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Abstract

We present a unified framework for interpolation and regularisa-
tion of scalar- and tensor-valued images. This framework is based on
elliptic partial differential equations (PDEs) and allows rotationally in-
variant models. Since it does not require a regular grid, it can also be
used for tensor-valued scattered data interpolation and for tensor field
inpainting. By choosing suitable differential operators, interpolation
methods using radial basis functions are covered. Our experiments
show that a novel interpolation technique based on anisotropic diffu-
sion with a diffusion tensor should be favoured: It outperforms inter-
polants with radial basis functions, it allows discontinuity-preserving
interpolation with no additional oscillations, and it respects positive
semidefiniteness of the input tensor data.

Keywords: matrix-valued images, interpolation, inpainting, scattered
data interpolation, regularisation, partial differential equations, non-
linear diffusion.
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1 Introduction

Many tasks in image processing, computer vision and computer graphics
require to interpolate or resample images in order to obtain data at locations
that do not coincide with the grid points where the digital image values
are known. Classical methods to achieve this goal are linear interpolation,
cubic or quintic splines, radial basis functions and sinc-based interpolation
techniques; see e.g. [10, 13]. If the data are not available on a regular grid,
scattered data interpolation techniques have been proposed [7, 15]. More
recently, also interpolation methods based on variational formulations and
nonlinear partial differential equations (PDEs) have been advocated [4, 11],
in particular for so-called inpainting methods [12, 5, 9], where the image
data are only corrupted in specific areas. Nonlinear PDEs allow to design
discontinuity-preserving interpolants.

While image interpolation is fairly well-understood for scalar images, not
much research has been done so far with respect to interpolation of matrix
fields. Aldroubi and Basser [1] have proposed sampling in shift invariant
amalgam spaces, while Pajevic et al. [16] study B-splines and non-uniform
rational B-splines for interpolating tensor fields. Moakher and Batchelor [14]
investigate the Riemannian symmetric space of positive definite tensors and
propose interpolation strategies that respect positive definiteness. Suarez-
Santana et al. [18] use a convolution-based interpolation with structure-
adaptive weights. No attempts, however, have been made so far to study
nonlinear PDE-based interpolation schemes for tensor fields. This is the goal
of the present paper.

The paper is organised as follows. In Section 2 we first consider the scalar
case. We review splines as minimisers of suitable energy functionals whose
Euler–Lagrange equations lead to elliptic PDEs. By showing that variational
image restoration methods lead to similar PDEs, we derive a novel unified
model for image approximation and interpolation. This unified model is
extended to the tensor framework in Section 3. It covers linear and nonlinear
PDEs of arbitrary order. Experiments are presented with data sets from DT-
MRI and computational fluid dynamics that demonstrate the properties of
the different PDE interpolants. The paper is concluded with a summary in
Section 4.
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2 Scalar Interpolation

2.1 Spline Interpolation

Let us start our considerations with one of the most important scalar inter-
polation methods: spline interpolation in 1-D. Assume we are given some
interpolation points 0 = x1 < x2 < ... < xn = 1 with function values
f(x1),...,f(xn). For performing spline interpolation we are seeking a smooth
function u(x) : [0, 1] → IR that minimises

E(u) =

∫
1

0

(∂m
x u)2 dx (1)

subject to
u(xi) = f(xi) (i = 1,...,n). (2)

It is well-known that this gives linear interpolation for m = 1. In this case we
have continuity, i.e. C0-smoothness at the interpolation points. For m = 2
we obtain cubic spline interpolation, with C2-smoothness at the interpolation
points, and m = 3 gives quintic spline interpolation with C4-smoothness. In
general, we get spline interpolation of degree 2m−1 with C2m−2-smoothness.

A necessary condition for minimising (1) is given by the Euler–Lagrange
equation (−1)m+1 ∂m

xxu = 0. Together with the interpolation constraints (2),
we can cast both conditions in a single equation:

c(x) · (u(x) − f(x))
︸ ︷︷ ︸

interpolation

− (1 − c(x)) · (−1)m+1∂m
xxu

︸ ︷︷ ︸

smoothness

= 0 (3)

with

c(x) :=

{
1 if x ∈ {x0, ..., xn}
0 else.

