modality. In
M4M-5 (2009), C. Areces and S. Demri, Eds., vol. 231 of Electr. Notes Theor. Com-

put. Sci., Elsevier, pp. 241–257.

[127] Kaminski, M., and Smolka, G. Terminating tableau systems for hybrid logic with
difference and converse. J. Log. Lang. Inf. 18, 4 (2009), 437–464.

143

Bibliography

[128] Kaminski, M., and Smolka, G. Terminating tableaux for hybrid logic with even-
tualities. In IJCAR 2010 (2010), J. Giesl and R. Hähnle, Eds., vol. 6173 of LNCS,
Springer, pp. 240–254.

[129] Kaminski, M., and Smolka, G. Terminating tableaux for SOQ with number re-
strictions on transitive roles. In TCS 2010 (2010), C. S. Calude and V. Sassone,
Eds., vol. 323 of IFIP AICT, Springer, pp. 213–228.

[130] Kaplan, D. M. Regular expressions and the equivalence of programs. J. Comput.

System Sci. 3, 4 (1969), 361–386.

[131] Kazakov, Y., and Pratt-Hartmann, I. A note on the complexity of the satis-
fiability problem for graded modal logics. In LICS 2009 (2009), IEEE Computer
Society Press, pp. 407–416.

[132] Kesten, Y., Manna, Z., McGuire, H., and Pnueli, A. A decision algorithm for full
propositional temporal logic. In CAV’93 (1993), C. Courcoubetis, Ed., vol. 697 of
LNCS, Springer, pp. 97–109.

[133] Kowalski, R. Logic for Problem Solving. North-Holland, 1979.

[134] Koymans, R. Specifying Message Passing and Time-Critical Systems with Temporal

Logic, vol. 651 of LNCS. Springer, 1992.

[135] Kozen, D. Results on the propositional µ-calculus. Theor. Comput. Sci. 27 (1983),
333–354.

[136] Kozen, D. Kleene algebra with tests and commutativity conditions. In TACAS’96

(1996), T. Margaria and B. Steffen, Eds., vol. 1055 of LNCS, Springer, pp. 14–33.

[137] Kozen, D., and Smith, F. Kleene algebra with tests: Completeness and decid-
ability. In CSL’96 (1996), D. van Dalen and M. Bezem, Eds., vol. 1258 of LNCS,
Springer, pp. 244–259.

[138] Kozen, D., and Tiuryn, J. Logics of programs. In Handbook of Theoretical Com-

puter Science, J. van Leeuwen, Ed., vol. B: Formal Models and Semantics. Elsevier,
1990, pp. 789–840.

[139] Kripke, S. A. A completeness theorem in modal logic. J. Symb. Log. 24, 1 (1959),
1–14.

[140] Kripke, S. A. Semantical analysis of modal logic I: Normal modal propositional
calculi. Z. Math. Logik Grundlagen Math. 9 (1963), 67–96.

[141] Kumar, V. Algorithms for constraint satisfaction problems: A survey. AI Maga-

zine 13, 1 (1992), 32–44.

[142] Ladner, R. E. The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6, 3 (1977), 467–480.

144

Bibliography

[143] Lange, M. Satisfiability and completeness of converse-PDL replayed. In KI 2003

(2003), A. Günter, R. Kruse, and B. Neumann, Eds., vol. 2821 of LNCS, Springer,
pp. 79–82.

[144] Lemmon, E. J., and Scott, D. The ‘Lemmon Notes’: An Introduction to Modal Logic.
Blackwell, 1977.

[145] Lewis, C. I. A Survey of Symbolic Logic. University of California Press, 1918.

[146] Massacci, F. Single step tableaux for modal logics. J. Autom. Reasoning 24, 3
(2000), 319–364.

[147] Minsky, M. A framework for representing knowledge. In The Psychology of Com-

puter Vision, P. H. Winston, Ed. McGraw-Hill, 1975, pp. 211–277.

[148] Mints, G. Resolution calculi for modal logics. Amer. Math. Soc. Transl. 143 (1989),
1–14.

[149] Nadel, B. A. Tree search and arc consistency in constraint satisfaction algorithms.
In Search in Artificial Intelligence, L. N. Kanal and V. Kumar, Eds. Springer, 1988,
pp. 287–342.

[150] Nguyen, L. A., and Szałas, A. An optimal tableau decision procedure for
converse-PDL. In KSE 2009 (2009), N. T. Nguyen, T. D. Bui, E. Szczerbicki, and
N. B. Nguyen, Eds., IEEE Computer Society Press, pp. 207–214.

[151] Nguyen, L. A., and Szałas, A. Checking consistency of an ABox w.r.t. global
assumptions in PDL. Fund. Inform. 102, 1 (2010), 97–113.

[152] Pan, G., Sattler, U., and Vardi, M. Y. BDD-based decision procedures for the
modal logic K. J. Appl. Non-Class. Log. 16, 1-2 (2006), 169–208.