(4)

This is a linear PDE of order 2m. For large m, we obtain a very smooth
solution, but in general we can expect no maximum–minimum principle for
m > 1. As a consequence, the interpolating spline may give over- and un-
dershoots, i.e. there is no guarantee that it remains within the convex hull
of the data. This can be very undesirable in a number of applications. The
case m = 1, on the other hand, is not very exciting since it leads to simple
linear interpolations which are not sufficiently smooth for many purposes.
However, later on we shall see that it can be attractive to stick to the case
m = 1, if we permit nonlinear anisotropic PDEs instead of linear ones.
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2.2 Regularisation

It is instructive to complement our considerations on interpolation by an
important approximation paradigm, namely variational regularisation meth-
ods. In 1-D, they can be introduced as follows. Given some noisy signal
f : [0, 1] → IR, we want to find a signal u that minimises an energy func-
tional that rewards similarity between u(x) and f(x), as well as smoothness
of u(x):

E(u) =

∫ 1

0

(

c · (u − f)2

︸ ︷︷ ︸

similarity

+ (1 − c) · Ψ(u2
x)

︸ ︷︷ ︸

smoothness

)

dx (5)

with some weight 0 < c < 1 and an increasing penalising function Ψ :
[0,∞) → IR. This leads to the Euler–Lagrange equation

c · (u − f) − (1 − c) · ∂x

(
Ψ′(u2

x) ux

)
= 0 (6)

with homogeneous Neumann boundary conditions. In general, this is a non-
linear PDE of order 2 that satisfies a maximum–minimum principle. The
nonlinear penaliser Ψ(u2

x) allows discontinuity preserving smoothing. The
total variation (TV) penaliser [17] e.g. is given by Ψ(u2

x) = 2|ux|. It leads to
an Euler–Lagrange equation with the TV diffusivity g(u2

x) := Ψ′(u2
x) = 1

|ux|
.

It reduces smoothing at locations where the gradient magnitude is large.

2.3 A Unified Model

The PDE interpretation of spline interpolation and regularisation allows us
now to study a unified model for image interpolation and approximation. Let
Ω ⊂ IRn denote our n-dimensional image domain and assume we are given
some incomplete or noisy scalar image data f : Ω → IR. Then we propose to
obtain an interpolated or processed image u that satisfies

c(x) · (u − f) − (1 − c(x)) · Lu = 0 (7)

with a confidence function c(x) : Ω → [0, 1], some elliptic differential operator
L, and homogeneous Neumann boundary conditions.

Let us first analyse the confidence function c(x). This function allows to
fill in missing data at locations x where c(x) = 0, while u(x) reproduces
f(x) at locations where c(x) = 1. Consequently, we can use this model for
interpolation by simply setting c to 0 or 1. It should be noted that the
locations x where c(x) := 1 do not necessarily have to be on a regular grid:
The model is equally valid for scattered data interpolation and inpainting.
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At locations where we choose 0 < c(x) < 1, we obtain an approximation by
regularisation. For classical regularisation, c is fixed. However, c(x) expresses
the confidence in the data. It can be chosen e.g. such that it is inversely
proportional to the local noise variance of f , if there are indications that the
data are not equally reliable at different locations. Hence we have a very
flexible method for denoising (approximation) with simultaneous filling-in of
data (interpolation).

Regarding the elliptic differential operator L, many possibilities exist. In-
spired from spline interpolation, a suitable n-dimensional generalisation of
(3) would use the Laplacian operator (also called harmonic or linear diffusion
operator) Lu := ∆u for m = 1, the biharmonic operator Lu := −∆2u for
m = 2, or the triharmonic operator Lu := ∆3u for m = 3. These linear
operators correspond to interpolation with radial basis functions [3]. From
the theory of nonlinear diffusion filtering, on the other side, it would be
interesting to use the isotropic nonlinear operator Lu := div (g(|∇u|2)∇u)
or its anisotropic counterpart1 Lu := div (g(∇uσ∇u>

σ )∇u), where uσ is a
Gaussian-smoothed version of u, and g is a decreasing positive diffusivity
function. The isotropic operator reduces diffusion at edges of uσ, while the
anisotropic one permits diffusion along edges of uσ and reduces diffusion
across edges of uσ. For more details on nonlinear diffusion the reader is re-
ferred to [20]. Note that only the second-order differential operators allow a
maximum–minimum principle, where the values of u stay within the range of
the values that f takes at locations where c(x) > 0. One should also note that
all these differential operators are rotationally invariant, unlike a number of
popular interpolation techniques such as multivariate spline interpolation.

2.4 Experiments

Let us now evaluate the quality of our unified model (7) in the case of scalar
image interpolation. To this end we extract the solutions of the elliptic PDEs
as steady states of corresponding parabolic evolutions that are discretised by
an explicit (Euler forward) finite difference scheme.

Figure 1 shows a test image and a sparsified version where only 1 out of
64 pixels is used. Based on this sparsified image, interpolation with various
differential operators and optimised parameters is shown in Fig. 2. In the

1A scalar-valued function g(x) is extended to a matrix-valued function g(A) by applying
g to the eigenvalues on A and leaving the eigenvectors unchanged.
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Figure 1: (a) Left: Original image. (b) Right: Data points for interpolation.
Only 1 out of 64 points is used.

nonlinear diffusion cases, a Charbonnier diffusivity [6] is used:

g(s2) =
1

1 + s2/λ2
(8)

with some contrast parameter λ > 0. Quantitative results in terms of the
average Euclidean distance

AED (u, v) :=
( 1

|Ω|

∫

Ω

(u(x) − v(x))2 dx
)1/2

(9)

between the interpolated image u and its ground truth v are given in Table 1.
We observe that linear diffusion performs worst and is significantly worse
than isotropic nonlinear diffusion. Biharmonic and triharmonic smoothing
give fairly good results, but blur image edges and show oscillations near them.
They also violate a maximum–minimum principle. Anisotropic diffusion per-
forms best: It gives the highest SNR. It also obeys a maximum–minimum
principle, respects discontinuities and does not suffer from visible oscillations.

3 Tensor Interpolation

3.1 PDE Formulations

Let us now investigate how the scalar PDE-based interpolation techniques
from the previous section can be extended to the tensor case.
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Figure 2: Scalar-valued interpolation of Fig. 1(b). (a) Top Left: Interpo-
lation data. (b) Top Middle: Interpolation with linear diffusion. (c) Top

Right: Isotropic nonlinear diffusion. (d) Bottom Left: Anisotropic non-
linear diffusion. (e) Bottom Middle: Biharmonic smoothing. (f) Bottom

Right: Triharmonic smoothing.

For the linear PDEs, extensions to the tensor framework are straightforward:
Harmonic (linear diffusion), biharmonic and triharmonic smoothing can be

Table 1: Interpolation quality of the scalar-valued methods from Fig. 2. AED
= average Euclidean distance to the correct image.

smoothing operator AED max.–min. principle
linear diffusion 19.80 yes
isotropic nonlinear diffusion 18.42 yes
anisotropic nonlinear diffusion 15.16 yes
biharmonic smoothing 15.76 no
triharmonic smoothing 16.36 no
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applied componentwise leading to

c(x)(uij − fij) − (1 − c(x)) ∆1uij = 0 (harmonic) (10)

c(x)(uij − fij) + (1 − c(x)) ∆2uij = 0 (biharmonic) (11)

c(x)(uij − fij) − (1 − c(x)) ∆3uij = 0 (triharmonic) (12)

for a tensor image F = (fij) : Ω → IRn×n and its interpolant U = (uij).
The fact that biharmonic and triharmonic smoothing violate a maximum–
minimum principle in the scalar setting has an interesting consequence in
the tensor framework: The interpolated tensor field may not be positive
semidefinite (PSD), even if all tensors at locations x with c(x) > 0 are positive
semidefinite. This may be a drawback for applications such as diffusion tensor
MRI.

In the nonlinear diffusion setting where discontinuities are to be preserved,
a suitable channel coupling is natural. We can design interpolation methods
by applying recent tensor-valued extensions of nonlinear diffusion filtering
in the isotropic [19] and anisotropic case [21]: In the isotropic case, channel
coupling is achieved by a joint diffusivity leading to

c(x) (uij−fij) − (1−c(x)) div
(

g
(
∑

k,l

|∇ukl|
2

)

∇uij

)

= 0. (13)

In the anisotropic case, a joint diffusion tensor is used:

c(x) (uij−fij) − (1−c(x)) div
(

g
(
∑

k,l

∇ukl,σ∇u>
kl,σ

)

∇uij

)

= 0. (14)

Interestingly, one can show that such a channel coupling allows PSD preserva-
tion for these second-order PDEs, both in the continuous [2] and the discrete
setting [21]. An intuitive explanation for this fact is given by the observation
that coupled nonlinear diffusion can be regarded as a weighted averaging of
matrices where identical (but space-variant) weights are used for all channels.
If the matrices are positive semidefinite, then their weighted average is also
positive semidefinite.