[153] Passy, S., and Tinchev, T. PDL with data constants. Inf. Process. Lett. 20, 1 (1985),
35–41.

[154] Passy, S., and Tinchev, T. Quantifiers in combinatory PDL: Completeness, de-
finability, incompleteness. In FCT ’85 (1985), L. Budach, Ed., vol. 199 of LNCS,
pp. 512–519.

[155] Passy, S., and Tinchev, T. An essay in combinatory dynamic logic. Inf. Comput.

93, 2 (1991), 263–332.

[156] Perrin, D. Finite automata. In Handbook of Theoretical Computer Science, J. van
Leeuwen, Ed., vol. B: Formal Models and Semantics. Elsevier, 1990, pp. 1–57.

[157] Pierce, B. C. Types and Programming Languages. The MIT Press, 2002.

[158] Pnueli, A. The temporal logic of programs. In FOCS ’77 (1977), IEEE Computer
Society Press, pp. 46–57.

145

Bibliography

[159] Pratt, V. R. Semantical considerations on Floyd-Hoare logic. In FOCS ’76 (1976),
IEEE Computer Society Press, pp. 109–121.

[160] Pratt, V. R. Models of program logics. In Proc. 20th Annual Symp. on Foundations

of Computer Science (FOCS’79) (1979), IEEE Computer Society Press, pp. 115–122.

[161] Pratt, V. R. A near-optimal method for reasoning about action. J. Comput. System

Sci. 20, 2 (1980), 231–254.

[162] Prendinger, H., and Schurz, G. Reasoning about action and change: A dynamic
logic approach. J. Log. Lang. Inf. 5, 2 (1996), 209–245.

[163] Prior, A. N. Past, Present and Future. Oxford University Press, 1967.

[164] Prior, A. N. Papers on Time and Tense, New Edition. Oxford University Press,
2003. Edited by Per Hasle, Peter Øhrstrøm, Torben Braüner and Jack Copeland.

[165] Prosser, P. Hybrid algorithms for the constraint satisfaction problem. Comput.

Intell. 9, 3 (1993), 268–299.

[166] Quillian, M. R. Word concepts: A theory and simulation of some basic capabili-
ties. Behavioural Science 12, 5 (1967), 410–430.

[167] Rautenberg, W. Klassische und nichtklassische Aussagenlogik. Vieweg, 1983. In
German.

[168] Rautenberg, W. Modal tableau calculi and interpolation. J. Philos. Log. 12, 4
(1983), 403–423.

[169] Reynolds, M. A tableau for CTL*. In FM 2009 (2009), A. Cavalcanti and D. Dams,
Eds., vol. 5850 of LNCS, Springer, pp. 403–418.

[170] Sain, I. Is ‘some other time’ sometimes better than ‘sometime’ for proving partial
correctness of programs? Stud. Log. 47 (1988), 279–301.

[171] Schild, K. A correspondence theory for terminological logics: Preliminary report.
In IJCAI ’91 (1991), J. Mylopoulos and R. Reiter, Eds., Morgan Kaufmann, pp. 466–
471.

[172] Schmidt, R. A. Decidability by resolution for propositional modal logics. J. Autom.

Reasoning 22, 4 (1999), 379–396.

[173] Schmidt, R. A., and Hustadt, U. The axiomatic translation principle for modal
logic. ACM Trans. Comput. Log. 8, 4 (2007).

[174] Schmidt-Schauß, M., and Smolka, G. Attributive concept descriptions with
complements. Artif. Intell. 48, 1 (1991), 1–26.

[175] Schneider, S. Terminating Tableaux for Modal Logic with Transitive Closure.
Bachelor’s thesis, Saarland University, 2009.

146

Bibliography

[176] Schrijver, A. Theory of Linear and Integer Programming. John Wiley & Sons,
1986.

[177] Schwendimann, S. A new one-pass tableau calculus for PLTL. In TABLEAUX ’98

(1998), H. de Swart, Ed., vol. 1397 of LNCS, Springer, pp. 277–291.

[178] Sebastiani, R., and Vescovi, M. Automated reasoning in modal and description
logics via SAT encoding: The case study of Km/ALC-satisfiability. J. Artif. Intell.

Res. 35 (2009), 343–389.

[179] Segerberg, K. A note on the logic of elsewhere. Theoria 46, 2-3 (1980), 183–187.

[180] Sinz, C., Lumpp, T., Schneider, J., and Küchlin, W. Detection of dynamic exe-
cution errors in IBM system automation’s rule-based expert system. Information

and Software Technology 44, 14 (2002), 857–873.

[181] Sipser, M. Introduction to the Theory of Computation, 2nd ed. Course Technology,
2005.

[182] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. Pellet: A practical
OWL-DL reasoner. J. Web Sem. 5, 2 (2007), 51–53.