3.2 Experiments

For our experiments on tensor field interpolation we have created a synthetic
2-D test image that is depicted in Figure 3(a). The positive definite tensors
are visualised by ellipses. Their colour is a function of the orientation of
the ellipse and its anisotropy, such that an isotropic ellipse (a disk) appears
white.
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We perform two experiments where we evaluate the interpolation quality of
the different tensor-valued PDEs: a zooming experiment where the interpola-
tion points are equidistant, and a tensor-valued scattered data interpolation
experiment. The corresponding interpolation data are given in Figs. 3(b)
and (c), respectively.

For the zooming experiment the results for the different PDE-based interpo-
lation methods are depicted in Figure 4. We observe that linear and isotropic
nonlinear diffusion may create singularities at interpolation points near dis-
continuities. Biharmonic and in particular triharmonic interpolation, on the
other hand, lead to visible oscillations. This can be seen best at the in-
correct colours that are created in the white region. These artifacts reflect
that fact that these equations are not PSD-preserving. Anisotropic nonlin-
ear diffusion interpolation appears to be the best of both worlds: Since it
is PSD-preserving, it does not introduce oscillatary artifacts. Moreover, it
seems that is suffers less from singularities at interpolation points than linear
and isotropic nonlinear diffusion interpolation.

The scattered data experiment in Figure 5 allows qualitively similar obser-
vations: Linear and isotropic nonlinear diffusion can exhibit singularities at
interpolation points, while biharmonic and triharmonic interpolation create
very disturbing oscillations. Once again, anisotropic nonlinear diffusion per-
forms best.

In Table 2 we measure the difference between the interpolated tensor field
U = (uij) and the ground truth V = (vij) for both experiments. This is done
by computing the average Frobenius distance

AFD (u, v) :=
( 1

4 |Ω|

2∑

i,j=1

∫

Ω

(uij(x) − vij(x))2 dx
)1/2

, (15)

the tensorial analogue to the average Euclidean distance (9). The results con-
firm in both cases the visual impression that anisotropic nonlinear diffusion
is the favourable interpolant for tensor fields.

4 Summary

We have presented a unified PDE model for regularisation and interpolation,
both for scalar- and tensor-valued data. This framework allows rotationally
invariant models and is not restricted to regular grids: It can also be used
for scattered data interpolation and inpainting. Our experiments have shown
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Figure 3: (a) Left: Synthetic 2-D tensor test image, 32×32 pixels. (b) Mid-

dle: Regular interpolation data where every fourth pixel in each direction is
given. (c) Right: Scattered interpolation data where 10 percent of all pixels
have been selected randomly.

Figure 4: Tensor-valued interpolation of Fig. 3(b). (a) Top left: Interpo-
lation data. (b) Top middle: Interpolation with linear diffusion. (c) Top

right: Isotropic nonlinear diffusion. (d) Bottom left: Anisotropic nonlin-
ear diffusion. (e) Bottom middle: Biharmonic smoothing. (f) Bottom

right: Triharmonic smoothing.
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Figure 5: Tensor-valued scattered data interpolation of Fig. 3(c). (a) Top

left: Interpolation data. (b) Top middle: Interpolation with linear dif-
fusion. (c) Top right: Isotropic nonlinear diffusion. (d) Bottom left:

Anisotropic nonlinear diffusion. (e) Bottom middle: Biharmonic smooth-
ing. (f) Bottom right: Triharmonic smoothing.

Table 2: Interpolation quality of the tensor-valued interpolation experiments
from Fig. 4 (zoom) and Fig. 5 (scattered data). Criteria are the aver-
age Frobenius difference (AFD) and preservation of positive semidefiniteness
(PSD).

smoothing operator AFD AFD PSD
(zoom) (scattered)

linear diffusion 8.78 9.85 yes
isotropic nonlinear diffusion 8.03 9.59 yes
anisotropic nonlinear diffusion 7.25 9.19 yes
biharmonic smoothing 8.10 9.47 no
triharmonic smoothing 8.54 12.92 no
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that the use of a novel interpolation technique based on anisotropic nonlin-
ear diffusion with a diffusion tensor gives the most favourable results: It
outperforms interpolation techniques based on radial basis functions, linear
diffusion and isotropic nonlinear diffusion, Moreover, it allows discontinuity-
preserving interpolation without visible oscillations. Provided that the tensor
input data are positive semidefinite, this property is naturally inherited to
its diffusion interpolant. This renders anisotropic nonlinear diffusion inter-
polation a highly interesting tool for applications such as diffusion tensor
MRI.

In our future work, we head for a detailed theoretical analysis of these meth-
ods. We also plan to implement numerical methods with high efficiency,
and study possible extensions. We will also investigate the usefulness of
anisotropic nonlinear diffusion interpolation for lossy image compression.
First results are reported in [8].
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