[183] Sistla, A. P., and Clarke, E. M. The complexity of propositional linear temporal
logics. J. ACM 32, 3 (1985), 733–749.

[184] Smullyan, R. M. First-Order Logic. Dover, 1995. First published in 1968 by
Springer.

[185] Spaan, E. Complexity of Modal Logics. PhD thesis, ILLC, University of Amsterdam,
1993.

[186] Thornton, C., and du Boulay, B. Artificial Intelligence Through Search.
Springer, 1992.

[187] Tobies, S. PSpace reasoning for graded modal logics. J. Log. Comput. 11, 1 (2001),
85–106.

[188] Tsarkov, D., and Horrocks, I. Ordering heuristics for description logic reason-
ing. In Proc. 19th Intl. Joint Conf. on Artificial Intelligence (IJCAI’05) (2005), L. P.
Kaelbling and A. Saffiotti, Eds., Professional Book Center, pp. 609–614.

[189] Tsarkov, D., and Horrocks, I. FaCT++ description logic reasoner: System de-
scription. In IJCAR 2006 (2006), U. Furbach and N. Shankar, Eds., vol. 4130 of
LNCS, Springer, pp. 292–297.

[190] Tsarkov, D., Horrocks, I., and Patel-Schneider, P. F. Optimizing terminologi-
cal reasoning for expressive description logics. J. Autom. Reasoning 39, 3 (2007),
277–316.

147

Bibliography

[191] Tzakova, M. Tableau calculi for hybrid logics. In TABLEAUX ’99 (1999), N. V.
Murray, Ed., vol. 1617 of LNCS, Springer, pp. 278–292.

[192] van der Hoek, W., and de Rijke, M. Counting objects. J. Log. Comput. 5, 3 (1995),
325–345.

[193] Vardi, M. Y. The taming of converse: Reasoning about two-way computations. In
Logics of Programs (1985), R. Parikh, Ed., vol. 193 of LNCS, Springer, pp. 413–423.

[194] Vardi, M. Y., and Stockmeyer, L. Improved upper and lower bounds for modal
logics of programs. In STOC ’85 (1985), ACM, pp. 240–251.

[195] Vardi, M. Y., and Wolper, P. Automata-theoretic techniques for modal logics of
programs. J. Comput. System Sci. 32, 2 (1986), 183–221.

[196] von Wright, G. H. A modal logic of place. In The Philosophy of Nicholas Rescher:

Discussion and Replies, E. Sosa, Ed., vol. 15 of Philosophical Studies Series. D. Rei-
del, 1979, pp. 65–73.

[197] Voronkov, A. Deciding K using K. In KR 2000 (2000), A. G. Cohn, F. Giunchiglia,
and B. Selman, Eds., Morgan Kaufmann, pp. 198–209.

[198] Voronkov, A. How to optimize proof-search in modal logics: New methods of
proving redundancy criteria for sequent calculi. ACM Trans. Comput. Log. 2, 2
(2001), 182–215.

[199] Weidenbach, C., Schmidt, R. A., Hillenbrand, T., Rusev, R., and Topic, D. Sys-
tem description: SPASS version 3.0. In CADE-21 (2007), F. Pfenning, Ed., vol. 4603
of LNCS, Springer, pp. 514–520.

[200] Widmann, F. Tableaux-based Decision Procedures for Fixed Point Logics. PhD
thesis, Australian National University, 2010.

[201] Wolper, P. The tableau method for temporal logic: An overview. Logique et

Analyse 110-111 (1985), 119–136.

148

	Introduction
	Modal Logic
	Tableau Method
	Questions Asked
	Overview of the Thesis
	Contributions

	Modal and Hybrid Logics
	Basic Modal Logic
	Propositional Dynamic Logic
	Hybrid Logic
	Global and Difference Modalities
	Related Logics

	Demos and Pruning
	Formulas and Hintikka Systems
	Formula Universe
	Demos
	Pruning and Decision Procedure
	Nominals
	Difference Modalities
	Tests
	Converse
	Related Work

	Graph Search for Modal Logic with Eventualities
	Formulas and Demos
	Pruning Revisited
	Graph Tableaux
	Evidence
	Eager Pruning
	Cautious Pruning
	Decision Procedure
	Related Work

	Tree Search for Hybrid Logic with Eventualities
	Tree Search
	Disjunctive Normal Forms
	Procedure for K
	Eventualities
	Nominals
	Discussion
	Related Work

	Tree Search for Test-Free Hybrid PDL
	Decomposition Tables
	Language-Theoretic Semantics
	Diamond and Box Decompositions
	Branches and Evidence
	Demos
	Expansion Rules
	Related Work

	Tree Search for Hybrid PDL
	Language-Theoretic Semantics
	Diamond and Box Decompositions
	Branches and Evidence
	Demos
	Expansion Rules

	Conclusion
	Summary
	Future Research

	Bibliography

